
POWER SYSTEM STABILITY 



Introduction 

Stability of a power system is its ability to return to normal or stable operating 

conditions after having been subjected to some form of disturbance. Conversely, 

instability means a condition denoting loss of synchronism or falling out of step. 

Though stability of a power system is a single phenomenon, for the purpose of 

analysis, it is classified as Steady State Analysis and Transient Stability. 

Increase in load is a kind of disturbance. If increase in loading takes place 

gradually and in small steps and the system withstands this change and 

performs satisfactorily, then the system is said to be in STADY STATE 

STABILITY. Thus the study of steady  state stability is basically concerned with 

the determination of upper limit of machine’s loading before losing synchronism, 

provided the loading is increased gradually at a slow rate. 



In practice, load change may not be gradual. Further, there may be sudden 

disturbances due to  

i) Sudden change of load 

ii) Switching operation 

iii) Loss of generation 

iv) Fault 

Following such sudden disturbances in the power system, rotor angular 

differences, rotor speeds, and power transfer undergo fast changes whose 

magnitudes are dependent upon the severity of disturbances. For a large 

disturbance, changes in angular differences may be so large as to cause the 

machine to fall out of step. This type of instability is known as TRANSIENT 

INSTABILITY. Transient stability is a fast phenomenon, usually occurring within 

one second for a generator close to the cause of disturbance. 



Short circuit is a severe type of disturbance. During a fault, electrical powers 

from the nearby generators are reduced drastically, while powers from remote 

generators are scarily affected. In some cases, the system may be stable even 

with sustained fault; whereas in other cases system will be stable only if the fault 

is cleared with sufficient rapidity. Whether the system is stable on the occurrence 

of a fault depends not only on the system itself, but also on the type of fault, 

location of fault, clearing time and the method of clearing. 

Transient stability limit is almost always lower than the steady state limit and 

hence it is much important. Transient stability limit depends on the type of 

disturbance, location and magnitude of disturbance.       

Review of mechanics 

Transient stability analysis involves some mechanical properties of the machines 

in the system. After every disturbance, the machines must adjust the relative 

angles of their rotors to meet the condition of the power transfer involved. The 

problem is mechanical as well as electrical.                    



The kinetic energy of an electric machine is given by  

K.E. = 2ω
2

1
I  Mega Joules                                                                                          (1) 

where I is the Moment of Inertia in Mega Joules sec.2 / elec. deg.2   

           ω is the angular velocity in elec. deg. / sec. 

Angular Momentum M = I ω; Then from eqn. (1), K.E. can be written as 

K.E. = ωM
2

1
Mega Joules                                                                                          (2) 

The angular momentum M depends on the size of the machine as well as on its 

type. 

The Inertia constant H is defined as the Mega Joules of stored energy of the 

machine at synchronous speed per MVA of the machine. When so defined, the 

relation between the Angular Momentum M and the Inertia constant H can be 

derived as follows. 



Relationship between M and H 

By definition H = 
MVAinratingsMachine'

MJinenergyStored
 

 Let G be the rating of the machine in MVA. Then 

Stored energy = G H  MJ                                                                                            (3) 

Further, K.E.   =  ωM
2

1

 
MJ    =  M

2

1
(2 π f)  MJ  =   M x π f   MJ                         (4) 

From eqns. (3) and (4), we get 

G H = M x π f;  Thus  

M = 
fπ

HG
 MJ sec. / elec. rad.                                                                                        (5) 

If the power is expressed in per unit, then G = 1.0 per unit and hence 

M = 
fπ

H
                                                                                                                         (6) 

While the angular momentum M depend on the size of the machine as well as on 

its type, inertia constant H does not vary very much with the size of the machine, 

The quantity H has a relatively narrow range of values for each class of machine. 



Swing equation 

The differential equation that relates the angular momentum M, the acceleration 

power Pa and the rotor angle δ is known as SWING EQUATION. Solution of swing 

equation will show how the rotor angle changes with respect to time following a 

disturbance. The plot of δ Vs t is called the SWING CURVE. Once the swing curve 

is known, the stability of the system can be assessed. 

The flow of mechanical and electrical power in a generator and motor are shown 

in Fig. 1. 

 

 

 

 

Consider the generator shown in Fig. 1(a). It receives mechanical power Pm at the 

shaft torque Ts and the angular speed ω via. shaft from the prime-mover. It 

delivers electrical power Pe to the power system network via. the bus bars. The 

generator develops electromechanical torque Te in opposition to the shaft torque 

Ts. At steady state, Ts = Te.  
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Assuming that the windage and the friction torque are negligible, in a generator, 

accelerating torque acting on the rotor is given by  

Ta = Ts – Te                                                                                                          (7) 

Multiplying by ω on both sides, we get  

Pa = Ps – Pe                                                                                                           (8) 

In case of motor 

Ta = Te – Ts                                                                                                           (9) 

Pa = Pe – Ps                                                                                                         (10) 

In general, the accelerating power is given by  

Pa = Input Power – Output Power                                                                     (11) 



Pa = Ta ω = I α  ω  = M α  = M 
2

2

dt

θd
   

Thus  M 
2

2

dt

θd
 = Pa                                                                                                      (12) 

Here θ = angular displacement (radians) 

         ω = 
dt

dθ
 = angular velocity (rad. / sec.) 

         α  = 
dt

dω
 = 

2

2

dt

θd
 = angular acceleration 

Now we can see how the angular displacement θ can be related to rotor angle δ. 

Consider an object moving at a linear speed of vs ±  Δv. It is required to find its 

displacement at any time t. For this purpose, introduce another object moving 

with a constant speed of vs. Then, at any time t, the displacement of the first 

object is given by  

x = vs t + d  

where d is the displacement of the first object wrt the second  as shown in Fig. 2.                      
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Similarly in the case of angular movement, the angular displacement θ , at any 

time t is given by  

θ  = ωs t  + δ                                                                                                                (13) 

where δ is the angular displacement of the rotor with respect to rotating 

reference axis which rotates at synchronous speed ωs. The angle δ is also called 

as LOAD ANGLE or TORQUE ANGLE. In view of eqn.(13) 

dt

dθ
 = ωs + 

dt

dδ
                                                                                                             (14) 

2

2

dt

θd

 
= 

2

2

dt

δd
                                                                                                                 (15) 

From equations (12) and (15), we get 

M 
2

2

dt

δd
= Pa                                                                                                                   (16) 

The above equation is known as SWING EQUATION 



In case damping power is to be included, then eqn.(16) gets modified as 

M 
2

2

dt

δd
 + D 

dt

dδ
 = Pa                                                                                                    (17) 

Swing curve, which is the plot of torque angleδ  vs time t, can be obtained by 

solving the swing equation. Two typical swing curves are shown in Fig. 3. 

 

 

 

 

 

 

 

Swing curves are used to determine the stability of the system. If the rotor angle 

δ reaches a maximum and then decreases, then it shows that the system has 

transient stability. On the other hand if the rotor angleδ increases indefinitely, 

then it shows that the system is unstable. 
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We are going to study the stability of (1) a generator connected to infinite bus 

and (2) a synchronous motor drawing power from infinite bus. 

