
TCP/IP Protocol Suite 1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2

The OSI

Model and the

TCP/IP

Protocol Suite

TCP/IP Protocol Suite 2

OBJECTIVES:

 To discuss the idea of multiple layering in data communication

and networking and the interrelationship between layers.

 To discuss the OSI model and its layer architecture and to show

the interface between the layers.

 To briefly discuss the functions of each layer in the OSI model.

 To introduce the TCP/IP protocol suite and compare its layers

with the ones in the OSI model.

 To show the functionality of each layer in the TCP/IP protocol

with some examples.

 To discuss the addressing mechanism used in some layers of the

TCP/IP protocol suite for the delivery of a message from the

source to the destination.

TCP/IP Protocol Suite 3

Chapter

Outline

2.1 Protocol Layers

2.2 The OSI Model

2.3 TCP/IP Protocol Suite

2.4 Addressing

TCP/IP Protocol Suite 4

2-1 PROTOCOL LAYERS

In Chapter 1, we discussed that a protocol is required
when two entities need to communicate. When
communication is not simple, we may divide the
complex task of communication into several layers. In
this case, we may need several protocols, one for each
layer.

Let us use a scenario in communication in which the
role of protocol layering may be better understood. We
use two examples. In the first example, communication
is so simple that it can occur in only one layer.

TCP/IP Protocol Suite 5

Topics Discussed in the Section

Hierarchy

Services

TCP/IP Protocol Suite 6

2-2 THE OSI MODEL

Established in 1947, the International Standards
Organization (ISO) is a multinational body dedicated to
worldwide agreement on international standards.
Almost three-fourths of countries in the world are
represented in the ISO. An ISO standard that covers all
aspects of network communications is the Open
Systems Interconnection (OSI) model. It was first
introduced in the late 1970s.

TCP/IP Protocol Suite 7

Topics Discussed in the Section

Layered Architecture

Layer-to-layer Communication

Encapsulation

Layers in the OSI Model

Summary of OSI Layers

TCP/IP Protocol Suite 8

ISO is the organization;

OSI is the model.

Note

TCP/IP Protocol Suite 9

Figure 2.3 The OSI model

TCP/IP Protocol Suite 10

Figure 2.4 OSI layers

TCP/IP Protocol Suite 11

Figure 2.5 An exchange using the OSI model

TCP/IP Protocol Suite 12

The physical layer is responsible for

moving individual bits from one

(node) to the next.

Note

TCP/IP Protocol Suite 13

Figure 2.6 Summary of OSI Layers

TCP/IP Protocol Suite 14

2-3 TCP/IP PROTOCOL SUITE

The TCP/IP protocol suite was developed prior to the
OSI model. Therefore, the layers in the TCP/IP
protocol suite do not match exactly with those in the
OSI model. The original TCP/IP protocol suite was
defined as four software layers built upon the hardware.
Today, however, TCP/IP is thought of as a five-layer
model with the layers named similarly to the ones in
the OSI model. Figure 2.7 shows both configurations.

TCP/IP Protocol Suite 15

Topics Discussed in the Section

Comparison between OSI and TCP/IP

Layers in the TCP/IP Suite

TCP/IP Protocol Suite 16

Figure 2.7 Layers in the TCP/IP Protocol Suite

TCP/IP Protocol Suite 17

Figure 2.8 TCP/IP and OSI model

TCP/IP Protocol Suite 18

Figure 2.9 A private internet

TCP/IP Protocol Suite 19

Figure 2.10 Communication at the physical layer

A

Physical
layer

Physical
layer

R1 R3 R4 B

Source DestinationLegend

011 ... 101

011
...

101
011 ... 101 011 ... 101

Link 3 Link 5 Link 6Link 1

TCP/IP Protocol Suite 20

The unit of communication at the

physical layer is a bit.

Note

TCP/IP Protocol Suite 21

Figure 2.11 Communication at the data link layer

A

Physical Physical

Data linkData link

R1 R3 R4 B

Source Destination DataD HeaderHLegend

Link 1 Link 3 Link 5 Link 6

Frame
D2 H2

F
ram

e
D

2
H

2

Frame

D2 H2
Frame

D2 H2

TCP/IP Protocol Suite 22

The unit of communication at the data

link layer is a frame.

Note

TCP/IP Protocol Suite 23

Figure 2.12 Communication at the network layer

A

Physical Physical

Data linkData link

R1 R3 R4 B

NetworkNetwork

Source Destination DataD HeaderHLegend

Datagram

D3 H3

Datagram

D3 H3

TCP/IP Protocol Suite 24

The unit of communication at the

network layer is a datagram.

Note

TCP/IP Protocol Suite 25

Figure 2.13 Communication at transport layer

A

Physical Physical

Data linkData link

R1 R3 R4

B

NetworkNetwork

Transport Transport

Source Destination DataD HeaderHLegend

Segment

D4 H4

Segment

D4 H4

TCP/IP Protocol Suite 26

The unit of communication at the

transport layer is a segment, user

datagram, or a packet, depending on the

specific protocol used in this layer.

Note

TCP/IP Protocol Suite 27

Figure 2.14 Communication at application layer

A

Physical Physical

Data linkData link

R1 R3 R4

B

NetworkNetwork

Transport Transport

ApplicationApplication Source Destination DataD HeaderHLegend

Message

D5 D5

D5 D5

Message

TCP/IP Protocol Suite 28

The unit of communication at the

application layer is a message.

Note

TCP/IP Protocol Suite 29

2-4 ADDRESSING

Four levels of addresses are used in an internet
employing the TCP/IP protocols: physical address,
logical address, port address, and application-specific
address. Each address is related to a one layer in the
TCP/IP architecture, as shown in Figure 2.15.

TCP/IP Protocol Suite 30

Topics Discussed in the Section

 Physical Addresses

 Logical Addresses

 Port Addresses

Application-Specific Addresses

TCP/IP Protocol Suite 31

Figure 2.15 Addresses in the TCP/IP protocol suite

TCP/IP Protocol Suite 32

In Figure 2.16 a node with physical address 10 sends a frame to a node
with physical address 87. The two nodes are connected by a link (a LAN).
At the data link layer, this frame contains physical (link) addresses in the
header. These are the only addresses needed. The rest of the header
contains other information needed at this level. As the figure shows, the
computer with physical address 10 is the sender, and the computer with
physical address 87 is the receiver. The data link layer at the sender
receives data from an upper layer. It encapsulates the data in a frame.
The frame is propagated through the LAN. Each station with a physical
address other than 87 drops the frame because the destination address
in the frame does not match its own physical address. The intended
destination computer, however, finds a match between the destination
address in the frame and its own physical address.

Example 2.3

TCP/IP Protocol Suite 33

Figure 2.16 Example 2.3: physical addresses

Data87 10
1 packet

accepted
Data87 10

4

TCP/IP Protocol Suite 34

As we will see in Chapter 3, most local area networks use a 48-bit
(6-byte) physical address written as 12 hexadecimal digits; every
byte (2 hexadecimal digits) is separated by a colon, as shown
below:

Example 2.4

07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address

TCP/IP Protocol Suite 35

Figure 2.17 shows a part of an internet with two routers connecting
three LANs. Each device (computer or router) has a pair of addresses
(logical and physical) for each connection. In this case, each computer is
connected to only one link and therefore has only one pair of addresses.
Each router, however, is connected to three networks. So each router
has three pairs of addresses, one for each connection. Although it may
be obvious that each router must have a separate physical address for
each connection, it may not be obvious why it needs a logical address for
each connection. We discuss these issues in Chapters 11 and 12 when
we discuss routing. The computer with logical address A and physical
address 10 needs to send a packet to the computer with logical address
P and physical address 95. We use letters to show the logical addresses
and numbers for physical addresses, but note that both are actually
numbers, as we will see in later chapters.

Example 2.5

TCP/IP Protocol Suite 36

Figure 2.17 Example 2.5: logical addresses

DataA P20 10 DataA P20 10

Physical
addresses
changed

DataA P33 99

DataA P33 99

Physical
addresses
changed

DataA P95 66
DataA P95 66

TCP/IP Protocol Suite 37

The physical addresses will change from

hop to hop, but the logical addresses

remain the same.

Note

TCP/IP Protocol Suite 38

Figure 2.18 shows two computers communicating via the Internet.
The sending computer is running three processes at this time with
port addresses a, b, and c. The receiving computer is running two
processes at this time with port addresses j and k. Process a in
the sending computer needs to communicate with process j in the
receiving computer. Note that although both computers are using
the same application, FTP, for example, the port addresses are
different because one is a client program and the other is a server
program, as we will see in Chapter 17.

Example 2.6

TCP/IP Protocol Suite 39

A Sender Receiver P

Internet

Figure 2.18 Example 2.6: port numbers

a DatajA PH2

a DatajA P

a Dataj

Data

a DatajA PH2

a DatajA P

a Dataj

Data

TCP/IP Protocol Suite 40

The physical addresses change from

hop to hop, but the logical and port

addresses usually remain the same.

Note

TCP/IP Protocol Suite 41

As we will see in future chapters, a port address is a 16-bit
address represented by one decimal number as shown.

Example 2.7

753
A 16-bit port address represented as one single number

TCP/IP Protocol Suite 1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 11

Unicast

Routing

Protocols

TCP/IP Protocol Suite 2

Chapter

Outline

11.1 Introduction

11.2 Intra- and Inter-Domain
Routing

11.3 Distance Vector Routing

11.4 RIP

11.5 Link State Routing

11.6 OSPF

11.7 Path Vector Routing

11.8 BGP

TCP/IP Protocol Suite 3

11-1 INTRODUCTION

An internet is a combination of networks connected by
routers. When a datagram goes from a source to a
destination, it will probably pass through many routers
until it reaches the router attached to the destination
network.

TCP/IP Protocol Suite 4

Topics Discussed in the Section

 Cost or Metric

 Static versus Dynamic Routing Table

 Routing Protocol

TCP/IP Protocol Suite 5

11-2 INTER- AND INTRA-DOMAIN

ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An
autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra-
domain routing. Routing between autonomous systems
is called inter-domain routing

TCP/IP Protocol Suite 6

Figure 11.1 Autonomous systems

TCP/IP Protocol Suite 7

Figure 11.2 Popular routing protocols

TCP/IP Protocol Suite 8

11-3 DISTANCE VECTOR ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An
autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra-
domain routing. Routing between autonomous systems
is called inter-domain routing

TCP/IP Protocol Suite 9

Updating Routing Table
• If the next-node entry is different

– The receiving node chooses the row with

the smaller cost

– If there is a tie, the old one is kept

• If the next-node entry is the same

– i.e. the sender of the new row is the

provider of the old entry

– The receiving node chooses the new row,

even though the new value is infinity.

TCP/IP Protocol Suite 10

When to Share
• Periodic Update

– A node sends its routing table, normally 30
seconds, in a periodic update

• Triggered Update
– A node sends its routing table to its

neighbors any time when there is a change
in its routing table

• 1. After updating its routing table, or

• 2. Detects some failure in the neighboring links

TCP/IP Protocol Suite 11

Figure 11.5 shows the initial routing table for an AS. Note that the
figure does not mean that all routing tables have been created at
the same time; each router creates its own routing table when it is
booted.

Example 11.1

TCP/IP Protocol Suite 12

Figure 11.5 Example 11.1

TCP/IP Protocol Suite 13

Now assume router A sends four records to its neighbors, routers
B, D, and C. Figure 11.6 shows the changes in B’s routing table
when it receives these records. We leave the changes in the
routing tables of other neighbors as exercise.

Example 11.2

TCP/IP Protocol Suite 14

Figure 11.6 Example 11.2

Net4 , 1

3

Net5 , 1

4

Net2 , 1

2

TCP/IP Protocol Suite 15

Figure 11.7 shows the final routing tables for routers in Figure 11.5.

Example 11.3

TCP/IP Protocol Suite 16

Figure 11.7 Example 11.3

TCP/IP Protocol Suite 17

Figure 11.8 Two-node instability

TCP/IP Protocol Suite 18

Figure 11.8 Count to Infinity

• A problem with distance vector routing is that any decrease in cost

(good news) propagates quickly, but any increase in cost (bad news)

propagates slowly.

• For a routing protocol to work properly, if a link is broken (cost

becomes infinity), every other router should be aware of it

immediately

• In distance vector routing, this takes some time. The problem is

referred to as count to infinity.

• It takes several updates before the cost for a broken link is recorded

as infinity by all routers.

TCP/IP Protocol Suite 19

Two-Node Instability (1)
• Defining Infinity

– Most implementations define 16 as infinity

• Split Horizon
– Instead of flooding the table through each

interface, each node sends only part of its
table through each interface

– E.g. node B thinks that the optimum route
to reach X is via A, it does not need to
advertise this piece of information to A

TCP/IP Protocol Suite 20

Two-Node Instability (2)
• Poison Reverse

• Node B can still advertise the value for X,

but is the source of information is A, it

can replace the distance with infinity as a

warning (what I know about this route comes from you)

TCP/IP Protocol Suite 21

Figure 11.9 Three-node instability

Update loop
until infinity

If the instability is btw
three nodes, stability
cannot be guaranteed

TCP/IP Protocol Suite 22

11-4 RIP

The Routing Information Protocol (RIP) is an intra-
domain (interior) routing protocol used inside an
autonomous system. It is a very simple protocol based
on distance vector routing. RIP implements distance
vector routing directly with some considerations.

