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xv

The target audience colors everything about a book, being a major 
factor in decisions big and small, particularly both the pace and the 
overall writing style. Consequently it is important to note that the 

authors have made the conscious decision to write this book to the student, 
and not to the instructor. Our underlying philosophy is that reading the book 
should be enjoyable, despite the level of technical detail that it must incor-
porate. When we look back to the very first edition of Engineering Circuit 
Analysis, it’s clear that it was developed specifically to be more of a conver-
sation than a dry, dull discourse on a prescribed set of fundamental topics. 
To keep it conversational, we’ve had to work hard at updating the book so 
that it continues to speak to the increasingly diverse group of students using 
it all over the world.

Although in many engineering programs the introductory circuits course 
is preceded or accompanied by an introductory physics course in which 
electricity and magnetism are introduced (typically from a fields perspec-
tive), this is not required to use this book. After finishing the course, many 
students find themselves truly amazed that such a broad set of analytical 
tools have been derived from only three simple scientific laws—Ohm’s 
law and Kirchhoff’s voltage and current laws. The first six chapters assume 
only a familiarity with algebra and simultaneous equations; subsequent 
chapters assume a first course in calculus (derivatives and integrals) is being 
taken in tandem. Beyond that, we have tried to incorporate sufficient details 
to allow the book to be read on its own.

So, what key features have been designed into this book with the stu-
dent in mind? First, individual chapters are organized into relatively short 
subsections, each having a single primary topic. The language has been 
updated to remain informal and to flow smoothly. Color is used to highlight 
important information as opposed to merely improve the aesthetics of the 
page layout, and white space is provided for jotting down short notes and 
questions. New terms are defined as they are introduced, and examples are 
placed strategically to demonstrate not only basic concepts, but problem-
solving approaches as well. Practice problems relevant to the examples are 
placed in proximity so that students can try out the techniques for them-
selves before attempting the end-of-chapter exercises. The exercises repre-
sent a broad range of difficulties, generally ordered from simpler to more 
complex, and grouped according to the relevant section of each chapter. 
Answers to selected odd-numbered, end-of-chapter exercises are posted on 
the book’s website at www.mhhe.com/haytdurbin9e.

Engineering is an intensive subject to study, and students often find them-
selves faced with deadlines and serious workloads. This does not mean that 
textbooks have to be dry and pompous, however, or that coursework should 
never contain any element of fun. In fact, successfully solving a problem of-
ten is fun, and learning how to do that can be fun as well. Determining how to 
best accomplish this within the context of a textbook is an ongoing process. 

PREFACE •  
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The authors have always relied on the often very candid feedback received 
from our own students at Purdue University; the California State University, 
Fullerton; Fort Lewis College in Durango; the joint engineering program 
at Florida A&M University and Florida State University; the University of 
Canterbury (New Zealand); and the University at Buffalo, Western Michi-
gan University, and the University of Michigan. We also rely on comments, 
corrections, and suggestions from instructors and students worldwide, and 
for this edition, consideration has been given to a new source of comments, 
namely, semianonymous postings on various websites.

The first edition of Engineering Circuit Analysis was written by Bill 
Hayt and Jack Kemmerly, two engineering professors who very much en-
joyed teaching, interacting with their students, and training generations of 
future engineers. It was well received due to its compact structure, “to the 
point” informal writing style, and logical organization. There is no timid-
ity when it comes to presenting the theory underlying a specific topic, or 
pulling punches when developing mathematical expressions. Everything, 
however, was carefully designed to assist students in their learning, present 
things in a straightforward fashion, and leave theory for theory’s sake to 
other books. They clearly put a great deal of thought into writing the book, 
and their enthusiasm for the subject comes across to the reader.

KEY FEATURES OF THE NINTH EDITION
We have taken great care to retain key features from the eighth edition which 
were clearly working well. These include the general layout and sequence of 
chapters, the basic style of both the text and line drawings, the use of four-color 
printing where appropriate, numerous worked examples and related practice 
problems, and grouping of end-of-chapter exercises according to section. 
Transformers continue to merit their own chapter, and complex frequency is 
briefly introduced through a student-friendly extension of the phasor technique, 
instead of indirectly by merely stating the Laplace transform integral. We also 
have retained the use of icons, an idea first introduced in the sixth edition:

Provides a heads-up to common mistakes;

Indicates a point that’s worth noting;

Denotes a design problem to which there is no unique answer;

Indicates a problem which requires computer-aided analysis.

Indicates an Example that reinforces the flow chart illustrating a typical 
problem-solving methodology that is presented in Chapter 1. 

Circuit analysis is a robust method for training engineering students to 
think analytically, step-by-step, and returning to check their answers. A flow 
chart illustrating a typical problem-solving methodology is presented in 
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  PREFACE xvii

Chapter 1; these steps are explicitly included in one example in each of the 
subsequent chapters to reinforce the concept.

The introduction of engineering-oriented analysis and design software in 
the book has been done with the mind-set that it should assist, not replace, 
the learning process. Consequently, the computer icon denotes problems that 
are typically phrased such that the software is used to verify answers, and not 
simply provide them. Both MATLAB® and LTspice® are used in this context.

SPECIFIC CHANGES FOR THE NINTH EDITION 
INCLUDE:

 ⦁ Hundreds of new and revised end-of-chapter exercises
 ⦁ Dedicated coverage of the concept of energy, and calculations related 

to circuit power consumption and energy storage in batteries
 ⦁ Expanded coverage of positive feedback op amp circuits including 

comparators and Schmitt triggers 
 ⦁ Updated transient analysis coverage, including an intuitive explanation 

of energy transfer in RLC circuits
 ⦁ Consolidation of the Laplace transform material and s-domain circuit 

analysis into a single chapter
 ⦁ Revised coverage of frequency response to follow a more natural pro-

gression beginning with singular poles/zeros and then progressing to 
resonant behavior

 ⦁ New figures and photos
 ⦁ Updated screen captures and text descriptions of computer-aided anal-

ysis software, and transition to use of LTspice as freeware software that 
is available natively on both Windows and Mac OS platforms

 ⦁ New worked examples and practice problems
 ⦁ Updates to the Practical Application feature, introduced to help stu-

dents connect material in each chapter to broader concepts in engi-
neering. Topics include distortion in amplifiers, circuits to measure an 
electrocardiogram, automated external defibrillators, practical aspects 
of grounding, resistivity, and the memristor, sometimes called “the 
missing element”

 ⦁ Streamlining of text, especially in the worked examples, to get to the 
point faster

 ⦁ Answers to selected odd-numbered end-of-chapter exercises posted on 
the book’s website at www.mhhe.com/haytdurbin9e

Steve Durbin joined the book as a co-author in 1999, and sadly never 
had the opportunity to speak to either Bill or Jack about the revision pro-
cess. He counts himself lucky to have taken a circuits course from Bill Hayt 
while he was a student at Purdue.

For the ninth edition, it is a distinct pleasure to welcome a new co- 
author, Jamie Phillips, whose energy and enthusiasm made the entire re-
vision process a great experience. Both Steve and Jamie are grateful for 
the constant support of Raghu Srinivasan, the Global Publisher responsible 
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for kicking off the project, Thomas Scaife, Senior Portfolio Manager, Tina 
Bower, Product Developer, and Jane Mohr, Content Project Manager, who 
helped track down endless details as we developed the revision on a purely 
electronic platform for the first time. Steve would also like to thank the 
following people for providing technical suggestions and/or photographs: 
Prof. Damon Miller of Western Michigan University, Prof. Masakazu  
Kobayashi of Waseda University, Dr. Wade Enright, Prof. Pat Bodger, Prof. 
Rick Millane, and Mr. Gary Turner of the University of Canterbury, Prof. 
Richard Blaikie of the University of Otago, and Profs. Reginald Perry and 
Jim Zheng of Florida A&M University and the Florida State University. 
Jamie would like to thank Prof. David Blaauw and the Michigan Integrated 
Circuits Laboratory at the University of Michigan for photographs of their 
microprocessor circuits.

Finally, Steve would like to briefly thank several other people who have 
contributed both directly and indirectly to the ninth edition: First and fore-
most, my wife, Kristi, and our son, Sean, for their patience, understanding, 
support, welcome distractions, and helpful advice. Throughout the day, it 
has always been a pleasure to talk to friends and colleagues about what 
should be taught, how it should be taught, and how to measure learning. In 
particular, Martin Allen, Richard Blaikie, Steve Carr, Peter Cottrell, Wade 
Enright, Jeff Gray, Mike Hayes, Bill Kennedy, Susan Lord, Philippa Martin, 
Chris McConville, Damon Miller, Reginald Perry, Joan Redwing, Roger 
Reeves, Dick Schwartz, Leonard Tung, Jim Zheng, and many others have 
provided me with many useful insights, as did my father, Jesse Durbin, an 
electrical engineering graduate of the Indiana Institute of Technology. 

Similarly, Jamie would like to thank a number of people for their di-
rect or indirect help with the ninth edition: Firstly, I would like thank my 
wife, Jamie, and our daughter, Brooke, for their unwavering support and 
understanding over the course of this project. I would also like to thank 
the many students at the University of Michigan that I have had the plea-
sure of sharing the classroom with over the years, who have both shaped 
my understanding of circuit analysis and served as my inspiration for this 
endeavor. I am grateful to my colleagues at the University of Michigan for 
countless discussions on teaching circuits and pedagogical approaches, and 
in particular Cynthia Finelli, Alexander Ganago, Leo McAfee, Fred Terry, 
and Fawwaz Ulaby.

Steven M. Durbin, Kalamazoo, Michigan
Jamie D. Phillips, Ann Arbor, Michigan

hay01307_fm_i-xxii.indd   18 23/01/18   8:24 pm



This page intentionally left blank 



▪ Connect content is authored by the world’s best subject  
 matter experts, and is available to your class through a  
 simple and intuitive interface.

▪ The Connect eBook makes it easy for students to    
 access their reading material on smartphones     
 and tablets. They can study on the go and don’t     
 need internet access to use the eBook as a  
 reference, with full functionality.

▪ Multimedia content such as videos, simulations,  
 and games drive student engagement and critical    
 thinking skills. ©McGraw-Hill Education

▪ Connect’s assignments help students    
 contextualize what they’ve learned through   
 application, so they can better understand the   
 material and think critically.

▪ Connect will create a personalized study path
 customized to individual student needs through   
 SmartBook®. 

▪ SmartBook helps students study more efficiently
 by delivering an interactive reading experience   
 through adaptive highlighting and review. 

McGraw-Hill Connect® is a highly reliable, easy-to-
use homework and learning management solution 
that utilizes learning science and award-winning 
adaptive tools to improve student results. 

73% of instructors 
who use Connect 

require it; instructor 
satisfaction increases 
by 28% when Connect 

is required.

Homework and Adaptive Learning

Quality Content and Learning Resources

Over 7 billion questions have been 
answered, making McGraw-Hill 

Education products more intelligent, 
reliable, and precise.

 Using Connect improves retention rates 
by 19.8 percentage points, passing rates 
by 12.7 percentage points, and exam 

scores by 9.1 percentage points.

hay01307_fm_i-xxii.indd   20 23/01/18   8:24 pm



More students earn  
As and Bs when they  

use Connect.

www.mheducation.com/connect

©Hero Images/Getty Images 

▪ Connect Insight® generates easy-to-read  
 reports on individual students, the class as a  
 whole, and on specific assignments.

▪ The Connect Insight dashboard delivers data  
 on performance, study behavior, and effort.  
 Instructors  can quickly identify students who  
 struggle and focus on material that the class  
 has yet to master.

▪ Connect automatically grades assignments  
 and quizzes, providing easy-to-read reports  
 on individual and class performance.

▪ Connect integrates with your LMS to provide single sign-on and automatic syncing  
 of grades. Integration with Blackboard®, D2L®, and Canvas also provides automatic  
 syncing of the course calendar and assignment-level linking. 

▪ Connect offers comprehensive service, support, and training throughout every  
 phase of your implementation.

▪ If you’re looking for some guidance on how to use Connect, or want to learn   
 tips and tricks from super users, you can find tutorials as you work. Our Digital  
 Faculty Consultants and Student Ambassadors offer insight into how to achieve  
 the results you want with Connect.

Trusted Service and Support

Robust Analytics and Reporting 

hay01307_fm_i-xxii.indd   21 23/01/18   8:24 pm



This page intentionally left blank 



C
H

A
P

T
E

R

1

PREAMBLE
Although there are clear specialties within the field of engineering, 
all engineers share a considerable amount of common ground,  
particularly when it comes to problem solving. In fact, many 
practicing engineers find it is possible to work in a large variety of 
settings and even outside their traditional specialty, as their skill 
set is often transferable to other environments. Today’s engineering 
graduates find themselves employed in a broad range of jobs, from 
design of individual components and systems, to leadership in  
solving socioeconomic problems such as air and water pollution, 
urban planning, communication, medical treatments, mass  
transportation, power generation and distribution, and efficient  
use and conservation of natural resources.

Circuit analysis has long been a traditional introduction to the 
art of problem solving from an engineering perspective, even for 
those whose interests lie outside electrical engineering. There are 
many reasons for this, but one of the best is that in today’s world 
it’s extremely unlikely for any engineer to encounter a system 
that does not in some way include electrical circuitry. As circuits 
become smaller and require less power, and power sources become 
smaller and cheaper, embedded circuits are seemingly everywhere. 
Since most engineering situations require a team effort at some 
stage, having a working knowledge of circuit analysis therefore 
helps to provide everyone on a project with the background needed 
for effective communication.

Consequently, this book is not just about “circuit analysis” 
from an engineering perspective, but it is also about developing 

Introduction1

KEY CONCEPTS

Linear versus Nonlinear 
Circuits

Four Main Categories of 
Circuit Analysis:

 ∙ DC 

 ∙ Transient 

 ∙ Sinusoidal 

 ∙ Frequency Domain

Circuit Analysis Beyond 
Circuits

Analysis and Design

Use of Engineering Software

A Problem-Solving Strategy

hay01307_ch01_001-010.indd   1 23/01/18   11:10 am



CHAPTER 1 INTroDUCTIoN2

Flat panel displays include many nonlinear circuits. 
Many of them, however, can be understood and 
analyzed with the assistance of linear models.
(©Scanrail1/Shutterstock)

basic problem-solving skills as they apply to situations an engineer is 
likely to encounter. Along the way, we also find that we’re developing an 
intuitive understanding at a general level, and often we can understand a 
complex system by its analogy to an electrical circuit. Before launching 
into all this, however, we should begin with a quick preview of the  
topics found in the remainder of the book, pausing briefly to ponder the 
difference between analysis and design, and the evolving role computer 
tools play in modern engineering.

1.1 • OVERVIEW OF TEXT
The fundamental subject of this text is linear circuit analysis, which some-
times prompts a few readers to ask,

“Is there ever any nonlinear circuit analysis?”

Sure! We encounter nonlinear circuits every day: they capture and decode 
signals for our TVs and radios, perform calculations hundreds of millions 
(even billions) of times a second inside microprocessors, convert speech 
into electrical signals for transmission over fiber-optic cables as well as 

Not all electrical engineers routinely make use of circuit 
analysis, but they often bring to bear analytical and 
problem-solving skills learned early on in their careers. 
A circuit analysis course is one of the first exposures to 
such concepts.
(Solar Mirrors: ©Darren Baker/Shutterstock; 
Skyline: ©Eugene Lu/Shutterstock; Oil Rig: 
©Photodisc/Getty Images RF; Dish: ©Jonathan 
Larsen/iStock/Getty Images)
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  SECTION 1.1 ovErvIEw oF TExT 3

cellular networks, and execute many other functions outside our field of 
view. In designing, testing, and implementing such nonlinear circuits, de-
tailed analysis is unavoidable.

“Then why study linear circuit analysis?”

you might ask. An excellent question. The simple fact of the matter is that 
no physical system (including electrical circuits) is ever perfectly linear. 
Fortunately for us, however, a great many systems behave in a reasonably 
linear fashion over a limited range—allowing us to model them as linear 
systems if we keep the range limitations in mind.

For example, consider the common function

f(x ) =   e   x  

A linear approximation to this function is

f (x) ≈ 1 + x

Let’s test this out. Table 1.1 shows both the exact value and the 
approximate value of f(x) for a range of x. Interestingly, the linear ap-
proximation is exceptionally accurate up to about x = 0.1, when the 
relative error is still less than 1%. Although many engineers are rather 
quick on a calculator, it’s hard to argue that any approach is faster than 
just adding 1.

x f(x)* 1 + x Relative Error**

0.0001
0.001
0.01
0.1
1.0

1.0001
1.0010
1.0101
1.1052
2.7183

1.0001
1.001
1.01
1.1
2.0

0.0000005%
0.00005%
0.005%
0.5%
26%

*Quoted to four significant figures.

**Relative error ≜   |100 ×   e
x − (1 + x) _______ 

ex   |  

TABLE 

●

 1.1  Comparison of a Linear Model for e x to  
Exact Value

Linear problems are inherently more easily solved than their nonlin-
ear counterparts. For this reason, we often seek reasonably accurate linear 
approximations (or models) to physical situations. Furthermore, the linear 
models are more easily manipulated and understood—making the design 
process more straightforward.

The circuits we will encounter in subsequent chapters all represent lin-
ear approximations to physical electric circuits. Where appropriate, brief 
discussions of potential inaccuracies or limitations to these models are 
provided, but generally speaking we find them to be suitably accurate for 
most applications. When greater accuracy is required in practice, nonlinear 
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CHAPTER 1 INTroDUCTIoN4

models are employed, but with a considerable increase in solution complex-
ity. A detailed discussion of what constitutes a linear electric circuit can be 
found in Chap. 2.

Linear circuit analysis can be separated into four broad categories: (1) 
dc analysis, where the energy sources do not change with time; (2) tran-
sient analysis, where things often change quickly; (3) sinusoidal analysis, 
which applies to both ac power and signals; and (4) frequency response, 
which is the most general of the four categories, but typically assumes 
something is changing with time. We begin our journey with the topic 
of resistive circuits, which may include simple examples such as a flash-
light or a toaster. This provides us with a perfect opportunity to learn a 
number of very powerful engineering circuit analysis techniques, such 
as nodal analysis, mesh analysis, superposition, source transformation, 
Thévenin’s theorem, Norton’s theorem, and several methods for simplify-
ing networks of components connected in series or parallel. The single 
most redeeming feature of resistive circuits is that the time dependence 
of any quantity of interest does not affect our analysis procedure. In other 
words, if asked for an electrical quantity of a resistive circuit at several 
specific instants in time, we do not need to analyze the circuit more than 
once. As a result, we will spend most of our effort early on considering 
only dc circuits—those circuits whose electrical parameters do not vary 
with time.

Although dc circuits such as flashlights or automotive rear window 
defoggers are undeniably important in everyday life, things are often much 
more interesting when something happens suddenly. In circuit analysis par-
lance, we refer to transient analysis as the suite of techniques used to study 
circuits that are suddenly energized or de-energized. To make such circuits 
interesting, we need to add elements that respond to the rate of change of 
electrical quantities, leading to circuit equations that include derivatives and 
integrals. Fortunately, we can obtain such equations using the simple tech-
niques learned in the first part of our study.

Still, not all time-varying circuits are turned on and off suddenly. 
Air conditioners, fans, and fluorescent lights are only a few of the many 
examples we may see daily. In such situations, a calculus-based approach 
for every analysis can become tedious and time-consuming. Fortunately, 
there is a better alternative for situations where equipment has been 
allowed to run long enough for transient effects to die out, and this is 
commonly referred to as ac or sinusoidal analysis, or sometimes phasor 
analysis.

The final leg of our journey deals with a subject known as frequency 
response. Working directly with the differential equations obtained 
in time-domain analysis helps us develop an intuitive understanding 
of the operation of circuits containing energy storage elements (e.g., 
capacitors and inductors). As we shall see, however, circuits with even 
a relatively small number of components can be somewhat onerous to 
analyze, and much more straightforward methods have been developed. 
These methods, which include Laplace and Fourier analysis, allow us to 
transform differential equations into algebraic equations. Such methods 
also enable us to design circuits to respond in specific ways to particular 

Modern trains are powered by electric motors. Their 
electrical systems are best analyzed using ac or phasor 
analysis techniques.
(©Dr. Masakazu Kobayashi)

Frequency-dependent circuits lie at the heart of many 
electronic devices, and they can be a great deal of fun 
to design.
(©Jirapong Manustrong/Shutterstock)
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frequencies. We make use of frequency-dependent circuits every day 
when we use a mobile phone, select our favorite radio station, or connect 
to the Internet.

1.2 •  RELATIONSHIP OF CIRCUIT ANALYSIS 
TO ENGINEERING

It is worth noting that there are several layers to the concepts under 
study in this text. Beyond the nuts and bolts of circuit analysis tech-
niques lies the opportunity to develop a methodical approach to prob-
lem solving, the ability to determine the goal or goals of a particular 
problem, skill at collecting the information needed to effect a solution, 
and, perhaps equally importantly, opportunities for practice at verifying 
solution accuracy.

Students familiar with the study of other engineering topics such as fluid 
flow, automotive suspension systems, bridge design, supply chain manage-
ment, or robotics will recognize the general form of many of the equations 
we develop to describe the behavior of various circuits. We simply need to 
learn how to “translate” the relevant variables (for example, replacing volt-
age with force, charge with distance, resistance with friction coefficient, 
etc.) to find that we already know how to work a new type of problem. 
Very often, if we have previous experience in solving a similar or related 
problem, our intuition can guide us through the solution of a totally new 
problem.

A molecular beam epitaxy crystal growth facility. The equations governing its operation closely  
resemble those used to describe simple linear circuits.
(©Steve Durbin)
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CHAPTER 1 INTroDUCTIoN6

What we are about to learn regarding linear circuit analysis forms the 
basis for many subsequent electrical engineering courses. The study of 
electronics relies on the analysis of circuits with devices known as diodes 
and transistors, which are used to construct power supplies, amplifiers, 
and digital circuits. The skills which we will develop are typically applied 
in a rapid, methodical fashion by electronics engineers, who sometimes 
can analyze a complicated circuit without even reaching for a pencil. The 
time-domain and frequency-domain chapters of this text lead directly into 
discussions of signal processing, power transmission, control theory, and 
communications. We find that frequency-domain analysis in particular is 
an extremely powerful technique, easily applied to any physical system 
subjected to time-varying excitation, and particularly helpful in the design 
of filters.

1.3 • ANALYSIS AND DESIGN
Engineers take a fundamental understanding of scientific principles, 
combine this with practical knowledge often expressed in mathematical 
terms, and (frequently with considerable creativity) arrive at a solution 
to a given problem. Analysis is the process through which we determine 
the scope of a problem, obtain the information required to understand it, 
and compute the parameters of interest. Design is the process by which 
we synthesize something new as part of the solution to a problem. Gen-
erally speaking, there is an expectation that a problem requiring design 
will have no unique solution, whereas the analysis phase typically will. 
Thus, the last step in designing is always analyzing the result to see if it 
meets specifications.

This text is focused on developing our ability to analyze and solve prob-
lems because it is the starting point in every engineering situation. The 
philosophy of this book is that we need clear explanations, well-placed 
examples, and plenty of practice to develop such an ability. Therefore, 
elements of design are integrated into end-of-chapter problems and later 
chapters so as to be enjoyable rather than distracting.

Two proposed designs for a next-generation space shuttle. Although both contain similar elements, 
each is unique.
(Source: NASA Dryden Flight Research Center)

An example of a robotic manipulator. The feedback 
control system can be modeled using linear circuit 
elements to determine situations in which the operation 
may become unstable.
(Source: NASA Marshall Space Flight Center)
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Image of computer-aided design of a Deep Learning Neural Network processor, containing approximately 
20 million transistors.
(Source: Jingcheng Wang, Suyoung Bang, David Blaauw and Dennis Sylvester,  
Michigan Integrated Circuits Laboratory at the University of Michigan)

1.4 • COMPUTER-AIDED ANALYSIS
Solving the types of equations that result from circuit analysis can often 
become notably cumbersome for even moderately complex circuits. This 
of course introduces an increased probability that errors will be made, in 
addition to considerable time in performing the calculations. The desire to 
find a tool to help with this process actually predates electronic computers, 
with purely mechanical computers such as the Analytical Engine designed 
by Charles Babbage in the 1880s proposed as possible solutions. Perhaps 
the earliest successful electronic computer designed for solution of differ-
ential equations was the 1940s-era ENIAC, whose vacuum tubes filled a 
large room. With the advent of low-cost desktop computers, however, 
computer-aided circuit analysis has developed into an invaluable everyday 
tool which has become an integral part of not only analysis but design as 
well. All of today’s computer chips are first designed and analyzed using 
computer simulations based on a set of known physical rules, which are 
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CHAPTER 1 INTroDUCTIoN8

typically combined with empirical data to account for “real world” perfor-
mance characteristics. Once the simulations show desired results, the design 
is then used to provide the information needed to fabricate the real circuit 
or system. Without computer-aided analysis and design, this process would 
be nearly impossible, as today’s chips contain millions of devices in a single 
circuit!

One of the most powerful aspects of computer-aided design is the 
relatively recent integration of multiple programs in a fashion transpar-
ent to the user. This allows the circuit to be drawn schematically on 
the screen, reduced automatically to the format required by an analysis 
program (such as SPICE, introduced in Chap. 4), and the resulting out-
put smoothly transferred to a third program capable of plotting various 
electrical quantities of interest that describe the operation of the circuit. 
Once the engineer is satisfied with the simulated performance of the 
design, the same software can generate the printed circuit board layout 
using geometrical parameters in the components library. This level of 
integration is continually increasing, to the point where soon an engineer 
will be able to draw a schematic, click a few buttons, and walk to the 
other side of the table to pick up a manufactured version of the circuit, 
ready to test!

The reader should be wary, however, of one thing. Circuit analysis soft-
ware, although fun to use, is by no means a replacement for good old-fash-
ioned paper-and-pencil analysis. We need to have a solid understanding of 
how circuits work in order to develop an ability to design them. Simply 
going through the motions of running a particular software package is a 
little like playing the lottery: with user-generated entry errors, hidden de-
fault parameters in the myriad of menu choices, and the occasional short-
coming of human-written code, there is no substitute for having at least an 

An amplifier circuit drawn using a commercial schematic capture software package.
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  SECTION 1.5 SUCCESSFUL ProBLEM-SoLvINg STrATEgIES 9

approximate idea of the expected behavior of a circuit. Then, if the simu-
lation result does not agree with expectations, we can find the error early, 
rather than after it’s too late.

Still, computer-aided analysis is a powerful tool. It allows us to vary 
parameter values and evaluate the change in circuit performance, and to 
consider several variations to a design in a straightforward manner. The 
result is a reduction of repetitive tasks, and more time to concentrate on 
engineering details.

1.5 • SUCCESSFUL PROBLEM-SOLVING STRATEGIES
As the reader might have picked up, this book is just as much about problem 
solving as it is about circuit analysis. During your time as an engineering 
student, the expectation is that you are learning how to solve problems—
just at this moment, those skills are not yet fully developed. As you proceed 
through your course of study, you will pick up techniques that work for you, 
and likely continue to do so as a practicing engineer. 

By far the most common difficulty encountered by engineering stu-
dents is not knowing how to start a problem. This improves with expe-
rience, but early on that’s of no help. The best advice we can give is to 
adopt a methodical approach, beginning with reading the problem state-
ment slowly and carefully (and more than once, if needed). Since experi-
ence usually gives us some type of insight into how to deal with a specific 
problem, worked examples appear throughout the book. Rather than just 
read them, however, it might be helpful to work through them with a pen-
cil and a piece of paper.

Once we’ve read through the problem, and feel we might have some use-
ful experience, the next step is to identify the goal of the problem—perhaps 
to calculate a voltage or a power, or to select a component value. Knowing 
where we’re going is a big help. The next step is to collect as much informa-
tion as we can and to organize it somehow.

At this point we’re still not ready to reach for the calculator. It’s best 
first to devise a plan, perhaps based on experience, perhaps based simply 
on our intuition. Sometimes plans work, and sometimes they don’t. Starting 
with our initial plan, it’s time to construct an initial set of equations. If they 
appear complete, we can solve them. If not, we need to either locate more 
information, modify our plan, or both.

Once we have what appears to be a working solution, we should not 
stop, even if exhausted and ready for a break. No engineering problem is 
solved unless the solution is tested somehow. We might do this by per-
forming a computer simulation, or solving the problem a different way, or 
perhaps even just estimating what answer might be reasonable.

Since not everyone likes to read to learn, these steps are summarized 
in the flowchart that follows. This is just one problem-solving strategy, 
and the reader of course should feel free to modify it as necessary. The 
real key, however, is to try and learn in a relaxed, low-stress environment 
free of distractions. Experience is the best teacher, and learning from our 
own mistakes will always be part of the process of becoming a skilled 
engineer.

Read the problem statement
slowly and carefully.

Identify the goal
of the problem.

Collect the known
information.

Devise a plan.

Determine
if additional information

is required.

Verify the
solution. Is it reasonable

or expected?

End.

Yes

No

Yes

No

Construct an appropriate
set of equations.

Attempt a solution.
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READING FURTHER
This relatively inexpensive, best-selling book teaches the reader how to develop 
winning strategies in the face of seemingly impossible problems:

G. Polya, How to Solve It. Princeton, N.J.: Princeton University Press, 
1971.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
In conducting circuit analysis, we often find ourselves seeking  
specific currents, voltages, or powers, so here we begin with a brief 
description of these quantities. In terms of components that can be 
used to build electrical circuits, we have quite a few from which to 
choose. We initially focus on the resistor, a simple passive component, 
and a range of idealized active sources of voltage and current. As we 
move forward, new components will be added to the inventory to 
allow more complex (and useful) circuits to be considered.

A quick word of advice before we begin: Pay close attention  
to the role of “+” and “−” signs when labeling voltages, and the 
significance of the arrow in defining current; they often make the 
difference between wrong and right answers.

2.1 • UNITS AND SCALES
In order to state the value of some measurable quantity, we must 
give both a number and a unit, such as “3 meters.” Fortunately, we 
all use the same number system. This is not true for units, and a little 
time must be spent in becoming familiar with a suitable system. We 
must agree on a standard unit and be assured of its permanence and 
its general acceptability. The standard unit of length, for example, 
should not be defined in terms of the distance between two marks 
on a certain rubber band; this is not permanent, and furthermore 
everybody else is using another standard.

The most frequently used system of units is the one adopted by 
the National Bureau of Standards in 1964; it is used by all major 
professional  engineering societies and is the language in which 
today’s textbooks are written. This is the International System of  

Basic Components 
and Electric Circuits2

KEY CONCEPTS

Basic Electrical Quantities 
and Associated Units: 
Charge, Current, Voltage, 
and Power

Current Direction and 
Voltage Polarity

The Passive Sign Convention 
for Calculating Power

Ideal Voltage and Current 
Sources

Dependent Sources

Resistance and Ohm’s Law
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12 CHAPTER 2 BASIC COmPOnEnTS AnD ELECTRIC CIRCUITS

Units (abbreviated SI in all languages), adopted by the General Conference 
on Weights and Measures in 1960. Modified several times since, the SI is 
built upon seven basic units: the meter, kilogram, second, ampere, kelvin, 
mole, and candela (see Table 2.1). This is a “metric system,” some form of 
which is now in common use in most countries of the world, although it is 
not yet widely used in the United States. Units for other quantities such as 
volume, force, energy, etc., are derived from these seven base units.

Base Quantity Name Symbol

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

TABLE 
●
 2.1 SI Base Units

The fundamental unit of work or energy is the joule (J). One joule  
(a kg m2 s−2 in SI base units) is equivalent to 0.7376 foot pound-force  
(ft ⋅ lbf). Other energy units include the calorie (cal), equal to 4.187 J;  
the British thermal unit (Btu), which is 1055 J; and the kilowatthour (kWh), 
equal to 3.6 × 106 J. Power is defined as the rate at which work is done  
or energy is expended. The fundamental unit of power is the watt (W), 
defined as 1 J/s. One watt is equivalent to 0.7376 ft ⋅ lbf/s or, equivalently, 
1/745.7 horsepower (hp).

The SI uses the decimal system to relate larger and smaller units to the 
basic unit, and it employs prefixes to signify the various powers of 10. A list 
of prefixes and their symbols is given in Table 2.2; the ones most commonly 
encountered in engineering are highlighted.

Factor Name Symbol Factor Name Symbol

10−24 yocto y 1024 yotta Y
10−21 zepto z 1021 zetta Z
10−18 atto a 1018 exa E
10−15 femto f 1015 peta P
10−12 pico p 1012 tera T
10−9 nano n 109  giga G
10−6 micro μ 106  mega M
10−3 milli m 103  kilo k
10−2 centi c 102  hecto h
10−1 deci d 101  deka da

TABLE 
●
 2.2 SI Prefixes

There is some inconsistency regarding whether units 

named after a person should be capitalized. Here, 

we will adopt the most contemporary convention,1,2 

where such units are written out in lowercase (e.g., 

watt, joule), but abbreviated with an uppercase 

symbol (e.g., W, J).

(1) H. Barrell, Nature 220, 1968, p. 651.

(2) V. n. Krutikov, T. K. Kanishcheva, S. A. Kononogov, L. K. Isaev, and n. I. Khanov, 

Measurement Techniques 51, 2008, p. 1045.

The “calorie” used with food, drink, and exercise is 

really a kilocalorie, 4.187 J.
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2.2 •  CHARGE, CURRENT, VOLTAGE, POWER,  
AND ENERGY

Charge
One of the most fundamental concepts in electric circuit analysis is that of 
charge conservation. We know from basic physics that there are two types 
of charge: positive (corresponding to a proton) and negative (corresponding 
to an electron). For the most part, this text is concerned with circuits in 
which only electron flow is relevant. There are many devices (such as bat-
teries, diodes, and transistors) in which positive charge motion is important 
to understanding internal operation, but external to the device we typically 
concentrate on the electrons which flow through the connecting wires. Al-
though we continuously transfer charges between different parts of a circuit, 
we do nothing to change the total amount of charge. In other words, we 
neither create nor destroy electrons (or protons) when running electric cir-
cuits.3 Charge in motion represents a current.

In the SI system, the fundamental unit of charge is the coulomb (C).  
It is defined in terms of the ampere by counting the total charge that passes 
through an arbitrary cross section of a wire during an interval of one sec-
ond; one coulomb is measured each second for a wire carrying a current of 
1 ampere (Fig. 2.1). In this system of units, a single electron has a charge 
of −1.602 × 10−19 C and a single proton has a charge of +1.602 × 10−19 C.

These prefixes are worth memorizing, for they will appear often both in 
this text and in other technical work. Combinations of several prefixes, such 
as the millimicrosecond, are unacceptable. It is worth noting that in terms 
of distance, it is common to see “micron (μm)” as opposed to “micrometer,” 
and often the angstrom (Å) is used for 10−10 meter. Also, in circuit analysis 
and engineering in general, it is fairly common to see numbers expressed 
in what are often termed “engineering units.” In engineering notation, a 
quantity is represented by a number between 1 and 999 and an appropriate 
metric unit using a power divisible by 3. So, for example, it is preferable to 
express the quantity 0.048 W as 48 mW, instead of 4.8 cW, 4.8 × 10−2 W, 
or 48,000 μW.

PRACTICE 
●

2.1 A krypton fluoride laser emits light at a wavelength of 248 nm. This 
is the same as: (a) 0.0248 mm; (b) 2.48 μm; (c) 0.248 μm; (d) 24,800 Å.
2.2 A single logic gate in a prototype integrated circuit is found to be 
capable of switching from the “on” state to the “off” state in 12 ps. This 
corresponds to: (a) 1.2 ns; (b) 120 ns; (c) 1200 ns; (d) 12,000 ns.
2.3 A typical incandescent reading lamp runs at 60 W. If it is left on 
constantly, how much energy (J) is consumed per day, and what is the 
weekly cost if energy is charged at a rate of 12.5 cents per kilowatthour? 

Ans: (c); (d ); 5.18 MJ, $1.26.

As seen in Table 2.1, the base units of the SI are not 

derived from fundamental physical quantities. Instead, 

they represent historically agreed upon measure-

ments, leading to definitions which occasionally seem 

backward. For example, it would make more sense 

physically to define the ampere based on electronic 

charge.

 

(3) Although the occasional appearance of smoke may seem to suggest otherwise…

■  FIGURE 2.1 The definition of current illustrated 
using current flowing through a wire; 1 ampere 
corresponds to 1 coulomb of charge passing through 
the arbitrarily chosen cross section in 1 second.

Cross section

Direction of
charge motion

Individual charges

hay01307_ch02_011-042.indd   13 23/01/18   9:59 am



14 CHAPTER 2 BASIC COmPOnEnTS AnD ELECTRIC CIRCUITS

A quantity of charge that does not change with time is typically repre-
sented by Q. The instantaneous amount of charge (which may or may not be 
time-invariant) is commonly represented by q(t), or simply q. This conven-
tion is used throughout the remainder of the text: capital letters are reserved 
for constant (time-invariant) quantities, whereas lowercase letters represent 
the more general case. Thus, a constant charge may be represented by either 
Q or q, but an amount of charge that changes over time must be represented 
by the lowercase letter q.

Current
The idea of “transfer of charge” or “charge in motion” is of vital importance 
to us in studying electric circuits because, in moving a charge from place to 
place, we may also transfer energy from one point to another. The familiar 
cross-country power-transmission line is a practical example of a device 
that transfers energy. Of equal importance is the possibility of varying the 
rate at which the charge is transferred in order to communicate or transfer 
information. This process is the basis of communication systems such as 
radio, television, and telemetry.

The current present in a discrete path, such as a metallic wire, has both a 
numerical value and a direction associated with it; it is a measure of the rate 
at which charge is moving past a given reference point in a specified direction. 
Once we have specified a reference direction, we may then let q(t) be the 
total charge that has passed the reference point since an arbitrary time t = 0,  
moving in the defined direction. A contribution to this total charge will 
be negative if negative charge is moving in the reference direction, or if 
positive charge is moving in the opposite direction. As an example, Fig. 2.2 
shows a history of the total charge q(t) that has passed a given reference 
point in a wire (such as the one shown in Fig. 2.1).

We define the current at a specific point and flowing in a specified di-
rection as the instantaneous rate at which net positive charge is moving past 
that point in the specified direction. This, unfortunately, is the historical 
definition, which came into popular use before it was appreciated that cur-
rent in wires is actually due to negative, not positive, charge motion. Current 
is symbolized by I or i, and so

  i = dq __ 
dt

    [1]

The unit of current is the ampere (A), named after A. M. Ampère, a French 
physicist. It is commonly abbreviated as an “amp,” although this is unof-
ficial and somewhat informal. One ampere equals 1 coulomb per second.

Using Eq. [1], we compute the instantaneous current and obtain Fig. 2.3. 
The use of the lowercase letter i is again to be associated with an instan-
taneous value; an uppercase I would denote a constant (i.e., time-invariant) 
quantity. The charge transferred between time t0 and t may be expressed as 
a definite integral:

   ∫ 
q( t  0  )

  
q(t)

    dq =  ∫ 
  t  0  

  t    i dt′  [2]

The total charge transferred over all time is thus given by

  q(t ) =  ∫ 
 t  0  
  t    i dt′ + q( t  0   )  [3]

■  FIGURE 2.2 A graph of the instantaneous value of 
the total charge q(t) that has passed a given reference 
point since t = 0.

3

2

1

0

6

5

4

–1

–2

1 2 3 4 5 6 7 8

q(t) (C)

t(s)

■  FIGURE 2.3 The instantaneous current i = dq/dt, 
where q is given in Fig. 2.2.
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15  SECTION 2.2 CHARgE, CURREnT, VOLTAgE, POWER, AnD EnERgy

Several different types of current are illustrated in Fig. 2.4. A current 
that is constant in time is termed a direct current, or simply dc, and is shown 
by Fig. 2.4a. We will find many practical examples of currents that vary si-
nusoidally with time (Fig. 2.4b); currents of this form are present in normal 
household circuits. Such a current is often referred to as alternating current, 
or ac. Exponential currents and damped sinusoidal currents (Fig. 2.4c and d) 
will also be encountered later.

We create a graphical symbol for current by placing an arrow next to the 
conductor. Thus, in Fig. 2.5a the direction of the arrow and the value 3 A in-
dicate either that a net positive charge of 3 C/s is moving to the right or that a 
net negative charge of −3 C/s is moving to the left each second. In Fig. 2.5b 
there are again two possibilities: either −3 A is flowing to the left or +3 A is 
flowing to the right. All four statements and both figures represent currents 
that are equivalent in their electrical effects, and we say that they are equal. 
A nonelectrical analogy that may be easier to visualize is to think in terms of 
a personal savings account: e.g., a deposit can be viewed as either a negative 
cash flow out of your account or a positive flow into your account.

It is convenient to think of current as the motion of positive charge, even 
though it is known that current flow in metallic conductors results from 
electron motion. In ionized gases, in electrolytic solutions, and in some 
semiconductor materials, however, positive charges in motion constitute 
part or all of the current. Thus, any definition of current can agree with 
the physical nature of conduction only part of the time. The definition and 
symbolism we have adopted are standard.

It is essential that we realize that the current arrow does not indicate the 
“actual” direction of current flow but is simply part of a convention that 
allows us to talk about “the current in the wire” in an unambiguous manner. 
The arrow is a fundamental part of the definition of a current! Thus, to talk 
about the value of a current i1(t) without specifying the arrow is to discuss 
an undefined entity. For example, Fig. 2.6a and b are meaningless represen-
tations of i1(t), whereas Fig. 2.6c is complete.

■  FIGURE 2.5 Two methods of representation for 
the exact same current.

–3 A

(b)

3 A

(a)

■  FIGURE 2.6 (a, b) Incomplete, improper, and incorrect definitions of a current.  
(c) The correct definition of i1   ( t  ).

i1(t)i1(t)

(a) (b)

i1(t)i1(t)

(c)

■  FIGURE 2.4 Several types of current: (a) Direct 
current (dc). (b) Sinusoidal current (ac). (c) Exponential 
current. (d) Damped sinusoidal current.
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Current is the flow of charge flowing through a wire 

or circuit component. We define the current path with 

an arrow, or flow of charge into or out of the wire or 

circuit component. PRACTICE 
●

2.4 In the wire of Fig. 2.7, electrons are moving left to right to create a 
current of 1 mA. Determine I1 and I2. 

Ans: I1 = −1 mA; I2 = +1 mA.
■  FIGURE 2.7

I2

I1
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16 CHAPTER 2 BASIC COmPOnEnTS AnD ELECTRIC CIRCUITS

Voltage
We must now begin to refer to a circuit element, something best defined in 
general terms to begin with. Such electrical devices as fuses, light bulbs, re-
sistors, batteries, capacitors, generators, and spark coils can be represented 
by combinations of simple circuit elements. We begin by showing a very 
general circuit element as a shapeless object possessing two terminals at 
which connections to other elements may be made (Fig. 2.8).

There are two paths by which current may enter or leave the element. 
In subsequent discussions we will define particular circuit elements by de-
scribing the electrical characteristics that may be observed at their terminals.

In Fig. 2.8, let us suppose that a dc current is sent into terminal A, 
through the general element, and back out of terminal B. Let us also assume 
that pushing charge through the element requires an expenditure of energy. 
We then say that an electrical voltage (or a potential difference) exists be-
tween the two terminals, or that there is a voltage “across” the element. 
Thus, the voltage across a terminal pair is a measure of the work required to 
move charge through the element. The unit of voltage is the volt,4 and 1 volt 
is the same as 1 J/C. Voltage is represented by V or v.

A voltage can exist between a pair of electrical terminals whether a current 
is flowing or not. An automobile battery, for example, has a voltage of 12 V 
across its terminals even if nothing whatsoever is connected to the terminals.

According to the principle of conservation of energy, the energy that is 
expended in forcing charge through the element must appear somewhere 
else. When we later meet specific circuit elements, we will note whether 
that energy is stored in some form that is readily available as electric energy 
or whether it changes irreversibly into heat, light, or some other nonelectri-
cal form of energy.

We must now establish a convention by which we can distinguish be-
tween energy supplied to an element and energy that is supplied by the 
element itself. We do this by our choice of sign for the voltage of terminal A 
with respect to terminal B. If a positive current is entering terminal A of the 
element and an external source must expend energy to establish this current, 
then terminal A is positive with respect to terminal B. (Alternatively, we 
may say that terminal B is negative with respect to terminal A.)

The sense of the voltage is indicated by a plus-minus pair of algebraic 
signs. In Fig. 2.9a, for example, the placement of the + sign at terminal A 
indicates that terminal A is v volts positive with respect to terminal B. If we 
later find that v happens to have a numerical value of −5 V, then we may say 
either that A is −5 V positive with respect to B or that B is 5 V positive with 
respect to A. Other cases are shown in Fig. 2.9b, c, and d.

Just as we noted in our definition of current, it is essential to realize that 
the plus-minus pair of algebraic signs does not indicate the “actual” polarity 
of the voltage but is simply part of a convention that enables us to talk unam-
biguously about “the voltage across the terminal pair.” The definition of any 
voltage must include a plus-minus sign pair! Using a quantity v1(t) without 
specifying the location of the plus-minus sign pair is using an undefined 
term. Figure 2.10a and b do not serve as definitions of v1(t); Fig. 2.10c does.

■  FIGURE 2.8 A general two-terminal circuit 
element.

A

B

■  FIGURE 2.9 (a, b) Terminal B is 5 V positive with 
respect to terminal A; (c, d) terminal A is 5 V positive 
with respect to terminal B.
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–
v1(t)

(a)

■  FIGURE 2.10 (a, b) These are inadequate 
definitions of a voltage. (c) A correct definition includes 
both a symbol for the variable and a plus-minus 
symbol pair.
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+

–

(c)(b)

+

–
v1(t)

(a)

(4) We are probably fortunate that the full name of the 18th-century Italian physicist, Alessandro Giuseppe 
Antonio Anastasio Volta, is not used for our unit of potential difference!

Voltage is the electric potential difference across 

two terminals of a circuit component. We define the 

voltage across two terminals with labeled plus-minus 

signs.
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Power
We have already defined power, and we will represent it by P or p. If one 
joule of energy is expended in transferring one coulomb of charge through 
the device in one second, then the rate of energy transfer is one watt. The 
absorbed power must be proportional both to the number of coulombs trans-
ferred per second (current) and to the energy needed to transfer one cou-
lomb through the element (voltage). Thus,

  p = vi  [4]

Dimensionally, the right side of this equation is the product of joules per 
coulomb and coulombs per second, which produces the expected dimension 
of joules per second, or watts. The conventions for current, voltage, and 
power are shown in Fig. 2.12.

We now have an expression for the power being absorbed by a circuit 
element in terms of a voltage across it and current through it. Voltage was 
defined in terms of an energy expenditure, and power is the rate at which 
energy is expended. However, no statement can be made concerning energy 
transfer in any of the four cases shown in Fig. 2.9, for example, until the 
direction of the current is specified. Let us imagine that a current arrow is 
placed alongside each upper lead, directed to the right, and labeled “+2 A.” 
First, consider the case shown in Fig. 2.9c. Terminal A is 5 V positive with 
respect to terminal B, which means that 5 J of energy is required to move 
each coulomb of positive charge into terminal A, through the object, and out 
terminal B. Since we are injecting +2 A (a current of 2 coulombs of positive 
charge per second) into terminal A, we are doing (5 J/C) × (2 C/s) = 10 J of 
work per second on the object. In other words, the object is absorbing 10 W 
of power from whatever is injecting the current.

We know from an earlier discussion that there is no difference between 
Fig. 2.9c and Fig. 2.9d, so we expect the object depicted in Fig. 2.9d to 
also be absorbing 10 W. We can check this easily enough: we are injecting  
+2 A into terminal A of the object, so +2 A flows out of terminal B. Another 
way of saying this is that we are injecting −2 A of current into terminal B.  
It takes −5 J/C to move charge from terminal B to terminal A, so the object 
is absorbing (−5 J/C) × (−2 C/s) = +10 W as expected. The only difficulty 
in describing this particular case is keeping the minus signs straight, but 
with a bit of care we see the correct answer can be obtained regardless 
of our choice of positive reference terminal (terminal A in Fig. 2.9c, and 
terminal B in Fig. 2.9d).

■  FIGURE 2.12 The power absorbed by the element 
is given by the product p = vi. Alternatively, we can say 
that the element generates or supplies a power −vi.

v

+

–

i

PRACTICE 
●

2.5 For the element in Fig. 2.11, v1 = 17 V. Determine v2. 

Ans: v2 = −17 V.

■  FIGURE 2.11

v2

–

+

v1

+

–
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Now let’s look at the situation depicted in Fig. 2.9a, again with +2 A 
injected into terminal A. Since it takes −5 J/C to move charge from termi-
nal A to terminal B, the object is absorbing (−5 J/C) × (2 C/s) = −10 W. 
What does this mean? How can anything absorb negative power? If we 
think about this in terms of energy transfer, −10 J is transferred to the object 
each second through the 2 A current flowing into terminal A. The object is 
actually losing energy—at a rate of 10 J/s. In other words, it is supplying 
10 J/s (i.e., 10 W) to some other object not shown in the figure. Negative 
absorbed power, then, is equivalent to positive supplied power.

Let’s recap. Figure 2.12 shows that if one terminal of the element is v volts 
positive with respect to the other terminal, and if a current i is entering the 
element through that terminal, then a power p = vi is being absorbed by the 
element; it is also correct to say that a power p = vi is being delivered to the 
element. When the current arrow is directed into the element at the plus-
marked terminal, we satisfy the passive sign convention. This convention 
should be studied carefully, understood, and memorized. In other words, it 
says that if the current arrow and the voltage polarity signs are placed such 
that the current enters the terminal on the element marked with the positive 
sign, then the power absorbed by the element can be expressed by the prod-
uct of the specified current and voltage variables. If the numerical value of 
the product is negative, then we say that the element is absorbing negative 
power, or that it is actually generating power and delivering it to some ex-
ternal element. For example, in Fig. 2.12 with v = 5 V and i = −4 A, the 
element may be described as either absorbing −20 W or generating 20 W.

Conventions are only required when there is more than one way to do some-
thing, and confusion may result when two different groups try to communicate. 
For example, it is rather arbitrary to always place “North” at the top of a map; 
compass needles don’t point “up,” anyway. Still, if we were talking to people 
who had secretly chosen the opposite convention of placing “South” at the top 
of their maps, imagine the confusion that could result! In the same fashion, there 
is a general convention that always draws the current arrows pointing into the 
positive voltage terminal, regardless of whether the element supplies or absorbs 
power. This convention is not incorrect but sometimes results in counterintui-
tive currents labeled on circuit schematics. The reason for this is that it simply 
seems more natural to refer to positive current flowing out of a voltage or cur-
rent source that is supplying positive power to one or more circuit elements.

If the current arrow is directed into the “+” marked 

terminal of an element, then p = vi yields the 

absorbed power. A negative value indicates that 

power is actually being generated by the element.

If the current arrow is directed out of the “+” terminal 

of an element, then p = vi yields the supplied power. 

A negative value in this case indicates that power is 

being absorbed.

EXAMPLE 2.1
Compute the power absorbed by each part in Fig. 2.13.

■  FIGURE 2.13 (a, b, c) Three examples of two-terminal elements.
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In Fig. 2.13a, we see that the reference current is defined consistent with 
the passive sign convention, which assumes that the element is absorbing 
power. With +3 A flowing into the positive reference terminal, we compute

  P = (2 V ) (3 A ) = 6 W 

of power absorbed by the element.
Figure 2.13b shows a slightly different picture. Now, we have a 

current of −3 A flowing into the positive reference terminal. This gives 
us an absorbed power

  P = (− 2 V ) (− 3 A ) = 6 W 

Thus, we see that the two cases are actually equivalent: A current 
of +3 A flowing into the top terminal is the same as a current of +3 A 
flowing out of the bottom terminal, or, equivalently, a current of −3 A 
flowing into the bottom terminal.

Referring to Fig. 2.13c, we again apply the passive sign convention 
rules and compute an absorbed power

  P = (4 V ) (− 5 A ) = − 20 W 

Since we computed a negative absorbed power, this tells us that the ele-
ment in Fig. 2.13c is actually supplying +20 W (i.e., it’s a source of energy).

PRACTICE 
●

2.6 Determine the power being absorbed by the circuit element in  
Fig. 2.14a. 

2.7 Determine the power being generated by the circuit element in  
Fig. 2.14b. 
2.8 Determine the power being delivered to the circuit element in  
Fig. 2.14c at t = 5 ms. 

Ans: 880 mW; 6.65 W; −15.53 W.

■  FIGURE 2.14
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Energy
In electrical circuits, attention is often devoted to power, simply given by volt-
age times current. In many cases, we would also like to know the total energy 
transferred for a given period of time. For example, energy usage determines 
how long the battery in your circuit will last, or what your electricity bill will 
be. Recalling that power is the rate of work, energy (w) is defined as

  w(t ) =  ∫ 
  t  0  

  t    p dt =  ∫ 
  t  0  

  t    vi dt  [5]
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The SI unit of energy is the joule (J). Noting that energy is the product of 
power and time (1 joule = 1 watt × 1 second), it is also convenient to de-
fine energy in terms of watt hours (Wh) or kilowatt hours (kWh). Electri-
cal utilities typically charge electricity usage in units of kWh. Converting 
units yields the relations

  1 Wh = 3600 J  [6]

  1 kWh = 3.6  ×  10   6  J  [7]

Battery capacity (energy stored) can also be defined in terms of Wh. 
Since the voltage on a battery is constant, it becomes convenient to separate 
out the battery voltage and simply refer to the total charge storage on the 
battery (Q). Thus,

  w = ∫  vi dt = V∫  i dt = VQ  [8]

The total charge Q is given in units of amp hours (Ah) or milliamp hours 
(mAh)

  1 Ah = 3600 C  [9]

  1 mAh = 3.6 C  [10]

EXAMPLE 2.2
A battery-powered smoke detector has an average power 
consumption of 0.5 mW and runs off of a 9 V battery with a 
capacity of 1200 mAh. How often do you expect to change the  
battery?

The battery will need to be changed when the total energy consumed 
by the smoke detector has reached the total energy stored in the battery. 
The energy consumed by the smoke detector is

 w =  (0.5 mW)  (t)  

and the total energy stored in the battery is given by

  w =  (  1.2 Ah )   (  9 V )    

Equating the two and solving for t results in

 t =    (1.2 Ah)  (9 V)   ___________  
 (0.5 ×  10   −3  W) 

     = 2.16 ×  10   4  h 

 t = 2.16 ×  10   4  h ×   
 (1 day)  _____  (24 h)    ×   

 (1 year)  ________  (365 days)    = 2.47 years 

PRACTICE 
●

2.9 Your rechargeable smartphone battery has a voltage of 3.8 V and 
capacity of 1.5 mAh. You find that a single battery charge can provide 
12 h of talk time, or 10 days of standby time. What is the average 
power consumption for (a) talk mode and (b) standby mode? 

Ans: (a) 475 μW, (b) 23.75 μW.
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2.3 • VOLTAGE AND CURRENT SOURCES
Using the concepts of current and voltage, it is now possible to be more 
specific in defining a circuit element.

In so doing, it is important to differentiate between the physical device 
itself and the mathematical model that we will use to analyze its behavior in 
a circuit. The model is only an approximation.

Let us agree that we will use the expression circuit element to refer to the 
mathematical model. The choice of a particular model for any real device 
must be made on the basis of experimental data or experience; we will usually 
assume that this choice has already been made. For simplicity, we initially 
consider circuits with idealized components represented by simple models.

All of the simple circuit elements that we will consider can be classified 
according to the relationship of the current through the element to the voltage 
across the element. For example, if the voltage across the element is linearly 
proportional to the current through it, we will call the element a resistor. 
Other types of simple circuit elements have terminal voltages which are pro-
portional to the derivative of the current with respect to time (an inductor), or 
to the integral of the current with respect to time (a capacitor). There are also 
elements in which the voltage is completely independent of the current, or 
the current is completely independent of the voltage; these are termed inde-
pendent sources. Furthermore, we will need to define special kinds of sources 
for which either the source voltage or current depends upon a current or 
voltage elsewhere in the circuit; such sources are referred to as dependent 
sources. Dependent sources are used a great deal in electronics to model both 
dc and ac behavior of transistors, especially in amplifier circuits.

Independent Voltage Sources
The first element we will consider is the independent voltage source. 
The circuit symbol is shown in Fig. 2.15a; the subscript s merely identi-
fies the voltage as a “source” voltage, and is common but not required. An 
independent voltage source is characterized by a terminal voltage which 
is completely independent of the current through it. Thus, if we are given 
an independent voltage source and are notified that the terminal voltage is 
12 V, then we always assume this voltage, regardless of the current flowing.

The independent voltage source is an ideal source and does not represent 
exactly any real physical device, because the ideal source could theoreti-
cally deliver an infinite amount of energy from its terminals. This idealized 
voltage source does, however, furnish a reasonable approximation to several 
practical voltage sources. An automobile storage battery, for example, has a 
12 V terminal voltage that remains essentially constant as long as the cur-
rent through it does not exceed a few amperes. A small current may flow in 
either direction through the battery. If it is positive and flowing out of the 
positively marked terminal, then the battery is furnishing power to the head-
lights, for example; if the current is positive and flowing into the positive 
terminal, then the battery is charging by absorbing energy from the alter-
nator.5 An ordinary household electrical outlet also approximates an inde-
pendent voltage source, providing a voltage   v  s    =  115 √ 

__
 2    cos 2π60t  V ; this 

representation is valid for currents less than 20 A or so.

By definition, a simple circuit element is the mathematical 

model of a two-terminal electrical device, and it can 

be completely characterized by its voltage–current 

relationship; it cannot be subdivided into other 

two-terminal devices.

■  FIGURE 2.15 Circuit symbol of the independent 
voltage source.
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If you’ve ever noticed the room lights dim when an air 

conditioner kicks on, it’s because the sudden large 

current demand temporarily led to a voltage drop. 

After the motor starts moving, it takes less current to 

keep it in motion. At that point, the current demand is 

reduced, the voltage returns to its original value, and 

the wall outlet again provides a reasonable approxi-

mation of an ideal voltage source.

(5) Or the battery of a friend's car, if you accidentally left your headlights on…
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A point worth repeating here is that the presence of the plus sign at the 
upper end of the symbol for the independent voltage source in Fig. 2.15a 
does not necessarily mean that the upper terminal is numerically positive 
with respect to the lower terminal. Instead, it means that the upper terminal 
is vs volts positive with respect to the lower. If at some instant vs happens to 
be negative, then the upper terminal is actually negative with respect to the 
lower at that instant.

Consider a current arrow labeled “i” placed adjacent to the upper con-
ductor of the source as in Fig. 2.15b. The current i is entering the terminal 
at which the positive sign is located, the passive sign convention is satisfied, 
and the source thus absorbs power  p =  v  s   i . More often than not, a source is 
expected to deliver power to a network and not to absorb it. Consequently, 
we might choose to direct the arrow as in Fig. 2.15c so that vsi will represent 
the power delivered by the source. Technically, either arrow direction may 
be chosen; whenever possible, we will adopt the convention of Fig. 2.15c in 
this text for voltage and current sources, which are not usually considered 
passive devices.