We know that the complex power is given by  

P + j Q = V I *      i.e.   P – j Q = V * I     Thus  real power P = Re {V * I} 

Consider a generator connected to infinite bus. 

 

 

 

        V + j X I = E 

                                                                  Internal voltage E leads V by angle δ. 

                                                             Thus  E = δE   

                                                             Current I = ]VδsinEjδcosE[
Xj

1
  

Electric output power  Pe = Re [  IV
 
]  =  δsin

X

VE
 =  Pmax  sin δ 

V is the voltage at infinite bus.  

E is internal voltage of generator.  

X is the total reactance 

Taking this as ref. V = 
00V 

 

phasor dia. can be obtained as 
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Consider a synchronous motor drawing power from infinite bus. 

 

                                                                    V – j X I  =  E   

 

Internal Voltage E lags the terminal voltage V by angle δ. 

Thus  E = δE              Current  I = ])δsinEjδcosE(V[
Xj

1
  

Electric input power  Pe = Re [ IV ]  =  δsin
X

VE
 =  Pmax  sin δ 

Thus Swing equation for alternator is 

M 
2

2

dt

δd
= Pm – Pmax sin δ  

 Swing equation for motor is 

M 
2

2

dt

δd
= Pmax sin δ -  Pm 

Notice that the swing equation is second order nonlinear differential equation 

I 

M 

V E 

Xd XT 

 - j X I 

E 
I 

δ 
V 



Equal area criterion 

The accelerating power in swing equation will have sine term. Therefore the 

swing equation is non-linear differential equation and obtaining its solution is not 

simple. For two machine system and one machine connected to infinite bus bar, 

it is possible to say whether a system has transient stability or not, without 

solving the swing equation. Such criteria which decides the stability, makes use 

of equal area in power angle diagram and hence it is known as EQUAL AREA 

CRITERION. Thus the principle by which stability under transient conditions is 

determined without solving the swing equation, but makes use of areas in power 

angle diagram, is called the EQUAL AREA CRITERION.   

From the Fig. 3, it is clear that if the rotor angle δ oscillates, then the system is 

stable. For δ  to oscillate, it should reach a maximum value and then should 

decrease.  At that point 
dt

dδ
= 0. Because of damping inherently present in the 

system, subsequence oscillations will be smaller and smaller. Thus while 

δ changes, if at one instant of time, 
dt

dδ
= 0, then the stability is ensured. 



Let us find the condition for 
dt

dδ
 to become zero. 

The swing equation for the alternator connected to the infinite bus bars is 

M 
2

2

dt

δd
= Ps – Pe                                                                                                           (18) 

Multiplying both sides by 
dt

dδ
, we get 

M 
2

2

dt

δd
 

dt

dδ
 = (Ps – Pe) 

dt

dδ
           i.e.      2)

dt

dδ
(

dt

d
M

2

1
(Ps – Pe) 

dt

dδ
                      (19) 

Thus  

M

)P(P2

dδ

dt
)

dt

dδ
(

dt

d es2 
  ;          i.e.    

M

)P(P2
)

dt

dδ
(

dδ

d es2 
          On integration 

2

dt

dδ
)(  =  


δ

δ

es

0
M

dδ)P(P2
        i.e.        

dt

dδ
= 


δ

δ

es

0
M

dδ)P(P2
 

Before the disturbance occurs, 0δ was the torque angle. At that time 
dt

dδ
= 0. As 

soon as the disturbance occurs, 
dt

dδ
 is no longer zero and δ  starts changing.  

(20) 



Torque angle δwill cease to change and the machine will again be operating at 

synchronous speed after a disturbance, when 
dt

dδ
= 0 or when 




δ

δ

es

0

dδ
M

)P(P2
= 0  i.e.  

 

δ

δ

es

0

dδ)P(P = 0                                                                                                     (21) 

If there exist a torque angle δ  for which the above is satisfied, then the machine 

will attain a new operating point and hence it has transient stability. 

The machine will not remain at rest with respect to infinite bus at the first time 

when 
dt

dδ
= 0. But due to damping present in the system, during subsequent 

oscillation, maximum value of δ  keeps on decreasing. Therefore, the fact that 

δ has momentarily stopped changing may be taken to indicate stability. 



Sudden load increase on Synchronous motor 

Let us consider a synchronous motor connected to an infinite bus bars. 
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The following changes occur when the load is increased suddenly. 

 Point a           Initial condition; Input = output = P0;  ω = ωs;  δ = δ0 

                        Due to sudden loading, output = Ps; output > Input; 

                        ω decreases from ωs;  δ increases from δ0. 

Between a-b   Output > Input; Rotating mass starts loosing energy resulting 

    deceleration; ω decreases; δ increases. 

Point b   Output = Input; ω = ωmin which is less than ωs; δ = δs 

  Since ω is less than ωs, δ continues to increase. 
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Between b-c   Input  >  output; Rotating masses start gaining energy; 

                        Acceleration; ω starts increasing from minimum value but still less   

                        than ωs;  δ continues to increase. 

Point c   Input  >  output;  ω = ωs;  δ = δm; There is acceleration; ω is going  

                        to increase from ωs;  hence δ is going to decrease from δm. 

Between c-b   Input  >  output; Acceleration; ω increases and δ decreases. 

Point b    Input = output; ω = ωmax ; δ = δs. Since ω is greater than ωs,  

                        δ continues to decrease. 

Between b-a   Output > input; Deceleration; ω starts decreasing from ωmax ; but  

                        still greater than ωs; δ continues to decrease. 

Point a   ω = ωs;  δ = δ0; Output > Input; The cycle repeats. 
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Because of damping present in the system, subsequent oscillations become 

smaller and smaller and finally b will be the steady state operating point. 

Interpretation of equal area 

As discussed earlier (eqn. 21), the condition for stability is 

 

δ

δ

es

0

dδ)P(P = 0  i.e.  
δ

δ

e

0

dδP  = 
δ

δ

s

0

dδP  

From Fig. 4, 
m

0

δ

δ

e dδP  = area δ0 a b c δm  

and 
m

0

δ

δ

s dδP  =  area δ0 a d e δm 

Thus for stability,  

area δ0 a b c δm  =  area δ0 a d e δm 

Subtracting area δ0 a b e δm  from both sides of above equation, we get A2  =  A1. 

Thus for stability, 

A2  =  A1                                                                                                                      (22) 
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Fig. 5 shows three different cases: The one shown in case a is STABLE. Case b 

indicates CRITICALLY STABLE while case c falls under UNSTABLE. 

 

 

 

 

 

 

 

 

Note that the areas A1 and A2 are obtained by finding the difference      

between INPUT and OUTPUT. 
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Example 1 

A synchronous motor having a steady state stability limit of 200 MW is receiving 

50 MW from the infinite bus bars. Find the maximum additional load that can be 

applied suddenly without causing instability. 

Solution 

  

 

 

200 sin δ0 = 50   i.e. 

δ0 = sin-1 .rad0.25268
200

50
  

Further 200 sin δS = PS 

Adding area ABCDEA to both A1 and A2 and equating the resulting areas 

 
Referring to Fig. 6, 

for critical stability 
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200 sin δS    (π – δS – δ0)   =  
 S

0

δΠ

δ

dδδsin200    i.e. 

