
Chapter 1 

Computer Abstractions 

and Technology 

 

Dr. Bassam Jamil 

 

[Adapted from Computer Organization and Design,   

Patterson & Hennessy, © 2012, UCB] 

 



Course Textbook and Outline 

 Instructor: Dr. Bassam Jamil / E 3056 

 Textbook(s):  
 Computer Organization and Design: The 

Hardware/Software Interface, 4th Edition, David 

Patterson and John Hennessy, Morgan Kaufmann. 

ISBN: 978-0-12-374493-7, 2012 

 Topics covered: 
 Computer Abstractions and Technology 

 Instructions: Language of the Computer 

 Arithmetic for Computers 

 The processor 

 Exploiting Memory Hierarchy     

 
Chapter 1 — Computer Abstractions and Technology — 2 



Grades 

 First Exam  25% 

 Chap 1, 2, 3 

 March 12 

 Second Exam  25% 

 Chap 4 

 April 14 

 Final 

 All material 

 

 
Chapter 1 — Computer Abstractions and Technology — 3 



Chapter 1 — Computer Abstractions and Technology — 4 

The Computer Revolution 

 Progress in computer technology 

 Underpinned by Moore’s Law  

 Makes novel applications feasible 

 Computers in automobiles 

 Cell phones 

 Human genome project 

 World Wide Web 

 Search Engines 

 Computers are pervasive 
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Classes of Computers 

 Desktop computers 

 General purpose, variety of software 

 Subject to cost/performance tradeoff 

 Server computers 

 Network based 

 High capacity, performance, reliability 

 Range from small servers to building sized 

 Embedded computers 

 Hidden as components of systems 

 Stringent power/performance/cost constraints 
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The Processor Market 
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What You Will Learn 

 How programs are translated into the 

machine language 

 And how the hardware executes them 

 The hardware/software interface 

 What determines program performance 

 And how it can be improved 

 How hardware designers improve 

performance 

 What is parallel processing 
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Understanding Performance 

 Algorithm 

 Determines number of operations executed 

 Programming language, compiler, architecture 

 Determine number of machine instructions executed 

per operation 

 Processor and memory system 

 Determine how fast instructions are executed 

 I/O system (including OS) 

 Determines how fast I/O operations are executed 
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Below Your Program 

 Application software 

 Written in high-level language 

 System software 

 Compiler: translates HLL code to 

machine code 

 Operating System: service code 

 Handling input/output 

 Managing memory and storage 

 Scheduling tasks & sharing resources 

 Hardware 

 Processor, memory, I/O controllers 
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Levels of Program Code 

 High-level language 
 Level of abstraction closer 

to problem domain 

 Provides for productivity 
and portability  

 Assembly language 
 Textual representation of 

instructions 

 Hardware representation 
 Binary digits (bits) 

 Encoded instructions and 
data 
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Components of a Computer 

 Same components for 

all kinds of computer 

 Desktop, server, 

embedded 

 Input/output includes 

 User-interface devices 

 Display, keyboard, mouse 

 Storage devices 

 Hard disk, CD/DVD, flash 

 Network adapters 

 For communicating with 

other computers 
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The BIG Picture 
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Anatomy of a Computer 

Output 

device 

Input 

device 

Input 

device 

Network 

cable 
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Anatomy of a Mouse 

 Optical mouse 

 LED illuminates 

desktop 

 Small low-res camera 

 Basic image processor 

 Looks for x, y 

movement 

 Buttons & wheel 

 Supersedes roller-ball 

mechanical mouse 
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Through the Looking Glass 

 LCD screen: picture elements (pixels) 

 Mirrors content of frame buffer memory 
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Opening the Box 
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Inside the Processor (CPU) 

 Datapath: performs operations on data 

 Control: sequences datapath, memory, ... 

 Cache memory 

 Small fast SRAM memory for immediate 

access to data 
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Inside the Processor 

 AMD Barcelona: 4 processor cores 
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Abstractions 

 Abstraction helps us deal with complexity 

 Hide lower-level detail 

 Instruction set architecture (ISA) 

 The hardware/software interface 

 Application binary interface 

 The ISA plus system software interface 

 Implementation 

 The details underlying and interface 

The BIG Picture 
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A Safe Place for Data 

 Volatile main memory 

 Loses instructions and data when power off 

 Non-volatile secondary memory 

 Magnetic disk 

 Flash memory 

 Optical disk (CDROM, DVD) 



Chapter 1 — Computer Abstractions and Technology — 20 

Networks 

 Communication and resource sharing 

 Local area network (LAN): Ethernet 

 Within a building 

 Wide area network (WAN: the Internet 

 Wireless network: WiFi, Bluetooth 
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Technology Trends 

 Electronics 

technology 

continues to evolve 

 Increased capacity 

and performance 

 Reduced cost 

Year Technology Relative performance/cost 

1951 Vacuum tube 1 

1965 Transistor 35 

1975 Integrated circuit (IC) 900 

1995 Very large scale IC (VLSI) 2,400,000 

2005 Ultra large scale IC 6,200,000,000 

DRAM capacity 
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Defining Performance 

 Which airplane has the best performance? 
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Response Time and Throughput 

 Response time 

 How long it takes to do a task 

 Throughput 

 Total work done per unit time 

 e.g., tasks/transactions/… per hour 

 How are response time and throughput affected 

by 

 Replacing the processor with a faster version? 

 Adding more processors? 

 We’ll focus on response time for now… 
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Relative Performance 

 Define Performance = 1/Execution Time 

 “X is n time faster than Y” 

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program 

 10s on A, 15s on B 

 Execution TimeB / Execution TimeA 

= 15s / 10s = 1.5 

 So A is 1.5 times faster than B 
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Measuring Execution Time 

 Elapsed time 

 Total response time, including all aspects 
 Processing, I/O, OS overhead, idle time 

 Determines system performance 

 CPU time 

 Time spent processing a given job 
 Discounts I/O time, other jobs’ shares 

 Comprises user CPU time and system CPU 
time 

 Different programs are affected differently by 
CPU and system performance 
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CPU Clocking 

 Operation of digital hardware governed by a 

constant-rate clock 

Clock (cycles) 

Data transfer 

and computation 

Update state 

Clock period 

 Clock period: duration of a clock cycle 

 e.g., 250ps = 0.25ns = 250×10–12s 

 Clock frequency (rate): cycles per second 

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz 
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CPU Time 

 Performance improved by 

 Reducing number of clock cycles 

 Increasing clock rate 

 Hardware designer must often trade off clock 

rate against cycle count 

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU
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CPU Time Example 

 Computer A: 2GHz clock, 10s CPU time 

 Designing Computer B 

 Aim for 6s CPU time 

 Can do faster clock, but causes 1.2 × clock cycles 

 How fast must Computer B clock be? 

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B


















Chapter 1 — Computer Abstractions and Technology — 29 

Instruction Count and CPI 

 Instruction Count for a program 

 Determined by program, ISA and compiler 

 Average cycles per instruction 

 Determined by CPU hardware 

 If different instructions have different CPI 

 Average CPI affected by instruction mix 

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock
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CPI Example 

 Computer A: Cycle Time = 250ps, CPI = 2.0 

 Computer B: Cycle Time = 500ps, CPI = 1.2 

 Same ISA 

 Which is faster, and by how much? 

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU















A is faster… 

…by this much 
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CPI in More Detail 

 If different instruction classes take different 

numbers of cycles 
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CPI Example 

 Alternative compiled code sequences using 
instructions in classes A, B, C 

Class A B C 

CPI for class 1 2 3 

IC in sequence 1 2 1 2 

IC in sequence 2 4 1 1 

 Sequence 1: IC = 5 

 Clock Cycles 

= 2×1 + 1×2 + 2×3 

= 10 

 Avg. CPI = 10/5 = 2.0 

 Sequence 2: IC = 6 

 Clock Cycles 

= 4×1 + 1×2 + 1×3 

= 9 

 Avg. CPI = 9/6 = 1.5 



Chapter 1 — Computer Abstractions and Technology — 33 

Performance Summary 

 Performance depends on 

 Algorithm: affects IC, possibly CPI 

 Programming language: affects IC, CPI 

 Compiler: affects IC, CPI 

 Instruction set architecture: affects IC, CPI, Tc 

The BIG Picture 

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 
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Power Trends 

 In CMOS IC technology 
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Reducing Power 

 Suppose a new CPU has 

 85% of capacitive load of old CPU 

 15% voltage and 15% frequency reduction 

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall 

 We can’t reduce voltage further 

 We can’t remove more heat 

 How else can we improve performance? 
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Uniprocessor Performance 
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Constrained by power, instruction-level parallelism, 

memory latency 
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Multiprocessors 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 

 Load balancing 

 Optimizing communication and synchronization 
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Manufacturing ICs 

 Yield: proportion of working dies per wafer 
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AMD Opteron X2 Wafer 

 X2: 300mm wafer, 117 chips, 90nm technology 

 X4: 45nm technology 
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Integrated Circuit Cost 

 Nonlinear relation to area and defect rate 

 Wafer cost and area are fixed 

 Defect rate determined by manufacturing process 

 Die area determined by architecture and circuit design 

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost
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SPEC CPU Benchmark 

 Programs used to measure performance 
 Supposedly typical of actual workload 

 Standard Performance Evaluation Corp (SPEC) 
 Develops benchmarks for CPU, I/O, Web, … 

 SPEC CPU2006 
 Elapsed time to execute a selection of programs 

 Negligible I/O, so focuses on CPU performance 

 Normalize relative to reference machine 

 Summarize as geometric mean of performance ratios 
 CINT2006 (integer) and CFP2006 (floating-point) 

n

n

1i

iratio time Execution
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CINT2006 for Opteron X4 2356 

Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio 

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3 

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8 

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1 

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8 

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6 

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5 

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5 

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8 

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3 

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1 

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1 

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0 

Geometric mean 11.7 

High cache miss rates 
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SPEC Power Benchmark 

 Power consumption of server at different 

workload levels 

 Performance: ssj_ops/sec 

 Power: Watts (Joules/sec) 
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SPECpower_ssj2008 for X4 

Target Load % Performance (ssj_ops/sec) Average Power (Watts) 

100% 231,867 295 

90% 211,282 286 

80% 185,803 275 

70% 163,427 265 

60% 140,160 256 

50% 118,324 246 

40% 920,35 233 

30% 70,500 222 

20% 47,126 206 

10% 23,066 180 

0% 0 141 

Overall sum 1,283,590 2,605 

∑ssj_ops/ ∑power 493 
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Pitfall: Amdahl’s Law 

 Improving an aspect of a computer and 

expecting a proportional improvement in 

overall performance 
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 Example: multiply accounts for 80s/100s 

 How much improvement in multiply performance to 

get 5× overall? 

