o COMPUTER ORGANIZATION AND DESIGN «O@L‘E@

The Hardware/Software Interface

Chapter 1

Computer Abstractions
and Technology

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,
Patterson & Hennessy, © 2012, UCB]

Course Textbook and Outline

Instructor: Dr. Bassam Jamil / E 3056
Textbook(s):

Computer Organization and Design: The
Hardware/Software Interface, 4th Edition, David
Patterson and John Hennessy, Morgan Kaufmann.
ISBN: 978-0-12-374493-7, 2012

Topics covered:
Computer Abstractions and Technology
Instructions: Language of the Computer
Arithmetic for Computers
The processor
Exploiting Memor}/e Hierarchy

Chapter 1 — Computer Abstractlons and Technology — 2

Grades

First Exam 25%
Chap 1, 2,3
March 12

Second Exam 25%
Chap 4
April 14

Final
All material

Chapter 1 — Computer Abstractions and Technology — 3

The Computer Revolution

Progress in computer technology
Underpinned by Moore’s Law

Makes novel applications feasible
Computers in automobiles
Cell phones
Human genome project
World Wide Web
Search Engines

Computers are pervasive

Chapter 1 — Computer Abstractions and Technology — 4

Classes of Computers

Desktop computers
General purpose, variety of software
Subject to cost/performance tradeoff
Server computers
Network based
High capacity, performance, reliability
Range from small servers to building sized
Embedded computers

Hidden as components of systems
Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 5

The Processor Market

[Cell Phones B PCs [OTVs

Chapter 1 — Computer Abstractions and Technology — 6

What You Will Learn

How programs are translated into the
machine language
And how the hardware executes them

The hardware/software interface

What determines program performance
And how It can be improved

How hardware designers improve
performance

What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 7

Understanding Performance

Algorithm
Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed
per operation

Processor and memory system
Determine how fast instructions are executed

/O system (including OS)
Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 8

Below Your Program

Application software
Written in high-level language

System software

Compiler: translates HLL code to
machine code

Operating System: service code
Handling input/output
Managing memory and storage
Scheduling tasks & sharing resources

Hardware
Processor, memory, I/O controllers

Chapter 1 — Computer Abstractions and Technology — 9

Levels of Program Code

ngh_level Ianguage High-level swap(int v[1, int k)

language {int temp;
program temp = v[k];

Level of abstraction closer (in©) vIk] = vLkHd;

vik+l] = temp;

to problem domain |

Provides for productivity Coompier)
and portability

Assembly language

program add $2, $4,%2
Textual representation of e e 4
instructions 0 315 a0

Hardware representation
Binary digits (bits) @
EnCOded inStrUCtionS and Binary machine OOOOOOOOlOI;OOOIOOOOOOOOOOOIIOOO

language 00000000000110000001100000100001
data program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000

10101100011000100000000000000100
00000011111000000000000000001000

Chapter 1 — Computer Abstractions and Technology — 10

Components of a Computer

Same components for
all kinds of computer

Desktop, server,
embedded

Input/output includes

User-interface devices
Display, keyboard, mouse
Storage devices
Hard disk, CD/DVD, flash

Network adapters

For communicating with
other computers

Chapter 1 — Computer Abstractions and Technology — 11

Anatomy of a Computer

o~

Output
device

Network
cable

device device

|nput \ T \\ / InpUt
)
. ——

Chapter 1 — Computer Abstractions and Technology — 12

Anatomy of a Mouse

Optical mouse

LED illuminates
desktop

Small low-res camera

Basic image processor

Looks for x, y
movement

Buttons & wheel

Supersedes roller-ball
mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 13

Through the Looking Glass

LCD screen: picture elements (pixels)
Mirrors content of frame buffer memory

Frame buffer

Raster scan CRT display

|
|
|
|
' 1
|
/ol
Y, - __J!_______ Y, N
/
7/
7/
K
X, X X, X

Chapter 1 — Computer Abstractions and Technology — 14

Opening the Box

>

f

8
o]
b4
@
&

Hard drive Processor Fan with Spot for

cover memory battery cover
DIMMs

Spot for Motherboard Fan with DVD drive

Chapter 1 — Computer Abstractions and Technology — 15

Inside the Processor (CPU)

Datapath: performs operations on data
Control: sequences datapath, memory, ...

Cache memory

Small fast SRAM memory for immediate
access to data

Chapter 1 — Computer Abstractions and Technology — 16

Inside the Processor

AMD Barcelona: 4 processor cores

HT PHY, link 1 |Slow |/0|Fuses|

128-bit FPU

V]
: < Load/| L1 Data
i =|2MB | Store | Cache |512kB
Z | Shared E , o L2 Core 2
o|L3 xecution p Cache
| Cache | Fetch/

Decode/ | L1 Instr
Branch | Cache

D
R D
o - Northbridge R
{) S
P
A r} H
e Y
Ko ®
X
=
>I: Core 4 Core 3
o
|—
I

HT PHY, link 4 |Slow I/O|Fuses

Chapter 1 — Computer Abstractions and Technology — 17

Abstractions

Abstraction helps us deal with complexity
Hide lower-level detall

Instruction set architecture (ISA)

Ap

"he hardware/software interface
nlication binary interface

"he ISA plus system software interface

Implementation
The details underlying and interface

Chapter 1 — Computer Abstractions and Technology — 18

A Safe Place for Data

Volatile main memory
Loses instructions and data when power off

Non-volatile secondary memory
Magnetic disk
Flash memory
Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 19

Networks

Communication and resource sharing

Local area network (LAN): Ethernet
Within a building

Wide area network (WAN: the Internet

Wireless network: WiFI, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 20

Technology Trends

Electronics
technology
continues to evolve

Increased capacity
and performance

Reduced cost

city

Kbit capa

1,000,000 -

512M

100,000 256M

128M

16M BAM

10,000 A 4M
M

1000 256K >
64K

16K

100 4

10

1G

Year of introduction

DRAM capacity

T T T T T T T T T T T T T T T 1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2005 | Ultra large scale IC 6,200,000,000

Chapter 1 — Computer Abstractions and Technology — 21

Defining Performance

Which airplane has the best performance?

[[[[[
Boeing 777 | Boeing 777 |
Boeing 747 Boeing 747
BAC/Sud | BAC/Sud | |
Concorde Concorde |
Douglas Douglas DC- |
DC-8-50 8-50 T T T T
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
O Passenger Capacity O Cruising Range (miles) |
[[
Boeing 777 Boeing 777 | | |
Boeing 747 Boeing 747 |
BAC/Sud | BAC/Sud | |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 :5 gs0 R
0 500 1000 1500 0 100000 200000 300000 400000
|0 Cruising Speed (mph) | |0 Passengers x mph |

Chapter 1 — Computer Abstractions and Technology — 22

Response Time and Throughput

Response time
How long it takes to do a task
Throughput

Total work done per unit time
e.g., tasks/transactions/... per hour

How are response time and throughput affected
by
Replacing the processor with a faster version?
Adding more processors?

We’'ll focus on response time for now...

Chapter 1 — Computer Abstractions and Technology — 23

Relative Performance

Define Performance = 1/Execution Time
“Xis n time faster than Y”

Performance, /Performance,
=Execution time, /Execution time, =n

Example: time taken to run a program
10son A, 15son B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 24

Measuring Execution Time

Elapsed time
Total response time, including all aspects
Processing, 1/0, OS overhead, idle time
Determines system performance

CPU time
Time spent processing a given job
Discounts I/O time, other jobs’ shares
Comprises user CPU time and system CPU
time
Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 25

CPU Clocking

Operation of digital hardware governed by a
constant-rate clock

«—Clock period—»

Clock (cycles) [
Data transfer
and computation < >< >< >
Update state <:> O <:>

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250x10-1%s

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10°%Hz

Chapter 1 — Computer Abstractions and Technology — 26

CPU Time

CPUTime =CPUClock CyclesxClock Cycle Time

~ CPUClockCycles
Clock Rate

Performance improved by
Reducing number of clock cycles
ncreasing clock rate

Hardware designer must often trade off clock
rate against cycle count

Chapter 1 — Computer Abstractions and Technology — 27

CPU Time Example

Computer A: 2GHz clock, 10s CPU time

Designing Computer B
Aim for 6s CPU time
Can do faster clock, but causes 1.2 x clock cycles

How fast must Computer B clock be?

_ ClockCycles, 1.2xClockCycles,
CPUTime, 6s

Clock Cycles, =CPUTime, xClockRate

ClockRate,

—=10sx2GHz =20x10°

1.2x20x10° B 24x10°
6S 6S

ClockRate, = =4GHz

Chapter 1 — Computer Abstractions and Technology — 28

Instruction Count and CPI

ClockCycles=Instructicn Countx Cyclesperinstructian
CPUTime=Instructicn Countx CPIxClockCycleTime

_Instruction Countx CPI
ClockRate

Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction
Determined by CPU hardware

If different instructions have different CPI
Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 29

CPIl Example

Computer A: Cycle Time = 250ps, CPI = 2.0
Computer B: Cycle Time = 500ps, CPlI =1.2

Same [SA

Which is faster, and by how much?

CPUTlmeA

=Ix2.0x250ps=Ix500ps«—

= Instructicn Countx CPIA x CycleTim €n

A is faster...

CPUTIm € = Instructian CounthPIB xCycle Tim €q

=1x1.2x500ps=1x600ps

CPUTimeB _ 1x600ps

CPUTime, 1x500ps

—1.2+

...by this much

Chapter 1 — Computer Abstractions and Technology — 30

CPIl In More Detall

If different instruction classes take different
numbers of cycles

Clock Cycles = > (CPJ, xInstruction Count,)
i=1

Weig
Cloc

CPIl=

nted average CPI
KCycles _Z”: Cpy » INstruction Coum;j
Instruction Count “= ' Instruction Count

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 31

CPIl Example

Alternative compiled code sequences using
Instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

Sequence 1: IC =5 Sequence 2: IC =06

Clock Cycles Clock Cycles
= 2x1 + 1x2 + 2%3 =4x] + 1x2 + 1x3
=10 =9
Avg. CPI=10/5=2.0 Avg. CPI=9/6=1.5

Chapter 1 — Computer Abstractions and Technology — 32

Performance Summary

CPUTime Instructions y Clockcycles Seconds

X
Program Instruction Clockcycle

Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiller: affects IC, CPI
Instruction set architecture: affects IC, CPI, T,

Chapter 1 — Computer Abstractions and Technology — 33

Power Trends

10000 — 2000 3600 0667 -— 120
m B 1100
N 1000 + —
% Clock Rate (g —-80 £
= D (]
£ 100+ 66 leo =
< 16 g
X
S 12.5 140 3
o Power
S 1of B—H o
-+ 20
3.3 4.1
1 O—T—— | | | 0
ey L8 £ Ex R YL Yo L=
o0} 0] (o] i) & = ~ S~ N o
58 58 5% 2§ 53 crgsBzess
— ~ ~ QT §7 EZERELR 35
o o =Y g0z
Ly as o X

In CMOS IC technology

Power = Capacitive loadx Voltage® x Frequency

\ \ \

x30 S5V — 1V x1000

Chapter 1 — Computer Abstractions and Technology — 34

Reducing Power

Suppose a new CPU has
85% of capacitive load of old CPU
15% voltage and 15% frequency reduction

Pow Cogx0.85%x(V,,x0.85)°xF,,x0.85

new

> =0.85*=0.52
Poig Coa % Voig XFyiq

The power wall
We can’t reduce voltage further
We can’t remove more heat

How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 35

Uniprocessor Performance

10,000 Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
AMD Opteron, 2.2 GHz g—#7ay 0>
<5364
4195

1000
S
[eo]
=
% ~20%
S
g 100
(0]
o
C
(0]
13
8
5] 24 52%/year
o

10

VAX-11/780 o=
Lo 25%IVeAr o 5 VAX-11/785
0
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002/ 2004 2006

memory latency

Constrained by power, instruction-level parallelism,

Chapter 1 — Computer Abstractions and Technology — 36

Multiprocessors

Multicore microprocessors
More than one processor per chip

Requires explicitly parallel programming

Compare with instruction level parallelism
Hardware executes multiple instructions at once
Hidden from the programmer

Hard to do

Programming for performance
Load balancing
Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 37

Manufacturing ICs

Blank

Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers

0O wafer T
Bond die t DDD&DDDED Waf (A
ond die to : afer \ \
package OOXROO 2l tester pann)
OO0 (,
l OO \
\\'--_..
Packaged dies Tested packaged dies

_» Part _.,_., Ship to
tester customers

Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 38

AMD Opteron X2 Wafer

X2: 300mm warfer, 117 chips, 90nm technology
X4: 45nm technology

Chapter 1 — Computer Abstractions and Technology — 39

Integrated Circuit Cost

Costper wafer
Diesper wafer x Yield

Costperdie=

Diesper wafer ~ Wafer area/Die area

1

Yield = _ >
(1+ (Defects per areaxDie area/2))

Nonlinear relation to area and defect rate
Wafer cost and area are fixed
Defect rate determined by manufacturing process
Die area determined by architecture and circuit design

Chapter 1 — Computer Abstractions and Technology — 40

SPEC CPU Benchmark

Programs used to measure performance
Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)
Develops benchmarks for CPU, I/O, Web, ...

SPEC CPU2006

Elapsed time to execute a selection of programs
Negligible 1/O, so focuses on CPU performance

Normalize relative to reference machine

Summarize as geometric mean of performance ratios
CINT2006 (integer) and CFP2006 (floating-point)

”\/H Execution timeratio

i=1

Chapter 1 — Computer Abstractions and Technology — 41

CINT2006 for Opteron X4 2356

Name Description ICx10° CPI | Tc (ns) Exec time Reftime | SPECratio
perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3
bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8
gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1
mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8
go Go game (Al) 1,658 1.09 0.40 721 10,490 14.6
hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5
sjeng Chess game (Al) 2,176 0.96 0.48 37 12,100 14.5
libquantum | Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8
h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3
omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1
astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1
xalancbmk | XML parsing 1,058 2.70 0.40 1,143 6,900 6.0
Geometric mean b 11.7

/

Chapter 1 — Computer Abstractions and Technology — 42

High cache miss rates

SPEC Power Benchmark

Power consumption of server at different
workload levels

Performance: ss|_ops/sec
Power: Watts (Joules/sec)

10 10
Owerall ssj_opsper Watt :(Zssj_opsj / (Zpowerij
i=0 =0

Chapter 1 — Computer Abstractions and Technology — 43

SPECpower_ssj2008 for X4

Target Load % Performance (ssj_ops/sec) Average Power (Watts)
100% 231,867 295
90% 211,282 286
80% 185,803 275
70% 163,427 265
60% 140,160 256
50% 118,324 246
40% 920,35 233
30% 70,500 222
20% 47,126 206
10% 23,066 180
0% 0 141
Overall sum 1,283,590 2,605
> ssj_ops/) power 493

Chapter 1 — Computer Abstractions and Technology — 44

Pitfall: Amdahl’s Law

Improving an aspect of a computer and
expecting a proportional improvement in
overall performance

T _ Taffected 4+ T

i d - ff d
MRS improvemert factor M

Example: multiply accounts for 80s/100s

How much improvement in multiply performance to

get 5% overall?
20:@+20 Can’t be done!
n

Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 45

Fallacy: Low Power at Idle

Look back at X4 power benchmark
At 100% load: 295W
At 50% load: 246W (83%)
At 10% load: 180W (61%)

Google data center

Mostly operates at 10% — 50% load
At 100% load less than 1% of the time

Consider designing processors to make
power proportional to load

Chapter 1 — Computer Abstractions and Technology — 46

Pitfall: MIPS as a Performance Metric

MIPS: Millions of Instructions Per Second

Doesn’t account for
Differences in ISAs between computers
Differences in complexity between instructions

Instruction count

MIPS = —— -
Execution timex10
B Instruction count _ Clockrate
~ Instruction count><CPI><106 ~ CPIx10°
Clockrate

CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 47

Concluding Remarks

Cost/performance Is improving
Due to underlying technology development

Hierarchical layers of abstraction
In both hardware and software

Instruction set architecture
The hardware/software interface

Execution time: the best performance
measure

Power Is a limiting factor
Use parallelism to improve performance

Chapter 1 — Computer Abstractions and Technology — 48

o COMPUTER ORGANIZATION AND DESIGN «O@L‘E@

The Hardware/Software Interface

Chapter 2

Instructions: Language
of the Computer

Dr. Bassam Jamil
[Adapted from Computer Organization and Design,
Patterson & Hennessy, © 2012, UCB]

Outlineé (rRead Rest of Topics)

1. Instruction Set 11. Parallelism and Instructions:
2. Operations Synchronization
3. Operands 12. Translating and Starting a Program
4. Singed and Unsigned 13 . A C Sort Example to Put It All
Numbers Together
5. Representing Instructions 14. Arrays versus Pointers
in the Computer 15. Arrays versus Pointers
6. Logical Operations 16. Real Stuff: ARM Instructions
7. Decision Instructions 17. Real Stuff: x86 Instructions
8. Procedures 18. Fallacies and Pitfalls
9. Communicating with 19. Concluding Remarks
People

10. MIPS Addressing for 32-
Bit:Immediate and
Addresses

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

The repertoire of instructions of a
computer

Different computers have different
Instruction sets

But with many aspects in common

Early computers had very simple
Instruction sets

Simplified implementation

Many modern computers also have simple
Instruction sets

Chapter 2 — Instructions: Language of the Computer — 3

The Instruction Set Architecture (ISA)

software]L\/)\
e

\

InStI’UCtIOH set archltecture

@/

YRR

The interface description separating
the software and hardware

hardware

The MIPS Instruction Set

Used as the example throughout the book

Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 5

http://www.mips.com/

MIPS R3000 Instruction Set Architecture (ISA)

Instruction categories Registers
Computational
Load/Store RO - R31

Jump and Branch
Floating Point

coprocessor
Memory Management PC
HI
LO
3 Instruction Formats: all 32 bits wide
OP rs rt rd sa funct R format
OP rs rt immediate | format
OoP jump target J format

6

- Register number e.g. $0 through $31
- Equivalent names (Naming convection) e.q. $t1, $sp

Naming Conventions for Registers
Register preceded by $ in assembly language instruction

Two formats for addressing:

$zero constant 0 (Hdware)

$at reserved for assembler

$v0 expression evaluation &

$v1 function results

16

23

$a0 arguments (not preserved)
$al
$a2
$a3

24
25
26
27

$kO reserved for OS kernel
$k1

0N OO O W DN O

15

$t0 temporary: caller saves

Caller saved if needed. Subroutines

can use w/out saving.

