
Chapter 1

Computer Abstractions

and Technology

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Course Textbook and Outline

 Instructor: Dr. Bassam Jamil / E 3056

 Textbook(s):
 Computer Organization and Design: The

Hardware/Software Interface, 4th Edition, David

Patterson and John Hennessy, Morgan Kaufmann.

ISBN: 978-0-12-374493-7, 2012

 Topics covered:
 Computer Abstractions and Technology

 Instructions: Language of the Computer

 Arithmetic for Computers

 The processor

 Exploiting Memory Hierarchy

Chapter 1 — Computer Abstractions and Technology — 2

Grades

 First Exam 25%

 Chap 1, 2, 3

 March 12

 Second Exam 25%

 Chap 4

 April 14

 Final

 All material

Chapter 1 — Computer Abstractions and Technology — 3

Chapter 1 — Computer Abstractions and Technology — 4

The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 5

Classes of Computers

 Desktop computers

 General purpose, variety of software

 Subject to cost/performance tradeoff

 Server computers

 Network based

 High capacity, performance, reliability

 Range from small servers to building sized

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 6

The Processor Market

Chapter 1 — Computer Abstractions and Technology — 7

What You Will Learn

 How programs are translated into the

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve

performance

 What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 8

Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 9

Below Your Program

 Application software

 Written in high-level language

 System software

 Compiler: translates HLL code to

machine code

 Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

 Hardware

 Processor, memory, I/O controllers

§
1
.2

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 10

Levels of Program Code

 High-level language
 Level of abstraction closer

to problem domain

 Provides for productivity
and portability

 Assembly language
 Textual representation of

instructions

 Hardware representation
 Binary digits (bits)

 Encoded instructions and
data

Chapter 1 — Computer Abstractions and Technology — 11

Components of a Computer

 Same components for

all kinds of computer

 Desktop, server,

embedded

 Input/output includes

 User-interface devices

 Display, keyboard, mouse

 Storage devices

 Hard disk, CD/DVD, flash

 Network adapters

 For communicating with

other computers

§
1
.3

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 12

Anatomy of a Computer

Output

device

Input

device

Input

device

Network

cable

Chapter 1 — Computer Abstractions and Technology — 13

Anatomy of a Mouse

 Optical mouse

 LED illuminates

desktop

 Small low-res camera

 Basic image processor

 Looks for x, y

movement

 Buttons & wheel

 Supersedes roller-ball

mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 14

Through the Looking Glass

 LCD screen: picture elements (pixels)

 Mirrors content of frame buffer memory

Chapter 1 — Computer Abstractions and Technology — 15

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 16

Inside the Processor (CPU)

 Datapath: performs operations on data

 Control: sequences datapath, memory, ...

 Cache memory

 Small fast SRAM memory for immediate

access to data

Chapter 1 — Computer Abstractions and Technology — 17

Inside the Processor

 AMD Barcelona: 4 processor cores

Chapter 1 — Computer Abstractions and Technology — 18

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 19

A Safe Place for Data

 Volatile main memory

 Loses instructions and data when power off

 Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 20

Networks

 Communication and resource sharing

 Local area network (LAN): Ethernet

 Within a building

 Wide area network (WAN: the Internet

 Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 21

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC 6,200,000,000

DRAM capacity

Chapter 1 — Computer Abstractions and Technology — 22

Defining Performance

 Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

§
1
.4

 P
e
rfo

rm
a
n
c
e

Chapter 1 — Computer Abstractions and Technology — 23

Response Time and Throughput

 Response time

 How long it takes to do a task

 Throughput

 Total work done per unit time

 e.g., tasks/transactions/… per hour

 How are response time and throughput affected

by

 Replacing the processor with a faster version?

 Adding more processors?

 We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 24

Relative Performance

 Define Performance = 1/Execution Time

 “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 25

Measuring Execution Time

 Elapsed time

 Total response time, including all aspects
 Processing, I/O, OS overhead, idle time

 Determines system performance

 CPU time

 Time spent processing a given job
 Discounts I/O time, other jobs’ shares

 Comprises user CPU time and system CPU
time

 Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 26

CPU Clocking

 Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

 Clock period: duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 27

CPU Time

 Performance improved by

 Reducing number of clock cycles

 Increasing clock rate

 Hardware designer must often trade off clock

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

Chapter 1 — Computer Abstractions and Technology — 28

CPU Time Example

 Computer A: 2GHz clock, 10s CPU time

 Designing Computer B

 Aim for 6s CPU time

 Can do faster clock, but causes 1.2 × clock cycles

 How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

Chapter 1 — Computer Abstractions and Technology — 29

Instruction Count and CPI

 Instruction Count for a program

 Determined by program, ISA and compiler

 Average cycles per instruction

 Determined by CPU hardware

 If different instructions have different CPI

 Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

Chapter 1 — Computer Abstractions and Technology — 30

CPI Example

 Computer A: Cycle Time = 250ps, CPI = 2.0

 Computer B: Cycle Time = 500ps, CPI = 1.2

 Same ISA

 Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

A is faster…

…by this much

Chapter 1 — Computer Abstractions and Technology — 31

CPI in More Detail

 If different instruction classes take different

numbers of cycles

n

1i

ii)Count nInstructio(CPICycles Clock

 Weighted average CPI

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 32

CPI Example

 Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

 Sequence 1: IC = 5

 Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

 Avg. CPI = 10/5 = 2.0

 Sequence 2: IC = 6

 Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

 Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 33

Performance Summary

 Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU

Chapter 1 — Computer Abstractions and Technology — 34

Power Trends

 In CMOS IC technology

§
1
.5

 T
h
e
 P

o
w

e
r W

a
ll

FrequencyVoltageload CapacitivePower 2

×1000 ×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 35

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new

 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 36

Uniprocessor Performance
§
1
.6

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Chapter 1 — Computer Abstractions and Technology — 37