 Corollary: make the common case fast 
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Fallacy: Low Power at Idle 

 Look back at X4 power benchmark 

 At 100% load: 295W 

 At 50% load: 246W (83%) 

 At 10% load: 180W (61%) 

 Google data center 

 Mostly operates at 10% – 50% load 

 At 100% load less than 1% of the time 

 Consider designing processors to make 

power proportional to load 
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Pitfall: MIPS as a Performance Metric 

 MIPS: Millions of Instructions Per Second 

 Doesn’t account for 

 Differences in ISAs between computers 

 Differences in complexity between instructions 

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS












 CPI varies between programs on a given CPU 
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Concluding Remarks 

 Cost/performance is improving 

 Due to underlying technology development 

 Hierarchical layers of abstraction 

 In both hardware and software 

 Instruction set architecture 

 The hardware/software interface 

 Execution time: the best performance 
measure 

 Power is a limiting factor 

 Use parallelism to improve performance 
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Outline (Read Rest of Topics) 

1. Instruction Set 

2. Operations 

3. Operands 

4. Singed and Unsigned 

Numbers 

5. Representing Instructions 

in the Computer 

6. Logical Operations 

7. Decision Instructions 

8. Procedures 

9. Communicating with 

People 

10.MIPS Addressing for 32-

Bit:Immediate and 

Addresses 

 

11.  Parallelism and Instructions: 

Synchronization 

12.  Translating and Starting a Program 

13 . A C Sort Example to Put It All 

Together 

14. Arrays versus Pointers 

15. Arrays versus Pointers 

16. Real Stuff: ARM Instructions 

17. Real Stuff: x86 Instructions 

18. Fallacies and Pitfalls 

19. Concluding Remarks 
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Instruction Set 

 The repertoire of instructions of a 
computer 

 Different computers have different 
instruction sets 

 But with many aspects in common 

 Early computers had very simple 
instruction sets 

 Simplified implementation 

 Many modern computers also have simple 
instruction sets 
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The Instruction Set Architecture (ISA) 

instruction set architecture 

software 

hardware 

The interface description separating 
the software and hardware 

4 
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The MIPS Instruction Set 

 Used as the example throughout the book 

 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 

 Large share of embedded core market 

 Applications in consumer electronics, network/storage 

equipment, cameras, printers, … 

 Typical of many modern ISAs 

 See MIPS Reference Data tear-out card, and 

Appendixes B and E 

http://www.mips.com/


MIPS R3000 Instruction Set Architecture (ISA) 

 Instruction categories 
 Computational  

 Load/Store 

 Jump and Branch 

 Floating Point 

 coprocessor 

 Memory Management 

R0 - R31 

PC 

HI 

LO 

Registers 

OP 

OP 

OP 

rs rt rd sa funct 

rs rt immediate 

jump target 

3 Instruction Formats: all 32 bits wide 

R format 

I format 

J format 

6 



0 $zero constant 0 (Hdware) 

1 $at reserved for assembler 

2 $v0 expression evaluation & 

3 $v1 function results 

4 $a0 arguments (not preserved) 

5 $a1 

6 $a2 

7 $a3  

8 $t0 temporary: caller saves 

                Caller saved if needed. Subroutines  

                 can use w/out saving. 

15 $t7 

Naming Conventions for Registers 

16 $s0 callee saves 
          A subroutine using one of these  must  

          save  original and restore it  before exiting. 

23 $s7 

24 $t8  temporary (cont’d) 

25 $t9 

26 $k0 reserved for OS kernel 

27 $k1 

28 $gp pointer to global area 

29 $sp stack pointer 

30 $fp frame pointer 

31 $ra return address (Hdware) 7 

Register preceded by $ in assembly language instruction 

Two formats for addressing:  

    - Register number e.g. $0 through $31 

    - Equivalent names (Naming convection) e.g. $t1, $sp 
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Instructions Families 

 Main instruction families: 

Instruction class MIPS examples 

Arithmetic add, sub, addi 

Data transfer lw, sw, lb, lbu, lh, lhu, 
sb, lui 

Logical and, or, nor, andi, ori, 
sll, srl 

Cond. Branch beq, bne, slt, slti, sltiu 

Jump j, jr, jal 
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Common MIPS Instructions 

 Measure MIPS instruction executions in 
benchmark programs 

 Consider making the common case fast 

 Consider compromises 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 

Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 



Review:  MIPS Instructions 

Category Instr OpC Example Meaning 

Data 

transfer 

(I format) 

load word 23 lw    $s1, 100($s2) $s1 = Memory($s2+100) 

store word 2b sw   $s1, 100($s2) Memory($s2+100) = $s1 

load byte 20 lb    $s1, 101($s2) $s1 = Memory($s2+101) 

store byte 28 sb   $s1, 101($s2) Memory($s2+101) = $s1 

load half 21 lh    $s1, 101($s2) $s1 = Memory($s2+102) 

store half 29 sh   $s1, 101($s2) Memory($s2+102) = $s1 

10 

Category Instr Op Code Example Meaning 

Arithmetic 

(R & I 
format) 

add 0 and 32 add  $s1, $s2, $s3 $s1 = $s2 + $s3 

subtract 0 and 34 sub  $s1, $s2, $s3 $s1 = $s2 - $s3 

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6 

or immediate 13 ori   $s1, $s2, 6 $s1 = $s2 v 6 

Uncond. 
Jump      
(J & R 
format) 

jump 2 j       2500 go to 10000 

jump register 0 and 8 jr     $t1 go to $t1 

jump and link 3 jal    2500 go to 10000; $ra=PC+4 



MIPS Reference Data Sheet 

11 



MIPS Reference Data Sheet 

12 
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Arithmetic Operations 

 Add and subtract, three operands 

 Two sources and one destination 

 add a, b, c  # a gets b + c 

 All arithmetic operations have this form 

 Design Principle 1: Simplicity favors 

regularity 

 Regularity makes implementation simpler 

 Simplicity enables higher performance at 

lower cost 
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MIPS Arithmetic Instructions 
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Arithmetic Example 

 C code: 

 f = (g + h) - (i + j); 

 Compiled MIPS code: 

 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 



Chapter 2 — Instructions: Language of the Computer — 16 

Register Operands 

 Arithmetic instructions use register 
operands 

 MIPS has a 32 × 32-bit register file 
 Use for frequently accessed data 

 Numbered 0 to 31 

 32-bit data called a “word” 

 Assembler names 
 $t0, $t1, …, $t9 for temporary values 

 $s0, $s1, …, $s7 for saved variables 

 Design Principle 2: Smaller is faster 
 c.f. main memory: millions of locations 
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Register Naming Convention 
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Register Operand Example 

 C code: 

 f = (g + h) - (i + j); 

 f, …, j in $s0, …, $s4 

 Compiled MIPS code: 

 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 
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Memory Operands 

 Main memory used for composite data 
 Arrays, structures, dynamic data 

 To apply arithmetic operations 
 Load values from memory into registers 

 Store result from register to memory 

 Memory is byte addressed 
 Each address identifies an 8-bit byte 

 Words are aligned in memory 
 Address must be a multiple of 4 

 MIPS is Big Endian 
 Most-significant byte at least address of a word 

 c.f. Little Endian: least-significant byte at least address 



Byte Addresses 

Big Endian:  

 Leftmost byte is word address 

Little Endian:  

Rightmost byte is word address 

LS Byte has biggest address in the 

word 

LS Byte has little address in the 

word. 

//upload.wikimedia.org/wikipedia/commons/5/54/Big-Endian.svg
//upload.wikimedia.org/wikipedia/commons/e/ed/Little-Endian.svg
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Addressing Mode Summary 



Review of MIPS Operand Addressing Modes 
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Review of MIPS Instruction Addressing Modes 
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Memory Operand Example 1 

 C code: 

 g = h + A[8]; 

 g in $s1, h in $s2, base address of A in $s3 

 Compiled MIPS code: 

 Index 8 requires offset of 32 

 4 bytes per word 

 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset base register 
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Memory Operand Example 2 

 C code: 

 A[12] = h + A[8]; 

 h in $s2, base address of A in $s3 

 Compiled MIPS code: 

 Index 8 requires offset of 32 

 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 
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Registers vs. Memory 

 Registers are faster to access than 
memory 

 Operating on memory data requires loads 
and stores 

 More instructions to be executed 

 Compiler must use registers for variables 
as much as possible 

 Only spill to memory for less frequently used 
variables 

 Register optimization is important! 
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Immediate Operands 

 Constant data specified in an instruction 

 addi $s3, $s3, 4 

 No subtract immediate instruction 

 Just use a negative constant 

 addi $s2, $s1, -1 

 Design Principle 3: Make the common 

case fast 

 Small constants are common 

 Immediate operand avoids a load instruction 
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The Constant Zero 

 MIPS register 0 ($zero) is the constant 0 

 Cannot be overwritten 

 Useful for common operations 

 E.g., move between registers 

 add $t2, $s1, $zero 
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Representing Instructions 

 Instructions are encoded in binary 

 Called machine code 

 MIPS instructions 

 Encoded as 32-bit instruction words 

 Small number of formats encoding operation code 

(opcode), register numbers, … 

 Regularity! 