28
29
30

$gp pointer to global area
$sp stack pointer

$fp frame pointer

31

$ra return address (Hdware)

Instructions Families

Main instruction families:

Instruction class MIPS examples
Arithmetic add, sub, addi
Data transfer Tw, sw, 1b, 1bu, Th, Thu,
sb, Tui
Logical and, or, nor, andi, ori,
s11, sri
Cond. Branch beq, bne, slt, slti, sltiu
Jump j, jr, jal

Chapter 2 — Instructions: Language of the Computer — 8

Common MIPS Instructions

Measure MIPS Instruction executions In
benchmark programs

Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer Tw, sw, 1b, 1bu, 35% 36%

Th, Thu, sb, Tui
Logical and, or, nor, andi, 12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt, 34% 8%

slti, sltiu
Jump j, jr, jal 2% 0%

Chapter 2 — Instructions: Language of the Computer — 9

Review: MIPS Instructions

Category Instr OpC Example Meaning
Data load word 23 lw $s1, 100($s2) | $s1 = Memory($s2+100)
transfer | store word 2b | sw $s1, 100($s2) | Memory($s2+100) = $s1
(Iformat) 1,44 byte 20 |Ib $s1, 101($s2) | $s1 = Memory($s2+101)
store byte 28 |sb $s1, 101($s2) | Memory($s2+101) = $s1
load half 21 | Ih $s1, 101($s2) | $s1 = Memory($s2+102)
store half 29 |sh $s1, 101($s2) | Memory($s2+102) = $s1
Category Instr Op Code Example Meaning
Arithmetic | add O and 32 | add $s1, $s2, $s3 | $s1 = $s2 + $s3
R&I subtract Oand 34 | sub $s1, $s2, $s3 | $s1 = $s2 - $s3
format) add immediate 8 addi $s1, $s2, 6 $s1=%s2+6
or immediate 13 ori $sl, $s2, 6 $s1 =9$s2v 6
Uncond. jump 2 2500 go to 10000
\(]\;Jg:l?? jump register Oand8 |jr $t1 go to $t1
format) jump and link 3 jal 2500 go to 10000; $ra=PC+4

10

MIPS Reference

D

M I P s Reference Data

Data Sheet

CORE INSTRUCTION SET

MNE-

MON-FOR-

NAME
Add
Add Immediate
Add Imm. Unsigned
Add Unsigned
And
And Immediate

Branch On Equal beg

Branch On Not Equal:

Jump 3
Jump And Link jal
Jump Register 5

Load Byte Unsigned 1bu
Loafl Halfword s
Unsigned

Load Upper Imm. Tui
Load Word 1w
Nor noxr
Or oxr
Or Immediate ori
Set Less Than sit

Set Less Than Imm. sic3

Set Less Than Imm.

Unsigned

Set Less Than = io—
Unsigned =
Shift Left Logical s11
Shift Right Logical

Store Byte sb
Store Halfword sh
Store Word sSw
Subtract sub

Subtract Unsigned subu

IC MAT

OPERATION (in Verilog)

R[rd] = R[rs] + R[rt] 1)
R[rt] = R[rs] + SignExtlmm (1)(2)
R[rt] = R[rs] + SignExtImm (&3]
R[rd] = R[rs] + R[rt]
R[rd] = R[rs] & R[rt]
R[rt] = R[rs] & ZeroExtImm 3)
1 if(R[rs]=—R[rt])
PC=PC+4+BranchAddr)
I if(R[rs]!'=R[rt])
PC=PC+4+BranchAddr (&5)
J PC=JumpAddr (&3]
¥ R[31]=PC+4:PC=JumpAddr (&)
R PC—R[rs]
1 R[rt]—{24°bO.M[R[rs]
+SignExtImm}(7:0)} (&3)
1 R[rt]={ l6’4bO,M[R[rs] =
+SignExtImm](15:0)} (&3)
I R[rt] = {imm, 16°bO}
1 R[rt] = M[R[rs]+SignExtlmm] 2)
R R[rd] = ~ (R[rs] | R[rtD)
R R[rd] = R[rs] | R[rt]
1 R[rt] = R[rs] | ZeroExtImm 3
R Rrd] = (R[rs] <=R[rt]) 21 :0
1 R[rt] = (R[rs] = SignExtImm)
ZEL O @
I R[rt] = (R[rs] = SignExtImm)
2L O 2)e)
R R[rd]=R[rs] <R[rt])?21:0 6)
R R[rd] = R[rs] =< shamt
R R[rd] = R[rs] == shamt
I MR [rs]+SignExtImm](7:0) =
R[rtl(7:0) (2)
I MIIR[rs]+SignExtImm](15:(1) =
R[rt](15:0) (2)
1 MI[IR[rs]+SignExtIlmm] = R[rt] [&3)

R R[rd] = R[rs] - R[rt]
R R[rd] = R[rs] - R[rt]

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}. immediate }
(3) ZeroExtImm = { 16{1b’0}. immediate }
(4) BranchAddr = { 14{immediate[15]}. immediate, 2°b0O }

(5) JumpAddr =

1)

{ PC[31:28], address. 2 b0 }

Bhex

0/ 2byex

0 / 00y,
O /025,

28hex

29hcx

2bhex
O/
0/ 235

(6) Operands considered unsigned numbers (vs. 2 s comp.)
BASIC INSTRUCTION FORMATS

R opcode | s | Tt | rd i shamt | funct
31 26 25 21 20 16 15 i1 10 6 s

I l opcode] rs Tt [immediate
31 26 25 21 20 16 15

J l opcode | address
31 26 25

Copyright 2005 by Elsevier,

ARITHMETIC CORE INSTRUCTION SET

S

OPCODE/

MNE- FMT / FT/
MON- FOR- FUNCT
NAME 1C MAT OPERATION (Hex)
Branch On FP True bcit FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/—
Branch On FP False FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--
Divide R Lo=RI[rs]/R[rt]; Hi=R[rs]%R[rt] O/--/--/1a
Divide Unsigned R Lo=R[rs]/R[rt]: Hi=R[rs]26R[rt] (6) O/--/--/1b
FP Add Single FR F[fd]= F[fs] + F[ft] 11/10/--/0
FP Add {F[fd].F[fd+11} — {F[fs].F[fs+1]} + 25
Double E152 fF[f].F[fi+171} LIZL1A/0
FP Compare Single cx=* FR FPcond — (F[fs] op F[ft]) 2 1 : O 11/10/—/3
FP Compare = FPcond = ({F[fs].F[fs+1]} op Tty
Double =S UR (FIfLFft=1]3)2 1 : 0 L/ =
*(xiseg, 1t,0r 1e) (opis=—, <, or <) (yis 32, 3¢, or 3e)
FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10/--/3
FP Divide e {FIfdl.,F[fd+1]} — {FIfs]l.F[fs+1]} /
e aiv.a FR CELRLELA 11 11/11/--/3
FP Multiply Single mul.s FR F[fd] — F[fs] * F[ft] 11/10/—/2
FP Multiply - {F[fd].F[fd+1]} — {F[fs].F[fs+1]} =
e mul.a FR CFLA.FIR1T} 11/11/--/2
FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/--/1
FP Subtract > {F[fd].F[fd+1]} — {FIfs].E[fs+11} -
e T sub.a FR CFLR].E[AL1]} 11/11/--/1
Load FP Single lwcl 1 F[rt]l=M[R[rs]+SignExtImm] (2) 31/—/—/—
IL.oad FP Frt]=M[R[rs]+SignExtImm]: (&3] /
Double Tacd I Flrt+11—=M[Rrs]+SignExtImm-+4] Sl
Move From Hi mfhi R R[rd] = Hi O /—/--/10
Move From Lo mflo R R[rd] = Lo O /—/——/12
Move From Control fcO R R[rd] = CR[rs] 16 /0/--/0
Multiply mulit R {Hi,Lo} = R[rs] * R[rt] O/—/——/18
Multiply Unsigned multu R {Hi.Lo} = R[rs] * R[rt] (6) O/-—-/--/19
Store FP Single swcl 1 M[R[rs]+SignExtlmm] = F[rt] (2) 39/-—/-—-/—
Store FP AT I M[R[rs]+SignExtImm] = F[rt]: (&3] S-S
Double S M[R[rs]+SignExtImm+4] = Flrt+1] S
FLOATING POINT INSTRUCTION FORMATS
FR I opcode | fimt I ft l fs T fd | funct l
31 26 25 21 20 16 15 11 10 65 o
FI opcode : fmt ft I immediate l
31 26 25 21 20 16 15 o

PSEUDO INSTRUCTION SET

NAME
Branch Less Than
Branch Greater Than
Branch Less Than or Equal
Branch Greater Than or Equal
Load Immediate
Move

MNEMONIC OPERATION
blt if(R[rs]<=R[rt]) PC = Label
bgt if(R[rs]=R[rt]) PC = Label
ble if(R[rs]=—R[rt]) PC — Label
bge if(R[rs]>=R[rt]) PC — Label

1i R[rd] = immediate
move R[rd] = R[rs]

REGISTER NAME. NUMBER, USE, CALL CONVENTION

PRESERVEDACROSS
NAME NUMBER USE A CALL>
Szero o The Constant Value O N.A.
E Sat 1 Assembler Temporary No
SvO-Sv1 > 3 Values for F}Jnction Res_ults No
and Expression Evaluation
SaO0-Sa3 47 Arguments No
$t0-St7 8-15 Temporaries No
$s0-Ss7 16-23 Saved Temporaries Yes
$t8-519 24-25 Temporaries No
SkO-Sk1 26-27 Reserved for OS Kernel No
Sgp 28 Global Pointer Yes
Ssp 29 Stack Pointer Yes
Sip 30 Frame Pointer Yes
Sra 31 Return Address Yes

Inc., All rights reserved. From Patterson and Hennessy, Compurter Organization and Desigrn. 3rd ed.

Ll

MIPS Reference Data Sheet

OPCODES, BASE CONVERSION, ASCII SYMBOLS

(&)

IEEE 754 FLOATING POINT

MIPS (1) MIPS (2) MIPS ool Hexa- ASCII Deci. Hexa- ASCIT
opcode funct funct Binary 1 deci- Char- deci- Char-
(31:26) (5:0) (5:0) T Y nal acter Al mal acter
(@h) S1T add.f 00 0000 [0) 0 NUL 64 40 @
sub.f 00 0001 1 1 SOH 65 41 A
3 srl mul . f 00 0010 2 25-STEX 66 42 B
jal sra giv.f 00 0011 =3 JEEEEXE 67 43 (e
beg siiv sart.f 00 0100 4 4 EOT 68 <1 D
bne abs.f 00 0101 St SESENCG) 69 45 E.
blez srilv mow.f 00 0110 6 6 ACK 70 46 F
batz srav nea.f 00 0111 7 7 - BEL 71 47 G
addi SEC 00 1000 8 8 BS 72 48 H
addiu Jalx 00 1001 9 9o iSHE T 49 I
slti mowvz 00 1010 10 a 1695 74 4a Af
sltiu movn 00 1011 11 b VT TS, 4b K.
andi syscall round.w.f |00 1100 12 c EE 76 4dc 1
ori break trunc.w. f|00 1101 13 d CR TETf 4ad M
xori ceil.wf |00 1110 14 = SO 78 4de N
lui sync floor.w./|00 1111 15 i ST 79 4f (&)
mfhi 01 0000 16 TOEEDIEE 80 50 {82
2) mthi 01 0001 T 11 DC1 81 Sill: Q
mflo mowvz.f 01 0010 18 2 =16, 82 52 R
mtlo movn.f 01 0011 19 13 DE3 83 53 S
01 0100 20 114 DC4a 84 54 2E
01 0101 21 15 NAK 85 S5 18]
01 0110 22 16 SYN 86 56 WV
01 0111 23 17 ETB 87 =i W
mult 01 1000 24 18 CAN 88 58 X
multua 01 1001 25 19 EM 89 59 NG
diwv 01 1010 26 la SUB S0 Sa z
diwvu 01 1011 2 LS HSE 91 Sb L
01 1100 28 1c ES o2 Sc \
01 1101 29 1d GS D3 5d 1
01 1110 30 le RS 94 Se s
OI=11:11 23l 1f us o5 SE =
ib ada cvt.s.f 10 0000 32 20 Space 96 60 &
ih addu (o574 cito by 2 10 0001 33 21 ! 97 61 a
Iwl sub 10 0010 34 22 S 98 62 b
1w subu 10 0011 35 23 # 99 63 c
lbu and cvt . .wf 10 0100 36 24 s 100 64 d
lhu ox 100101 37 25 %% 101 65 (=
1w xox 100110 38 26 & 102 66 1=
nor 100111 39 27 Z 103 67 =3
sb 10 1000 40 28 (e 104 68 e
sh 10 1001 41 29) 105 69 i
swl sit 10 1010 42 2a rod 106 6a]
sw sltu 10 1011 43 2b -+ 107 6b k
10 1100 44 2c 5 108 6¢C 1
101101 45 2d - 109 6d m
swr 101110 46 2e = 110 6e n
cache 10 1111 47 20 / 111 6f o
S E tge St 11 0000 48 30 [6] 112 70 P
1wel tgeu c.un.f 11 0001 49 31 1 113 711 q
lwc2 tlt c.eq.f 11 0010 S50 32 2 114 72 T
Dref tltu c.ueqg.f 11 0011 S1 33 3 115 73 s
teg c.olt f 11 0100 52 34 4 116 74 t
ldcl (Crsabtinie g 11 0101 53 35 =3 117 75 u
ldc2 tne c.ole.f 11 0110 54 36 6 118 76 v
c.ule.f 11 0111 SS 3 7 119 FLTL W
sc o st 11 1000 56 38 8 120 78 x
swel c.ngle.f [11 1001 57 39 o 121 79 v
swc2 c.seq.f 11 1010 58 3a = 122 7a z
c.nglif 11 1011 59 3b 2 123 7b {
Sz xt L 11 1100 60 3¢ = 124 Tc I
sdci1 c.nge.f 11 1101 61 3d - 125 7d e
sde2 c.le.f 11 1110 62 3e == 126 Te —
<-ngt.f 11 1111 63 SE ? 127 SRS

(1) opcode(31:26) ==

(2) opcode(31:26)
if fmt(25:21)==17,.,, (11,,.,) f= 4 (double)

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy. Computer Organization and Desigrn, 3rd ed.