An independent voltage source with a constant terminal voltage is often 
termed an independent dc voltage source and can be represented by either of 
the symbols shown in Fig. 2.16a and b. Note in Fig. 2.16b that when the 
physical plate structure of the battery is suggested, the longer plate is placed 
at the positive terminal; the plus and minus signs then represent redundant 
notation, but they are usually included anyway. For the sake of complete-
ness, the symbol for an independent ac voltage source is shown in Fig. 2.16c.

Independent Current Sources
Another ideal source which we will need is the independent current source. 
Here, the current through the element is completely independent of the volt-
age across it. The symbol for an independent current source is shown in  
Fig. 2.17. If   i  s    is constant, we call the source an independent dc current 
source. An ac current source is often drawn with a tilde through the arrow, 
similar to the ac voltage source shown in Fig. 2.16c.

Like the independent voltage source, the independent current source is 
at best a reasonable approximation for a physical element. In theory it can 
deliver infinite power from its terminals because it produces the same finite 
current for any voltage across it, no matter how large that voltage may be. It 
is, however, a good approximation for many practical sources, particularly 
in electronic circuits.

Although most students seem happy enough with an independent volt-
age source providing a fixed voltage but essentially any current, it is a com-
mon mistake to view an independent current source as having zero voltage 
across its terminals while providing a fixed current. In fact, we do not know 
a priori what the voltage across a current source will be—it depends entirely 
on the circuit to which it is connected.

Dependent Sources
The two types of ideal sources that we have discussed up to now are called 
independent sources because the value of the source quantity is not affected 
in any way by activities in the remainder of the circuit. This is in contrast 

■  FIGURE 2.16 (a) DC voltage source symbol;  
(b) battery symbol; (c) ac voltage source symbol.
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Terms like dc voltage source and dc current source 

are commonly used. Literally, they mean “direct- 

current voltage source” and “direct-current current 

source,” respectively. Although these terms may seem 

a little odd or even redundant, the terminology is so 

widely used there’s no point in fighting it.

■  FIGURE 2.17 Circuit symbol for the independent 
current source.

is
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23  SECTION 2.3 VOLTAgE AnD CURREnT SOURCES

with yet another kind of ideal source, the dependent, or controlled, source, 
in which the source quantity is determined by a voltage or current exist-
ing at some other location in the system being analyzed. Sources such as 
these appear in the equivalent electrical models for many electronic devices, 
such as transistors, operational amplifiers, and integrated circuits. To dis-
tinguish between dependent and independent sources, we introduce the dia-
mond symbols shown in Fig. 2.18. In Fig. 2.18a and c, K is a dimensionless 
scaling constant. In Fig. 2.18b, g is a scaling factor with units of A/V; in  
Fig. 2.18d, r is a scaling factor with units of V/A. The controlling current  
   i  x    and the controlling voltage   v  x    must be defined in the circuit.

It does seem odd at first to have a current source whose value de-
pends on a voltage, or a voltage source which is controlled by a current 
flowing through some other element. Even a voltage source depending 
on a remote voltage can appear strange. Such sources are invaluable for 
modeling complex systems, however, making the analysis algebraically 
straightforward. Examples include the drain current of a field effect tran-
sistor as a function of the gate voltage, or the output voltage of an analog 
integrated circuit as a function of differential input voltage. When en-
countered during circuit analysis, we write down the entire controlling 
expression for the dependent source just as we would if it was a numeri-
cal value attached to an independent source. This often results in the need 
for an additional equation to complete the analysis, unless the controlling 
voltage or current is already one of the specified unknowns in our system 
of equations.

■  FIGURE 2.18 The four different types of 
dependent sources: (a) current-controlled current 
source; (b) voltage-controlled current source;  
(c) voltage-controlled voltage source; (d) current-
controlled voltage source.
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EXAMPLE 2.3
In the circuit of Fig. 2.19a, if v2 is known to be 3 V, find vL.

We have been provided with a partially labeled circuit diagram and the 
additional information that   v  2   = 3 V. This is probably worth adding to 
our diagram, as shown in Fig. 2.19b.

Next we step back and look at the information collected. In examining 
the circuit diagram, we notice that the desired voltage   v  L    is the same as 
the voltage across the dependent source. Thus,

  v  L   = 5 v  2   

At this point, we would be done with the problem if only we knew   v  2   !
Returning to our diagram, we see that we actually do know   v  2   —it was 
specified as 3 V. We therefore write

  v  2   = 3 

We now have two (simple) equations in two unknowns, and solve to  
find   v  L   = 15 V.

An important lesson at this early stage of the game is that the time it 
takes to completely label a circuit diagram is always a good investment. 
As a final step, we should go back and check over our work to ensure 
that the result is correct.

■  FIGURE 2.19 (a) An example circuit containing a 
voltage-controlled voltage source. (b) The additional 
information provided is included on the diagram.
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24 CHAPTER 2 BASIC COmPOnEnTS AnD ELECTRIC CIRCUITS

Dependent and independent voltage and current sources are active 
elements; they are capable of delivering power to some external device. For 
the present we will think of a passive element as one which is capable only 
of receiving power. However, we will later see that several passive elements 
are able to store finite amounts of energy and then return that energy later to 
various external devices; since we still wish to call such elements passive, it 
will be necessary to improve upon our two definitions a little later.

Networks and Circuits
The interconnection of two or more simple circuit elements forms an elec-
trical network. If the network contains at least one closed path, it is also an 
electric circuit. Note: Every circuit is a network, but not all networks are 
circuits (see Fig. 2.21)!

■  FIGURE 2.21 (a) A network that is not a circuit. (b) A network that is a circuit.
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PRACTICE 
●

2.10 Find the power absorbed by each element in the circuit in Fig. 2.20. 

Ans: (left to right) −56 W; 16 W; −60 W; 160 W; −60 W.

■  FIGURE 2.20
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A network that contains at least one active element, such as an indepen-
dent voltage or current source, is an active network. A network that does not 
contain any active elements is a passive network.

We have now defined what we mean by the term circuit element, and 
we have presented the definitions of several specific circuit elements, 
the independent and dependent voltage and current sources. Through-
out the remainder of the book we will define only five additional circuit 
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25  SECTION 2.4 OHm’S LAW

elements: the resistor, inductor, capacitor, transformer, and the ideal oper-
ational amplifier (“op amp,” for short). These are all ideal elements. They 
are important because we may combine them into networks and circuits 
that represent real devices as accurately as we require. Thus, the transistor 
shown in Fig. 2.22a and b may be modeled by the voltage terminals desig-
nated   v  gs    and the single dependent current source of Fig. 2.22c. Note that 
the dependent current source produces a current that depends on a voltage 
elsewhere in the circuit. The parameter   g  m   , commonly referred to as the 
transconductance, is calculated using transistor-specific details as well as 
the operating point determined by the circuit connected to the transistor. 
It is generally a small number, on the order of 10−2 to perhaps 10 A/V. 
This model works pretty well as long as the frequency of any sinusoidal 
source is neither very large nor very small; the model can be modified 
to account for frequency-dependent effects by including additional ideal 
circuit elements such as resistors and capacitors.

Similar (but much smaller) transistors typically constitute only one 
small part of an integrated circuit that may be less than 2 mm × 2 mm 
square and 200 μm thick and yet contain several thousand transistors plus 
various resistors and capacitors. Thus, we may have a physical device that 
is about the size of one letter on this page but requires a model composed of 
ten thousand ideal simple circuit elements. We use this concept of “circuit 
modeling” in a number of electrical engineering topics covered in other 
courses, including electronics, energy conversion, and antennas.

2.4 • OHM’S LAW
So far, we have been introduced to both dependent and independent voltage 
and current sources and were cautioned that they were idealized active ele-
ments that could only be approximated in a real circuit. We are now ready 
to meet another idealized element, the linear resistor. The resistor is the 
simplest passive element, and we begin our discussion by considering the 
work of an obscure German physicist, Georg Simon Ohm, who published a 
pamphlet in 1827 that described the results of one of the first efforts to mea-
sure currents and voltages, and to describe and relate them mathematically.  

■  FIGURE 2.22 The metal oxide semiconductor field effect transistor (mOSFET). (a) An IRF540 n-channel power mOSFET in a TO-220 package, rated at 100 V and 22 A;  
(b) cross-sectional view of a basic mOSFET; (c) equivalent circuit model for use in ac circuit analysis.
((a) ©Steve Durbin) (b) R. Jaeger, Microelectronic Circuit Design, McGraw-Hill, 1997
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26 CHAPTER 2 BASIC COmPOnEnTS AnD ELECTRIC CIRCUITS

One result was a statement of the fundamental relationship we now call 
Ohm’s law, even though it has since been shown that this result was discov-
ered 46 years earlier in England by Henry Cavendish, a brilliant semirecluse.

Ohm’s law states that the voltage across conducting materials is directly 
proportional to the current flowing through the material, or

  v = Ri  [11]

where the constant of proportionality R is called the resistance. The unit 
of resistance is the ohm, which is 1 V/A and customarily abbreviated by a 
capital omega, Ω.

When this equation is plotted on i-versus-v axes, the graph is a straight 
line passing through the origin (Fig. 2.23). Equation [4] is a linear equation, 
and we will consider it to be the definition of a linear resistor. Resistance is 
normally considered to be a positive quantity, although negative resistances 
may be simulated with special circuitry.

Again, it must be emphasized that the linear resistor is an idealized circuit 
element; it is only a mathematical model of a real, physical device. “Resistors” 
may be easily purchased or manufactured, but it is soon found that the voltage–
current ratios of these physical devices are reasonably constant only within cer-
tain ranges of current, voltage, or power, and they also depend on temperature 
and other environmental factors. We usually refer to a linear resistor as simply 
a resistor; any resistor that is nonlinear will always be described as such. 

Power Absorption
Figure 2.24 shows several different resistor packages, as well as the most com-
mon circuit symbol used for a resistor. In accordance with the voltage, current, 
and power conventions already adopted, the product of v and i gives the power 
absorbed by the resistor. That is, v and i are selected to satisfy the passive sign 
convention. The absorbed power appears physically as heat and/or light and 

■  FIGURE 2.23 Current–voltage relationship for an 
example 2 Ω linear resistor. note the slope of the line 
is 0.5 A/V, or 500 mΩ−1.
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■  FIGURE 2.24 (a) Several common resistor packages. (b) A 560 Ω power resistor rated at 
up to 50 W. (c) A 5% tolerance 10-teraohm (10,000,000,000,000 Ω) resistor manufactured by 
Ohmcraft. (d) Circuit symbol for the resistor, applicable to all of the devices in (a) through (c).
((a)–(c) ©Steve Durbin)
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27  SECTION 2.4 OHm’S LAW

is always positive; a resistor is a passive element that cannot deliver power or 
store energy. Alternative expressions for the absorbed power are

  p = vi =  i   2  R =  v   2  / R  [12]

One of the authors (who shall remain anonymous) had the unfortunate 
experience of inadvertently connecting a 100 Ω, 2 W carbon resistor across 
a 110 V source. The ensuing flame, smoke, and fragmentation were rather 
disconcerting, demonstrating clearly that a practical resistor has definite 
limits to its ability to behave like the ideal linear model. In this case, the 
unfortunate resistor was called upon to absorb 121 W; since it was designed 
to handle only 2 W, its reaction was understandably violent.

EXAMPLE 2.4
The 560 Ω resistor shown in Fig. 2.24b is connected to a circuit 
which causes a current of 42.4 mA to flow through it. Calculate the 
voltage across the resistor and the power it is dissipating.

The voltage across the resistor is given by Ohm’s law:

 v = Ri = (560 ) (0.0424 ) = 23.7 V 

The dissipated power can be calculated in several different ways. For 
instance,

 p = vi = (23.7 ) (0.0424 ) = 1.005 W 

Alternatively,

 p =  v   2  / R =  (23.7 )   2  / 560 = 1.003 W 

or

 p =  i   2  R =  (0.0424 )   2 (560 ) = 1.007 W 

We note several things.
First, we calculated the power in three different ways, and we seem 

to have obtained three different answers!
In reality, however, we rounded our voltage to three significant dig-

its, which will affect the accuracy of any subsequent quantity we calcu-
late with it. With this in mind, we see that the answers show reasonable 
agreement (within 1%).

The other point worth noting is that the resistor is rated to 50 W— 
since we are only dissipating approximately 2% of this value, the resis-
tor is in no danger of overheating.

PRACTICE 
●

With reference to Fig. 2.25, compute the following:
2.11 R if i = −2 μA and v = −44 V. 
2.12 The power absorbed by the resistor if v = 1 V and R = 2 kΩ. 
2.13 The power absorbed by the resistor if i = 3 nA and R = 4.7 MΩ. 

Ans: 22 MΩ; 500 μW; 42.3 pW.

■  FIGURE 2.25
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Technically speaking, any material (except for a super-
conductor) will provide resistance to current flow. As 
in all introductory circuits texts, however, we tacitly 
assume that wires appearing in circuit diagrams have 
zero resistance. This implies that there is no potential 
difference between the ends of a wire, and hence no 
power absorbed or heat generated. Although usually 
not an unreasonable assumption, it does neglect prac-
tical considerations when choosing the appropriate 
wire diameter for a specific application.

Resistance is determined by (1) the inherent re-
sistivity of a material and (2) the device geometry. 
Resistivity, represented by the symbol ρ, is a measure 
of the ease with which electrons can travel through 
a certain material. Since it is the ratio of the electric 
field (V/m) to the areal density of current flowing in 
the material (A/m2), the general unit of ρ is an Ω · m, 
although metric prefixes are often employed. Every 
material has a different inherent resistivity, which de-
pends on temperature. Some examples are shown in 
Table 2.3; as can be seen, there is a small variation 
between different types of copper (less than 1%) but a 
very large difference between different metals. In par-
ticular, although physically stronger than copper, steel 
wire is several times more resistive. In some technical 
discussions, it is more common to see the conductivity 
(symbolized by σ) of a material quoted, which is sim-
ply the reciprocal of the resistivity.

The resistance of a particular object is obtained by 
multiplying the resistivity by the length ℓ of the resis-
tor and dividing by the cross-sectional area (A) as in 
Eq. [6]; these parameters are illustrated in Fig. 2.26.

  R = ρ ℓ __ 
A

    [13]

We determine the resistivity when we select the ma-
terial from which to fabricate a wire and measure the 
temperature of the application environment. Since a fi-
nite amount of power is absorbed by the wire due to its 
resistance, current flow leads to the production of heat. 
Thicker wires have lower resistance and also dissipate 
heat more easily but are heavier, take up a larger vol-
ume, and are more expensive. Thus, we are motivated by 
practical considerations to choose the smallest wire that 
can safely do the job, rather than simply choosing the 
largest-diameter wire available in an effort to minimize 
resistive losses. The American Wire Gauge (AWG) is a 
standard system of specifying wire size. In selecting a 

■  FIGURE 2.26 Definition of geometrical parameters used to compute the 
resistance of a wire. The resistivity of the material is assumed to be spatially 
uniform.
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Direction of
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Cross-sectional
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Resistivity = ρ Ω. cm

PRACTICAL APPLICATION
Wire Gauge

ASTM Specification** Temper and Shape
Resistivity at 20°C  

(μΩ · cm)

B33 Copper, tinned soft, round 1.7654
B75 Copper, tube, soft, OF copper 1.7241
B188 Copper, hard bus tube, rectangular or square 1.7521
B189 Copper, lead-coated soft, round 1.7654
B230 Aluminum, hard, round 2.8625
B227 Copper-clad steel, hard, round, grade 40 HS 4.3971
B355 Copper, nickel-coated soft, round Class 10 1.9592
B415 Aluminum-clad steel, hard, round 8.4805

* C. B. Rawlins, “Conductor materials,” Standard Handbook for Electrical Engineering, 13th ed., D. G. Fink and 
H. W. Beaty, eds. New York: McGraw-Hill, 1993, pp. 4-4 to 4-8.
** American Society of Testing and Materials.

TABLE 
●
 2.3 Common Electrical Wire Materials and Resistivities*
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EXAMPLE 2.5
A dc power link is to be made between two islands separated by  
a distance of 24 miles. The operating voltage is 500 kV and the 
system capacity is 600 MW. Calculate the maximum dc current 
flow, and estimate the resistivity of the cable, assuming a diameter 
of 2.5 cm and a solid (not stranded) wire.

Dividing the maximum power (600 MW, or 600 × 106 W) by the oper-
ating voltage (500 kV, or 500 × 103 V) yields a maximum current of

   600 ×  10   6  _______ 
500 ×  10   3 

   = 1200 A 

The cable resistance is simply the ratio of the voltage to the current, or

  R  cable   = 500 ×  10   3  _______ 1200   = 417 Ω 

We know the length:

  ℓ =  (  24 miles )    (   5280 ft _ 1 mile   )     (   12 in _ 1 ft   )     (   2.54 cm _ 1 in   )    = 3,862,426 cm  

Given that most of our information appears to be valid to only two sig-
nificant figures, we round this to 3.9 × 106 cm. With the cable diameter 
specified as 2.5 cm, we know its cross-sectional area is 4.9 cm2. Thus,

  ρ  cable   =  R  cable   A __ ℓ   = 417  (    4.9 _ 
3.9 ×  10   6 

   )    = 520 μΩ ⋅ cm 

wire gauge, smaller AWG corresponds to a larger wire 
diameter; an abbreviated table of common gauges is 
given in Table 2.4. Local fire and electrical safety codes 

typically dictate the required gauge for specific wiring 
applications, based on the maximum current expected 
as well as where the wires will be located.

Conductor Size (AWG) Cross-Sectional Area (mm2) Ohms per 1000 ft at 20°C

28 0.0804 65.3
24 0.205 25.7
22 0.324 16.2
18 0.823 6.39
14 2.08 2.52
12 3.31 1.59
 6 13.3 0.3952
 4 21.1 0.2485
 2 33.6 0.1563

* C. B. Rawlins et al., Standard Handbook for Electrical Engineering, 13th ed., D. G. Fink and H. W. 
Beaty, eds. New York: McGraw-Hill, 1993, p. 4-47.

TABLE 

●

 2.4  Some Common Wire Gauges and the Resistance  
of (Soft) Solid Copper Wire*
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Fuses
The capacity for handling current flow is an important consideration when de-
signing circuits. Electrical components and electrical leads should be capable 
of carrying the current flow that the circuit is designed for. For example, you 
would not want to use 1/8 watt resistors or hairline thin wiring for power han-
dling in an electric car! Similarly, it is desirable to minimize hazards associated 
with unintentional short circuit conditions. Such unintentional short circuits 
could cause very large spikes in current that can damage electrical components, 
or more severely, cause a fire or electric shock. To protect against overcurrent 
conditions, fuses are often incorporated in a series connection to the circuit. A 
fuse is simply a resistor that is specially designed to (safely) fail at a particular 
current condition. At this level of current flow, the material in the fuse will melt 
and result in an open-circuit condition that protects the circuit from dangerous 
current levels. In addition to designing a fuse to fail at a particular current level, 
fuses also aim to achieve very low resistance to minimize power consumption. 
Blowing a fuse is very similar to the failure mechanism in burning out an incan-
descent light bulb, and it needs to be replaced following failure. Circuit breakers 
may also be used to provide overcurrent protection. The physical mechanism 
in a circuit breaker for preventing overcurrent is very different than a fuse, and 
it may also be reset and reused following a “trip” condition. The size and cost 
of circuit breakers are often much higher than fuses, and the choice of which 
device to use is dependent on the needs for the particular application.

Conductance
For a linear resistor, the ratio of current to voltage is also a constant

    i _ v   = 1 __ 
R

   = G  [14]

where G is called the conductance. The SI unit of conductance is the sie-
mens (S), 1 A/V. An older, unofficial unit for conductance is the mho, which 
was often abbreviated as ℧ and is still occasionally written as Ω−1. You will 
occasionally see it used on some circuit diagrams, as well as in catalogs and 
texts. The same circuit symbol (Fig. 2.24d) is used to represent both resis-
tance and conductance. The absorbed power is again necessarily positive 
and may be expressed in terms of the conductance by

  p = vi =  v   2  G =  i   
2  __ 

G
    [15]

Thus a 2 Ω resistor has a conductance of    1 _ 2    S , and if a current of 5 A is 
flowing through it, then a voltage of 10 V is present across the terminals and 
a power of 50 W is being absorbed.

All the expressions given so far in this section were written in terms  
of instantaneous current, voltage, and power, such as v = iR and p = vi. 

PRACTICE 
●

2.14 A 500 ft long 24 AWG soft copper wire is carrying a current of 
100 mA. What is the voltage dropped across the wire? 

Ans: 3.26 V.
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31  SECTION 2.4 OHm’S LAW

COMPUTER-AIDED ANALYSIS

Tools such as MATLAB are very helpful for analyzing time-varying 
quantities. Let us look at an example for a time-varying energy 
harvester. 

A piezoelectric energy harvester is used to generate electricity  
in a circuit from the mechanical motion of ocean waves. The voltage 
generated by the harvester is periodic according to the piecewise 
equations that follow. The voltage is applied to a 50 Ω resistor. 
Plot the voltage, power, and energy as a function of time over two 
periods (10 seconds). Also determine the energy harvested for each 
period.

    v(t) = 24 sin(πt) V; (0 < t < 1s)

v(t) = −18  sin   (  π __ 2   (t − 1))  V; (1 < t < 2s) 

v(t) = −18  exp   (2 − t)  V;  (  2 < t < 5s )     
Solution: 
The power is given by p(t) = v(t)i(t) = v2(t)/R. The energy is given by 
  w(t) =  ∫ 

 t  0  
  t    pdt  . The cumulative integral of energy may be numerically 

approximated using a summation   w (  t )   ≈ Σ  p (  t )  Δt    where Δt is the time 
interval between points. In MATLAB, the sum can be evaluated manu-
ally or using built-in functions such as cumsum(). 

% Example for piezoelectric energy harvester

t_end = 10; % End time in seconds

t_pts = 500; % Number of points for time vector

t=linspace(0,t_end,t_pts); % Define time vector

dt=t_end/t_pts; % Separation between time points

R=50; % Resistance in ohms

for i=1:t_pts; % Iterate for each point in time

if (t(i)<=1) v(i) = 24*sin(pi*t(i)); end

if (t(i)>1) & (t(i)<=2); v(i) = -18*sin(pi/2*(t(i)-1)); end

if (t(i)>2) & (t(i)<=5); v(i)=-18*exp(1*(2-t(i))); end

if (t(i)>5) & (t(i)<=6); v(i) = 24*sin(pi*(t(i)-5)); end

if (t(i)>6) & (t(i)<=7); v(i) = -18*sin(pi/2*(t(i)-6)); end

We should recall that this is a shorthand notation for v(t) = Ri(t) and  
p(t) = v(t)i(t). The current through and voltage across a resistor must both 
vary with time in the same manner. Thus, if R = 10 Ω and v = 2 sin 100t V, 
then i = 0.2 sin 100t A. Note that the power is given by 0.4 sin2 100t W, and 
a simple sketch will illustrate the different nature of its variation with time. 
Although the current and voltage are each negative during certain time in-
tervals, the absorbed power is never negative!
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if (t(i)>7) & (t(i)<=10); v(i)=-18*exp(1*(7-t(i))); end

p(i)=v(i)^2/R;

end

w=cumsum(p)*dt; % Energy from cumulative sum times time  
separation

% Plot results together on one plot using ‘subplot’ function

figure(1)

subplot(3,1,1); plot(t,v,'r'); % Plot voltage

ylabel('Voltage (V)'); 

subplot(3,1,2); plot(t,p,'r') % Plot power

ylabel('Power (W)')

subplot(3,1,3); plot(t,w,'r') % Plot energy

xlabel('Time (seconds)')

ylabel('Energy (J)')

The resulting plots are shown in Fig. 2.27, where energy over one period 
is determined to be 12.2075 W.

■  FIGURE 2.27 Plot of voltage, power, and energy for the piezoelectric energy harvester over two periods. 
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Resistance may be used as the basis for defining two commonly used 
terms, short circuit and open circuit. We define a short circuit as a resis-
tance of zero ohms; then, since v = iR, the voltage across a short circuit 
must be zero, although the current may have any value. In an analogous 
manner, we define an open circuit as an infinite resistance. It follows from 
Ohm’s law that the current must be zero, regardless of the voltage across the 
open circuit. Although real wires have a small resistance associated with 
them, we always assume them to have zero resistance unless otherwise 
specified. Thus, in all of our circuit schematics, wires are taken to be perfect 
short circuits.

SUMMARY AND REVIEW

In this chapter, we introduced the topic of units—specifically those relevant 
to electrical circuits—and their relationship to fundamental (SI) units. We 
also discussed current and current sources, voltage and voltage sources, and 
the fact that the product of voltage and current yields power (the rate of en-
ergy consumption or generation). Since power can be either positive or neg-
ative depending on the current direction and voltage polarity, the passive 
sign convention was described to ensure we always know if an element is 
absorbing or supplying energy to the rest of the circuit. Four additional 
sources were introduced, forming a general class known as dependent 
sources. They are often used to model complex systems and electrical com-
ponents, but the actual value of voltage or current supplied is typically un-
known until the entire circuit is analyzed. We concluded the chapter with the 
resistor—by far the most common circuit element—whose voltage and cur-
rent are linearly related (described by Ohm’s law). Whereas the resistivity of 
a material is one of its fundamental properties (measured in Ω · cm), resis-
tance describes a device property (measured in Ω) and hence depends not 
only on resistivity but on the device geometry (i.e., length and area) as well.

We conclude with key points of this chapter to review, along with 
appropriate examples.

 The system of units most commonly used in electrical engineering is 
the SI.

 The direction in which positive charges are moving is the direction 
of positive current flow; alternatively, positive current flow is in the 
direction opposite that of moving electrons.

 To define a current, both a value and a direction must be given. Cur-
rents are typically denoted by the uppercase letter I for constant (dc) 
values, and either i(t) or simply i otherwise.

 To define a voltage across an element, it is necessary to label the termi-
nals with + and − signs as well as to provide a value (either an algebra-
ic symbol or a numerical value).

 Any element is said to supply positive power if positive current flows 
out of the positive voltage terminal. Any element absorbs positive 
power if positive current flows into the positive voltage terminal. 
(Example 2.1 and Example 2.2)

note that a current represented by i or i(t) can be con-

stant (dc) or time-varying, but currents represented by 

the symbol I must be non-time-varying.
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 There are six sources: the independent voltage source, the independent 
current source, the current-controlled dependent current source, the 
voltage-controlled dependent current source, the voltage-controlled 
dependent voltage source, and the current-controlled dependent voltage 
source. (Example 2.3)

 Ohm’s law states that the voltage across a linear resistor is directly 
proportional to the current flowing through it; i.e., v = Ri. (Example 2.4)

 The power dissipated by a resistor (which leads to the production of 
heat) is given by p = vi = i2R = v2/R. (Example 2.4)

 Wires are typically assumed to have zero resistance in circuit analysis. 
When selecting a wire gauge for a specific application, however, local 
electrical and fire codes must be consulted. (Example 2.5) 

READING FURTHER
A good book that discusses the properties and manufacture of resistors in con-
siderable depth:

Felix Zandman, Paul-René Simon, and Joseph Szwarc, Resistor Theory 
and Technology. Raleigh, N.C.: SciTech Publishing, 2002.

A good all-purpose electrical engineering handbook:

Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical 
Engineers, 16th ed. New York: McGraw-Hill, 2013.

A detailed reference for the SI is available on the Web from the National Institute 
of Standards:

Ambler Thompson and Barry N. Taylor, Guide for the Use of the Interna-
tional System of Units (SI), NIST Special Publication 811, 2008 edition, 
www.nist.gov.

EXERCISES

2.1  Units and Scales
1. Convert the following to engineering notation: 

(a) 0.045 W (b) 2000 pJ
(c) 0.1 ns (d) 39,212 as
(e) 3 Ω (f ) 18,000 m
(g) 2,500,000,000,000 bits (h) 1015 atoms/cm3

2. Convert the following to engineering notation: 
(a) 1230 fs (b) 0.0001 decimeter
(c) 1400 mK (d) 32 nm
(e) 13,560 kHz (f ) 2021 micromoles
(g) 13 deciliters (h) 1 hectometer

3. Express the following in engineering units: 
(a) 1212 mV (b) 1011 pA
(c) 1000 yoctoseconds (d) 33.9997 zeptoseconds
(e) 13,100 attoseconds (f ) 10−14 zettasecond
(g) 10−5 second (h) 10−9 Gs
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4. Expand the following distances in simple meters: 
(a) 1 Zm (b) 1 Em
(c) 1 Pm (d) 1 Tm
(e) 1 Gm (f ) 1 Mm

5. Convert the following to SI units, taking care to employ proper engineering 
notation: 
(a) 212°F (b) 0°F
(c) 0 K (d)  200 hp
(e) 1 yard (f ) 1 mile

6. Convert the following to SI units, taking care to employ proper engineering 
notation: 
(a) 100°C (b) 0°C
(c) 4.2 K (d) 150 hp
(e) 500 Btu (f ) 100 J/s

7. It takes you approximately 2 hours to finish your homework on thermody-
namics. Since it feels like it took forever, how many galactic years does this 
correspond to? (1 galactic year = 250 million years)

8. A certain krypton fluoride laser generates 15 ns long pulses, each of which 
contains 550 mJ of energy. (a) Calculate the peak instantaneous output power 
of the laser. (b) If up to 100 pulses can be generated per second, calculate the 
maximum average power output of the laser.

9. Your recommended daily food intake is 2500 food calories (kcal). If all of this 
energy is efficiently processed, what would your average power output be?

10. An electric vehicle is driven by a single motor rated at 40 hp. If the motor is 
run continuously for 3 h at maximum output, calculate the electrical energy 
consumed. Express your answer in SI units using engineering notation.

11. Under insolation conditions of 500 W/m2 (direct sunlight), and 10% solar cell 
efficiency (defined as the ratio of electrical output power to incident solar 
power), calculate the area required for a photovoltaic (solar cell) array capable 
of running the vehicle in Exercise 10 at half power.

12. A certain metal oxide nanowire piezoelectricity generator is capable of pro-
ducing 100 pW of usable electricity from the type of motion obtained from 
a person jogging at a moderate pace. (a) How many nanowire devices are 
required to operate a personal MP3 player that draws 1 W of power? (b) If the 
nanowires can be produced with a density of five devices per square micron 
directly onto a piece of fabric, what area is required, and would it be practical?

13. Assuming a global population of 9 billion people, each using approximately 
100 W of power continuously throughout the day, calculate the total land area 
that would have to be set aside for photovoltaic power generation, assuming 
800 W/m2 of incident solar power and a conversion efficiency (sunlight to 
electricity) of 10%.

2.2  Charge, Current, Voltage, Power, and Energy
14. The total charge flowing out of one end of a small copper wire and into an 

unknown device is determined to follow the relationship  q(t ) = 5  e   −t/2  C, where 
t is expressed in seconds. Calculate the current flowing into the device, taking 
note of the sign.

15. The current flowing into the collector lead of a certain bipolar junction transis-
tor (BJT) is measured to be 1 nA. If no charge was transferred in or out of the 
collector lead prior to t = 0, and the current flows for 1 min, calculate the total 
charge which crosses into the collector.

16. The total charge stored on a 1 cm diameter insulating plate is −1013 C.  
(a) How many electrons are on the plate? (b) What is the areal density of 
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electrons (number of electrons per square meter)? (c) If additional electrons 
are added to the plate from an external source at the rate of 106 electrons 
per second, what is the magnitude of the current flowing between the 
source and the plate?

17. A mysterious device found in a forgotten laboratory accumulates charge at 
a rate specified by the expression q(t) = 9 − 10t C from the moment it is 
switched on. (a) Calculate the total charge contained in the device at t = 0. 
(b) Calculate the total charge contained at t = 1 s. (c) Determine the current 
flowing into the device at t = 1 s, 3 s, and 10 s.

18. A new type of device appears to accumulate charge according to the expression 
q  (  t )    = 10  t   2  − 22t mC  (t in s). (a) In the interval 0 ≤ t < 5 s, at what time does 
the current flowing into the device equal zero? (b) Sketch  q(t )  and  i(t )  over the 
interval 0 ≤ t < 5 s.

19. The current flowing through a tungsten-filament light bulb is determined to 
follow  i(t ) = 114 sin (100πt )  A. (a) Over the interval defined by t = 0 and t =  
2 s, how many times does the current equal zero amperes? (b) How much 
charge is transported through the light bulb in the first second?

20. The current waveform depicted in Fig. 2.28 is characterized by a period of 8 s. 
(a) What is the average value of the current over a single period? (b) If  q(0 ) = 0 , 
sketch  q(t ) ,  0 < t < 20  s.

■  FIGURE 2.29 An example of a time-varying current.
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21. The current waveform depicted in Fig. 2.29 is characterized by a period of 4 s. 
(a) What is the average value of the current over a single period? (b) Compute 
the average current over the interval 1 < t < 3 s. (c) If  q(0 ) = 1 C, sketch q(t),  
0 < t < 4 s.

■  FIGURE 2.28 An example of a time-varying current.
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22. A wind power system with increasing windspeed has the current waveform 
described by the equation below, delivered to an 80 Ω resistor. Plot the current, 
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■  FIGURE 2.31 Elements for Exercise 26.
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■  FIGURE 2.32
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power, and energy waveform over a period of 60 s, and calculate the total  
energy collected over the 60 s time period.

 i  (  t )    = 1 _ 2    t   2  sin   (    π _ 8   t )   cos   (    π _ 4   t )   A 

23. Two metallic terminals protrude from a device. The terminal on the left is the 
positive reference for a voltage called   v  x    (the other terminal is the negative ref-
erence). The terminal on the right is the positive reference for a voltage called   
v  y    (the other terminal being the negative reference). If it takes 1 mJ of energy 
to push a single electron into the left terminal, determine the voltages   v  x    and   v  y   .

24. The convention for voltmeters is to use a black wire for the negative reference 
terminal and a red wire for the positive reference terminal. (a) Explain why two 
wires are required to measure a voltage. (b) If it is dark and the wires into the volt-
meter are swapped by accident, what will happen during the next measurement?

25. Determine the power absorbed by each of the elements in Fig. 2.30.

■  FIGURE 2.30 Elements for Exercise 25.
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26. Determine the power absorbed by each of the elements in Fig. 2.31.

27. Determine the unknown current for the circuit in Fig. 2.32, and find the power 
that is supplied or absorbed by each element. Confirm that the total power is 
zero.
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30. The current–voltage characteristic of a silicon solar cell exposed to direct 
sunlight at noon in Florida during midsummer is given in Fig. 2.34. It is 
obtained by placing different-sized resistors across the two terminals of the 
device and measuring the resulting currents and voltages. (a) What is the 
value of the short-circuit current? (b) What is the value of the voltage at  
open circuit? (c) Estimate the maximum power that can be obtained from  
the device.

28. A constant current of 1 ampere is measured flowing into the positive ref-
erence terminal of a pair of leads whose voltage we’ll call   v  p   . Calculate the 
absorbed power at t = 1 s if   v  p  (t )  equals (a)  + 1  V; (b)  − 1  V; (c)  2 + 5 cos(5t )  V; 
(d)  4  e   −2t   V. (e) Explain the significance of a negative value for absorbed power.

29. Determine the power supplied by the leftmost element in the circuit of  
Fig. 2.33.

■  FIGURE 2.34
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■  FIGURE 2.33
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31. A particular electric utility charges customers different rates depending  
on their daily rate of energy consumption: $0.05/kWh up to 20 kWh, and 
$0.10/kWh for all energy usage above 20 kWh in any 24-hour period.  
(a) Calculate how many 100 W light bulbs can be run continuously for less 
than $10 per week. (b) Calculate the daily energy cost if 2000 kW of power 
is used continuously.

32. The Tilting Windmill Electrical Cooperative LLC Inc. has instituted a differen-
tial pricing scheme aimed at encouraging customers to conserve electricity use 
during daylight hours, when local business demand is at its highest. If the price 
per kilowatthour is $0.033 between the hours of 9 p.m. and 6 a.m., and $0.057 
for all other times, how much does it cost to run a 2.5 kW portable heater 
continuously for 30 days?

33. A laptop computer consumes an average power of 20 W. The rechargeable bat-
tery has a voltage of 12 V and capacity of 5800 mAh. How long can the laptop 
run on a single battery charge?

34. You have just installed a rooftop solar photovoltaic system that consists of  
40 solar modules that each provide 180 W of power under peak sunlight 
conditions. Your location gets an average of 5 hours of peak sunlight per day. 
If electricity in your area is valued at 15¢/kWh, what is the annual value of the 
electricity generated by your installation?

hay01307_ch02_011-042.indd   38 23/01/18   10:00 am



39   ExERCISES

35. A portable music player requiring 5 W is powered by a 3.7 V Li-ion battery 
with capacity of 4000 mAh. The battery can be charged by a charger providing a 
current of 2 A with an efficiency of 80%. (a) How long can the music player run 
on a full battery charge? (b) How long would it take to fully charge the battery?

2.3  Voltage and Current Sources
36. Some of the ideal sources in the circuit of Fig. 2.33 are supplying positive 

power, and others are absorbing positive power. Determine which are which, 
and show that the algebraic sum of the power absorbed by each element (taking 
care to preserve signs) is equal to zero.

37. You are comparing an old incandescent light bulb with a newer high-efficiency 
LED light bulb. You find that they both have the same output of 800 lumens, 
which corresponds to approximately 5 W of optical power. However, you find that 
the incandescent bulb is consuming 60 W of electrical power, and the LED bulb 
is consuming 12 W of electrical power. Why do the optical and electrical powers 
not agree? Doesn’t conservation of energy require the two quantities to be equal?

38. Refer to the circuit represented in Fig. 2.35, while noting that the same current 
flows through each element. The voltage-controlled dependent source provides 
a current which is five times as large as the voltage   V  x   . (a) For   V  R   = 10  V and   
V  x   = 2  V, determine the power absorbed by each element. (b) Is element A 
likely a passive or active source? Explain.

39. Refer to the circuit represented in Fig. 2.35, while noting that the same  
current flows through each element. The voltage-controlled dependent 
source provides a current which is five times as large as the voltage   V  x   .  
(a) For   V  R   = 100  V and   V  x   = 92  V, determine the power supplied by each ele-
ment. (b) Verify that the algebraic sum of the supplied powers is equal to zero.

40. The circuit depicted in Fig. 2.36 contains a dependent current source; the 
magnitude and direction of the current it supplies are directly determined by 
the voltage labeled   v  1   . Note that therefore   i  2   = − 3  v  1   . Determine the voltage   v  1    
if   v  2   = 33  i  2    and   i  2   = 100  mA.

■  FIGURE 2.37
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41. The dependent source in the circuit of Fig. 2.37 provides a voltage whose value 
depends on the current   i  x   . What value of   i  x    is required for the dependent source 
to be supplying 1 W?

2.4  Ohm’s Law
42. Determine the magnitude of the current flowing through a 4.7 kΩ resistor 

if the voltage across it is (a) 1 mV; (b) 10 V; (c)  4  e   −t   V; (d)  100 cos(5t )  V; 
(e)  − 7  V.

43. Real resistors can only be manufactured to a specific tolerance, so in effect 
the value of the resistance is uncertain. For example, a 1 Ω resistor spec-
ified as 5% tolerance could in practice be found to have a value anywhere 
in the range of 0.95 to 1.05 Ω. Calculate the voltage across a 2.2 kΩ 10% 
tolerance resistor if the current flowing through the element is (a) 1 mA; 
(b) 4 sin 44t mA.

44. (a) Sketch the current–voltage relationship (current on the y axis) of a 2 kΩ 
resistor over the voltage range of −10 V ≤ Vresistor ≤ +10 V. Be sure to label 
both axes appropriately. (b) What is the numerical value of the slope (express 
your answer in siemens)?
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45. Sketch the voltage across a 33 Ω resistor over the range 0 < t < 2π s, if the cur-
rent is given by 2.8 cos(t) A. Assume both the current and voltage are defined 
according to the passive sign convention.

46. Figure 2.38 depicts the current–voltage characteristic of three different resistive 
elements. Determine the resistance of each, assuming the voltage and current 
are defined in accordance with the passive sign convention.
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■  FIGURE 2.38

47. Examine the I-V characteristics in Fig. 2.38. Which would be the most desir-
able for a fuse? Explain.

48. Determine the conductance (in siemens) of the following: (a) 0 Ω; (b) 100 MΩ; 
(c) 200 mΩ.

49. Determine the magnitude of the current flowing through a 10 mS conductance if 
the voltage across it is (a) 2 mV; (b) −1 V; (c)  100  e   −2t   V; (d) 5 sin(5t) V;  
(e) 0 V.

50. A 1% tolerance 1 kΩ resistor may in reality have a value anywhere in the range 
of 990 to 1010 Ω. Assuming a voltage of 9 V is applied across it, determine 
(a) the corresponding range of current and (b) the corresponding range of ab-
sorbed power. (c) If the resistor is replaced with a 10% tolerance 1 kΩ resistor, 
repeat parts (a) and (b).

51. The following experimental data is acquired for an unmarked resistor, using a 
variable-voltage power supply and a current meter. The current meter readout 
is somewhat unstable, unfortunately, which introduces error into the measure-
ment. (a) Plot the measured current-versus-voltage characteristic. (b) Using a 
best-fit line, estimate the value of the resistance.

Voltage (V) Current (mA)

−2.0 
−1.2 

0.0
1.0
1.5

−0.89 
−0.47 

0.01
0.44
0.70

52. Utilize the fact that in the circuit of Fig. 2.39, the total power supplied by the 
voltage source must equal the total power absorbed by the two resistors to 
show that

  V   R  2     =  V  S     
R  2    _____  R  1   +  R  2  

   .
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You may assume the same current flows through each element (a requirement 
of charge conservation). 

53. For the circuit in Fig. 2.39, suppose that the resistor R2 represents a very sensi-
tive and expensive piece of electronics. To ensure that the equipment is not dam-
aged, R1 is incorporated to represent a fuse, with a rating of 5 A and resistance 
of 0.1 Ω. If the voltage source is 12 V, what is the lowest resistance that could 
be encountered as a short circuit condition for R2 before blowing the fuse?

54. For each of the circuits in Fig. 2.40, find the current I and compute the power 
absorbed by the resistor.

55. Sketch the power absorbed by a 100 Ω resistor as a function of voltage over the 
range −2 V ≤ Vresistor ≤ + 2 V.

56. You built an android that has a subcircuit containing a power supply, a tactile 
sensor, and a fuse where safe operation should keep current below 250 mA. 
You measured that your sensor is dissipating 12 W, the power supply is pro-
viding 12.2 W, and the voltage drop across the fuse is 500 mV. Is your circuit 
properly protected?

57. Using the data in Table 2.4, calculate the resistance and conductance of 50 ft of 
wire with the following sizes: AWG 2, AWG 14, and AWG 28.

Chapter-Integrating Exercises
58. To protect an expensive circuit component from being delivered too much 

power, you decide to incorporate a fast-blowing fuse into the design. Knowing 
that the circuit component is connected to 12 V, its minimum power consump-
tion is 12 W, and the maximum power it can safely dissipate is 100 W, which 
of the three available fuse ratings should you select: 1 A, 4 A, or 10 A? Explain 
your answer.

59. So-called n-type silicon has a resistivity given by ρ =   (  − q  N  D    μ  n   )     −1  , where ND 
is the volume density of phosphorus atoms (atoms/cm3), μn is the electron 
mobility (cm2/V ⋅ s), and q = −1.602 × 10−19 C is the charge of each electron. 
Conveniently, a relationship exists between mobility and ND, as shown in  
Fig. 2.41. Assume an 8-inch-diameter silicon wafer (disk) having a thickness 
of 300 μm. Design a 10 Ω resistor by specifying a phosphorus concentration 
in the range of 2 × 1015 cm−3 ≤ ND ≤ 2 × 1017 cm−3, along with a suitable 
geometry (the wafer may be cut, but not thinned).

■  FIGURE 2.40
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■  FIGURE 2.39
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60. A 250 ft long span separates a dc power supply from a lamp which draws 25 A 
of current. If 14 AWG wire is used (note that two wires are needed for a total 
of 500 ft), calculate the amount of power wasted in the wire.

61. The resistance values in Table 2.4 are calibrated for operation at 20°C. They 
may be corrected for operation at other temperatures using the relationship6

    R  2   __  R  1  
    =  234.5 +  T  2   _______ 234.5 +  T  1  

   

(6) D. G. Fink and H. W. Beaty, Standard Handbook for Electrical Engineers, 13th ed. New York: McGraw-Hill, 1993, p. 2–9.
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where T1 = reference temperature (20°C in present case)
T2 = desired operating temperature
R1 = resistance at T1

R2 = resistance at T2

A piece of equipment relies on an external wire made of 28 AWG soft copper, 
which has a resistance of 50.0 Ω at 20°C. Unfortunately, the operating envi-
ronment has changed, and it is now 110.5°F. (a) Calculate the length of the 
original wire. (b) Determine by how much the wire should be shortened so 
that it is once again 50.0 Ω.

62. Your favorite meter contains a precision (1% tolerance) 10 Ω resistor. Unfortu-
nately, the last person who borrowed this meter somehow blew the resistor, and 
it needs to be replaced. Design a suitable replacement, assuming at least 1000 
ft of each of the wire gauges listed in Table 2.4 is readily available to you.

63. If 1 mA of current is forced through a 1 mm diameter, 2.3-meter-long piece of 
hard, round, aluminum-clad steel (B415) wire, how much power is wasted as a 
result of resistive losses? If instead wire of the same dimensions but conform-
ing to B75 specifications is used, by how much will the power wasted due to 
resistive losses be reduced?

64. The network shown in Fig. 2.42 can be used to accurately model the behav-
ior of a bipolar junction transistor provided that it is operating in the forward 
active mode. The parameter β is known as the current gain. If for this device  
β = 100, and IB is determined to be 100 μA, calculate (a) IC, the current 
flowing into the collector terminal, and (b) the power dissipated by the 
base-emitter region.

■  FIGURE 2.42 DC model for a bipolar junction transistor operating in forward active mode.

0.7 V

+ –

Base
Emitter

Collector

IB

IC

βIB

65. A 100 W tungsten filament light bulb functions by taking advantage of 
resistive losses in the filament, absorbing 100 joules each second of energy 
from the wall socket. How much optical energy per second do you expect it to 
produce, and does this violate the principle of energy conservation?

66. An LED operates at a current of 40 mA, with a forward voltage of 2.4 V.  
You construct the series circuit shown in Fig. 2.43 to power the LED using 
two 1.5 V batteries, each with a capacity of 2000 mAh. Determine the required 
value of the resistor and how long the circuit will operate before the batteries 
run out of energy.

67. You have found a way to directly power your wall clock (consumes 0.5 mW of 
power) using a solar cell collecting ambient room light, rather than using  
an AA battery. The solar cell and battery each provide the required voltage of 
1.5 V and the proper current for clock operation. Your solar cell has an effi-
ciency of 15% and costs $6, and each AA battery has a capacity of 1200 mAh 
and costs $1. What is the payback time (point in time where the cost of solar 
cell would match the cost for supplying batteries) for using a solar cell instead 
of batteries?

■  FIGURE 2.43

+
–1.5 V

R

LED

1.5 V +
–

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images; Circuit Board: ©Shutterstock
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INTRODUCTION
In Chap. 2 we were introduced to independent voltage and current 
sources, dependent sources, and resistors. We discovered that  
dependent sources come in four varieties and are controlled by  
either a voltage or current which exists elsewhere in the same circuit. 
Once we know the voltage across a resistor, we know its current 
(and vice versa); this is not the case for sources, however. In general, 
circuits must be analyzed to determine a complete set of voltages 
and currents. This turns out to be reasonably straightforward, and 
only two simple laws are needed in addition to Ohm’s law. These 
new laws are Kirchhoff’s current law (KCL) and Kirchhoff’s voltage 
law (KVL), and they are simply restatements of charge and energy 
conservation, respectively. They apply to any circuit we will ever 
encounter, although in later chapters we will learn more efficient 
techniques for specific types of situations.

3.1 • NODES, PATHS, LOOPS, AND BRANCHES
Let’s focus our attention on the current–voltage relationships in 
simple networks of two or more circuit elements. The elements 
will be connected by wires (sometimes referred to as “leads”), 
which have zero resistance. Since the network then appears as a 
number of simple elements and a set of connecting leads, it is 
called a lumped-parameter network. A more difficult analysis 
problem arises when we are faced with a distributed-parameter 
network, which contains an essentially infinite number of vanish-
ingly small elements. We will concentrate on lumped-parameter 
networks in this text.

Voltage and  
Current Laws3

KEY CONCEPTS

Circuit Terms: Node, Path, 
Loop, and Branch

Kirchhoff’s Current Law (KCL)

Kirchhoff’s Voltage Law (KVL)

Analysis of Basic Series and 
Parallel Circuits

Series and Parallel  
Connected Sources

Series and Parallel Resistor 
Combinations

Voltage and Current Division

Ground Connections
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A point at which two or more elements have a common connection is 
called a node. For example, Fig. 3.1a shows a circuit containing three nodes. 
Sometimes networks are drawn so as to trap an unwary student into believ-
ing that there are more nodes present than is actually the case. This occurs 
when a node, such as node 1 in Fig. 3.1a, is shown as two separate junctions 
connected by a (zero-resistance) conductor, as in Fig. 3.1b. However, all 
that has been done is to spread the common point out into a common 
 zero-resistance line. Thus, we must necessarily consider all of the perfectly 
conducting leads or portions of leads attached to the node as part of the 
node. Note also that every element has a node at each of its ends.

Suppose that we start at one node in a network and move through a sim-
ple element to the node at the other end. We then continue from that node 
through a different element to the next node, and continue this movement 
until we have gone through as many elements as we wish. If no node was 
encountered more than once, then the set of nodes and elements that we 
have passed through is defined as a path. If the node at which we started is 
the same as the node on which we ended, then the path is, by definition, a 
closed path or a loop.

For example, in Fig. 3.1a, if we move from node 2 through the current 
source to node 1, and then through the upper right resistor to node 3, we 
have established a path; since we have not continued on to node 2 again, 
we have not made a loop. If we proceeded from node 2 through the current 
source to node 1, down through the left resistor to node 2, and then up 
through the central resistor to node 1 again, we do not have a path, since a 
node (actually two nodes) was encountered more than once; we also do not 
have a loop, because a loop must be a path.

Another term whose use will prove convenient is branch. We define a 
branch as a single path in a network, composed of one simple element and 
the node at each end of that element. Thus, a path is a particular collection 
of branches. The circuit shown in Fig. 3.1a and b contains five branches.

3.2 • KIRCHHOFF’S CURRENT LAW
We are now ready to consider the first of the two laws named for Gus-
tav Robert Kirchhoff (two h’s and two f ’s), a German university professor 
who was born about the time Ohm was doing his experimental work. This 
axiomatic law is called Kirchhoff’s current law (abbreviated KCL), and it 
simply states that

The algebraic sum of the currents entering any node is zero.

This law represents a mathematical statement of the fact that charge can-
not accumulate at a node. A node is not a circuit element, and it certainly 
cannot store, destroy, or generate charge. Hence, the currents must sum to 
zero. A hydraulic analogy is sometimes useful here: for example, consider 
three water pipes joined in the shape of a Y. We define three water currents 
as flowing into each of the three pipes. If we insist that water is always 
flowing, then obviously we cannot have three positive water currents, or 
the pipes would burst. This is a result of our defining currents independent 

In circuits assembled in the real world, the wires 

will always have finite resistance. However, this 

resistance is typically so small compared to other 

 resistances in the circuit that we can neglect it 

without introducing significant error. In our idealized 

circuits, we will therefore assume “zero resistance” 

wires from now on unless told otherwise.

(a)

1

2

3

(b)

1

2

3

(a)

1

2

3

(b)

1

2

3

■  FIGURE 3.1 (a) A circuit containing three nodes 
and five branches. (b) node 1 is redrawn to look like 
two nodes; it is still just one node, however.
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of the direction that water is actually flowing. Therefore, the value of either 
one or two of the currents as defined must be negative.

Consider the node shown in Fig. 3.2. The algebraic sum of the four cur-
rents entering the node must be zero:

  i  A   +  i  B   + (−  i  C   ) + (−  i  D   ) = 0 

However, the law could be equally well applied to the algebraic sum of 
the currents leaving the node:

 (−  i  A   ) + (−  i  B   ) +  i  C   +  i  D   = 0 

We might also decide to equate the sum of the currents directed into the 
node to the sum of those directed out of the node:

  i  A   +  i  B   =  i  C   +  i  D   

which simply states that the sum of the currents going in must equal the sum 
of the currents going out.

■  FIGURE 3.2 example node to illustrate the 
application of Kirchhoff’s current law.

iC

iBiA

iD

EXAMPLE 3.1

■  FIGURE 3.3 (a) Simple circuit for which the 
current through resistor R3 is desired. note that the 
connection between R1, R2, and R3 is drawn to look 
like two nodes, but is really only one node. (b) The 
current through resistor R1 is labeled so that a KCL 
equation can be written. (c) The currents into the top 
node of R3 are redrawn for clarity.

For the circuit in Fig. 3.3a, compute the current through resistor R3 
if it is known that the voltage source supplies a current of 3 A.

▶ Identify the goal of the problem.
The current through resistor R3, labeled as i on the circuit diagram.

▶ Collect the known information.
The node at the top of R3 is connected to four branches.

Two of these currents are clearly labeled: 2 A flows out of the node 
into R2, and 5 A flows into the node from the current source. We are 
told the current out of the 10 V source is 3 A.

▶ Devise a plan.
If we label the current through R1 (Fig. 3.3b), we may write a KCL 
equation at the top node of resistors R2 and R3.

▶ Construct an appropriate set of equations.
Summing the currents flowing into the node:

  i   R  1     − 2 − i + 5 = 0 

The currents flowing into this node are shown in the expanded dia-
gram of Fig. 3.3c for clarity.

▶ Determine if additional information is required.
We have one equation but two unknowns, which means we need to 
obtain an additional equation. At this point, the fact that we know the 
10 V source is supplying 3 A comes in handy: KCL shows us that this 
is also the current iR1.

▶ Attempt a solution.
Substituting, we find that i = 3 − 2 + 5 = 6 A.

▶ Verify the solution. Is it reasonable or expected?
It is always worth the effort to recheck our work. Also, we can attempt 
to evaluate whether at least the magnitude of the solution is reasonable.

(a)

+
– R2 R3

R1

5 A10 V

i2 A

(c)

R2 R3

R1

5 A

5 A

i2 A

iR1 (iR1 – 2 A)

(b)

+
– R2 R3

R1

5 A10 V

i2 A

iR1

(a)

+
– R2 R3

R1

5 A10 V

i2 A

(c)

R2 R3

R1

5 A

5 A

i2 A

iR1 (iR1 – 2 A)

(b)

+
– R2 R3

R1

5 A10 V

i2 A

iR1

(a)

+
– R2 R3

R1

5 A10 V

i2 A

(c)

R2 R3

R1

5 A

5 A

i2 A

iR1 (iR1 – 2 A)

(b)

+
– R2 R3

R1

5 A10 V

i2 A

iR1

(Continued on next page)
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A compact expression for Kirchhoff’s current law is

    ∑ 
n=1

  
N
     i  n   = 0  [1]

which is just a shorthand statement for

   i  1   +  i  2   +  i  3   + ⋯ +  i  N   = 0  [2]

When Eq. [1] or Eq. [2] is used, it is understood that the N current ar-
rows are either all directed toward the node in question or are all directed 
away from it.

3.3 • KIRCHHOFF’S VOLTAGE LAW
Current is related to the charge flowing through a circuit element, whereas 
voltage is a measure of potential energy difference across the element. 
These are often confused early on as a student learns circuit analysis, for 
some reason. There is a single unique value for any voltage in circuit the-
ory. Thus, the energy required to move a charge from point A to point B in 
a circuit must have a value independent of the path chosen to get from A to 
B (there is often more than one such path). We may assert this fact through 
Kirchhoff’s voltage law (abbreviated KVL):

The algebraic sum of the voltages around any closed path is zero.

In Fig. 3.5, if we carry a charge of 1 C from A to B through element 1, 
the reference polarity signs for v1 show that we do v1 joules of work.1 Now 

In this case, we have two sources—one supplies 5 A, and the other sup-
plies 3 A. There are no other sources, independent or dependent. Thus, 
we would not expect to find any current in the circuit in excess of 8 A.

PRACTICE 
●

3.1 (a) Count the number of branches and nodes in the circuit in 
Fig. 3.4. (b) If ix = 3 A and the 18 V source delivers 8 A of current, 
what is the value of RA? (Hint: You need Ohm’s law as well as KCL.) 

+
–

+
–

vxRA

13 A

ix

5 Ω

6 Ω18 V

■ FIGURE 3.4

Ans: 5 branches, 3 nodes, 1 Ω.

(1) Note that we chose a 1 C charge for the sake of numerical convenience: therefore, we related  
(1 C)(v1 J/C) = v1 joules of work.

■  FIGURE 3.5 The potential difference between 
points A and B is independent of the path selected.

v1

+

–
v3

–

+

v2+ –

A C

B

1

2

3
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if, instead, we choose to proceed from A to B via node C, then we expend 
( v  2   −  v  3   )  joules of energy. The work done, however, is independent of the 
path in a circuit, and so any route must lead to the same value for the volt-
age. In other words,

   v  1   =  v  2   −  v  3    [3]

It follows that if we trace out a closed path, the algebraic sum of the 
voltages across the individual elements around it must be zero. Thus, we 
may write

  v  1   +  v  2   +  v  3   + ··· +  v  N   = 0 

or, more compactly,

    ∑ 
n=1

  
N
     v  n   = 0  [4]

We can apply KVL to a circuit in several different ways. One method 
that leads to fewer equation-writing errors than others consists of moving 
mentally around the closed path in a clockwise direction and writing down 
directly the voltage of each element whose (+) terminal is entered, and writ-
ing down the negative of every voltage first met at the (−) sign. Applying 
this to the single loop of Fig. 3.5, we have

 −  v  1   +  v  2   −  v  3   = 0 

which agrees with our previous result, Eq. [3].

EXAMPLE 3.2

■  FIGURE 3.6 A simple circuit with two voltage 
sources and a single resistor.

In the circuit of Fig. 3.6, find vx and ix.

We know the voltage across two of the three elements in the circuit. 
Thus, KVL can be applied immediately to obtain vx.

Beginning with the bottom node of the 5 V source, we apply KVL 
clockwise around the loop:

 − 5 − 7 +  v  x   = 0 

so vx = 12 V.
KCL can be applied to this circuit, but only tells us that the same 

current (ix) flows through all three elements. We do know the voltage 
across the 100 Ω resistor now, however.

Invoking Ohm’s law,

  i  x   =    v  x   ___ 100   =   12 ___ 100   A = 120  mA 

PRACTICE 
●

3.2 Determine ix and vx in the circuit of Fig. 3.7. 

Ans: vx = −4 V; ix = −400 mA.