 Register numbers 

 $t0 – $t7 are reg’s 8 – 15 

 $t8 – $t9 are reg’s 24 – 25 

 $s0 – $s7 are reg’s 16 – 23 
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MIPS R-format Instructions 

 Instruction fields 

 op: operation code (opcode) 

 rs: first source register number 

 rt: second source register number 

 rd: destination register number 

 shamt: shift amount (00000 for now) 

 funct: function code (extends opcode) 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002 = 0232402016 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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MIPS I-format Instructions 

 Immediate arithmetic and load/store instructions 
 rt: destination or source register number 

 Constant: –215 to +215 – 1 

 Address: offset added to base address in rs 

 Design Principle 4: Good design demands good 
compromises 
 Different formats complicate decoding, but allow 32-bit 

instructions uniformly 

 Keep formats as similar as possible 

op rs rt constant or address 

6 bits 5 bits 5 bits 16 bits 
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Stored Program Computers 

 Instructions represented in 
binary, just like data 

 Instructions and data stored 
in memory 

 Programs can operate on 
programs 
 e.g., compilers, linkers, … 

 Binary compatibility allows 
compiled programs to work 
on different computers 
 Standardized ISAs 

The BIG Picture 
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Logical Operations 

 Instructions for bitwise manipulation 

Operation C Java MIPS 

Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

 Useful for extracting and inserting 

groups of bits in a word 
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Shift Operations 

 shamt: how many positions to shift  

 Shift left logical 

 Shift left and fill with 0 bits 

 sll by i bits multiplies by 2i 

 Shift right logical 

 Shift right and fill with 0 bits 

 srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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AND Operations 

 Useful to mask bits in a word 

 Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 
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OR Operations 

 Useful to include bits in a word 

 Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 
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NOT Operations 

 Useful to invert bits in a word 

 Change 0 to 1, and 1 to 0 

 MIPS has NOR 3-operand instruction 

 a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register 0: always 

read as zero 
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Conditional Operations 

 Branch to a labeled instruction if a 
condition is true 

 Otherwise, continue sequentially 

 beq rs, rt, L1 
 if (rs == rt) branch to instruction labeled L1; 

 bne rs, rt, L1 
 if (rs != rt) branch to instruction labeled L1; 

 j L1 
 unconditional jump to instruction labeled L1 
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Compiling If Statements 

 C code: 

 if (i==j) f = g+h; 
else f = g-h; 

 f, g, … in $s0, $s1, … 

 Compiled MIPS code: 

       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … 

Assembler calculates addresses 
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Compiling Loop Statements 

 C code: 

 while (save[i] == k) i += 1; 

 i in $s3, k in $s5, address of save in $s6 

 Compiled MIPS code: 

 Loop: sll  $t1, $s3, 2 
      add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 
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Basic Blocks 

 A basic block is a sequence of instructions 

with 

 No embedded branches (except at end) 

 No branch targets (except at beginning) 

 A compiler identifies basic 

blocks for optimization 

 An advanced processor 

can accelerate execution 

of basic blocks 
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More Conditional Operations 

 Set result to 1 if a condition is true 

 Otherwise, set to 0 

 slt rd, rs, rt 

 if (rs < rt) rd = 1; else rd = 0; 

 slti rt, rs, constant 

 if (rs < constant) rt = 1; else rt = 0; 

 Use in combination with beq, bne 
 slt $t0, $s1, $s2  # if ($s1 < $s2) 
bne $t0, $zero, L  #   branch to L 
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Branch Instruction Design 

 Why not blt, bge, etc? 

 Hardware for <, ≥, … slower than =, ≠ 

 Combining with branch involves more work 

per instruction, requiring a slower clock 

 All instructions penalized! 

 beq and bne are the common case 

 This is a good design compromise 
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Signed vs. Unsigned 

 Signed comparison: slt, slti 

 Unsigned comparison: sltu, sltui 

 Example 

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111 

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 

 slt  $t0, $s0, $s1  # signed 

 –1 < +1  $t0 = 1 

 sltu $t0, $s0, $s1  # unsigned 

 +4,294,967,295 > +1  $t0 = 0 



Chapter 2 — Instructions: Language of the Computer — 46 

Procedure Calling 

 Steps required 

1. Place parameters in registers 

2. Transfer control to procedure 

3. Acquire storage for procedure 

4. Perform procedure’s operations 

5. Place result in register for caller 

6. Return to place of call 
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Register Usage 

 $a0 – $a3: arguments (reg’s 4 – 7) 

 $v0, $v1: result values (reg’s 2 and 3) 

 $t0 – $t9: temporaries 
 Can be overwritten by callee 

 $s0 – $s7: saved 
 Must be saved/restored by callee 

 $gp: global pointer for static data (reg 28) 

 $sp: stack pointer (reg 29) 

 $fp: frame pointer (reg 30) 

 $ra: return address (reg 31) 
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Procedure Call Instructions 

 Procedure call: jump and link 

 jal ProcedureLabel 

 Address of following instruction put in $ra 

 Jumps to target address 

 Procedure return: jump register 

 jr $ra 

 Copies $ra to program counter 

 Can also be used for computed jumps 

 e.g., for case/switch statements 
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Leaf Procedure Example 

 C code: 

 int leaf_example (int g, h, i, j) 
{ int f; 
  f = (g + h) - (i + j); 
  return f; 
} 

 Arguments g, …, j in $a0, …, $a3 

 f in $s0 (hence, need to save $s0 on stack) 

 Result in $v0 
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Leaf Procedure Example 

 MIPS code: 
 leaf_example: 
  addi $sp, $sp, -4 
  sw   $s0, 0($sp) 
  add  $t0, $a0, $a1 
  add  $t1, $a2, $a3 
  sub  $s0, $t0, $t1 
  add  $v0, $s0, $zero 
  lw   $s0, 0($sp) 
  addi $sp, $sp, 4 
  jr   $ra 

Save $s0 on stack 

Procedure body 

Restore $s0 

Result 

Return 
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Non-Leaf Procedures 

 Procedures that call other procedures 

 For nested call, caller needs to save on the 

stack: 

 Its return address 

 Any arguments and temporaries needed after 

the call 

 Restore from the stack after the call 
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Non-Leaf Procedure Example 

 C code: 

 int fact (int n) 
{  
  if (n < 1) return f; 
  else return n * fact(n - 1); 
} 

 Argument n in $a0 

 Result in $v0 
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Non-Leaf Procedure Example 

 MIPS code: 
 fact: 

    addi $sp, $sp, -8     # adjust stack for 2 items 
    sw   $ra, 4($sp)      # save return address 
    sw   $a0, 0($sp)      # save argument 
    slti $t0, $a0, 1      # test for n < 1 
    beq  $t0, $zero, L1 
    addi $v0, $zero, 1    # if so, result is 1 
    addi $sp, $sp, 8      #   pop 2 items from stack 
    jr   $ra              #   and return 
L1: addi $a0, $a0, -1     # else decrement n   
    jal  fact             # recursive call 
    lw   $a0, 0($sp)      # restore original n 
    lw   $ra, 4($sp)      #   and return address 
    addi $sp, $sp, 8      # pop 2 items from stack 
    mul  $v0, $a0, $v0    # multiply to get result 
    jr   $ra              # and return 
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Local Data on the Stack 

 Local data allocated by callee 
 e.g., C automatic variables 

 Procedure frame (activation record) 
 Used by some compilers to manage stack storage 
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Memory Layout 

 Text: program code 

 Static data: global 
variables 
 e.g., static variables in C, 

constant arrays and strings 

 $gp initialized to address 
allowing ±offsets into this 
segment 

 Dynamic data: heap 
 E.g., malloc in C, new in 

Java 

 Stack: automatic storage 
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Character Data 

 Byte-encoded character sets 

 ASCII: 128 characters 

 95 graphic, 33 control 

 Latin-1: 256 characters 

 ASCII, +96 more graphic characters 

 Unicode: 32-bit character set 

 Used in Java, C++ wide characters, … 

 Most of the world’s alphabets, plus symbols 

 UTF-8, UTF-16: variable-length encodings 
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Byte/Halfword Operations 

 Could use bitwise operations 

 MIPS byte/halfword load/store 

 String processing is a common case 

lb rt, offset(rs)     lh rt, offset(rs) 

 Sign extend to 32 bits in rt 

lbu rt, offset(rs)    lhu rt, offset(rs) 

 Zero extend to 32 bits in rt 

sb rt, offset(rs)     sh rt, offset(rs) 

 Store just rightmost byte/halfword 
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String Copy Example 

 C code (naïve): 

 Null-terminated string 

 void strcpy (char x[], char y[]) 
{ int i; 
  i = 0; 
  while ((x[i]=y[i])!='\0') 
    i += 1; 
} 

 Addresses of x, y in $a0, $a1 

 i in $s0 
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String Copy Example 

