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OBJECTIVES:

 To discuss the idea of multiple layering in data communication 

and networking and the interrelationship between layers.

 To discuss the OSI model and its layer architecture and to show 

the interface between the layers.

 To briefly discuss the functions of each layer in the OSI model.

 To introduce the TCP/IP protocol suite and compare its layers 

with the ones in the OSI model.

 To show the functionality of each layer in the TCP/IP protocol 

with some examples.

 To discuss the addressing mechanism used in some layers of the 

TCP/IP protocol suite for the delivery of a message from the 

source to the destination.
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Chapter 

Outline

2.1  Protocol Layers

2.2  The OSI Model

2.3  TCP/IP Protocol Suite

2.4  Addressing
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2-1  PROTOCOL LAYERS

In Chapter 1, we discussed that a protocol is required
when two entities need to communicate. When
communication is not simple, we may divide the
complex task of communication into several layers. In
this case, we may need several protocols, one for each
layer.

Let us use a scenario in communication in which the
role of protocol layering may be better understood. We
use two examples. In the first example, communication
is so simple that it can occur in only one layer.
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Topics Discussed in the Section

Hierarchy

Services
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2-2  THE OSI MODEL

Established in 1947, the International Standards
Organization (ISO) is a multinational body dedicated to
worldwide agreement on international standards.
Almost three-fourths of countries in the world are
represented in the ISO. An ISO standard that covers all
aspects of network communications is the Open
Systems Interconnection (OSI) model. It was first
introduced in the late 1970s.
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Topics Discussed in the Section

Layered Architecture

Layer-to-layer Communication

Encapsulation

Layers in the OSI Model

Summary of OSI Layers
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ISO is the organization; 

OSI is the model.

Note
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Figure 2.3 The OSI model
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Figure 2.4 OSI layers
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Figure 2.5 An exchange using the OSI model
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The physical layer is responsible for 

moving individual bits from one

(node) to the next.

Note
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Figure 2.6 Summary of OSI Layers
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2-3  TCP/IP PROTOCOL SUITE

The TCP/IP protocol suite was developed prior to the
OSI model. Therefore, the layers in the TCP/IP
protocol suite do not match exactly with those in the
OSI model. The original TCP/IP protocol suite was
defined as four software layers built upon the hardware.
Today, however, TCP/IP is thought of as a five-layer
model with the layers named similarly to the ones in
the OSI model. Figure 2.7 shows both configurations.
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Topics Discussed in the Section

Comparison between OSI and TCP/IP

Layers in the TCP/IP Suite
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Figure 2.7 Layers in the TCP/IP Protocol Suite
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Figure 2.8 TCP/IP and OSI model
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Figure 2.9 A private internet
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Figure 2.10 Communication at the physical layer
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The unit of communication at the 

physical layer is a bit.

Note
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Figure 2.11 Communication at the data link layer
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The unit of communication at the data 

link layer is a frame.

Note
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Figure 2.12 Communication at the network layer
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The unit of communication at the 

network layer is a datagram.

Note
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Figure 2.13 Communication at transport layer
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The unit of communication at the 

transport layer is a segment, user 

datagram, or a packet, depending on the 

specific protocol used in this layer.

Note
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Figure 2.14 Communication at application layer
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The unit of communication at the 

application layer is a message.

Note
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2-4 ADDRESSING

Four levels of addresses are used in an internet
employing the TCP/IP protocols: physical address,
logical address, port address, and application-specific
address. Each address is related to a one layer in the
TCP/IP architecture, as shown in Figure 2.15.
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Topics Discussed in the Section

 Physical Addresses

 Logical Addresses

 Port Addresses

Application-Specific Addresses
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Figure 2.15 Addresses in the TCP/IP protocol suite
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In Figure 2.16 a node with physical address 10 sends a frame to a node
with physical address 87. The two nodes are connected by a link (a LAN).
At the data link layer, this frame contains physical (link) addresses in the
header. These are the only addresses needed. The rest of the header
contains other information needed at this level. As the figure shows, the
computer with physical address 10 is the sender, and the computer with
physical address 87 is the receiver. The data link layer at the sender
receives data from an upper layer. It encapsulates the data in a frame.
The frame is propagated through the LAN. Each station with a physical
address other than 87 drops the frame because the destination address
in the frame does not match its own physical address. The intended
destination computer, however, finds a match between the destination
address in the frame and its own physical address.

Example 2.3
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Figure 2.16 Example 2.3: physical addresses
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As we will see in Chapter 3, most local area networks use a 48-bit
(6-byte) physical address written as 12 hexadecimal digits; every
byte (2 hexadecimal digits) is separated by a colon, as shown
below:

Example 2.4

07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address
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Figure 2.17 shows a part of an internet with two routers connecting
three LANs. Each device (computer or router) has a pair of addresses
(logical and physical) for each connection. In this case, each computer is
connected to only one link and therefore has only one pair of addresses.
Each router, however, is connected to three networks. So each router
has three pairs of addresses, one for each connection. Although it may
be obvious that each router must have a separate physical address for
each connection, it may not be obvious why it needs a logical address for
each connection. We discuss these issues in Chapters 11 and 12 when
we discuss routing. The computer with logical address A and physical
address 10 needs to send a packet to the computer with logical address
P and physical address 95. We use letters to show the logical addresses
and numbers for physical addresses, but note that both are actually
numbers, as we will see in later chapters.

Example 2.5



TCP/IP Protocol Suite 36

Figure 2.17 Example 2.5: logical addresses
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The physical addresses will change from 

hop to hop, but the logical addresses 

remain the same.

Note
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Figure 2.18 shows two computers communicating via the Internet.
The sending computer is running three processes at this time with
port addresses a, b, and c. The receiving computer is running two
processes at this time with port addresses j and k. Process a in
the sending computer needs to communicate with process j in the
receiving computer. Note that although both computers are using
the same application, FTP, for example, the port addresses are
different because one is a client program and the other is a server
program, as we will see in Chapter 17.

Example 2.6
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Figure 2.18 Example 2.6: port numbers
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The physical addresses change from 

hop to hop, but the logical and port 

addresses usually remain the same.

Note
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As we will see in future chapters, a port address is a 16-bit
address represented by one decimal number as shown.

Example 2.7

753
A 16-bit port address represented as one single number
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Chapter 11
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Routing

Protocols
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Chapter 

Outline

11.1  Introduction

11.2  Intra- and Inter-Domain 
Routing

11.3  Distance Vector Routing

11.4  RIP

11.5  Link State Routing

11.6  OSPF

11.7  Path Vector Routing

11.8  BGP
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11-1  INTRODUCTION

An internet is a combination of networks connected by
routers. When a datagram goes from a source to a
destination, it will probably pass through many routers
until it reaches the router attached to the destination
network.
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Topics Discussed in the Section

 Cost or Metric

 Static versus Dynamic Routing Table

 Routing Protocol
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11-2  INTER- AND INTRA-DOMAIN 

ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An
autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra-
domain routing. Routing between autonomous systems
is called inter-domain routing
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Figure 11.1 Autonomous systems



TCP/IP Protocol Suite 7

Figure 11.2 Popular routing protocols
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11-3  DISTANCE VECTOR ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An
autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra-
domain routing. Routing between autonomous systems
is called inter-domain routing
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Updating Routing Table
• If the next-node entry is different

– The receiving node chooses the row with 

the smaller cost

– If there is a tie, the old one is kept

• If the next-node entry is the same

– i.e. the sender of the new row is the 

provider of the old entry

– The receiving node chooses the new row, 

even though the new value is infinity.
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When to Share 
• Periodic Update

– A node sends its routing table, normally 30 
seconds, in a periodic update

• Triggered Update
– A node sends its routing table to its 

neighbors any time when there is a change 
in its routing table

• 1. After updating its routing table, or

• 2. Detects some failure in the neighboring links
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Figure 11.5 shows the initial routing table for an AS. Note that the
figure does not mean that all routing tables have been created at
the same time; each router creates its own routing table when it is
booted.

Example 11.1
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Figure 11.5 Example 11.1
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Now assume router A sends four records to its neighbors, routers
B, D, and C. Figure 11.6 shows the changes in B’s routing table
when it receives these records. We leave the changes in the
routing tables of other neighbors as exercise.

Example 11.2
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Figure 11.6 Example 11.2
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Figure 11.7 shows the final routing tables for routers in Figure 11.5.

Example 11.3
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Figure 11.7 Example 11.3
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Figure 11.8 Two-node instability
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Figure 11.8 Count to Infinity

• A problem with distance vector routing is that any decrease in cost 

(good news) propagates quickly, but any increase in cost (bad news) 

propagates slowly. 

• For a routing protocol to work properly, if a link is broken (cost 

becomes infinity), every other router should be aware of it 

immediately

• In distance vector routing, this takes some time. The problem is 

referred to as count to infinity. 

• It takes several updates before the cost for a broken link is recorded 

as infinity by all routers.
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Two-Node Instability (1)
• Defining Infinity

– Most implementations define 16 as infinity

• Split Horizon
– Instead of flooding the table through each 

interface, each node sends only part of its 
table through each interface

– E.g. node B thinks that the optimum route 
to reach X is via A, it does not need to 
advertise this piece of information to A
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Two-Node Instability (2)
• Poison Reverse

• Node B can still advertise the value for X, 

but is the source of information is A, it 

can replace the distance with infinity as a 

warning (what I know about this route comes from you)
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Figure 11.9 Three-node instability

Update loop 
until infinity

If the instability is btw 
three nodes, stability 
cannot be guaranteed 



TCP/IP Protocol Suite 22

11-4  RIP

The Routing Information Protocol (RIP) is an intra-
domain (interior) routing protocol used inside an
autonomous system. It is a very simple protocol based
on distance vector routing. RIP implements distance
vector routing directly with some considerations.
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RIP

 RIP implements distance vector routing directly with some 

considerations:

• The destination in a routing table is a network, which means the 
first column defines a network address.

• In RIP; the distance is defined as the number of links (networks) 
that have to be used to reach the destination. For this reason, the 
metric in RIP is called a hop count.

• Infinity is defined as 16, which means that any route in an 
autonomous system using RIP cannot have more than 15 hops.

• The next node column defines the address of the router to which 
the packet is to be sent to reach its destination.
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Figure 11.10 Example of a domain using RIP
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RIP messages
• Request

– A request message is sent by a router that 
has just come up or by a router that has 
some time-out entries

– A request can ask about specific entries or 
all entries

• Response
– A response can be either solicited (based 

on request) or unsolicited (30s or when 
there is a change in the routing table)
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RIPv2 vs.  RIPv1
• Classless Addressing

• Authentication

• Multicasting
– RIPv1 uses broadcasting to send RIP messages 

to every neighbors. Routers as well as hosts 
receive the packets

– RIPv2 uses the all-router multicast address to 
send the RIP messages only to RIP routers in 
the network
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Figure 11.13 shows the update message sent from router R1 to
router R2 in Figure 11.10. The message is sent out of interface
130.10.0.2.

The message is prepared with the combination of split horizon
and poison reverse strategy in mind. Router R1 has obtained
information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0 from
router R2. When R1 sends an update message to R2, it replaces the
actual value of the hop counts for these three networks with 16
(infinity) to prevent any confusion for R2. The figure also shows the
table extracted from the message. Router R2 uses the source
address of the IP datagram carrying the RIP message from R1
(130.10.02) as the next hop address. Router R2 also increments
each hop count by 1 because the values in the message are
relative to R1, not R2.