= 174en (11pex)s

if fmt(25:21)==16,, (104,..) f= s (single);

STANDARD - IEEE 754 Symbols
= = Exponent Fraction Object
(-1)5 < (1 + Fraction) < 2(Exponent- Bias) 0 0 = 0
where Single Precision Bias = 127, o ¢O_ £ Denotm
Double Precision Bias = 1023. 1 to MAX - 1 |anything |+ FI. Pt. Num.
MAX (6] *+oo
IEEE Single Precision and MAX =0 NaN
Double Precision Formats: S.P. MAX =255, D.P. MAX = 2047
[S [Exponent | Fraction [
31 30 23 22 o
| S | Exponent ! Fraction ég]
63 62 52 51 o
MEMORY ALLOCATION STACK FRAME
Stack Higher
$sp —® 7fff fifcy o T Memory
regument 6
" Addr
regument S
Sfp —p
Saved Registers
Dynamic Data & Stack
Sgp—P 1000 8000, Grows
Static Data Local Variables i
1000 0000y,
Text Ssp—p»
pc —P0040 0000, Lower
Memory
Oy Reserved: Addresses
' DATA ALIGNMENT
Double Word
Word Word
Half Word Half Word Half Word Half Word
Byte [Byte | Byte | Byte | Byte | Byte Byte | Byte
I 2 3 a 5 7
Value of three least significant bits of byte address (Big Endian)
EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS
BEETTTTT Interrupt Exception
DE Mask

- = : Interrupt - - - L E
= 2 : TS P S - i 0
BD = Branch Delay, UM = User Mode, EL = Exception Level.IE =Interrupt Enable
EXCEPTION CODES
= CS
I\blé;n Name Cause of Exception NbL:rn Name Cause of Exception
0] Int Interrupt (hardware) =) Bp Breakpoint Exception
AdE Address Error Exception 10 RI Reserved Instruction
1= (load or instruction fetch) Exception
Address Error Exception Coprocessor
= NS (store) L Coll Unimplemented
Bus Error on Arithmetic Overflow
(= WS Instruction Fetch iz 2 Exception
7 DBE Bus Error on Load or Store| 13 T Trap
8 Sys Syscall Exception 15 FPE Floating Point Exception
SIZE PREFIXES (10* for Disk, Communication; 2% for Memory)
PRE- PRE- PRE- PRE-
SIZE FIX SIZE FIX SIZE FIX SIZE FIX
102, 219" Kilo- [F10%3 259 Peta- 102 milli- | 107!'° femto-
10°, 22° Mega- | 10!3,2°° Exa- 10® micro- | 10°!% atto-
102 2205 Gica: 102027 Y vcita 10°° nano- | 102! zepto-
1012, 570 Tera- 1022, 23% Votia- 1022 pico- 102* yocto-

g

he symbol for each prefix is just its first letter, except UL is used for micro.

12

e o 1 g e = o g oo e . v e . o 21 w1 b . o [e s PP L SN e A U e i e 8 L

Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

add a, b, ¢ # a gets b + c
All arithmetic operations have this form
Design Principle 1: Simplicity favors
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 13

MIPS Arithmetic Instructions

2 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

P

, 5352

2 Each arithmetic instruction perfokms anly one
operation

0 Each arithmetic ingtruction fits in 32 bitg and specifies

2 Operand order is fixed (destination first)

sub

0 Those operands are all contained in the datapath’s
register file ($t0, $s1, $s2) — indicated by $

Chapter 2 — Instructions: Language of the Computer — 14

Arithmetic Example

C code:
= (g+h) - i+ 3;
Compiled MIPS code:

add t0O, g, h # temp t0
add tl1, 1, jJ # temp tl
sub f, t0, tl #f=t0—t1

-1 QO
>

.

Chapter 2 — Instructions: Language of the Computer — 15

Register Operands

Arithmetic instructions use register
operands

MIPS has a 32 x 32-bit register file

Use for frequently accessed data
Numbered 0 to 31
32-bit data called a “word”

Assembler names
$t0, $t1, ..., $t9 for temporary values
$s0, $s1, ..., $s7 for saved variables

Design Principle 2: Smaller Is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 16

Register Naming Convention

Register Preserve
Number on call?

constant O (hardware)
reserved for assembler
returned values
arguments
temporaries

saved values
temporaries

global pointer

stack pointer

frame pointer

return addr (hardware)

Chapter 2 — Instructions: Language of the Computer — 17

Register Operand Example

C code:

f=0@+h - QO+ 3J);
f,...,jin $s0, ..., $s4

Compiled MIPS code:

add $t0, $s1, $s2
add $tl1, $s3, $s4
sub $s0, $tO0, $tl

Chapter 2 — Instructions: Language of the Computer — 18

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data
To apply arithmetic operations
Load values from memory into registers
Store result from register to memory
Memory Is byte addressed
Each address identifies an 8-bit byte
Words are aligned in memory
Address must be a multiple of 4
MIPS is Big Endian

Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 19

Byte Addresses

Register Register
Memory 0AOBOCOD OQAOBOCOD Memory
a:| QA | =—— —» a|0D
at+l:|0OB | = > a+1:|0C
at+2:|0C | == > at+2:/0B
at+3:|0D| == — > at3:|0A
: Blg-endian Little-endian :
Big Endian: Little Endian:
Leftmost byte is word address Rightmost byte is word address
LS Byte has biggest address in the LS Byte has little address in the

word word.

//upload.wikimedia.org/wikipedia/commons/5/54/Big-Endian.svg
//upload.wikimedia.org/wikipedia/commons/e/ed/Little-Endian.svg

Addressing Mode Summary

1. Immediate addressing

op

rs

rt

Immediate

2. Register addressing

op

rs

rt

rd | ... |funct

Registers

Register

3. Base addressing

op

rs

rt

Address

Register

Memory

|- Halfword | Word

4. PC-relative addressing

op|trs |t Address Memory
PC Word
I
5. Pseudodirect addressing
op Address Memory
I
PC Word

?

Chapter 2 — Instructions: Language of the Computer — 21

| Review of MIPS Operand Addressing Modes

1 Register addressing — operand is in a register

op rs| rt | rd funct Register
| > word operand

1 Base (displacement) addressing — operand is at the
memory location whose address is the sum of a register
and a 16-bit constant contained within the instruction

op rs| rt offset Memory

D» word or byte operand

base register
e Register relative (indirect) with 0($a0)

e Pseudo-direct with addr($zero)

1 Immediate addressing — operand is a 16-bit constant
contained within the instruction

op rs rt operand

Chapter 2 — Instructions: Language of the Computer — 22

Review of MIPS Instruction Addressing Modes

1 PC-relative addressing —instruction address is the sum of
the PC and a 16-bit constant contained within the
Instruction

op rs| rt offset Memory

, _D—- branch destination instruction

Program Counter (PC)

1 Pseudo-direct addressing — instruction address Is the 26-
bit constant contained within the instruction concatenated
with the upper 4 bits of the PC

op jump address Memory
A jump destination instruction

AV

Program Counter (PC)

Chapter 2 — Instructions: Language of the Computer — 23

Memory Operand Example 1

C code:
g =h+ A[8];
g in $s1, h in $s2, base address of A in $s3

Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1, $52,\$t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 2

C code:
Al[12] = h + A[8];

hin $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 25

Registers vs. Memory

Registers are faster to access than
memory

Operating on memory data requires loads
and stores

More Instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 26

Immediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4

No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3. Make the common
case fast

Small constants are common
Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 27

The Constant Zero

MIPS register 0 ($zero) is the constant O
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $s1, %$zero

Chapter 2 — Instructions: Language of the Computer — 28

Representing Instructions

Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’'s 8 — 15
$t8 — $t9 are reg’s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 29

MIPS R-format Instructions

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 30

R-format Example

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
add $t0, $s1, $s2
special $s1 $s2 $t0 0 add
0 17 18 8 0 32
000000 | 10001 | 10010 | 01000 | 0O0OOOO | 100000

Chapter 2 — Instructions: Language of the Computer — 31

00000010001100100100000000100000, = 0232402044

MIPS I-format Instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions

rt: destination or source register number

Constant: =2 to +2° -1

Address: offset added to base address in rs
Design Principle 4: Good design demands good
compromises

Different formats complicate decoding, but allow 32-bit
Instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 32

Stored Program Computers

nstructions represented in
ninary, just like data

_ Memory nstructions and data stored
i’*"&?i?ﬁ%%%ﬁ?é?mi IN memory
| Edtor progam Programs can operate on

octiiiieses| PrOQrams

processor | || (machine code) | e.g., compilers, linkers, ...
. ryaica || Binary compatibility allows
;----;--k------:: compiled programs to work
| ook text :

on different computers
Standardized ISAs

———— —— — o st sy

Source code in C :
for editor program :

N —.

Chapter 2 — Instructions: Language of the Computer — 33

Logical Operations

Instructions for bitwise manipulation
Operation C Java MIPS
Shift left << << s11
Shift right >> >>> sri
Bitwise AND & & and, andi
Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 34

Shift Operations

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

shamt: how many positions to shift

Shift left logical
Shift left and fill with O bits
s 11 by i bits multiplies by 2
Shift right logical

Shift right and fill with O bits
sr1 by i bits divides by 2' (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 35

AND Operations

Useful to mask bits in a word
Select some bits, clear others to O

and $t0, $t1, $t2

$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 0000 0000 0000 0000 0000 1100 0000 0000

Chapter 2 — Instructions: Language of the Computer — 36

OR Operations

Useful to include bits in a word
Set some bits to 1, leave others unchanged

or $t0, $tl1, $t2

$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 0000 0000 0000 0000 0011 1101 1100 0000

Chapter 2 — Instructions: Language of the Computer — 37

NOT Operations

Useful to invert bits in a word
ChangeOtol,and1to O

MIPS has NOR 3-operand instruction
aNOR b==NOT (aORDb)

nor $t0, $tl, $zero - Register 0: always

read as zero

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 1111 1111 11171 1111 1100 0011 1111 1111

Chapter 2 — Instructions: Language of the Computer — 38

Conditional Operations

Branch to a labeled instruction if a
condition Is true

Otherwise, continue sequentially
beq rs, rt, L1
If (rs == rt) branch to instruction labeled L1;

bne rs, rt, L1
If (rs !=rt) branch to instruction labeled L1;

i L1

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 39

Compiling If Statements
C code:

if (i==j) f = g+h: <

else ¥ = g-h;

f, g, ...in $s0, $s1, ...
Compiled MIPS code: s |

bne $s3, $s4, Else
add $s0, $s1, $s2
J EX1t

Else: sub $s0, $s1, $s2

EXTT: o

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 40

Compiling Loop Statements

C code:
while (save[1] == k) 1 += 1;

1 in $s3, k in $s5, address of save in $s6
Compiled MIPS code:

Loop: sll $tl1, $s3, 2
add $t1, $t1, $s6
Tw $t0, 0($tl)
bne $t0, $s5, Exit
addi $s3, $s3, 1
] Loop

ExX1t: ..

Chapter 2 — Instructions: Language of the Computer — 41

Basic Blocks

A basic block Is a sequence of instructions
with

No embedded branches (except at end)

No branch targets (except at beginning)

_ Y A compiler identifies basic
blocks for optimization

An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 42

More Conditional Operations

Set result to 1 If a condition Is true
Otherwise, setto 0

slt rd, rs, rt

If (rs<rt)rd =1, else rd = 0O;
slt1 rt, rs, constant

If (rs < constant) rt = 1; else rt = 0;

Use in combination with beq, bne

st $t0, $s1, $s2 # if ($sl1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 43

Branch Instruction Design

Why not b1t, bge, etc?

Hardware for <, =2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All instructions penalized!
beqg and bne are the common case

This Is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 44

Signed vs. Unsigned

Signed comparison: s1t, s1t1
Unsighed comparison: s1tu, s1tu1

Example
$s0 =11111111 11111111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, $s1 # signed
-1<+1=%t0=1

sltu $t0, $s0, $s1 # unsigned
+4,294,967,295> +1 = $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 45

Procedure Calling

Steps required
Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations
Place result in register for caller
Return to place of call

Chapter 2 — Instructions: Language of the Computer — 46

Register Usage

$a0 — $a3: arguments (reg’'s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 47

Procedure Call Instructions

Procedure call: jump and link

jal ProcedureLabel
Address of following instruction put in $ra
Jumps to target address

Procedure return: jump register
jr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 48

Leaf Procedure Example

C code:

int leaf_example (int g, h, 1, J)
{ 1nt f;

f=0@+h) -0+ 73);
return f;

}
Arguments g, ..., jin $a0, ..., $a3
fin $s0 (hence, need to save $s0 on stack)
Result in $vO

Chapter 2 — Instructions: Language of the Computer — 49

Leaf Procedure Example

MIPS code:

leaf_example:
addi $sp, $sp, -4
SW $s0 : O($Sp) Save $s0 on stack
add $t0, %$a0, %$al
add $tl, $%$a2, $%a3 Procedure body
sub $s0, $tO0, $tl
add $v0, $sO, $zero | Resut
Tlw $s0, 0($sp)
addi $sp, $sp, 4
j I $ra Return

Restore $s0

Chapter 2 — Instructions: Language of the Computer — 50

Non-Leaf Procedures

Procedures that call other procedures

For nested call, caller needs to save on the
stack:
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 51

Non-Leaf Procedure Example

C code:

int fact (1nt n)

{
1f (n < 1) return f;

else return n * fact(n - 1);
}

Argument n in $a0
Result in $vO0

Chapter 2 — Instructions: Language of the Computer — 52

Non-Leaf Procedure Example

MIPS code:

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $%$al0, 1
beq $t0, $zero, L1

adjust stack for 2 items
save return address

save argument

test for n < 1

H H H R

addi $v0, $zero, 1 if so, result is 1
addi $sp, $sp, 8 pop 2 items from stack
jr $ra and return
L1: addi $a0, $%$a0, -1 else decrement n
jal fact recursive call

Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $vO
jr $ra

restore original n

and return address
pop 2 items from stack
multiply to get result
and return

| H H HH OHHH R

Chapter 2 — Instructions: Language of the Computer — 53

Local Data on the Stack

High address

$fp— $fp—

$sp— $sp—
$fp—

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a b C.

Local data allocated by callee
e.g., C automatic variables

Procedure frame (activation record)
Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 54

Memory Layout

Text: program code
Static data: global

Va”ables $sp—= 7TFF fffcyey StTCk
e.g., static variables in C,
constant arrays and strings Dynanfic e
$gp Inltla“zed to address $gp— 1000 8000y, Static data
allowing toffsets into this 1000 00004, _—
segment pc— 0040 0000,,, - y
Dynamic data: heap :
E.g., malloc in C, new In
Java

Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 55

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 56

Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store

String processing IS a common case
Ib rt, offset(rs) Th rt, offset(rs)

Sign extend to 32 bits in rt
Tbu rt, offset(rs) Thu rt, offset(rs)

Zero extend to 32 hits in rt
sb rt, offset(rs) sh rt, offset(rs)

Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 57

String Copy Example

C code (naive):

Null-terminated string
voild strcpy (char x[], char y[])
{ 1nt 1;

1 = 0;

while ((x[1]=y[1])!'="\0")

1 += 1;

¥

Addresses of x, y in $a0, $al
1 in $s0

Chapter 2 — Instructions: Language of the Computer — 58

String Copy Example

MIPS code:
strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # 1 =0
L1: add $t1, $s0, $al # addr of y[i] in $t1
Tbu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 #1 =1 +1
j L1 # next i1teration of loop
L2: 1w $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 59

32-bit Constants

Most constants are small
16-bit iImmediate Is sufficient

For the occasional 32-bit constant
Tu1l rt, constant

Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to O

Thi $s0, 61 0000 0000 0111 1101 |0OOO0 OOO0O 0000 0000

ori $s0, $s0O, 2304 | 0000 0000 0111 11010000 1001 0000 0000

Chapter 2 — Instructions: Language of the Computer — 60

Branch Addressing

Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset x 4
PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 61

Jump Addressing

Jump (J and jal) targets could be
anywhere In text segment

Encode full address In instruction

op address
6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC,; o5 : (address x 4)

Chapter 2 — Instructions: Language of the Computer — 62

Target Addressing Example

Loop code from earlier example
Assume Loop at location 80000

Loop: sl1 $tl, $s3, 2 80000 | O 0 | 19| 9 4 0
add $t1, $tl1, $s6 80004 |0 9 22 9 0 32
Tw $t0, 0(%$tl) 80008 | 35 9 8 0
bne $t0, $s5, Exit 80012 | 5 8 | 21 2
addi $s3, $s3, 1 80016 | 8 19 | 19 1
j Loop 80020 | 2 | 20000

Exit: .. 80024

Chapter 2 — Instructions: Language of the Computer — 63

Branching Far Away

If branch target Is too far to encode with
16-bit offset, assembler rewrites the code

Example
beq $s0,%$s1, L1
!
bne $s0,%$s1l, L2
j Ll
L2: ..

Chapter 2 — Instructions: Language of the Computer — 64

Translation and Startup

C program

w Many compilers produce
object modules directly
Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

Linker > Static linking

Executable: Machine language program

Memory

Chapter 2 — Instructions: Language of the Computer — 65

Assembler Pseudoinstructions

Most assembler instructions represent
machine instructions one-to-one

Pseudoinstructions: figments of the
assembler’'s imagination
move $t0, $tl — add $t0, $zero, $tl

b1t $t0, $t1l, L — s1t $at, $t0, $tl
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 66

Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces
Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 67

Machine Language - Load Instruction

Consider the load-word and store-word instr’s
What would the regularity principle have us do?

But. ..

Introduce a new type of instruction format

|-type for data transfer instructions (previous format was R-
type for register)

Example: w)$t0, 24($s2)
]

op / IS rt 16 bit number
/ iyl
2 18 8 24
/ gl
| 100011 | 10010 | 01000 0000000000011000

68

Machine Language

Instructions, like registers and words of data, are also 32
bits long

Example: add $t1, $s1, $s2

registers have numbers, $t1=9, $s1=17, $s2=18

Instruction Format:
Fieldsize: 6 hits 5 bits B hits 5 bits B hit 6 hits

0000001000110010 | 01001! 00000! 100000
op IS rt rd shamt funct

Can you guess what the field names stand for?

