

تقدم لجنة ElCoM الاكاديمية

دفتر لمادة: **تحليل عددي**

من شرح: **احمد بنب باسین**

جزيل الشكر للطالبة: **ميس الشريف**

Mo: 1 Date Ch 3 :- Apploximation & Round - off exports N * significant figures : (sig. fig) number of figures or digits" that can N be read exactly N. E. x _____ I ___ 3 sig. Aig. ____ 3.14 1 5 sig. fig. 3. 1415 T Ex) How many sig. fig are in each of the following number -T a) 2371 ____ 4 sig. Fig b) 0.0035 -> 2 sig lig "(leading Zores are not sig lig) c) 1.080 _ 4 sig lig (zeros after decimal Point) 1º eros d) 2.97 x 105 3 sig. Pig 297000 - 3 إدا كانت توجد العاملة العنزية زحد إلى رود ها من امغار (٢) e) 10000 _ 1 sig. f.g (1) sig. fig (e) is all b as a fill, f) 1.000 _ y sig lig * applieden as ever lade a in (d) dire 14 gell * في طالة وحود الناجلة م نعد الأصطر دانية ا انها كانت * et tel ato in ent of hast ever ill is use a 1 sig fige 0.005 156 × 9 طابق تدم وجد فاجلة لا يعد إلا غار ٥٠ ١٢ 23.9 lig .-(VASSIN)

1 No:----2 Date:-----** Error :- a measure of the estimated difference between the observed or calculated value of a quantity & it's true value True value (exact value) = Approximation + erld(E,) => Type of erlors :-1) Round - off errors =- (with chopping (with Rounding) 1 icall 3 2) Truncation error Ex 1 3.4150 3.418 with Rounding 2) 3.4156 ____ 3.415 with chopping idg ** The error Et= eract - Approx) ** Relative error Et lexact - Approx 1 * 100%. exact true

E.×	Suppose that exact Value 10 000 - approximation value 99
	find Et 2 Et 27
Et_	160c0 - 9099 = 1
51=	10000 - 99999 1
	1000 - 9999 + 100% - 0.01%
XX	Disachantge :- if we don't know the eract value, like real
·	application (itration methods)
** A	pproximption error (Eq) = approximate error + 100%
,	apploximation
	Present to luce Proliticus to Las 1
Eq	= Present Value - PREVIOUS Value * 13.0%. Present Value
** 1	low many interations do we need ?? (stopping criteria)
	$E_a < E_s$ = $E_{s=0.5 \times 10^{2-N}}$
	(ostopping
nin 18. antari an an tang a si si an S	NE-sig.lig
Marine Marine (Sec. 4 and 10 (10 (10 (10 (10 (10 (10 (10 (10 (10	· · · · · · · · · · · · · · · · · · ·

No:----- Date:-----E.X 1 N=5 > Es= ?? Es= 0.5×10 × = 0.5×103 = 0.0005 × E.X. using series expansion (Maclavin series) G.5 Per $e^{x} = 1 + \frac{x^{2}}{11} + \frac{x^{2}}{21} + \frac{x^{3}}{31} + \frac{x^{n}}{n!}$ How many terms need to find approx value of e with Es= 0.05%. exc: value e.5 1.648721271 Eay. Approx Value X terms E+ 7. 1 باخذ العدالاولى 39.31 1 Unexister siel as Indie the 2 1.5 En= 1.5-1 * box = 33.3 % 9.02% Eq= 1.625-15 xlosin = 7 691 1.447 1.625 3 4 1.645833 Eq= 1.27% 0.175 %. Eq= 0.158% 5 6484375 C. 172% 0.00142 % 1.6489791 = 0.0158 % 6 Eg LE, Stup .

No:-----5 Date: -----C.h (4) Taylor series Def :- Apploximation (Numerical) method can be used to predict a function f(x) value at a faint (x) & it's derivatives at another faint $f(x_{i+1}) = \sum_{n=0}^{\infty}$ $\frac{f(x_{i})}{n!} + (x_{i+1} - x_{i})^{n}$ where X: Base Print $X_{i+1} \rightarrow SieP_{i+1} \rightarrow SieP_{$ n : derivative order of > Special Cars 1) n=0 (Zers order) $f(x_{i+1}) \cong f(x_i)$ ALL STREETS AND ALL STREETS 2) n=1 (first order) $f(x_{i+1}) \cong f(x_i) + \frac{f(x_i)}{71} h'$ $= f(x_i+y) = f(x_i) + f(x_i) h$ 181. 18 A. (VASSIN)

No: Date: 3) n=2 (second-order) $f(x_{i+1}) = f(x_i) + f(x_i)h + \frac{f(x_i)h^2}{f(x_i)h^2}$ 99222222299 E.X. use zelo to fourth order Taybr series expansion to appoximate the function $(P(x) = -0.1 x^{4} - 0.15 x^{3} - 0.5 x^{2} - 0.25 x - 1.2)$ from X1=0 with h=1 + that is to predict the function value at X1+1 = 7 $S'(x) = 0.4 x^3 - 0.45 x^2 - x - 0.25$ n=0 (zero order) $f(x) = -1.2x^2 - 0.9x - 1$ $f(1) \cong f(0) \cong 1.2$ f'(x) = -2.4y - 0.9f(x) = -2.4Nn=11 (first order) $f(1) \cong f(0) + f(0) h = 1.2 + (-0.25) = 0.95$ > n=2 (second order) $f(1) \cong f(0) + \hat{f}(0)h + \hat{f}(0)h^2$ 0.95 -1 = 0.45 · ¿'is 15 "Iss & order < 1, 1 des سعو من سائرة في الاقان exact of Legel 20 to ASY -> [n= 3] (third order) $f(i) = f(a) + f(a)h + f(a)h^2 + f(a)h^3$ = 0.3 YASSIN

No: X Date:----> n=4) (hunh order) 1"101h4 20 $f(y) \cong f(c) + f(c)h + \frac{f'(c)h^2}{2} + \frac{f'(c)h^3}{6} + \frac{f'(c)h^3}{2} + \frac{f'(c)h^3}{6} +$ اداكان - (taylow series = 0.2 ci ti exact studios - Uhil's (E_{+}) order (Truncation error) f() approximation 1.2 0 -1 1 075 0.95 0.45 2 0.25 C.1 3 0.3 e 2 0 4 ** Remaindar (Rn) Rn = fexact - fapprox n+t where J. value lies between X: & X: f(3) h Rn = (n+7)1. 0 Not-e رقه n1 ____, Rn /___, a cruracy 1 ۲ if 2 n1_ Bound off D 11 9 if a number of forms were used in we get the exact selucion (YASSIN)

8 No: -- 6/11 Date: -----3-4 h(step size) 1 ____ gocuracy 1 if Round off 1_s Truncation + if h (step size) V _ Bround - off 7 * Total error = Truncation error + Round off error File Kluncation ale rela/ ero error daviul optimum * of culculation End ond Round of Ches Revealed in くつく eno h (step size)

	No: Dale
K	E.x :- The Te
	9-0.5
	Base pine 1
	X., c
	$54 := h = X_{i+1} - X_{i+1}$
	= 1.8 - 0.5
	<u> </u>
	f(1.8) = f(0.5) +
	-
-	ملان
8	A
10	$f_{2}(1.6) = 3.67$
	>
-	f _y (1.8) - عَمَال
TO I	
and the second sec	
•	
)	
)	a second s

aykr 2^{nd} order approximation of f(1.8) about 15 3-671 if f'(a) = 7.722 f(a) = 0.93what is the taylor 3rd order appreximation of P(1.8) $a_{bcut} = 0.5 ??$ => h= 1.3 $f(0.5)h + \frac{f'_{(0.5)}h^2}{2} \left(\frac{f^{(3)}(0.5)h^3}{6} \right)$ second order $71 + 1.72 + 1.3^{3} = 4.301$ لنعن المثال city and here for (1.8) was second order his and is in

No:----Date:---C.h (5) Roots at equations $f(x) = x^2 - 4$ x 2 4=0 x= +2 roots Bracketing methods Roots of equation -> open_methods => Bracketing methods -> Bisection method + false position method Xy X * X if function f(x) has arout X lies in the interval [X] and f(x,) f(x,) <0 then Bisection method Compute Xr as 1 Bisection Xr= XL+Xy

Uale:---x x x y y y y y y y y y ** Solytion Proceders in B solect XL & X4 (interval guesses) > make sure f(XL). f(X4) <0 2 find $X_r = \frac{X_1 + X_4}{2}$ 3 Compute F(Xr) -> if f(Xr) = 0 => Xr = exact root -> if f(Xr)-f(X_)>c , fisign change X_ by Xr => garosiep @ -> if f(Xr), f(X_) Sog @ sign. Change X4 by Xr=>go to skp @ a drahall XL Ne-B Xu G 1 E. X use Bisetion method to find the approx root of (f(1)=er-2), between XL=C, XL=7, if Eq. 5% 0 6 10,0000 approx root 5 f(xr) Eq $f(X_L)$ XL sign iler 80 Xu 1 0.5 -1 -0.35 0 E 33.3% No 0.75-0.5 × 100× 0.75 0.12 -0.35 6.5 E 2 0.75 0.625 -0.13 3 -0.35 0.5 F 20% 9.1% -0.13 0.75 0.6875 -0.01 4 **(+)** 0 0.625 4.3% 0.6875 0.75 0.71875 0.052 5 2 3) Solucion X1= 0.71875 $e^{x}=2$ after 5 iteration x = ln 2X=0.69314.7180. (exact solution Eq. = 4.3% (VASSIN)

** Required * of iterations $n > \left(\frac{\log \left(\Delta X / E_{q} \right)}{\log \left(2 \right)} \right) \quad \Delta X = X_{q} - X_{L}$ From previous example Eg= 0.05 Ax=1-0 $n \gg \left(\frac{\log(1/0.05)}{\log 2}\right) = (4.32)$, 1 sint ist n=5 4.005 ____5

No:	-		•	-	-	-	-	~	-	-	-	-	-	
-----	---	--	---	---	---	---	---	---	---	---	---	---	---	--

2) false position method K f (ru) if a function f(r) has aread (Xr) lies In the interval [X13X4]. 0 and f(x_) f(x_) < 0 then FPM Xu Compute Xr as 1f(x_) $X_{Y} = X_{4} - \frac{f(X_{4})(X_{L} - X_{4})}{f(X_{L}) - f(X_{4})}$ $\rightarrow \tan \Theta = f(X_{4})$ stand = f(x1) Xr-XL ** Solution procedure (simular to bisection method) $f(x_{4}) = f(x_{L})$ @ select X1 & X4, prote f(x1), f(x4) KG Xr-XL Xy-XC $\frac{\chi_{r-\chi_{h}}-f(x_{h})(\chi_{r-\chi_{h}})}{f(\chi_{r})-f(\chi_{h})}$

using false pasition method to find the voot of f(x) e-2 =.x where XL=G = X4 = 1 21 53 f(xL) f(xu) F(Xr) *iter Sign Xy Eq %. XL tr 1 1 -1 0 0.7183 0.5819 -0.2106 2 14% 0.5819 -0.032 -0,2106 0.7183 0.677 1 6 -0.032 6.7183 6.6879 1.6% -0.Ql 0.677 F Contration With Xr = 0.6879 after 3 iteration SA Ea = 1.6% accuret than bisection more Ex $f(x) = \ln(\cos(x)) = f(\frac{\pi}{2}) = ??$ Xi=O furth order of Taylor series $f(\frac{\pi}{2}) = P(0) + \frac{P(0)(\pi)}{2} + \frac{P(0)(\pi)^{2}}{2} + \frac{P(0)(\pi)^{2}}{3!} + \frac{P(0)(0)(\pi)^{4}}{3!}$ $0 + 0 - \frac{\pi^2}{8} + 0 + \frac{-2}{24} \frac{\pi^4}{16}$ $\frac{f(x) = -\sin x}{\cos x} = -\tan x$ $f(x) = -\sec^2 x$ = -1.741F(x) = -2 secx hanx $f'(x) = -4 \sec \tan x - 2 \sec x$

(C.h. 6) Rooting of equation (open method) Racting of equation , Osimple fixed point method Newton Raphson method (N-R)) 3 Modified of (N.R) (Multiple roots) y & scrant method 5 & Modified of secont. 1) Simple Fixed Paint use to find root of equation (initial guess Xo) => Method Precedures :-I Govert f(x) to a form x=q(x) by setting f(x)=0 , simple manipulation - Adding X to beth sides f(x)=x2-4x+3 __ convert x=g(x) x= (4x+3) 2) X(x-y)+3=0 = X = -3X-y $X = X^{\frac{2}{3}}$ (VASSIN)

Ex f(x) = e-x _2sinx Convey to x=g(r) 1) et- 2>in X = 0 => X = -ln(2sin(x)) 2) $\chi = e^{-x} - 2sin(x) + \chi$ De iteration with initial guess X. for $X_{i+1} = g(X_i)$, $i = G_{31}, 2$ E.X use fixed print iteration to find the rat of (f(r)=c+-r) alse x=0 En < lo' Calc [0] = AC -Xi $x = e^{-x}$ e-Ans Xi+= (man (=) June 15 40 51 :iter First -> 1=0 $x_{12}e^{-x_{0}}=1$ Ea % ... Xit * iter 1 1 0.3679 17.8% second -> i=1 2 X2= e = 0,3679 46.87 0.6922 3 38.3% 4 0.5005 17.93% 5 Third -> 1=2 0.6062 - 0.3679 $X_{3} = e^{-X_{2}}$ 11.2% 0.5454 6 0.5796 5.9% F fourths 6=3 $X_{q} = C = C$ Xr=0.5796 after Fiteration Sq=5.99 1