Multiprocessors

 Multicore microprocessors

 More than one processor per chip

 Requires explicitly parallel programming

 Compare with instruction level parallelism

 Hardware executes multiple instructions at once

 Hidden from the programmer

 Hard to do

 Programming for performance

 Load balancing

 Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 38

Manufacturing ICs

 Yield: proportion of working dies per wafer

§
1
.7

 R
e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p
te

ro
n
 X

4

Chapter 1 — Computer Abstractions and Technology — 39

AMD Opteron X2 Wafer

 X2: 300mm wafer, 117 chips, 90nm technology

 X4: 45nm technology

Chapter 1 — Computer Abstractions and Technology — 40

Integrated Circuit Cost

 Nonlinear relation to area and defect rate

 Wafer cost and area are fixed

 Defect rate determined by manufacturing process

 Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

Chapter 1 — Computer Abstractions and Technology — 41

SPEC CPU Benchmark

 Programs used to measure performance
 Supposedly typical of actual workload

 Standard Performance Evaluation Corp (SPEC)
 Develops benchmarks for CPU, I/O, Web, …

 SPEC CPU2006
 Elapsed time to execute a selection of programs

 Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios
 CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution

Chapter 1 — Computer Abstractions and Technology — 42

CINT2006 for Opteron X4 2356

Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0

Geometric mean 11.7

High cache miss rates

Chapter 1 — Computer Abstractions and Technology — 43

SPEC Power Benchmark

 Power consumption of server at different

workload levels

 Performance: ssj_ops/sec

 Power: Watts (Joules/sec)

10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

Chapter 1 — Computer Abstractions and Technology — 44

SPECpower_ssj2008 for X4

Target Load % Performance (ssj_ops/sec) Average Power (Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 920,35 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall sum 1,283,590 2,605

∑ssj_ops/ ∑power 493

Chapter 1 — Computer Abstractions and Technology — 45

Pitfall: Amdahl’s Law

 Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

§
1
.8

 F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T

 Example: multiply accounts for 80s/100s

 How much improvement in multiply performance to

get 5× overall?

 Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 46

Fallacy: Low Power at Idle

 Look back at X4 power benchmark

 At 100% load: 295W

 At 50% load: 246W (83%)

 At 10% load: 180W (61%)

 Google data center

 Mostly operates at 10% – 50% load

 At 100% load less than 1% of the time

 Consider designing processors to make

power proportional to load

Chapter 1 — Computer Abstractions and Technology — 47

Pitfall: MIPS as a Performance Metric

 MIPS: Millions of Instructions Per Second

 Doesn’t account for

 Differences in ISAs between computers

 Differences in complexity between instructions

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS

 CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 48

Concluding Remarks

 Cost/performance is improving

 Due to underlying technology development

 Hierarchical layers of abstraction

 In both hardware and software

 Instruction set architecture

 The hardware/software interface

 Execution time: the best performance
measure

 Power is a limiting factor

 Use parallelism to improve performance

§
1
.9

 C
o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 2

Instructions: Language

of the Computer

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Outline (Read Rest of Topics)

1. Instruction Set

2. Operations

3. Operands

4. Singed and Unsigned

Numbers

5. Representing Instructions

in the Computer

6. Logical Operations

7. Decision Instructions

8. Procedures

9. Communicating with

People

10.MIPS Addressing for 32-

Bit:Immediate and

Addresses

11. Parallelism and Instructions:

Synchronization

12. Translating and Starting a Program

13 . A C Sort Example to Put It All

Together

14. Arrays versus Pointers

15. Arrays versus Pointers

16. Real Stuff: ARM Instructions

17. Real Stuff: x86 Instructions

18. Fallacies and Pitfalls

19. Concluding Remarks

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer — 3

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

The Instruction Set Architecture (ISA)

instruction set architecture

software

hardware

The interface description separating
the software and hardware

4

Chapter 2 — Instructions: Language of the Computer — 5

The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

MIPS R3000 Instruction Set Architecture (ISA)

 Instruction categories
 Computational

 Load/Store

 Jump and Branch

 Floating Point

 coprocessor

 Memory Management

R0 - R31

PC

HI

LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

6

0 $zero constant 0 (Hdware)

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments (not preserved)

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

 Caller saved if needed. Subroutines

 can use w/out saving.

15 $t7

Naming Conventions for Registers

16 $s0 callee saves
 A subroutine using one of these must

 save original and restore it before exiting.