(π – δS – δ0)  sin δS  =  cos δ0 – cos (π – δS) =  cos δ0 + cos δS   i.e. 

(π – δS – 0.25268) sin δS  -  cos δS  =  0.9682458   

The above equation can be solved by trial and error method. 

δS 0.85 0.9 0.95 

RHS 0.8718 0.9363 0.9954 

 

Using linear interpolation between second and third points we get δS = 0.927 rad. 

0.927 rad.  =  53.11 deg. 

Thus PS = 200 sin 53.110  =  159.96 MW 

Maximum additional load possible = 159.96 – 50  =  109.96 MW 



Opening of one of the parallel lines 

When a generator is supplying power to an infinite bus over two parallel 

transmission lines, the opening of one of the lines will result in increase in the 

equivalent reactance and hence decrease in the maximum power transferred. 

Because of this, depending upon the initial operating power, the generator may 

loose synchronism even though the load could be supplied over the remaining 

line under steady state condition. 

Consider the system shown in Fig. 7. The power angle diagrams corresponding 

to stable and unstable conditions are shown in Fig. 8. 
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Short circuit occurring in the system 

Short circuit occurring in the system often causes loss of stability even though 

the fault may be removed by isolating it from the rest of the system in a relatively 

short time. A three phase fault at one end of a double circuit line is shown in Fig. 

9(a) which can be reduced as shown in Fig. 9(b). 

 

 

 

 

 

It is to be noted that all the current from the generator flows through the fault and 

this current Ig lags the generator voltage by 900. Thus the real power output of the 

generator is zero. Normally the input power to the generator remains unaltered. 

Therefore, if the fault is sustained, the load angle δ will increase indefinitely 

because entire the input power will be used for acceleration. This may result in 

unstable condition. 
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When the three phase fault occurring at one end of a double circuit line is 

disconnected by opening the circuit breakers at both ends of the faulted line, 

power is again transmitted. If the fault is cleared before the rotor angle reaches a 

particular value, the system will remain stable; otherwise it will loose stability as 

shown in Fig. 10. 

 

 

 

 

 

 

 

 

Note that the areas A1 and A2 are obtained by finding difference between INPUT 

and OUTPUT. 
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When a three phase fault occurs at some point on a double circuit line, other than 

on the extreme ends, as shown in Fig. 11(a), there is some finite impedance 

between the paralleling buses and the fault. Therefore, some power is transmitted 

during the fault and it may be calculated after reducing the network to a delta 

connected circuit between the internal voltage of the generator and the infinite 

bus as shown in Fig. 11(b). 

 

 

 

 

 

 

Power transmitted during the fault =  δsin
X

EE

b

mg
                                             (23) 

Xc Xa Eg 

+ 

- 

Em 

+ 

- 

(b) 

Em 

Xb 

Fig. 11 

Eg 

+ 

- 

(a) 

+ 

- 



Stable, critically stable and unstable conditions of such systems are shown: 
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Example 2 

In the power system shown in Fig. 12, three phase fault occurs at P and the faulty 

line was opened a little later. Find the power output equations for the pre-fault, 

during fault and post-fault conditions. 

 

 

 

 

Solution 

Pre-fault condition 

 

 

 

 

 

Power  output  Pe =  δsin1.736δsin
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During fault condition: 

 

 

 

 

 

 

 

 

 

 

                                                      (0.36x0.36 + 0.36x0.057 + 0.057x0.36) / 0.057 = 2.99 

Power  output  Pe =  δsin0.418δsin
2.99

1.0x1.25
  

0.16 
0.56 
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0.16 
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Post-fault condition: 

 

 

 

 

 

 

Power  output  Pe =  δsin1.25δsin
1.0

1.0x1.25
  

Thus power output equations are: 

Pre-fault  Pe = Pm 1 sinδ  = 1.736 sinδ  

During fault  Pe = Pm 2 sinδ  = 0.418 sinδ  

Post fault  Pe = Pm 3 sinδ  = 1.25  sinδ  

Here  

Pm 1  = 1.736;   Pm 2  = 0.418;        Pm 3  = 1.25;  

0.56 

0.28 

1.25 - 
1.0 

+ 

0.16 
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+ 
1.25 1.0 

1.0 



Expression for critical clearing angle  CCδ  

 

 

 

 

 

 

 

 

Area A1 = dδδsinP)δδ(P
CC
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2m0CCS   

             = 02mCC2m0SCCS δcosPδcosPδPδP                                             (24) 

Area A2 = )δδ(P-dδδsinP CCmS

δ

δ

3m

m
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  

             =  CCSmSm3mCC3m δPδPδcosPδcosP                                             (25) 
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 A1  = 02mCC2m0SCCS δcosPδcosPδPδP                                                     (24) 

A2  =  CCSmSm3mCC3m δPδPδcosPδcosP                                                      (25) 

Area A2 = Area A1 

CCSmSm3mCC3m δPδPδcosPδcosP   =  02mCC2m0SCCS δcosPδcosPδPδP   

02mm3m0mSCC2m3m δcosPδcosP)δδ(Pδcos)PP(   

2m3m

02mm3m0mS

CC
PP

δcosPδcosP)δδ(P
δcos




  

Thus CRITICAL CLEARING ANGLE is given by 

2m3m

02mm3m0mS1

CC
PP

δcosPδcosP)δδ(P
[cosδ




   ]                                           (26) 

Here the angles are in radian. Further, since 

Pm1 sin δ0 = Ps ,  Pm3 sin δs = Ps and δm = π- δs  angles δ0 and δm are given by 

            

)
P

P
(sinδ

1m

S1

0



              

)
P

P
(sinπδ

3m

S1

m

                                           (27) 



Example 3 

In the power system described in the previous example, if the generator was 

delivering 1.0 p.u. just before the fault occurs, calculate CCδ . 

Solution 

Pm 1  = 1.736;      Pm 2  = 0.418;     Pm 3  = 1.25;     PS = 1.0 

1.736 sin 0δ = 1.0;   sin 0δ = 0.576;   0δ  = 0.6139 rad. 

1.25 sin δs = 1.0;   sin δs = 0.8;     δs = 0.9273 rad.;   mδ = π – δs =  2.2143 rad. 

2m3m

02mm3m0mS

CC
PP

δcosPδcosP)δδ(P
δcos




  

             = 0.6114
0.4181.25

0.6139 cos 0.418-2.2143cos1.250.6139)(2.21431.0





 

Critical clearing angle CCδ = 52.310 



STEP BY STEP SOLUTION OF OBTAINING SWING CURVE 

The equal area criterion of stability is useful in determining whether or not a 

system will remain stable and in determining the angle through which the 

machine may be permitted to swing before a fault is cleared. It does not 

determine directly the length of time permitted before clearing a fault if stability is 

to be maintained.  

In order to specify a circuit breaker of proper speed, the engineer must know the 

CRITICAL CLEARING TIME, which is the time taken by the machine to swing from 

its initial position to its critical clearing angle. If the Critical Clearing Angle (CCA) 

is determined by the equal area criterion, then to determine corresponding 

Critical Clearing Time (CCT), the swing curve for the sustained faulted condition 

is required. 

