
Chapter 1

Computer Abstractions

and Technology

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Course Textbook and Outline

 Instructor: Dr. Bassam Jamil / E 3056

 Textbook(s):
 Computer Organization and Design: The

Hardware/Software Interface, 4th Edition, David

Patterson and John Hennessy, Morgan Kaufmann.

ISBN: 978-0-12-374493-7, 2012

 Topics covered:
 Computer Abstractions and Technology

 Instructions: Language of the Computer

 Arithmetic for Computers

 The processor

 Exploiting Memory Hierarchy

Chapter 1 — Computer Abstractions and Technology — 2

Grades

 First Exam 25%

 Chap 1, 2, 3

 March 12

 Second Exam 25%

 Chap 4

 April 14

 Final

 All material

Chapter 1 — Computer Abstractions and Technology — 3

Chapter 1 — Computer Abstractions and Technology — 4

The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 5

Classes of Computers

 Desktop computers

 General purpose, variety of software

 Subject to cost/performance tradeoff

 Server computers

 Network based

 High capacity, performance, reliability

 Range from small servers to building sized

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 6

The Processor Market

Chapter 1 — Computer Abstractions and Technology — 7

What You Will Learn

 How programs are translated into the

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve

performance

 What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 8

Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 9

Below Your Program

 Application software

 Written in high-level language

 System software

 Compiler: translates HLL code to

machine code

 Operating System: service code

 Handling input/output

 Managing memory and storage

 Scheduling tasks & sharing resources

 Hardware

 Processor, memory, I/O controllers

§
1
.2

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 10

Levels of Program Code

 High-level language
 Level of abstraction closer

to problem domain

 Provides for productivity
and portability

 Assembly language
 Textual representation of

instructions

 Hardware representation
 Binary digits (bits)

 Encoded instructions and
data

Chapter 1 — Computer Abstractions and Technology — 11

Components of a Computer

 Same components for

all kinds of computer

 Desktop, server,

embedded

 Input/output includes

 User-interface devices

 Display, keyboard, mouse

 Storage devices

 Hard disk, CD/DVD, flash

 Network adapters

 For communicating with

other computers

§
1
.3

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 12

Anatomy of a Computer

Output

device

Input

device

Input

device

Network

cable

Chapter 1 — Computer Abstractions and Technology — 13

Anatomy of a Mouse

 Optical mouse

 LED illuminates

desktop

 Small low-res camera

 Basic image processor

 Looks for x, y

movement

 Buttons & wheel

 Supersedes roller-ball

mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 14

Through the Looking Glass

 LCD screen: picture elements (pixels)

 Mirrors content of frame buffer memory

Chapter 1 — Computer Abstractions and Technology — 15

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 16

Inside the Processor (CPU)

 Datapath: performs operations on data

 Control: sequences datapath, memory, ...

 Cache memory

 Small fast SRAM memory for immediate

access to data

Chapter 1 — Computer Abstractions and Technology — 17

Inside the Processor

 AMD Barcelona: 4 processor cores

Chapter 1 — Computer Abstractions and Technology — 18

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 19

A Safe Place for Data

 Volatile main memory

 Loses instructions and data when power off

 Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 20

Networks

 Communication and resource sharing

 Local area network (LAN): Ethernet

 Within a building

 Wide area network (WAN: the Internet

 Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 21

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2005 Ultra large scale IC 6,200,000,000

DRAM capacity

Chapter 1 — Computer Abstractions and Technology — 22

Defining Performance

 Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

§
1
.4

 P
e
rfo

rm
a
n
c
e

Chapter 1 — Computer Abstractions and Technology — 23

Response Time and Throughput

 Response time

 How long it takes to do a task

 Throughput

 Total work done per unit time

 e.g., tasks/transactions/… per hour

 How are response time and throughput affected

by

 Replacing the processor with a faster version?

 Adding more processors?

 We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 24

Relative Performance

 Define Performance = 1/Execution Time

 “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 25

Measuring Execution Time

 Elapsed time

 Total response time, including all aspects
 Processing, I/O, OS overhead, idle time

 Determines system performance

 CPU time

 Time spent processing a given job
 Discounts I/O time, other jobs’ shares

 Comprises user CPU time and system CPU
time

 Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 26

CPU Clocking

 Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

 Clock period: duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 27

CPU Time

 Performance improved by

 Reducing number of clock cycles

 Increasing clock rate

 Hardware designer must often trade off clock

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU





Chapter 1 — Computer Abstractions and Technology — 28

CPU Time Example

 Computer A: 2GHz clock, 10s CPU time

 Designing Computer B

 Aim for 6s CPU time

 Can do faster clock, but causes 1.2 × clock cycles

 How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B
















Chapter 1 — Computer Abstractions and Technology — 29

Instruction Count and CPI

 Instruction Count for a program

 Determined by program, ISA and compiler

 Average cycles per instruction

 Determined by CPU hardware

 If different instructions have different CPI

 Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock








Chapter 1 — Computer Abstractions and Technology — 30

CPI Example

 Computer A: Cycle Time = 250ps, CPI = 2.0

 Computer B: Cycle Time = 500ps, CPI = 1.2

 Same ISA

 Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU















A is faster…

…by this much

Chapter 1 — Computer Abstractions and Technology — 31

CPI in More Detail

 If different instruction classes take different

numbers of cycles





n

1i

ii)Count nInstructio(CPICycles Clock

 Weighted average CPI














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 32

CPI Example

 Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

 Sequence 1: IC = 5

 Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

 Avg. CPI = 10/5 = 2.0

 Sequence 2: IC = 6

 Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

 Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 33

Performance Summary

 Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 

Chapter 1 — Computer Abstractions and Technology — 34

Power Trends

 In CMOS IC technology

§
1
.5

 T
h
e
 P

o
w

e
r W

a
ll

FrequencyVoltageload CapacitivePower 2 

×1000 ×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 35

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 36

Uniprocessor Performance
§
1
.6

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Chapter 1 — Computer Abstractions and Technology — 37

