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OBJECTIVES:

J To discuss the idea of multiple layering in data communication
and networking and the interrelationship between layers.

J To discuss the OSI model and its layer architecture and to show
the interface between the layers.

1 To briefly discuss the functions of each layer in the OSI model.

 To introduce the TCP/IP protocol suite and compare its layers
with the ones in the OSI model.

 To show the functionality of each layer in the TCP/IP protocol
with some examples.

 To discuss the addressing mechanism used in some layers of the
TCP/IP protocol suite for the delivery of a message from the
source to the destination.
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2-1 PROTOCOL LAYERS

In Chapter 1, we discussed that a protocol is required
when two entities need to communicate. When
communication is not simple, we may divide the
complex task of communication into several layers. In
this case, we may need several protocols, one for each
layer.

Let us use a scenario in communication in which the
role of protocol layering may be better understood. We
use two examples. In the first example, communication
Is so simple that it can occur in only one layer.
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Topics Discussed in the Se

v'Hierarchy
v'Services
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2-2 THE OSI MODEL

Established in 1947, the International Standards
Organization (ISO) is a multinational body dedicated to
worldwide agreement on international standards.
Almost three—fourths of countries in the world are
represented in the ISO. An ISO standard that covers all
aspects of network communications is the Open
Systems Interconnection (OSI) model. It was first
introduced in the late 1970s.
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Topics Discussed in the Sectic

v’ Layered Architecture

v’ Layer-to-layer Communicatic
v'Encapsulation

v'Layers in the OSI Model
v'Summary of OSI Layers
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‘ Note I

ISO is the organization;

OSl 1s the model.
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| Figure 2.3 The OSI model
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Figure 2.4 OSI layers
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Figure 2.5 An exchange using the OSI model
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‘ Note I

The physical layer is responsible for

moving individual bits from one

(node) to the next.
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Figure 2.6 Summary of OSI Layers
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2-3 TCP/IP PROTOCOL SUITE

The TCP/IP protocol suite was developed prior to the
OSI model. Therefore, the layers in the TCP/IP
protocol suite do not match exactly with those in the
OSI model. The original TCP/IP protocol suite was
defined as four software layers built upon the hardware.
Today, however, TCP/IP is thought of as a five—layer
model with the layers named similarly to the ones In
the OSI model. Figure 2.7 shows both configurations.
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Topics Discussed in the Se

v’ Comparison between OSI an
v'Layers in the TCP/IP Suite
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Figure 2.7 Layers in the TCP/IP Protocol Suite
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Figure 2.8 TCP/IP and OSI model
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Figure 2.9 A private internet
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Figure 2.10 Communication at the physical layer
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‘ Note I

The unit of communication at the

physical layer is a bit.
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Figure 2.11 Communication at the data link layer
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|: o

Note

The unit of communication at the data

link layer Is a frame.
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Figure 2.12 Communication at the network layer
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Note

The unit of communication at the

network layer is a datagram.
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Figure 2.13 Communication at transport layer
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‘ Note I

The unit of communication at the
transport layer is a segment, user

datagram, or a packet, depending on the

specific protocol used in this layer.
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Figure 2.14 Communication at application layer
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Note

£

The unit of communication at the

application layer is a message.
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2-4 ADDRESSING

Four levels of addresses are used in an internet
employing the TCP/IP protocols: physical address,
logical address, port address, and application—specific
address. Each address is related to a one layer in the
TCP/IP architecture, as shown in Figure 2.15.
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Topics Discussed in the Sectic

v’ Physical Addresses
v’ Logical Addresses
v’ Port Addresses

v’ Application-Specific Address
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Figure 2.15 Addresses in the TCP/IP protocol suite
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Example 2.3

In Figure 2.16 a node with physical address 10 sends a frame to a node
with physical address 87. The two nodes are connected by a link (a LAN).
At the data link layer, this frame contains physical (link) addresses in the
header. These are the only addresses needed. The rest of the header
contains other information needed at this level. As the figure shows, the
computer with physical address 10 is the sender, and the computer with
physical address 87 is the receiver. The data link layer at the sender
receives data from an upper layer. It encapsulates the data in a frame.
The frame is propagated through the LAN. Each station with a physical
address other than 87 drops the frame because the destination address
in the frame does not match its own physical address. The intended
destination computer, however, finds a match between the destination
address in the frame and its own physical address.
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Figure 2.16 Example 2.3: physical addresses

Destination Source
address address

87 10 Frame

packet
accepted

87
Receiver
L X

Y Data |

T

LAN

TCP/IP Protocol Suite

33



Example 2.4

As we will see in Chapter 3, most local area networks use a 48-bit
(6—byte) physical address written as 12 hexadecimal digits; every

byte (2 hexadecimal digits) is separated by a colon, as shown
below:

07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address
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Example 2.5

Figure 2.17 shows a part of an internet with two routers connecting
three LANs. Each device (computer or router) has a pair of addresses
(logical and physical) for each connection. In this case, each computer is
connected to only one link and therefore has only one pair of addresses.
Each router, however, is connected to three networks. So each router
has three pairs of addresses, one for each connection. Although it may
be obvious that each router must have a separate physical address for
each connection, it may not be obvious why it needs a logical address for
each connection. We discuss these issues in Chapters 11 and 12 when
we discuss routing. The computer with logical address A and physical
address 10 needs to send a packet to the computer with logical address
P and physical address 95. We use letters to show the logical addresses
and numbers for physical addresses, but note that both are actually
numbers, as we will see in later chapters.
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‘ Note I

The physical addresses will change from

hop to hop, but the logical addresses
remain the same.

TCP/IP Protocol Suite
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Example 2.6

Figure 2.18 shows two computers communicating via the Internet.
The sending computer is running three processes at this time with
port addresses a, b, and c. The receiving computer is running two
processes at this time with port addresses j and k. Process a in
the sending computer needs to communicate with process j in the
receiving computer. Note that although both computers are using
the same application, FTP, for example, the port addresses are
different because one is a client program and the other is a server
program, as we will see in Chapter 17.
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Figure 2.18 Example 2.6: port numbers
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‘ Note I

The physical addresses change from

hop to hop, but the logical and port

addresses usually remain the same.

TCP/IP Protocol Suite
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Example 2.7

As we will see in future chapters, a port address is a 16-bit
address represented by one decimal number as shown.

7153
A 16-bit port address represented as one single number
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Chapter
Outline

TCP/IP Protocol Suite

11.1 Introduction

11.2 Intra— and Inter—Domain
Routing

11.3 Distance Vector Routing
11.4 RIP

11.5 Link State Routing

11.6 OSPF

11.7 Path Vector Routing
11.8 BGP



11-1 INTRODUCTION

An internet is a combination of networks connected by
routers. When a datagram goes from a source to a
destination, it will probably pass through many routers
until it reaches the router attached to the destination
network.
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Topics Discussed in the Sect.

v’ Cost or Metric
v’ Static versus Dynamic Routi
v’ Routing Protocol
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11-2 INTER- AND INTRA-DOMAIN

ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An

autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra—
domain routing. Routing between autonomous systems
Is called inter—domain routing
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Figure 11.1 Autonomous systems
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Figure 11.2 Popular routing protocols
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11-3 DISTANCE VECTOR ROUTING

Today, an internet can be so large that one routing
protocol cannot handle the task of updating the routing
tables of all routers. For this reason, an internet is
divided into autonomous systems. An

autonomous system (AS) is a group of networks and
routers under the authority of a single administration.
Routing inside an autonomous system is called intra—
domain routing. Routing between autonomous systems
Is called inter—domain routing

TCP/IP Protocol Suite 8



Updating Routing Table
» If the next-node entry is different

- The receiving node chooses the row with
the smaller cost

- If there is a tie, the old one is kept
* If the next-node entry is the same

- i.e. the sender of the new row is the
provider of the old entry

- The receiving node chooses the new row,

"\9
~a even though the new value is infinity.
A TCP/IP Protocol Suite 9
\




When to Share
* Periodic Update

- A node sends its routing table, normally 30
seconds, in a periodic update

» Triggered Update

- A node sends its routing table to its
neighbors any time when there is a change
in its routing table

» 1. After updating its routing table, or
+ 2. Detects some failure in the neighboring links

TCP/IP Protocol Suite 10



Example 11.1

Figure 11.5 shows the initial routing table for an AS. Note that the
figure does not mean that all routing tables have been created at
the same time; each router creates its own routing table when it is

booted.
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Figure 11.5 Example 11.1
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Example 11.2

Now assume router A sends four records to its neighbors, routers
B, D, and C. Figure 11.6 shows the changes in B’s routing table

when it receives these records. We leave the changes in the
routing tables of other neighbors as exercise.
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Figure 11.6 Example 11.2
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Routing Table B
Dest | Cost|Next
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record 2

Routing Table B
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Routing Table B
Dest | Cost|{Next
Netl| 2 | A
Net2| 1 | —
Net3| 1 | —
Netd| 2 | A
Net5| 2 | A
Net6| 1 | —
After receiving
record 4
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Example 11.3

Figure 11.7 shows the final routing tables for routers in Figure 11.5.
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Figure 11.7 Example 11.3
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Figure 11.8 Two-node instability
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Figure 11.8 Count to Infinity

« A problem with distance vector routing is that any decrease in cost

(good news) propagates quickly, but any increase in cost (bad news)
propagates slowly.

* For a routing protocol to work properly, if a link is broken (cost
becomes infinity), every other router should be aware of it
Immediately

* In distance vector routing, this takes some time. The problem is
referred to as count to infinity.

* |t takes several updates before the cost for a broken link is recorded
as Infinity by all routers.
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Two-Node Instability (1)
» Defining Infinity

- Most implementations define 16 as infinity

» Split Horizon

- Instead of flooding the table through each
interface, each node sends only part of its
table through each interface

- E.g. node B thinks that the optimum route
to reach X is via A, it does not need to
advertise this piece of information to A

~

Xal—=L
~
A TCP/IP Protocol Suite 19
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Two-Node Instability (2)

- Poison Reverse

- Node B can still advertise the value for X,
but is the source of informationis A, it
can replace the distance with infinity as a
warhing (what | know about this route comes from you)

Xal—=L
~
A TCP/IP Protocol Suite 20
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Figure 11.9 Three-node instability
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The Routing Information Protocol (RIP) is an intra—
domain (interior) routing protocol used inside an
autonomous system. It is a very simple protocol based
on distance vector routing. RIP implements distance
vector routing directly with some considerations.
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RIP

= RIP implements distance vector rout
considerations:

» The destination in a routing table is a n
first column defines a network address.

« In RIP; the distance is defined as the nu
that have to be used to reach the destin
metric in RIP is called a hop count.

 Infinity is defined as 16, which means t
autonomous system using RIP cannot h

« The next node column defines the addr
the packet is to be sent to reach its dest
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Figure 11.10 Example of a domain using RIP
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RIP messages

* Request

- A request message is sent by a router that
has just come up or by a router that has
some time-out entries

- A request can ask about specific entries or
all entries
* Response

- A response can be either solicited (based
onh request) or unsolicited (30s or when
there is a change in the routing table)

TCP/IP Protocol Suite 25



RIPv2 vs. RIPvl

* Classless Addressing
+ Authentication

* Multicasting

- RIPv1 uses broadcasting to send RIP messages
to every neighbors. Routers as well as hosts
receive the packets

- RIPvZ2 uses the all-router multicast address to
send the RIP messages only o RIP routers in
the network

TCP/IP Protocol Suite 26



Example 11.4

Figure 11.13 shows the update message sent from router R1 to
router R2 in Figure 11.10. The message is sent out of interface
130.10.0.2.

The message is prepared with the combination of split horizon
and poison reverse strategy in mind. Router R1 has obtained
information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0 from
router R2. When R1 sends an update message to R2, it replaces the
actual value of the hop counts for these three networks with 16
(infinity) to prevent any confusion for R2. The figure also shows the
table extracted from the message. Router R2 uses the source
address of the IP datagram carrying the RIP message from RI
(130.10.02) as the next hop address. Router R2 also increments
each hop count by 1 because the values in the message are
relative to R1, not R2.
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Figure 11.13 Solution to Example 11.4
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Example 11.5

A routing table has 20 entries. It does not receive information
about five routes for 200 s. How many timers are running at this
time?

Solution

The 21 timers are listed below:
Periodic timer: 1

Expiration timer: 20— 5 =15
Garbage collection timer: 5
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‘ Note I

RIP uses the services of UDP on well-

known port 520.

TCP/IP Protocol Suite
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11-5 LINK STATE ROUTING

Link state routing has a different philosophy from that
of distance vector routing. In link state routing, if each
node in the domain has the entire topology of the
domain—the list of nodes and links, how they are
connected including the type, cost (metric), and the
condition of the links (up or down)—the node can use

the Dijkstra algorithm to build a routing table.

TCP/IP Protocol Suite 31



Topics Discussed in the Secti

v’ Building Routing tables
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Figure 11.17 Concept of Link state routing
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Figure 11.18 Link state knowledge
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Building Routing Tables

» Creation of the states of the links by
each node, called the link state
packets (LSP)

+ Dissemination of LSPs to every other
routers, called flooding (efficiently)

» Formation of a shortest path tree for
each node

» Calculation of a routing table based on
shortest path tree

\ ,,: P
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Creation of LSP

+ LSP data: E.g. the node ID, the list of
inks, a sequence number, and age.