The step by step method of obtaining swing curve, using hand calculation is 

necessarily simpler than some of the methods recommended for digital 

computer. In the method suitable for hand calculation,the period of interest is 

divided into several short intervals. The change in the angular position of the 

rotor during a short interval of time is computed by making the following 

assumptions. 



1. The accelerating power Pa computed at the beginning of an interval is 

constant from the middle of the proceeding interval to the middle of the 

interval considered. 

2. 
dt

dδ
 is constant throughout any interval at the value computed at the 

middle of the interval. 

Above assumptions are made to approximate continuously varying Pa and 
dt

dδ
 as  

stepped curve. Fig. 14 will help in visualizing the assumptions. The accelerating 

power is computed for the points enclosed in circles, at the beginning of n-1, n 

and n+1 th intervals. The step of Pa in the figure results from assumption 1. 

Similarly ω’ (
dt

dδ
 = 

dt

dθ
- ωs), the excess of angular velocity over the synchronous 

angular velocity is shown as a step curve that is constant throughout the interval, 

at the value computed at the midpoint. 

Between the ordinates  n - 
2

3
 and  n - 

2

1
, there is a change in angular speed ω’ 

caused by constant angular acceleration (caused by constant Pa).  
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The change in angular speed ω’ is 

ω’(n - 
2

1
) - ω’(n - 

2

3
) = Constant angular acceleration x time duration 

                              =   Δt
M

P )1n(a 
      ( Because 

2

2

dt

δd
 = 

M

1
 Pa )                             (28) 

Similarly, change in δ over any interval = constant angular speed ω ’ x time 

duration. Thus 

Δδ (n) = ω’(n - 
2

1
) Δt                                                                                                     (29) 

Δδ (n – 1) = ω’(n - 
2

3
)  Δt          and                                                                               (30) 

Therefore    Δδ (n) - Δδ (n – 1) = [ ω’(n - 
2

1
) - ω’(n - 

2

3
) ] Δt = 

M

P )1n(a 
 (Δt)2 

Thus      Δδ (n) =  Δδ (n – 1)  +  
M

P )1n(a 
 (Δt)2                                                                  (31) 



Thus     Δδ (n) =  Δδ (n – 1)  +  
M

P )1n(a 
 (Δt)2                                                                   (31) 

Equation (31) shows that the change in torque angle during a given interval is 

equal to the change in torque angle during the proceeding interval plus the 

accelerating power at the beginning of the interval  X  
M

t)(Δ 2

. 

Torque angle δ at the end of nth interval can be computed as 

δ (n) = δ (n – 1)  +  Δδ (n)                                                                                                  (32) 

where   Δδ (n) =  Δδ (n – 1)  +  
M

P )1n(a 
 (Δt)2                                                                   (33) 

The above two equations are known as Recursive equations using which 

approximate swing curve can be obtained. 

The process of computation is now repeated to obtain Pa (n), Δδ (n+1) and δ (n+1). The 

solution in discrete form is thus carried out over the desired length of time 

normally 0.05 sec. Greater accuracy of solution can be achieved by reducing the 

time duration of interval. 



Any switching event such as occurrence of a fault or clearing of the fault causes 

discontinuity in the accelerating power Pa. If such a discontinuity occurs at the 

beginning of an interval then the average of the values of Pa  just before and just 

after the discontinuity must be used. 

Thus in computing the increment of angle occurring during the first interval after 

a fault is applied at time t = 0, becomes 

Δδ1 = 0 + 
2

1
(Pa 0

- + Pa 0
+)  

M

t)(Δ 2

 

  =  
2

1
  Pa 0

+  
M

t)(Δ 2

  (Because Pa 0
- = 0) 



If the discontinuity occurs at the middle of an interval, no special procedure is 

needed. The correctness of this can be seen from Fig. 15. 

 

 

 

 

 

 

 

 

 

n th interval 

n - 1 th interval 

n th interval 

n - 1 th interval 

Discontinuity at the 

beginning of an interval 

Discontinuity at the 

middle of an interval 

Fig. 15 



Example 4 

A 20 MVA, 50 Hz generator delivers 18 MW over a double circuit line to an infinite 

bus. The generator has KE of 2.52 MJ / MVA at rated speed and its transient 

reactance is Xd
’ = 0.35 p.u. Each transmission line has a reactance of 0.2 p.u. on a 

20 MVA base. E = 1.1 p.u. and infinite bus voltage V = 1.0 p.u. A three phase 

fault occurs at the mid point of one of the transmission lines. Obtain the swing 

curve over a period of 0.5 sec. if the fault is sustained. 

 

 

 

 

G = 20 MVA = 1.0 p.u. 

Angular momentum M = deg.elec./sec10x2.8
50x180

2.52x1.0

f180

HG 24  

Let us choose Δt = 0.05 sec.       Then   
M

t)(Δ 2

 = 8.929
2.8

10x(0.05) 42

  

E = 1.1 p.u. 

 

 

0.2 p.u. 

0.2 p.u. 

G 

20 MVA   50 Hz 

Delivers 18 MW 

Xd
’ = 0.35 p.u.    

H = 2.52 MJ/MVA 

 

 

Infinite bus      

V = 1.0 p.u. 

 

 



Recursive equations are 

δ (n) = δ (n – 1)  +  Δδ (n)            

where  Δδ (n) =  Δδ (n – 1)  + 8.929 Pa (n-1) 

Pre fault:      X = 0.45 p.u.;       Pe =   δsin
0.45

1.0x1.1
 2.44 sin δ 

During fault: 

 

 

 

 

 

 

Converting the star 0.35, 0.1 and 0.2 as delta 

Pe =   δsin
1.25

1.0x1.1
 

0.1 
0.2 

0.35 

1.1 - 
1.0 

+ 

0.1 

- 

+ 0.1 0.1 

0.35 

0.2 

- 

+ 

- 

+ 

1.1 1.0 

1.25 

0.88 sin δ 



Initial calculations: 

Before the occurrence of fault, there will not be acceleration i.e.  

Input power is equal to output power.  Therefore 

Input power Ps = 18 MW = 0.9 p.u. 

Initial power angle is given by 

2.44 0δ sin = 0.9;    Thus 0δ  = 21.64 

Pa 0
- = 0;     Pa 0

+ = 0.9 – 0.88 sin 21.640  =  0.576 p.u. 

Pa  average = ( 0 + 0.576 ) / 2  =  0.288 p.u. 

First interval:  Δδ1 = 0 + Pa  average x 
M

t)(Δ 2

= 0.288 x 8.929 = 2.570 

                        Thus  δ(0.05) = 21.64 + 2.57 = 24.210 

Subsequent calculations are shown below. 



t  sec. δ  deg. Pmax Pe Pa = 0.9-Pe 8.929 Pa Δδ 

0
- 

21.64 2.44 0.9 0   

0
+ 

21.64 0.88 0.324 0.576   

0 average 21.64   0.288 2.57 2.57 

0.05 24.21 0.88 0.361 0.539 4.81 7.38 

0.10 31.59 0.88 0.461 0.439 3.92 11.30 

0.15 42.89 0.88 0.598 0.301 2.68 13.98 

0.20 56.87 0.88 0.736 0.163 1.45 15.43 

0.25 72.30 0.88 0.838 0.062 0.55 15.98 

0.30 88.28 0.88 0.879 0.021 0.18 16.16 

0.35 104.44 0.88 0.852 0.048 0.426 16.58 

0.40 121.02 0.88 0.754 0.145 1.30 17.88 

0.45 138.90 0.88 0.578 0.321 2.87 20.75 

0.50 159.65      
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Swing curve, rotor angle δ with respect to time, for sustained fault is plotted and 

shown in Fig. 16. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 



Example 5 

In the power system considered in the previous example, fault is cleared by 

opening the circuit breakers at both ends of the faulty line. Calculate the CCA and 

hence find CCT. 