TCP/IP Protocol Suite 23

RIP

 RIP implements distance vector routing directly with some

considerations:

• The destination in a routing table is a network, which means the
first column defines a network address.

• In RIP; the distance is defined as the number of links (networks)
that have to be used to reach the destination. For this reason, the
metric in RIP is called a hop count.

• Infinity is defined as 16, which means that any route in an
autonomous system using RIP cannot have more than 15 hops.

• The next node column defines the address of the router to which
the packet is to be sent to reach its destination.

TCP/IP Protocol Suite 24

Figure 11.10 Example of a domain using RIP

TCP/IP Protocol Suite 25

RIP messages
• Request

– A request message is sent by a router that
has just come up or by a router that has
some time-out entries

– A request can ask about specific entries or
all entries

• Response
– A response can be either solicited (based

on request) or unsolicited (30s or when
there is a change in the routing table)

TCP/IP Protocol Suite 26

RIPv2 vs. RIPv1
• Classless Addressing

• Authentication

• Multicasting
– RIPv1 uses broadcasting to send RIP messages

to every neighbors. Routers as well as hosts
receive the packets

– RIPv2 uses the all-router multicast address to
send the RIP messages only to RIP routers in
the network

TCP/IP Protocol Suite 27

Figure 11.13 shows the update message sent from router R1 to
router R2 in Figure 11.10. The message is sent out of interface
130.10.0.2.

The message is prepared with the combination of split horizon
and poison reverse strategy in mind. Router R1 has obtained
information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0 from
router R2. When R1 sends an update message to R2, it replaces the
actual value of the hop counts for these three networks with 16
(infinity) to prevent any confusion for R2. The figure also shows the
table extracted from the message. Router R2 uses the source
address of the IP datagram carrying the RIP message from R1
(130.10.02) as the next hop address. Router R2 also increments
each hop count by 1 because the values in the message are
relative to R1, not R2.

Example 11.4

TCP/IP Protocol Suite 28

Figure 11.13 Solution to Example 11.4

TCP/IP Protocol Suite 29

A routing table has 20 entries. It does not receive information
about five routes for 200 s. How many timers are running at this

time?

Solution
The 21 timers are listed below:
Periodic timer: 1
Expiration timer: 20 − 5 = 15
Garbage collection timer: 5

Example 11.5

TCP/IP Protocol Suite 30

RIP uses the services of UDP on well-

known port 520.

Note

TCP/IP Protocol Suite 31

11-5 LINK STATE ROUTING

Link state routing has a different philosophy from that
of distance vector routing. In link state routing, if each
node in the domain has the entire topology of the
domain—the list of nodes and links, how they are

connected including the type, cost (metric), and the
condition of the links (up or down)—the node can use
the Dijkstra algorithm to build a routing table.

TCP/IP Protocol Suite 32

Topics Discussed in the Section

 Building Routing tables

TCP/IP Protocol Suite 33

Figure 11.17 Concept of Link state routing

TCP/IP Protocol Suite 34

Figure 11.18 Link state knowledge

TCP/IP Protocol Suite 35

Building Routing Tables
• Creation of the states of the links by

each node, called the link state
packets (LSP)

• Dissemination of LSPs to every other
routers, called flooding (efficiently)

• Formation of a shortest path tree for
each node

• Calculation of a routing table based on
the shortest path tree

TCP/IP Protocol Suite 36

Creation of LSP
• LSP data: E.g. the node ID, the list of

links, a sequence number, and age.

• LSP Generation

– When there is a change in the
topology of the domain

– On a periodic basis
• There is no actual need for this type of

LSP, normally 60 minutes or 2 hours

TCP/IP Protocol Suite 37

TCP/IP Protocol Suite 38

Continued

TCP/IP Protocol Suite 39

Figure 11.19 Forming shortest path three for router A in a graph

TCP/IP Protocol Suite 40

Figure 11.19 Continued

TCP/IP Protocol Suite 41

Figure 11.19 Continued

TCP/IP Protocol Suite 42

To show that the shortest path tree for each node is different, we
found the shortest path tree as seen by node C (Figure 11.20). We
leave the detail as an exercise.

Example 11.6

TCP/IP Protocol Suite 43

Figure 11.20 Example 11.6

TCP/IP Protocol Suite 44

TCP/IP Protocol Suite 45

11-6 OSPF

The Open Shortest Path First (OSPF) protocol is an
intra-domain routing protocol based on link state
routing. Its domain is also an autonomous system.

TCP/IP Protocol Suite 46

Figure 11.21 Areas in an autonomous system

TCP/IP Protocol Suite 47

Area in OSPF (1)
• A collection of networks with area ID

• Routers inside an area flood the area
with routing information

• Area border routers summarize the
information about the area and send
it to other areas

• Backbone area and backbone routers
– All of the area inside an AS must be

connected to the backbone

TCP/IP Protocol Suite 48

Area in OSPF (2)
• Virtual link

– If, because of some problem, the
connectivity between a backbone
and an area is broken, a virtual link
between routers must be created
by the administration to allow
continuity of the functions of the
backbone as the primary area

TCP/IP Protocol Suite 49

LSA General Header (3)

• Advertising router
– The IP address of the router

advertising this message

• Link state sequence number
– A sequence number assigned to each link

state update message

TCP/IP Protocol Suite 50

11-7 PATH VECTOR ROUTING

Distance vector and link state routing are both interior
routing protocols. They can be used inside an autonomous
system. Both of these routing protocols become
intractable when the domain of operation becomes large.
Distance vector routing is subject to instability if there is
more than a few hops in the domain of operation. Link
state routing needs a huge amount of resources to
calculate routing tables. It also creates heavy traffic
because of flooding. There is a need for a third routing
protocol which we call path vector routing.

TCP/IP Protocol Suite 51

Topics Discussed in the Section

 Reachability

 Routing Table

TCP/IP Protocol Suite 52

The difference between the distance vector routing and path
vector routing can be compared to the difference between a
national map and an international map. A national map can tell us
the road to each city and the distance to be traveled if we choose
a particular route; an international map can tell us which cities
exist in each country and which countries should be passed before
reaching that city.

Example 11.10

TCP/IP Protocol Suite 53

Figure 11.50 Reachability

TCP/IP Protocol Suite 54

Figure 11.51 Stabilized table for three autonomous system

TCP/IP Protocol Suite 55

Figure 11.52 Routing tables after aggregation

TCP/IP Protocol Suite 56

11-8 BGP

Border Gateway Protocol (BGP) is an interdomain
routing protocol using path vector routing. It first
appeared in 1989 and has gone through four versions.

TCP/IP Protocol Suite 57

Figure 11.53 Internal and external BGP sessions

A speaker node advertises the path, not the metric of
the nodes, in its AS or other ASs.

TCP/IP Protocol Suite 58

Path Vector Routing (1)
• Sharing

– A speaker in an AS shares its table with
immediate neighbors

• Updating
– Adding the nodes that are not in its

routing table and adding its own AS and
the AS that sent the table

– The routing table shows the path
completely

TCP/IP Protocol Suite 59

Path Vector Routing (2)
• Loop prevention

– A route checks to see if its AS is in the
path list to the destination

• Policy routing
– If one of the ASs listed in the path is

against its policy, it can ignore that path
and that destination

– It does not update its routing table with
the path, and it does not send this
message to its neighbors

TCP/IP Protocol Suite (B A. Forouzan) 1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 12

Multicasting And Multicast

Routing Protocols

Presented by:
Dr. Mohammad Alhammouri

TCP/IP Protocol Suite 2

OBJECTIVES:
 To compare and contrast unicasting, multicasting, and

broadcasting communication.

 To define multicast addressing space in IPv4 and show the

division of the space into several blocks.

 To discuss the IGMP protocol, which is responsible for collecting

group membership information in a network.

 To discuss the general idea behind multicast routing protocols

and their division into two categories based on the creation of the

shortest path trees.

 To discuss multicast link state routing in general and its

implementation in the Internet: a protocol named MOSPF.

TCP/IP Protocol Suite 3

Chapter

Outline

12.1 Introduction

12.2 Multicast Addresses

12.3 IGMP

12.4 Multicast Routing

12.5 Routing Protocols

12.6 MBONE

TCP/IP Protocol Suite 4

Topics Discussed in the Section

 Unicasting

Multicasting

 Broadcasting

TCP/IP Protocol Suite 5

Figure 12.1 Unicasting

TCP/IP Protocol Suite 6

In unicasting, the router forwards the

received datagram through

only one of its interfaces.

Note

TCP/IP Protocol Suite 7

Figure 12.2 Multicasting

TCP/IP Protocol Suite 8

In multicasting, the router may

forward the received datagram

through several of its interfaces.

Note

9

Figure 12.3 Multicasting versus multiple unicasting

Multicasting starts with one single packet from the source that is

duplicated by the routers. The destination address in each packet

is the same for all duplicates. Only one single copy of the packet

travels between any two routers

TCP/IP Protocol Suite 10

Emulation of multicasting through

multiple unicasting is not

efficient and may create

long delays, particularly

with a large group.

Note

TCP/IP Protocol Suite 11

12-2 MULTICAST ADDRESSES

A multicast address is a destination address for a
group of hosts that have joined a multicast group. A
packet that uses a multicast address as a destination
can reach all members of the group unless there are
some filtering restriction by the receiver.

TCP/IP Protocol Suite 12

TCP/IP Protocol Suite 13

Delivery of Multicast Packets at Data Link Layer

** ARP protocol cannot find the corresponding
MAC (physical) address to forward the packet at the
data link layer (because multicast IPs)

** Data link layer supports physical multicast addresses

** LANs support physical multicast addressing,
Ethernet is one of them

TCP/IP Protocol Suite 14

Delivery of Multicast Packets at Data Link Layer

** If the first 25 bits in an Ethernet address are 0000
0001 0000 0000 0101 1110 0, this identifies a physical
multicast address. The remaining 23 bits can be used to
define a
group

TCP/IP Protocol Suite 15

Change the multicast IP address 232.43.14.7 to an Ethernet
multicast physical address.

Solution
a. We write the rightmost 23 bits of the IP address in

hexadecimal. (43.14.7) -> 2B:0E:07
then subtracting 8 from the leftmost digit if it is greater than or
equal to 8 (2 < 8) . In our example the result is 2B:0E:07.

b. We add the result of part a to the starting Ethernet
multicast address, which is 01:00:5E:00:00:00. The result is

Example 12.2

TCP/IP Protocol Suite 16

Change the multicast IP address 238.212.24.9 to an Ethernet
multicast address.

Solution
a. The rightmost 3 bytes in hexadecimal are (212.24.9) ->

D4:18:09.

b. We need to subtract 8 from the leftmost digit (D – 8 = 5),
resulting in 54:18:09.

b. We add the result of part a to the Ethernet multicast starting
address. The result is

Example 12.3

TCP/IP Protocol Suite 17

Figure 12.5 Tunneling

When network does not support multicast, multicast packet
encapsulated in unicast packet.

The destination router which support multicast processes
the packet as multicast packet

TCP/IP Protocol Suite 18

Figure 12.5 Tunneling

19

Internet Group Management Protocol (IGMP)

 Multicast communication means that a sender sends a
message to a group of recipients that are members of
the same group.

 Multicast routers need to collect information a bout
members and share it with each other

 Information collected locally by multicast router
connected to network (IGMP protocol)

 Collected information globally propagated to other
routers (multicast routing protocols)

TCP/IP Protocol Suite 20

Topics Discussed in the Section

 Group Management

 IGMP Messages

 IGMP Protocol Applied to host

 IGMP Protocol Applied to Router

 Role of IGMP in Forwarding

 Variables and Timers

 Encapsulation

 Compatibility with other Versions

TCP/IP Protocol Suite 21

Figure 12.6 Position of IGMP in the network layer

The Internet Group Management Protocol (IGMP) is responsible

for correcting and interpreting information about group members

in a network.

TCP/IP Protocol Suite 22

IGMP (Group Management)

• IGMP is not a multicasting routing protocol, it is a protocol

that manages group membership

• The IGMP protocol gives the multicast routers information

about the membership status of hosts (routers)

• A multicast router may receive thousands of multicast packets every

day for different groups. What happen If a router has no knowledge

about the membership status of the hosts

• IGMP helps the multicast router create and update the list of groups

TCP/IP Protocol Suite 23

IGMP is a group management protocol.

It helps a multicast router create and

update a list of loyal members related

to each router interface.

Note

TCP/IP Protocol Suite 24

Figure 12.7 IGMP messages

A membership query message is sent by a router to find active group
members in the network

TCP/IP Protocol Suite 25

Figure 12.8 Membership query message format

TCP/IP Protocol Suite 26

Figure 12.10 Membership report message format

TCP/IP Protocol Suite 27

TCP/IP Protocol Suite 28

• The management of groups starts with the processes

• Each process has a record for each multicast group from which
the socket wishes to receive a multicast message

• The record also shows one of the two modes: include mode or
exclude mode

• Include mode, it lists the unicast source addresses from which
the socket accepts the group messages

• Exclude mode, it lists the unicast source addresses that the
socket will not accept the group messages

Socket state

TCP/IP Protocol Suite 29

Figure 12.11 shows a host with three processes: S1, S2, and S3.
The first process has only one record; the second and the third
processes each have two records. We have used lowercase
alphabet to show the source address.