* Condition of Convergence :-7) Simple fixed Point doesn't always Convergent (it may divergent) 2) Simple fixed point converge to unique solution if 9(x) & [a,b] for # x & [a,b] & 1q(x) & [a,b] =1 Converge skuly 9(10) < 1 _1 cenverg >1 diverge ودفومی مد => from Previous example X Jopol $q(x) = x^2 - x$ (is had is) - I < g(r) < 1 9(x) = E-x $g'(x) = -e^{-x}$ -1 < 2x-1 < 1 g'(0) = -1 0 < 2x < 2 CKXK AD slowly 1-1/ </ stonly converge 109 67 115 5 15 vil 20 mil (X) eiter province Lew الترت الترت الترت الم h (x)=X $f(x) = e^{-x} - x - x = 0$ $X = (e^{-X})^{-3} g(x)$ $X_{i+1} = e^{-X_i}$ i= $c_{s_1} = 2$ h(x) = q(x) $X_1 = 1$ X = 0 * طريقة حل الي سمة - · · · · · ن سم محور المما تل - T) نحد مل على الد قن ان و عن شم نمد خط إلى محور المما ثل المنقطة إلى الدقتين وهلذا The second

No concernance E.X exact 4 Simple fixed view diverge X. Ji exact is sur X ٨, Flogde X. Jai * بم نی سم معای ونقطة P(n) 2) Newton Ruphsch method تتاطح المماى وحور السات في الم لاوريج F(x) Sizovela eract $X_{i+1} = X_i - \frac{f(x_i)}{f(x_i)}$ in XL where i= coloc $\int (x_{i}) = \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$ slepe E.X use (N.R) to find the rost of f(x)= e-x - x - x = 0 alter 3iteration $S_{d} = P(x) = e^{-x} - 1$ 29% Xi+1 iter -1 0.5 Sirst Hodow X = X - P(xo) F(r.) 11.7% 0.56681 2 G.14% 0.56714 3 $= 0 - \frac{1}{-2}$ Calc de 0= $Ans - \frac{e^{-Ans}}{-e^{-Ans}} - 1$

No:----- Date:-----* Note : The main problems that may arise when using N-R method E Vif fx0, atx, Chang X. -2) if f & I has the same rest (Multiple rect) Minies (is I jult his aller al cober x f(x) = C ی = (x)؟ ونځون ښې x ابني طلعت ضا 1 E.x Find the root f(x) = Cos(x) - xex, x= 2 450 N-R mather $if E_{q} \leq 1\%$ $X_{s} = 0.5178$ Eq= 0,74 x

No: ----Date: -----3) Modified Newton Raphson method (Multiple rods) $f(x_i)$. $f(x_i)$ $X_{i+1} = X_{i-1}$ $[f_{(i)}]^2 - f_{(i)} \cdot f'(x_i)$ Ex Compere between N-R 8 M.N.R for P(x) = x - 5x + 7x - 3 , at X=G f(x) = (x - 3)(x - 1)(x - 1)Eq %. Xiter Xi Ea%. X iver Xi 1 1.1052 0.4286 1 G. 31%. 1.00319 2 0.6857 31% 2 0.00 24 %. 1.000002 3 17% 0.23286 3 8.7% 0.91332 4 4.4% 0.955F 5 M.N.R 9 N-R f(x) = (x-3)(x-1)(x-1)Ax ->-X 3 YASSIN

C

1	
L	
	-
	2
3	
0.	
3	
5	
-	
N	
5	
-	
2	
2	
Ì	
)	
ł	
Ε.	
	-

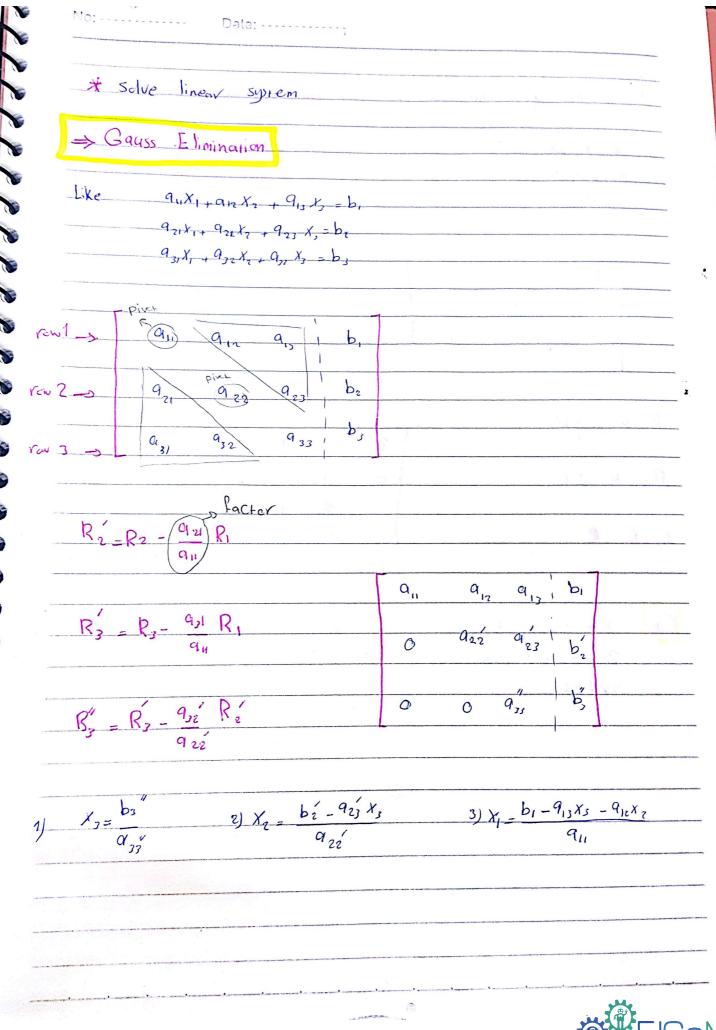
(1) in acht and (in the took	=> الما يلون محرر لد نو الع مند مد ا
even	f(x) = (x-3)(x-1)(x-1)(x-1) $(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)$
4) Segnt method	
use to find the root of f(x)	\$ (X;)
$X_{i+1} = X_{i} - \frac{f(x_{i})(x_{i} - x_{i-1})}{f(x_{i}) - f(x_{i-1})}$	$\begin{array}{c} f(x_{i}) \\ f(x_{i}) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	$X_1 - X_2 \longrightarrow X_1$ $X_2 - X_1 \longrightarrow X_2$
	×۱-X۱ - X 3

No Date: -----E.X use secont to find the root of f(x)= e-x Use X=0, X=1, Eq 25% --> first Heration $X_{1} = X_{0} - \frac{f(x_{0})(X_{0} - Y_{-1})}{f(x_{0}) - f(x_{-1})}$ X = 0.61271 -> second iteration $X_{2} = X_{1} - \frac{f(x_{1})(x_{1} - x_{d})}{f(x_{1}) - f(x_{d})}$ i=1 X 2= 0.56384 , Eq = 8.77 sthived Heralion $\frac{x_{3}}{x_{2}} \frac{x_{2}}{x_{2}} = \frac{f(x_{2})(x_{2} - x_{i})}{f(x_{2}) - f(x_{i})}$ 0=2 X = 0.56717 = 29= 0.59 %.

No:-----Date: -----5) Modified secont rethed use to find root of P(x) as :-Dalta Sxi = (xi - xi - i)S.x. f(xi) X i+1 = X: $f(x_i+f(x_i))-f(x_i)$ E.X use M. seant Method to find the rost fin = e - x x = 1 8=0.01, Eg<5% * $i=0 \implies X_1 = 1 - 0.01 \times 1 f(1)$ f(101) - f(1)- 0.5376 * i=1 => X_7= 0.5376 - 0.01*0.5376 flo.53727) fla.53727+0.01+0.53727)-fla.53727) X2= C.56701 Sa= 5.2 %. * 1=2 => X7= 056714 Eg=0023 %.

** system of Non linear egis =-2x+3y=103x-4y=5 to linear system $x^{2} + xy = 10$ $y + 3xy^{2} = 5x$ J-3 Non liver Supren Spren 1 Fixed Point iteration (I) Gonvert to X=9(X,Y) y=g_(x.y) I Do iteration $y_{i+1} = g_{c}(x_{i+1} = y_{i})$ X:+1 = 9, (Xi > 9,) XX Convergence Condition $\left| \frac{\partial g_i}{\partial x} \right| + \left| \frac{\partial g_i}{\partial 4} \right| < 1$ $\left|\frac{\partial g_{x}}{\partial x}\right| + \left|\frac{\partial g_{z}}{\partial y}\right| < 1$

No:----Date:----E.X. solve the following Non-linear system by wing F.P. Iteration with X=1.5, y=3.5 after 2iteration X2+X4-10=0 9+3×9°-57=0 Exact solution X=2 4=3 Sol 67-yi 38i+1 -> first levation 1=0 X: = V10-1.5x 3.5 = 2.179 45 $y_{1} = \sqrt{57 - 3.5}$ 3 * 9.179452.86051 -> second iteration Ú=1 $X_2 = \sqrt{10 - 2.17945} \times 2.86051 = 1.94053$ $y_2 = \frac{57 - 2.86051}{3 \times 1.94053 + 1}$ Eg 27 ()


No:----Date: -----2) Newton Raphon method $X_{i+1} = X_i - \frac{f(x_i)}{f(x_i)}$ if single variable x $= \frac{\chi_{i}}{dy} - \frac{\eta_{i}}{dy} - \frac$ \widehat{X}_{i+1} $\frac{V_i du_i}{dx} = \frac{U_i dv_i}{dx}$ <u>dui</u>. <u>dvi</u> - <u>dui</u> dx dy dy , dvi dy dy E.X use N.R method to she the pub linear system with X=1.5, y=3.5 $u(x_{5y}) = x^{2} + xy - 10$ $x^{2}+xy=10$ 1 V(Y,y) = 9+3×92-57 $y + 3ry^2 = 57$ 三 $\frac{\partial v}{\partial x} = 3g^{2}$ $\frac{\partial u}{\partial x} = 2x + y$ 91 = 1+ 6xy 04 x 24 WARRIN

1=0 X 1.5 - -2.5 * 325 - 1.625 * 1.5 = 2.036 6.5×32.5-1.5×36.75 9 = 2.8438 5 5 5 h 9 lineor algebraic equations 1) The graphical method nete : 2) Cramer's rule 911×1 +912×2= b1 921X1 + 922X2= be 2 9, 912 X, b -921 9 22 X .2 61 nxk mxk Paxn [A][A]= [I] (a"0"55) - (a15021)

Date: -----No [q₁₁ q₁₂] در الجون (۲۷۳۲) تفشل 0 = Clamer's rule -911 bi 912 bi 921 ba be 922 X2=-Χ, 911 912 an an 921 9/22 922 9.2. E.x えし えり M.NF Neuton simple M. Secon 2×1+2×2=18 $-X_1 + 2X_2 = 2$ 2 X, 18 2 2 -1 Xı 2 F18 2 5,3333 2 2 X1 = 4+2 2 18.7 1-1 X2= 2 -3.666 6

•

	\$
N	
S	
1	۲
1 Alexandre	
1	Y
1	
*	
9	
9	
•	
•	
l.	
	1
	1

No Date: ----use gass climination to solve the following system -E.x X, +X2+X3=6 2x,+3x,+4x = 20 3x,+ 4x2+ 2x3 6 1 1 1 4 3 2 20 2 17 3 4 R2=R2-2R, 1 6 1 1 21 $R_{3} = R_{3} - 3R_{1}$ 8 0 0-----7 -1 -1- $R_{7}'' = R_{3}' - R_{2}$ 9 1 -3 B $E_{X} + y + Z = 5$ X= 3 9=4 z=−2 2x + 5z + 3y = 84x + 5Z = 2

K	
K	
K	1
K	
K	
K	
K	
K	
K	
5	
1	
N	
19	
5	
6	
A AND	L
-6	
-6	-
	(
Dis.	
-	
6	
6	

No:	~ •	• -	 ~	-	·	~	

* Gauss Jordon elmination like 911X1 + 911X2 + 913 X3 = b1 921×1+920×2+923×3=b1 93, X1+932X2+931Y,= b3 Cinvert to this form of XI 1 B 0 , X 2 0 0 (X, 1 G 0 * Pitfalse of Gauss climination :-1) division by zero $ke = 2y_2 + 3y_3 = 8$ $4x_{1} + 6x_{2} + 7x_{3} = -3$ 2x1+X1+6x2=5 SAM 2 8 => charge of Rows 0 7 67 1 -3 4 Y 615 1 2

2) division by alm	ost Zero				
		-01			
$X_{1} = 0.0003X_{1} + 3$ $X_{1} + X_{2} = 3$					and the second second second
Γ	2.0001	7	0.000	3	2.00017
0.0003 3 1	2.000,	=>		2240	- 6656
	1		0	-9999	
				a anton da se anton anton anton anton anton anton anton a	
$2 = R_2 - \frac{1}{R_1}$	₩sig.fig	1 × 2	X,	2	
	3	0.667	- 3	>	A.,
X2 = 0,666667	4	0.6667	G		
C					
r, = 0.33333	. 5	0.66667	0.3		
K, = 0.33333				21	July callos when x
K, = 0.3333				باست. دام ر	July callos who x
					July callos who x
change					
change	1				an ed av de
change 1 1					an ed av de
change 1 1 1 0. Cas 2 3 121	1	کرست <u>ج</u> انج نام	3 sig: fig		
change 1 1 1 0. Cas 2 3 121	1	کرست <u>ج</u> انج نام	3 sig: fig sig, fig	¥ 2	Χ,
change	1	کرست <u>ج</u> انج نام	3 sig: fig sig. fig 3	¥ 2 0.667	X, C. 333
change 1 1 1 0. Cas 2 3 121	1	کرست <u>ج</u> انج نام	3 sig: fig sig. fig 3 4	¥ 2	Χ,
change 1 1 1 0. Cas 2 3 121	1 2061	کرست <u>ج</u> انج نام	3 sig: fig sig. fig 3	¥ 2 0.667	X, C. 333

3) Ill	-Gnditioned	System	: <u>.</u>				
(I) Dere	er iminant of Co	df matrix ≈ 0	, Der(A)∽0)		
Like	X1+ 2×2=6 1.05×1+ 2×2=						1
1.05	2 10	$X_1 = 8$ (row $Y_2 = 1$	/	1	2	10 1/4	
Der 1x2 - 1.05;	47 6 1			Det = -0.2)	T _{es}	- 11
		وي الخطيف الم تقريبة نشى	<u> </u>				
I Sca	ling						
200		$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} =$	203 309	1			
Det :	. 206						
ſ	1 -1.01) X,	2				2.5
	2 - ?	× =	3				
Contraction States		J					