69

Machine Language — Immediate Instructions

What instruction format is used for the addi ?
Ss3 + 4

Addd $s3, $s3, 4

Machine format:

#5s3 =

/OD

s

It

16 bit immediate

L1

19

19

| format

The constant is kept inside the instruction itself!
So must use the | format — Immediate format
Limits immediate values to the range +215-1 to -215

71

Load Example

varO: .word 0x01234567

varl: .word

la $s1, varO
lw $t1, O($s1)
lw $t1, 1($s1)
la $s1, varl
b $t1, 0($s1)
b $t1, 1($s1)
b $t1, 2($s1)

b $t1, 3($s1)
79

Ox79abcdef

$t1 = 01234567
#Error: misalignment

$tl = ff ff ff ef

$t1 = ff ff ff cd
$tl = ff ff ff ab
$t1 = 00 00 00

la $s1, varO

Ih $t1, 0($s1) #$t1=00004567

lh $t1, 1($s1) #Error: misalignment
Ih $t1, 2($s1) #$t1=0000 0123

lh $t1, 3($s1) #Error: misalignment

lw $t1, 4($sl) #tl=varl
sh $t1, 0($s1) #varO= 0123cdef
sb $t1, 3($s1) #varO=ef23cdef

Subroutine Example

.data
datal: .word 5
data2: .word 10
EHER R R R R A AR R
ext
la $a0, datal
la $al, data2
jal my_sub
add $t0, $vO0, $zero
syscall # exit program
B R T R R
text
my_sub:
lw $t0, 0($a0)
lw $t1, 0($al)
add $vO0, $t0, $t1
jr $ra

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)

void swap(int v[], 1nt k)
{

1nt temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;
}

vin $a0, k in $al, temp in $t0

Chapter 2 — Instructions: Language of the Computer — 74

The Procedure Swap

swap: sl11 $t1, $al, 2 # %t1l = k * 4
add $tl1, $a0, $tl # $t1 = v+(k*4)
(address of v[k])
Tw $t0, 0($tl) # $t0 (temp) = v[k]
Tw $t2, 4(%$tl) # $t2 = v[k+1]
sw $t2, 0($tl) # vik] = $t2 (v[k+1])
sw $t0, 4($tl) # vik+1l] = $t0 (temp)
jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 75

The Sort Procedure in C

Non-leaf (calls swap)
void sort (int v[], int n)

{. . .
int 1, J;
for (1 =0; 1 <n; 1 4+=1) {
for (3 =1 - 1;
j >=0 &% v[j] > v[] + 1];
j =1 {
swap(v,J);
}
}
}
vin $a0, k in $al, iin $s0, jin $s1

Chapter 2 — Instructions: Language of the Computer — 76

The Procedure Body

Move
params

Outer loop

Inner loop

Pass
params
& call

Inner loop

move $s2, $a0 # save %$a0 into $s2
move $s3, $al # save $al into $s3
move $s0, $zero #1i =0
forltst: s1t $t0, $s0, $s3 # $t0 =0 if $s0 > $s3 (i > n)
beq $t0, $zero, exitl # go to exitl if $s0 > $s3 (i > n)
addi $s1, $s0, -1 #j =1 -1
for2tst: slti $t0, $s1, O # $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
s11T $tl1, $s1, 2 # $tl =3 * 4
add $t2, $s2, $tl #%$t2 =v + (j * 4)
Tw $t3, 0(%$t2) # $t3 = v[j]
Tw $t4, 4(%$t2) # $t4 = v[j + 1]
st $t0, $t4, $t3 # $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3
move $a0, $s2 # 1st param of swap is v (old $a0)
move $al, $sl # 2nd param of swap 1is j
jal swap # call swap procedure
addi $s1, $s1, -1 #3j =1
j for2tst # jump to test of inner Tloop
exit2: addi $s0, $s0, 1 #1 +=1
j forltst # jump to test of outer Tloop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 77

The Full Procedure

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $sl1 on stack
sw $s0, 0($sp) # save $sO0 on stack
procedure body
exitl: 1w $s0, 0($sp) # restore $sO0 from stack
Tw $s1, 4($sp) # restore $s1 from stack
Tw $s2, 8($sp) # restore $s2 from stack
Tw $s3,12($sp) # restore $s3 from stack
Tw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 78

o COMPUTER ORGANIZATION AND DESIGN «‘CZE%

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Dr. Bassam Jamil
[Adapted from Computer Organization and Design,
Patterson & Hennessy, © 2012, UCB]

Outline

Introduction

Addition and Subtraction
Multiplication

Division

Floating Point

ALU Design

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers

Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow

Floating-point real numbers
Representation and operations

Chapter 3 — Arithmetic for Computers — 3

Integer Addition

Example: 7 + 6

RTHHRH

0 (0) 0 O 1 (1) 1 (1) 0

Overflow If result out of range
Adding +ve and —ve operands, no overflow

Adding two +ve operands
Overflow if result signis 1

Adding two —ve operands
Overflow if result signis 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction

Add negation of second operand
Example: 7—-6 =7 + (-6)
+7: 0000 0000 ... 0000 0111
—0: 11111111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
Overflow If result out of range
Subtracting two +ve or two —ve operands, no overflow

Subtracting +ve from —ve operand
Overflow if result signis 0

Subtracting —ve from +ve operand
Overflow if result signis 1

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow

Some languages (e.g., C) ignore overflow
Use MIPS addu, addu1, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception
Use MIPS add, add1i, sub instructions

On overflow, invoke exception handler

Save PC in exception program counter (EPC)
register

Jump to predefined handler address

mfcO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Multiplication

Start with long-multiplication approach

-

multiplicand \
Multiplicand
ipli 1000 e Shift left |<—
multiplier ? 1001 —
1000 ! l
OOOO \/ & Multiplier
0000 64-bit ALU Shift right
1000 32 bits A—|
roduct | 7™
i 1001000 Product Wit Conm
Length of product is 64 bits

the sum of operand
lengths

Chapter 3 — Arithmetic for Computers — 7

Multiplication Hardware

Y B

Multiplier0 = 1 Multiplier0 = 0 Multiplicand

1. Test

Multiplier0 Shift left |-e—

| 64 bits
1a. Add multiplicand to product and Y
place the result in Product register \/ —_—
| _ Multiplier
64-bit ALU Shift right
Y Y
| 2. Shift the Multiplicand register left 1 bit | 32 bits
\
| 3. Shift the Multiplier register right 1 bit | Product Control test
l Write
64 bits
No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Initially O

Chapter 3 — Arithmetic for Computers — 8

Optimized Multiplier

Perform steps in parallel: add/shift

Multiplicand

j 132 bits
\/ ~t

32-bit ALU

——

Product Shift rlg_ht
Write

64 bits

One cycle per partial-product addition
That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 9

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt / multu rs, rt
64-bit product in HI/LO

mfhi rd / mflo rd
Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 10

Division

guotient
dividend \

1001

10001001010

/" ~1000
10

divisor

101
1010
-1000

— 10

remainder

n-bit operands yield n-bit
guotient and remainder

Check for 0 divisor

Long division approach

If divisor < dividend bits
1 bit in quotient, subtract

Otherwise

O bit in quotient, bring down next
dividend bit

Restoring division

Do the subtract, and if remainder
goes < 0, add divisor back

Signed division
Divide using absolute values

Adjust sign of quotient and remainder
as required

Chapter 3 — Arithmetic for Computers — 11

Division Hardware

(Start)

-l
-«

Y Initially divisor
1. Subtract the Divisor register from the .
Remainder register and place the In Ieft h alf
result in the Remainder register

_..
Divisor
Remainder = 0 Remainder < 0 it ri <
Test Remainder Shift right |
64 bits
/
‘, ‘ l
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding \/
setting the new rightmost bit to 1 the Divisor register to the Remainder . Quotient
register and placing the sum in the 64-bit ALU Shift left |-
Remainder register. Also shift the -
Quotient register to the left, setting the v 32 bits
new least significant bit to 0
| Remainder Control
Write test
\ Y 64 bits

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Initially dividend

Yes: 33 repetitions

Chapter 3 — Arithmetic for Computers — 12

Optimized Divider

Divisor

32 bits
l \

\/

32-bit ALU

~¢

T

' Shift right
Remainder Shift left
Write

64 bits

One cycle per partial-remainder subtraction

Looks a lot like a multiplier!
Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 13

MIPS Division

Use HI/LO reqisters for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mthi, mflo to access result

Chapter 3 — Arithmetic for Computers — 14

Floating Point

Representation for non-integral numbers
Including very small and very large numbers

Like scientific notation
—2.34 x 10°6 - normalized

+0.002 x 10 > not normalized
+987.02 x 10°

In binary
1 . XXXXXXX, X 2Y¥YY

Types float and doublein C

Chapter 3 — Arithmetic for Computers — 15

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of
representations
Portability issues for scientific code

Now almost universally adopted

Two representations
Single precision (32-bit)
Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 16

IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (—1)° x (1+Fraction)x 2®®onen-eias)

S: sign bit (0 = non-negative, 1 = negative)
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

Significand is Fraction with the “1.” restored
Exponent: excess representation: actual exponent + Bias

Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1203

Chapter 3 — Arithmetic for Computers — 17

Floating Point Representation

Single Precision

Double Precision

Object Represented

E (8) F (23) E (11) F (52)
0 0 0 0 true zero (0)
0 nonzero 0 nonzero |*denormalized number
+ 1-254 anything + 1-2046 anything [* floating point number
+1>28-2 +1>211-2
+ 255 0 + 2047 0 * infinity
+(28-1) +(211-1)
255 nonzero 2047 nonzero |notanumber (NaN)

Chapter 3 — Arithmetic for Computers — 18

Single Precision Double Precision Object Represented

0 o (0)
- - - 0 nonzero 0 nonzero | *denormalized number
S I n I e - P r e C I S I O n R an e *1-254 anything *1-2046 anything | *floating point number
+1->28.2 1212
+ 255 0 0 * infinity

+21-1)

nnnnnnn

(NaN)

reserved
Smallest value

Exponent: 00000001
— actual exponent=1-127 =-126

Fraction: 000...00 = significand = 1.0
+1.0 x 27126 = +1.2 x 1038

Largest value

exponent: 11111110
= actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
+2.0 x 2127 = +£3.4 x 10*38

Chapter 3 — Arithmetic for Computers — 19

Single Precision Double Precision Object Represented

nonzero 0 nonzero | *denormalized number

0
] |] 0
DO u b I e— P r eC I S I O n Ran *1-254 anything *1-2046 anything | *floating point number
+1->28.2 1212
+ 255 0 *+2047 0 *infi

) +H21.1)

Exponents 0000...00 and 1111...11 reserved

Smallest value

Exponent: 00000000001
— actual exponent =1 — 1023 = -1022

Fraction: 000...00 = significand = 1.0
+1.0 x 271022 = +2.2 x 107308

Largest value

Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
+2.0 x 2t1023 = +1 8 x 10*308

Chapter 3 — Arithmetic for Computers — 20

Floating-Point Precision

Relative precision
all fraction bits are significant
Single: approx 223

Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal
digits of precision

Double: approx 2-°2

Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 21

Single Precision uble Precision Object Represented

E
0 0 0 0 true zero (0)
" - 0 | nonzero 0 nonzero | *denormalized number
FI O at I n - P O I n t EX al I l I e +1-254 anything +1-2046 anything | *floating point number
* 13212
0 +2047 0

Represent-0.75 o
-0.75=(-1)* x 1.1, x 271
S =

Fraction = 1000...00,

Exponent = -1 + Blas
Single: -1 + 127 =126 = 01111110,
Double: -1 + 1023 = 1022 = 01111111110,

Single: 1011111101000...00
Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Example

What number Is represented by the single-
precision float
1000000101000...00

S =

Fraction = 01000...00,

Fxponent = 10000001, = 129
X = (_1)1 x (1 + 012) x (129 - 127)

=(-1) x 1.25 x 27

=-5.0

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Addition

Consider a 4-digit decimal example

0.999 x 10 + 1.610 x 101

1. Align decimal points

Shift number with smaller exponent
9.999 x 10! + 0.016 x 104

2. Add significands

3.

4.

0.999 x 10! + 0.016 x 10t =10.015 x 10*

Normalize result & check for over/underflow
1.0015 x 102

Round and renormalize if necessary
1.002 x 102

Chapter 3 — Arithmetic for Computers — 26

Floating-Point Addition

Now consider a 4-digit binary example
1.000, x 271 + —-1.110, x 272 (0.5 + —0.4375)
1. Align binary points

Shift number with smaller exponent
1.000, x 271 + -0.111, x 21
2. Add significands
1.000, x 271 + -0.111, x 2-1 = 0.001, x 21
3. Normalize result & check for over/underflow
1.000, x 274, with no over/underflow

4. Round and renormalize if necessary
1.000, x 24 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 27

FP Adder Hardware

Much more complex than integer adder

Doing it in one clock cycle would take too
long

Much longer than integer operations
Slower clock would penalize all instructions

FP adder usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 28

FP Adder Hardware

Sign | Exponent Fraction Sign | Exponent Fraction
\ \d \
\\/ Compare
Small ALU
exponents
A
Exponent
difference >
\ A | Y v Y Y Step 1
Co 1 e =(01)|—>(01)
Y
Y
— Shift smaller
Control -1 Shift right number right)
N
. Add
Big ALU > Step 2
] Y <
0o 1 0 1
Increment or > . :
decrement 7| Shiftleft or right Normalize Step 3
I
-1 Rounding hardware Round Step 4

\ Y

Sign | Exponent Fraction

-

Chapter 3 — Arithmetic for Computers — 29

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP
adder

But uses a multiplier for significands instead of
an adder

FP arithmetic hardware usually does

Addition, subtraction, multiplication, division,
reciprocal, square-root

FP < Integer conversion

Operations usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 32

FP Instructions in MIPS

FP hardware is coprocessor 1
Adjunct processor that extends the ISA

Separate FP registers
32 single-precision: $f0, $f1, ... $f31

Paired for double-precision: $f0/$f1, $f2/$f3, ...
Release 2 of MIPs ISA supports 32 x 64-bit FP reg’s

FP Instructions operate only on FP registers

Programs generally don't do integer ops on FP data,
Or vice versa

More registers with minimal code-size impact
FP load and store instructions (single/double)

Twcl, Tdcl, swcl, sdcl
e.g., 1dcl $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 33

FP Instructions in MIPS

Single-precision arithmetic

add.s, sub.s, mul.s, div.s
e.g.,add.s $f0, $f1, $f6

Double-precision arithmetic

add.d, sub.d, mul.d, div.d
e.g.,mul.d $f4, $f4, $f6

Single- and double-precision comparison
c.xx.s,c.xx.d(xxiseq, 1t, e, ...)

Sets or clears FP condition-code bit
e.g.c.1t.s $f3, $f4

Branch on FP condition code true or false

bclt, bclf
e.g., bclt TargetLabel

Chapter 3 — Arithmetic for Computers — 34

FP Example: °F to °C

C code:

float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));
}

fahr in $f12, result in $f0, literals in global memory
space

Compiled MIPS code:

f2c: Twcl $f16, const5($gp)
lwc2 $f18, const9(%$gp)
div.s $fl6, $fl6, $f18
lwcl $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

Chapter 3 — Arithmetic for Computers — 35

ALU Design: Datapath

Ainvert

Binvert

Operation

Carryln

Y

0
I S
1

Y

_

r
Y
¢ + <

CarryOut

> Result

36

Chapter 4 : The Processor

Dr. Bassam Jamil
[Adapted from Computer Organization and Design,
Patterson & Hennessy]

Introduction

CPU performance factors

Instruction count
Determined by ISA and compiler

CPIl and Cycle time
Determined by CPU hardware

We will examine two MIPS implementations
A simplified version
A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: Tw, sw
Arithmetic/logical: add, sub, and, or, s1t
Control transfer: beq, j

Chapter 4 — The Processor — 2

Instruction Execution

PC — Instruction memory, fetch instruction
Register numbers — register file, read reqisters

Depending on instruction class

Use ALU to calculate
Arithmetic result
Memory address for load/store
Branch target address

Access data memory for load/store
PC « target address or PC + 4

Chapter 4 — The Processor — 3

Processor Control Unit: Basics
What needs to be controlled

Unit

Register File

Memory

ALU

PC control

—

—

—

Register Write: enable write to register file

Specifying destination Register: instruction[20-16] versus
instruction[15-11]

Memory-to-register: What to write to register file? Memory
output or ALU output

Memory Read: enables memory read access
Memory Write: enables memory write access

ALUOp: specifies ALU operation

ALUSource: second operand to ALU can be from register
file or instruction (i.e., immediate data)

Branch: PC <- (PC+4) + offset
Jump: PC<-Jump address

Chapter 4 — The Processor — 4

CPU Overview

>
4 —»
%dd N Add
L A
Data
Register #
| PC (&> Address Instruction '{ Registers Address
_ Register # Data
Instruction -
: } memory
memory o> Register # T
» Data

Chapter 4 — The Processor — 5

Multiplexers

[Can't just join
™

L/ wires together

T > Use multiplexers
%dd _[Add

A

3
|—> Data j
Register #
| PC (&> Address Instruction '{ Registers Address
_ Register # Data
Instruction -
, [4 memory
memory o> Register #
Data

Chapter 4 — The Processor — 6

Control

Branch
]
|
M |e—
u
e
4 —»
4 dd [Add M
s > u
X —
L ALU operation
Data [
¢+ Reqister # Memirte
'~ PC [Address Instruction (e Registers M ALU >| Address
- &> Register # Zero Data
Instruction u memor B
memory ¢ Register # Regwrite X !
» Data
MemRead
\\
Control ;
i

Chapter 4 — The Processor — 7

Building a Datapath

Datapath

Elements that process data and addresses
In the CPU

Registers, ALUs, mux’s, memories, ...

