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Grades 

 First Exam  25% 

 Chap 1, 2, 3 

 March 12 

 Second Exam  25% 

 Chap 4 

 April 14 

 Final 

 All material 
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The Computer Revolution 

 Progress in computer technology 

 Underpinned by Moore’s Law  

 Makes novel applications feasible 

 Computers in automobiles 

 Cell phones 

 Human genome project 

 World Wide Web 

 Search Engines 

 Computers are pervasive 
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Classes of Computers 

 Desktop computers 

 General purpose, variety of software 

 Subject to cost/performance tradeoff 

 Server computers 

 Network based 

 High capacity, performance, reliability 

 Range from small servers to building sized 

 Embedded computers 

 Hidden as components of systems 

 Stringent power/performance/cost constraints 



Chapter 1 — Computer Abstractions and Technology — 6 

The Processor Market 
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What You Will Learn 

 How programs are translated into the 

machine language 

 And how the hardware executes them 

 The hardware/software interface 

 What determines program performance 

 And how it can be improved 

 How hardware designers improve 

performance 

 What is parallel processing 
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Understanding Performance 

 Algorithm 

 Determines number of operations executed 

 Programming language, compiler, architecture 

 Determine number of machine instructions executed 

per operation 

 Processor and memory system 

 Determine how fast instructions are executed 

 I/O system (including OS) 

 Determines how fast I/O operations are executed 
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Below Your Program 

 Application software 

 Written in high-level language 

 System software 

 Compiler: translates HLL code to 

machine code 

 Operating System: service code 

 Handling input/output 

 Managing memory and storage 

 Scheduling tasks & sharing resources 

 Hardware 

 Processor, memory, I/O controllers 
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Levels of Program Code 

 High-level language 
 Level of abstraction closer 

to problem domain 

 Provides for productivity 
and portability  

 Assembly language 
 Textual representation of 

instructions 

 Hardware representation 
 Binary digits (bits) 

 Encoded instructions and 
data 
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Components of a Computer 

 Same components for 

all kinds of computer 

 Desktop, server, 

embedded 

 Input/output includes 

 User-interface devices 

 Display, keyboard, mouse 

 Storage devices 

 Hard disk, CD/DVD, flash 

 Network adapters 

 For communicating with 

other computers 
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The BIG Picture 
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Anatomy of a Computer 

Output 

device 

Input 

device 

Input 

device 

Network 

cable 
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Anatomy of a Mouse 

 Optical mouse 

 LED illuminates 

desktop 

 Small low-res camera 

 Basic image processor 

 Looks for x, y 

movement 

 Buttons & wheel 

 Supersedes roller-ball 

mechanical mouse 
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Through the Looking Glass 

 LCD screen: picture elements (pixels) 

 Mirrors content of frame buffer memory 
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Opening the Box 
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Inside the Processor (CPU) 

 Datapath: performs operations on data 

 Control: sequences datapath, memory, ... 

 Cache memory 

 Small fast SRAM memory for immediate 

access to data 
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Inside the Processor 

 AMD Barcelona: 4 processor cores 
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Abstractions 

 Abstraction helps us deal with complexity 

 Hide lower-level detail 

 Instruction set architecture (ISA) 

 The hardware/software interface 

 Application binary interface 

 The ISA plus system software interface 

 Implementation 

 The details underlying and interface 

The BIG Picture 
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A Safe Place for Data 

 Volatile main memory 

 Loses instructions and data when power off 

 Non-volatile secondary memory 

 Magnetic disk 

 Flash memory 

 Optical disk (CDROM, DVD) 
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Networks 

 Communication and resource sharing 

 Local area network (LAN): Ethernet 

 Within a building 

 Wide area network (WAN: the Internet 

 Wireless network: WiFi, Bluetooth 
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Technology Trends 

 Electronics 

technology 

continues to evolve 

 Increased capacity 

and performance 

 Reduced cost 

Year Technology Relative performance/cost 

1951 Vacuum tube 1 

1965 Transistor 35 

1975 Integrated circuit (IC) 900 

1995 Very large scale IC (VLSI) 2,400,000 

2005 Ultra large scale IC 6,200,000,000 

DRAM capacity 
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Defining Performance 

 Which airplane has the best performance? 
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BAC/Sud
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Boeing 747

Boeing 777
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Response Time and Throughput 

 Response time 

 How long it takes to do a task 

 Throughput 

 Total work done per unit time 

 e.g., tasks/transactions/… per hour 

 How are response time and throughput affected 

by 

 Replacing the processor with a faster version? 

 Adding more processors? 

 We’ll focus on response time for now… 
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Relative Performance 

 Define Performance = 1/Execution Time 

 “X is n time faster than Y” 

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program 

 10s on A, 15s on B 

 Execution TimeB / Execution TimeA 

= 15s / 10s = 1.5 

 So A is 1.5 times faster than B 
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Measuring Execution Time 

 Elapsed time 

 Total response time, including all aspects 
 Processing, I/O, OS overhead, idle time 

 Determines system performance 

 CPU time 

 Time spent processing a given job 
 Discounts I/O time, other jobs’ shares 

 Comprises user CPU time and system CPU 
time 

 Different programs are affected differently by 
CPU and system performance 
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CPU Clocking 

 Operation of digital hardware governed by a 

constant-rate clock 

Clock (cycles) 

Data transfer 

and computation 

Update state 

Clock period 

 Clock period: duration of a clock cycle 

 e.g., 250ps = 0.25ns = 250×10–12s 

 Clock frequency (rate): cycles per second 

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz 
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CPU Time 

 Performance improved by 

 Reducing number of clock cycles 

 Increasing clock rate 

 Hardware designer must often trade off clock 

rate against cycle count 

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU




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CPU Time Example 

 Computer A: 2GHz clock, 10s CPU time 

 Designing Computer B 

 Aim for 6s CPU time 

 Can do faster clock, but causes 1.2 × clock cycles 

 How fast must Computer B clock be? 

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B















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Instruction Count and CPI 

 Instruction Count for a program 

 Determined by program, ISA and compiler 

 Average cycles per instruction 

 Determined by CPU hardware 

 If different instructions have different CPI 

 Average CPI affected by instruction mix 

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock







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CPI Example 

 Computer A: Cycle Time = 250ps, CPI = 2.0 

 Computer B: Cycle Time = 500ps, CPI = 1.2 

 Same ISA 

 Which is faster, and by how much? 

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU















A is faster… 

…by this much 
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CPI in More Detail 

 If different instruction classes take different 

numbers of cycles 





n

1i

ii )Count nInstructio(CPICycles Clock

 Weighted average CPI 














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency 
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CPI Example 

 Alternative compiled code sequences using 
instructions in classes A, B, C 

Class A B C 

CPI for class 1 2 3 

IC in sequence 1 2 1 2 

IC in sequence 2 4 1 1 

 Sequence 1: IC = 5 

 Clock Cycles 

= 2×1 + 1×2 + 2×3 

= 10 

 Avg. CPI = 10/5 = 2.0 

 Sequence 2: IC = 6 

 Clock Cycles 

= 4×1 + 1×2 + 1×3 

= 9 

 Avg. CPI = 9/6 = 1.5 
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Performance Summary 

 Performance depends on 

 Algorithm: affects IC, possibly CPI 

 Programming language: affects IC, CPI 

 Compiler: affects IC, CPI 

 Instruction set architecture: affects IC, CPI, Tc 

The BIG Picture 

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 
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Power Trends 

 In CMOS IC technology 
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Reducing Power 

 Suppose a new CPU has 

 85% of capacitive load of old CPU 

 15% voltage and 15% frequency reduction 

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall 

 We can’t reduce voltage further 

 We can’t remove more heat 

 How else can we improve performance? 
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Uniprocessor Performance 
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Constrained by power, instruction-level parallelism, 

memory latency 
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Multiprocessors 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 

 Load balancing 

 Optimizing communication and synchronization 
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Manufacturing ICs 

 Yield: proportion of working dies per wafer 
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AMD Opteron X2 Wafer 

 X2: 300mm wafer, 117 chips, 90nm technology 

 X4: 45nm technology 
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Integrated Circuit Cost 

 Nonlinear relation to area and defect rate 

 Wafer cost and area are fixed 

 Defect rate determined by manufacturing process 

 Die area determined by architecture and circuit design 

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost








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SPEC CPU Benchmark 

 Programs used to measure performance 
 Supposedly typical of actual workload 

 Standard Performance Evaluation Corp (SPEC) 
 Develops benchmarks for CPU, I/O, Web, … 

 SPEC CPU2006 
 Elapsed time to execute a selection of programs 

 Negligible I/O, so focuses on CPU performance 

 Normalize relative to reference machine 

 Summarize as geometric mean of performance ratios 
 CINT2006 (integer) and CFP2006 (floating-point) 

n

n

1i

iratio time Execution

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CINT2006 for Opteron X4 2356 

Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio 

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3 

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8 

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1 

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8 

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6 

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5 

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5 

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8 

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3 

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1 

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1 

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0 

Geometric mean 11.7 

High cache miss rates 
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SPEC Power Benchmark 

 Power consumption of server at different 

workload levels 

 Performance: ssj_ops/sec 

 Power: Watts (Joules/sec) 

















 



10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall
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SPECpower_ssj2008 for X4 

Target Load % Performance (ssj_ops/sec) Average Power (Watts) 

100% 231,867 295 

90% 211,282 286 

80% 185,803 275 

70% 163,427 265 

60% 140,160 256 

50% 118,324 246 

40% 920,35 233 

30% 70,500 222 

20% 47,126 206 

10% 23,066 180 

0% 0 141 

Overall sum 1,283,590 2,605 

∑ssj_ops/ ∑power 493 
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Pitfall: Amdahl’s Law 

 Improving an aspect of a computer and 

expecting a proportional improvement in 

overall performance 
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20
80

20 
n

 Can’t be done! 

unaffected
affected

improved T
factor timprovemen

T
T 

 Example: multiply accounts for 80s/100s 

 How much improvement in multiply performance to 

get 5× overall? 