Solution 

From the previous example: Ps = 0.9;   Pm1 = 2.44 and  Pm2 = 0.88 

For the Post fault condition: 

X = 0.55 p.u;        Pe =   δ sin 2.0δsin
0.55

1.0x1.1
  

Thus   Ps = 0.9;     Pm1 = 2.44;    Pm2 = 0.88;     Pm3 = 2.0 

2m3m

02mm3m0mS

CC
PP

δcosPδcosP)δδ(P
δcos




  

2.44 sin δ0 = 0.9;     Therefore δ0 = 0.3778 rad. 

2.0 sin  δs = 0.9;   Thus  δs = 0.4668     Therefore  δm = π - δs = 2.6748 rad 

0.47915
0.882

(0.3778)cos0.88(2.6748)cos2)0.37782.6748(0.9
δcos CC 




  

Thus CCA, δCC = 118.630 
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Referring to the swing curve obtained for sustained fault condition, 

corresponding to CCA of 118.630, CCT can be obtained as 0.38 sec. as shown in 

Fig. 17. 

Fig. 17 



SOLUTION OF SWING EQUATION BY MODIFIED EULER’S METHOD 

Modified Euler’s method is simple and efficient method of solving differential 

equations (DE) 

Let us first consider solution of first order differential equation. Later we shall 

extend it for solving a set of first order DE. The swing equation is a second order 

DE which can be written as two first order DE and solution can be obtained using 

Modified Euler’s method. 

Let the given first order DE be 

)xt,(f
dt

dx
                                                                                                                   (34) 

where t is the independent variable and x is the dependent variable. Let (t 0, x 0) 

be the initial solution and Δt is the increment in t. Then  

t 1 = t 0 + Δt;    t 2 = t 1 + Δt;     t n = t n – 1 + Δt 

First estimate of x1 (value of x at time t1) is denoted as x 1
(0). Then 

x 1
(0) = x 0 + 

dt

dx
|0  Δt                                                                                                    (35) 



Thus (t 1, x 1
(0)) is the first estimated point of (t 1, x 1). Second and the final 

estimate of x 1 is calculated as 

x 1 = x 0 + 
dt

dx
(

2

1
|0 + 

dt

dx
|1

(0))  Δt                                                                                 (36) 

where  
dt

dx
|1

(0)  is the value of 
dt

dx
 computed at (t 1, x 1

(0)). Thus the next point  

(t 1, x 1) is now known. Same procedure can be followed to get  (t 2, x 2) and it can 

be repeated to obtain points (t 3, x 3),  (t 4, x 4)  …….. 

Knowing (t n - 1, x n - 1 ), next point (t n, x n) can be computed as follows: 

t n = t n – 1 + Δt                                                                                                              (37) 

x n
(0) = x n – 1  + 

dt

dx
|n – 1  Δt                                                                                         (38) 

Compute 
dt

dx
|n

(0)  which is 
dt

dx
 computed at  (t n, x n

(0)).                                         (39) 

Then      x n = x n - 1 + 
dt

dx
(

2

1
|n - 1 + 

dt

dx
|n

(0))  Δt                                                           (40) 



Same procedure can be extended to solve a set of two first order DE given by 

dt

dx
= f1 (t, x, y)     and       

dt

dy
= f2 (t, x, y)    

Knowing (t n - 1, x n - 1 , y n - 1), next point (t n, x n, yn) can be computed as follows: 

t n = t n – 1 + Δt 

x n
(0) = x n – 1 +  

dt

dx
|n – 1  Δt 

y n
(0) = y n – 1 +  

dt

dy
|n – 1  Δt 

Compute 
dt

dx
|n

(0)  which is 
dt

dx
 computed at  (t n , x n

(0), y n
(0)) and 

                 
dt

dy
|n

(0)  which is 
dt

dy
 computed at  (t n , x n

(0), y n
(0))                      

Then   x n = x n - 1 + 
dt

dx
(

2

1
|n - 1 + 

dt

dx
|n

(0))  Δt    and 

            y n = y n - 1 + 
dt

dy
(

2

1
|n - 1 + 

dt

dy
|n

(0))  Δt 



We know that the swing equation is 

M 
2

2

dt

δd
= Pa 

When per unit values are used and the machine’s rating is taken as base 

M = 
fπ

H
 

Therefore for a generator 

2

2

dt

δd
 =  )PP(

H

fπ
 P

H

fπ
esa   =  K ( Ps – Pe )  where  K = 

H

fπ
 

The second order DE     
2

2

dt

δd
 = K ( Ps – Pe )   

can be written as two first order DE’s given by 

dt

dδ
 = ω – ωs 

dt

dω
 = K ( Ps – Pe )   



Note that 
dt

dδ
 generally of the form 

dt

dδ
 = f1 ( t, δ, ω). However, now it a function 

of ω alone. Similarly, 
dt

dω
 generally of the form 

dt

dω
 = f2 ( t, δ, ω). However, now it 

a function of δ alone.  

Just prior to the occurrence of the disturbance, Ps – Pe = 0 and ω = ωs. The rotor 

angle can be computed as δ(0) and the corresponding angular velocity is ω(0). 

Thus the initial point is ( 0, δ(0), ω(0)). 

As soon as disturbance occurs, electric network changes and the expression for 

electric power Pe in terms of rotor angle δ can be obtained. During fault condition, 

Pe shall be computed by the said expression. 

Using Modified Euler’s method δ1 and ω1 can be computed. Thus we get the next 

solution point as ( t1, δ1, ω1). The procedure can be repeated to get subsequent 

solution points until next change in electric network, such as removal of faulted 

line occurs. As soon as electric network changes, corresponding expression for 

electric power need to be obtained and used in subsequent calculation. 

The whole procedure can be carried out until t reaches the time upto which 

transient stability analysis is required. 



100 MVA     

Ps = 100 MW  

H = 4 

j 0.08 p.u. 

V = 1.0 00 p.u. 

j 0.2 p.u. 

E’ 
I = (1.0 – j 0.6375)p.u. 

Example 6 

An alternator rated for 100 MVA supplies 100 MW to an infinite bus through a line 

of reactance 0.08 p.u. on 100 MVA base. The machine has a transient reactance of 

0.2 p.u. and its inertia constant is 4.0 p.u. on 100 MVA base. Taking the infinite 

bus voltage as reference, current supplied by the alternator is ( 1.0 – j 0.6375 ) 

p.u. 

Calculate the torque angle and speed of the alternator for a period of 0.14 sec. 

when there is a three phase fault at the machine terminals and the fault is cleared 

in 0.1 sec. Use Modified Euler’s method with a time increment of 0.02 sec. 