+
–

+–

5 V

7 V

100 Ω vx

+

–
ix

■ FIGURE 3.7

+
–

+ –

3 V

1 V

10 Ω vx

+

–
ix
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EXAMPLE 3.3
In the circuit of Fig. 3.8 there are eight circuit elements. Calcu-
late vR2 (the voltage across R2) and the voltage labeled vx.

The best approach for finding vR2 is to look for a loop to which we can 
apply KVL. There are several options, but the leftmost loop offers a 
straightforward route; two of the voltages are clearly specified. Thus, we 
find vR2 by writing a KVL equation around the loop on the left, starting at 
point c:

 4 − 36 +  v  R2   = 0 
which leads to vR2 = 32 V.

+
–

+–

4 V

–

+

vx

+

–

vR2

–

+

vR1

+

–

v2 +–

+ –12 V

+ –14 V

R1

R2

vs1

bc

a
36 V

■ FIGURE 3.8 A circuit with eight elements for which we desire vR2 and vx.

To find vx, we might think of this as the (algebraic) sum of the 
voltages across the three elements on the right. However, since we do 
not have values for these quantities, such an approach would not lead to 
a numerical answer. Instead, we apply KVL beginning at point c, 
moving up and across the top to a, through vx to b, and through the 
conducting lead to the starting point:

 +4 − 36 + 12 + 14 +  v  x   = 0 
so that

  v  x   = 6 V 
An alternative approach: Knowing vR2, we might have taken the short-
cut through R2:

 − 32 + 12 + 14 +  v  x   = 0 
yielding vx = 6 V once again.

PRACTICE 
●

3.3 For the circuit of Fig. 3.9, if vR1 = 1 V, determine (a) vR2 and (b) v2.

+
–

+–

8 V

–

+

vx

+

–

vR2

–

+

vR1

+

–

v2 +–

+ –7 V

– +9 V12 V

R1

R2

3 V

bc

a

■ FIGURE 3.9

Ans: (a) 4 V; (b) −8 V.

Points b and c, as well as the wire between them, are 

all part of the same node.
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As we have just seen, the key to correctly analyzing a circuit is to first 
methodically label all voltages and currents on the diagram. This way, care-
fully written KCL or KVL equations will yield correct relationships, and 
Ohm’s law can be applied as necessary if more unknowns than equations 
are obtained initially. 

EXAMPLE 3.4
Determine vx in the circuit of Fig. 3.10a.

■  FIGURE 3.10 (a) A circuit for which vx is to be determined using KVL.  
(b) Circuit with voltages and currents labeled.

We begin by labeling voltages and currents on the rest of the elements 
in the circuit (Fig. 3.10b). Note that vx appears across the 2 Ω resistor 
and the current source ix as well.

Plan A: If we can obtain the current through the 2 Ω resistor, Ohm’s 
law will yield vx. Writing the appropriate KCL equation, we see that

  i  2   =  i  4   +  i  x   

Unfortunately, we do not have values for any of these three quantities. 
Our solution has (temporarily) stalled. Fortunately we have a plan B.

Plan B: Since we were given the current flowing from the 60 V 
source, perhaps we should consider starting from that side of the 
circuit. Instead of finding vx using i2, it might be possible to find vx 
directly using KVL. We can write the following KVL equations:

 − 60 +  v  8   +  v  10   = 0 

and

  −  v  10   +  v  4   +  v  x   = 0  [5]

This is progress: we now have two equations in four unknowns, an 
improvement over one equation in which all terms were unknown.  
In fact, we know that v8 = 40 V through Ohm’s law, as we were told

(Continued on next page)

+
–

vx

(a)

4 Ω

8 Ω

2 Ω10 Ω60 V ix

+

–

5 A

+
–

vx

(b)

4 Ω8 Ω

2 Ω10 Ω60 V ix

+

–

5 A

v10

+

–

v4+ –v8+ –

i4

i10 i2

+
–

vx

(a)

4 Ω

8 Ω

2 Ω10 Ω60 V ix

+

–

5 A

+
–

vx

(b)

4 Ω8 Ω

2 Ω10 Ω60 V ix

+

–

5 A

v10

+

–

v4+ –v8+ –

i4

i10 i2
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3.4 • THE SINGLE-LOOP CIRCUIT
We have seen that repeated use of KCL and KVL in conjunction with Ohm’s 
law can be applied to nontrivial circuits containing several loops and a num-
ber of different elements. Before proceeding further, this is a good time to 
focus on the concept of series (and, in the next section, parallel) circuits, as 
they form the basis of any network we will encounter in the future.

All of the elements in a circuit that carry the same current are said to be 
connected in series. As an example, consider the circuit of Fig. 3.10. The 60 V 
source is in series with the 8 Ω resistor; they carry the same 5 A current. How-
ever, the 8 Ω resistor is not in series with the 4 Ω resistor; they carry different 
currents. Note that elements may carry equal currents and not be in series; two 
100 W light bulbs in neighboring houses may very well carry equal currents, but 
they certainly do not carry the same current and are not connected in series.

Figure 3.12a shows a simple circuit consisting of two batteries and two 
resistors. Each terminal, connecting lead, and solder glob is assumed to have 
zero resistance; together they constitute an individual node of the circuit di-
agram in Fig. 3.12b. Both batteries are modeled by ideal voltage sources; 
any internal resistances they may have are assumed to be small enough to 
neglect. The two resistors are assumed to be ideal (linear) resistors.

We seek the current through each element, the voltage across each ele-
ment, and the power absorbed by each element. Our first step in the anal-
ysis is the assumption of reference directions for the unknown currents. 
Arbitrarily, let us select a clockwise current i, which flows out of the upper 
terminal of the voltage source on the left. This choice is indicated by an 

that 5 A flows through the 8 Ω resistor. Thus, v10 = 0 + 60 − 40 = 20 V, 
so Eq. [5] reduces to

vx = 20 − v4

If we can determine v4, the problem is solved.
The best route to finding a numerical value for the voltage v4 in this 

case is to employ Ohm’s law, which requires a value for i4. From KCL, 
we see that

  i  4   = 5 −  i  10   = 5 −    v  10   __ 10   = 5 −   20 __ 10   = 3 

which yields v4 = (4)(3) = 12 V and hence vx = 20 − 12 = 8 V.

PRACTICE 
●

3.4 Determine vx in the circuit of Fig. 3.11. 

+
–

vx

2 Ω

8 Ω

2 Ω10 Ω30 V ix

+

–

2 A

■ FIGURE 3.11

Ans: vx = 12.8 V.

■  FIGURE 3.12 (a) A single-loop circuit with four 
elements. (b) The circuit model with source voltages 
and resistance values given. (c) Current and voltage 
reference signs have been added to the circuit.
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–

+
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+
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–
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+
–

+
–

+ –
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(b)

R1
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i

vR2

+

–
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i

ii

+
–

+ –

vs1

vs2

(c)

R1
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(a)

+
–

+
–

+ –

vs1

vs2
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R2

i

vR2
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–
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ii

+
–

+ –
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arrow labeled i at that point in the circuit, as shown in Fig. 3.12c. A trivial 
application of Kirchhoff’s current law assures us that this same current must 
also flow through every other element in the circuit; we emphasize this fact 
this one time by placing several other current symbols about the circuit.

Our second step in the analysis is a choice of the voltage reference for each 
of the two resistors. The passive sign convention requires that the resistor cur-
rent and voltage variables be defined so that the current enters the terminal at 
which the positive voltage reference is located. Since we already (arbitrarily) 
selected the current direction,   v  R1    and   v  R2    are defined as in Fig. 3.12c.

The third step is the application of Kirchhoff’s voltage law to the only 
closed path. Let us decide to move around the circuit in the clockwise di-
rection, beginning at the lower left corner, and to write down directly every 
voltage first met at its positive reference, and to write down the negative of 
every voltage encountered at the negative terminal. Thus,

  −  v  s1   +  v  R1   +  v  s2   +  v  R2   = 0  [6]

We then apply Ohm’s law to the resistive elements:

  v  R1   =  R  1   i    and      v  R2   =  R  2   i 

Substituting into Eq. [6] yields

 −  v  s1   +  R  1   i +  v  s2   +  R  2   i = 0 

Since i is the only unknown, we find that

 i =    v  s1   −  v  s2   _____  R  1   +  R  2  
   

The voltage or power associated with any element may now be obtained by 
applying v = Ri, p = vi , or p = i2R.

PRACTICE 
●

3.5 In the circuit of Fig. 3.12b, vs1 = 120 V, vs2 = 30 V, R1 = 30 Ω, and 
R2 = 15 Ω. Compute the power absorbed by each element. 

Ans: p120V = −240 W; p30V = +60 W; p30Ω = 120 W; p15Ω = 60 W.

EXAMPLE 3.5
Compute the power absorbed in each element for the circuit shown 
in Fig. 3.13a.

2vA

30 Ω

15 Ω

+ –

120 V
+

–
vA

–

+

(a) (b)

i
2vA

30 Ω

15 Ω

v30+
+

–
–

120 V
+

–

vA

–

+

■  FIGURE 3.13 (a) A single-loop circuit containing a dependent source. (b) The current i and 
voltage v30 are assigned.

(Continued on next page)
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We first assign a reference direction for the current i and a reference 
polarity for the voltage   v  30    as shown in Fig. 3.13b. There is no need to 
assign a voltage to the 15 Ω resistor, since the controlling voltage   v  A    for 
the dependent source is already available. (It is worth noting, however, 
that the reference signs for   v  A    are reversed from those we would have 
assigned based on the passive sign convention.)

This circuit contains a dependent voltage source, the value of which 
remains unknown until we determine   v  A   . However, its algebraic value  2  
v  A    can be used in the same fashion as if a numerical value were avail-
able. Thus, applying KVL around the loop:

  − 120 +  v  30   + 2  v  A   −  v  A   = 0  [7]

Using Ohm’s law to introduce the known resistor values:

  v  30   = 30i    and      v  A   = − 15i 

Note that the negative sign is required since i flows into the negative 
terminal of vA.

Substituting into Eq. [7] yields

 − 120 + 30i − 30i + 15i = 0 

and so we find that

 i = 8 A 

Computing the power absorbed by each element:

 p120V = (120)(− 8) = − 960 W
 p30Ω = (8)2(30) = 1920 W
 pdep = (2 vA)(8) = 2[(− 15)(8)](8)
  = − 1920 W
 p15Ω = (8)2(15) = 960 W

PRACTICE 
●

3.6 In the circuit of Fig. 3.14, find the power absorbed by each of the 
five elements in the circuit.

Ans: (CW from left) 0.768 W; 1.92 W; 0.2048 W; 0.1792 W; −3.072 W.
■  FIGURE 3.14 A simple loop circuit.

+–

12 V

30 Ω

8 Ω

7 Ω
+
–

vx

+

–
4vx

In Example 3.5 and Practice Problem 3.6, we were asked to compute the 
power absorbed by each element of a circuit. It is difficult to think of a 
situation, however, in which all of the absorbed power quantities of a 
circuit would be positive, for the simple reason that the energy must 
come from somewhere. Thus, from simple conservation of energy, we 
expect that the sum of the absorbed power for each element of a circuit 
should be zero. In other words, at least one of the quantities should be 
negative (neglecting the trivial case where the circuit is not operating). 
Stated another way, the sum of the supplied power for each element 
should be zero. More pragmatically, the sum of the absorbed power 
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equals the sum of the supplied power, which seems reasonable enough 
at face value.

Let’s test this with the circuit of Fig. 3.13 from Example 3.5, which con-
sists of two sources (one dependent and one independent) and two resistors. 
Adding the power absorbed by each element, we find

  ∑ 
all elements

     p  absorbed   = − 960 + 1920 − 1920 + 960 = 0

In reality (our indication is the sign associated with the absorbed power) 
the 120 V source supplies +960 W, and the dependent source supplies 
+1920 W. Thus, the sources supply a total of 960 + 1920 = 2880 W. The 
resistors are expected to absorb positive power, which in this case sums to a 
total of 1920 + 960 = 2880 W. Thus, if we take into account each element 
of the circuit,

 ∑  p  
absorbed

   = ∑  p  
supplied

   

as we expect.
Turning our attention to Practice Problem 3.6, the solution to which the 

reader might want to verify, we see that the absorbed powers sum to 0.768 
+ 1.92 + 0.2048 + 0.1792 − 3.072 = 0. Interestingly enough, the 12 V inde-
pendent voltage source is absorbing +1.92 W, which means it is dissipating 
power, not supplying it. Instead, the dependent voltage source appears to 
be supplying all the power in this particular circuit. Is such a thing possi-
ble? We usually expect a source to supply positive power, but since we are 
employing idealized sources in our circuits, it is in fact possible to have a 
net power flow into any source. If the circuit is changed in some way, the 
same source might then be found to supply positive power. The result is not 
known until a circuit analysis has been completed.

3.5 • THE SINGLE-NODE-PAIR CIRCUIT
The companion of the single-loop circuit discussed in Sec. 3.4 is the single-
node-pair circuit, in which any number of simple elements are connected 
between the same pair of nodes. An example of such a circuit is shown in 
Fig. 3.15a. KVL forces us to recognize that the voltage across each branch 
is the same as that across any other branch. Elements in a circuit having a 
common voltage across them are said to be connected in parallel.

EXAMPLE 3.6
Find the voltage, current, and power associated with each element 
in the circuit of Fig. 3.15a.

We first define a voltage v and arbitrarily select its polarity as 
shown in Fig. 3.15b. Two currents, flowing in the resistors, are 
selected in conformance with the passive sign convention, as shown 
in Fig. 3.15b.

(Continued on next page)
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(a)

Ω120 A 30 AR1 R2

(b)

120 A 30 AR1 R2v

+

– i1 i2

1
15Ω1

30 Ω1
15Ω1

30

■  FIGURE 3.15 (a) A single-node-pair circuit. (b) A voltage and two currents are assigned.

Determining either current   i  1    or   i  2    will enable us to obtain a value 
for v. Thus, our next step is to apply KCL to either of the two nodes in 
the circuit. Equating the algebraic sum of the currents leaving the upper 
node to zero, we find:

 − 120 +  i  1   + 30 +  i  2   = 0 

Next, writing both currents in terms of the voltage v using Ohm’s 
law,

  i  1   = 30v    and      i  2   = 15v 

we obtain

 − 120 + 30v + 30 + 15v = 0 

Solving this equation for v results in

 v = 2 V 

and invoking Ohm’s law then gives

  i  1   = 60 A    and      i  2   = 30 A 

The absorbed power in each element can now be computed. In the 
two resistors,

  p  R1   = 30  (2 )   2  = 120 W    and      p  R2   = 15  (2 )   2  = 60 W 

and for the two sources,

  p  120A   = 120(− 2 ) = − 240 W    and      p  30A   = 30(2 ) = 60 W 

Since the 120 A source absorbs negative 240 W, it is actually supply-
ing power to the other elements in the circuit. In a similar fashion, 
we find that the 30 A source is actually absorbing power rather than 
supplying it.

PRACTICE 
●

3.7 Determine v in the circuit of Fig. 3.16. 

5 A 6 A1 A10 Ω 10 Ωv

+

–

■  FIGURE 3.16

Ans: 50 V.
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EXAMPLE 3.7
Determine the value of v and the power supplied by the 
 independent current source in Fig. 3.17.

■  FIGURE 3.17 A voltage v and a current i6 are assigned in a 
single-node-pair circuit containing a dependent source.

2 kΩ2ix6 kΩ 24 mAv

+

–

ix

i6

By KCL, the sum of the currents leaving the upper node must be zero, 
so that

  i  6   − 2  i  x   − 0.024 −  i  x   = 0 

Again, note that the value of the dependent source (2ix) is treated the 
same as any other current would be, even though its exact value is not 
known until the circuit has been analyzed.

We next apply Ohm’s law to each resistor:

  i  6   =   v ____ 6000       and      i  x   =   − v ____ 2000   

Therefore,

   υ ____ 6000   − 2  (    − υ _ 2000   )    − 0.024 −   (    − υ _ 2000   )    = 0 

and so v = (600)(0.024) = 14.4 V.
Any other information we may want to find for this circuit is now 

easily obtained, usually in a single step. For example, the power supplied 
by the independent source is p24 = 14.4(0.024) = 0.3456 W (345.6 mW).

PRACTICE 
●

3.8 For the single-node-pair circuit of Fig. 3.18, find iA, iB, and iC. 

2 A0.1vx 9 Ω18 Ω5.6 A vx

+

–

iBiA iC

■  FIGURE 3.18

Ans: 3 A; −5.4 A; 6 A.

3.6 • SERIES AND PARALLEL CONNECTED SOURCES
It turns out that some of the equation writing that we have been doing for se-
ries and parallel circuits can be avoided by combining sources. Note, how-
ever, that all the current, voltage, and power relationships in the remainder 
of the circuit will be unchanged. For example, several voltage sources in 
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series may be replaced by an equivalent voltage source having a voltage 
equal to the algebraic sum of the individual sources (Fig. 3.19a). Parallel 
current sources may also be combined by algebraically adding the individ-
ual currents, and the order of the parallel elements may be rearranged as 
desired (Fig. 3.19b).

■  FIGURE 3.19 (a) Series-connected voltage sources can be replaced by a single source. (b) Parallel current 
sources can be replaced by a single source.

=

(a)

v1

v2
+
– v1 + v2 – v3

v3

+
–

+
–

+
–

=

(b)

i1 i2 i3 i1 – i2 + i3

EXAMPLE 3.8
Determine the current i in the circuit of Fig. 3.20a by first com-
bining the sources into a single equivalent voltage source.

To be able to combine the voltage sources, they must be in series. Since 
the same current (i) flows through each, this condition is satisfied.

Starting from the bottom left-hand corner and proceeding clockwise,

 − 3 − 9 − 5 + 1 = − 16 V 

so we may replace the four voltage sources with a single 16 V source 
having its negative reference as shown in Fig. 3.20b.

KVL combined with Ohm’s law then yields

 − 16 + 100i + 220i = 0 

or

 i =   16 ___ 320   = 50 mA 

We should note that the circuit in Fig. 3.20c is also equivalent, a fact 
easily verified by computing i.

■  FIGURE 3.20

(a)

+
–

+
–

9 V

5 V

1 V

3 V

–
+

100 Ω

220 Ω
(b)

+
–16 V

100 Ω

(c)

–
+ 16 V

100 Ω

220 Ω 220 Ω
+–

iii
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PRACTICE 
●

3.9 Determine the current i in the circuit of Fig. 3.21 after first replacing 
the four sources with a single equivalent source. 

+
–4 V

3 V

5 V

–
+

1 V
– +

–
+

47 Ω

7 Ω

i

■  FIGURE 3.21

Ans: −54 A.

EXAMPLE 3.9
Determine the voltage v in the circuit of Fig. 3.22a by first combin-
ing the sources into a single equivalent current source.

The sources may be combined if the same voltage appears across each 
one, which we can easily verify is the case. Thus, we create a new 
source, arrow pointing upward into the top node, by adding the currents 
that flow into that node:

 2.5 − 2.5 − 3 = − 3 A 

One equivalent circuit is shown in Fig. 3.22b.
KCL then allows us to write

 − 3 +   v _ 5   +   v _ 5   = 0 

Solving, we find v = 7.5 V.
Another equivalent circuit is shown in Fig. 3.22c.

5 Ω 5 Ωv

+

–
2.5 A 2.5 A 3 A

(a)

5 Ω 5 Ωv

+

–
3 A

(c)

5 Ω 5 Ωv

+

–
–3 A

(b)

5 Ω 5 Ωv

+

–
2.5 A 2.5 A 3 A

(a)

5 Ω 5 Ωv

+

–
3 A

(c)

5 Ω 5 Ωv

+

–
–3 A

(b)

■  FIGURE 3.22

(Continued on next page)
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To conclude the discussion of parallel and series source combinations, 
we should consider the parallel combination of two voltage sources and the 
series combination of two current sources. For instance, what is the equiv-
alent of a 5 V source in parallel with a 10 V source? By the definition of a 
voltage source, the voltage across the source cannot change; by Kirchhoff’s 
voltage law, then, 5 equals 10 and we have hypothesized a physical impossi-
bility. Thus, ideal voltage sources in parallel are permissible only when each 
has the same terminal voltage at every instant. In a similar way, two current 
sources may not be placed in series unless each has the same current, includ-
ing sign, for every instant of time.

PRACTICE 
●

3.10 Determine the voltage v in the circuit of Fig. 3.23 after first replac-
ing the three sources with a single equivalent source.

10 Ω10 Ω v

+

–
5 A 6 A1 A

■  FIGURE 3.23

Ans: 50 V.

EXAMPLE 3.10
Determine which of the circuits of Fig. 3.24 are valid.

The circuit of Fig. 3.24a consists of two voltage sources in parallel. 
The value of each source is different, so this circuit violates KVL. For 
example, if a resistor is placed in parallel with the 5 V source, it is also 
in parallel with the 10 V source. The actual voltage across it is therefore 
ambiguous, and clearly the circuit cannot be constructed as indicated. 
If we attempt to build such a circuit in real life, we will find it impos-
sible to locate “ideal” voltage sources—all real-world sources have an 
internal resistance. The presence of such resistance allows a voltage 
difference between the two real sources. Along these lines, the circuit 
of Fig. 3.24b is perfectly valid.

+
–5 V +

–10 V

(a)

+
–

R

2 V +
–14 V

(b)

R

1 A

1 A

(c)

■  FIGURE 3.24 (a) to (c) examples of circuits with multiple sources, some of which violate 
Kirchhoff’s laws.
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3.7 • RESISTORS IN SERIES AND PARALLEL
It is often possible to replace relatively complicated resistor combi-
nations with a single equivalent resistor. This is useful when we are 
not specifically interested in the current, voltage, or power associated 
with any of the individual resistors in the combinations. All the current, 
voltage, and power relationships in the remainder of the circuit will be 
unchanged.

Consider the series combination of N resistors shown in Fig. 3.26a. We 
want to simplify the circuit by replacing the N resistors with a single resistor 
Req so that the remainder of the circuit, in this case only the voltage source, 
does not realize that any change has been made. The current, voltage, and 
power of the source must be the same before and after the replacement.

First, apply KVL:

  v  s   =  v  1   +  v  2   + ⋯ + v  N   

and then Ohm’s law:

  v  s   =  R  1   i +  R  2   i + ⋯ +  R  N   i = ( R  1   +  R  2   + ⋯ +  R  N   ) i 

Now compare this result with the simple equation applying to the equiv-
alent circuit shown in Fig. 3.26b:

  v  s   =  R  eq   i 

Helpful Tip: Inspection of the KVL equation for any  

series circuit will show that the order in which elements 

are placed in such a circuit makes no difference.

The circuit of Fig. 3.24c violates KCL: it is unclear what current 
actually flows through the resistor R.

PRACTICE 
●

3.11 Determine whether the circuit of Fig. 3.25 violates either of 
 Kirchhoff’s laws. 

R5 A 3 A

■  FIGURE 3.25

Ans: No. If the resistor were removed, however, the resulting circuit would.

■  FIGURE 3.26 (a) Series combination of N resistors. (b) electrically equivalent circuit.

v1+ – v2+ – vN+ –

(a)

R1 R2 RN

vs
++
––

i

(b)

Reqvs
+
–

i
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Thus, the value of the equivalent resistance for N series resistors is

    R  eq   =  R  1   +  R  2   + ⋅ ⋅ ⋅ +  R  N     [8]

We are therefore able to replace a two-terminal network consisting of N 
series resistors with a single two-terminal element Req that has the same v–i 
relationship.

Of course, we might be interested in the current, voltage, or power of 
one of the original elements. For example, the voltage of a dependent volt-
age source may depend upon the voltage across   R  3   . Once   R  3    is combined 
with several series resistors to form an equivalent resistance, then it is gone 
and the voltage across it cannot be determined until   R  3    is identified by re-
moving it from the combination. In that case, it would have been better to 
look ahead and not make   R  3    a part of the combination initially.

PRACTICE 
●

3.12 Determine a single-value equivalent resistance for the network 
shown in Fig. 3.27, as seen between the terminals marked (a) a and b, 
with c unconnected; (b) a and c, with b unconnected. 

7 Ω2 Ω
a c

b
1 Ω1 Ω

5 Ω

■  FIGURE 3.27

Ans: 16 Ω; 14 Ω.

EXAMPLE 3.11
Use resistance and source combinations to determine the current i 
in Fig. 3.28a and the power delivered by the 80 V source.

We first interchange the element positions in the circuit, being careful 
to preserve the proper sense of the sources, as shown in Fig. 3.28b. The 
next step is to then combine the three voltage sources into an equivalent 
90 V source, and the four resistors into an equivalent 30 Ω resistance, 
as in Fig. 3.28c. Thus, instead of writing

 − 80 + 10i − 30 + 7i + 5i + 20 + 8i = 0 

we have simply

 − 90 + 30i = 0 

and so we find that

 i = 3 A 

In order to calculate the power delivered to the circuit by the  
80 V source appearing in the given circuit, it is necessary to return to 
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Similar simplifications can be applied to parallel circuits. A circuit contain-
ing N resistors in parallel, as in Fig. 3.30a, leads to the KCL equation

  i  s   =  i  1   +  i  2   + ⋯ +  i  N   

Fig. 3.28a with the knowledge that the current is 3 A. The desired 
 power is then 80 V × 3 A = 240 W.

■  FIGURE 3.28 (a) A series circuit with several sources and resistors. (b) The 
elements are rearranged for the sake of clarity. (c) A simpler equivalent.

30 V– +

(a)

80 V +
–

+
–

i

8 Ω

10 Ω 7 Ω

20 V

5 Ω

+
–

+ –
i

80 V

10 Ω

30 V

20 V

– +

8 Ω

7 Ω

5 Ω

(b) (c)

90 V +
–

i

30 Ω

30 V– +

(a)

80 V +
–

+
–

i

8 Ω

10 Ω 7 Ω

20 V

5 Ω

+
–

+ –
i

80 V

10 Ω

30 V

20 V

– +

8 Ω

7 Ω

5 Ω

(b) (c)

90 V +
–

i

30 Ω

30 V– +

(a)

80 V +
–

+
–

i

8 Ω

10 Ω 7 Ω

20 V

5 Ω

+
–

+ –
i

80 V

10 Ω

30 V

20 V

– +

8 Ω

7 Ω

5 Ω

(b) (c)

90 V +
–

i

30 Ω

It is interesting to note that no element of the original circuit remains 
in the equivalent circuit.

PRACTICE 
●

3.13 Determine i in the circuit of Fig. 3.29. 

+
– +

–

+–
i

5 V 5 V

15 Ω5 V

5 Ω

25 Ω

■  FIGURE 3.29

Ans: −333 mA.
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or
is =    v ___ 

R1
    +    v ___ 

R2
    + ⋅ ⋅ ⋅ +    v ___ 

RN
   

=    v ___ 
Req

   

Thus,

     1 _  R  eq  
   =   1 _  R  1  

   +   1 _  R  2  
   + ⋯ +   1 _  R  N       [9]

which can be written as

  R  
eq

  −1  =  R  
1
  −1  +  R  

2
  −1  + ⋯ +  R  

N
  −1  

or, in terms of conductances, as

  G  
eq

   =  G  
1
   +  G  

2
   + ⋯ +  G  

N
   

The simplified (equivalent) circuit is shown in Fig. 3.30b.
A parallel combination is routinely indicated by the following shorthand 

notation:

   R  eq   =  R  1   |   |    R  2   |   |    R  3    

The special case of only two parallel resistors is encountered fairly often 
and is given by

Req = R1 || R2

   =    1 ____ 
  1 __ R1

   +   1 __ R2
  
   

Or, more simply,

    R  eq   =    R  1    R  2   _  R  1   +  R  2  
     [10]

The last form is worth memorizing, although it is a common error to 
attempt to generalize Eq. [10] to more than two resistors, e.g.,

  R  eq   ≠    R  1    R  2    R  3   ________  R  1   +  R  2   +  R  3  
   

A quick look at the units of this equation will immediately show that the 
expression cannot possibly be correct.

PRACTICE 
●

3.14 Determine v in the circuit of Fig. 3.31 by first combining the three 
current sources, and then the two 10 Ω resistors. 

10 Ω10 Ω v

+

–
5 A 6 A1 A

■  FIGURE 3.31

Ans: 50 V.

R2R1is RNv

+

–

i2i1 iN

(a)

...

...

is Reqv

+

–

(b)

R2R1is RNv

+

–

i2i1 iN

(a)

...

...

is Reqv

+

–

(b)

■  FIGURE 3.30 (a) A circuit with N resistors in 
parallel. (b) equivalent circuit.
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EXAMPLE 3.12
Calculate the power and voltage of the dependent source in  
Fig. 3.32a.

■  FIGURE 3.32 (a) A multinode circuit. (b) The two independent current sources are 
combined into a 2 A source, and the 15 Ω resistor in series with the two parallel 6 Ω 
resistors are replaced with a single 18 Ω resistor. (c) A simplified equivalent circuit.

4 A0.9i3

15 Ω

6 Ω 6 Ω

3 Ω6 A vx

+

–

i3

9 Ω

(a)

0.9i33 Ω 9 Ω 18 Ω

(b)

2 A v

+

–

i3

0.9i3 3 Ω2 A 6 Ωv

+

–

i3

(c)

4 A0.9i3

15 Ω

6 Ω 6 Ω

3 Ω6 A vx

+

–

i3

9 Ω

(a)

0.9i33 Ω 9 Ω 18 Ω

(b)

2 A v

+

–

i3

0.9i3 3 Ω2 A 6 Ωv

+

–

i3

(c)

4 A0.9i3

15 Ω

6 Ω 6 Ω

3 Ω6 A vx

+

–

i3

9 Ω

(a)

0.9i33 Ω 9 Ω 18 Ω

(b)

2 A v

+

–

i3

0.9i3 3 Ω2 A 6 Ωv

+

–

i3

(c)

We will seek to simplify the circuit before analyzing it, but take care 
not to include the dependent source since its voltage and power charac-
teristics are of interest.

Despite not being drawn adjacent to one another, the two indepen-
dent current sources are in fact in parallel, so we replace them with a 
2 A source.

The two 6 Ω resistors are in parallel and can be replaced with a 
single 3 Ω resistor in series with the 15 Ω resistor. Thus, the two 6 Ω 
resistors and the 15 Ω resistor are replaced by an 18 Ω resistor  
(Fig. 3.32b).

No matter how tempting, we should not combine the remaining three 
resistors; the controlling variable i3 depends on the 3 Ω resistor, and so 
that resistor must remain untouched. The only further simplification, 
then, is 9 Ω || 18 Ω = 6 Ω, as shown in Fig. 3.32c.

(Continued on next page)
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Applying KCL at the top node of Fig. 3.32c, we have

 − 0.9  i  3   − 2 +  i  3   +   v _ 6   = 0 

Employing Ohm’s law,

 υ = 3  i  3   

which allows us to compute

  i  3   =   10 __ 3   A 

Thus, the voltage across the dependent source (which is the same as 
the voltage across the 3 Ω resistor) is

 v = 3  i  3   = 10 V 

The dependent source therefore furnishes v × 0.9i3 =  
10(0.9)(10/3) = 30 W to the remainder of the circuit.

Now if we are later asked for the power dissipated in the 15 Ω  
resistor, we must return to the original circuit. This resistor is in 
series with an equivalent 3 Ω resistor; a voltage of 10 V is across 
the 18 Ω total; therefore, a current of 5/9 A flows through the  
15 Ω resistor, and the power absorbed by this element is (5/9)2(15) 
or 4.63 W.

PRACTICE 
●

3.15 For the circuit of Fig. 3.33, calculate the voltage vx. 

5 Ω

5 Ω

6 Ω 9 Ω

3 Ω3 Ω

3 Ω 3 Ω

1 A vx

+

–

i3

■  FIGURE 3.33

Ans: 2.819 V.
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Three final comments on series and parallel combinations might be 
helpful. The first is illustrated by referring to Fig. 3.34a and asking, “Are 
vs and R in series or in parallel?” The answer is “Both.” The two elements 
carry the same current and are therefore in series; they also enjoy the same 
voltage and consequently are in parallel.

The second comment is a word of caution. Circuits can be drawn in such 
a way as to make series or parallel combinations difficult to spot. In 
Fig. 3.34b, for example, the only two resistors in parallel are R2 and R3, 
while the only two in series are R1 and R8.

The final comment is simply that a simple circuit element need not be 
in series or parallel with any other simple circuit element in a circuit. For 
example,   R  4    and   R  5    in Fig. 3.34b are not in series or parallel with any other 
simple circuit element, and there are no simple circuit elements in Fig. 3.34c 
that are in series or parallel with any other simple circuit element. In other 
words, we cannot simplify that circuit further using any of the techniques 
discussed in this chapter.

3.8 • VOLTAGE AND CURRENT DIVISION
By combining resistances and sources, we found one method of shortening 
the work of analyzing a circuit. Another useful shortcut is the application 
of the ideas of voltage and current division. Voltage division is used to 
express the voltage across one of several series resistors in terms of the 

+
–

(a)

vs R

(b)

vs
+
–

R3

R2

R1

R7

R5 R4

R6R8

(c)

vs
+
–

RCRB

RA

RD RE

iB
iA

is

+
–

(a)

vs R

(b)

vs
+
–

R3

R2

R1

R7

R5 R4

R6R8

(c)

vs
+
–

RCRB

RA

RD RE

iB
iA

is

■  FIGURE 3.34 (a) These two circuit elements are both in series and in parallel.  
(b) R2 and R3 are in parallel, and R1 and R8 are in series. (c) There are no circuit 
elements either in series or in parallel with one another.
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voltage across the combination. In Fig. 3.35, the voltage across R2 is found 
via KVL and Ohm’s law:

 v =  v  1   +  v  2   = i  R  1   + i  R  2   = i( R  1   +  R  2   ) 

so

 i =   v _____  R  1   +  R  2  
   

Thus,

  v  2   = i  R  2   =   (    v _  R  1   +  R  2  
   )    R  2   

or

  v  2   =    R  2   _____  R  1   +  R  2  
   v 

and the voltage across R1 is, similarly,

  v  1   =    R  1   _____  R  1   +  R  2  
   v 

If the network of Fig. 3.35 is generalized by removing R2 and replacing 
it with the series combination of R2, R3,..., RN, then we have the general 
result for voltage division across a string of N series resistors

     v  k   =    R  k   ____________   R  1   +  R  2   + ⋯ +  R  N     v    [11]

which allows us to compute the voltage vk that appears across any arbitrarily 
selected resistor Rk of the series.

■  FIGURE 3.35 An illustration of voltage division.

i

v2

+

–

v1+ –

v

+

–

R1

R2

EXAMPLE 3.13
Calculate vx in the circuit of Fig. 3.36a.

+
–10 V

2 Ω 3 Ω

10 Ω 10 Ω

vx+ –

(a)

+
–10 V

2 Ω

(b)

3 Ω

5 Ω

vx+ –

■  FIGURE 3.36 A numerical example illustrating resistance combination and voltage division.  
(a) original circuit. (b) Simplified circuit.

We first combine the two 10 Ω resistors, replacing them with (10)(10)/
(10 + 10) = 5 Ω as shown in Fig. 3.36b. 

Note that if we allow ourselves to get too overzealous and com-
bine the 2 Ω and 3 Ω resistors, we lose the voltage vx we are trying to 
find.
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Since vx appears across the 2 Ω resistor, we proceed by simply ap-
plying voltage division to the circuit in Fig. 3.36b:

  v  x   = 10   2 _____ 2 + 3 + 5   = 2 V 

PRACTICE 
●

3.16 Use voltage division to determine vx in the circuit of Fig. 3.37. 
(Don’t let the sinusoidal source throw you.) 

i3

vx

+

–

4 Ω

6 Ω12 sin t V 3 Ω+
–

■  FIGURE 3.37

Ans: vx = 4 sin t volts

The dual2 of voltage division is current division. We are now given a 
total current supplied to several parallel resistors, as shown in the partial 
circuit of Fig. 3.38.

The current flowing through R2 is

  i  2   =   v __  R  2  
   =   i( R  1   | | R  2   ) _______  R  2  

   =   i __  R  2  
      R  1    R  2   _____  R  1   +  R  2  

   

or

   i  2   = i    R  1   _____  R  1   +  R  2  
    [12]

and, similarly,

   i  1   = i    R  2   _____  R  1   +  R  2  
    [13]

Nature has not smiled on us here, for these last two equations have a 
factor which differs subtly from the factor used with voltage division, and 
some effort is going to be needed to avoid errors. Often students look on the 
expression for voltage division as “obvious” and that for current division as 
being “different.” It helps to realize that the larger of two parallel resistors 
always carries the smaller current.

For a parallel combination of N resistors, the current through resistor 
Rk is

    i  k   = i   
  1 _  R  k  

  
 ___________  

 R  1   +  R  2   + ⋯ +   1 _  R  N    
     [14]

■  FIGURE 3.38 An illustration of current division.

i

v

+

–

R2R1

i1 i2

(2) The principle of duality is encountered often in engineering. We will consider the topic briefly in 
Chap. 7 when we compare inductors and capacitors.
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Written in terms of conductances,

  i  k   = i    G  k   __________   G  1   +  G  2   + ⋯ +  G  N     

which strongly resembles Eq. [11] for voltage division.

EXAMPLE 3.14
Write an expression for the current through the 3 Ω resistor in 
the circuit of Fig. 3.39.

The total current flowing into the 3 Ω–6 Ω combination is

  i (t) =   12 sin t _ 4 + 3 |   |  6   =   12 sin t _ 4 + 2   = 2 sin t A  

and thus the desired current is given by current division:

   i  3  (t) = (2 sin t)  (     6 _ 6 + 3   )    =   4 _ 3    sin t A  
■  FIGURE 3.39 A circuit used as an example of 

current division. The wavy line in the voltage source 
symbol indicates a sinusoidal variation with time.

i3

vx

+

–

4 Ω

6 Ω12 sin t V 3 Ω+
–

PRACTICE 
●

3.17 In the circuit of Fig. 3.40, use resistance combination methods and 
current division to find i1, i2, and v3. 

i1 i2

v3

+

–
125 Ω 50 Ω 240 Ω 20 Ω

2 Ω 40 Ω

120 mA

■  FIGURE 3.40

Ans: 100 mA; 50 mA; 0.8 V.

Unfortunately, current division is sometimes applied when it is not  
applicable. As one example, let us consider again the circuit shown in  
Fig. 3.34c, a circuit that we have already agreed contains no circuit elements 
that are in series or in parallel. Without parallel resistors, there is no way 
that current division can be applied. Even so, it can be tempting to take a 
quick look at resistors RA and RB and try to apply current division, writing 
an incorrect equation such as

  i  A   ≠  i  S     
 R  B   _____  R  A   +  R  B     

Remember, parallel resistors must be branches between the same pair of 
nodes.
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Up to now, we have been drawing circuit schematics in 
a fashion similar to that of the one shown in Fig. 3.41, 
where voltages are defined across two clearly marked 
terminals. Special care was taken to emphasize the fact 
that voltage cannot be defined at a single point—it is 
by definition the difference in potential between two 
points. However, many schematics make use of the 
convention of taking the earth as zero volts, and all 
other voltages are implicitly referenced to this poten-
tial. The concept is often referred to as earth ground, 
and  is fundamentally tied to safety regulations de-
signed to prevent fires, fatal electrical shocks, and re-
lated mayhem. The symbol for earth ground is shown 
in Fig. 3.42a.

Since earth ground is defined as zero volts, it is of-
ten convenient to use this as a common terminal in sche-
matics. The circuit of Fig. 3.41 is shown redrawn in this 
fashion in Fig. 3.43, where the earth ground symbol 
represents a common node. It is important to note that 
the two circuits are equivalent in terms of our value for 
va (4.5 V in either case) but are no longer exactly the 
same. The circuit in Fig. 3.41 is said to be “floating” in 
that it could for all practical purposes be installed on a 
circuit board of a satellite in geosynchronous orbit (or 
on its way to Pluto). The circuit in Fig. 3.43, however, 
is somehow physically connected to the ground through 
a conducting path. For this reason, there are two other 
symbols that are occasionally used to denote a common 
terminal. Figure 3.42b shows what is commonly referred 
to as signal ground; there can be (and often is) a large 

PRACTICAL APPLICATION
Not the Earth Ground from Geology

PRACTICAL APPLICATION

■  FIGURE 3.41 A simple circuit with a voltage va defined between two 
terminals. 

+
–9 V

4.7 kΩ

4.7 kΩ va

+

–

■  FIGURE 3.42 Three different symbols used to represent a ground or 
common terminal: (a) earth ground; (b) signal ground; (c) chassis ground. 

(a) (b) (c) ■  FIGURE 3.43 The circuit of fig. 3.41, redrawn using the earth ground 
symbol. The rightmost ground symbol is redundant; it is only necessary to 
label the positive terminal of va; the negative reference is then implicitly 
ground, or zero volts.

+
–9 V

4.7 kΩ

4.7 kΩ va

+

–

voltage between earth ground and any terminal tied to 
signal ground.

The fact that the common terminal of a circuit may 
or may not be connected by some low-resistance path-
way to earth ground can lead to potentially dangerous 
situations. Consider the diagram of Fig. 3.44a, which 
depicts an innocent bystander about to touch a piece of 
equipment powered by an ac outlet. The equipment has 
a conducting (i.e., metal) chassis. The common terminal 
of every circuit in the equipment has been tied together 
and electrically connected to the conducting equipment 
chassis; this terminal is often denoted using the chassis 
ground symbol of Fig. 3.42c. Unfortunately, a wiring 
fault exists, due to either poor manufacturing or perhaps 
just wear and tear. At any rate, the chassis is not tied 
to earth ground, and so there is a very large (essentially 
infinite) resistance between chassis ground and earth 
ground; as a result, the equipment is not functioning. 
A pseudo-schematic (some liberty was taken with the 
person’s equivalent resistance symbol) of the situation 
is shown in Fig. 3.44b. The resistance of the person, 
however, is not infinite, and it could be very small—
especially if not wearing rubber-soled shoes. Once the 
person taps on the equipment to see why it isn’t working 
properly . . . well, let’s just say not all stories have happy 
endings.

The fact that “ground” is not always “earth ground” 
can cause a wide range of safety and electrical noise 
problems. One example is occasionally encountered in 
older buildings, where plumbing originally consisted of 
electrically conducting metal pipes. In such buildings, 
any water pipe was often treated as a low- resistance 
path to earth ground, and therefore was used in many 
electrical connections. However, when corroded pipes 
are replaced with more modern and cost-effective 

(Continued on next page)
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nonconducting PVC piping, the low-resistance path to 
earth ground no longer exists. A related problem occurs 
when the composition of the earth varies greatly over 
a particular region. In such situations, it is possible to 
actually have two separated buildings in which the two 

“earth grounds” are not equal, and current can flow as 
a result.

Within this text, the earth ground symbol will be 
used exclusively. It is worth remembering, however, that 
not all grounds are created equal!

■  FIGURE 3.44 (a) A sketch of an innocent person about to touch an improperly grounded piece of 
equipment. It’s not going to be pretty. (b) A schematic of an equivalent circuit for the situation as it is 
about to unfold; the person has been represented by an equivalent resistance, as has the equipment. 
A resistor has been used to represent the nonhuman path to ground, which in this example is so large 
it can be assumed to be essentially infinity. The human, with no insulated gloves or shoes, represents 
a low-resistance path to (earth) ground.

(a)

Wall outlet
Requipment

Rto ground

(b)

115 V
+
–

SUMMARY AND REVIEW

We began by discussing connections of circuit elements, and introduced 
the terms node, path, loop, and branch. The next two topics could be 
considered the two most important in the entire text, namely, Kirchhoff’s 
current law (KCL) and Kirchhoff’s voltage law. These two laws allow us 
to analyze any circuit, linear or otherwise, provided we have a way of 
relating the voltage and current associated with passive elements (e.g., 
Ohm’s law for the resistor). In the case of a single-loop circuit, the ele-
ments are connected in series and hence each carries the same current. 
The single-node-pair circuit, in which elements are connected in parallel 
with one another, is characterized by a single voltage common to each 
element. Extending these concepts allowed us to develop expressions 
for series and parallel connected resistors. The final topic, that of volt-
age and current division, finds considerable use in the design of circuits 
where a specific voltage or current is required but our choice of source 
is limited.

Let’s conclude with key points of this chapter to review, highlighting 
appropriate examples.
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 Kirchhoff’s current law (KCL) states that the algebraic sum of the 
currents entering any node is zero. (Examples 3.1, 3.4)

 Kirchhoff’s voltage law (KVL) states that the algebraic sum of the 
voltages around any closed path in a circuit is zero. (Examples 3.2, 3.3)

 All elements in a circuit that carry the same current are said to be con-
nected in series. (Example 3.5)

 Elements in a circuit having a common voltage across them are said to 
be connected in parallel. (Examples 3.6, 3.7)

 Voltage sources in series can be replaced by a single source,  
provided care is taken to note the individual polarity of each source.  
(Examples 3.8, 3.10)

 Current sources in parallel can be replaced by a single source,  
provided care is taken to note the direction of each current arrow.  
(Examples 3.9, 3.10)

 A series combination of N resistors can be replaced by a single resistor 
having the value Req = R1 + R2 + · · · + RN. (Example 3.11)

 A parallel combination of N resistors can be replaced by a single resis-
tor having the value

  1 ___  R  eq  
   =   1 __  R  1  

   +   1 __  R  2  
   + . . . +   1 ___  R  N    

 (Example 3.12)
 Voltage division allows us to calculate what fraction of the total volt-

age across a series string of resistors is dropped across any one resistor 
(or group of resistors). (Example 3.13)

 Current division allows us to calculate what fraction of the total current 
into a parallel string of resistors flows through any one of the resistors. 
(Example 3.14)

READING FURTHER
A discussion of the principles of conservation of energy and conservation of 
charge, as well as Kirchhoff’s laws, can be found in

R. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on 
Physics. Reading, Mass.: Addison-Wesley, 1989, pp. 4–1, 4–7, and 25–9.

Detailed discussions of numerous aspects of grounding practices consistent with 
the 2017 National Electrical Code® can be found throughout

F. P. Hartwell, J. F. McPartland, B. McPartland, McGraw-Hill’s 
National Electrical Code 2017 Handbook, 29th ed. New York, 
McGraw-Hill, 2017.

EXERCISES

3.1  Nodes, Paths, Loops, and Branches
1. Referring to the circuit depicted in Fig. 3.45, count the number of (a) nodes; 

(b) elements; (c) branches.

2 A4 A 14 Ω

1.5 Ω 2 Ω 5 Ω

■  FIGURE 3.45 
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2. Referring to the circuit depicted in Fig. 3.46, count the number of (a) nodes; 
(b) elements; (c) branches.

  ■  FIGURE 3.46 

4 Ω 5 A2 A 4 Ω

1.5 Ω 2 Ω 5 Ω

3. For the circuit of Fig. 3.47:
(a) Count the number of nodes.
(b) In moving from A to B, have we formed a path? Have we formed a loop?
(c) In moving from C to F to G, have we formed a path? Have we formed a 

loop?
4. For the circuit of Fig. 3.47:

(a) Count the number of circuit elements.
(b) If we move from B to C to D, have we formed a path? Have we formed a 

loop?
(c) If we move from E to D to C to B, have we formed a path? Have we formed 

a loop?
5. Refer to the circuit of Fig. 3.48, and answer the following:

(a) How many distinct nodes are contained in the circuit?
(b) How many elements are contained in the circuit?
(c) How many branches does the circuit have?
(d) Determine if each of the following represents a path, a loop, both, or 

neither:
i) A to B
ii) B to D to C to E
iii) C to E to D to B to A to C
iv) C to D to B to A to C to E

3.2  Kirchhoff’s Current Law
6. A local restaurant has a neon sign constructed from 12 separate bulbs; when 

a bulb fails, it appears as an infinite resistance and cannot conduct current. In 
wiring the sign, the manufacturer offers two options (Fig. 3.49). From what 
you’ve learned about KCL, which one should the restaurant owner select? 
Explain.

■  FIGURE 3.47 

+
–

A B C F
G

E D

■  FIGURE 3.48 

CA

B E
D

■  FIGURE 3.49 

+

–

+

–
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7. Referring to the single-node diagram of Fig. 3.50, compute:
(a) iB, if iA = 1 A, iD = −2 A, iC = 3 A, and iE = 0;
(b) iE, if iA = −1 A, iB = −1 A, iC = −1 A, and iD = −1 A.

  ■  FIGURE 3.50 

iC

iE

iA
iD

iB

8. Determine the current labeled I in each of the circuits of Fig. 3.51.

9. In the circuit shown in Fig. 3.52, the resistor values are unknown, but the 2 
V source is known to be supplying a current of 7 A to the rest of the circuit. 
Calculate the current labeled i2.

  ■  FIGURE 3.52 

+
– R2 R3

R1

3 A2 V

1 Ai2

10. The circuit of Fig. 3.53 represents a system comprised of an LED sign powered 
by a combination of battery storage and three solar panels. The panels are not 
equally illuminated, so the current each supplies can vary, although the voltage 

■  FIGURE 3.51 

+
–

6 A1.5 V

7 A I

I
1 A

2 A

I6 A 9 A

(a) (b) (c)

1 Ω

1 Ω 5 Ω

■  FIGURE 3.53 

IA Isign

IB IC Ibattery

Panel

A B C Battery LED Sign

Panel Panel
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across each is forced to be the same. If IA = 4.5 A, IB = 4.3 A, and IC = 4.6 A, 
calculate the current flowing into the battery if the LED sign draws 5.1 A.

11. In the circuit depicted in Fig. 3.54,   i  x    is determined to be 1.5 A, and the 9 V 
source supplies a current of 7.6 A (that is, a current of 7.6 A leaves the positive 
reference terminal of the 9 V source). Determine the value of resistor RA.

12. For the circuit of Fig. 3.55 (which employs a model for the dc operation of 
a bipolar junction transistor biased in active region), IC is measured to be 
1.5 mA. Calculate IB and IE.

  ■  FIGURE 3.55 

+
–

+
–

+ –V1 V2

R1

1 kΩ

1 kΩ
50IB0.6 V

IB
IE

IC

13. Determine the current labeled   I  3    in the circuit of Fig. 3.56.  

  ■  FIGURE 3.56 

2 mA 4.7 kΩ 3 Ω

1 Ω

5VxVx

+

–

I3

14. Study the circuit depicted in Fig. 3.57, and explain (in terms of KCL) why the 
voltage labeled Vx must be zero.

15. In many households, multiple electrical outlets within a given room are often 
all part of the same circuit. Draw the circuit for a four-walled room which has 
a single electrical outlet per wall, with a lamp (represented by a 400 Ω resistor) 
connected to each outlet.

3.3  Kirchhoff’s Voltage Law
16. For the circuit of Fig. 3.58:

(a) Determine the voltage v1 if v2 = 0 and v3 = −17 V.
(b) Determine the voltage v1 if v2 = −2 V and v3 = +2 V.
(c) Determine the voltage v2 if v1 = 7 V and v3 = 9 V.
(d) Determine the voltage v3 if v1 = −2.33 V and v2 = −1.70 V.

  ■  FIGURE 3.58 

v1

+

–
v3

–

+

v2+ –

A C

B

1

2

3

■  FIGURE 3.54 

RA 6 Ω

5 Ω
+
–

+
–

ix

–1.6 A

9 V vx

■  FIGURE 3.57 

Vs
+
–

R

R

R

Vx+ –
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17. For each of the circuits in Fig. 3.59, determine the voltage vx and the current ix.

  ■  FIGURE 3.59 

–
+

–+

9 V

4 V

7 Ω vx

+

–
ix

–
+

–+

2 V

–7 V

8 Ω vx

+

–
ix

(a) (b)

18. Use KVL to obtain a numerical value for the current labeled i in each circuit 
depicted in Fig. 3.60.

■  FIGURE 3.60 

+
– +

–

+ –

1 V

2 V

5 V

2 Ω

10 Ω

(a)

i +
–+

–

+ –

+–

10 V

1.5 V
–+

1.5 V

2 V

2 Ω

2 Ω
1 V

2 Ω 2 Ω

2 Ω

(b)

i

19. In the circuit of Fig. 3.61, it is determined that v1 = 3 V and v3 = 1.5 V. Calcu-
late vR and v2.

  ■  FIGURE 3.61 

+
–

+–

4 V

–

+

vx

+

–

vR

–

+

v1

+

–

v2 +–

+ –12 V

+ –v3

R1

R2

1.5 V

bc

a
23 V

20. In the circuit of Fig. 3.55, calculate the voltage across the dependent source 
(“+” reference on top) if V2 is 15 V, and IB is 20 μA.

21. Determine the value of vx as labeled in the circuit of Fig. 3.62.

  ■  FIGURE 3.62 

+
–

vx

2 Ω

7.3 Ω

2 Ω1 Ω2.3 V ix

+

–

500 mA

22. Consider the simple circuit shown in Fig. 3.63. (a) Using KVL, derive the 
expressions

      v  1   =  v  s     
 R  1   _____  R  1   +  R  2  

       and      v  2   =  v  s     
 R  2   _____  R  1   +  R  2  

   

(b) Under what conditions is it possible to find that  |v2| < |vs| ? ■  FIGURE 3.63 

+
–

R2

R1

vs v2

+

–

v1+ –
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23. (a) Determine a numerical value for each current and voltage (i1, v1, etc.) in 
the circuit of Fig. 3.64. (b) Calculate the power absorbed by each element and 
verify that they sum to zero.

  ■  FIGURE 3.64 

5i2

5v1

5 Ω6 Ω2 V v1

+

–

v2

+

–

v4

+

–

v5

+

–

v3+ –

i4i2 i5

+
–

+
–

i1

i3

24. The circuit shown in Fig. 3.65 includes a device known as an op amp. This 
device has two unusual properties in the circuit shown: (1) Vd = 0 V, and (2) 
no current can flow into either input terminal (marked “−” and “+” inside the 
symbol), but it can flow through the output terminal (marked “OUT”). This 
seemingly impossible situation—in direct conflict with KCL—is a result of 
power leads to the device that are not included in the symbol. Based on this 
information, calculate Vout. (Hint: Two KVL equations are required, both 
involving the 5 V source.)

■  FIGURE 3.65 

+
–5 V

Vd

+

– Vout

+

–

100 Ω

470 Ω

OP AMP

OUT

+

–

3.4  The Single-Loop Circuit
25. The circuit of Fig. 3.12b is constructed with the following: vs1 = −8 V, R1 = 1 Ω,  

vs2 = 16 V, and R2 = 4.7 Ω. Calculate the power absorbed by each element. 
 Verify that the absorbed powers sum to zero.

26. Obtain a numerical value for the power absorbed by each element in the circuit 
shown in Fig. 3.66.

■  FIGURE 3.66 

2 Ω 3 Ω

1 Ω

5 Ω12 V
+

–

+
–4 V +

– 2 V

27. Compute the power absorbed by each element of the circuit of Fig. 3.67.■  FIGURE 3.67 

1 kΩ
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28. Compute the power absorbed by each element in the circuit of Fig. 3.68 if the 
mysterious element X is (a) a 13 Ω resistor; (b) a dependent voltage source 
labeled 4v1, “+” reference on top; (c) a dependent voltage source labeled 4ix, 
“+” reference on top.

29. Kirchhoff’s laws apply whether or not Ohm’s law applies to a particular ele-
ment. The I–V characteristic of a diode, for example, is given by

  I  D   =  I  S  ( e    V  D  ∕ V  T    − 1 ) 
where VT = 27 mV at room temperature and IS can vary from 10−12 to 10−3 A. 
In the circuit of Fig. 3.69, use KVL/KCL to obtain ID and VD if IS = 45 nA. 
(Note: This problem results in a transcendental equation, requiring an iterative 
approach to obtaining a numerical solution. Most scientific calculators will 
perform such a function.)

3.5  The Single-Node-Pair Circuit
30. Referring to the circuit of Fig. 3.70, (a) determine the two currents i1 and i2; 

(b) compute the power absorbed by each element.

■  FIGURE 3.70 

3 A 7 A 2 ΩR1 R2v

+

– i1 i2

4 Ω

31. Determine a value for the voltage v as labeled in the circuit of Fig. 3.71, and 
compute the power supplied by the two current sources.

■  FIGURE 3.71 

–2 A 3 A 6 ΩR1 R2v

+

– i1 i2

10 Ω

32. Referring to the circuit depicted in Fig. 3.72, determine the value of the voltage 
v if the element marked X is (a) a 2 A current source, arrow pointing down; (b) 
a 2 V voltage source, + reference on top; (c) a dependent current source, arrow 
pointing down, controlled by quantity 2v.

■  FIGURE 3.72 

1 A 2 A5 Ω Xv
+

–
5 Ω

33. Determine the voltage v as labeled in Fig. 3.73, and calculate the power sup-
plied by each current source.

■  FIGURE 3.73 

3 Ω3ix1 Ω 2 Av

+

–

ix

■  FIGURE 3.69 

+
–

100 Ω
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–

■  FIGURE 3.68 

+
–

+
–

ix

X
27 Ω

33 Ω

19 Ω

2 V12 V

v1+ –
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34. Although drawn so that it may not appear obvious at first glance, the circuit of 
Fig. 3.74 is in fact a single-node-pair circuit. (a) Determine the power absorbed 
by each resistor. (b) Determine the power supplied by each current source. (c) 
Show that the sum of the absorbed power calculated in (a) is equal to the sum 
of the supplied power calculated in (b).

3.6  Series and Parallel Connected Sources
35. Determine the numerical value for veq in Fig. 3.75a, if (a) v1 = 0, v2 = −3 V, 

and v3 = +3 V; (b) v1 = v2 = v3 = 1 V; (c) v1 = −9 V, v2 = 4.5 V, v3 = 1 V.

■  FIGURE 3.75 

=
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+
–

+
– veq

+
–

+
–

=

(b)

i1 i2 i3 ieq

36. Determine the numerical value for ieq in Fig. 3.75b, if (a) i1 = 0, i2 = −3 A, 
and i3 = +3 A; (b) i1 = i2 = i3 = 1 A; (c) i1 = −9 A, i2 = 4.5 A, i3 = 1 A.

37. For the circuit presented in Fig. 3.76, determine the current labeled i by first 
combining the four sources into a single equivalent source.

■  FIGURE 3.76 
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–
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–
+

1 kΩ

+–

i

38. Determine the value of v1 required to obtain a zero value for the current labeled 
i in the circuit of Fig. 3.77.

39. (a) For the circuit of Fig. 3.78, determine the value for the voltage labeled v, 
after first simplifying the circuit to a single current source in parallel with two 
resistors. (b) Verify that the power supplied by your equivalent source is equal 
to the sum of the supplied powers of the individual sources in the original 
circuit.

■  FIGURE 3.78 

7 A 8 A2 Ω 5 Av
+

–
3 Ω

■  FIGURE 3.74 
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■  FIGURE 3.77 
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40. What value of IS in the circuit of Fig. 3.79 will result in a zero voltage v?

■  FIGURE 3.79 

1.28 A –2.57 A1 Ω ISv
+

–
1 Ω

41. (a) Determine the values for IX and VY in the circuit shown in Fig. 3.80. (b) 
Are those values necessarily unique for that circuit? Explain. (c) Simplify the 
circuit of Fig. 3.80 as much as possible and still maintain the values for v and i. 
(Your circuit must contain the 1 Ω resistor.)