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp pointer to global area

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address (Hdware) 7

Register preceded by $ in assembly language instruction

Two formats for addressing:

 - Register number e.g. $0 through $31

 - Equivalent names (Naming convection) e.g. $t1, $sp

Chapter 2 — Instructions: Language of the Computer — 8

Instructions Families

 Main instruction families:

Instruction class MIPS examples

Arithmetic add, sub, addi

Data transfer lw, sw, lb, lbu, lh, lhu,
sb, lui

Logical and, or, nor, andi, ori,
sll, srl

Cond. Branch beq, bne, slt, slti, sltiu

Jump j, jr, jal

Chapter 2 — Instructions: Language of the Computer — 9

Common MIPS Instructions

 Measure MIPS instruction executions in
benchmark programs

 Consider making the common case fast

 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

Review: MIPS Instructions

Category Instr OpC Example Meaning

Data

transfer

(I format)

load word 23 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) = $s1

load byte 20 lb $s1, 101($s2) $s1 = Memory($s2+101)

store byte 28 sb $s1, 101($s2) Memory($s2+101) = $s1

load half 21 lh $s1, 101($s2) $s1 = Memory($s2+102)

store half 29 sh $s1, 101($s2) Memory($s2+102) = $s1

10

Category Instr Op Code Example Meaning

Arithmetic

(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Uncond.
Jump
(J & R
format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4

MIPS Reference Data Sheet

11

MIPS Reference Data Sheet

12

Chapter 2 — Instructions: Language of the Computer — 13

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

 add a, b, c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

MIPS Arithmetic Instructions

Chapter 2 — Instructions: Language of the Computer — 14

Chapter 2 — Instructions: Language of the Computer — 15

Arithmetic Example

 C code:

 f = (g + h) - (i + j);

 Compiled MIPS code:

 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 16

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Register Naming Convention

Chapter 2 — Instructions: Language of the Computer — 17

Chapter 2 — Instructions: Language of the Computer — 18

Register Operand Example

 C code:

 f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 19

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

Byte Addresses

Big Endian:

 Leftmost byte is word address

Little Endian:

Rightmost byte is word address

LS Byte has biggest address in the

word

LS Byte has little address in the

word.

//upload.wikimedia.org/wikipedia/commons/5/54/Big-Endian.svg
//upload.wikimedia.org/wikipedia/commons/e/ed/Little-Endian.svg

Chapter 2 — Instructions: Language of the Computer — 21

Addressing Mode Summary

Review of MIPS Operand Addressing Modes

Chapter 2 — Instructions: Language of the Computer — 22

Review of MIPS Instruction Addressing Modes

Chapter 2 — Instructions: Language of the Computer — 23

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 1

 C code:

 g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 25

Memory Operand Example 2

 C code:

 A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 26

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 27

Immediate Operands

 Constant data specified in an instruction

 addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

 addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 28

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

 add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 29

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 30

MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 31

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 32

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 33

Stored Program Computers

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 34

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 35

Shift Operations

 shamt: how many positions to shift

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 36

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 37

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 38

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000 $t1

1111 1111 1111 1111 1100 0011 1111 1111 $t0

Register 0: always

read as zero

Chapter 2 — Instructions: Language of the Computer — 39

Conditional Operations

 Branch to a labeled instruction if a
condition is true

 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 40

Compiling If Statements

 C code:

 if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …

 Compiled MIPS code:

 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 41

Compiling Loop Statements

 C code:

 while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

 Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 42

Basic Blocks

 A basic block is a sequence of instructions

with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic

blocks for optimization

 An advanced processor

can accelerate execution

of basic blocks

Chapter 2 — Instructions: Language of the Computer — 43

More Conditional Operations

 Set result to 1 if a condition is true

 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 44

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 45

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 46

Procedure Calling

 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 47

Register Usage

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries
 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 48

Procedure Call Instructions

 Procedure call: jump and link

 jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

 jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 49

Leaf Procedure Example

 C code:

 int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 50

Leaf Procedure Example

 MIPS code:
 leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 51

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the

stack:

 Its return address

 Any arguments and temporaries needed after

the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 52

Non-Leaf Procedure Example

 C code:

 int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}

 Argument n in $a0

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 53

Non-Leaf Procedure Example

 MIPS code:
 fact:

 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 54

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 55

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 56

Character Data

 Byte-encoded character sets

 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 57

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 58

String Copy Example

 C code (naïve):

 Null-terminated string

 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

 Addresses of x, y in $a0, $a1

 i in $s0

Chapter 2 — Instructions: Language of the Computer — 59

String Copy Example

 MIPS code:
 strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 60

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

 lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
a
n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 61

Branch Addressing

 Branch instructions specify

 Opcode, two registers, target address

 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 62

Jump Addressing

 Jump (j and jal) targets could be

anywhere in text segment

 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing

 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 63

Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 64

Branching Far Away

 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example

 beq $s0,$s1, L1

 ↓

 bne $s0,$s1, L2
 j L1
L2: …

Chapter 2 — Instructions: Language of the Computer — 65

Translation and Startup

Many compilers produce

object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 66

Assembler Pseudoinstructions

 Most assembler instructions represent

machine instructions one-to-one

 Pseudoinstructions: figments of the

assembler’s imagination

 move $t0, $t1 → add $t0, $zero, $t1

 blt $t0, $t1, L → slt $at, $t0, $t1

 bne $at, $zero, L

 $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 67

Producing an Object Module

 Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete
program from the pieces
 Header: described contents of object module

 Text segment: translated instructions

 Static data segment: data allocated for the life of the
program

 Relocation info: for contents that depend on absolute
location of loaded program

 Symbol table: global definitions and external refs

 Debug info: for associating with source code

 Consider the load-word and store-word instr’s

 What would the regularity principle have us do?