Example 12.4

TCP/IP Protocol Suite 30

Figure 12.11 Socket state

Each process (associated with a socket) has a record for each
multicast group from which the socket wishes to receive
a multicast message

TCP/IP Protocol Suite 31

Each time there is a change in any

socket record, the interface state

will change using the

above-mentioned rules.

Note

TCP/IP Protocol Suite 32

Combine the list of resources.

. Or ∩ : Intersection, ∪:

Union

TCP/IP Protocol Suite 33

We use the two rules described above to create the interface state
for the host in Example 12.4. First we found the list of source
address for each multicast group.

a. Multicast group 226.14.5.2 has two exclude lists and one include list.

Example 12.5: Interface State

b. Multicast group: 228.24.21.4 has two include lists.

TCP/IP Protocol Suite 34

Figure 12.12 Interface state

TCP/IP Protocol Suite 35

Figure 12.14 Router States

Router maintains state information for each multicast group associated

with each network interface

TCP/IP Protocol Suite 36

12-4 MULTICAST ROUTING

Now we show how information collected by IGMP is
disseminated to other routers using multicast routing
protocols. However, we first discuss the idea of optimal
routing, common in all multicast protocols. We then give
an overview of multicast routing protocols.

TCP/IP Protocol Suite 37

In unicast routing, each router in the

domain has a table that defines a

shortest path tree to possible

destinations.

Note

TCP/IP Protocol Suite 38

Figure 12.18 Unicast routing

TCP/IP Protocol Suite 39

In multicast routing, each involved router

needs to construct a shortest

path tree for each group.

Note

Multicast Routing

TCP/IP Protocol Suite 40

Multicast Routing: Source-based tree approach

In the source-based tree approach, each router

needs to have one shortest path tree for each

group and source.

The shortest path tree for a group defines the

next

hop for each network that has loyal member(s)

for that group

41

Figure 12.19 Source-based tree approach

For m groups, each router needs to have m shortest path trees, one for

each group

TCP/IP Protocol Suite 42

Multicast Routing: Group-shared tree

If a router receives a multicast packet, it

encapsulates the packet in a unicast packet

and sends it to the core router

In the group-shared tree approach, only the

core router (also called rendezvous), which

has a shortest path tree for each group, is

involved in multicasting.

TCP/IP Protocol Suite 43

Figure 12.20 Group-shared tree approach

TCP/IP Protocol Suite 44

12-4 ROUTING PROTOCOLS

During the last few decades, several multicast routing
protocols have emerged. Some of these protocols are
extensions of unicast routing protocols; some are
totally new. We discuss these protocols in the
remainder of this chapter. Figure 12.21 shows the
taxonomy of these protocols.

TCP/IP Protocol Suite 45

Topics Discussed in the Section

Multicast Link State Routing: MOSPF

Multicast Distance Vector: DVMRP

 Core-Based Tree: CBT

 Protocol Independent Multicast: PIM

46

Figure 12.21 Taxonomy of common multicast protocols

Multicast Link State Routing: MOSPF

Multicast Distance Vector Routing Protocol: DVMRP

Core-Based Tree: CBT

Protocol Independent Multicast: PIM

47

• Uses source-based tree approach

• Extension of unicast link state routing
• Node advertises group with members on the link

• The information about the group comes from IGMP

• Router creates n shortest path trees (for n groups)
using Dijkstra’s algorithm

• Problem: time and space needed to create and save the
many shortest path trees.

• Solution: Router calculates shortest path trees on
demand

Multicast Link State Routing

48

• Extension of OSPF Protocol

• Uses multicast link state routing to create source-based trees

• Uses new link state update packet to associate source with
group of addresses (group-membership LSA)

• This way: we can include in the tree only the hosts (using their
unicast addresses) that belong to a particular group

• The router calculates the shortest path trees on demand (when
it receives the first multicast packet)

MOSPF Protocol

49

• Uses source-based tree approach

• Uses four strategies, each built on its predecessor
1. Flooding
2. Reverse Path Forwarding (RPF)
3. Reverse Path Broadcasting (RPB)
4. Reverse Path Multicasting (RPM)

Multicast Distance Vector Routing

TCP/IP Protocol Suite 50

Flooding is the first strategy that comes to

mind. A router receives a packet

and without even looking at the destination

group address

Flooding broadcasts packets but creates loops

in the systems.

Flooding

51

• To prevent loops, only one copy is forwarded; the other copies
are dropped.

• In RPF, a router forwards only the copy that has traveled the
shortest path from the source to the router.

• The router extracts the source address of the multicast packet
and consults its unicast routing table.

• If the packet has just come from the hop defined in the table,
the packet has traveled the shortest path from the source to
the router because the shortest path is reciprocal in unicast
distance vector routing protocols.

• If a packet leaves the router and comes back again, it has
not traveled the shortest path.

Reverse Path Forwarding (RPF)

52

Figure 12.22 Reverse Path Forwarding (RPF)

RPF eliminates the loop in the flooding process.

TCP/IP Protocol Suite 53

RPF eliminates the loop in the

flooding process.

Note

• RPF guarantees that each network receives a copy of the

multicast packet without formation of loops.

• However, RPF does not guarantee that each network receives

only one copy; a network may receive two or more copies

• RPF is not based on the destination address (a group address);

forwarding is based on the source address

54

Figure 12.23 Problem with RPF

55

Figure 12.23 Problem with RPF

• To eliminate duplication, we must define only one parent

router for each network. We must have this restriction

• A network can receive a multicast packet from a

particular source only through a designated parent router.

• For each source, the router sends the packet only out of

those interfaces for which it is the designated parent. This

policy is called reverse path broadcasting (RPB)

• RPB guarantees that the packet reaches every network

and that every network receives only one copy
56

Reverse Path Broadcasting (RPB)

TCP/IP Protocol Suite 57

Figure 12.24 RPF versus RPB

• RPB does not multicast the packet, it broadcasts it.

• Multicast packet must reach only those networks that

have active members for that particular group.

• This is called reverse path multicasting (RPM).

• RPM uses two procedures, pruning and grafting

58

Reverse Path Multicasting (RPM)

TCP/IP Protocol Suite 59

RPB creates a shortest path broadcast

tree from the source to each destination.

It guarantees that each destination

receives one and only one copy

of the packet.

Note

TCP/IP Protocol Suite 60

Figure 12.25 Reverse Path Multicasting (RPM)

TCP/IP Protocol Suite 61

Reverse Path Multicasting (1)

• To increase efficiency, the multicast
packet must reach only those networks
that have active members for that
particular group

• RPM adopts the procedures of Pruning
and Grafting

• Pruning
– The designated parent router of each

network is responsible for holding the
membership information (through IGMP)

TCP/IP Protocol Suite 62

Reverse Path Multicasting (2)
– The router sends a prune message to the

upstream router so that it can prune the
corresponding interface

– That is, the upstream router can stop
sending multicast message for this group
through that interface

• Grafting
– The graft message forces the upstream

router to resume sending the multicast
messages

TCP/IP Protocol Suite 63

RPM adds pruning and grafting to RPB

to create a multicast shortest path tree

that supports dynamic membership

changes.

Note

TCP/IP Protocol Suite 64

Figure 12.26 Group-shared tree with rendezvous router

Core-Based Tree (CBT) Protocol

TCP/IP Protocol Suite 65

Formation of CBT tree (1)

• After the rendezvous point is selected,
every router is informed of the unicast
address of the selected router

• Each router sends a unicast join message
to show that it wants to join the group

• This message passes through all routers
that are located between the sender and
the rendezvous router

Core-Based Tree (CBT) Protocol

TCP/IP Protocol Suite 66

Formation of CBT tree (2)
• Each intermediate router extracts the

necessary information from the message
– Unicast address of the sender

– Interface through which the packet has
arrived

• Every router knows its upstream router
and the downstream router

• If a router wants to leave the group, it
sends a leave message to its upstream
router, …

67

Figure 12.27 Sending a multicast packet to the rendezvous router

Source Hosts host can be inside the shared tree or any host outside the shared tree

TCP/IP Protocol Suite 68

In CBT, the source sends the multicast

packet (encapsulated in a unicast

packet) to the core router. The core

router decapsulates the packet and

forwards it to all interested

interfaces.

Note

TCP/IP Protocol Suite 69

Comparisons

• The tree for DVMRP and MOSPF is made from the

root up (source-based)

• The tree for CBT (Core-based tree) is formed from

the leaves down (Group-based)

• In DVMRP, the tree is first made (broadcasting) and

then pruned

• In CBT, the joining gradually makes the tree, and the

source in CBT may or may not be part of the tree

• Protocol Independent Multicast, Dense Mode (PIM-

DM))

• Protocol Independent Multicast, Sparse Mode (PIM-

SM).

• Both protocols are unicast-protocol dependent

70

Protocol Independent Multicast (PIM)

TCP/IP Protocol Suite 71

PIM-DM is used in a dense multicast

environment, such as a LAN.

Note

TCP/IP Protocol Suite 72

PIM-DM (Dense Mode)

• It is used when there is a possibility that

each router is involved in multicasting

(dense mode)

• In this environment, the use of a protocol

that broadcasts the packet is justified

because almost all routers are involved in

the process

TCP/IP Protocol Suite 73

PIM-DM uses RPF and pruning/grafting

strategies to handle multicasting.

However, it is independent from the

underlying unicast protocol.

PIM-DM (Dense Mode)

TCP/IP Protocol Suite 74

PIM-SM (Sparse Mode)

• Used when there is a slight possibility that

each router is involved in multicasting

• In this environment, the use of a protocol

that broadcasts the packet is not justified

• A protocol such as CBT that uses a group-

shared tree is more appropriate.

TCP/IP Protocol Suite 75

PIM-SM is used in a sparse multicast

environment such as a WAN.

PIM-SM is similar to CBT but uses a

simpler procedure.

PIM-SM (Sparse Mode)

76

12-6 MBONE

 Multimedia and real-time communication have increased

the need for multicasting in the Internet

 However, only a small fraction of Internet routers are

multicast routers

 The solution is tunneling. The multicast routers are seen

as a group of routers on top of unicast routers

 The multicast routers may not be connected directly, but

they are connected logically

 To enable multicasting, we make a multicast backbone

(MBONE) out of these isolated routers using the concept

of tunneling.

TCP/IP Protocol Suite 77

Figure 12.28 Logical tunneling

78

Figure 12.29 MBONE

The multicast packet becomes the payload (data) of the unicast packet

The only protocol that supports MBONE and tunneling is DVMRP

TCP/IP Protocol Suite (B A. Forouzan)

1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 13

Introduction to the Transport

Layer

Edited & Presented by:
Dr. Mohammad Alhammouri

TCP/IP Protocol Suite 2

OBJECTIVES:
❑ To define process-to-process communication at the transport

layer and compare it with host-to-host communication at the

network layer.

❑ To discuss the addressing mechanism at the transport layer, to

discuss port numbers, and to define the range of port numbers

used for different purposes.

❑ To explain the packetizing issue at the transport layer:

encapsulation and decapsulation of messages.

❑ To discuss multiplexing (many-to-one) and demultiplexing (one-

to-many) services provided by the transport layer.

❑ To discuss flow control and how it can be achieved at the

transport layer.

TCP/IP Protocol Suite 3

OBJECTIVES (continued):
❑ To discuss error control and how it can be achieved at the

transport layer.

❑ To discuss congestion control and how it can be achieved at the

transport layer.

❑ To discuss the connectionless and connection-oriented services at

the transport layer and show their implementation using an

FSM.

❑ To discuss the behavior of four generic transport-layer protocols

and their applications: simple protocol, Stop-and-Wait protocol,

Go-Back-N protocol, and Selective-Repeat protocol.

❑ To describe the idea of bidirectional communication at the

transport layer using the piggybacking method.

TCP/IP Protocol Suite 4

Chapter
Outline

13.1 Transport-Layer Services

13.2 Transport-Layer Protocols

TCP/IP Protocol Suite 5

13-1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer

is located between the network layer and the

application layer. The transport layer is

responsible for providing services to the

application layer; it receives services from the

network layer. In this section, we discuss the

services that can be provided by a transport

layer; in the next section, we discuss the

principle beyond several transport layer

protocols.

TCP/IP Protocol Suite 6

Topics Discussed in the Section

✓ Process-to-Process Communication

✓Addressing: Port Numbers

✓ Encapsulation and Decapsulation

✓Multiplexing and Demultiplexing

✓ Flow Control

✓ Error Control

✓ Congestion Control

✓ Connectionless and Connection-Oriented Services

7

Figure 13.1 Network layer versus transport layer

Host-to-Host vs Process-to-Process communications

8

Figure 13.2 Port numbers

TCP/IP has decided to use universal port numbers for servers; these are called

well-known port numbers, 13 is an example. The server port number cannot

be chosen randomly

The daytime client process uses an ephemeral (temporary) port number

52,000 to identify itself

TCP/IP Protocol Suite 9

Figure 13.3 IP addresses versus port numbers

13

Data

Destination port number
selects the process

TCP/IP Protocol Suite 10

Figure 13.4 ICANN ranges

ICANN has divided the port numbers into three ranges: well-known, registered, and

dynamic (or private)

TCP/IP Protocol Suite 11

The well-known port numbers are

less than 1,024.