 Corollary: make the common case fast 
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Fallacy: Low Power at Idle 

 Look back at X4 power benchmark 

 At 100% load: 295W 

 At 50% load: 246W (83%) 

 At 10% load: 180W (61%) 

 Google data center 

 Mostly operates at 10% – 50% load 

 At 100% load less than 1% of the time 

 Consider designing processors to make 

power proportional to load 
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Pitfall: MIPS as a Performance Metric 

 MIPS: Millions of Instructions Per Second 

 Doesn’t account for 

 Differences in ISAs between computers 

 Differences in complexity between instructions 

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS












 CPI varies between programs on a given CPU 
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Concluding Remarks 

 Cost/performance is improving 

 Due to underlying technology development 

 Hierarchical layers of abstraction 

 In both hardware and software 

 Instruction set architecture 

 The hardware/software interface 

 Execution time: the best performance 
measure 

 Power is a limiting factor 

 Use parallelism to improve performance 
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Instructions: Language 

of the Computer 

 

Dr. Bassam Jamil 
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Outline (Read Rest of Topics) 

1. Instruction Set 

2. Operations 

3. Operands 

4. Singed and Unsigned 

Numbers 

5. Representing Instructions 

in the Computer 

6. Logical Operations 

7. Decision Instructions 

8. Procedures 

9. Communicating with 

People 

10.MIPS Addressing for 32-

Bit:Immediate and 

Addresses 

 

11.  Parallelism and Instructions: 

Synchronization 

12.  Translating and Starting a Program 

13 . A C Sort Example to Put It All 

Together 

14. Arrays versus Pointers 

15. Arrays versus Pointers 

16. Real Stuff: ARM Instructions 

17. Real Stuff: x86 Instructions 

18. Fallacies and Pitfalls 

19. Concluding Remarks 
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Instruction Set 

 The repertoire of instructions of a 
computer 

 Different computers have different 
instruction sets 

 But with many aspects in common 

 Early computers had very simple 
instruction sets 

 Simplified implementation 

 Many modern computers also have simple 
instruction sets 
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The Instruction Set Architecture (ISA) 

instruction set architecture 

software 

hardware 

The interface description separating 
the software and hardware 

4 
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The MIPS Instruction Set 

 Used as the example throughout the book 

 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 

 Large share of embedded core market 

 Applications in consumer electronics, network/storage 

equipment, cameras, printers, … 

 Typical of many modern ISAs 

 See MIPS Reference Data tear-out card, and 

Appendixes B and E 

http://www.mips.com/


MIPS R3000 Instruction Set Architecture (ISA) 

 Instruction categories 
 Computational  

 Load/Store 

 Jump and Branch 

 Floating Point 

 coprocessor 

 Memory Management 

R0 - R31 

PC 

HI 

LO 

Registers 

OP 

OP 

OP 

rs rt rd sa funct 

rs rt immediate 

jump target 

3 Instruction Formats: all 32 bits wide 

R format 

I format 

J format 

6 



0 $zero constant 0 (Hdware) 

1 $at reserved for assembler 

2 $v0 expression evaluation & 

3 $v1 function results 

4 $a0 arguments (not preserved) 

5 $a1 

6 $a2 

7 $a3  

8 $t0 temporary: caller saves 

                Caller saved if needed. Subroutines  

                 can use w/out saving. 

15 $t7 

Naming Conventions for Registers 

16 $s0 callee saves 
          A subroutine using one of these  must  

          save  original and restore it  before exiting. 

23 $s7 

24 $t8  temporary (cont’d) 

25 $t9 

26 $k0 reserved for OS kernel 

27 $k1 

28 $gp pointer to global area 

29 $sp stack pointer 

30 $fp frame pointer 

31 $ra return address (Hdware) 7 

Register preceded by $ in assembly language instruction 

Two formats for addressing:  

    - Register number e.g. $0 through $31 

    - Equivalent names (Naming convection) e.g. $t1, $sp 
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Instructions Families 

 Main instruction families: 

Instruction class MIPS examples 

Arithmetic add, sub, addi 

Data transfer lw, sw, lb, lbu, lh, lhu, 
sb, lui 

Logical and, or, nor, andi, ori, 
sll, srl 

Cond. Branch beq, bne, slt, slti, sltiu 

Jump j, jr, jal 
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Common MIPS Instructions 

 Measure MIPS instruction executions in 
benchmark programs 

 Consider making the common case fast 

 Consider compromises 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 

Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 



Review:  MIPS Instructions 

Category Instr OpC Example Meaning 

Data 

transfer 

(I format) 

load word 23 lw    $s1, 100($s2) $s1 = Memory($s2+100) 

store word 2b sw   $s1, 100($s2) Memory($s2+100) = $s1 

load byte 20 lb    $s1, 101($s2) $s1 = Memory($s2+101) 

store byte 28 sb   $s1, 101($s2) Memory($s2+101) = $s1 

load half 21 lh    $s1, 101($s2) $s1 = Memory($s2+102) 

store half 29 sh   $s1, 101($s2) Memory($s2+102) = $s1 

10 

Category Instr Op Code Example Meaning 

Arithmetic 

(R & I 
format) 

add 0 and 32 add  $s1, $s2, $s3 $s1 = $s2 + $s3 

subtract 0 and 34 sub  $s1, $s2, $s3 $s1 = $s2 - $s3 

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6 

or immediate 13 ori   $s1, $s2, 6 $s1 = $s2 v 6 

Uncond. 
Jump      
(J & R 
format) 

jump 2 j       2500 go to 10000 

jump register 0 and 8 jr     $t1 go to $t1 

jump and link 3 jal    2500 go to 10000; $ra=PC+4 



MIPS Reference Data Sheet 

11 



MIPS Reference Data Sheet 

12 
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Arithmetic Operations 

 Add and subtract, three operands 

 Two sources and one destination 

 add a, b, c  # a gets b + c 

 All arithmetic operations have this form 

 Design Principle 1: Simplicity favors 

regularity 

 Regularity makes implementation simpler 

 Simplicity enables higher performance at 

lower cost 
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MIPS Arithmetic Instructions 
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Arithmetic Example 

 C code: 

 f = (g + h) - (i + j); 

 Compiled MIPS code: 

 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 
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Register Operands 

 Arithmetic instructions use register 
operands 

 MIPS has a 32 × 32-bit register file 
 Use for frequently accessed data 

 Numbered 0 to 31 

 32-bit data called a “word” 

 Assembler names 
 $t0, $t1, …, $t9 for temporary values 

 $s0, $s1, …, $s7 for saved variables 

 Design Principle 2: Smaller is faster 
 c.f. main memory: millions of locations 
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Register Naming Convention 
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Register Operand Example 

 C code: 

 f = (g + h) - (i + j); 

 f, …, j in $s0, …, $s4 

 Compiled MIPS code: 

 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 
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Memory Operands 

 Main memory used for composite data 
 Arrays, structures, dynamic data 

 To apply arithmetic operations 
 Load values from memory into registers 

 Store result from register to memory 

 Memory is byte addressed 
 Each address identifies an 8-bit byte 

 Words are aligned in memory 
 Address must be a multiple of 4 

 MIPS is Big Endian 
 Most-significant byte at least address of a word 

 c.f. Little Endian: least-significant byte at least address 



Byte Addresses 

Big Endian:  

 Leftmost byte is word address 

Little Endian:  

Rightmost byte is word address 

LS Byte has biggest address in the 

word 

LS Byte has little address in the 

word. 

//upload.wikimedia.org/wikipedia/commons/5/54/Big-Endian.svg
//upload.wikimedia.org/wikipedia/commons/e/ed/Little-Endian.svg
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Addressing Mode Summary 



Review of MIPS Operand Addressing Modes 
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Review of MIPS Instruction Addressing Modes 
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Memory Operand Example 1 

 C code: 

 g = h + A[8]; 

 g in $s1, h in $s2, base address of A in $s3 

 Compiled MIPS code: 

 Index 8 requires offset of 32 

 4 bytes per word 

 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset base register 
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Memory Operand Example 2 

 C code: 

 A[12] = h + A[8]; 

 h in $s2, base address of A in $s3 

 Compiled MIPS code: 

 Index 8 requires offset of 32 

 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 
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Registers vs. Memory 

 Registers are faster to access than 
memory 

 Operating on memory data requires loads 
and stores 

 More instructions to be executed 

 Compiler must use registers for variables 
as much as possible 

 Only spill to memory for less frequently used 
variables 

 Register optimization is important! 
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Immediate Operands 

 Constant data specified in an instruction 

 addi $s3, $s3, 4 

 No subtract immediate instruction 

 Just use a negative constant 

 addi $s2, $s1, -1 

 Design Principle 3: Make the common 

case fast 

 Small constants are common 

 Immediate operand avoids a load instruction 
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The Constant Zero 

 MIPS register 0 ($zero) is the constant 0 

 Cannot be overwritten 

 Useful for common operations 

 E.g., move between registers 

 add $t2, $s1, $zero 
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Representing Instructions 

 Instructions are encoded in binary 

 Called machine code 

 MIPS instructions 

 Encoded as 32-bit instruction words 

 Small number of formats encoding operation code 

(opcode), register numbers, … 

 Regularity! 