Example 11.4
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Figure 11.13 Solution to Example 11.4
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A routing table has 20 entries. It does not receive information
about five routes for 200 s. How many timers are running at this

time?

Solution
The 21 timers are listed below:
Periodic timer: 1
Expiration timer: 20 − 5 = 15
Garbage collection timer: 5

Example 11.5
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RIP uses the services of UDP on well-

known port 520.

Note
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11-5  LINK STATE ROUTING

Link state routing has a different philosophy from that
of distance vector routing. In link state routing, if each
node in the domain has the entire topology of the
domain—the list of nodes and links, how they are

connected including the type, cost (metric), and the
condition of the links (up or down)—the node can use
the Dijkstra algorithm to build a routing table.
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Topics Discussed in the Section

 Building Routing tables
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Figure 11.17 Concept of Link state routing
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Figure 11.18 Link state knowledge



TCP/IP Protocol Suite 35

Building Routing Tables
• Creation of the states of the links by 

each node, called the link state 
packets (LSP)

• Dissemination of LSPs to every other 
routers, called flooding (efficiently)

• Formation of a shortest path tree for 
each node

• Calculation of a routing table based on 
the shortest path tree
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Creation of LSP
• LSP data: E.g. the node ID, the list of 

links, a sequence number, and age.

• LSP Generation

– When there is a change in the 
topology of the domain

– On a periodic basis
• There is no actual need for this type of 

LSP, normally 60 minutes or 2 hours
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Continued
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Figure 11.19 Forming shortest path three for router A in a graph
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Figure 11.19 Continued
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Figure 11.19 Continued
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To show that the shortest path tree for each node is different, we
found the shortest path tree as seen by node C (Figure 11.20). We
leave the detail as an exercise.

Example 11.6



TCP/IP Protocol Suite 43

Figure 11.20 Example 11.6
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11-6  OSPF

The Open Shortest Path First (OSPF) protocol is an
intra-domain routing protocol based on link state
routing. Its domain is also an autonomous system.
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Figure 11.21 Areas in an autonomous system
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Area in OSPF (1)
• A collection of networks with area ID

• Routers inside an area flood the area 
with routing information

• Area border routers summarize the 
information about the area and send 
it to other areas

• Backbone area and backbone routers
– All of the area inside an AS must be 

connected to the backbone
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Area in OSPF (2)
• Virtual link

– If, because of some problem, the 
connectivity between a backbone 
and an area is broken, a virtual link
between routers must be created 
by the administration to allow 
continuity of the functions of the 
backbone as the primary area
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LSA General Header (3)

• Advertising router
– The IP address of the router 

advertising this message

• Link state sequence number
– A sequence number assigned to each link 

state update message
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11-7  PATH VECTOR ROUTING

Distance vector and link state routing are both interior
routing protocols. They can be used inside an autonomous
system. Both of these routing protocols become
intractable when the domain of operation becomes large.
Distance vector routing is subject to instability if there is
more than a few hops in the domain of operation. Link
state routing needs a huge amount of resources to
calculate routing tables. It also creates heavy traffic
because of flooding. There is a need for a third routing
protocol which we call path vector routing.
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Topics Discussed in the Section

 Reachability

 Routing Table
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The difference between the distance vector routing and path
vector routing can be compared to the difference between a
national map and an international map. A national map can tell us
the road to each city and the distance to be traveled if we choose
a particular route; an international map can tell us which cities
exist in each country and which countries should be passed before
reaching that city.

Example 11.10
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Figure 11.50 Reachability
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Figure 11.51 Stabilized table for three autonomous system 
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Figure 11.52 Routing tables after aggregation
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11-8  BGP

Border Gateway Protocol (BGP) is an interdomain
routing protocol using path vector routing. It first
appeared in 1989 and has gone through four versions.



TCP/IP Protocol Suite 57

Figure 11.53 Internal and external BGP sessions

A speaker node advertises the path, not the metric of 
the nodes, in its AS or other ASs.
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Path Vector Routing (1)
• Sharing

– A speaker in an AS shares its table with 
immediate neighbors

• Updating
– Adding the nodes that are not in its 

routing table and adding its own AS and 
the AS that sent the table

– The routing table shows the path 
completely
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Path Vector Routing (2)
• Loop prevention

– A route checks to see if its AS is in the 
path list to the destination

• Policy routing
– If one of the ASs listed in the path is 

against its policy, it can ignore that path 
and that destination

– It does not update its routing table with 
the path, and it does not send this 
message to its neighbors
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Chapter 12

Multicasting And Multicast 

Routing Protocols

Presented by:
Dr. Mohammad Alhammouri
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OBJECTIVES:
 To compare and contrast unicasting, multicasting, and 

broadcasting communication.

 To define multicast addressing space in IPv4 and show the 

division of the space into several blocks.

 To discuss the IGMP protocol, which is responsible for collecting 

group membership information in a network.

 To discuss the general idea behind multicast routing protocols 

and their division into two categories based on the creation of the 

shortest path trees.

 To discuss multicast link state routing in general and its 

implementation in the Internet: a protocol named MOSPF.
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Chapter 

Outline

12.1  Introduction

12.2  Multicast Addresses

12.3  IGMP

12.4  Multicast Routing

12.5  Routing Protocols

12.6  MBONE
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Topics Discussed in the Section

 Unicasting

Multicasting

 Broadcasting
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Figure 12.1 Unicasting
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In unicasting, the router forwards the 

received datagram through

only one of its interfaces.

Note
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Figure 12.2 Multicasting
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In multicasting, the router may 

forward the received datagram

through several of its interfaces.

Note



9

Figure 12.3 Multicasting versus multiple unicasting

Multicasting starts with one single packet from the source that is 

duplicated by the routers. The destination address in each packet 

is the same for all duplicates. Only one single copy of the packet 

travels between any two routers
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Emulation of multicasting through 

multiple unicasting is not 

efficient and may create

long delays, particularly 

with a large group.

Note
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12-2  MULTICAST ADDRESSES

A multicast address is a destination address for a
group of hosts that have joined a multicast group. A
packet that uses a multicast address as a destination
can reach all members of the group unless there are
some filtering restriction by the receiver.
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Delivery of Multicast Packets at Data Link Layer

** ARP protocol cannot find the corresponding
MAC (physical) address to forward the packet at the
data link layer (because multicast IPs)

** Data link layer supports physical multicast addresses

** LANs support physical multicast addressing,
Ethernet is one of them
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Delivery of Multicast Packets at Data Link Layer

** If the first 25 bits in an Ethernet address are 0000
0001 0000 0000 0101 1110 0, this identifies a physical
multicast address. The remaining 23 bits can be used to
define a
group
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Change the multicast IP address 232.43.14.7 to an Ethernet
multicast physical address.

Solution
a. We write the rightmost 23 bits of the IP address in

hexadecimal.  (43.14.7) -> 2B:0E:07
then subtracting 8 from the leftmost digit if it is greater than or 
equal to 8 (2 < 8) . In our example the result is 2B:0E:07.

b. We add the result of part a to the starting Ethernet
multicast address, which is 01:00:5E:00:00:00. The result is

Example 12.2
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Change the multicast IP address 238.212.24.9 to an Ethernet
multicast address.

Solution
a. The rightmost 3 bytes in hexadecimal are (212.24.9) -> 

D4:18:09. 

b. We need to subtract 8 from the leftmost digit (D – 8 = 5), 
resulting in 54:18:09.

b. We add the result of part a to the Ethernet multicast starting 
address. The result is

Example 12.3
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Figure 12.5 Tunneling

When network does not support multicast, multicast packet
encapsulated in unicast packet. 

The destination router which support multicast processes 
the packet as multicast packet
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Figure 12.5 Tunneling
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Internet Group Management Protocol (IGMP)

 Multicast communication means that a sender sends a
message to a group of recipients that are members of
the same group.

 Multicast routers need to collect information a bout
members and share it with each other

 Information collected locally by multicast router
connected to network ( IGMP protocol)

 Collected information globally propagated to other
routers (multicast routing protocols)
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Topics Discussed in the Section

 Group Management

 IGMP Messages

 IGMP Protocol Applied to host

 IGMP Protocol Applied to Router

 Role of IGMP in Forwarding

 Variables and Timers

 Encapsulation

 Compatibility with other Versions
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Figure 12.6 Position of IGMP in the network layer

The Internet Group Management Protocol (IGMP) is responsible

for correcting and interpreting information about group members

in a network.
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IGMP (Group Management)

• IGMP is not a multicasting routing protocol, it is a protocol 

that manages group membership

• The IGMP protocol gives the multicast routers information

about the membership status of hosts (routers)

• A multicast router may receive thousands of multicast packets every

day for different groups. What happen If a router has no knowledge 

about the membership status of the hosts

• IGMP helps the multicast router create and update the list of groups
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IGMP is a group management protocol. 

It helps a multicast router create and 

update a list of loyal members related 

to each router interface.

Note
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Figure 12.7 IGMP messages

A membership query message is sent by a router to find active group 
members in the network
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Figure 12.8 Membership query message format
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Figure 12.10 Membership report message format
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• The management of groups starts with the processes

• Each process has a record for each multicast group from which
the socket wishes to receive a multicast message

• The record also shows one of the two modes: include mode or
exclude mode

• Include mode, it lists the unicast source addresses from which
the socket accepts the group messages

• Exclude mode, it lists the unicast source addresses that the
socket will not accept the group messages

Socket state
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Figure 12.11 shows a host with three processes: S1, S2, and S3.
The first process has only one record; the second and the third
processes each have two records. We have used lowercase
alphabet to show the source address.

Example 12.4
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Figure 12.11 Socket state

Each process (associated with a socket) has a record for each 
multicast group from which the socket wishes to receive 
a multicast message
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Each time there is a change in any 

socket record, the interface state

will change using the 

above-mentioned rules.

Note
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Combine the list of resources.

. Or ∩ : Intersection, ∪: 

Union
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We use the two rules described above to create the interface state 
for the host in Example 12.4. First we found the list of source 
address for each multicast group.

a. Multicast group 226.14.5.2 has two exclude lists and one include list. 

Example 12.5: Interface State

b. Multicast group: 228.24.21.4 has two include lists. 
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Figure 12.12 Interface state
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Figure 12.14 Router States

Router maintains state information for each multicast group associated 

with each network interface
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12-4  MULTICAST ROUTING

Now we show how information collected by IGMP is
disseminated to other routers using multicast routing
protocols. However, we first discuss the idea of optimal
routing, common in all multicast protocols. We then give
an overview of multicast routing protocols.
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In unicast routing, each router in the 

domain has a table that defines a 

shortest path tree to possible 

destinations.

Note



TCP/IP Protocol Suite 38

Figure 12.18 Unicast routing
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In multicast routing, each involved router 

needs to construct a shortest

path tree for each group.

Note

Multicast Routing
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Multicast Routing: Source-based tree approach

In the source-based tree approach, each router 

needs to have one shortest path tree for each 

group and source.