Multiprocessors

 Multicore microprocessors

 More than one processor per chip

 Requires explicitly parallel programming

 Compare with instruction level parallelism

 Hardware executes multiple instructions at once

 Hidden from the programmer

 Hard to do

 Programming for performance

 Load balancing

 Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 38

Manufacturing ICs

 Yield: proportion of working dies per wafer

§
1
.7

 R
e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p
te

ro
n
 X

4

Chapter 1 — Computer Abstractions and Technology — 39

AMD Opteron X2 Wafer

 X2: 300mm wafer, 117 chips, 90nm technology

 X4: 45nm technology

Chapter 1 — Computer Abstractions and Technology — 40

Integrated Circuit Cost

 Nonlinear relation to area and defect rate

 Wafer cost and area are fixed

 Defect rate determined by manufacturing process

 Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost









Chapter 1 — Computer Abstractions and Technology — 41

SPEC CPU Benchmark

 Programs used to measure performance
 Supposedly typical of actual workload

 Standard Performance Evaluation Corp (SPEC)
 Develops benchmarks for CPU, I/O, Web, …

 SPEC CPU2006
 Elapsed time to execute a selection of programs

 Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios
 CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution


Chapter 1 — Computer Abstractions and Technology — 42

CINT2006 for Opteron X4 2356

Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0

Geometric mean 11.7

High cache miss rates

Chapter 1 — Computer Abstractions and Technology — 43

SPEC Power Benchmark

 Power consumption of server at different

workload levels

 Performance: ssj_ops/sec

 Power: Watts (Joules/sec)

















 



10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

Chapter 1 — Computer Abstractions and Technology — 44

SPECpower_ssj2008 for X4

Target Load % Performance (ssj_ops/sec) Average Power (Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 920,35 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall sum 1,283,590 2,605

∑ssj_ops/ ∑power 493

Chapter 1 — Computer Abstractions and Technology — 45

Pitfall: Amdahl’s Law

 Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

§
1
.8

 F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20 
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T 

 Example: multiply accounts for 80s/100s

 How much improvement in multiply performance to

get 5× overall?

 Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 46

Fallacy: Low Power at Idle

 Look back at X4 power benchmark

 At 100% load: 295W

 At 50% load: 246W (83%)

 At 10% load: 180W (61%)

 Google data center

 Mostly operates at 10% – 50% load

 At 100% load less than 1% of the time

 Consider designing processors to make

power proportional to load

Chapter 1 — Computer Abstractions and Technology — 47

Pitfall: MIPS as a Performance Metric

 MIPS: Millions of Instructions Per Second

 Doesn’t account for

 Differences in ISAs between computers

 Differences in complexity between instructions

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS












 CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 48

Concluding Remarks

 Cost/performance is improving

 Due to underlying technology development

 Hierarchical layers of abstraction

 In both hardware and software

 Instruction set architecture

 The hardware/software interface

 Execution time: the best performance
measure

 Power is a limiting factor

 Use parallelism to improve performance

§
1
.9

 C
o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 2

Instructions: Language

of the Computer

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Outline (Read Rest of Topics)

1. Instruction Set

2. Operations

3. Operands

4. Singed and Unsigned

Numbers

5. Representing Instructions

in the Computer

6. Logical Operations

7. Decision Instructions

8. Procedures

9. Communicating with

People

10.MIPS Addressing for 32-

Bit:Immediate and

Addresses

11. Parallelism and Instructions:

Synchronization

12. Translating and Starting a Program

13 . A C Sort Example to Put It All

Together

14. Arrays versus Pointers

15. Arrays versus Pointers

16. Real Stuff: ARM Instructions

17. Real Stuff: x86 Instructions

18. Fallacies and Pitfalls

19. Concluding Remarks

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer — 3

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

The Instruction Set Architecture (ISA)

instruction set architecture

software

hardware

The interface description separating
the software and hardware

4

Chapter 2 — Instructions: Language of the Computer — 5

The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

MIPS R3000 Instruction Set Architecture (ISA)

 Instruction categories
 Computational

 Load/Store

 Jump and Branch

 Floating Point

 coprocessor

 Memory Management

R0 - R31

PC

HI

LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

6

0 $zero constant 0 (Hdware)

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments (not preserved)

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

 Caller saved if needed. Subroutines

 can use w/out saving.

15 $t7

Naming Conventions for Registers

16 $s0 callee saves
 A subroutine using one of these must

 save original and restore it before exiting.