 But . . . Good design demands compromise

 Introduce a new type of instruction format

 I-type for data transfer instructions (previous format was R-
type for register)

 Example: lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit number

23hex 18 8 24

100011 10010 01000 0000000000011000

68

 Instructions, like registers and words of data, are also 32
bits long

 Example: add $t1, $s1, $s2

 registers have numbers, $t1=9, $s1=17, $s2=18

 Instruction Format:

 000000 1000110010 01001 00000 100000

 op rs rt rd shamt funct

 Can you guess what the field names stand for?

Machine Language

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits Fieldsize:

69

 What instruction format is used for the addi ?

 addi $s3, $s3, 4 #$s3 = $s3 + 4

 Machine format:

Machine Language – Immediate Instructions

op rs rt 16 bit immediate I format

8 19 19 4

 The constant is kept inside the instruction itself!

 So must use the I format – Immediate format

 Limits immediate values to the range +215–1 to -215

71

Load Example

.data

 var0: .word 0x01234567

 var1: .word 0x79abcdef

.text

 la $s1, var0

 lw $t1, 0($s1) # $t1 = 01234567

 lw $t1, 1($s1) #Error: misalignment

 la $s1, var1

 lb $t1, 0($s1) # $t1 = ff ff ff ef

 lb $t1, 1($s1) # $t1 = ff ff ff cd

 lb $t1, 2($s1) # $t1 = ff ff ff ab

 lb $t1, 3($s1) # $t1 = 00 00 00

79

la $s1, var0

lh $t1, 0($s1) #$t1=00004567

lh $t1, 1($s1) #Error: misalignment

lh $t1, 2($s1) #$t1=0000 0123

lh $t1, 3($s1) #Error: misalignment

lw $t1, 4($s1) # t1 = var1

sh $t1, 0($s1) #var0= 0123cdef

sb $t1, 3($s1) #var0=ef23cdef

Subroutine Example

.data

data1: .word 5

data2: .word 10

##################################

.text

 la $a0, data1

 la $a1, data2

 jal my_sub

 add $t0, $v0, $zero

 syscall # exit program

##################################

.text

my_sub:

 lw $t0, 0($a0)

 lw $t1, 0($a1)

 add $v0, $t0, $t1

 jr $ra

Chapter 2 — Instructions: Language of the Computer — 74

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
 void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 75

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

 add $t1, $a0, $t1 # $t1 = v+(k*4)

 # (address of v[k])

 lw $t0, 0($t1) # $t0 (temp) = v[k]

 lw $t2, 4($t1) # $t2 = v[k+1]

 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 sw $t0, 4($t1) # v[k+1] = $t0 (temp)

 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 76

The Sort Procedure in C

 Non-leaf (calls swap)
 void sort (int v[], int n)
 {
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
 }
 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 77

The Procedure Body
 move $s2, $a0 # save $a0 into $s2

 move $s3, $a1 # save $a1 into $s3

 move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

 addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

 sll $t1, $s1, 2 # $t1 = j * 4

 add $t2, $s2, $t1 # $t2 = v + (j * 4)

 lw $t3, 0($t2) # $t3 = v[j]

 lw $t4, 4($t2) # $t4 = v[j + 1]

 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

 move $a0, $s2 # 1st param of swap is v (old $a0)

 move $a1, $s1 # 2nd param of swap is j

 jal swap # call swap procedure

 addi $s1, $s1, –1 # j –= 1

 j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

 j for1tst # jump to test of outer loop

Pass

params

& call

Move

params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 78

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

 sw $ra, 16($sp) # save $ra on stack

 sw $s3,12($sp) # save $s3 on stack

 sw $s2, 8($sp) # save $s2 on stack

 sw $s1, 4($sp) # save $s1 on stack

 sw $s0, 0($sp) # save $s0 on stack

 … # procedure body

 …

 exit1: lw $s0, 0($sp) # restore $s0 from stack

 lw $s1, 4($sp) # restore $s1 from stack

 lw $s2, 8($sp) # restore $s2 from stack

 lw $s3,12($sp) # restore $s3 from stack

 lw $ra,16($sp) # restore $ra from stack

 addi $sp,$sp, 20 # restore stack pointer

 jr $ra # return to calling routine

The Full Procedure

Chapter 3

Arithmetic for Computers

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Outline

 Introduction

 Addition and Subtraction

 Multiplication

 Division

 Floating Point

 ALU Design

Chapter 3 — Arithmetic for Computers — 2

Chapter 3 — Arithmetic for Computers — 3

Arithmetic for Computers

 Operations on integers

 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers

 Representation and operations

§
3
.1

 In
tro

d
u
c
tio

n

Chapter 3 — Arithmetic for Computers — 4

Integer Addition

 Example: 7 + 6

§
3
.2

 A
d
d
itio

n
 a

n
d
 S

u
b
tra

c
tio

n

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 5

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

 Overflow if result out of range

 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 6

Dealing with Overflow

 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran)
require raising an exception
 Use MIPS add, addi, sub instructions