The shortest path tree for a group defines the 

next

hop for each network that has loyal member(s) 

for that group
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Figure 12.19 Source-based tree approach

For m  groups, each router needs to have m shortest path trees, one for 

each group
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Multicast Routing: Group-shared tree 

If a router receives a multicast packet, it 

encapsulates the packet in a unicast packet 

and sends it to the core router

In the group-shared tree approach, only the 

core router (also called rendezvous), which 

has a shortest path tree for each group, is 

involved in multicasting.
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Figure 12.20 Group-shared tree approach
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12-4  ROUTING PROTOCOLS

During the last few decades, several multicast routing
protocols have emerged. Some of these protocols are
extensions of unicast routing protocols; some are
totally new. We discuss these protocols in the
remainder of this chapter. Figure 12.21 shows the
taxonomy of these protocols.
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Topics Discussed in the Section

Multicast Link State Routing: MOSPF

Multicast Distance Vector: DVMRP

 Core-Based Tree: CBT

 Protocol Independent Multicast: PIM
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Figure 12.21 Taxonomy of common multicast protocols

Multicast Link State Routing: MOSPF

Multicast Distance Vector Routing Protocol: DVMRP

Core-Based Tree: CBT

Protocol Independent Multicast: PIM



47

• Uses source-based tree approach

• Extension of unicast link state routing
• Node advertises group with members on the link

• The information about the group comes from IGMP

• Router creates n shortest path trees (for n groups)
using Dijkstra’s algorithm

• Problem: time and space needed to create and save the
many shortest path trees.

• Solution: Router calculates shortest path trees on
demand

Multicast Link State Routing
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• Extension of OSPF Protocol

• Uses multicast link state routing to create source-based trees

• Uses new link state update packet to associate source with
group of addresses (group-membership LSA)

• This way: we can include in the tree only the hosts (using their
unicast addresses) that belong to a particular group

• The router calculates the shortest path trees on demand (when
it receives the first multicast packet)

MOSPF Protocol
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• Uses source-based tree approach

• Uses four strategies, each built on its predecessor
1. Flooding
2. Reverse Path Forwarding (RPF)
3. Reverse Path Broadcasting (RPB)
4. Reverse Path Multicasting (RPM)

Multicast Distance Vector Routing
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Flooding is the first strategy that comes to 

mind. A router receives a packet

and without even looking at the destination 

group address

Flooding broadcasts packets but creates loops 

in the systems.

Flooding
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• To prevent loops, only one copy is forwarded; the other copies
are dropped.

• In RPF, a router forwards only the copy that has traveled the
shortest path from the source to the router.

• The router extracts the source address of the multicast packet
and consults its unicast routing table.

• If the packet has just come from the hop defined in the table,
the packet has traveled the shortest path from the source to
the router because the shortest path is reciprocal in unicast
distance vector routing protocols.

• If a packet leaves the router and comes back again, it has
not traveled the shortest path.

Reverse Path Forwarding (RPF)
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Figure 12.22 Reverse Path Forwarding (RPF) 

RPF eliminates the loop in the flooding process.



TCP/IP Protocol Suite 53

RPF eliminates the loop in the 

flooding process.

Note



• RPF guarantees that each network receives a copy of the 

multicast packet without formation of loops. 

• However, RPF does not guarantee that each network receives 

only one copy; a network may receive two or more copies

• RPF is not based on the destination address (a group address); 

forwarding is based on the source address

54

Figure 12.23 Problem with RPF
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Figure 12.23 Problem with RPF



• To eliminate duplication, we must define only one parent 

router for each network. We must have this restriction

• A network can receive a multicast packet from a 

particular source only through a designated parent router.

• For each source, the router sends the packet only out of 

those interfaces for which it is the designated parent. This 

policy is called reverse path broadcasting (RPB)

• RPB guarantees that the packet reaches every network 

and that every network receives only one copy
56

Reverse Path Broadcasting (RPB)
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Figure 12.24 RPF versus RPB



• RPB does not multicast the packet, it broadcasts it.

• Multicast packet must reach only those networks that 

have active members for that particular group.

• This is called reverse path multicasting (RPM).

• RPM  uses two procedures, pruning and grafting

58

Reverse Path Multicasting (RPM)
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RPB creates a shortest path broadcast 

tree from the source to each destination.

It guarantees that each destination 

receives one and only one copy 

of the packet.

Note
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Figure 12.25 Reverse Path Multicasting (RPM)
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Reverse Path Multicasting (1)

• To increase efficiency, the multicast 
packet must reach only those networks 
that have active members for that 
particular group

• RPM adopts the procedures of Pruning
and Grafting

• Pruning
– The designated parent router of each 

network is responsible for holding the 
membership information (through IGMP)
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Reverse Path Multicasting (2)
– The router sends a prune message to the 

upstream router so that it can prune the 
corresponding interface

– That is, the upstream router can stop 
sending multicast message for this group 
through that interface

• Grafting
– The graft message forces the upstream 

router to resume sending the multicast 
messages
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RPM adds pruning and grafting to RPB 

to create a multicast shortest path tree 

that supports dynamic membership 

changes.

Note
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Figure 12.26 Group-shared tree with rendezvous router

Core-Based Tree (CBT) Protocol 
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Formation of CBT tree (1)

• After the rendezvous point is selected, 
every router is informed of the unicast 
address of the selected router

• Each router sends a unicast join message 
to show that it wants to join the group

• This message passes through all routers 
that are located between the sender and 
the rendezvous router

Core-Based Tree (CBT) Protocol 
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Formation of CBT tree (2)
• Each intermediate router extracts the 

necessary information from the message
– Unicast address of the sender

– Interface through which the packet has 
arrived

• Every router knows its upstream router 
and the downstream router

• If a router wants to leave the group, it 
sends a leave message to its upstream 
router, …
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Figure 12.27 Sending a multicast packet to the rendezvous router

Source Hosts host can be inside the shared tree or any host outside the shared tree
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In CBT, the source sends the multicast 

packet (encapsulated in a unicast 

packet) to the core router. The core 

router decapsulates the packet and 

forwards it to all interested

interfaces.

Note
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Comparisons

• The tree for DVMRP and MOSPF is made from the 

root up (source-based)

• The tree for CBT (Core-based tree) is formed from 

the leaves down (Group-based)

• In DVMRP, the tree is first made (broadcasting) and 

then pruned

• In CBT, the joining gradually makes the tree, and the 

source in CBT may or may not be part of the tree



• Protocol Independent Multicast, Dense Mode (PIM-

DM))

• Protocol Independent Multicast, Sparse Mode (PIM-

SM).

• Both protocols are unicast-protocol dependent

70

Protocol Independent Multicast (PIM)
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PIM-DM is used in a dense multicast 

environment, such as a LAN.

Note
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PIM-DM (Dense Mode )

• It is used when there is a possibility that 

each router is involved in multicasting 

(dense mode)

• In this environment, the use of a protocol 

that broadcasts the packet is justified 

because almost all routers are involved in 

the process
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PIM-DM uses RPF and pruning/grafting 

strategies to handle multicasting. 

However, it is independent from the 

underlying unicast protocol.

PIM-DM (Dense Mode )
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PIM-SM (Sparse Mode )

• Used when there is a slight possibility that 

each router is involved in multicasting

• In this environment, the use of a protocol 

that broadcasts the packet is not justified

• A protocol such as CBT that uses a group-

shared tree is more appropriate.



TCP/IP Protocol Suite 75

PIM-SM is used in a sparse multicast 

environment such as a WAN.

PIM-SM is similar to CBT but uses a 

simpler procedure.

PIM-SM (Sparse Mode )
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12-6  MBONE

 Multimedia and real-time communication have increased

the need for multicasting in the Internet

 However, only a small fraction of Internet routers are

multicast routers

 The solution is tunneling. The multicast routers are seen

as a group of routers on top of unicast routers

 The multicast routers may not be connected directly, but

they are connected logically

 To enable multicasting, we make a multicast backbone

(MBONE) out of these isolated routers using the concept

of tunneling.
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Figure 12.28 Logical tunneling
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Figure 12.29 MBONE

The multicast packet becomes the payload (data) of the unicast packet

The only protocol that supports MBONE and tunneling is DVMRP
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OBJECTIVES:
❑ To define process-to-process communication at the transport 

layer and compare it with host-to-host communication at the 

network layer.

❑ To discuss the addressing mechanism at the transport layer, to 

discuss port numbers, and to define the range of port numbers 

used for different purposes.

❑ To explain the packetizing issue at the transport layer: 

encapsulation and decapsulation of messages.

❑ To discuss multiplexing (many-to-one) and demultiplexing (one-

to-many) services provided by the transport layer.

❑ To discuss flow control and how it can be achieved at the 

transport layer.
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OBJECTIVES (continued):
❑ To discuss error control and how it can be achieved at the 

transport layer.

❑ To discuss congestion control and how it can be achieved at the 

transport layer.

❑ To discuss the connectionless and connection-oriented services at 

the transport layer and show their implementation using an 

FSM.

❑ To discuss the behavior of four generic transport-layer protocols 

and their applications: simple protocol, Stop-and-Wait protocol, 

Go-Back-N protocol, and Selective-Repeat protocol.

❑ To describe the idea of bidirectional communication at the 

transport layer using the piggybacking method.
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Chapter 
Outline

13.1  Transport-Layer Services

13.2  Transport-Layer Protocols
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13-1  TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer

is located between the network layer and the

application layer. The transport layer is

responsible for providing services to the

application layer; it receives services from the

network layer. In this section, we discuss the

services that can be provided by a transport

layer; in the next section, we discuss the

principle beyond several transport layer

protocols.
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Topics Discussed in the Section

✓ Process-to-Process Communication

✓Addressing: Port Numbers

✓ Encapsulation and Decapsulation

✓Multiplexing and Demultiplexing

✓ Flow Control

✓ Error Control

✓ Congestion Control

✓ Connectionless and Connection-Oriented Services
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Figure 13.1 Network layer versus transport layer

Host-to-Host vs Process-to-Process communications
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Figure 13.2 Port numbers

TCP/IP has decided to use universal port numbers for servers; these are called 

well-known port numbers, 13 is an example. The server port number cannot 

be chosen randomly

The daytime client process uses an ephemeral (temporary) port number 

52,000 to identify itself
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Figure 13.3 IP addresses versus port numbers

13

Data

Destination port number
selects the process



TCP/IP Protocol Suite 10

Figure 13.4 ICANN ranges

ICANN has divided the port numbers into three ranges: well-known, registered, and

dynamic (or private)
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The well-known port numbers are 

less than 1,024.

Note
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In UNIX, the well-known ports are stored in a file called

/etc/services. Each line in this file gives the name of the

server and the well-known port number. We can use the

grep utility to extract the line corresponding to the desired

application. The following shows the port for TFTP. Note

that TFTP can use port 69 on either UDP or TCP. SNMP (see

Chapter 24) uses two port numbers (161 and 162), each for

a different purpose.

Example 13.1
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Figure 13.5 Socket address

To use the services of transport layer in the Internet, we need a pair of socket addresses:

the client socket address and the server socket address.

These four pieces of information are:

part of the network-layer packet header and the transport-layer packet header.