Note

TCP/IP Protocol Suite 12

In UNIX, the well-known ports are stored in a file called

/etc/services. Each line in this file gives the name of the

server and the well-known port number. We can use the

grep utility to extract the line corresponding to the desired

application. The following shows the port for TFTP. Note

that TFTP can use port 69 on either UDP or TCP. SNMP (see

Chapter 24) uses two port numbers (161 and 162), each for

a different purpose.

Example 13.1

13

Figure 13.5 Socket address

To use the services of transport layer in the Internet, we need a pair of socket addresses:

the client socket address and the server socket address.

These four pieces of information are:

part of the network-layer packet header and the transport-layer packet header.

The first header contains the IP addresses; the second header contains the port numbers.

TCP/IP Protocol Suite 14

Figure 13.6 Encapsulation and decapsulation

Encapsulation happens at the sender site. When a process has

a message to send, it passes the message to the transport layer along

with a pair of socket addresses

TCP/IP Protocol Suite 15

Figure 13.7 Multiplexing and demultiplexing

TCP/IP Protocol Suite 16

Figure 13.8 Pushing or pulling

Delivery of items from a producer to a consumer can occur in one of the two ways:

Pushing: If the sender delivers items whenever they are produced

Pulling: If the producer delivers the items after the consumer has

requested them,

TCP/IP Protocol Suite 17

Figure 13.9 Flow control at the transport layer

18

Buffers

• Flow control can be implemented in several ways, one of the solutions is normally

to use two buffers

• One buffer at the sending transport layer and the other at the receiving transport

layer

• buffer is a set of memory locations that can hold packets at the sender and receiver

• The flow control communication can occur by sending signals from the consumer

to producer

• When the buffer of the sending transport layer is full, it informs the application

layer to stop passing chunks of messages. When there are some vacancies, it

informs the sending transport layer that it can send message again.

• When the buffer of the receiving transport layer is full, it informs the sending

transport layer to stop sending packets

TCP/IP Protocol Suite 19

The above discussion requires that the consumers

communicate with the producers in two occasions: when

the buffer is full and when there are vacancies. If the two

parties use a buffer of only one slot, the communication

can be easier. Assume that each transport layer uses one

single memory location to hold a packet. When this single

slot in the sending transport layer is empty, the sending

transport layer sends a note to the application layer to send

its next chunk; when this single slot in the receiving

transport layer is empty, it sends an acknowledgment to

the sending transport layer to send its next packet. As we

will see later, this type of flow control, using a single-slot

buffer at the sender and the receiver, is inefficient.

Example 13.2

TCP/IP Protocol Suite 20

Figure 13.10 Error control at the transport layer

Packets

Error Control

Error control at the transport layer is responsible to:
1- Detect and discard corrupted packets.

2. Keep track of lost and discarded packets and resend them.

3. Recognize duplicate packets and discard them.

4. Buffer out-of-order packets until the missing packets arrive.

• Error control, unlike the flow control, involves only the sending and receiving

transport layers

21

Error control: Sequence Numbers

• Error control requires that the sending transport layer knows which packet

is to be resent and packet is duplicate or out order.

• This can be done if the packets are numbered.

• We can add a field to the transport layer packet to hold the sequence

number of the packets

• When a packet is corrupted or lost, the receiving transport layer can

somehow inform the sending transport layer to resend that packet

• The out-of-order packets can be recognized by observing gaps in the

sequence numbers.

• Packets are numbered sequentially

22

For error control, the sequence numbers

are modulo 2m, where m is the size of

the sequence number field in bits.

For example, if m is 4, the only sequence

numbers are 0 through 15, inclusive.

Error control: Sequence Numbers

23

Error control: Acknowledgment

• We can use both positive and negative signals as error control

• The receiver side can send an acknowledgement (ACK) for each or

a collection of packets that have arrived correctly.

• The sender can detect lost packets if it uses a timer

• If an ACK does not arrive before the timer expires, the sender

resends the packet

• Duplicate packets can be silently discarded by the receiver

• Out-of-order packets can be either discarded (to be treated as lost

packets by the sender), or stored until the missing ones arrives.

24

Combination of Flow and Error Control

• Flow control requires the use of two buffers, one at the sender site

and the other at the receiver site

• Error control requires the use of sequence and acknowledgment

numbers by both sides

• These two requirements can be combined if we use two numbered

buffers at both sides

TCP/IP Protocol Suite 25

Figure 13.11 Sliding window in circular format

TCP/IP Protocol Suite 26

Figure 13.12 Sliding window in linear format

27

Connectionless Service

• The source process (application program) divide its message into

chunks of data

• The transport layer treats each chunk as a single unit without any

relation between the chunks

• The packets may arrive out of order at the destination and will be

delivered out of order to the server process.

• The situation would be worse if one of the packets were lost

• The receiving transport layer has no idea that one of the messages

has been lost (no numbering)

• No flow control, error control, or congestion control can be

effectively implemented in a connectionless service

TCP/IP Protocol Suite 28

Figure 13.13 Connectionless service

29

Connection-Oriented Service

• The client and the server first need to establish a connection between

themselves

• Data exchange can only happen after the connection establishment

• We can implement flow control, error control, and congestion

control in a connection-oriented protocol.

TCP/IP Protocol Suite 30

Figure 13.14 Connection-oriented service

TCP/IP Protocol Suite 31

13-2 TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by combining a

set of services described in the previous sections. To better

understand the behavior of these protocols, we start with

the simplest one and gradually add more complexity. The

TCP/IP protocol uses a transport layer protocol that is

either a modification or a combination of some of these

protocols.

TCP/IP Protocol Suite 32

Topics Discussed in the Section

✓ Simple Protocol

✓ Stop-and-Wait Protocol

✓ Go-Back-N Protocol

✓ Selective-Repeat Protocol

TCP/IP Protocol Suite 33

Figure 13.16 Simple protocol

• A connectionless protocol with neither flow nor error control

• We assume that the receiver can immediately handle any packet it receives

• The receiver can never be overwhelmed with incoming packets.

TCP/IP Protocol Suite 34

The simple protocol is a connectionless

protocol that provides neither

flow nor error control.

Note

TCP/IP Protocol Suite 35

Figure 13.18 shows an example of communication using

this protocol. It is very simple. The sender sends packets

one after another without even thinking about the receiver.

Example 13.3

TCP/IP Protocol Suite 36

Figure 13.18 Example 13.3

TCP/IP Protocol Suite 37

Figure 13.19 Stop-and-wait protocol

• Connection-oriented protocol, which uses both flow and error control

• Both the sender and the receiver use a sliding window of size 1

• The sender sends one packet at a time and waits for an acknowledgment

before sending the next one.

TCP/IP Protocol Suite 38

In Stop-and-Wait protocol, flow

control is achieved by forcing the

sender to wait for an acknowledgment,

and error control is achieved by

discarding corrupted packets and letting

the sender resend previous packet when

the timer expires.

Note

TCP/IP Protocol Suite 39

In the Stop-and-Wait protocol, we can

use a 1-bit field to number the packets.

The sequence numbers are based on

modulo-2 arithmetic.

In the Stop-and-Wait protocol, the

acknowledgment number is in modulo-2

arithmetic

TCP/IP Protocol Suite 40

Figure 13.21 shows an example of Stop-and-Wait protocol.

Packet 0 is sent and acknowledged. Packet 1 is lost and

resent after the time-out. The resent packet 1 is

acknowledged and the timer stops. Packet 0 is sent and

acknowledged, but the acknowledgment is lost. The sender

has no idea if the packet or the acknowledgment is lost, so

after the time-out, it resends packet 0, which is

acknowledged.

Example 13.4

TCP/IP Protocol Suite 41

Figure 13.21 Example 13.4

TCP/IP Protocol Suite 42

In a Stop-and-Wait system, the bandwidth of the line is 1 Mbps, and

1 bit takes 20 milliseconds to make a round trip. What is the

bandwidth-delay product? If the system data packets are 1,000 bits in

length, what is the utilization percentage of the link?

Solution

The bandwidth-delay product is:

(1 × 106) × (20 × 10−3) = 20,000 bits.
The system can send 20,000 bits during the time it takes for the data to

go from the sender to the receiver and the acknowledgment to come

back.

However, the system sends only 1,000 bits. We can say that the link

utilization is only 1,000/20,000, or 5 percent. For this reason, for a

link with a high bandwidth or long delay, the use of Stop-and-Wait

wastes the capacity of the link.

Example 13.5

TCP/IP Protocol Suite 43

The Stop-and-Wait protocol is very

inefficient if our channel is thick and

long. By thick, we mean that our channel

has a large bandwidth (high data rate);

by long, we mean the round-trip delay is

long.

TCP/IP Protocol Suite 44

What is the utilization percentage of the link in Example 13.5 if we

have a protocol that can send up to 15 packets before stopping and

worrying about the acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The system can send

up to 15 packets or 15,000 (1 packet is 1000 bits) bits during a round

trip. This means the utilization is 15,000/20,000, or 75 percent. Of

course, if there are damaged packets, the utilization percentage is

much less because packets have to be resent.

Example 13.6

45

Go-Back-N protocol

• First: multiple packets must be in transition while the sender is

waiting for acknowledgment (Go-back-N protocol)

• Second: more than one packet be outstanding to keep the channel

busy while the sender is waiting for acknowledgment (Selective-

Repeat (SR) protocol)

To improve efficiency:

46

Go-Back-N protocol

• The key to Go-back-N is that we can send several packets before

receiving acknowledgments

• The receiver can only buffer one packet

• keep a copy of the sent packets until the acknowledgments arrive

• Several data packets and acknowledgments can be in the channel at

the same time.

TCP/IP Protocol Suite 47

Figure 13.22 Go-Back-N protocol

TCP/IP Protocol Suite 48

In the Go-Back-N Protocol, the sequence

numbers are modulo 2m, where m is the

size of the sequence number

field in bits.

In the Go-Back-N protocol, the

acknowledgment number is

cumulative and defines the sequence

number of the next packet

expected to arrive.

TCP/IP Protocol Suite 49

For example, if the acknowledgment

number (ackNo) is 7, it means all

packets with sequence number up to 6

have arrived, safe and sound, and the

receiver is expecting the packet with

sequence number 7

TCP/IP Protocol Suite 50

Figure 13.23 Send window for Go-Back-N

The outstanding region is a range of sequence numbers belonging to the

packets that are sent, but have an unknown status. The sender needs to wait

to find out if these packets have been received or were lost

TCP/IP Protocol Suite 51

The send window is an abstract concept

defining an imaginary box of maximum

size = 2m − 1 with three variables:

Sf, Sn, and Ssize.

The send window can slide one or

more slots when an error-free ACK

with ackNo between Sf and Sn

arrives.

TCP/IP Protocol Suite 52

Figure 13.24 Sliding the send window

ackNo = 6 has arrived. This means that the receiver is waiting for packets with

sequence number 6.

53

Figure 13.25 Receive window for Go-Back-N

• The size of the receive window is always 1.

• The receiver is always looking for the arrival of a specific packet (Rn).

Any packet arriving out of order is discarded and needs to be resent.

• The sequence numbers to the left of the window belong to the packets

already received and acknowledged; the sequence numbers to the right of

this window define the packets that cannot be received

TCP/IP Protocol Suite 54

The receive window is an abstract

concept defining an imaginary

box of size 1 with

one single variable Rn.

The window slides when a correct

packet has arrived; sliding

occurs one slot at a time.

Note

TCP/IP Protocol Suite 55

Figure 13.27 Send window size for Go-Back-N

TCP/IP Protocol Suite 56

In the Go-Back-N protocol, the size of

the send window must be less than 2m;

the size of the receive window

is always 1.

Note

TCP/IP Protocol Suite 57

Figure 13.28 Example 13.7

TCP/IP Protocol Suite 58

No data packets are lost, but some ACKs are delayed and one is lost.

The example also shows how cumulative acknowledgments can help

if acknowledgments are delayed or lost.

There is no time-out event here because all outstanding packets are

acknowledged before the timer expires. Note that although ACK 2 is

lost, ACK 3 is cumulative and serves as both ACK 2 and ACK 3.

There are four events at the receiver site.

Example 13.7 explanation

TCP/IP Protocol Suite 59

Figure 13.29 shows what happens when a packet is lost. Packets 0, 1,

2, and 3 are sent. However, packet 1 is lost. The receiver receives

packets 2 and 3, but they are discarded because they are received out

of order (packet 1 is expected). When the receiver receives packets 2

and 3, it sends ACK1 to show that it expects to receive packet 1.

However, these ACKs are not useful for the sender because the

ackNo is equal Sf , not greater that Sf . So the sender discards them.

When the time-out occurs, the sender resends packets 1, 2, and 3,

which are acknowledged..

Example 13.8

60

Figure 13.29 Example 13.8

TCP/IP Protocol Suite 61

Figure 13.30 Outline of Selective-Repeat

TCP/IP Protocol Suite 62

Figure 13.31 Send window for Selective-Repeat protocol

TCP/IP Protocol Suite 63

Figure 13.32 Receive window for Selective-Repeat protocol

TCP/IP Protocol Suite 64

In the Selective-Repeat protocol, an

acknowledgment number defines

the sequence number of the

error-free packet received.