We will build a MIPS datapath
incrementally

Refining the overview design

Chapter 4 — The Processor — 8

Instruction Fetch

4
Read \
— PC address Increment by
/ 4 for next
32-bit Instruction —— Instruction
register
Instruction
memory

Chapter 4 — The Processor — 9

R-Format Instructions

Read two register operands
Perform arithmetic/logical operation
Write register result

-

5 |R ALU operation
Ty e?dt ri) "
egisie Read
—— e
Register { 5 |Read data 1
numbers | register 2
5 |write Registers o Data ALU ALu
> register result
\ dRateaag
Data Write J
Data
RegWrite
a. Reqisters b. ALU

Chapter 4 — The Processor — 10

| oad/Store Instructions

Read register operands
Calculate address using 16-bit offset
Use ALU, but sign-extend offset

Load: Read memory and update register
Store: Write register value to memory

‘ MemWrite

—| Address R de:,'[: —

Sign-
extend

Data

Write ~ memory

data

MemRead

b. Sign extension unit

a. Data memory unit

Chapter 4 — The Processor — 11

Branch Instructions

Read register operands

Compare operands
Use ALU, subtract and check Zero output

Calculate target address
Sign-extend displacement

Shift left 2 places (word displacement)

Add to PC + 4
Already calculated by instruction fetch

Chapter 4 — The Processor — 12

Branch Instructions

PC +4 from instruction datapath —
Just S Branch
re-routes Add Sum target
wires
Regd ALU operation
Instruction register 1 Read _
Read data 1 i
register 2
. Registers ALU Zero Ic?n?rr;r}g;ic
Write
register Read .
Write data 2]
data
RegWrite
16 | Sign- 32
~ | extend
Sign-bit wire
replicated

Chapter 4 — The Processor — 13

Composing the Elements

First-cut data path does an instruction In
one clock cycle

Each datapath element can only do one
function at a time

Hence, we need separate instruction and data
memories

Use multiplexers where alternate data
sources are used for different instructions

Chapter 4 — The Processor — 14

R-Type/Load/Store Datapath

. F{egd 1 ALU operation
register Read R
Read data 1 o
Instruction | register 2 ALUSrc AL
Writs Registers pgaq 0 v reAsLLIJt Address
*— u
register data 2 “L’Il
| Write [
data
»| Write
RegWrite data
16 | sign- | 32
~ | extend

MemWrite
MemtoReg
Read (7
data M
u
X
>0
Data
memory
MemRead

Chapter 4 — The Processor — 15

Full Datapath

PCSrc
M
Add & > u
X
ALU
4= Add (g it
Read Read ALUSrc 4| ALU operation
register 1 Read | .
address data 1 > MemWrite
F{egd a8 MemtoReg
. register 2
nstruton Write Registers Read ALU AL Address Read
Instruction register data 2 result data
memory _
| data
| Write Data
RegWrite " |data memory
MemRead
16: Sign- 32
extend

Chapter 4 — The Processor — 16

ALU Control

ALU used for
Load/Store: F = add
Branch: F = subtract

R-type: F depends on funct field
ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 17

ALU Control

Assume 2-bit ALUOp derived from opcode
Combinational logic derives ALU control

opcode ALUOp | Operation funct ALU function ALU control
lw 00 load word XXXXXX | add 0010
sSw 00 store word XXXXXX | add 0010
beq 01 branch equal XXXXXX | subtract 0110
R-type 10 add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than 0111

Chapter 4 — The Processor — 18

The Main Control Unit

Control signals derived from instruction

R-type

Load/
Store

Branch

0 rs rt rd shamt funct
31:26 25:21 20:16 \15:11 10:6 5:0
350r43 rs rt \ address
31:26 25:21 20:16 ’\ \ 15:0 Il
4 rs rt \ \ address
31:26 25:21 20:16 \\ 15:0 \
opcode always read, write for sign-extend
read except R-type and add
for load and load

Chapter 4 — The Processor — 19

Datapath With Control

Add

ALU
result

]
- xc= ©

4 — Add

RegDst
Branch
\ MemRead
Instruction [31-26] MemtoReg
> Control ALUOp
MemWrite
/ ALUSrc
RegWrite

Instruction [25—-21]
> PC o> Read > Ee%?ger 1
address Read
Instruction [20-186] Read data 1
Instruction -

I register 2
31-0] [TY

. Write Read (0
Instruction | | |instruction [15-11] register data 2
memory >

Write
|
data Registers

Zero
ALU 7Ly
result

Read

Address data

“xec=2°

—“xc=2
Oxc=—

_ | Write Data
> memory

data
Instruction [15-0] 16 @ 32

Instruction [5-0]

Chapter 4 — The Processor — 20

R-Type Instruction

Add

y
- xe= ©

ALU

Add result

RegDst
Branch
MemRead
Instruction [31-26] MemtoReg
»| Control ALUOp
MemWrite
/ ALUSrc
RegWrite

Instruction [25-21] Read

Read > ;
*PC % address register 1 peaqg
Instruction [20-16] Read data 1

11 register 2

Write Read »(0
register data 2

Zero
ALU ALu
result

Instruction
[31-0]

Instruction | | [|nstruction [15-11]
memory >

Read
Address data

“xec=20

—“xc=2
Oxc=—"

| Write .
data Registers

Instruction [15-0] 16 @ 52

Instruction [5-0]

write Data
data memory

Chapter 4 — The Processor — 21

Load Instruction

Add

Read
address

Instruction
[31-0]

Instruction
memory

-4

Instruction [31-26]

» Control

Instruction [25—21

]

RegDst
Branch

Add

- xc=2 ©

ALU
result

\ MemRead

MemtoReg

ALUOp

MemWrite

/ ALUSrc

RegWrite

Instruction [20-16]

L.

Instruction [15—11]

“xec=2°

Instruction [15-0]

_ | Read

" | register 1 gooq

. | Read
" | register 2

data 1

Read

Write data D

register

o Write

data Registers

Y

Zero
ALU 7Ly
result

Read

Address data

Oxeg=—

Write Data

Instruction [5-0]

data

Chapter 4 — The Processor — 22

Branch-on-Equal Instruction

Add

Read
address

Instruction
[31-0]

Instruction

Y

memory

Instruction [31-26]

Instruction [25-21

]

RegDst
Branch

-+ xc= ©

ALU

Add result

\ MemRead

MemtoReg

= Control ALUOD

MemWrite

/ ALUSrc

RegWrite

Instruction [20-16]

He T—>

Instruction [15—11]

0
M
u
X

—

Instruction [15-0]

_ | Read

" | register 1 gooq
| Read data 1

register 2

Write Read
register data 2

. Write

data Registers

(0

“xe=2

Zero
ALU ;|
result

Read
Address data

/

Oxg=z—

write Data

Instruction [5-0]

> datg Mmemory

Chapter 4 — The Processor — 23

Implementing Jumps

Jump 2 address
31:26 25:0

Jump uses word address

Update PC with concatenation of
Top 4 bits of old PC
26-bit jJump address
00

Need an extra control signal decoded from
opcode

Chapter 4 — The Processor — 24

Datapath With Jumps Added

Instruction [25-0] @\ Jump address [31-0]

PC 4

Add

N Y
25 left 2 o8
.

L.

Instruction [31-26]

Ny

Read
address

Instruction
[31-0]

Instruction
memory

>

Instruction [25-21]
»

Control

Instruction [20—-16]

b

Instruction [15—11]
s -

L.

“xc=C

Instruction [15-0]

Y

PC + 4 [31-28] 1
u
X
ALU
Addresult 0
RegDst Y
Jump /
\ Branch
\ MemRead
MemtoReg
ALUOp
MemWrite
| ALUSrc
RegWrite
Read
register 1 Raag
data 1
Read
& . Zero
register 2 \r
ALU ALy Read
Write Read (0 »| Address —(1
register data2 Ih" result data I\L‘:I
Write N 1" Ox
data Registers Write Data
> data Memory

Instruction [5-0]

Chapter 4 — The Processor — 25

Performance Issues

Longest delay determines clock period

Critical path: load instruction

Instruction memory — register file > ALU —
data memory — register file

Not feasible to vary period for different
Instructions

Violates design principle
Making the common case fast

We will improve performance by pipelining

Chapter 4 — The Processor — 26

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

B5=M Four loads:

e Speedup
=8/3.5=2.3

Non-stop:

Speedup
=2n/0.5n+1.5=4
= number of stages

Chapter 4 — The Processor — 27

MIPS Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register

Chapter 4 — The Processor — 28

Assume time for stages Is

100ps for register read or write
200ps for other stages

Compare pipelined datapath with single-cycle

Pipeline Performance

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
lw 200ps 100 ps 200ps 200ps 100 ps 800ps
S 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 29

Pipeline Performance

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Single-cycle (T.= 800ps)

2(?0 4C|)0 6(.)0 8(|)0 10|00 12|00 14|00 16|00 18|00
800 ps o neg A | D42 | ag
800 DS Insft;:;t]ion
= s00ps
Pipelined (T,= 200ps)
2(|)0 4(?0 6(IJO 8(|)0 10|00 12|00 14|00
200 ps || [nes| A [o (e
200ps || [Reo| AU | soika |Res

200 ps 200 ps 200 ps 200 ps 200 ps

Chapter 4 — The Processor — 30

Pipeline Speedup

If all stages are balanced
l.e., all take the same time

Time between Instructions;;yejined
= Time between Iinstructions
Number of stages

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not
decrease

nonpipelined

Chapter 4 — The Processor — 31

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing

Can calculate address in 3" stage, access memory
in 41" stage

Alignment of memory operands
Memory access takes only one cycle

Chapter 4 — The Processor — 32

Hazards

Situations that prevent starting the next
Instruction in the next cycle

Structure hazards
A required resource is busy
Data hazard

Need to wait for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 33

Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access

Instruction fetch would have to stall for that
cycle
Would cause a pipeline “bubble”

Hence, pipelined datapaths require
separate Instruction/data memories

Or separate instruction/data caches

Chapter 4 — The Processor — 34

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $tl
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I I >

add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble (" bubble bubble) (bubble
@ @ O @ O
bubble bubble) (" bubble bubble) (" bubble
9 @ @ O O

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

Chapter 4 — The Processor — 35

Forwarding (aka Bypassing)

Use result when it iIs computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

Program
execution ' 200 400 600 800 1000
order Time T T T T T
(in instructions)

add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

Chapter 4 — The Processor — 36

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time : : : ; . : .
(in instructions)

w $s0, 20($t1) IF

sub $t2, $s0, $t3

Chapter 4 — The Processor — 37

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in
the next instruction

CcodeforA =B + E; C =B + F;

stall

stall

lw $tl, 0($t0)

w (5t2)-4(5t0)

._+zmh11!!!\EETT‘I!D

sw $t3, 12($t0)

w (5t4)-8($t0)
— add $t5, $t1,

sw $t5, 16($t0)

13 cycles

lw $tl, 0($t0)

add $t5, $t1;
sw $t5, 16($t0)

11 cycles

Chapter 4 — The Processor — 38

Control Hazards

Branch determines flow of control

Fetching next instruction depends on branch
outcome

Pipeline can’t always fetch correct instruction
Still working on ID stage of branch

In MIPS pipeline

Need to compare registers and compute
target early in the pipeline

Add hardware to do it in ID stage

Chapter 4 — The Processor — 39

Stall on Branch

Wait until branch outcome determined
before fetching next instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T l T I T T >
(in instructions)

add $4,85,86 "0 [Rea| AW | G2 |Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ccess |Pe9
bubble/_bubble/(bubble/(bubble’(bubble
@ @ © ©
or $7, $8, $9 < »|Instruction Data
y 400 ps fetch Reg| ALU access | °9

Chapter 4 — The Processor — 40

Branch Prediction

Longer pipelines can’t readily determine
branch outcome early

Stall penalty becomes unacceptable
Predict outcome of branch
Only stall if prediction is wrong

In MIPS pipeline
Can predict branches not taken
Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 41

MIPS with Predict Not Taken

Program
execution Time 2(')0 4(|)0 6(.)0 890 10|OO 12{00 14|00 N
order
(in instructions)
Instruction Data
Prediction add $4’ $5= $6 fetch Reg ALU access Reg
Instructi Dat
correct beq $1,$2,40 o= Meon | |Res| AU | ees |Reg
- | i D
lw $3, 300($0) 200 ps nsft;?;:lon Reg| ALU ac:;zs Reg
Y
Program
execution Time 200 400 600 800 1000 1200 1400 .
order
(in instructions)
Instruction Data
Prediction add $4, $5, $6 fetch Reg ALU access Reg
. Instruction Data
Incorrect beq $1,$2,40 ~——="" i Reg| ALU | sccess |e9
200 ps
bubble¢/(bubble/ bubble/ bubble/(bubble
9
—or $7, $8, $9 <+——————»Instruction Data
v 400 ps fetch Reg | ALU access | 1°9

Chapter 4 — The Processor — 42

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction

Hardware measures actual branch behavior
e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 43

Pipeline Summary

Pipelining improves performance by
Increasing instruction throughput

Executes multiple instructions in parallel
Each instruction has the same latency

Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

Chapter 4 — The Processor — 44

MIPS Pipelined Datapath

EX: Execute/ WB: Write back

address calculation

ID: Instruction decode/
register file read

IF: Instruction fetch MEM: Memory access

| | | |

I | | I

I | | I

I | | I

| | | |

I | | I

I | | I

I | | I

I | | I

I | | I

I | | I

I | | I

I | | I

I | | I

| | | I

Add (8- T > | '

I | | I

4| | | ADD Add ! |

| | result | |

| | [Shift | |

| | \left2 | |

| | | |

I | | I

I | | I

0 " : »| Read Read : : :

u PC Address | register 1 data 1 | Zero H——p |

" «x | Read [ALU | '

1) | register 2 | r:sLuLIJt t Address Read |

Instruction | Registers i >0 | deaE:a‘ |

| Write Read | u : Data I

M E M Instruction | register data 2 I u | Memory I
x

memory | | write | 1 | |

: data : ! . \évrtite :

! | ! = I

| | |

Right-to-left | 10 | | i

WB | A, | Siom | |

fI | d t | AN extend | I

Oow leaaqds 1o | | |

I | I

hazards | | |

| } !

I | I

I | I

I | I

| | |

Chapter 4 — The Processor — 45

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

MMMMMMMMMMMMMMMM

IF/ID
—
Add > > \
4 — Add A"ﬁ
Shift resul
left 2
5
Address 5 Read
E register 1 Read > >
2 data 1
= > Read Zero

Chapter 4 — The Processor — 46

Pipeline Operation

Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used

c.f. “multi-clock-cycle” diagram
Graph of operation over time
We’'ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 47

Iw

Instruction fetch

IF for Load, Store, ...

>Add

Address

Instruction
memory

IF/ID

Y

ID/EX

Instruction

Shift
left 2

. | Read
"~ | register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
) Write
data
1? _ | Sign-

v | extend

32

d Add
result

MEM/WB

EX/MEM
—
> @ Address
Data
memory
_ _ | Write
v 7| data

Read
data

Y

Chapter 4 — The Processor — 48

ID for Load, Store, ...

Iw

Instruction decode

IFID ID/EX
Add >
4 ——
Shift
left 2
=
Address .% Read
2 register 1 Read >
B data 1
= Read
Instruction register 2
memory ~ Registers gaqqg _
Write data 2 L
register
Write
| data

4 Add
result

EX/MEM

+
> @ Address

Write

data

Data
memory

Read
data

MEM/WB

Chapter 4 — The Processor — 49

EX for Loa

lw

Execution

xc=°

-

PC

Read
data

MEM/WB

IF/ID ID/EX EX/MEM
> .
4 —> / AdgAdd _
Shift result
left 2
Address c Read
2[| register 1 Read
S data 1
= Read . |
Instruction IS register 2
memary B Write F‘eglstersﬂead > | Address
" | register data 2 Data
Write memory
data
Write
- » data
1 .
? _ | Sign- 32]
V| extend

“x c 2°

Chapter 4 — The Processor — 50

MEM for Load

Y

IF/ID

Add

Address

Instruction
memory

Y

ID/EX

Instruction

Shift
left 2

Read
"~ | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 i
T Sign-
extend

32

| " |

I Memory I
EX/MEM MEM/WB
> ——

Read
> @ Address data [™]
Data
memory

o Write
o data

Y

Chapter 4 — The Processor — 51

WB for Load

EX/MEM
Add
result
> =
> g

IF/D ID/EX
Add
4 —
Shift
left 2
c
Address -% Read
3 register 1 Read
£ data 1
£ Read
) ister 2
Inr::::::n / Registers .4
Write data 2
regisjér
rite
data
16 i
(. Sign- 5 —
T | extend

Wrong
register
number

Address
Data
memory
Write
data

Read
data

o]

rite back

MEM/WB

Chapter 4 — The Processor — 52

Corrected Datapath for Load

A J

Add

Address

Instruction
memory

IFID

ID/EX

» | Read
= | register 1

Instruction

Read
register 2

Write
register
Write
data

!