 Register numbers 

 $t0 – $t7 are reg’s 8 – 15 

 $t8 – $t9 are reg’s 24 – 25 

 $s0 – $s7 are reg’s 16 – 23 
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MIPS R-format Instructions 

 Instruction fields 

 op: operation code (opcode) 

 rs: first source register number 

 rt: second source register number 

 rd: destination register number 

 shamt: shift amount (00000 for now) 

 funct: function code (extends opcode) 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002 = 0232402016 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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MIPS I-format Instructions 

 Immediate arithmetic and load/store instructions 
 rt: destination or source register number 

 Constant: –215 to +215 – 1 

 Address: offset added to base address in rs 

 Design Principle 4: Good design demands good 
compromises 
 Different formats complicate decoding, but allow 32-bit 

instructions uniformly 

 Keep formats as similar as possible 

op rs rt constant or address 

6 bits 5 bits 5 bits 16 bits 
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Stored Program Computers 

 Instructions represented in 
binary, just like data 

 Instructions and data stored 
in memory 

 Programs can operate on 
programs 
 e.g., compilers, linkers, … 

 Binary compatibility allows 
compiled programs to work 
on different computers 
 Standardized ISAs 

The BIG Picture 
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Logical Operations 

 Instructions for bitwise manipulation 

Operation C Java MIPS 

Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

 Useful for extracting and inserting 

groups of bits in a word 
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Shift Operations 

 shamt: how many positions to shift  

 Shift left logical 

 Shift left and fill with 0 bits 

 sll by i bits multiplies by 2i 

 Shift right logical 

 Shift right and fill with 0 bits 

 srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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AND Operations 

 Useful to mask bits in a word 

 Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 
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OR Operations 

 Useful to include bits in a word 

 Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 
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NOT Operations 

 Useful to invert bits in a word 

 Change 0 to 1, and 1 to 0 

 MIPS has NOR 3-operand instruction 

 a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register 0: always 

read as zero 
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Conditional Operations 

 Branch to a labeled instruction if a 
condition is true 

 Otherwise, continue sequentially 

 beq rs, rt, L1 
 if (rs == rt) branch to instruction labeled L1; 

 bne rs, rt, L1 
 if (rs != rt) branch to instruction labeled L1; 

 j L1 
 unconditional jump to instruction labeled L1 
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Compiling If Statements 

 C code: 

 if (i==j) f = g+h; 
else f = g-h; 

 f, g, … in $s0, $s1, … 

 Compiled MIPS code: 

       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … 

Assembler calculates addresses 
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Compiling Loop Statements 

 C code: 

 while (save[i] == k) i += 1; 

 i in $s3, k in $s5, address of save in $s6 

 Compiled MIPS code: 

 Loop: sll  $t1, $s3, 2 
      add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 
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Basic Blocks 

 A basic block is a sequence of instructions 

with 

 No embedded branches (except at end) 

 No branch targets (except at beginning) 

 A compiler identifies basic 

blocks for optimization 

 An advanced processor 

can accelerate execution 

of basic blocks 
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More Conditional Operations 

 Set result to 1 if a condition is true 

 Otherwise, set to 0 

 slt rd, rs, rt 

 if (rs < rt) rd = 1; else rd = 0; 

 slti rt, rs, constant 

 if (rs < constant) rt = 1; else rt = 0; 

 Use in combination with beq, bne 
 slt $t0, $s1, $s2  # if ($s1 < $s2) 
bne $t0, $zero, L  #   branch to L 
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Branch Instruction Design 

 Why not blt, bge, etc? 

 Hardware for <, ≥, … slower than =, ≠ 

 Combining with branch involves more work 

per instruction, requiring a slower clock 

 All instructions penalized! 

 beq and bne are the common case 

 This is a good design compromise 
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Signed vs. Unsigned 

 Signed comparison: slt, slti 

 Unsigned comparison: sltu, sltui 

 Example 

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111 

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 

 slt  $t0, $s0, $s1  # signed 

 –1 < +1  $t0 = 1 

 sltu $t0, $s0, $s1  # unsigned 

 +4,294,967,295 > +1  $t0 = 0 
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Procedure Calling 

 Steps required 

1. Place parameters in registers 

2. Transfer control to procedure 

3. Acquire storage for procedure 

4. Perform procedure’s operations 

5. Place result in register for caller 

6. Return to place of call 
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Register Usage 

 $a0 – $a3: arguments (reg’s 4 – 7) 

 $v0, $v1: result values (reg’s 2 and 3) 

 $t0 – $t9: temporaries 
 Can be overwritten by callee 

 $s0 – $s7: saved 
 Must be saved/restored by callee 

 $gp: global pointer for static data (reg 28) 

 $sp: stack pointer (reg 29) 

 $fp: frame pointer (reg 30) 

 $ra: return address (reg 31) 
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Procedure Call Instructions 

 Procedure call: jump and link 

 jal ProcedureLabel 

 Address of following instruction put in $ra 

 Jumps to target address 

 Procedure return: jump register 

 jr $ra 

 Copies $ra to program counter 

 Can also be used for computed jumps 

 e.g., for case/switch statements 
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Leaf Procedure Example 

 C code: 

 int leaf_example (int g, h, i, j) 
{ int f; 
  f = (g + h) - (i + j); 
  return f; 
} 

 Arguments g, …, j in $a0, …, $a3 

 f in $s0 (hence, need to save $s0 on stack) 

 Result in $v0 
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Leaf Procedure Example 

 MIPS code: 
 leaf_example: 
  addi $sp, $sp, -4 
  sw   $s0, 0($sp) 
  add  $t0, $a0, $a1 
  add  $t1, $a2, $a3 
  sub  $s0, $t0, $t1 
  add  $v0, $s0, $zero 
  lw   $s0, 0($sp) 
  addi $sp, $sp, 4 
  jr   $ra 

Save $s0 on stack 

Procedure body 

Restore $s0 

Result 

Return 
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Non-Leaf Procedures 

 Procedures that call other procedures 

 For nested call, caller needs to save on the 

stack: 

 Its return address 

 Any arguments and temporaries needed after 

the call 

 Restore from the stack after the call 
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Non-Leaf Procedure Example 

 C code: 

 int fact (int n) 
{  
  if (n < 1) return f; 
  else return n * fact(n - 1); 
} 

 Argument n in $a0 

 Result in $v0 
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Non-Leaf Procedure Example 

 MIPS code: 
 fact: 

    addi $sp, $sp, -8     # adjust stack for 2 items 
    sw   $ra, 4($sp)      # save return address 
    sw   $a0, 0($sp)      # save argument 
    slti $t0, $a0, 1      # test for n < 1 
    beq  $t0, $zero, L1 
    addi $v0, $zero, 1    # if so, result is 1 
    addi $sp, $sp, 8      #   pop 2 items from stack 
    jr   $ra              #   and return 
L1: addi $a0, $a0, -1     # else decrement n   
    jal  fact             # recursive call 
    lw   $a0, 0($sp)      # restore original n 
    lw   $ra, 4($sp)      #   and return address 
    addi $sp, $sp, 8      # pop 2 items from stack 
    mul  $v0, $a0, $v0    # multiply to get result 
    jr   $ra              # and return 
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Local Data on the Stack 

 Local data allocated by callee 
 e.g., C automatic variables 

 Procedure frame (activation record) 
 Used by some compilers to manage stack storage 
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Memory Layout 

 Text: program code 

 Static data: global 
variables 
 e.g., static variables in C, 

constant arrays and strings 

 $gp initialized to address 
allowing ±offsets into this 
segment 

 Dynamic data: heap 
 E.g., malloc in C, new in 

Java 

 Stack: automatic storage 
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Character Data 

 Byte-encoded character sets 

 ASCII: 128 characters 

 95 graphic, 33 control 

 Latin-1: 256 characters 

 ASCII, +96 more graphic characters 

 Unicode: 32-bit character set 

 Used in Java, C++ wide characters, … 

 Most of the world’s alphabets, plus symbols 

 UTF-8, UTF-16: variable-length encodings 
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Byte/Halfword Operations 

 Could use bitwise operations 

 MIPS byte/halfword load/store 

 String processing is a common case 

lb rt, offset(rs)     lh rt, offset(rs) 

 Sign extend to 32 bits in rt 

lbu rt, offset(rs)    lhu rt, offset(rs) 

 Zero extend to 32 bits in rt 

sb rt, offset(rs)     sh rt, offset(rs) 

 Store just rightmost byte/halfword 
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String Copy Example 

 C code (naïve): 

 Null-terminated string 

 void strcpy (char x[], char y[]) 
{ int i; 
  i = 0; 
  while ((x[i]=y[i])!='\0') 
    i += 1; 
} 

 Addresses of x, y in $a0, $a1 

 i in $s0 
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String Copy Example 

 MIPS code: 
 strcpy: 

    addi $sp, $sp, -4      # adjust stack for 1 item 
    sw   $s0, 0($sp)       # save $s0 
    add  $s0, $zero, $zero # i = 0 
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1 
    lbu  $t2, 0($t1)       # $t2 = y[i] 
    add  $t3, $s0, $a0     # addr of x[i] in $t3 
    sb   $t2, 0($t3)       # x[i] = y[i] 
    beq  $t2, $zero, L2    # exit loop if y[i] == 0   
    addi $s0, $s0, 1       # i = i + 1 
    j    L1                # next iteration of loop 
L2: lw   $s0, 0($sp)       # restore saved $s0 
    addi $sp, $sp, 4       # pop 1 item from stack 
    jr   $ra               # and return 
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0000 0000 0111 1101 0000 0000 0000 0000 