Note

TCP/IP Protocol Suite 65

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and

5. The sender receives an ACK with ackNo = 3. What is the

interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and

2 have been received uncorrupted and the receiver is

expecting packet 3. If the system is using SR, it means that

packet 3 has been received uncorrupted; the ACK does not

say anything about other packets.

Example 13.9

TCP/IP Protocol Suite 66

This example is similar to Example 3.8 (Figure 13.29) in

which packet 1 is lost. We show how Selective-Repeat

behaves in this case. Figure 13.34 shows the situation. At

the sender, packet 0 is transmitted and acknowledged.

Packet 1 is lost. Packets 2 and 3 arrive out of order and are

acknowledged. When the timer times out, packet 1 (the

only unacknowledged packet) is resent and is

acknowledged. The send window then slides.

Example 13.10

67

Figure 13.34 Example 13.10

TCP/IP Protocol Suite 68

Figure 13.35 Selective-Repeat window size

TCP/IP Protocol Suite 69

In Selective-Repeat, the size of the

sender and receiver window

can be at most one-half of 2m.

Note

TCP/IP Protocol Suite (B A. Forouzan)

1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 14

User Datagram Protocol

(UDP)

Edited & Presented by:
Dr. Mohammad Alhammouri

TCP/IP Protocol Suite 2

OBJECTIVES:
 To introduce UDP and show its relationship to other protocols in

the TCP/IP protocol suite.

 To explain the format of a UDP packet and discuss the use of

each field in the header.

 To discuss the services provided by the UDP such as process-to-

process delivery, multiplexing/demultiplexing, and queuing.

 To show how to calculate the optional checksum and the sender

the needs to add a pseudoheader to the packet when calculating

the checksum.

 To discuss how some application programs can benefit from the

simplicity of UDP.

 To briefly discuss the structure of the UDP package.

TCP/IP Protocol Suite 3

Chapter

Outline

14.1 Introduction

14.2 User Datagram

14.3 UDP Services

14.4 UDP Application

14.5 UDP Package

TCP/IP Protocol Suite 4

14-1 INTRODUCTION

Figure 14.1 shows the relationship of the User
Datagram Protocol (UDP) to the other protocols and
layers of the TCP/IP protocol suite: UDP is located
between the application layer and the IP layer, and
serves as the intermediary between the application
programs and the network operations.

TCP/IP Protocol Suite 5

Figure 14.1 Position of UDP in the TCP/IP protocol suite

TCP/IP Protocol Suite 6

14-2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size
header of 8 bytes. Figure 14.2 shows the format of a
user datagram.

TCP/IP Protocol Suite 7

Figure 14.2 User datagram format

TCP/IP Protocol Suite 8

The following is a dump of a UDP header in hexadecimal format.

Example 14.1

a. What is the source port number?
b. What is the destination port number?
c. What is the total length of the user datagram?
d. What is the length of the data?
e. Is the packet directed from a client to a server or vice versa?
f. What is the client process?

TCP/IP Protocol Suite 9

Example 14.1 Continued

Solution

a. The source port number is the first four hexadecimal digits
(CB84)16 or 52100.

b. The destination port number is the second four hexadecimal
digits (000D)16 or 13.

c. The third four hexadecimal digits (001C)16 define the length of
the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet
minus the length of the header, or 28 – 8 = 20 bytes.

e. Since the destination port number is 13 (well-known port), the
packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).

TCP/IP Protocol Suite 10

TCP/IP Protocol Suite 11

14-3 UDP Services

We discussed the general services provided by a
transport layer protocol in Chapter 13. In this section,
we discuss what portions of those general services are
provided by UDP.

TCP/IP Protocol Suite 12

Figure 14.3 Pseudoheader for checksum calculation

TCP/IP Protocol Suite 13

Figure 14.4 shows the checksum calculation for a very small user
datagram with only 7 bytes of data. Because the number of bytes
of data is odd, padding is added for checksum calculation. The
pseudoheader as well as the padding will be dropped when the user
datagram is delivered to IP (see Appendix F).

Example 14.2

TCP/IP Protocol Suite 14

Figure 14.4 Checksum calculation for a simple UDP user datagram

TCP/IP Protocol Suite 15

What value is sent for the checksum in one of the following
hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the value of
the sum is all 1s.

c. The sender decides to include the checksum, but the value of
the sum is all 0s.

Example 14.3

TCP/IP Protocol Suite 16

Solution
a. The value sent for the checksum field is all 0s to show that the

checksum is not calculated.

b. When the sender complements the sum, the result is all 0s; the
sender complements the result again before sending. The value
sent for the checksum is all 1s. The second complement
operation is needed to avoid confusion with the case in part a.

c. This situation never happens because it implies that the
value of every term included in the calculation of the sum is all
0s, which is impossible; some fields in the pseudoheader have
nonzero values (see Appendix D).

Example 14.3 Continued

TCP/IP Protocol Suite 17

Figure 14.5 Encapsulation and decapsulation

TCP/IP Protocol Suite 18

Figure 14.6 Queues in UDP

TCP/IP Protocol Suite 19

Figure 14.7 Multiplexing and demultiplexing

Several processes that need to send user datagrams.

However, there is only one UDP

TCP/IP Protocol Suite 20

UDP is an example of the

connectionless simple protocol we

discussed in Chapter 13 with the

exception of an optional checksum

added to packets for error detection.

Note

TCP/IP Protocol Suite 21

14-4 UDP APPLICATION

Although UDP meets almost none of the criteria we mentioned

in Chapter 13 for a reliable transport-layer protocol, UDP is

preferable for some applications. An application designer

needs sometimes to compromise to get the optimum.

For example: The connectionless service provides less delay;

the connection-oriented service creates more delay. If delay is

an important issue for the application, the

connectionless service is preferred.

TCP/IP Protocol Suite 22

A client-server application such as DNS (see Chapter 19) uses the
services of UDP because a client needs to send a short request to
a server and to receive a quick response from it. The request and
response can each fit in one user datagram. Since only one
message is exchanged in each direction, the connectionless
feature is not an issue; the client or server does not worry that
messages are delivered out of order.

Example 14.4

TCP/IP Protocol Suite 23

A client-server application such as SMTP (see Chapter 23), which
is used in electronic mail, cannot use the services of UDP because
a user can send a long e-mail message, which may include
multimedia (images, audio, or video). If the application uses UDP
and the message does not fit in one single user datagram, the
message must be split by the application into different user
datagrams. Here the connectionless service may create problems.
The user datagrams may arrive and be delivered to the receiver
application out of order. The receiver application may not be able
to reorder the pieces. This means the connectionless service has a
disadvantage for an application program that sends long messages.

Example 14.5

TCP/IP Protocol Suite 24

Assume we are downloading a very large text file from the
Internet. We definitely need to use a transport layer that provides
reliable service. We don’t want part of the file to be missing or
corrupted when we open the file. The delay created between the
delivery of the parts are not an overriding concern for us; we wait
until the whole file is composed before looking at it. In this case,
UDP is not a suitable transport layer.

Example 14.6

TCP/IP Protocol Suite 25

Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it is divided
into many small parts and broadcast in real time. The parts of the
message are sent one after another. If the transport layer is
supposed to resend a corrupted or lost frame, the synchronizing
of the whole transmission may be lost. The viewer suddenly sees a
blank screen and needs to wait until the second transmission
arrives. This is not tolerable. However, if each small part of the
screen is sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver the rest
to the application program. That part of the screen is blank for a
very short period of the time, which most viewers do not even
notice. However, video cannot be viewed out of order, so
streaming audio, video, and voice applications that run over UDP
must reorder or drop frames that are out of sequence.

Example 14.7

TCP/IP Protocol Suite 26

14-5 UDP PACKAGE

To show how UDP handles the sending and receiving of
UDP packets, we present a simple version of the UDP
package.

We can say that the UDP package involves five
components: a control-block table, input queues, a
control-block module, an input module, and an output
module.

TCP/IP Protocol Suite 27

Topics Discussed in the Section

 Control-Block Table

 Input Queues

 Control-Block Module

 Input Module

 Output Module

TCP/IP Protocol Suite 28

Figure 14.8 UDP design

TCP/IP Protocol Suite 29

Control Block Table

In our package, UDP has a control-block table to keep track of the open

ports. Each entry in this table has a minimum of four fields:

• the state, which can be: FREE or IN-USE,

• the process ID,

• the port number,

• and the corresponding queue number.

30

Control Block Module

• The control-block module is responsible for the management of the

control-block table.

• When a process starts, it asks for a port number from the operating

system.

• The operating system assigns well-known port numbers to servers

and ephemeral port numbers to clients.

• The process passes the process ID and the port number to

the control-block module to create an entry in the table for the process

• The Module does not create the queues

TCP/IP Protocol Suite 31

32

Input and Output Modules

• The input module receives a user datagram from the IP.

• It searches the control-block table to find an entry having the same

port number as this user datagram.

• If the entry is found, the module uses the information in the entry

to enqueue the data.

• If the entry is not found, it generates an ICMP message.

• Output Module is responsible for creating and sending user

datagrams

TCP/IP Protocol Suite 33

TCP/IP Protocol Suite 34

TCP/IP Protocol Suite 35

TCP/IP Protocol Suite 36

The first activity is the arrival of a user datagram with destination
port number 52,012. The input module searches for this port
number and finds it. Queue number 38 has been assigned to this
port, which means that the port has been previously used. The
input module sends the data to queue 38. The control-block table
does not change.

Example 14.8

TCP/IP Protocol Suite 37

After a few seconds, a process starts. It asks the operating system
for a port number and is granted port number 52,014. Now the
process sends its ID (4,978) and the port number to the control-
block module to create an entry in the table. The module takes the
first FREE entry and inserts the information received. The module
does not allocate a queue at this moment because no user
datagrams have arrived for this destination (see Table 14.6).

Example 14.9

TCP/IP Protocol Suite 38

TCP/IP Protocol Suite 39

A user datagram now arrives for port 52,011. The input module
checks the table and finds that no queue has been allocated for
this destination since this is the first time a user datagram has
arrived for this destination. The module creates a queue and gives
it a number (43). See Table 14.7.

Example 14.10

TCP/IP Protocol Suite 40

TCP/IP Protocol Suite 41

After a few seconds, a user datagram arrives for port 52,222. The
input module checks the table and cannot find an entry for this
destination. The user datagram is dropped and a request is made
to ICMP to send an unreachable port message to the source.

Example 14.11

TCP/IP Protocol Suite (B A. Forouzan)

1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 15

Transmission Control Protocol

(TCP)

Edited & Presented by:
Dr. Mohammad Alhammouri

TCP/IP Protocol Suite 2

OBJECTIVES:
 To introduce TCP as a protocol that provides reliable stream

delivery service.

 To define TCP features and compare them with UDP features.

 To define the format of a TCP segment and its fields.

 To show how TCP provides a connection-oriented service, and

show the segments exchanged during connection establishment

and connection termination phases.

 To discuss the state transition diagram for TCP and discuss some

scenarios.

 To introduce windows in TCP that are used for flow and error

control.

TCP/IP Protocol Suite 3

OBJECTIVES (continued):
 To discuss how TCP implements flow control in which the

receive window controls the size of the send window.

 To discuss error control and FSMs used by TCP during the data

transmission phase.

 To discuss how TCP controls the congestion in the network using

different strategies.

 To list and explain the purpose of each timer in TCP.

 To discuss options in TCP and show how TCP can provide

selective acknowledgment using the SACK option.

 To give a layout and a simplified pseudocode for the TCP

package.

TCP/IP Protocol Suite 4

Chapter

Outline

15.1 TCP Services

15.2 TCP Features

15.3 Segment

15.4 A TCP Connection

15.5 State Transition Diagram

15.6 Windows in TCP

15.7 Flow Control

15.8 Error Control

15.9 Congestion Control

15.10 TCP Timers

15.11 Options

15.12 TCP Package

TCP/IP Protocol Suite 5

15-1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the other
protocols in the TCP/IP protocol suite. TCP lies
between the application layer and the network layer,
and serves as the intermediary between the
application programs and the network operations.

TCP/IP Protocol Suite 6

Topics Discussed in the Section

 Process-to-Process Communication

 Stream Delivery Service

 Full-Duplex Communication

Multiplexing and Demultiplexing

 Connection-Oriented Service

 Reliable Service

TCP/IP Protocol Suite 7

Figure 15.1 TCP/IP protocol suite

TCP/IP Protocol Suite 8

TCP/IP Protocol Suite 9

Figure 15.2 Stream delivery

TCP/IP Protocol Suite 10

Figure 15.3 Sending and receiving buffers

Stream of bytes

TCP/IP Protocol Suite 11

Figure 15.4 TCP segments

Segment 1

H

Segment N

H

TCP/IP Protocol Suite 12

15-2 TCP FEATURES

To provide the services mentioned in the previous
section, TCP has several features that are briefly
summarized in this section and discussed later in detail.

TCP/IP Protocol Suite 13

Topics Discussed in the Section

 Numbering System

 Flow Control

 Error Control

 Congestion Control

TCP/IP Protocol Suite 14

The bytes of data being transferred in

each connection are numbered by TCP.

The numbering starts with an arbitrarily

generated number.

Note

TCP/IP Protocol Suite 15

Suppose a TCP connection is transferring a file of 5,000 bytes. The
first byte is numbered 10,001. What are the sequence numbers for
each segment if data are sent in five segments, each carrying 1,000
bytes?