Read
data 1

Registers ggo.q

data 2

Shift
left 2

Sign-
extend

\

EX/MEM

MEM/WB

Address

Write
data

Data
memory

Read
data

Chapter 4 — The Processor — 53

EX for Store

sw

Execution

xc=°

:

PC

A

MEM/WB

IF/ID ID/EX EX/MEM
Add » > \
4 AdgAdd >
Shift result
left 2
Address c . | Read Read
2 register 1 ea
1] data 1
Fe—»| Read Zero —
Instruction _ < register 2 ALU ALy _ Read
memory - —e wiite Reglsiers.Fhea d result - Address data
- register data 2 Data
; memor
—| Write ol y
data
-~ Write
- data
1‘\3 sign- | 32 -
v extend

Chapter 4 — The Processor — 54

MEM for Store

| ™ |
I Memory I
IF/ID ID/EX EX/MEM MEM/WB
Add > -
= oo S ——
Shift resu
left 2
0
M c
u PC Address % . | Read
x =4 "~ | register 1 Read >
1 ’g‘ data 1
= Read - -
Instruction o register2 Read
memory g _ Registers gggag > > @ Address data [
Write data 2 -
register Data
) Write memory
data
o | Write
g " | data
16 . -
X . | Sign- 32 | | >
v | extend

Chapter 4 — The Processor — 55

WB for Store

IF/ID ID/EX
>Add
4 —
Shift
left 2
c
Address % Read
2 register 1 Read
@ data 1
£ Read
Instruction reglster% ister
memory . egisters pead
Write data 2
register
Write

data

EX/MEM

Add

result
> -
> @ Address
> | Write
o 7| data

Data
memory

Read
data

sw
W

rite-back

MEM/WB

Chapter 4 — The Processor — 56

Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles)
CC1 cc2 CC3 CC4 CC5 CC#6 cc7 cCcs8 CC9

Program
execution
order

(in instructions)
El+
w $13, 24($1) EI.+ I:I:’-I~I_r~|—lg

add $14, $5, $6

sub $11, $2, $3

add $12, $3, $4

Chapter 4 — The Processor — 57

Multi-Cycle Pipeline Diagram

Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

\

CC1 cCc2 CC3 CC4 CC5h CCe6 CC7 CC8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution access Write back
Instruction | Instruction Execution Data Write back
fetch decode access

Chapter 4 — The Processor — 58

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

add §14, $5, $6

lw $13, 24 ($1)

add $12, $3, $4 I sub $11, $2, $3 | lw $10, 20($1) |

Instruction fetch Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
Add >
Shift esu
left 2
(0
M
u PC »-| Address Read
x S register 1 Read > >
L, {1 £ data 1
E Read Zero e
= 2
Instruction = register2 ALU
Registers ALU > Read
memory m Wiite 9 g:taadz result Address data]

register Data

Write memory

data

Write
data
“i sign- | 32 >
A\ extend —

Chapter 4 — The Processor — 59

Pipelined Control (S

implified)

MemtoReg

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
Add - >
4 AddAdld -
Shift result Branch
left 2 I_:
L0 RegWrite
M |
u PC »|Address 5 . | Read
x b= ™ register 1 Read > MemWrite
>\ 1 = data 1 |
g » | Read
Instruction ~ - | register 2 Read
——4 Registers >
memory wiite o2 Read > Address data [|
register data 2 Data
—»-| Write memory
data
_ Write
. " | data
Instruction
(15-0) 16 [gign. | 32 & [aw | .
¥ extend “ | control MemRead
Instruction
(20-16)
0 | ALUOp
M > >
Instruction :
(15-11) 1
> —
RegDst

Chapter 4 — The Processor — 60

Pipelined Control

Control signals derived from instruction
As In single-cycle implementation

=

WB

[TT]
[]

IF/ID ID/EX EX/MEM MEM/WB

Chapter 4 — The Processor — 61

Pipelined Control

PCSrc

ID/EX

w8 LEX/MEM

| WB
Contro M | MEM/WEB

M WB [

Y

EX

IF/ID

Add > > \
Add Add

4
. Shift result Branch
2 left 2 L
= ALUSrc }
o —
0 s)
M ES g
u PC Address 5 Read £ S
M = register 1 Read > < £
L1 S data 1 > = E
B Read Zero I =
Instruction - register 2 ALU 51U Read
memory — Write Registers go,q . 6 result »| Address data [T —(0
> register data 2 M M
. u Data u
rite X memor
| data o1 v !
Write
data
Instruction
[15-0] 18 sign- | 32 %
extend N > control MemRead
Instruction
[20-16]
> 0
M -
Instruction u
[15-11] x

— — RegDst —

Chapter 4 — The Processor — 62

Data Hazards in ALU Instructions

Consider this sequence:

sub , $1,93
and $12,%2,%5
or $13,%6,

add $14,%2,

sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

Chapter 4 — The Processor — 63

Dependencies & Forwarding

Time (in clock cycles)
CC1

10

Value of
register $2:

Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2,$2

v Sw$15,100($2)

f

cC2
10

Reg |

CC3

10

CC4

10

DM

o=

CC5
10/-20

N/

-

CC7 cC8 CC9
-20 -20 -20

egl

—1

DM —Reg

—

Chapter 4 — The Processor — 64

Detecting the Need to Forward

Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.ReqgisterRs, ID/EX.RegisterRt

Data hazards when \ e
EX/MEM.RegisterRd = ID/EX.RegisterRs | | exmem

EX/MEM.RegisterRd = ID/EX.RegisterRt | [PiPelinereg

~

MEM/WB.RegisterRd = ID/EX.RegisterRs | Fwd from

MEM/WB.RegisterRd = ID/EX.RegisterRt | | gt roo

Chapter 4 — The Processor — 65

Detecting the Need to Forward

But only If forwarding instruction will write
to a register!

EX/MEM.RegWrite, MEM/WB.RegWrite
And only If Rd for that instruction Is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

Chapter 4 — The Processor — 66

Forwarding Paths

ID/EX EX/MEM MEM/WB

Registers ForwardA

Y

ALU[—™

Data
memory

AR
ﬁx:gj r*i::i)

ForwardB

Rs
.
Rt
Rd

EX/MEM.RegisterRd

L

> Forwarding \«—I| yemwB. RegisterRd

>\ unit =

Yy
xecsg)

b. With forwarding

Chapter 4 — The Processor — 67

Forwarding Conditions

EX hazard

if (EX/IMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Chapter 4 — The Processor — 68

Double Data Hazard

Consider the seguence.:

add ,$1,9%2
adc , 51,93
add $1,%1,%4

Both hazards occur
Want to use the most recent

Revise MEM hazard condition
Only fwd if EX hazard condition isn't true

Chapter 4 — The Processor — 69

Revised Forwarding Condition

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Chapter 4 — The Processor — 70

Datapath with Forwarding

ID/EX
’_'WB EX/MEM
Control [M »\WB MEM/WB
IF/ID EX - M = WB—
> U L
h \L
g »>- >
é Registers ALUL . . o
93] L u
Instruction | | |=] > x
memory - Data
—|
memory
IF/ID.RegisterRs Rs -
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt Rt EX/MEM.RegisterRd
IF/ID.RegisterRd | [Rd "
MEM/WB.RegisterRd
L 4

Chapter 4 — The Processor — 71

Load-Use Data Hazard

Time (in clock cycles)
CC1

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, §7

cCc2

r—

CC5

CC6

/ Need to stall
for one cycle

—
—-Reg

CcC7 CCs CC9

-1
Ls

NCTR s

Chapter 4 — The Processor — 72

Load-Use Hazard Detection

Check when using instruction Is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

Chapter 4 — The Processor — 73

How to Stall the Pipeline

Force control values in ID/EX register
to0

EX, MEM and WB do nop (no-operation)
Prevent update of PC and IF/ID register
Using instruction is decoded again

Following instruction is fetched again

1-cycle stall allows MEM to read data for 1w
Can subsequently forward to EX stage

Chapter 4 — The Processor — 74

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CCA1 cC2 CC3 CC4 CC5 CC6 CC7 cCs CcC9 CC10

Program
execution
order

(in instructions) _ _ -

w $2, 20($1) M 'LﬁeE[: :D

bubble / Stall inserted
here

and becomes nop IM — —H{R_eg
d $4, $2, $5 IM DM Reg
st 2 g
| ¢ — 1
|| LR
or $8, $2, $6 mH FRed | [DM —[e_gJ
\ add $9, $4, $2 M H FRed _> oM (ieg

Chapter 4 — The Processor — 75

Stall/Bubble in the Pipeline

o

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9 CcC 10

Program
execution
order

(in instructions)

lw $2, 20($1) IM

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF | —d—] |— -
[l | i —> e
add $9, $4, $2 - _
\ IM — -':{F{_e DM Re_gj
Or, more i
accurately...
Chapter 4 — The Processor — 76

Datapath with Hazard Detection

/m ID/EX.MemRead
detection o

— unit)
_g Y
% ID/EX
i wB EX/MEM
. »(Control M = WB LTEM/WB
= . - |
% |F“|D EX M WB
o
)
> > > M
> U >
5 g X
= Registers g ‘ .
Y = P > . =M
_ 7 N ALU u
pC Instruction] = ofr
memory - Data X
> u g memory
. X
IF/ID.RegisterRs - >
IF/ID.RegisterRt .
IF/ID.RegisterRt _ Rt M
IF/ID.RegisterRd g Rd. g g g
ID/EX.RegisterRt J
Rs Forwarding
Rt > unit / -

Chapter 4 — The Processor — 77

Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

Chapter 4 — The Processor — 78

Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

CC 1 CC2 CC3 CC4 CCs CCe cc7 Cccs8 CCo9

Program
execution
order

(in instructions)

40 beq $1, $3, 28 Er.—I—D

44 and $12, $2, $5

Flush these
" > instructions

(Set control
52 add $14, $2, $2

I’ I I i values to 0)

1721w $4, 50($7) / M +R]
PC

48 or $13, $6, $2

DM g'
) J
(oMo

Chapter 4 — The Processor — 79

Reducing Branch Delay

Move hardware to determine outcome to ID

stage

Target address adder
Register comparator

Example: branch taken

36:
40:
44 .
48
52
56:

/2

sub
beq
and
or

add
st

Tw

$10,
$1,

$12,
$13,
$14,
$15,

$4,

$4, $8
$3, 7

$2, $5
$2, $6
$4, $2
$6, $7

50(%7)

Chapter 4 — The Processor — 80

Example: Branch Taken

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

IF.Flush

/ Hazard 1\

detection]

unit /

m
-

g—_-_-_-_—_-_-_-_-_—_-_

3
0
72
$1

Regi *
$3 |

xCc=

Data
memory

@

—
i iForwardingi :: :
_ unit - X

Clock 3

Chapter 4 — The Processor — 81

Example: Branch Taken

Shift
left 2

I Iw $4, 50($7) : Bubble (nop) | beq $1, $3, 7 \ sub $10,... | before<i>
.Flus ! ! ! !
E Hazard E E E
detection | T ' '
unit) | : |
ID/EX : :
M EX/NI/IEM E
u MEMWE
'{] 0 |x

Registers é)

Data
memory

i

Sign-

Forwarding
unit a

Clock 4

Chapter 4 — The Processor — 82

Data Hazards for Branches

If a comparison register Is a destination of
2"d or 3 preceding ALU instruction

add , $2, $3 IF H ID _ EX _MEMl—I WB
add , $5, $6 IF _ ID _ EX :‘IEIIEM|_ WB
_ IF | ID _-_I:.;><__MEI\/I|_ WB
beq . , target IF o' ||| [ex _MEM||:| WB

Can resolve using forwarding

Chapter 4 — The Processor — 83

Data Hazards for Branches

If a comparison register Is a destination of
preceding ALU instruction or 2" preceding
load instruction

Need 1 stall cycle

Tw $1, addr IF H D |[|| Ex MEMl—I we

add %4, $5, $6 IF f D _ EX —‘ll_/IEM| WB

2 HEls oo

beq $1, $4, target] ID_|: EX :MEM||:| WB

Chapter 4 — The Processor — 84

Data Hazards for Branches

If a comparison register Is a destination of
Immediately preceding load instruction

Need 2 stall cycles

Tw $1, addr IF H D |[|| Ex MEMl—I we

= A=|o oo

= Elololo

beq $1, $0, target] ID_|: EX :MEM||:| WB

Chapter 4 — The Processor — 85

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch
penalty is more significant

Use dynamic prediction
Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses
Stores outcome (taken/not taken)

To execute a branch
Check table, expect the same outcome
Start fetching from fall-through or target
If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 86

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., inner|—

beq .., .., outer

Mispredict as taken on last iteration of
Inner loop

Then mispredict as not taken on first
iteration of inner loop next time around

Chapter 4 — The Processor — 87

2-Bit Predictor

Only change prediction on two successive

mispredictions

Not taken\ ‘ Taken

Not taken
Predict not taken
Taken g

Chapter 4 — The Processor — 88

Not taken

Taken

N

Calculating the Branch Target

Even with predictor, still need to calculate
the target address

1-cycle penalty for a taken branch

Branch target buffer
Cache of target addresses

Indexed by PC when instruction fetched

If hit and Instruction is branch predicted taken, can
fetch target immediately

Chapter 4 — The Processor — 89

Exceptions and Interrupts

“Unexpected” events requiring change
In flow of control

Different ISAs use the terms differently

Exception

Arises within the CPU
e.g., undefined opcode, overflow, syscall, ...

Interrupt
From an external I/O controller

Dealing with them without sacrificing
performance Is hard

Chapter 4 — The Processor — 90

Handling Exceptions

Save PC of offending (or interrupted) instruction
In MIPS: Exception Program Counter (EPC)
Save indication of the problem

In MIPS: Cause register (status register)

We’'ll assume 1-bit
O for undefined opcode, 1 for overflow

Jump to handler at 8000 00180

Chapter 4 — The Processor — 91

An Alternate Mechanism

Vectored Interrupts
Handler address determined by the cause

Example:
Undefined opcode: C000 0000

Overflow: C000 0020
; C000 0040

Instructions either
Deal with the interrupt, or
Jump to real handler

Chapter 4 — The Processor — 92

Handler Actions

Read cause, and transfer to relevant
nandler

Determine action required
If restartable

Take corrective action
use EPC to return to program

Otherwise
Terminate program
Report error using EPC, cause, ...

Chapter 4 — The Processor — 93

Exceptions in a Pipeline

Another form of control hazard

Consider overflow on add in EX stage
add $1, $2, $1
Prevent $1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set Cause and EPC register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

Chapter 4 — The Processor — 94

Pipeline with Exceptions

EX.Flush

IF.Flush

ID.Flush

/ Hazard
detection |- Y

unit / ¥ T

1 ID/EX u

— X

=

Y
ﬂ r e 0> (EX/MEM
M — i
Control >y M |\La|'| - we VEMMWB
> X — Cause X — —
|F1JD 0 EX »| EPC 0= M — WB—@
’ > Shift M
4 left 2 R m
. - u -
> > x
Registers AN ;
N > —~ ALU [~ M
80000180 Instruction | . . u
[memory . M N mg::oar .
X y
AN
- u
] -) g

Forwarding

Chapter 4 — The Processor — 95

Exception Properties

Restartable exceptions
Pipeline can flush the instruction

Handler executes, then returns to the
Instruction

Refetched and executed from scratch

PC saved in EPC register
|dentifies causing Instruction

Actually PC + 4 Is saved
Handler must adjust

Chapter 4 — The Processor — 96

Exception Example

Exception on

40 sub
44 and
48 or
50 slt
54 Tw
Handler
80000180

80000184

N

$11,
$12,
$13,

$15,
$16,

SW
SW

$2, %4
$2, $5
$2, $6

$6, $7
50(%7)

$25, 1000(%0)
$26, 1004($%0)

Chapter 4 — The Processor — 97

Exception Example

Iw $16, 50($7)

IF.Flush

slt $15, $6, $7

/~ Hazard

80000180 —

-

IF{ID

' detection |
unit J

Clock 6

I add $1, $2, $1 ! or$13,... | and $12,
EX.Flush
ID.Flush \ : \
ID/EX d | |
0 EX/MEM |
LS MEM/WB
1
Data l
memory
1 12
15 $1 '
h unit = :

Chapter 4 — The Processor — 98

Exception Example

sw $25, 1000($0) bubble (nop) . bubble : bubble , or $13,

; : EX.Flush | :
IF.Flush : : : :
: ID.Flush : : :
' [/~ Hazard ! ! !
4_4 detection | . ! !
unit / 1 ! Nﬂ : :
I s
/\7 S fwE—+2—Iy | x EX/MEM I

Control——— I::‘ % fa [oo @ w2 MEM/MWB
IFAD, U ——D— 0—»@ =Y] 0--\X M we

T~

5 :
left —= U
X
i ters - ALU -
M
Ll u Data |
\?/_
m

80000180 =

memory
(o) I
Sign-

g

L X 1

Clock 7 W
4J\

unit / -

Chapter 4 — The Processor — 99

Multiple Exceptions

Pipelining overlaps multiple instructions
Could have multiple exceptions at once
Simple approach: deal with exception from
earliest instruction
Flush subsequent instructions
“Precise” exceptions
In complex pipelines
Multiple instructions issued per cycle
Out-of-order completion
Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 100

Hardware/Software Interface

ardware stops pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions

Which to complete or flush
May require “manual” completion

Associating correct exception with correct instruction

Imprecise exceptions are not associated with the exact
Instruction that caused the exception

Hardware detect the exception. Leave to OS to determine which
Instruction caused the interrupt.