 MIPS code: 
 strcpy: 

    addi $sp, $sp, -4      # adjust stack for 1 item 
    sw   $s0, 0($sp)       # save $s0 
    add  $s0, $zero, $zero # i = 0 
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1 
    lbu  $t2, 0($t1)       # $t2 = y[i] 
    add  $t3, $s0, $a0     # addr of x[i] in $t3 
    sb   $t2, 0($t3)       # x[i] = y[i] 
    beq  $t2, $zero, L2    # exit loop if y[i] == 0   
    addi $s0, $s0, 1       # i = i + 1 
    j    L1                # next iteration of loop 
L2: lw   $s0, 0($sp)       # restore saved $s0 
    addi $sp, $sp, 4       # pop 1 item from stack 
    jr   $ra               # and return 
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0000 0000 0111 1101 0000 0000 0000 0000 

32-bit Constants 

 Most constants are small 

 16-bit immediate is sufficient 

 For the occasional 32-bit constant 

 lui rt, constant 

 Copies 16-bit constant to left 16 bits of rt 

 Clears right 16 bits of rt to 0 

lhi $s0, 61 

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304 
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Branch Addressing 

 Branch instructions specify 

 Opcode, two registers, target address 

 Most branch targets are near branch 

 Forward or backward 

op rs rt constant or address 

6 bits 5 bits 5 bits 16 bits 

 PC-relative addressing 

 Target address = PC + offset × 4 

 PC already incremented by 4 by this time 
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Jump Addressing 

 Jump (j and jal) targets could be 

anywhere in text segment 

 Encode full address in instruction 

op address 

6 bits 26 bits 

 (Pseudo)Direct jump addressing 

 Target address = PC31…28 : (address × 4) 
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Target Addressing Example 

 Loop code from earlier example 

 Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 
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Branching Far Away 

 If branch target is too far to encode with 

16-bit offset, assembler rewrites the code 

 Example 

  beq $s0,$s1, L1 

    ↓ 

  bne $s0,$s1, L2 
 j L1 
L2: … 
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Translation and Startup 

Many compilers produce 

object modules directly 

Static linking 
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Assembler Pseudoinstructions 

 Most assembler instructions represent 

machine instructions one-to-one 

 Pseudoinstructions: figments of the 

assembler’s imagination 

 move $t0, $t1 → add $t0, $zero, $t1 

 blt $t0, $t1, L  →  slt $at, $t0, $t1 

  bne $at, $zero, L 

 $at (register 1): assembler temporary 
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Producing an Object Module 

 Assembler (or compiler) translates program into 
machine instructions 

 Provides information for building a complete 
program from the pieces 
 Header: described contents of object module 

 Text segment: translated instructions 

 Static data segment: data allocated for the life of the 
program 

 Relocation info: for contents that depend on absolute 
location of loaded program 

 Symbol table: global definitions and external refs 

 Debug info: for associating with source code 



 Consider the load-word and store-word instr’s 

 What would the regularity principle have us do? 

 But . . . Good design demands compromise 

 Introduce a new type of instruction format 

 I-type for data transfer instructions (previous format was R-
type for register) 

 Example:  lw $t0, 24($s2) 

Machine Language - Load Instruction 

op            rs             rt                16 bit number 

23hex           18           8                     24 

100011    10010    01000           0000000000011000 

68 



 Instructions, like registers and words of data, are also 32 
bits long 

 Example:   add $t1, $s1, $s2 

 registers have numbers, $t1=9, $s1=17, $s2=18 

 

 Instruction Format: 

 

  

  000000 1000110010 01001 00000 100000  

   op   rs   rt   rd shamt  funct 

 

 Can you guess what the field names stand for? 

Machine Language 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits Fieldsize: 

69 



 What instruction format is used for the addi ? 

 addi $s3, $s3, 4 #$s3 = $s3 + 4 

 

 Machine format:  

Machine Language – Immediate Instructions 

op           rs           rt                16 bit immediate I  format 

8             19           19                         4 

 The constant is kept inside the instruction itself! 

 So must use the I format – Immediate format 

 Limits immediate values to the range +215–1 to -215
  

71 



Load Example 

.data 

  var0:   .word   0x01234567 

  var1: .word 0x79abcdef 

.text 

 la  $s1, var0                  

 lw $t1, 0($s1)        # $t1 = 01234567 

    lw $t1, 1($s1)      #Error: misalignment 

 la  $s1, var1 

 lb  $t1, 0($s1)       # $t1 = ff ff ff ef 

 lb  $t1, 1($s1)       # $t1 = ff ff ff cd 

 lb  $t1, 2($s1)       # $t1 = ff ff ff ab  

 lb  $t1, 3($s1)       # $t1 = 00 00 00 

79 

la $s1, var0 

lh $t1, 0($s1)   #$t1=00004567 

lh $t1, 1($s1)   #Error: misalignment 

lh $t1, 2($s1)   #$t1=0000 0123 

lh $t1, 3($s1)   #Error: misalignment
  

lw  $t1, 4($s1)   # t1 = var1 

sh  $t1, 0($s1)   #var0= 0123cdef 

sb  $t1, 3($s1)   #var0=ef23cdef 

 

 



Subroutine Example 

.data 

data1: .word  5 

data2: .word  10 

##################################  

.text 

      la   $a0, data1 

      la   $a1, data2 

      jal  my_sub 

      add  $t0, $v0, $zero 

      syscall    # exit program 

################################## 

.text 

my_sub: 

      lw   $t0, 0($a0) 

      lw   $t1, 0($a1) 

      add  $v0, $t0, $t1 

      jr   $ra               
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C Sort Example 

 Illustrates use of assembly instructions 
for a C bubble sort function 

 Swap procedure (leaf) 
 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

 v in $a0, k in $a1, temp in $t0 
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The Procedure Swap 

swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 
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The Sort Procedure in C 

 Non-leaf (calls swap) 
 void sort (int v[], int n) 
 { 
   int i, j; 
   for (i = 0; i < n; i += 1) { 
     for (j = i – 1; 
          j >= 0 && v[j] > v[j + 1]; 
          j -= 1) { 
       swap(v,j); 
     } 
   } 
 } 
 v in $a0, k in $a1, i in $s0, j in $s1 
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The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 

         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 

         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 

         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 

         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 

         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 

         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 

         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass 

params 

& call 

Move 

params 

Inner loop 

Outer loop 

Inner loop 

Outer loop 
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sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 
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Arithmetic for Computers 

 Operations on integers 

 Addition and subtraction 

 Multiplication and division 

 Dealing with overflow 

 Floating-point real numbers 

 Representation and operations  
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Integer Addition 

 Example: 7 + 6 
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 Overflow if result out of range 

 Adding +ve and –ve operands, no overflow 

 Adding two +ve operands 

 Overflow if result sign is 1 

 Adding two –ve operands 

 Overflow if result sign is 0 
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Integer Subtraction 

 Add negation of second operand 

 Example: 7 – 6 = 7 + (–6) 

 +7: 0000 0000 … 0000 0111 

–6: 1111 1111 … 1111 1010 

+1: 0000 0000 … 0000 0001 

 Overflow if result out of range 

 Subtracting two +ve or two –ve operands, no overflow 

 Subtracting +ve from –ve operand 

 Overflow if result sign is 0 

 Subtracting –ve from +ve operand 

 Overflow if result sign is 1 
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Dealing with Overflow 

 Some languages (e.g., C) ignore overflow 
 Use MIPS addu, addui, subu instructions 

 Other languages (e.g., Ada, Fortran) 
require raising an exception 
 Use MIPS add, addi, sub instructions 

 On overflow, invoke exception handler 
 Save PC in exception program counter (EPC) 

register 

 Jump to predefined handler address 

 mfc0 (move from coprocessor reg) instruction can 
retrieve EPC value, to return after corrective action 
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Multiplication 

 Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 

the sum of operand 

lengths 

multiplicand 

multiplier 

product 
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Multiplication Hardware 

Initially 0 
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Optimized Multiplier 

 Perform steps in parallel: add/shift 

 One cycle per partial-product addition 

 That’s ok, if frequency of multiplications is low 
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MIPS Multiplication 

 Two 32-bit registers for product 

 HI: most-significant 32 bits 

 LO: least-significant 32-bits 

 Instructions 

 mult rs, rt  /  multu rs, rt 

 64-bit product in HI/LO 

 mfhi rd  /  mflo rd 

 Move from HI/LO to rd 

 Can test HI value to see if product overflows 32 bits 

 mul rd, rs, rt 

 Least-significant 32 bits of product –> rd 
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Division 

 Check for 0 divisor 

 Long division approach 
 If divisor ≤ dividend bits 

 1 bit in quotient, subtract 

 Otherwise 

 0 bit in quotient, bring down next 
dividend bit 

 Restoring division 
 Do the subtract, and if remainder 

goes < 0, add divisor back 

 Signed division 
 Divide using absolute values 

 Adjust sign of quotient and remainder 
as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 

quotient and remainder 

quotient 

dividend 

remainder 

divisor 
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Division Hardware 

Initially dividend 

Initially divisor 

in left half 
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Optimized Divider 

 One cycle per partial-remainder subtraction 

 Looks a lot like a multiplier! 