* LSP Generation

- When there is a change in the
topology of the domain

- On a periodic basis
» There is no actual need for this type of

LSP, normally 60 minutes or 2 hours
A@‘

\
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Table 11.3  Dijkstra’s Algorithm

il Dijkstra ( )

2 B

3 // Initialization

4 Path = {s} // s means self

5 for (i = 1 to N)

6 {

7 if (i is a neighbor of s and i # s) D; = cgy
8 if (i is not a neighbor of s) D; = o
9 s

10 D, =0

11

iVl } // Dijkstra

TCP/IP Protocol Suite 37



Continued

TCP/IP Protocol Suite

38



Figure 11.19 Forming shortest path three for router Ain a graph
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Figure 11.19 Continued
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Figure 11.19 Continued
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Example 11.6

To show that the shortest path tree for each node is different, we
found the shortest path tree as seen by node C (Figure 11.20). We
leave the detail as an exercise.
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Figure 11.20 Example 11.6
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Table 11.4 Routing Table for Node A

Destination Cost Next Router
A 0 —
B 2 —
C 7 B
D 3 —
E 6 B
F 8 B
G 9 B

TCP/IP Protocol Suite
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11-6 OSPF

The Open Shortest Path First (OSPF) protocol is an
intra—domain routing protocol based on link state
routing. Its domain is also an autonomous system.
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Figure 11.21 Areas in an autonomous system
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Area in OSPF (1)

- A collection of networks with area ID

- Routers inside an area flood the area
with routing information

- Area border routers summarize the
information about the area and send
It to other areas

- Backbone area and backbone routers
- All of the area inside an AS must be

M-
. A\=¢bnnected to the backbone
A TCP/IP Protocol Suite 47

\




Area in OSPF (2)

- Virtual link

- If, because of some problem, the
connectivity between a backbone
and an area is broken, a virtual link
between routers must be created
by the administration to allow
continuity of the functions of the
backbone as the primary area

Sy

\
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LSA General Header (3)

* Advertising router

- The IP address of the router
advertising this message

» Link state sequence number

- A sequence humber assigned to each link
state update message

A@‘

\
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11-7 PATH VECTOR ROUTING

Distance vector and link state routing are both interior
routing protocols. They can be used inside an autonomous
system. Both of these routing protocols become
intractable when the domain of operation becomes large.
Distance vector routing is subject to instability if there is
more than a few hops in the domain of operation. Link
state routing needs a huge amount of resources to
calculate routing tables. It also creates heavy traffic
because of flooding. There is a need for a third routing
protocol which we call path vector routing.
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Topics Discussed in the Secti

v’ Reachability
v’ Routing Table
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Example 11.10

The difference between the distance vector routing and path
vector routing can be compared to the difference between a
national map and an international map. A national map can tell us
the road to each city and the distance to be traveled if we choose
a particular route; an international map can tell us which cities
exist in each country and which countries should be passed before
reaching that city.
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Figure 11.50 Reachability
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Figure 11.51 Stabilized table for three autonomous system
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Figure 11.52 Routing tables after aggregation
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11-8 BGP

Border Gateway Protocol (BGP) is an interdomain
routing protocol using path vector routing. It first
appeared in 1989 and has gone through four versions.
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Figure 11.53 Internal and external BGP sessions

E-BGP session

A speaker node advertises the path, not the metric of
the nodes, in its AS or other ASs.
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Path Vector Routing (1)

» Sharing

- A speaker in an AS shares its table with
immediate neighbors

» Updating
- Adding the nodes that are not in its

routing table and adding its own AS and
the AS that sent the table

- The routing table shows the path
completely

f‘@‘

\
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Path Vector Routing (2)

* Loop prevention

- A route checks to see if its AS is in the
path list to the destination

* Policy routing
- If one of the ASs listed in the path is

against its policy, it can ignore that path
and that destination

- It does not update its routing table with
the path, and it does not send this

. Xp=Message to its neighbors
A TCP/IP Protocol Suite 59
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OBJECTIVES:

J To compare and contrast unicasting, multicasting, and
broadcasting communication.

J To define multicast addressing space in IPv4 and show the
division of the space into several blocks.

] To discuss the IGMP protocol, which is responsible for collecting
group membership information in a network.

] To discuss the general idea behind multicast routing protocols
and their division into two categories based on the creation of the
shortest path trees.

 To discuss multicast link state routing in general and its
Implementation in the Internet: a protocol named MOSPF.

TCP/IP Protocol Suite 2
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Topics Discussed in the Se

v’ Unicasting
v’ Multicasting
v’ Broadcasting
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Figure 12.1 Unicasting
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‘ Note I

In unicasting, the router forwards the

received datagram through
only one of its interfaces.
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Figure 12.2 Multicasting
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‘ Note I

In multicasting, the router may

forward the received datagram
through several of its interfaces.

TCP/IP Protocol Suite



Figure 12.3 Multicasting versus multiple unicasting

Legend
ST Multicast router 51
& Unicast router A
b D/ Unicast destination >
- G/ Group member
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a. Multicasting b. Multiple unicasting

Multicasting starts with one single packet from the source that is

duplicated by the routers. The destination address in each packet
Is the same for all duplicates. Only one single copy of the packet

travels between any two routers



‘ Note I

Emulation of multicasting through
multiple unicasting is not

efficient and may create
long delays, particularly
with a large group.

TCP/IP Protocol Suite
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12-2 MULTICAST ADDRESSES

A multicast address is a destination address for a
group of hosts that have joined a multicast group. A
packet that uses a multicast address as a destination
can reach all members of the group unless there are
some filtering restriction by the receiver.

TCP/IP Protocol Suite 11



Table 12.1 Multicast Address Ranges

CIDR

Range

Assignment

224.0.0.0/24

224.0.0.0

Local Network Control Block

224.0.1.0/24

224.0.1.0

Internetwork Control Block

224.0.2.0

AD HOC Block

224.1.0.0/16

224.1.0.0

ST Multicast Group Block

224.2.0.0/16

224.2.0.0

SDP/SAP Block

224.3.0.0

231.255.255.255

Reserved

232.0.0.0/8

232.0.0.0

224.255.255.255

Source Specific Multicast (SSM)

233.0.0.0/8

233.0.0.0

233.255.255.255

GLOP Block

234.0.0.0

238.255.255.255

Reserved

239.0.0.0/8

239.0.0.0

A RARY AR Y AR

239.255.255.255

Administratively Scoped Block

TCP/IP Protocol Suite
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Delivery of Multicast Packets at Data Link Layer

*¥¥% ARP protocol cannot find the corresponding
MAC (physical) address to forward the packet at the
data link layer (because multicast IPs)

%% Data link layer supports physical multicast addresses

%k LANs support physical multicast addressing,
Ethernet is one of them

TCP/IP Protocol Suite 13



Delivery of Multicast Packets at Data Link Layer

¥k If the first 25 bits in an Ethernet address are 0000
0001 0000 0000 0101 1110 O, this identifies a physical

multicast address. The remaining 23 bits can be used to
define a

group

Figure 12.4 Mapping class D to Ethernet physical address

, 32-bit multicast address
< =
1110 | 2.Dits

unused 23 bits of multicast address
0000000100000000010111100 23 bits of physical address

I |

48-bit Ethernet address
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Example 12.2

Change the multicast IP address 232.43.14.7 to an Ethernet
multicast physical address.

Solution
a. We write the rightmost 23 bits of the IP address in

hexadecimal. (43.14.7) —> 2B:0E:07
then subtracting 8 from the leftmost digit if it is greater than or
equal to 8 (2 < 8) . In our example the result is 2B:0E:07.

b. We add the result of part a to the starting Ethernet
multicast address, which is 01:00:5E:00:00:00. The result is

01:00:5E:2B:0E:07

TCP/IP Protocol Suite 15



Example 12.3

Change the multicast IP address 238.212.24.9 to an Ethernet
multicast address.

Solution
a. The rightmost 3 bytes in hexadecimal are (212.24.9) —>
D4:18:09.

b. We need to subtract 8 from the leftmost digit (D — 8 = 5),

resulting in 54:18:009.
b. We add the result of part a to the Ethernet multicast starting

address. The result is

01:00:5K:54:18:09

TCP/IP Protocol Suite 16



Figure 12.5 Tunneling

When network does not support multicast, multicast packet
encapsulated in unicast packet.

The destination router which support multicast processes
the packet as multicast packet

Multicast [P datagram

Header Data

! |

Header

Data
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Unicast IP datagram
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Figure 12.5 Tunneling

= Uses logical tunneling for multicasting between
noncontiguous multicast routers

Logical tunnel

Legend

&> Multicast router
&> Unicast router
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Internet Group Management Protocol (IGMP)

= Multicast communication means that a sender sends a
message to a group of recipients that are members of
the same group.

= Multicast routers need to collect information a bout
members and share it with each other

= [nformation collected locally by multicast router
connected to network ( IGMP protocol)

= (Collected information globally propagated to other
routers (multicast routing protocols)

19



Topics Discussed in the Se

v Group Management

v IGMP Messages

v IGMP Protocol Applied to hos
v IGMP Protocol Applied to Ro
v’ Role of IGMP in Forwarding
v’ Variables and Timers

v" Encapsulation

v’ Compatibility with other \Vers
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Figure 12.6 Position of IGMP in the network layer

The Internet Group Management Protocol (IGMP) is responsible

for correcting and interpreting information about group members
In a network.

Network
layer

TCP/IP Protocol Suite
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IGMP (Group Management)

« IGMP is not a multicasting routing protocol, it is a protocol
that manages group membership

* The IGMP protocol gives the multicast routers information
about the membership status of hosts (routers)

« A multicast router may receive thousands of multicast packets every
day for different groups. What happen If a router has no knowledge
about the membership status of the hosts

* IGMP helps the multicast router create and update the list of groups

TCP/IP Protocol Suite 22



‘ Note I

IGMP Is a group management protocol.
It helps a multicast router create and

update a list of loyal members related

to each router interface.

TCP/IP Protocol Suite
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Figure 12.7 1GMP messages

IGMP
messages
Membership Membership
query report

B General
B Group-specific

B Group-and-source-specific

A membership query message is sent by a router to find active group
members in the network
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Figure 12.8 Membership query message format

0 16 31
Type: Ox11 Response code Checksum
Group address
S| QRV QQIC Number or sources (N)
Source Address (1)
Source Address (2)
L]
.
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Figure 12.10 Membership report message format

0 8 16 31
Reserved Checksum
Reserved Number or group records (M)
9 Group Record (1)
_E [ ]
§ — o Group Record (M)
=)
&
) _
F‘:’s Record type Aux Data Len Number or sources (N)
= Multicast address
Source Address (1)
Source Address (2)
>
@
@
[
Source Address (N)
Auxiliary Data
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Table 12.3  Record Type

Category

Type

Type Value

Current-State-Record

Mode Is_Include

Mode Is_Exclude

Filter-Mode-Change-Record

Change_To_Include_Mode

Change_To_Exclude_Mode

Source-List-Change-Record

Allow_New_ Sources

Block _Old_Sources

N | & W]

TCP/IP Protocol Suite
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Socket state

e The management of groups starts with the processes

e Each process has a record for each multicast group from which
the socket wishes to receive a multicast message

e The record also shows one of the two modes: include mode or
exclude mode

 Include mode, it lists the unicast source addresses from which
the socket accepts the group messages

e Exclude mode, it lists the unicast source addresses that the
socket will not accept the group messages

TCP/IP Protocol Suite 28



Example 12.4

Figure 12.11 shows a host with three processes: S1, S2, and S3.
The first process has only one record; the second and the third
processes each have two records. We have used lowercase
alphabet to show the source address.
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Figure 12.11 Socket state

Each process (associated with a socket) has a record for each
multicast group from which the socket wishes to receive

a multicast message

Leosmd | > Socket 1
egend | 3 b, ...: Source addresses |
States Table
................................. Socket | Multicast group Filter Source addresses
S1 52 S3 S1 226.14.5.2 Include a,b,d, e
=h B BE\
S2 226.14.5.2 Exclude a b, c
\ S2 22824214 Include b,c, f
. SN S3 226.14.5.2 Exclude b.c, g
S3 22824214 Include d,e, f

TCP/IP Protocol Suite

30



‘ Note I

Each time there is a change in any
socket record, the interface state

will change using the
above-mentioned rules.

TCP/IP Protocol Suite
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Combine the liISt 0 FESOUCES.

1. If any of the records to be combined has the exclusive filter mode, then the result-
ing interface record will have the exclusive filter mode and the list of the source

addresses is made as shown below:
a. Apply the set intersection operation on all the address lists with exclusive filters.

b. Apply the set difference operation on the result of part a and all the address lists
with inclusive filters.

2. If all the records to be combined have the inclusive filter mode, then the resulting
interface record will have the inclusive filter mode and the list of the source
addresses is found by applying the set union operations on all the address lists.

. Or N : Intersection, U:
Union

TCP/IP Protocol Suite 32



Example 12.5: Interface State

We use the two rules described above to create the interface state
for the host in Example 12.4. First we found the list of source
address for each multicast group.

a. Multicast group 226.14.5.2 has two exclude lists and one include list.

b. Multicast group: 228.24.21.4 has two include lists.
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Figure 12.12 Interface state

‘ Socket state

Socket | Multicast group Filter Source addresses
i ST S2 s3i [ s 226.14.5.2 Include a, b, d e
I B :
=2 = 2R | 52 [ 21452 Exclude ab,c
¢ S2 | 22824214 Include b, ¢ f
: \1\:4.;%?'. :
: oy, ORI S3 226.14.5.2 Exclude b, ¢ g
S3 228.24.21.4 Inciude de,f
v Interface state
Interface Multicast group Group timer Filter Source addresses
timer
226.14.5.2 ® Exclude c
228.24.21.4 ©) Include b.cdef

226.14.5.2 : exclude source list = {a, b, ¢} . {b, c, g} — {a, b, d, e} = {c}

228.24.21.4 : include source list = {b, ¢, [} + {d, e, [} ={b, ¢, d, e, }
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Figure 12.14 Router States

State for interface ml

Multicast group Timer Filter Source addresses

22712 1521 ‘ Exclude |(a, @) (c.@®)
228.21.25.41 ©) Include | (b, @) (d. @) (¢, ®)

State for interface m2

Multicast group Timer Filter Source addresses
226.10.11.8 ‘ Exclude b.@®)

N2 227.21.25.41 ©) Include |2, @) b, @) (¢, ®)
228.32.12.40 ©) Include |(d, @) . @) (. @)

Router maintains state information for each multicast group associated
with each network interface
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12-4 MULTICAST ROUTING

Now we show how information collected by IGMP is
disseminated to other routers using multicast routing
protocols. However, we first discuss the idea of optimal
routing, common in all multicast protocols. We then give
an overview of multicast routing protocols.
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‘ Note I

In unicast routing, each router in the
domain has a table that defines a

shortest path tree to possible

destinations.

TCP/IP Protocol Suite
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R2 Table

TCP/IP Protocol Suite

Figure 12.18 Unicast routing

N3
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Shortest path —>~ N6 R4
R1 Table



| Multicast Routing

‘ Note I

In multicast routing, each involved router

needs to construct a shortest
path tree for each group.

TCP/IP Protocol Suite



| Multicast Routing: Source-based tree approach

In the source-based tree approach, each router
needs to have one shortest path tree for each
group and source.

The shortest path tree for a group defines the
next
hop for each network that has loyal member(s)
for that group

TCP/IP Protocol Suite
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Figure 12.19 Source-based tree approach

i Gl1, G2 G3 Gl1, G4, G5

Shortest path tree = Gl — R2, R4 2 .
° G2 —, R2 g Qé
LN o 3 | —r g
R3 Table * G4 R2. R4 23
Shortest path tree = G5 R2, R4 =
G1, G2, G4 E R1 Table

For m groups, each router needs to have m shortest path trees, one for
each group
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| Multicast Routing: Group-shared tree

In the group-shared tree approach, only the
core router (also called rendezvous), which
has a shortest path tree for each group, Is
Involved in multicasting.