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp pointer to global area

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address (Hdware) 7

Register preceded by $ in assembly language instruction

Two formats for addressing:

 - Register number e.g. $0 through $31

 - Equivalent names (Naming convection) e.g. $t1, $sp

Chapter 2 — Instructions: Language of the Computer — 8

Instructions Families

 Main instruction families:

Instruction class MIPS examples

Arithmetic add, sub, addi

Data transfer lw, sw, lb, lbu, lh, lhu,
sb, lui

Logical and, or, nor, andi, ori,
sll, srl

Cond. Branch beq, bne, slt, slti, sltiu

Jump j, jr, jal

Chapter 2 — Instructions: Language of the Computer — 9

Common MIPS Instructions

 Measure MIPS instruction executions in
benchmark programs

 Consider making the common case fast

 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

Review: MIPS Instructions

Category Instr OpC Example Meaning

Data

transfer

(I format)

load word 23 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) = $s1

load byte 20 lb $s1, 101($s2) $s1 = Memory($s2+101)

store byte 28 sb $s1, 101($s2) Memory($s2+101) = $s1

load half 21 lh $s1, 101($s2) $s1 = Memory($s2+102)

store half 29 sh $s1, 101($s2) Memory($s2+102) = $s1

10

Category Instr Op Code Example Meaning

Arithmetic

(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Uncond.
Jump
(J & R
format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4

MIPS Reference Data Sheet

11

MIPS Reference Data Sheet

12

Chapter 2 — Instructions: Language of the Computer — 13

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

 add a, b, c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

MIPS Arithmetic Instructions

Chapter 2 — Instructions: Language of the Computer — 14

Chapter 2 — Instructions: Language of the Computer — 15

Arithmetic Example

 C code:

 f = (g + h) - (i + j);

 Compiled MIPS code:

 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 16

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Register Naming Convention

Chapter 2 — Instructions: Language of the Computer — 17

Chapter 2 — Instructions: Language of the Computer — 18

Register Operand Example

 C code:

 f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 19

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

Byte Addresses

Big Endian:

 Leftmost byte is word address

Little Endian:

Rightmost byte is word address

LS Byte has biggest address in the

word

LS Byte has little address in the

word.

//upload.wikimedia.org/wikipedia/commons/5/54/Big-Endian.svg
//upload.wikimedia.org/wikipedia/commons/e/ed/Little-Endian.svg

Chapter 2 — Instructions: Language of the Computer — 21

Addressing Mode Summary

Review of MIPS Operand Addressing Modes

Chapter 2 — Instructions: Language of the Computer — 22

Review of MIPS Instruction Addressing Modes

Chapter 2 — Instructions: Language of the Computer — 23

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 1

 C code:

 g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 25

Memory Operand Example 2

 C code:

 A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 26

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 27

Immediate Operands

 Constant data specified in an instruction

 addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

 addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 28

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

 add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 29

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 30

MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 31

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 32

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 33

Stored Program Computers

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 34

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 35

Shift Operations

 shamt: how many positions to shift

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 36

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 37

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 38

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000 $t1

1111 1111 1111 1111 1100 0011 1111 1111 $t0

Register 0: always

read as zero

Chapter 2 — Instructions: Language of the Computer — 39

Conditional Operations

 Branch to a labeled instruction if a
condition is true

 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 40

Compiling If Statements

 C code:

 if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …

 Compiled MIPS code:

 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 41

Compiling Loop Statements

 C code:

 while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

 Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 42

Basic Blocks

 A basic block is a sequence of instructions

with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic

blocks for optimization

 An advanced processor

can accelerate execution

of basic blocks

Chapter 2 — Instructions: Language of the Computer — 43

More Conditional Operations

 Set result to 1 if a condition is true

 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 44

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 45

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 46

Procedure Calling

 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 47

Register Usage

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries
 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 48

Procedure Call Instructions

 Procedure call: jump and link

 jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

 jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 49

Leaf Procedure Example

 C code:

 int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 50

Leaf Procedure Example

 MIPS code:
 leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 51

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the

stack:

 Its return address

 Any arguments and temporaries needed after

the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 52

Non-Leaf Procedure Example

 C code:

 int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}

 Argument n in $a0

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 53

Non-Leaf Procedure Example

 MIPS code:
 fact:

 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 54

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 55

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 56

Character Data

 Byte-encoded character sets

 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 57

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 58

String Copy Example

 C code (naïve):

 Null-terminated string

 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

 Addresses of x, y in $a0, $a1

 i in $s0

Chapter 2 — Instructions: Language of the Computer — 59

String Copy Example

 MIPS code:
 strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 60

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

 lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
a
n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 61

Branch Addressing

 Branch instructions specify

 Opcode, two registers, target address

 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 62

Jump Addressing

 Jump (j and jal) targets could be

anywhere in text segment

 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing

 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 63

Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 64

Branching Far Away

 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example

 beq $s0,$s1, L1

 ↓

 bne $s0,$s1, L2
 j L1
L2: …

Chapter 2 — Instructions: Language of the Computer — 65

Translation and Startup

Many compilers produce

object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 66

Assembler Pseudoinstructions

 Most assembler instructions represent

machine instructions one-to-one

 Pseudoinstructions: figments of the

assembler’s imagination

 move $t0, $t1 → add $t0, $zero, $t1

 blt $t0, $t1, L → slt $at, $t0, $t1

 bne $at, $zero, L

 $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 67

Producing an Object Module

 Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete
program from the pieces
 Header: described contents of object module

 Text segment: translated instructions

 Static data segment: data allocated for the life of the
program

 Relocation info: for contents that depend on absolute
location of loaded program

 Symbol table: global definitions and external refs

 Debug info: for associating with source code

 Consider the load-word and store-word instr’s

 What would the regularity principle have us do?