 Same hardware can be used for both 
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MIPS Division 

 Use HI/LO registers for result 

 HI: 32-bit remainder 

 LO: 32-bit quotient 

 Instructions 

 div rs, rt  /  divu rs, rt 

 No overflow or divide-by-0 checking 

 Software must perform checks if required 

 Use mfhi, mflo to access result 
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Floating Point 

 Representation for non-integral numbers 

 Including very small and very large numbers 

 Like scientific notation 

 –2.34 × 1056 

 +0.002 × 10–4 

 +987.02 × 109 

 In binary 

 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 
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Floating Point Standard 

 Defined by IEEE Std 754-1985 

 Developed in response to divergence of 

representations 

 Portability issues for scientific code 

 Now almost universally adopted 

 Two representations 

 Single precision (32-bit) 

 Double precision (64-bit)  



Chapter 3 — Arithmetic for Computers — 17 

IEEE Floating-Point Format 

 S: sign bit (0  non-negative, 1  negative) 

 Normalize significand: 1.0 ≤ |significand| < 2.0 
 Always has a leading pre-binary-point 1 bit, so no need to 

represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 

 Exponent: excess representation: actual exponent + Bias 
 Ensures exponent is unsigned 

 Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x 



Floating Point Representation 
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Single Precision Double Precision Object Represented 

E (8) F (23) E (11) F (52) 

0 0 0 0 true zero (0) 

0 nonzero 0 nonzero ± denormalized number 

± 1-254 

± 128-2 

anything ± 1-2046 

± 1211-2 

anything ± floating point number 

± 255 

±(28-1) 

0 ± 2047 

±(211-1) 

0 ± infinity 

255 nonzero 2047 nonzero not a number (NaN) 
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Single-Precision Range 

 Exponents 00000000 and 11111111 reserved 

 Smallest value 

 Exponent: 00000001 

 actual exponent = 1 – 127 = –126 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 

 exponent: 11111110 

 actual exponent = 254 – 127 = +127 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 

 Exponents 0000…00 and 1111…11 reserved 

 Smallest value 

 Exponent: 00000000001 

 actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 

 Exponent: 11111111110 

 actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 

 Relative precision 

 all fraction bits are significant 

 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 

digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 

digits of precision 
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Floating-Point Example 

 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 

 Fraction = 1000…002 

 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 

 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 

 Double: 1011111111101000…00 
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Floating-Point Example 

 What number is represented by the single-
precision float 

 11000000101000…00 

 S = 1 

 Fraction = 01000…002 

 Fxponent = 100000012 = 129 

 x = (–1)1 × (1 + 012) × 2(129 – 127) 

 = (–1) × 1.25 × 22 

 = –5.0 
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Floating-Point Addition 

 Consider a 4-digit decimal example 
 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 

 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 

 Now consider a 4-digit binary example 
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 

 1. Align binary points 
 Shift number with smaller exponent 

 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 

 Much more complex than integer adder 

 Doing it in one clock cycle would take too 

long 

 Much longer than integer operations 

 Slower clock would penalize all instructions 

 FP adder usually takes several cycles 

 Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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FP Arithmetic Hardware 

 FP multiplier is of similar complexity to FP 
adder 

 But uses a multiplier for significands instead of 
an adder 

 FP arithmetic hardware usually does 

 Addition, subtraction, multiplication, division, 
reciprocal, square-root 

 FP  integer conversion 

 Operations usually takes several cycles 

 Can be pipelined 
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FP Instructions in MIPS 

 FP hardware is coprocessor 1 
 Adjunct processor that extends the ISA 

 Separate FP registers 
 32 single-precision: $f0, $f1, … $f31 

 Paired for double-precision: $f0/$f1, $f2/$f3, … 
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 

 FP instructions operate only on FP registers 
 Programs generally don’t do integer ops on FP data, 

or vice versa 

 More registers with minimal code-size impact 

 FP load and store instructions (single/double) 
 lwc1, ldc1, swc1, sdc1 

 e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 

 Single-precision arithmetic 
 add.s, sub.s, mul.s, div.s 

 e.g., add.s $f0, $f1, $f6 

 Double-precision arithmetic 
 add.d, sub.d, mul.d, div.d 

 e.g., mul.d $f4, $f4, $f6 

 Single- and double-precision comparison 
 c.xx.s, c.xx.d (xx is eq, lt, le, …) 

 Sets or clears FP condition-code bit 
 e.g. c.lt.s $f3, $f4 

 Branch on FP condition code true or false 
 bc1t, bc1f 

 e.g., bc1t TargetLabel 
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FP Example: °F to °C 

 C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

 fahr in $f12, result in $f0, literals in global memory 
space 

 Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc2  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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Introduction 

 CPU performance factors 
 Instruction count 

 Determined by ISA and compiler 

 CPI and Cycle time 
 Determined by CPU hardware 

 We will examine two MIPS implementations 
 A simplified version 

 A more realistic pipelined version 

 Simple subset, shows most aspects 
 Memory reference: lw, sw 

 Arithmetic/logical: add, sub, and, or, slt 

 Control transfer: beq, j 
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Instruction Execution 

 PC  instruction memory, fetch instruction 

 Register numbers  register file, read registers 

 Depending on instruction class 

 Use ALU to calculate 

 Arithmetic result 

 Memory address for load/store 

 Branch target address 

 Access data memory for load/store 

 PC  target address or PC + 4 



Processor Control Unit: Basics 
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Unit What needs to be controlled 

Register File 1. Register Write: enable write to register file 

2. Specifying destination Register: instruction[20-16]  versus 

instruction[15-11] 

3. Memory-to-register: What to write to register file? Memory 

output or ALU output 

Memory 1. Memory Read: enables memory read access 

2. Memory Write: enables memory write access 

ALU 1. ALUOp: specifies ALU operation 

2. ALUSource: second operand to ALU can be from register 

file or instruction (i.e., immediate data) 

PC control 1. Branch:  PC <- (PC+4) + offset  

2. Jump:     PC <- Jump address 
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CPU Overview 
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Multiplexers 

 Can’t just join 

wires together 

 Use multiplexers 
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Control 
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Building a Datapath 

 Datapath 

 Elements that process data and addresses 

in the CPU 

 Registers, ALUs, mux’s, memories, … 

 We will build a MIPS datapath 

incrementally 

 Refining the overview design 
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Instruction Fetch 

32-bit 

register 

Increment by 

4 for next 

instruction 
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R-Format Instructions 

 Read two register operands 

 Perform arithmetic/logical operation 

 Write register result 
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Load/Store Instructions 

 Read register operands 

 Calculate address using 16-bit offset 
 Use ALU, but sign-extend offset 

 Load: Read memory and update register 

 Store: Write register value to memory 
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Branch Instructions 

 Read register operands 

 Compare operands 

 Use ALU, subtract and check Zero output 

 Calculate target address 

 Sign-extend displacement 

 Shift left 2 places (word displacement) 

 Add to PC + 4 

 Already calculated by instruction fetch 
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Branch Instructions 

Just 

re-routes 

wires 

Sign-bit wire 

replicated 
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Composing the Elements 

 First-cut data path does an instruction in 

one clock cycle 

 Each datapath element can only do one 

function at a time 

 Hence, we need separate instruction and data 

memories 

 Use multiplexers where alternate data 

sources are used for different instructions 
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R-Type/Load/Store Datapath 
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Full Datapath 
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ALU Control 

 ALU used for 

 Load/Store: F = add 

 Branch: F = subtract 

 R-type: F depends on funct field 
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ALU control Function 

0000 AND 

0001 OR 

0010 add 

0110 subtract 

0111 set-on-less-than 

1100 NOR 
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ALU Control 

 Assume 2-bit ALUOp derived from opcode 

 Combinational logic derives ALU control 

opcode ALUOp Operation funct ALU function ALU control 

lw 00 load word XXXXXX add 0010 

sw 00 store word XXXXXX add 0010 

beq 01 branch equal XXXXXX subtract 0110 

R-type 10 add 100000 add 0010 

subtract 100010 subtract 0110 

AND 100100 AND 0000 

OR 100101 OR 0001 

set-on-less-than 101010 set-on-less-than 0111 
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The Main Control Unit 

 Control signals derived from instruction 

0 rs rt rd shamt funct 

31:26 5:0 25:21 20:16 15:11 10:6 

35 or 43 rs rt address 

31:26 25:21 20:16 15:0 

4 rs rt address 

31:26 25:21 20:16 15:0 

R-type 

Load/ 

Store 

Branch 

opcode always 

read 

read, 

except 

for load 

write for 

R-type 

and load 

sign-extend 

and add 
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Datapath With Control 
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R-Type Instruction 
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Load Instruction 
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Branch-on-Equal Instruction 
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Implementing Jumps 

 Jump uses word address 

 Update PC with concatenation of 

 Top 4 bits of old PC 

 26-bit jump address 

 00 

 Need an extra control signal decoded from 

opcode 

2 address 

31:26 25:0 

Jump 
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Datapath With Jumps Added 
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Performance Issues 

 Longest delay determines clock period 

 Critical path: load instruction 

 Instruction memory  register file  ALU  

data memory  register file 

 Not feasible to vary period for different 

instructions 

 Violates design principle 

 Making the common case fast 

 We will improve performance by pipelining 
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Pipelining Analogy 

 Pipelined laundry: overlapping execution 

 Parallelism improves performance 
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MIPS Pipeline 

 Five stages, one step per stage 

1. IF: Instruction fetch from memory 

2. ID: Instruction decode & register read 

3. EX: Execute operation or calculate address 

4. MEM: Access memory operand 

5. WB: Write result back to register 
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Pipeline Performance 

 Assume time for stages is 

 100ps for register read or write 

 200ps for other stages 

 Compare pipelined datapath with single-cycle 

datapath 

Instr Instr fetch Register 

read 

ALU op Memory 

access 

Register 

write 

Total time 

lw 200ps 100 ps 200ps 200ps 100 ps 800ps 

sw 200ps 100 ps 200ps 200ps 700ps 

R-format 200ps 100 ps 200ps 100 ps 600ps 

beq 200ps 100 ps 200ps 500ps 
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Pipeline Performance 

Single-cycle (Tc= 800ps) 

Pipelined (Tc= 200ps) 
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Pipeline Speedup 