No:----Date: -----4) singular system (A)=0 system with infinit solutions Th Ð Like 1 -1 X, С \mathbf{n} (a, ()) 4 Xz -2 2 Cay (2). Der (A) = G الخطين منطبقي كال لعجم => elimination -1 2 BX== 0 C 0 0 system with ne solution Like 2 ti 3 X -2 2 elimination 1 exe=1 X -1 0 C No solution

Ę

--Ch 10 LU-Decomposition & inverse Mattrix sa of linear equ $q_{\mu}\chi_{1} + q_{12}\chi_{2} + q_{13}\chi_{3} = C_{1}$ 1 $q_{21}X_1 + q_{22}X_2 + q_{23}X_3 = C_2$ 9,1X, - 9,2X, + 9, X, = C, $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} \implies \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} u \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} C \end{bmatrix}$ 3 ×1 J 3 * 1 (forward sub) D] [1] [U] 3×3 []] [D] = [C] => we get {D] intermediater 3 X3 Vector 3xl [U][x]=[D]=> we get [x] Decomposition EAJ = [L][4] [U] => get from gauss elimination [] => assume Matrix 0 0 1 B Lzi 1 1 L32 L31-(YASSIN)

-

-

-

4

-

-

-

4

No Date: -----9,,, 9,3 912 EUJ = 9/22 á ,, 0 q"____ 0 θ [A] [4] [L] 9(3 QIZ a,, 1 9,2 9,3 9,1 C B O q'12 q'23 Q₂₂ Q₂₃ 9 21 1 0 L-21 Q 933 Q_37 8 C4 31 0 L32 L3, 1 Ilaju voo que van $\frac{L_{21}}{q_{u}} = \frac{q_{21}}{q_{u}}$ $1) - \frac{1}{2} \times \frac{2}{3} = \frac{2}{3} \xrightarrow{2} \frac{1}{3}$ 911 911 $2) - \frac{1}{31} \times \frac{1}{31} = 9_{31}$ -32 = 932 - La 912 3) L31 1912 + L32922 = 932 922

2) [L][P] = [C]known unknown known 1 0 G 0 di Lu 1 6 dz Cz C_3 10 d, L32 1 L31 forward sub - 1×d, - C, -> d=G $c_{2} = C_{2} - L_{21}d_{1}$ Laidi - d-Ê 013 - C3 - L3101 - L3702 -> Lidi + Lizde 63 3) d, 9,3 X a an d_2 X2 $a_{22}' q_{23}'$ B sub d, 9 Backword 9 ,, X С G -3-9, X, =d3 => $X_3 = \frac{d_3}{q_{33}''}$ 9, X, + a, 2X2 - 9, 3X3 = d3 -> 922 X22 933 X3= 02 X2= d2-925 X, -1 922

-

Ų

G

and the second s

E

INO:-----67 E.X. Use LU-Decomposition to suc the following system D C.V D X1+X2+X=6 D 2X1+3X2+ 4x= 20 The 3x1+4x2+ 2x,=17 Ċ E. 6 X, 1 1 E. 1 X 20 (2 3 4 -17 X3 3 Ð 4 2 Ē G e R7 = R2 - 2R 1 1 1 [4] = e R2 = R2 - BR1 2 1 0 e R3 = R3 - 1R2 -3 B C e LAJ [4] [L] . 1 1 1 م فی دای لیای . 1 1 1 0 0 1 23 3 4 110 الخطوة 20 2 1 1 LU 0 3 9 2 L32 -3 L31 0 1 ٥ Loix + + Lozx 1=4 => Loz=1 L= 3 .21 = 2 ão la Epiz 10 # L21 low & G.E & Coefficient بنفع الترتي L31 L32 (YASSIN)

11/12 Date:-----No: ----[L][p]=[C] di 6 1 0 B 2 1 dr в 1 2 IF dj 3 1 1 $d_{2} = 20 - 12 = 8$ $3d_{1} + d_{2} + d_{3} = 17$ d1=61 03--9 d 2 = 8 [U][x] =[D] 6 1 X_{1} 1 1 8 Xz 5 2 1 в -9 -3 X3 0 0 $X_3 = 3$ X2=8-6=2 x,=6-2-3=1

2

7

2

2

F

1

4

3

Ci

ł

3

and and a

G

Carlor Carlo

to

No: --Date: * Inverse marcix EA] => [A]-1 - [A] []=[A] $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^{-1} = \begin{bmatrix} I \end{bmatrix}$ $\frac{[L][U][A]' = [I]}{[I]}$ [D] [L][D] = [I] => We get[D] [U][A] = [D] = we get [A] Use LU-Decomposition to find the inverse of [A] -E.X 1 1 23 4 [A]= 2 1 5

No:----Date:---from gauss => [4] [L]= 1 1 1 1 0 B B 1 2 2 1 0 0 6 -3 9 3 7 => first iteration 1 dí C C 1 2 1 -C d 0 3 7 0 0 Q d'=1 third Second. 0 d,'=-2 0 d; =-1 Q,,* 1 7 1 1 a.,1 -2 012 -1 0 0 -3 9 = 1/3 $g_{21}^{\mu} = -2 - \frac{2}{3} = -\frac{8}{3}$ -1/3 10/3 -2/3 -1 E 911 = 7 + 8 -1 = 10 -8/3 1/3 2/3 1/3 1/3 -1/3

20

2

V

U

<u>C.h(</u>	II) Gauss-seide	2 Metho	id and (jordun Jacobi M	
Like	9 ₁₁ 9 ₂₂	9 ₁₃ 9 ₈₃ 9 ₃ ,	X, X, X,	b, = b, b,	
	$\frac{b_{1} - q_{12} X_{2} - q_{13} X_{3}}{q_{11}}$	6		(X)_عناب جار الله	- Jeo-
> X2 = 1	$\frac{9_{21}X_{1} - 9_{23}X_{3}}{9_{22}}$				
x3= 62	$\frac{-q_{31}X_{1}-q_{32}X_{2}}{q_{33}}$,	<u> </u>		
V. ini	ial guesses for	Xz=X3	= 0	Zero-co	ا موجعها بلن

No:----Date:----3) find x bi Qu X2= b2-921X1 from (X1) find (X2) From (X_{13}, X_2) Find (X_3) $X_3 = b_3 - q_{31}X_1 - q_{32}X_1$ q_{33} 4) repeat step I and II unit Ea < Es =>update the Value of Variable from the iteration N. 1. 18 18 1. 18 = Condition -1) 911- 3 972 3 975 + Zero Charge between vowes the Zero - Zik list 2) $|q_{12}| + |q_{13}|$ بي أن يتحقق ا كليم -1922) 921 + 923 (a33) > (a13) + (a32) Dominat Marrix solution-try to change rows IP fail -sto converge the solution then this method is divarge

Scanned by CamScanner

No:---Date: ----use gayss seided Method to solve with 12=13=0 after 21er ++++++++++ 3x1-0.1 X2 - 0.2X = 7.85 G.|Y, +7X, -G.JX, = -19, 3a. 3 x, - c. 2 x, + 10 x, = 71.4 Sd Check condition :- Convergo Cent :- $X_{1} = b_{1} - 9_{12}X_{1} + 0.2X_{3}$ $X_{1} = 3$ $X_2 = -19.3 - 0.1 X_2 + 0.3 X_3 X_2 =$ Ŧ $X_{3} = \frac{71.4 - 0.3X_{1} + 0.2X_{2}}{10}$ => first iteration $X_1 = 7.85 = 2.6167$ X2=-2.7945 X3 7.0056 (1 2 1 k S) -s scoold ileration X = 7.85 + 0.1 × - 2.7945 + 0.3 × 7.0056 3 X1 - 2.9906 MASSIN

Date:-----No:-----X2 = -19.3 - 0.1 × 2.9906 + 0.3 × 7.0056 7 X = - 2. 4996 X3 = 71.4-0.3 × 2.9906+0.2 = - 2.4996 0 $X_3 = 7.603$ Present - Previous * loc %. =) to find Eq= Present Eq=12.5% Eqx=11.8 Y. Eqx= 0.075 Y. => in general :where (i) start from (1) (i-1) = (i-1-(1-1) (i) number of iteration X = 911 (1) -----(i-1) by - aziXy - 923 X. 16) X2 = 922 $\begin{array}{c} (i) \\ \chi_{3} = b_{3} - q_{31} \chi_{1} - q_{32} \chi_{2} \end{array}$ 933

No:----Date: -----** Jacobi Method very simelar to Gaws serded Method > In Gerenal Case .- $\begin{array}{cccc} (i) & & & & (i-1) \\ X_{1} & = & b_{1} - Q_{12} \left(X_{2} \right) & - & Q_{13} X_{3} \end{array}$ 12-11 $= b_2 - q_{21} X_1 - q_{23} X_3$ $\begin{array}{c} (i) \\ X_{3} = b_{3} - q_{31} X_{1} - q_{32} X_{2} \end{array}$ (1-1) 933 Need initial guess 1 ** Solve the Previous example by using Jacobi method after 2 iter with intial Guess X,=X2=X3=B 1=2 <u>|--</u>] X1=3.008 X1 = 2.6167 X2=-2.4885 X2=-2,7571 $X_{2} = 7.0c74$ X = 7.14 Eq. = 12.8%. Eq. = 16.8%. Eq. = 1.9%.

Date: Ch 17 Curve fiting * least squar method or regression. Best fitting => linear regression e (residual) $y = q_{0+} q_{1} X$ ena exp ythen for one point $y = (9_0 + 9, x) + e$ for all points $\xi_{i} = \xi \left(q_{e} + Q_{i} \chi_{i} + e_{i}\right)$ $\frac{\sum e_i - \sum (y_i - (q_0 + q_1 x_i))}{\sum (q_0 + q_1 x_i)}$ $S_{r} = \frac{\sum e_{i}^{2}}{\sum e_{i}} = \frac{\sum (y_{i} - q_{i} - q_{i})^{2}}{\sum (y_{i} - q_{i} - q_{i})^{2}}$ Squar => the goal of least squar method is to find 9 & 9 with min (Sr) ∂Sr = 0 => -2 € (y -9, -9, X,)= 0 eq (1) 89. $\frac{\partial Sr}{\partial q_{i}} = c - \frac{1}{2} - 2 \frac{\left(y_{i} - q_{i} - q_{i} x_{i}\right) x_{i}}{\left(y_{i} - q_{i} - q_{i} x_{i}\right) x_{i}} = c$ -04(2)

No: --Date: 9.n $\sum_{i=1}^{n}$ n E 9,Xi 9. -eq (1) 1=1 $\sum_{i=1}^{n} y_{i} X_{i} = \sum_{i=1}^{n} q_{o} X_{i} + \sum_{i=1}^{n} q_{i} Y_{i}^{2} - eq(1)$ Matrix ports n EXi S Ji n 9. -E +: 5×1 (=1 9 Egi Xi E.X linear regression fit to fit the following data in Using ٤ 3.25 5.1 10:35 2 X 16.9 5.6 7.8 3 3.5 TTTTTT 46.5725 X² 10.5625 26. ai 4 64.98 calc 18.2 39.78 xy 7 mode -> statistics (6) -> (2) y=9+bx , y8 x revou AC_ option past is in 16.9 10,35 9. 3 9 = 0,8999 10.35 9, =1.372 10,35 40.5775 9 avre fit y= 0.8994 + 1.372 X (1)

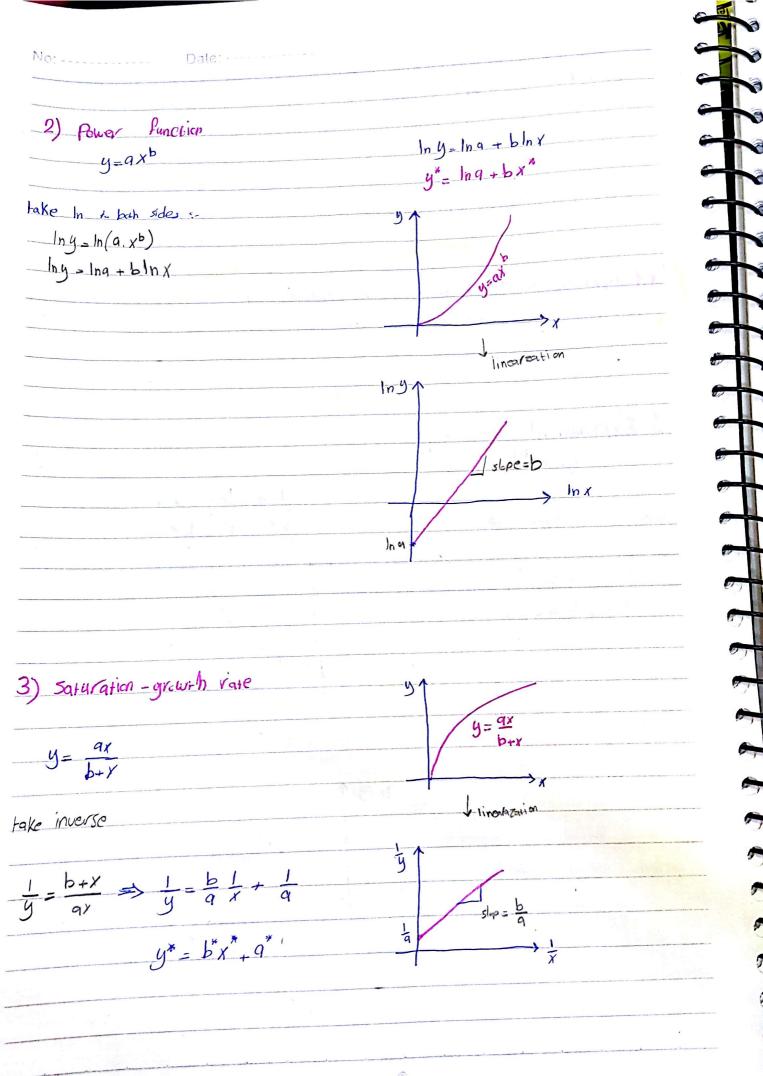
* Polynamial tegression Given(n) daya points to be fitted to mth order of polynomial $y = q_e + q_1 x + q_2 x^2 + \dots + q_m x^m \quad \text{where } n \ge (m+1)$ * Points The regression form will be :-Ex Ex' Ex' Exm n Zy 9. Ex Ex Ex Ex Ex 9, Σg Ex2 Ex Ex Ex EX Ex Ex Ex = --- Ex 1 Exmy Om Mean (averge) $\overline{X} = \frac{\Sigma X}{n} = \frac{\overline{y}}{\overline{y}} = \frac{\Sigma y}{n}$ الاذراف المقاري 2) Standard deviation (Sy) $Sy = \sqrt{\frac{\mathcal{E}(y_i - \overline{y})^2}{n-1}} =$ 57 n-1 St- i- is the total sum of the squars of the residuals the data point of the mean 3) Variance (54) $5y^2 = \frac{5t}{5}$ n-1 WASSIN