■  FIGURE 3.80 

–3 A 3 A

IX 3 V–4 A 1 Ωv

+

– i
+
–

4 V+
–

VY+
–

3.7  Resistors in Series and Parallel
42. Determine the equivalent resistance of each of the networks shown in  

Fig. 3.81. 

■  FIGURE 3.81 

2 Ω

2 Ω
3 Ω

1 Ω

1 Ω

2 Ω
4 Ω

(a) (b)

43. For each network depicted in Fig. 3.82, determine a single equivalent resis-
tance if R = (a) 2 Ω; (b) 4 Ω; (c) 0 Ω.

■  FIGURE 3.82 

2 Ω

1 Ω

R

(a)

1 Ω R 3 Ω

(b)

44. (a) Simplify the circuit of Fig. 3.83 as much as possible by using resistor com-
bination techniques. (b) Calculate i, using your simplified circuit. (c) To what 
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voltage should the 1 V source be changed to reduce i to zero? (d) Calculate the 
power absorbed by the 1 Ω resistor.

■  FIGURE 3.83 

+
–

+
–

2 Ω 7 Ω

1 Ω

5 Ω

1 V3 V

i

45. (a) Simplify the circuit of Fig. 3.84, using appropriate source and resistor 
combinations. (b) Determine the voltage labeled v, using your simplified 
circuit. (c) Calculate the power provided by the 2 A source to the rest of the 
circuit.

■  FIGURE 3.84 

2 A 1 A5 Ω 5 A v
+

–
5 Ω

46. Making appropriate use of resistor combination techniques, calculate i3 and vx 
in the circuit of Fig. 3.85.

■  FIGURE 3.85 

3 Ω 5 Ω1 A

6 Ω3 Ω

3 Ω6 Ω

5 Ω

1 Ω

i3

vx

+

–

47. Calculate the voltage labeled vx in the circuit of Fig. 3.86 after first simplify-
ing, using appropriate source and resistor combinations.

■  FIGURE 3.86 
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48. Determine the power absorbed by the 15 Ω resistor in the circuit of Fig. 3.87.

■  FIGURE 3.87 

4 A 2i

6 Ω

15 Ω3 Ω

6 Ω 9 A6 Ω3 A

i

49. Calculate the equivalent resistance Req of the network shown in Fig. 3.88 if R1 
= R2 = ... = R11 = 10 Ω.

■  FIGURE 3.88 

Req

R2 R5 R8

R3

R1 R4 R7 R10 R11

R6 R9

50. Show how to combine four 100 Ω resistors to obtain an equivalent resistance of 
(a) 25 Ω; (b) 60 Ω; (c) 40 Ω.

3.8  Voltage and Current Division
51. In the voltage divider network of Fig. 3.89, calculate (a) v2 if v = 9.2 V and  

v1 = 3 V; (b) v1 if v2 = 1 V and v = 2 V; (c) v if v1 = 3 V and v2 = 6 V;  
(d) R1/R2 if v1 = v2; (e) v2 if v = 3.5 V and R1 = 2R2; (f) v1 if v = 1.8 V, R1 =  
1 kΩ, and R2 = 4.7 kΩ.

■  FIGURE 3.89 

i

v2

+

–

v1+ –

v

+

–

R1

R2

52. In the current divider network represented in Fig. 3.90, calculate (a) i1 if i = 8 A  
and i2 = 1 A; (b) v if R1 = 100 kΩ, R2 = 100 kΩ, and i = 1 mA; (c) i2 if i = 20 
mA, R1 = 1 Ω, and R2 = 4 Ω; (d) i1 if i = 10 A, R1 = R2 = 9 Ω; (e) i2 if i = 10 
A, R1 = 100 MΩ, and R2 = 1 Ω.

■  FIGURE 3.90 
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53. Choose a voltage v < 2.5 V and values for the resistors R1, R2, R3, and R4 in the 
circuit of Fig. 3.91 so that i1 = 1 A, i2 = 1.2 A, i3 = 8 A, and i4 = 3.1 A.

■  FIGURE 3.91 
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–
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i1 i4
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i2

R3

i3

54. Employ voltage division to assist in the calculation of the voltage labeled vx in 
the circuit of Fig. 3.92.

■  FIGURE 3.92 

+
–3 V

2 Ω 3 Ω

2 Ω 10 Ω

vx+ –

55. A network is constructed from a series connection of five resistors having 
values 1 Ω, 3 Ω, 5 Ω, 7 Ω, and 9 Ω. If 9 V is connected across the terminals 
of the network, employ voltage division to calculate the voltage across the 3 Ω 
resistor, and the voltage across the 7 Ω resistor.

56. Employing resistance combination and current division as appropriate, deter-
mine values for i1, i2, and v3 in the circuit of Fig. 3.93.

■  FIGURE 3.93 
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57. In the circuit of Fig. 3.94, only the voltage vx is of interest. Simplify the circuit 
using appropriate resistor combinations and iteratively employ voltage division 
to determine vx.

■  FIGURE 3.94 
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Chapter-Integrating Exercises
58. The circuit shown in Fig. 3.95 is a linear model of a bipolar junction transistor 

biased in the forward active region of operation. Explain why voltage division 
is not a valid approach for determining the voltage across the 47 kΩ resistor.

■  FIGURE 3.95 

+
–

+
–

+ –12 V 12 V
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59. A common midfrequency model for a field effect–based amplifier circuit is 
shown in Fig. 3.96. If the controlling parameter gm (known as the transcon-
ductance) is equal to 1.2 mS, (a) employ current division to obtain the current 
through the 1 kΩ resistor, and then (b) calculate the amplifier output voltage vout. 
(c) Does the circuit “amplify” the signal (as measured at the sinusoidal source)? 
(d) If the input is instead assumed to be the voltage vπ, does the circuit amplify?

■  FIGURE 3.96 
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60. The circuit depicted in Fig. 3.97 is routinely employed to model the midfre-
quency operation of a bipolar junction transistor–based amplifier. Calculate the 
amplifier output vout if the transconductance gm is equal to 322 mS.

■  FIGURE 3.97 
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–
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61. With regard to the circuit shown in Fig. 3.98, compute (a) the voltage across 
the two 10 Ω resistors, assuming the top terminal is the positive reference, 
and (b) the power dissipated by the 47 Ω resistor. (c) If the maximum rating of 
the 47 Ω resistor is 0.25 W, is it exceeded by this circuit? Explain.

■  FIGURE 3.98 

10 Ω 10 Ω 50 Ω 47 Ω

40 Ω20 Ω 20 Ω

20 V +
–
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62. Delete the leftmost 10 Ω resistor in the circuit of Fig. 3.98, and compute (a) the 
current flowing into the left-hand terminal of the 40 Ω resistor; (b) the power 
supplied by the 20 V source; (c) the power dissipated by the 50 Ω resistor.

63. Consider the seven-element circuit depicted in Fig. 3.99. (a) How many nodes, 
loops, and branches does it contain? (b) Calculate the current flowing through 
each resistor. (c) Determine the voltage across the current source, assuming the 
top terminal is the positive reference terminal.

■  FIGURE 3.99 

1 Ω

2 Ω
2 Ω

5 Ω

5 Ω

2 A

2 Ω

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock

hay01307_ch03_043-084.indd   84 23/01/18   5:30 pm



C
H

A
P

T
E

R

85

INTRODUCTION
Armed with the trio of Ohm’s and Kirchhoff’s laws, analyzing 
a simple linear circuit to obtain useful information such as the 
current, voltage, or power associated with a particular element is 
perhaps starting to seem a straightforward enough venture. Still, for 
the moment at least, every circuit seems unique, requiring (to some 
degree) a measure of creativity in approaching the analysis. In this 
chapter, we learn two basic circuit analysis techniques—nodal 

analysis and mesh analysis—both of which allow us to investigate 
many different circuits with a consistent, methodical approach. The 
result is a streamlined analysis, a more uniform level of complexity 
in our equations, fewer errors and, perhaps most importantly, a 
reduced occurrence of “I don’t know how to even start!”

Most of the circuits we have seen up to now have been rather 
simple and (to be honest) of questionable practical use. Such circuits 
are valuable, however, in helping us to learn to apply fundamental 
techniques. Although the more complex circuits appearing in this 
chapter may represent a variety of electrical systems, including 
control circuits, communication networks, motors, and integrated 
circuits, as well as electric circuit models of nonelectrical systems, 
we believe it best not to dwell on such specifics at this early stage. 
Rather, it is important to initially focus on the methodology of 

problem solving that we will continue to develop throughout the 
book.

Basic Nodal and 
Mesh Analysis4

KEY CONCEPTS

Nodal Analysis

The Supernode Technique

Mesh Analysis

The Supermesh Technique

Choosing Between Nodal 
and Mesh Analysis

Computer-Aided  Analysis, 
Including SPICE and 
MATLAB
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4.1 • NODAL ANALYSIS
We begin our study of general methods for methodical circuit analysis by 
considering a powerful method based on KCL, namely nodal analysis. In 
Chap. 3 we considered the analysis of a simple circuit containing only two 
nodes. We found that the major step of the analysis was obtaining a single 
equation in terms of a single unknown quantity—the voltage between the 
pair of nodes.

We will now let the number of nodes increase and correspondingly pro-
vide one additional unknown quantity and one additional equation for each 
added node. Thus, a three-node circuit should have two unknown voltages 
and two equations; a 10-node circuit will have nine unknown voltages and 
nine equations; an N-node circuit will need (N − 1) voltages and (N − 1) 
equations. Each equation is a simple KCL equation.

To illustrate the basic technique, consider the three-node circuit shown 
in Fig. 4.1a, redrawn in Fig. 4.1b to emphasize the fact that there are only 
three nodes, numbered accordingly. Our goal will be to determine the volt-
age across each element, and the next step in the analysis is critical. We 
designate one node as a reference node; it will be the negative terminal of 
our N − 1 = 2 nodal voltages, as shown in Fig. 4.1c.

A little simplification in the resultant equations is obtained if the node 
connected to the greatest number of branches is identified as the reference 
node. If there is a ground node, it is usually most convenient to select it as 
the reference node, although many people seem to prefer selecting the bot-
tom node of a circuit as the reference, especially if no explicit ground is 
noted.

The voltage of node 1 relative to the reference node is named v1, and 
v2 is defined as the voltage of node 2 with respect to the reference node. 

■  FIGURE 4.1 (a) A simple three-node circuit. (b) Circuit redrawn to emphasize nodes. (c) Reference 
node selected and voltages assigned. (d) Shorthand voltage references. If desired, an appropriate 
ground symbol may be substituted for “Ref.”
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1 Ω2 Ω

(c)
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––

v1 v2

v1 v2

3.1 A –1.4 A

5 Ω

1 Ω2 Ω
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These two voltages are all we need, as the voltage between any other pair of 
nodes may be found in terms of them. For example, the voltage of node 1 
with respect to node 2 is v1 − v2. The voltages v1 and v2 and their reference 
signs are shown in Fig. 4.1c. It is common practice once a reference node 
has been labeled to omit the reference signs for the sake of clarity; the node 
labeled with the voltage is taken to be the positive terminal (Fig. 4.1d). This 
is understood to be a type of shorthand voltage notation.

We now apply KCL to nodes 1 and 2. We do this by equating the total 
current entering the node to the total current leaving the node through the 
several resistors. Thus,

  3 . 1 =    v  1   __ 2   +    v  1   −  v  2   ____ 5    [1]

or

  3 . 1 = 0.7  v  1   − 0.2  v  2    [2]

At node 2 we obtain

   −  (  −1.4 )   =    v  2   _ 1   +    v  2   −  v  1   _ 5     [3]

or

  1 . 4 = − 0.2  v  1   + 1.2  v  2    [4]

Equations [2] and [4] are the desired two equations in two unknowns, and 
they may be solved easily. The results are v1 = 5 V and v2 = 2 V.

From this, it is straightforward to determine the voltage across the 5 Ω 
resistor: v5Ω = v1 − v2 = 3 V. The currents and absorbed powers may also 
be computed in one step.

We should note at this point that there is more than one way to write 
the KCL equations for nodal analysis. For example, the reader may prefer 
to sum all the currents entering a given node and set this quantity to zero. 
Thus, for node 1 we might have written 

 3.1 −    v  1   __ 2   −    v  1   −  v  2   ____ 5   = 0 

or

 3.1 +   −  v  1   ___ 2   +    v  2   −  v  1   ____ 5   = 0 

either of which is equivalent to Eq. [1].
Is one way better than any other? Every instructor and every student 

develops a personal preference, and at the end of the day the most important 
thing is to be consistent. The authors prefer constructing KCL equations for 
nodal analysis in such a way as to end up with all resistor terms on one side 
and all current source terms on the other. Specifically,

  
Σ currents  leaving the node through resistors 

     
    = Σ currents entering the node from current sources

  

There are several advantages to such an approach. First, there is never any 
confusion over whether a term should be “v1 − v2” or “v2 − v1;” the first 

The reference node in a schematic is implicitly defined 

as zero volts. however, it is important to remember 

that any terminal can be designated as the reference 

terminal. Thus, the reference node is at zero volts with 

respect to the other defined nodal voltages, and not 

necessarily with respect to earth ground.
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voltage in every resistor current expression corresponds to the node for 
which a KCL equation is being written, as seen in Eqs. [1] and [3]. Second, 
it allows a quick check that a term has not been accidentally omitted. Simply 
count the current sources connected to a node and then the resistors; group-
ing them in the stated fashion makes the comparison a little easier.

EXAMPLE 4.1
Determine the current flowing left to right through the 15 Ω resis-
tor of Fig. 4.2a.

3 Ω

5 Ω

15 Ω

7 Ω

2 A 4 A

Ref.

v1 v2

(a)

2 A 4 A10 Ω

15 Ω

5 Ω

v1 v2

i

Ref.
(b)

■  FIGURE 4.2 (a) A four-node circuit containing two independent current sources. (b) The 
two resistors in series are replaced with a single 10 Ω resistor, reducing the circuit to three 
nodes.

Nodal analysis will directly yield numerical values for the nodal voltag-
es v1 and v2, and the desired current is given by i = (v1 − v2)/15.

Before launching into nodal analysis, however, we first note that no 
details regarding either the 7 Ω resistor or the 3 Ω resistor are of inter-
est. Thus, we may replace their series combination with a 10 Ω resistor 
as in Fig. 4.2b. The result is a reduction in the number of equations to 
solve.

Writing an appropriate KCL equation for node 1,

     v  1   __ 10   +    v  1   −  v  2   ____ 15   = 2  [5]

and for node 2,

     v  2   __ 5   +    v  2   −  v  1   ____ 15   = 4  [6]

Rearranging, we obtain 

 5 v  1   − 2 v  2   = 60 

and

  −  v  1   + 4 v  2   = 60  

Solving, we find that v1 = 20 V and v2 = 20 V so that v1 − v2 = 0. In 
other words, zero current is flowing through the 15 Ω resistor in this 
circuit!
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Now let us increase the number of nodes so that we may use this tech-
nique to work a slightly more difficult problem.

PRACTICE 
●

4.1 For the circuit of Fig. 4.3, determine the nodal voltages v1 and v2. 

3 Ω

4 Ω

15 Ω

2 Ω

5 A 2 A

v1 v2

■ FIGURE 4.3

Ans: v1 = −145/8 V; v2 = 5/2 V.

EXAMPLE 4.2
Determine the nodal voltages for the circuit of Fig. 4.4a, as 
 referenced to the bottom node.

▶ Identify the goal of the problem.
There are four nodes in this circuit. With the bottom node as our refer-
ence, we label the other three nodes as shown in Fig. 4.4b. The circuit 
has been redrawn for clarity, taking care to identify the two relevant 
nodes for the 4 Ω resistor.

▶ Collect the known information.
We have three unknown voltages, v1, v2, and v3. All current sources 
and resistors have designated values, which are marked on the sche-
matic.

▶ Devise a plan.
This problem is well suited to nodal analysis, as three independent 
KCL equations may be written in terms of the current sources and the 
current through each resistor.

▶ Construct an appropriate set of equations.
We begin by writing a KCL equation for node 1:

    v  1   −  v  2   ____ 3   +    v  1   −  v  3   ____ 4   = − 8 − 3 

or

  0.5833  v  1   − 0.3333  v  2   − 0.25  v  3   = − 11  [7]

 At node 2:

     v  2   −  v  1   _ 3   +    v  2   _ 1   +    v  2   −  v  3   _ 7   = −  (  −3 )    
(Continued on next page)

■  FIGURE 4.4 (a) A four-node circuit. (b) Redrawn 
circuit with reference node chosen and voltages 
labeled.
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4 Ω 5 Ω
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or
  − 0.3333  v  1   + 1.4762  v  2   − 0.1429  v  3   = 3  [8]

And, at node 3:

     v  3   _ 5   +    v  3   −  v  2   _ 7   +    v  3   −  v  1   _ 4   = −  (  −25 )    

or, more simply,

  − 0.25  v  1   − 0.1429  v  2   + 0.5929  v  3   = 25  [9]

▶ Determine if additional information is required.
We have three equations in three unknowns. Provided that they are 
independent, this is sufficient to determine the three voltages.

▶ Attempt a solution.
Equations [7] through [9] can be solved using a scientific calculator 
(Appendix 2), software packages such as MATLAB, or more tradi-
tional “plug-and-chug” techniques such as elimination of variables, 
matrix methods, or Cramer’s rule. Using the method of matrix inver-
sion with a calculator, described in Appendix 2, we can arrange our 
system of equations in the matrix format in the form Av = B:

   
[

   
   0.5833

  
− 0.3333

  
− 0.25

    − 0.3333     1.4762  − 0.1429    
− 0.25

  
− 0.1429

  
   0.5929

  
]

     [   
 v  1  

   v  2    
 v  3  

  ]    =   
[

   
− 11

       3  
   25

  
]

    

where

 A =  
[

   
   0.5833

  
− 0.3333

  
− 0.25

    − 0.3333     1.4762  − 0.1429    
− 0.25

  
− 0.1429

  
   0.5929

  
]

    

and

 B =  
[

   
− 11

       3  
   25

  
]

    

Entering the numbers for matrix A and vector B into a calculator and 
solving for v = A−1B yields our final solution

 v =   
[

   
 v  1  

   v  2    
 v  3  

  
]

  = 
[

   
  5 . 4124

    7 . 7375  
46 . 3127

  
]

   V  

▶ Verify the solution. Is it reasonable or expected?
Substituting the nodal voltages into any of our three nodal equations 
is sufficient to ensure we made no computational errors. Beyond that, 
is it possible to determine whether these voltages are “reasonable” 
values? We have a maximum possible current of 3 + 8 + 25 = 36 
amperes anywhere in the circuit. The largest resistor is 7 Ω, so we do 
not expect any voltage magnitude greater than 7 × 36 = 252 V.

There are, of course, numerous methods available for the solution of 
linear systems of equations, and we describe several in Appendix 2 in 
detail. Prior to the advent of the scientific calculator, Cramer’s rule was 
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very common in circuit analysis, although often tedious to implement. It 
is, however, straightforward to use on a simple four-function calculator, 
and so an awareness of the technique can be valuable. MATLAB, on the 
other hand, although not likely to be available during an examination, 
is a powerful software package that can greatly simplify the solution 
process; a brief tutorial on getting started is provided in Appendix 6.

For the situation encountered in Example 4.2, there are several options 
available through MATLAB. First, we can represent Eqs. [7] to [9] in ma-
trix form, as shown in the example. 

In MATLAB, we write

≫ A =  [0.5833 −0.3333 −0.25; −0.3333 1.4762 −0.1429;  
−0.25 −0.1429 0.5929];

≫ B = [−11; 3; 25];
≫ v = A\B
v = 
    5.4124 
    7.7375 
 46.3127 
≫

where spaces separate elements along rows, and a semicolon separates 
rows. The matrix named v, which can also be referred to as a vector as it 
has only one column, is our solution. Thus, v1 = 5.412 V, v2 = 7.738 V, and 
v3 = 46.31 V (some rounding error has been incurred). Note the use of the 
backslash operator v = A\B, instead of v = A^-1/B or v = inv(A)*B, which 
is recommended in MATLAB for solving systems of equations. 

We could also use the KCL equations as we wrote them initially if we 
employ the symbolic processor of MATLAB.

≫ syms v1 v2 v3
≫ eqn1 = −8−3 == (v1 − v2)/ 3 + (v1 − v3)/ 4;
≫ eqn2 = −(−3) == (v2 − v1)/ 3 + v2/ 1 + (v2 − v3)/ 7;
≫ eqn3 = −(−25) == v3/ 5 + (v3 − v2)/ 7 + (v3 − v1)/ 4;
≫ answer=solve(eqn1,eqn2,eqn3,[v1 v2 v3]);
≫ answer.v1
ans = 
720/133
≫ answer.v2
ans =
147/19
≫ answer.v3
ans =
880/19
≫

which results in exact answers, with no rounding errors. The solve() routine 
is invoked with the list of symbolic equations we named eqn1, eqn2, and 
eqn3, but the variables v1, v2, and v3 must also be specified. If solve() is 
called with fewer variables than equations, an algebraic solution is returned. 
The form of the solution is worth a quick comment; it is returned in what is 
referred to in programming parlance as a structure; in this case, we called 
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our structure answer. Each component of the structure is accessed sepa-
rately by name as shown.

PRACTICE 
●

4.2 For the circuit of Fig. 4.5, compute the voltage across each current 
source. 

3 A 7 A

Reference node

3 Ω 5 Ω

4 Ω1 Ω

2 Ω

■ FIGURE 4.5

Ans: v3A = 5.235 V; v7A = 11.47 V.

EXAMPLE 4.3
Determine the power supplied by the dependent source of Fig. 4.6a.

vx+ –
15 A

1 Ω

3i1

2 Ω

3 Ω

i1

vx+ –
15 A

1 Ω

3i1

2 Ω

3 Ω

i1

v2

v1

(a)

Ref.

(b)

■  FIGURE 4.6 (a) A four-node circuit containing a dependent current source. (b) Circuit labeled 
for nodal analysis.

We choose the bottom node as our reference, since it has a large num-
ber of branch connections, and proceed to label the nodal voltages v1 
and v2 as shown in Fig. 4.6b. The quantity labeled vx is actually  
equal to v2.

At node 1, we write

     v  1   −  v  2   ____ 1   +    v  1   __ 2   = 15  [10]

The previous examples have demonstrated the basic approach to nodal 
analysis, but it is worth considering what happens if dependent sources are 
present as well.
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We see that the presence of a dependent source will create the need for 
an additional equation in our analysis if the controlling quantity is not a 
nodal voltage. Now let’s look at the same circuit, but with the controlling 
variable of the dependent current source changed to a different quantity—
the voltage across the 3 Ω resistor, which is in fact a nodal voltage. We 
will find that only two equations are required to complete the analysis.

and at node 2

     v  2   −  v  1   ____ 1   +    v  2   __ 3   = 3  i  1    [11]

Unfortunately, we have only two equations but three unknowns; this 
is a direct result of the presence of the dependent current source, since 
it is not controlled by a nodal voltage. Thus, we need an additional 
equation that relates i1 to one or more nodal voltages.

In this case, we find that

   i  1   =    v  1   __ 2    [12]

which upon substitution into Eq. [11] yields (with a little rearranging)

  3 v  1   − 2 v  2   = 30  [13]

and Eq. [10] simplifies to

  − 15  v  1   + 8  v  2   = 0  [14]

Solving, we find that v1 = −40 V, v2 = −75 V, and i1 = 0.5v1 = −20 A. 
Thus, the power supplied by the dependent source is equal to (3i1)(v2) = 
(−60)(−75) = 4.5 kW.

EXAMPLE 4.4
Determine the power supplied by the dependent source of Fig. 4.7a.

vx+ –
15 A

3vx

3 Ω

1 Ω 2 Ωi1

vx+ –
15 A

3vx

3 Ω

1 Ω 2 Ωi1

vx

v1

(a)

Ref.

(b)

■  FIGURE 4.7 (a) A four-node circuit containing a dependent current source. (b) Circuit labeled  
for nodal analysis.

(Continued on next page)

hay01307_ch04_085-132.indd   93 23/01/18   5:33 pm



CHAPTER 4 BASIC NodAL ANd MESh ANALySIS94

We select the bottom node as our reference and label the nodal voltages 
as shown in Fig. 4.7b. We have labeled the nodal voltage vx explicitly 
for clarity. Note that our choice of reference node is important in this 
case; it led to the quantity vx being a nodal voltage.

Our KCL equation for node 1 is

     v  1   −  v  x   ____ 1   +    v  1   __ 2   = 15  [15]

and for node x is

     v  x   −  v  1   ____ 1   +    v  2   __ 3   = 3  v  x    [16]

Grouping terms and solving, we find that   v  1   =   50 __ 7    V  and   v  x   = −   30 __ 7    V . 
Thus, the dependent source in this circuit generates (3vx)(vx) = 55.1 W.

PRACTICE 
●

4.3 For the circuit of Fig. 4.8, determine the nodal voltage v1 if A is  
(a) 2i1; (b) 2v1. 

5 A

A

2 Ω

1 Ω 2 Ωi1

v2

v1

Ref.

■ FIGURE 4.8

Ans: (a)    70 __ 9    V; (b) –10 V.

Thus far, we have used nodal analysis only for cases where all sources 
are current sources. Since we do not know the current through a voltage 
source, how can we use nodal analysis if we have a voltage source in one 
of our branches? For example, let us use nodal analysis to determine the 
unknown voltage vx for the circuit shown in Fig. 4.9. We can begin by label-
ing the bottom node of the circuit as reference, and then defining the other 
nodes in the circuit. We could begin by labeling the node v1 and v2. How-
ever, we already know by inspection that v1 = 9 V and v2 = 4 V as defined 
by the voltage sources. Our remaining unknown node is vx, where the KCL 
expression is given by

     v  x   −  v  1   ____ 30   +    v  x   __ 10   +    v  x   −  v  2   ____ 20   = 0  [17]

and substituting v1 = 9 V and v2 = 4 V, 

     v  x   − 9 ____ 30   +    v  x   __ 10   +    v  x   − 4 ____ 20   = 0  [18]■  FIGURE 4.9 Example of nodal analysis with 
voltage sources. 

+
–

+

–

+
–9 V 4 Vvx

30 Ω

10 Ω

20 Ωv1

Ref.

v2
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where solving for vx yields

   v  x   (  1 __ 30   +   1 __ 10   +   1 __ 20  )  =   9 __ 30   +   4 __ 20    [19]

   v  x   =   30 __ 11   = 2 . 7273 V  [20]

Note that our KCL expression defined the current flowing through the 
30 Ω and 20 Ω resistors, using proper definitions for voltage across them, 
(vx − 9) and (vx − 4), respectively. A common error in nodal analysis is 
to forget the voltage sources when writing the KCL expressions, for ex-
ample, writing (vx)/30 as the current through the 30 Ω resistor instead of 
(vx − 9)/30. Do not make the same mistake!

Summary of Basic Nodal Analysis Procedure

1. Select a reference node. The number of terms in your nodal 
equations can be minimized by selecting the reference node as the 
one with the greatest number of branches connected to it.

2. Count and label the voltage at each node in the circuit, rela-
tive to the reference node you have selected.   

3. Write a KCL equation for each of the nonreference nodes. 
Sum the currents flowing out of the node through resistors on 
one side of the equation. On the other side, sum the currents 
flowing into a node from sources. Pay close attention to minus 
signs.

4. Express any additional unknowns in terms of appropriate 
nodal voltages. This situation can occur if voltage sources or 
dependent sources appear in our circuit.

5. Organize the equations. Group terms according to nodal 
 voltages.

6. Solve the system of equations for the nodal voltages.

These basic steps will work on any circuit we ever encounter, although 
the presence of voltage sources directly connecting two nodes will require 
extra care. Such situations are discussed next.

4.2 • THE SUPERNODE
In the previous example, we examined a case where nodal analysis can be 
used when a voltage source is present. However, this situation included a 
resistor directly in series with the voltage source, allowing us to define a 
current for our KCL equation. What if you have a voltage source, but no 
other means of defining current through it? As an example of how volt-
age sources are best handled when performing nodal analysis, consider the 
circuit shown in Fig. 4.10a. The original four-node circuit of Fig. 4.4 has 
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been changed by replacing the 7 Ω resistor between nodes 2 and 3 with a 
22 V voltage source. We still assign the same node-to-reference voltages v1, 
v2, and v3. Previously, the next step was the application of KCL at each of 
the three nonreference nodes. If we try to do that once again, we see that 
we will run into some difficulty at both nodes 2 and 3, for we do not know 
what current is flowing in the branch with the voltage source. There is no 
way by which we can express the current as a function of the voltage, for 
the definition of a voltage source is exactly that the voltage is independent 
of the current.

There are two ways out of this dilemma. The more tedious approach is 
to assign an unknown current to the branch that contains the voltage source, 
proceed to apply KCL three times, and then apply KVL (v3 − v2 = 22)  
once between nodes 2 and 3; the result is then four equations with four 
unknowns.

The easier method is to treat node 2, node 3, and the voltage source 
together as a supernode and apply KCL to both nodes at the same time; 
the supernode is indicated by the region enclosed by the broken line in 
Fig. 4.10a. This is okay because if the total current leaving node 2 is zero 
and the total current leaving node 3 is zero, then the total current leaving the 
combination of the two nodes is zero. Note that any current defined within 
the supernode will simply cancel in our KCL expressions; for example, the 
current leaving node 2 will be equal and opposite to the current leaving 
node 3. This concept is represented graphically in the expanded view of 
Fig. 4.10b. 

The concept of the supernode uses a more general definition for 
KCL: The algebraic sum of the currents entering any node or closed sur-
face is zero.

■  FIGURE 4.10 (a) The circuit of Example 4.2 with a 
22 V source in place of the 7 Ω resistor. (b) Expanded 
view of the region defined as a supernode; KCL 
requires that all currents flowing into the region sum 
to zero, or we would pile up or run out of electrons.

3 Ω 22 V

4 Ω

–3 A

1 Ω
–8 A

–25 A

5 Ω

v1
v2 v3+–

Reference node

22 V

(b)

(a)

+–

EXAMPLE 4.5
Determine the value of the unknown node voltage v1 in the circuit 
of Fig. 4.10a.

The KCL equation at node 1 is unchanged from Example 4.2:

    v  1   −  v  2   ____ 3   +    v  1   −  v  3   ____ 4   = − 8 − 3 

or

  0.5833  v  1   − 0.3333  v  2   − 0.2500  v  3   = − 11  [21]

Next we consider the 2–3 supernode. Two current sources are con-
nected, and four resistors. Thus,

    v  2   −  v  1   ____ 3   +    v  3   −  v  1   ____ 4   +    v  3   __ 5   +    v  2   __ 1   = 3 + 25 

or

  − 0.5833  v  1   + 1.3333  v  2   + 0.45  v  3   = 28  [22]
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The presence of a voltage source thus reduces by 1 the number of non-
reference nodes at which we must apply KCL, regardless of whether the 
voltage source extends between two nonreference nodes or is connected 
between a node and the reference. We should be careful in analyzing circuits 
such as that of Practice Problem 4.4. Since both ends of the resistor are part 
of the supernode, there must technically be two corresponding current terms 
in the KCL equation, but they cancel each other out. We can summarize the 
supernode method as follows:

Since we have three unknowns, we need one additional equation, 
and it must utilize the fact that there is a 22 V voltage source between 
nodes 2 and 3:

   v  2   −  v  3   = − 22  [23]

Solving Eqs. [21] to [23], the solution for v1 is 1.071 V.

PRACTICE 
●

4.4 For the circuit of Fig. 4.11, compute the voltage across each current 
source. 

4 A
5 V

9 A

Reference node

+ –

Ω1
2 Ω1

6

Ω1
3

■  FIGURE 4.11

Ans: 5.375 V; 375 mV.

Summary of Supernode Analysis Procedure

1. Select a reference node. The number of terms in your nodal 
equations can be minimized by selecting the reference node as the 
one with the greatest number of branches connected to it.

2. Count and label the voltage at each node in the circuit, rela-
tive to the reference node you have selected.   

3. If the circuit contains voltage sources, form a supernode 
around each one. This is done by enclosing the source, its two 
terminals, and any other elements connected between the two 
terminals within a broken-line enclosure.

4. Write a KCL equation for each of the nonreference nodes 
and for each supernode that does not contain the reference 
node. Sum the currents flowing out of the node/supernode 
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We see that we have added two additional steps from our general nodal 
analysis procedure. In reality, however, application of the supernode tech-
nique to a circuit containing voltage sources not connected to the reference 
node will result in a reduction in the number of KCL equations required. 
With this in mind, let’s consider the circuit of Fig. 4.12, which contains all 
four types of sources and has five nodes.

■  FIGURE 4.12 A five-node circuit with four 
different types of sources.

+–

+
–

0.5vx

2 Ω

1 Ω2.5 Ω

Ref.

0.5 Ω 14 A

12 V v3v1

v4

v2

vy

vx
–

+

–

+
0.2vy

EXAMPLE 4.6
Determine the node-to-reference voltages in the circuit of Fig. 4.12.

After establishing a supernode around each voltage source, we see that 
we need to write KCL equations only at node 2 and at the supernode 
containing the dependent voltage source. By inspection, it is clear that 
v1 = −12 V.

At node 2,

     v  2   −  v  1   ____ 0.5   +    v  2   − v     3   _____ 2   = 14  [24] 

while at the 3–4 supernode,

     v  3   −  v  2   ____ 2   +    v  4   __ 1   +    v  4   −  v  1   ____ 2.5   = 0.5  v  x    [25] 

We next relate the source voltages to the node voltages:

   v  3   −  v  4   = 0.2  v  y    [26]

and

  0.2  v  y   = 0.2( v  4   −  v  1   )  [27] 
Finally, we express the dependent current source in terms of the 

assigned variables:

  0.5  v  x   = 0.5( v  2   −  v  1   )  [28] 

through resistors on one side of the equation. On the other side, 
sum the currents flowing into a node/supernode from sources. 
Pay close attention to minus signs.

5. Relate the voltage across each voltage source to nodal volt-
ages. This is accomplished by simple application of KVL; one 
such equation is needed for each supernode defined.

6. Express any additional unknowns in terms of appropriate 
nodal voltages. This situation can occur if voltage sources or 
dependent sources appear in our circuit.

7. Organize the equations. Group terms according to nodal voltages.
8. Solve the system of equations for the nodal voltages.
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4.3 • MESH ANALYSIS
As we have seen, nodal analysis is a straightforward analysis technique 
when only current sources are present, and voltage sources are easily ac-
commodated with the supernode concept. Still, nodal analysis is based on 
KCL, and the reader might at some point wonder if there isn’t a similar 
approach based on KVL. There is—it’s known as mesh analysis—and al-
though only strictly speaking applicable to what we will shortly define as 
a planar circuit, it can in many cases prove simpler to apply than nodal 
analysis.

If it is possible to draw the diagram of a circuit on a plane surface in such 
a way that no branch passes over or under any other branch, then that circuit 

Five nodes requires four KCL equations in general nodal analysis, 
but we have reduced this requirement to only two, as we formed 
two separate supernodes. Each supernode required a KVL equation 
(Eq. [26] and v1 = −12, the latter written by inspection). Neither 
dependent source was controlled by a nodal voltage, so two additional 
equations were needed as a result.

With this done, we can now eliminate vx and vy to obtain a set of four 
equations in the four node voltages:

   

− 2  v  1  

  

+

  

2.5  v  2  

  

−

  

0.5  v  3  

  

 

  

 

  

=

  

14

     
0.1  v  1    

−
  

 v  2    
+

  
0.5  v  3    

+
  

1.4  v  4    
=

  
0
     

 v  1  
  

 
  

 
  

 
  

 
  

 
  

 
  

=
  

− 12
     

0.2  v  1  

  

 

  

 

  

+

  

 v  3  

  

−

  

1.2  v  4  

  

=

  

0

  

Solving, v1 = −12 V, v2 = −4 V, v3 = 0 V, and v4 = −2 V.

PRACTICE 
●

4.5 Determine the nodal voltages in the circuit of Fig. 4.13. 

0.15vx

4 Ω

2 Ω

3 Ω

Ref.

4 A

–+ v3v1

v4

v2

1 Ω

2 Ω vx
–

+

+
–

■  FIGURE 4.13

Ans: v1 = 3 V; v2 = −2.33 V; v3 = −1.91 V; v4 = 0.945 V.
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is said to be a planar circuit. Thus, Fig. 4.14a shows a planar network, 
Fig. 4.14b shows a nonplanar network, and Fig. 4.14c also shows a planar 
network, although it is drawn in such a way as to make it appear nonplanar 
at first glance.

■  FIGURE 4.14 Examples of planar and nonplanar networks; crossed wires without a solid dot are not in 
physical contact with each other. 

+
–

(a)

+
–

(b)

+
–

(c)

In Sec. 3.1, the terms path, closed path, and loop were defined. Before 
we define a mesh, let us consider the sets of branches drawn with heavy 
lines in Fig. 4.15. The first set of branches is not a path, since four branches 
are connected to the center node, and it is of course also not a loop. The 
second set of branches does not constitute a path, since it is traversed only 
by passing through the central node twice. The remaining four paths are all 
loops. The circuit contains 11 branches.

■  FIGURE 4.15 (a) The set of branches identified by the heavy lines is neither a path nor 
a loop. (b) The set of branches here is not a path, since it can be traversed only by passing 
through the central node twice. (c) This path is a loop but not a mesh, since it encloses other 
loops. (d) This path is also a loop but not a mesh. (e, f ) Each of these paths is both a loop and 
a mesh.

(a) (b) (c)

(d) (e) ( f )
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The mesh is a property of a planar circuit and is undefined for a non-
planar circuit. We define a mesh as a loop that does not contain any other 
loops within it. Thus, the loops indicated in Fig. 4.15c and d are not 
meshes, whereas those of parts e and f are meshes. Once a circuit has been 
drawn neatly in planar form, it often has the appearance of a multipaned 
window; the boundary of each pane in the window may be considered to 
be a mesh.

If a network is planar, mesh analysis can be used to accomplish the 
analysis. This technique involves the concept of a mesh current, which 
we introduce by considering the analysis of the two-mesh circuit of 
Fig. 4.16a.

As we did in the single-loop circuit, we will begin by defining a current 
through one of the branches. Let us call the current flowing to the right 
through the 6 Ω resistor i1. We will apply KVL around each of the two 
meshes, and the two resulting equations are sufficient to determine two un-
known currents. We next define a second current i2  flowing to the right in 
the 4 Ω resistor. We might also choose to call the current flowing downward 
through the central branch i3, but it is evident from KCL that i3 may be 
expressed in terms of the two previously assumed currents as (i1 − i2). The 
assumed currents are shown in Fig. 4.16b.

Following the method of solution for the single-loop circuit, we now 
apply KVL to the left-hand mesh,

 − 42 + 6  i  1   + 3( i  1   −  i  2   ) = 0 

or

  9  i  1   − 3  i  2   = 42  [29]

Applying KVL to the right-hand mesh,

 − 3( i  1   −  i  2   ) + 4  i  2   − 10 = 0 

or

  − 3 i  1   + 7 i  2   = 10  [30]

Equations [29] and [30] are independent equations; one cannot be de-
rived from the other. With two equations and two unknowns, the solution is 
easily obtained:

  i  1   = 6 A          i  2   = 4 A        and        ( i  1   −  i  2   ) = 2 A 

If our circuit contains M meshes, then we expect to have M mesh cur-
rents and therefore will be required to write M independent equations.

Now let us consider this same problem in a slightly different manner by 
using mesh currents. We define a mesh current as a current that flows only 
around the perimeter of a mesh. If we call the left-hand mesh of our problem 
mesh 1, then we may establish a mesh current i1 flowing in a clockwise di-
rection about this mesh. A mesh current is indicated by a curved arrow that 
almost closes on itself and is drawn inside the appropriate mesh, as shown 
in Fig. 4.17. The mesh current i2 is established in the remaining mesh, again 
in a clockwise direction. Although the directions are arbitrary, we will al-
ways choose clockwise mesh currents because a certain error-minimizing 
symmetry then results in the equations.

We should mention that mesh-type analysis can 

be applied to nonplanar circuits, but since it is not 

possible to define a complete set of unique meshes 

for such circuits, assignment of unique mesh currents 

is not possible.

■  FIGURE 4.16 (a, b) A simple circuit for which 
currents are required.

+
– +

–
42 V 10 V3 Ω

6 Ω 4 Ω

(a) (b)

i1 i2

(i1 – i2)

+
– +

–
42 V 10 V3 Ω

6 Ω 4 Ω

+
– +

–
42 V 10 V3 Ω

6 Ω 4 Ω

(a) (b)

i1 i2

(i1 – i2)

+
– +

–
42 V 10 V3 Ω

6 Ω 4 Ω

■  FIGURE 4.17 The same circuit considered in 
Fig. 4.16b, but viewed a slightly different way.

i1 i2+
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We no longer have a current or current arrow shown directly on each 
branch in the circuit. The current through any branch must be determined by 
considering the mesh currents flowing in every mesh in which that branch 
appears. This is not difficult, because no branch can appear in more than 
two meshes. For example, the 3 Ω resistor appears in both meshes, and the 
current flowing downward through it is i1 − i2. The 6 Ω resistor appears only 
in mesh 1, and the current flowing to the right in that branch is equal to the 
mesh current i1.

For the left-hand mesh,

  − 42 + 6 i  1   + 3( i  1   −  i  2   ) = 0  [31]

while for the right-hand mesh,

  3( i  2   −  i  1  ) + 4 i  2   − 10 = 0  [32]

and these two equations are equivalent to Eqs. [29] and [30].

A mesh current may often be identified as a branch 

current, as i1 and i2 have been identified in this exam-

ple. This is not always true, however, for consider-

ation of a square nine-mesh network soon shows that 

the central mesh current cannot be identified as the 

current in any branch.

EXAMPLE 4.7
Determine the power supplied by the 2 V source of Fig. 4.18a.

+
–

+
–

+
–5 V 1 V

4 Ω 5 Ω

2 V

2 Ω

i1 i2

+
–

+
–

+
–5 V 1 V

4 Ω 5 Ω

2 V

2 Ω

(a) (b)

■  FIGURE 4.18 (a) A two-mesh circuit containing three sources. (b) Circuit labeled for mesh 
analysis. 

We first define two clockwise mesh currents as shown in Fig. 4.18b.
Beginning at the bottom left node of mesh 1, we write the following 

KVL equation as we proceed clockwise through the branches:

 − 5 + 4  i  1   + 2( i  1   −  i  2   ) − 2 = 0 

Doing the same for mesh 2, we write 

 +2 + 2( i  2   −  i  1  ) + 5 i  2   + 1 = 0 

Rearranging and grouping terms,

 6 i  1   − 2  i  2   = 7 

and

 − 2  i  1   + 7  i  2   = − 3 

Solving,   i  1   =   43 __ 38   = 1.132  A and   i  2   = −   2 __ 19   = − 0.1053  A. 

The current flowing out of the positive reference terminal of the 2 V 
source is i1 − i2. Thus, the 2 V source supplies (2)(1.237) = 2.474 W.
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Let us next consider the five-node, seven-branch, three-mesh circuit 
shown in Fig. 4.20. This is a slightly more complicated problem because of 
the additional mesh.

PRACTICE 
●

4.6 Determine i1 and i2 in the circuit in Fig. 4.19. 

+
–

+
–6 V 5 V

14 Ω 10 Ω

5 Ω

5 Ω

i1 i2

■  FIGURE 4.19

Ans: +184.2 mA; −157.9 mA.

EXAMPLE 4.8
Use mesh analysis to determine the three mesh currents in the 
circuit of Fig. 4.20.

The three required mesh currents are assigned as indicated in Fig. 4.20, 
and we methodically apply KVL about each mesh:

− 7 + 1(i1 − i2) + 6 + 2(i1 − i3) = 0
1(i2 − i1) + 2i2 + 3(i2 − i3) = 0

2(i3 − i1) − 6 + 3(i3 − i2) + 1i3 = 0

Simplifying,

3 i1 − i2 − 2 i3 = 1
− i1 + 6i2 − 3 i3 = 0

− 2 i1 − 3i2 + 6 i3 = 6

and solving, we obtain i1 = 3 A, i2 = 2 A, and i3 = 3 A.

PRACTICE 
●

4.7 Determine i1 and i2 in the circuit of Fig 4.21. 

+
–10 V

+
–3 V

5 Ω

7 Ω

4 Ω

1 Ω

9 Ω

i1

i2

10 Ω

■  FIGURE 4.21

Ans: 2.220 A; 470.0 mA.

■  FIGURE 4.20 A five-node, seven-branch, three-
mesh circuit.
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–
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The previous examples dealt with circuits powered exclusively by inde-
pendent voltage sources. If a current source is included in the circuit, it may 
either simplify or complicate the analysis, as discussed in Sec. 4.4. As seen 
in our study of the nodal analysis technique, dependent sources generally 
require an additional equation besides the M mesh equations, unless the 
controlling variable is a mesh current (or sum of mesh currents). We explore 
this in the following example.

EXAMPLE 4.9
Determine the current i1 in the circuit of Fig. 4.22a.

The current i1 is actually a mesh current, so rather than redefine it we 
label the rightmost mesh current i1 and define a clockwise mesh current 
i2 for the left mesh, as shown in Fig. 4.22b.

For the left mesh, KVL yields

  − 5 − 4  i  1   + 4  (   i  2   −  i  1   )    + 4  i  2   = 0  [33]

and for the right mesh we find

  4  (   i  1   −  i  2   )    + 2  i  1   + 3 = 0  [34]

Grouping terms, these equations may be written more compactly as

 − 8  i  1   + 8  i  2   = 5 

and

 6  i  1   − 4  i  2   = − 3 

Solving, i2 = 375 mA, so i1 = −250 mA.

EXAMPLE 4.10
Determine the current i1 in the circuit of Fig. 4.23a.

In order to draw comparisons to Example 4.9 we use the same mesh 
current definitions, as shown in Fig. 4.23b.

For the left mesh, KVL now yields

  − 5 − 2  v  x   + 4( i  2   −  i  1   ) + 4  i  2   = 0  [35] 

and for the right mesh we find the same as before, namely,

  4( i  1   −  i  2   ) + 2  i  1   + 3 = 0  [36]

■  FIGURE 4.22 (a) A two-mesh circuit containing 
a dependent source. (b) Circuit labeled for mesh 
analysis.

2 Ω

4 Ω

5 V 3 V+
–

+
–

+–

i1

4 Ω

4i1

(a)

2 Ω

4 Ω

5 V 3 V+
–

+
–

+–

4 Ω

4i1

(b)

i1
i2

Since the dependent source of Fig. 4.22 is controlled by a mesh current 
(i1), only two equations—Eqs. [33] and [34]—were required to analyze the 
two-mesh circuit. In the following example, we explore the situation that 
arises if the controlling variable is not a mesh current.
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The mesh analysis procedure can be summarized by the seven basic 
steps that follow. It will work on any planar circuit we ever encounter, al-
though the presence of current sources will require extra care. Such situa-
tions are discussed in Sec. 4.4.

2 Ω

4 Ω

5 V 3 V+
–

+
–

+–

i1

4 Ω

2vx
2 Ω

4 Ω

5 V 3 V+
–

+
–

+–

4 Ω

2vx

(a) (b)

vx

+

–
vx

+

–
i2 i1

■  FIGURE 4.23 (a) A circuit with a dependent source controlled by a voltage. (b) Circuit 
labeled for mesh analysis.

Since the dependent source is controlled by the unknown voltage vx, 
we are faced with two equations in three unknowns. The way out of our 
dilemma is to construct an equation for vx in terms of mesh currents, 
such as

   v  x   = 4( i  2   −  i  1   )  [37] 
We simplify our system of equations by substituting Eq. [37] into 

Eq. [35], resulting in

 4  i  1   = 5 

Solving, we find that i1 = 1.25 A. In this particular instance, Eq. [36] 
is not needed unless a value for i2 is desired.

PRACTICE 
●

4.8 Determine i1 in the circuit of Fig. 4.24 if the controlling quantity A 
is equal to (a) 2i2; (b) 2vx. 

Ans: (a) 1.35 A; (b) 546 mA.
■  FIGURE 4.24

3 Ω

2 V 6 V+
–

–
+

4 Ω

2 Ω

5 Ω

–+

A

vx

+

–
i1 i2

Summary of Basic Mesh Analysis Procedure

1. Determine if the circuit is a planar circuit. If not, perform nodal 
analysis instead.

2. Count and label each mesh current in the circuit. Redraw 
the circuit if necessary. Generally, defining all mesh currents to 
flow clockwise results in a simpler analysis.

3. Write a KVL equation around each mesh. Begin with a con-
venient node and proceed in the direction of the mesh current. 
Pay close attention to minus signs. If a current source lies on the 
periphery of a mesh, no KVL equation is needed since the mesh 
current is already defined!

hay01307_ch04_085-132.indd   105 23/01/18   5:33 pm



CHAPTER 4 BASIC NodAL ANd MESh ANALySIS106

4.4 • THE SUPERMESH
How must we modify this straightforward procedure when a current source 
is present in the network? Taking our lead from nodal analysis, there are 
two possible methods. First, we could assign an unknown voltage across 
the current source, apply KVL around each mesh as before, and then relate 
the source current to the assigned mesh currents. This is generally the more 
tedious approach.

A better technique is one that is quite similar to the supernode approach 
in nodal analysis. There we formed a supernode, completely enclosing the 
voltage source inside the supernode and reducing the number of nonrefer-
ence nodes by 1 for each voltage source. Now we create a “supermesh” 
from two meshes that have a current source as a common element; the cur-
rent source is in the interior of the supermesh. We thus reduce the number of 
meshes by 1 for each current source present. If the current source lies on the 
perimeter of the circuit, then the single mesh in which it is found is ignored. 
Kirchhoff’s voltage law is thus applied only to those meshes or supermeshes 
in the reinterpreted network.

4. Express any additional unknowns in terms of appropriate 
mesh currents. This situation can occur if current sources or 
dependent sources appear in our circuit.

5. Organize the equations. Group terms according to mesh 
 currents.

6. Solve the system of equations for the mesh currents.

EXAMPLE 4.11
Determine the three mesh currents in Fig. 4.25a.

i2

i3

i1+
–7 V

7 A

1 Ω

2 Ω
1 Ω

2 Ω
3 Ω

(a)

i2

i3

i1+
–7 V

7 A

1 Ω

2 Ω

(b)

1 Ω

2 Ω
3 Ω

■  FIGURE 4.25 (a) A three-mesh circuit with an independent current source. (b) A supermesh 
is defined by the colored line.

We note that a 7 A independent current source is in the common boundary 
of two meshes, which leads us to create a supermesh whose interior is that 
of meshes 1 and 3 as shown in Fig. 4.25b. Applying KVL around this loop,

 − 7 + 1( i  1   −  i  2   ) + 3( i  3   −  i  2   ) + 1  i  3   = 0 
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The presence of one or more dependent sources merely requires each of 
these source quantities and the variable on which it depends to be expressed 
in terms of the assigned mesh currents. In Fig. 4.27, for example, we note 
that both a dependent and an independent current source are included in the 
network. Let’s see how their presence affects the analysis of the circuit and 
actually simplifies it.

or

   i  1   − 4  i  2   + 4  i  3   = 7  [38]

and around mesh 2,

 1( i  2   −  i  1   ) + 2  i  2   + 3( i  2   −  i  3   ) = 0 

or

  −  i  1   + 6  i  2   − 3  i  3   = 0  [39]

Finally, the independent source current is related to the mesh cur-
rents,

   i  1   −  i  3   = 7  [40]

Solving Eqs. [38] through [40], we find i1 = 9 A, i2 = 2.5 A, and  
i3 = 2 A.

PRACTICE 
●

4.9 Determine the current i1 in the circuit of Fig. 4.26. 

Ans: −1.93 A.

+
–10 V

3 A

5 Ω

7 Ω

4 Ω

1 Ω

9 Ω

i1
10 Ω

■  FIGURE 4.26

EXAMPLE 4.12
Evaluate the three unknown currents in the circuit of Fig. 4.27.

The current sources appear in meshes 1 and 3. Since the 15 A source is 
located on the perimeter of the circuit, we may eliminate mesh 1 from 
consideration—it is clear that i1 = 15 A.

We find that because we now know one of the two mesh cur-
rents relevant to the dependent current source, there is no need to 
write a supermesh equation around meshes 1 and 3. Instead, we 
simply relate i1 and i3 to the current from the dependent source 
using KCL:

    v  x   __ 9   =  i  3   −  i  1   =   3( i  3   −  i  2   ) ______ 9   

which can be written more compactly as

  −  i  1   +   1 _ 3    i  2   +   2 _ 3    i  3   = 0        or           1 _ 3    i  2   +   2 _ 3    i  3   = 15  [41]

(Continued on next page)

■  FIGURE 4.27 A three-mesh circuit with one 
dependent and one independent current source.
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We can now summarize the general approach to writing mesh equations, 
whether or not dependent sources, voltage sources, and/or current sources 
are present, provided that the circuit can be drawn as a planar circuit:

With one equation in two unknowns, all that remains is to write a 
KVL equation around mesh 2:

 1( i  2   −  i  1   ) + 2  i  2   + 3( i  2   −  i  3   ) = 0 

or

  6  i  2   − 3  i  3   = 15  [42]

Solving Eqs. [41] and [42], we find that i2 = 11 A and i3 = 17 A; we 
already determined that i1 = 15 A by inspection.

PRACTICE 
●

4.10 Determine v3 in the circuit of Fig. 4.28. 
i1

+–

+
–80 V

30 Ω

10 Ω

20 Ω

40 Ω

30 V

v3
–

+

15i1

■  FIGURE 4.28

Ans: 104.2 V.

Summary of Supermesh Analysis Procedure

1. Determine if the circuit is a planar circuit. If not, perform nodal 
analysis instead.

2. Count and label each mesh current in the circuit. Redraw 
the circuit if necessary. Generally, defining all mesh currents to 
flow clockwise results in a simpler analysis.

3. If the circuit contains current sources shared by two mesh-
es, form a supermesh to enclose both meshes. A highlighted 
enclosure helps when writing KVL equations.

4. Write a KVL equation around each mesh/supermesh. Begin 
with a convenient node and proceed in the direction of the mesh 
current. Pay close attention to minus signs. If a current source 
lies on the periphery of a mesh, no KVL equation is needed 
since the mesh current is already defined!
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4.5 • NODAL VS. MESH ANALYSIS: A COMPARISON
Now that we have examined two distinctly different approaches to circuit 
analysis, it seems logical to ask if there is ever any advantage to using one 
over the other. If the circuit is nonplanar, then there is no choice: only nodal 
analysis may be applied.

Provided that we are indeed considering the analysis of a planar circuit, 
however, there are situations where one technique has a small advantage 
over the other. If we plan to use nodal analysis, then a circuit with N nodes 
will lead to at most (N − 1) KCL equations. Each supernode defined will 
further reduce this number by 1. If the same circuit has M distinct meshes, 
then we will obtain at most M KVL equations; each supermesh will reduce 
this number by 1. Based on these facts, we should select the approach that 
will result in the smaller number of simultaneous equations.

If one or more dependent sources are included in the circuit, then each 
controlling quantity may influence our choice of nodal or mesh analysis. 
For example, a dependent voltage source controlled by a nodal voltage does 
not require an additional equation when we perform nodal analysis. Like-
wise, a dependent current source controlled by a mesh current does not 
require an additional equation when we perform mesh analysis. What about 
the situation where a dependent voltage source is controlled by a current? 
Or the converse, where a dependent current source is controlled by a volt-
age? Provided that the controlling quantity can be easily related to mesh 
currents, we might expect mesh analysis to be the more straightforward 
option. Likewise, if the controlling quantity can be easily related to nodal 
voltages, nodal analysis may be preferable. One final point in this regard is 
to keep in mind the location of the source; current sources which lie on the 
periphery of a mesh, whether dependent or independent, are easily treated 
in mesh analysis; voltage sources connected to the reference terminal are 
easily treated in nodal analysis.

When either method results in essentially the same number of equations, 
it may be worthwhile to also consider what quantities are being sought. 
Nodal analysis results in direct calculation of nodal voltages, whereas mesh 
analysis provides currents. If we are asked to find currents through a set of 
resistors, for example, after performing nodal analysis, we must still invoke 
Ohm’s law at each resistor to determine the current.

5. Relate the current flowing from each current source to 
mesh currents. This is accomplished by simple application 
of KCL; one such equation is needed for each supermesh 
defined.

6. Express any additional unknowns in terms of appropriate 
mesh currents. This situation can occur if current sources or 
dependent sources appear in our circuit.

7. Organize the equations. Group terms according to mesh 
 currents.

8. Solve the system of equations for the mesh currents.
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As an example, consider the circuit in Fig. 4.29. We wish to determine 
the current ix.

We choose the bottom node as the reference node, and note that there are 
four nonreference nodes. Although this means that we can write four dis-
tinct equations, there is no need to label the node between the 100 V source 
and the 8 Ω resistor, since that node voltage is clearly 100 V. Thus, we label 
the remaining node voltages v1, v2, and v3 as in Fig. 4.30.

Solving, we find that v1 = 25.89 V and v2 = 20.31 V. We determine the 
current ix by application of Ohm’s law:

   i  x   =    v  1   −  v  2   ____ 2   = 2.79  A  [46]

We write the following three equations:

         v  1   − 100 ______ 8   +    v  1   __ 4   +    v  1   −  v  2   ____ 2   = 0      or                          0.875  v  1   − 0.5  v  2   = 12.5  [43]

    v  2   −  v  1   ____ 2   +    v  2   __ 3   +    v  2   −  v  3   ____ 10   − 8 = 0     or      − 0.5  v  1   − 0.9333  v  2   − 0.1  v  3   = 8  [44]

            v  3   −  v  2   ____ 10   +    v  3   __ 5   + 8 = 0     or                          −0.1  v  2   + 0.3  v  3   = − 8  [45]

■  FIGURE 4.29 A planar circuit with five nodes and four meshes.

+
–100 V

8 A

4 Ω 3 Ω 5 Ω

8 Ω

2 Ω 10 Ω

ix

+
–100 V

8 A

4 Ω 3 Ω 5 Ω

8 Ω

2 Ω 10 Ω

v2v1 v3

ix

■  FIGURE 4.30 The circuit of Fig. 4.29 with node voltages 
labeled. Note that an earth ground symbol was chosen to 
designate the reference terminal.
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Next, we consider the same circuit using mesh analysis. We see in Fig. 4.31 
that we have four distinct meshes, although it is obvious that i4 = −8 A;  
we therefore need to write three distinct equations.

Writing a KVL equation for meshes 1, 2, and 3:

 − 100 + 8  i  1   + 4( i  1   −  i  2   ) = 0  or                       12  i  1   − 4  i  2   = 100  [47]

 4( i  2   −  i  1   ) +2  i  2   + 3( i  2   −  i  3   ) = 0  or         − 4  i  1   + 9  i  2   − 3  i  3   = 0  [48]

 3( i  3   −  i  1   ) +10( i  3   + 8 ) + 5  i  3   = 0  or                   −3  i  2   + 18  i  3   = − 80  [49]

Solving, we find that i2 (= ix) = 2.79 A. For this particular problem, 
mesh analysis proved to be simpler. Since either method is valid, however, 
working the same problem both ways can also serve as a means to check 
our answers.