If a router receives a multicast packet, it
encapsulates the packet in a unicast packet
and sends it to the core router
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Figure 12.20 Group-shared tree approach

G1,G2 \amm Gl. G2 G3 G1, G4, G5
R2 S
R4
G3, G5
Center core router
R3 e
Destination Next-Hop
Shortest path tree =—> Gl —, R2,R3, R4 ‘«;;
G1,G2,G4  \umm . G2 e haie 2.
® G3 — £
° G4 R3, R4 "
Shortest path tree — G5 — R4 =z

Core Router Table
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12-4 ROUTING PROTOCOLS

During the last few decades, several multicast routing
protocols have emerged. Some of these protocols are
extensions of unicast routing protocols; some are
totally new. We discuss these protocols in the
remainder of this chapter. Figure 12.21 shows the
taxonomy of these protocols.
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Topics Discussed in the Sectic

v’ Multicast Link State Routing
v’ Multicast Distance Vector: D
v’ Core-Based Tree: CBT

v’ Protocol Independent Multice
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Figure 12.21 Taxonomy of common multicast protocols

Multicasting
protocols
|
Source-based Group-shared
tree free

l
‘ MOSPF | ‘ DVMRP | ‘ PIM-DM | ‘ PIM-SM I‘ ‘ CBT |
PIM

Multicast Link State Routing: MOSPF

Multicast Distance Vector Routing Protocol: DVMRP
Core-Based Tree: CBT

Protocol Independent Multicast: PIM
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 Uses source—based tree approach

 Extension of unicast link state routing
* Node advertises group with members on the link

 The information about the group comes from IGMP

 Router creates n shortest path trees (for n groups)
using Dijkstra’ s algorithm

 Problem: time and space needed to create and save the
many shortest path trees.

 Solution: Router calculates shortest path trees on
demand 47



 Extension of OSPF Protocol
 Uses multicast link state routing to create source—based trees

e Uses new link state update packet to associate source with
group of addresses (group—membership LSA)

* This way: we can include in the tree only the hosts (using their
unicast addresses) that belong to a particular group

* The router calculates the shortest path trees on demand (when
it receives the first multicast packet)
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 Uses source—based tree approach

 Uses four strategies, each built on its predecessor
1. Flooding

2. Reverse Path Forwarding (RPF)

3. Reverse Path Broadcasting (RPB)

4. Reverse Path Multicasting (RPM)

49



i Flooding

Flooding is the first strategy that comes to
mind. A router receives a packet
and without even looking at the destination
group address

Flooding broadcasts packets but creates loops

In the systems.

TCP/IP Protocol Suite
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* To prevent loops, only one copy is forwarded; the other copies
are dropped.

* In RPF, a router forwards only the copy that has traveled the
shortest path from the source to the router.

* The router extracts the source address of the multicast packet
and consults its unicast routing table.

 If the packet has just come from the hop defined in the table,
the packet has traveled the shortest path from the source to
the router because the shortest path is reciprocal in unicast
distance vector routing protocols.

« If a packet leaves the router and comes back again, it has
not traveled the shortest path.
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Figure 12.22 Reverse path Forwarding (RPF)

Legend Source

B Received
B orwarded

RPF eliminates the loop in the flooding process.
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1

‘ Note I

RPF eliminates the loop In the
flooding process.

TCP/IP Protocol Suite
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Figure 12.23 Problem with RPF

* RPF guarantees that each network receives a copy of the
multicast packet without formation of loops.

« However, RPF does not guarantee that each network receives
only one copy; a network may receive two or more copies

* RPF is not based on the destination address (a group address);
forwarding is based on the source address
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Figure 12.23 Problem with RPF

Net3

Net3 receives two
copies of the packet
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i Reverse Path Broadcasting (RPB)

 To eliminate duplication, we must define only one parent
router for each network. We must have this restriction

* A network can receive a multicast packet from a
particular source only through a designated parent router.

 For each source, the router sends the packet only out of
those interfaces for which it is the designated parent. This
policy is called reverse path broadcasting (RPB)

« RPB guarantees that the packet reaches every network

and that every network receives only one copy
56



Figure 12.24 RPF versus RPB

R1 1s the parent of Netl and Net2.
R2 1s the parent of Net3

Netl Net2 Net3

a. RPF

I,

Netl Net2 Net3
b. RPB
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i Reverse Path Multicasting (RPM)

RPB does not multicast the packet, it broadcasts It.

Multicast packet must reach only those networks that
have active members for that particular group.

This is called reverse path multicasting (RPM).

RPM uses two procedures, pruning and grafting

58



‘ Note I

RPB creates a shortest path broadcast
tree from the source to each destination.

It guarantees that each destination
receives one and only one copy

of the packet.

TCP/IP Protocol Suite
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Figure 12.25 Reverse Path Multicasting (RPM)
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Reverse Path Multicasting (1)

» To increase efficiency, the multicast
packet must reach only those networks
that have active members for that
particular group

* RPM adopts the procedures of Pruning
and Grafting
* Pruning

- The designated parent router of each
network is responsible for holding the
embership information (through IGMP)
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Reverse Path Multicasting (2)

- The router sends a prune message to the
upstream router so that it can prune the
corresponding interface

- That is, the upstream router can stop
sending multicast message for this group
through that interface

»  Grafting

- The graft message forces the upstream
router to resume sending the multicast
messages
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‘ Note I

RPM adds pruning and grafting to RPB
to create a multicast shortest path tree

that supports dynamic membership

changes.
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63



Figure 12.26 Group-shared tree with rendezvous router
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Formation of CBT tree (1)

Core-Based Tree (CBT) Protocol

+ After the rendezvous point is selected,
every router is informed of the unicast
address of the selected router

» Each router sends a unicast join message
to show that it wants to join the group

» This message passes through all routers
that are located between the sender and
the rendezvous router

/M

4@‘
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Formation of CBT tree (2)

» Each intermediate router extracts the
necessary information from the message
- Unicast address of the sender
- Interface through which the packet has
arrived
+ Every router knows its upstream router
and the downstream router

» If a router wants to leave the group, it
sends a leave message to its upstream

smiter, ...
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Figure 12.27 Sending a multicast packet to the rendezvous router
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‘ Note I

In CBT, the source sends the multicast
packet (encapsulated in a unicast
packet) to the core router. The core

router decapsulates the packet and
forwards it to all interested
Interfaces.
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Comparisons

e The tree for DVMRP and MOSPF i1s made from th
root up (source-based)

* The tree for CBT (Core-based tree) i1s formed from
the leaves down (Group-based)

* In DVMRP, the tree is first made (broadcasting) and
then pruned

In CBT, the joining gradually makes the tree, and the
source in CBT may or may not be part of the tree

/M

4@‘
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i Protocol Independent Multicast (P1M)

 Protocol Independent Multicast, Dense Mode (PIM-
DM))

* Protocol Independent Multicast, Sparse Mode (PI1M-
SM).

 Both protocols are unicast-protocol dependent

70



[%

Note

PIM-DM Is used In a dense multicast

environment, such as a LAN.
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PIM-DM (Dense Mode )

* |t I1s used when there Is a possibility that
each router Is involved in multicasting
(dense mode)

* |n this environment, the use of a protocol
that broadcasts the packet is justified
because almost all routers are involved In
the process

;‘@‘
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| PIM-DM (Dense Mode )

PIM-DM uses RPF and pruning/grafting
strategies to handle multicasting.

However, it Is iIndependent from the

underlying unicast protocol.

TCP/IP Protocol Suite
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PIM-SM (Sparse Mode )

» Used when there Is a slight possibility that
each router Is involved in multicasting

* |n this environment, the use of a protocol
that broadcasts the packet is not justifiec

A protocol such as CBT that uses a group-
shared tree IS more appropriate.

/M

4@‘
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i PIM-SM (Sparse Mode )

PIM-SM iIs used Iin a sparse multicast
environment such as a WAN.

PIM-SM i1s similar to CBT but uses a

simpler procedure.

TCP/IP Protocol Suite
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12-6 MBONE

Multimedia and real-time communication have increased
the need for multicasting In the Internet

However, only a small fraction of Internet routers are
multicast routers

The solution is tunneling. The multicast routers are seen
as a group of routers on top of unicast routers

The multicast routers may not be connected directly, but
they are connected logically

To enable multicasting, we make a multicast backbone
(MBONE) out of these isolated routers using the concept
of tunneling. -



Figure 12.28 Logical tunneling

Logical tunnel

Logical tunnel
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Figure 12.29 MBONE

_ Unicast
Multicast source Unicast
group address destination
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The multicast packet becomes the payload (data) of the unicast packet
The only protocol that supports MBONE and tunneling is DVMRP
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OBJECTIVES:

] To define process-to-process communication at the transport
layer and compare it with host-to-host communication at the
network layer.

J To discuss the addressing mechanism at the transport layer, to
discuss port numbers, and to define the range of port numbers
used for different purposes.

] To explain the packetizing issue at the transport layer:
encapsulation and decapsulation of messages.

1 To discuss multiplexing (many-to-one) and demultiplexing (one-
to-many) services provided by the transport layer.

1 To discuss flow control and how it can be achieved at the
transport layer.
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OBJECTIVES (continued):

J To discuss error control and how it can be achieved at the
transport layer.

J To discuss congestion control and how it can be achieved at the
transport layer.

. To discuss the connectionless and connection-oriented services at
the transport layer and show their implementation using an
FSM.

] To discuss the behavior of four generic transport-layer protocols
and their applications: simple protocol, Stop-and-Wait protocol,
Go-Back-N protocol, and Selective-Repeat protocol.

J To describe the idea of bidirectional communication at the
transport layer using the piggybacking method.

TCP/IP Protocol Suite 3



Chapter 13.1 Transport-Layer Services

Outline 13.2 Transport-Layer Protocols
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13-1 TRANSPORT-LAYER SERVICES

As we discussed in Chapter 2, the transport layer
IS located between the network layer and the
application layer. The transport layer s
responsible for providing services to the
application layer; it receives services from the
network layer. In this section, we discuss the
services that can be provided by a transport
ayer, in the next section, we discuss the

orinciple  beyond several transport layer
protocols.
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Topics Discussed in the Sectio

v’ Process-to-Process Communic
v’ Addressing: Port Numbers

v’ Encapsulation and Decapsula
v Multiplexing and Demultiplex
v’ Flow Control

v’ Error Control

v’ Congestion Control

v’ Connectionless and Connectio
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Figure 13.1 Network layer versus transport layer
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Figure 13.2 Port numbers
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TCP/IP has decided to use universal port numbers for servers; these are called
well-known port numbers, 13 is an example. The server port number cannot
be chosen randomly

The daytime client process uses an ephemeral (temporary) port number
52,000 to identify itself



Figure 13.3 IP addresses versus port numbers
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Figure 13.4 1CANN ranges

ICANN has divided the port numbers into three ranges: well-known, registered, and
dynamic (or private)

Registered
0 1,023 ! 49,152 65,535
i 1,024 49,151 i
Well-known Dynamic or private
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T
i

The well-known port numbers are

Note

less than 1,024.
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Example 13.1

In UNIX, the well-known ports are stored in a file called
/etc/services. Each line in this file gives the name of the
server and the well-known port number. We can use the
grep utility to extract the line corresponding to the desired
application. The following shows the port for TFTP. Note
that TFTP can use port 69 on either UDP or TCP. SNMP (see

Chapter 24) uses two port numbers (161 and 162), each for
a different purpose.

$grep tftp /etc/services
tftp 69/tcp
tftp 69/udp

$grep  snmp /etc/services
snmp161/tcp#Simple Net Mgmt Proto
snmp161/udp#Simple Net Mgmt Proto
snmptrap 1 62/udp#Traps for SNMP

TCP/IP Protocol Suite 12



Figure 13.5 Socket address

IP address 20023 56.8 69 Port number

Socket address 200.23.56.8 69

To use the services of transport layer in the Internet, we need a pair of socket addresses:
the client socket address and the server socket address.

These four pieces of information are:
part of the network-layer packet header and the transport-layer packet header.
The first header contains the IP addresses; the second header contains the port numbers.

13



Figure 13.6 Encapsulation and decapsulation
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Encapsulation happens at the sender site. When a process has
a message to send, it passes the message to the transport layer along
with a pair of socket addresses
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Figure 13.7 Multiplexing and demultiplexing
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Figure 13.8 Pushing or pulling

Delivery of items from a producer to a consumer can occur in one of the two ways:

Pushing: If the sender delivers items whenever they are produced

Pulling: If the producer delivers the items after the consumer has
requested them,

.......... o ...
Flow control "y Request '

Producer L} Consumer Producer L} Consumer
Delivery Delivery
a. Pushing b. Pulling
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Figure 13.9 Flow control at the transport layer
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Buffers

Flow control can be implemented in several ways, one of the solutions is normally
to use two buffers

One buffer at the sending transport layer and the other at the receiving transport
layer

buffer is a set of memory locations that can hold packets at the sender and receiver

The flow control communication can occur by sending signals from the consumer
to producer

When the buffer of the sending transport layer is full, it informs the application
layer to stop passing chunks of messages. When there are some vacancies, it
informs the sending transport layer that it can send message again.

When the buffer of the receiving transport layer is full, it informs the sending
transport layer to stop sending packets 18



Example 13.2

The above discussion requires that the consumers
communicate with the producers in two occasions: when
the buffer is full and when there are vacancies. If the two
parties use a buffer of only one slot, the communication
can be easier. Assume that each transport layer uses one
single memory location to hold a packet. When this single
slot in the sending transport layer is empty, the sending
transport layer sends a note to the application layer to send
its next chunk; when this single slot in the receiving
transport layer is empty, it sends an acknowledgment to
the sending transport layer to send its next packet. As we
will see later, this type of flow control, using a single-slot
buffer at the sender and the receiver, is inefficient.
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Figure 13.10 Error control at the transport layer

« Error control, unlike the flow control, involves only the sending and receiving
transport layers

Error control at the transport layer is responsible to:

1- Detect and discard corrupted packets.

2. Keep track of lost and discarded packets and resend them.
3. Recognize duplicate packets and discard them.

4. Buffer out-of-order packets until the missing packets arrive.

Sender Recerver

Transport
layer

Transport
layer

Error Control
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Error control: Sequence Numbers

Error control requires that the sending transport layer knows which packet
IS to be resent and packet is duplicate or out order.

This can be done if the packets are numbered.

We can add a field to the transport layer packet to hold the sequence
number of the packets

When a packet is corrupted or lost, the receiving transport layer can
somehow inform the sending transport layer to resend that packet

The out-of-order packets can be recognized by observing gaps in the
sequence numbers.

Packets are numbered sequentially

21



| Error control: Sequence Numbers

For error control, the sequence numbers
are modulo 2™, where m is the size of
the sequence number field in bits.

For example, if m iIs 4, the only sequence
numbers are O through 15, inclusive.