Solution 

 

 

E’ = ( 1.0 + j0) + j 0.28 ( 1.0 – j 0.6375) = 1.1785 + j 0.28 = 1.2113 .p.u13.36510  

Initial rotor angle δ = 13.36510 = 0.2333 rad. 



Initial point is:               

δ(0) = 0.2333 rad.                   

ω(0) = 314.1593 rad. / sec. 

Shaft power Ps = 100 MW = 1.0 p.u.  This remains same  

throughout the calculations. 

Just before the fault, Pe = Ps = 1.0 p.u.;  Swing equation is: 

2

2

dt

δd
 =  )PP(

H

fπ
es   =  )P  -  1 ( 39.2699)P1(

4

π50
ee   

ωs = 2 π x 50 = 314.1593 rad. / sec. 

The two first order DEs  are: 

dt

dδ
 = ω – 314.1593 

dt

dω
 = 39.2699 ( 1 – Pe )   

Since the fault is at the generator terminals, during fault Pe = 0 



First estimated point is:               

δ = 0.2333 rad.                   

ω = 314.9447 rad. / sec. 

Initial point is:               

δ(0) = 0.2333 rad.                   

ω(0) = 314.1593 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.02) and ω(0.02) 

First estimate:  

dt

dδ
 = 314.1593 – 314.1593 = 0  

dt

dω
 = 39.2699 ( 1 – 0 ) = 39.2699 

δ = 0.2333 + ( 0 x 0.02 ) = 0.2333 rad. 

ω = 314.1593 + ( 39.2699 x 0.02 ) = 314.9447 rad. / sec.  

Second estimate: 

dt

dδ
 = 314.9447 – 314.1593 = 0.7854 

dt

dω
 = 39.2699 ( 1 – 0 ) = 39.2699;  Thus 

δ(0.02) = 0.2333 + 
2

1
( 0 + 0.7854 ) x 0.02 = 0.24115 rad. 

ω(0.02) = 314.1593 + 
2

1
( 39.2699 + 39.2699 ) x 0.02 = 314.9447 rad. / sec. 



Latest point is:               

δ(0.02) = 0.24115 rad.                   

ω(0.02) = 314.9447 rad. / sec. 

First estimated point is:               

δ = 0.2569 rad.                   

ω = 315.7301 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.04) and ω(0.04) 

First estimate 

dt

dδ
 = 314.9447 – 314.1593 = 0.7854 

dt

dω
 = 39.2699 ( 1 – 0 ) = 39.2699 

δ = 0.24115 + ( 0.7854 x 0.02 ) = 0.2569 rad. 

ω = 314.9447 + ( 39.2699 x 0.02 ) = 315.7301 rad. / sec.  

Second estimate: 

dt

dδ
 = 315.7301 – 314.1593 = 1.5708 

dt

dω
 = 39.2699 ( 1 – 0 ) = 39.2699; Thus 

δ(0.04) = 0.24115 + 
2

1
( 0.7854 + 1.5708 ) x 0.02 = 0.2647 rad. 

ω(0.04) = 314.9447 + 
2

1
( 39.2699 + 39.2699 ) x 0.02 = 315.7301 rad. / sec. 



Latest point is:               

δ(0.1) = 0.4297 rad.                   

ω(0.1) = 318.0869 rad. / sec. 

Calculations can be repeated until the fault is cleared i.e. t = 0.1. The results are 

tabulated. Thus 

δ(0.1) = 0.4297 rad.; ω(0.1) = 318.0869 rad. / sec. 

Once the fault is cleared, reactance between internal voltage and the infinite bus 

is 0.28 and thus generator out put is; 

Pe = δsin4.3261δsin
0.28

1.0x1.2113
  

In the subsequent calculation Pe must be obtained from the above equation. 

To calculate δ(0.12) and ω(0.12) 



Latest point is:               

δ(0.1) = 0.4297 rad.                   

ω(0.1) = 318.0869 rad. / sec. 

First estimated point is:               

δ = 0.50825 rad.                   

ω = 317.4568 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.12) and ω(0.12) 

First estimate 

dt

dδ
 = 318.0869 – 314.1593 = 3.9276 

dt

dω
 = 39.2699 ( 1 – 4.3261 sin 0.4297 rad. ) = - 31.5041 

δ = 0.4297 + ( 3.9276 x 0.02 ) = 0.50825 rad. 

ω = 318.0869 + (- 31.5041 x 0.02 ) = 317.4568 rad. / sec.  

Second estimate: 

dt

dδ
 = 317.4568 – 314.1593 = 3.2975 

dt

dω
 = 39.2699 ( 1 – 4.3261 sin 0.50825 rad. ) = - 43.4047; Thus 

δ(0.12) = 0.4297 + 
2

1
( 3.9276 + 3.2975 ) x 0.02 = 0.50195 rad. 

ω(0.12) = 318.0869 + 
2

1
( - 31.5041 - 43.4047 ) x 0.02 = 317.3378 rad. / sec. 



Complete calculations are shown in the Table: 

);eP(139.2699
dt

dω
314.1593;ω

dt

dδ
   Pe = 0 for t < 0.1  and Pe = 4.3261 sin δ 

t 

sec. 
δ rad. 

ω 

rad/sec 

First Estimate Second Estimate 

dδ/dt dω/dt δ rad. 
ω 

rad/sec 
dδ/dt dω/dt δ rad. 

ω 

rad/sec 

0
- 

0.2333 314.1593         

0
+ 

0.2333 314.1593 0 39.2699 0.2333 314.9447 0.7854 39.2699 0.2412 314.9447 

0.02 0.2412 314.9447 0.7854 39.2699 0.2569 315.7301 1.5708 39.2699 0.2647 315.7301 

0.04 0.2647 315.7301 1.5708 39.2699 0.2961 316.5155 2.3562 39.2699 0.304 316.5155 

0.06 0.304 316.5155 2.3562 39.2699 0.3511 317.3009 3.1416 39.2699 0.359 317.3009 

0.08 0.359 317.3009 3.1416 39.2699 0.4218 318.0863 3.927 39.2699 0.4297 318.0869 

0.10
- 

0.4297 318.0869         

0.10
+ 

0.4297 318.0869 3.9276 -31.504 0.5083 317.4568 3.2975 -43.405 0.502 317.3378 

0.12
 

0.502 317.3378 3.1785 -42.468 0.5655 316.4884 2.3291 -51.761 0.557 316.3955 

0.14
 

0.557 316.3955         

 



t sec 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

δ rad 0.2333 0.24115 0.2647 0.304 0.359 0.4297 0.50195 0.5570 

δ deg 13.37 13.82 15.17 17.42 20.57 24.62 28.76 31.91 

ω 

rad/sec 
314.1593 314.9447 315.7301 316.5155 317.3009 318.0869 317.3378 316.3955 

 



SOLUTION OF SWING EQUATION BY RUNGE KUTTA METHOD 

Fourth order Runge Kutta (RK) method is one of the most commonly used 

methods of solving differential equation. 