 But . . . Good design demands compromise

 Introduce a new type of instruction format

 I-type for data transfer instructions (previous format was R-
type for register)

 Example: lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit number

23hex 18 8 24

100011 10010 01000 0000000000011000

68

 Instructions, like registers and words of data, are also 32
bits long

 Example: add $t1, $s1, $s2

 registers have numbers, $t1=9, $s1=17, $s2=18

 Instruction Format:

 000000 1000110010 01001 00000 100000

 op rs rt rd shamt funct

 Can you guess what the field names stand for?

Machine Language

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits Fieldsize:

69

 What instruction format is used for the addi ?

 addi $s3, $s3, 4 #$s3 = $s3 + 4

 Machine format:

Machine Language – Immediate Instructions

op rs rt 16 bit immediate I format

8 19 19 4

 The constant is kept inside the instruction itself!

 So must use the I format – Immediate format

 Limits immediate values to the range +215–1 to -215

71

Load Example

.data

 var0: .word 0x01234567

 var1: .word 0x79abcdef

.text

 la $s1, var0

 lw $t1, 0($s1) # $t1 = 01234567

 lw $t1, 1($s1) #Error: misalignment

 la $s1, var1

 lb $t1, 0($s1) # $t1 = ff ff ff ef

 lb $t1, 1($s1) # $t1 = ff ff ff cd

 lb $t1, 2($s1) # $t1 = ff ff ff ab

 lb $t1, 3($s1) # $t1 = 00 00 00

79

la $s1, var0

lh $t1, 0($s1) #$t1=00004567

lh $t1, 1($s1) #Error: misalignment

lh $t1, 2($s1) #$t1=0000 0123

lh $t1, 3($s1) #Error: misalignment

lw $t1, 4($s1) # t1 = var1

sh $t1, 0($s1) #var0= 0123cdef

sb $t1, 3($s1) #var0=ef23cdef

Subroutine Example

.data

data1: .word 5

data2: .word 10

##################################

.text

 la $a0, data1

 la $a1, data2

 jal my_sub

 add $t0, $v0, $zero

 syscall # exit program

##################################

.text

my_sub:

 lw $t0, 0($a0)

 lw $t1, 0($a1)

 add $v0, $t0, $t1

 jr $ra

Chapter 2 — Instructions: Language of the Computer — 74

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
 void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 75

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

 add $t1, $a0, $t1 # $t1 = v+(k*4)

 # (address of v[k])

 lw $t0, 0($t1) # $t0 (temp) = v[k]

 lw $t2, 4($t1) # $t2 = v[k+1]

 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 sw $t0, 4($t1) # v[k+1] = $t0 (temp)

 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 76

The Sort Procedure in C

 Non-leaf (calls swap)
 void sort (int v[], int n)
 {
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
 }
 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 77

The Procedure Body
 move $s2, $a0 # save $a0 into $s2

 move $s3, $a1 # save $a1 into $s3

 move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

 addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

 sll $t1, $s1, 2 # $t1 = j * 4

 add $t2, $s2, $t1 # $t2 = v + (j * 4)

 lw $t3, 0($t2) # $t3 = v[j]

 lw $t4, 4($t2) # $t4 = v[j + 1]

 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

 move $a0, $s2 # 1st param of swap is v (old $a0)

 move $a1, $s1 # 2nd param of swap is j

 jal swap # call swap procedure

 addi $s1, $s1, –1 # j –= 1

 j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

 j for1tst # jump to test of outer loop

Pass

params

& call

Move

params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 78

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

 sw $ra, 16($sp) # save $ra on stack

 sw $s3,12($sp) # save $s3 on stack

 sw $s2, 8($sp) # save $s2 on stack

 sw $s1, 4($sp) # save $s1 on stack

 sw $s0, 0($sp) # save $s0 on stack

 … # procedure body

 …

 exit1: lw $s0, 0($sp) # restore $s0 from stack

 lw $s1, 4($sp) # restore $s1 from stack

 lw $s2, 8($sp) # restore $s2 from stack

 lw $s3,12($sp) # restore $s3 from stack

 lw $ra,16($sp) # restore $ra from stack

 addi $sp,$sp, 20 # restore stack pointer

 jr $ra # return to calling routine

The Full Procedure

Chapter 3

Arithmetic for Computers

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2012, UCB]

Outline

 Introduction

 Addition and Subtraction

 Multiplication

 Division

 Floating Point

 ALU Design

Chapter 3 — Arithmetic for Computers — 2

Chapter 3 — Arithmetic for Computers — 3

Arithmetic for Computers

 Operations on integers

 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers

 Representation and operations

§
3
.1

 In
tro

d
u
c
tio

n

Chapter 3 — Arithmetic for Computers — 4

Integer Addition

 Example: 7 + 6

§
3
.2

 A
d
d
itio

n
 a

n
d
 S

u
b
tra

c
tio

n

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 5

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

 Overflow if result out of range

 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 6

Dealing with Overflow

 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran)
require raising an exception
 Use MIPS add, addi, sub instructions

 On overflow, invoke exception handler
 Save PC in exception program counter (EPC)

register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 7

Multiplication

 Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is

the sum of operand

lengths

multiplicand

multiplier

product

§
3
.3

 M
u
ltip

lic
a
tio

n

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

MIPS Multiplication

 Two 32-bit registers for product

 HI: most-significant 32 bits

 LO: least-significant 32-bits

 Instructions

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 11

Division

 Check for 0 divisor

 Long division approach
 If divisor ≤ dividend bits

 1 bit in quotient, subtract

 Otherwise

 0 bit in quotient, bring down next
dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values