Precise exceptions

Supported by Most processors Chapter 4 — The Processor — 101

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in
parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle (higher freq)
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS (billion inst per sec), peak CPI = 0.25, peak IPC =4
But dependencies reduce this in practice

Chapter 4 — The Processor — 102

Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses
Instructions to issue each cycle

Compiler can help by reordering instructions

CPU resolves hazards using advanced techniques at
runtime

Chapter 4 — The Processor — 103

Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples

Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated

Chapter 4 — The Processor — 104

Compiler/Hardware Speculation

Compiler can reorder instructions
e.g., move load before branch

Can include “fix-up” instructions to recover
from incorrect guess

Hardware can look ahead for instructions
to execute

Buffer results until it determines they are
actually needed

Flush buffers on incorrect speculation

Chapter 4 — The Processor — 105

Speculation and Exceptions

(read)

What If exception occurs on a
speculatively executed instruction?

e.g., speculative load before null-pointer
check

Static speculation
Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 106

Static Multiple Issue

Compiler groups instructions into “issue
packets”

Group of instructions that can be issued on a
single cycle
Determined by pipeline resources required

Think of an issue packet as a very long
Instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 107

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between
packets

Varies between ISAs; compiler must know!
Pad with nop If necessary

Chapter 4 — The Processor — 108

MIPS with Static Dual Issue

Two-issue packets
One ALU/branch instruction

One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+38 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM WB
n+ 20 Load/store IF ID EX MEM | WB

Chapter 4 — The Processor — 109

MIPS with Static Dual Issue

Y
>] >] - M [] []
u -
4 l—» > X
> ~ ALU—»] >
. M
. ~ M
L Registers u >
80000180 - pC|ls | Instruction — - > x
memory - > ~ t > Write
— > data
Data
ALUF—»| | I I
»> memory
Address

Y vy Y
Y Yy
(x:g)
A
Y

Chapter 4 — The Processor — 110

Hazards in the Dual-Issue MIPS

(read)

More instructions executing in parallel

EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , $s0, $s1
load $s2, 0(5t0)

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required

Chapter 4 — The Processor — 111

Scheduling Example (read)

Schedule this for dual-issue MIPS

Loop: Tw , 0(%s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sD) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
addu $t0, , $s2 3
bne $s1, $zero, Loop [sw $t0, 4($sl) 4

IPC =5/4 =1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 112

Loop Unrolling (read)

Replicate loop body to expose more
parallelism

Reduces loop-control overhead

Use different registers per replication
Called “register renaming”

Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register

Aka “name dependence”
Reuse of a register name

Chapter 4 — The Processor — 113

Loop Unrolling Example (read)

ALU/branch Load/store cycle
Loop: | addi $s1, $s1,-16 Tw , 0($sD) 1
Tw , 12($s1) 2
addu $tO0, , $s2 Tw , 8($s1) 3
addu $t1, , $s2 Tw , 4($sD) 4
addu $t2, , $s2 sw $t0, 16($sl) 5
addu $t3, , $s2 sw $tl, 12($s1) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4($sl) 8
PC=14/8=1.75

Closer to 2, but at cost of registers and code size

Chapter 4 — The Processor — 114

Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ...
each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU

Chapter 4 — The Processor — 115

Iq!namic Pipeline Scheduling (reau
Allow the CPU to execute instructions out
of order to avoid stalls
But commit result to registers in order

Example
Tw , 20(%$s2)
addu $t1, , $t2

sub $s4, $s4, $t3
sTti $t5, $s4, 20

Can start sub while addu is waiting for Iw

Chapter 4 — The Processor — 116

Instruction fetch
and decode unit

In-order issue

l

Y

Y

Y

—

Reservation | | Reservation Reservation || Reservation| <
station station station station

Funct_ional Integer Integer Floa_ting Load- | out-of-order execute

units point store

—
— Commit In-order commit

Reorders buffer for unit

reqgister writes

g Can supply

operands for
issued instructions

Dynamically Scheduled CPU

Preserves
dependencies

Hold pending
operands

Results also sent
to any waiting
reservation stations

Chapter 4 — The Processor — 117

REST Is Reading Material

Chapter 4 — The Processor — 118

Register Renaming

Reservation stations and reorder buffer
effectively provide register renaming

On Instruction Issue to reservation station

If operand is available in register file or
reorder buffer
Copied to reservation station

No longer required in the register; can be
overwritten

If operand Is not yet available

It will be provided to the reservation station by a
function unit

Register update may not be required

Chapter 4 — The Processor — 119

Speculation

Predict branch and continue issuing

Don’t commit until branch outcome
determined

Load speculation

Avoid load and cache miss delay
Predict the effective address
Predict loaded value
Load before completing outstanding stores
Bypass stored values to load unit

Don’t commit load until speculation cleared

Chapter 4 — The Processor — 120

Why Do Dynamic Scheduling?

Why not just let the compiler schedule
code?

Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 121

Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism Is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

Chapter 4 — The Processor — 122

Power Efficiency

Complexity of dynamic scheduling and
speculations requires power

Multiple simpler cores may be better

Microprocessor Year Clock Rate | Pipeline Issue | Out-of-order/ | Cores Power
Stages width Speculation
1486 1989 25MHz 5 1 No 1 SW
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
UltraSparc I 2003 1950MHz 14 4 No 1 90w
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 123

The Opteron X4 Microarchitecture

Instruction cache

'

Instruction prefetch

Branch - and decode 72 phySical
prediction * regiSters

RISC-operation queue

i

Dispatch and register remaining

v [
[[[|

Integer and floating-point operation queue

\

Register file

Floating Floating
Integer Integer point i
ALU ALU Adder
/SSE

Integer

Floating
ALU.
Multiplier

point
Misc

Load/Store queue

Data
cache

Commit
unit

Chapter 4 — The Processor — 124

The Opteron X4 Pipeline Flow

For integer operations

Instruction

Fetch

FP is 5 stages longer
Up to 106 RISC-ops in progress

Decode
and
translate

Hook orares 3
Bottlenecks

RISC-operation

queue

Y

Reorder
buffer
allocation +
register
renaming

2

Reorder

buffer

—_—

Y

Scheduling

+ dispatch »| Execution > Daéaz)ncﬂ'ar;]ciltﬂe/
unit
2 1 2

Complex instructions with long dependencies
Branch mispredictions
Memory access delays

Chapter 4 — The Processor — 125

Fallacies

Pipelining is easy (!)
The basic idea Is easy
The devil is in the details
e.g., detecting data hazards

Pipelining Is independent of technology

So why haven’t we always done pipelining?

More transistors make more advanced techniques
feasible

Pipeline-related ISA design needs to take account of

technology trends
e.g., predicated instructions

Chapter 4 — The Processor — 126

Pitfalls

Poor ISA design can make pipelining
harder
e.g., complex instruction sets (VAX, 1A-32)

Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.g., delayed branches
Advanced pipelines have long delay slots

Chapter 4 — The Processor — 127

e COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

CPE 408340
Computer Organization

Chapter 5 : Large and Fast:
Exploiting Memory Hierarchy
The

Dr. Bassam Jamil
[Adapted from Computer Organization and Design,
Patterson & Hennessy]

Memory Technology

Static RAM (SRAM)
0.5ns — 2.5ns, $2000 — $5000 per GB

Dynamic RAM (DRAM)
50ns — 70ns, $20 — $75 per GB

Magnetic disk
5ms — 20ms, $0.20 — $2 per GB

ldeal memory
Access time of SRAM
Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality

Programs access a small proportion of
their address space at any time

Temporal locality

ltems accessed recently are likely to be
accessed again soon

e.g., Instructions in a loop, induction variables

Spatial locality
ltems near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

Main memory

Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

Processor

A

Y

Data is transferred

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
upper level

Hit: access satisfied by upper level
Hit ratio: hits/accesses

If accessed data Is absent

Miss: block copied from lower level
Time taken: miss penalty
Miss ratio: misses/accesses
= 1 — hit ratio
Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X;, ..., X1, X,
- o How do we know if
the data Is present?
- - Where do we look?

a. Before the reference to X,, b. After the reference to X,,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Design Rules

[Block Address] [Block Offset |
| x] [Word Offset] [Byte Offset]

Address
Address

I
"
Q
<,

Block_bits = logs(Block_Size)
#Blocks in Cache = Cache_ Size/Block_ Size

#Sets in Cach
Set_Size

#Blocks / Set Size
= number of ways in the cache

For direct cache . Set_Size=1 (#Sets = #Blocks)
For fully associative . Set Size=#Blocks (#Sets =1)
For k-way associative: Set_Size=k

ex_bits = log, (#Sets)

Tag_bits = Address_bits - (Block_bits + Index_bits)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Cache Example

A cache is direct-mapped and has 64 KB data. Each
block contains 32 bytes. The address is 32 bits wide.

What are the sizes of the tag, index, and block offset
fields?

bits in block offset = 5 (since each block contains 275
bytes)

blocks in cache = 64x1024 / 32 = 2048 blocks

— S0 # bits in index field = 11 (since thereare 2711
blocks)

bits in tag field = 32 -5 - 11 = 16 (the rest!)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

K-way Cache Example

A cache is 4-way set-associative and has 64 KB data.
Each block contains 32 bytes. The address is 32 bits
wide. What are the sizes of the tag, index, and block
offset fields?

bits In block offset = 5 (since each block contains 25
bytes)

blocks In cache = 64x1024 / 32 = 2048 (2*11)

sets in cache = 2048 /4 =512 (2"9) sets (asetis 4
blocks kept in the cache for each index)

— So # bits In index field = 9
#bitsintagfleld=32-5-9=18

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Direct Mapped Cache

Location determined by address
Direct mapped: only one choice

< = (Block address) modulo (#Blocks in cache] >

FFFFFFFF
OOOOOOOO
OOOOOOOO

v/

./l\. \.

|

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Index

#Blocks Is a
power of 2

Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Tags and Valid Bits

How do we know which particular block is
stored In a cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location?
Valid bit: 1 = present, O = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state, Mem=32 words (or blocks)

Index
000
001
010
011
100
101
110
111

Tag Data

ZlIZ2|1Z2|1Z2|1Z2|Z2(Z2|2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

Z|lIZ2|1Z2|1Z2|1Z2|2|<

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index V Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem([11010]

10 Mem[10110]

Z|I<|I1Z2|I1Z2|Z2|<[(Z2|Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010
Index V Tag Data
000 Yy |10 Mem[10000]
001 N
010 Yy |10 Mem[10010] —] Miss Tag
e — | mismatch
011 Y |00 Mem[00011]
100 N
101 N
110 Y |10 Mem([10110]
111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Address Subdivision

Address (showing bit positions)

3130 --- 131211---2 10
Byte
offset
Hit 20 <10
‘ Tag
Index Data
Index Valid Tag Data
0
1
2
L q
1021
1022
1023
420 d 32
(-

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Example: Larger Block Size

64 blocks, 16 bytes/block

To what block number does address 1200
map”?

Block address =|1200/16] = 75
Block number = 75 modulo 64 = 11

31 10 9 4 3 0
Tag Index | Offset
22 bits 6 bits 4 bits

1200,,= 001 00 1011 0000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Assoclative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Assoclative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ad 2 I 12 J 2

e s TTTTTTT]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Spectrum of Associativity

For a cache with 8 entries

One-way set associative
(direct mapped)

Block Tag Data

? Two-way set associative
5 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Cache Performance

Components of CPU time \crurime =cydecountciock cycte Time
Program execution cycles
Includes cache hit time
Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

CPUTime =Instructio n Count x CPIx Clock Cycle Time

In the next few
slides we will
measure:
1. Miss Rate

. Miss Penalty

Memory stall cycles

_ Memory accesses

- Program

_ Instructions y Misses
Program Instruction

x Miss rate x Miss penalty

xMiss penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Associlativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8, 0O, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem[8]
0 0 miss Mem|[O0]
6 2 miss Mem|O]
8 0 miss Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Associlativity Example

2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem]O]
0 0 hit Mem][O] Mem|[8]
6 0 miss Mem|O] Mem[6]
8 0 miss Mem[8] Mem|[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem]O]
0 hit Mem|[O] Mem([8]
6 miss Mem([0] Mem([8]
8 hit Mem|O] Mem[8] Mem][6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

How Much Associativity

Increased associativity decreases miss
rate
But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Set Associative Cache Organization

Address
3130---12111098---3210

J22 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® [] L ® [9 L [[] p [] p
253
254
255
422 32
(= (= (= (=

H) | =—H-to1 muttiplexo)

Hit Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality

But Iin a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Cache Design: (1) Associativity vs miss rate

Higher associativity ==> more complex HW
But a highly-associative cache will have a lower miss rate

Each set has more blocks, so there’s less chance of a conflict between two
addresses

Overall, this will reduce Average memory access time (AMAT) and memory
stall cycles

12%

9% -\

Miss rate

b

3%

ﬂ% 1 1 1]
One-way Two-way Four-way Eight-way

Associativity

ory Hierarchy — 29

Cache Design: (2) Cache size vs miss rate

In a larger cache there’s less chance there will
be of a conflict

15%

12%

9%

Miss rate

6%

3%

0%

—~—
‘\\\5\1
S i

= BKB
l—._______ \

One-way Two-way Four-way Eight-way
Associativity rrarchy — 30

Miss rate

Cache Design: (3) Block size vs miss rate

40%
35%
30%
25%
20%
15%
10%

5%

0%

Smaller blocks do not take maximum advantage of
spatial locality

But if blocks are too large, there are fewer blocks
available, and more potential conflicts misses

AN

-

i W1 KB
® 8 KB
® 16 KB

© 64 KB
\ ¥
_.
¢

= %\. —i—
| | l
4 16 64 256

Block size (bytes) Hierarchy — 31

Cache Misses

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Write-Through

On data-write hit, could just update the block In
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer

e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPI =1+ 0.1x100 =11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Write Allocation

What should happen on a write miss?

Alternatives for write-through
Write-allocate on miss: fetch the block

Write around (no write allocate): don't fetch
the block

Since programs often write a whole block before
reading it (e.qg., initialization)

For write-back
Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Example: Intrinsity FastMATH

Embedded MIPS processor

12-stage pipeline

Instruction and data access on each cycle
Split cache: separate |I-cache and D-cache

Each 16KB: 256 blocks x 16 words/block

D-cache: write-through or write-back
SPEC2000 miss rates

I-cache: 0.4%

D-cache: 11.4%

Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Example: Intrinsity FastMATH

Address (showing bit positions)

31 -+ 1413:--65---210
. 418 48 44 Byte Data
th Tag offset r
Index Block offset
18 bits 512 bits
V Tag Data
A
256
? entries
"t Y
118 .,_‘32 \32 ..,\32
(=
~
Mux
()
J4.32

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Main Memory Supporting Caches

Use DRAMSs for main memory
Fixed width (e.g., 1 word)

Connected by fixed-width clocked bus
Bus clock is typically slower than CPU clock

Example cache block read
1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM
Miss penalty = 1 + 4x15 + 4x1 = 65 bus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Increasing Memory Bandwidth

Processor Processor Processor
/ﬂultiplexor
Cache Cache
Cache
1/\\ _/_ //\\
Bus Bus Bus
\\// ‘_/— \\ //
Memory Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3
b. Wider memory organization c. Interleaved memory organization
Memory 4-word wide memory

Miss penalty =1 + 15+ 1 = 17 bus cycles

Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
4-bank interleaved memory

ooy organzation Miss penalty = 1 + 15 + 4x1 = 20 bus cycles

Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Miss Penalty = Addr_Transfer + MemoryAccess + DataTrasfer

Single-word-wide memory

ddr Memory | Data | | Memory | Data Memory | Data | | Memory | Data
Cache a Access |Trans|| Access |Trans| | Access |Trans||Access |Trans
_.__#__;-”’“'H-___H
Bus
— Miss Penalty =1 + 154 + 1*4 =65 cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
[Processo] 4-word-wide memory
__—TMultiplexor—_
T T I T addr Memory | Data
L L] Access |Trans

g

Bus

T ——

Miss Penalty=1 + 151 + 1*1 =17 cycles
Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

Interleaved memory
-
S addr Memory | Data || Data | | Data || Data
Cache Access |Trans||Trans| |Trans||Trans
L1 Miss Penalty =1 + 15*1 + 1*4 = 20 cycles
Memery || Memary | wemary | ey Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Advanced DRAM Organization

Bits in a DRAM are organized as a
rectangular array

DRAM accesses an entire row

Burst mode: supply successive words from a
row with reduced latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

DRAM Generations

Year Capacity | $/GB 300
1 4Kbit 1500000

980 | 64Kbi $ 250
1983 | 256Kbit | $500000
1985 | 1Mbit $200000 200
1989 | 4Mbit $50000

150 +

1992 16Mbit $15000
1996 | 64Mbit $10000 100
1998 | 128Mbit | $4000
2000 | 256Mbit | $1000 >0
2004 | 512Mbit | $250 0
2007 | 1Ghit $50

——Trac
—s—Tcac

‘80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

Memory stall cycles
_ Memory accesses
- Program

_Instructions = Misses

— X —— xMiss penalty
Program Instruction

x Miss rate x Miss penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Cache Performance Example

Given

|-cache miss rate = 2%

D-cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) = 2

Load & stores are 36% of instructions
Miss cycles per instruction

|-cache: 0.02 x 100 = 2

D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44 =544

|deal CPU Is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Average Access Time

Hit time Is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, |I-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns
2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Performance Summary

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, If there Is one
Otherwise, choose among entries in the set
Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Cache Misses

Cache Misses | The Cause Dependency

Capacity misses|Occur due to the finite |Cache size
size of the cache.