0,1.2,3.4.5,6.7.8,9.10.11. 12,13, 14, 15,0. 1. 2. 3.4.5.6. 7.8, 9. 10, 11, ...

22



Error control: Acknowledgment

We can use both positive and negative signals as error control

The receiver side can send an acknowledgement (ACK) for each or
a collection of packets that have arrived correctly.

The sender can detect lost packets if it uses a timer

If an ACK does not arrive before the timer expires, the sender
resends the packet

Duplicate packets can be silently discarded by the receiver

Out-of-order packets can be either discarded (to be treated as lost
packets by the sender), or stored until the missing ones arrives.

23



Combination of Flow and Error Control

* Flow control requires the use of two buffers, one at the sender site
and the other at the receiver site

* Error control requires the use of sequence and acknowledgment
numbers by both sides

* These two requirements can be combined if we use two numbered
buffers at both sides

24



Figure 13.11 Sliding window in circular format
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Figure 13.12 Sliding window in linear format

a. Four packets have been sent b. Five packets have been sent

c. Seven packets have been sent d. Packet 0 have been acknowledged
window 1is full and window slid

TCP/IP Protocol Suite 26



Connectionless Service

The source process (application program) divide its message into
chunks of data

The transport layer treats each chunk as a single unit without any
relation between the chunks

The packets may arrive out of order at the destination and will be
delivered out of order to the server process.

The situation would be worse if one of the packets were lost

The receiving transport layer has no idea that one of the messages
has been lost (no numbering)

No flow control, error control, or congestion control can be
effectively implemented in a connectionless service 27



Figure 13.13 Connectionless service
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Connection-Oriented Service

* The client and the server first need to establish a connection between
themselves
 Data exchange can only happen after the connection establishment

« \We can implement flow control, error control, and congestion
control in a connection-oriented protocol.
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Figure 13.14 Connection-oriented service
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13-2 TRANSPORT-LAYER PROTOCOLS

We can create a transport-layer protocol by combining a
set of services described In the previous sections. To better
understand the behavior of these protocols, we start with
the simplest one and gradually add more complexity. The
TCP/IP protocol uses a transport layer protocol that is
either a modification or a combination of some of these
protocols.
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Topics Discussed in the Secti

v’ Simple Protocol

v’ Stop-and-Wait Protocol
v’ Go-Back-N Protocol

v’ Selective-Repeat Protocol
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Figure 13.16 Simple protocol

Sender Receiver
o Packet .
Application — Application
| — ooe I
Transport Transport

Logical channel

A connectionless protocol with neither flow nor error control
« \We assume that the receiver can immediately handle any packet it receives
* The receiver can never be overwhelmed with incoming packets.
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Note

The simple protocol is a connectionless

protocol that provides neither
flow nor error control.
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Example 13.3

Figure 13.18 shows an example of communication using
this protocol. It is very simple. The sender sends packets
one after another without even thinking about the receiver.
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Figure 13.18 Example 13.3
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Figure 13.19 Stop-and-wait protocol

Packet ACK
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« Connection-oriented protocol, which uses both flow and error control

« Both the sender and the receiver use a sliding window of size 1

« The sender sends one packet at a time and waits for an acknowledgment
before sending the next one.
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‘ Note I

In Stop-and-Wait protocol, flow
control is achieved by forcing the
sender to wait for an acknowledgment,

and error control is achieved by
discarding corrupted packets and letting
the sender resend previous packet when
the timer expires.
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In the Stop-and-Wait protocol, we can
use a 1-bit field to number the packets.
The sequence numbers are based on
modulo-2 arithmetic.

In the Stop-and-Wait protocol, the
acknowledgment number is in modulo-2
arithmetic
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Example 13.4

Figure 13.21 shows an example of Stop-and-Wait protocol.
Packet O is sent and acknowledged. Packet 1 is lost and
resent after the time-out. The resent packet 1 s
acknowledged and the timer stops. Packet 0 is sent and
acknowledged, but the acknowledgment is lost. The sender
has no idea if the packet or the acknowledgment is lost, so
after the time-out, it resends packet O, which s
acknowledged.
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Figure 13.21 Example 13.4
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Example 13.5

In a Stop-and-Wait system, the bandwidth of the line 1s 1 Mbps, and
1 bit takes 20 milliseconds to make a round trip. What 1s the
bandwidth-delay product? If the system data packets are 1,000 bits 1n
length, what is the utilization percentage of the link?

Solution

The bandwidth-delay product is:

(1 x 10%) x (20 x 1073) = 20,000 bits.

The system can send 20,000 bits during the time it takes for the data to
go from the sender to the receiver and the acknowledgment to come
back.

However, the system sends only 1,000 bits. We can say that the link
utilization 1s only 1,000/20,000, or 5 percent. For this reason, for a
link with a high bandwidth or long delay, the use of Stop-and-Wait
wastes the capacity of the link.
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The Stop-and-Wait protocol is very

inefficient if our channel is thick and
long. By thick, we mean that our channel
has a large bandwidth (high data rate);
by long, we mean the round-trip delay Is
long.
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Example 13.6

What is the utilization percentage of the link in Example 13.5 if we
have a protocol that can send up to 15 packets before stopping and
worrying about the acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The system can send
up to 15 packets or 15,000 (1 packet is 1000 bits ) bits during a round
trip. This means the utilization Is 15,000/20,000, or 75 percent. Of
course, If there are damaged packets, the utilization percentage Is
much less because packets have to be resent.
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Go-Back-N protocol

To improve efficiency:

 First: multiple packets must be in transition while the sender is
waiting for acknowledgment (Go-back-N protocol)

 Second: more than one packet be outstanding to keep the channel
busy while the sender is waliting for acknowledgment (Selective-
Repeat (SR) protocol)
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Go-Back-N protocol

The key to Go-back-N is that we can send several packets before
receiving acknowledgments

The receiver can only buffer one packet

keep a copy of the sent packets until the acknowledgments arrive
Several data packets and acknowledgments can be in the channel at
the same time.
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Figure 13.22 Go-Back-N protocol
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In the Go-Back-N Protocol, the sequence
numbers are modulo 2™, where m Is the
size of the sequence number
field in bits.

In the Go-Back-N protocol, the
acknowledgment number is
cumulative and defines the sequence
number of the next packet
expected to arrive.
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For example, if the acknowledgment

number (ackNo) Is 7, it means all
packets with sequence number up to 6
have arrived, safe and sound, and the
receiver Is expecting the packet with
sequence number 7

TCP/IP Protocol Suite
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Figure 13.23 Send window for Go-Back-N
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The outstanding region is a range of sequence numbers belonging to the
packets that are sent, but have an unknown status. The sender needs to wait

to find out if these packets have been received or were lost
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The send window Is an abstract concept
defining an imaginary box of maximum
size = 2™ = 1 with three variables:

S, S, and Sg,..

The send window can slide one or
more slots when an error-free ACK
with ackNo between S; and S,
arrives.

TCP/IP Protocol Suite
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Figure 13.24 Sliding the send window
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ackNo = 6 has arrived. This means that the receiver Is waiting for packets with
sequence number 6.
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Figure 13.25 Receive window for Go-Back-N
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The size of the receive window is always 1.

The receiver is always looking for the arrival of a specific packet (R,).
Any packet arriving out of order is discarded and needs to be resent.

The sequence numbers to the left of the window belong to the packets
already received and acknowledged; the sequence numbers to the right of
this window define the packets that cannot be received
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The recelve window IS an abstract
concept defining an imaginary
box of size 1 with

one single variable R,..

he window slides when a correct
packet has arrived; sliding
occurs one slot at a time.
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Figure 13.27 Send window size for Go-Back-N
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‘ Note I

In the Go-Back-N protocol, the size of
the send window must be less than 2™;

the size of the recelive window

IS always 1.

TCP/IP Protocol Suite

56



Figure 13.28 Example 13.7
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Example 13.7 explanation

No data packets are lost, but some ACKSs are delayed and one is lost.
The example also shows how cumulative acknowledgments can help
If acknowledgments are delayed or lost.

There 1s no time-out event here because all outstanding packets are
acknowledged before the timer expires. Note that although ACK 2 is
lost, ACK 3 iIs cumulative and serves as both ACK 2 and ACK 3.
There are four events at the receiver site.
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Example 13.8

Figure 13.29 shows what happens when a packet is lost. Packets 0, 1,
2, and 3 are sent. However, packet 1 is lost. The receiver receives
packets 2 and 3, but they are discarded because they are received out
of order (packet 1 is expected). When the receiver receives packets 2
and 3, it sends ACK1 to show that it expects to receive packet 1.

However, these ACKs are not useful for the sender because the
ackNo Is equal S; , not greater that S; . So the sender discards them.
When the time-out occurs, the sender resends packets 1, 2, and 3,
which are acknowledged..
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Figure 13.29 Example 13.8
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Figure 13.30 Outline of Selective-Repeat
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Figure 13.31 Send window for Selective-Repeat protocol
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Figure 13.32 Receive window for Selective-Repeat protocol
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‘ Note I

In the Selective-Repeat protocol, an
acknowledgment number defines

the sequence number of the

error-free packet received.

TCP/IP Protocol Suite
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Example 13.9

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and
5. The sender receives an ACK with ackNo = 3. What is the
Interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and
2 have been received uncorrupted and the receiver is
expecting packet 3. If the system is using SR, it means that
packet 3 has been received uncorrupted; the ACK does not
say anything about other packets.
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Example 13.10

This example is similar to Example 3.8 (Figure 13.29) in
which packet 1 is lost. We show how Selective-Repeat
behaves in this case. Figure 13.34 shows the situation. At
the sender, packet 0 is transmitted and acknowledged.
Packet 1 is lost. Packets 2 and 3 arrive out of order and are
acknowledged. When the timer times out, packet 1 (the
only unacknowledged packet) Is resent and is
acknowledged. The send window then slides.
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Figure 13.34 Example 13.10
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Figure 13.35 Selective-Repeat window size
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T
i

In Selective-Repeat, the size of the

Note

sender and recelver window

can be at most one-half of 2m.
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OBJECTIVES:

 To introduce UDP and show its relationship to other protocols in
the TCP/IP protocol suite.

] To explain the format of a UDP packet and discuss the use of
each field in the header.

] To discuss the services provided by the UDP such as process-to-
process delivery, multiplexing/demultiplexing, and queuing.

J To show how to calculate the optional checksum and the sender
the needs to add a pseudoheader to the packet when calculating
the checksum.

] To discuss how some application programs can benefit from the
simplicity of UDP.

] To briefly discuss the structure of the UDP package.

TCP/IP Protocol Suite 2
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14-1 INTRODUCTION

Figure 14.1 shows the relationship of the User
Datagram Protocol (UDP) to the other protocols and
layers of the TCP/IP protocol suite: UDP is located
between the application layer and the IP layer, and
serves as the intermediary between the application
programs and the network operations.
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Figure 14.1 Position of UDP in the TCP/IP protocol suite
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14-2 USER DATAGRAM

UDP packets, called user datagrams, have a fixed—size
header of 8 bytes. Figure 14.2 shows the format of a
user datagram.
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Figure 14.2 User datagram format
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Example 14.1

The following is a dump of a UDP header in hexadecimal format.
CB84000D001C001C

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice versa?
f. What is the client process?

TCP/IP Protocol Suite 8



Example 14.1 Continued

Solution

a. The source port number is the first four hexadecimal digits
(CB84),, or 52100.

b. The destination port number is the second four hexadecimal
digits (000D),, or 13.

c. The third four hexadecimal digits (001C),; define the length of
the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet
minus the length of the header, or 28 — 8 = 20 bytes.

e. Since the destination port number is 13 (well-known port), the
packet is from the client to the server.

f. The client process is the Daytime (see Table 14.1).

TCP/IP Protocol Suite 9



Table 14.1 Well-known Ports used with UDP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Domain Domain Name Service (DNS)
67 Bootps Server port to download bootstrap information
68 Bootpc Client port to download bootstrap information
69 TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 SNMP Simple Network Management Protocol (trap)

TCP/IP Protocol Suite
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14-3 UDP Services

We discussed the general services provided by a
transport layer protocol in Chapter 13. In this section,

we discuss what portions of those general services are
provided by UDP.
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Figure 14.3 Pseudoheader for checksum calculation
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Example 14.2

Figure 14.4 shows the checksum calculation for a very small user
datagram with only 7 bytes of data. Because the number of bytes
of data is odd, padding is added for checksum calculation. The
pseudoheader as well as the padding will be dropped when the user
datagram is delivered to IP (see Appendix F).
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Figure 14.4 Checksum calculation for a simple UDP user datagram
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Example 14.3

What value is sent for the checksum in one of the following
hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the value of
the sum is all 1s.

c. The sender decides to include the checksum, but the value of
the sum is all Os.

TCP/IP Protocol Suite 15



Example 14.3 Continued

Solution
a. The value sent for the checksum field is all Os to show that the
checksum is not calculated.

b. When the sender complements the sum, the result is all Os; the
sender complements the result again before sending. The value
sent for the checksum is all 1s. The second complement
operation is needed to avoid confusion with the case in part a.

c. This situation never happens because it implies that the
value of every term included in the calculation of the sum is all
Os, which is impossible; some fields in the pseudoheader have
nonzero values (see Appendix D).
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Figure 14.5 Encapsulation and decapsulation
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Figure 14.6 Queues in UDP
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Figure 14.7 Multiplexing and demultiplexing
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‘ Notel
UDP is an example of the
connectionless simple protocol we

discussed in Chapter 13 with the
exception of an optional checksum
added to packets for error detection.

TCP/IP Protocol Suite
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14-4 UDP APPLICATION

Although UDP meets almost none of the criteria we mentioned
in Chapter 13 for a reliable transport-layer protocol, UDP 1is
preferable for some applications. An application designer
needs sometimes to compromise to get the optimum.