 On overflow, invoke exception handler
 Save PC in exception program counter (EPC)

register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 7

Multiplication

 Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is

the sum of operand

lengths

multiplicand

multiplier

product

§
3
.3

 M
u
ltip

lic
a
tio

n

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

MIPS Multiplication

 Two 32-bit registers for product

 HI: most-significant 32 bits

 LO: least-significant 32-bits

 Instructions

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 11

Division

 Check for 0 divisor

 Long division approach
 If divisor ≤ dividend bits

 1 bit in quotient, subtract

 Otherwise

 0 bit in quotient, bring down next
dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values

 Adjust sign of quotient and remainder
as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit

quotient and remainder

quotient

dividend

remainder

divisor

§
3
.4

 D
iv

is
io

n

Chapter 3 — Arithmetic for Computers — 12

Division Hardware

Initially dividend

Initially divisor

in left half

Chapter 3 — Arithmetic for Computers — 13

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 14

MIPS Division

 Use HI/LO registers for result

 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions

 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking

 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 15

Floating Point

 Representation for non-integral numbers

 Including very small and very large numbers

 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§
3
.5

 F
lo

a
tin

g
 P

o
in

t

Chapter 3 — Arithmetic for Computers — 16

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 17

IEEE Floating-Point Format

 S: sign bit (0 non-negative, 1 negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0
 Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x

Floating Point Representation

Chapter 3 — Arithmetic for Computers — 18

Single Precision Double Precision Object Represented

E (8) F (23) E (11) F (52)

0 0 0 0 true zero (0)

0 nonzero 0 nonzero ± denormalized number

± 1-254

± 128-2

anything ± 1-2046

± 1211-2

anything ± floating point number

± 255

±(28-1)

0 ± 2047

±(211-1)

0 ± infinity

255 nonzero 2047 nonzero not a number (NaN)

Chapter 3 — Arithmetic for Computers — 19

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 20

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 21

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

 What number is represented by the single-
precision float

 11000000101000…00

 S = 1

 Fraction = 01000…002

 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

 = (–1) × 1.25 × 22

 = –5.0

Chapter 3 — Arithmetic for Computers — 26

Floating-Point Addition

 Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent

 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 27

Floating-Point Addition

 Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 28

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too

long

 Much longer than integer operations

 Slower clock would penalize all instructions

 FP adder usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 29

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 32

FP Arithmetic Hardware

 FP multiplier is of similar complexity to FP
adder

 But uses a multiplier for significands instead of
an adder

 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP integer conversion

 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 33

FP Instructions in MIPS

 FP hardware is coprocessor 1
 Adjunct processor that extends the ISA

 Separate FP registers
 32 single-precision: $f0, $f1, … $f31

 Paired for double-precision: $f0/$f1, $f2/$f3, …
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data,

or vice versa

 More registers with minimal code-size impact

 FP load and store instructions (single/double)
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 34

FP Instructions in MIPS

 Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)

 Sets or clears FP condition-code bit
 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 35

FP Example: °F to °C

 C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
 f2c: lwc1 $f16, const5($gp)
 lwc2 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

ALU Design: Datapath

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

36

Chapter 4 : The Processor

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy]

Chapter 4 — The Processor — 2

Introduction

 CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version

 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

 Arithmetic/logical: add, sub, and, or, slt

 Control transfer: beq, j

§
4
.1

 In
tro

d
u
c
tio

n

Chapter 4 — The Processor — 3

Instruction Execution

 PC instruction memory, fetch instruction

 Register numbers register file, read registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC target address or PC + 4

Processor Control Unit: Basics

Chapter 4 — The Processor — 4

Unit What needs to be controlled

Register File 1. Register Write: enable write to register file

2. Specifying destination Register: instruction[20-16] versus

instruction[15-11]

3. Memory-to-register: What to write to register file? Memory

output or ALU output

Memory 1. Memory Read: enables memory read access

2. Memory Write: enables memory write access

ALU 1. ALUOp: specifies ALU operation

2. ALUSource: second operand to ALU can be from register

file or instruction (i.e., immediate data)

PC control 1. Branch: PC <- (PC+4) + offset

2. Jump: PC <- Jump address

Chapter 4 — The Processor — 5

CPU Overview

Chapter 4 — The Processor — 6

Multiplexers

 Can’t just join

wires together

 Use multiplexers

Chapter 4 — The Processor — 7

Control

Chapter 4 — The Processor — 8

Building a Datapath

 Datapath

 Elements that process data and addresses

in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath

incrementally

 Refining the overview design

§
4
.3

 B
u
ild

in
g
 a

 D
a
ta

p
a
th

Chapter 4 — The Processor — 9

Instruction Fetch

32-bit

register

Increment by

4 for next

instruction

Chapter 4 — The Processor — 10

R-Format Instructions

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

Chapter 4 — The Processor — 11

Load/Store Instructions

 Read register operands

 Calculate address using 16-bit offset
 Use ALU, but sign-extend offset

 Load: Read memory and update register

 Store: Write register value to memory

Chapter 4 — The Processor — 12

Branch Instructions

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 13

Branch Instructions

Just

re-routes

wires

Sign-bit wire

replicated

Chapter 4 — The Processor — 14

Composing the Elements

 First-cut data path does an instruction in

one clock cycle

 Each datapath element can only do one

function at a time

 Hence, we need separate instruction and data

memories

 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 15

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 16

Full Datapath

Chapter 4 — The Processor — 17

ALU Control

 ALU used for

 Load/Store: F = add

 Branch: F = subtract

 R-type: F depends on funct field

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n
ta

tio
n
 S

c
h
e
m

e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Chapter 4 — The Processor — 18