 If all stages are balanced 

 i.e., all take the same time 

 Time between instructionspipelined 

= Time between instructionsnonpipelined 

  Number of stages 

 If not balanced, speedup is less 

 Speedup due to increased throughput 

 Latency (time for each instruction) does not 

decrease 
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Pipelining and ISA Design 

 MIPS ISA designed for pipelining 

 All instructions are 32-bits 
 Easier to fetch and decode in one cycle 

 c.f. x86: 1- to 17-byte instructions 

 Few and regular instruction formats 
 Can decode and read registers in one step 

 Load/store addressing 
 Can calculate address in 3rd stage, access memory 

in 4th stage 

 Alignment of memory operands 
 Memory access takes only one cycle 
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Hazards 

 Situations that prevent starting the next 
instruction in the next cycle 

 Structure hazards 

 A required resource is busy 

 Data hazard 

 Need to wait for previous instruction to 
complete its data read/write 

 Control hazard 

 Deciding on control action depends on 
previous instruction 
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Structure Hazards 

 Conflict for use of a resource 

 In MIPS pipeline with a single memory 

 Load/store requires data access 

 Instruction fetch would have to stall for that 

cycle 

 Would cause a pipeline “bubble” 

 Hence, pipelined datapaths require 

separate instruction/data memories 

 Or separate instruction/data caches 
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Data Hazards 

 An instruction depends on completion of 

data access by a previous instruction 

 add $s0, $t0, $t1 
sub $t2, $s0, $t3 
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Forwarding (aka Bypassing) 

 Use result when it is computed 

 Don’t wait for it to be stored in a register 

 Requires extra connections in the datapath 
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Load-Use Data Hazard 

 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 
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Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in 

the next instruction 

 C code for A = B + E; C = B + F; 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

lw $t4, 8($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

stall 

stall 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

lw $t4, 8($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

11 cycles 13 cycles 
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Control Hazards 

 Branch determines flow of control 

 Fetching next instruction depends on branch 
outcome 

 Pipeline can’t always fetch correct instruction 
 Still working on ID stage of branch 

 In MIPS pipeline 

 Need to compare registers and compute 
target early in the pipeline 

 Add hardware to do it in ID stage 
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Stall on Branch 

 Wait until branch outcome determined 

before fetching next instruction 
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Branch Prediction 

 Longer pipelines can’t readily determine 

branch outcome early 

 Stall penalty becomes unacceptable 

 Predict outcome of branch 

 Only stall if prediction is wrong 

 In MIPS pipeline 

 Can predict branches not taken 

 Fetch instruction after branch, with no delay 
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MIPS with Predict Not Taken 

Prediction 

correct 

Prediction 

incorrect 
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More-Realistic Branch Prediction 

 Static branch prediction 

 Based on typical branch behavior 

 Example: loop and if-statement branches 

 Predict backward branches taken 

 Predict forward branches not taken 

 Dynamic branch prediction 

 Hardware measures actual branch behavior 

 e.g., record recent history of each branch 

 Assume future behavior will continue the trend 

 When wrong, stall while re-fetching, and update history 
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Pipeline Summary 

 Pipelining improves performance by 

increasing instruction throughput 

 Executes multiple instructions in parallel 

 Each instruction has the same latency 

 Subject to hazards 

 Structure, data, control 

 Instruction set design affects complexity of 

pipeline implementation 

The BIG Picture 
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MIPS Pipelined Datapath 
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Pipeline registers 

 Need registers between stages 

 To hold information produced in previous cycle 
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Pipeline Operation 

 Cycle-by-cycle flow of instructions through 

the pipelined datapath 

 “Single-clock-cycle” pipeline diagram 

 Shows pipeline usage in a single cycle 

 Highlight resources used 

 c.f. “multi-clock-cycle” diagram 

 Graph of operation over time 

 We’ll look at “single-clock-cycle” diagrams 

for load & store 
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IF for Load, Store, … 
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ID for Load, Store, … 
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EX for Load 
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MEM for Load 



Chapter 4 — The Processor — 52 

WB for Load 

Wrong 

register 

number 
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Corrected Datapath for Load 
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EX for Store 
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MEM for Store 
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WB for Store 
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Multi-Cycle Pipeline Diagram 

 Form showing resource usage 
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Multi-Cycle Pipeline Diagram 

 Traditional form 
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Single-Cycle Pipeline Diagram 

 State of pipeline in a given cycle 
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Pipelined Control (Simplified) 
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Pipelined Control 

 Control signals derived from instruction 

 As in single-cycle implementation 
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Pipelined Control 



Chapter 4 — The Processor — 63 

Data Hazards in ALU Instructions 

 Consider this sequence: 

 sub $2, $1,$3 
and $12,$2,$5 
or  $13,$6,$2 
add $14,$2,$2 
sw  $15,100($2) 

 We can resolve hazards with forwarding 

 How do we detect when to forward? 
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Dependencies & Forwarding 
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Detecting the Need to Forward 

 Pass register numbers along pipeline 
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register 

 ALU operand register numbers in EX stage 
are given by 
 ID/EX.RegisterRs, ID/EX.RegisterRt 

 Data hazards when 
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 

EX/MEM 

pipeline reg 

Fwd from 

MEM/WB 

pipeline reg 



Chapter 4 — The Processor — 66 

Detecting the Need to Forward 

 But only if forwarding instruction will write 

to a register! 

 EX/MEM.RegWrite, MEM/WB.RegWrite 

 And only if Rd for that instruction is not 

$zero 

 EX/MEM.RegisterRd ≠ 0, 

MEM/WB.RegisterRd ≠ 0 
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Forwarding Paths 
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Forwarding Conditions 

 EX hazard 

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 10 

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 10 

 MEM hazard 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 01 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 01 
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Double Data Hazard 

 Consider the sequence: 

 add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 

 Both hazards occur 

 Want to use the most recent 

 Revise MEM hazard condition 

 Only fwd if EX hazard condition isn’t true 
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Revised Forwarding Condition 

 MEM hazard 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 

  ForwardA = 01 

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

                 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 

  ForwardB = 01 
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Datapath with Forwarding 



Chapter 4 — The Processor — 72 

Load-Use Data Hazard 

Need to stall 

for one cycle 
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Load-Use Hazard Detection 

 Check when using instruction is decoded 
in ID stage 

 ALU operand register numbers in ID stage 
are given by 

 IF/ID.RegisterRs, IF/ID.RegisterRt 

 Load-use hazard when 

 ID/EX.MemRead and 
  ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
   (ID/EX.RegisterRt = IF/ID.RegisterRt)) 

 If detected, stall and insert bubble 
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How to Stall the Pipeline 

 Force control values in ID/EX register 

to 0 

 EX, MEM and WB do nop (no-operation) 

 Prevent update of PC and IF/ID register 

 Using instruction is decoded again 

 Following instruction is fetched again 

 1-cycle stall allows MEM to read data for lw 

 Can subsequently forward to EX stage 
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Stall/Bubble in the Pipeline 

Stall inserted 

here 
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Stall/Bubble in the Pipeline 

Or, more 

accurately… 
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Datapath with Hazard Detection 
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Stalls and Performance 

 Stalls reduce performance 

 But are required to get correct results 

 Compiler can arrange code to avoid 

hazards and stalls 

 Requires knowledge of the pipeline structure 

The BIG Picture 
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Branch Hazards 

 If branch outcome determined in MEM 
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Reducing Branch Delay 

 Move hardware to determine outcome to ID 

stage 

 Target address adder 

 Register comparator 

 Example: branch taken 
 36:  sub  $10, $4, $8 
40:  beq  $1,  $3, 7 
44:  and  $12, $2, $5 
48:  or   $13, $2, $6 
52:  add  $14, $4, $2 
56:  slt  $15, $6, $7 
     ... 
72:  lw   $4, 50($7) 
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Example: Branch Taken 
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Example: Branch Taken 
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Data Hazards for Branches 

 If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction 

… 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

 Can resolve using forwarding 
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Data Hazards for Branches 

 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 

load instruction 

 Need 1 stall cycle 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

lw  $1, addr 

beq $1, $4, target 
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Data Hazards for Branches 

 If a comparison register is a destination of 

immediately preceding load instruction 

 Need 2 stall cycles 

beq stalled 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

beq stalled 

lw  $1, addr 

beq $1, $0, target 
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Dynamic Branch Prediction 

 In deeper and superscalar pipelines, branch 

penalty is more significant 

 Use dynamic prediction 

 Branch prediction buffer (aka branch history table) 

 Indexed by recent branch instruction addresses 

 Stores outcome (taken/not taken) 

 To execute a branch 

 Check table, expect the same outcome 

 Start fetching from fall-through or target 

 If wrong, flush pipeline and flip prediction 
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1-Bit Predictor: Shortcoming 

 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

 Mispredict as taken on last iteration of 

inner loop 

 Then mispredict as not taken on first 

iteration of inner loop next time around 
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2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 
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Calculating the Branch Target 

 Even with predictor, still need to calculate 

the target address 

 1-cycle penalty for a taken branch 

 Branch target buffer 

 Cache of target addresses 

 Indexed by PC when instruction fetched 

 If hit and instruction is branch predicted taken, can 

fetch target immediately 
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Exceptions and Interrupts 

 “Unexpected” events requiring change 

in flow of control 

 Different ISAs use the terms differently 

 Exception 

 Arises within the CPU 

 e.g., undefined opcode, overflow, syscall, … 

 Interrupt 

 From an external I/O controller 

 Dealing with them without sacrificing 

performance is hard 
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Handling Exceptions 

 Save PC of offending (or interrupted) instruction 
 In MIPS: Exception Program Counter (EPC) 

 Save indication of the problem 
 In MIPS: Cause register (status register) 