For example: The connectionless service provides less delay;
the connection-oriented service creates more delay. If delay 1s
an important i1ssue for the application, the

connectionless service 1s preferred.
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Example 14.4

A client—server application such as DNS (see Chapter 19) uses the
services of UDP because a client needs to send a short request to
a server and to receive a quick response from it. The request and
response can each fit in one user datagram. Since only one
message is exchanged in each direction, the connectionless
feature is not an issue; the client or server does not worry that
messages are delivered out of order.
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Example 14.5

A client—server application such as SMTP (see Chapter 23), which
is used in electronic mail, cannot use the services of UDP because
a user can send a long e—mail message, which may include
multimedia (images, audio, or video). If the application uses UDP
and the message does not fit in one single user datagram, the
message must be split by the application into different user
datagrams. Here the connectionless service may create problems.
The user datagrams may arrive and be delivered to the receiver
application out of order. The receiver application may not be able
to reorder the pieces. This means the connectionless service has a
disadvantage for an application program that sends long messages.
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Example 14.6

Assume we are downloading a very large text file from the
Internet. We definitely need to use a transport layer that provides
reliable service. We don’t want part of the file to be missing or
corrupted when we open the file. The delay created between the
delivery of the parts are not an overriding concern for us; we wait
until the whole file is composed before looking at it. In this case,
UDP is not a suitable transport layer.
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Example 14.7

Assume we are watching a real-time stream video on our
computer. Such a program is considered a long file; it is divided
into many small parts and broadcast in real time. The parts of the
message are sent one after another. If the transport layer is
supposed to resend a corrupted or lost frame, the synchronizing
of the whole transmission may be lost. The viewer suddenly sees a
blank screen and needs to wait until the second transmission
arrives. This is not tolerable. However, if each small part of the
screen is sent using one single user datagram, the receiving UDP
can easily ignore the corrupted or lost packet and deliver the rest
to the application program. That part of the screen is blank for a
very short period of the time, which most viewers do not even
notice. However, video cannot be viewed out of order, so
streaming audio, video, and voice applications that run over UDP
must reorder or drop frames that are out of sequence.
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14-5 UDP PACKAGE

To show how UDP handles the sending and receiving of
UDP packets, we present a simple version of the UDP
package.

We can say that the UDP package involves five
components: a control-block table, input queues, a
control-block module, an input module, and an output
module.
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Figure 14.8 UDP design
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Control Block Table

In our package, UDP has a control-block table to keep track of the open
ports. Each entry in this table has a minimum of four fields:

* the state, which can be: FREE or IN-USE,
 the process ID,

* the port number,

 and the corresponding gueue number.
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Control Block Module

e The control-block module is responsible for the management of the
control-block table.

* When a process starts, it asks for a port number from the operating
system.

* The operating system assigns well-known port numbers to servers
and ephemeral port numbers to clients.

« The process passes the process ID and the port number to
the control-block module to create an entry in the table for the process

e The Module does not create the queues

30



Table 14.2 Control Block Module

UDP_Control Block Module (process ID, port number)
{

Search the table for a FREE entry.

if (not found)

Create a new entry with the state IN-USE
Enter the process ID and the port number.
Return.

} // End module

Delete one entry using a predefined strategy.

TCP/IP Protocol Suite
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Input and Output Modules

« The input module receives a user datagram from the IP.

* |t searches the control-block table to find an entry having the same
port number as this user datagram.

 |If the entry is found, the module uses the information in the entry
to enqueue the data.

 |If the entry is not found, it generates an ICMP message.

* Qutput Module is responsible for creating and sending user
datagrams

32



Table 14.3  Input Module

1
2
3
“
5
6
7
8
9

e I T el o =
O ® N0 R W N RO

UDP_INPUT Module (user_datagram)
&
Look for the entry in the control block table
if (found)
{
Check to see if a queue is allocated
If (queue is not allocated)
allocate a queue
else
engqueue the data
} //end if
else
{
Ask ICMP to send an "unreachable port" message
Discard the user datagram
} //end else

Return.
} // end module

TCP/IP Protocol Suite
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Table 14.4  Output Module

UDP_OUTPUT_MODULE (Data)

{
Create a user datagram
Send the user datagram

Return.

TCP/IP Protocol Suite
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Table 14.5

The Control-Block Table at the Beginning of Examples

State Process ID Port Number Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011
FREE
IN-USE 4,652 52,012 38
FREE

TCP/IP Protocol Suite
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Example 14.8

The first activity is the arrival of a user datagram with destination
port number 52,012. The input module searches for this port
number and finds it. Queue number 38 has been assigned to this
port, which means that the port has been previously used. The

input module sends the data to queue 38. The control-block table
does not change.
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Example 14.9

After a few seconds, a process starts. It asks the operating system
for a port number and is granted port number 52,014. Now the
process sends its ID (4,978) and the port number to the control—-
block module to create an entry in the table. The module takes the
first FREE entry and inserts the information received. The module
does not allocate a queue at this moment because no user
datagrams have arrived for this destination (see Table 14.6).
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Table 14.6

Control-Block Table after Example 14.9

State Process ID | Port Number | Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011
IN-USE 4978 52,014
IN-USE 4,652 52,012 38
FREE

38



Example 14.10

A user datagram now arrives for port 52,011. The input module
checks the table and finds that no queue has been allocated for
this destination since this is the first time a user datagram has

arrived for this destination. The module creates a queue and gives
it a number (43). See Table 14.7.
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Table 14.7 Control-Block Table after Example 14.10

State Process ID | Port Number | Queue Number
IN-USE 2,345 52,010 34
IN-USE 3,422 52,011 43
IN-USE 4,978 52,014
IN-USE 4,652 52,012 38
FREE

40



Example 14.11

After a few seconds, a user datagram arrives for port 52,222. The
input module checks the table and cannot find an entry for this
destination. The user datagram is dropped and a request is made
to ICMP to send an unreachable port message to the source.
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OBJECTIVES:

 To introduce TCP as a protocol that provides reliable stream
delivery service.

] To define TCP features and compare them with UDP features.
] To define the format of a TCP segment and its fields.

 To show how TCP provides a connection-oriented service, and
show the segments exchanged during connection establishment
and connection termination phases.

] To discuss the state transition diagram for TCP and discuss some
scenarios.

. To introduce windows in TCP that are used for flow and error
control.

TCP/IP Protocol Suite 2



OBJECTIVES ( continued):

 To discuss how TCP implements flow control in which the
receive window controls the size of the send window.

J To discuss error control and FSMs used by TCP during the data
transmission phase.

1 To discuss how TCP controls the congestion in the network using
different strategies.

] To list and explain the purpose of each timer in TCP.

1 To discuss options in TCP and show how TCP can provide
selective acknowledgment using the SACK option.

] To give a layout and a simplified pseudocode for the TCP
package.

TCP/IP Protocol Suite 3
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15-1 TCP SERVICES

Figure 15.1 shows the relationship of TCP to the other
protocols in the TCP/IP protocol suite. TCP lies
between the application layer and the network layer,
and serves as the intermediary between the
application programs and the network operations.
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Table 15.1

Well-known Ports used by TCP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 and 21 FIP File Transfer Protocol (Data and Control)

23 TELNET Terminal Network

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol
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Figure 15.2 Stream delivery
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Figure 15.3 Sending and receiving buffers
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Figure 15.4 TCP segments
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15-2 TCP FEATURES

To provide the services mentioned in the previous
section, TCP has several features that are briefly
summarized in this section and discussed later in detail.

TCP/IP Protocol Suite 12



Topics Discussed in the Sect.

v Numbering System
v’ Flow Control
v’ Error Control
v’ Congestion Control
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‘ Note I

The bytes of data being transferred In
each connection are numbered by TCP.

The numbering starts with an arbitrarily

generated number.

TCP/IP Protocol Suite
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Example 15.1

Suppose a TCP connection is transferring a file of 5,000 bytes. The
first byte is numbered 10,001. What are the sequence numbers for
each segment if data are sent in five segments, each carrying 1,000
bytes?

Solution
The following shows the sequence number for each segment:

Segment 1 —  Sequence Number: 10,001 Range: 10,001 to 11,000
Segment 2 —  Sequence Number: 11,001 Range: 11,001 to 12,000
Segment 3 — Sequence Number: 12,001 Range: 12,001 to 13,000
Segment 4 —  Sequence Number: 13,001 Range: 13,001 to 14,000
Segment 5 —  Sequence Number: 14,001 Range: 14,001 to 15,000

TCP/IP Protocol Suite 15



‘ Note I

The value in the sequence number
fileld of a segment defines the number

assigned to the first data byte

contained in that segment.

TCP/IP Protocol Suite
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‘ Note I

The value of the acknowledgment field
In a segment defines the number of the
next byte a party expects to receive.

The acknowledgment number Is

cumulative.

TCP/IP Protocol Suite
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15-3 SEGMENT

Before discussing TCP in more detail, let us discuss
the TCP packets themselves. A packet in TCP is called
a segment.

TCP/IP Protocol Suite 18



Topics Discussed in the Secti

v Format
v’ Encapsulation
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Figure 15.5 TCP segment format

[, 20 to 60 bytes
) >
4—’ Header Data
a. Segment
1 16 31
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN Reserved FARRSRSEIR Window size
4 bits 6bits  pARARAEARIRS 16 bits
Checksum Urgent pointer
16 bits 16 bits
Options and padding

b. Header
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Figure 15.6 Control field

URG: Urgent pointer 1s valid RST: Reset the connection
ACK: Acknowledgment 1s valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG PSH RST FIN

6 bits

TCP/IP Protocol Suite 21



Figure 15.7 Pseudoheader added to the TCP segment

Pseudoheader

32-bit source IP address

32-bit destination IP address

All Os 8-bit protocol

16-bit TCP total length

TCP/IP Protocol Suite

T Source port number Destination port number
—az;c; Sequence number
- Acknowledgment number
HLEN | Reserved | Control Window size
Checksum Urgent pointer

Data and option

(Padding must be added to make
the data a multiple of 16 bits)
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‘ Note I

The use of the checksum in TCP Is

mandatory.

TCP/IP Protocol Suite
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Figure 15.8 Encapsulation
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15-4 ATCP CONNECTION

TGP is connection—oriented. It establishes a virtual path
between the source and destination. All of the segments
belonging to a message are then sent over this virtual
path. You may wonder how TCP, which uses the
services of IP, a connectionless protocol, can be
connection—oriented. The point is that a TCP
connection is virtual, not physical. TCP operates at a
higher level. TCP uses the services of IP to deliver
individual segments to the receiver, but it controls the
connection itself. If a segment is lost or corrupted, it is
retransmitted.

TCP/IP Protocol Suite 25



Topics Discussed in the Sect.

v’ Connection Establishment
v’ Data Transfer

v’ Connection Termination
v’ Connection Reset

TCP/IP Protocol Suite



Figure 15.9 Connection establishment using three-way handshake

Chient  Client transport Server transport Server
process layer A: ACK flag layer process
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Means “no data’” !

TCP/IP Protocol Suite 27



|: o

Note

A SYN segment cannot carry data, but it

consumes one sequence number.

TCP/IP Protocol Suite



Note

Bl
o

A SYN + ACK segment cannot carry

data, but does consume one

sequence number.
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|: o

Note

An ACK segment, Iif carrying no data,

consumes no segquence number.
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Figure 15.10 Data Transfer
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i P: PSH (Push Flag)

The application program at the sender can request a push
operation.

This means that the sending TCP must not wait for the window
to be filled.
After the segment is created, it will be sent immediately

Segment includes data that must be delivered to the receiving
application program as soon as possible and not to wait for
more data to come.

Although the push operation can be requested by the
application program, most current TCP implementations ignore
such requests. TCP can choose whether or not to use this
feature. 32



Figure 15.11 Connection termination using three-way handshake
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The FIN segment consumes one

sequence number if it does
not carry data.

TCP/IP Protocol Suite



The FIN + ACK segment (from

server)consumes one sequence number
If it does not carry data.

TCP/IP Protocol Suite



The ACK (from client): This segment

cannot carry data and consumes no
sequence numbers
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Figure 15.12 Half-Close
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15-6 WINDOWS IN TCP

Before discussing data transfer in TCP and the issues such as flow,
error, and congestion control, we describe the windows used in
TCP. TCP uses two windows (send window and receive window)
for each direction of data transfer, which means four windows for a
bidirectional communication.

To make the discussion simple, we make an assumption that
communication 1s only unidirectional; the bidirectional
communication can be inferred using two unidirectional
communications with piggybacking (Data and Ack can travel in
both direction).
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Topics Discussed in the Sect.

v" Send Window
v" Receive Window
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Figure 15.22 Send window in TCP
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Figure 15.23 Receive window in TCP
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Receive Window

 There are two differences between the receive window in TCP
and the one we used for SR 1n Chapter 13:

* (1) TCP allows the receiving process to pull data at its own
NEED

* Part of the allocated buffer at the receiver may be occupied by
bytes that have been received and acknowledged, but are
waiting to be pulled by the receiving process

* The receive window size 1s then always smaller or equal to the
buffer size

Rwnd(window size) = buffer size — number of waiting bytes to be
pulled 42



Receive Window

* (2) The second difference 1s the way acknowledgments are used
in the TCP protocol:

 Remember that an acknowledgement in SR is selective,
defining the uncorrupted Packets that have been received.

* The major acknowledgment mechanism in TCP is a cumulative
acknowledgment announcing the next expected byte to receive

 The new versions of TCP, however, uses both cumulative and
selective acknowledgements as we will discuss later in the

option section.
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15-7 FLOW CONTROL

As discussed in Chapter 13, flow control balances the
rate a producer creates data with the rate a consumer
can use the data. TCP separates flow control from
error control. In this section we discuss flow control,
ignoring error control. We temporarily assume that the
logical channel between the sending and receiving TCP
is error—free. Figure 15.24 shows unidirectional data
transfer between a sender and a receiver; bidirectional
data transfer can be obtained from unidirectional one
as discussed in Chapter 13.
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Figure 15.24 TCP/IP protocol suite
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Figure 15.25 An example of flow control

Note: We assume only unidirectional

communication from client to server.

Therefore, only one window at each
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Figure 15.26 Example 15.2

Prevent the shrinking of the send window:
new ackNo + new rwnd >= last ackNo + last rwnd

| [ast advertised rwnd = 12 |

[ast advertised
ackNo =206

a. The window after the last advertisement

New advertised
| rwnd =4 |

213 241215 216|217 2181 cee E

:L L |205_}L206i207l208_{209

New advertised
ackNo =216

b. The window after the n¢ 10dvertlsement window has shrunk

**Bytes 206 to 209 are acknowledged and consumed



Example 15.2

Figure 15.26 shows the reason for the mandate in window
shrinking. Part a of the figure shows values of last
acknowledgment and rwnd Part b shows the situation in
which the sender has sent bytes 206 to 214. Bytes 206 to

209 are acknowledged and purged.
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Example 15.2 cont.

The new advertisement, however, defines the new value of rwnd
as 4, in which 210 +4 <206 + 12.

When the send window shrinks it creates a problem:

byte 214 which has been already sent 1s outside the window. The
relation discussed before forces the receiver to maintain the right-
hand wall of the window to be as shown in part a because the
receiver does not know which of the bytes 210 to 217 has already
been sent.

One way to prevent this situation: 1s to let the receiver postpone
its feedback until enough buffer locations are available 1n 1its
window. In other words, the receiver should wait until more bytes

are consumed by its process.
49



15-8 ERROR CONTROL

TCP 1s a reliable transport layer protocol. This means
that an application program that delivers a stream of
data to TCP relies on TCP to deliver the entire stream to
the application program on the other end in the correct
order, without error, and without any part lost or
duplicated.