ALU Control

 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 19

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:0 25:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

read,

except

for load

write for

R-type

and load

sign-extend

and add

Chapter 4 — The Processor — 20

Datapath With Control

Chapter 4 — The Processor — 21

R-Type Instruction

Chapter 4 — The Processor — 22

Load Instruction

Chapter 4 — The Processor — 23

Branch-on-Equal Instruction

Chapter 4 — The Processor — 24

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of

 Top 4 bits of old PC

 26-bit jump address

 00

 Need an extra control signal decoded from

opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 25

Datapath With Jumps Added

Chapter 4 — The Processor — 26

Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory register file ALU

data memory register file

 Not feasible to vary period for different

instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 27

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g

 Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/0.5n + 1.5 ≈ 4

= number of stages

Chapter 4 — The Processor — 28

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 29

Pipeline Performance

 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 30

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 31

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

 Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 32

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 33

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 34

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that

cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require

separate instruction/data memories

 Or separate instruction/data caches

Chapter 4 — The Processor — 35

Data Hazards

 An instruction depends on completion of

data access by a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 36

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 37

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 38

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 39

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute
target early in the pipeline

 Add hardware to do it in ID stage

Chapter 4 — The Processor — 40

Stall on Branch

 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 41

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 42

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

Chapter 4 — The Processor — 43

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 44

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 45

MIPS Pipelined Datapath
§
4
.6

 P
ip

e
lin

e
d
 D

a
ta

p
a
th

 a
n
d
 C

o
n
tro

l

WB

MEM

Right-to-left

flow leads to

hazards

Chapter 4 — The Processor — 46

Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 47

Pipeline Operation

 Cycle-by-cycle flow of instructions through

the pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams

for load & store

Chapter 4 — The Processor — 48

IF for Load, Store, …

Chapter 4 — The Processor — 49

ID for Load, Store, …

Chapter 4 — The Processor — 50

EX for Load

Chapter 4 — The Processor — 51

MEM for Load

Chapter 4 — The Processor — 52

WB for Load

Wrong

register

number

Chapter 4 — The Processor — 53

Corrected Datapath for Load

Chapter 4 — The Processor — 54

EX for Store

Chapter 4 — The Processor — 55

MEM for Store

Chapter 4 — The Processor — 56

WB for Store

Chapter 4 — The Processor — 57

Multi-Cycle Pipeline Diagram

 Form showing resource usage

Chapter 4 — The Processor — 58

Multi-Cycle Pipeline Diagram

 Traditional form

Chapter 4 — The Processor — 59

Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle

Chapter 4 — The Processor — 60

Pipelined Control (Simplified)

Chapter 4 — The Processor — 61

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 62

Pipelined Control

Chapter 4 — The Processor — 63

Data Hazards in ALU Instructions

 Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding

 How do we detect when to forward?

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Chapter 4 — The Processor — 64

Dependencies & Forwarding

Chapter 4 — The Processor — 65

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Chapter 4 — The Processor — 66

Detecting the Need to Forward

 But only if forwarding instruction will write

to a register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not

$zero

 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 67

Forwarding Paths

Chapter 4 — The Processor — 68

Forwarding Conditions

 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 10

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

Chapter 4 — The Processor — 69

Double Data Hazard

 Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur

 Want to use the most recent

 Revise MEM hazard condition

 Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 70

Revised Forwarding Condition

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

Chapter 4 — The Processor — 71

Datapath with Forwarding

Chapter 4 — The Processor — 72

Load-Use Data Hazard

Need to stall

for one cycle

Chapter 4 — The Processor — 73

Load-Use Hazard Detection

 Check when using instruction is decoded
in ID stage

 ALU operand register numbers in ID stage
are given by

 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when

 ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 74

How to Stall the Pipeline

 Force control values in ID/EX register

to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 75

Stall/Bubble in the Pipeline

Stall inserted

here

Chapter 4 — The Processor — 76

Stall/Bubble in the Pipeline

Or, more

accurately…

Chapter 4 — The Processor — 77

Datapath with Hazard Detection

Chapter 4 — The Processor — 78

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid

hazards and stalls

 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 79

Branch Hazards

 If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

Chapter 4 — The Processor — 80

Reducing Branch Delay

 Move hardware to determine outcome to ID

stage

 Target address adder

 Register comparator

 Example: branch taken
 36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

Chapter 4 — The Processor — 81

Example: Branch Taken

Chapter 4 — The Processor — 82

Example: Branch Taken

Chapter 4 — The Processor — 83

Data Hazards for Branches

 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

Chapter 4 — The Processor — 84

Data Hazards for Branches

 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding

load instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 85

Data Hazards for Branches

 If a comparison register is a destination of

immediately preceding load instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 86

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 87

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of

inner loop

 Then mispredict as not taken on first

iteration of inner loop next time around

Chapter 4 — The Processor — 88

2-Bit Predictor

 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 89

Calculating the Branch Target

 Even with predictor, still need to calculate

the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can

fetch target immediately

Chapter 4 — The Processor — 90

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing

performance is hard

§
4
.9

 E
x
c
e
p
tio

n
s

Chapter 4 — The Processor — 91

Handling Exceptions

 Save PC of offending (or interrupted) instruction
 In MIPS: Exception Program Counter (EPC)