Consider the first order DE 

)xt,(f
dt

dx
  

Let (t m, x m) be the initial point and h be the increment in time. Then 

t m + 1 = t m + h 

Fourth order RK method can be defined by the following five equations. 

x m + 1 = x m + 
6

1
( k1 + 2 k2 + 2 k3 + k4)   where 

k1 = f ( t m, x m ) h                                   k2 = f ( t m + 
2

h
, x m + 

2

k1 ) h 

k3 = f ( t m + 
2

h
, x m + 

2

k 2 ) h                  k4 = f ( t m + h, x m + k3 ) 



Note that in this method, the function has to be evaluated four times in each step. 

Same procedure can be extended to solve a set of first order DE such as 


dt

dx
f1 ( t , x , y )      and      

dt

dy
f2 ( t , x , y ) 

Initial solution point is ( t m, xm, ym ). Then 

x m + 1 = x m +  
6

1
( k1 + 2 k2 + 2 k3 + k4)               y m + 1 = y m +  

6

1
( ℓ1 + 2 ℓ2 + 2 ℓ3 + ℓ4) 

where 

k1 = f1 ( t m, xm, ym ) h                                           ℓ1 = f2 ( t m, x m, ym ) h  

k2 = f1 ( t m + 
2

h
, xm + 

2

k1 , ym + 
2

1 ) h                 ℓ2 = f2 ( t m + 
2

h
, xm + 

2

k1 , ym + 
2

1 ) h 

k3 = f1 ( t m + 
2

h
, xm + 

2

k 2 , ym + 
2

2 ) h                 ℓ3 = f2 ( t m + 
2

h
, xm + 

2

k 2 , ym + 
2

2 ) h 

k4 = f1 ( t m + h, xm + k3, ym + ℓ3 ) h                     ℓ4 = f2 ( t m + h, xm + k3, ym + ℓ3 ) h 



We know that the swing equation can be written as 

dt

dδ
 = ω – ωs 

dt

dω
 = K ( Ps – Pe )  where  K = 

H

fπ
 

The initial solution point is ( 0, δ(0), ω(0)). When 4th order RK method is used, k1, 

ℓ1, k2, ℓ2, k3, ℓ3, k4, ℓ4 are computed and then the next solution point is obtained as  

( t1, δ1, ω1). This procedure can be repeated to get subsequent solution points. 



Initial point is:               

δ(0) = 0.2333 rad.                   

ω(0) = 314.1593 rad. / sec. 

Example 7 

Consider the problem given in previous example and solve it using 4th order RK 

method. 

Solution 

As seen in the previous example, two first order DEs are 

dt

dδ
 = ω – 314.1593 

dt

dω
 = 39.2699 ( 1 – Pe )   

During the first switching interval t = 0+  to 0.1 sec. electric output power Pe = 0. 



Initial point is:               

δ(0) = 0.2333 rad.                   

ω(0) = 314.1593 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.02) and ω(0.02) 

k1 = (314.1593 – 314.1593) x 0.02 = 0                   ℓ1 = 39.2699 ( 1 – 0 ) x 0.02 = 0.7854 

δ(0) + k1 / 2 = 0.2333;     ω(0) + ℓ1 / 2 = 314.1593 + 0.3927 = 314.552 

k2 = (314.552 – 314.1593) x 0.02 = 0.007854        ℓ2 = 39.2699 ( 1 – 0 ) x 0.02 = 0.7854 

δ(0) + k2 / 2 = 0.2372;     ω(0) + ℓ2 / 2 = 314.1593 + 0.3927 = 314.552 

k3 = (314.552 – 314.1593) x 0.02 = 0.007854        ℓ3 = 39.2699 ( 1 – 0 ) x 0.02 = 0.7854 

δ(0) + k3 = 0.2412;        ω(0) + ℓ3 = 314.1593 + 0.7854 = 314.9447 

k4 = (314.9447 – 314.1593) x 0.02 = 0.0157          ℓ4 = 39.2699 ( 1 – 0 ) x 0.02 = 0.7854 

δ(0.02) = 0.2333 + 
6

1
[ 0 + 2 (0.007854) + 2 (0.007854) + 0.0157 ] = 0.24115 rad. 

ω(0.02) = 314.1593 + 
6

1
[ 0.7854 + 2 (0.7854) + 2 (0.7854) + 0.7854 ]  

             = 314.9447 rad / sec. 



Latest point is:               

δ(0.02) = 0.24115 rad.                   

ω(0.02) = 314.9447 rad. / sec. 

It is to be noted that up to 0.1 sec., since Pe remains at zero,  

constants ℓ1 = ℓ2 = ℓ3 = ℓ4 = 0.7854 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.04) and ω(0.04) 

k1 = (314.9447 – 314.1593) x 0.02 = 0.01571 

ω(0.02) + ℓ1 / 2 = 314.9447 + 0.3927 = 315.3374 

k2 = (315.3374 – 314.1593) x 0.02 = 0.02356 

ω(0.02) + ℓ2 / 2 = 314.9447 + 0.3927 = 315.3374 

k3 = (315.3374 – 314.1593) x 0.02 = 0.02356 

ω(0.02) + ℓ3 = 314.9947 + 0.7854 = 315.7301 

k4 = (315.7301 – 314.1593) x 0.02 = 0.03142 

δ(0.04) = 0.24115 + 
6

1
[ 0.01571 + 2 (0.02356) + 2 (0.02356) + 0.03142 ] = 0.2647 rad. 

ω(0.04) = 314.9447 + 0.7854 = 315.7301 rad / sec. 



Latest point is:               

δ(0.04) = 0.2647 rad.                   

ω(0.04) = 315.7301 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.06) and ω(0.06) 

k1 = (315.7301 – 314.1593) x 0.02 = 0.03142 

ω(0.04) + ℓ1 / 2 = 315.7301 + 0.3927 = 316.1228 

k2 = (316.1228 – 314.1593) x 0.02 = 0.03927 

ω(0.04) + ℓ2 / 2 = 315.7301 + 0.3927 = 316.1228 

k3 = (316.1228 – 314.1593) x 0.02 = 0.03917 

ω(0.04) + ℓ3 = 315.7301 + 0.7854 = 316.5155 

k4 = (316.5155 – 314.1593) x 0.02 = 0.04712 

δ(0.06) = 0.2647 + 
6

1
[ 0.03142 + 2 (0.03927) + 2 (0.03927) + 0.04712 ] = 0.304 rad. 

ω(0.06) = 315.7301 + 0.7854  = 316.5155 rad / sec. 



Latest point is:               

δ(0.06) = 0.304 rad.                   

ω(0.06) = 316.5155 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.08) and ω(0.08) 

k1 = (316.5155 – 314.1593) x 0.02 = 0.04712 

ω(0.06) + ℓ1 / 2 = 316.5155 + 0.3927 = 316.9082 

k2 = (316.9082 – 314.1593) x 0.02 = 0.05498 

ω(0.06) + ℓ2 / 2 = 316.5155 + 0.3927 = 316.9082 

k3 = (316.9082 – 314.1593) x 0.02 = 0.05498 

ω(0.06) + ℓ3 = 316.5155 + 0.7854 = 317.3009 

k4 = (317.3009 – 314.1593) x 0.02 = 0.06283 

δ(0.08) = 0.2647 + 
6

1
[ 0.04712 + 2 (0.05498) + 2 (0.05498) + 0.06283 ] = 0.359 rad. 