The first header contains the IP addresses; the second header contains the port numbers.
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Figure 13.6 Encapsulation and decapsulation

Encapsulation happens at the sender site. When a process has

a message to send, it passes the message to the transport layer along 

with a pair of socket addresses
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Figure 13.7 Multiplexing and demultiplexing
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Figure 13.8 Pushing or pulling

Delivery of items from a producer to a consumer can occur in one of the two ways:

Pushing: If the sender delivers items whenever they are produced

Pulling: If the producer delivers the items after the consumer has 

requested them,
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Figure 13.9 Flow control at the transport layer
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Buffers

• Flow control can be implemented in several ways, one of the solutions is normally 

to use two buffers

• One buffer at the sending transport layer and the other at the receiving transport 

layer

• buffer is a set of memory locations that can hold packets at the sender and receiver

• The flow control communication can occur by sending signals from the consumer 

to producer

• When the buffer of the sending transport layer is full, it informs the application 

layer to stop passing chunks of messages. When there are some vacancies, it 

informs the sending transport layer that it can send message again.

• When the buffer of the receiving transport layer is full, it informs the sending 

transport layer to stop sending packets
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The above discussion requires that the consumers

communicate with the producers in two occasions: when

the buffer is full and when there are vacancies. If the two

parties use a buffer of only one slot, the communication

can be easier. Assume that each transport layer uses one

single memory location to hold a packet. When this single

slot in the sending transport layer is empty, the sending

transport layer sends a note to the application layer to send

its next chunk; when this single slot in the receiving

transport layer is empty, it sends an acknowledgment to

the sending transport layer to send its next packet. As we

will see later, this type of flow control, using a single-slot

buffer at the sender and the receiver, is inefficient.

Example 13.2
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Figure 13.10 Error control at the transport layer

Packets

Error Control

Error control at the transport layer is responsible to:
1- Detect and discard corrupted packets.

2. Keep track of lost and discarded packets and resend them.

3. Recognize duplicate packets and discard them.

4. Buffer out-of-order packets until the missing packets arrive.

• Error control, unlike the flow control, involves only the sending and receiving 

transport layers
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Error control: Sequence Numbers

• Error control requires that the sending transport layer knows which packet 

is to be resent and packet is duplicate or out order.

• This can be done if the packets are numbered.

• We can add a field to the transport layer packet to hold the sequence 

number of the packets

• When a packet is corrupted or lost, the receiving transport layer can 

somehow inform the sending transport layer to resend that packet

• The out-of-order packets can be recognized by observing gaps in the 

sequence numbers.

• Packets are numbered sequentially
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For error control, the sequence numbers 

are modulo 2m, where m is the size of 

the sequence number field in bits.

For example, if m is 4, the only sequence 

numbers are 0 through 15, inclusive.

Error control: Sequence Numbers
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Error control: Acknowledgment

• We can use both positive and negative signals as error control

• The receiver side can send an acknowledgement (ACK) for each or 

a collection of packets that have arrived correctly.

• The sender can  detect lost packets if it uses a timer

• If an ACK does not arrive before the timer expires, the sender 

resends the packet

• Duplicate packets can be silently discarded by the receiver

• Out-of-order packets can be either discarded (to be treated as lost 

packets by the sender), or stored until the missing ones arrives.
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Combination of Flow and Error Control

• Flow control requires the use of two buffers, one at the sender site 

and the other at the receiver site

• Error control requires the use of sequence and acknowledgment 

numbers by both sides

• These two requirements can be combined if we use two numbered 

buffers at both sides
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Figure 13.11 Sliding window in circular format
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Figure 13.12 Sliding window in linear format
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Connectionless Service

• The source process (application program) divide its message into 

chunks of data

• The transport layer treats each chunk as a single unit without any 

relation between the chunks

• The packets may arrive out of order at the destination and will be 

delivered out of order to the server process.

• The situation would be worse if one of the packets were lost

• The receiving transport layer has no idea that one of the messages 

has been lost (no numbering)

• No flow control, error control, or congestion control can be 

effectively implemented in a connectionless service
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Figure 13.13 Connectionless service
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Connection-Oriented Service

• The client and the server first need to establish a connection between 

themselves

• Data exchange can only happen after the connection establishment

• We can implement flow control, error control, and congestion 

control in a connection-oriented  protocol.
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Figure 13.14 Connection-oriented service
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13-2  TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by combining a

set of services described in the previous sections. To better

understand the behavior of these protocols, we start with

the simplest one and gradually add more complexity. The

TCP/IP protocol uses a transport layer protocol that is

either a modification or a combination of some of these

protocols.
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Topics Discussed in the Section

✓ Simple Protocol

✓ Stop-and-Wait Protocol

✓ Go-Back-N Protocol

✓ Selective-Repeat Protocol 
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Figure 13.16 Simple protocol

• A connectionless protocol with neither flow nor error control

• We assume that the receiver can immediately handle any packet it receives

• The receiver can never be overwhelmed with incoming packets.
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The simple protocol is a connectionless 

protocol that provides neither

flow nor error control.

Note
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Figure 13.18 shows an example of communication using

this protocol. It is very simple. The sender sends packets

one after another without even thinking about the receiver.

Example 13.3



TCP/IP Protocol Suite 36

Figure 13.18 Example 13.3
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Figure 13.19 Stop-and-wait protocol 

• Connection-oriented protocol, which uses both flow and error control

• Both the sender and the receiver use a sliding window of size 1

• The sender sends one packet at a time and waits for an acknowledgment 

before sending the next one.
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In Stop-and-Wait protocol, flow 

control is achieved by forcing the 

sender to wait for an  acknowledgment, 

and error  control is achieved by 

discarding corrupted packets and letting 

the sender resend previous packet when 

the timer expires.

Note
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In the Stop-and-Wait protocol, we can 

use a 1-bit field to number the packets. 

The sequence numbers are based on 

modulo-2 arithmetic.

In the Stop-and-Wait protocol, the 

acknowledgment number is in modulo-2 

arithmetic
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Figure 13.21 shows an example of Stop-and-Wait protocol.

Packet 0 is sent and acknowledged. Packet 1 is lost and

resent after the time-out. The resent packet 1 is

acknowledged and the timer stops. Packet 0 is sent and

acknowledged, but the acknowledgment is lost. The sender

has no idea if the packet or the acknowledgment is lost, so

after the time-out, it resends packet 0, which is

acknowledged.

Example 13.4
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Figure 13.21 Example 13.4
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In a Stop-and-Wait system, the bandwidth of the line is 1 Mbps, and

1 bit takes 20 milliseconds to make a round trip. What is the

bandwidth-delay product? If the system data packets are 1,000 bits in

length, what is the utilization percentage of the link?

Solution

The bandwidth-delay product is:

(1 × 106) × (20 × 10−3) = 20,000 bits.
The system can send 20,000 bits during the time it takes for the data to

go from the sender to the receiver and the acknowledgment to come

back.

However, the system sends only 1,000 bits. We can say that the link

utilization is only 1,000/20,000, or 5 percent. For this reason, for a

link with a high bandwidth or long delay, the use of Stop-and-Wait

wastes the capacity of the link.

Example 13.5
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The Stop-and-Wait protocol is very 

inefficient if our channel is thick and 

long. By thick, we mean that our channel 

has a large bandwidth (high data rate); 

by long, we mean the round-trip delay is 

long.
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What is the utilization percentage of the link in Example 13.5 if we

have a protocol that can send up to 15 packets before stopping and

worrying about the acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The system can send

up to 15 packets or 15,000 (1 packet is 1000 bits ) bits during a round

trip. This means the utilization is 15,000/20,000, or 75 percent. Of

course, if there are damaged packets, the utilization percentage is

much less because packets have to be resent.

Example 13.6
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Go-Back-N protocol

• First: multiple packets must be in transition while the sender is 

waiting for acknowledgment (Go-back-N protocol)

• Second: more than one packet be outstanding to keep the channel 

busy while the sender is waiting for acknowledgment (Selective-

Repeat (SR) protocol)

To improve efficiency:
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Go-Back-N protocol

• The key to Go-back-N is that we can send several packets before 

receiving acknowledgments

• The receiver can only buffer one packet

• keep a copy of the sent packets until the acknowledgments arrive

• Several data packets and acknowledgments can be in the channel at 

the same time.
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Figure 13.22 Go-Back-N protocol 
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In the Go-Back-N Protocol, the sequence 

numbers are modulo 2m, where m is the 

size of the sequence number 

field in bits.

In the Go-Back-N protocol, the 

acknowledgment number is 

cumulative and defines the sequence 

number of the next packet 

expected to arrive.
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For example, if the acknowledgment 

number (ackNo) is 7, it means all 

packets with sequence number up to 6 

have arrived, safe and sound, and the 

receiver is expecting the packet with 

sequence number 7
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Figure 13.23 Send window for Go-Back-N

The outstanding region is a range of sequence numbers belonging to the 

packets that are sent, but have an unknown status. The sender needs to wait

to find out if these packets have been received or were lost
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The send window is an abstract  concept 

defining an imaginary box of maximum 

size = 2m − 1 with  three variables: 

Sf, Sn, and Ssize.

The send window can slide one or 

more slots when an error-free ACK 

with ackNo between Sf and Sn

arrives.
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Figure 13.24 Sliding the send window

ackNo = 6 has arrived. This means that the receiver is waiting for packets with

sequence number 6.
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Figure 13.25 Receive window for Go-Back-N

• The size of the receive window is always 1.

• The receiver is always looking for the arrival of a specific packet (Rn). 

Any packet arriving out of order is discarded and needs to be resent.

• The sequence numbers to the left of the window belong to the packets 

already received and acknowledged; the sequence numbers to the right of 

this window define the packets that cannot be received
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The receive window is an abstract 

concept defining an imaginary

box of size 1 with 

one single variable Rn. 

The window slides when a correct 

packet has arrived;  sliding 

occurs one slot at a time.

Note
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Figure 13.27 Send window size for Go-Back-N 
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In the Go-Back-N protocol, the size of 

the send window must be less than 2m;

the size of the receive window 

is always 1.

Note
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Figure 13.28 Example 13.7
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No data packets are lost, but some ACKs are delayed and one is lost.

The example also shows how cumulative acknowledgments can help

if acknowledgments are delayed or lost.

There is no time-out event here because all outstanding packets are

acknowledged before the timer expires. Note that although ACK 2 is

lost, ACK 3 is cumulative and serves as both ACK 2 and ACK 3.

There are four events at the receiver site.

Example 13.7 explanation
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Figure 13.29 shows what happens when a packet is lost. Packets 0, 1,

2, and 3 are sent. However, packet 1 is lost. The receiver receives

packets 2 and 3, but they are discarded because they are received out

of order (packet 1 is expected). When the receiver receives packets 2

and 3, it sends ACK1 to show that it expects to receive packet 1.

However, these ACKs are not useful for the sender because the

ackNo is equal Sf , not greater that Sf . So the sender discards them.

When the time-out occurs, the sender resends packets 1, 2, and 3,

which are acknowledged..

Example 13.8
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Figure 13.29 Example 13.8
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Figure 13.30 Outline of Selective-Repeat
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Figure 13.31 Send window for Selective-Repeat protocol
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Figure 13.32 Receive window for Selective-Repeat protocol
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In the Selective-Repeat protocol, an 

acknowledgment number defines

the sequence number of the 

error-free packet received.

Note
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Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and

5. The sender receives an ACK with ackNo = 3. What is the

interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and

2 have been received uncorrupted and the receiver is

expecting packet 3. If the system is using SR, it means that

packet 3 has been received uncorrupted; the ACK does not

say anything about other packets.

Example 13.9
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This example is similar to Example 3.8 (Figure 13.29) in

which packet 1 is lost. We show how Selective-Repeat

behaves in this case. Figure 13.34 shows the situation. At

the sender, packet 0 is transmitted and acknowledged.