 Save indication of the problem
 In MIPS: Cause register (status register)

 We’ll assume 1-bit
 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

Chapter 4 — The Processor — 92

An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Example:

 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either

 Deal with the interrupt, or

 Jump to real handler

Chapter 4 — The Processor — 93

Handler Actions

 Read cause, and transfer to relevant
handler

 Determine action required

 If restartable

 Take corrective action

 use EPC to return to program

 Otherwise

 Terminate program

 Report error using EPC, cause, …

Chapter 4 — The Processor — 94

Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

Chapter 4 — The Processor — 95

Pipeline with Exceptions

Chapter 4 — The Processor — 96

Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the

instruction

 Refetched and executed from scratch

 PC saved in EPC register

 Identifies causing instruction

 Actually PC + 4 is saved

 Handler must adjust

Chapter 4 — The Processor — 97

Exception Example

 Exception on add in
 40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

 Handler
 80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 98

Exception Example

Chapter 4 — The Processor — 99

Exception Example

Chapter 4 — The Processor — 100

Multiple Exceptions

 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once

 Simple approach: deal with exception from

earliest instruction

 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines

 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 101

Hardware/Software Interface

 Hardware stops pipeline and save state

 Including exception cause(s)

 Let the handler work out

 Which instruction(s) had exceptions

 Which to complete or flush

 May require “manual” completion

 Associating correct exception with correct instruction

 Imprecise exceptions are not associated with the exact

instruction that caused the exception

 Hardware detect the exception. Leave to OS to determine which

instruction caused the interrupt.

 Precise exceptions

 Supported by most processors

Chapter 4 — The Processor — 102

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage shorter clock cycle (higher freq)

 Multiple issue
 Replicate pipeline stages multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS (billion inst per sec), peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 A

d
v
a
n
c
e
d
 In

s
tru

c
tio

n
 L

e
v
e
l P

a
ra

lle
lis

m

Chapter 4 — The Processor — 103

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 104

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 105

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 106

Speculation and Exceptions
(read)

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 107

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 108

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 109

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 110

MIPS with Static Dual Issue

Chapter 4 — The Processor — 111

Hazards in the Dual-Issue MIPS
(read)

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Chapter 4 — The Processor — 112

Scheduling Example (read)

 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 113

Loop Unrolling (read)

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”

 Reuse of a register name

Chapter 4 — The Processor — 114

Loop Unrolling Example (read)

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 115

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 116

Dynamic Pipeline Scheduling (read)

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

 lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 117

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

REST Is Reading Material

Chapter 4 — The Processor — 118

Chapter 4 — The Processor — 119

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Chapter 4 — The Processor — 120

Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Load speculation

 Avoid load and cache miss delay

 Predict the effective address

 Predict loaded value

 Load before completing outstanding stores

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Chapter 4 — The Processor — 121

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 122

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 123

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 124

The Opteron X4 Microarchitecture
§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p
te

ro
n
 X

4
 (B

a
rc

e
lo

n
a
) P

ip
e
lin

e

72 physical

registers

Chapter 4 — The Processor — 125

The Opteron X4 Pipeline Flow

 For integer operations

 FP is 5 stages longer

 Up to 106 RISC-ops in progress

 Bottlenecks

 Complex instructions with long dependencies

 Branch mispredictions

 Memory access delays

Chapter 4 — The Processor — 126

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 127

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

CPE 408340

Computer Organization

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy]

Chapter 5 : Large and Fast:

Exploiting Memory Hierarchy
The

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of

their address space at any time

 Temporal locality

 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from

upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.2

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if

the data is present?

 Where do we look?

Cache Design Rules

Address = [Block Address] [Block Offset]

Address = [Tag] [Index] [Word Offset] [Byte Offset]

Block_bits = log2(Block_Size)

#Blocks in Cache = Cache_Size/Block_Size

#Sets in Cache = #Blocks / Set_Size

Set_Size = number of ways in the cache

For direct cache : Set_Size=1 (#Sets = #Blocks)

For fully associative : Set_Size= #Blocks (#Sets = 1)

For k-way associative: Set_Size= k

Index_bits = log2 (#Sets)

Tag_bits = Address_bits - (Block_bits + Index_bits)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

K-way Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a

power of 2

 Use low-order

address bits

Index

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Tags and Valid Bits

 How do we know which particular block is

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state, Mem=32 words (or blocks)

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Miss :Tag

mismatch

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

120010= 0 ….01 00 1011 0000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

In the next few

slides we will

measure:

1. Miss Rate

2. Miss Penalty

Recall:

Time Cycle ClockTime CPU

Time Cycle ClockCPICount nInstructioTime CPU

CycleCount

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Associativity Example

 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

How Much Associativity

 Increased associativity decreases miss

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Cache Design: (1) Associativity vs miss rate

 Higher associativity ==> more complex HW

 But a highly-associative cache will have a lower miss rate

 Each set has more blocks, so there’s less chance of a conflict between two

addresses

 Overall, this will reduce Average memory access time (AMAT) and memory

stall cycles

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Design: (2) Cache size vs miss rate

 In a larger cache there’s less chance there will

be of a conflict

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Cache Design: (3) Block size vs miss rate

 Smaller blocks do not take maximum advantage of

spatial locality

 But if blocks are too large, there are fewer blocks

available, and more potential conflicts misses

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Write-Back

 Alternative: On data-write hit, just update

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Write-allocate on miss: fetch the block

 Write around (no write allocate): don’t fetch

the block

 Since programs often write a whole block before

reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Advanced DRAM Organization

 Bits in a DRAM are organized as a

rectangular array

 DRAM accesses an entire row

 Burst mode: supply successive words from a

row with reduced latency

 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.3

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Cache Misses

Cache Misses The Cause Dependency

Capacity misses Occur due to the finite

size of the cache.