ð

0

0

U


3

a

3

4) Standard error of estimate (syla) 5y/x= $s = \sum (y_i - q_0 - q_1 X_i)^2$ Sr h-2 40 059 meau stal SWX 5) Coefficient of determination (re) $r_{2} = 5i - 5r$ 5i6) Correlation Coefficient (r) = Vr2 $h \underset{i=1}{\overset{\sum}{x_{i}y_{i}}} = \underset{i=1}{\overset{\sum}{x_{i}}} \frac{\underset{i=1}{\overset{\sum}{x_{i}}}}{\underset{i=1}{\overset{\sum}{x_{i}}} \frac{\underset{i=1}{\overset{\sum}{y_{i}}}}{\underset{i=1}{\overset{\sum}{x_{i}}}$ $\sqrt{n \hat{\xi} x_{i}^{2} - (\hat{\xi} x_{i})^{2}} \cdot \sqrt{n \hat{\xi} y_{i}^{2} (\hat{\xi} y_{i})^{2}}$ Goodness of fit: o Z r Z l Best Pit Bad fin

- th No:-----Date: ------> from previous example Cabubtion مز الغم r = 0.99521) 54 5t مزلعاات تال Non Rind Sys Syls 2.00 2) r_sr2 3) Coeffection + of det ممت المجدول المامني (ال) مقط VSY 4) $\frac{5y}{x=\sqrt{5r}}$ ** Application for linear regression (linerazorian) To convert non linear relations to linear form DExperiential function y=gebr Iny - Ing - bx y* = 9× - br take In to both side 31 $\ln y = \ln(q, c^{br})$ aebr Iny = Ing + bx linentzation In (9)' I stop= b 9 P X

ò Date:----E.x y=ax ebx 6 $S_{2} = q e^{bx}$ $\ln\left(\frac{y}{x}\right) = \ln q + bx$ $(\ln(y) - \ln(x)) = \ln q + bx$ $y^* = q^* + b^*$ * E.X use the following data to fit the function y=gebx 2.4 $\Sigma x = Z.1$ 1.2 2 4 . 0.5 X 8.9071 2.1103 5.5116 1,6601 0.9111 4 Elny = 5.0543 0.7469 1.7069 2.1869 0.5069 -0.0931 y*= Ing $\xi x^2 = 12.45$ 5.76 4 1.44 l 0.25 X² Exy = 10.0187 3.4138 5.24856 0.8962 0.5069 xy* -0.0466 y=gebx $\frac{\ln y = \ln q + bx}{y^* = a^* + bx}$ $\ln g = ha + \ln e^{bx} = >$ Minssin)

No:-----Dale:

Eyi 9. Exi n Exi. Exiy: Er. 91 5.0543 q× 7.1 5 5 10:0187 Ь 7.1 12.45 b=1.2 9 = -0.6931 $q = e^{q*}$ Calc e - 0.6931 = 0.5 1) Meny ____ Statistics 1.2X y=0.5e 2) $y = q.e^{(bx)}$ ىتىار web en Kex 3) X 1 Y 100.000 r=0.9999 5) option _Regression calc 4) AC 1) $5_{Y=\xi} (y_i - q^* - b_{X_i})^2$ shift_, lovegration_i 6) 9 = A b= 2) Sy/x = 1 Sr n-2 5 $\frac{3}{V} = \frac{5+-Sr}{5+}$ 4) $St = \Sigma (y_i - \bar{y})^2$

Ð

E.x $y = Axe^{Bx}$ take In to Both side Ing=InA+Inx + Bx $\ln y = \ln x = \ln a + Bx$ $\ln(y|x) = \ln a + bx$ على الأله العابة $y^* = q^* + bx$ y=ax+b, Li × (In (y/x) ~ where y $y = \frac{1}{\sqrt{a + bx^2}}$ E.X $\frac{1}{y} = \sqrt{a+bx^2}$ $\frac{1}{y^2} = q + bx^2 \Rightarrow y^* = q + bx^2 + cx$ أقدارهم الآته $y=q+bx+Cx^2$ $E_{x} = y = Ae^{2x} Bx$ > linearization by solo فجورى الدوف الأعل Sr=0 $Sr = \xi(y_{i} - Ae^{2x} + Bx_{i})^{2}$ $\frac{\Im Sr}{\Im A} = -\frac{2}{2} \frac{e^{2x}}{y_{i}} \frac{y_{i}}{-Ae^{2x}} + \frac{Bx_{i}}{-Bx_{i}} = 0$ $= \frac{Ey_{i}e^{2xi}}{-EAe^{4xi}} + \frac{Bx_{i}e^{2xi}}{-Bx_{i}e^{2xi}} = 0$ Matrix asr 0 -3(2) MASSIN

No: Ch 18 = Interpolation * Cabic Polynomia) quadratic Polynomial linear Polynomial * polynomial of interpolation + 9 xh $\frac{1}{n}(x) = 9_0 + 9_1 X + 0_2 X^2 + 0_2 X^2$ degree of Polynomial for (n+1) data points, there is one & only one polynomial of that Passes through all the Prints. order (n) * How to find the polynomial interpolation ?? 1) Newton's divided difference الطر تقتن بنحصل على نفس havange Polynomial inter Polytion الا فنل ن 2)

No: -

Date: --Newton divided difference - Liver interpetation f(x,) $\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ f(x) f(x_) $f(x) = f(x_{e}) + (f(x_{i}) - f(x_{e}))(x - x_{e})$ X X X₁ $fon \Theta = \frac{f(x) - f(x_o)}{x - x_o}$ $P(x)_{i} = b_{c} + b_{i}(x - x_{c})$ > First divided difference $\frac{t_{\text{cin}}\theta = f(x_1) - f(x_0)}{X_1 - X_0}$ Buadratic Polynomial $f(x)_2 = b_{e+} b_{e} (X - X_{e}) + b_2 (X - X_{e}) (X - X_{e})$ => second divided differnce when bo=f(x.) $b_1 = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ Cabic Polynomial $f(x_{i}) = b_{c} + b_{r}(x - x_{c}) + b_{c}(x - x_{c})(x - x_{i}) + b_{s}(x - x_{c})(x - x_{c}) + b_{c} = \frac{f(x_{i}) - f(x_{i})}{x_{i} - x_{c}} + \frac{f(x_{i}) - f(x_{i})}{x_{i} - x_{c}}} + \frac{f(x_{i}) - f(x_{i})}{x_{i} - x_{c}} + \frac{f(x_{i}) - f(x_{i})}{x_{i} - x_{c}}} + \frac{f(x_{i}) - f(x_{i})}{x_{i} - x_{c}}$ لا الوق

No: Dale: * General form of Newton interpolation Polynomial $f(x) = b_{a} + b_{i} (X - X_{a}) + b_{2} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{a}) (X - X_{i}) + \dots + b_{n} (X - X_{i})$ $b_1 = F[X_0 X_0] \qquad b_2 = f[X_2 X_1 X_0]$ $b_o = f(x_o)$ b3 = f[X3, X2, X1, X2] = f[X3, X2, X1] - f[X2, X1, X0] Xz-Xa ** Errars of Newton interpolation $R_n \cong f[x_{n+1}, x_n, x_n, y_{n-1}, y_{n-1}, x_n](x-x_n)(x-x_n) - (x-x_n)$ E.X Use linear interpolation (N.D.P) for the following data to find X=2 Xe=1-0+(k.)=0-X,= 6-0 f(x)=1.79176 $f(x) = b_{c} + b_{1}(x - x_{o})$ $= 0 + \frac{f(x_{1}) - f(x_{2})(x-x_{2})}{x_{1} - x_{2}} + \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6}$ Jul Irdi' and reduce f(2) = 0.35835Linear is in use is lie view phill likes) il a Quadratic of

No: Date:----ايدر الأقران بطل عام EX use (N. D.D) to fit the following data with third order Polynomial X = 1 = 1(x =) = 6 x1= 4 = f(r1)= 1.386 29 X2.5, flap 1. 60944 X3=6 , f(x,)=1.7976 $f_{3}(x) = b_{0} + b_{1}(X - X_{0}) + b_{2}(X - X_{0})(x - X_{1}) + b_{3}(X - X_{0})(X - X_{1})(X - X_{2})$ $b_{i} = \frac{f(x_{i}) - f(x_{o})}{x_{i} - x_{o}}$ third D.D second P.D first D.D. $f(x_i)$ L Xi -> F[X3×2×1,=X2] F[X2X,X] > F[x, x_]f(x) X 0 b2=F[x2x]-P[x,x]] x2-x. $f(x_j)$ 1 XI > FUZ 1] -> FTx, x, X,] I(x2) X2 2 -b3= F[K, x, y,]-F[K, x, y] Y3-X. $f(x_{3})$ 3 F[13, X.] 3 X3 يلون العرج مي × الذي بسمر (2) (۵× - ۲۷) أو (۲۰ - ۲۵) 20 63 bi 0.46.209 0 -0.05974 1. XO 0.007864 - 0.02042-bz ×1 4 1.38629 5 30.22315 > -0.02642 1.50944 $\times 2$ 5 \$ 0.18232 1.7976 6 X3 $f_{-}(x) = 0.462098(x-1) - 0.05974(x-1)(x-4) + 0.007864(x-1)(x-4)(x-5)$

No Date: --> Lagrange Intepolation Polynomials $f(x) = \sum_{i=1}^{n} L_i(x) - f(x_i)$ $L_{i(x)} = \frac{\prod}{y_{i=c}} \frac{X - X_{j}}{X_{i} - X_{j}}$ where Ex Find the lagrange of the first order (n=1) $f(x) = \sum_{k=0}^{\infty} L_{i}(x) \cdot I(k) = L_{i}(x) \cdot I(k) - L_{i}(x) \cdot I(k)$ $L_{a}(x) = \frac{1}{\prod} \frac{X - X_{i}}{X_{i} - X_{i}} = \frac{X - X_{i}}{X_{a} - X_{i}}$ $- \sum_{i=0}^{n} L_{i}(x) = \frac{1}{11} \frac{x - x_{i}}{x_{i} - x_{j}} \frac{x - x_{o}}{x_{1} - x_{o}}$ 346 $F_{1}(x) = \left(\frac{X - X_{1}}{X_{0} - X_{1}}\right) - f(x_{1}) + \frac{X - X_{0}}{X_{1} - X_{0}} - f(x_{1})$

Date: => Second order (n=2) = X = X = X $f_{z}(x) = \frac{z}{\xi} Li(0, f(x_i))$ $f(x) = L_{x}(x) f(x_{0}) + L_{y}(x) \cdot f(x_{0}) \cdot L_{x}(x) \cdot f(x_{0})$ $L_{\sigma}(x) = \frac{\pi}{\sum_{i=\sigma}^{\infty} x_i - x_j} = \frac{x_i - x_i}{x_i - x_j} \left(\frac{x_i - x_i}{x_i - x_j} \right) \left(\frac{x_i - x_i}{x_i - x_i} \right)$ $L_{1}(x) = \frac{2}{\Pi} \frac{X - X_{i}}{X_{i} - X_{o}} = \frac{(X - X_{o})}{(X_{1} - X_{o})} \frac{(X - X_{2})}{(X_{1} - X_{2})}$ $L_{2}(x) = \frac{1}{1} \frac{x - X_{i}}{X_{i} - X_{i}} = \frac{(x - X_{o})}{(x_{2} - X_{o})} \frac{(x - X_{i})}{(x_{2} - X_{i})}$ $L_{3}(x) \xrightarrow{\text{II}} \frac{X - X_{i}}{X_{i} - X_{0}} = \left(\frac{X - X_{0}}{X_{3} - X_{0}}\right) \left(\frac{X - X_{1}}{X_{3} - X_{1}}\right) \left(\frac{X - X_{2}}{X_{3} - X_{2}}\right) \left(\frac{X - X_{4}}{X_{3} - X_{2}}\right)$

Date: E.X Use lagrange interpolation of the first & second order to evaluate P(2) on the basic of the following data * طلب بالموال (2) + و 2 تعدي $X = 1 \implies f(x_{e}) = 0$ ا و ۷ از الا باخذ های القطیق x1=4 => P(x1)=1.386294 $X_{2} = 6 \implies f(X_{2}) = 1.791760$ $\Rightarrow f(x) = L_{\alpha}(x) + L_{1} f(x_{1})$ l(x)=0 $\int_{-1}^{1} \frac{2}{(x)} = \frac{2}{11} \frac{x - x_0}{x_0 - x_0} \frac{x - x_0}{x_0 - x_0} = \frac{x - 1}{4 - 1} = \frac{x - 1}{3}$ $f_1(x) = \left(\frac{x-1}{3}\right) 1.386294 \implies f_1(2) = 0.4626981$ $= f_2(x) = L_2(x)f(x_0) + L_1f(x_1) + L_2(x)f(x_1)$ alus ? list order By $\underbrace{1}_{L_{1}} \underbrace{(x)}_{X_{2}} = \frac{\pi}{\pi} \frac{x - X_{0}}{X_{c} - X_{0}} = \underbrace{(\frac{x - X_{0}}{X_{1} - X_{0}})}_{X_{1} - X_{0}} \underbrace{(\frac{x - X_{2}}{X_{1} - X_{2}})}_{X_{1} - X_{2}} = \sum L_{1} \underbrace{(x)}_{X_{2}} = \underbrace{(\frac{x - 1}{y_{-1}})}_{Y_{-1}} \underbrace{(\frac{x - G}{y_{-1}})}_{Y_{-1} - G} \underbrace{(x - G)}_{Y_{-1} - G} \underbrace{(x 2) L_{2}(x) = \frac{x}{1-x} \frac{x-x_{0}}{x_{1}-x_{1}} \left(\frac{x-x_{0}}{x_{2}-x_{0}}\right) \left(\frac{x-x_{1}}{x_{2}-x_{1}}\right) \implies L_{2}(x) = \left(\frac{x-1}{6-1}\right) \left(\frac{x-4}{6-4}\right)$ $f(2) = \frac{2-1}{4-1} \frac{2-6}{4-6} \times \frac{1.386294}{6-1} \frac{2-1}{6-4} \times \frac{1.79176}{6-4}$ $f_2(2) = 0.565844$