Solution
The following shows the sequence number for each segment:

Example 15.1

TCP/IP Protocol Suite 16

The value in the sequence number

field of a segment defines the number

assigned to the first data byte

contained in that segment.

Note

TCP/IP Protocol Suite 17

The value of the acknowledgment field

in a segment defines the number of the

next byte a party expects to receive.

The acknowledgment number is

cumulative.

Note

TCP/IP Protocol Suite 18

15-3 SEGMENT

Before discussing TCP in more detail, let us discuss
the TCP packets themselves. A packet in TCP is called
a segment.

TCP/IP Protocol Suite 19

Topics Discussed in the Section

 Format

 Encapsulation

TCP/IP Protocol Suite 20

Figure 15.5 TCP segment format

TCP/IP Protocol Suite 21

Figure 15.6 Control field

TCP/IP Protocol Suite 22

Figure 15.7 Pseudoheader added to the TCP segment

TCP/IP Protocol Suite 23

The use of the checksum in TCP is

mandatory.

Note

TCP/IP Protocol Suite 24

Frame
header

IP
header

Figure 15.8 Encapsulation

Application-layer data
TCP

header

Data-link layer payload

IP payload

TCP payload

TCP/IP Protocol Suite 25

15-4 A TCP CONNECTION

TCP is connection-oriented. It establishes a virtual path
between the source and destination. All of the segments
belonging to a message are then sent over this virtual
path. You may wonder how TCP, which uses the
services of IP, a connectionless protocol, can be
connection-oriented. The point is that a TCP
connection is virtual, not physical. TCP operates at a
higher level. TCP uses the services of IP to deliver
individual segments to the receiver, but it controls the
connection itself. If a segment is lost or corrupted, it is
retransmitted.

TCP/IP Protocol Suite 26

Topics Discussed in the Section

 Connection Establishment

 Data Transfer

 Connection Termination

 Connection Reset

TCP/IP Protocol Suite 27

Figure 15.9 Connection establishment using three-way handshake

SYN

U A P R S F

seq: 8000

SYN + ACK
U A P R S F

seq: 15000

ack: 8001

rwnd: 5000

ACK

U A P R S F

seq: 8000
ack: 15001

rwnd: 10000

Means “no data” !

TCP/IP Protocol Suite 28

A SYN segment cannot carry data, but it

consumes one sequence number.

Note

TCP/IP Protocol Suite 29

A SYN + ACK segment cannot carry

data, but does consume one

sequence number.

Note

TCP/IP Protocol Suite 30

An ACK segment, if carrying no data,

consumes no sequence number.

Note

TCP/IP Protocol Suite 31

Figure 15.10 Data Transfer

Connection Termination

32

P: PSH (Push Flag)

• The application program at the sender can request a push

operation.

• This means that the sending TCP must not wait for the window

to be filled.

• After the segment is created, it will be sent immediately

• Segment includes data that must be delivered to the receiving

application program as soon as possible and not to wait for

more data to come.

• Although the push operation can be requested by the

application program, most current TCP implementations ignore

such requests. TCP can choose whether or not to use this

feature.

TCP/IP Protocol Suite 33

Figure 15.11 Connection termination using three-way handshake

TCP/IP Protocol Suite 34

The FIN segment consumes one

sequence number if it does

not carry data.

TCP/IP Protocol Suite 35

The FIN + ACK segment (from

server)consumes one sequence number

if it does not carry data.

TCP/IP Protocol Suite 36

The ACK (from client): This segment

cannot carry data and consumes no

sequence numbers

TCP/IP Protocol Suite 37

Figure 15.12 Half-Close

TCP/IP Protocol Suite 38

15-6 WINDOWS IN TCP

Before discussing data transfer in TCP and the issues such as flow,

error, and congestion control, we describe the windows used in

TCP. TCP uses two windows (send window and receive window)

for each direction of data transfer, which means four windows for a

bidirectional communication.

To make the discussion simple, we make an assumption that

communication is only unidirectional; the bidirectional

communication can be inferred using two unidirectional

communications with piggybacking (Data and Ack can travel in

both direction).

TCP/IP Protocol Suite 39

Topics Discussed in the Section

 Send Window

 Receive Window

TCP/IP Protocol Suite 40

Figure 15.22 Send window in TCP

TCP/IP Protocol Suite 41

Figure 15.23 Receive window in TCP

42

Receive Window

• There are two differences between the receive window in TCP

and the one we used for SR in Chapter 13:

• (1) TCP allows the receiving process to pull data at its own

NEED

• Part of the allocated buffer at the receiver may be occupied by

bytes that have been received and acknowledged, but are

waiting to be pulled by the receiving process

• The receive window size is then always smaller or equal to the

buffer size

Rwnd(window size) = buffer size - number of waiting bytes to be

pulled

TCP/IP Protocol Suite 43

Receive Window

• (2) The second difference is the way acknowledgments are used

in the TCP protocol:

• Remember that an acknowledgement in SR is selective,

defining the uncorrupted Packets that have been received.

•

• The major acknowledgment mechanism in TCP is a cumulative

acknowledgment announcing the next expected byte to receive

•

• The new versions of TCP, however, uses both cumulative and

selective acknowledgements as we will discuss later in the

option section.

TCP/IP Protocol Suite 44

15-7 FLOW CONTROL

As discussed in Chapter 13, flow control balances the
rate a producer creates data with the rate a consumer
can use the data. TCP separates flow control from
error control. In this section we discuss flow control,
ignoring error control. We temporarily assume that the
logical channel between the sending and receiving TCP
is error-free. Figure 15.24 shows unidirectional data
transfer between a sender and a receiver; bidirectional
data transfer can be obtained from unidirectional one
as discussed in Chapter 13.

TCP/IP Protocol Suite 45

Figure 15.24 TCP/IP protocol suite

Messages
are pushed

1

Segements are pushed

2

Messages
are pulled

3

Flow control feedback

4

Flow control
feedback

5

TCP/IP Protocol Suite 46

Figure 15.25 An example of flow control

**Bytes 206 to 209 are acknowledged and consumed 47

Figure 15.26 Example 15.2

210

Prevent the shrinking of the send window:

new ackNo + new rwnd >= last ackNo + last rwnd

?

TCP/IP Protocol Suite 48

Figure 15.26 shows the reason for the mandate in window
shrinking. Part a of the figure shows values of last
acknowledgment and rwnd. Part b shows the situation in
which the sender has sent bytes 206 to 214. Bytes 206 to
209 are acknowledged and purged.

Example 15.2

49

The new advertisement, however, defines the new value of rwnd

as 4, in which 210 + 4 < 206 + 12.

When the send window shrinks it creates a problem:

byte 214 which has been already sent is outside the window. The

relation discussed before forces the receiver to maintain the right-

hand wall of the window to be as shown in part a because the

receiver does not know which of the bytes 210 to 217 has already

been sent.

One way to prevent this situation: is to let the receiver postpone

its feedback until enough buffer locations are available in its

window. In other words, the receiver should wait until more bytes

are consumed by its process.

Example 15.2 cont.

TCP/IP Protocol Suite 50

15-8 ERROR CONTROL

TCP is a reliable transport layer protocol. This means

that an application program that delivers a stream of

data to TCP relies on TCP to deliver the entire stream to

the application program on the other end in the correct

order, without error, and without any part lost or

duplicated.

Error control in TCP is achieved through the use of

three tools: checksum, acknowledgment, and time-out.

TCP/IP Protocol Suite 51

Topics Discussed in the Section

 Checksum

Acknowledgment

 Retransmission

 Out-of-Order Segments

 FSMs for Data Transfer in TCP

 Some Scenarios

TCP/IP Protocol Suite 52

ACK segments do not consume

sequence numbers and

are not acknowledged.

Note

TCP/IP Protocol Suite 53

Acknowledgement Type

– In the past, TCP used only one type of
acknowledgement: Accumulative
Acknowledgement (ACK), also namely
accumulative positive acknowledgement

– More and more implementations are adding
another type of acknowledgement: Selective
Acknowledgement (SACK), SACK is
implemented as an option at the end of the
TCP header.

TCP/IP Protocol Suite 54

Data may arrive out of order and be

temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order

data are delivered to the process.

Note

TCP/IP Protocol Suite 55

TCP can be best modeled as a

Selective Repeat protocol.

Note

TCP/IP Protocol Suite 56

Rules for Generating ACK (1)
– 1. When one end sends a data segment to the

other end, it must include an ACK. That gives
the next sequence number it expects to
receive. (Piggyback)

– 2. The receiver needs to delay sending (until
another segment arrives or 500ms) an ACK
segment if there is only one outstanding in-
order segment. It prevents ACK segments
from creating extra traffic.

– 3. There should not be more than 2 in-order
unacknowledged segments at any time. It
prevent the unnecessary retransmission

TCP/IP Protocol Suite 57

Rules for Generating ACK (2)

– 4. When a segment arrives with an out-of-
order sequence number that is higher than
expected, the receiver immediately sends an
ACK segment announcing the sequence number
of the next expected segment. (for fast
retransmission)

– 5. When a missing segment arrives, the
receiver sends an ACK segment to announce
the next sequence number expected.

– 6. If a duplicate segment arrives, the receiver
immediately sends an ACK.

TCP/IP Protocol Suite 58

Figure 15.29 Normal operation

retransmission time-out (RTO)

59

Figure 15.30 Lost segment

TCP/IP Protocol Suite

The receiver TCP delivers only ordered

data to the process.

Fast retransmission :Retransmission after Three Duplicate ACK

Segments 61

Figure 15.31 Fast retransmission

Advantage of cumulative acknowledgments
62

Figure 15.32 Lost acknowledgment

Rule 6: If a duplicate segment arrives, the receiver immediately

sends an ACK
63

Figure 15.33 Lost acknowledgment corrected by resending a segment

TCP/IP Protocol Suite 64

Lost acknowledgments may create

deadlock if they are not

properly handled.

TCP/IP Protocol Suite 65

Deadlock Created by Lost
Acknowledgment

– The receiver sends an acknowledgment with rwnd set

to 0 and requests that the sender shut down its window

temporarily

– After a while, the receiver wants to remove the

restriction; however, if it has no data to send. It sends

an ACK segment and removes the restriction with a

nonzero value for rwnd

– A problem arises if this acknowledgment is lost

TCP/IP Protocol Suite 66

Deadlock Created by Lost
Acknowledgment

– The sender is waiting for an acknowledgment that

announces the nonzero rwnd

– The receiver thinks that the sender has received this and is

waiting for data. This situation is called a deadlock

– To prevent deadlock, a persistence timer was designed that

we will study later in the chapter

TCP/IP Protocol Suite 67

15-9 CONGESTION CONTROL

We discussed congestion control in Chapter 13.
Congestion control in TCP is based on both open loop
and closed-loop mechanisms. TCP uses a congestion
window and a congestion policy that avoid congestion
and detect and alleviate congestion after it has occurred.

68

Congestion Window

• Flow control: solution when the receiver is overwhelmed

with data

• We said that the sender window size is determined by the

available buffer space in the receiver (rwnd).

• We assumed that it is only the receiver that can dictate to

the sender the size of the sender’s window.

• What about the network

• If the network cannot deliver the data as fast as it is created

by the sender, it must tell the sender to slow down.

• The sender has two pieces of information: the receiver-

advertised window size (rwnd), and the congestion window

size (cwnd)

69

Congestion Window

TCP/IP Protocol Suite 70

Topics Discussed in the Section

 Congestion Window

 Congestion Policy

71

Congestion Avoidance: Slow start Algorithm

TCP/IP Protocol Suite 72

Figure 15.34 Slow start, exponential increase

TCP/IP Protocol Suite 73

In the slow start algorithm, the size of

the congestion window increases

exponentially until it reaches a

threshold.

Note

TCP/IP Protocol Suite 74

Figure 15.35 Congestion avoidance, additive increase

TCP/IP Protocol Suite 75

Figure 15.34 Slow start, exponential increase

TCP/IP Protocol Suite 76

In the congestion avoidance algorithm

the size of the congestion window

increases additively until

congestion is detected.

Note

77

Congestion Avoidance

• Slow start strategy is slower in the case of delayed

acknowledgments.

• For each ACK, the cwnd is increased by only 1 MSS

(Maximum segment size).

• If three segments are acknowledged accumulatively, the

size of the cwnd increases by only 1 MSS, not 3 MSS.

• The growth is still exponential, but it is not a

power of 2.

Given By: Dr. Mohammad Al-hammouri
1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 16

Stream

Control

Transmission

Protocol

(SCTP)

TCP/IP Protocol Suite 2

OBJECTIVES:
 To introduce SCTP as a new transport-layer protocol.

 To discuss SCTP services and compare them with TCP.

 To list and explain different packet types used in SCTP and

discuss the purpose and of each field in each packet.

 To discuss SCTP association and explain different scenarios

such as association establishment, data transfer, association

termination, and association abortion.

 To compare and contrast the state transition diagram of SCTP

with the corresponding diagram of TCP.

 To explain flow control, error control, and congestion control

mechanism in SCTP and compare them with the similar

mechanisms in TCP.

TCP/IP Protocol Suite 3

16-1 INTRODUCTION

Stream Control Transmission Protocol (SCTP) is a new
reliable, message-oriented transport-layer protocol.
Figure 16.1 shows the relationship of SCTP to the
other protocols in the Internet protocol suite. SCTP
lies between the application layer and the network
layer and serves as the intermediary between the
application programs and the network operations.