 We’ll assume 1-bit 
 0 for undefined opcode, 1 for overflow 

 Jump to handler at 8000 00180 
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An Alternate Mechanism 

 Vectored Interrupts 

 Handler address determined by the cause 

 Example: 

 Undefined opcode: C000 0000 

 Overflow:   C000 0020 

 …:    C000 0040 

 Instructions either 

 Deal with the interrupt, or 

 Jump to real handler 
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Handler Actions 

 Read cause, and transfer to relevant 
handler 

 Determine action required 

 If restartable 

 Take corrective action 

 use EPC to return to program 

 Otherwise 

 Terminate program 

 Report error using EPC, cause, … 
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Exceptions in a Pipeline 

 Another form of control hazard 

 Consider overflow on add in EX stage 
add $1, $2, $1 

 Prevent $1 from being clobbered 

 Complete previous instructions 

 Flush add and subsequent instructions 

 Set Cause and EPC register values 

 Transfer control to handler 

 Similar to mispredicted branch 

 Use much of the same hardware 
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Pipeline with Exceptions 
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Exception Properties 

 Restartable exceptions 

 Pipeline can flush the instruction 

 Handler executes, then returns to the 

instruction 

 Refetched and executed from scratch 

 PC saved in EPC register 

 Identifies causing instruction 

 Actually PC + 4 is saved 

 Handler must adjust 
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Exception Example 

 Exception on add in 
 40 sub  $11, $2, $4 
44 and  $12, $2, $5 
48 or   $13, $2, $6 
4C add  $1,  $2, $1 
50 slt  $15, $6, $7 
54 lw   $16, 50($7) 
… 

 Handler 
 80000180 sw   $25, 1000($0) 
80000184 sw   $26, 1004($0) 
… 
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Exception Example 
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Exception Example 
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Multiple Exceptions 

 Pipelining overlaps multiple instructions 

 Could have multiple exceptions at once 

 Simple approach: deal with exception from 

earliest instruction 

 Flush subsequent instructions 

 “Precise” exceptions 

 In complex pipelines 

 Multiple instructions issued per cycle 

 Out-of-order completion 

 Maintaining precise exceptions is difficult! 
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Hardware/Software Interface 

 Hardware stops pipeline and save state 

 Including exception cause(s) 

 Let the handler work out 

 Which instruction(s) had exceptions 

 Which to complete or flush 

 May require “manual” completion 

 Associating correct exception with correct instruction 

 Imprecise exceptions are not associated with the exact 

instruction that caused the exception 

 Hardware detect the exception. Leave to OS to determine which 

instruction caused the interrupt. 

 Precise exceptions 

 Supported by most processors 
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Instruction-Level Parallelism (ILP) 

 Pipelining: executing multiple instructions in 
parallel 

 To increase ILP 
 Deeper pipeline 

 Less work per stage  shorter clock cycle (higher freq) 

 Multiple issue 
 Replicate pipeline stages  multiple pipelines 

 Start multiple instructions per clock cycle 

 CPI < 1, so use Instructions Per Cycle (IPC) 

 E.g., 4GHz 4-way multiple-issue 

 16 BIPS (billion inst per sec), peak CPI = 0.25, peak IPC = 4 

 But dependencies reduce this in practice 
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Multiple Issue 

 Static multiple issue 

 Compiler groups instructions to be issued together 

 Packages them into “issue slots” 

 Compiler detects and avoids hazards 

 Dynamic multiple issue 

 CPU examines instruction stream and chooses 

instructions to issue each cycle 

 Compiler can help by reordering instructions 

 CPU resolves hazards using advanced techniques at 

runtime 
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Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

 If so, complete the operation 

 If not, roll-back and do the right thing 

 Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome 

 Roll back if path taken is different 

 Speculate on load 

 Roll back if location is updated 
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Compiler/Hardware Speculation 

 Compiler can reorder instructions 

 e.g., move load before branch 

 Can include “fix-up” instructions to recover 

from incorrect guess 

 Hardware can look ahead for instructions 

to execute 

 Buffer results until it determines they are 

actually needed 

 Flush buffers on incorrect speculation 
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Speculation and Exceptions 
(read) 

 What if exception occurs on a 
speculatively executed instruction? 

 e.g., speculative load before null-pointer 
check 

 Static speculation 

 Can add ISA support for deferring exceptions 

 Dynamic speculation 

 Can buffer exceptions until instruction 
completion (which may not occur) 
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Static Multiple Issue 

 Compiler groups instructions into “issue 

packets” 

 Group of instructions that can be issued on a 

single cycle 

 Determined by pipeline resources required 

 Think of an issue packet as a very long 

instruction 

 Specifies multiple concurrent operations 

  Very Long Instruction Word (VLIW) 
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Scheduling Static Multiple Issue 

 Compiler must remove some/all hazards 

 Reorder instructions into issue packets 

 No dependencies with a packet 

 Possibly some dependencies between 

packets 

 Varies between ISAs; compiler must know! 

 Pad with nop if necessary 
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MIPS with Static Dual Issue 

 Two-issue packets 

 One ALU/branch instruction 

 One load/store instruction 

 64-bit aligned 

 ALU/branch, then load/store 

 Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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MIPS with Static Dual Issue 
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Hazards in the Dual-Issue MIPS 
(read) 

 More instructions executing in parallel 

 EX data hazard 

 Forwarding avoided stalls with single-issue 

 Now can’t use ALU result in load/store in same packet 

 add  $t0, $s0, $s1 
load $s2, 0($t0) 

 Split into two packets, effectively a stall 

 Load-use hazard 

 Still one cycle use latency, but now two instructions 

 More aggressive scheduling required 
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Scheduling Example (read) 

 Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 

Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4 

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling (read) 

 Replicate loop body to expose more 

parallelism 

 Reduces loop-control overhead 

 Use different registers per replication 

 Called “register renaming” 

 Avoid loop-carried “anti-dependencies” 

 Store followed by a load of the same register 

 Aka “name dependence”  

 Reuse of a register name 
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Loop Unrolling Example (read) 

 IPC = 14/8 = 1.75 

 Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 

Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1 

nop lw   $t1, 12($s1) 2 

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3 

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4 

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5 

addu $t3, $t4, $s2 sw   $t1, 12($s1) 6 

nop sw   $t2, 8($s1) 7 

bne  $s1, $zero, Loop sw   $t3, 4($s1) 8 
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Dynamic Multiple Issue 

 “Superscalar” processors 

 CPU decides whether to issue 0, 1, 2, … 

each cycle 

 Avoiding structural and data hazards 

 Avoids the need for compiler scheduling 

 Though it may still help 

 Code semantics ensured by the CPU 
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Dynamic Pipeline Scheduling (read)

 Allow the CPU to execute instructions out 

of order to avoid stalls 

 But commit result to registers in order 

 Example 

 lw    $t0, 20($s2) 
addu  $t1, $t0, $t2 
sub   $s4, $s4, $t3 
slti  $t5, $s4, 20 

 Can start sub while addu is waiting for lw 
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Dynamically Scheduled CPU 

Results also sent 

to any waiting 

reservation stations 

Reorders buffer for 

register writes 
Can supply 

operands for 

issued instructions 

Preserves 

dependencies 

Hold pending 

operands 



REST Is Reading Material 
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Register Renaming 

 Reservation stations and reorder buffer 
effectively provide register renaming 

 On instruction issue to reservation station 

 If operand is available in register file or 
reorder buffer 
 Copied to reservation station 

 No longer required in the register; can be 
overwritten 

 If operand is not yet available 
 It will be provided to the reservation station by a 

function unit 

 Register update may not be required 
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Speculation 

 Predict branch and continue issuing 

 Don’t commit until branch outcome 

determined 

 Load speculation 

 Avoid load and cache miss delay 

 Predict the effective address 

 Predict loaded value 

 Load before completing outstanding stores 

 Bypass stored values to load unit 

 Don’t commit load until speculation cleared 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule 

code? 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have 

different latencies and hazards 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 

 e.g., pointer aliasing 

 Some parallelism is hard to expose 

 Limited window size during instruction issue 

 Memory delays and limited bandwidth 

 Hard to keep pipelines full 

 Speculation can help if done well 

The BIG Picture 
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Power Efficiency 

 Complexity of dynamic scheduling and 

speculations requires power 

 Multiple simpler cores may be better 

Microprocessor Year Clock Rate Pipeline 

Stages 

Issue 

width 

Out-of-order/ 

Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 
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The Opteron X4 Microarchitecture 
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The Opteron X4 Pipeline Flow 

 For integer operations 

 FP is 5 stages longer 

 Up to 106 RISC-ops in progress 

 Bottlenecks 

 Complex instructions with long dependencies 

 Branch mispredictions 

 Memory access delays 
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Fallacies 

 Pipelining is easy (!) 

 The basic idea is easy 

 The devil is in the details 

 e.g., detecting data hazards 

 Pipelining is independent of technology 

 So why haven’t we always done pipelining? 

 More transistors make more advanced techniques 

feasible 

 Pipeline-related ISA design needs to take account of 

technology trends 

 e.g., predicated instructions 
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Pitfalls 

 Poor ISA design can make pipelining 

harder 

 e.g., complex instruction sets (VAX, IA-32) 

 Significant overhead to make pipelining work 

 IA-32 micro-op approach 

 e.g., complex addressing modes 

 Register update side effects, memory indirection 

 e.g., delayed branches 

 Advanced pipelines have long delay slots 
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Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk
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Principle of Locality

 Programs access a small proportion of 

their address space at any time

 Temporal locality

 Items accessed recently are likely to be 

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely 

to be accessed soon

 E.g., sequential instruction access, array data
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Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory

 Cache memory attached to CPU
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Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from 

upper level
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Cache Memory

 Cache memory

 The level of the memory hierarchy closest to 

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.2

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if 

the data is present?