 Adjust sign of quotient and remainder
as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit

quotient and remainder

quotient

dividend

remainder

divisor

§
3
.4

 D
iv

is
io

n

Chapter 3 — Arithmetic for Computers — 12

Division Hardware

Initially dividend

Initially divisor

in left half

Chapter 3 — Arithmetic for Computers — 13

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 14

MIPS Division

 Use HI/LO registers for result

 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions

 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking

 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 15

Floating Point

 Representation for non-integral numbers

 Including very small and very large numbers

 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§
3
.5

 F
lo

a
tin

g
 P

o
in

t

Chapter 3 — Arithmetic for Computers — 16

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 17

IEEE Floating-Point Format

 S: sign bit (0  non-negative, 1  negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0
 Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 

Floating Point Representation

Chapter 3 — Arithmetic for Computers — 18

Single Precision Double Precision Object Represented

E (8) F (23) E (11) F (52)

0 0 0 0 true zero (0)

0 nonzero 0 nonzero ± denormalized number

± 1-254

± 128-2

anything ± 1-2046

± 1211-2

anything ± floating point number

± 255

±(28-1)

0 ± 2047

±(211-1)

0 ± infinity

255 nonzero 2047 nonzero not a number (NaN)

Chapter 3 — Arithmetic for Computers — 19

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 20

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 21

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

 What number is represented by the single-
precision float

 11000000101000…00

 S = 1

 Fraction = 01000…002

 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

 = (–1) × 1.25 × 22

 = –5.0

Chapter 3 — Arithmetic for Computers — 26

Floating-Point Addition

 Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent

 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 27

Floating-Point Addition

 Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 28

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too

long

 Much longer than integer operations

 Slower clock would penalize all instructions

 FP adder usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 29

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 32

FP Arithmetic Hardware

 FP multiplier is of similar complexity to FP
adder

 But uses a multiplier for significands instead of
an adder

 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP  integer conversion

 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 33

FP Instructions in MIPS

 FP hardware is coprocessor 1
 Adjunct processor that extends the ISA

 Separate FP registers
 32 single-precision: $f0, $f1, … $f31

 Paired for double-precision: $f0/$f1, $f2/$f3, …
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data,

or vice versa

 More registers with minimal code-size impact

 FP load and store instructions (single/double)
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 34

FP Instructions in MIPS

 Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)

 Sets or clears FP condition-code bit
 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 35

FP Example: °F to °C

 C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
 f2c: lwc1 $f16, const5($gp)
 lwc2 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

ALU Design: Datapath

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

36

Chapter 4 : The Processor

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy]

Chapter 4 — The Processor — 2

Introduction

 CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version

 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

 Arithmetic/logical: add, sub, and, or, slt

 Control transfer: beq, j

§
4
.1

 In
tro

d
u
c
tio

n

Chapter 4 — The Processor — 3

Instruction Execution

 PC  instruction memory, fetch instruction

 Register numbers  register file, read registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC  target address or PC + 4

Processor Control Unit: Basics

Chapter 4 — The Processor — 4

Unit What needs to be controlled

Register File 1. Register Write: enable write to register file

2. Specifying destination Register: instruction[20-16] versus

instruction[15-11]

3. Memory-to-register: What to write to register file? Memory

output or ALU output

Memory 1. Memory Read: enables memory read access

2. Memory Write: enables memory write access

ALU 1. ALUOp: specifies ALU operation

2. ALUSource: second operand to ALU can be from register

file or instruction (i.e., immediate data)

PC control 1. Branch: PC <- (PC+4) + offset

2. Jump: PC <- Jump address

Chapter 4 — The Processor — 5

CPU Overview

Chapter 4 — The Processor — 6

Multiplexers

 Can’t just join

wires together

 Use multiplexers

Chapter 4 — The Processor — 7

Control

Chapter 4 — The Processor — 8

Building a Datapath

 Datapath

 Elements that process data and addresses

in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath

incrementally

 Refining the overview design

§
4
.3

 B
u
ild

in
g
 a

 D
a
ta

p
a
th

Chapter 4 — The Processor — 9

Instruction Fetch

32-bit

register

Increment by

4 for next

instruction

Chapter 4 — The Processor — 10

R-Format Instructions

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

Chapter 4 — The Processor — 11

Load/Store Instructions

 Read register operands

 Calculate address using 16-bit offset
 Use ALU, but sign-extend offset

 Load: Read memory and update register

 Store: Write register value to memory

Chapter 4 — The Processor — 12

Branch Instructions

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 13

Branch Instructions

Just

re-routes

wires

Sign-bit wire

replicated

Chapter 4 — The Processor — 14

Composing the Elements

 First-cut data path does an instruction in

one clock cycle

 Each datapath element can only do one

function at a time

 Hence, we need separate instruction and data

memories

 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 15

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 16

Full Datapath

Chapter 4 — The Processor — 17

ALU Control

 ALU used for

 Load/Store: F = add

 Branch: F = subtract

 R-type: F depends on funct field

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n
ta

tio
n
 S

c
h
e
m

e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Chapter 4 — The Processor — 18