Cache size

Conflict misses Occur because the

cache had evicted an

entry earlier.

Associatively

Compulsory

misses

(Cold misses)

Caused by the first

reference to a location

in memory.

Block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict misses May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate due

to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from

primary cache

 Larger, slower, but still faster than main

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6

In summary: CPI and AMAT for multi-level

cache system

 For Multi-level cache system

 CPI = <ideal_CPI>

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…

+ Miss rate Ln× Miss penalty Ln

 AMAT = Hit time +

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…

+ Miss rate Ln× Miss penalty Ln

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

L1 Hit access

L2 Hit access

L3 Hit access

L1 Hit access

L2 Hit access

L3 Hit access

Memory access

Memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

Intel Core-i7 three-level cache Architecture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

L1 D$
Size= 32KB

Associativity= 4-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L1 I$
Size= 32KB

Associativity= 8-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L2
Size= 256KB

Associativity= 8-way

Latency= 10 cycles

Replacement= Pseudo-LRU

L3
Size= 2MB per core

Associativity= 16-way

Latency= 35 cycles

Replacement= Pseudo-LRU

Core

L1 D$ L1 I$

L2

Core

L1

L2

L3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions

during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation

stations

 Independent instructions continue

 Effect of miss depends on program data flow

 Much harder to analyze

 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Interactions with Software

 Misses depend on

memory access

patterns

 Algorithm behavior

 Compiler

optimization for

memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

§
5
.4

 V
irtu

a
l M

e
m

o
ry

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Address Translation

 Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present (valid-bit) in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Translation Using a Page Table

Size of Physical Memory = # Physical_pages * Page_size

Physical Page = 2 Physical Page Number

Page Table Size = #Virtual_pages * EnrySize

Virtual Memory System Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before destination

register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page

table

 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Memory Protection

 Different tasks can share parts of their

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

The Memory Hierarchy

 Common principles apply at all levels of

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.5

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Cache Coherence Problem (read)

 Suppose two CPU cores share a physical
address space
 Write-through caches

§
5
.8

 P
a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Coherence Defined (read)

 Informally: Reads return most recently
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Cache Coherence Protocols (read)

 Operations performed by caches in
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it

 A processor does not reorder writes with other
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

After this slide is reading

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Virtual Machines (read)

 Host computer emulates guest operating system

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Virtual Machine Monitor

 Maps virtual resources to physical
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user
mode

 Traps to VMM on privileged instructions and
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Example: Timer Virtualization

 In native machine, on timer interrupt

 OS suspends current process, handles

interrupt, selects and resumes next process

 With Virtual Machine Monitor

 VMM suspends current VM, handles interrupt,

selects and resumes next VM

 If a VM requires timer interrupts

 VMM emulates a virtual timer

 Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Instruction Set Support

 User and System modes

 Privileged instructions only available in
system mode

 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions

 Including page tables, interrupt controls, I/O
registers

 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Cache Control (read)

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete

§
5
.7

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

03491031

4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Interface Signals (read)

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Finite State Machines (read)

 Use an FSM to
sequence control steps

 Set of states, transition
on each clock edge
 State values are binary

encoded

 Current state stored in a
register

 Next state
= fn (current state,

current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Cache Controller FSM (read)

Could

partition into

separate

states to

reduce clock

cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Multilevel On-Chip Caches
§
5
.1

0
 R

e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p

te
ro

n
 X

4
 a

n
d
 In

te
l N

e
h
a
le

m

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small

pages, 7 per thread (2×) for

large pages

L1 D-TLB: 64 entries for small

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

3-Level Cache Organization

Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte

blocks, 4-way, approx LRU

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte

blocks, 8-way, approx LRU

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, write-

back/allocate, hit time 9 cycles

L2 unified

cache

(per core)

256KB, 64-byte blocks, 8-way,

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified

cache

(shared)

8MB, 64-byte blocks, 16-way,

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,

replace block shared by fewest

cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Mis Penalty Reduction

 Return requested word first

 Then back-fill rest of block

 Non-blocking miss processing

 Hit under miss: allow hits to proceed

 Mis under miss: allow multiple outstanding

misses

 Hardware prefetch: instructions and data

 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when

writing or generating code

 Example: iterating over rows vs. columns of

arrays

 Large strides result in poor locality

§
5
.1

1
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Pitfalls

 In multiprocessor with shared L2 or L3

cache

 Less associativity than cores results in conflict

misses

 More cores need to increase associativity

 Using AMAT to evaluate performance of

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not

designed for virtualization

 E.g., non-privileged instructions accessing

hardware resources

 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Concluding Remarks

 Fast memories are small, large memories are
slow
 We really want fast, large memories

 Caching gives this illusion

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache L2 cache … DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§
5
.1

2
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