32-bit Constants 

 Most constants are small 

 16-bit immediate is sufficient 

 For the occasional 32-bit constant 

 lui rt, constant 

 Copies 16-bit constant to left 16 bits of rt 

 Clears right 16 bits of rt to 0 

lhi $s0, 61 

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304 
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Branch Addressing 

 Branch instructions specify 

 Opcode, two registers, target address 

 Most branch targets are near branch 

 Forward or backward 

op rs rt constant or address 

6 bits 5 bits 5 bits 16 bits 

 PC-relative addressing 

 Target address = PC + offset × 4 

 PC already incremented by 4 by this time 
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Jump Addressing 

 Jump (j and jal) targets could be 

anywhere in text segment 

 Encode full address in instruction 

op address 

6 bits 26 bits 

 (Pseudo)Direct jump addressing 

 Target address = PC31…28 : (address × 4) 
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Target Addressing Example 

 Loop code from earlier example 

 Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 
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Branching Far Away 

 If branch target is too far to encode with 

16-bit offset, assembler rewrites the code 

 Example 

  beq $s0,$s1, L1 

    ↓ 

  bne $s0,$s1, L2 
 j L1 
L2: … 
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Translation and Startup 

Many compilers produce 

object modules directly 

Static linking 
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Assembler Pseudoinstructions 

 Most assembler instructions represent 

machine instructions one-to-one 

 Pseudoinstructions: figments of the 

assembler’s imagination 

 move $t0, $t1 → add $t0, $zero, $t1 

 blt $t0, $t1, L  →  slt $at, $t0, $t1 

  bne $at, $zero, L 

 $at (register 1): assembler temporary 
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Producing an Object Module 

 Assembler (or compiler) translates program into 
machine instructions 

 Provides information for building a complete 
program from the pieces 
 Header: described contents of object module 

 Text segment: translated instructions 

 Static data segment: data allocated for the life of the 
program 

 Relocation info: for contents that depend on absolute 
location of loaded program 

 Symbol table: global definitions and external refs 

 Debug info: for associating with source code 



 Consider the load-word and store-word instr’s 

 What would the regularity principle have us do? 

 But . . . Good design demands compromise 

 Introduce a new type of instruction format 

 I-type for data transfer instructions (previous format was R-
type for register) 

 Example:  lw $t0, 24($s2) 

Machine Language - Load Instruction 

op            rs             rt                16 bit number 

23hex           18           8                     24 

100011    10010    01000           0000000000011000 

68 



 Instructions, like registers and words of data, are also 32 
bits long 

 Example:   add $t1, $s1, $s2 

 registers have numbers, $t1=9, $s1=17, $s2=18 

 

 Instruction Format: 

 

  

  000000 1000110010 01001 00000 100000  

   op   rs   rt   rd shamt  funct 

 

 Can you guess what the field names stand for? 

Machine Language 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits Fieldsize: 

69 



 What instruction format is used for the addi ? 

 addi $s3, $s3, 4 #$s3 = $s3 + 4 

 

 Machine format:  

Machine Language – Immediate Instructions 

op           rs           rt                16 bit immediate I  format 

8             19           19                         4 

 The constant is kept inside the instruction itself! 

 So must use the I format – Immediate format 

 Limits immediate values to the range +215–1 to -215
  

71 



Load Example 

.data 

  var0:   .word   0x01234567 

  var1: .word 0x79abcdef 

.text 

 la  $s1, var0                  

 lw $t1, 0($s1)        # $t1 = 01234567 

    lw $t1, 1($s1)      #Error: misalignment 

 la  $s1, var1 

 lb  $t1, 0($s1)       # $t1 = ff ff ff ef 

 lb  $t1, 1($s1)       # $t1 = ff ff ff cd 

 lb  $t1, 2($s1)       # $t1 = ff ff ff ab  

 lb  $t1, 3($s1)       # $t1 = 00 00 00 

79 

la $s1, var0 

lh $t1, 0($s1)   #$t1=00004567 

lh $t1, 1($s1)   #Error: misalignment 

lh $t1, 2($s1)   #$t1=0000 0123 

lh $t1, 3($s1)   #Error: misalignment
  

lw  $t1, 4($s1)   # t1 = var1 

sh  $t1, 0($s1)   #var0= 0123cdef 

sb  $t1, 3($s1)   #var0=ef23cdef 

 

 



Subroutine Example 

.data 

data1: .word  5 

data2: .word  10 

##################################  

.text 

      la   $a0, data1 

      la   $a1, data2 

      jal  my_sub 

      add  $t0, $v0, $zero 

      syscall    # exit program 

################################## 

.text 

my_sub: 

      lw   $t0, 0($a0) 

      lw   $t1, 0($a1) 

      add  $v0, $t0, $t1 

      jr   $ra               
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C Sort Example 

 Illustrates use of assembly instructions 
for a C bubble sort function 

 Swap procedure (leaf) 
 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

 v in $a0, k in $a1, temp in $t0 
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The Procedure Swap 

swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 
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The Sort Procedure in C 

 Non-leaf (calls swap) 
 void sort (int v[], int n) 
 { 
   int i, j; 
   for (i = 0; i < n; i += 1) { 
     for (j = i – 1; 
          j >= 0 && v[j] > v[j + 1]; 
          j -= 1) { 
       swap(v,j); 
     } 
   } 
 } 
 v in $a0, k in $a1, i in $s0, j in $s1 



Chapter 2 — Instructions: Language of the Computer — 77 

The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 

         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 

         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 

         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 

         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 

         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 

         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 

         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass 

params 

& call 

Move 

params 

Inner loop 

Outer loop 

Inner loop 

Outer loop 
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sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 
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Arithmetic for Computers 

 Operations on integers 

 Addition and subtraction 

 Multiplication and division 

 Dealing with overflow 

 Floating-point real numbers 

 Representation and operations  
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Integer Addition 

 Example: 7 + 6 
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 Overflow if result out of range 

 Adding +ve and –ve operands, no overflow 

 Adding two +ve operands 

 Overflow if result sign is 1 

 Adding two –ve operands 

 Overflow if result sign is 0 
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Integer Subtraction 

 Add negation of second operand 

 Example: 7 – 6 = 7 + (–6) 

 +7: 0000 0000 … 0000 0111 

–6: 1111 1111 … 1111 1010 

+1: 0000 0000 … 0000 0001 

 Overflow if result out of range 

 Subtracting two +ve or two –ve operands, no overflow 

 Subtracting +ve from –ve operand 

 Overflow if result sign is 0 

 Subtracting –ve from +ve operand 

 Overflow if result sign is 1 
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Dealing with Overflow 

 Some languages (e.g., C) ignore overflow 
 Use MIPS addu, addui, subu instructions 

 Other languages (e.g., Ada, Fortran) 
require raising an exception 
 Use MIPS add, addi, sub instructions 

 On overflow, invoke exception handler 
 Save PC in exception program counter (EPC) 

register 

 Jump to predefined handler address 

 mfc0 (move from coprocessor reg) instruction can 
retrieve EPC value, to return after corrective action 
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Multiplication 

 Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 

the sum of operand 

lengths 

multiplicand 

multiplier 

product 
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Multiplication Hardware 

Initially 0 
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Optimized Multiplier 

 Perform steps in parallel: add/shift 

 One cycle per partial-product addition 

 That’s ok, if frequency of multiplications is low 
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MIPS Multiplication 

 Two 32-bit registers for product 

 HI: most-significant 32 bits 

 LO: least-significant 32-bits 

 Instructions 

 mult rs, rt  /  multu rs, rt 

 64-bit product in HI/LO 

 mfhi rd  /  mflo rd 

 Move from HI/LO to rd 

 Can test HI value to see if product overflows 32 bits 

 mul rd, rs, rt 

 Least-significant 32 bits of product –> rd 
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Division 

 Check for 0 divisor 

 Long division approach 
 If divisor ≤ dividend bits 

 1 bit in quotient, subtract 

 Otherwise 

 0 bit in quotient, bring down next 
dividend bit 

 Restoring division 
 Do the subtract, and if remainder 

goes < 0, add divisor back 

 Signed division 
 Divide using absolute values 

 Adjust sign of quotient and remainder 
as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 

quotient and remainder 

quotient 

dividend 

remainder 

divisor 
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Division Hardware 

Initially dividend 

Initially divisor 

in left half 
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Optimized Divider 

 One cycle per partial-remainder subtraction 

 Looks a lot like a multiplier! 