Error control in TCP 1s achieved through the use of
three tools: checksum, acknowledgment, and time-out.
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Topics Discussed in the Sectic

v’ Checksum

v’ Acknowledgment

v’ Retransmission

v’ Out-of-Order Segments
v' FSMs for Data Transfer in TC
v’ Some Scenarios
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Note

ACK segments do not consume

sequence numbers and
are not acknowledged.
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Acknowledgement Type

- In the past, TCP used only one type of
acknowledgement: Accumulative
Acknowledgement (4 CK), also namely
accumulative positive acknowledgement

- More and more implementations are adding
another type of acknowledgement: Selective
Acknowledgement ( ), SACK is
implemented as an option at the end of the
TCP header.
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‘ Note I

Data may arrive out of order and be
temporarily stored by the receiving TCP,

but TCP guarantees that no out-of-order

data are delivered to the process.

TCP/IP Protocol Suite
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T

‘ Note I

TCP can be best modeled as a
Selective Repeat protocol.

TCP/IP Protocol Suite
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Rules for Generating ACK (1)

- 1. When one end sends a data segment to the
other end, it must include an ACK. That gives
the next sequence number it expects to
receive. (Piggyback)

- 2. The receiver needs to delay sending (until
) an ACK
segment if there is only one outstanding in-
order segment. It prevents ACK segments
from creating extra traffic.

- 3. There should not be more than 2 in-order
unacknowledged segments at any time. It
prevent the unnecessary retransmission

TCP/IP Protocol Suite 56




Rules for Generating ACK (2)
- 4. When a

that is higher than
expected, the receiver immediately sends an
ACK segment announcing the sequence humber
of the next expected segment. (for fast
retransmission)

- 5. Whena arrives, the
receiver sends an ACK segment to announce
the next sequence number expected.

- 6.Ifa arrives, the receiver
immediately sends an ACK.
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Figure 15.29 Normal operation
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Figure 15.30 Lost segment
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The receiver TCP delivers only ordered

data to the process.
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Figure 15.31 Fast retransmission
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Figure 15.32 Lost acknowledgment

4 Client

Start . Seq: S501-600

Server

Ack: x

Seq: 60T-700

Ack: x

Seq: 701-800

lost

Ack: 701

Ack: x

t 444

Seq: 801-900

Ack: x

&=+ Ack: 901 —

Stop CD ;s

Time

Advantage of cumulative acknowledgments

v
Time

62



Figure 15.33 Lost acknowledgment corrected by resending a segment
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Lost acknowledgments may create

deadlock if they are not

properly handled.

TCP/IP Protocol Suite
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Deadlock Created by Lost
Acknowledgment

— The receiver sends an acknowledgment with rwnd set
to 0 and requests that the sender shut down 1ts window
temporarily

— After a while, the receiver wants to remove the
restriction; however, 1f 1t has no data to send. It sends
an ACK segment and removes the restriction with a
nonzero value for rwnd

— A problem arises 1f this acknowledgment 1s lost
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Deadlock Created by Lost
Acknowledgment

— The sender 1s waiting for an acknowledgment that
announces the nonzero rwnd

— The receiver thinks that the sender has received this and 1s
waiting for data. This situation 1s called a deadlock

— To prevent deadlock, a persistence timer was designed that
we will study later in the chapter
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15-9 CONGESTION CONTROL

We discussed congestion control in Chapter 13.
Congestion control in TCP is based on both open loop
and closed—loop mechanisms. TCP uses a congestion
window and a congestion policy that avoid congestion
and detect and alleviate congestion after it has occurred.
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Congestion Window

 Flow control: solution when the receiver 1s overwhelmed
with data

* We said that the sender window size 1s determined by the
available buffer space 1n the receiver (rwnd).

* We assumed that 1t 1s only the receiver that can dictate to
the sender the size of the sender’s window.

 What about the network

e [f the network cannot deliver the data as fast as it 1s created

by the sender, it must tell the sender to slow down.

* The sender has two pieces of information: the receiver-
advertised window size (rwnd), and the congestion window

size (cwnd) o



Congestion Window

* The sender has two pieces of information: the receiver-
advertised window size (rwnd), and the congestion window
size (cwnd)

Actual window size = minimum (rwnd, cwnd)

69



Topics Discussed in the Sect.

v’ Congestion Window
v’ Congestion Policy
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Congestion Avoidance: Slow start Algorithm

* The sender has two pieces of information: the receiver-
advertised window size (rwnd), and the congestion window
size (cwnd)

Actual window size = minimum (rwnd, cwnd)

/1



Figure 15.34 Slow start, exponential increase
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‘ Note I

In the slow start algorithm, the size of
the congestion window increases

exponentially until it reaches a

threshold.

TCP/IP Protocol Suite
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Figure 15.35 Congestion avoidance, additive increase
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Figure 15.34 Slow start, exponential increase

If we look at the size of the cwnd in terms of round-trip times (RTTs), we find that
the growth rate is exponential as shown below:

Start -  cwnd=1

After 1 RTT -  cwnd=1x2=2 —2!
After 2RTT -  cwnd=2x2=4 — 22
After 3RTT -  cwnd=4x2=8 - 23
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‘ Note I

In the congestion avoidance algorithm
the size of the congestion window

Increases additively until

congestion Is detected.

TCP/IP Protocol Suite
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Congestion Avoidance

* Slow start strategy 1s slower 1n the case of delayed

acknowledgments.
* For each ACK, the cwnd 1s increased by only 1 MSS
(Maximum segment size).

* If three segments are acknowledged accumulatively, the
size of the cwnd increases by only 1 MSS, not 3 MSS.

* The growth 1s still exponential, but it 1s not a
power of 2.
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OBJECTIVES:

 To introduce SCTP as a new transport-layer protocol.

J To discuss SCTP services and compare them with TCP.

1 To list and explain different packet types used in SCTP and
discuss the purpose and of each field in each packet.

J To discuss SCTP association and explain different scenarios
such as association establishment, data transfer, association
termination, and association abortion.

] To compare and contrast the state transition diagram of SCTP
with the corresponding diagram of TCP.

1 To explain flow control, error control, and congestion control
mechanism in SCTP and compare them with the similar
mechanisms in TCP.
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16-1 INTRODUCTION

Stream Control Transmission Protocol (SCTP) is a new
reliable, message—oriented transport—layer protocol.
Figure 16.1 shows the relationship of SCTP to the
other protocols in the Internet protocol suite. SCTP
lies between the application layer and the network
layer and serves as the intermediary between the
application programs and the network operations.

TCP/IP Protocol Suite 3



Figure 16.1 TCP/IP Protocol suite
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‘ Note I

SCTP is a message-oriented,

reliable protocol that combines the
best features of UDP and TCP.
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Comparison
» UDP: Message-oriented, Unreliable

» A process delivers a message to UDP, which is
encapsulated in a user datagram and sent over the
network.

« UDP conserves the message boundaries; each message Is
Independent from any other message.

» This is a desirable feature when we are dealing with
applications such as IP telephony and transmission of real-
time data

TCP/IP Protocol Suite 6




Comparison
TCP: Byte-oriented, Reliable

It receives a message or messages from a process,

stores them as a stream of bytes, and sends them
In segments.

There Is no preservation of the message
boundaries. However, TCP Is a reliable protocol.

The duplicate segments are detected, the lost
segments are resent, and the bytes are delivered to
the end process in order

TCP/IP Protocol Suite 7



Comparison

* SCTP: Message-oriented, Reliable
« Combines the best features of UDP and TCP.

« SCTP is areliable message-oriented protocol.

It preserves the message boundaries and at the
same time detects lost data, duplicate data, and
out-of-order

;‘@‘
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16-2 SCTP SERVICES

Before discussing the operation of SCTP, let us explain
the services offered by SCTP to the application layer
processes.

TCP/IP Protocol Suite 9



Topics Discussed in the Sectic

v’ Process-to-Process Communi
v’ Multiple Streams

v’ Multihoming

v’ Full-Duplex Communication
v’ Connection-Oriented Service
v’ Reliable Service

TCP/IP Protocol Suite



Table 16.1 Some SCTP applications

Protocol Port Number Description
[UA 9990 ISDN over IP
M2UA 2904 SS7 telephony signaling
M3UA 2905 SS7 telephony signaling
H.248 2945 Media gateway control
H.323 1718, 1719, 1720, 11720 [P telephony
SIP 5060 [P telephony

TCP/IP Protocol Suite
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One-stream in TCP

 Each connection between a TCP client and a TCP server involves one
single stream.

« The problem with this approach is that a loss at any point in the stream
blocks the delivery of the rest of the data.

« This can be acceptable when we are transferring text; it is not when we are
sending real-time data such as audio or video

TCP/IP Protocol Suite 12



Figure 16.2 Multiple-stream concept
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can still deliver their data.
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An associlation in SCTP can involve

multiple streams.
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Figure 16.3 Multihoming concept

A TCP connection involves one source and one destination IP address

Client § Server

i
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An SCTP association, on the other hand, supports multihoming
service.

The sending and receiving host can define multiple IP addresses
In each end for an association
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Figure 16.3 Multihoming concept

In this fault-tolerant approach, when one path fails, another interface
can be used for data delivery without interruption
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normal communication; the alternative is used if
the main choice fails

TCP/IP Protocol Suite 16



Note

1
o

SCTP association allows multiple IP

addresses for each end.
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| Full-Duplex Communication

Like TCP, SCTP offers full-duplex service, where data can
flow In both directions at the same time.

Each SCTP then has a sending and receiving buffer and
packets are sent in both directions.

TCP/IP Protocol Suite 18



Connection-Oriented Service

Like TCP, SCTP is a connection-oriented protocol. However, in SCTP, a
connection is called an association.

When a process at site A wants to send and receive data from
another process at site B, the following occurs:

1. The two SCTPs establish an association between each other.

2. Data are exchanged in both directions.
3. The association is terminated

TCP/IP Protocol Suite 19



| Reliable Service

SCTP, like TCP, 1s a reliable transport protocol. It uses an
acknowledgment mechanism to check the safe and sound
arrival of data. We will discuss this feature further in the
section on error control.

TCP/IP Protocol Suite
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16-3 SCTP FEATURES

Let us first discuss the general features of SCTP and
then compare them with those of TCP.

TCP/IP Protocol Suite 21



Topics Discussed in the Sectic

v’ Transmission Sequence Numk
v’ Stream Identifier (SI)
v’ Stream Sequence Number (SS
v’ Packets

v’ Acknowledgment Number
v’ Flow Control

v’ Error Control

v’ Congestion Control
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| Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is
controlled by numbering bytes using a sequence number.

TCP/IP Protocol Suite
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In SCTP, a data chunk is numbered
using a TSN (Transmission Sequence
Number)

This 32-bit field defines the transmission sequence
number. It Is a sequence number that is initialized In
an INIT chunk for one direction and in the INIT ACK
chunk for the opposite direction.

TCP/IP Protocol Suite 24



To distinguish between different
streams, SCTP uses an Sl (Stream

ldentifier )

This 16-bit field defines each stream In an association.

All chunks belonging to the same stream in one
direction carry the same stream identifier.

TCP/IP Protocol Suite
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| Numbering in TCP

The unit of data in TCP is a byte. Data transfer in TCP is
controlled by numbering bytes using a sequence number.

TCP/IP Protocol Suite
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Stream sequence number (SSN). This 16-

bit field defines a chunk in a particular
stream in one direction

TCP/IP Protocol Suite
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Figure 16.4 Comparison between a TCP segment and an SCTP packet

Data Header and options

A segment in TCP

TCP/IP Protocol Suite

Source port address | Destination port address Source port address | Destination port address
Sequence number Verification tag
Acknowledgment number Checksum
HL Control flags Window size Control chunks
Checksum Urgent pointer
Options

A packet in SCTP

Control Header

Data
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‘ Note I

TCP has segments; SCTP has packets.

TCP/IP Protocol Suite
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SCTP vs. TCP (1)

» Control information
- TCP: part of the header
- SCTP: several types of control chunks

* Data
- TCP: one entity in a TCP segment

- SCTP: several data chunks in a packet
- Option
- TCP: part of the header
CTP: handled by defining new chunk types

TCP/IP Protocol Suite 30




SCTP vs. TCP (2)

* Mandatory part of the header
- TCP: 20 bytes, SCTP: 12 bytes
- Reason:

« TSN in data chunk’s header

- Ack. # and window size are part of control
chunk

* No need for header length field ('no option)
* No need for an urgent pointer

» Checksum

A= TCP: 16 bits, SCTP: 32 bit
@\ TCP/IP Protocol Suite 31




SCTP vs. TCP (3)

- Association identifier
- TCP: none, SCTP: verification tag
- Multihoming in SCTP

» Sequence number
- TCP: one # in the header

- SCTP: TSN, SI and SSN define each data
chunk

- SYN and FIN need to consume one seq. #
- Control chunks never use a TSN, SI, or

|
2= SSN number
@\ TCP/IP Protocol Suite 32
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Note

In SCTP, control information and data

Information are carried in separate
chunks.

TCP/IP Protocol Suite



Figure 16.5 Packet, data chunks, and streams

Fourth packet

Header

Control chunks

TSN: 110
SI: 2 SSN: 2
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SI: 2 SSN: 3
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y oun
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First packet

Header

[Control chunks

TSN: 101
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SI: 0 SSN: 1

TSN: 103
SI: 0 SSN:2
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‘ Note I

Data chunks are identified by three
identifiers: TSN, SI, and SSN.

TSN is a cumulative number identifying
the association: Sl defines the stream:

SSN defines the chunk In a stream.

TCP/IP Protocol Suite
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‘ Note I

In SCTP, acknowledgment numbers are
used to acknowledge only data chunks;

control chunks are acknowledged by

other control chunks if necessary.

TCP/IP Protocol Suite
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16-4 PACKET FORMAT

In this section, we show the format of a packet and
different types of chunks. Most of the information
presented in this section will become clear later; this
section can be skipped in the first reading or used only
as the reference. An SCTP packet has a mandatory
general header and a set of blocks called chunks. There
are two types of chunks: control chunks and data
chunks.
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Topics Discussed in the Se

v’ General Header
v' Chunks
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Figure 16.6 SCTP packet format

General header

(12 bytes)

Chunk 1
(variable length)

Chunk N
(variable length)

TCP/IP Protocol Suite
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‘ Note I

In an SCTP packet, control chunks come

before data chunks.

TCP/IP Protocol Suite
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General Header

Source port address
16 bits

Destination port address
16 bits

Verification tag
32 bits

Checksum
32 bits

Verification tag. This is a number that matches a packet to an
association. This prevents a packet from a previous association
from being mistaken as a packet in this association.