4.6 • COMPUTER-AIDED CIRCUIT ANALYSIS
We have seen that it does not take many components at all to create a cir-
cuit of respectable complexity. As we continue to examine even more com-
plex circuits, it will become obvious rather quickly that it is easy to make 
errors during the analysis, and verifying solutions by hand can be time- 
consuming. Computer-aided design (CAD) software is commonly employed 
for rapid analysis of circuits, often including schematic capture tools that 
can be integrated with either printed circuit board or circuit layout tools. 
A general-purpose, open-source circuit simulator known as SPICE (Simu-
lation Program with Integrated Circuit Emphasis), originally developed in 
the early 1970s at the University of California at Berkeley, is an industry 
standard. There are many software packages now available that have built 
intuitive graphical interfaces around the core SPICE program, each with 
their own strengths and limitations. In this book, we employ LTspice, a 
freeware package from Linear Technology (now part of Analog Devices) 
that is widely used and runs on both Windows and Mac OS X.

Although computer-aided analysis is a relatively quick means of deter-
mining voltages and currents in a circuit, we should be careful not to allow 
simulation packages to completely replace traditional “paper and pencil” 
analysis. There are several reasons for this. First, in order to design we must 
be able to analyze. Overreliance on software tools can inhibit the develop-
ment of necessary analytical skills, similar to introducing calculators too 
early in grade school. Second, it is virtually impossible to use a complicated 

■  FIGURE 4.31 The circuit of Fig. 4.29 with mesh currents labeled.
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software package over a long period of time without making some type of 
data-entry error. If we have no basic intuition as to what type of answer to 
expect from a simulation, then there is no way to determine whether or not 
it is valid. Thus, the generic name really is a fairly accurate description: 
computer-aided analysis. Human brains are not obsolete. Not yet, anyway.

As an example, consider the circuit of Fig. 4.16b, which includes two dc 
voltage sources and three resistors. We wish to simulate this circuit using 
SPICE so that we may determine the currents i1 and i2. Figure 4.32a shows 
the circuit as drawn using LTspice.

In order to determine the mesh currents, we only need to run a bias point 
simulation. Under Draft, select SPICE directive, and type in .op. Then click 
Run! The results of the simulation may be viewed directly on the schematic 
using .op Data Labels, in the Waveform Data window, or by looking at the 
log file. The log file (keyboard shortcut command-L) is shown in Fig. 4.32b. 

(a)

(b)

■  FIGURE 4.32 (a) Circuit of Fig. 4.16a drawn using LTspice. (b) output log after simulation, 
showing the voltage at each node and current through each component.
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We see that the two currents i1 and i2 are 6 A and 4 A, respectively, as we 
found previously. Be sure to note the assigned current direction! LTspice 
and other packages typically do not show the current direction assigned. For 
LTspice, after the simulation, you can move your cursor over an element 
in the schematic to see the current direction defined (a current probe icon 
with an arrow defining the direction should appear). LTspice assumes the 
passive sign convention, though you need to know the polarity assigned to 
the component (more detail given in Practical Application at the end of this  
section). 

As a further example, consider the circuit shown in Fig. 4.33a. It contains 
a dc voltage source, a dc current source, and a voltage-controlled current 
source. We are interested in the three nodal voltages, which from either 
nodal or mesh analysis are found to be 82.91 V, 69.9 V, and 59.9 V, respec-
tively, as we move from left to right across the top of the circuit. Figure 4.33b 
shows this circuit after the simulation was performed. The three nodal volt-
ages are indicated directly on the schematic. Note that the dependent source 
uses a “behavioral” current source component bi, where the current may be 
defined by another voltage or current in the circuit. The nodes Va and Vb 
were defined using Net Name, and the value of the current in the dependent 
source may then be defined by the function I = 0.2*(v(Va) − v(Vb)). 

18 Ω

33 Ω

20 Ω5 A 0.2 V2

10 V

(b)

(a)

+ –

V2+ –

■  FIGURE 4.33 (a) Circuit with dependent current source. (b) Circuit drawn using a schematic capture 
tool, with simulation results presented directly on the schematic.
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At this point, the real power of computer-aided analysis begins to be ap-
parent: Once you have the circuit drawn in the schematic capture program, it 
is easy to experiment by simply changing component values and observing 
the effect on currents and voltages. To gain a little experience at this point, 
try simulating any of the circuits shown in previous examples and practice 
problems.

SUMMARY AND REVIEW

Although Chap. 3 introduced KCL and KVL, both of which are suffi-
cient to enable us to analyze any circuit, a more methodical approach 
proves helpful in everyday situations. Thus, in this chapter we developed 

The most common method of describing a circuit in con-
junction with computer-aided circuit analysis is with some 
type of graphical schematic drawing package, an example 
output of which was shown in Fig. 4.33. SPICE, however, 
was written before the advent of such software, and as 
such requires circuits to be described in a specific text-
based format. The format has its roots in the syntax used 
for punch cards, which gives it a somewhat distinct ap-
pearance. The basis for circuit description is the definition 
of elements, each terminal of which is assigned a node 
number. So, although we have just studied two different 
generalized circuit analysis methods—the nodal and mesh 
techniques—it is interesting that SPICE and was written 
using a clearly defined nodal analysis approach.

Even though graphics-oriented interactive software 
is convenient, the ability to read the text-based “input 

deck” generated by the schematic capture tool can be in-
valuable in tracking down specific problems. The easiest 
way to develop such an ability is to learn how to run 
SPICE directly from a user-written input deck. Proficient 
users sometimes also find that a text-based definition of 
the circuit can be faster and more convenient than using 
a graphical interface! 

Consider, for example, the following voltage di-
vide circuit and corresponding input deck (lines begin-
ning with an asterisk are comments and are skipped by 
SPICE). Each component is defined, followed by node 
number, followed by component value. The terminal 
polarity for the component is defined as the first listed 
node as the positive terminal, and the second node as the 
negative terminal. 

We can create the input deck by using a favorite text 
editor or the New ASCII File function in LTspice. Sav-
ing the file under the name Example_text.cir, we next 
invoke LTspice (see Appendix 4). A netlist such as this, 

containing instructions for the simulation to be per-
formed, can be created by schematic capture software or 
created manually as in this example.

PRACTICAL APPLICATION
Node-Based Circuit Definition

* Example SPICE input deck for simple voltage divider circuit.

.OP (Requests dc operating point)
R1 1 2 1k (Locates R1 between nodes 1 and 2; value is 1 kΩ)
R2 2 0 1k (Locates R2 between nodes 2 and 0; also 1 kΩ)
V1 1 0 5 (Locates 5 V source between nodes 1 and 0)
.end (End of input deck)
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the nodal analysis technique based on KCL, which results in a voltage 
at each node (with respect to some designated “reference” node). We 
generally need to solve a system of simultaneous equations, unless volt-
age sources are connected so that they automatically provide nodal volt-
ages. The controlling quantity of a dependent source is written down 
just as we would write down the numerical value of an “independent” 
source. Typically an additional equation is then required, unless the de-
pendent source is controlled by a nodal voltage. When a voltage source 
bridges two nodes, the basic technique can be extended by creating 
a supernode; KCL dictates that the sum of the currents flowing into 
a group of connections so defined is equal to the sum of the currents  
flowing out.

■  FIGURE 4.34 (a) Schematic diagram of voltage divider, (b) LTspice window showing the input deck describing the voltage divider, and (c) output 
log file, showing nodal voltages and current through each component. Note that the voltage across R1 requires post-simulation subtraction.

+
–

R1 = 1 kΩ

5 V R2 = 1 kΩ

IR1

IV1

IR2

21

0
(a)

(b)

(c)

+
–

R1 = 1 kΩ

5 V R2 = 1 kΩ

IR1

IV1

IR2

21

0
(a)

(b)

(c)

+
–

R1 = 1 kΩ

5 V R2 = 1 kΩ

IR1

IV1

IR2

21

0
(a)

(b)

(c)

We run the simulation by clicking the Run! command 
(running person icon on top left). To view the results, use 
Open Log File  (shortcut command+L), which provides 
the window shown in Fig. 4.34b. Here it is worth noting 

that the output provides the expected nodal voltages (5 V 
at node 1, 2.5 V across resistor R2), and the current quoted 
using the passive sign convention (i.e., +2.5 mA through 
the resistors and −2.5 mA through the voltage source).
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As an alternative to nodal analysis, the mesh analysis technique was 
developed through application of KVL; it yields the complete set of mesh 
currents, which do not always represent the net current flowing through any 
particular element (for example, if an element is shared by two meshes). 
The presence of a current source will simplify the analysis if it lies on the 
periphery of a mesh; if the source is shared, then the supermesh technique 
is best. In that case, we write a KVL equation around a path that avoids the 
shared current source, then algebraically link the two corresponding mesh 
currents using the source.

A common question is: “Which analysis technique should I use?” We 
discussed some of the issues that might go into choosing a technique for 
a given circuit. These included whether or not the circuit is planar, what 
types of sources are present and how they are connected, and also what 
specific information is required (i.e., a voltage, current, or power). For com-
plex circuits, it may take a greater effort than it is worth to determine the 
“optimum” approach, in which case most people will opt for the method 
with which they feel most comfortable. We concluded the chapter by intro-
ducing LTspice, a common circuit simulation tool, which is very useful for 
checking our results.

At this point we wrap up by identifying key points of this chapter to 
review, along with relevant example(s).

 Start each analysis with a neat, simple circuit diagram. Indicate all 
element and source values. (Example 4.1)

 For nodal analysis,
   Choose one node as the reference node. Then label the node voltages 

v1, v2,..., vN−1. Each is understood to be measured with respect to the 
reference node. (Examples 4.1, 4.2)

   If the circuit contains only current sources, apply KCL at each non-
reference node. (Examples 4.1, 4.2)

   If the circuit contains voltage sources, form a supernode about each 
one, and then apply KCL at all nonreference nodes and supernodes. 
(Examples 4.5, 4.6)

 For mesh analysis, first make certain that the network is a planar net-
work.

   Assign a clockwise mesh current in each mesh: i1, i2,..., iM. (Exam-
ple 4.7)

   If the circuit contains only voltage sources, apply KVL around each 
mesh. (Examples 4.7, 4.8, 4.9)

   If the circuit contains current sources, create a supermesh for each 
one that is common to two meshes, and then apply KVL around 
each mesh and supermesh. (Examples 4.11, 4.12)

 Dependent sources will add an additional equation to nodal analysis if 
the controlling variable is a current, but not if the controlling variable 
is a nodal voltage. (Conversely, a dependent source will add an addi-
tional equation to mesh analysis if the controlling variable is a voltage, 
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but not if the controlling variable is a mesh current.) (Examples 4.3, 
4.4, 4.6, 4.9, 4.10, 4.12)

 In deciding whether to use nodal or mesh analysis for a planar circuit, 
a circuit with fewer nodes/supernodes than meshes/supermeshes will 
result in fewer equations using nodal analysis.

 Computer-aided analysis is useful for checking results and analyzing 
circuits with large numbers of elements. However, common sense must 
be used to check simulation results.

READING FURTHER
A detailed treatment of nodal and mesh analysis can be found in:

R. A. DeCarlo and P. M. Lin, Linear Circuit Analysis, 2nd ed. New York: 
Oxford University Press, 2001.

A solid guide to SPICE is

P. Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis Using 
PSPICE, 3rd ed. Upper Saddle River, N.J.: Prentice-Hall, 1995.

EXERCISES

4.1 Nodal Analysis
1. Solve the following systems of equations:  

(a) 2v2 − 4v1 = 9 and v1 − 5v2 = −4;
(b) − v1 + 2v3 = 8; 2v1 + v2 − 5v3 = −7; 4v1 + 5v2 + 8v3 = 6.

2. (a) Solve the following system of equations:

  

3 =    v  1   __ 5    −     v  2    −   v  1   _____ 22   +    v  1    −   v  3   _____ 3  

    2 − 1 =    v  2    −   v  1   _____ 22   +    v  2    −   v  3   _____ 14      

0 =    v  3   __ 10   +    v  3    −   v  1   _____ 3   +    v  3    −   v  2   _____ 14  

   

(b) Verify your solution using MATLAB.

3. (a) Solve the following system of equations:

  

7 =    v  1   __ 2    −     v  2    −   v  1   _____ 12   +    v  1    −   v  3   _____ 19  

    15 =    v  2    −   v  1   _____ 12   +    v  2    −   v  3   _____ 2     

4 =    v  3   __ 7   +    v  3    −   v  1   _____ 19   +    v  3    −   v  2   _____ 2  

   

(b) Verify your solution using MATLAB.

4. Correct (and verify by running) the following MATLAB code:

syms e1 e2 e3
e1 = 3 = v1/7 − (v2 − v1)/2 + (v1 − v3)/3;
e2 = 2 == (v2 − v1)/2 + (v2 − v3)/14;
e = 0 == v3/10 + (v3 − v1)/3 + (v3 − v2)/14;
a = sove(e e2 e3,[v1 v2 v3]);
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5. In the circuit of Fig. 4.35, determine the current labeled i with the assistance of 
nodal analysis techniques.

5 A 4 A1 Ω

5 Ω

Ref.

2 Ω

v1

i

v2

■  FIGURE 4.35

6. Calculate the power dissipated in the 1 Ω resistor of Fig. 4.36.

2 Ω

3 Ω 2 A3 A 1 Ω

■  FIGURE 4.36

7. For the circuit in Fig. 4.37, determine the value of the current ix.

2 A 4 Ω

2 Ω

3 Ω 0.5ix
ix

■  FIGURE 4.37

8. With the assistance of nodal analysis, determine v1 − v2 in the circuit shown in 
Fig. 4.38.

4 Ω

2 Ω

1 Ω

5 Ω

2 A 15 A

v1 v2

■  FIGURE 4.38

9. For the circuit of Fig. 4.39, determine the value of the voltage labeled vx.

3 Ω

1 Ω

2 A 6 Ω6 Ω

vx+ –

+
– 2 V

■  FIGURE 4.39
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10. For the circuit of Fig. 4.40, determine the value of the voltage labeled vo.

vx

+

–

vo

+

–

4 kΩ 400 Ω

2 kΩ 50 Ω100 mA12 V +
– 0.015vx

■  FIGURE 4.40

11. Use nodal analysis to find vP in the circuit shown in Fig. 4.41.

vP

+

–

50 Ω

10 Ω

40 Ω

20 Ω 100 Ω 200 Ω5 A10 A 2.5 A

2 A

■  FIGURE 4.41

12. Using the bottom node as reference, determine the voltage across the 5 Ω 
resistor in the circuit of Fig. 4.42, and calculate the power dissipated by the 7 Ω 
resistor.

1 Ω

7 Ω5 Ω

3 Ω

3 Ω

5 A8 A

4 A

■  FIGURE 4.42

13. For the circuit of Fig. 4.43, use nodal analysis to determine the current i5.

14. Determine a numerical value for each nodal voltage in the circuit of  
Fig. 4.44.

5 Ω

10 Ω
1 A

2 A

5 Ω2 Ω

6 Ω 5 Ω2 Ω

1 Ω

4 Ω
6 A

2 A

4 Ω1 Ω

4 Ω 10 Ω2 Ω

v1

v3 v7

v2 v6
v4 v5 v8

■  FIGURE 4.44

6 Ω

7 Ω
2 A

3 A

5 Ω2 Ω

1 Ω 4 Ω3 Ω

i5

■  FIGURE 4.43

hay01307_ch04_085-132.indd   119 23/01/18   5:33 pm



CHAPTER 4 BASIC NodAL ANd MESh ANALySIS120

15. Determine the current i2 as labeled in the circuit of Fig. 4.45, with the assis-
tance of nodal analysis.

3 Ω

10 A

2 Ω

7 Ω

5 Ω

v1 +–

v3– +

0.02v1

i2

■  FIGURE 4.45

16. Using nodal analysis as appropriate, determine the current labeled i1 in the 
circuit of Fig. 4.46.

vx– +

vx

1 A

5 Ω 2 Ω

3 Ω

i1

■  FIGURE 4.46

17. For the circuit of Fig. 4.47, determine the value of the voltage labeled vx.

+
– 80 Ω

5 Ω

15 Ω

10 Ω

0.3 A5 V

vx+ –

■  FIGURE 4.47

4.2 The Supernode
18. Determine the nodal voltages as labeled in Fig. 4.48, making use of the super-

node technique as appropriate.

5 Ω

4 Ω

1 Ω

5 A

3 Ω
3 A

8 A

2 Ω

v1
v2 v3–+

Ref.
■  FIGURE 4.48
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19. For the circuit shown in Fig. 4.49, determine a numerical value for the voltage 
labeled v1.

3 A
9 V

5 A

+ –

1 Ω

9 Ω5 Ω

v1

■  FIGURE 4.49

20. For the circuit of Fig. 4.50, determine all four nodal voltages.

+
–5 V+

– 6 V

2 A
1 Ω 2 Ω

4 Ω

10 Ω

■  FIGURE 4.50

21. Employing supernode/nodal analysis techniques as appropriate, determine the 
power dissipated by the 1 Ω resistor in the circuit of Fig. 4.51.

+
–

+–

7 V3 A

2 A

4 V

1 Ω
–+

4 V3 Ω

2 Ω
■  FIGURE 4.51

22. Referring to the circuit of Fig. 4.52, obtain a numerical value for the power 
supplied by the 1 V source.

+
–

–+

1 V

4 V

4 A

6 A

14 Ω
+–

3 V

7 Ω7 Ω

2 Ω

3 Ω
2 Ω

■  FIGURE 4.52
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23. For the circuit in Fig. 4.53, determine the node voltages v1 and v2.

2 A

0.5 A

5 V

4 Ω

2 Ω

10 Ω 12 V

8 Ωv1 v2

+
–

+–

■  FIGURE 4.53

24. Repeat Exercise 23 for the case if the top 5 V voltage source is removed (open 
circuit).

25. Repeat Exercise 23 for the case where the 12 V voltage source on the right is 
replaced by a current source of 1 A pointing up.

26. Determine the voltage vx in the circuit of Fig. 4.54 and the power supplied by 
the 1 A source.

2vx

8 Ω

2 Ω5 Ω1 A

8 A

vx

+

–

– +

■  FIGURE 4.54

27. Consider the circuit of Fig. 4.55. Determine the current labeled i1.

2 Ω

4 Ω

3 V 4 V+
–

+
–

+–

i1

2 A

0.5i1

■  FIGURE 4.55

28. Determine the value of k that will result in vx being equal to zero in the circuit 
of Fig. 4.56.

–
+

+
–1 Ω

4 Ω1 Ω

1 A2 V

Ref.

3 Ω

kvy

vx vy

■  FIGURE 4.56
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29. For the circuit depicted in Fig. 4.57, determine the voltage labeled v1 across the 
3 Ω resistor.

2 Ω

2 A

5 Ω

3 Ω
v1+ –

v14v1
+
–

■  FIGURE 4.57

30. For the circuit of Fig. 4.58, determine all four nodal voltages.

2vx

1 Ω

2 Ω

3 Ω

Ref.
3 A

+
– 1 V

v2v4

v3

v1

4 Ω

1 Ω
vx

+

–

■  FIGURE 4.58

31. For the circuit of Fig. 4.59, determine the unknown node voltages v1, v2,  
v3, and v4.

9 V
0.4 A 10 Ω

15 V

4 Ω 6 Ω 5 Ω

3 Ω

2 Ω
4 Ω

v2v1

v4v3

+
–

+
–

ix

2ix

+–

5ix

■  FIGURE 4.59

4.3 Mesh Analysis

32. Determine the currents flowing out of the positive terminal of each voltage 
source in the circuit of Fig. 4.60.

+
– +

–
1 V 2 V1 Ω

4 Ω 5 Ω

■  FIGURE 4.60
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33. Obtain numerical values for the two mesh currents i1 and i2 in the circuit 
shown in Fig. 4.61.

i2 i1–
+ +

–
5 V 12 V

14 Ω

7 Ω 3 Ω

■  FIGURE 4.61

34. Use mesh analysis as appropriate to determine the two mesh currents labeled in 
Fig. 4.62.

+
–

+
–

–
+15 V 21 V

9 Ω 9 Ω

11 V

1 Ω

i1 i2

■  FIGURE 4.62

35. Determine numerical values for each of the three mesh currents as labeled in 
the circuit diagram of Fig. 4.63.

36. Calculate the power dissipated by each resistor in the circuit of Fig. 4.63.

37. Find the unknown voltage vx in the circuit in Fig. 4.64.

+
–

+
–4 Ω 10 V

12 Ω

5 V

8 Ω

2Ω6 Ω

2 V

+–

vx

+

–

■  FIGURE 4.64

38. Calculate the current ix in the circuit of Fig. 4.65.

+
–3 V

10 A

4 Ω 8 Ω 5 Ω

8 Ω 12 Ω 20 Ω

ix

■  FIGURE 4.65

i2

i3

i1+
– –

+
2 V

3 V

1 Ω

5 Ω
7 Ω

6 Ω
9 Ω

■  FIGURE 4.63
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39. Employing mesh analysis procedures, obtain a value for the current labeled i in 
the circuit represented by Fig. 4.66.

2 V

1 Ω 4 Ω

3 Ω

4 Ω 1 Ω

i
+
–

■  FIGURE 4.66

40. Determine the power dissipated in the 4 Ω resistor of the circuit shown in  
Fig. 4.67.

5 Ω

4 Ω

4 V 1 V–
+

+
–

+–

i1

3 Ω

2i1

■  FIGURE 4.67

41. (a) Employ mesh analysis to determine the power dissipated by the 1 Ω resistor 
in the circuit represented schematically by Fig. 4.68. (b) Check your answer 
using nodal analysis.

4 A 5ix 1 A2 Ω

1 Ω 5 Ω

2 Ω

ix

■  FIGURE 4.68

42. Define three clockwise mesh currents for the circuit of Fig. 4.69, and employ 
mesh analysis to obtain a value for each.

+
–2 V 1 V

2 Ω 9 Ω

10 Ω

3 Ω

10 Ω

–
+ 5 V+

–
vx+ –

0.5vx

■  FIGURE 4.69
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43. Employ mesh analysis to obtain values for ix and va in the circuit of Fig. 4.70.

4 Ω

4 Ω

0.2ix

9 V

1 Ω

7 Ω 7 Ω

+–

va

+

–

0.1va

+ –
+ –

ix

■  FIGURE 4.70

4.4 The Supermesh
44. Determine values for the three mesh currents of Fig. 4.71.

i2

i3

i1
1 V

2 A

7 Ω

3 Ω
2 Ω

1 Ω

3 Ω

+
–

■  FIGURE 4.71

45. Through appropriate application of the supermesh technique, obtain a numer-
ical value for the mesh current i3 in the circuit of Fig. 4.72, and calculate the 
power dissipated by the 1 Ω resistor.

i3

i2

i1+
–3 V

10 Ω

5 A 4 Ω

5 Ω

1 Ω

17 Ω

■  FIGURE 4.72

46. For the circuit of Fig. 4.73, determine the mesh current i1 and the power dissi-
pated by the 1 Ω resistor.

i1

–
+7 V

5 Ω

9 A 1 Ω 3 A

10 Ω

11 Ω

3 Ω

5 Ω

■  FIGURE 4.73
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47. Calculate the three mesh currents labeled in the circuit diagram of Fig. 4.74.

+
–

i3

i2

i14.7 kΩ

3.5 kΩ

2.2 kΩ

1.7 kΩ

6.2 kΩ

3 A

7 V

8.1 kΩ
3.1 kΩ

1 A

2 A

5.7 kΩ

■  FIGURE 4.74

48. Use mesh analysis to find the current ix in the circuit of Fig. 4.75.

+
–2 A

8 Ω

5 Ω12 Ω

20 Ω8 Ω

10 Ω

5 V

0.5 A
5 V

+–
ix

■  FIGURE 4.75

49. Through careful application of the supermesh technique, obtain values for  
all three mesh currents as labeled in Fig. 4.76.

i2

i1

i3

5 A

11 Ω
12 Ω

12 Ω

13 Ω

13 Ω

vx+ –

vx
1–
3

■  FIGURE 4.76

50. Determine the power supplied by the 1 V source in Fig. 4.77.

i1

+–

+
–1 V

1 Ω

4 Ω

3 Ω

2 Ω

8 V

5i1

■  FIGURE 4.77
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51. Define three clockwise mesh currents for the circuit of Fig. 4.78, and employ 
the supermesh technique to obtain a value for v3.

+–

+
–3 V

2 Ω

1 Ω

4 Ω

1 Ω

5 V

v3
–

+

1.8v3

■  FIGURE 4.78

52. Determine the power absorbed by the 10 Ω resistor in Fig. 4.79.

5 Ω2ia

3 Ω 5 A 4 Ω

10 Ω

6 A+
–4 V +

–

ia

■  FIGURE 4.79

4.5 Nodal vs. Mesh Analysis: A Comparison
53. For the circuit represented schematically in Fig. 4.80: (a) How many nodal 

equations would be required to determine i5? (b) Alternatively, how many 
mesh equations would be required? (c) Would your preferred analysis 
method change if only the voltage across the 7 Ω resistor were needed? 
Explain.

6 Ω

7 Ω
2 A

3 A

5 Ω2 Ω

1 Ω 4 Ω3 Ω

i5

■  FIGURE 4.80

54. The circuit of Fig. 4.80 is modified such that the 3 A source is replaced by a 3 
V source whose positive reference terminal is connected to the 7 Ω resistor.  
(a) Determine the number of nodal equations required to determine i5.  
(b) Alternatively, how many mesh equations would be required?  
(c) Would your preferred analysis method change if only the voltage across  
the 7 Ω resistor were needed? Explain.
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55. The circuit of Fig. 4.81 contains three sources. (a) As it is now drawn, would 
nodal or mesh analysis result in fewer equations to determine the voltages v1 
and v2? Explain. (b) If the voltage source were replaced with current sources, 
and the current source replaced with a voltage source, would your answer to 
part (a) change? Explain.

+
–

+
–30 Ω

6 Ω3 Ω

240 V 60 V

10 A

12 Ω

v1+ – v2+ –

■  FIGURE 4.81

56. Solve for the voltage vx as labeled in the circuit of Fig. 4.82 using (a) mesh anal-
ysis. (b) Repeat using nodal analysis. (c) Which approach was easier, and why?

57. Consider the five-source circuit of Fig. 4.83. Determine the total number of 
simultaneous equations that must be solved in order to determine v1 using (a) 
nodal analysis; (b) mesh analysis. (c) Which method is preferred, and does 
it depend on which side of the 40 Ω resistor is chosen as the reference node? 
Explain your answer.

+
–

v1

+

–

10 Ω

40 Ω

20 Ω

96 V

4 A 6 A

0.1v1

V2

■  FIGURE 4.83

58. Replace the dependent voltage source in the circuit of Fig. 4.83 with a depen-
dent current source oriented such that the arrow points upward. The controlling 
expression 0.1 v1 remains unchanged. The value V2 is zero. (a) Determine the 
total number of simultaneous equations required to obtain the power dissi-
pated by the 40 Ω resistor if nodal analysis is employed. (b) Is mesh analysis 
preferred instead? Explain.

59. After studying the circuit of Fig. 4.84, determine the total number of simul-
taneous equations that must be solved to determine voltages v1 and v3 using 
(a) nodal analysis; (b) mesh analysis.

30 Ω45 Ω

100 V

20 Ω

50 Ω

v1 +–

v3– +

0.2v30.02v15i2
+
–

+
–

+
–

i2

■  FIGURE 4.84

11 A

22 V
+ –

2 Ω 9 Ω vx

+

–

■  FIGURE 4.82
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60. From the perspective of determining voltages and currents associated with all 
components, (a) design a five-node, four-mesh circuit that is analyzed more 
easily using nodal techniques. (b) Modify your circuit by replacing only one 
component such that it is now more easily analyzed using mesh techniques.

4.6 Computer-Aided Circuit Analysis
61. Employ LTspice (or similar CAD tool) to verify the solution of Exercise 5. 

Submit a printout of a properly labeled schematic with the answer highlighted, 
along with your hand calculations.

62. Employ LTspice (or similar CAD tool) to verify the solution of Exercise 8. 
Submit a printout of a properly labeled schematic with the two nodal voltages 
highlighted, along with your hand calculations solving for the same quantities.

63. Employ LTspice (or similar CAD tool) to verify the voltage across the 5 Ω 
resistor in the circuit of Exercise 12. Submit a printout of a properly labeled 
schematic with the answer highlighted, along with your hand calculations.

64. Verify numerical values for each nodal voltage in Exercise 14 by employing 
LTspice or a similar CAD tool. Submit a printout of an appropriately labeled 
schematic with the nodal voltages highlighted, along with your hand calcula-
tions.

65. Verify the numerical values for i1 and vx as indicated in Fig. 4.46, using 
LTspice or a similar CAD tool. Submit a printout of a properly labeled sche-
matic with the answers highlighted, along with hand calculations.

66. An LTspice schematic is shown in Fig. 4.85, in an attempt to simulate the 
circuit in Fig. 4.55. The simulated values give i1 = −1.4544 A, which you 
discover is incorrect. Find the error, and simulate the circuit to get the correct 
answer.

■  FIGURE 4.85

67. (a) Generate an input deck for SPICE to determine the voltage v9 as labeled in 
Fig. 4.86. Submit a printout of the output file with the solution highlighted.  
(b) Verify your answer by hand.

10 Ω 5 Ω

4 Ω 6 Ω

9 Ω40 V 7 Ω

+
–

11 Ω

8 Ω

v9

+

–

2 Ω3 Ω

■  FIGURE 4.86
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Chapter-Integrating Exercises
68. A decorative string of multicolored outdoor lights is installed on a home in 

a quiet residential area. After plugging the 12 V ac adapter into the elec-
trical socket, the homeowner immediately notes that two bulbs are burned 
out. (a) Are the individual lights connected in series or parallel? Explain. 
(b) Simulate the string by writing a SPICE input deck, assuming 44 lights, 
12 V dc power supply, 24 AWG soft solid copper wire, and individual bulbs 
rated at 10 mW each. Submit a printout of the output file, with the power 
supplied by the 12 V supply highlighted. (c) Verify your simulation with 
hand calculations.

69. Consider the circuit depicted in Fig. 4.87. Employ either nodal or mesh 
analysis as a design tool to obtain a value of 200 mA for i1, if elements  
A, B, C, D, E, and F must be either current or voltage sources with nonzero 
values.

2 Ω

i1

A B

2 Ω

C D

F

E

■  FIGURE 4.87

70. (a) Under what circumstances does the presence of an independent voltage 
source greatly simplify nodal analysis? Explain. (b) Under what circumstances 
does the presence of an independent current source significantly simplify mesh 
analysis? Explain. (c) On which fundamental physical principle do we base 
nodal analysis? (d) On which fundamental physical principle do we base mesh 
analysis?

71. Referring to Fig. 4.88, (a) determine whether nodal or mesh analysis is more 
appropriate in determining i2 if element A is replaced with a short circuit, then 
carry out the analysis. (b) Verify your answer with an appropriate LTspice 
simulation. Submit a properly labeled schematic along with the answer high-
lighted.

72. Consider the LED circuit containing a red, green, and blue LED as shown in 
Fig. 4.89. The LEDs behave much like a voltage source resulting in the circuit 
in Fig. 4.89, where the light output from each LED will be proportional to the 
current flowing through the LED. (a) Calculate the current flowing through 
each LED (IRed, IGreen, and IBlue) if R1 = R2 = R3 = 100 Ω. (b) Determine the re-
sistor values R1, R2, and R3 needed to ensure that the LEDs each have a current 
of 4 mA flowing through them.

+
–

5 V
R1

Red Green Blue

R2 R3

50 Ω 10 Ω 10 Ω

IRed IGreen IBlue

+
–

5 V
R1

1.8 V 2.2 V 3.2 V

R2 R3

50 Ω 10 Ω 10 Ω

IRed IGreen IBlue

+
–

+
–

+
–

■  FIGURE 4.89

73. The LED circuit in Fig. 4.89 is used to mix colors to achieve any desired color 
in the RGB color palette. Use LTspice and the circuit model representing LEDs 
as voltage sources to see how changing the resistance R1 from 100 to 1 kΩ  

i1

i2

A

+
–

+
–80 V

30 Ω

10 Ω

20 Ω

40 Ω

30 V

v3
–

+

■  FIGURE 4.88
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affects the color, with the other resistors fixed at R2 = R3 = 100 Ω. You can 
do this using a parameter sweep statement by defining a variable such as 
{rvariable} (including the curly brackets) in the value for R1. Then include a 
SPICE directive such as .step param rvariable 100 1k 20 to step the variable 
from 100 to 1000 in steps of 20. (a) Plot the current of all three LEDs as a 
function of R1 and explain the result. (b) Find an RGB color chart and describe 
how the color changes with R1, increasing from 100 to 1 kΩ. (c) Find a value 
of R1 that could be used to achieve a khaki color approximating RGB hex code 
C2BD23, RGB (194,189,35).

74. A light-sensing circuit is in Fig. 4.90, including a resistor that changes value 
under illumination (photoresistor Rlight) and a variable resistor (potentiom-
eter Rpot). The circuit is in the Wheatstone bridge configuration such that a 
“balanced” condition results in Vout = 0 for a defined value of incident light 
and a corresponding value for Rlight. (a) Derive an algebraic expression for Vout 
in terms of RS, R1, R2, Rlight, and Rpot. (b) Using the numerical values given in 
the circuit, calculate the value of Rpot required to balance the circuit at 500 lux, 
where Rlight = 200 Ω. (c) If the resistance of the photoresistor decreases by 2% 
for a light increase to 600 lux (and assuming the resistance change with light is 
linear), what will the light level be if you measure Vout = 150 mV?

Vout

Rpot

Rlight

– ++
–

R2 = 204 Ω

R1 = 198 Ω

RS = 10 Ω

VS = 12 V

■  FIGURE 4.90

75. Use SPICE to analyze the circuit in Exercise 74 by doing the following. (a) 
Simulate the circuit for varying values of Rpot to balance the circuit at 500 
lux, where Rlight = 200 Ω. It is helpful to use a parameter sweep by defining a 
variable such as {potentiometer} (including the curly brackets) in the value 
for Rpot, and a SPICE directive such as .step param potentiometer 150 250 
2 to step the variable from 150 to 250 in steps of 2. (b) If the resistance of the 
photoresistor decreases by 2% for for a light increase to 600 lux, use SPICE to 
find the resulting output voltage Vout.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
The techniques of nodal and mesh analysis described in Chap. 4  
are reliable and extremely powerful methods. However, both 
require that we develop a complete set of equations to describe 
a particular circuit as a general rule, even if only one current, 
voltage, or power quantity is of interest. In this chapter, we 
investigate a variety of different techniques for isolating specific 
parts of a circuit in order to simplify the analysis. After examining 
each of these techniques, we focus on how one might go about 
selecting one method over another.

5.1 • LINEARITY AND SUPERPOSITION
All of the circuits we plan to analyze can be classified as linear 
circuits, so this is a good time to be more specific in defining 
exactly what we mean by that. Having done this, we can then 
consider the most important consequence of linearity, the principle 
of superposition. This principle will appear repeatedly in our study 
of linear circuit analysis. As a matter of fact, the nonapplicability of 
superposition to nonlinear circuits is the very reason they can be so 
challenging to analyze.

The principle of superposition states that the response (a desired 
current or voltage) in a linear circuit having more than one inde-
pendent source can be obtained by adding the responses caused by 
the separate independent sources acting alone.

Linear Elements and Linear Circuits
We define a linear element as a passive element that has a linear volt-
age–current relationship. By a “linear voltage–current relationship” 

Handy Circuit 
Analysis Techniques5

KEY CONCEPTS

Superposition: Determining 
the Individual Contributions 
of Different Sources 

Source Transformation for 
Simplifying Circuits

Thévenin Equivalents

Norton’s Equivalents

Thévenin and Norton 
Equivalent Networks

Maximum Power Transfer

Δ ↔ Y Transformations for 
Resistive Networks

Choosing a Specific Analysis 
Technique

DC Sweep Simulations 
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we mean that multiplication of the current through the element by a con-
stant K results in the multiplication of the voltage across the element by the 
same constant K. So far, we have encountered only one passive element (the 
resistor), and its voltage–current relationship

 v(t ) = Ri(t ) 
is clearly linear. As a matter of fact, if v(t) is plotted as a function of i(t), the 
result is a straight line.

We define a linear dependent source as a dependent current or voltage 
source whose output current or voltage is proportional only to the first 
power of a specified current or voltage variable in the circuit (or to the sum 
of such quantities).

We now define a linear circuit as a circuit composed entirely of independ-
ent sources, linear dependent sources, and linear elements. From this defini-
tion, it is possible to show1 that “the response is proportional to the source,” 
or that multiplication of all independent source voltages and currents by a 
constant K increases all the current and voltage responses by the same factor 
K (including the voltage or current output of any dependent sources).

The Superposition Principle
The most important consequence of linearity is superposition.

Let us explore the superposition principle by considering first the circuit of 
Fig. 5.1, which contains two independent sources, the current generators that 
force the currents ia and ib into the circuit. Sources are often called forcing func-
tions for this reason, and the nodal voltages that they produce can be termed 
response functions, or simply responses. Both the forcing functions and the 
responses may be functions of time. The two nodal equations for this circuit are

    0.7  v  1   − 0.2  v  2    =   i  a     − 0.2  v  1   + 1.2  v  2  
  =   i  b  

   [1] 
  [2]

Now let us perform an experiment. We change the two forcing functions 
to iax and ibx; the two unknown voltages will now be different, so we will 
call them v1x and v2x. Thus,

    0.7  v  1x   − 0.2  v  2x    =   i  ax     − 0.2  v  1x   + 1.2  v  2x  
  =   i  bx  

   
[3] 

  [4]

If we next perform another experiment by changing the source currents 
to iay and iby and measure the responses v1y and v2y, we obtain:

    
0.7  v  1y   − 0.2  v  2y    

=
  

 i  ay     − 0.2  v  1y   + 1.2  v  2y  
  =   i  by  

   [5] 
  [6]

These three sets of equations describe the same circuit with three differ-
ent sets of source currents. 

The dependent voltage source vs = 0.6i1 − 14v2 is 

linear, but vs = 0.  6i  1  
2   and vs = 0.6i1v2 are not.

ia

v1 v2

ib2 Ω

5 Ω

Ref.

1 Ω

■  FIGURE 5.1 A circuit with two independent current 
sources.

(1)  The proof involves first showing that the use of nodal analysis on the linear circuit can produce only 
linear equations of the form 

a1v1 + a2v2 + · · · + aNvN = b 

where the ai are constants (combinations of resistance or conductance values, constants appearing in dependent 
source expressions, 0, or ±1), the vi are the unknown node voltages (responses), and b is an independent source 
value or a sum of independent source values. Given a set of such equations, if we multiply all the b’s by K, then 
it is evident that the solution of this new set of equations will be the node voltages Kv1, Kv2, … , KvN.
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Let us add or “superpose” the last two sets of equations. Adding Eqs. [3]  
and [5],

   
(0.7  v  1x   + 0.7  v  1y   )  

−
  

(0.2  v  2x   + 0.2  v  2y   )  
=

  
 i  ax   +  i  ay       

0.7  v  1  
  

−
  

0.2  v  2  
  

=
  

 i  a  
    [7] 

  [1]

and adding Eqs. [4] and [6],

   
− (0.2  v  1x   + 0.2  v  1y   )  

+
  

(1.2  v  2x   + 1.2  v  2y   )  
=

  
 i  bx   +  i  by       

− 0.2  v  1  
  

+
  

1.2  v  2  
  

=
  

 i  b  
    [8] 

  [2]

where Eq. [1] has been written immediately below Eq. [7] and Eq. [2] below 
Eq. [8] for easy comparison.

The linearity of all these equations allows us to draw an interesting con-
clusion. If we select iax and iay such that their sum is ia and select ibx and iby 
such that their sum is ib, then the desired responses v1 and v2 may be found 
by adding v1x to v1y and v2x to v2y, respectively. In other words, we can per-
form the first experiment and note the responses, perform the next experi-
ment and note the responses, and finally add the two sets of responses. This 
leads to the fundamental concept involved in the superposition principle: to 
look at each independent source (and the response it generates) one at a time 
with the other independent sources “turned off” or “zeroed out.”

If we reduce a voltage source to zero volts, we have effectively made 
it into a short circuit (Fig. 5.2a). If we reduce a current source to zero 
amperes, we have effectively created an open circuit (Fig. 5.2b). Thus, the 
superposition theorem can be stated as:

In any linear resistive network, the voltage across or the current through any 
resistor or source may be calculated by adding algebraically all the individ-
ual voltages or currents caused by the separate independent sources acting 
alone, with all other independent voltage sources replaced by short circuits 
and all other independent current sources replaced by open circuits.

Thus, if there are N independent sources, we must perform N exper-
iments, each having only one of the independent sources active and the 
others inactive/turned off/zeroed out. Note that dependent sources are in 
general active in every experiment.

There is also no reason that an independent source must assume only its 
given value or a zero value in the several experiments; it is necessary only 

+
–0 V

No voltage drop
across terminals,
but current can
flow

i

i

(a)

v
+

–
v
+

–
0 A

No current
flows, but a
voltage can
appear across
the terminals

(b)

■  FIGURE 5.2 (a) A voltage source set to zero acts like a short circuit. 
(b) A current source set to zero acts like an open circuit. in each case, the 
equivalent representation on the right can be substituted into a circuit 
schematic to aid in analysis.
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for the sum of the several values to be equal to the original value. (An inac-
tive source almost always leads to the simplest circuit, however.)

The circuit we have just used as an example should indicate that a much 
stronger theorem might be written; a group of independent sources may 
be made active and inactive collectively, if we wish. For example, suppose 
there are three independent sources. The theorem states that we may find 
a given response by considering each of the three sources acting alone and 
adding the three results. Alternatively, we may find the response due to the 
first and second sources operating with the third inactive, and then add to 
this the response caused by the third source acting alone. 

EXAMPLE 5.1
For the circuit of Fig. 5.3a, use superposition to determine the 
unknown branch current ix.

ix
+
–vs = 3 V is = 2 A

6 Ω

9 Ω

(a)

+
– 3 V

6 Ω

9 Ω

ix

(b)

'

2 A

6 Ω

9 Ω

ix"

(c)

ix
+
–vs = 3 V is = 2 A

6 Ω

9 Ω

(a)

+
– 3 V

6 Ω

9 Ω

ix

(b)

'

2 A

6 Ω

9 Ω

ix"

(c)

■  FIGURE 5.3 (a) An example circuit with two independent sources for 
which the branch current ix is desired; (b) same circuit with current source 
open-circuited; (c) original circuit with voltage source short-circuited.

We first set the current source equal to zero and redraw the circuit as 
shown in Fig. 5.3b, where the deactivated current source is represented 
by an open circuit. The portion of ix due to the voltage source has been 
designated   i  x  ′    to avoid confusion and is easily found to be 0.2 A.

Next we set the voltage source in Fig. 5.3a to zero and again redraw 
the circuit, as shown in Fig. 5.3c. We have replaced the deactivated 
voltage source with a short circuit in the schematic. Current division 
lets us determine that   i  x  ″   (the portion of ix due to the 2 A current source) 
is 0.8 A.

Now we can compute the total current ix by adding the two individu-
al components:

  i  x   =  i  x|3 V   +  i  x|2 A   =  i  x  ′   +  i  x  ″  

or

  i  x   =   3 ___ 6 + 9   + 2  (    6 _ 6 + 9   )    = 0.2 + 0.8 = 1.0 A 
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Another way of looking at Example 5.1 is that the 3 V source and the  
2 A source are each performing work on the circuit, resulting in a total 
current ix flowing through the 9 Ω resistor. However, the contribution of the  
3 V source to ix does not depend on the contribution of the 2 A source, and 
vice versa. For example, if we double the output of the 2 A source to 4 A, 
it will now contribute 1.6 A to the total current ix flowing through the 9 Ω 
resistor. However, the 3 V source will still contribute only 0.2 A to ix, for a 
new total current of 0.2 + 1.6 = 1.8 A.

As we will see, superposition does not generally reduce our workload 
when considering a particular circuit, since it leads to the analysis of several 
new circuits to obtain the desired response. However, it is particularly useful 
in identifying the significance of various parts of a more complex circuit. 
It also forms the basis of phasor analysis, which is introduced in Chap. 10.

PRACTICE 
●

5.1 For the circuit of Fig. 5.4, use superposition to compute the current ix. 

+
– 3.5 V2 A

15 Ω
7 Ω

3 Ω

5 Ω

ix

■  FIGURE 5.4 

Ans: 660 mA.

EXAMPLE 5.2
Referring to the circuit of Fig. 5.5a, determine the maximum pos-
itive current to which the source Ix can be set before any resistor 
exceeds its power rating and overheats.

▶ Identify the goal of the problem.
Each resistor is rated to a maximum of 250 mW. If the circuit al-
lows this value to be exceeded (by forcing too much current through 
either resistor), excessive heating will occur—possibly leading to an 
accident. The 6 V source cannot be changed, so we are looking for an 
equation involving Ix and the maximum current through each resistor.

▶ Collect the known information.
Based on its 250 mW power rating, the maximum current the 100 Ω 
resistor can tolerate is

  √ 
____

    P  max   ____ 
R

     =  √ 
_____

   0.250 ____ 100     = 50 mA 

and, similarly, the current through the 64 Ω resistor must be less than 
62.5 mA. (Continued on next page)
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+
–

Ix6 V

100 Ω

64 Ω

(a)

W1
4

W1
4

+
– 6 V 64 Ω

100 Ω

i '100 Ω

i '64 Ω

(b)

Ix

100 Ω

64 Ω

(c)

i"100 Ω

i"64 Ω

+
–

Ix6 V

100 Ω

64 Ω

(a)

W1
4

W1
4

+
– 6 V 64 Ω

100 Ω

i '100 Ω

i '64 Ω

(b)

Ix

100 Ω

64 Ω

(c)

i"100 Ω

i"64 Ω

■  FIGURE 5.5 (a) A circuit with two resistors each rated at     1 _ 4    W.  
(b) Circuit with only the 6 V source active. (c) Circuit with the source Ix active.

▶ Devise a plan.
Either nodal or mesh analysis may be applied to the solution of this 
problem, but superposition may give us a slight edge, since we are 
primarily interested in the effect of the current source.

▶ Construct an appropriate set of equations.
Using superposition, we redraw the circuit as in Fig. 5.5b and find 
that the 6 V source contributes a current

  i  100 Ω  ′   =   6 ______ 100 + 64   = 36.59 mA 

to the 100 Ω resistor and, since the 64 Ω resistor is in series here,  
  i  64 Ω  ′   = 36.59 mA  as well.

Recognizing the current divider in Fig. 5.5c, we note that   i  64 Ω  ″    will 
add to   i  64 Ω  ′   , but   i  100 Ω  ″    is opposite in direction to   i  100 Ω  ′   . Therefore, IX 
can safely contribute 62.5 − 36.59 = 25.91 mA to the 64 Ω resistor 
current, and 50 − (−36.59) = 86.59 mA to the 100 Ω resistor current.

The 100 Ω resistor therefore places the following constraint on Ix:

  I  x   < (86.59 ×  10   −3  )   (    100 + 64 _ 64   )    

and the 64 Ω resistor requires that

  I  x   < (25.91 ×  10   −3  )   (    100 + 64 _ 100   )    

▶ Attempt a solution.
Considering the 100 Ω resistor first, we see that Ix is limited to  
Ix < 221.9 mA. The 64 Ω resistor limits Ix such that Ix < 42.49 mA. 
In order to satisfy both constraints, Ix must be less than 42.49 mA. If 
the value is increased, the 64 Ω resistor will overheat long before the 
100 Ω resistor does.
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EXAMPLE 5.3

(Continued on next page)

▶ Verify the solution. Is it reasonable or expected?
One particularly useful way to evaluate our solution is to perform a 
dc sweep analysis in LTspice as described after the next example. An 
interesting question, however, is whether we would have expected the 
64 Ω resistor to overheat first.

Originally we found that the 100 Ω resistor has a smaller maximum 
current, so it might be reasonable to expect it to limit Ix. However, 
because Ix opposes the current sent by the 6 V source through the 
100 Ω resistor but adds to the 6 V source’s contribution to the current 
through the 64 Ω resistor, it turns out to work the other way—it’s the 
64 Ω resistor that sets the limit on Ix.

In the circuit of Fig. 5.6a, employ superposition to determine the 
value of ix.

+
–10 V 2ix

2 Ω 1 Ω

3 A
ix +

–
v

+

–

(a)

+
–

+
–10 V

2 Ω 1 Ω

2ix
ix

(b)

'
' 3 A v

+

–

+
–

2 Ω 1 Ω

2ix
ix

(c)

"
" "

+
–10 V 2ix

2 Ω 1 Ω

3 A
ix +

–
v

+

–

(a)

+
–

+
–10 V

2 Ω 1 Ω

2ix
ix

(b)

'
' 3 A v

+

–

+
–

2 Ω 1 Ω

2ix
ix

(c)

"
" "

■  FIGURE 5.6 (a) An example circuit with two independent sources and one 
dependent source for which the branch current ix is desired. (b) Circuit with the 3 A 
source open-circuited. (c) original circuit with the 10 V source short-circuited.

First open-circuit the 3 A source (Fig. 5.6b). The single mesh equation is

 − 10 + 2  i  x  ′   +  i  x  ′   + 2  i  x  ′   = 0 

so that

  i  x  ′   = 2 A 

Next, short-circuit the 10 V source (Fig. 5.6c) and write the 
single-node equation

    v   ″  __ 2   +    v   ″  − 2  i  x  ″  _____ 1   = 3 

and relate the dependent-source-controlling quantity to v″:

  v   ″  = 2(−  i  x  ″  ) 
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Solving, we find
  i  x  ″  = − 0.6 A 

and, thus,
  i  x   =  i  x  ′   +  i  x  ″  = 2 + (− 0.6 ) = 1.4 A 

Note that in redrawing each subcircuit, we are always careful to use 
some type of notation to indicate that we are not working with the 
original variables. This prevents the possibility of rather disastrous 
errors when we add the individual results.

PRACTICE 
●

5.2 For the circuit of Fig. 5.7, use superposition to obtain the voltage 
across each current source. 

■  FIGURE 5.7

+
– 3 V

2 A
7 Ω

15 Ω

5 Ω 4i

v1 v2

i

Ans: v  1|  2A    = 9.180 V; v  2|  2A    = −1.148 V; v  1|  3V    = 1.967 V; v  2|  3V    = −0.246 V; v1 = 11.147 V; 
v2 = −1.394 V.

Summary of Basic Superposition Procedure

1. Select one of the independent sources. Set all other indepen-
dent sources to zero. This means voltage sources are replaced 
with short circuits and current sources are replaced with open 
circuits. Leave dependent sources in the circuit.

2. Relabel voltages and currents using suitable notation  
(e.g., v′,   i  2  ″  ). Be sure to relabel controlling variables of depen-
dent sources to avoid confusion.

3. Analyze the simplified circuit to find the desired currents 
and/or voltages.

4. Repeat steps 1 through 3 until each independent source has 
been considered.

5. Add the partial currents and/or voltages obtained from the 
separate analyses. Pay careful attention to voltage signs and 
current directions when summing.

6. Do not add power quantities. If power quantities are required, 
calculate only after partial voltages and/or currents have been 
summed.
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Note that step 1 may be altered in several ways. First, independent 
sources can be considered in groups as opposed to individually if it simpli-
fies the analysis, as long as no independent source is included in more than 
one subcircuit. Second, it is technically not necessary to set sources to zero, 
although this is almost always the best route. For example, a 3 V source may 
appear in two subcircuits as a 1.5 V source, since 1.5 + 1.5 = 3 V just as  
0 + 3 = 3 V. Because it is unlikely to simplify our analysis, however, there 
is little point to such an exercise.

COMPUTER-AIDED ANALYSIS

LTspice is extremely useful in verifying that we have analyzed a com-
plete circuit correctly, but it can also assist us in determining the con-
tribution of each source to a particular response. To do this, we employ 
what is known as a dc parameter sweep.

Consider the circuit presented in Example 5.2, when we were asked 
to determine the maximum positive current that could be obtained 
from the current source without exceeding the power rating of either 
resistor in the circuit. The circuit is shown redrawn in Fig. 5.8 using the 
LTspice schematic capture tool within a Windows environment. Note 
that no value has been assigned to the current source.

After the schematic has been entered and saved, the next step is to 
specify the dc sweep parameters. This option allows us to specify a 
range of values for a voltage or current source (in the present case, the 
current source Ix), rather than a specific value. Selecting SPICE Anal-
ysis under Edit, we are provided with the dialog box shown in Fig. 5.9.

Next, we select the DC sweep tab, choose the 1st Source tab, and 
then type Ix in the Name of 1st source to sweep: box. There are several 
options under Type of sweep: Linear, Octave, Decade, and List. The 
last option allows us to specify each value to assign to Ix. In order to 
generate a smooth plot, however, we choose to perform a Linear sweep, 
with a Start value of 0 mA, a Stop Value of 50 mA, and a value of 
0.01 mA for the Increment. Note that in a non-Windows environment, 
the menu system may not be available, in which case the SPICE direc-
tive (the line beginning with .dc) is added directly to the schematic.

■  FIGURE 5.8 The circuit from Example 5.2.

(Continued on next page)
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■  FIGURE 5.9 DC sweep dialog box shown with ix selected as the source. Note ‛m’ represents 
‛milli’ or a power of 10-3.

We are now ready to select Run under the Simulate menu. When 
the plot window appears, the horizontal axis (corresponding to our 
variable, Ix) is displayed, but the vertical axis variable must be chosen. 
Selecting Add Trace from the Plot Settings menu, we click on I(R1), 
then type an asterisk in the Expression(s) to add: box, click on I(R1) 
once again, insert yet another asterisk, and finally type in 100. This 
plots the power absorbed by the 100 Ω resistor. In a similar fashion, 
we repeat the process to add the power absorbed by the 64 Ω resistor, 
resulting in a plot similar to that shown in Fig. 5.10a. A horizontal 
reference line at 250 mW was also added to the plot by typing 0.250 in 
the Expression(s) to add: box after selecting Add Trace from the Plot 
Settings menu a third time. We should note that there are two y axes. 
The one on the left corresponds to our 250 mW baseline, and we had to 
manually adjust the limits for it to correspond to the scale of the right-
hand axis, which defaulted to units of mA2 since two currents were 
multiplied in the expression.

We see from the plot that the 64 Ω resistor does exceed its 250 mW 
power rating in the vicinity of Ix = 43 mA. In contrast, however,  
we also see that regardless of the value of the current source Ix 
(provided that it is between 0 and 50 mA), the 100 Ω resistor will 
never dissipate 250 mW; in fact, the absorbed power decreases with 
increasing current from the current source. If we want a more pre-
cise answer, we can make use of the cursor tool, which is invoked by 
selecting the expression of interest from the top of the plot window. 
Figure 5.10b shows the result of dragging the cursor  to 42.5 A, where 
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(a)

(b)

■  FIGURE 5.10 (a) Probe output with text labels identifying the power absorbed by the 
two resistors individually. A horizontal line indicating 250 mW has also been included, as 
well as text labels to improve clarity. (b) Cursor dialog box.

the 64 Ω resistor is operating at its maximum rated power of 250 mW. 
Increased precision can be obtained by decreasing the increment value 
used in the dc sweep.

Unfortunately, it usually turns out that little if any time is saved in analyzing 
a circuit containing one or more dependent sources by use of the superpo-
sition principle, for there must always be at least two sources in operation: 
one independent source and all the dependent sources.

We must constantly be aware of the limitations of superposition. It is 
applicable only to linear responses, and thus the most common nonlinear 
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response—power—is not subject to superposition. For example, consider 
two 1 V batteries in series with a 1 Ω resistor. The power delivered to the 
resistor is 4 W, but if we mistakenly try to apply superposition, we might say 
that each battery alone furnished 1 W and thus the calculated power is only 
2 W. This is incorrect, but it is a surprisingly easy mistake to make.

5.2 • SOURCE TRANSFORMATIONS

Practical Voltage Sources
So far, we’ve only worked with ideal sources—elements whose termi-
nal voltage is independent of the current flowing through them. To see 
the relevance of this fact, consider a simple independent (“ideal”) 9 V 
source connected to a 1 Ω resistor. The 9 volt source will force a current of  
9 amperes through the 1 Ω resistor (perhaps this seems reasonable enough), 
but the same source would apparently force 9,000,000 amperes through a  
1 μΩ resistor (which hopefully does not seem reasonable). On paper, there’s 
nothing to stop us from reducing the resistor value all the way to 0 Ω … 
but that would lead to a contradiction, as the source would be “trying” to 
maintain 9 V across a dead short, which Ohm’s law tells us can’t happen  
(V = 9 = RI = 0?).

What happens in the real world when we do this type of experi-
ment? For example, if we try to start a car with the headlights already on, 
we might notice the headlights dim as the battery is asked to supply a large 
(∼100 A or more) starter current in parallel with the current running to the 
headlights. If we model the 12 V battery with an ideal 12 V source as in 
Fig. 5.11a, our observation cannot be explained. Another way of saying this 
is that the accuracy of our model breaks down when the load draws a very 
large current from the source.

To better approximate the behavior of a real device, the ideal volt-
age source must be modified to account for the lowering of its terminal 
voltage when large currents are drawn from it. Let us suppose that we 
observe experimentally that our car battery has a terminal voltage of 
12 V when no current is flowing through it, and a reduced voltage of 
11 V when 100 A is flowing. How could we model this behavior? Well, 
a more accurate model might be an ideal voltage source of 12 V in series 
with a resistor across which 1 V appears when 100 A flows through it. 
A quick calculation shows that the resistor must be 1 V/100 A = 0.01 Ω, 
and the ideal voltage source and this series resistor constitute a practical 
voltage source (Fig. 5.11b). Thus, we are using the series combination 
of two ideal circuit elements, an independent voltage source and a resis-
tor, to model a real device.

We do not expect to find such an arrangement of ideal elements inside our 
car battery, of course. Any real device is characterized by a certain current–
voltage relationship at its terminals, and our problem is to develop some 
combination of ideal elements that can furnish a similar current–voltage char-
acteristic, at least over some useful range of current, voltage, or power.

In Fig. 5.12a, we show our two-piece practical model of the car 
battery now connected to some load resistor RL. The terminal voltage 
of the practical source is the same as the voltage across RL and is 

+
–12 V

(a)

+
–12 V

0.01 Ω

(b)

■  FIGURE 5.11 (a) An ideal 12 V dc voltage 
source used to model a car battery. (b) A more 
accurate model that accounts for the observed 
reduction in terminal voltage at large currents. 
The series resistance of a “dead” battery 
increases significantly, allowing us to measure 
a reasonable voltage at open circuit, but a small 
voltage when “loaded” by the starter circuit.
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marked2 VL. Figure 5.12b shows a plot of load voltage VL as a function 
of the load current IL for this practical source. The KVL equation for 
the circuit of Fig. 5.12a may be written in terms of IL and VL:

 12 = 0.01   I  L   +  V  L   

and thus

  V  L   = − 0.01   I  L   + 12 

This is a linear equation in IL and VL, and the plot in Fig. 5.12b is a 
straight line. Each point on the line corresponds to a different value of RL. 
For example, the midpoint of the straight line is obtained when the load 
resistance is equal to the internal resistance of the practical source, or RL = 
0.01 Ω. Here, the load voltage is exactly one-half the ideal source voltage.