No:----Date:-- $f_{2}(x) = (0.2(x-5)(x-7)(-3(x-2)(x-7)) + (4(x-2)(x-5))$ $b_{1} = 22$ lagrang e E.X $f_2(x) = b_0 - tb_1 (x-2) + b_1(x-2)(x-5) (N.D.D)$ X-X0) (X-Xd) $b_1 = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ $f_{2}(x) = l_{0}(x) f(x_{0}) + L_{1}(x) f(x_{1}) + L_{2}(x) f(x_{2})$ $f_{2}(x) = \left(\begin{array}{c} x - X_{1} & x - X_{2} \\ \hline X_{a} - X_{1} & X_{a} - X_{2} \end{array}\right) f(x_{0}) + \left(\begin{array}{c} x - x_{0} & x - Y_{2} \\ \hline X_{1} - X_{0} & X_{1} - X_{2} \end{array}\right) f(x_{1}) + \left(\begin{array}{c} x - x_{0} & x - X_{1} \\ \hline X_{2} - X_{0} & X_{2} - X_{1} \end{array}\right) f(x_{2})$ Xa=2 من السوال $\frac{l(x_2)}{(7-2)(7-5)} = 4$ f(x,) (5-2)(5-7) $f(x_0) = 0.2$ (2-5)(2-7) f(x,)=18 f(x1)=40 P (x.)=3 $= \frac{18-3}{5-2} = \frac{15}{3} = 5$ 14.2

$$\begin{split} & f(x_{l+1}) = \sum_{n=0}^{\infty} \frac{f^n(x_l)}{n!} h^n, \quad R_n = \frac{f^{n+1}(x_l)}{(n+1)!} h^{n+1} \\ & x_r = \frac{x_l + \frac{x_l}{2}}{2}, \quad x_{l+1} = g(x_l) \\ & x_r = x_n - \frac{f(x_n)(x_l - x_n)}{f(x_l) - f(u)}, \quad x_{l+1} = x_l - \frac{f(x_l)(x_{l-1} - x_l)}{f(x_{l-1}) - f(x_l)} \\ & x_{l+1} = x_l - \frac{f(x_n)}{f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l - x_n)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l - x_n) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l - x_n)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l - x_n) - f(x_l)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & x_{l+1} = x_l - \frac{f(x_n)(x_l - x_n)}{f(x_l - x_n) - f(x_l - x_n)}, \quad n_l = \frac{\log(\Delta x/E_n)}{\log 2} \\ & f'(x_l) = \frac{f(x_{l+1}) - f(x_{l-1})}{2h}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_{l+1}) - f(x_{l-1})}{2h}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - g(x_l - x_l) + h_{x_l}}{h(x_l - x_l - x_n)}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) + h_{x_l}}{h(x_l - x_l - x_n)}, \quad f_n(x) = x_{n-1} - \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - f(x_{l-1}) + f(x_{l-1})}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - h_{x_l}}{h^2}, \quad f(x_l - x_{l-1}) + \frac{f(x_l - x_l) - h_{x_l}}{h^2}, \quad o(h^2) \\ & f'(x_l) = \frac{f(x_l - x_l) - h_{x_l}}{h^2}, \quad f(x_l - x_$$

CH 121 Newton Coles Integration Formula eller F(b) 1) Trapezcidal Rule f(4) $I = \int P(x) dx$ 9 $I \cong \frac{1}{2} \left(f(a) + f(b)\right)(b - q)$ = Et = I exact - I applex Et :- relative error , Truncation ervor $E_{q} = -\frac{1}{12} F(x) (b-\alpha)^{3}$ * -> Appleximation error = $\overline{f(x)} = \frac{b}{a} f'(x) dx$ f(b) - f'(a) = f(x)b-9 E.Y use rapizoidal rule to intergrate f(x) from 9=0, b=0.8 \$(x)=0,2+25x-200x + 875x3-900x4+400x5 I exact = 1,640533 Calc Co $\mathcal{I} \cong \frac{1}{2} \left(f(a) + f(a, \xi) \right) \left(0.\xi - 0 \right)$ MARCIN

No:----Date:----- $T = \frac{1}{2} (0.2 + 0.232) (0.8)$ I = 0.1728 NUN Et= 1.640533 - 0.1728 + bor. = 89.4% 0.8 1.640533 2) Multiple - Tropezoichi rule. use n segments with constant width X X Xe $step = \frac{b-q}{n}$ $I \cong \int f(x) \, dx + \frac{\int f(x) \, dx}{x_1} + \frac{\int f(x) \, dx}{x_{n-1}}$ $I \simeq \frac{1}{2} \left(\frac{f(x_1) - f(x_2)}{2} (x_1 - x_2) + \frac{1}{2} \left(\frac{f(x_2) - f(x_1)}{2} \right) (x_2 - x_1) + \frac{1}{2} (x_2 - x_1) + \frac{1}{2}$ $\frac{1}{2} \left(f(x_n) - f(x_{n-1}) \right) (x_n - x_{n-1})$ $I = \frac{1}{2} f(x_{0}) + 2 \sum_{i=1}^{n-1} f(x_{i}) + f(x_{n}) , (b-q)$ n _ x of segments * Approximation error :- $E_{\phi} = \frac{-(b-q)^3}{12n^2} \overline{f}(x)$ a the second states and the

Scanned by CamScanner

use two segments of trap-rule to find integral of f(x) E,X between 0 8 0.8 ?? f(x) = 0.2 + 25x - 200x2+675x3 - 900x4 + 400x5 تقم) اكمنال إسانت Sul $step = \frac{0.8 - 0}{2} = 0.4$ $f(x_2) = 0.232$ S(r.)=0.2 $f(x_{1}) = ?$ فرور حلا اروط x pãoist 12=0.8 X,=04 X==0 $(2-1) \rightarrow i=1$ $\sum_{a} f(x, j)$ $\frac{(0.8-0)}{2x2} \left(0.2 + 2 \times f(0.4) + 0.232 \right)$ I=1.0688 Er=34,8 Y. $X_0 = 0$ f(X) = c.2find the Integration for the following X, =0.12 , f(X,)= 1.309 using trap.rule ? $X_{2}=0.4$ $f(X_{2})=2.45$ X= e.7, P(X)=2.363 Xy=0.8 = = P(Xy)=0,232 $I \stackrel{<}{=} \frac{1}{2} \int [(0.2+1.309)(0.12-0) + (2.451-1.309)(0.4-0.12) + (2.363-2.45)(0.7-0.4)$ + (0.232-2.363)(0.8-0.7) I = 1.47/1

Date:-----

2) simpson's 1/3 rule Quadratic relation. $T = \int P(x) dx$ fre $I \cong \int f_2(x) dx$ XI a X. Xz $I = \int b_0 + b_1 (x - x_0) + b_2 (x - x_0) (x - x_1) dx$ $h=\frac{b-q}{2}$ $I \cong \frac{1}{3} \left(\frac{b-a}{2} \right) \left[f(x_0) + 4 f(x_1) + f(x_2) \right]$ $I \simeq \frac{h}{2} \left[f(x_0 + 4f(x_1) + f(x_2) \right]$ => Truncopion error of simpsion 1 Er = Iexact - Iapprox E۲ 81 × 100% $E_{f} = -\frac{1}{90} \frac{p^{(4)}(3)}{5} h^{5}$ Exact => Approximation error $E_{9} = \frac{-1}{90} \frac{P(x)}{P(x)} b^{5}$ Ea-Ea × 100% approximation $\frac{1}{f} \begin{pmatrix} u \\ x \end{pmatrix} = \frac{g}{f} \begin{pmatrix} u \\ x \end{pmatrix} = \frac{g}$ 6-9 6-9 averge (ASSIN) forth derivative

Scanned by CamScanner

No:----Date: -----48 simpsons 1/3 to integrate 1(1)=0.2 + 25y-200x 2+ 675x -90x 4 400x5 from 0 to 0.2 Ieract=1.610533 f (0.8)=0.232 f(au)=2.459 $h = \frac{0.2 - 0}{2} = 0.4$ f(0)=0.2 X, = c.8 X, =0.4 Xo=0 I= 0.4 [0.2 + 4+ 2.459+ 0.232] # Trap-zide seract (linears Constant = 1.36747 S.t=16.6 infinit & of segment * Simpson 1/3 _> Cract (linear , Quadratic) * simpson 3/8 sexact (Cubic) Signant _ sinpson => even tillo f(x) = 4x + 9E.X find S2 F(x) dix using trap-rule? 1

Date: Multiple segments of simpsin's 1/3 rule $T \simeq \int f_{z}(x) dx$ $I \cong \int f(\omega) \, dx_{+} \int f(\omega) \, dx_{-} \int f(\omega) \, dx_{-}$ 1 X, segment even "Lils $I = \frac{h}{3} \left[f(x_{1}) + 4f(x_{1}) + f(x_{2}) + \frac{h}{3} \left[f(x_{1}) + 4f(x_{1}) + f(x_{1}) \right] + \frac{h}{3} \left[f(x_{1}) + f(x_{1}) + f(x_{1}) \right] + \frac{h}{3} \left[f(x_{1}) + 4f(x_{1}) + f(x_{1}) \right] + \frac{h}{3} \left[f(x_{1}) + 4f(x_{1}) + f(x_{1}) \right]$ $\overline{L} = \frac{h}{3} \left[\frac{f(x_{o}) + 2}{\sum_{i=2,3}^{n-2} f(x_{i}) + 4} \frac{g}{2} \frac{f(x_{o}) + 2}{\sum_{i=2,3}^{n-2} f(x_{i}) + 4} \frac{g}{2} \frac{f(x_{o}) + f(x_{o})}{\int_{1}^{n-1} \frac{g}{2} \frac{g}{2} \frac{g}{2} \frac{g}{2}} \right]$ h= b-9 * Approximation orror :- $E_{q} = \frac{(b_{-q})^{5} \overline{F(x)}}{180 n^{4}}$ E.X. Use simpsin's 1/3 to integrate P(r)=0.2+25x-20ex +675x -900x +400x 5 with n=4 200 from Q to 0.8 Clein 2. 16 h = 0.8 - 6 = 0.20.6 0.2 0 0.4 0.8 XD Xt X, Xz Xu $I \cong \frac{0.2}{3} \left[6.2 + 2 \left(2.469 \right) + 4 \left(1.265 + 3.464 \right) + 0.232 \right]$

 $I \cong 1.623466$ $\xi_{q=1.051}$

WASSIN)

No:----Date: (more acurte) 3) $Simpson's\left(\frac{3}{3}\right)$ Rule Cubic relation 4 Pants $I = \int b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1}) + b_{3}(x - x_{0})(x - x_{0})$ b X2 ×, $T = \frac{3}{8} h \left[\frac{f(x_{1}) + 3(f(x_{1}) + f(x_{2}))}{8} + \frac{f(x_{3})}{8} \right]$ X, f3 (x)= -> how to find h $h = (X_3 - X_e) = 6 - 9$ X* Truncation Error = $E_{1} = \frac{-3}{80} h^{5} f^{(4)}(\bar{J})$ * * Approximation Error :- $E_{q} = \frac{-3}{20} \cdot h^{5} f(x)$ $\frac{-(4)}{f(x)} = \int \frac{f(x)}{b-a} dx = \frac{f(b)}{b-a} - \frac{f(a)}{b-a}$

5 E,X Use Simpson's 3 Rule to integrate f(x) between 6,0.8: *=0.2+25x-200x2+675x-900x -400x h = 0.8 - 0 = 0.26670.232 F(x): 0.2 1.43278 3.4887/27 Xz X ... X. X, X 0.8 0,532 6 0.2667 $I = \frac{3}{9} \left(\frac{6.2667}{2} \right) \left[\frac{0.2 + 3 \left(1.43272 + 3.48717 \right)}{9} + \frac{6.232}{7} \right]$ I= 1.51917 / Iexact = 1.640533 / Et = 7.47. E.x. A from Previous example Use simpson's Rule to integrate f(x) with five sigments from (a to 0, 8) $h = 5tep = \frac{0.8 - 0}{5} = 0.16$ 1.296919 1.743393 0.2 3.186015 3.181929 0.232 X. ×, X , X. Xo XS 0 016 0-3-2-0.48 0.64 - Case one (1) 5, (3) John is 318 1/3 sis a MILLI ×, Xz Xy Xo ×, XS 2:12 2 - (3) 1/3 3/8 JCare two Xc

Scanned by CamScanner

 $= JI_{1/3} - \frac{h}{2} \left[f(X_{\sigma}) + 4f(X_{1}) + f(X_{2}) \right]$ I13=0.3803237 $\implies I_{3f8} = \frac{3}{8} \times 0.16 - [1.743393 + 3(3.86015 + 3.8929) + 0.232]$ I318= 1.264754 Itotal _ 1.645077 Et= 0.28% Iexart = 1,646533 Case 2 more acurte than (?) E-X 0.32 0.16 0.48 0.5 0.64 time 0 3.4 3.6 12 4.2 1.7 velocity 0 318 find distance at += 0.4 * ما أن الملفات عنى مساوية ما يعدر Idle Z'resquis hills incies lited? latell distance = J V(+). dt simpson's 3 1/ te de dei