TCP/IP Protocol Suite
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Common layout of a chunk

0 7 8 15 16 31
Type Flag Length

Chunk Information
(multiple of 4 bytes)

The first three fields are common to all chunks;

The information field depends on the type of chunk (data or
control)
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Chunks need to terminate on a 32-bit

(4-byte) boundary.

SCTP requires the information section to be a multiple of 4 bytes;
If not, padding bytes (eight 0s) are added at the end of the section.

TCP/IP Protocol Suite

43



Table 16.2 Chunks
Type Chunk Description
0 DATA User data
1 INIT Sets up an association
2 INIT ACK Acknowledges INIT chunk
3 SACK Selective acknowledgment
- HEARTBEAT Probes the peer for liveliness
3 HEARTBEAT ACK Acknowledges HEARTBEAT chunk
6 ABORT Abort an association
7 SHUTDOWN Terminates an association
8 SHUTDOWN ACK Acknowledges SHUTDOWN chunk
9 ERROR Reports errors without shutting down
10 COOKIE ECHO Third packet in association establishment
11 COOKIE ACK Acknowledges COOKIE ECHO chunk
14 SHUTDOWN COMPLETE Third packet in association termination
192 FORWARD TSN For adjusting cumulating TSN

TCP/IP Protocol Suite
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‘ Note I

The number of padding bytes is not

Included in the value of the length field.

TCP/IP Protocol Suite
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Figure 16.9 Data chunk

0 7 8 1314 15 16 31

Transmission sequence number

Stream 1dentifier Stream sequence number

Protocol identifier
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‘ Note I

A DATA chunk cannot carry data
belonging to more than one message,
but a message can be split into several

chunks. The data field of the DATA
chunk must carry at least one byte of
data
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Figure 16.10

INIT chunk

7 8

15 16 31

Type: 1

Flag: 0

Length

Initiation tag

Advertised receiver window credit

Outbound streams

Maximum inbound streams

Initial TSN

TCP/IP Protocol Suite

Variable-length parameters
(optional)
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No other chunk can be carried Iin a

packet that carries an INIT chunk.

The INIT chunk (initiation chunk) is the first chunk sent by an end point
to establish an association.

The packet that carries this chunk cannot carry any other control or data
chunks. The value of the verification tag for this packet is 0, which means
no tag has yet been defined

49



Figure 16.11 INIT ACK chunk

0 7 8 15 16 31
Type: 2 Flag: 0 Length

Initiation tag

Advertised recerver window credit

Outbound streams Maximum inbound streams
Initial TSN

Parameter type: 7 Parameter length

State cookie

Qariable-length p?ameters

Mandatory
parameter fields

The INIT ACK chunk (initiation acknowledgment chunk) is the
second chunk sent during association establishment. The packet that
carries this chunk cannot carry any data or other control chunks
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‘ Note I

No other chunk can be carried In a

packet that carries an INIT ACK chunk.

TCP/IP Protocol Suite
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Figure 16.12 COOKIE ECHO chunk

7 8

15 16

31

Type: 10

Flag: 0

Length

State cookie

The COOKIE ECHO chunk is the third chunk sent during association

establishment.

It is sent by the end point that receives an INIT ACK chunk

(normally the sender of the INIT chunk).

The packet that carries this chunk can also carry user data.
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Figure 16.13 COOKIE ACK

0 7 8 15 16 31
Type: 11 Flag: 0 Length: 4

The COOKIE ACK chunk is the fourth and last chunk sent during
association establishment.
The packet that carries this chunk can also carry user data.
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Figure 16.14 SACK chunk

The SACK chunk (selective ACK chunk) acknowledges the receipt of

data packets.
0 7 8 1516 31
Type: 3 Flag: 0 Length
The last data chunk received (- \mylative TSN acknowledgement
in sequence )

updated value for the receivel Advertised receiver window credit

window size.
Number of gap ACK blocks: N Number of duplicates: M
Gap ACK block #1 start TSN offset | Gap ACK block #1 end TSN offset

Gap ACK block #N start TSN offset| Gap ACK block #N end TSN offset
Duplicate TSN 1

Duplicate TSN M




Figure 16.16 SHUTDOWN chunks

0 7 8 15 16 31
Type: 7 Flag Length: 8

Cumulative TSN ACK

SHUTDOWN
0 7 8 15 16 31

Type: 8 Flag Length: 4

SHUTDOWN ACK
0 7 8 14 1516 31

Type: 14 Flag T Length: 4
SHUTDOWN COMPLETE

TCP/IP Protocol Suite
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Figure 16.17 ERROR chunk

0 7 8 15 16 31
Type: 9 Flag Length

One or more error causes

The ERROR chunk is sent when an end point finds some error in a received
packet. Note that the sending of an ERROR chunk does not imply the aborting
of the association. (This would require an ABORT chunk.)
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Table 16.3 Errors

Code Description
1 Invalid stream identifier
2 Missing mandatory parameter
3 State cookie error
- Out of resource
S Unresolvable address
6 Unrecognized chunk type
7 Invalid mandatory parameters
8 Unrecognized parameter
9 No user data

10 Cookie received while shutting down
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Figure 16.18 ABORT chunk

7

15 16

31

Type: 6

Flag: 6

Length

One or more error causes
(optional)

The ABORT chunk is sent when an end point finds a fatal error
and needs to abort the association. The error types are the same
as those for the ERROR chunk
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| Forward TSN Chunk

s Recently added to the standard
(RFC 3758)

m Used to inform the receiver to adjust its cumulative
TSN

m [t provides partial reliable service
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16-5 AN SCTP ASSOCIATION

SCTP, like TCP, is a connection—oriented protocol.
However, a connection in SCTP is called an association
to emphasize multihoming.

TCP/IP Protocol Suite 61



Topics Discussed in the Sectic

v’ Association Establishment
v’ Data Transfer

v’ Association Termination
v’ Association Abortion
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Note

A connection in SCTP iIs called an

associlation.
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Figure 16.19 Four-way handshaking

Client Server
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| J ||
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INIT VT:0
Active Init tag: 1200 rwnd: 1000
obEn it TSN: 100 = INIT ACK VT:1200
Init tag: 5000 rwnd: 2000
—<¢= Init TSN: 1700
COOKIE ECHO  VT:5000 Cookie
Cooki .
o COOKIE ACK  VT:1200
Y Y
Time Time
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Verification Tag

» In TCP, a connection is identified by a
combination of IP addresses and port
numbers
- A blind attacker can send segments to a TCP

server using randomly chosen source and
destination port numbers

- Delayed segment from a previous connection can
show up in a hew connection that uses the same
source and destination port addresses (incarnatio

» Two verification tags, one for each direction,
atify an association

~uiei=
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Verification Tag

» In TCP, a connection is identified by a
combination of IP addresses and port
numbers
- A blind attacker can send segments to a TCP

server using randomly chosen source and
destination port numbers

- Delayed segment from a previous connection can
show up in a hew connection that uses the same
source and destination port addresses . This was

one of the reasons that TCP needs a TIME-WAIT
timer when terminating a connection
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Verification Tag

« SCTP solves these two problems by using a verification tag, a
common value that is carried in all packets traveling in one
direction in an association.

« Ablind attacker cannot inject a random packet into an association
because the packet would most likely not carry the appropriate tag
(odds are 1 out of 232).

« Two verification tags, one for each direction, identify an
association.
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Cookie (1)

+ In TCP

- Each time the server receives a SYN
segment, it sets up a TCB and allocates
other resources

« Tn SCTP

- Postpone the allocation of resources until
the reception of the third packet, when
the IP address of the sender is verified

/M

4@‘
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Cookie (2)
» In SCTP

- The information received in the first
packet must somehow be saved until the
third packet arrives

/M

49‘
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‘ Note I

No other chunk is allowed in a packet
carrying an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK
chunk can carry data chunks.

TCP/IP Protocol Suite
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‘ Note I

In SCTP, only data chunks consume

TSNs; data chunks are the only chunks

that are acknowledged.

TCP/IP Protocol Suite
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Figure 16.20 Simple data transfer

Client %

VT1: 85 Server
TSN: 7105
DATA chunk
TSN: 7106
DATA chunk
VT: 85
TSN: 7107
e_ DATA chunk
TSN: 7108
DATA chunk VT 700
cumTSN: 7108
SACK chunk __9
TSN: 121
DATA chunk
VT: 700
TSN: 122 : —0
VT 33 DATA chun
?—— cumTSN: 122 PN
SACK chunk v
Time

Time

The client uses the verification tag 85, the server 700
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‘ Note I

The acknowledgment in SCTP defines

the cumulative TSN, the TSN of the last

data chunk received In order.

TCP/IP Protocol Suite
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Multi-homing Data Transfer

» We discussed the multithoming capability of SCTP, a feature
that distinguishes SCTP from UDP and TCP

« Multihoming allows both ends to define multiple IP addresses
for communication

* Only one of these addresses can be defined as the primary
address; the rest are alternative addresses

« The primary address iIs defined during association

establishment
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Multi-homing Data Transfer

* Primary address

— Defined during association establishment
— Determined by the other end

— The process can always override the primary address
(explicitly) of the current association.

— SACK 1s sent to the address from which the
corresponding SCTP packet originated
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Multi-stream Delivery
* Interesting feature in SCTP

- Distinction between data transfer and data
delivery

- Data transfer: TSN (error/flow control)
- Data delivery: SI, SSN

* Data delivery (in each stream)
- Ordered (default)
- Unordered

f‘@‘
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Multi-stream Delivery
+ Data delivery (in each stream)
- Ordered:

- In ordered data delivery, data chunks in a
stream use stream sequence numbers (SSNs)
to define their order in the stream

- SCTP is responsible for message delivery
according to the SSN defined in the chunk

- This may delay the delivery because some
chunks may arrive out of order. In unordered
delivery
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Multi-stream Delivery

- Unordered:

In unordered data delivery, the data chunks in a
stream have the U flag set, but their SSN field
value Is ignored. They do not consume SSNS

Xal—=L
~
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Fragmentation
» IP fragmentation vs. SCTP

- SCTP preserves the boundaries of the msg
from process to process when creating a DATA
chunk from a message if the size of the msg
does not exceed the MTU (maximumtransmission unit)
of the path

+ SCTP fragmentation
- Each fragment carries a different TSN
- All header chunks carries the same SI,

J=5SN, payload protocol ID, and U flag
@\ TCP/IP Protocol Suite 79




Figure 16.21 Association termination

SCTP does not allow a "half-closed” association

Client Server
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*r close
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v Y
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Figure 16.22 Association abortion
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Figure 16.24 A common scenario of state
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Figure 16.25 Simultaneous open
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Figure 16.26

Simultaneous close
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16-7 FLOW CONTROL

Flow control in SCTP 1s similar to that in TCP. In TCP, we
need to deal with only one unit of data, the byte. In SCTP,
we need to handle two units of data, the byte and the
chunk. The values of rwnd and cwnd are expressed 1n

bytes; the values of TSN and acknowledgments are
expressed in chunks.
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Topics Discussed in the Se

v’ Receiver Site
v’ Sender Site
v" A Scenario
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Figure 16.27 Flow control, receiver site

rwnd, cwnd: in bytes
TSN and Acknowledgement : in chunks

winSize To process
Recerved e 26((25((24(]23] |22 J
Receiving queue 0 26 cumTSN
1000 | winSize
20 lastACK

The first variable holds the last TSN received, cumTSN.
The second variable holds the available buffer size, winsize.

The third variable holds the last accumulative acknowledgment, lastACK
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| Figure 16.27 Flow control, receiver site

1. When the site receives a data chunk, it stores it at the end of the
buffer (queue) and subtracts the size of the chunk from winSize.
The TSN number of the chunk is stored in the cumTSN variable.

2. When the process reads a chunk, it removes it from the queue and
adds the size of the removed chunk to winSize (recycling).

3. When the receiver decides to send a SACK, it checks the value of
lastAck; if it is less than cumTSN, it sends a SACK with a
cumulative TSN number equal to the cumTSN. It also includes the
value of winSize as the advertised window
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Figure 16.28 Flow control, sender site

1. A chunk pointed to by curTSN can be sent if

the size of the data is less than or equal to
the quantity (rwnd-inTransit)

From process

Sent but not acknowledged

Outstanding chunks
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26

Sending queue

—> T0 send

37 cur 'SN

2000 rwnd
700 ' Transit

2. When a SACK is received, the chunks with a TSN less than or
equal to the cumulative TSN in the SACK are removed from the
queue and discarded. The values of rwnd and inTransit are
updated properly
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Figure 16.29 Flow control scenario
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16-8 ERROR CONTROL

SCTP, like TCP, is a reliable transport—layer protocol.
It uses a SACK chunk to report the state of the
receiver buffer to the sender. Each implementation
uses a different set of entities and timers for the
receiver and sender sites. We use a very simple design
to convey the concept to the reader.
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Topics Discussed in the Sectic

v’ Receiver Site

v’ Sender Site

v’ Sending Data Chunks

v’ Generating SANK Chunks
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Figure 16.30 Error-control receiver site
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Figure 16.31 Error control, sender site

Assume 100 bytes per chunk
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Figure 16.32 New state at the sender site after receiving a SACK chunk

1. Chunks 26-28, 31-34 are removed.
2. The value of rwnd is changed to 1000 as advertised in the

SACK chunk.

From process

Outstanding chunks

-

Sending queue

Add when timer
expires or four SACKs
received.

[ I

37

1000
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> —> To send

Retransmission
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l

cur'SN
rwnd

inTransit

Not include 24, 25

3. Also assume timer for chunks 24, 25 has expired.

4. 4 chunks are now in transit, so inTransit becomes 400.
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Generating SACK Chunks
* Piggybacking:

— When an end sends a DATA chunk to the other end, It mus

Include a SACK chunk advertising the receipt of
unacknowledged DATA chunks.

» Delay sending of SACK no more than 500m
+ Send a SACK immediately when

- a packet arrives with out-of-order data chunk

- a packet arrives with duplicate data chunks an

new data chunks
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16-9 CONGESTION CONTROL

SCTP, like TCP, is a transport layer protocol with
packets subject to congestion in the network. The
SCTP designers have used the same strategies we
described for congestion control in Chapter 15 for
TCP. SCTP has slow start, congestion avoidance, and
congestion detection phases. Like TCP, SCTP also
uses fast retransmission and fast recovery.

TCP/IP Protocol Suite
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v’ Congestion Control and Mul
v’ Explicit Congestion Notificat

Need
of cwi

It is a process that enables a receiver
sender of any congestion experienced
E.g. the receiver encounters many del.
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OBJECTIVES:

 To introduce client-server paradigm.

] To introduce socket interfaces and list some common functions In
this interface.

J To discuss client-server communication using connectionless
Iterative service offered by UDP.