When RL = ∞ and no current whatsoever is being drawn by the load, the 
practical source is open-circuited and the terminal voltage, or open-circuit 
voltage, is VLoc = 12 V. If, on the other hand, RL = 0, thereby short-circuiting 
the load terminals, then a load current or short-circuit current, ILsc = 1200 A,  
would flow. (In practice, such an experiment would probably result in the 
destruction of the short circuit, the battery, and any measuring instruments 
incorporated in the circuit!)

Since the plot of VL versus IL is a straight line for this practical voltage 
source, we should note that the values of VLoc and ILsc uniquely determine 
the entire VL–IL curve.

The horizontal broken line of Fig. 5.12b represents the VL–IL plot for an 
ideal voltage source; the terminal voltage remains constant for any value of 
load current. For the practical voltage source, the terminal voltage has a value 
near that of the ideal source only when the load current is relatively small.

Let us now consider a general practical voltage source, as shown in 
Fig. 5.13a. The voltage of the ideal source is vs, and a resistance Rs, called 
an internal resistance or output resistance, is placed in series with it. Again, 
we must note that the resistor is not really present as a separate component 
but merely serves to account for a terminal voltage that decreases as the 
load current increases. Its presence enables us to model the behavior of a 
physical voltage source more closely.

The linear relationship between vL and iL is

   v  L   =  v  s   −  R  s    i  L    [9]

and this is plotted in Fig. 5.13b. The open-circuit voltage (RL = ∞, so iL = 0) is

   v  Loc   =  v  s    [10]

and the short-circuit current (RL = 0, so vL = 0) is

   i  Lsc   =    v  s   __  R  s  
    [11]

Once again, these values are the intercepts for the straight line in Fig. 5.13b, 
and they serve to define it completely.
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■  FIGURE 5.12 (a) A practical source, which 
approximates the behavior of a certain 12 V automobile 
battery, is shown connected to a load resistor RL. (b) The 
relationship between IL and VL is linear.
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0
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■  FIGURE 5.13 (a) A general practical 
voltage source connected to a load resistor RL. 
(b) The terminal voltage of a practical voltage 
source decreases as iL increases and RL = vL/iL  
decreases. The terminal voltage of an ideal 
voltage source (also plotted) remains the same 
for any current delivered to a load.

(2) From this point on we will try to adhere to the standard convention of referring to strictly dc quantities 
using capital letters, whereas lowercase letters denote a quantity that we know to have some time-varying 
component. However, in describing general theorems that apply to either dc or ac, we will continue to use 
lowercase to emphasize the general nature of the concept.
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Practical Current Sources
An ideal current source is also nonexistent in the real world; there is no 
physical device that will deliver a constant current regardless of the load re-
sistance to which it is connected or the voltage across its terminals. Certain 
transistor circuits will deliver a constant current to a wide range of load re-
sistances, but the load resistance can always be made sufficiently large that 
the current through it becomes very small. Infinite power is simply never 
available (unfortunately).

A practical current source is defined as an ideal current source in par-
allel with an internal resistance Rp. Such a source is shown in Fig. 5.14a, 
and the current iL and voltage vL associated with a load resistance RL are 
indicated. Application of KCL yields

   i  L   =  i  s   −    v  L   __  R  p  
    [12]

which is again a linear relationship. The open-circuit voltage and the short-circuit 
current are

   v  Loc   =  R  p    i  s    [13]

and

   i  Lsc   =  i  s    [14]

The variation of load current with changing load voltage may be investi-
gated by changing the value of RL as shown in Fig. 5.14b. The straight line is 
traversed from the short-circuit, or “northwest,” end to the open-circuit ter-
mination at the “southeast” end by increasing RL from zero to infinite ohms. 
The midpoint occurs for RL = Rp. The load current iL and the ideal source 
current are approximately equal only for small values of load voltage, which 
are obtained with values of RL that are small compared to Rp.

Equivalent Practical Sources
It may be no surprise that we can improve upon models to increase their 
accuracy; at this point we now have a practical voltage source model and 
also a practical current source model. Before we proceed, however, let’s 
take a moment to compare Fig. 5.13b and Fig. 5.14b. One is for a circuit 
with a voltage source and the other, with a current source, but the graphs 
are indistinguishable!

It turns out that this is no coincidence. In fact, we are about to show that 
a practical voltage source can be electrically equivalent to a practical cur-
rent source—meaning that a load resistor RL connected to either will have 
the same vL and iL. This means we can replace one practical source with the 
other and the rest of the circuit will not know the difference.

Consider the practical voltage source and resistor RL shown in Fig. 5.15a, 
and the circuit composed of a practical current source and resistor RL shown 
in Fig. 5.15b. A simple calculation shows that the voltage across the load 
RL of Fig. 5.15a is

   v  L   =  v  s     
 R  L   _____  R  s   +  R  L      [15]

iL

Rp

(a)

RLis vL

+

–

Practical
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Ideal source

vLoc = Rpis
vL

(b)
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(a)

RLis vL

+

–

Practical
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vLoc = Rpis
vL

(b)

iLsc = is

iL

■  FIGURE 5.14 (a) A general practical current 
source connected to a load resistor RL. (b) The 
load current provided by the practical current 
source is shown as a function of the load voltage.
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■  FIGURE 5.15 (a) A given practical 
voltage source connected to a load 
RL. (b) The equivalent practical current 
source connected to the same load.
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A similar calculation shows that the voltage across the load RL in 
Fig. 5.15b is

  v  L   =   (   i  s     
 R  p   _  R  p   +  R  L     )   ·   R  L   

The two practical sources are electrically equivalent, then, if

   R  s   =  R  p    [16]

and

   v  s   =  R  p    i  s   =  R  s    i  s    [17]

where we now let Rs represent the internal resistance of either practical 
source, which is the conventional notation.

Let’s try this with the practical current source shown in Fig. 5.16a. Since 
its internal resistance is 2 Ω, the internal resistance of the equivalent prac-
tical voltage source is also 2 Ω; the voltage of the ideal voltage source con-
tained within the practical voltage source is (2)(3) = 6 V. The equivalent 
practical voltage source is shown in Fig. 5.16b.

To check the equivalence, let us visualize a 4 Ω resistor connected to 
each source. In both cases a current of 1 A, a voltage of 4 V, and a power of 
4 W are associated with the 4 Ω load. However, we should note very care-
fully that the ideal current source is delivering a total power of 12 W, while 
the ideal voltage source is delivering only 6 W. Furthermore, the internal 
resistance of the practical current source is absorbing 8 W, whereas the in-
ternal resistance of the practical voltage source is absorbing only 2 W. Thus 
we see that the two practical sources are equivalent only with respect to 
what transpires at the load terminals; they are not equivalent internally!

3 A 2 Ω

(a)

6 V

2 Ω

(b)

+
–

3 A 2 Ω

(a)

6 V

2 Ω

(b)

+
–

■  FIGURE 5.16 (a) A given practical 
current source. (b) The equivalent 
practical voltage source.

EXAMPLE 5.4
Compute the current through the 4.7 kΩ resistor in Fig. 5.17a after 
first transforming the 9 mA source into an equivalent voltage source.

+
–

I
9 mA 3 V

4.7 kΩ

5 kΩ

3 kΩ

(a)

+
–

+
–

I
3 V45 V

4.7 kΩ5 kΩ 3 kΩ

(b)

■  FIGURE 5.17 (a) A circuit with both a voltage source and a current source. (b) The circuit 
after the 9 mA source is transformed into an equivalent voltage source.

It’s not just the 9 mA source at issue, but also the resistance in parallel 
with it (5 kΩ). We remove these components, leaving two terminals 
“dangling.” We then replace them with a voltage source in series with 
a 5 kΩ resistor, as shown in Fig. 5.17b. The value of the voltage source 
must be (0.09)(5000) = 45 V.

(Continued on next page)
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We can now write a simple KVL equation

 − 45 + 5000I + 4700I + 3000I + 3 = 0 

which is easily solved to yield I = 3.307 mA.
Our answer can be verified by analyzing the circuit of Fig. 5.17a 

using either nodal or mesh techniques.

PRACTICE 
●

5.3 For the circuit of Fig. 5.18, compute the current IX through the 47 kΩ 
resistor after performing a source transformation on the voltage source. 

+
–5 V 1 mA

5 kΩ

47 kΩIX

■  FIGURE 5.18

Ans: 192 μA.

EXAMPLE 5.5
Calculate the current through the 2 Ω resistor in Fig. 5.19a by 
making use of source transformations to first simplify the circuit.

We begin by transforming each current source into a voltage source 
(Fig. 5.19b), the strategy being to convert the circuit into a simple loop.

We must be careful to retain the 2 Ω resistor for two reasons: first, 
the dependent source controlling variable appears across it, and second, 
we want to determine the current flowing through it. However, we can 
combine the 17 Ω and 9 Ω resistors, since they appear in series. We 
also see that the 3 Ω and 4 Ω resistors may be combined into a single 
7 Ω resistor, which can then be used to transform the 15 V source into a 
15/7 A source as in Fig. 5.19c.

Finally, we note that the two 7 Ω resistors can be combined into 
a single 3.5 Ω resistor, which may be used to transform the 15/7 A 
current source into a 7.5 V voltage source. The result is a simple loop 
circuit, shown in Fig. 5.19d.

The current I can now be found using KVL:

 − 7.5 + 3.5I − 51 V  x   + 28I + 9 = 0 

where

  V  x   = 2I 

Thus,

 I = 21.28 mA 
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7 Ω

17 Ω

2 Ω

9 Ω4 Ω3 Ω

15 V 9 V
51Vx

(b)

+
–

+–

I

Vx+ –

7 Ω7 Ω

26 Ω

2 Ω

9 V
51Vx

A15
7

(c)

+
–

+
–

+–

I

Vx+ –26 Ω

2 Ω

3.5 Ω

9 V7.5 V
51Vx

(d )

■  FIGURE 5.19 (a) A circuit with two independent current sources and one 
dependent source. (b) The circuit after each source is transformed into a voltage 
source. (c) The circuit after further combinations. (d) The final single-loop circuit.

PRACTICE 
●

5.4 For the circuit of Fig. 5.20, compute the voltage V across the 1 MΩ 
resistor using repeated source transformations. 

+
–

V+ –

4 MΩ

6 MΩ

1 MΩ

200 kΩ
75 μA

40 μA

3 V

■  FIGURE 5.20

Ans: 27.2 V.
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Some Key Points
We conclude our discussion of practical sources and source transformations 
with a few observations. First, when we transform a voltage source, we must 
be sure that the source is in fact in series with the resistor under consider-
ation. For example, in the circuit of Fig. 5.21, it is perfectly valid to perform 
a source transformation on the voltage source using the 10 Ω resistor, as 
they are in series. However, it would be incorrect to attempt a source trans-
formation using the 60 V source and the 30 Ω resistor—a very common 
type of error.

In a similar fashion, when we transform a current source and resistor 
combination, we must be sure that they are in fact in parallel. Consider the 
current source shown in Fig. 5.22a. We may perform a source transforma-
tion that includes the 3 Ω resistor, as they are in parallel, but after the trans-
formation there may be some ambiguity as to where to place the resistor. In 
such circumstances, it is helpful to first redraw the components to be trans-
formed as in Fig. 5.22b. Then the transformation to a voltage source in 
series with a resistor may be drawn correctly as shown in Fig. 5.22c; the 
resistor may in fact be drawn above or below the voltage source.

It is also worthwhile to consider the unusual case of a current source in 
series with a resistor, and its dual, the case of a voltage source in parallel 
with a resistor. Let’s start with the simple circuit of Fig. 5.23a, where we are  
interested only in the voltage across the resistor marked R2. We note that 

20 Ω4 A

10 Ω 60 V

30 Ω 0.4i1

+–

i1

■  FIGURE 5.21 An example circuit to illustrate how to determine if a source 
transformation can be performed.

1 A2 Ω 3 Ω5 V

7 Ω

3 V+
–

+
–

(a)

2 Ω 3 Ω5 V

7 Ω

3 V+
–

+
– 1 A

(b)

2 Ω
3 Ω

5 V

7 Ω

3 V
3 V

+
–

+
–

+
–

(c)

■  FIGURE 5.22 (a) A circuit with a current source to be transformed to a voltage source. (b) Circuit redrawn so as to avoid errors. (c) Transformed 
source/resistor combination.
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regardless of the value of resistor R1, VR2 = Ix R2. Although we might be 
tempted to perform an inappropriate source transformation on such a cir-
cuit, in fact we may simply omit resistor R1 (provided that it is of no interest 
to us itself). A similar situation arises with a voltage source in parallel with 
a resistor, as depicted in Fig. 5.23b. Again, if we are only interested in some 
quantity regarding resistor R2, we may find ourselves tempted to perform 
some strange (and incorrect) source transformation on the voltage source 
and resistor R1. In reality, we may omit resistor R1 from our circuit as far as 
resistor R2 is concerned—its presence does not alter the voltage across, the 
current through, or the power dissipated by resistor R2.

Vx R1 R2
+
–Ix

R1

R2VR2

+

–

(a) (b)

■  FIGURE 5.23 (a) Circuit with a resistor R1 in series with a current source. 
(b) A voltage source in parallel with two resistors.

Summary of Source Transformation

1. A common goal in source transformation is to end up with either 
all current sources or all voltage sources in the circuit. This is 
especially true if it makes nodal or mesh analysis easier.

2. Repeated source transformations can be used to simplify 
a circuit by allowing resistors and sources to eventually be 
combined.

3. The resistor value does not change during a source trans-
formation, but it is not the same resistor. This means that 
currents or voltages associated with the original resistor are 
irretrievably lost when we perform a source transformation.

4. If the voltage or current associated with a particular resistor 
is used as a controlling variable for a dependent source, it 
should not be included in any source transformation. The 
original resistor must be retained in the final circuit, untouched.

5. If the voltage or current associated with a particular element 
is of interest, that element should not be included in any 
source transformation. The original element must be retained 
in the final circuit, untouched.

6. In a source transformation, the head of the current source 
arrow corresponds to the “+” terminal of the voltage source.

7. A source transformation on a current source and resistor 
requires that the two elements be in parallel.

8. A source transformation on a voltage source and resistor 
requires that the two elements be in series.
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5.3 • THÉVENIN AND NORTON EQUIVALENT CIRCUITS
Now that we have been introduced to source transformations and the su-
perposition principle, it is possible to develop two more techniques that 
will greatly simplify the analysis of many linear circuits. The first of these 
theorems is named after L. C. Thévenin, a French engineer working in te-
legraphy who published the theorem in 1883; the second may be considered 
a corollary of the first and is credited to E. L. Norton, a scientist with the 
Bell Telephone Laboratories.

Let us suppose that we need to make only a partial analysis of a circuit. 
For example, perhaps we need to determine the current, voltage, and power 
delivered to a single “load” resistor by the remainder of the circuit, which 
may consist of a sizable number of sources and resistors (Fig. 5.24a). Or, 
perhaps we wish to find the response for different values of the load resist-
ance. Thévenin’s theorem tells us that it is possible to replace everything 
except the load resistor with an independent voltage source in series with 
a resistor (Fig. 5.24b); the response measured at the load resistor will be 
unchanged. Using Norton’s theorem, we obtain an equivalent composed of 
an independent current source in parallel with a resistor (Fig. 5.24c).

RL
Complex
network

(a)

+
–

RTH

VTH RL

(b)

IN RLRN

(c)

■  FIGURE 5.24 (a) A complex network including a load resistor RL. (b) A Thévenin equivalent 
network connected to the load resistor RL. (c) A Norton equivalent network connected to the load 
resistor RL.

Thus, one of the main uses of Thévenin’s and Norton’s theorems is the 
replacement of a large part of a circuit, often a complicated and uninterest-
ing part, with a very simple equivalent. The new, simpler circuit enables 
us to make rapid calculations of the voltage, current, and power that the 
original circuit can deliver to a load. It also helps us to choose the best 
value of this load resistance. In a transistor power amplifier, for example, 
the Thévenin or Norton equivalent enables us to determine the maximum 
power that can be taken from the amplifier and delivered to the speakers.

EXAMPLE 5.6

Consider the circuit shown in Fig. 5.25a. Determine the Thévenin 
equivalent of network A, and compute the power delivered to the 
load resistor RL.

The dashed regions separate the circuit into networks A and B; our main 
interest is in network B, which consists only of the load resistor RL. Net-
work A may be simplified by making repeated source transformations.
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8 V RL

9 Ω

Network A
(e)

+
–

+
– 12 V

Network A Network B

3 Ω 7 Ω

6 Ω RL

(a)

4 A 3 Ω 6 Ω RL

7 Ω

Network A
(b)

4 A 2 Ω RL

7 Ω

Network A
(c)

8 V RL

2 Ω 7 Ω

Network A
(d )

+
–

■  FIGURE 5.25 (a) A circuit separated into two networks. (b)–(d) intermediate steps to simplifying 
network A. (e) The Thévenin equivalent circuit.

We first treat the 12 V source and the 3 Ω resistor as a practical volt-
age source and replace it with a practical current source consisting of a 
4 A source in parallel with 3 Ω (Fig. 5.25b). The parallel resistances  
are then combined into 2 Ω (Fig. 5.25c), and the practical current 
source that results is transformed back into a practical voltage source  
(Fig. 5.25d). The final result is shown in Fig. 5.25e.

From the viewpoint of the load resistor RL, this network A (the 
Thévenin equivalent) is equivalent to the original network A; from our 
viewpoint, the circuit is much simpler, and we can now easily compute 
the power delivered to the load:

  P  L   =   (    8 ____ 9 +  R  L     )     
2
  R  L   

Furthermore, we can see from the equivalent circuit that the maximum 
voltage that can be obtained across RL is 8 V and that it corresponds to  
RL = ∞. A quick transformation of network A to a practical current 
source (the Norton equivalent) indicates that the maximum current that 
may be delivered to the load is 8/9 A, which occurs when RL = 0.  
Neither of these facts is readily apparent from the original circuit.

PRACTICE 
●

5.5 Using repeated source transformations, determine the Norton 
equivalent of the highlighted network in the circuit of Fig. 5.26. 

Ans: 1 A; 5 Ω.

2 Ω 10 Ω

8 Ω
RL5 A

■  FIGURE 5.26
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Thévenin’s Theorem
Using the technique of source transformation to find a Thévenin or Norton 
equivalent network worked well enough in Example 5.6, but it can rapidly 
become impractical in situations where dependent sources are present or the 
circuit is composed of a large number of elements. An alternative is to em-
ploy Thévenin’s theorem (or Norton’s theorem) instead. We will state the 
theorem3 as a somewhat formal procedure and then consider various ways to 
make the approach more practical depending on the situation we face.

A Statement of Thévenin’s Theorem

1. Given any linear circuit, rearrange it in the form of two 
networks, A and B, connected by two wires. Network A is the 
network to be simplified; B will be left untouched.

2. Disconnect network B. Define a voltage voc as the voltage now 
appearing across the terminals of network A.

3. Turn off or “zero out” every independent source in network 
A to form an inactive network. Leave dependent sources 
unchanged.

4. Connect an independent voltage source with value voc in 
series with the inactive network. Do not complete the circuit; 
leave the two terminals disconnected.

5. Connect network B to the terminals of the new network A. 
All currents and voltages in B will remain unchanged.

Note that if either network contains a dependent source, its control var-
iable must be in the same network.

Let us see if we can apply Thévenin’s theorem successfully to the circuit 
we considered in Fig. 5.25. We have already found the Thévenin equivalent 
of the circuit to the left of RL in Example 5.6, but we want to see if there is 
an easier way to obtain the same result.

EXAMPLE 5.7

Use Thévenin’s theorem to determine the Thévenin equivalent for 
that part of the circuit in Fig. 5.25a to the left of RL.

We begin by disconnecting RL, and note that no current flows through 
the 7 Ω resistor in the resulting partial circuit shown in Fig. 5.27a. 
Thus, Voc appears across the 6 Ω resistor (with no current through the 
7 Ω resistor there is no voltage drop across it), and voltage division 
enables us to determine that

  V  oc   = 12   (     6 _ 3 + 6   )    = 8 V 

(3) A proof of Thévenin’s theorem in the form in which we have stated it is rather lengthy, and therefore it 
has been placed in Appendix 3, where the curious may peruse it.
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A Few Key Points
The equivalent circuit we have learned how to obtain is completely indepen-
dent of network B: we have been instructed to first remove network B and 
then measure the open-circuit voltage produced by network A, an operation 
that certainly does not depend on network B in any way. The B network 
is mentioned only to indicate that an equivalent for A may be obtained no 
matter what arrangement of elements is connected to the A network; the B 
network represents this general network.

Several points about the theorem deserve emphasis.

 ∙ The only restriction that we must impose on A or B is that all 
dependent sources in A have their control variables in A, and sim-
ilarly for B.

 ∙ No restrictions are imposed on the complexity of A or B; either one 
may contain any combination of independent voltage or current sourc-
es, linear dependent voltage or current sources, resistors, or any other 
circuit elements which are linear.

 ∙ The deactivated network A can be represented by a single equivalent 
resistance RTH, which we will call the Thévenin equivalent resistance. 
This holds true whether or not dependent sources exist in the inactive A 
network, an idea we will explore shortly.

+
– Voc

+

–
6 Ω

3 Ω

12 V

7 Ω

■  FIGURE 5.27 (a) The circuit of fig. 5.25a with network B (the resistor RL) 
disconnected and the voltage across the connecting terminals labeled as Voc. 
(b) The independent source in fig. 5.25a has been zeroed out, and we look 
into the terminals where network B was connected to determine the effective 
resistance of network A.

Turning off network A (i.e., replacing the 12 V source with a short 
circuit) and looking back into the dead network, we see a 7 Ω resis-
tor connected in series with the parallel combination of 6 Ω and 3 Ω 
(Fig. 5.27b).

Thus, the inactive network can be represented here by a 9 Ω resistor, 
referred to as the Thévenin equivalent resistance of network A. The 
Thévenin equivalent then is Voc in series with a 9 Ω resistor, which 
agrees with our previous result.

PRACTICE 
●

5.6 Use Thévenin’s theorem to find the current through the 2 Ω 
resistor in the circuit of Fig. 5.28. (Hint: Designate the 2 Ω resistor 
as network B.) 

Ans: VTH = 2.571 V; RTH = 7.857 Ω; I2 Ω = 260.8 mA.

+
–9 V 4 Ω 2 Ω

4 Ω

6 Ω

5 Ω

I2Ω

■  FIGURE 5.28

6 Ω3 Ω

7 Ω

RTH

hay01307_ch05_133-184.indd   155 23/01/18   10:04 am



CHAPTER 5 HANDY CiRCuiT ANAlYSiS TECHNiquES156

 ∙ A Thévenin equivalent consists of two components: a voltage source in 
series with a resistance. Either may be zero, although this is not usually 
the case.

Norton’s Theorem
Norton’s theorem bears a close resemblance to Thévenin’s theorem and may 
be stated as follows:

A Statement of Norton’s Theorem

1. Given any linear circuit, rearrange it in the form of two 
networks, A and B, connected by two wires. Network A is the 
network to be simplified; B will be left untouched. As before, if ei-
ther network contains a dependent source, its controlling variable 
must be in the same network.

2. Disconnect network B, and short the terminals of A. Define 
a current isc as the current now flowing through the shorted 
terminals of network A.

3. Turn off or “zero out” every independent source in network 
A to form an inactive network. Leave dependent sources 
unchanged.

4. Connect an independent current source with value isc in 
parallel with the inactive network. Do not complete the 
circuit; leave the two terminals disconnected.

5. Connect network B to the terminals of the new network A. 
All currents and voltages in B will remain unchanged.

The Norton equivalent of a linear network is the Norton current source 
isc in parallel with the Thévenin resistance RTH. Thus, we see that in fact it 
is possible to obtain the Norton equivalent of a network by performing a 
source transformation on the Thévenin equivalent. This results in a direct 
relationship between voc, isc, and RTH:

    v  oc   =  R  TH    i  sc     [18]

In circuits containing dependent sources, we will often find it more 
convenient to determine either the Thévenin or Norton equivalent by find-
ing both the open-circuit voltage and the short-circuit current and then 
determining the value of RTH as their quotient. It is therefore advisable 
to become adept at finding both open-circuit voltages and short-circuit 
currents, even in the simple problems that follow. If the Thévenin and 
Norton equivalents are determined independently, Eq. [18] can serve as 
a useful check.

Let’s consider three different examples of the determination of a 
Thévenin or Norton equivalent circuit.
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EXAMPLE 5.8

Find the Thévenin and Norton equivalent circuits for the network 
faced by the 1 kΩ resistor in Fig. 5.29a.

+
–4 V 2 mA

(a)

1 kΩ

3 kΩ2 kΩ

2 kΩ

3 kΩ

RTH

(b)

+
–4 V 2 mA

2 kΩ 3 kΩ

Isc

(e)

+
–8 V

(c)

1 kΩ

5 kΩ

1.6 mA

(d)

1 kΩ5 kΩ

■  FIGURE 5.29 (a) A given circuit in which the 1 kΩ resistor is identified as network B. 
(b) Network A with all independent sources killed. (c) The Thévenin equivalent is shown for 
network A. (d) The Norton equivalent is shown for network A. (e) Circuit for determining Isc.

From the wording of the problem statement, network B is the 1 kΩ 
resistor, so network A is everything else.

Choosing to find the Thévenin equivalent of network A first, we 
apply superposition, noting that no current flows through the 3 kΩ 
resistor once network B is disconnected. With the current source set to 
zero, Voc|4V = 4 V. With the voltage source set to zero,

  V   oc|  2 mA     = (0.002 ) (2000 ) = 4 V. Thus,   V  oc   = 4 + 4 = 8 V. 

To find RTH, set both sources to zero as in Fig. 5.29b. By inspection, 
RTH = 2 kΩ + 3 kΩ = 5 kΩ. The complete Thévenin equivalent, with 
network B reconnected, is shown in Fig. 5.29c.

The Norton equivalent is found by a simple source transformation 
of the Thévenin equivalent, resulting in a current source of 8/5000 = 
1.6 mA in parallel with a 5 kΩ resistor (Fig. 5.29d).

Check: Find the Norton equivalent directly from Fig. 5.29a. Re-
moving the 1 kΩ resistor and shorting the terminals of network A, we 

(Continued on next page)
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When Dependent Sources Are Present
Technically speaking, there does not always have to be a “network B” 
for us to invoke either Thévenin’s theorem or Norton’s theorem; we 
could instead be asked to find the equivalent of a network with two 
terminals not yet connected to another network. If there is a network B 
that we do not want to involve in the simplification procedure, however, 
we must use a little caution if it contains dependent sources. In such 
situations, the controlling variable and the associated element(s) must 
be included in network B and excluded from network A. Otherwise, 
there will be no way to analyze the final circuit because the controlling 
quantity will be lost.

If network A contains a dependent source, then again we must ensure 
that the controlling variable and its associated element(s) cannot be in 
network B. Up to now, we have only considered circuits with resistors 
and independent sources. Although technically speaking it is correct to 
leave a dependent source in the “inactive” network when creating a 
Thévenin or Norton equivalent, in practice this does not result in any 
kind of simplification. What we really want is an independent voltage 
source in series with a single resistor, or an independent current source 
in parallel with a single resistor—in other words, a two-component 
equivalent. In the following examples, we consider various means of re-
ducing networks with dependent sources and resistors into a single 
resistance.

find Isc as shown in Fig. 5.29e by superposition and current division:

   I  sc   =  I   sc|  4 V     +  I   sc|  2 mA      =    4 ___ 2 + 3   + (2 )   2 ___ 2 + 3       
 
  

=
  

0.8 + 0.8 = 1.6 mA
  

which completes the check.

PRACTICE 
●

5.7 Determine the Thévenin and Norton equivalents of the circuit of 
Fig. 5.30. 

+
–3 V 7 mA

2 kΩ 1 kΩ

5 kΩ

■  FIGURE 5.30

Ans: −7.857 V; −3.235 mA; 2.429 kΩ.
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EXAMPLE 5.9

Determine the Thévenin equivalent of the circuit in Fig. 5.31a.

vx

+

–

vx
4000

(a)

+
–

2 kΩ

4 V

3 kΩ

vx

+

–

vx
4000

(b)

2 kΩ 3 kΩ

8 V

+–

(c)

10 kΩ
+
–8 V

vx

+

–

vx
4000

(a)

+
–

2 kΩ

4 V

3 kΩ

vx

+

–

vx
4000

(b)

2 kΩ 3 kΩ

8 V

+–

(c)

10 kΩ
+
–8 V

■  FIGURE 5.31 (a) A given network whose Thévenin equivalent is desired. (b) A possible, 
but rather useless, form of the Thévenin equivalent. (c) The best form of the Thévenin 
equivalent for this linear resistive network.

To find Voc we note that vx = Voc and that the dependent source current 
must pass through the 2 kΩ resistor, since no current can flow through 
the 3 kΩ resistor. Using KVL around the outer loop:

 − 4 + 2 ×  10   3   (  −    v  x   _ 4000   )    + 3 ×  10   3 (0 ) + v  x   = 0 

and
  v  x   = 8 V =  V  oc   

By Thévenin’s theorem, then, the equivalent circuit could be formed 
with the inactive A network in series with an 8 V source, as shown in 
Fig. 5.31b. This is correct, but not very simple and not very helpful; in 
the case of linear resistive networks, we really want a simpler equiva-
lent for the inactive A network, namely, RTH.

The dependent source prevents us from determining RTH directly for 
the inactive network through resistance combination; we therefore seek 
Isc. Upon short-circuiting the output terminals in Fig. 5.31a, it is appar-
ent that Vx = 0 and the dependent current source is not active. Hence, 
Isc = 4/(5 × 103) = 0.8 mA. Thus,

  R  TH   =    V  oc   ___  I  sc  
   =   8 _______ 

0.8 ×  10   −3 
   = 10 kΩ 

and the acceptable Thévenin equivalent of Fig. 5.31c is obtained.

PRACTICE 
●

5.8 Find the Thévenin equivalent for the network of Fig. 5.32. (Hint: a 
quick source transformation on the dependent source might help.) 
Note: A negative resistance might seem strange—and it is! Such a thing 
is physically possible only if, for example, we do a bit of clever elec-
tronic circuit design to create something that behaves like the dependent 
current source we represented in Fig. 5.32.
Ans: −502.5 mV; −100.5 Ω.

+–

20 kΩ0.01V1

100 V

V1

+

–

■  FIGURE 5.32
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As another example, let us consider a network having a dependent source 
but no independent source.

EXAMPLE 5.10

Find the Thévenin equivalent of the circuit shown in Fig. 5.33a.

(a)

3 Ω

2 Ω
+
–1.5i

i

vtest

+

–

(b)

3 Ω

2 Ω 1 A+
–1.5i

i

0.6 Ω

(c)

(a)

3 Ω

2 Ω
+
–1.5i

i

vtest

+

–

(b)

3 Ω

2 Ω 1 A+
–1.5i

i

0.6 Ω

(c)

■  FIGURE 5.33 (a) A network with no independent sources. (b) A hypothetical measurement to 
obtain RTH. (c) The Thévenin equivalent to the original circuit.

The rightmost terminals are already open-circuited, hence i = 0.
Consequently, the dependent source is inactive, so voc = 0.

We next seek the value of RTH represented by this two-terminal 
network. However, we cannot find voc and isc and take their quotient, for 
there is no independent source in the network, and both voc and isc are 
zero. Let us, therefore, be a little tricky.

We apply a 1 A source externally, measure the voltage vtest that 
results, and then set RTH = vtest/1. Referring to Fig. 5.33b, we see that  
i = −1 A. Applying nodal analysis,

    v  test   − 1.5(− 1)  _________ 3   +    v  test   ___ 2   = 1 

so that

  v  test   = 0.6 V 

and thus

  R  TH   = 0.6 Ω 

The Thévenin equivalent is shown in Fig. 5.33c.

A Quick Recap of Procedures
We have now looked at three examples in which we determined a Thévenin or 
Norton equivalent circuit. The first example (Fig. 5.29) contained only indepen-
dent sources and resistors, and several different methods could have been applied 
to it. One would involve calculating RTH for the inactive network and then Voc for 
the live network. We could also have found RTH and Isc, or Voc and Isc.
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One of the most common pieces of electrical test equip-
ment is the DMM, or digital multimeter (Fig. 5.34), 
which is designed to measure voltage, current, and re-
sistance values.

■  FIGURE 5.34 A handheld digital multimeter.
(©Steve Durbin)

In a voltage measurement, two leads from the DMM 
are connected across the appropriate circuit element, as 
depicted in Fig. 5.35. The positive reference terminal of 
the meter is typically marked “V/Ω,” and the negative 
reference terminal—often referred to as the common ter-
minal—is typically designated by “COM.” The conven-
tion is to use a red lead for the positive reference terminal 
and a black lead for the common terminal.

1 kΩ9 V

1 kΩ

V/Ω COM
DMM

4.500 VDC

+
–

■  FIGURE 5.35 A DMM connected to measure voltage.

From our discussion of Thévenin and Norton equiva-
lents, it may now be apparent that the DMM has its own 
Thévenin equivalent resistance. This Thévenin equiva-
lent resistance will appear in parallel with our circuit, 
and its value can affect the measurement (Fig. 5.36). The 
DMM does not supply power to the circuit to measure 
voltage, so its Thévenin equivalent consists of only a re-
sistance, which we will name RDMM.

The input resistance of a good DMM is typically 
10 MΩ or more. The measured voltage V thus appears 
across 1 kΩ||10 MΩ = 999.9 Ω. Using voltage division, 

we find that V = 4.4998 volts, slightly less than the ex-
pected value of 4.5 volts. Thus, the finite input resistance 
of the voltmeter introduces a small error in the measured 
value.

+
–

+

–
9 V 1 kΩ RDMMV

1 kΩ

■  FIGURE 5.36 DMM in fig. 5.35 shown as its 
Thévenin equivalent resistance, RDMM.

To measure current, the DMM must be placed in se-
ries with a circuit element, generally requiring that we 
cut a wire (Fig. 5.37). One DMM lead is connected to 
the common terminal of the meter, and the other lead 
is placed in a connector usually marked “A” to signify 
current measurement. Again, the DMM does not supply 
power to the circuit in this type of measurement.

1 kΩ
9 V

1 kΩ

A COM
DMM

4.500 mA

+
–

I

■  FIGURE 5.37 A DMM connected to measure current.

We see that the Thévenin equivalent resistance 
(RDMM) of the DMM is in series with our circuit, so its 
value can affect the measurement. Writing a simple KVL 
equation around the loop,

 − 9 + 1000I +  R  DMM   I + 1000I = 0 

Note that since we have reconfigured the meter to 
perform a current measurement, the Thévenin equivalent 
resistance is not the same as when the meter is config-
ured to measure voltages. In fact, we would ideally like 
RDMM to be 0 Ω for current measurements, and ∞ for 
voltage measurements. If RDMM is now 0.1 Ω, we see 
that the measured current I is 4.4998 mA, which is only 
slightly different from the expected value of 4.5 mA. De-
pending on the number of digits that can be displayed by 
the meter, we may not even notice the effect of nonzero 
DMM resistance on our measurement.

The same meter can be used to determine resistance, 
provided no independent sources are active during the 
measurement. Internally, a known current is passed 

PRACTICAL APPLICATION
The Digital Multimeter

PRACTICAL APPLICATION

(Continued on next page)
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In the second example (Fig. 5.31), both independent and dependent 
sources were present, and the method we used required us to find Voc and Isc. 
We could not easily find RTH for the inactive network because the dependent 
source could not be made inactive.

The last example did not contain any independent sources, and therefore 
the Thévenin and Norton equivalents do not contain an independent source. 
We found RTH by applying 1 A and finding vtest = 1 × RTH. We could also 
apply 1 V and determine i = 1/RTH. These two related techniques can be 
applied to any circuit with dependent sources, as long as all independent 
sources are set to zero first.

Two other methods have a certain appeal because they can be used for 
any of the three types of networks considered. In the first, simply replace 
network B with a voltage source vs, define the current leaving its positive 
terminal as i, analyze network A to obtain i, and put the equation in the form 
vs = ai + b. Then, a = RTH and b = voc.

We could also apply a current source is, let its voltage be v, and 
then determine is = cv − d, where c = 1/RTH and d = isc (the minus 
sign arises from assuming both current source arrows are directed into 
the same node). Both of these last two procedures are universally ap-
plicable, but some other method can usually be found that is easier and 
more rapid.

Although we are devoting our attention almost entirely to the analysis of 
linear circuits, it is good to know that Thévenin’s and Norton’s theorems are 
both valid if network B is nonlinear; only network A must be linear.

through the resistor being measured, and the voltmeter 
circuitry is used to measure the resulting voltage. Re-
placing the DMM with its Norton equivalent (which now 
includes an active independent current source to generate 
the predetermined current), we see that RDMM appears in 
parallel with our unknown resistor R (Fig. 5.38).

V

+

–
INRDMMR

■  FIGURE 5.38 DMM in resistance measurement 
configuration replaced by its Norton equivalent, showing RDMM 
in parallel with the unknown resistor R to be measured.

As a result, the DMM actually measures R ||RDMM. 
If RDMM = 10 MΩ and R = 10 Ω, Rmeasured = 9.99999 Ω,  
which is more than accurate enough for most pur-
poses. However, if R = 10 MΩ, Rmeasured = 5 MΩ. The 
input resistance of a DMM therefore places a prac-
tical upper limit on the values of resistance that can 
be measured, and special techniques must be used to 
measure larger resistances. We should note that if a 
digital multimeter is programmed with knowledge of 
RDMM, it is possible to compensate and allow mea-
surement of larger resistances.

PRACTICE 
●

5.9 Find the Thévenin equivalent for the network of Fig. 5.39. (Hint: 
Try a 1 V test source.) 

Ans: Itest = 50 mA so RTH = 20 Ω.

10 Ω 5 Ω

30 Ω20i1

i1+
–

■  FIGURE 5.39 See Practice Problem 5.9.
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5.4 • MAXIMUM POWER TRANSFER
A very useful power theorem may be developed with reference to a practical 
voltage or current source. For the practical voltage source (Fig. 5.40), the 
power delivered to the load RL is

   p  L   =  i  L  2   R  L   =    v  s  2   R  L   _______ 
 ( R  s   +  R  L   )   2 

    [19]

We can find the value of RL that will absorb maximum power from the given 
practical source if we differentiate with respect to RL:

   d  p  L   ___ 
d  R  L     =    ( R  s   +  R  L   )   2   v  s  2  −  v  s  2   R  L  (2 ) ( R  s   +  R  L   )   ___________________  

 ( R  s   +  R  L   )   4 
   

and equate the derivative to zero, obtaining

 2  R  L  ( R  s   +  R  L   ) =  ( R  s   +  R  L   )   2  

which leads us to

  R  s   =  R  L   

Since the values RL = 0 and RL = ∞ both give a minimum (pL = 0), and 
since we have already developed the equivalence between practical volt-
age and current sources, we have therefore proved the following maximum 
power transfer theorem:

An independent voltage source in series with a resistance Rs (or an indepen-
dent current source in parallel with a resistance Rs) delivers maximum power 
to a load resistance RL such that RL = Rs.

An alternative way to view the maximum power theorem is possible in 
terms of the Thévenin equivalent resistance of a network:

A network delivers maximum power to a load resistance RL when RL is 
equal to the Thévenin equivalent resistance of the network.

Thus, the maximum power transfer theorem tells us that a 2 Ω resistor 
draws the greatest power (4.5 W) from either practical source of Fig. 5.16, 
whereas a resistance of 0.01 Ω receives the maximum power (3.6 kW) in 
Fig. 5.11.

There is a distinct difference between drawing maximum power from a 
source and delivering maximum power to a load. If the load is sized such 
that its Thévenin resistance is equal to the Thévenin resistance of the net-
work to which it is connected, it will receive maximum power from that 
network. Any change to the load resistance will reduce the power delivered 
to the load. However, consider just the Thévenin equivalent of the network 
itself. We draw the maximum possible power from the voltage source by 
drawing the maximum possible current—which is achieved by shorting the 
network terminals! However, in this extreme example we deliver zero power 
to the “load”—a short circuit in this case—as p = i2R, and we just set R = 0 
by shorting the network terminals.

+
–vs

Rs

RLvL

+

–

iL

■  FIGURE 5.40 A practical voltage source 
connected to a load resistor RL.
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A minor amount of algebra applied to Eq. [19], coupled with the maxi-
mum power transfer requirement that RL = Rs = RTH will provide

  p  max    |  delivered to load   =    v  s  2  ___ 4  R  s  
   =    v  TH  2   ____ 4  R  TH     

where vTH and RTH recognize that the practical voltage source of Fig. 5.40 
can also be viewed as a Thévenin equivalent of some specific source.

We should pause here and mention that it is not uncommon for the maxi-
mum power theorem to be misinterpreted. It is designed to help us select an 
optimum load in order to maximize power absorption. If the load resistance is 
already specified, however, the maximum power theorem is of no assistance. 
If for some reason we can affect the size of the Thévenin equivalent resistance 
of the network connected to our load, setting it equal to the load does not 
guarantee maximum power transfer to our predetermined load. A quick con-
sideration of the power lost in the Thévenin resistance will clarify this point.

EXAMPLE 5.11
The circuit shown in Fig. 5.41 is a model for the common-emitter 
bipolar junction transistor amplifier. Choose a resistance RL so that 
maximum power is transferred to the load from the amplifier, and 
calculate the actual power absorbed.

vπ

+

–

+
–

300 Ω

5 kΩ17 kΩ 1 kΩ RL2.5 sin 440t mV 0.03vπ

■  FIGURE 5.41 A small-signal model of the common-emitter amplifier, with the load resistance 
unspecified.

Since it is the load resistance we are asked to determine, the maximum 
power theorem applies. The first step is to find the Thévenin equivalent 
of the rest of the circuit.

We first determine the Thévenin equivalent resistance, which re-
quires that we remove RL and short-circuit the independent source as in 
Fig. 5.42a.

Since vπ = 0, the dependent current source is an open circuit, and 
RTH = 1 kΩ. This can be verified by connecting an independent 1A cur-
rent source across the 1 kΩ resistor; vπ will still be zero, so the depen-
dent source remains inactive and hence contributes nothing to RTH.

In order to obtain maximum power delivered into the load, RL should 
be set to RTH = 1 kΩ.

To find vTH we consider the circuit shown in Fig. 5.42b, which is 
Fig. 5.41 with RL removed. We may write

  v  oc   = − 0.03  v  π  (1000 ) = − 30  v  π   

hay01307_ch05_133-184.indd   164 23/01/18   10:05 am



  SECTION 5.4 MAxiMuM PoWER TRANSfER 165

where the voltage vπ may be found from simple voltage division:

  v  π   = (2.5 ×  10   −3   sin 440t )   (    3864 _ 300 + 3864   )    

so that our Thévenin equivalent is a voltage −69.6 sin 440t mV in 
series with 1 kΩ.

vπ

+

–

voc

+

–

+
–

300 Ω

5 kΩ17 kΩ 1 kΩ2.5 sin 440t mV 0.03vπ

RTHvπ

+

–

300 Ω

5 kΩ17 kΩ 1 kΩ0.03vπ

(a)

(b)

■  FIGURE 5.42 (a) Circuit with RL removed and independent source short-circuited. (b) Circuit for 
determining vTH.

The maximum power is therefore given by

  p  max   =    v  TH  2   ____ 4  R  TH     =  1.211   sin   2  440t μW  

PRACTICE 
●

5.10 Consider the circuit of Fig. 5.43.

+
–

+ –

Rout

30 V

20 V

+ –

40 V

2 kΩ
2 kΩ

■  FIGURE 5.43

(a) What is the maximum power that can be delivered to Rout? 
(b) If Rout = 3 kΩ, find the power delivered to it. 
(c) What two different values of Rout will have exactly 20 mW deliv-
ered to them? 

Ans: 306 mW; 230 mW; 59.2 kΩ and 16.88 Ω.
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5.5 • DELTA-WYE CONVERSION
We saw previously that identifying parallel and series combinations of 
resistors can often lead to a significant reduction in the complexity of a 
circuit. In situations where such combinations do not exist, we can often 
make use of source transformations to enable such simplifications. There is 
another useful technique, called Δ–Y (delta–wye) conversion, which arises 
out of network theory.

Consider the circuits in Fig. 5.44. There are no series or parallel com-
binations that can be made to further simplify any of the circuits (note that 
5.44a and 5.44b are identical, as are 5.44c and 5.44d), and without any 
sources present, no source transformations can be performed. However, it is 
possible to convert between these two types of networks.

■ FIGURE 5.44 (a) Π network consisting of three resistors and three unique connections. (b) Same network drawn as a Δ network. (c) A T network consist-
ing of three resistors. (d) Same network drawn as a Y network.

a

c

b

d

RB

RA RC

(a)

RB

a

c

b

d

RA RC

(b)

R1 R2

R3

a

c

b

d
(c)

R1 R2

R3

a

c

b

d
(d )

We first define two voltages vac and vbc, and three currents i1, i2, and i3 as 
depicted in Fig. 5.45. If the two networks are equivalent, then the terminal 
voltages and currents must be equal (there is no current i2 in the T-connected 
network). A set of relationships between RA, RB, RC and R1, R2, and R3 can 
now be defined simply by performing mesh analysis. For example, for the 
network of Fig. 5.45a we may write

   
 
  

  R  A    i  1  
  
−

  
 R  A    i  2  

  
 
  

 
  

=
  
 v  ac  

     −   R  A    i  1    +  ( R  A   +  R  B   +  R  C   )  i  2    −   R  C    i  3      
 
  

 
  

−
  
 R  C    i  2  

  
+

  
 R  C    i  3  

  
=

  
−  v  bc  

   
[20]

[21]
[22]

and for the network of Fig. 5.45b we have

       (    R  1   +  R  3   )    i  1   −  R  3    i  3     =
  

 v  ac                −  R  3    i  1   +  (    R  2   +  R  3   )    i  3   
  
=

  
−  v  bc  

   
[23]
[24]

We next remove i2 from Eqs. [20] and [22] using Eq. [21], resulting in

   ( R  A   −   R  A  2  
 ___________   R  A   +  R  B   +  R  C    )  i  1   −   R  A    R  C   

 ________   R  A   +  R  B   +  R  C      i  3   =  v  ac    [25]

and

  −  R  A    R  C   
 ________  R  A   +  R  B   +  R  C      i  1   +  (  RC − RC

2 
 __________ RA + RB + RC 

  )  i3 = −  v  bc    [26]

■  FIGURE 5.45 (a) labeled Π network; (b) labeled 
T network.

RB

RA RC

(a)

vbc

+

–

vac

+

–

i3
i2

i1

R1 R2

R3

(b)

i1 i3 vbc

+

–

vac

+

–

RB

RA RC

(a)

vbc

+

–

vac

+

–

i3
i2

i1

R1 R2

R3

(b)

i1 i3 vbc

+

–

vac

+

–
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Comparing terms between Eq. [25] and Eq. [23], we see that

  R  3   =   R  A    R  C    ________   R  A   +  R  B   +  R  C     

In a similar fashion, we may find expressions for R1 and R2 in terms of 
RA, RB, and RC, as well as expressions for RA, RB, and RC in terms of R1, 
R2, and R3; we leave the remainder of the derivations as an exercise for the 
reader. Thus, to convert from a Y network to a Δ network, the new resistor 
values are calculated using

RA =    R1 R2 + R2 R3 + R3 R1  __________________ 
R2

   

RB =    R1 R2 + R2 R3 + R3 R1  __________________ 
R3

   

RC =    R1 R2 + R2 R3 + R3 R1  __________________ 
R1

   

and to convert from a Δ network to a Y network,

  R  1    =     R  A    R  B   ____________   R  A   +  R  B   +  R  C     

R2 =    RB RC ____________  
RA + RB + RC

   

R3 =    RC RA ____________  
RA + RB + RC

   

Application of these equations is straightforward, although identifying 
the actual networks sometimes requires a little concentration.

EXAMPLE 5.12

Use the technique of Δ–Y conversion to find the Thévenin equivalent 
resistance of the circuit in Fig. 5.46a.

We see that the network in Fig. 5.46a is composed of two Δ-connected 
networks that share the 3 Ω resistor. We must be careful at this point 
not to be too eager, attempting to convert both Δ-connected networks to 
two Y-connected networks. The reason for this may be more obvious 
after we convert the top network consisting of the 1 Ω, 4 Ω, and 3 Ω 
resistors into a Y-connected network (Fig. 5.46b).

Note that in converting the upper network to a Y-connected network, 
we have removed the 3 Ω resistor. As a result, there is no way to con-
vert the original Δ-connected network consisting of the 2 Ω, 5 Ω, and  
3 Ω resistors into a Y-connected network.

We proceed by combining the    3 _ 8    Ω and 2 Ω resistors and the    3 _ 2    Ω 
and 5 Ω resistors (Fig. 5.46c). We now have a    19 __ 8    Ω resistor in paral-
lel with a    13 __ 2    Ω resistor, and this parallel combination is in series  
with the    1 _ 2    Ω resistor. Thus, we can replace the original network of 
Fig. 5.46a with a single    159 ___ 71    Ω resistor (Fig. 5.46d).
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PRACTICE 
●

5.11 Use the technique of Y–Δ conversion to find the Thévenin equiv-
alent resistance of the circuit of Fig. 5.47. 

■  FIGURE 5.47

Each R is 10 Ω

Rin

Ans: 11.43 Ω.

■  FIGURE 5.46 (a) A given resistive network whose 
input resistance is desired. (b) The upper Δ network 
is replaced by an equivalent Y network. (c, d) Series 
and parallel combinations result in a single resistance 
value.

(a)

3 Ω

1 Ω 4 Ω

2 Ω 5 Ω

Ω1
2

Ω3
8

Ω3
2

(b)

2 Ω 5 Ω

Ω1
2

Ω13
2Ω19

8

(c)

Ω159
71

(d )

R2R1

R3

(a)

3 Ω

1 Ω 4 Ω

2 Ω 5 Ω

Ω1
2

Ω3
8

Ω3
2

(b)

2 Ω 5 Ω

Ω1
2

Ω13
2Ω19

8

(c)

Ω159
71

(d )

R2R1

R3

5.6 •  SELECTING AN APPROACH: A SUMMARY  
OF VARIOUS TECHNIQUES

In Chap. 3, we were introduced to Kirchhoff’s current law (KCL) and 
Kirchhoff’s voltage law (KVL). These two laws apply to any circuit we will 
ever encounter, provided that we take care to consider the entire system 
that the circuits represent. The reason for this is that KCL and KVL enforce 
charge and energy conservation, respectively, which are fundamental prin-
ciples. Based on KCL, we developed the very powerful method of nodal 
analysis. A similar technique based on KVL (unfortunately only applicable 
to planar circuits) is known as mesh analysis and is also a useful circuit 
analysis approach.

For the most part, this text is concerned with developing analytical skills 
that apply to linear circuits. If we know a circuit is constructed of only 
linear components (in other words, all voltages and currents are related by 
linear functions), then we can often simplify circuits before employing ei-
ther mesh or nodal analysis. Perhaps the most important result that comes 
from the knowledge that we are dealing with a completely linear system is 
that the principle of superposition applies: given a number of independent 
sources acting on our circuit, we can add the contribution of each source in-
dependently of the other sources. This technique is pervasive throughout the 
field of engineering, and we will encounter it often. In many real situations, 
we will find that although several “sources” are acting simultaneously on 
our “system,” typically one of them dominates the system response. Super-
position allows us to quickly identify that source, provided that we have a 
reasonably accurate linear model of the system.

However, from a circuit analysis standpoint, unless we are asked to find 
which independent source contributes the most to a particular response, we 
find that rolling up our sleeves and launching straight into either nodal or 
mesh analysis is often a more straightforward tactic. The reason for this is 
that applying superposition to a circuit with 12 independent sources will 
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require us to redraw the original circuit 12 times, and often we will have to 
apply nodal or mesh analysis to each partial circuit, anyway.

The technique of source transformations, on the other hand, is often a 
very useful tool in circuit analysis. Performing source transformations can 
allow us to consolidate resistors or sources that are not in series or parallel 
in the original circuit. Source transformations may also allow us to convert 
all or at least most of the sources in the original circuit to the same type 
(either all voltage sources or all current sources), so nodal or mesh analysis 
is more straightforward.

Thévenin’s theorem is extremely important for a number of reasons. 
In working with electronic circuits, we are always aware of the Thévenin 
equivalent resistance of different parts of our circuit, especially the in-
put and output resistances of amplifier stages. The reason for this is that 
matching of resistances is often the best route to optimizing the perfor-
mance of a given circuit. We have seen a small preview of this in our 
discussion of maximum power transfer, where the load resistance should 
be chosen to match the Thévenin equivalent resistance of the network 
to which the load is connected. In terms of day-to-day circuit analysis, 
however, we find that converting part of a circuit to its Thévenin or Nor-
ton equivalent is almost as much work as analyzing the complete circuit. 
Therefore, as in the case of superposition, Thévenin’s and Norton’s the-
orems are typically applied only when we need specialized information 
about part of our circuit.

SUMMARY AND REVIEW

Although we asserted in Chap. 4 that nodal analysis and mesh analysis are 
sufficient to analyze any circuit we might encounter (provided we have the 
means to relate voltage and current for any passive element, such as Ohm’s 
law for resistors), the simple truth is that often we do not really need all volt-
ages, or all currents. Sometimes, it is simply one element, or a small por-
tion of a larger circuit, that has our attention. In such cases, we can exploit 
the fact that at the moment we have confined ourselves to linear circuits. 
This allows the development of other tools: superposition, where individual 
contributions of sources can be identified; source transformations, where a 
voltage source in series with a resistor can be replaced with a current source 
in parallel with a resistor; and the most powerful of all—Thévenin (and 
Norton) equivalents.

An interesting offshoot of these topics is the idea of maximum power 
transfer. Assuming we can represent our (arbitrarily complex) circuit by 
two networks, one passive and one active, maximum power transfer to the 
passive network is achieved when its Thévenin resistance is equal to the 
Thévenin resistance of the active network. Finally, we introduced the con-
cept of delta–wye conversion, a process that allows us to simplify some 
resistive networks that at face value are not reducible using standard series–
parallel combination techniques.

We are still faced with the perpetual question, “Which tool should I use 
to analyze this circuit?” The answer typically lies in the type of information 
required about our circuit. Experience will eventually guide us a bit, but it 
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is not always true that there is one “best” approach. Certainly one issue to 
focus on is whether one or more components might be changed—this can 
suggest whether superposition, a Thévenin equivalent, or a partial simplifi-
cation such as can be achieved with source or delta–wye transformation is 
the most practical route.

We conclude this chapter by reviewing key points, along with identify-
ing relevant example(s).

 The principle of superposition states that the response in a linear 
circuit can be obtained by adding the individual responses caused 
by the separate independent sources acting alone. (Examples 5.1, 
5.2, 5.3)

 Superposition is most often used when it is necessary to determine 
the individual contribution of each source to a particular response. 
(Examples 5.2, 5.3)

 A practical model for a real voltage source is a resistor in series with an 
independent voltage source. A practical model for a real current source 
is a resistor in parallel with an independent current source.

 Source transformations allow us to convert a practical voltage source 
into a practical current source, and vice versa. (Example 5.4)

 Repeated source transformations can greatly simplify analysis of 
a circuit by providing the means to combine resistors and sources. 
(Example 5.5)

 The Thévenin equivalent of a network is a resistor in series with an 
independent voltage source. The Norton equivalent is the same resistor 
in parallel with an independent current source. (Example 5.6)

 There are several ways to obtain the Thévenin equivalent resistance, 
depending on whether or not dependent sources are present in the net-
work. (Examples 5.7, 5.8, 5.9, 5.10)

 Maximum power transfer occurs when the load resistor matches the 
Thévenin equivalent resistance of the network to which it is connected. 
(Example 5.11)

 When faced with a Δ-connected resistor network, it is straightforward 
to convert it to a Y-connected network. This can be useful in simplify-
ing the network prior to analysis. Conversely, a Y-connected resistor 
network can be converted to a Δ-connected network to assist in simpli-
fication of the network. (Example 5.12)

READING FURTHER
A book about battery technology, including characteristics of built-in resistance:

T. B. Reddy, ed., Linden’s Handbook of Batteries, 4th ed. New York: 
McGraw-Hill Education, 2010.

An excellent discussion of pathological cases and various circuit analysis theo-
rems can be found in:

R. A. DeCarlo and P. M. Lin, Linear Circuits, 3rd ed. Dubuque, IA: 
Kendall Hunt Publishing, 2009.
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EXERCISES

5.1  Linearity and Superposition
1. Linear systems are so easy to work with that engineers often construct linear 

models of real (nonlinear) systems to assist in analysis and design. Such mod-
els are often surprisingly accurate over a limited range. For example, consider 
the simple exponential function ex. The Taylor series representation of this 
function is

  e   x  ≈ 1 + x +  x   2  __ 2   +  x   3  __ 6   + ··· 

(a) Construct a linear model for this function by truncating the Taylor series 
expansion after the linear (first-order) term. (b) Evaluate your model func-
tion at x = 0.000005, 0.0005, 0.05, 0.5, and 5.0. (c) For which values of x 
does your model yield a “reasonable” approximation to ex? Explain your 
reasoning.

2. Construct a linear approximation to the function y(t) = 4 sin 2t. (a) Evaluate 
your approximation at t = 0, 0.001, 0.01, 0.1, and 1.0. (b) For which values of 
t does your model provide a “reasonable” approximation to the actual (nonlin-
ear) function y(t)? Explain your reasoning.

3. Considering the circuit of Fig. 5.48, employ superposition to determine the 
two components of i8 arising from the action of the two independent sources, 
respectively.

■  FIGURE 5.48

6 A 2 V8 Ω

3 Ω

+
–

i8

4. (a) Employ superposition to determine the current labeled i in the circuit of 
Fig. 5.49. (b) Express the contribution the 1 V source makes to the total current 
i in terms of a percentage. (c) Changing only the value of the 10 A source, 
adjust the circuit of Fig. 5.49 so that the two sources contribute equally to the 
current i.

■  FIGURE 5.49

10 A 1 V4 Ω

9 Ω

+
–

i

5. (a) Using superposition to consider each source one at a time, compute ix.  
(b) Determine the percentage of ix arising from each source. (c) Adjusting only 
the current source, alter the circuit to double ix.

■  FIGURE 5.50

2 Ω2 V

2 Ω

1 A+
– 2 Ω

ix

hay01307_ch05_133-184.indd   171 23/01/18   10:05 am



CHAPTER 5 HANDY CiRCuiT ANAlYSiS TECHNiquES172

6. (a) Determine the individual contributions of each of the two current sources 
in the circuit of Fig. 5.51 to the nodal voltage v1. (b) Determine the power 
dissipated by the 1 Ω resistor.

