

Hashemite University College of Engineering Department of Electrical Engineering EE 201-Electric Circuits I (3 Credit Hours/Dept. Compulsory)

		Grading	info	Class Info	
Instructor	Dr. Amr Obeidat	Mid	40%	Days	STR
Email:	amrobeidat@hu.edu.jo	Final	40%	Time	11:00-12:00
Office:	EE 3057	Other	20%	Location	Online
Course	·				
Course Number:	110409201				
Prerequisite:	Physics (2)covering the follow Voltage and current laws; serie Kirchoffe's laws and magnetic	es and parallel con		sistances and s	sources,
Textbook:	"Engineering Circuit Analysis", 9th Edition, Authors: Willian H. Hayt; Jack E. Kemmerly, and Steven M. Durbin. McGraw-Hill				
	Units, definitions, independent division rule. Nodal analysis, N Norton's theorems. Inductance forcing function, and RLC circ	Mesh Analysis, Li and capacitance,	nearity an	d Superposition	on, Thevenin an
*	- Introduce units and engineeri			,	
Instruction (Course Learning Outcomes):	 Understand basic circuit laws Using basic circuit analysis to Using Thevenin and Norton tl Analysis methodology in gettand RLC circuits 	echniques and the neorems and their	ir applicat applicatio	tion to DC circu	its
Important material	Lecture notesReferencesInternet resources				
References:	L				
2- Schaum's Outline3- Electrical Circuit	James W. Nilsson, Susan Riede of Electric Circuits, Mahmood I Theory and Technology, John Bi Electric Circuits, by Charles Ale	Nahvi , Joseph A ird, Newnes; 3 ed	Edminist ition , 200	7	Hill; 4 th ,2002

Major Topics Covered and Schedule in Weeks:

Торіс	# Weeks	# Contact hours*
Definitions and units. Voltage and current laws; series and parallel connected sources and resistance, voltage and current division.	3	9
Nodal and Mesh analysis	3	9
Circuit analysis techniques: superposition, source transformation, Thevenin and Norton equivalent circuits; maximum power transfer, Delta-Wye conversion).	3	9
Capacitors and inductors.	1	3
Basic RL and RC circuits; natural and forced response.	3	9
Basic RLC circuits.	2	6
Total	15	45

Course Policy

- If you miss class, there won't be a makeup test, quiz, etc. and you WILL get a zero unless you have a valid excuse.

- Cheating and plagiarism are completely prohibited.

- If you miss more than 15% of classes you will automatically fail the class.

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution				
	General Engineering Student Outcomes					
(a)	An ability to apply knowledge of mathematics, science, and engineering	H				
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data					
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability					
(d)	An ability to function on multidisciplinary teams					
(e)	An ability to identify, formulate, and solve engineering problems	Н				
(f)	An understanding of professional and ethical responsibility					
(g)	An ability to communicate effectively					
(h)	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context					
(i)	a recognition of the need for, and an ability to engage in life-long learning					
(j)	A knowledge of contemporary issues					
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice					
	H=High, M= Medium, L=Low					