
Page 1 of 3

Operating System Lab

Exp 6: Processes

1. Objectives:

 Learn how to create a new child process.
 Becoming familiar with the processes-related system calls.
 Coordinate the completion of the child process with the original program parent

process

2. Process Identification
 The pid_t data type represents process IDs, which is a signed integer type (int).
You can get the process ID of a process by calling getpid().

pid_tgetpid (void)

The getpid() returns the process ID of the calling process.

The function getppid() returns the process ID of the parent of the current process (this is

also known as the parent process ID).

pid_tgetppid (void)

The getppid() function returns the process ID of the parent of the calling process. In

order to use getpid() and getppid() Your program should include thefollowing
libraries:

 #include <sys/types.h>
 #include <unistd.h>

3. Processes Creation
The fork function is the primitive for creating a process. It is declared in the header file

"unistd.h".

pid_t fork (void)

The fork function creates a new process. If the operation is successful, there are, then
both parent and child processes and both see fork return, but with d ifferent values: it
returns a value of 0 in the child process and returns the child's process ID in the parent
process. If process creation failed, fork returns a value of -1 in the parent process and
no child is created.

/***************************************
Creating Processes
File Name: Test6.c
**/

Page 2 of 3

#include <stdio.h>
#include <unistd.h>
void main()
{
int pid;
printf("Hello World!\n");
printf("I am the parent process and pid is : %d .\n",getpid());
printf("Here I'm before use of forking\n");
pid = fork();
printf("Here I am just after forking\n");
if (pid == 0)
printf("I am the child process and pid is :%d.\n",getpid());
else
printf("I am the parent process and pid is: %d .\n",getpid());
}

When the main program executes fork(), an identical copy of its address space, including
the program and all data, is created. System call fork() returns the child process ID to the
parent and returns 0 to the child process. The following figure shows that in both address
spaces there is a variable pid. The one in the parent receives the child's process ID 3456
and the one in the child receives 0.

4. Process Completion

If the parent process wants to wait, its child to terminate the wait system call is used.
The wait() system call suspends execution of the current process until one of its children
terminates. The waitpid() system call suspends execution of the current process until a
child specified by pid argument has changed state.

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

The exit() system call terminates the process which calls this function and returns the exit
status value. Both UNIX and C (forked) programs can read the status value. By convention,

Page 3 of 3

a status of 0 means normal termination. Any other value indicates an error or unusua l
occurrence. Many standard library calls have errors defined in the sys/stat.h header file.

void exit (int status);

A process may suspend for a period using the sleep command.

unsigned int sleep (seconds);

/***************************************
Process Completion
File Name: Test7.c
**/
#include <stdio.h>
#include <sys/wait.h> /* contains prototype for wait */
int main(void)
{
int pid;
int status;
printf("Welcome to OS Lab !\n");
pid = fork();
if (pid == -1) /* check for error in fork */
{
perror("bad fork");
exit(1);
}
if (pid == 0)
printf("I am the child process.\n");
else
{
wait(&status); /* parent waits for child to finish */
printf("I am the parent process.\n");
}
}

5. Executing a file
A child process can execute another program using one of the exec functions. The program that
the process is executing is called its process image. Starting execution of a new program causes
the process to forget all about its previous process image; when the new program exits, the
process exits too, instead of returning to the previous process image. exec functions differ in
how you specify the arguments, but otherwise they all do the same thing. They are declared in
the header file "unistd.h".

int execl (const char *filename, const char *arg0,...)

e.g.
 execlp("ls", "ls", "-l", NULL)