 Same hardware can be used for both 
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MIPS Division 

 Use HI/LO registers for result 

 HI: 32-bit remainder 

 LO: 32-bit quotient 

 Instructions 

 div rs, rt  /  divu rs, rt 

 No overflow or divide-by-0 checking 

 Software must perform checks if required 

 Use mfhi, mflo to access result 
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Floating Point 

 Representation for non-integral numbers 

 Including very small and very large numbers 

 Like scientific notation 

 –2.34 × 1056 

 +0.002 × 10–4 

 +987.02 × 109 

 In binary 

 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 

§
3
.5

 F
lo

a
tin

g
 P

o
in

t 



Chapter 3 — Arithmetic for Computers — 16 

Floating Point Standard 

 Defined by IEEE Std 754-1985 

 Developed in response to divergence of 

representations 

 Portability issues for scientific code 

 Now almost universally adopted 

 Two representations 

 Single precision (32-bit) 

 Double precision (64-bit)  
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IEEE Floating-Point Format 

 S: sign bit (0  non-negative, 1  negative) 

 Normalize significand: 1.0 ≤ |significand| < 2.0 
 Always has a leading pre-binary-point 1 bit, so no need to 

represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 

 Exponent: excess representation: actual exponent + Bias 
 Ensures exponent is unsigned 

 Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x 



Floating Point Representation 
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Single Precision Double Precision Object Represented 

E (8) F (23) E (11) F (52) 

0 0 0 0 true zero (0) 

0 nonzero 0 nonzero ± denormalized number 

± 1-254 

± 128-2 

anything ± 1-2046 

± 1211-2 

anything ± floating point number 

± 255 

±(28-1) 

0 ± 2047 

±(211-1) 

0 ± infinity 

255 nonzero 2047 nonzero not a number (NaN) 
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Single-Precision Range 

 Exponents 00000000 and 11111111 reserved 

 Smallest value 

 Exponent: 00000001 

 actual exponent = 1 – 127 = –126 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 

 exponent: 11111110 

 actual exponent = 254 – 127 = +127 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 

 Exponents 0000…00 and 1111…11 reserved 

 Smallest value 

 Exponent: 00000000001 

 actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 

 Exponent: 11111111110 

 actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 

 Relative precision 

 all fraction bits are significant 

 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 

digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 

digits of precision 
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Floating-Point Example 

 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 

 Fraction = 1000…002 

 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 

 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 

 Double: 1011111111101000…00 
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Floating-Point Example 

 What number is represented by the single-
precision float 

 11000000101000…00 

 S = 1 

 Fraction = 01000…002 

 Fxponent = 100000012 = 129 

 x = (–1)1 × (1 + 012) × 2(129 – 127) 

 = (–1) × 1.25 × 22 

 = –5.0 
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Floating-Point Addition 

 Consider a 4-digit decimal example 
 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 

 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 

 Now consider a 4-digit binary example 
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 

 1. Align binary points 
 Shift number with smaller exponent 

 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 

 Much more complex than integer adder 

 Doing it in one clock cycle would take too 

long 

 Much longer than integer operations 

 Slower clock would penalize all instructions 

 FP adder usually takes several cycles 

 Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 



Chapter 3 — Arithmetic for Computers — 32 

FP Arithmetic Hardware 

 FP multiplier is of similar complexity to FP 
adder 

 But uses a multiplier for significands instead of 
an adder 

 FP arithmetic hardware usually does 

 Addition, subtraction, multiplication, division, 
reciprocal, square-root 

 FP  integer conversion 

 Operations usually takes several cycles 

 Can be pipelined 
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FP Instructions in MIPS 

 FP hardware is coprocessor 1 
 Adjunct processor that extends the ISA 

 Separate FP registers 
 32 single-precision: $f0, $f1, … $f31 

 Paired for double-precision: $f0/$f1, $f2/$f3, … 
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 

 FP instructions operate only on FP registers 
 Programs generally don’t do integer ops on FP data, 

or vice versa 

 More registers with minimal code-size impact 

 FP load and store instructions (single/double) 
 lwc1, ldc1, swc1, sdc1 

 e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 

 Single-precision arithmetic 
 add.s, sub.s, mul.s, div.s 

 e.g., add.s $f0, $f1, $f6 

 Double-precision arithmetic 
 add.d, sub.d, mul.d, div.d 

 e.g., mul.d $f4, $f4, $f6 

 Single- and double-precision comparison 
 c.xx.s, c.xx.d (xx is eq, lt, le, …) 

 Sets or clears FP condition-code bit 
 e.g. c.lt.s $f3, $f4 

 Branch on FP condition code true or false 
 bc1t, bc1f 

 e.g., bc1t TargetLabel 
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FP Example: °F to °C 

 C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

 fahr in $f12, result in $f0, literals in global memory 
space 

 Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc2  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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Introduction 

 CPU performance factors 
 Instruction count 

 Determined by ISA and compiler 

 CPI and Cycle time 
 Determined by CPU hardware 

 We will examine two MIPS implementations 
 A simplified version 

 A more realistic pipelined version 

 Simple subset, shows most aspects 
 Memory reference: lw, sw 

 Arithmetic/logical: add, sub, and, or, slt 

 Control transfer: beq, j 
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Instruction Execution 

 PC  instruction memory, fetch instruction 

 Register numbers  register file, read registers 

 Depending on instruction class 

 Use ALU to calculate 

 Arithmetic result 

 Memory address for load/store 

 Branch target address 

 Access data memory for load/store 

 PC  target address or PC + 4 
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Unit What needs to be controlled 

Register File 1. Register Write: enable write to register file 

2. Specifying destination Register: instruction[20-16]  versus 

instruction[15-11] 

3. Memory-to-register: What to write to register file? Memory 

output or ALU output 

Memory 1. Memory Read: enables memory read access 

2. Memory Write: enables memory write access 

ALU 1. ALUOp: specifies ALU operation 

2. ALUSource: second operand to ALU can be from register 

file or instruction (i.e., immediate data) 

PC control 1. Branch:  PC <- (PC+4) + offset  

2. Jump:     PC <- Jump address 
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CPU Overview 
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Multiplexers 

 Can’t just join 

wires together 

 Use multiplexers 
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Control 
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Building a Datapath 

 Datapath 

 Elements that process data and addresses 

in the CPU 

 Registers, ALUs, mux’s, memories, … 

 We will build a MIPS datapath 

incrementally 

 Refining the overview design 
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Instruction Fetch 

32-bit 

register 

Increment by 

4 for next 

instruction 
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R-Format Instructions 

 Read two register operands 

 Perform arithmetic/logical operation 

 Write register result 
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Load/Store Instructions 

 Read register operands 

 Calculate address using 16-bit offset 
 Use ALU, but sign-extend offset 

 Load: Read memory and update register 

 Store: Write register value to memory 
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Branch Instructions 

 Read register operands 

 Compare operands 

 Use ALU, subtract and check Zero output 

 Calculate target address 

 Sign-extend displacement 

 Shift left 2 places (word displacement) 

 Add to PC + 4 

 Already calculated by instruction fetch 
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Branch Instructions 

Just 

re-routes 

wires 

Sign-bit wire 

replicated 
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Composing the Elements 

 First-cut data path does an instruction in 

one clock cycle 

 Each datapath element can only do one 

function at a time 

 Hence, we need separate instruction and data 

memories 

 Use multiplexers where alternate data 

sources are used for different instructions 
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R-Type/Load/Store Datapath 
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Full Datapath 
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ALU Control 

 ALU used for 

 Load/Store: F = add 

 Branch: F = subtract 

 R-type: F depends on funct field 
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ALU control Function 

0000 AND 

0001 OR 

0010 add 

0110 subtract 

0111 set-on-less-than 

1100 NOR 
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ALU Control 

 Assume 2-bit ALUOp derived from opcode 

 Combinational logic derives ALU control 

opcode ALUOp Operation funct ALU function ALU control 

lw 00 load word XXXXXX add 0010 

sw 00 store word XXXXXX add 0010 

beq 01 branch equal XXXXXX subtract 0110 

R-type 10 add 100000 add 0010 

subtract 100010 subtract 0110 

AND 100100 AND 0000 

OR 100101 OR 0001 

set-on-less-than 101010 set-on-less-than 0111 
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The Main Control Unit 

 Control signals derived from instruction 

0 rs rt rd shamt funct 

31:26 5:0 25:21 20:16 15:11 10:6 

35 or 43 rs rt address 

31:26 25:21 20:16 15:0 

4 rs rt address 

31:26 25:21 20:16 15:0 

R-type 

Load/ 

Store 

Branch 

opcode always 

read 

read, 

except 

for load 

write for 

R-type 

and load 

sign-extend 

and add 
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Datapath With Control 
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R-Type Instruction 
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Load Instruction 
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Branch-on-Equal Instruction 
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Implementing Jumps 

 Jump uses word address 

 Update PC with concatenation of 

 Top 4 bits of old PC 

 26-bit jump address 

 00 

 Need an extra control signal decoded from 

opcode 

2 address 

31:26 25:0 

Jump 
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Datapath With Jumps Added 
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Performance Issues 

 Longest delay determines clock period 

 Critical path: load instruction 

 Instruction memory  register file  ALU  

data memory  register file 

 Not feasible to vary period for different 

instructions 

 Violates design principle 

 Making the common case fast 

 We will improve performance by pipelining 
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Pipelining Analogy 

 Pipelined laundry: overlapping execution 

 Parallelism improves performance 
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  Four loads: 

 Speedup 

= 8/3.5 = 2.3 

 Non-stop: 

 Speedup 

= 2n/0.5n + 1.5 ≈ 4 

= number of stages 
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MIPS Pipeline 

 Five stages, one step per stage 

1. IF: Instruction fetch from memory 

2. ID: Instruction decode & register read 

3. EX: Execute operation or calculate address 

4. MEM: Access memory operand 

5. WB: Write result back to register 
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Pipeline Performance 

 Assume time for stages is 

 100ps for register read or write 

 200ps for other stages 

 Compare pipelined datapath with single-cycle 

datapath 

Instr Instr fetch Register 

read 

ALU op Memory 

access 

Register 

write 

Total time 

lw 200ps 100 ps 200ps 200ps 100 ps 800ps 

sw 200ps 100 ps 200ps 200ps 700ps 

R-format 200ps 100 ps 200ps 100 ps 600ps 

beq 200ps 100 ps 200ps 500ps 
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Pipeline Performance 

Single-cycle (Tc= 800ps) 

Pipelined (Tc= 200ps) 
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Pipeline Speedup 

 If all stages are balanced 

 i.e., all take the same time 

 Time between instructionspipelined 

= Time between instructionsnonpipelined 

  Number of stages 

 If not balanced, speedup is less 

 Speedup due to increased throughput 

 Latency (time for each instruction) does not 

decrease 
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Pipelining and ISA Design 