■  FIGURE 5.51

v1 v2

1 Ω

5 Ω

5 Ω

2 Ω

7 A 4 A

7. (a) Determine the individual contributions of each of the two current sources 
shown in Fig. 5.52 to the nodal voltage labeled v2. (b) Instead of performing 
two separate simulations, verify your answer by using a single dc sweep. 
Submit a labeled schematic, relevant graphical output, and a short description 
of the results.

■  FIGURE 5.52

v1 v27 Ω

1 Ω

4 Ω

5 Ω

2 Ω

7 A 2 A

8. After studying the circuit of Fig. 5.53, change both voltage source values 
such that (a) i1 doubles; (b) the direction of i1 reverses, but its magnitude is 
unchanged.

9. Consider the three circuits shown in Fig. 5.54. Analyze each circuit,  
and demonstrate that  V  x   =  V  x  ′  +  V  x  ″   (i.e., superposition is most useful when 
sources are set to zero, but the principle is in fact much more general  
than that).

■  FIGURE 5.54

+
–

+
–Vx

+

–
12 V –15 V3 kΩ

1 kΩ 2 kΩ

+
–

+
–Vx

+

–
6 V –10 V3 kΩ

1 kΩ 2 kΩ

+
–

+
–Vx

+

–
6 V –5 V3 kΩ

1 kΩ 2 kΩ

'

"

■  FIGURE 5.53

4 V 10 V6 Ω

4 Ω 3 Ω

i1+
–

+
–
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10. (a) Using superposition, determine the voltage labeled vx in the circuit rep-
resented in Fig. 5.55. (b) To what value should the 2 A source be changed to 
reduce vx by 10%? (c) Verify your answers by performing three dc sweep sim-
ulations (one for each source). Submit a labeled schematic, relevant graphical 
output, and a short description of the results.

■  FIGURE 5.55

+
–

+
–5 Ω

1 Ω3 Ω

2 A4 V 4 V

2 Ω

vx+ –

11. Employ superposition principles to obtain a value for the current Ix as labeled 
in Fig. 5.56.

■  FIGURE 5.56

+
–

– +

7 kΩ 2 kΩ 2 A

5 kΩ

1 V

0.2Ix

Ix

12. (a) Employ superposition to determine the individual contribution from each 
independent source to the current ix as labeled in the circuit shown in Fig. 5.57. 
(b) Compute the power absorbed by each 1 Ω resistor.

■  FIGURE 5.57

1 Ω2 Ω2 A

1 Ω

2 V+
–

0.2ix

ix

5.2 Source Transformations
13. Perform an appropriate source transformation on each of the circuits depicted 

in Fig. 5.58, taking care to retain the 4 Ω resistor in each final circuit.

■  FIGURE 5.58

6 V 4 Ω

10 Ω

+
– 6 A 4 Ω10 Ω

ix
4 Ω 1 Ω

5 Ω 1 Ω

+
–2ix
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14. (a) For the circuit of Fig. 5.59, plot iL versus vL corresponding to the range of 
0 ≤ R ≤ ∞. (b) Plot the power delivered by the network to R, using the same 
range of resistance values as in part (a). (c) Repeat (b) after first performing a 
source transformation.

15. Determine the current labeled I in the circuit of Fig. 5.60 by first performing 
source transformations and parallel–series combinations as required to reduce 
the circuit to only three elements.

■  FIGURE 5.60

+
–I3 A 9 V

7 Ω

5 Ω

4 Ω

16. Verify that the power absorbed by the 7 Ω resistor in Fig. 5.22a remains the 
same after the source transformation illustrated in Fig. 5.22c.

17. (a) Determine the current labeled i in the circuit of Fig. 5.61 after first trans-
forming the circuit such that it contains only resistors and voltage sources.  
(b) Simulate each circuit to verify the same current flows in both cases.

■  FIGURE 5.61

2 MΩ12 V

3 MΩ 13 MΩ

7 V+
–

+
– 5 μA

i

18. (a) Using repeated source transformations, reduce the circuit of Fig. 5.62 to 
a voltage source in series with a resistor, both of which are in series with the 
6 MΩ resistor. (b) Calculate the power dissipated by the 6 MΩ resistor using 
your simplified circuit.

■  FIGURE 5.62

+
– 15 V

1.2 MΩ
750 kΩ 7 MΩ 6 MΩ

3.5 MΩ

27 μA

19. (a) Using as many source transformations and element combination techniques 
as required, simplify the circuit of Fig. 5.63 so that it contains only the 7 V 
source, a single resistor, and one other voltage source. (b) Verify that the 7 V 
source delivers the same amount of power in both circuits.

■  FIGURE 5.63

–
+ 5 A7 V 2 A

3 Ω

1 Ω 3 Ω

■  FIGURE 5.59

vL

+

–

+
–

iL5 kΩ

R3 V
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20. (a) Making use of repeated source transformations, reduce the circuit of  
Fig. 5.64 such that it contains a single voltage source, the 17 Ω resistor, and 
one other resistor. (b) Calculate the power dissipated by the 17 Ω resistor.  
(c) Verify your results by simulating both circuits.

■  FIGURE 5.64

+
–

47 Ω 10 Ω 7 Ω

22 Ω 7 Ω 9 Ω 17 Ω12 V

IX

2 Ω

21. Make use of source transformations to first convert all three sources in  
Fig. 5.65 to voltage sources, then simplify the circuit as much as possible  
and calculate the voltage Vx which appears across the 4 Ω resistor. Be sure  
to draw and label your simplified circuit.

■  FIGURE 5.65

Vx+ –

1 Ω 7 Ω 9 Ω

10 Ω

2 Ω 4 Ω

3 A 9 A
5Vx

10 Ω

22. (a) With the assistance of source transformations, transform the two voltage 
sources in Fig. 5.66 into appropriate current sources. (b) Using your new cir-
cuit, calculate the power dissipated in the 7 Ω resistor. (c) Verify your solution 
by simulating both circuits.

■  FIGURE 5.66

–+
7 Ω11 Ω

10 Ω9 V
4I1

2 A
I1+

–

23. For the circuit in Fig. 5.67 transform all independent sources to current 
sources, then obtain an expression for IB.

■  FIGURE 5.67

ICCIN

VO
βIB

RN RE RC

IE

IB

+ –
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24. With regard to the circuit represented in Fig. 5.68, first transform both voltage 
sources to current sources, reduce the number of elements as much as possible, 
and determine the voltage v3.

■  FIGURE 5.68

v3+ –

2 V 4v3

6 Ω

2v3

3 Ω 2 Ω

+
–

+
–

5.3 Thévenin and Norton Equivalent Circuits
25. (a) Referring to Fig. 5.69, determine the Thévenin equivalent of the network 

connected to RL. (b) Determine vL for RL = 1 Ω, 3.5 Ω, 6.257 Ω, and 9.8 Ω.
26. (a) With respect to the circuit depicted in Fig. 5.69, obtain the Norton equivalent 

of the network connected to RL. (b) Plot the power dissipated in resistor RL as a 
function of iL corresponding to the range of 0 < RL < 5 Ω. (c) Using your graph, 
estimate at what value of RL the dissipated power reaches its maximum value.

27. (a) Obtain the Norton equivalent of the network connected to RL in Fig. 5.70. 
(b) Obtain the Thévenin equivalent of the same network. (c) Compute the pow-
er dissipated by RL if it has the value 0 Ω, 1 Ω, 2 Ω, 5 Ω, 10 Ω.

28. (a) Determine the Thévenin equivalent of the circuit depicted in Fig. 5.71 by 
first finding Voc and Isc (defined as flowing into the positive reference terminal 
of Voc). (b) Connect a 4.7 kΩ resistor to the open terminals of your new net-
work and calculate the power it dissipates.

29. Referring to the circuit of Fig. 5.71: (a) Determine the Norton equivalent of 
the circuit by first finding Voc and Isc (defined as flowing into the positive 
reference terminal of Voc). (b) Connect a 1.7 kΩ resistor to the open terminals 
of your new network and calculate the power supplied to that resistor.

30. (a) Employ Thévenin’s theorem to obtain a simple two-component equivalent 
of the circuit shown in Fig. 5.72. (b) Use your equivalent circuit to determine 
the power delivered to a 100 Ω resistor connected to the open terminals. (c) 
Verify your solution by analyzing the original circuit with the same 100 Ω 
resistor connected across the open terminals.

■  FIGURE 5.72

75 Ω 220 Ω

122 Ω

45 Ω

0.7 V

+
–

0.3 A

31. (a) Employ Thévenin’s theorem to obtain a two-component equivalent for the 
network shown in Fig. 5.73. (b) Determine the power supplied to a 1 Ω resistor 
connected to the network. (c) Verify your solution by simulating both the origi-
nal and simplified circuits.

■  FIGURE 5.73

+
–

2 Ω 5 Ω

3 Ω 1.5  A 2 Ω5 V

■  FIGURE 5.69

+
– vL

+

–
RL9 V 3 Ω

1 Ω2 Ω

■  FIGURE 5.70

10 Ω 10 Ω RL5 A

iL

■  FIGURE 5.71

Voc

+

–

2.5 kΩ 2.5 kΩ

2.3 kΩ1.8 kΩ

4.2 V

1.1 kΩ

+
–
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32. Determine the Thévenin equivalent of the network shown in Fig. 5.74 as seen 
looking into the two open terminals.

■  FIGURE 5.74

2 A 1 Ω

5 Ω 3 Ω2 Ω

2 V 4 V+
–

+
–

vx+ –

33. (a) Determine the Norton equivalent of the circuit depicted in Fig. 5.74 as seen 
looking into the two open terminals. (b) Compute power dissipated in a 5 Ω 
resistor connected in parallel with the existing 5 Ω resistor. (c) Compute the 
current flowing through a short circuit connecting the two terminals.

34. For the circuit of Fig. 5.75: (a) Employ Norton’s theorem to reduce the net-
work connected to RL to only two components. (b) Calculate the downward- 
directed current flowing through RL if it is a 3.3 kΩ resistor. (c) Verify your 
answer by simulating both circuits.

■  FIGURE 5.75

–
+ 2.5 V

1 kΩ
7 kΩ 6 kΩ RL

5 kΩ

300 mA

35. (a) Obtain a value for the Thévenin equivalent resistance seen looking into 
the open terminals of the circuit in Fig. 5.76 by first finding Voc and Isc.  
(b) Connect a 1 A test source to the open terminals of the original circuit 
after shorting the voltage source, and use this to obtain RTH. (c) Connect 
a 1 V test source to the open terminals of the original circuit after again 
zeroing the 2 V source, and use this now to obtain RTH.

■  FIGURE 5.76

–
+

10 Ω 20 Ω 30 Ω

7 Ω 7 Ω2 V

36. Refer to the circuit depicted in Fig. 5.77. (a) Obtain a value for the Thévenin 
equivalent resistance seen looking into the open terminals by first finding Voc 
and Isc. (b) Connect a 1 A test source to the open terminals of the original 
circuit after deactivating the other current source, and use this to obtain RTH. 
(c) Connect a 1 V test source to the open terminals of the original circuit, once 
again zeroing out the original source, and use this now to obtain RTH.

■  FIGURE 5.77

1 Ω 3 Ω

2 Ω 4 Ω1 A
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37. Obtain a value for the Thévenin equivalent resistance seen looking into the open 
terminals of the circuit in Fig. 5.78 by (a) finding Voc and Isc, and then taking 
their ratio; (b) setting all independent sources to zero and using resistor combi-
nation techniques; (c) connecting an unknown current source to the terminals, 
deactivating (zero out) all other sources, finding an algebraic expression for the 
voltage that develops across the source, and taking the ratio of the two quantities.

■  FIGURE 5.78

+
–

9 Ω

4 Ω 2 Ω20 V 20 A

38. With regard to the network depicted in Fig. 5.79, determine the Thévenin 
equivalent as seen by an element connected to terminals (a) a and b; (b) a and 
c; (c) b and c. (d) Verify your answers using an appropriate circuit simulation. 
(Hint: Connect a test source to the terminals of interest.)

■  FIGURE 5.79

a

b

c

11 Ω 4 Ω

10 Ω

21 Ω 2 Ω

12 Ω

39. Determine the Thévenin and Norton equivalents of the circuit represented 
in Fig. 5.80 from the perspective of the open terminals. (There should be no 
dependent sources in your answer.)

40. Determine the Norton equivalent of the circuit drawn in Fig. 5.81 as seen by 
terminals a and b. (There should be no dependent sources in your answer.)

■  FIGURE 5.81

ix 700 mA500 Ω 1.5 kΩ

a

b

–+

2ix

2500 Ω

41. With regard to the circuit of Fig. 5.82, determine the power dissipated by  
(a) a 1 kΩ resistor connected between a and b; (b) a 4.7 kΩ resistor connected 
between a and b; (c) a 10.54 kΩ resistor connected between a and b.

■  FIGURE 5.82

1 V

10 kΩ 20 kΩ 0.0002v1

a

b

v1

+

–

+ –

■  FIGURE 5.80

Vx

+

–

21 Ω10Vx
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42. Determine the Thévenin and Norton equivalents of the circuit shown in Fig. 5.83, 
as seen by an unspecified element connected between terminals a and b.

43. Referring to the circuit of Fig. 5.84, determine the Thévenin equivalent 
resistance of the circuit to the right of the dashed line. This circuit is a com-
mon-source transistor amplifier, and you are calculating its input resistance.

■  FIGURE 5.84

1 MΩ 3 kΩ RL0.12vgsvs

300 Ω vgs+ –

+
–

44. Referring to the circuit of Fig. 5.85, determine the Thévenin equivalent 
resistance of the circuit to the right of the dashed line. This circuit is a com-
mon-collector transistor amplifier, and you are calculating its input resistance.

■  FIGURE 5.85

2 MΩ 1 kΩ 2 kΩ0.02Vπ

300 Ω

rπ

vs

vπ+ –

+
–

45. The circuit shown in Fig. 5.86 is a reasonably accurate model of an operational 
amplifier. In cases where Ri and A are very large and Ro ~ 0, a resistive load 
(such as a speaker) connected between ground and the terminal labeled vout will 
see a voltage −Rf / R1 times larger than the input signal vin. Find the Thévenin 
equivalent of the circuit, taking care to label vout.

■  FIGURE 5.86

vd

–

+

Avd

Rf

vout

Ro

Ri

R1

+
–

+
–

vin

5.4 Maximum Power Transfer

46. (a) For the simple circuit of Fig. 5.87, find the Thévenin equivalent connected 
to resistor RL. (b) Plot the power delivered to RL (as a function of RL) if its val-
ue is constrained by 0 ≤ RL ≤ 10 kΩ. (c) What value of RL results in maximum 
power transferred from the network? (d) What value of RL results in 50% of the 
power in part (c)?

■  FIGURE 5.87

5 kΩ 5 kΩ RL2 mA

■  FIGURE 5.83

11 Ω

15 Ω

20 Ω

+
–

vab+ –

0.5vab

0.11vab

a b
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47. For the circuit drawn in Fig. 5.88, (a) determine the Thévenin equivalent con-
nected to Rout. (b) Choose Rout such that maximum power is delivered to it.

48. Study the circuit of Fig. 5.89. (a) Determine the Norton equivalent connected 
to resistor Rout. (b) Select a value for Rout such that maximum power will be 
delivered to it.

■  FIGURE 5.89

2 V
0.004 A 1 kΩ

2 kΩ

3 V

+ –

Rout

+
–

49. Assuming that we can determine the Thévenin equivalent resistance of our wall 
socket, why don’t toaster, microwave oven, and TV manufacturers match each 
appliance’s Thévenin equivalent resistance to this value? Wouldn’t it permit 
maximum power transfer from the utility company to our household appliances?

50. For the circuit of Fig. 5.90, what value of RL will ensure that it absorbs the 
maximum possible amount of power?

■  FIGURE 5.90

–
+ 1 A3 V

3 Ω

2 Ω 5 ΩRL

51. With reference to the circuit of Fig. 5.91, (a) find the Thévenin equivalent of 
the network defined by terminals a and b; (b) determine the Norton equivalent. 
(c) What resistor value connected between the open terminals results in maxi-
mum power transfer from the network?

■  FIGURE 5.91

5 Ω 2 Ω 2 A4 A

a b

52. Referring to the circuit of Fig. 5.92, (a) determine the power absorbed by the 
3.3 Ω resistor; (b) replace the 3.3 Ω resistor with another resistor such that it 
absorbs maximum power from the rest of the circuit.

■  FIGURE 5.92

+–

V2

+

–

5 V
3.3 Ω

7 Ω2 Ω

0.1V2

+
–

53. Select a value for RL in Fig. 5.93 such that it will absorb maximum power from 
the circuit.

■  FIGURE 5.88

+
–

+ –

Rout

2 V

4 V

3 Ω
2 Ω
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■  FIGURE 5.93

10 Ω8 Ω

RL5 Ω

0.2v1

+
–4 V v1

+

–

54. Determine what value of resistance would absorb maximum power from the 
circuit of Fig. 5.94 when connected across terminals a and b.

■  FIGURE 5.94

a

b

20 Ω

50 Ω 10 Ω100 Ω900 mA 0.1vab vab

2vab

+

–

+–

5.5 Delta–Wye Conversion
55. Derive the equations required to convert from a Y-connected network to a 

Δ-connected network.
56. Convert the Δ- (or “Π-”) connected networks in Fig. 5.95 to Y-connected 

networks.

■  FIGURE 5.95

a

c

b

d

a

c

b

d

33 Ω 21 Ω

17 Ω

1.1 kΩ 2.1 kΩ

4.7 kΩ

57. Convert the Y- (or “T-”) connected networks in Fig. 5.96 to Δ-connected 
networks.

■  FIGURE 5.96

33 Ω 21 Ω

17 Ω

a

c

b

d

1.3 kΩ 2.1 kΩ

4.7 kΩ

a

c

b

d

58. For the network of Fig. 5.97, select a value of R such that the network has an 
equivalent resistance of 9 Ω. Round your answer to two significant figures.

59. For the network of Fig. 5.98, select a value of R such that the network has an 
equivalent resistance of 70.6 Ω.

■  FIGURE 5.98

200 Ω

100 Ω R

42 Ω 68 Ω

■  FIGURE 5.97

R

30 Ω 10 Ω

2 Ω 3 Ω
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60. Determine the effective resistance Rin of the network exhibited in Fig. 5.99.
61. Calculate Rin as indicated in Fig. 5.100.

■  FIGURE 5.100

61 Ω

25 Ω55 Ω46 Ω

23 Ω 11 Ω

31 Ω31 Ω

110 Ω

63 Ω Rin

62. Employ Δ–Y conversion techniques as appropriate to determine Rin as labeled 
in Fig. 5.101.

■  FIGURE 5.101

6 Ω

7 Ω 6 Ω

3 Ω9 Ω

20 Ω
12 Ω

10 Ω
4 Ω5 Ω

Rin

63. (a) Determine the two-component Thévenin equivalent of the network in  
Fig. 5.102. (b) Calculate the power dissipated by a 1 Ω resistor connected 
between the open terminals.

■  FIGURE 5.102

–
+9 V 2 Ω 1 Ω

11 Ω
12 Ω

22 Ω

10 Ω

64. (a) Use appropriate techniques to obtain both the Thévenin and Norton equiva-
lents of the network drawn in Fig. 5.103. (b) Verify your answers by simulating 
each of the three circuits connected to a 1 Ω resistor.

■  FIGURE 5.103

8 A 2 Ω
3 Ω

6 Ω4 Ω

■  FIGURE 5.99

Each R is 2.2 kΩ

Rin
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65. (a) For the network in Fig. 5.104, replace the leftmost Δ network with an 
equivalent T network. (b) Perform a computer simulation to verify that your 
answer is in fact equivalent. (Hint: Try adding a load resistor.)

■  FIGURE 5.104
2 Ω2 Ω

3 Ω
1 Ω 1 Ω1 Ω

1 Ω

2 Ω 2 Ω

5.6 Selecting an Approach: A Summary of Various Techniques
66. Determine the power absorbed by a resistor connected between the open termi-

nal of the circuit shown in Fig. 5.105 if it has a value of (a) 1 Ω; (b) 100 Ω;  
(c) 2.65 kΩ; (d) 1.13 MΩ.

■  FIGURE 5.105

4 mA
7 kΩ1 kΩ

2.2 kΩ

10 kΩ

10 kΩ

4 kΩ

5 kΩ

67. It is known that a load resistor of some type will be connected between 
terminals a and b of the network of Fig. 5.106. (a) Change the value of the 
25 V source such that both voltage sources contribute equally to the current 
delivered to the load resistor, assuming its value is chosen such that it ab-
sorbs maximum power. (b) Calculate the value of the load resistor.

68. A 2.57 Ω load is connected between terminals a and b of the network drawn in 
Fig. 5.106. Unfortunately, the power delivered to the load is only 50% of the 
required amount. Altering only voltage sources, modify the circuit so that the 
required power is delivered.

69. A load resistor is connected across the open terminals of the circuit shown in 
Fig. 5.107, and its value was chosen carefully to ensure maximum power trans-
fer from the rest of the circuit. (a) What is the value of the resistor? (b) If the 
power absorbed by the load resistor is three times as large as required, modify 
the circuit so that it performs as desired, without losing the maximum power 
transfer condition already enjoyed.

■  FIGURE 5.107

5.4 Ω

1.8 Ω

3 Ω
5 Ω0.8 A 0.1 A1.2 A

70. A backup is required for the circuit depicted in Fig. 5.107. It is unknown what 
will be connected to the open terminals, or whether it will be purely linear. If 
a simple battery is to be used, what no-load (“open circuit”) voltage should it 
have, and what is the desired internal resistance?

■  FIGURE 5.106

10 Ω

15 Ω

+
–5 Ω

+
–

10 V

25 V

a

b
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CHAPTER-INTEGRATING EXERCISES
71. Three 45 W light bulbs originally wired in a Y network configuration with 

a 120 V ac source connected across each port are rewired as a Δ network. 
The neutral, or center, connection is not used. If the intensity of each light is 
proportional to the power it draws, design a new 120 V ac power circuit so that 
the three lights have the same intensity in the Δ configuration as they did when 
connected in a Y configuration. Verify your design using LTspice by compar-
ing the power drawn by each light in your circuit (modeled as an appropriately 
chosen resistor value) with the power each would draw in the original Y-con-
nected circuit.

72. (a) Explain in general terms how source transformation can be used to simplify 
a circuit prior to analysis. (b) Even if source transformations can greatly sim-
plify a particular circuit, when might it not be worth the effort? (c) Multiplying 
all the independent sources in a circuit by the same scaling factor results in all 
other voltages and currents being scaled by the same amount. Explain why we 
don’t scale the dependent sources as well. (d) In a general circuit, if we set an 
independent voltage source to zero, what current can flow through it? (e) In a 
general circuit, if we set an independent current source to zero, what voltage 
can be sustained across its terminals?

73. The load resistor in Fig. 5.108 can safely dissipate up to 1 W before overheat-
ing and bursting into flame. The lamp can be treated as a 10.6 Ω resistor if less 
than 1 A flows through it and a 15 Ω resistor if more than 1 A flows through 
it. What is the maximum permissible value of Is? Verify your answer with an 
appropriate computer simulation.

■  FIGURE 5.108

Vx
Indicator

lamp
200 Ω

200 Ω

1 kΩ
Is

RL =
Load Resistor

5Vx

+
–

+ –

74. A certain red LED has a maximum current rating of 35 mA, and if this value 
is exceeded, overheating and catastrophic failure will result. The resistance of 
the LED is a nonlinear function of its current, but the manufacturer warrants 
a minimum resistance of 47 Ω and a maximum resistance of 117 Ω. Only 9 V 
batteries are available to power the LED. Design a suitable circuit to deliver the 
maximum power possible to the LED without damaging it. Use only combina-
tions of the standard resistor values given in the inside front cover.

75. As part of a security system, a very thin 100 Ω wire is attached to a window using 
nonconducting epoxy. Given only a box of 12 rechargeable 1.5 V AAA batteries, 
one thousand 1 Ω resistors, and a 2.9 kHz piezo buzzer that draws 15 mA at 6 V 
(its maximum current rating), design a circuit with no moving parts that will set 
off the buzzer if the window is broken (and hence the thin wire as well). Note that 
the buzzer requires a dc voltage of at least 6 V (maximum 28 V) to operate.

76. With respect to the circuit in Fig. 5.90, (a) employ Thévenin's theorem to de-
termine the equivalent network seen by resistor RL, (b) use source transforma-
tions to reduce the circuit to its Norton equivalent, and (c) compute the power 
delivered to RL if it is equal to half of the Thévenin equivalent resistance, using 
both circuits.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock

hay01307_ch05_133-184.indd   184 23/01/18   10:05 am



C
H

A
P

T
E

R

185

INTRODUCTION
At this point we have a good set of circuit analysis tools at our 
disposal, but we have focused on somewhat general circuits 
composed of only sources and resistors, or passive devices where 
electron flow cannot be directly controlled. Electronics requires 
the ability to control electron flow using an electrical input, such 
as the input/output relationships in computing or amplification of 
an audio signal. Active devices that can control electron flow are 
typically nonlinear, but they can often be treated effectively with 
linear models. In this chapter, we introduce one of these elements, 
known as the operational amplifier or op amp for short. Op amps 
are among the most versatile devices that find daily usage in 
applications such as sensor circuits, control, signal processing, and 
of course, amplifiers!

6.1 • BACKGROUND
The origins of the operational amplifier date to the 1940s, when basic 
circuits were constructed using vacuum tubes to perform mathemat-
ical operations such as addition, subtraction, multiplication, divi-
sion, differentiation, and integration. This enabled the construction 
of analog (as opposed to digital) computers tasked with the solution 
of complex differential equations. The first commercially available 
op amp device is generally considered to be the K2-W, manufactured 
by Philbrick Researches, Inc. of Boston from about 1952 through the 
early 1970s (Fig. 6.1a). These early vacuum tube devices weighed  
3 oz (85 g), measured  1 33 ⁄ 64  in × 2 9 ⁄ 64  in × 4 7 ⁄ 64  in  (3.8 cm × 5.4 cm ×  
10.4 cm), and sold for about US$22. In contrast, integrated circuit 
(IC) op amps such as the LMx58 series weigh less than 500 mg, 

The Operational 
 Amplifier6

KEY CONCEPTS

Characteristics of Ideal 
Op Amps

Inverting and Noninverting 
Amplifiers

Summing and Difference 
Amplifier Circuits

Cascaded Op Amp Stages

Voltage Gain and Feedback

Comparators and Schmitt 
Triggers

Instrumentation Amplifiers

Nonideal Characteristics of 
Op Amps
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measure 5.7 mm × 4.9 mm × 1.8 mm, and sell for approximately US$0.25. 
In contrast to op amps based on vacuum tubes, modern integrated circuit 
(IC) op amps are constructed using perhaps 25 or more transistors all on the 
same silicon “chip,” as well as resistors and capacitors needed to obtain the 
desired performance characteristics. As a result, they run at much lower dc 
supply voltages (±18 V or lower, for example, as opposed to ±300 V for 
the K2-W), are more reliable, and are considerably smaller (Fig. 6.1b, c). In 
some cases, the IC may contain several op amps. 

The op amp is a voltage amplifier with two inputs and one output. Two 
input terminals are denoted by a “+” for the noninverting input and by a 
“−” for the inverting input. In addition to the output pin and the two inputs, 
other pins enable power to be supplied to run the transistors in the IC and 
to make external adjustments to balance and compensate the op amp (not 
always present for all op amps). The symbol commonly used for an op amp 
is shown in Fig. 6.2a. At this point, we are not concerned with the internal 
circuitry of the op amp or the IC, but only with the voltage and current 
relationships that exist between the input and output terminals. Thus, for 
the time being we will use a simpler electrical symbol, shown in Fig. 6.2b. 

6.2 • THE IDEAL OP AMP
In practice, we find that most op amps perform so well that we can often 
make the assumption that we are dealing with an “ideal” op amp. The charac-
teristics of an ideal op amp are described by the equivalent circuit in Fig. 6.3. 
From this circuit, we see that the op amp is simply a voltage amplifier de-
scribed by a voltage-controlled voltage source. At first glance, you might 
wonder, what makes the op amp so different or special from the circuits 
with dependent sources we have already analyzed? A major difference that 
changes the behavior is that the voltage gain (parameter A in Fig. 6.3) is very 
large, and it is assumed to be infinite for the ideal op amp. The infinite gain 
would either imply that the voltage out would be infinite, or alternatively, 
that the voltage difference between the input terminals is zero. 

The equivalent circuit shown in Fig. 6.3 and the assumption of infinite 
gain form the basis for two fundamental rules for analyzing circuits with 
ideal op amps:

■  FIGURE 6.1 (a) A philbrick K2-W op amp, based on a matched pair of 12AX7A vacuum tubes. (b) lmV321 op 
amp, used in a variety of phone and game applications. (c) lmC6035 operational amplifier, which packs  
114 transistors into a package so small that it fits on the head of a pin.

 (a: ©Steve Durbin; b–c: Courtesy of Texas Instruments)

(b)(a) (c)

■  FIGURE 6.2 (a) electrical symbol for the op amp. 
(b) minimum required connections to be shown on a 
circuit schematic.
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■  FIGURE 6.3 equivalent circuit of the ideal  
op amp. 
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In a real op amp, a very small leakage current will flow into the input 
(sometimes as low as 40 femtoamperes). It is also possible to obtain a very 
small voltage across the two input terminals (voltage gain is in fact not in-
finite). However, compared to other voltages and currents in most circuits, 
such values are so small that including them in the analysis does not typi-
cally affect our calculations.

When analyzing op amp circuits, we should keep one other point in mind. 
As opposed to the circuits that we have studied so far, an op amp circuit al-
ways has an output that depends on some type of input. Therefore, we will 
analyze op amp circuits with the goal of obtaining an expression for the out-
put in terms of the input quantities. We will find that it is usually a good idea 
to begin the analysis of an op amp circuit at the input, and proceed from there.

The circuit shown in Fig. 6.4 is known as an inverting amplifier. We 
choose to analyze this circuit using KVL, beginning with the input voltage 
source, with the goal of determining the output vout in terms of the input 
vin and circuit resistor values. The current labeled i flows only through the 
two resistors R1 and Rf,  recalling that ideal op amp rule 1 states that no 
current flows into the input terminal. Thus, we can write
  −  v  in   +  R  1   i +  R  f   i +  v  out   = 0  
which can be rearranged to obtain an equation that relates the output to the 
input:
   v  out   =  v  in   − ( R  1   +  R  f   ) i  [1]

This is a good time to mention that we have not yet made use of ideal op 
amp rule 2. Since the noninverting input is grounded, it is at zero volts. By 
ideal op amp rule 2, the inverting input is therefore also at zero volts! This 
does not mean that the two inputs are physically shorted together, and we 
should be careful not to make such an assumption. Rather, the two input 
voltages simply track each other: if we try to change the voltage at one pin, 
the other pin will be driven by internal circuitry to the same value. Thus, we 
can write one more KVL equation:

  −  v  in   +  R  1   i + 0 = 0  

or

  i =    v  in   __  R  1  
    [2]

Combining Eq. [2] with Eq. [1], we obtain an expression for vout in terms 
of vin:

   v  out   = −   
 R  f   __  R  1  

    v  in    [3]

The resulting answer shows that the output vout is proportional to the in-
put vin by the factor (−Rf /R1), or it amplifies the input by a negative constant 

■  FIGURE 6.4 An op amp used to construct an in-
verting amplifier circuit. The current i flows to ground 
through the output pin of the op amp.

–

+
vout
+

–

R1

Rf i

v1
+
–

i

Ideal Op Amp Rules

1. No current ever flows into either input terminal. (Current can flow 
at the output terminal!)

2. There is no voltage difference between the two input terminals.
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defined by resistor values. Given values of vin = 5 sin 3t mV, R1 = 4.7 kΩ, 
and Rf = 47 kΩ for the circuit, we get

  v  out   = − 50 sin 3t mV 

Since Rf > R1, this circuit amplifies the input voltage signal vin. If we 
choose Rf < R1, the signal will be attenuated instead. We also note that the 
output voltage has the opposite sign of the input voltage,1 hence the name 
“inverting amplifier.” The output is sketched in Fig. 6.5, along with the in-
put waveform for comparison.

At this point, it is worth mentioning that the ideal op amp seems to 
be violating KCL. Specifically, in the preceding circuit, no current flows 
into or out of either input terminal, but somehow current is able to flow 
into the output pin! This would imply that the op amp is somehow able to 
either create electrons out of nowhere or store them forever (depending on 
the direction of current flow). Obviously, this is not possible. The conflict 
arises because we have been treating the op amp the same way we treated 
passive elements such as the resistor. In reality, however, the op amp can-
not function unless it is connected to external power sources. It is through 
those power sources that we can direct current flow into or out of the output 
terminal.

Although we have shown that the inverting amplifier circuit of Fig. 6.4 
can amplify an ac signal (a sine wave in this case having a frequency of 
3 rad/s and an amplitude of 5 mV), it works just as well with dc inputs. We 
consider this type of situation in Fig. 6.6, where values for R1 and Rf are to 
be selected to obtain an output voltage of −10 V.

This is the same circuit as shown in Fig. 6.4, but with a 2.5 V dc in-
put. Since no other change has been made, the expression we presented as 
Eq. [3] is valid for this circuit as well. To obtain the desired output, we seek 
a ratio of Rf to R1 of 10/2.5, or 4. Since it is only the ratio that is important 
here, we simply need to pick a convenient value for one resistor, and the 
other resistor value is then fixed at the same time. For example, we could 
choose R1 = 100 Ω (so Rf = 400 Ω), or even Rf = 8 MΩ (so R1 = 2 MΩ). 
In practice, other constraints (such as bias current) may limit our choices.

This circuit configuration therefore acts as a convenient type of voltage 
amplifier (or attenuator, if the ratio of Rf to R1 is less than 1), but it does 
have the sometimes inconvenient property of inverting the sign of the in-
put. There is an alternative, however, which is analyzed just as easily—the 
noninverting amplifier shown in Fig. 6.7. We examine such a circuit in the 
following example.

The fact that the inverting input terminal finds itself 

at zero volts in this type of circuit configuration leads 

to what is often referred to as a “virtual ground.” This 

does not mean that the pin is actually grounded, 

which is sometimes a source of confusion for stu-

dents. The op amp makes whatever internal adjust-

ments are necessary to prevent a voltage difference 

between the input terminals. The input terminals are 

not shorted together.

■  FIGURE 6.5 Input and output waveforms of the 
inverting amplifier circuit.
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■  FIGURE 6.6 An inverting amplifier circuit with a 
2.5 V input.
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EXAMPLE 6.1
Sketch the output waveform of the noninverting amplifier circuit in 
Fig. 6.7a. Use vin = 5 sin 3t mV, R1 = 4.7 kΩ, and Rf = 47 kΩ.

▶ Identify the goal of the problem.
We require an expression for vout that only depends on the known 
quantities vin, R1, and Rf.

(1)  Or, “the output is 180◦ out of phase with the input,” which sounds more impressive.
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▶ Collect the known information.
Since values have been specified for the resistors and the input wave-
form, we begin by labeling the current i and the two input voltages as 
shown in Fig. 6.7b. We will assume that the op amp is an ideal op amp.

▶ Devise a plan.
Although mesh analysis is a favorite technique of students, it turns out 
to be more practical in most op amp circuits to apply nodal analysis, 
since there is no direct way to determine the current flowing out of the 
op amp output.

▶ Construct an appropriate set of equations.
Note that we are using ideal op amp rule 1 implicitly by defining the 
same current through both resistors: no current flows into the invert-
ing input terminal. Employing nodal analysis to obtain our expression 
for vout in terms of vin, we thus find that

At node a:

  0 =    v  a   __  R  1  
   +    v  a   −  v  out   _____  R  f  

    [4] 

At node b:

   v  b   =  v  in    [5]

▶ Determine if additional information is required.
Our goal is to obtain a single expression that relates the input and 
output voltages, although neither Eq. [4] nor Eq. [5] appears to do so. 
However, we have not yet employed ideal op amp rule 2, and we will 
find that in almost every op amp circuit both rules need to be invoked 
in order to obtain such an expression.

Thus, we recognize that va = vb = vin, and Eq. [4] becomes

  0 =    v  in   __  R  1  
   +    v  in   −  v  out   ______  R  f  

    

▶ Attempt a solution.
Rearranging, we obtain an expression for the output voltage in terms 
of the input voltage vin:

   v  out   =   (  1 +   
 R  f   _  R  1  

   )    v  in   = 11  v  in   = 55  sin 3t mV  

▶ Verify the solution. Is it reasonable or expected?
The output waveform is sketched in Fig. 6.8, along with the input 
waveform for comparison. In contrast to the output waveform of the 
inverting amplifier circuit, we note that the input and output are in 
phase for the noninverting amplifier. This should not be entirely unex-
pected: it is implicit in the name “noninverting amplifier.”

PRACTICE 
●

6.1 Derive an expression for vout in terms of vin for the circuit shown 
in Fig. 6.9. 

Ans: vout = vin. The circuit is known as a “voltage follower,” since the output volt-
age tracks or “follows” the input voltage.

■  FIGURE 6.7 (a) An op amp used to construct 
a noninverting amplifier circuit. (b) Circuit with the 
current through R1 and Rf defined, as well as both 
input voltages labeled.
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■  FIGURE 6.8 Input and output waveforms for the 
noninverting amplifier circuit.
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■  FIGURE 6.9
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Just like the inverting amplifier, the noninverting amplifier works with dc 
as well as ac inputs, but it has a voltage gain of vout/vin = 1 + (Rf /R1). Thus, 
if we set Rf  = 9 Ω and R1 = 1 Ω, we obtain an output vout which is 10 times 
larger than the input voltage vin. In contrast to the inverting amplifier, the 
output and input of the noninverting amplifier always have the same sign, 
and the output voltage cannot be less than the input; the minimum gain is 1. 
Which amplifier we choose depends on the application we are considering. 

In the special case of the voltage follower circuit shown in Fig. 6.9, 
which represents a noninverting amplifier with R1 set to ∞ and Rf set to 
zero, the output is identical to the input in both sign and magnitude. This 
may seem rather pointless as a general type of circuit, but we should keep in 
mind that the voltage follower draws no current from the input (in the ideal 
case)—it therefore can act as a buffer between the voltage vin and some 
resistive load RL connected to the output of the op amp.

We mentioned earlier that the name “operational amplifier” originates 
from using such devices to perform arithmetical operations on analog (i.e., 
nondigitized, real-time, real-world) signals. As we see in the following two 
circuits, this includes both addition and subtraction of input voltage signals.

Obtain an expression for vout in terms of v1, v2, and v3 for the op 
amp circuit in Fig. 6.10, also known as a summing amplifier.

■  FIGURE 6.10 Basic summing amplifier circuit with three inputs.
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We first note that this circuit is similar to the inverting amplifier circuit of 
Fig. 6.4. Again, the goal is to obtain an expression for vout (which in this 
case appears across a load resistor RL) in terms of the inputs (v1, v2, and v3). 
Since no current can flow into the inverting input terminal, we can write

   i  1   +  i  2   +  i  3   = i  

Therefore, we can write the following equation at the node labeled va:

     v  1   −  v  a   ____ 
R

   +    v  2   −  v  a   ____ 
R

   +    v  3   −  v  a   ____ 
R

   =    v  a   −  v  out   _____  R  f  
    

This equation contains both vout and the input voltages, but unfor-
tunately it also contains the nodal voltage va. To remove this unknown 
quantity from our expression, we need to write an additional equation 
that relates va to vout, the input voltages, Rf, and/or R. At this point, we 
remember that we have not yet used ideal op amp rule 2, and that we 

EXAMPLE 6.2

hay01307_ch06_185-228.indd   190 23/01/18   5:35 pm



  SECTION 6.2 The IDeAl Op Amp 191

There are several interesting features about the result we have just de-
rived. First, if we select Rf so that it is equal to R, then the output is the 
(negative of the) sum of the three input signals v1, v2, and v3. Further, we can 
select the ratio of Rf to R to multiply this sum by a fixed constant. 

Also, we notice that RL did not appear in our final expression. As long 
as its value is not too low such that the output is shorted, the operation of 
the circuit will not be affected; at present, we have not considered a detailed 
enough model of an op amp to predict such an occurrence. This resistor rep-
resents the Thévenin equivalent of whatever we use to monitor the amplifier 
output. If our output device is a simple voltmeter, then RL represents the 
Thévenin equivalent resistance seen looking into the voltmeter terminals 
(typically 10 MΩ or more). Or, our output device might be a speaker (typ-
ically 8 Ω), in which case we hear the sum of the three separate sources of 
sound; v1, v2, and v3 might represent microphones in that case.

One word of caution: It is often tempting to assume that the current la-
beled i in Fig. 6.10 flows not only through Rf but through RL also. Not true! 
It is very possible that current is flowing through the output terminal of the 
op amp as well, so that the currents through the two resistors are not the 
same. It is for this reason that we almost universally avoid writing KCL 
equations at the output pin of an op amp, which leads to the preference of 
nodal over mesh analysis when working with most op amp circuits.

For convenience, we summarize the most common op amp circuits in 
Table 6.1.

will almost certainly require the use of both rules when analyzing an 
op amp circuit. Thus, since va = vb = 0, we can write the following:

     v  1   __ 
R

   +    v  2   __ 
R

   +    v  3   __ 
R

   = −   v  out   ___  R  f  
    

Rearranging, we obtain the following expression for vout:

   v  out   = −   
 R  f   __ 
R

  ( v  1   +  v  2   +  v  3   )  [6] 

In the special case where v2 = v3 = 0, we see that our result agrees 
with Eq. [3], which was derived for essentially the same circuit.

PRACTICE 
●

6.2 Derive an expression for vout in terms of v1 and v2 for the circuit 
shown in Fig. 6.11, also known as a difference amplifier. 
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■ FIGURE 6.11

Ans: vout = v2 − v1. Hint: Use voltage division to obtain vb.
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Name Circuit Schematic Input-Output Relation

Inverting Amplifier Rf

R1
–

+

i

i
+
–v in

vout

+

–

  v  out   = −   
 R  f   __  R  1  

    v  in   

Noninverting Amplifier Rf

R1
–

+

+
–

vin

vout

+

–

  v  out   =   (  1 +   
 R  f   _  R  1  

   )    v  in   

Voltage Follower  
(also known as a  
Unity Gain Amplifier)

–

+

v in
+
–

vout

+

–

  v  out   =  v  in   

Summing Amplifier
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+
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+
–
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+
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–

  v  out   = −   
 R  f   __ 
R

     (   v  1   +  v  2   +  v  3   )    

Difference Amplifier

–

+
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+

–

R
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R
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R

i2
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+
– v2

+
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  v  out    =   v  2   +  v  1   

TABLE 
●
 6.1 Summary of Basic Op Amp Circuits
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A point-to-point intercom system can be constructed 
using a number of different approaches, depending on 
the intended application environment. Low-power radio 
frequency (RF) systems work very well and are generally 
cost-effective, but are subject to interference from other 
RF sources and are also prone to eavesdropping. Use of a 
simple wire to connect the two intercom systems instead 
can eliminate a great deal of the RF interference as well 
as increase privacy. However, wires are subject to corro-
sion and short circuits when the plastic insulation wears, 
and their weight can be a concern in aircraft and related 
applications (Fig. 6.12).

■  FIGURE 6.12 The application environment often dictates design 
constraints.

(©Michael Melford/Riser/Getty Images)

An alternative design would be to convert the elec-
trical signal from the microphone to an optical signal, 
which could then be transmitted through a thin (∼50 μm 
diameter) optical fiber. The optical signal is then con-
verted back to an electrical signal, which is amplified 
and delivered to a speaker. A schematic diagram of such 
a system is shown in Fig. 6.13; two such systems would 
be needed for two-way communication.

■  FIGURE 6.13 Schematic diagram of one-half of a simple fiber optic 
intercom.

Speaker

Photodetector
Light
sourceMicrophone

Amplifier Optical fiber Amplifier

We can consider the design of the transmission and 
reception circuits separately, since the two circuits are 
in fact electrically independent. Figure 6.14 shows a 

simple signal generation circuit consisting of a micro-
phone, a light-emitting diode (LED), and an op amp used 
in a noninverting amplifier circuit to drive the LED; not 
shown are the power connections required for the op amp 
itself. The light output of the LED is roughly propor-
tional to its current, although less so for very small and 
very large values of current.

We know the gain of the amplifier is given by

    v  out   ___  v  in     = 1 +   
 R  f   __  R  1  

   

which is independent of the resistance of the LED. In 
order to select values for Rf and R1, we need to know 
the input voltage from the microphone and the necessary 
output voltage to power the LED. A quick measurement 
indicates that the typical voltage output of the micro-
phone peaks at 40 mV when someone is using a normal 
speaking voice. The LED manufacturer recommends op-
erating at approximately 1.6 V, so we design for a gain of 
1.6/0.04 = 40. Arbitrarily choosing R1 = 1 kΩ leads to a 
required value of 39 kΩ for Rf.

The circuit of Fig. 6.15 is the receiver part of our one-
way intercom system. It converts the optical signal from 
the fiber into an electrical signal, amplifying it so that an 
audible sound emanates from the speaker.

PRACTICAL APPLICATION
A Fiber Optic Intercom

PRACTICAL APPLICATION

(Continued on next page)

■  FIGURE 6.14 Circuit used to convert the electrical microphone signal 
into an optical signal for transmission through a fiber.
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■  FIGURE 6.15 receiver circuit used to convert the optical signal into an 
audio signal.
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After coupling the LED output of the transmitting 
circuit to the optical fiber, a signal of approximately 
10 mV is measured from the photodetector. The speaker 
is rated for a maximum of 100 mW and has an equivalent 
resistance of 8 Ω. This equates to a maximum speaker 
voltage of 894 mV, so we need to select values of R2 and 
R3 to obtain a gain of 894/10 = 89.4. With the arbitrary 

selection of R2 = 10 kΩ, we find that a value of 884 kΩ 
completes our design.

This circuit will work in practice, although the non-
linear characteristics of the LED lead to a noticeable dis-
tortion of the audio signal. We leave improved designs 
for more advanced texts.

As we have seen, SPICE is a powerful technique for analyzing circuits, 
which also includes op amp circuits. One of the powerful features of 
SPICE simulation is that the specific performance characteristics of a 
particular op amp can be defined to determine accurate results. More 
details on specific performance characteristics of op amps are discussed 
in Section 6.5. For now, we can examine SPICE simulation assuming 
an ideal op amp model. 

Example: Simulate a summing amplifier with two sinusoidal inputs 
and a gain (amplification) of 2. The sinusoidal inputs each have a fre-
quency of 1 kHz and amplitudes of 1 V and 0.5 V. 

We can construct the circuit in LTspice, as shown in Fig. 6.16. The 
ideal op amp is represented by inserting the component opamp. Note 
that there are several op amp models built into LTspice to choose from, 
where the opamp model only includes the two input terminals and an 
output terminal (no power supply or offset adjustment pins). To incor-
porate the features of the ideal op amp, a SPICE directive will need 
to be included to define the properties of the op amp. This is accom-
plished by adding a subcircuit .sub file, which is added by the directive 
.lib opamp.sub. The sinusoidal voltage sources are defined by using a 
standard voltage source. When defining the value of the source, click 
Advanced, choose the style SINE under the time domain function, and 
input the desired amplitude (0.5 V or 1 V) and frequency (1 kHz). The 
values for resistors have been arbitrarily chosen, where a ratio of Rf /R 
is needed to provide the desired gain of 2 (R = 1 kΩ, Rf = 2 kΩ). Since 
this is a time-varying analysis, we need to run a transient analysis by 
adding the SPICE directive .tran, where the command .tran 0 0.005 is 
used in this example to run the analysis starting at 0 seconds and ending 
at 5 ms (5 periods of the 1 kHz input signals). 

The resulting output is shown in Fig. 6.16. We see the expected 
behavior for the summing amplifier configuration, where the output 
voltage is an inverted sum of the two sinusoidal inputs. The amplitude 
of the output is 3 V, the sum of the input amplitudes of 0.5 V and 1 V, 
amplified by the factor of two set by the ratio of Rf /R. While this anal-
ysis illustrates a relatively straightforward summing amplifier circuit, it 
should be apparent that SPICE offers a powerful tool to analyze highly 
complex op amp circuits!

COMPUTER-AIDED ANALYSIS
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6.3 • CASCADED STAGES
Although the op amp is an extremely versatile device, there are many appli-
cations in which a single op amp will not suffice. In such cases, it is often 
possible to meet application requirements by cascading several individual 
op amp circuits together into a larger circuit. An example of this is shown 

(a)

(b)

■  FIGURE 6.16 (a) Schematic diagram and (b) output from lTspice simulation of a 
summing amplifier circuit.
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in Fig. 6.17, which consists of the summing amplifier circuit of Fig. 6.10 
with only two input sources, and the output fed into a simple inverting am-
plifier. The result is a two-stage op amp circuit.

We have already analyzed each of these op amp circuits separately. 
Based on our previous experience, if the two op amp circuits were discon-
nected, we would expect

    v  x   = −   
 R  f   __ 
R

   ( v  1   +  v  2   )  [7]

and

   v  out   = −    R  2   __  R  1  
    v  x    [8]

In fact, since the two circuits are connected at a single point and the 
voltage vx is not influenced by the connection, we can combine Eqs. [7] and 
[8] to obtain

   v  out   =    R  2   __  R  1  
     
 R  f   __ 
R

   ( v  1   +  v  2   )  [9]

which describes the input/output characteristics of the circuit shown in 
Fig. 6.17. We may not always be able to reduce such a circuit to familiar 
stages, however, so it is worth seeing how the two-stage circuit of Fig. 6.17 
can be analyzed as a whole.

When analyzing cascaded circuits, it is sometimes helpful to begin with 
the last stage and work backward toward the input stage. Referring to ideal 
op amp rule 1, the same current flows through R1 and R2. Writing the appro-
priate nodal equation at the node labeled vc yields

     v  c   −  v  x   ____  R  1  
   +    v  c   −  v  out   _____  R  2  

   = 0  [10]

Applying ideal op amp rule 2, we can set vc = 0 in Eq. [10], resulting in

     v  x   __  R  1  
   +    v  out   ___  R  2  

   = 0  [11]

Since our goal is an expression for vout in terms of v1 and v2, we proceed 
to the first op amp in order to obtain an expression for vx in terms of the two 
input quantities.

Applying ideal op amp rule 1 at the inverting input of the first op amp,

     v  a   −  v  x   ____  R  f  
   +    v  a   −  v  1   ____ 

R
   +    v  a   −  v  2   ____ 

R
   = 0  [12]

■  FIGURE 6.17 A two-stage op amp circuit consisting of a summing amplifier cascad-
ed with an inverting amplifier circuit.
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Ideal op amp rule 2 allows us to replace va in Eq. [12] with zero, since  
va = vb = 0. Thus, Eq. [12] becomes

     v  x   __  R  f  
   +    v  1   __ 

R
   +    v  2   __ 

R
   = 0  [13]

We now have an equation for vout in terms of vx (Eq. [11]), and an equa-
tion for vx in terms of v1 and v2 (Eq. [13]). These equations are identical to 
Eqs. [7] and [8], respectively, which means that cascading the two separate 
circuits as in Fig. 6.17 did not affect the input/output relationship of either 
stage. Combining Eqs. [11] and [13], we find that the input/output relation-
ship for the cascaded op amp circuit is

   v  out   =    R  2   __  R  1  
     
 R  f   __ 
R

   ( v  1   +  v  2   )  [14]

which is identical to Eq. [9].
Thus, the cascaded circuit acts as a summing amplifier, but without in-

verting the sign between the input and output. By choosing the resistor val-
ues carefully, we can either amplify or attenuate the sum of the two input 
voltages. If we select R2 = R1 and Rf = R, we can also obtain an amplifier 
circuit where vout = v1 + v2, if desired.

(©ullstein bild/Getty Images)

(Continued on next page)

A multiple-tank gas propellant fuel system is installed in a small 
lunar orbit runabout. The amount of fuel in any tank is monitored 
by measuring the tank pressure (in psia).2 Technical details for tank 
capacity as well as sensor pressure and voltage range are given in 
Table 6.2. Design a circuit which provides a positive dc voltage signal 
proportional to the total fuel remaining, such that 1 V = 100 percent.

Tank 1 Capacity 10,000 psia
Tank 2 Capacity 10,000 psia
Tank 3 Capacity    2000 psia
Sensor Pressure Range 0 to 12,500 psia
Sensor Voltage Output 0 to 5 Vdc

TABLE 

●

 6.2  Technical Data for Tank  
Pressure Monitoring System

We see from Table 6.2 that the system has three separate gas tanks, 
requiring three separate sensors. Each sensor is rated up to 12,500 
psia, with a corresponding output of 5 V. Thus, when tank 1 is full, its 
sensor will provide a voltage signal of 5 × (10,000/12,500) = 4 V; the 
same is true for the sensor monitoring tank 2. The sensor connected to 
tank 3, however, will only provide a maximum voltage signal of 5 × 
(2000/12,500) = 800 mV.

One possible solution is the circuit shown in Fig. 6.18a, which 
employs a summing amplifier stage with v1, v2, and v3 representing the 

EXAMPLE 6.3

(2)  Pounds per square inch, absolute. This is a differential pressure measurement relative to a vacuum 
reference.
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three sensor outputs, followed by an inverting amplifier to adjust the 
voltage sign and magnitude. Since we are not told the output resistance 
of the sensor, we employ a buffer for each one as shown in Fig. 6.18b; 
the result is (in the ideal case) no current flow from the sensor.

To keep the design as simple as possible, we begin by choosing R1, 
R2, R3, and R4 to be 1 kΩ; any value will do as long as all four resistors 
are equal. Thus, the output of the summing stage is

   v  x   = −   (   v  1   +  v  2   +  v  3   )     

The final stage must invert this voltage and scale it such that the 
output voltage is 1 V when all three tanks are full. The full condition 
results in vx = − (4 + 4 + 0.8) = −8.8 V. Thus, the final stage needs a 
voltage ratio of R6 /R5 = 1/8.8. Arbitrarily choosing R6 = 1 kΩ, we find 
that a value of 8.8 kΩ for R5 completes the design.

■  FIGURE 6.18 (a) A proposed circuit to provide a total fuel remaining readout. (b) Buffer 
design to avoid errors associated with the internal resistance of the sensor and limitations on 
its ability to provide current. One such buffer is used for each sensor, providing the inputs v1, v2, 
and v3 to the summing amplifier stage.
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PRACTICE 
●

6.3 An historic bridge is showing signs of deterioration. Until renova-
tions can be performed, it is decided that only cars weighing less than 
1600 kg will be allowed across. To monitor this, a four-pad weighing 
system is designed. There are four independent voltage signals, one 
from each wheel pad, with 1 mV = 1 kg. Design a circuit to provide a 
positive voltage signal to be displayed on a DMM (digital multimeter) 
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6.4 •  FEEDBACK, COMPARATORS, AND THE 
 INSTRUMENTATION AMPLIFIER

Negative and Positive Feedback
Every op amp circuit we have discussed up to now has featured an elec-
trical connection between the output pin and the inverting input pin. This 
is known as closed-loop operation. Note that the electrical connection be-
tween the output terminal and the input terminal, or feeedback, always used 
the inverting input pin. Why, and what would happen if we would connect 
to the noninverting input pin? Suppose we examine the voltage follower 
circuit in the two cases where feedback is provided between the inverting 
and noninverting input terminals, as shown in Fig. 6.20. 

that represents the total weight of a vehicle, such that 1 mV = 1 kg. You 
may assume there is no need to buffer the wheel pad voltage signals. 
Ans: See Fig. 6.19.

■  FIGURE 6.19 One possible solution to practice problem 6.3: all resistors are 10 kΩ (although 
any value will do as long as they are all equal). Input voltages v1, v2, v3, and v4 represent the 
voltage signals from the four wheel pad sensors, and vout is the output signal to be connected 
to the positive input terminal of the Dmm. All five voltages are referenced to ground, and the 
common terminal of the Dmm should be connected to ground as well.
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■  FIGURE 6.20 (a) Voltage follower op amp circuits configured with negative and positive 
feedback, and (b) associated equivalent circuit model.
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In the case of negative feedback, we see that 

   v  out   = A  v  d   = A ( v  in   −  v  out  )   

recalling that A is the very large voltage gain of the op amp (assumed in-
finite for the ideal case). The output voltage is determined by the voltage 
difference between input and output and in turn is fed back into the input. 
Suppose an initial state where   v  in   >  v  out   . The difference between the input 
terminals is   v  d   =  v  in   −  v  out   > 0 , so   v  out    will increase. The increase in   v  out    will 
be feedback to the inverting terminal of the op amp such that the magnitude 
of   v  d    will decrease. The configuration where the feedback from the output 
decreases the value of the input is known as negative feedback. 

Similar analysis for the initial state where    v  in   <  v  out     results in    v  d   < 0 , 
where   v  out    will decrease and again decrease the magnitude of   v  d   . For both 
initial states, the end result is that the op amp and negative feedback con-
figuration will force the output into a stable state with the output voltage 
approximately equal to the input voltage. 

To illustrate mathematically, we can rearrange the equation to 

   v  out   =  (  A ____ 
A + 1  )   v  in    

where we see that the output will be slightly smaller than the input, and then 
fed back into the inverting terminal of the op amp. In the limit of large A, 
the output will stabilize to   v  out   ≈  v  in   . 

In the case of positive feedback, we see that 

   v  out   = A  v  d   = A  ( v  out   −  v  in  )   

The initial state where   v  in   <  v  out    results in   v  d   =  v  out   −  v  in   > 0 , so   v  out    will 
increase. The increase in   v  out    will be feedback to the noninverting terminal 
of the op amp such that the magnitude of   v  d    will continue to increase. The 
configuration where the feedback from the output increases the value of the 
input is known as positive feedback. 

Similar analysis for the initial state where   v  in   >  v  out    results in   v  d   < 0 ,  
where    v  out    will decrease and again increase the magnitude of    v  d   , in this 
case becoming more negative. For both initial states, the end result is that 
the op amp and positive feedback configuration can force the output into 
an unstable runaway state with    v  out     tending toward positive or negative 
infinity! In reality, the output of an op amp can only reach a voltage that 
can be accommodated by the power supply to the device (recall the power 
supply pins in Fig. 6.2a, which we have since ignored for the ideal op amp). 
If the output is limited by the power supply, we say that the op amp is in 
saturation. 

To illustrate mathematically, we can rearrange the equation to 

   v  out   =  (  A ___ 
A − 1  )   v  in    

where we see that the output will be slightly larger than the input, and then 
fed back into the noninverting terminal of the op amp. 