ALU Control

 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 19

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:0 25:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

read,

except

for load

write for

R-type

and load

sign-extend

and add

Chapter 4 — The Processor — 20

Datapath With Control

Chapter 4 — The Processor — 21

R-Type Instruction

Chapter 4 — The Processor — 22

Load Instruction

Chapter 4 — The Processor — 23

Branch-on-Equal Instruction

Chapter 4 — The Processor — 24

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of

 Top 4 bits of old PC

 26-bit jump address

 00

 Need an extra control signal decoded from

opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 25

Datapath With Jumps Added

Chapter 4 — The Processor — 26

Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU 

data memory  register file

 Not feasible to vary period for different

instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 27

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g

  Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/0.5n + 1.5 ≈ 4

= number of stages

Chapter 4 — The Processor — 28

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 29

Pipeline Performance

 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 30

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 31

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

 Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 32

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 33

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 34

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that

cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require

separate instruction/data memories

 Or separate instruction/data caches

Chapter 4 — The Processor — 35

Data Hazards

 An instruction depends on completion of

data access by a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 36

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 37

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 38

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 39

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute
target early in the pipeline

 Add hardware to do it in ID stage

Chapter 4 — The Processor — 40

Stall on Branch

 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 41

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 42

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

Chapter 4 — The Processor — 43

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 44

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 45

MIPS Pipelined Datapath
§
4
.6

 P
ip

e
lin

e
d
 D

a
ta

p
a
th

 a
n
d
 C

o
n
tro

l

WB

MEM

Right-to-left

flow leads to

hazards

Chapter 4 — The Processor — 46

Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 47

Pipeline Operation

 Cycle-by-cycle flow of instructions through

the pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams

for load & store

Chapter 4 — The Processor — 48

IF for Load, Store, …

Chapter 4 — The Processor — 49

ID for Load, Store, …

Chapter 4 — The Processor — 50

EX for Load

Chapter 4 — The Processor — 51

MEM for Load

Chapter 4 — The Processor — 52

WB for Load

Wrong

register

number

Chapter 4 — The Processor — 53

Corrected Datapath for Load

Chapter 4 — The Processor — 54

EX for Store

Chapter 4 — The Processor — 55

MEM for Store

Chapter 4 — The Processor — 56

WB for Store

Chapter 4 — The Processor — 57

Multi-Cycle Pipeline Diagram

 Form showing resource usage

Chapter 4 — The Processor — 58

Multi-Cycle Pipeline Diagram

 Traditional form

Chapter 4 — The Processor — 59

Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle

Chapter 4 — The Processor — 60

Pipelined Control (Simplified)

Chapter 4 — The Processor — 61

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 62

Pipelined Control

Chapter 4 — The Processor — 63

Data Hazards in ALU Instructions

 Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding

 How do we detect when to forward?

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Chapter 4 — The Processor — 64

Dependencies & Forwarding

Chapter 4 — The Processor — 65

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Chapter 4 — The Processor — 66

Detecting the Need to Forward

 But only if forwarding instruction will write

to a register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not

$zero

 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 67

Forwarding Paths

Chapter 4 — The Processor — 68

Forwarding Conditions

 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 10

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

Chapter 4 — The Processor — 69

Double Data Hazard

 Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur

 Want to use the most recent

 Revise MEM hazard condition

 Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 70

Revised Forwarding Condition

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

Chapter 4 — The Processor — 71

Datapath with Forwarding

Chapter 4 — The Processor — 72

Load-Use Data Hazard

Need to stall

for one cycle

Chapter 4 — The Processor — 73

Load-Use Hazard Detection

 Check when using instruction is decoded
in ID stage

 ALU operand register numbers in ID stage
are given by

 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when

 ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 74

How to Stall the Pipeline

 Force control values in ID/EX register

to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 75

Stall/Bubble in the Pipeline

Stall inserted

here

Chapter 4 — The Processor — 76

Stall/Bubble in the Pipeline

Or, more

accurately…

Chapter 4 — The Processor — 77

Datapath with Hazard Detection

Chapter 4 — The Processor — 78

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid

hazards and stalls

 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 79

Branch Hazards

 If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

Chapter 4 — The Processor — 80

Reducing Branch Delay

 Move hardware to determine outcome to ID

stage

 Target address adder

 Register comparator

 Example: branch taken
 36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

Chapter 4 — The Processor — 81

Example: Branch Taken

Chapter 4 — The Processor — 82

Example: Branch Taken

Chapter 4 — The Processor — 83

Data Hazards for Branches

 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

Chapter 4 — The Processor — 84

Data Hazards for Branches

 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding

load instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 85

Data Hazards for Branches

 If a comparison register is a destination of

immediately preceding load instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 86

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 87

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of

inner loop

 Then mispredict as not taken on first

iteration of inner loop next time around

Chapter 4 — The Processor — 88

2-Bit Predictor

 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 89

Calculating the Branch Target

 Even with predictor, still need to calculate

the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can

fetch target immediately

Chapter 4 — The Processor — 90

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing

performance is hard

§
4
.9

 E
x
c
e
p
tio

n
s

Chapter 4 — The Processor — 91

Handling Exceptions

 Save PC of offending (or interrupted) instruction
 In MIPS: Exception Program Counter (EPC)

 Save indication of the problem
 In MIPS: Cause register (status register)

 We’ll assume 1-bit
 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

Chapter 4 — The Processor — 92

An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Example:

 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either

 Deal with the interrupt, or

 Jump to real handler

Chapter 4 — The Processor — 93

Handler Actions

 Read cause, and transfer to relevant
handler

 Determine action required

 If restartable

 Take corrective action

 use EPC to return to program

 Otherwise

 Terminate program

 Report error using EPC, cause, …

Chapter 4 — The Processor — 94

Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

Chapter 4 — The Processor — 95

Pipeline with Exceptions

Chapter 4 — The Processor — 96

Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the

instruction

 Refetched and executed from scratch

 PC saved in EPC register

 Identifies causing instruction

 Actually PC + 4 is saved

 Handler must adjust

Chapter 4 — The Processor — 97

Exception Example

 Exception on add in
 40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

 Handler
 80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 98

Exception Example

Chapter 4 — The Processor — 99

Exception Example

Chapter 4 — The Processor — 100

Multiple Exceptions

 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once

 Simple approach: deal with exception from

earliest instruction

 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines

 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 101

Hardware/Software Interface

 Hardware stops pipeline and save state

 Including exception cause(s)

 Let the handler work out

 Which instruction(s) had exceptions

 Which to complete or flush

 May require “manual” completion

 Associating correct exception with correct instruction

 Imprecise exceptions are not associated with the exact

instruction that caused the exception

 Hardware detect the exception. Leave to OS to determine which

instruction caused the interrupt.

 Precise exceptions

 Supported by most processors

Chapter 4 — The Processor — 102

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle (higher freq)

 Multiple issue
 Replicate pipeline stages  multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS (billion inst per sec), peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 A

d
v
a
n
c
e
d
 In

s
tru

c
tio

n
 L

e
v
e
l P

a
ra

lle
lis

m

Chapter 4 — The Processor — 103

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 104

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 105

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 106

Speculation and Exceptions
(read)

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 107

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

  Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 108

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 109

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 110

MIPS with Static Dual Issue

Chapter 4 — The Processor — 111

Hazards in the Dual-Issue MIPS
(read)

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Chapter 4 — The Processor — 112

Scheduling Example (read)

 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 113

Loop Unrolling (read)

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”

 Reuse of a register name

Chapter 4 — The Processor — 114

Loop Unrolling Example (read)

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 115

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 116

Dynamic Pipeline Scheduling (read)

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

 lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 117

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

REST Is Reading Material

Chapter 4 — The Processor — 118

Chapter 4 — The Processor — 119

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Chapter 4 — The Processor — 120

Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Load speculation

 Avoid load and cache miss delay

 Predict the effective address

 Predict loaded value

 Load before completing outstanding stores

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Chapter 4 — The Processor — 121

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 122

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 123

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 124

The Opteron X4 Microarchitecture
§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p
te

ro
n
 X

4
 (B

a
rc

e
lo

n
a
) P

ip
e
lin

e

72 physical

registers

Chapter 4 — The Processor — 125

The Opteron X4 Pipeline Flow

 For integer operations

 FP is 5 stages longer

 Up to 106 RISC-ops in progress

 Bottlenecks

 Complex instructions with long dependencies

 Branch mispredictions

 Memory access delays

Chapter 4 — The Processor — 126

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 127

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

CPE 408340

Computer Organization

Dr. Bassam Jamil

[Adapted from Computer Organization and Design,

Patterson & Hennessy]

Chapter 5 : Large and Fast:

Exploiting Memory Hierarchy
The

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of

their address space at any time

 Temporal locality

 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from

upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.2

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if

the data is present?

 Where do we look?

Cache Design Rules

Address = [Block Address] [Block Offset]

Address = [Tag] [Index] [Word Offset] [Byte Offset]

Block_bits = log2(Block_Size)

#Blocks in Cache = Cache_Size/Block_Size

#Sets in Cache = #Blocks / Set_Size

Set_Size = number of ways in the cache

For direct cache : Set_Size=1 (#Sets = #Blocks)

For fully associative : Set_Size= #Blocks (#Sets = 1)

For k-way associative: Set_Size= k

Index_bits = log2 (#Sets)

Tag_bits = Address_bits - (Block_bits + Index_bits)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

K-way Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a

power of 2

 Use low-order

address bits

Index

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Tags and Valid Bits

 How do we know which particular block is

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state, Mem=32 words (or blocks)

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Miss :Tag

mismatch

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

120010= 0 ….01 00 1011 0000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





In the next few

slides we will

measure:

1. Miss Rate

2. Miss Penalty

Recall:

Time Cycle ClockTime CPU

Time Cycle ClockCPICount nInstructioTime CPU





CycleCount

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Associativity Example

 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

How Much Associativity

 Increased associativity decreases miss

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Cache Design: (1) Associativity vs miss rate

 Higher associativity ==> more complex HW

 But a highly-associative cache will have a lower miss rate

 Each set has more blocks, so there’s less chance of a conflict between two

addresses

 Overall, this will reduce Average memory access time (AMAT) and memory

stall cycles

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Design: (2) Cache size vs miss rate

 In a larger cache there’s less chance there will

be of a conflict

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Cache Design: (3) Block size vs miss rate

 Smaller blocks do not take maximum advantage of

spatial locality

 But if blocks are too large, there are fewer blocks

available, and more potential conflicts misses

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Write-Back

 Alternative: On data-write hit, just update

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Write-allocate on miss: fetch the block

 Write around (no write allocate): don’t fetch

the block

 Since programs often write a whole block before

reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Advanced DRAM Organization

 Bits in a DRAM are organized as a

rectangular array

 DRAM accesses an entire row

 Burst mode: supply successive words from a

row with reduced latency

 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.3

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Cache Misses

Cache Misses The Cause Dependency

Capacity misses Occur due to the finite

size of the cache.