Date: -----

* * Numerical Differentiation (C.H 23) $f'(x) = \lim_{h \to 0} \frac{f(x_{i+h}) - f(x_i)}{h}$ $f(x_{i+1}) = \underbrace{\sum_{h=0}^{n} p(x_i)}_{h=0} h^n \qquad Tyler \quad series$ => f(xit) = f(xi) + f(xi) ht first derivative from Taylor series 0(h) $F'(x_{b-}) = F(x_{b-}) - F(x_{b})$ 3-(Forward finite differnce method) (o(h)) بورى عطوه $f'(x_{i}) \cong f(x_{i+1}) - f(x_{i})$ h=(Xi+)-Xi) Xi-1 Xi Xiti (Backword finite differnce method) (o(h))-> (first order of accuracy) $f(x_i) = \frac{f(x_i) - f(x_{i-1})}{1 - 1}$ (center finite differnce method) (o(h2)) -> (second order of accuracy) $f(x_0) = \frac{f(x_{0-1}) - f(x_{0-1})}{2h}$ 0

Notaria Date: -----

use forward & Backward with (o(h), o(h')) & contered with (oh) & o(h") to find f'(x) at x=0.5 by using h=0.25f(x)= -0.1x"-0.15x3-0.5x2-0.25x+1.2 (0,5) _ - 0.9125 Sorward O(h) 0.63632 f(x) 0.925 0.75 0.25 1.0 0.5 X6-1 Xi+2 $f'(x_i) = f(x_{i+1}) - f(x_i) =$ Xi+1 X .- 7 0.636308 - 0.925 - -1.155 Er= 26.5% 0.25 => 0 (h) - $f'(y) = \frac{f(y_{i+2}) + 4f(y_{i+1}) - 3f(y_0)}{2h} = \frac{-0.2 + 4 \times 06338 - 3 \times 0.955}{2 \times 0.25} = -0.859375, \xi_{\pm} = 5.87.$ > Back ward dh $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$ $f'(0.5) = \frac{f(0.5) - f(0.25)}{0.70} = -0.714, \quad \xi_1 = 21.7\%$ $o(h^2) \quad f(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) - f(x_{i-2})}{2h}$ f'(c,s) = -0.878) $\Xi = 3.7 \%$

D
0
9
N.
1
10
1

No: Date:	
=> Center	
$f'(x_{i}) = \frac{f(x_{i+1} - f(x_{i-1}))}{2h} \circ (h^2)$	
$f((0.5) = -0.939$ $\xi_{+} = 2.4 r$	
$f'(x_{i}) = -0.9125$ exact (c(h ⁹)) $\xi_{i} = 0$	
V= 0/.	H B I 2 2.5 3 P O O5 0.75 1.25 2
	buiccetor the nit has how
	Center nothing to be to
her 1, 2	is a signification of the word of V(3)
	مدان بر التعدار مدان و Re(hi)
	· · · · · · · · · · · · · · · · · · ·
	he have a straight of the
	the work of the second

No:----Date: -----Ch 25 :- Ordinary Differential equition (ODE) y(x.) = yo Intial Condition Numerical method to solve OE :-1) Euler's method _ Heun's needed Mid pint method > Relston's method 2) Runge - Kutta method (R.K 2nd order to 4th order) 1) Euler's method To solve the (OPE) as $\frac{dy}{dx} = f(x, y)$, $y(x_{i}) = y$. $y_{i+1} = y_i + f(x_i, y_i)h$ $\hat{F}(X_i) = \frac{\hat{F}(X_{i-1}) - \hat{F}(X_i)}{-\hat{F}(X_i)}$ $y(x_{i}) = y_{i}$ 1=0-1,2 -- $\frac{dy}{dx} = \frac{f(x_{i+1})}{h} - f(x_i)$ h = Xi+1 - X. h 10 Χ, X, Χ. $y_{i+1} = y_i + \frac{dy}{dx}h$

No:-----

دانه بلوه بوغو <u>لالم</u> E.X use Eyler's method to solve the following OE dy + 2x - 12x - 20x - 8,5 = 0 from to to X-1 with h= 0.5 - 4(0)-1 بعر العل $J_{1}(x_{2}) = 5.875$ $y_{1}(x_{1}) = 5.25$ y (x.)=1 $\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5$ X== 1 X = 0.5 X $y_{+} = y_{+} + f(x_{i}, y_{i})h$ f(0,1)=8.5 6=0 y, y, + f(x, y) x 0.5 ينوعن فعة لا f(0.5, 5.25) = 1.25y, = 1+ 8.5 × 0.5 y = 5.25 $l = \int_{x} \frac{y_{1}}{y_{2}} = \frac{y_{1}}{y_{1}} + \frac{f(x_{1}, y_{1}) + 0.5}{y_{1}}$ y = 5.25 +1.25 × 0.5 y = 5.875 XX Approximation error - $E_q = \frac{f(x_i,y_i)h^2}{2}$

Date: ----No E.X. use Euler's method to solve (eDE) dy -5xg-1=0 where y(w)=1 = h=0.25 Find y(0.5) ?? $f(x_{i}, y_{i}) = 5x_{i}^{2}y_{i} + 1$ $\frac{dy}{dx} = 5x^2y + 1$ y2 to 5) 9,=1.25 4.=1 6=0 y=y=f(x,y) × 0.25 × , ×, x. 0.5 y = 1+ f(0, 1) * 0.25 = 1.25 0.25 L=1 y==y, f(1, y, x 0.25 $y_{2} = 1.25 + f(0.25, 1.25) \times 0.25$ y = 1.5976 2) f(x, y,) = loxy (x)] = july f (X, y) = 10 + 0.25 × 1.25 = 3.125 $E_{q} = \frac{3.125 \times (0.25)^2}{2} = 0.09765$ 1(1.25) X2=0.5 X3=0.75 X4=1 45=1.85 X. -0.25 X = C

Date:-----

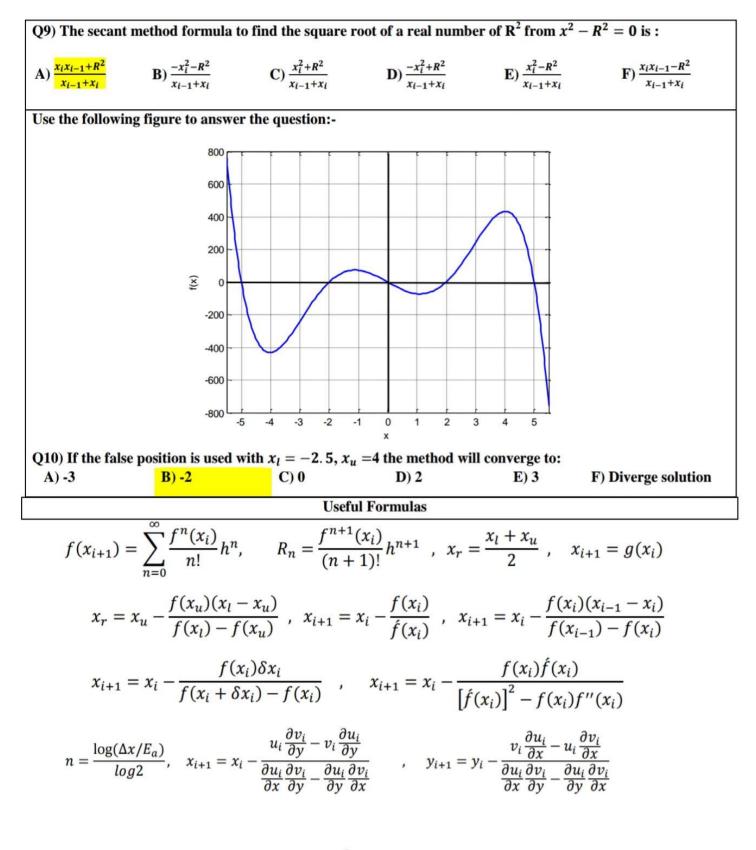
2) Runge - Kulla method -> 2nd order 4th > Second order R.K $f(x_{i+1}) = \frac{f(x_i)h^{\circ}}{0!} + \frac{f(x_i)h^{\circ}}{1!} + \frac{f(x_i)h^{\circ}}{2!}$ dy = f(x,y) - General formyto R.K 2nd arder $\begin{array}{l} y_{i+1} = y_i + (q_i k_i + q_2 k_2) h \quad \text{where} \quad k_i = f(x_i, y_i) \\ k_i = f(x_i + P_i h_2, y_i + q_i, k_i) \end{array}$ - 4 unknowns 9, acs P, 9 9,+9=1 $9_2 R = \frac{1}{2}$ $q_2 q_1 = \frac{1}{2}$ 1) Midpoint method 92=1 accuracy (2) $q_{1}=0$ $p_{1}=\frac{1}{2}$ $q_{1}=\frac{1}{2}$ where k, = f(x, y) y:+ = y + K2h $k_{2} = f(x_{i+\frac{h}{2}}, y_{i+\frac{1}{2}}, k, h)$

Scanned by CamScanner

No: Date: Accuracy Jul (3) 2) Henn's nethed 92=1 $q_{1}=\frac{1}{2}, p_{1}=\frac{1}{2}, q_{1}=1$ where $K_{i} = f(x_{i}, y_{i})$ $y_{i+1} = y_i + (\frac{1}{2}k_i + \frac{1}{2}k_e)h$ $k_{2}=f(x_i+h_2,y_i+k_ih)$ more accuracy (1) 3) Ralston's method $q_z = \frac{2}{3}$ $q_{1} = \frac{1}{3} - \frac{p_{1}}{9} = \frac{3}{9} - \frac{q_{1}}{9} = \frac{3}{4}$ where $k_{i} = f(x_{i}, y_{i})$ $y_{i+1} = y_i + (\frac{1}{3}k_1 + \frac{2}{3}k_2)h_{i+1}$ $K_{2} = f(x_{1} + \frac{3}{4}h_{2}, \frac{4}{3}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4})$ > third order R.K. $-\frac{y_{i+1}}{y_{i+1}} = \frac{y_i}{x_i} + \frac{1}{k} \left(\frac{k_1 + \frac{y_1}{k_2} + \frac{y_3}{k_3}}{h} \right)$ $k_{1} = f(x_{1}, y_{1})$ where k2= f(xi+ 1/2h , y + 1/2h Ki) K3 = f(Xi+h, y-K1h+2K2h) => Forth order R.K y = y + 1 (k, + 2(k2+k3) + Ky) h where $K_1 = P(x_i, y_i)$ $k_2 = F(X_{i+\frac{h}{2}}, y_i + \frac{h}{2}k_i)$ $K_3 = f(X_{i+\frac{h}{2}}, y_{i+\frac{h}{2}}, k_2)$ $K_{4} = f(X_{1+h}, y_{1+h}, K_{3})$

Date:--Ex use Mid Point & Relustion's precha to evalure y (0.5) Where h= 0.5 , y(0)=1 = $\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5 / f(x_{i3}y_{i}) = -2x^3 + 12x^2 - 20x + 8.5$ 9, = ?? X,=0.5 X=O $Mid \Rightarrow y_{i+1} - y_{i+1} + k_2h, \qquad k_1 - \ell(x_i, y_i)$ k2= f(Xi+ 2 hog + 1 hki) -5i = 0 K, $= f(x_{3}y_{1}) - f(0_{2}1) = 8.5$ $k_2 = f(0.25, 1 + \frac{1}{2} \times c_5 \times 8.5) = 4.21875$ م بس نعوع عاد الرحم لدنو لابود Y ع fun 1=0----9,= 9 + K2h y = 1 + 4.21875 × c.5 9 = 3.109375 Ralston's => y = y + (1 K + 2 K2)h $K_1 = f(r_{i-y})$ $k_2 = P(X_{i+3} h, y_{i+3} hk_{i})$ $k_1 = f(o_0 I) = 8.5$ Ke=f(0+3 x1, 1+3x1 x85) = K2=f(0.375, 41875) = 2.582 y = y + (1/3 × 8.5+2 × 2.582) × e.5 y = 3.2773

Date: -----Erample use R.K 4th order to evaluated y(0.5), where h= 0.5) dy =-2x3+12x2-20x+8.5 4(0)=1 $y_{i+1} = y_i + \frac{1}{6} (K_1 + 2(K_2 + K_3) + K_4) h$ K,=P(xi,y)=>k,=8.5 $K_{2} = f\left(X_{i} + \frac{h}{2}, \frac{y_{i}}{2} + \frac{h}{2}K_{i}\right) \Rightarrow K_{2} = 4.22$ $k_{3} = P(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}k_{2}) \implies k_{3} = \frac{4.22}{12}$ $k_{y} = P(x_{i}+h, y+hk_{3}) \longrightarrow k_{y} = 1.25$ 1=0 $y = \frac{1+1}{6} \left(8.5 + 2 \left(4.22 + 4.22 \right) + 1.25 \right) 0.5$ y = 3.2192


No:-----Date:--** System of eq's #n of initial Conditions $\frac{dy_{i}}{dy_{i}} = f_{i}\left(x, y, y, y, \dots, y_{n}\right)$ y, (x) = y" y (X) = y= $dy_e = f_2(X, y, y_2, \dots, y_n)$ $y_{n}(x_{o}) = y^{\circ}$ dy $\frac{dy_n}{dy_n} = f_n(x, y, y_2, \dots, y_n)$ Eylers $\dot{y}_{i} = \dot{y}_{i} + f_{i} (\dot{x}_{i} + \dot{y}_{i}) + \dot{y}_{i}^{2} + \frac{g_{i}^{2}}{2} + \frac{g_{i}^{2}}{2}$ $y_{i+1}^2 = y_i^2 + f_z(x_i, y_i, y_i^2, y_i^2) h$ $y^{h} = y^{h} + in(x_{i}, y_{i}', y_{i}^{2}, \dots, y_{i}')h$ E.X solve the following set of eq's by using Euler's method with y(a)=4. $\frac{Z(q)=6}{X_{a}} = \frac{1}{1} = \frac{1}{1}$ $\frac{dy}{dy} = -0.5 \frac{y}{dy} = \frac{dZ}{dy} = \frac{y_{-0.3} - 0.1y}{\frac{y_{-}}{2}}$ X = C. C fi (Yig y , Zi) = - 0.5 y Fn(X:, y:, z1)= 4- 0,3 Z-0.14