Packet 1 is lost. Packets 2 and 3 arrive out of order and are

acknowledged. When the timer times out, packet 1 (the

only unacknowledged packet) is resent and is

acknowledged. The send window then slides.

Example 13.10
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Figure 13.34 Example 13.10
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Figure 13.35 Selective-Repeat window size
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In Selective-Repeat, the size of the 

sender and receiver window

can be at most one-half of 2m.

Note
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OBJECTIVES:
 To introduce UDP and show its relationship to other protocols in 

the TCP/IP protocol suite.

 To explain the format of a UDP packet and discuss the use of 

each field in the header.

 To discuss the services provided by the UDP such as process-to-

process delivery, multiplexing/demultiplexing, and queuing.

 To show how to calculate the optional checksum and the sender 

the needs to add a pseudoheader to the packet when calculating 

the checksum.

 To discuss how some application programs can benefit from the 

simplicity of UDP.

 To briefly discuss the structure of the UDP package.
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Chapter 

Outline

14.1  Introduction

14.2  User Datagram

14.3  UDP Services

14.4  UDP Application

14.5  UDP Package
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14-1  INTRODUCTION

Figure 14.1 shows the relationship of the User
Datagram Protocol (UDP) to the other protocols and
layers of the TCP/IP protocol suite: UDP is located
between the application layer and the IP layer, and
serves as the intermediary between the application
programs and the network operations.
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Figure 14.1 Position of UDP in the TCP/IP protocol suite
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14-2  USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size
header of 8 bytes. Figure 14.2 shows the format of a
user datagram.
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Figure 14.2 User datagram format
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The following is a dump of a UDP header in hexadecimal format.

Example 14.1

a. What is the source port number?
b. What is the destination port number?
c. What is the total length of the user datagram?
d. What is the length of the data?
e. Is the packet directed from a client to a server or vice versa?
f. What is the client process?
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Example 14.1  Continued

Solution

a. The source port number is the first four hexadecimal digits 
(CB84)16 or 52100.

b. The destination port number is the second four hexadecimal 
digits (000D)16 or 13.

c. The third four hexadecimal digits (001C)16 define the length of 
the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet
minus the length of the header, or 28 – 8 = 20 bytes.

e. Since the destination port number is 13 (well-known port), the 
packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).
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14-3  UDP Services

We discussed the general services provided by a
transport layer protocol in Chapter 13. In this section,
we discuss what portions of those general services are
provided by UDP.
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Figure 14.3 Pseudoheader for checksum calculation
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Figure 14.4 shows the checksum calculation for a very small user
datagram with only 7 bytes of data. Because the number of bytes
of data is odd, padding is added for checksum calculation. The
pseudoheader as well as the padding will be dropped when the user
datagram is delivered to IP (see Appendix F).

Example 14.2



TCP/IP Protocol Suite 14

Figure 14.4 Checksum calculation for a simple UDP user datagram
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What value is sent for the checksum in one of the following
hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the value  of 
the sum is all 1s.

c. The sender decides to include the checksum, but the value of 
the sum is all 0s.

Example 14.3
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Solution
a. The value sent for the checksum field is all 0s to show that the 

checksum is not calculated.

b. When the sender complements the sum, the result is all 0s; the 
sender complements the result again before sending.  The value 
sent for the checksum is all 1s. The second complement 
operation is needed to avoid confusion with the case in part a.

c. This situation never happens because it implies that the                    
value of every term included in the calculation of the sum is all 
0s, which is impossible; some fields in the pseudoheader have 
nonzero values (see Appendix D).

Example 14.3   Continued
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Figure 14.5 Encapsulation and decapsulation
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Figure 14.6 Queues in UDP



TCP/IP Protocol Suite 19

Figure 14.7 Multiplexing and demultiplexing

Several processes that need to send user datagrams. 

However, there is only one UDP
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UDP is an example of the 

connectionless simple protocol we 

discussed in Chapter 13 with the 

exception of an optional checksum 

added to packets for error detection.

Note
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14-4  UDP  APPLICATION

Although UDP meets almost none of the criteria we mentioned

in Chapter 13 for a reliable transport-layer protocol, UDP is

preferable for some applications. An application designer

needs sometimes to compromise to get the optimum.

For example: The connectionless service provides less delay; 

the connection-oriented service creates more delay. If delay is 

an important issue for the application, the

connectionless service is preferred. 
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A client-server application such as DNS (see Chapter 19) uses the
services of UDP because a client needs to send a short request to
a server and to receive a quick response from it. The request and
response can each fit in one user datagram. Since only one
message is exchanged in each direction, the connectionless
feature is not an issue; the client or server does not worry that
messages are delivered out of order.

Example 14.4
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A client-server application such as SMTP (see Chapter 23), which
is used in electronic mail, cannot use the services of UDP because
a user can send a long e-mail message, which may include
multimedia (images, audio, or video). If the application uses UDP
and the message does not fit in one single user datagram, the
message must be split by the application into different user
datagrams. Here the connectionless service may create problems.
The user datagrams may arrive and be delivered to the receiver
application out of order. The receiver application may not be able
to reorder the pieces. This means the connectionless service has a
disadvantage for an application program that sends long messages.

Example 14.5
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Assume we are downloading a very large text file from the
Internet. We definitely need to use a transport layer that provides
reliable service. We don’t want part of the file to be missing or
corrupted when we open the file. The delay created between the
delivery of the parts are not an overriding concern for us; we wait
until the whole file is composed before looking at it. In this case,
UDP is not a suitable transport layer.

Example 14.6
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Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it is divided
into many small parts and broadcast in real time. The parts of the
message are sent one after another. If the transport layer is
supposed to resend a corrupted or lost frame, the synchronizing
of the whole transmission may be lost. The viewer suddenly sees a
blank screen and needs to wait until the second transmission
arrives. This is not tolerable. However, if each small part of the
screen is sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver the rest
to the application program. That part of the screen is blank for a
very short period of the time, which most viewers do not even
notice. However, video cannot be viewed out of order, so
streaming audio, video, and voice applications that run over UDP
must reorder or drop frames that are out of sequence.

Example 14.7
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14-5  UDP  PACKAGE

To show how UDP handles the sending and receiving of
UDP packets, we present a simple version of the UDP
package.

We can say that the UDP package involves five
components: a control-block table, input queues, a
control-block module, an input module, and an output
module.
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Topics Discussed in the Section

 Control-Block Table

 Input Queues

 Control-Block Module

 Input Module

 Output Module
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Figure 14.8 UDP design
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Control Block Table

In our package, UDP has a control-block table to keep track of the open

ports. Each entry in this table has a minimum of four fields: 

• the state, which can be: FREE or IN-USE,

• the process ID,

• the port number,

• and the corresponding queue number.
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Control Block Module

• The control-block module  is responsible for the management of the 

control-block table. 

• When a process starts, it asks for a port number from the operating 

system. 

• The operating system assigns well-known port numbers to servers 

and ephemeral port numbers to clients. 

• The process passes the process ID and the port number to

the control-block module to create an entry in the table for the process

• The Module does not create the queues
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Input and Output Modules

• The input module receives a user datagram from the IP. 

• It searches the control-block table to find an entry having the same 

port number as this user datagram.

• If the entry is found, the module uses the information in the entry 

to enqueue the data.

• If the entry is not found, it generates an ICMP message.

• Output Module is responsible for creating and sending user 

datagrams
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The first activity is the arrival of a user datagram with destination
port number 52,012. The input module searches for this port
number and finds it. Queue number 38 has been assigned to this
port, which means that the port has been previously used. The
input module sends the data to queue 38. The control-block table
does not change.

Example 14.8
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After a few seconds, a process starts. It asks the operating system
for a port number and is granted port number 52,014. Now the
process sends its ID (4,978) and the port number to the control-
block module to create an entry in the table. The module takes the
first FREE entry and inserts the information received. The module
does not allocate a queue at this moment because no user
datagrams have arrived for this destination (see Table 14.6).

Example 14.9
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A user datagram now arrives for port 52,011. The input module
checks the table and finds that no queue has been allocated for
this destination since this is the first time a user datagram has
arrived for this destination. The module creates a queue and gives
it a number (43). See Table 14.7.

Example 14.10
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After a few seconds, a user datagram arrives for port 52,222. The
input module checks the table and cannot find an entry for this
destination. The user datagram is dropped and a request is made
to ICMP to send an unreachable port message to the source.

Example 14.11
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OBJECTIVES:
 To introduce TCP as a protocol that provides reliable stream 

delivery service.

 To define TCP features and compare them with UDP features.

 To define the format of a TCP segment and its fields.

 To show how TCP provides a connection-oriented service, and 

show the segments exchanged during connection establishment 

and connection termination phases.

 To discuss the state transition diagram for TCP and discuss some 

scenarios.

 To introduce windows in TCP that are used for flow and error 

control.
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OBJECTIVES (continued):
 To discuss how TCP implements flow control in which the 

receive window controls the size of the send window.

 To discuss error control and FSMs used by TCP during the data 

transmission phase.

 To discuss how TCP controls the congestion in the network using 

different strategies.

 To list and explain the purpose of each timer in TCP.

 To discuss options in TCP and show how TCP can provide 

selective acknowledgment using the SACK option.

 To give a layout and a simplified pseudocode for the TCP 

package.
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Chapter 

Outline

15.1     TCP Services

15.2     TCP Features

15.3     Segment

15.4     A TCP Connection

15.5     State Transition Diagram

15.6     Windows in TCP

15.7     Flow Control

15.8     Error Control

15.9     Congestion Control

15.10   TCP Timers

15.11   Options

15.12   TCP Package
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15-1  TCP SERVICES

Figure 15.1 shows the relationship of TCP to the other
protocols in the TCP/IP protocol suite. TCP lies
between the application layer and the network layer,
and serves as the intermediary between the
application programs and the network operations.
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Topics Discussed in the Section

 Process-to-Process Communication

 Stream Delivery Service

 Full-Duplex Communication

Multiplexing and Demultiplexing

 Connection-Oriented Service

 Reliable Service
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Figure 15.1 TCP/IP protocol suite



TCP/IP Protocol Suite 8



TCP/IP Protocol Suite 9

Figure 15.2 Stream delivery
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Figure 15.3 Sending and receiving buffers

Stream of bytes
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Figure 15.4 TCP segments

Segment 1

H

Segment N

H
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15-2  TCP FEATURES

To provide the services mentioned in the previous
section, TCP has several features that are briefly
summarized in this section and discussed later in detail.
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Topics Discussed in the Section

 Numbering System

 Flow Control

 Error Control

 Congestion Control
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The bytes of data being transferred in 

each connection are numbered by TCP.

The numbering starts with an  arbitrarily 

generated number.

Note



TCP/IP Protocol Suite 15

Suppose a TCP connection is transferring a file of 5,000 bytes. The
first byte is numbered 10,001. What are the sequence numbers for
each segment if data are sent in five segments, each carrying 1,000
bytes?

Solution
The following shows the sequence number for each segment:

Example 15.1
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The value in the sequence number 

field of a segment defines the number 

assigned to the first data byte 

contained in that segment.

Note
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The value of the acknowledgment field 

in a segment defines the number of the 

next byte a party expects to receive. 

The acknowledgment number is 

cumulative.