 MIPS ISA designed for pipelining 

 All instructions are 32-bits 
 Easier to fetch and decode in one cycle 

 c.f. x86: 1- to 17-byte instructions 

 Few and regular instruction formats 
 Can decode and read registers in one step 

 Load/store addressing 
 Can calculate address in 3rd stage, access memory 

in 4th stage 

 Alignment of memory operands 
 Memory access takes only one cycle 
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Hazards 

 Situations that prevent starting the next 
instruction in the next cycle 

 Structure hazards 

 A required resource is busy 

 Data hazard 

 Need to wait for previous instruction to 
complete its data read/write 

 Control hazard 

 Deciding on control action depends on 
previous instruction 
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Structure Hazards 

 Conflict for use of a resource 

 In MIPS pipeline with a single memory 

 Load/store requires data access 

 Instruction fetch would have to stall for that 

cycle 

 Would cause a pipeline “bubble” 

 Hence, pipelined datapaths require 

separate instruction/data memories 

 Or separate instruction/data caches 
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Data Hazards 

 An instruction depends on completion of 

data access by a previous instruction 

 add $s0, $t0, $t1 
sub $t2, $s0, $t3 
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Forwarding (aka Bypassing) 

 Use result when it is computed 

 Don’t wait for it to be stored in a register 

 Requires extra connections in the datapath 
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Load-Use Data Hazard 

 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 
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Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in 

the next instruction 

 C code for A = B + E; C = B + F; 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

lw $t4, 8($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

stall 

stall 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

lw $t4, 8($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

11 cycles 13 cycles 
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Control Hazards 

 Branch determines flow of control 

 Fetching next instruction depends on branch 
outcome 

 Pipeline can’t always fetch correct instruction 
 Still working on ID stage of branch 

 In MIPS pipeline 

 Need to compare registers and compute 
target early in the pipeline 

 Add hardware to do it in ID stage 
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Stall on Branch 

 Wait until branch outcome determined 

before fetching next instruction 
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Branch Prediction 

 Longer pipelines can’t readily determine 

branch outcome early 

 Stall penalty becomes unacceptable 

 Predict outcome of branch 

 Only stall if prediction is wrong 

 In MIPS pipeline 

 Can predict branches not taken 

 Fetch instruction after branch, with no delay 
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MIPS with Predict Not Taken 

Prediction 

correct 

Prediction 

incorrect 
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More-Realistic Branch Prediction 

 Static branch prediction 

 Based on typical branch behavior 

 Example: loop and if-statement branches 

 Predict backward branches taken 

 Predict forward branches not taken 

 Dynamic branch prediction 

 Hardware measures actual branch behavior 

 e.g., record recent history of each branch 

 Assume future behavior will continue the trend 

 When wrong, stall while re-fetching, and update history 
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Pipeline Summary 

 Pipelining improves performance by 

increasing instruction throughput 

 Executes multiple instructions in parallel 

 Each instruction has the same latency 

 Subject to hazards 

 Structure, data, control 

 Instruction set design affects complexity of 

pipeline implementation 

The BIG Picture 
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MIPS Pipelined Datapath 
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Pipeline registers 

 Need registers between stages 

 To hold information produced in previous cycle 
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Pipeline Operation 

 Cycle-by-cycle flow of instructions through 

the pipelined datapath 

 “Single-clock-cycle” pipeline diagram 

 Shows pipeline usage in a single cycle 

 Highlight resources used 

 c.f. “multi-clock-cycle” diagram 

 Graph of operation over time 

 We’ll look at “single-clock-cycle” diagrams 

for load & store 
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IF for Load, Store, … 
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ID for Load, Store, … 
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EX for Load 
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MEM for Load 
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WB for Load 

Wrong 

register 

number 
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Corrected Datapath for Load 
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EX for Store 



Chapter 4 — The Processor — 55 

MEM for Store 
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WB for Store 



Chapter 4 — The Processor — 57 

Multi-Cycle Pipeline Diagram 

 Form showing resource usage 
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Multi-Cycle Pipeline Diagram 

 Traditional form 
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Single-Cycle Pipeline Diagram 

 State of pipeline in a given cycle 
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Pipelined Control (Simplified) 
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Pipelined Control 

 Control signals derived from instruction 

 As in single-cycle implementation 
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Pipelined Control 
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Data Hazards in ALU Instructions 

 Consider this sequence: 

 sub $2, $1,$3 
and $12,$2,$5 
or  $13,$6,$2 
add $14,$2,$2 
sw  $15,100($2) 

 We can resolve hazards with forwarding 

 How do we detect when to forward? 
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Dependencies & Forwarding 
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Detecting the Need to Forward 

 Pass register numbers along pipeline 
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register 

 ALU operand register numbers in EX stage 
are given by 
 ID/EX.RegisterRs, ID/EX.RegisterRt 

 Data hazards when 
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 

EX/MEM 

pipeline reg 

Fwd from 

MEM/WB 

pipeline reg 
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Detecting the Need to Forward 

 But only if forwarding instruction will write 

to a register! 

 EX/MEM.RegWrite, MEM/WB.RegWrite 

 And only if Rd for that instruction is not 

$zero 

 EX/MEM.RegisterRd ≠ 0, 

MEM/WB.RegisterRd ≠ 0 
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Forwarding Paths 
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Forwarding Conditions 

 EX hazard 

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 10 

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 10 

 MEM hazard 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 01 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 01 
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Double Data Hazard 

 Consider the sequence: 

 add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 

 Both hazards occur 

 Want to use the most recent 

 Revise MEM hazard condition 

 Only fwd if EX hazard condition isn’t true 
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Revised Forwarding Condition 

 MEM hazard 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 01 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 01 
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Datapath with Forwarding 
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Load-Use Data Hazard 

Need to stall 

for one cycle 



Chapter 4 — The Processor — 73 

Load-Use Hazard Detection 

 Check when using instruction is decoded 
in ID stage 

 ALU operand register numbers in ID stage 
are given by 

 IF/ID.RegisterRs, IF/ID.RegisterRt 

 Load-use hazard when 

 ID/EX.MemRead and 
  ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
   (ID/EX.RegisterRt = IF/ID.RegisterRt)) 

 If detected, stall and insert bubble 
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How to Stall the Pipeline 

 Force control values in ID/EX register 

to 0 

 EX, MEM and WB do nop (no-operation) 

 Prevent update of PC and IF/ID register 

 Using instruction is decoded again 

 Following instruction is fetched again 

 1-cycle stall allows MEM to read data for lw 

 Can subsequently forward to EX stage 
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Stall/Bubble in the Pipeline 

Stall inserted 

here 
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Stall/Bubble in the Pipeline 

Or, more 

accurately… 
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Datapath with Hazard Detection 
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Stalls and Performance 

 Stalls reduce performance 

 But are required to get correct results 

 Compiler can arrange code to avoid 

hazards and stalls 

 Requires knowledge of the pipeline structure 

The BIG Picture 
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Branch Hazards 

 If branch outcome determined in MEM 
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Reducing Branch Delay 

 Move hardware to determine outcome to ID 

stage 

 Target address adder 

 Register comparator 

 Example: branch taken 
 36:  sub  $10, $4, $8 
40:  beq  $1,  $3, 7 
44:  and  $12, $2, $5 
48:  or   $13, $2, $6 
52:  add  $14, $4, $2 
56:  slt  $15, $6, $7 
     ... 
72:  lw   $4, 50($7) 
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Example: Branch Taken 
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Example: Branch Taken 
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Data Hazards for Branches 

 If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction 

… 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

 Can resolve using forwarding 



Chapter 4 — The Processor — 84 

Data Hazards for Branches 

 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 

load instruction 

 Need 1 stall cycle 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

lw  $1, addr 

beq $1, $4, target 
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Data Hazards for Branches 

 If a comparison register is a destination of 

immediately preceding load instruction 

 Need 2 stall cycles 

beq stalled 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

beq stalled 

lw  $1, addr 

beq $1, $0, target 
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Dynamic Branch Prediction 

 In deeper and superscalar pipelines, branch 

penalty is more significant 

 Use dynamic prediction 

 Branch prediction buffer (aka branch history table) 

 Indexed by recent branch instruction addresses 

 Stores outcome (taken/not taken) 

 To execute a branch 

 Check table, expect the same outcome 

 Start fetching from fall-through or target 

 If wrong, flush pipeline and flip prediction 
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1-Bit Predictor: Shortcoming 

 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

 Mispredict as taken on last iteration of 

inner loop 

 Then mispredict as not taken on first 

iteration of inner loop next time around 
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2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 
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Calculating the Branch Target 

 Even with predictor, still need to calculate 

the target address 

 1-cycle penalty for a taken branch 

 Branch target buffer 

 Cache of target addresses 

 Indexed by PC when instruction fetched 

 If hit and instruction is branch predicted taken, can 

fetch target immediately 
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Exceptions and Interrupts 

 “Unexpected” events requiring change 

in flow of control 

 Different ISAs use the terms differently 

 Exception 

 Arises within the CPU 

 e.g., undefined opcode, overflow, syscall, … 

 Interrupt 

 From an external I/O controller 

 Dealing with them without sacrificing 

performance is hard 
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Handling Exceptions 

 Save PC of offending (or interrupted) instruction 
 In MIPS: Exception Program Counter (EPC) 

 Save indication of the problem 
 In MIPS: Cause register (status register) 

 We’ll assume 1-bit 
 0 for undefined opcode, 1 for overflow 

 Jump to handler at 8000 00180 
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An Alternate Mechanism 

 Vectored Interrupts 

 Handler address determined by the cause 

 Example: 