Date: y = y + f, h / Zi+ = y + feh $U=0 \quad y=4+f_1(\sigma_2 4_{36}) \times 0.5 \quad | Z_1=6+f_2(\sigma_3 4_{36}) \times 0.5)$ y = 3 $Z_{1} = 6.9$ L= 1 $\frac{y_2}{y_2} = \frac{y_1}{y_1} + \frac{f(x_1, y_1, z_1)h}{y_1} = \frac{y_2}{z_1} = \frac{3+f_1(0.5, 3, 6, 9) + e.5}{y_2}$ y = 3 + (-1.5) × 0.5 = 2.25 Ze=Z1+f2(x, y, J7.)h => Zz=6.9+f2(0.5, 3, 69) × 0.5) Z= 6.9+ 1.63 × 0.5 = 7.715 $+ y_{i+1} = y_i + \frac{1}{6} \left(k_1^{3} + 2 \left(k_2^{3} + k_3^{3} \right) + k_4^{3} \right) h$ $K_{2-}=f(X_{i}+h_{2},y_{i}+h_{2}k_{1})$ $K_{1}^{9} = f_{1}(X_{0}, y_{1}, z_{i})$ $k_{2}^{y} = f_{1}\left(X_{i+\frac{h}{2}}, y_{i+\frac{h}{2}}, K_{i-\frac{h}{2}}, Z_{i+\frac{h}{2}}, K_{i-\frac{h}{2}}^{z}\right)$ $k_{i}^{z} = f_{z}(X_{i}, y_{i}, Z_{i})$

No:-----Date: ** Higher order ODE $---+q, \frac{dy}{dx}+q, \frac{y}{dy}=f(x)$ $a_n \frac{d^n y}{dy} + q \frac{dy}{n-1} \frac{dy}{dx^{n-1}}$ with n-1 million Condition y=Z1 dz, _Z_= fi(X, Z, Z, Z, Zn) $\frac{dy}{dx} = \frac{dz_i}{dx} = z_2$ where dz2 = Z2 = f2 (X,Z, Z, Z2, -- Zn) dx $\frac{dy}{dx^2} = \frac{d^2 z_1}{dx^2} = \frac{dz_2}{dx} = \frac{z_3}{dx}$ dx Ex Use RK 3rd order with y(c)=1 , y'(c)-2, h=0.5 to find y (0.5) ? $\frac{dy}{dx^2} + \frac{2}{dy} \frac{dy}{dx} = \frac{-x}{y}$ y = z = 2ÿ= 9=1 X = 05 X0=0 $\frac{dx}{dx} = z \qquad dz \qquad dz + 2z + y = e^{-x}$ 51 let dx ć

No: Date: ---- $y_{l+1} = y_{l} + \frac{1}{6} \left(k_{1}^{9} + 4 k_{2}^{9} + k_{3}^{9} \right) h$ $\frac{dy}{dx} = f_1(x_i, y_i, Z_i) = Z$ $Z_{i+1} = Z_i + \frac{1}{6} \left(k_1^2 + \frac{1}{6} \left(k_1^2 + \frac{1}{6} \left(k_1^2 + \frac{1}{6} \right) \right) h$ $\frac{dz}{dx} = f_2(x_{i}, y_{i}, z_i) = e^{-x} - 2Z - y$ 4 = 1.60657 Z1= 4 = 0.51368

The series of th	The Hashemite University Faculty of Engineering - Department of Mechanical Engineering Numerical Analysis - Fall Semester . 2017/2018 First Test: Closed book, closed sheet				20	
Student Name : Student ID# : Section :		Instructor: • Eng. A.Bani yaseen • Dr. Sameer Al-Dahidi • Dr. Mustafa Jaradat				
Consider the follow	ving function for	$\begin{array}{c} \mathbf{Q1, Q2} \\ f(x) = x \end{array}$	a ^{-x} - 0 2			
National Action in the state						
Q1) Using bisection	n method on the i	nterval [1, 5].What	is the roo	t after 3rd	iteration?	
A) 1.5	B) 2.5	C) 3.5	D) 3.87	5	E) 2.875	F) 1.875
Q2) Using Newton- iteration?	-Raphson method	with initial guess <i>x</i>	$x_0 = 0, \mathbf{W}$	hat is the	root of the equat	ion after the 2 nd
and the second se	B) 0.4499	C) 2.4526	D) 0.25	54	E) 1.7813	F) 3.5500
	Q3) The Taylor 3 rd order approximation of $f(1.8)$ about $x_i=0.1$ is $\underline{4.845}$ is $f'''(x_i) = 1.72$ & $f^{(4)}(x_i) = 0.93$ What is the Taylor second approximation of $f(1.8)$ about x_i ?					
A) 3.4366	B) 3.5241	C) 3.8775	D) 3.754	18	E) 3.6208	F) 4.2152
Q4) Iteration started to find a root of a function; the 4 th iteration obtained value of $x = 1.2$ with $\varepsilon_t = 23\%$, What is the value of the root for the previous iteration that gives $\varepsilon_t = 57\%$						
A) 0.72597	B) 0.67013	C) 0.52484	D) 0.83	766	E) 0.94935	F) 0.87241
Q5) The following system of equations is given by $y = -x^2 + x + 0.75$, $y + 5xy = x^2$, starting with $(x_o, y_o) = (1, 0.2)$, Using fixed point iteration method to find the solution after one iteration. Use: $g_1(x, y) = \sqrt{x - y + 0.75}$, $g_2(x, y) = x^2/(1 + 5x)$						
A) x=1.2042 y=0.1667	B) x=1.2042 y=0.2065	C) x=1.1180 y=0.1897	D) $x=1$ y=0.2		E) $x=1.2449$ y=0.2145	F) $x=1.2449$ y=0.1667
Q6) As the step size	e increases in the	Taylor series expan	nsion:			
A) Round-off error D) Truncation er G) B&C	ror decreases	B) Truncation of E) A&B H) A&D			C) Round off (F) C&D I) None of the	error decreases above
Q7) Using Gauss elimination method to solve the system of equation,:- $2x_1 + 4x_2 + 3 = -6$						
$2x_1 + 2x_2 - 2x_3 = 4$						
$x_1 - x_2 + 4x_3 = 8$						
The third row of th				-		
A) (0,0,-8)	B) (0,0,16)	C) (0,0,10)	D) (0,0,		E) (0,0,6)	F) (0,0,2)
Q8) In root finding of $f(x)$ using bracketing methods over the interval $[x_b, x_u]$ when $f(x_l) \times f(x_u) < 0$ then $f(x)$:						
A) Has one root	1 0	B) Has an odd n	umber of	roots	C) Has no roo	t
D) Has an Even n G) A or B	umber of roots	E) A or D H) B or D			F) B or C I) A or C	
5/1010		1,000			1,11010	

Good Luck

The second second	The Hashemite University Faculty of Engineering - Department of Mechanical Engineering Numerical Analysis - Fall Semester 2017/2018 Second Test: Closed book, closed sheet				
Student Name : Student ID# : Section :			Ir	 structor: Eng. A.Bani ya Dr. Sameer Al- Dr. Mustafa Ja 	Dahidi
Consider the follow	ving function for (Q1, Q2	F., 1		
		$12x_1 + 3x_2 x_1 + 5x_2 +$			
		$7x_2 + 3x_1 +$	$13x_3 = 76$		
Q1) Using Gauss S will be:	eidel iteration me	thod with initial gu	ess $x_o = [1, 1]$, 1]. The value of x_3 aft	er first iteration
A) 3.09	B) 2.96	C) 3.12	D) 0.25	E) 2.85	F) 4.95
Q2) Using Jacobi it be :	eration method w	with initial guess x_o	=[1, 1 , 1]. T	The value of x_3 after the	e first iteration will
A) 5.31	B) 5.62	C) 5.55	D) 5.08	E) 5.85	F) 5.8
Q3) What is coeffic	The coefficient matrix A is decomposed into the following matrix $\begin{bmatrix} 4 & 1 & 4 \\ 0 & 2.5 & -2 \\ 0 & 0 & -0.3 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & -0.9 & 1 \end{bmatrix}$ Q3) What is coefficient matrix element a_{33} ? A) 5.5 B) 3.5 C) 4.5 D) 2.5 E) 1.5 F) 4.1 Q4) What is the intermediate vector resulting from the calculation of the 1 st column of inverse of matrix A?				
				,-1.2] ^T E) [1,-0.5,0.9	
				f(x) to used when using	
(A) $\sqrt{\frac{1}{y}} = \frac{b}{a}\frac{1}{\sqrt{x}} + \frac{1}{b}$		$\mathbf{B})\frac{1}{y^2} = \frac{b}{a}\frac{1}{\sqrt{x}} + \mathbf{b}$		$\mathbf{C}) \sqrt{\frac{1}{y}} = \frac{a}{b} \frac{1}{\sqrt{x}}$	$+\frac{1}{b}$
D) $\sqrt{y} = \frac{a}{b} \frac{1}{\sqrt{x}} + \frac{1}{b}$		$\mathbf{E})\sqrt{\frac{1}{y}}=\frac{b}{a}x^2+b$		$\mathbf{F}) \ y^2 = \frac{b}{a} \frac{1}{\sqrt{x}}$	$+\frac{1}{b}$
Consider the follow	0	Q7			
Given the Following data Points					
x 1 1.5 2 2.5 $y=f(x)$ 2.5 3.5 5.5 7.2					
Q6) If a quadratic interpolation polynomial $f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$ was used to determine $f(1.2)$. What is the value of b_2 ?					
A) 2	B) 1	C) -3	D) -1	E) -2	F) 3
Q7) The lagrangian $L_3(1,2)$ for the third order polynomial equal to:					
A) -0.0640	B) 0.0640	C) -0.0320	D) 0.0480	E) 0.0320	F) -0.0480

This paragraph a					
Given the Followi		26 4	_		
x 0.2	0.7 1.5	2.6 4			
$y=f(x) \qquad 0.7$	0.48 0.23	0.065 0.012			
	g data is used to fit nd b, respectively.	the function $y =$	$\frac{1}{1+ae^{bx}}$, using the le	ast squares metho	d to find the values
	na b, respectively.				
A) a= 0.4352 b= 1.3324	B) a= 0.4629 b= 1.3029	C) a= 0.3859 b= 1.3642	D) a= 1.3324 b= 0.4352	E) a= 0.5346 b= 1.2479	F) a= 1.3642 b= 0.3859
Q9) The correlati	on coefficient of th	e fit is:-			
A) 0.9997	B) 0.9904	C) 0.9979	D) 0.9992	E) 0.9982	F) 0.9964
fit line, if h ₁ = What is the stand	=1.5, h ₂ =2.5, h ₃ =2, l ard error <mark>of estima</mark>	h ₄ =1.5, h ₅ =4. nte?	ta points and their b	pest y • Data	Points h ₃ h ₄ h ₅ h ₂ Best Fit
A) 2.1602	B) 3.20		C) 2.9297	h _i :Distance	between data point and best fit line
D) 1.7795	E) 3.78		F) 3.0957 verge use Gauss-Sei		x
A) eq(1), eq(2),eq(3) B) eq(1), eq(3),eq(2) C) eq(2), eq(1),eq(3) D) eq(2), eq(3),eq(1) E) eq(3), eq(2),eq(1) F) eq(3), eq(1),eq(2) G) System will never converge H) System will always converge					
		Useful	Formulas		
$L_{i}(x) = \prod_{\substack{j=0\\i=i}}^{n} \frac{(x-x_{j})}{(x_{i}-x_{j})} , f_{n}(x) = \sum_{i=0}^{n} L_{i}(x)f(x_{i})$					
$f_n(x) =$	$b_o + b_1(x - x_o) +$	$b_2(x-x_o)(x-x)$	$(x_1) + \dots + b_n(x - x_0)$	$(x - x_{n-1})$	
$b_0 = f(x_0)$, $b_1 = f[x_1, x_0]$, $b_2 = f[x_2, x_1, x_0]$					
$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}, f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$					
$\begin{bmatrix} n & (\sum x) \\ (\sum x) & (\sum x^2) \end{bmatrix} \begin{bmatrix} a_o \\ a_1 \end{bmatrix} = \begin{bmatrix} (\sum y) \\ (\sum xy) \end{bmatrix} , S_{y/x} = \sqrt{\frac{S_r}{n-2}} , S_y = \sqrt{\frac{S_t}{n-1}} , S_r = \sum (y_i - f(x_i))^2$					
$r = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\left(\sqrt{n \sum x_i^2 - (\sum x_i)^2}\right) \left(\sqrt{n \sum y_i^2 - (\sum y_i)^2}\right)} , \qquad S_t = \sum (y_i - \bar{y})^2$					
、 ·		N	/		

Chapter 08.05 On Solving Higher Order Equations for Ordinary Differential Equations

After reading this chapter, you should be able to: 1. *solve higher order and coupled differential equations,*

We have learned Euler's and Runge-Kutta methods to solve first order ordinary differential equations of the form

$$\frac{dy}{dx} = f(x, y), \ y(0) = y_0 \tag{1}$$

What do we do to solve simultaneous (coupled) differential equations, or differential equations that are higher than first order? For example an n^{th} order differential equation of the form

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_o y = f(x)$$
⁽²⁾

with n-1 initial conditions can be solved by assuming

$$y = z_1 \tag{3.1}$$

$$\frac{dy}{dx} = \frac{dz_1}{dx} = z_2 \tag{3.2}$$

$$\frac{d^2 y}{dx^2} = \frac{dz_2}{dx} = z_3$$
(3.3)

$$\frac{d^{n-1}y}{dx^{n-1}} = \frac{dz_{n-1}}{dx} = z_n$$
(3.n)

$$\frac{d^{n} y}{dx^{n}} = \frac{dz_{n}}{dx}$$

$$= \frac{1}{a_{n}} \left(-a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} \dots -a_{1} \frac{dy}{dx} - a_{0} y + f(x) \right)$$

$$= \frac{1}{a_{n}} \left(-a_{n-1} z_{n} \dots -a_{1} z_{2} - a_{0} z_{1} + f(x) \right)$$
(3.n+1)

The above Equations from (3.1) to (3.n+1) represent *n* first order differential equations as follows

$$\frac{dz_1}{dx} = z_2 = f_1(z_1, z_2, \dots, x)$$
(4.1)

$$\frac{dz_2}{dx} = z_3 = f_2(z_1, z_2, \dots, x)$$
(4.2)

$$\frac{dz_n}{dx} = \frac{1}{a_n} \left(-a_{n-1} z_n \dots - a_1 z_2 - a_0 z_1 + f(x) \right)$$
(4.n)

Each of the n first order ordinary differential equations are accompanied by one initial condition. These first order ordinary differential equations are simultaneous in nature but can be solved by the methods used for solving first order ordinary differential equations that we have already learned.