Note
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15-3  SEGMENT

Before discussing TCP in more detail, let us discuss
the TCP packets themselves. A packet in TCP is called
a segment.
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Topics Discussed in the Section

 Format 

 Encapsulation



TCP/IP Protocol Suite 20

Figure 15.5 TCP  segment format
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Figure 15.6 Control field
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Figure 15.7 Pseudoheader added to the TCP segment
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The use of the checksum in TCP is 

mandatory.

Note
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Frame
header

IP
header

Figure 15.8 Encapsulation

Application-layer data
TCP

header

Data-link layer payload

IP payload

TCP payload
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15-4  A TCP CONNECTION

TCP is connection-oriented. It establishes a virtual path
between the source and destination. All of the segments
belonging to a message are then sent over this virtual
path. You may wonder how TCP, which uses the
services of IP, a connectionless protocol, can be
connection-oriented. The point is that a TCP
connection is virtual, not physical. TCP operates at a
higher level. TCP uses the services of IP to deliver
individual segments to the receiver, but it controls the
connection itself. If a segment is lost or corrupted, it is
retransmitted.
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Topics Discussed in the Section

 Connection Establishment 

 Data Transfer

 Connection Termination

 Connection Reset
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Figure 15.9 Connection establishment using three-way handshake

SYN

U A P R S F

seq: 8000

SYN + ACK
U A P R S F

seq: 15000

ack: 8001

rwnd: 5000

ACK

U A P R S F

seq: 8000
ack: 15001

rwnd: 10000

Means “no data” !
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A SYN segment cannot carry data, but it 

consumes one sequence number.

Note
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A SYN + ACK segment cannot carry 

data, but does consume one 

sequence number.

Note
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An ACK segment, if carrying no data, 

consumes no sequence number.

Note
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Figure 15.10 Data Transfer

Connection Termination
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P: PSH  (Push Flag)

• The application program at the sender can request a push 

operation.

• This means that the sending TCP must not wait for the window 

to be filled.

• After the segment is created, it will be sent immediately

• Segment includes data that must be delivered to the receiving 

application program as soon as possible and not to wait for 

more data to come.

• Although the push operation can be requested by the 

application program, most current TCP implementations ignore 

such requests. TCP can choose whether or not to use this 

feature.
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Figure 15.11 Connection termination using three-way handshake
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The FIN segment consumes one 

sequence number if it does 

not carry data.



TCP/IP Protocol Suite 35

The FIN + ACK segment (from 

server)consumes one sequence number

if it does  not carry data.
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The ACK (from client): This segment 

cannot carry data and consumes no 

sequence numbers
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Figure 15.12 Half-Close
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15-6  WINDOWS  IN TCP

Before discussing data transfer in TCP and the issues such as flow, 

error, and congestion control, we describe the windows used in 

TCP. TCP uses two windows (send window and receive window) 

for each direction of data transfer, which means four windows for a 

bidirectional communication. 

To make the discussion simple, we make an assumption that 

communication is only unidirectional; the bidirectional 

communication can be inferred using two unidirectional 

communications with piggybacking (Data and Ack can travel in 

both direction).
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Topics Discussed in the Section

 Send Window

 Receive Window 
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Figure 15.22 Send window in TCP
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Figure 15.23 Receive window in TCP
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Receive Window  

• There are two differences between the receive window in TCP 

and the one we used for SR in Chapter 13:

• (1) TCP allows the receiving process to pull data at its own 

NEED

• Part of the allocated buffer at the receiver may be occupied by 

bytes that have been received and acknowledged, but are 

waiting to be pulled by the receiving process

• The receive window size is then always smaller or equal to the

buffer size

Rwnd(window size) = buffer size - number of waiting bytes to be 

pulled
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Receive Window  

• (2) The second difference is the way acknowledgments are used 

in the TCP protocol:

• Remember that an acknowledgement in SR is selective, 

defining the uncorrupted Packets that have been received.

•

• The major acknowledgment mechanism in TCP is a cumulative 

acknowledgment announcing the next expected byte to receive

•

• The new versions of TCP,  however, uses both cumulative and 

selective acknowledgements as we will discuss later in the 

option section.
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15-7  FLOW CONTROL

As discussed in Chapter 13, flow control balances the 
rate a producer creates data with the rate a consumer 
can use the data. TCP separates flow control from 
error control. In this section we discuss flow control, 
ignoring error control. We temporarily assume that the 
logical channel between the sending and receiving TCP 
is error-free. Figure 15.24 shows unidirectional data 
transfer between a sender and a receiver; bidirectional 
data transfer can be obtained from unidirectional one 
as discussed in Chapter 13.
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Figure 15.24 TCP/IP protocol suite

Messages
are pushed

1

Segements are pushed

2

Messages
are pulled

3

Flow control feedback

4

Flow control
feedback

5



TCP/IP Protocol Suite 46

Figure 15.25 An example of flow control
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Figure 15.26 Example 15.2

210

Prevent the shrinking of the send window: 

new ackNo + new rwnd >= last ackNo + last rwnd

?
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Figure 15.26 shows the reason for the mandate in window
shrinking. Part a of the figure shows values of last
acknowledgment and rwnd. Part b shows the situation in
which the sender has sent bytes 206 to 214. Bytes 206 to
209 are acknowledged and purged.

Example 15.2
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The new advertisement, however, defines the new value of rwnd

as 4, in which 210 + 4 < 206 + 12.

When the send window shrinks it creates a problem:

byte 214 which has been already sent is outside the window. The

relation discussed before forces the receiver to maintain the right-

hand wall of the window to be as shown in part a because the

receiver does not know which of the bytes 210 to 217 has already

been sent.

One way to prevent this situation: is to let the receiver postpone

its feedback until enough buffer locations are available in its

window. In other words, the receiver should wait until more bytes

are consumed by its process.

Example 15.2 cont.
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15-8  ERROR CONTROL

TCP is a reliable transport layer protocol. This means 

that an application program that delivers a stream of 

data to TCP relies on TCP to deliver the entire stream to 

the application program on the other end in the correct 

order, without error, and without any part lost or 

duplicated.

Error control in TCP is achieved through the use of 

three tools:  checksum, acknowledgment, and time-out.
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Topics Discussed in the Section

 Checksum

Acknowledgment

 Retransmission

 Out-of-Order Segments

 FSMs for Data Transfer in TCP

 Some Scenarios 
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ACK segments do not consume 

sequence numbers and

are not acknowledged.

Note
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Acknowledgement Type

– In the past, TCP used only one type of 
acknowledgement: Accumulative 
Acknowledgement (ACK), also namely 
accumulative positive acknowledgement

– More and more implementations are adding 
another type of acknowledgement: Selective 
Acknowledgement (SACK), SACK is 
implemented as an option at the end of the 
TCP header.
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Data may arrive out of order and be 

temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order 

data are delivered to the process.

Note
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TCP can be best modeled as a 

Selective Repeat protocol.

Note
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Rules for Generating ACK (1)
– 1. When one end sends a data segment to the 

other end, it must include an ACK.  That gives 
the next sequence number it expects to 
receive. (Piggyback)

– 2. The receiver needs to delay sending (until 
another segment arrives or 500ms) an ACK 
segment if there is only one outstanding in-
order segment. It prevents ACK segments 
from creating extra traffic.

– 3. There should not be more than 2 in-order 
unacknowledged segments at any time. It 
prevent the unnecessary retransmission
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Rules for Generating ACK (2)

– 4. When a segment arrives with an out-of-
order sequence number that is higher than 
expected, the receiver immediately sends an 
ACK segment announcing the sequence number 
of the next expected segment. (for fast 
retransmission)

– 5. When a missing segment arrives, the 
receiver sends an ACK segment to announce 
the next sequence number expected.

– 6. If a duplicate segment arrives, the receiver 
immediately sends an ACK.
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Figure 15.29 Normal operation



retransmission time-out (RTO)

59

Figure 15.30 Lost segment
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The receiver TCP delivers only ordered 

data to the process.
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Segments 61

Figure 15.31 Fast retransmission



Advantage of cumulative acknowledgments
62

Figure 15.32 Lost acknowledgment



Rule 6: If a duplicate segment arrives, the receiver immediately 

sends an ACK
63

Figure 15.33 Lost acknowledgment corrected by resending a segment
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Lost acknowledgments may create 

deadlock if they are not

properly handled.
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Deadlock Created by Lost 
Acknowledgment 

– The receiver sends an acknowledgment with rwnd set 

to 0 and requests that the sender shut down its window 

temporarily

– After a while, the receiver wants to remove the 

restriction; however, if it has no data to send. It sends 

an ACK segment and removes the restriction with a 

nonzero value for rwnd

– A problem arises if this acknowledgment is lost
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Deadlock Created by Lost 
Acknowledgment

– The sender is waiting for an acknowledgment that 

announces the nonzero rwnd

– The receiver thinks that the sender has received this and is 

waiting for data. This situation is called a deadlock

– To prevent deadlock, a persistence timer was designed that 

we will study later in the chapter
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15-9  CONGESTION CONTROL

We discussed congestion control in Chapter 13. 
Congestion control in TCP is based on both open loop 
and closed-loop mechanisms. TCP uses a congestion 
window and a congestion policy that avoid congestion 
and detect and alleviate congestion after it has occurred.
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Congestion Window

• Flow control: solution when the receiver is overwhelmed 

with data

• We said that the sender window size is determined by the 

available buffer space in the receiver (rwnd).

• We assumed that it is only the receiver that can dictate to 

the sender the size of the sender’s window.

• What about the network

• If the network cannot deliver the data as fast as it is created

by the sender, it must tell the sender to slow down.

• The sender has two pieces of information: the receiver-

advertised window size (rwnd), and the congestion window 

size (cwnd)
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Congestion Window
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Topics Discussed in the Section

 Congestion Window

 Congestion Policy
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Congestion Avoidance: Slow start Algorithm
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Figure 15.34 Slow start, exponential increase
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In the slow start algorithm, the size of 

the congestion window increases 

exponentially until it reaches a 

threshold.

Note
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Figure 15.35 Congestion avoidance, additive increase
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Figure 15.34 Slow start, exponential increase
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In the congestion avoidance algorithm 

the size of the congestion window

increases additively until 

congestion is detected.

Note
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Congestion Avoidance

• Slow start strategy is slower in the case of delayed 

acknowledgments. 

• For each ACK, the cwnd is increased by only 1 MSS 

(Maximum segment size). 

• If three segments are acknowledged accumulatively, the 

size of the cwnd increases by only 1 MSS, not 3 MSS. 

• The growth is still exponential, but it is not a

power of 2.
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OBJECTIVES:
 To introduce SCTP as a new transport-layer protocol.

 To discuss SCTP services and compare them with TCP.

 To list and explain different packet types used in SCTP and 

discuss the purpose and of each field in each packet.

 To discuss SCTP association and explain different scenarios 

such as association establishment, data transfer, association 

termination, and association abortion.

 To compare and contrast the state transition diagram of SCTP 

with the corresponding diagram of TCP.

 To explain flow control, error control, and congestion control 

mechanism in SCTP and compare them with the similar 

mechanisms in TCP.
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16-1  INTRODUCTION

Stream Control Transmission Protocol (SCTP) is a new
reliable, message-oriented transport-layer protocol.
Figure 16.1 shows the relationship of SCTP to the
other protocols in the Internet protocol suite. SCTP
lies between the application layer and the network
layer and serves as the intermediary between the
application programs and the network operations.
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Figure 16.1 TCP/IP Protocol suite
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SCTP is a message-oriented, 

reliable protocol that combines the

best features of  UDP and TCP.