TCP/IP Protocol Suite 4

Figure 16.1 TCP/IP Protocol suite

TCP/IP Protocol Suite 5

SCTP is a message-oriented,

reliable protocol that combines the

best features of UDP and TCP.

Note

TCP/IP Protocol Suite 6

Comparison

• UDP: Message-oriented, Unreliable

• A process delivers a message to UDP, which is

encapsulated in a user datagram and sent over the

network.

• UDP conserves the message boundaries; each message is

independent from any other message.

• This is a desirable feature when we are dealing with

applications such as IP telephony and transmission of real-

time data

TCP/IP Protocol Suite 7

Comparison

• TCP: Byte-oriented, Reliable

• It receives a message or messages from a process,

• stores them as a stream of bytes, and sends them

in segments.

• There is no preservation of the message

boundaries. However, TCP is a reliable protocol.

• The duplicate segments are detected, the lost

segments are resent, and the bytes are delivered to

the end process in order

TCP/IP Protocol Suite 8

Comparison

• SCTP: Message-oriented, Reliable

• Combines the best features of UDP and TCP.

• SCTP is a reliable message-oriented protocol.

• It preserves the message boundaries and at the

same time detects lost data, duplicate data, and

out-of-order

TCP/IP Protocol Suite 9

16-2 SCTP SERVICES

Before discussing the operation of SCTP, let us explain
the services offered by SCTP to the application layer
processes.

TCP/IP Protocol Suite 10

Topics Discussed in the Section

 Process-to-Process Communication

Multiple Streams

Multihoming

 Full-Duplex Communication

 Connection-Oriented Service

 Reliable Service

TCP/IP Protocol Suite 11

TCP/IP Protocol Suite 12

One-stream in TCP

• Each connection between a TCP client and a TCP server involves one

single stream.

• The problem with this approach is that a loss at any point in the stream

blocks the delivery of the rest of the data.

• This can be acceptable when we are transferring text; it is not when we are

sending real-time data such as audio or video

TCP/IP Protocol Suite 13

Figure 16.2 Multiple-stream concept

If one of the streams is blocked, the other streams
can still deliver their data.

SCTP allows multis-tream service in each connection,

which is called association

TCP/IP Protocol Suite 14

An association in SCTP can involve

multiple streams.

TCP/IP Protocol Suite 15

Figure 16.3 Multihoming concept

An SCTP association, on the other hand, supports multihoming

service.

The sending and receiving host can define multiple IP addresses

in each end for an association

A TCP connection involves one source and one destination IP address

TCP/IP Protocol Suite 16

Figure 16.3 Multihoming concept

In this fault-tolerant approach, when one path fails, another interface

can be used for data delivery without interruption

Only one pair of IP addresses can be chosen for

normal communication; the alternative is used if

the main choice fails

TCP/IP Protocol Suite 17

SCTP association allows multiple IP

addresses for each end.

Note

TCP/IP Protocol Suite 18

Full-Duplex Communication

Like TCP, SCTP offers full-duplex service, where data can

flow in both directions at the same time.

Each SCTP then has a sending and receiving buffer and

packets are sent in both directions.

TCP/IP Protocol Suite 19

Connection-Oriented Service

Like TCP, SCTP is a connection-oriented protocol. However, in SCTP, a

connection is called an association.

When a process at site A wants to send and receive data from

another process at site B, the following occurs:

1. The two SCTPs establish an association between each other.

2. Data are exchanged in both directions.

3. The association is terminated

TCP/IP Protocol Suite 20

Reliable Service

SCTP, like TCP, is a reliable transport protocol. It uses an

acknowledgment mechanism to check the safe and sound

arrival of data. We will discuss this feature further in the

section on error control.

TCP/IP Protocol Suite 21

16-3 SCTP FEATURES

Let us first discuss the general features of SCTP and
then compare them with those of TCP.

TCP/IP Protocol Suite 22

Topics Discussed in the Section

 Transmission Sequence Number (TSN)

 Stream Identifier (SI)

 Stream Sequence Number (SSN)

 Packets

Acknowledgment Number

 Flow Control

 Error Control

 Congestion Control

TCP/IP Protocol Suite 23

Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is

controlled by numbering bytes using a sequence number.

TCP/IP Protocol Suite 24

In SCTP, a data chunk is numbered

using a TSN (Transmission Sequence

Number)

This 32-bit field defines the transmission sequence

number. It is a sequence number that is initialized in

an INIT chunk for one direction and in the INIT ACK

chunk for the opposite direction.

TCP/IP Protocol Suite 25

To distinguish between different

streams, SCTP uses an SI (Stream

Identifier)

This 16-bit field defines each stream in an association.

All chunks belonging to the same stream in one

direction carry the same stream identifier.

TCP/IP Protocol Suite 26

Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is

controlled by numbering bytes using a sequence number.

TCP/IP Protocol Suite 27

Stream sequence number (SSN). This 16-

bit field defines a chunk in a particular

stream in one direction

TCP/IP Protocol Suite 28

Figure 16.4 Comparison between a TCP segment and an SCTP packet

TCP/IP Protocol Suite 29

TCP has segments; SCTP has packets.

Note

TCP/IP Protocol Suite 30

SCTP vs. TCP (1)
• Control information

– TCP: part of the header

– SCTP: several types of control chunks

• Data
– TCP: one entity in a TCP segment

– SCTP: several data chunks in a packet

• Option
– TCP: part of the header

– SCTP: handled by defining new chunk types

TCP/IP Protocol Suite 31

SCTP vs. TCP (2)
• Mandatory part of the header

– TCP: 20 bytes, SCTP: 12 bytes

– Reason:

• TSN in data chunk’s header

• Ack. # and window size are part of control
chunk

• No need for header length field (∵no option)

• No need for an urgent pointer

• Checksum
– TCP: 16 bits, SCTP: 32 bit

TCP/IP Protocol Suite 32

SCTP vs. TCP (3)
• Association identifier

– TCP: none, SCTP: verification tag

– Multihoming in SCTP

• Sequence number
– TCP: one # in the header

– SCTP: TSN, SI and SSN define each data
chunk

– SYN and FIN need to consume one seq. #

– Control chunks never use a TSN, SI, or
SSN number

TCP/IP Protocol Suite 33

In SCTP, control information and data

information are carried in separate

chunks.

Note

TCP/IP Protocol Suite 34

Figure 16.5 Packet, data chunks, and streams

TCP/IP Protocol Suite 35

Data chunks are identified by three

identifiers: TSN, SI, and SSN.

TSN is a cumulative number identifying

the association; SI defines the stream;

SSN defines the chunk in a stream.

Note

TCP/IP Protocol Suite 36

In SCTP, acknowledgment numbers are

used to acknowledge only data chunks;

control chunks are acknowledged by

other control chunks if necessary.

Note

TCP/IP Protocol Suite 37

16-4 PACKET FORMAT

In this section, we show the format of a packet and
different types of chunks. Most of the information
presented in this section will become clear later; this
section can be skipped in the first reading or used only
as the reference. An SCTP packet has a mandatory
general header and a set of blocks called chunks. There
are two types of chunks: control chunks and data
chunks.

TCP/IP Protocol Suite 38

Topics Discussed in the Section

 General Header

 Chunks

TCP/IP Protocol Suite 39

Figure 16.6 SCTP packet format

TCP/IP Protocol Suite 40

In an SCTP packet, control chunks come

before data chunks.

Note

TCP/IP Protocol Suite 41

General Header

Verification tag. This is a number that matches a packet to an

association. This prevents a packet from a previous association

from being mistaken as a packet in this association.

TCP/IP Protocol Suite 42

Common layout of a chunk

The first three fields are common to all chunks;

The information field depends on the type of chunk (data or

control)

TCP/IP Protocol Suite 43

Chunks need to terminate on a 32-bit

(4-byte) boundary.

SCTP requires the information section to be a multiple of 4 bytes;

if not, padding bytes (eight 0s) are added at the end of the section.

TCP/IP Protocol Suite 44

TCP/IP Protocol Suite 45

The number of padding bytes is not

included in the value of the length field.

Note

TCP/IP Protocol Suite 46

Figure 16.9 Data chunk

TCP/IP Protocol Suite 47

A DATA chunk cannot carry data

belonging to more than one message,

but a message can be split into several

chunks. The data field of the DATA

chunk must carry at least one byte of

data

Note

TCP/IP Protocol Suite 48

Figure 16.10 INIT chunk

49

No other chunk can be carried in a

packet that carries an INIT chunk.

The INIT chunk (initiation chunk) is the first chunk sent by an end point

to establish an association.

The packet that carries this chunk cannot carry any other control or data

chunks. The value of the verification tag for this packet is 0, which means

no tag has yet been defined

The INIT ACK chunk (initiation acknowledgment chunk) is the

second chunk sent during association establishment. The packet that

carries this chunk cannot carry any data or other control chunks
50

Figure 16.11 INIT ACK chunk

TCP/IP Protocol Suite 51

No other chunk can be carried in a

packet that carries an INIT ACK chunk.

Note

52

Figure 16.12 COOKIE ECHO chunk

It is sent by the end point that receives an INIT ACK chunk

(normally the sender of the INIT chunk).

The packet that carries this chunk can also carry user data.

The COOKIE ECHO chunk is the third chunk sent during association

establishment.

TCP/IP Protocol Suite 53

Figure 16.13 COOKIE ACK

The COOKIE ACK chunk is the fourth and last chunk sent during

association establishment.

The packet that carries this chunk can also carry user data.

The SACK chunk (selective ACK chunk) acknowledges the receipt of

data packets.

54

Figure 16.14 SACK chunk

The last data chunk received
in sequence

updated value for the receiver
window size.

TCP/IP Protocol Suite 56

Figure 16.16 SHUTDOWN chunks

57

Figure 16.17 ERROR chunk

The ERROR chunk is sent when an end point finds some error in a received

packet. Note that the sending of an ERROR chunk does not imply the aborting

of the association. (This would require an ABORT chunk.)

TCP/IP Protocol Suite 58

The ABORT chunk is sent when an end point finds a fatal error

and needs to abort the association. The error types are the same

as those for the ERROR chunk

59

Figure 16.18 ABORT chunk

60

Forward TSN Chunk

 Recently added to the standard

(RFC 3758)

 Used to inform the receiver to adjust its cumulative

TSN

 It provides partial reliable service

TCP/IP Protocol Suite 61

16-5 AN SCTP ASSOCIATION

SCTP, like TCP, is a connection-oriented protocol.
However, a connection in SCTP is called an association
to emphasize multihoming.

TCP/IP Protocol Suite 62

Topics Discussed in the Section

Association Establishment

 Data Transfer

Association Termination

Association Abortion

TCP/IP Protocol Suite 63

A connection in SCTP is called an

association.

Note

TCP/IP Protocol Suite 64

Figure 16.19 Four-way handshaking

TCP/IP Protocol Suite 65

Verification Tag
• In TCP, a connection is identified by a

combination of IP addresses and port
numbers
– A blind attacker can send segments to a TCP

server using randomly chosen source and
destination port numbers

– Delayed segment from a previous connection can
show up in a new connection that uses the same
source and destination port addresses (incarnation)

• Two verification tags, one for each direction,
identify an association

TIME-WAIT
timer

TCP/IP Protocol Suite 66

Verification Tag
• In TCP, a connection is identified by a

combination of IP addresses and port
numbers
– A blind attacker can send segments to a TCP

server using randomly chosen source and
destination port numbers

– Delayed segment from a previous connection can
show up in a new connection that uses the same
source and destination port addresses . This was

one of the reasons that TCP needs a TIME-WAIT
timer when terminating a connection

TCP/IP Protocol Suite 67

Verification Tag

• SCTP solves these two problems by using a verification tag, a

common value that is carried in all packets traveling in one

direction in an association.

• A blind attacker cannot inject a random packet into an association

because the packet would most likely not carry the appropriate tag

(odds are 1 out of 232).

• Two verification tags, one for each direction, identify an

association.

TCP/IP Protocol Suite 68

Cookie (1)
• In TCP

– Each time the server receives a SYN
segment, it sets up a TCB and allocates
other resources

• In SCTP

– Postpone the allocation of resources until
the reception of the third packet, when
the IP address of the sender is verified

TCP/IP Protocol Suite 69

Cookie (2)
• In SCTP

– The information received in the first
packet must somehow be saved until the
third packet arrives

TCP/IP Protocol Suite 70

No other chunk is allowed in a packet

carrying an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK

chunk can carry data chunks.

Note

TCP/IP Protocol Suite 71

In SCTP, only data chunks consume

TSNs; data chunks are the only chunks

that are acknowledged.

Note

The client uses the verification tag 85, the server 700 72

Figure 16.20 Simple data transfer

TCP/IP Protocol Suite 73

The acknowledgment in SCTP defines

the cumulative TSN, the TSN of the last

data chunk received in order.

Note

TCP/IP Protocol Suite 74

Multi-homing Data Transfer

• We discussed the multihoming capability of SCTP, a feature

that distinguishes SCTP from UDP and TCP

• Multihoming allows both ends to define multiple IP addresses

for communication

• Only one of these addresses can be defined as the primary

address; the rest are alternative addresses

• The primary address is defined during association

establishment

TCP/IP Protocol Suite 75

Multi-homing Data Transfer

• Primary address

– Defined during association establishment

– Determined by the other end

– The process can always override the primary address

(explicitly) of the current association.