 Undefined opcode: C000 0000 

 Overflow:   C000 0020 

 …:    C000 0040 

 Instructions either 

 Deal with the interrupt, or 

 Jump to real handler 
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Handler Actions 

 Read cause, and transfer to relevant 
handler 

 Determine action required 

 If restartable 

 Take corrective action 

 use EPC to return to program 

 Otherwise 

 Terminate program 

 Report error using EPC, cause, … 
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Exceptions in a Pipeline 

 Another form of control hazard 

 Consider overflow on add in EX stage 
add $1, $2, $1 

 Prevent $1 from being clobbered 

 Complete previous instructions 

 Flush add and subsequent instructions 

 Set Cause and EPC register values 

 Transfer control to handler 

 Similar to mispredicted branch 

 Use much of the same hardware 
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Pipeline with Exceptions 



Chapter 4 — The Processor — 96 

Exception Properties 

 Restartable exceptions 

 Pipeline can flush the instruction 

 Handler executes, then returns to the 

instruction 

 Refetched and executed from scratch 

 PC saved in EPC register 

 Identifies causing instruction 

 Actually PC + 4 is saved 

 Handler must adjust 
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Exception Example 

 Exception on add in 
 40 sub  $11, $2, $4 
44 and  $12, $2, $5 
48 or   $13, $2, $6 
4C add  $1,  $2, $1 
50 slt  $15, $6, $7 
54 lw   $16, 50($7) 
… 

 Handler 
 80000180 sw   $25, 1000($0) 
80000184 sw   $26, 1004($0) 
… 
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Exception Example 



Chapter 4 — The Processor — 99 

Exception Example 
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Multiple Exceptions 

 Pipelining overlaps multiple instructions 

 Could have multiple exceptions at once 

 Simple approach: deal with exception from 

earliest instruction 

 Flush subsequent instructions 

 “Precise” exceptions 

 In complex pipelines 

 Multiple instructions issued per cycle 

 Out-of-order completion 

 Maintaining precise exceptions is difficult! 
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Hardware/Software Interface 

 Hardware stops pipeline and save state 

 Including exception cause(s) 

 Let the handler work out 

 Which instruction(s) had exceptions 

 Which to complete or flush 

 May require “manual” completion 

 Associating correct exception with correct instruction 

 Imprecise exceptions are not associated with the exact 

instruction that caused the exception 

 Hardware detect the exception. Leave to OS to determine which 

instruction caused the interrupt. 

 Precise exceptions 

 Supported by most processors 
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Instruction-Level Parallelism (ILP) 

 Pipelining: executing multiple instructions in 
parallel 

 To increase ILP 
 Deeper pipeline 

 Less work per stage  shorter clock cycle (higher freq) 

 Multiple issue 
 Replicate pipeline stages  multiple pipelines 

 Start multiple instructions per clock cycle 

 CPI < 1, so use Instructions Per Cycle (IPC) 

 E.g., 4GHz 4-way multiple-issue 

 16 BIPS (billion inst per sec), peak CPI = 0.25, peak IPC = 4 

 But dependencies reduce this in practice 
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Multiple Issue 

 Static multiple issue 

 Compiler groups instructions to be issued together 

 Packages them into “issue slots” 

 Compiler detects and avoids hazards 

 Dynamic multiple issue 

 CPU examines instruction stream and chooses 

instructions to issue each cycle 

 Compiler can help by reordering instructions 

 CPU resolves hazards using advanced techniques at 

runtime 
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Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

 If so, complete the operation 

 If not, roll-back and do the right thing 

 Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome 

 Roll back if path taken is different 

 Speculate on load 

 Roll back if location is updated 
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Compiler/Hardware Speculation 

 Compiler can reorder instructions 

 e.g., move load before branch 

 Can include “fix-up” instructions to recover 

from incorrect guess 

 Hardware can look ahead for instructions 

to execute 

 Buffer results until it determines they are 

actually needed 

 Flush buffers on incorrect speculation 
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Speculation and Exceptions 
(read) 

 What if exception occurs on a 
speculatively executed instruction? 

 e.g., speculative load before null-pointer 
check 

 Static speculation 

 Can add ISA support for deferring exceptions 

 Dynamic speculation 

 Can buffer exceptions until instruction 
completion (which may not occur) 
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Static Multiple Issue 

 Compiler groups instructions into “issue 

packets” 

 Group of instructions that can be issued on a 

single cycle 

 Determined by pipeline resources required 

 Think of an issue packet as a very long 

instruction 

 Specifies multiple concurrent operations 

  Very Long Instruction Word (VLIW) 
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Scheduling Static Multiple Issue 

 Compiler must remove some/all hazards 

 Reorder instructions into issue packets 

 No dependencies with a packet 

 Possibly some dependencies between 

packets 

 Varies between ISAs; compiler must know! 

 Pad with nop if necessary 
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MIPS with Static Dual Issue 

 Two-issue packets 

 One ALU/branch instruction 

 One load/store instruction 

 64-bit aligned 

 ALU/branch, then load/store 

 Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 



Chapter 4 — The Processor — 110 

MIPS with Static Dual Issue 
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Hazards in the Dual-Issue MIPS 
(read) 

 More instructions executing in parallel 

 EX data hazard 

 Forwarding avoided stalls with single-issue 

 Now can’t use ALU result in load/store in same packet 

 add  $t0, $s0, $s1 
load $s2, 0($t0) 

 Split into two packets, effectively a stall 

 Load-use hazard 

 Still one cycle use latency, but now two instructions 

 More aggressive scheduling required 
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Scheduling Example (read) 

 Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 

Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4 

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling (read) 

 Replicate loop body to expose more 

parallelism 

 Reduces loop-control overhead 

 Use different registers per replication 

 Called “register renaming” 

 Avoid loop-carried “anti-dependencies” 

 Store followed by a load of the same register 

 Aka “name dependence”  

 Reuse of a register name 
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Loop Unrolling Example (read) 

 IPC = 14/8 = 1.75 

 Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 

Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1 

nop lw   $t1, 12($s1) 2 

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3 

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4 

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5 

addu $t3, $t4, $s2 sw   $t1, 12($s1) 6 

nop sw   $t2, 8($s1) 7 

bne  $s1, $zero, Loop sw   $t3, 4($s1) 8 
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Dynamic Multiple Issue 

 “Superscalar” processors 

 CPU decides whether to issue 0, 1, 2, … 

each cycle 

 Avoiding structural and data hazards 

 Avoids the need for compiler scheduling 

 Though it may still help 

 Code semantics ensured by the CPU 
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Dynamic Pipeline Scheduling (read)

 Allow the CPU to execute instructions out 

of order to avoid stalls 

 But commit result to registers in order 

 Example 

 lw    $t0, 20($s2) 
addu  $t1, $t0, $t2 
sub   $s4, $s4, $t3 
slti  $t5, $s4, 20 

 Can start sub while addu is waiting for lw 
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Dynamically Scheduled CPU 

Results also sent 

to any waiting 

reservation stations 

Reorders buffer for 

register writes 
Can supply 

operands for 

issued instructions 

Preserves 

dependencies 

Hold pending 

operands 



REST Is Reading Material 
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Register Renaming 

 Reservation stations and reorder buffer 
effectively provide register renaming 

 On instruction issue to reservation station 

 If operand is available in register file or 
reorder buffer 
 Copied to reservation station 

 No longer required in the register; can be 
overwritten 

 If operand is not yet available 
 It will be provided to the reservation station by a 

function unit 

 Register update may not be required 



Chapter 4 — The Processor — 120 

Speculation 

 Predict branch and continue issuing 

 Don’t commit until branch outcome 

determined 

 Load speculation 

 Avoid load and cache miss delay 

 Predict the effective address 

 Predict loaded value 

 Load before completing outstanding stores 

 Bypass stored values to load unit 

 Don’t commit load until speculation cleared 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule 

code? 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have 

different latencies and hazards 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 

 e.g., pointer aliasing 

 Some parallelism is hard to expose 

 Limited window size during instruction issue 

 Memory delays and limited bandwidth 

 Hard to keep pipelines full 

 Speculation can help if done well 

The BIG Picture 
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Power Efficiency 

 Complexity of dynamic scheduling and 

speculations requires power 

 Multiple simpler cores may be better 

Microprocessor Year Clock Rate Pipeline 

Stages 

Issue 

width 

Out-of-order/ 

Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 
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The Opteron X4 Microarchitecture 
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The Opteron X4 Pipeline Flow 

 For integer operations 

 FP is 5 stages longer 

 Up to 106 RISC-ops in progress 

 Bottlenecks 

 Complex instructions with long dependencies 

 Branch mispredictions 

 Memory access delays 
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Fallacies 

 Pipelining is easy (!) 

 The basic idea is easy 

 The devil is in the details 

 e.g., detecting data hazards 

 Pipelining is independent of technology 

 So why haven’t we always done pipelining? 

 More transistors make more advanced techniques 

feasible 

 Pipeline-related ISA design needs to take account of 

technology trends 

 e.g., predicated instructions 
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Pitfalls 

 Poor ISA design can make pipelining 

harder 

 e.g., complex instruction sets (VAX, IA-32) 

 Significant overhead to make pipelining work 

 IA-32 micro-op approach 

 e.g., complex addressing modes 

 Register update side effects, memory indirection 

 e.g., delayed branches 

 Advanced pipelines have long delay slots 
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Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk
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Principle of Locality

 Programs access a small proportion of 

their address space at any time

 Temporal locality

 Items accessed recently are likely to be 

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely 

to be accessed soon

 E.g., sequential instruction access, array data
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Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory

 Cache memory attached to CPU
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Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from 

upper level
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Cache Memory

 Cache memory

 The level of the memory hierarchy closest to 

the CPU

 Given accesses X1, …, Xn–1, Xn
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the data is present?