Note
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Comparison

• UDP: Message-oriented, Unreliable

• A process delivers a message to UDP, which is 

encapsulated in a user datagram and sent over the 

network. 

• UDP conserves the message boundaries; each message is 

independent from any other message. 

• This is a desirable feature when we are dealing with 

applications such as IP telephony and transmission of real-

time data
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Comparison

• TCP: Byte-oriented, Reliable

• It receives a message or messages from a process,

• stores them as a stream of bytes, and sends them 

in segments. 

• There is no preservation of the message 

boundaries. However, TCP is a reliable protocol.

• The duplicate segments are detected, the lost 

segments are resent, and the bytes are delivered to 

the end process in order
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Comparison

• SCTP: Message-oriented, Reliable

• Combines the best features of UDP and TCP. 

• SCTP is a reliable message-oriented protocol. 

• It preserves the message boundaries and at the 

same time detects lost data, duplicate data, and 

out-of-order
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16-2  SCTP SERVICES

Before discussing the operation of SCTP, let us explain
the services offered by SCTP to the application layer
processes.
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Topics Discussed in the Section

 Process-to-Process Communication

Multiple Streams

Multihoming

 Full-Duplex Communication

 Connection-Oriented Service

 Reliable Service
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One-stream in TCP

• Each connection between a TCP client and a TCP server involves one 

single stream.

• The problem with this approach is that a loss at any point in the stream

blocks the delivery of the rest of the data. 

• This can be acceptable when we are transferring text; it is not when we are

sending real-time data such as audio or video
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Figure 16.2 Multiple-stream concept

If one of the streams is blocked, the other streams 
can still deliver their data. 

SCTP allows multis-tream service in each connection, 

which is called association
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An association in SCTP can involve 

multiple streams.
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Figure 16.3 Multihoming concept

An SCTP association, on the other hand, supports multihoming 

service. 

The sending and receiving host can define multiple IP addresses

in each end for an association

A TCP connection involves one source and one destination IP address
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Figure 16.3 Multihoming concept

In this fault-tolerant approach, when one path fails, another interface 

can be used for data delivery without interruption

Only one pair of IP addresses can be chosen for 

normal communication; the alternative is used if 

the main choice fails
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SCTP association allows multiple IP 

addresses for each end.

Note



TCP/IP Protocol Suite 18

Full-Duplex Communication

Like TCP, SCTP offers full-duplex service, where data can 

flow in both directions at the same time.

Each SCTP then has a sending and receiving buffer and 

packets are sent in both directions.
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Connection-Oriented Service

Like TCP, SCTP is a connection-oriented protocol. However, in SCTP, a 

connection is called an association. 

When a process at site A wants to send and receive data from

another process at site B, the following occurs:

1. The two SCTPs establish an association between each other.

2. Data are exchanged in both directions.

3. The association is terminated
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Reliable Service

SCTP, like TCP, is a reliable transport protocol. It uses an 

acknowledgment mechanism to check the safe and sound 

arrival of data. We will discuss this feature further in the

section on error control.
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16-3  SCTP FEATURES

Let us first discuss the general features of SCTP and
then compare them with those of TCP.
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Topics Discussed in the Section

 Transmission Sequence Number (TSN)

 Stream Identifier (SI)

 Stream Sequence Number (SSN)

 Packets

Acknowledgment Number

 Flow Control

 Error Control

 Congestion Control
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Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is 

controlled by numbering bytes using a sequence number.
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In SCTP, a data chunk is numbered 

using a TSN (Transmission Sequence 

Number)

This 32-bit field defines the transmission sequence 

number. It is a sequence number that is initialized in 

an INIT chunk for one direction and in the INIT ACK 

chunk for the opposite direction.
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To distinguish between different 

streams, SCTP uses an SI (Stream 

Identifier )

This 16-bit field defines each stream in an association.

All chunks belonging to the same stream in one 

direction carry the same stream identifier.
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Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is 

controlled by numbering bytes using a sequence number.
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Stream sequence number (SSN). This 16-

bit field defines a chunk in a particular

stream in one direction
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Figure 16.4 Comparison between a TCP segment and an SCTP packet
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TCP has segments; SCTP has packets.

Note
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SCTP vs. TCP (1)
• Control information

– TCP: part of the header

– SCTP: several types of control chunks

• Data
– TCP: one entity in a TCP segment

– SCTP: several data chunks in a packet

• Option
– TCP: part of the header

– SCTP: handled by defining new chunk types
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SCTP vs. TCP (2)
• Mandatory part of the header

– TCP: 20 bytes, SCTP: 12 bytes

– Reason:

• TSN in data chunk’s header

• Ack. # and window size are part of control 
chunk

• No need for header length field (∵no option)

• No need for an urgent pointer

• Checksum
– TCP: 16 bits, SCTP: 32 bit
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SCTP vs. TCP (3)
• Association identifier

– TCP: none, SCTP: verification tag

– Multihoming in SCTP

• Sequence number
– TCP: one # in the header

– SCTP: TSN, SI and SSN define each data 
chunk

– SYN and FIN need to consume one seq. #

– Control chunks never use a TSN, SI, or 
SSN number
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In SCTP, control information and data 

information are carried in separate 

chunks.

Note
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Figure 16.5 Packet, data chunks, and streams
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Data chunks are identified by three 

identifiers: TSN, SI, and SSN.

TSN is a cumulative number identifying 

the association; SI defines the stream;

SSN defines the chunk in a stream.

Note
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In SCTP, acknowledgment numbers are 

used to acknowledge only data chunks;

control chunks are acknowledged by 

other control chunks if necessary.

Note
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16-4  PACKET FORMAT

In this section, we show the format of a packet and
different types of chunks. Most of the information
presented in this section will become clear later; this
section can be skipped in the first reading or used only
as the reference. An SCTP packet has a mandatory
general header and a set of blocks called chunks. There
are two types of chunks: control chunks and data
chunks.
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Topics Discussed in the Section

 General Header

 Chunks
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Figure 16.6 SCTP packet format
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In an SCTP packet, control chunks come 

before data chunks.

Note
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General Header

Verification tag. This is a number that matches a packet to an 

association. This prevents a packet from a previous association

from being mistaken as a packet in this association.
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Common layout of a chunk

The first three fields are common to all chunks;

The information field depends on the type of chunk (data or 

control)
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Chunks need to terminate on a 32-bit 

(4-byte) boundary.

SCTP requires the information section to be a multiple of 4 bytes; 

if not, padding bytes (eight 0s) are added at the end of the section.
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The number of padding bytes is not 

included in the value of the length field.

Note
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Figure 16.9 Data chunk
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A DATA chunk cannot carry data 

belonging to more than one message, 

but a message can be split into several 

chunks.  The data field of the DATA 

chunk must carry at least one byte of 

data

Note
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Figure 16.10 INIT chunk
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No other chunk can be carried in a 

packet that carries an INIT chunk.

The INIT chunk (initiation chunk) is the first chunk sent by an end point

to establish an association. 

The packet that carries this chunk cannot carry any other control or data

chunks. The value of the verification tag for this packet is 0, which means

no tag has yet been defined



The INIT ACK chunk (initiation acknowledgment chunk) is the 

second chunk sent during association establishment. The packet that 

carries this chunk cannot carry any data or other control chunks
50

Figure 16.11 INIT ACK chunk
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No other chunk can be carried in a 

packet that carries an INIT ACK chunk.

Note
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Figure 16.12 COOKIE ECHO chunk

It is sent by the end point that receives an INIT ACK chunk 

(normally the sender of the INIT chunk). 

The packet that carries this chunk can also carry user data.

The COOKIE ECHO chunk is the third chunk sent during association

establishment.
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Figure 16.13 COOKIE ACK

The COOKIE ACK chunk is the fourth and last chunk sent during 

association establishment.

The packet that carries this chunk can also carry user data.



The SACK chunk (selective ACK chunk) acknowledges the receipt of 

data packets.

54

Figure 16.14 SACK chunk

The last data chunk received 
in sequence

updated value for the receiver 
window size.
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Figure 16.16 SHUTDOWN chunks
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Figure 16.17 ERROR chunk

The ERROR chunk is sent when an end point finds some error in a received

packet. Note that the sending of an ERROR chunk does not imply the aborting

of the association. (This would require an ABORT chunk.)
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The ABORT chunk is sent when an end point finds a fatal error 

and needs to abort the association. The error types are the same

as those for the ERROR chunk

59

Figure 16.18 ABORT chunk
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Forward TSN Chunk

 Recently added to the standard

(RFC 3758)

 Used to inform the receiver to adjust its cumulative 

TSN

 It provides partial reliable service
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16-5  AN SCTP ASSOCIATION

SCTP, like TCP, is a connection-oriented protocol.
However, a connection in SCTP is called an association
to emphasize multihoming.
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Topics Discussed in the Section

Association Establishment

 Data Transfer

Association Termination

Association Abortion
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A connection in SCTP is called an 

association.

Note
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Figure 16.19 Four-way handshaking



TCP/IP Protocol Suite 65

Verification Tag
• In TCP, a connection is identified by a 

combination of IP addresses and port 
numbers
– A blind attacker can send segments to a TCP 

server using randomly chosen source and 
destination port numbers

– Delayed segment from a previous connection can 
show up in a new connection that uses the same 
source and destination port addresses (incarnation)

• Two verification tags, one for each direction, 
identify an association

TIME-WAIT 
timer
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Verification Tag
• In TCP, a connection is identified by a 

combination of IP addresses and port 
numbers
– A blind attacker can send segments to a TCP 

server using randomly chosen source and 
destination port numbers

– Delayed segment from a previous connection can 
show up in a new connection that uses the same 
source and destination port addresses . This was

one of the reasons that TCP needs a TIME-WAIT 
timer when terminating a connection
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Verification Tag

• SCTP solves these two problems by using a verification tag,  a 

common value that is carried in all packets traveling in one 

direction in an association.

• A blind attacker cannot inject a random packet into an association 

because the packet would most likely not carry the appropriate tag 

(odds are 1 out of 232).

• Two verification tags, one for each direction, identify an 

association.
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Cookie (1)
• In TCP

– Each time the server receives a SYN 
segment, it sets up a TCB and allocates 
other resources

• In SCTP

– Postpone the allocation of resources until 
the reception of the third packet, when 
the IP address of the sender is verified
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Cookie (2)
• In SCTP

– The information received in the first 
packet must somehow be saved until the 
third packet arrives
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No other chunk is allowed in a packet 

carrying an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK 

chunk can carry data chunks.

Note
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In SCTP, only data chunks consume 

TSNs; data chunks are the only chunks 

that are acknowledged.

Note



The client uses the verification tag 85, the server 700 72

Figure 16.20 Simple data transfer
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The acknowledgment in SCTP defines 

the cumulative TSN, the TSN of the last 

data chunk received in order.

Note
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Multi-homing Data Transfer

• We discussed the multihoming capability of SCTP, a feature 

that distinguishes SCTP from UDP and TCP

• Multihoming allows both ends to define multiple IP addresses 

for communication

• Only one of these addresses can be defined as the primary

address; the rest are alternative addresses

• The primary address is defined during association

establishment
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Multi-homing Data Transfer

• Primary address

– Defined during association establishment

– Determined by the other end

– The process can always override the primary address 

(explicitly) of the current association.