– SACK is sent to the address from which the

corresponding SCTP packet originated

TCP/IP Protocol Suite 76

Multi-stream Delivery
• Interesting feature in SCTP

– Distinction between data transfer and data
delivery

– Data transfer: TSN (error/flow control)

– Data delivery: SI, SSN

• Data delivery (in each stream)

– Ordered (default)

– Unordered

TCP/IP Protocol Suite 77

Multi-stream Delivery
• Data delivery (in each stream)

– Ordered:

– In ordered data delivery, data chunks in a
stream use stream sequence numbers (SSNs)
to define their order in the stream

– SCTP is responsible for message delivery
according to the SSN defined in the chunk

– This may delay the delivery because some
chunks may arrive out of order. In unordered
data delivery

TCP/IP Protocol Suite 78

Multi-stream Delivery
• Unordered:

In unordered data delivery, the data chunks in a

stream have the U flag set, but their SSN field

value is ignored. They do not consume SSNs

TCP/IP Protocol Suite 79

Fragmentation
• IP fragmentation vs. SCTP

– SCTP preserves the boundaries of the msg
from process to process when creating a DATA
chunk from a message if the size of the msg
does not exceed the MTU (maximum transmission unit)
of the path

• SCTP fragmentation

– Each fragment carries a different TSN

– All header chunks carries the same SI,
SSN, payload protocol ID, and U flag

TCP/IP Protocol Suite 80

Figure 16.21 Association termination

SCTP does not allow a “half-closed” association

TCP/IP Protocol Suite 81

Figure 16.22 Association abortion

TCP/IP Protocol Suite 82

Figure 16.24 A common scenario of state

TCP/IP Protocol Suite 83

Figure 16.25 Simultaneous open

Each time a packet arrives with a verification tag
that does not match the value of the local tag, it
is discarded!

TCP/IP Protocol Suite 84

Figure 16.26 Simultaneous close

TCP/IP Protocol Suite 85

16-7 FLOW CONTROL

Flow control in SCTP is similar to that in TCP. In TCP, we

need to deal with only one unit of data, the byte. In SCTP,

we need to handle two units of data, the byte and the

chunk. The values of rwnd and cwnd are expressed in

bytes; the values of TSN and acknowledgments are

expressed in chunks.

TCP/IP Protocol Suite 86

Topics Discussed in the Section

 Receiver Site

 Sender Site

A Scenario

87

Figure 16.27 Flow control, receiver site

rwnd, cwnd: in bytes

TSN and Acknowledgement : in chunks

The first variable holds the last TSN received, cumTSN.

The second variable holds the available buffer size, winsize.

The third variable holds the last accumulative acknowledgment, lastACK

88

Figure 16.27 Flow control, receiver site

1. When the site receives a data chunk, it stores it at the end of the

buffer (queue) and subtracts the size of the chunk from winSize.

The TSN number of the chunk is stored in the cumTSN variable.

2. When the process reads a chunk, it removes it from the queue and

adds the size of the removed chunk to winSize (recycling).

3. When the receiver decides to send a SACK, it checks the value of

lastAck; if it is less than cumTSN, it sends a SACK with a

cumulative TSN number equal to the cumTSN. It also includes the

value of winSize as the advertised window

TCP/IP Protocol Suite 89

Figure 16.28 Flow control, sender site

Sent but not acknowledged

1. A chunk pointed to by curTSN can be sent if
the size of the data is less than or equal to
the quantity (rwnd-inTransit)

2. When a SACK is received, the chunks with a TSN less than or
equal to the cumulative TSN in the SACK are removed from the
queue and discarded. The values of rwnd and inTransit are
updated properly

TCP/IP Protocol Suite 90

Figure 16.29 Flow control scenario

TCP/IP Protocol Suite 91

16-8 ERROR CONTROL

SCTP, like TCP, is a reliable transport-layer protocol.
It uses a SACK chunk to report the state of the
receiver buffer to the sender. Each implementation
uses a different set of entities and timers for the
receiver and sender sites. We use a very simple design
to convey the concept to the reader.

TCP/IP Protocol Suite 92

Topics Discussed in the Section

 Receiver Site

 Sender Site

 Sending Data Chunks

 Generating SANK Chunks

TCP/IP Protocol Suite 93

Figure 16.30 Error-control receiver site

1234567891011

We assume that each chunk is 100 bytes, which means that 1400 bytes of

data (chunks 23 to 36) are in transit

94

Figure 16.31 Error control, sender site

Assume 100 bytes per chunk

The chunks in the retransmission queue have priority

Timeout

TCP/IP Protocol Suite 95

Figure 16.32 New state at the sender site after receiving a SACK chunk

1. Chunks 26-28, 31-34 are removed.

2. The value of rwnd is changed to 1000 as advertised in the

SACK chunk.

3. Also assume timer for chunks 24, 25 has expired.

4. 4 chunks are now in transit, so inTransit becomes 400.

Not include 24, 25

TCP/IP Protocol Suite 96

Generating SACK Chunks
• Piggybacking:

– When an end sends a DATA chunk to the other end, it must

include a SACK chunk advertising the receipt of

unacknowledged DATA chunks.

• Delay sending of SACK no more than 500ms

• Send a SACK immediately when

– a packet arrives with out-of-order data chunks

– a packet arrives with duplicate data chunks and
no new data chunks

TCP/IP Protocol Suite 97

16-9 CONGESTION CONTROL

SCTP, like TCP, is a transport layer protocol with
packets subject to congestion in the network. The
SCTP designers have used the same strategies we
described for congestion control in Chapter 15 for
TCP. SCTP has slow start, congestion avoidance, and
congestion detection phases. Like TCP, SCTP also
uses fast retransmission and fast recovery.

TCP/IP Protocol Suite 98

 Congestion Control and Multihoming

 Explicit Congestion Notification

Need to have different values
of cwnd for each IP address

It is a process that enables a receiver to explicitly inform the
sender of any congestion experienced in the network.
E.g. the receiver encounters many delayed or lost packets.

TCP/IP Protocol Suite (B A. Forouzan)

1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

Introduction to the Application

Layer

Edited & Presented by:
Dr. Mohammad Alhammouri

TCP/IP Protocol Suite 2

OBJECTIVES:
 To introduce client-server paradigm.

 To introduce socket interfaces and list some common functions in

this interface.

 To discuss client-server communication using connectionless

iterative service offered by UDP.

 To discuss client-server communication using connection-

oriented concurrent service offered by TCP.

 To give an example of a client and a server program using UDP.

 To give an example of a client and a server program using TCP.

 To briefly discuss the peer-to-peer paradigm and its application.

TCP/IP Protocol Suite 3

Chapter

Outline
17.1 Client-Server Paradigm

17.2 Peer-to-Peer Paradigm

TCP/IP Protocol Suite 4

17-1 CLIENT-SERVER PARADIGM

The purpose of a network, or an internetwork, is to
provide services to users: A user at a local site wants
to receive a service from a computer at a remote site.
One way to achieve this purpose is to run two
programs. A local computer runs a program to request
a service from a remote computer; the remote
computer runs a program to give service to the
requesting program. This means that two computers,
connected by an internet, must each run a program,
one to provide a service and one to request a service.

TCP/IP Protocol Suite 5

Topics Discussed in the Section

 Server

 Client

 Concurrency

 Socket Interfaces

 Communication Using UDP

 Communication Using TCP

 Predefined Client-Server Applications

TCP/IP Protocol Suite 6

Figure 17.1 Server types

TCP/IP Protocol Suite 7

Figure 17.1 Server types

Datagrams are processed one by one in order of arrival.

8

Figure 17.2 Connectionless iterative server

Datagram from client 1

Datagram from client 2

Datagram from client 3

Legend

The server uses one single port for this purpose

9

Figure 17.3 Connection-oriented concurrent server

• The servers that use TCP (or SCTP) are normally concurrent

• Connection Oriented: request is a stream of bytes that can

arrive in several segments and the response can occupy

several segments

• connection remains open until the entire stream is processed

and the connection is terminated.

• Each connection needs a port and many connections may be

open at the same time

• Many ports are needed, but a server can use only one well-

known port. The solution is to have one well-known port and

many ephemeral ports

TCP/IP Protocol Suite 10

Figure 17.3 Connection-oriented concurrent server

11

Socket Interfaces

TCP/IP Protocol Suite 12

An interface is a set of instructions

designed for interaction between two

entities.

The socket interface, as a set of instructions, located between the operating

system and the application programs.

To access the services provided by the TCP/IP protocol suite, an application

needs to use the instructions defined in the socket interface. 13

Figure 17.4 Relation between the operating system and the TCP/IP suite

TCP/IP Protocol Suite 14

Most of the programming languages have a file interface, a set of
instructions that allow the programmer to open a file, read from the
file, write to the file, perform other operations on the file, and
finally close the file. When a program needs to open the file, it uses
the name of the file as it is known to the operation system. When
the file is opened, the operating system returns a reference to the
file (an integer or pointer) that can be used for other instructions,
such as read and write.

Example 17.1

TCP/IP Protocol Suite 15

Figure 17.5 Concepts of sockets

socket is a software structure within a network node of a computer network

that serves as an endpoint for sending and receiving data across the network

An application program (client or server) needs to request the operating

system to create a socket

TCP/IP Protocol Suite 16

Figure 17.6 Socket data structure

TCP/IP Protocol Suite 17

Figure 17.6 Socket data structure

TCP/IP Protocol Suite 18

Figure 17.7 Socket types

TCP/IP Protocol Suite 19

Figure 17.8 IPv4 socket address

TCP/IP Protocol Suite 20

Structure of a socket address, a combination of IP address

and port number.

structure of a socket address

TCP/IP Protocol Suite 21

Socket Functions

If the call is successful, the function returns a unique socket descriptor

sockfd (a non-negative integer)

TCP/IP Protocol Suite 22

Socket Functions

TCP/IP Protocol Suite 23

Socket Functions

TCP/IP Protocol Suite 24

Socket Functions

25

Socket Functions

Accept function:

a. The call to accept() function makes the process check if there is any client

connection request in the waiting buffer. If not, the accept makes the process to

sleep. The process wakes up when the queue has at least one request.

b. After a successful call to the accept, a new socket is created and the

communication is established between the client socket and the new socket of

the server.

c. The address received from the accept function fills the remote socket address

In the new socket.

.

26

Socket Functions

TCP/IP Protocol Suite 27

Figure 17.9 Connectionless iterative communication using UDP

TCP/IP Protocol Suite 28

As an example, let us see how we can design and write two
programs: an echo server and an echo server. The client sends a
line of text to the server; the server sends the same line back to
the client. Although this client/server pair looks useless, it has
some applications. It can be used, for example, when a computer
wants to test if another computer in the network is alive. To better
understand the code in a program, we first give the layout of
variables used in both programs as shown in Figure 17.10.

Example 17.2

TCP/IP Protocol Suite 29

Figure 17.10 Variables used in echo server and echo client using UDP service

TCP/IP Protocol Suite 30

TCP/IP Protocol Suite 31

TCP/IP Protocol Suite 32

TCP/IP Protocol Suite 33

34

Server Socket

Listen socket: This socket is only used during connection

establishment.

Bind function : bind this connection to the socket address

of the server computer

The server program then calls the accept function. This function

is a blocking function; when it is called, it is blocked until the TCP

receives a connection request (SYN segment) from a client.

35

Server Socket

The accept function: then is unblocked and creates a new socket

Called the connect socket that includes the socket address of the

client that sent the SYN segment

To provide concurrency, the server process (parent process) calls the

fork function. This function creates a new process

(child process), which is exactly the same as the parent process

TCP/IP Protocol Suite 36

Figure 17.11 Flow diagram for connection-oriented, concurrent communication

Connection handshake

TCP/IP Protocol Suite 37

Figure 17.12 Status of parent and child processes with respect to the socket

TCP/IP Protocol Suite 38

We want to write two programs to show how we can have an echo
client and echo server using the services of TCP. Figure 17.13
shows the variables we use in these two programs. Since data may
arrive in different chunks, we need pointers to point to the buffer.
The first buffer is fixed and always points to the beginning of the
buffer; the second pointer is moving to let the arrived bytes be
appended to the end of the previous section.

Example 17.3

TCP/IP Protocol Suite 39

Figure 17.13 Variable used in echo client and echo sever using TCP

TCP/IP Protocol Suite 40

TCP/IP Protocol Suite 41

TCP/IP Protocol Suite 42

TCP/IP Protocol Suite 43

TCP/IP Protocol Suite 44

TCP/IP Protocol Suite 45

In Appendix F we give some simple Java

versions of programs in

Table 17.1 to 17.4

Note

TCP/IP Protocol Suite 46

17-2 PEER-TO-PEER PARADIGM

Although most of the applications available in the Internet

today use the client-server paradigm, the idea of using peer-

to-peer (P2P) paradigm recently has attracted some attention.

In this paradigm, two peer computers can communicate with

each other to exchange services. This paradigm is interesting

in some areas such file as transfer in which the client-server

paradigm may put a lot of the load on the server machine.

However, we need to mention that the P2P paradigm does not

ignore the client-server paradigm; it is based on this

paradigm.