ω(0.08) = 316.5155 + 0.7854  = 317.3009 rad / sec. 



Latest point is:               

δ(0.08) = 0.359 rad.                   

ω(0.08) = 317.3009 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.1) and ω(0.1) 

k1 = (317.3009 – 314.1593) x 0.02 = 0.06283 

ω(0.08) + ℓ1 / 2 = 317.3009 + 0.3927 = 317.6936 

k2 = (317.6936 – 314.1593) x 0.02 = 0.07069 

ω(0.08) + ℓ2 / 2 = 317.3009 + 0.3927 = 317.6936 

k3 = (317.6936 – 314.1593) x 0.02 = 0.07069 

ω(0.08) + ℓ3 = 317.3009 + 0.7854 = 318.0863 

k4 = (318.0863 – 314.1593) x 0.02 = 0.07854 

δ(0.1) = 0.359 + 
6

1
[ 0.06283 + 2 (0.07069) + 2 (0.07069) + 0.07854 ] = 0.4297 rad. 

ω(0.1) = 317.1593 + 0.7854  = 318.0863 rad. / sec. 

At t = 0.1 sec., the fault is cleared. As seen in the previous example, for t ≥ 0.1 

sec., electric power output of the alternator is given by Pe = 4.3261 sin δ 



Latest point is:                

δ(0.1) = 0.4297 rad.                   

ω(0.1) = 318.0863 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.12) and ω(0.12) 

k1 = (318.0863 – 314.1593) x 0.02 = 0.07854 

Pe = 4.3261 sin (0.4297 rad.) = 1.8022 

ℓ1 = 39.2699 ( 1 – 1.8022 ) x 0.02 = - 0.63 

δ(0.1) + k1 / 2 = 0.4690;     ω(0.1) + ℓ1 / 2 = 318.0863 - 0.315 = 317.7713 

k2 = (317.7713 – 314.1593) x 0.02 = 0.07224 

Pe = 4.3261 sin (0.469 rad.) = 1.9554 

ℓ2 = 39.2699 ( 1 – 1.9554 ) x 0.02 = - 0.7504 

δ(0.1) + k2 / 2 = 0.4658;     ω(0.1) + ℓ2 / 2 = 318.0863 + 0.3752 = 317.7111 



k3 = (317.7111 – 314.1593) x 0.02 = 0.07104 

Pe = 4.3261 sin (0.4658 rad.) = 1.9430 

ℓ3 = 39.2699 ( 1 – 1.9430 ) x 0.02 = - 0.7406 

δ(0.1) + k3 = 0.5007;     ω(0.1) + ℓ3 = 318.0863 - 0.7406 = 317.3457 

k4 = (317.3457 – 314.1593) x 0.02 = 0.06373 

Pe = 4.3261 sin (0.5007 rad.) = 2.0767 

ℓ4 = 39.2699 ( 1 – 2.0767 ) x 0.02 = - 0.8456 

δ(0.12) = 0.4297 + 
6

1
[ 0.07854 + 2 (0.07224) + 2 (0.07104) + 0.06373 ] = 0.5012 rad. 

ω(0.12)= 318.0863 +
6

1
[ - 0.63 - 2 (0.7504) - 2 (0.7406) - 0.8456 ]= 317.3434 rad. / sec. 



Latest point is:                

δ(0.12) = 0.5012 rad.                   

ω(0.12) = 317.3434 rad. / sec. 

)eP(139.2699
dt

dω
314.1593ω

dt

dδ
  

To calculate δ(0.14) and ω(0.14) 

k1 = (317.3434 – 314.1593) x 0.02 = 0.06368 

Pe = 4.3261 sin (0.5012 rad.) = 2.0786 

ℓ1 = 39.2699 ( 1 – 2.0786 ) x 0.02 = - 0.8471 

δ(0.12) + k1 / 2 = 0.5330;     ω(0.12) + ℓ1 / 2 = 317.3434 - 0.42355 = 316.91985 

k2 = (316.91985 – 314.1593) x 0.02 = 0.05521 

Pe = 4.3261 sin (0.533 rad.) = 2.1982 

ℓ2 = 39.2699 ( 1 – 2.1982 ) x 0.02 = - 0.9411 

δ(0.12) + k2 / 2 = 0.5288;     ω(0.12) + ℓ2 / 2 = 317.3434 - 0.47055 = 316.87285 

k3 = (316.87285 – 314.1593) x 0.02 = 0.05427 

Pe = 4.3261 sin (0.5288 rad.) = 2.1825 



ℓ3 = 39.2699 ( 1 – 2.1825 ) x 0.02 = - 0.9287 

δ(0.12) + k3 = 0.5555;     ω(0.12) + ℓ3 = 317.3434 - 0.9287 = 316.4147 

k4 = (316.4147 – 314.1593) x 0.02 = 0.04511 

Pe = 4.3261 sin (0.5555 rad.) = 2.2814 

ℓ4 = 39.2699 ( 1 – 2.2814 ) x 0.02 = - 1.0064 

δ(0.14) = 0.5012 + 
6

1
[ 0.06368 + 2 (0.05521) + 2 (0.05427) + 0.04511 ] = 0.5558 rad. 

ω(0.14)= 317.3434 +
6

1
[- 0.8471- 2 (0.9411)- 2 (0.9287)- 1.0064 ]= 316.4112 rad. / sec. 

The results are tabulated. 

t sec 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

δ rad 0.2333 0.24115 0.2647 0.304 0.359 0.4297 0.5012 0.5558 

δ deg 13.37 13.82 15.17 17.42 20.57 24.62 28.72 31.84 

ω 

rad/sec 
314.1593 314.9447 315.7301 316.5155 317.3009 318.0863 317.3434 316.4112 
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Factors Affecting Transient Stability 

 The two factors mainly affecting the stability of a generator are 

 INERTIA CONSTANT H  and TRANSIENT REACTANCE Xd
’. 

 Smaller value of H: 

 Smaller the value of H means, value of M which is equal to H / π f is 

smaller. As seen in the step by step method 

 Δδ (n) =  Δδ (n – 1)  +  
M

P )1n(a 
 (Δt)2 

 the angular swing of the machine in any interval is larger. This will result in 

 lesser CCT and hence instability may result.  

 

 

 

 

 



Larger value of Xd
’: 

 As the transient reactance of the machine increases, Pmax decreases. This 

 is so because the transient reactance forms part of over all series 

 reactance of the system. All the three power output curves are lowered 

 when Pmax is decreased. Accordingly, for a given shaft power Ps, the initial 

 rotor angle δ0 is increased and maximum rotor angle δm is decreased. 

 This results in smaller difference between δ0 and δm as seen in Fig. 17.   

  

 

 

 

 

 

 

 

 
Fig. 17 
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The net result is that increased value of machine’s transient reactance constrains 

a machine to swing though a smaller angle from its original position before it 

reaches the critical clearing angle and the possibility  of instability is more. 

Thus any developments which lower the H constant and increase the 

 transient reactance of the machine cause the CCT to decrease and lessen 

 the possibility of maintaining the stability under transient conditions. 