– SACK is sent to the address from which the 

corresponding SCTP packet originated 



TCP/IP Protocol Suite 76

Multi-stream Delivery
• Interesting feature in SCTP

– Distinction between data transfer and data 
delivery

– Data transfer: TSN (error/flow control)

– Data delivery: SI, SSN

• Data delivery (in each stream)

– Ordered (default)

– Unordered
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Multi-stream Delivery
• Data delivery (in each stream)

– Ordered:

– In ordered data delivery, data chunks in a 
stream use stream sequence numbers (SSNs) 
to define their order in the stream

– SCTP is responsible for message delivery 
according to the SSN defined in the chunk

– This may delay the delivery because some 
chunks may arrive out of order. In unordered   
data delivery
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Multi-stream Delivery
• Unordered:

In unordered data delivery, the data chunks in a 

stream have the U flag set, but their SSN field 

value is ignored. They do not consume SSNs
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Fragmentation
• IP fragmentation vs. SCTP

– SCTP preserves the boundaries of the msg 
from process to process when creating a DATA 
chunk from a message if the size of the msg 
does not exceed the MTU (maximum transmission unit) 
of the path

• SCTP fragmentation

– Each fragment carries a different TSN

– All header chunks carries the same SI, 
SSN, payload protocol ID, and U flag
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Figure 16.21 Association termination

SCTP does not allow a “half-closed” association
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Figure 16.22 Association abortion
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Figure 16.24 A common scenario of state
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Figure 16.25 Simultaneous open

Each time a packet arrives with a verification tag 
that does not match the value of the local tag, it 
is discarded!
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Figure 16.26 Simultaneous close
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16-7  FLOW CONTROL

Flow control in SCTP is similar to that in TCP. In TCP, we

need to deal with only one unit of data, the byte. In SCTP,

we need to handle two units of data, the byte and the

chunk. The values of rwnd and cwnd are expressed in

bytes; the values of TSN and acknowledgments are

expressed in chunks.
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Topics Discussed in the Section

 Receiver Site

 Sender Site

A Scenario
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Figure 16.27 Flow control, receiver site

rwnd, cwnd: in bytes

TSN and Acknowledgement : in chunks

The first variable holds the last TSN received, cumTSN. 

The second variable holds the available buffer size, winsize.

The third variable holds the last accumulative acknowledgment, lastACK
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Figure 16.27 Flow control, receiver site

1. When the site receives a data chunk, it stores it at the end of the 

buffer (queue) and subtracts the size of the chunk from winSize. 

The TSN number of the chunk is stored in the cumTSN variable.

2. When the process reads a chunk, it removes it from the queue and 

adds the size of the removed chunk to winSize (recycling).

3. When the receiver decides to send a SACK, it checks the value of 

lastAck; if it is less than cumTSN, it sends a SACK with a 

cumulative TSN number equal to the cumTSN. It also includes the 

value of winSize as the advertised window
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Figure 16.28 Flow control, sender site

Sent but not acknowledged

1. A chunk pointed to by curTSN can be sent if 
the size of the data is less than or equal to 
the quantity (rwnd-inTransit)

2. When a SACK is received, the chunks with a TSN less than or 
equal to the cumulative TSN in the SACK are removed from the 
queue and discarded. The values of rwnd and inTransit are 
updated properly
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Figure 16.29 Flow control scenario
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16-8  ERROR CONTROL

SCTP, like TCP, is a reliable transport-layer protocol.
It uses a SACK chunk to report the state of the
receiver buffer to the sender. Each implementation
uses a different set of entities and timers for the
receiver and sender sites. We use a very simple design
to convey the concept to the reader.
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Topics Discussed in the Section

 Receiver Site

 Sender Site

 Sending Data Chunks

 Generating SANK Chunks
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Figure 16.30 Error-control receiver site

1234567891011



We assume that each chunk is 100 bytes, which means that 1400 bytes of 

data (chunks 23 to 36) are in transit

94

Figure 16.31 Error control, sender site

Assume 100 bytes per chunk

The chunks in the retransmission queue have priority

Timeout
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Figure 16.32 New state at the sender site after receiving a SACK chunk

1. Chunks 26-28, 31-34 are removed.

2. The value of rwnd is changed to 1000 as advertised in the 

SACK chunk.

3. Also assume timer for chunks 24, 25 has expired. 

4. 4 chunks are now in transit, so inTransit becomes 400.

Not include 24, 25
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Generating SACK Chunks
• Piggybacking:

– When an end sends a DATA chunk to the other end, it must 

include a SACK chunk advertising the receipt of 

unacknowledged DATA chunks.

• Delay sending of SACK no more than 500ms

• Send a SACK immediately when

– a packet arrives with out-of-order data chunks

– a packet arrives with duplicate data chunks and 
no new data chunks
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16-9  CONGESTION CONTROL

SCTP, like TCP, is a transport layer protocol with
packets subject to congestion in the network. The
SCTP designers have used the same strategies we
described for congestion control in Chapter 15 for
TCP. SCTP has slow start, congestion avoidance, and
congestion detection phases. Like TCP, SCTP also
uses fast retransmission and fast recovery.
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 Congestion Control and Multihoming

 Explicit Congestion Notification

Need to have different values 
of cwnd for each IP address

It is a process that enables a receiver to explicitly inform the 
sender of any congestion experienced in the network.
E.g. the receiver encounters many delayed or lost packets.
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OBJECTIVES:
 To introduce client-server paradigm.

 To introduce socket interfaces and list some common functions in 

this interface.

 To discuss client-server communication using connectionless 

iterative service offered by UDP.

 To discuss client-server communication using connection-

oriented concurrent service offered by TCP.

 To give an example of a client and a server program using UDP.

 To give an example of a client and a server program using TCP.

 To briefly discuss the peer-to-peer paradigm and its application.
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Chapter 

Outline
17.1     Client-Server Paradigm

17.2     Peer-to-Peer Paradigm
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17-1  CLIENT-SERVER PARADIGM

The purpose of a network, or an internetwork, is to
provide services to users: A user at a local site wants
to receive a service from a computer at a remote site.
One way to achieve this purpose is to run two
programs. A local computer runs a program to request
a service from a remote computer; the remote
computer runs a program to give service to the
requesting program. This means that two computers,
connected by an internet, must each run a program,
one to provide a service and one to request a service.
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Topics Discussed in the Section

 Server

 Client

 Concurrency

 Socket Interfaces

 Communication Using UDP

 Communication Using TCP

 Predefined Client-Server Applications
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Figure 17.1 Server types
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Figure 17.1 Server types



Datagrams are processed one by one in order of arrival.

8

Figure 17.2 Connectionless iterative server

Datagram from client 1

Datagram from client 2

Datagram from client 3

Legend

The server uses one single port for this purpose
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Figure 17.3 Connection-oriented concurrent server 

• The servers that use TCP (or SCTP) are normally concurrent

• Connection Oriented: request is a stream of bytes that can 

arrive in several segments  and the response can occupy 

several segments

• connection remains open until the entire stream is processed 

and the connection is terminated.

• Each connection needs a port and many connections may be 

open at the same time

• Many ports are needed, but a server can use only one well-

known port. The solution is to have one well-known port and 

many ephemeral ports
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Figure 17.3 Connection-oriented concurrent server 
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Socket Interfaces
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An interface is a set of instructions 

designed for interaction between two 

entities.



The socket interface, as a set of instructions, located between the operating

system and the application programs. 

To access the services provided by the TCP/IP protocol suite, an application 

needs to use the instructions defined in the socket interface. 13

Figure 17.4 Relation between the operating system and the TCP/IP suite
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Most of the programming languages have a file interface, a set of
instructions that allow the programmer to open a file, read from the
file, write to the file, perform other operations on the file, and
finally close the file. When a program needs to open the file, it uses
the name of the file as it is known to the operation system. When
the file is opened, the operating system returns a reference to the
file (an integer or pointer) that can be used for other instructions,
such as read and write.

Example 17.1
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Figure 17.5 Concepts of sockets

socket is a software structure within a network node of a computer network

that serves as an endpoint for sending and receiving data across the network

An application program (client or server) needs to request the operating 

system to create a socket
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Figure 17.6 Socket data structure
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Figure 17.6 Socket data structure
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Figure 17.7 Socket types
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Figure 17.8 IPv4 socket address
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Structure of a socket address, a combination of IP address 

and port number.

structure of a socket address
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Socket Functions

If the call is successful, the function returns a unique socket descriptor 

sockfd (a non-negative integer)
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Socket Functions
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Socket Functions
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Socket Functions
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Socket Functions

Accept function:

a. The call to accept() function makes the process check if there is any client 

connection request in the waiting buffer. If not, the accept makes the process to

sleep. The process wakes up when the queue has at least one request.

b. After a successful call to the accept, a new socket is created and the 

communication is established between the client socket and the new socket of 

the server.

c. The address received from the accept function fills the remote socket address 

In the new socket.

.
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Socket Functions



TCP/IP Protocol Suite 27

Figure 17.9 Connectionless iterative communication using UDP
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As an example, let us see how we can design and write two
programs: an echo server and an echo server. The client sends a
line of text to the server; the server sends the same line back to
the client. Although this client/server pair looks useless, it has
some applications. It can be used, for example, when a computer
wants to test if another computer in the network is alive. To better
understand the code in a program, we first give the layout of
variables used in both programs as shown in Figure 17.10.

Example 17.2



TCP/IP Protocol Suite 29

Figure 17.10 Variables used in echo server and echo client using UDP service
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Server Socket

Listen socket: This socket is only used during connection 

establishment.

Bind function : bind this connection to the socket address

of the server computer

The server program then calls the accept function. This function

is a blocking function; when it is called, it is blocked until the TCP

receives a connection request (SYN segment) from a client.
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Server Socket

The accept function: then is unblocked and creates a new socket 

Called  the connect socket that includes the socket address of the 

client  that sent the SYN segment

To provide concurrency, the server process (parent process) calls the

fork function.  This function creates a new process

(child process), which is exactly the same as the parent process
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Figure 17.11 Flow diagram for connection-oriented, concurrent communication

Connection handshake
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Figure 17.12 Status of parent and child processes with respect to the socket
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We want to write two programs to show how we can have an echo
client and echo server using the services of TCP. Figure 17.13
shows the variables we use in these two programs. Since data may
arrive in different chunks, we need pointers to point to the buffer.
The first buffer is fixed and always points to the beginning of the
buffer; the second pointer is moving to let the arrived bytes be
appended to the end of the previous section.

Example 17.3
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Figure 17.13 Variable used in echo client and echo sever using TCP
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In Appendix F we give some simple Java 

versions of programs in 

Table 17.1 to 17.4

Note
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17-2  PEER-TO-PEER  PARADIGM

Although most of the applications available in the Internet

today use the client-server paradigm, the idea of using peer-

to-peer (P2P) paradigm recently has attracted some attention.

In this paradigm, two peer computers can communicate with

each other to exchange services. This paradigm is interesting

in some areas such file as transfer in which the client-server

paradigm may put a lot of the load on the server machine.

However, we need to mention that the P2P paradigm does not

ignore the client-server paradigm; it is based on this

paradigm.