Example 1

Rewrite the following differential equation as a set of first order differential equations.

$$3\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x}, \ y(0) = 5, \ y'(0) = 7$$

Solution

The ordinary differential equation would be rewritten as follows. Assume

$$\frac{dy}{dx} = z,$$

Then

$$\frac{d^2 y}{dx^2} = \frac{dz}{dx}$$

Substituting this in the given second order ordinary differential equation gives

$$3\frac{dz}{dx} + 2z + 5y = e^{-x}$$
$$\frac{dz}{dx} = \frac{1}{3}(e^{-x} - 2z - 5y)$$

The set of two simultaneous first order ordinary differential equations complete with the initial conditions then is

$$\frac{dy}{dx} = z, \ y(0) = 5$$
$$\frac{dz}{dx} = \frac{1}{3} (e^{-x} - 2z - 5y), \ z(0) = 7.$$

Now one can apply any of the numerical methods used for solving first order ordinary differential equations.

Example 2

Given

$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + y = e^{-t}, \ y(0) = 1, \ \frac{dy}{dt}(0) = 2, \text{ find by Euler's method}$$

a) $y(0.75)$

c)
$$\frac{dy}{dt}(0.75)$$

Use a step size of h = 0.25.

Solution

First, the second order differential equation is written as two simultaneous first-order differential equations as follows. Assume

$$\frac{dy}{dt} = z$$

then

$$\frac{dz}{dt} + 2z + y = e^{-t}$$
$$\frac{dz}{dt} = e^{-t} - 2z - y$$

So the two simultaneous first order differential equations are

$$\frac{dy}{dt} = z = f_1(t, y, z), \ y(0) = 1$$
(E2.1)

 $\frac{dz}{dt} = z = f_1(t, y, z), \ y(0) = 1$
(E2.1)

$$\frac{dz}{dt} = e^{-t} - 2z - y = f_2(t, y, z), \ z(0) = 2$$
(E2.2)

Using Euler's method on Equations (E2.1) and (E2.2), we get

$$y_{i+1} = y_i + f_1(t_i, y_i, z_i)h$$
(E2.3)

$$z_{i+1} = z_i + f_2(t_i, y_i, z_i)h$$
(E2.4)

a) To find the value of y(0.75) and since we are using a step size of 0.25 and starting at t = 0, we need to take three steps to find the value of y(0.75).

For
$$i = 0, t_0 = 0, y_0 = 1, z_0 = 2$$
,
From Equation (E2.3)
 $y_1 = y_0 + f_1(t_0, y_0, z_0)h$
 $= 1 + f_1(0,1,2)(0.25)$
 $= 1 + 2(0.25)$
 $= 1.5$

 y_1 is the approximate value of y at

$$t = t_1 = t_0 + h = 0 + 0.25 = 0.25$$

$$y_1 = y(0.25) \approx 1.5$$

Equation (E2.4)

$$z_1 = z_0 + f_2(t_0, y_0, z_0)h$$

From

$$z_{1} = z_{0} + f_{2}(t_{0}, y_{0}, z_{0})h$$

= 2 + f_{2}(0,1,2)(0.25)
= 2 + (e^{-0} - 2(2) - 1)(0.25)
= 1

 z_1 is the approximate value of z (same as $\frac{dy}{dt}$) at t = 0.25

 $z_1 = z(0.25) \approx 1$ For $i = 1, t_1 = 0.25, y_1 = 1.5, z_1 = 1$, From Equation (E2.3) $y_2 = y_1 + f_1(t_1, y_1, z_1)h$ $= 1.5 + f_1(0.25, 1.5, 1)(0.25)$ = 1.5 + (1)(0.25)=1.75 y_2 is the approximate value of y at $t = t_2 = t_1 + h = 0.25 + 0.25 = 0.50$ $y_2 = y(0.5) \approx 1.75$ From Equation (E2.4) $z_2 = z_1 + f_2(t_1, y_1, z_1)h$ $=1+f_{2}(0.25,1.5,1)(0.25)$ $=1+(e^{-0.25}-2(1)-1.5)(0.25)$ =1+(-2.7211)(0.25)= 0.31970 z_2 is the approximate value of z at $t = t_2 = 0.5$ $z_2 = z(0.5) \approx 0.31970$ For $i = 2, t_2 = 0.5, y_2 = 1.75, z_2 = 0.31970$, From Equation (E2.3) $y_3 = y_2 + f_1(t_2, y_2, z_2)h$ $=1.75 + f_1(0.50, 1.75, 0.31970)(0.25)$ = 1.75 + (0.31970)(0.25)=1.8299 y_3 is the approximate value of y at $t = t_3 = t_2 + h = 0.5 + 0.25 = 0.75$ $y_3 = y(0.75) \approx 1.8299$ From Equation (E2.4) $z_3 = z_2 + f_2(t_2, y_2, z_2)h$ $= 0.31972 + f_2(0.50, 1.75, 0.31970)(0.25)$ $= 0.31972 + (e^{-0.50} - 2(0.31970) - 1.75)(0.25)$ = 0.31972 + (-1.7829)(0.25)= -0.1260 z_3 is the approximate value of z at $t = t_3 = 0.75$ $z_3 = z(0.75) \approx -0.12601$ $y(0.75) \approx y_3 = 1.8299$

b) The exact value of y(0.75) is

$$y(0.75)|_{exact} = 1.668$$

The absolute relative true error in the result from part (a) is

$$\left| \in_{t} \right| = \left| \frac{1.668 - 1.8299}{1.668} \right| \times 100$$
$$= 9.7062\%$$
c) $\frac{dy}{dx} (0.75) = z_{3} \approx -0.12601$

Example 3

Given

$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + y = e^{-t}, y(0) = 1, \frac{dy}{dt}(0) = 2,$$

find by Heun's method

a)
$$y(0.75)$$

b) $\frac{dy}{dx}(0.75)$.

Use a step size of h = 0.25.

Solution

First, the second order differential equation is rewritten as two simultaneous first-order differential equations as follows. Assume

$$\frac{dy}{dt} = z$$

then

$$\frac{dz}{dt} + 2z + y = e^{-t}$$
$$\frac{dz}{dt} = e^{-t} - 2z - y$$

So the two simultaneous first order differential equations are

$$\frac{dy}{dt} = z = f_1(t, y, z), y(0) = 1$$
(E3.1)

$$\frac{dz}{dt} = e^{-t} - 2z - y = f_2(t, y, z), z(0) = 2$$
(E3.2)

Using Heun's method on Equations (1) and (2), we get

$$y_{i+1} = y_i + \frac{1}{2} \left(k_1^y + k_2^y \right) h$$
(E3.3)

$$k_{I}^{y} = f_{I}\left(t_{i}, y_{i}, z_{i}\right)$$
 (E3.4a)

$$k_{2}^{y} = f_{1} \left(t_{i} + h, y_{i} + hk_{1}^{y}, z_{i} + hk_{1}^{z} \right)$$
(E 3.4b)

$$z_{i+1} = z_i + \frac{1}{2} \left(k_1^z + k_2^z \right) h$$
(E3.5)

$$\begin{aligned} k_1^z &= f_2(t_1, y_1, z_1) & (E3.6a) \\ k_2^z &= f_2(t_1 + h, y_1 + hk_1^z, z_1 + hk_1^z) & (E3.6b) \end{aligned}$$
For $i = 0, t_0 = 0, y_0 = 1, z_0 = 2$
From Equation (E3.4a)
$$k_1^z &= f_1(t_0, y_0, z_0) \\ &= f_1(0, 1, 2) \\ &= 2 \end{aligned}$$
From Equation (E3.6a)
$$k_1^z &= f_2(0, 1, 2) \\ &= e^{-0} - 2(2) - 1 \\ &= -4 \end{aligned}$$
From Equation (E3.4b)
$$k_2^z &= f_1(t_0 + h, y_0 + hk_1^z, z_0 + hk_1^z) \\ &= f_1(0 + 0.25, 1 + (0.25)(2), 2 + (0.25)(-4)) \\ &= f_1(0 + 0.25, 1 + (0.25)(2), 2 + (0.25)(-4)) \\ &= f_1(0 + 0.25, 1 + (0.25)(2), 2 + (0.25)(-4)) \\ &= f_1(0 + 0.25, 1 + (0.25)(2), 2 + (0.25)(-4)) \\ &= f_1(0 + 0.25, 1, 1) \\ &= e^{-0.25} - 2(1) - 1.5 \\ &= -2.7212 \end{aligned}$$
From Equation (E3.3)
$$y_1 &= y_0 + \frac{1}{2}(k_1^z + k_2^z) h \\ &= 1 + \frac{1}{2}(2 + 1)(0.25) \\ &= 1.375 \end{aligned}$$
From Equation (E3.5)
$$z_1 = z_0 + \frac{1}{2}(k_1^z + k_2^z) h \\ &= 2 + \frac{1}{2}(-4 + (-2.7212))(0.25) \\ &= 1.1598 \end{aligned}$$

$$z_1 \text{ is the approximate value of y at $t = t_1 = 0.25 \end{aligned}$$$

 $z_1 = z(0.25) \approx 1.1598$ For $i = 1, t_1 = 0.25, y_1 = 1.375, z_1 = 1.1598$ From Equation (E3.4a) $k_1^y = f_1(t_1, y_1, z_1)$ $= f_1(0.25, 1.375, 1.1598)$ =1.1598From Equation (E3.6a) $k_1^z = f_2(t_1, y_1, z_1)$ $= f_2(0.25, 1.375, 1.1598)$ $=e^{-0.25}-2(1.1598)-1.375$ = -2.9158From Equation (E3.4b) $k_2^y = f_1(t_1 + h, y_1 + hk_1^y, z_1 + hk_1^z)$ $= f_1(0.25 + 0.25, 1.375 + (0.25)(1.1598), 1.1598 + (0.25)(-2.9158))$ $= f_1(0.50, 1.6649, 0.43087)$ = 0.43087From Equation (E3.6b) $k_{2}^{z} = f_{2}(t_{1} + h, y_{1} + hk_{1}^{y}, z_{1} + hk_{1}^{z})$ $= f_2(0.25 + 0.25, 1.375 + (0.25)(1.1598), 1.1598 + (0.25)(-2.9158))$ $= f_2(0.50, 1.6649, 0.43087)$ $=e^{-0.50}-2(0.43087)-1.6649$ = -1.9201From Equation (E3.3) $y_2 = y_1 + \frac{1}{2} \left(k_1^y + k_2^y \right) h$ $= 1.375 + \frac{1}{2}(1.1598 + 0.43087)(0.25)$ =1.5738 y_2 is the approximate value of y at $t = t_2 = t_1 + h = 0.25 + 0.25 = 0.50$ $y_2 = y(0.50) \approx 1.5738$ From Equation (E3.5) $z_2 = z_1 + \frac{1}{2} \left(k_1^z + k_2^z \right) h$ $= 1.1598 + \frac{1}{2}(-2.9158 + (-1.9201))(0.25)$ = 0.55533 z_2 is the approximate value of z at $t = t_2 = 0.50$ $z_2 = z(0.50) \approx 0.55533$

For i = 2, $t_2 = 0.50$, $y_2 = 1.57384$, $z_2 = 0.55533$ From Equation (E3.4a) $k_1^y = f_1(t_2, y_2, z_2)$ $= f_1(0.50, 1.5738, 0.55533)$ = 0.55533From Equation (E3.6a) $k_1^z = f_2(t_2, y_2, z_2)$ $= f_2(0.50, 1.5738, 0.55533)$ $=e^{-0.50}-2(0.55533)-1.5738$ = -2.0779From Equation (E3.4b) $k_2^y = f_2(t_2 + h, y_2 + hk_1^y, z_2 + hk_1^z)$ $= f_1(0.50 + 0.25, 1.5738 + (0.25)(0.55533), 0.55533 + (0.25)(-2.0779))$ $= f_1(0.75, 1.7126, 0.035836)$ = 0.035836From Equation (E3.6b) $k_{2}^{z} = f_{2}(t_{2} + h, y_{2} + hk_{1}^{y}, z_{2} + hk_{1}^{z})$ $= f_2(0.50 + 0.25, 1.5738 + (0.25)(0.55533), 0.55533 + (0.25)(-2.0779))$ $= f_2(0.75, 1.7126, 0.035836)$ $=e^{-0.75}-2(0.035836)-1.7126$ = -1.3119From Equation (E3.3) $y_3 = y_2 + \frac{1}{2} \left(k_1^y + k_2^y \right) h$ $= 1.5738 + \frac{1}{2} (0.55533 + 0.035836) (0.25)$ =1.6477 y_3 is the approximate value of y at $t = t_3 = t_2 + h = 0.50 + 0.25 = 0.75$

$$y_3 = y(0.75) \approx 1.6477$$

b) From Equation (E3.5)

$$z_{3} = z_{2} + \frac{1}{2} \left(k_{1}^{z} + k_{2}^{z} \right) h$$

= 0.55533 + $\frac{1}{2} (-2.0779 + (-1.3119))(0.25)$
= 0.13158

 z_3 is the approximate value of z at

$$t = t_3 = 0.75$$

$$z_3 = z(0.75) \cong 0.13158$$

The intermediate and the final results are shown in Table 1.

i	0	1	2
t _i	0	0.25	0.50
y_i	1	1.3750	1.5738
z_i	2	1.1598	0.55533
k_1^y	2	1.1598	0.55533
k_1^z	-4	-2.9158	-2.0779
k_2^{y}	1	0.43087	0.035836
k_2^z	-2.7211	-1.9201	-1.3119
\mathcal{Y}_{i+1}	1.3750	1.5738	1.6477
Z_{i+1}	1.1598	0.55533	0.13158

 Table 1
 Intermediate results of Heun's method.