 Where do we look?



Cache Design Rules

Address  =    [Block Address]      [ Block Offset                         ]

Address  =    [Tag]      [Index]      [ Word Offset] [ Byte Offset]

Block_bits            = log2(Block_Size)

#Blocks in Cache =  Cache_Size/Block_Size

#Sets in Cache    =  #Blocks  /  Set_Size

Set_Size               =  number of ways in the cache

For direct cache         :  Set_Size=1              (#Sets = #Blocks)

For fully associative  :  Set_Size= #Blocks (#Sets = 1            )

For k-way associative: Set_Size= k      

Index_bits           =  log2 (#Sets)       

Tag_bits              =  Address_bits - ( Block_bits + Index_bits)
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Direct Cache Example
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K-way Cache Example
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Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a 

power of 2

 Use low-order 

address bits

Index
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Tags and Valid Bits

 How do we know which particular block is 

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state, Mem=32 words (or blocks)

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N
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Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Miss :Tag 

mismatch
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Address Subdivision



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200 

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

120010=  0 ….01               00 1011          0000
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Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Associative Cache Example
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Spectrum of Associativity

 For a cache with 8 entries
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Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 





In the next few 

slides we will

measure:

1. Miss Rate

2. Miss Penalty

Recall: 

Time Cycle ClockTime CPU

Time Cycle ClockCPICount nInstructioTime CPU





CycleCount
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Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block 

address

Cache 

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]
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Associativity Example

 2-way set associative
Block 

address

Cache 

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity

 Increased associativity decreases miss 

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%
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Set Associative Cache Organization
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Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help



Cache Design: (1) Associativity vs miss rate

 Higher associativity ==> more complex HW

 But a highly-associative cache will have a lower miss rate

 Each set has more blocks, so there’s less chance of a conflict between two 

addresses

 Overall, this will reduce Average memory access time (AMAT) and memory 

stall cycles
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Cache Design: (2) Cache size vs miss rate

 In a larger cache there’s less chance there will 

be of a conflict
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Cache Design: (3) Block size vs miss rate

 Smaller blocks do not take maximum advantage of 

spatial locality

 But if blocks are too large, there are fewer blocks 

available, and more potential conflicts misses
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Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access
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Write-Through

 On data-write hit, could just update the block in 
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full
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Write-Back

 Alternative: On data-write hit, just update 

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block 

to be read first
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Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Write-allocate on miss: fetch the block

 Write around (no write allocate): don’t fetch 

the block

 Since programs often write a whole block before 

reading it (e.g., initialization)

 For write-back

 Usually fetch the block
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Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Advanced DRAM Organization

 Bits in a DRAM are organized as a 

rectangular array

 DRAM accesses an entire row

 Burst mode: supply successive words from a 

row with reduced latency

 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs
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DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50
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Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:
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Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction
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Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory 

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when 

evaluating system performance
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Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard 
beyond that

 Random
 Gives approximately the same performance 

as LRU for high associativity



Cache Misses

Cache Misses The Cause Dependency

Capacity misses Occur due to the finite 

size of the cache.

Cache size 

Conflict misses Occur because the 

cache had evicted an 

entry earlier.

Associatively

Compulsory 

misses 

(Cold misses)

Caused by the first 

reference to a location 

in memory.

Block size
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Cache Design Trade-offs

Design change Effect on miss rate Negative 

performance effect

Increase cache size Decrease capacity 

misses

May increase access 

time

Increase associativity Decrease conflict misses May increase access 

time

Increase block size Decrease compulsory 

misses

Increases miss 

penalty. For very large 

block size, may 

increase miss rate due 

to pollution.
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Multilevel Caches 

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from 

primary cache

 Larger, slower, but still faster than main 

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache
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Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6



In summary: CPI and AMAT for multi-level 

cache system

 For Multi-level cache system

 CPI = <ideal_CPI>

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…   

+ Miss rate Ln× Miss penalty Ln

 AMAT = Hit time + 

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…   

+ Miss rate Ln× Miss penalty Ln
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L1 Hit access

L2 Hit access

L3 Hit access

L1 Hit access

L2 Hit access

L3 Hit access

Memory access

Memory access
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Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory 

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size



Intel Core-i7 three-level cache Architecture
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L1 D$
Size= 32KB

Associativity= 4-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L1 I$
Size= 32KB

Associativity= 8-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L2
Size= 256KB

Associativity= 8-way

Latency= 10 cycles

Replacement= Pseudo-LRU

L3
Size= 2MB per core

Associativity= 16-way

Latency= 35 cycles

Replacement= Pseudo-LRU

Core

L1 D$ L1 I$

L2

Core

L1

L2

L3
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Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions 

during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation 

stations

 Independent instructions continue

 Effect of miss depends on program data flow

 Much harder to analyze

 Use system simulation
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Interactions with Software

 Misses depend on 

memory access 

patterns

 Algorithm behavior

 Compiler 

optimization for 

memory access
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Virtual Memory

 Use main memory as a “cache” for 
secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space 

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to 
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault
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Address Translation

 Fixed-size pages (e.g., 4K)
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Page Fault Penalty

 On page fault, the page must be fetched 

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms
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Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual 
page number

 Page table register in CPU points to page 
table in physical memory

 If page is present (valid-bit) in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on 
disk
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Translation Using a Page Table

Size of Physical Memory = # Physical_pages * Page_size 

# Physical Page                =  2 Physical Page Number 

Page Table Size                = #Virtual_pages * EnrySize



Virtual Memory System Example
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Mapping Pages to Storage
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Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on 

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been 
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written
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Fast Translation Using a TLB

 Address translation would appear to require 

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software
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Fast Translation Using a TLB
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TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table 

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating 
the page table

 Then restart the faulting instruction
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TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before destination 

register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur
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Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page 

table

 Make process runnable again

 Restart from faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

TLB and Cache Interaction

 If cache tag uses 

physical address

 Need to translate 

before cache lookup

 Alternative: use virtual 

address tag

 Complications due to 

aliasing

 Different virtual 

addresses for shared 

physical address
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Memory Protection

 Different tasks can share parts of their 

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only 

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Common principles apply at all levels of 

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy
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Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time
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Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 

associative

Set index, then search 

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support
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Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write 
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write 

latency 
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Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of 
the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative 

performance effect

Increase cache size Decrease capacity 

misses

May increase access 

time

Increase associativity Decrease conflict 

misses

May increase access 

time

Increase block size Decrease compulsory 

misses

Increases miss 

penalty. For very large 

block size, may 

increase miss rate 

due to pollution.
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Cache Coherence Problem (read)

 Suppose two CPU cores share a physical 
address space
 Write-through caches
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Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined (read)

 Informally: Reads return most recently 
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X
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Cache Coherence Protocols (read)

 Operations performed by caches in 
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of 
blocks in a directory
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Invalidating Snooping Protocols

 Cache gets exclusive access to a block 
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1
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Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen 

it

 A processor does not reorder writes with other 
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes
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After this slide is reading
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Virtual Machines (read)

 Host computer emulates guest operating system 

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC
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Virtual Machine Monitor

 Maps virtual resources to physical 
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user 
mode

 Traps to VMM on privileged instructions and 
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization

 In native machine, on timer interrupt

 OS suspends current process, handles 

interrupt, selects and resumes next process

 With Virtual Machine Monitor

 VMM suspends current VM, handles interrupt, 

selects and resumes next VM

 If a VM requires timer interrupts

 VMM emulates a virtual timer

 Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support

 User and System modes

 Privileged instructions only available in 
system mode

 Trap to system if executed in user mode

 All physical resources only accessible 
using privileged instructions

 Including page tables, interrupt controls, I/O 
registers

 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting
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Cache Control (read)

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete
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Interface Signals (read)

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 

per access
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Finite State Machines (read)

 Use an FSM to 
sequence control steps

 Set of states, transition 
on each clock edge
 State values are binary 

encoded

 Current state stored in a 
register

 Next state
= fn (current state,

current inputs)

 Control output signals
= fo (current state)
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Cache Controller FSM (read)

Could 

partition into 

separate 

states to 

reduce clock 

cycle time
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Multilevel On-Chip Caches
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Intel Nehalem 4-core processor
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2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small 

pages, 7 per thread (2×) for 

large pages

L1 D-TLB: 64 entries for small 

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU 

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware
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3-Level Cache Organization

Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte 

blocks, 4-way, approx LRU 

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 

blocks, 8-way, approx LRU 

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, write-

back/allocate, hit time 9 cycles

L2 unified 

cache

(per core)

256KB, 64-byte blocks, 8-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified 

cache 

(shared)

8MB, 64-byte blocks, 16-way, 

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 

replace block shared by fewest 

cores, write-back/allocate, hit 

time 32 cycles

n/a: data not available
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Mis Penalty Reduction

 Return requested word first

 Then back-fill rest of block

 Non-blocking miss processing

 Hit under miss: allow hits to proceed

 Mis under miss: allow multiple outstanding 

misses

 Hardware prefetch: instructions and data

 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle
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Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when 

writing or generating code

 Example: iterating over rows vs. columns of 

arrays

 Large strides result in poor locality
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Pitfalls

 In multiprocessor with shared L2 or L3 

cache

 Less associativity than cores results in conflict 

misses

 More cores  need to increase associativity

 Using AMAT to evaluate performance of 

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation
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Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not 

designed for virtualization

 E.g., non-privileged instructions accessing 

hardware resources

 Either extend ISA, or require guest OS not to 

use problematic instructions
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Concluding Remarks

 Fast memories are small, large memories are 
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors
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