J To discuss client-server communication using connection-
oriented concurrent service offered by TCP.

] To give an example of a client and a server program using UDP.
] To give an example of a client and a server program using TCP.

] To briefly discuss the peer-to-peer paradigm and its application.
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Ch ap ter | 771  Client-Server Paradigm
Outline 17.2 Peer-to—Peer Paradigm
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17-1 CLIENT-SERVER PARADIGM

The purpose of a network, or an internetwork, is to
provide services to users: A user at a local site wants
to receive a service from a computer at a remote site.
One way to achieve this purpose is to run two
programs. A local computer runs a program to request
a service from a remote computer; the remote
computer runs a program to give service to the
requesting program. This means that two computers,
connected by an internet, must each run a program,
one to provide a service and one to request a service.
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Topics Discussed in the Sectic

v’ Server

v’ Client

v’ Concurrency

v’ Socket Interfaces

v’ Communication Using UDP
v’ Communication Using TCP
v’ Predefined Client-Server App
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Figure 17.1 Server types

Concurrency in Clients

Clients can be run on a machine either iteratively or concurrently. Running clients
iteratively means running them one by one; one client must start, run, and terminate
before the machine can start another client. Most computers today, however, allow
concurrent clients; that is, two or more clients can run at the same time.

Concurrency in Servers

An jterative server can process only one request at a time; it receives a request, pro-
cesses it, and sends the response to the requestor before it handles another request. A
concurrent server, on the other hand, can process many requests at the same time and
thus can share its time between many requests.
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Figure 17.1 Server types

Servers
Connectlonless Connectlonless Connectlon oriented Connectlon oriented
iterative concurrent iterative concurrent

TCP/SCTP
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Figure 17.2 Connectionless iterative server
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Figure 17.3 Connection-oriented concurrent server

* The servers that use TCP (or SCTP) are normally concurrent

« Connection Oriented: request is a stream of bytes that can
arrive in several segments and the response can occupy
several segments

 connection remains open until the entire stream is processed
and the connection is terminated.

« Each connection needs a port and many connections may be
open at the same time

« Many ports are needed, but a server can use only one well-
known port. The solution is to have one well-known port and
many ephemeral ports



Figure 17.3 Connection-oriented concurrent server
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Socket Interfaces

If we need a program to be able to communicate with another
program running on another machine, we need a new set of
instructions to tell the transport layer to open the connection,
send data to and receive data from the other end, and close the
connection. A set of instructions of this kind i1s normally
referred to as an interface.

11



An Interface i1s a set of instructions

designed for interaction between two
entities.

TCP/IP Protocol Suite



Figure 17.4 Relation between the operating system and the TCP/IP suite
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The socket interface, as a set of instructions, located between the operating
system and the application programs.

Operating System

To access the services provided by the TCP/IP protocol suite, an application
needs to use the instructions defined in the socket interface. 13



Example 17.1

Most of the programming languages have a file interface, a set of
instructions that allow the programmer to open a file, read from the
file, write to the file, perform other operations on the file, and
finally close the file. When a program needs to open the file, it uses
the name of the file as it is known to the operation system. When
the file is opened, the operating system returns a reference to the
file (an integer or pointer) that can be used for other instructions,

such as read and write.

TCP/IP Protocol Suite 14



Figure 17.5 Concepts of sockets

socket 1s a software structure within a network node of a computer network
that serves as an endpoint for sending and receiving data across the network
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Figure 17.6 Socket data structure
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int family;
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socketaddr local;
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Figure 17.6 Socket data structure

J Family. This field defines the protocol group: IPv4, IPv6, UNIX domain protocols,
and so on. The family type we use in TCP/IP is defined by the constant IF_INET
for IPv4 protocol and IF_INET6 for IPv6 protocol.

J Type. This field defines four types of sockets: SOCK_STREAM (for TCP),
SOCK_DGRAM (for UDP), SOCK_SEQPACKET (for SCTP), and SOCK_RAW
(for applications that directly use the services of IP. They are shown in Figure 17.7.

J Protocol. This field defines the protocol that uses the interface. It is set to 0 for
TCP/IP protocol suite.

J Local socket address. This field defines the local socket address. A socket address, as
discussed in Chapter 13, is a combination of an IP address and a port number.

J Remote socket address. This field defines the remote socket address.

TCP/IP Protocol Suite 17



Figure 17.7 Socket types
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Figure 17.8
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structure of a socket address

Structure of a socket address, a combination of IP address
and port number.

TCP/IP Protocol Suite



Socket Functions

J The socket Function

The operating system defines the socket structure shown in Figure 17.6. The oper-
ating system, however, does not create a socket until instructed by the process. The
process needs to use the socket function call to create a socket. The prototype for
this function is shown below:

int socket (int Zamily, int type, int protocol);

If the call is successful, the function returns a unigue socket descriptor
sockfd (a non-negative integer)

TCP/IP Protocol Suite 21



Socket Functions

J The bind Function

The socket function fills the fields in the socket partially. To bind the socket to the
local computer and local port, the bind function needs to be called. The bind func-
tion, fills the value for the local socket address (local IP address and local port
number). It returns —1 if the binding fails. The prototype is shown below:

TCP/IP Protocol Suite
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Socket Functions

1 The connect Function

The connect function is used to add the remote socket address to the socket struc-
ture. It returns —1 if the connection fails.The prototype is given below:

The argument is the same, except that the second and third argument defines the
remote address instead of the local one.

TCP/IP Protocol Suite 23



Socket Functions

(1 The listen Function

The listen function is called only by the TCP server. After TCP has created and bound a
socket, it must inform the operating system that a socket is ready for receiving client
requests. This is done by calling the /isten function. The backlog is the maximum num-
ber of connection requests. The function returns —1 if it fails. The following shows the

prototype:

U The accept Function

The accept function is used by a server to inform TCP that it is ready to receive
connections from clients. This function returns -1 if it fails. Its prototype is shown
below:

TCP/IP Protocol Suite

24



Socket Functions

Accept function:

a. The call to accept() function makes the process check if there is any client
connection request in the waiting buffer. If not, the accept makes the process to
sleep. The process wakes up when the queue has at least one request.

b. After a successful call to the accept, a new socket is created and the
communication is established between the client socket and the new socket of
the server.

c. The address received from the accept function fills the remote socket address
In the new socket.

25



Socket Functions

J The send and recv Functions

The send function is used by a process to send data to another process running on a
remote machine. The recv function is used by a process to receive data from
another process running on a remote machine.These functions assume that there is
already an open connection between two machines; therefore, it can only be used
by TCP (or SCTP). These functions returns the number of bytes send or receive.
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Figure 17.9 Connectionless iterative communication using UDP
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Example 17.2

As an example, let us see how we can design and write two
programs: an echo server and an echo server. The client sends a
line of text to the server; the server sends the same line back to
the client. Although this client/server pair looks useless, it has
some applications. It can be used, for example, when a computer
wants to test if another computer in the network is alive. To better
understand the code in a program, we first give the layout of
variables used in both programs as shown in Figure 17.10.
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Figure 17.10 Variables used in echo server and echo client using UDP service
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Table 17.1 Echo Server Program using the Service of UDP

l

TCP/IP Protocol Suite

(k88 // UDP echo server program

(A #include "headerFiles.h"

int main (void)

// Declaration and definition

int sd; // Socket descriptor

int nr; // Number of bytes received
char buffer [256]: // Data buffer

struct sockaddr_in serverAddr: /l Server address

struct sockaddr_in clientAddr: // Client address

int clAddrLen: // Length of client Address

/I Create socket

sd = socket (PF_INET. SOCK_DGRAM. 0):
// Bind socket to local address and port
memset (&serverAddr. 0, sizeof (serverAddr)):
serverAddr.sin_family = AF_INET;

30



Table 17.1 Echo Server Program using the Service of UDP (continued)

serverAddr.sin_addr.s_addr = htonl (INADDR_ANY): // Default address
serverAddr.sin_port = htons (7)  // We assume port 7

bind (sd, (struct sockaddr*) &serverAddr, sizeof (serverAddr)):

// Receiving and echoing datagrams

for(::) // Run forever

{

nr = recvirom (sd. buffer. 256. 0. (struct sockaddr*)&clientAddr. &clAddrLen):
sendto (sd. buffer. nr, 0. (struct sockaddr®)&clientAddr, sizeof(clientAddr));

|

} // End of echo server program
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Table 17.2  Echo Client Program using the Service of UDP

TCP/IP Protocol Suite

b El // UDP echo client program
(O #include "headerFiles.h”

int main (void)

// Declaration and definition

int sd; /I Socket descriptor

int ns: // Number of bytes send

int nr; // Number of bytes received
charbuffer [256]; // Data buffer
structsockaddr _in serverAddr; /l Socket address

/I Create socket

sd = socket (PF_INET. SOCK_DGRAM, 0):

/l Create server socket address

memset (&servAddr, 0, sizeof(serverAddr));
servAddr.sin_family = AF_INET:

inet_pton (AF_INET., “server address”, &serverAddr.sin_addr);
serverAddr.sin_port = htons (7):

/l Send and receive datagrams

fgets (buffer. 256, stdin);
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Table 17.2  Echo Client Program using the Service of UDP (continued)

TCP/IP Protocol Suite

ns = sendto (sd, buffer, strlen (buffer), 0,

(struct sockaddr)&serverAddr, sizeof(serveraddr)):
recvirom (sd, buffer, strlen (buffer), O, NULL, NULL);
buffer [nr] = 0:
printf (“Received from server:™):
fputs (buffer. stdout):

/l Close and exit
close (sd):
exit (0):

} // End of echo client program

33



Server Socket

Listen socket: This socket is only used during connection
establishment.

Bind function : bind this connection to the socket address
of the server computer

The server program then calls the accept function. This function
IS a blocking function; when it is called, it is blocked until the TCP
receives a connection request (SYN segment) from a client.

34



Server Socket

The accept function: then is unblocked and creates a new socket
Called the connect socket that includes the socket address of the
client that sent the SYN segment

To provide concurrency, the server process (parent process) calls the
fork function. This function creates a new process
(child process), which is exactly the same as the parent process

35



Figure 17.11 Flow diagram for connection-oriented, concurrent communication
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Figure 17.12 Status of parent and child processes with respect to the socket
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Example 17.3

We want to write two programs to show how we can have an echo
client and echo server using the services of TCP. Figure 17.13
shows the variables we use in these two programs. Since data may
arrive in different chunks, we need pointers to point to the buffer.
The first buffer is fixed and always points to the beginning of the
buffer; the second pointer is moving to let the arrived bytes be
appended to the end of the previous section.
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Figure 17.13 Variable used in echo client and echo sever using TCP
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Table 17.3  Echo Server Program using the Services of TCP

kM // Echo server program
Pl #include "headerFiles.h"

int main (void)
{
/I Declaration and definition
int listensd;
int connectsd;
int n:
int bytesToRecv;
int processlD:
char buffer [256];
char® movePtr;
struct sockaddr _in serverAddr;
struct sockaddr_in chentAddr:
int clAddrLen:

/ Create listen socket

serverAddr.sin_family = AF_INET:

TCP/IP Protocol Suite

// Listen socket descriptor

// Connecting socket descriptor

// Number of bytes in each reception
// Total bytes to receive

/1 1D of the child process

/I Data buffer

// Pointer to the buffer

// Server address

/! Client address

/I Length of client address

listensd = socket (PF_INET. SOCK_STREAM. 0):
// Bind listen socket to the local address and port

memset (&serverAddr. 0. sizeof (serverAddr)):
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Table 17.3  Echo Server Program using the Services of TCP (continued)
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serverAddr.sin_addr.s_addr = htonl (INADDR_ANY):
serverAddr.sin_port = htons (7): // We assume port 7
bind (listensd, &serverAddr, sizeof (serverAddr)):
// Listen to connection requests
listen (listensd, 5);
// Handle the connection
for ( ;) // Run forever
l
connectsd = accept (listensd, &clientAddr, &clAddrLen);
processID = fork ();
if (processlD == ()) /l Child process
{
close (listensd);
bytesToRecv = 256:
movePtr = bufter;
while ( (n = recv (connectfd, movePtr, bytesToRecv, ())) > 0)
{
movePtr = movePtr + n;
bytesToRecv = movePtr - n;
V' // End of while
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Table 17.3  Echo Server Program using the Services of TCP (continued)

42 send (connectsd. buffer, 256, 0):
43 exit (0);

44 Y/ End of if

45 close (connectsd):

46 } // End of for loop

‘YA } // End of echo server program

// Back to parent process

TCP/IP Protocol Suite
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Table 17.4  Echo Client Program using the services of TCP

I
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(k8 // TCP echo client program
WPl #include "headerFiles.h"

int main (void)

/ Declaration and definition

int sd: // Socket descriptor

int n: // Number of bytes received

int bytesToRecv: // Number of bytes to receive
char sendBuffer [256]: // Send buffer

char recvBuffer [256]; /l Receive buffer

char® movePtr: /I A pointer the received buffer
struct sockaddr_in serverAddr; /l Server address

/l Create socket

sd = socket (PF_INET, SOCK_STREAM, 0);

/I Create server socket address

memsel (&serverAddr. (. sizeof(serverAddr):
serverAddr.sin_family = AF_INET:

inet_pton (AF_INET, “server address™, &serverAddr.sin_addr):
serverAddr.sin_port = htons (7):  // We assume port 7

/l Connect
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Table 17.4 Echo Client Program using the services of TCP (continued)

connect (sd, (struct sockaddr™)&serverAddr, sizeof(serverAddr));
// Send and receive data
fgets (sendBuffer, 256. stdin):
send (fd, sendButffer, strlen (sendbuffer), 0):
bytesToRecv = strlen (sendbuffer):
movePtr = recvBuffer;
while ( (n =recv (sd, movePtr, bytesToRecv. 0) ) > 0)
l
movePtr = movePtr + n;
bytesToRecv = bytesToRecv — n:
} // End of while loop
recvBuffer[bytesToRecv] =0:
printf (*Received from server:™);
fputs (recvBuffer, stdout);
/I Close and exit
close (sd);
exit (0):
} // End of echo client program

TCP/IP Protocol Suite
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‘ Note I

In Appendix F we give some simple Java

versions of programs in

Table17.1to 17.4

TCP/IP Protocol Suite
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17-2 PEER-TO-PEER PARADIGM

Although most of the applications available in the Internet
today use the client-server paradigm, the idea of using peer-
to-peer (P2P) paradigm recently has attracted some attention.
In this paradigm, two peer computers can communicate with
cach other to exchange services. This paradigm 1s interesting
in some areas such file as transfer in which the client-server
paradigm may put a lot of the load on the server machine.
However, we need to mention that the P2P paradigm does not
ignore the client-server paradigm; 1t 1s based on this
paradigm.
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