 Where do we look?



Cache Design Rules

Address  =    [Block Address]      [ Block Offset                         ]

Address  =    [Tag]      [Index]      [ Word Offset] [ Byte Offset]

Block_bits            = log2(Block_Size)

#Blocks in Cache =  Cache_Size/Block_Size

#Sets in Cache    =  #Blocks  /  Set_Size

Set_Size               =  number of ways in the cache

For direct cache         :  Set_Size=1              (#Sets = #Blocks)

For fully associative  :  Set_Size= #Blocks (#Sets = 1            )

For k-way associative: Set_Size= k      

Index_bits           =  log2 (#Sets)       

Tag_bits              =  Address_bits - ( Block_bits + Index_bits)
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Direct Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8



K-way Cache Example
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Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a 

power of 2

 Use low-order 

address bits

Index
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Tags and Valid Bits

 How do we know which particular block is 

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0
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Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state, Mem=32 words (or blocks)

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N
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Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010
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Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000
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Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Miss :Tag 

mismatch
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Address Subdivision
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Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200 

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

120010=  0 ….01               00 1011          0000
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Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)
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Associative Cache Example
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Spectrum of Associativity

 For a cache with 8 entries
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Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 





In the next few 

slides we will

measure:

1. Miss Rate

2. Miss Penalty

Recall: 

Time Cycle ClockTime CPU

Time Cycle ClockCPICount nInstructioTime CPU





CycleCount
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Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block 

address

Cache 

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]
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Associativity Example

 2-way set associative
Block 

address

Cache 

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity

 Increased associativity decreases miss 

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%
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Set Associative Cache Organization
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Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help



Cache Design: (1) Associativity vs miss rate

 Higher associativity ==> more complex HW

 But a highly-associative cache will have a lower miss rate

 Each set has more blocks, so there’s less chance of a conflict between two 

addresses

 Overall, this will reduce Average memory access time (AMAT) and memory 

stall cycles
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Cache Design: (2) Cache size vs miss rate

 In a larger cache there’s less chance there will 

be of a conflict
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Cache Design: (3) Block size vs miss rate

 Smaller blocks do not take maximum advantage of 

spatial locality

 But if blocks are too large, there are fewer blocks 

available, and more potential conflicts misses
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Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Through

 On data-write hit, could just update the block in 
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full
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Write-Back

 Alternative: On data-write hit, just update 

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block 

to be read first
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Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Write-allocate on miss: fetch the block

 Write around (no write allocate): don’t fetch 

the block

 Since programs often write a whole block before 

reading it (e.g., initialization)

 For write-back

 Usually fetch the block
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Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Advanced DRAM Organization

 Bits in a DRAM are organized as a 

rectangular array

 DRAM accesses an entire row

 Burst mode: supply successive words from a 

row with reduced latency

 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs
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DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:
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Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction
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Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory 

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when 

evaluating system performance
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Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard 
beyond that

 Random
 Gives approximately the same performance 

as LRU for high associativity



Cache Misses

Cache Misses The Cause Dependency

Capacity misses Occur due to the finite 

size of the cache.

Cache size 

Conflict misses Occur because the 

cache had evicted an 

entry earlier.

Associatively

Compulsory 

misses 

(Cold misses)

Caused by the first 

reference to a location 

in memory.

Block size
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Cache Design Trade-offs

Design change Effect on miss rate Negative 

performance effect

Increase cache size Decrease capacity 

misses

May increase access 

time

Increase associativity Decrease conflict misses May increase access 

time

Increase block size Decrease compulsory 

misses

Increases miss 

penalty. For very large 

block size, may 

increase miss rate due 

to pollution.



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Multilevel Caches 

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from 

primary cache

 Larger, slower, but still faster than main 

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache
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Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6



In summary: CPI and AMAT for multi-level 

cache system

 For Multi-level cache system

 CPI = <ideal_CPI>

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…   

+ Miss rate Ln× Miss penalty Ln

 AMAT = Hit time + 

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…   

+ Miss rate Ln× Miss penalty Ln

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

L1 Hit access

L2 Hit access

L3 Hit access

L1 Hit access

L2 Hit access

L3 Hit access

Memory access

Memory access
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Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory 

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size



Intel Core-i7 three-level cache Architecture
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L1 D$
Size= 32KB

Associativity= 4-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L1 I$
Size= 32KB

Associativity= 8-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L2
Size= 256KB

Associativity= 8-way

Latency= 10 cycles

Replacement= Pseudo-LRU

L3
Size= 2MB per core

Associativity= 16-way

Latency= 35 cycles

Replacement= Pseudo-LRU

Core

L1 D$ L1 I$

L2

Core

L1

L2

L3
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Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions 

during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation 

stations

 Independent instructions continue

 Effect of miss depends on program data flow

 Much harder to analyze

 Use system simulation
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Interactions with Software

 Misses depend on 

memory access 

patterns

 Algorithm behavior

 Compiler 

optimization for 

memory access
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Virtual Memory

 Use main memory as a “cache” for 
secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space 

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to 
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault
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Address Translation

 Fixed-size pages (e.g., 4K)
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Page Fault Penalty

 On page fault, the page must be fetched 

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms
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Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual 
page number

 Page table register in CPU points to page 
table in physical memory

 If page is present (valid-bit) in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on 
disk
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Translation Using a Page Table

Size of Physical Memory = # Physical_pages * Page_size 

# Physical Page                =  2 Physical Page Number 

Page Table Size                = #Virtual_pages * EnrySize



Virtual Memory System Example
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Mapping Pages to Storage
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Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on 

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been 
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written
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Fast Translation Using a TLB

 Address translation would appear to require 

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software
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Fast Translation Using a TLB
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TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table 

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating 
the page table

 Then restart the faulting instruction
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TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before destination 

register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur
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Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page 

table

 Make process runnable again

 Restart from faulting instruction
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TLB and Cache Interaction

 If cache tag uses 

physical address

 Need to translate 

before cache lookup

 Alternative: use virtual 

address tag

 Complications due to 

aliasing

 Different virtual 

addresses for shared 

physical address
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Memory Protection

 Different tasks can share parts of their 

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only 

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Common principles apply at all levels of 

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy
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Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time
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Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 

associative

Set index, then search 

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support
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Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write 
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write 

latency 
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Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of 
the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative 

performance effect

Increase cache size Decrease capacity 

misses

May increase access 

time

Increase associativity Decrease conflict 

misses

May increase access 

time

Increase block size Decrease compulsory 

misses

Increases miss 

penalty. For very large 

block size, may 

increase miss rate 

due to pollution.
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Cache Coherence Problem (read)

 Suppose two CPU cores share a physical 
address space
 Write-through caches
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Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined (read)

 Informally: Reads return most recently 
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X
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Cache Coherence Protocols (read)

 Operations performed by caches in 
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of 
blocks in a directory
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Invalidating Snooping Protocols

 Cache gets exclusive access to a block 
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1
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Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen 

it

 A processor does not reorder writes with other 
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes
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After this slide is reading
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Virtual Machines (read)

 Host computer emulates guest operating system 

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC
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Virtual Machine Monitor

 Maps virtual resources to physical 
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user 
mode

 Traps to VMM on privileged instructions and 
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization

 In native machine, on timer interrupt

 OS suspends current process, handles 

interrupt, selects and resumes next process

 With Virtual Machine Monitor

 VMM suspends current VM, handles interrupt, 

selects and resumes next VM

 If a VM requires timer interrupts

 VMM emulates a virtual timer

 Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support

 User and System modes

 Privileged instructions only available in 
system mode

 Trap to system if executed in user mode

 All physical resources only accessible 
using privileged instructions

 Including page tables, interrupt controls, I/O 
registers

 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting
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Cache Control (read)

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete
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Interface Signals (read)

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 

per access
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Finite State Machines (read)

 Use an FSM to 
sequence control steps

 Set of states, transition 
on each clock edge
 State values are binary 

encoded

 Current state stored in a 
register

 Next state
= fn (current state,

current inputs)

 Control output signals
= fo (current state)
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Cache Controller FSM (read)

Could 

partition into 

separate 

states to 

reduce clock 

cycle time
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Multilevel On-Chip Caches
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Intel Nehalem 4-core processor
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2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small 

pages, 7 per thread (2×) for 

large pages

L1 D-TLB: 64 entries for small 

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU 

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware
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3-Level Cache Organization

Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte 

blocks, 4-way, approx LRU 

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 

blocks, 8-way, approx LRU 

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, write-

back/allocate, hit time 9 cycles

L2 unified 

cache

(per core)

256KB, 64-byte blocks, 8-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified 

cache 

(shared)

8MB, 64-byte blocks, 16-way, 

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 

replace block shared by fewest 

cores, write-back/allocate, hit 

time 32 cycles

n/a: data not available
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Mis Penalty Reduction

 Return requested word first

 Then back-fill rest of block

 Non-blocking miss processing

 Hit under miss: allow hits to proceed

 Mis under miss: allow multiple outstanding 

misses

 Hardware prefetch: instructions and data

 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle
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Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when 

writing or generating code

 Example: iterating over rows vs. columns of 

arrays

 Large strides result in poor locality
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Pitfalls

 In multiprocessor with shared L2 or L3 

cache

 Less associativity than cores results in conflict 

misses

 More cores  need to increase associativity

 Using AMAT to evaluate performance of 

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation
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Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not 

designed for virtualization

 E.g., non-privileged instructions accessing 

hardware resources

 Either extend ISA, or require guest OS not to 

use problematic instructions
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Concluding Remarks

 Fast memories are small, large memories are 
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors
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