Cache size

Conflict misses Occur because the

cache had evicted an

entry earlier.

Associatively

Compulsory

misses

(Cold misses)

Caused by the first

reference to a location

in memory.

Block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict misses May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate due

to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from

primary cache

 Larger, slower, but still faster than main

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6

In summary: CPI and AMAT for multi-level

cache system

 For Multi-level cache system

 CPI = <ideal_CPI>

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…

+ Miss rate Ln× Miss penalty Ln

 AMAT = Hit time +

+ Miss rate L1× Miss penalty L1

+ Miss rate L2× Miss penalty L2

…

+ Miss rate Ln× Miss penalty Ln

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

L1 Hit access

L2 Hit access

L3 Hit access

L1 Hit access

L2 Hit access

L3 Hit access

Memory access

Memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

Intel Core-i7 three-level cache Architecture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

L1 D$
Size= 32KB

Associativity= 4-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L1 I$
Size= 32KB

Associativity= 8-way

Latency= 4 cycles

Replacement= Pseudo-LRU

L2
Size= 256KB

Associativity= 8-way

Latency= 10 cycles

Replacement= Pseudo-LRU

L3
Size= 2MB per core

Associativity= 16-way

Latency= 35 cycles

Replacement= Pseudo-LRU

Core

L1 D$ L1 I$

L2

Core

L1

L2

L3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions

during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation

stations

 Independent instructions continue

 Effect of miss depends on program data flow

 Much harder to analyze

 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Interactions with Software

 Misses depend on

memory access

patterns

 Algorithm behavior

 Compiler

optimization for

memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

§
5
.4

 V
irtu

a
l M

e
m

o
ry

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Address Translation

 Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present (valid-bit) in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Translation Using a Page Table

Size of Physical Memory = # Physical_pages * Page_size

Physical Page = 2 Physical Page Number

Page Table Size = #Virtual_pages * EnrySize

Virtual Memory System Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before destination

register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page

table

 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Memory Protection

 Different tasks can share parts of their

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

The Memory Hierarchy

 Common principles apply at all levels of

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.5

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Cache Coherence Problem (read)

 Suppose two CPU cores share a physical
address space
 Write-through caches

§
5
.8

 P
a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Coherence Defined (read)

 Informally: Reads return most recently
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Cache Coherence Protocols (read)

 Operations performed by caches in
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it

 A processor does not reorder writes with other
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

After this slide is reading

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Virtual Machines (read)

 Host computer emulates guest operating system

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Virtual Machine Monitor

 Maps virtual resources to physical
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user
mode

 Traps to VMM on privileged instructions and
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Example: Timer Virtualization

 In native machine, on timer interrupt

 OS suspends current process, handles

interrupt, selects and resumes next process

 With Virtual Machine Monitor

 VMM suspends current VM, handles interrupt,

selects and resumes next VM

 If a VM requires timer interrupts

 VMM emulates a virtual timer

 Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Instruction Set Support

 User and System modes

 Privileged instructions only available in
system mode

 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions

 Including page tables, interrupt controls, I/O
registers

 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Cache Control (read)

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete

§
5
.7

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

03491031

4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Interface Signals (read)

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Finite State Machines (read)

 Use an FSM to
sequence control steps

 Set of states, transition
on each clock edge
 State values are binary

encoded

 Current state stored in a
register

 Next state
= fn (current state,

current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Cache Controller FSM (read)

Could

partition into

separate

states to

reduce clock

cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Multilevel On-Chip Caches
§
5
.1

0
 R

e
a
l S

tu
ff: T

h
e
 A

M
D

 O
p

te
ro

n
 X

4
 a

n
d
 In

te
l N

e
h
a
le

m

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small

pages, 7 per thread (2×) for

large pages

L1 D-TLB: 64 entries for small

pages, 32 for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

3-Level Cache Organization

Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte

blocks, 4-way, approx LRU

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte

blocks, 8-way, approx LRU

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte

blocks, 2-way, LRU

replacement, write-

back/allocate, hit time 9 cycles

L2 unified

cache

(per core)

256KB, 64-byte blocks, 8-way,

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified

cache

(shared)

8MB, 64-byte blocks, 16-way,

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,

replace block shared by fewest

cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Mis Penalty Reduction

 Return requested word first

 Then back-fill rest of block

 Non-blocking miss processing

 Hit under miss: allow hits to proceed

 Mis under miss: allow multiple outstanding

misses

 Hardware prefetch: instructions and data

 Opteron X4: bank interleaved L1 D-cache

 Two concurrent accesses per cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when

writing or generating code

 Example: iterating over rows vs. columns of

arrays

 Large strides result in poor locality

§
5
.1

1
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Pitfalls

 In multiprocessor with shared L2 or L3

cache

 Less associativity than cores results in conflict

misses

 More cores  need to increase associativity

 Using AMAT to evaluate performance of

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not

designed for virtualization

 E.g., non-privileged instructions accessing

hardware resources

 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Concluding Remarks

 Fast memories are small, large memories are
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§
5
.1

2
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