Conflict misses |Occur because the Assoclatively
cache had evicted an
entry earlier.

Compulsory Caused by the first Block size
misses reference to a location
(Cold misses) |in memory.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Cache Design Trade-offs

Design change

Effect on miss rate

Negative
performance effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
Increase miss rate due
to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Multilevel Caches

Primary cache attached to CPU
Small, but fast

L evel-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Multilevel Cache Example

Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400=9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Example (cont.)

Now add L-2 cache

Access time = 5ns
Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 400 cycles

CPI=1+0.02x%x20+ 0.005x%x400=34
Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

In summary: CPl and AMAT for multi-level
cache system

For Multi-level cache cystem

CPI = <ideal CPI> w
+ Miss rate | ;x Miss penalty | ; m
+ Miss rate | ,x Miss penalty |, w

+ Miss rate | ,x Miss penalty | . @

AMAT = Hit time + L1 Hitaccess >
+ Miss rate | ;x Miss penalty |, m
+ Miss rate |, Miss penalty |, L3 Hitaccess

+ Miss rate | ,x Miss penalty | , @

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

L-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact

Results
L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Intel Core-i17 three-level cache Architecture

Core Core
L1 D$ L11$
|1 ||Size=32kB Size= 32KB L1 D$|(| L1 I$
Associativity= 4-way Associativity= 8-way
Latency= 4 cycles Latency= 4 cycles
Replacement= Pseudo-LRU | [Replacement= Pseudo-LRU

B s e S o

|2 L2

Size= 256KB | 2
Associativity= 8-way
Latency= 10 cycles
Replacement= Pseudo-LRU

_____________________ T e
L3

|_ 3 Size= 2MB per core
Associativity= 16-way
Latency= 35 cycles
Replacement= Pseudo-LRU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Interactions with Advanced CPUs

Out-of-order CPUs can execute instructions
during cache miss
Pending store stays in load/store unit

Dependent instructions wait in reservation
stations

Independent instructions continue

Effect of miss depends on program data flow
Much harder to analyze
Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Interactions with Software

Misses depend on
memory access
patterns

Algorithm behavior

Compiler
optimization for
memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Virtual Memory

Use main memory as a “cache” for
secondary (disk) storage

Managed jointly by CPU hardware and the
operating system (OS)
Programs share main memory

Each gets a private virtual address space
holding its frequently used code and data

Protected from other programs
CPU and OS translate virtual addresses to
physical addresses

VM “block” is called a page

VM translation “miss” is called a page fault

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Address Translation

Fixed-size pages (e.g., 4K)

Virtual address

Virtual addresses Physical addresses 3130292827 «+--vverrnrreriineenes 15141312111098 ---------- 3210
. Address translation
Virtual page number Page offset
— |
“‘\
[—
\
g (Translation)
0-7A<
4
Disk addresses 202827 creeereiidieeiieenn 15141312111098 ---peveeee 3210
Physical page number Page offset

Physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Page Fault Penalty

On page fault, the page must be fetched
from disk

Takes millions of clock cycles
Handled by OS code

Try to minimize page fault rate
Fully associative placement
Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Page Tables

Stores placement information

Array of page table entries, indexed by virtual
page number

Page table register in CPU points to page
table in physical memory

If page Is present (valid-bit) in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, ...)

If page Is not present

PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Translation Using a Page Table
_Fpage table register

Virtual address
31 30 29 28 27 cceeevvvvniiiciiininn, 1514 13 12 11 10 9 8 -2+ 3210
Virtual page number Page offset
420 412
Valid Physical page number
® L
Page table
418
If 0 then page is not
present in memory
2O 28 27 iiriiiiiiiiiiaiiiiiiaaasd ...15 14 13 12 11 10 9 8 }----- 3210
Physical page number Page offset

Physical address
Size of Physical Memory = # Physical pages * Page_size
Physical page = 2 Physical Page Number
Page Table Size = #Virtual_pages * EnrySize

Virtual Memory System Example

Wirtual
addr Virtual page Page Phys. Page
num offeat Mo
Page Table 0
1
—- |Status bits | Phys. Page No.
2
Y Y
Phys Fhiys page Fane
addr num offzet
3
FPage size = 4 addressable units 1 page =
#iphys pages = 2wt o 4 bages 4 addressable
Phys Mem Size = 4 * 4 = 16 addressable units units

Page Table Size = 32 * (status_bits + 2) bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Phys. Mem

Virtual. Mem

Wir, Page

Mo,

31

Mapping Pages to Storage

Virtual page
number

| Page table

Physical page or Physical memory
Valid disk address

lil

Y

X
N

Disk storage

—_t Ot = | O b |k [O b | ek | b [k
()
\
\

KKQ%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Replacement and Writes

To reduce page fault rate, prefer least-
recently used (LRU) replacement

Reference bit (aka use bit) in PTE setto 1 on
access to page

Periodically cleared to 0 by OS

A page with reference bit = 0 has not been
used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through iIs impractical
Use write-back
Dirty bit in PTE set when page Is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Fast Translation Using a TLB

Address translation would appear to require
extra memory references

One to access the PTE

Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100
cycles for miss, 0.01%-1% miss rate

Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Fast Translation Using a TLB

TLB

Virtual page Physical page

number ValidDirty Ref Tag address

| |
1[0]1 .
1(1]1 .. Physical memory
KK . y
1101 -
0(0[0
11071 o~

Page table
Physical page
Valid Dirty Ref or disk address

NERIE —

7[00 o« -

o010 — Disk storage
1101 — <
07010 Ca— —
1101 o« 7 | |
101 LA A—

0[0[0 | |
1111 ¢ / ™ |
1111 a4 S
0(0[0 —F

111 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

TLB Misses

If page Is In memory
Load the PTE from memory and retry

Could be handled in hardware

Can get complex for more complicated page table
structures

Or In software
Raise a special exception, with optimized handler
If page Is not iIn memory (page fault)

OS handles fetching the page and updating
the page table

Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

TLB Miss Handler

TLB miss indicates
Page present, but PTE not in TLB
Page not preset

Must recognize TLB miss before destination
register overwritten

Raise exception

Handler copies PTE from memory to TLB
Then restarts Instruction
If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Page Fault Handler

Use faulting virtual address to find PTE
Locate page on disk

Choose page to replace
If dirty, write to disk first

Read page into memory and update page
table

Make process runnable again
Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

TLB and Cache Interaction

P 0 0a2 10 If cache tag uses

Virtual page number Page offset ‘ .
G physical address
Valid Dirty Tag Physical page number

e S Need to translate
Jling I E—C = : before cache lookup
> —
[S]

Alternative: use virtual

Physical page number | Page offset ad d reSS tag

Physical address

Physical address ta Cache index Block Byte . .
i N o Complications due to
aliasing
T -~ T 15z Data Different virtual
ali ag
addresses for shared
Cache | | | physical address

=
Cache hit

{32

Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Memory Protection

Different tasks can share parts of their
virtual address spaces

But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged Instructions

Page tables and other state information only
accessible in supervisor mode

System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching

At each level In the hierarchy
Block placement
Finding a block
Replacement on a miss
Write policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

Block Placement

Determined by associativity

Direct mapped (1-way associative)
One choice for placement

n-way set associative
n choices within a set

Fully associative
Any location

Higher associativity reduces miss rate
Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Finding a Block

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set Set index, then search | n
associative entries within the set
Fully associative Search all entries #entries
Full lookup table 0
Hardware caches

Reduce comparisons to reduce cost

Virtual memory

Full table lookup makes full associativity feasible
Benefit in reduced miss rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Replacement

Choice of entry to replace on a miss

Least recently used (LRU)
Complex and costly hardware for high associativity

Random
Close to LRU, easier to implement

Virtual memory
LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Write Policy

Write-through
Update both upper and lower levels

Simplifies replacement, but may require write
buffer

Write-back

Update upper level only
Update lower level when block is replaced
Need to keep more state

Virtual memory

Only write-back is feasible, given disk write
latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Sources of Misses

Compulsory misses (aka cold start misses)
First access to a block
Capacity misses
Due to finite cache size
A replaced block is later accessed again
Conflict misses (aka collision misses)
In a non-fully associative cache

Due to competition for entries in a set

Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Cache Design Trade-offs

Design change

Effect on miss rate

Negative
performance effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict
misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
Increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Cache Coherence Problem (read)

Suppose two CPU cores share a physical
address space

Write-through caches

Time | Event CPU A's CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 | CPUBreads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Coherence Defined (read)

Informally: Reads return most recently
written value

Formally:

P writes X; P reads X (no intervening writes)
— read returns written value

P, writes X; P, reads X (sufficiently later)
— read returns written value

c.f. CPU B reading X after step 3 in example

P, writes X, P, writes X
= all processors see writes in the same order

End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Cache Coherence Protocols (read)

Operations performed by caches in
multiprocessors to ensure coherence

Migration of data to local caches
Reduces bandwidth for shared memory

Replication of read-shared data
Reduces contention for access

Snooping protocols
Each cache monitors bus reads/writes

Directory-based protocols

Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Invalidating Snooping Protocols

Cache gets exclusive access to a block
when it is to be written

Broadcasts an invalidate message on the bus

Subsequent read in another cache misses
Owning cache supplies updated value

CPU activity Bus activity CPU A’s CPUB’s Memory
cache cache
0
CPU Areads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

Memory Consistency

When are writes seen by other processors
“Seen” means a read returns the written value
Can’t be instantaneously

Assumptions
A write completes only when all processors have seen
it
A processor does not reorder writes with other
accesses

Consequence

P writes X then writes Y
— all processors that see new Y also see new X

Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

After this slide is reading

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

Virtual Machines (read)

Host computer emulates guest operating system
and machine resources

Improved isolation of multiple guests
Avoids security and reliability problems
Aids sharing of resources

Virtualization has some performance impact
Feasible with modern high-performance comptuers

Examples
IBM VM/370 (1970s technology!)
VMWare
Microsoft Virtual PC

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Virtual Machine Monitor

Maps virtual resources to physical
resources

Memory, I/O devices, CPUs

Guest code runs on native machine in user
mode

Traps to VMM on privileged instructions and
access to protected resources

Guest OS may be different from host OS

VMM handles real 1/0O devices
Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Example: Timer Virtualization

In native machine, on timer interrupt

OS suspends current process, handles
Interrupt, selects and resumes next process

With Virtual Machine Monitor

VMM suspends current VM, handles interrupt,
selects and resumes next VM

If a VM requires timer interrupts
VMM emulates a virtual timer

Emulates interrupt for VM when physical timer
Interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Instruction Set Support

User and System modes

Privileged instructions only available In
system mode

Trap to system if executed In user mode
All physical resources only accessible
using privileged instructions

Including page tables, interrupt controls, 1/0O
registers

Renaissance of virtualization support
Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Cache Control (read)

Example cache characteristics
Direct-mapped, write-back, write allocate
Block size: 4 words (16 bytes)

Cache size: 16 KB (1024 blocks)
32-bit byte addresses
Valid bit and dirty bit per block

Blocking cache
CPU waits until access is complete

31 10 9 4 3 0

Tag Index | Offset
18 bits 10 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Interface Signals (read)

Read/Write R Read/Write R
Valid Valid
|__Address 32 R Address 32 R
CPU Write Data 2 | Cache Write Data *2° | Memory
Read Data % Read Data *%°
Ready Ready

/

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Multiple cycles
per access

Finite State Machines (read)

Use an FSM to
seguence control steps

Set of states, transition
on each clock edge

control logic
State values are binary
encoded

Current state stored in a
register ,

Next state T | |

= f_ (current state, o o casro |t e

current inputs)

Control output signals
= f, (current state)

Datapath control outputs

Outputs <

|;

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Cache Controller FSM (read)

Cache Hit

Idle Compare Tag
Mark Cache Ready (f Valid &8 Hit P Could
- =\ Set Valid, SetTag, .. .
Valid CPU request if Write Set Dirty partition into
se parate
states to
reduce clock
Cache Cache .
Miss Miss cycle time
and and
Old Block Old Block
is Clean is Dirty
Y

Write-Back

Write Old
Block to

Allocate Memory Ready

Read new block
from Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Multilevel On-Chip Caches

Intel Nehalem 4-core processor

ML]
i Twoienannal (128 bit) emoryints

abpug |

[iichinidi

-y - g

. $9sny B 0/I'uU9H

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

®
M {< Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

2-Level TLB Organization

Intel Nehalem AMD Opteron X4
Virtual addr 48 bits 48 bits
Physical addr | 44 bits 48 bits
Page size 4KB, 2/4MB 4KB, 2/4MB
L1 TLB L1 I-TLB: 128 entries for small L1 I-TLB: 48 entries
(per core) pages, 7 per thread (2x) for L1 D-TLB: 48 entries
large pages Both fully associative, LRU
L1 D-TLB: 64 entries for small replacement
pages, 32 for large pages
Both 4-way, LRU replacement
L2 TLB Single L2 TLB: 512 entries L2 I-TLB: 512 entries
(per core) 4-way, LRU replacement L2 D-TLB: 512 entries
Both 4-way, round-robin LRU
TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

3-Level Cache Organization

Intel Nehalem

AMD Opteron X4

L1 caches | L1 I-cache: 32KB, 64-byte L1 I-cache: 32KB, 64-byte

(per core) blocks, 4-way, approx LRU blocks, 2-way, LRU
replacement, hit time n/a replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU blocks, 2-way, LRU
replacement, write- replacement, write-
back/allocate, hit time n/a back/allocate, hit time 9 cycles

L2 unified 256KB, 64-byte blocks, 8-way, |512KB, 64-byte blocks, 16-way,

cache approx LRU replacement, write- | approx LRU replacement, write-

(per core) back/allocate, hit time n/a back/allocate, hit time n/a

L3 unified 8MB, 64-byte blocks, 16-way, 2MB, 64-byte blocks, 32-way,

cache replacement n/a, write- replace block shared by fewest

(shared) back/allocate, hit time n/a cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Mis Penalty Reduction

Return requested word first
Then back-fill rest of block

Non-blocking miss processing
Hit under miss: allow hits to proceed

Mis under miss: allow multiple outstanding
misses

Hardware prefetch: instructions and data

Opteron X4: bank interleaved L1 D-cache
Two concurrent accesses per cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Pitfalls

Byte vs. word addressing

Example: 32-byte direct-mapped cache,
4-byte blocks

Byte 36 maps to block 1
Word 36 maps to block 4

lgnoring memory system effects when
writing or generating code

Example: iterating over rows vs. columns of
arrays

Large strides result in poor locality

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Pitfalls

In multiprocessor with shared L2 or L3
cache

Less associativity than cores results in conflict
misses

More cores = need to increase associativity

Using AMAT to evaluate performance of
out-of-order processors

Ignores effect of non-blocked accesses
Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Pitfalls

Extending address range using segments
E.g., Intel 80286
But a segment Is not always big enough
Makes address arithmetic complicated

Implementing a VMM on an ISA not
designed for virtualization

E.qg., non-privileged instructions accessing
hardware resources

Either extend ISA, or require guest OS not to
use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Concluding Remarks

Fast memories are small, large memories are
slow

We really want fast, large memories ®
Caching gives this illusion ©
Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy

L1 cache < L2 cache < ... &> DRAM memory
<> disk

Memory system design Is critical for
multiprocessors

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