To summarize in general terms,  negative feedback  is the process of 
subtracting a small portion of the output from the input, where  positive 
feedback is the process where some fraction of the output signal is added 
back to the input. In the case of negative feedback, if some event changes 
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the characteristics of the amplifier such that the output tries to increase, 
the input is decreasing at the same time. Too much negative feedback will 
prevent any useful amplification, but a small amount provides stability. 
An example of negative feedback is the unpleasant sensation we feel as 
our hand draws near a flame. The closer we move toward the flame, the 
larger the negative signal sent from our hand. Overdoing the proportion of 
negative feedback, however, might cause us to abhor heat, and eventually 
freeze to death. In contrast, positive feedback generally leads to an unsta-
ble system. A common example is when a microphone is directed toward 
a speaker—a very soft sound is rapidly amplified over and over until the 
system “screams.”

The ideal op amp rules and circuit analysis techniques described thus far 
apply to negative feedback configurations. The rules do not necessarily 
 apply to op amp circuits with positive feedback!

The Comparator
Closed loop is the preferred method of using an op amp as an amplifier, as 
it serves to isolate the circuit performance from variations in the open-loop 
gain that arise from changes in temperature or manufacturing differences. 
There are a number of applications, however, where it is advantageous to 
use an op amp in an open-loop configuration. Devices intended for such 
applications are often referred to as comparators because they are designed 
somewhat differently from regular op amps in order to improve their speed 
in open-loop operation.

Figure 6.21 shows a simple comparator circuit where a 2.5 V reference 
voltage is connected to the noninverting input, and the voltage being com-
pared (vin) is connected to the inverting input. Since the op amp has a very 
large open-loop gain A, it does not take a large voltage difference between 
the input terminals to drive it into saturation. Thus, a positive 12 V output 
from the comparator indicates that the input voltage is less than the refer-
ence voltage, and a negative 12 V output indicates an input voltage greater 
than the reference (opposite behavior is obtained if we connect the reference 
voltage to the inverting input instead).

   v  out   =  {    12 V,     v  in   < 2 . 5 V   −12 V,     v  in   > 2 . 5 V    

+
–

vout

–

+

+
–

+
–

+
– –12 V2.5 V

12 V

V –

V+

vin

■  FIGURE 6.21 An example comparator circuit with 
a 2.5 V reference voltage.

Let us use SPICE to simulate the comparator circuit shown in Fig. 6.21.  
While we would still like to use the ideal representation of an op 
amp, we need to use a SPICE model that defines the power supplies 
connected to the op amp. In this case, we will use the component 
 UniversalOpAmp2 to describe the op amp, with the resulting schemat-
ic shown in Fig. 6.22a. The dependence of vout on vin can be simulated 
by using a dc sweep command. The SPICE directive .dc Vin 0 5 0.01 
defines a dc sweep of the voltage source Vin starting at 0 V, ending at 
5 V, in steps of 0.01 V. 

COMPUTER-AIDED ANALYSIS

(Continued on next page)
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The distinctive output of the comparator circuit is shown in 
Fig. 6.22b where the response swings between positive and negative 
saturation, with essentially no linear “amplification” region. The 
resulting output is clearly consistent with the analysis and equation 
above.

■  FIGURE 6.22 (a) Schematic of comparator circuit with a 2.5 V reference voltage. (b) Graph of 
input/output characteristic.

(a)

(b)
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Comparator circuits can also be used in a positive feedback configura-
tion, such as that shown in Fig. 6.25a. Similar to the previous discussion for 
positive feedback and comparator circuits, the output voltage Vout will be 
forced to the supply voltage V+ or V−, depending on the sign of the voltage 

Design a circuit that provides a “ logic 1” 5 V output if a certain 
voltage signal drops below 3 V, and zero volts otherwise.

Since we want the output of our comparator to swing between 0 and  
5 V, we will use an op amp with a single-ended +5 V supply, connect-
ed as shown in Fig. 6.23. We connect a +3 V reference voltage to the 
noninverting input, which may be provided by two 1.5 V batteries in 
series. The input voltage signal (designated vsignal) is then connected to 
the inverting input. In reality, the saturation voltage range of a com-
parator circuit will be slightly less than that of the supply voltages, so 
some adjustment may be required in conjunction with simulation or 
testing.

PRACTICE 
●

6.4 Design a circuit that provides a 12 V output if a certain voltage 
(vsignal) exceeds 0 V, and a −2 V output otherwise. 

Ans: One possible solution is shown in Fig. 6.24.

vout
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–

+

+
–

+
–

–
+

12 V

–2 V

V+

V–

■ FIGURE 6.24 One possible solution to practice problem 6.4.

EXAMPLE 6.4

■  FIGURE 6.23 One possible design for the 
required circuit.
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■  FIGURE 6.25 (a) Inverting comparator Schmitt trigger circuit and (b) voltage output versus voltage input 
showing hysteresis.
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difference between Vx and Vin. The voltage at the noninverting input Vx is 
given by the voltage divider

  V  x   =    R  1   _____  R  1   +  R  2  
    V  out   

Assuming that we begin with an output voltage in the high state 
(Vout  =  V +), the output will remain in a high state until Vin exceeds Vx, 
which would result in a negative voltage difference at the op amp termi-
nals (Vx − Vin). The negative voltage difference at the op amp input would 
then force the output to the low state (Vout = V −). The output will therefore 
switch at the two threshold input voltages    V  T     upper   and    V  T     lower  , given by

   V  in   =   V  T     upper  =    R  1   _____  R  1   +  R  2  
    V   +   

and 

   V  in   =   V  T     lower  =    R  1   _____  R  1   +  R  2  
    V   −   

The circuit behavior depends on the present state of Vout and therefore 
has memory. The output response is shown in Fig. 6.25b. The behavior of 
two thresholds for switching that depend on the present state is referred 
to as hysteresis. A comparator circuit with hysteresis is called a Schmitt 
trigger, and it is commonly used in applications for control and signal 
conditioning. A major advantage of the hysteresis “window” over a singu-
lar comparator voltage is that it can remove or reduce sensitivity to noisy 
signals.

The output of the circuit in Fig. 6.25a will remain high until Vin ex-
ceeds the upper threshold voltage VT

upper, at which point the circuit will 
trigger a switch to the low state. Once the output is low, it will remain low 
until Vin is decreased below the lower threshold VT

lower. The behavior of 
a Schmitt trigger is very similar to thermostats used to control tempera-
ture. For example, consider the output voltage as a signal to a heater, while 
the input voltage indicates the temperature. The lower and upper thresh-
olds for the Schmitt trigger can be used to define the desired temperature 
window. When the temperature exceeds the upper threshold, the heater 
turns off; and when the temperature goes below the lower threshold, the 
heater will turn back on. The temperature window defined by the thresh-
old settings is extremely helpful in reducing noise: suppose your tempera-
ture reading has small fluctuations near a target set point temperature, 
perhaps variations on the order of 0.1 degrees. These small fluctuations 
would cause your heating system to rapidly and unnecessarily turn on and 
off! The hysteresis window in a Schmitt trigger will reduce sensitivity 
to fluctuations by defining separate threshold values for the on and off 
states. A noninverting configuration is also shown in the following exam-
ple, which could similarly be used for temperature control for a cooling 
unit such as an air conditioner. While temperature control is an example 
we can all relate to, Schmitt triggers and related circuits with hysteresis 
are very valuable in many applications, including signal conditioning for 
digital circuits. 
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The circuit in Fig. 6.26 is a noninverting configuration of a  
comparator Schmitt trigger. Determine the threshold voltages  
for triggering the circuit output and plot the Vout versus Vin for 
the case where R1 = 400 Ω, R2 = 1.2 kΩ , V+ = 15 V, and  
V− = −12 V.

■  FIGURE 6.26 Noninverting comparator Schmitt 
trigger circuit. 

R1

R2

+

–
Vout

Vin

We may begin by relating the input and output by writing a KCL ex-
pression at the noninverting terminal of the op amp (let us again assign 
the node voltage Vx). 

     ( V  x   −  V  in  )  ______  R  1  
   +    ( V  x   −  V  out  )  _______  R  2  

   = 0  

Solving for Vx and rearranging terms, we get

   V  x   =    R  2   _____  R  1   +  R  2  
    V  in   +    R  1   _____  R  1   +  R  2  

    V  out    

The threshold values for switching/triggering will occur when the 
voltage difference between the inverting and noninverting terminals 
of the op amp is zero, i.e. Vx = 0. Assigning Vx = 0 and solving for Vin 
yields

   V  in   = − [ (   R  1   _______  R  1   +  R  2  
  ) ⁄ (   R  2   _______  R  1   +  R  2  

  ) ]   V  out   = −   R  1   __  R  2  
    V  out    

The two output voltages will be determined by the power supplies 
V+ and V−, where the lower and upper threshold voltages for triggering 
are

   V  in   =   V  T     lower  = −   R  1   __  R  2  
    V   +   

and

   V  in   =   V  T     upper  = −   R  1   __  R  2  
    V   −   

When the circuit starts in the low state where Vout = V−, the out-
put will remain low until the noninverting terminal of the op amp 
becomes positive (providing a positive voltage difference  between 

EXAMPLE 6.5

(Continued on next page)
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The Instrumentation Amplifier
The basic comparator circuit acts on the voltage difference between the two 
input terminals to the device, although it does not technically amplify sig-
nals as the output is not proportional to the input. The difference amplifier 
of Fig. 6.11 also acts on the voltage difference between the inverting and 
noninverting inputs, and as long as care is taken to avoid saturation, it does 
provide an output directly proportional to this difference. When dealing 
with a very small input voltage, however, a better alternative is a device 
known as an instrumentation amplifier, which is actually three op amp 
devices in a single package.

An example of the common instrumentation amplifier configuration is 
shown in Fig. 6.28a, and its symbol is shown in Fig. 6.28b. Each input is 
fed directly into a voltage follower stage, and the output of both voltage fol-
lowers is fed into a difference amplifier stage. It is particularly well suited 

the  noninverting and inverting op amp terminals), occurring 
when Vin > VT

upper. This will trigger an output voltage Vout = V+. The 
high state will be maintained until Vin < VT

lower, triggering an output 
voltage Vout = V−.  Inserting the numerical values of the circuit, we get 
the following values and response shown in Fig. 6.27.

   V  out   =  { −12 V,  low state   15 V,  high state
    

are

    V  T     lower  = −  400 _____ 1, 200   15 = −5 V  

and

    V  T     upper  = −  400 _____ 1, 200   (−12)  = 4 V  

Vout

Vin

–12 V

15 V

–5 V 4 V

■  FIGURE 6.27 Voltage output of noninverting 
comparator Schmitt trigger circuit.

PRACTICE 
●

6.5 Design a noninverting Schmitt trigger that that will output ±5 V 
with threshold voltages of ±2 V.

Ans: Using noninverting configuration from Fig. 6.26, power supplies with V + =  
5 V, V  − = −5 V; the ratio of R1 /R2 = 2/5. 
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to applications where the input voltage signal is very small (for example, on 
the order of millivolts), such as that produced by thermocouples or strain 
gauges, and where a significant common-mode noise signal (a common sig-
nal on both inputs) of several volts may be present.

If components of the instrumentation amplifier are fabricated all on 
the same silicon chip, then it is possible to obtain well-matched device 
characteristics and to achieve precise ratios for the two sets of resistors. In 
order to maximize the rejection of the common-mode signal of the instru-
mentation amplifier, we expect R4/R3 = R2/R1, so that equal amplification 
of common-mode components of the input signals is obtained. To explore 
this further, we identify the voltage at the output of the top voltage fol-
lower as “v−,” and the voltage at the output of the bottom voltage follower 
as “v+.” Assuming all three op amps are ideal and naming the voltage at 
either input of the difference stage vx, we may write the following nodal 
equations:

     v  x   −  v  −   _____  R  1  
   +    v  x   −  v  out   _____  R  2  

   = 0  [15]

and

     v  x   −  v  +   _____  R  3  
   +    v  x   __  R  4  

   = 0  [16]

Solving Eq. [16] for vx, we find that

   v  x   =    v  +   ______ 1 +  R  3   /  R  4  
    [17]

and upon substituting into Eq. [15], we obtain an expression for vout in terms 
of the input:

   v  out   =    R  4   __  R  3  
     (    1 +  R  2   /  R  1   _ 1 +  R  4   /  R  3  

   )    v  +   −    R  2   __  R  1  
    v  −    [18]

From Eq. [18] it is clear that the general case allows amplification of 
common-mode components to the two inputs. In the specific case where 
R4/R3 = R2/R1 = K, however, Eq. [18] reduces to K(v+ − v−) = Kvd, so that 
(asssuming ideal op amps) only the difference is amplified, and the gain is 
set by the resistor ratio. Since these resistors are internal to the instrumen-
tation amplifier and not accessible to the user, devices such as the AD622 
allow the gain to be set anywhere in the range of 1 to 1000 by connecting an 
external resistor between two pins (shown as RG in Fig. 6.28b).

vout

vx

vx

R1

R3 R4

R2

+

–

v+

v–

–

+

–

+–

+

–

+

vd RG

+

–

(a) (b)

■  FIGURE 6.28 (a) The basic instrumentation amplifier. (b) Commonly used symbol.
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The cardiovascular system is an intricate and elegant 
system that delivers oxygenated blood to cells through-
out the body. Blood circulation has many similarities to 
an electrical circuit, with the heart (power supply) pump-
ing blood (electricity) through vessels (wires) to the cells 
of the body (resistive load). We do not consciously think 
about controlling muscle contractions in our heart, so 
how does it work? The heart has its own built-in elec-
trical system to control heart rate and rhythm using 

the electrical signals to trigger muscle contractions, as 
shown in Fig. 6.29a. An orderly contraction of the atria 
and ventricles in the heart provides the desired sequence 
for blood flow and is controlled by the pacemaker of the 
heart called the sinoatrial (SA) node. Electrical signals 
generated by the SA node propagate in an ordered and 
rhythmic fashion to stimulate the cardiac muscle. The 
voltage changes produced by the heart’s electrical sys-
tem can be measured on the skin. An electrocardiogram 
(ECG) is a measurement of these electrical signals, 
where the waveforms generated by the heart’s electrical 
activity, as shown in Fig. 6.29c, provide a noninvasive 
means of detecting possible heart problems.

To measure the ECG, electrodes are placed at lo-
cations on the body to compare the voltage difference 
as the electrical signal travels according to the cardiac 
rhythm. The number and locations of electrode place-
ment may vary, though the 12-lead ECG is conventional. 
In all cases, a voltage difference between two electrodes 
is measured, where the amplitude of the ECG waveform 
is approximately 1 millivolt. Accurate measurement of 

PRACTICAL APPLICATION
Electrocardiogram

PRACTICAL APPLICATION

■  FIGURE 6.29 (a) Diagram of the electrical system of the heart, (b) schematic diagram of a three-lead electrocardiogram circuit based on an instrumen-
tation amplifier, and (c) electrocardiogram signal for a normal rhythm.

 (a: ©McGraw-Hill Education)
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ECG requires a difference amplifier with high input re-
sistance, high gain, and high common-mode rejection 
ratio (CMRR, as discussed in Section 6.5). As we have 
seen in this chapter, instrumentation amplifiers as shown 

in Fig. 6.29b are ideally suited for this application, and 
are commonly used for ECG in practice. Typical specifi-
cations for ECG include input resistance >10 MΩ, Gain 
of 1000, and CMRR of 105.

6.5 • PRACTICAL CONSIDERATIONS

A More Detailed Op Amp Model
As discussed in Sec. 6.2, the op amp can be thought of as a voltage-controlled 
dependent voltage source. The dependent voltage source provides the output 
of the op amp, and the voltage on which it depends is applied to the input ter-
minals. A schematic diagram of a reasonable model for a practical op amp is 
shown in Fig. 6.30; it includes a dependent voltage source with voltage gain A, 
an output resistance Ro, and an input resistance Ri. Table 6.3 gives typical val-
ues for these parameters for several types of commercially available op amps.

The parameter A is referred to as the open-loop voltage gain of the op amp, 
and is typically in the range of 105 to 106. We notice that all of the op amps 
listed in Table 6.3 have extremely large open-loop voltage gain, especially com-
pared to the voltage gain of 11 that characterized the noninverting amplifier 
circuit of Example 6.1. It is important to remember the distinction between the 
open-loop voltage gain of the op amp itself and the closed-loop voltage gain 
that characterizes a particular op amp circuit. The “loop” in this case refers to 
an external path between the output pin and the inverting input pin; it can be a 
wire, a resistor, or another type of element, depending on the application.

The μA741 is a very common general-purpose op amp, originally pro-
duced by Fairchild Corporation in 1968. It can be considered the parent of 
all op amps, used ubiquitously for decades. The success of the μA741 has 
since spawned numerous other devices, which offer higher performance 
for specific applications, such as those shown in Table 6.3. The μA741 is 
characterized by an open-loop voltage gain of 200,000, an input resistance 
of 2 MΩ, and an output resistance of 75 Ω. In order to evaluate how well 
the ideal op amp model approximates the behavior of this device, let’s 
revisit the inverting amplifier circuit of Fig. 6.4.

■  FIGURE 6.30 A more detailed model for the  
op amp.

RoRi
Avd

vd

+

–

iout

i in

+
–

+

–
vout

Part Number μA741 LM324 LT1001 LF411 AD549K

Description General  
purpose

Low-power  
quad

Precision Low-offset, low-
drift JFET input

Ultralow input bias 
current

Open-loop gain A 2 × 105 V/V 105 V/V 8 × 105 V/V 2 × 105 V/V 106 V/V
Input resistance 2 MΩ * 100 MΩ 1 TΩ 10 TΩ
Output resistance 75 Ω * * ∼1 Ω ∼15 Ω
Input bias current 80 nA 45 nA 0.5 nA 50 pA 75 fA
Input offset voltage 1.0 mV 2.0 mV 7 μV 0.8 mV 0.150 mV
CMRR 90 dB 85 dB 110 dB 100 dB 100 dB

* Not provided by manufacturer.

TABLE 
●
 6.3 Typical Parameter Values for Several Types of Op Amps
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Using the appropriate values for the μA741 op amp in the  
model of Fig. 6.30, reanalyze the inverting amplifier circuit of 
Fig. 6.4.

■  FIGURE 6.31 Inverting amplifier circuit drawn using detailed op 
amp model.
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vd
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–
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vout

+
–

+
–

We begin by replacing the ideal op amp symbol of Fig. 6.4 with the 
detailed model, resulting in the circuit shown in Fig. 6.31.

Note that we can no longer invoke the ideal op amp rules, since we are 
not using the ideal op amp model. Thus, we write two nodal equations:

   
  −  v  d   −  v  in   ______  R  1  

   +   −  v  d   −  v  out   ______  R  f  
   +   −  v  d   ___  R  i  

   = 0
    

   v  out   +  v  d   _____  R  f  
   +    v  out   − A  v  d   _______  R  o  

   = 0
    

Performing some straightforward but rather lengthy algebra, we 
eliminate vd and combine these two equations to obtain the following 
expression for vout in terms of vin:

   v  out   =   [    
 R  o   +  R  f   ______  R  o   − A   R  f  

     (    1 _  R  1  
   +   1 _  R  f  

   +   1 _  R  i  
   )    −   1 __  R  f  

   ]     
−1

     v  in   __  R  1  
    [19] 

Substituting vin = 5 sin 3t mV, R1 = 4.7 kΩ, Rf  = 47 kΩ, Ro = 75 Ω,  
Ri = 2 MΩ, and A = 2 × 105, we obtain

   v  out   = − 9.999448   v  in   = − 49.99724 sin 3t mV  

Upon comparing this to the expression that was found assuming an 
ideal op amp (vout = −10vin = −50 sin 3t mV), we see that the ideal 
op amp is indeed a reasonably accurate model. Further, assuming an 
ideal op amp leads to a significant reduction in the algebra required to 
perform the circuit analysis. Note that if we allow A → ∞, Ro → 0, and 
Ri → ∞, Eq. [19] reduces to

   v  out   = −   
 R  f   __  R  1  

    v  in    

which is what we derived earlier for the inverting amplifier when as-
suming the op amp was ideal.

EXAMPLE 6.6
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Derivation of the Ideal Op Amp Rules
We have seen that the ideal op amp can be a reasonably accurate model for the 
behavior of practical devices. However, using our more detailed model, which 
includes a finite open-loop gain, finite input resistance, and nonzero output 
resistance, it is actually straightforward to derive the two ideal op amp rules.

Referring to Fig. 6.30, we see that the open-circuit output voltage of a 
practical op amp can be expressed as

   v  out   = A  v  d    [20]

Rearranging this equation, we find that vd, sometimes referred to as the 
differential input voltage, can be written as

   v  d   =    v  out   ___ 
A

    [21]

As we might expect, there are practical limits to the output voltage vout 
that can be obtained from a real op amp. As described in Sec. 6.4, op amp 
saturation occurs near the values of the power supply, typically in the range 
of 5 to 24 V. If we divide 24 V by the open-loop gain of the μA741 (2 × 105),  
we obtain vd = 120 μV. Although this is not the same as zero volts, such a 
small value compared to the output voltage of 24 V is practically zero. An 
ideal op amp would have infinite open-loop gain, resulting in vd = 0 regard-
less of vout; this leads to ideal op amp rule 2.

Ideal op amp rule 1 states that “No current ever flows into either input 
terminal.” Referring to Fig. 6.23, the input current of an op amp is simply

   i  in   =    v  d   __  R  i  
    

We have just determined that vd is typically a very small voltage. As we 
can see from Table 6.3, the input resistance of an op amp is very large, rang-
ing from the megaohms to the teraohms! Using the value of vd = 120 μV 
from above and Ri = 2 MΩ, we compute an input current of 60 pA. This 
is an extremely small current, and we would require a specialized ammeter 
(known as a picoammeter) to measure it. We see from Table 6.3 that the typi-
cal input current (more accurately termed the input bias current) of a μA741 
is 80 nA, three orders of magnitude larger than our estimate. This is a short-
coming of the op amp model we are using, which is not designed to provide 
accurate values for input bias current. Compared to the other currents flow-
ing in a typical op amp circuit, however, either value is essentially zero. More 
modern op amps (such as the AD549) have even lower input bias currents. 
Thus, we conclude that ideal op amp rule 1 is a fairly reasonable assumption.

From our discussion, it is clear that an ideal op amp has infinite open-
loop voltage gain, and infinite input resistance. However, we have not yet 

PRACTICE 
●

6.6 Assuming a finite open-loop gain (A), a finite input resistance (Ri), 
and zero output resistance (Ro), derive an expression for vout in terms of 
vin for the op amp circuit of Fig. 6.4. 

Ans: vout/vin = −ARf Ri /[(1 + A)R1Ri + R1Rf + Rf Ri].
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considered the output resistance of the op amp and its possible effects on 
our circuit. Referring to Fig. 6.30, we see that

   v  out   = A  v  d   −  R  o    i  out    

where iout flows from the output pin of the op amp. Thus, a nonzero value 
of Ro acts to reduce the output voltage, an effect which becomes more pro-
nounced as the output current increases. For this reason, an ideal op amp 
has an output resistance of zero ohms. The μA741 has a maximum output 
resistance of 75 Ω, and more modern devices such as the AD549 have even 
lower output resistance.

Common-Mode Rejection
The op amp is occasionally referred to as a difference amplifier, since the 
output is proportional to the voltage difference between the two input termi-
nals. This means that if we apply identical voltages to both input terminals, 
we expect the output voltage to be zero. This ability of the op amp is one of 
its most attractive qualities, and is known as common-mode rejection. The 
circuit shown in Fig. 6.32 is connected to provide an output voltage

   v  out   =  v  2   −  v  1    

If v1 = 2 + 3 sin 3t volts and v2 = 2 volts, we would expect the output 
to be −3 sin 3t volts; the 2 V component common to v1 and v2 would not be 
amplified, nor does it appear in the output.

For practical op amps, we do in fact find a small contribution to the out-
put in response to common-mode signals. In order to compare one op amp 
type to another, it is often helpful to express the ability of an op amp to reject 
common-mode signals through a parameter known as the common-mode 
rejection ratio, or CMRR. Defining voCM as the output obtained when both 
inputs are equal (v1 = v2 = vCM), we can determine ACM, the common-mode 
gain of the op amp

   A  CM   =   |     v  oCM   _  v  CM     |     
We then define CMRR in terms of the ratio of differential-mode gain A 

to the common-mode gain ACM, or

  CMRR ≡   |    A _  A  CM     |     [22]

although this is often expressed in decibels (dB), a logarithmic scale:

   CMRR  (dB)   ≡ 20   log  10    |    A _  A  CM     |       dB   [23]

Typical values for several different op amps are provided in Table 6.3; a 
value of 100 dB corresponds to an absolute ratio of 105 for A to ACM.

Saturation
So far, we have treated the op amp as a purely linear device, assuming that 
its characteristics are independent of the way in which it is connected in a 
circuit. In reality, it is necessary to supply power to an op amp in order to 
run the internal circuitry, as shown in Fig. 6.33. A positive supply, typically 
in the range of 5 to 24 V dc, is connected to the terminal marked V+, and 
a negative supply of equal magnitude is connected to the terminal marked 
V−. There are also a number of applications where a single voltage supply is 

■  FIGURE 6.32 An op amp connected as a differ-
ence amplifier.
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■  FIGURE 6.33 Op amp with positive and negative 
voltage supplies connected. Two 18 V supplies 
are used as an example; note the polarity of each 
source.
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acceptable, as well as situations where the two voltage magnitudes may be 
unequal. The op amp manufacturer will usually specify a maximum power 
supply voltage, beyond which damage to the internal transistors will occur.

The power supply voltages are a critical choice when designing an op 
amp circuit because they represent the maximum possible output voltage of 
the op amp.3 For example, consider the op amp circuit shown in Fig. 6.32, 
now connected as a noninverting amplifier having a gain of 10. As shown 
in the SPICE simulation in Fig. 6.34, we do in fact observe linear behavior 
from the op amp, but only in the range of ±1.71 V for the input voltage. Out-
side of this range, the output voltage is no longer proportional to the input, 

(3) In practice, we find the maximum output voltage is slightly less than the supply voltage by as much as 
a volt or so.

■  FIGURE 6.34 Simulated input/output characteristics of a μA741 connected as a noninverting 
amplifier with a gain of 10, and powered by ±18 V supplies.

(a)

(a)

(b)
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reaching a peak magnitude of 17.6 V. This important nonlinear effect is 
known as saturation, which refers to the fact that further increases in the in-
put voltage do not result in a change in the output voltage. This phenomenon 
refers to the fact that the output of a real op amp cannot exceed its supply 
voltages. For example, if we choose to run the op amp with a +9 V supply 
and a −5 V supply, then our output voltage will be limited to the range of  
−5 to + 9 V. The output of the op amp is a linear response bounded by the 
positive and negative saturation regions, and as a general rule, we try to de-
sign our op amp circuits so that we do not accidentally enter the saturation 
region. This requires us to select the operating voltage carefully based on 
the closed-loop gain and maximum expected input voltage.

Input Offset Voltage
As we are discovering, there are a number of practical considerations to 
keep in mind when working with op amps. One particular nonideality worth 
mentioning is the tendency for real op amps to have a nonzero output even 
when the two input terminals are shorted together. The value of the output 
under such conditions is known as the offset voltage, and the input voltage 
required to reduce the output to zero is referred to as the input offset volt-
age. Referring to Table 6.3, we see that typical values for the input offset 
voltage are on the order of a few millivolts or less.

Most op amps are provided with two pins marked either “offset null” 
or “balance.” These terminals can be used to adjust the output voltage by 
connecting them to a variable resistor. A variable resistor is a three-terminal 
device commonly used for such applications as volume controls on radios. 
The device comes with a knob that can be rotated to select the actual value 
of resistance, and it has three terminals. Measured between the two extreme 
terminals, its resistance is fixed regardless of the position of the knob. Using 
the middle terminal and one of the end terminals creates a resistor whose 
value depends on the knob position. Figure 6.35 shows a typical circuit used 
to adjust the output voltage of an op amp; the manufacturer’s data sheet may 
suggest alternative circuitry for a particular device.

Packaging
Modern op amps are available in a number of different types of packages. 
Some styles are better suited to high temperatures, and there are a variety 
of different ways to mount ICs on printed-circuit boards. Figure 6.36 shows 

■  FIGURE 6.35 Suggested external circuitry for 
obtaining a zero output voltage. The ±10 V supplies 
are shown as an example; the actual supply voltages 
used in the final circuit would be chosen in practice.

–

+

Offset null
V –

V +

Offset null
Output

–10 V

+10 V+
–

+
–

■  FIGURE 6.36 Several different package styles for the lm741 op amp: (a) metal can; (b) dual-in-line package; (c) ceramic flatpak.
  (Copyright © 2011 National Semiconductor Corporation (www.national.com). All rights reserved. Used with permission.)

(c)(a) (b)
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several different styles of the LM741, manufactured by National Semicon-
ductor. The label “NC” next to a pin means “no connection.” The package 
styles shown in the figure are standard configurations and are used for a 
large number of different integrated circuits; occasionally there are more 
pins available on a package than required.

As we have just seen, SPICE can be enormously helpful in predicting 
the output of an op amp circuit, especially in the case of time-varying 
inputs. We will find, however, that our ideal op amp model agrees fairly 
well with SPICE simulations as a general rule.

When performing a SPICE simulation of an op amp circuit, we must 
be careful to remember that positive and negative dc supplies must be 
connected to the device (with the exception of devices like the LM324, 
which is designed to be a single-supply op amp). Although the model 
shows the offset null pins used to zero the output voltage, SPICE does not 
build in any offset, so these pins are typically left floating (unconnected).

While the UniversalOpAmp2 component in LTspice provides a 
good general model that includes power supplies, you may wish to 
more accurately simulate the output of a particular op amp. There are at 
least two options available:

1) Select a component already built into the LTspice library (not 
surprisingly, these are all components from Linear Technologies, 
which produces LTspice). You can also create your own component 
to include in your LTspice library (component creation is beyond the 
scope of this book).

2) Select the component OpAmp2, and use a SPICE model to de-
scribe behavior. The SPICE model will be a text file, often available from 
the component manufacturer, which will need to be saved in the LTspice 
library (e.g., ~/Library/Application Support/LTspice/lib on a Mac running 
LTspice). For example, the SPICE model uA741.sub was used for the sim-
ulation in Fig. 6.34. The OpAmp2 component will then need to specify 
the desired SPICE model by right clicking and entering the desired file 
under SpiceModel Value (e.g., uA741.sub). The simulation will also need 
to include the SPICE directive for the model using the directive .lib, where 
the command .lib uA741.sub was used for the simulation in Fig. 6.34.

COMPUTER-AIDED ANALYSIS

(Continued on next page)

Simulate the circuit of Fig. 6.4 with LTspice using the LT1001 preci-
sion op amp. Determine the point(s) at which saturation begins if ±15 
V dc supplies are used to power the device. Compare the gain calcu-
lated by LTspice to what was predicted using the ideal op amp model.

We begin by drawing the inverting amplifier circuit of Fig. 6.4 using 
the schematic capture tool as shown in Fig. 6.37. Note that two separate 
15 V dc supplies are required to power the op amp.

EXAMPLE 6.7
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Our previous analysis using an ideal op amp model predicted a gain 
of −10. With an input of 5 sin 3t mV, this led to an output voltage of 
−50 sin 3t mV. However, an implicit assumption in the analysis was 
that any voltage input would be amplified by a factor of −10. Based 
on practical considerations, we expect this to be true for small input 
voltages, but the output will eventually saturate to a value comparable 
to the corresponding power supply voltage.

We perform a dc sweep from −2 to +2 volts, using the SPICE 
directive .dc Vs −2 2 0.01; this is a slightly larger range than the supply 
voltage divided by the gain, so we expect our results to include the 
positive and negative saturation regions. 

A convenient method of examining the output is to use the cursor 
tool. Clicking on an output variable at the top of the waveform screen, in 
this case V(vout), will add a crosshair to the plot and a pop-up window 
that shows the data point for the crosshair. You can then click and drag 
the crosshair to examine a data point of interest. Clicking on the output 
variable again will add another crosshair to the plot. Using the cursor 
tool on the simulation results shown in Fig. 6.38a, the input/output 
characteristic of the amplifier is indeed linear over a wide input range, 
corresponding approximately to −1.40 < Vs < +1.40 V (Fig. 6.38b): 
This range is slightly less than the range defined by dividing the positive 
and negative supply voltages by the gain. Outside this range, the output 
of the op amp saturates, with only a slight dependence on the input 
voltage. In the two saturation regions, then, the circuit does not perform 
as a linear amplifier.

We find that at an input voltage of Vs = 1.0 V, the output volt-
age is −9.9998522 V, slightly less than the value of −10 predicted 
from the ideal op amp model, and slightly different from the value 
of −9.999448 V obtained in Example 6.6 using an analytical model 

■  FIGURE 6.37 The inverting amplifier of Fig. 6.4 drawn using a LT1001 op amp.
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for the μA741 op amp. The results predicted by the SPICE model 
are within a few hundredths of a percent of either analytical model, 
demonstrating that the ideal op amp model is indeed a remarkably 
accurate approximation for modern operational amplifier integrated 
circuits.

■  FIGURE 6.38 (a) Output voltage of the inverting amplifer circuit, with the onset of saturation 
identified with the cursor tool. (b) Close-up of the cursor window.

(a)

(b)

PRACTICE 
●

6.7 Use SPICE to simulate a voltage follower using an LT1001 op amp 
with an input of 2 V and power supplies of ±12 V. How close is the 
value of the output voltage to the ideal value of 2 V?

Ans: 1.9999965 V, difference of 3.5 microvolt
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SUMMARY AND REVIEW
In this chapter we introduced a new circuit element—a three-terminal  
device—called the operational amplifier (or more commonly, the op amp). 
In many circuit analysis situations it is approximated as an ideal device, 
which leads to two rules that are applied. We studied several op amp circuits 
in detail, including the inverting amplifier with gain Rf /R1, the noninverting 
amplifer with gain 1 + Rf /R1, and the summing amplifier. We were also 
introduced to the voltage follower and the difference amplifier, although 
the analysis of these two circuits was left for the reader. The concept of 
cascaded stages was found to be particularly useful, as it allows a design to 
be broken down into distinct units, each of which has a specific function. 

The inverting and noninverting op amp circuits, and mathematical op-
erations such as summing and difference amplifiers, all used negative feed-
back and circuit designs with resistor values to define a desired circuit gain/
amplification. Positive feedback can result in unstable circuit operation, and 
output in saturation. Operation in saturation can provide useful circuits, 
including comparators that convert signals to high and low output values 
according to the input,  and Schmitt triggers that are comparator circuits 
that exhibit memory and a hysteresis characteristic. A special case of an op 
amp circuit that compares the voltage difference at two input terminals is 
the instrumentation amplifier, which is routinely used to amplify very small 
voltages.

Modern op amps have nearly ideal characteristics, as we found when we 
opted for a more detailed model based on a dependent source. Still, nonide-
alities are encountered occasionally, so we considered the role of negative 
feedback in reducing the effect of temperature and manufacturing-related 
variations in various parameters, common-mode rejection, and saturation. 

This is a good point to pause, take a breath, and recap some of the key 
points. At the same time, we will highlight relevant examples as an aid to 
the reader.

 There are two fundamental rules that must be applied when analyzing 
ideal op amp circuits (Example 6.1):

 1. No current ever flows into either input terminal.
 2. No voltage ever exists between the input terminals.

 Op amp circuits are usually analyzed for an output voltage in terms of 
some input quantity or quantities. (Examples 6.1, 6.2)

 Nodal analysis is typically the best choice in analyzing op amp circuits, 
and it is usually better to begin at the input and work toward the output. 
(Examples 6.1, 6.2)

 The output current of an op amp cannot be assumed; it must be found 
after the output voltage has been determined independently.  
(Example 6.2)

 Cascaded stages may be analyzed one stage at a time to relate the out-
put to the input. (Example 6.3)

 A resistor is almost always connected from the output pin of an op amp 
to its inverting input pin, which incorporates negative feedback into the 
circuit for increased stability. (Section 6.4)
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 Comparators are op amps designed to be driven into saturation. These 
circuits operate in open loop, and hence have no external feedback 
resistor. (Examples 6.4, 6.5)

 The ideal op amp model is based on the approximation of infinite 
open-loop gain A, infinite input resistance Ri, and zero output resis-
tance Ro. (Example 6.6)

 In practice, the output voltage range of an op amp is limited by the 
supply voltages used to power the device. (Example 6.7)

READING FURTHER
Two very readable books that deal with a variety of op amp applications are:

R. Mancini (ed.), Op Amps Are for Everyone, 2nd ed. Amsterdam: Newnes, 
2003. Also available on the Texas Instruments website (www.ti.com).
W. G. Jung, Op Amp Cookbook, 3rd ed. Upper Saddle River, N.J.: 
 Prentice-Hall, 1997.

One of the first reports of the implementation of an “operational amplifier” can 
be found in

J. R. Ragazzini, R. M. Randall, and F. A. Russell, “Analysis of problems in 
dynamics by electronic circuits,” Proceedings of the IRE 35(5), 1947,  
pp. 444–452.

and an early applications guide for the op amp can be found on the Analog 
Devices, Inc. website (www.analog.com):

George A. Philbrick Researches, Inc., Applications Manual for Computing 
Amplifiers for Modelling, Measuring, Manipulating & Much Else. Nor-
wood, Mass.: Analog Devices, 1998.

EXERCISES

6.2 The Ideal Op Amp
1. For the op amp circuit shown in Fig. 6.39, calculate vout if (a) R1 = R2 = 100 Ω 

and vin = 5 V; (b) R2 = 200R1 and vin = 1 V; (c) R1 = 4.7 kΩ, R2 = 47 kΩ, and 
vin = 20 sin 5t V.

■  FIGURE 6.39
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–

+ vout

v in
+
–

2. Determine the power dissipated by a 100 Ω resistor connected between ground 
and the output pin of the op amp of Fig. 6.39 if vin = 4 V and (a) R1 = 2R2; (b) 
R1 = 1 kΩ and R2 = 22 kΩ; (c) R1 = 100 Ω and R2 = 101 Ω.

hay01307_ch06_185-228.indd   219 23/01/18   5:36 pm



CHAPTER 6 The OperATIONAl  AmplIFIer220

3. For the circuit of Fig. 6.40, calculate vout if (a) R1 = R2 = 100 kΩ, RL = 100 Ω, 
and vin = 5 V; (b) R1 = 0.1R2, RL = ∞, and vin = 2 V; (c) R1 = 1 kΩ, R2 = 0, RL 
= 1 Ω, and vin = 43.5 V.

4. For the circuit in Fig. 6.40, find the values of current at all terminals of the op 
amp for the case where R1 = 500 Ω, R2 = 100 Ω, and RL = 50 Ω.

5. (a) Design a circuit which converts a voltage v1(t) = 9 cos 5t V into −4 cos 
5t V. (b) Verify your design by analyzing the final circuit.

6. A certain load resistor requires a constant 5 V dc supply. Unfortunately, its 
resistance value changes with temperature. Design a circuit which supplies 
the requisite voltage if only 9 V batteries and standard 10% tolerance resistor 
values are available.

7. For the circuit of Fig. 6.40, R1 = RL = 50 Ω. Calculate the value of R2 required 
to deliver 5 W to RL if Vin equals (a) 5 V; (b) 1.5 V. (c) Repeat parts (a) and  
(b) if RL is reduced to 22 Ω.

8. Calculate vout as labeled in the schematic of Fig. 6.41 if (a) iin = 1 mA,  
Rp = 2.2 kΩ, and R3 = 1 kΩ; (b) iin = 2 A, Rp = 1.1 Ω, and R3 = 8.5 Ω. (c) For 
each case, state whether the circuit is wired as a noninverting or an inverting 
amplifier. Explain your reasoning.

■  FIGURE 6.41
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9. (a) Design a circuit using only a single op amp which adds two voltages v1 and 
v2 and provides an output voltage twice their sum (negative values acceptable, 
i.e., |vout|= 2v1 + 2v2). (b) Verify your design by analyzing the final circuit.

10. (a) Design a circuit that provides a current i which is equal in magnitude to  
the sum of three input voltages v1, v2, and v3. (Compare volts to amperes.)  
(b) Verify your design by analyzing the final circuit.

11. (a) Design a circuit that provides a voltage vout which is equal to the difference 
between two voltages v2 and v1 (i.e., vout = v2 − v1), if you have only the follow-
ing resistors from which to choose: two 1.5 kΩ resistors, four 6 kΩ resistors, 
and three 500 Ω resistors. (b) Verify your design by analyzing the final circuit.

12. Determine the output voltage v0 and the current labeled i0 in the circuit in 
Fig. 6.42.

13. Analyze the circuit of Fig. 6.43 and determine a value for V1, which is refer-
enced to ground.

■  FIGURE 6.43
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■  FIGURE 6.42
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■  FIGURE 6.40
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14. Derive an expression for vout as a function of v1 and v2 for the circuit represent-
ed in Fig. 6.44.

15. Explain what is wrong with each diagram in Fig. 6.45 if the two op amps are 
known to be perfectly ideal. 

■  FIGURE 6.45
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16. For the circuit depicted in Fig. 6.46, calculate vout if Is = 2 mA, RY = 4.7 kΩ, 
RX = 1 kΩ, and Rf = 500 Ω.

17. Consider the amplifier circuit shown in Fig. 6.46. What value of Rf will yield 
vout = 2 V when Is = −5/3 mA and RY = 2RX = 500 Ω?

18. With respect to the circuit shown in Fig. 6.47, calculate vout if vs equals  
(a) 2 cos 100t mV; (b) 2 sin(4t + 19°) V.

■  FIGURE 6.47
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6.3 Cascaded Stages
19. Calculate vout as labeled in the circuit of Fig. 6.48 if Rx = 1 kΩ.

■  FIGURE 6.48
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20. For the circuit of Fig. 6.48, determine the value of Rx that will result 
in a value of vout = 10 V.

21. Referring to Fig. 6.49, sketch vout as a function of (a) vin over the 
range of −2 V ≤ vin ≤ +2 V, if R4 = 2 kΩ; (b) R4 over the range of 
1 kΩ ≤ R4 ≤ 10 kΩ, if vin = 300 mV.

22. Repeat Exercise 21 using a parameter sweep in SPICE.

■  FIGURE 6.46
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■  FIGURE 6.44
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■  FIGURE 6.49
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23. Obtain an expression for vout as labeled in the circuit of Fig. 6.50 if v1 equals 
(a) 0 V; (b) 1 V; (c) −5 V; (d) 2 sin 100t V.

■  FIGURE 6.50
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24. The 1.5 V source of Fig. 6.50 is disconnected, and the output of the circuit 
shown in Fig. 6.49 is connected to the left-hand terminal of the 500 Ω resistor 
instead. Calculate vout if R4 = 2 kΩ and (a) vin = 2 V, v1 = 1 V; (b) vin = 1 V, v1 
= 0; (c) vin = 1 V, v1 = −1 V.

25. For the circuit shown in Fig. 6.51, compute vout if (a) v1 = 2v2 = 0.5v3 = 2.2 V 
and R1 = R2 = R3 = 50 kΩ; (b) v1 = 0, v2 = −8 V, v3 = 9 V, and R1 = 0.5R2 = 
0.4R3 = 100 kΩ.

■  FIGURE 6.51
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26. (a) Design a circuit which will add the voltages produced by three separate 
pressure sensors, each in the range of 0 ≤ vsensor ≤ 5 V, and produce a positive 
voltage vout linearly correlated to the voltage sum such that vout = 0 when all 
three voltages are zero, and vout = 2 V when all three voltages are at their maxi-
mum. (b) Verify your design by analyzing the final circuit.

27. (a) Design a circuit which produces an output voltage vout proportional to 
the difference of two positive voltages v1 and v2 such that vout = 0 when both 
voltages are equal, and vout = 10 V when v1 − v2 = 1 V. (b) Verify your design 
by analyzing the final circuit.

28. (a) Three pressure-sensitive sensors are used to double-check the weight 
readings obtained from the suspension systems of a long-range jet airplane. 
Each sensor is calibrated such that 10 μV corresponds to 1 kg. Design a 
circuit which adds the three voltage signals to produce an output voltage 
calibrated such that 10 V corresponds to 400,000 kg, the maximum  
takeoff weight of the aircraft. (b) Verify your design by analyzing the  
final circuit.

29. (a) The oxygen supply to a particular bathysphere consists of four separate 
tanks, each equipped with a pressure sensor capable of measuring between 
0 (corresponding to 0 V output) and 500 bar (corresponding to 5 V output). 
 Design a circuit which produces a voltage proportional to the total pressure in 
all tanks, such that 1.5 V corresponds to 0 bar and 3 V corresponds to 2000 
bar. (b) Verify your design by analyzing the final circuit.
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30. For the circuit shown in Fig. 6.52, let vin = 8 V, and select values for R1, R2, 
and R3 to ensure an output voltage vout = 4 V.

■  FIGURE 6.52
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31. For the circuit of Fig. 6.53, derive an expression for vout in terms of vin.

■  FIGURE 6.53
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32. Determine the value of Vout for the circuit in Fig. 6.54.

33. Calculate V0 for the circuit in Fig. 6.55.

■  FIGURE 6.55
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6.4 Feedback, Comparators, and the Instrumentation Amplifier 
34. Human skin, especially when damp, is a reasonable conductor of electric-

ity. If we assume a resistance of less than 10 MΩ for a fingertip pressed 
across two terminals, design a circuit which provides a +1 V output if this 
nonmechanical switch is “closed” and −1 V if it is “open.”

■  FIGURE 6.54
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35. The temperature alarm circuit in Fig. 6.56 utilizes a temperature sensor whose 
resistance changes according to R = 80[1 + α(T − 25)] Ω, where T is the 
temperature in Celsius and α is the temperature sensitivity with a value of 
0.004/°C. Determine the output vout as a function of temperature.

■  FIGURE 6.56
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36. Design a circuit which provides an output voltage vout based on the behavior of 
another voltage vin, such that

  v  out    {   2.5  V   v  in   > 1  V   
1.2  V

  
otherwise

    

37. For the circuit depicted in Fig. 6.57, sketch the expected output voltage vout as a 
function of vactive for −5 V ≤ vactive ≤ +5 V, if vref is equal to (a) −3 V; (b) +3 V.

■  FIGURE 6.57
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38. For the circuit depicted in Fig. 6.58, (a) sketch the expected output voltage 
vout as a function of v1 for −5 V ≤ v1 ≤ +5 V, if v2 = +2 V; (b) sketch the 
expected output voltage vout as a function of v2 for −5 V ≤ v2 ≤ +5 V,  
if v1 = +2 V.

■  FIGURE 6.58
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39. For the circuit depicted in Fig. 6.59, sketch the expected output voltage 
vout as a function of vactive, if −2 V ≤ vactive ≤ +2 V. Verify your solution in 
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SPICE using an op amp model of your choosing (be sure the model includes 
power supply terminals). Submit a properly labeled schematic with your 
results.

40. In digital logic applications, a +5 V signal represents a logic “1” state, and a 0 
V signal represents a logic “0” state. In order to process real-world information 
using a digital computer, some type of interface is required, which typically 
includes an analog-to-digital (A/D) converter—a device that converts analog 
signals into digital signals. Design a circuit that acts as a simple 1-bit A/D, 
with any signal less than 1.5 V resulting in a logic “0” and any signal greater 
than 1.5 V resulting in a logic “1.”

41. Using the temperature sensor in the circuit in Prob.  35, design a temperature 
alarm circuit that outputs a voltage of +5 V when the temperature exceeds  
100 °C and a voltage of −5 V when the temperature goes below 10°C. (Hint: 
It may be a good idea to place the temperature sensor in a resistor network that 
uses both positive and negative power supplies.)

42. Examine the comparator Schmitt trigger circuit in Fig. 6.60, containing an 
input voltage vin, reference voltage vref, and single power supply Vs. Determine 
the trigger voltages in terms of circuit parameters, and sketch the output char-
acteristics vout versus vin.

■  FIGURE 6.60
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43. Design the circuit values for the single supply comparator Schmitt trigger 
shown in Fig. 6.60 to achieve a voltage output of 0 V or 5 V, and a memory 
window between 1 V and 4 V. Simulate your circuit using SPICE by using 
a .dc sweep command. Note that you will need to do two separate sweeps and 
plots: one for increasing voltage, and one for decreasing voltage.

44. You designed a robust sensing circuit for your drone that provides a voltage 
output of +5 V when the drone is flying properly, and 0 V when sensors are 
outside of specification. However, you also find that the output has a sinusoidal 
noise signal with amplitude of 2 V. Design a Schmitt trigger to convert the 
noisy signal to an output of 0 V or 5 V without noise.

45. Use an appropriate SPICE simulation to verify a Schmitt trigger circuit that 
accomplishes the goals of Exercise 44. It may be helpful to use a behavioral 
source such as the bv component in LTspice to define a source with dc and ac 
components.

46. For the instrumentation amplifier shown in Fig. 6.28a, assume that the  
three internal op amps are ideal, and determine the CMRR of the circuit if  
(a) R1 = R3 and R2 = R4; (b) all four resistors have different values.

47. A common application for instrumentation amplifiers is to measure voltages in 
resistive strain gauge circuits. These strain sensors work by exploiting the changes 
in resistance that result from geometric distortions, as in Eq. [6] of Chap. 2. They 
are often part of a bridge circuit, as shown in Fig. 6.61a, where the strain gauge 
is identified as RG. (a) Show that   V  out   =  V  in    [     R  2   _____  R  1   +  R  2     −    R  3   _______  R  3   +  R  Gauge     ]    . (b) Verify that 
Vout = 0 when the three fixed-value resistors R1, R2, and R3 are all chosen to be 

■  FIGURE 6.59
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equal to the unstrained gauge resistance RGauge. (c) For the intended application, 
the gauge selected has an unstrained resistance of 5 kΩ, and a maximum resis-
tance increase of 50 mΩ is expected. Only ±12 V supplies are available. Using 
the instrumentation amplifier of Fig. 6.61b, design a circuit that will provide a 
voltage signal of +1 V when the strain gauge is at its maximum loading.

AD622 Specifications
  Amplifier gain G can be varied from 2 to 1000 by connecting a resistor 

 between pins 1 and 8 with a value calculated by  R =   50.5 _____ 
G  −  1   kΩ .

■  FIGURE 6.61
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6.5 Practical Considerations
48. (a) Employ the parameters listed in Table 6.3 for the μA741 op amp to analyze 

the circuit of Fig. 6.62 and compute a value for vout. (b) Compare your result to 
what is predicted using the ideal op amp model.

49. If the circuit of Fig. 6.62 is analyzed using the detailed model of an op amp (as 
opposed to the ideal op amp model), calculate the value of open-loop gain A 
required to achieve a closed-loop gain within 2% of its ideal value.

50. For the circuit of Fig. 6.62, calculate the differential input voltage and the input 
bias current if the op amp is a(n) (a) μA741; (b) LF411; (c) AD549K.

51. (a) Employ the parameters listed in Table 6.3 for the μA741 op amp to analyze 
the circuit of Fig. 6.11 if R = 1.5 kΩ, v1 = 2 V, and v2 = 5 V. (b) Compare your 
solution to what is predicted using the ideal op amp model.

52. For the circuit of Fig. 6.63, replace the 470 Ω resistor with a short circuit,  
and compute vout using (a) the ideal op amp model; (b) the parameters listed  
in Table 6.3 for the μA741 op amp; (c) an appropriate SPICE simulation.  
(d) Compare the values obtained in parts (a) to (c) and comment on the possi-
ble origin of any discrepancies.

■  FIGURE 6.63
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53. (a) For the circuit of Fig. 6.63, if the op amp (assume LT1001) is powered by 
matched 9 V supplies, estimate the maximum value to which the 470 Ω resistor 
can be increased before saturation effects become apparent. (b) Verify your 
prediction with an appropriate simulation.

■  FIGURE 6.62
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54. The difference amplifier circuit in Fig. 6.32 has a common-mode signal that 
can vary by up to 5 V. How would this variation in common-mode input 
change the output voltage for cases of using a μA741, LM324, and LT1001 
op amp?

Chapter-Integrating Exercises
55. The circuit depicted in Fig. 6.64 is known as a Howland current source. Derive 

expressions for vout and IL, respectively, as a function of V1 and V2.

■  FIGURE 6.64
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56. For the circuit depicted in Fig. 6.64, known as a Howland current source,  
set V2 = 0, R1 = R3, and R2 = R4; then solve for the current IL when R1 = 2R2 = 
1 kΩ and RL = 100 Ω.

57. (a) You’re given an electronic switch which requires 5 V at 1 mA in order to 
close; it is open with no voltage present at its input. If the only microphone 
available produces a peak voltage of 250 mV, design a circuit that will energize 
the switch when someone speaks into the microphone. Note that the audio level 
of a general voice may not correspond to the peak voltage of the microphone. 
(b) Discuss any issues that may need to be addressed if your circuit were to be 
implemented.

58. You’ve formed a rock and roll band, despite advice to the contrary. Actually, 
the band is pretty good except for the fact that the lead singer (who owns the 
drum set, the microphones, and the garage where you practice) is a bit tone-
deaf. Design a circuit that takes the output from each of the five microphones 
your band uses and adds the voltages to create a single voltage signal which is 
fed to the amplifier. Except not all voltages should be equally amplified. One 
microphone output should be attenuated such that its peak voltage is 10% of 
any other microphone’s peak voltage.

59. Cadmium sulfide (CdS) is commonly used to fabricate resistors whose value 
depends on the intensity of light shining on the surface. In Fig. 6.65 a CdS 
“photocell” is used as the feedback resistor Rf. In total darkness, it has a 
resistance of 100 kΩ, and a resistance of 10 kΩ under a light intensity of 6 
candela. RL represents a circuit that is activated when a voltage of 1.5 V or less 
is applied to its terminals. Choose R1 and Vs so that the circuit represented by 
RL is activated by a light of 2 candela or brighter.

■  FIGURE 6.65
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60. You are using a dusk/dawn light sensor to automatically turn on outdoor lights, 
but your neighbor’s lights and headlights from cars passing by give false 
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alarms in turning your lights off at brightness around 500 lux. Design your 
own dusk/dawn sensor using an op amp circuit that will take a light sensor out-
put to provide a voltage output to control lighting. The light sensor is a resistor 
with R = 2000e−x /500 Ω, where x is the brightness in lux. The circuit should 
turn on lights when the brightness goes below 200 lux at dusk and remain on 
until brightness exceeds 1000 lux near dawn.

61. Design a Schmitt trigger circuit operating on a 5 V supply that will remove 
noise from a digital signal. The circuit should be designed for threshold values 
of 1 V and 3.5 V, and output either 0 V or 5 V. Verify and plot your results in 
SPICE through a transient response simulation using a square wave input that 
includes noise. In LTSpice, this form of input may be defined using the behav-
ioral voltage source component bv, with an input function using sgn (sign), 
sin, and white (random white noise) functions. For example, the function  
V = 2.5*(sgn(sin(2*pi*time*500)) + 1) + 5*(white(5e5*time)) can be used 
to represent a square wave with 5 V amplitude at frequency of 500 Hz with  
white noise.

62. A fountain outside a certain office building is designed to reach a maximum 
height of 5 meters at a flow rate of 100 l/s. A variable position valve in line 
with the water supply to the fountain can be controlled electrically, such that 
0 V applied results in the valve being fully open, and 5 V results in the valve 
being closed. In adverse wind conditions the maximum height of the fountain 
needs to be adjusted; if the wind velocity exceeds 50 km/h, the height cannot 
exceed 2 meters. A wind velocity sensor is available which provides a voltage 
calibrated such that 1 V corresponds to a wind velocity of 25 km/h. Design 
a circuit which uses the velocity sensor to control the fountain according to 
specifications.

63. Use SPICE to simulate the instrumentation amplifier in Fig. 6.28 for the case 
where R1 = R3 = 1 kΩ and R2 = R4 = 100 kΩ and an input signal that has a dc 
voltage that can range between 0 and 5 V and differential sinusoidal ac signal 
with amplitude of 1 mV. Compare the performance of the circuit when using a 
model for a high-precision op amp such as the LT1001 to the general-purpose 
μA741 op amp. Provide appropriate plots of the input and output, and in partic-
ular, discuss differences in common mode rejection.

64. For the circuit of Fig. 6.44, let all resistor values equal 5 kΩ. Sketch vout as a 
function of time if (a) v1 = 5 sin 5t V and v2 = 5 cos 5t V; (b) v1 = 4e−t V and 
v2 = 5e−2t V; (c) v1 = 2 V and v2 = e−t V.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
In this chapter we introduce two new passive circuit elements: 
the capacitor and the inductor. Each element can both store and 
deliver finite amounts of energy. Although they are classed as linear 
elements, the current–voltage relationships for these new elements 
are time-dependent, leading to many interesting circuits. The range 
of capacitance and inductance values we might encounter can be 
huge, so at times they may dominate circuit behavior and at other 
times they may be essentially insignificant. Such issues continue to 
be relevant in modern circuit applications, particularly as computer 
and communication systems move to increasingly higher operating 
frequencies and component densities.

7.1 • THE CAPACITOR

Ideal Capacitor Model
Previously, we referred to independent and dependent sources as 
active elements, and the linear resistor as a passive element, although  
our definitions of active and passive are still slightly fuzzy and need 
to be brought into sharper focus. We now define an active element 
as an element that is capable of furnishing an average power greater 
than zero to some external device, where the average is taken over 
an infinite time interval. Ideal sources are active elements, and the 
operational amplifier is also an active device. A passive element, 
however, is defined as an element that cannot supply an average  
power that is greater than zero over an infinite time interval. The 
resistor falls into this category; the energy it receives is usually 
transformed into heat, and it never supplies energy.

Capacitors and 
Inductors7

KEY CONCEPTS

Voltage–Current 
Relationship of an Ideal 
Capacitor

Current–Voltage 
Relationship of an Ideal 
Inductor

Calculating Energy Stored in 
Capacitors and Inductors

Response of Capacitors and 
Inductors to Time-Varying 
Waveforms

Series and Parallel 
Combinations

Op Amp Circuits with 
Capacitors

Computer Modeling of 
Energy Storage Elements
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We now introduce a new passive circuit element, the capacitor. We de-
fine capacitance C by the voltage–current relationship

  i = C   dv _ 
dt

    [1]

where v and i satisfy the conventions for a passive element, as shown in 
Fig. 7.1. We should bear in mind that v and i are functions of time; if needed, 
we can emphasize this fact by writing v(t) and i(t) instead. From Eq. [1], we 
may determine the unit of capacitance as an ampere-second per volt, or cou-
lomb per volt. We will now define the farad1 (F) as one coulomb per volt, 
and will use this as our unit of capacitance.

The ideal capacitor defined by Eq. [1] is only a mathematical model of a real 
device. A capacitor consists of two conducting surfaces on which charge may 
be stored, separated by a thin insulating layer that has a very large resistance. 
If we assume that this resistance is sufficiently large that it may be considered 
infinite, then equal and opposite charges placed on the capacitor “plates” can 
never recombine, at least by any path within the element. The construction of 
the physical device is suggested by the circuit symbol shown in Fig. 7.1.

Let’s visualize some external device connected to this capacitor and 
causing a positive current to flow into one plate of the capacitor and out of 
the other plate. Equal currents are entering and leaving the two terminals, 
and this is no more than we expect for any circuit element. Now let us ex-
amine the interior of the capacitor. The positive current entering one plate 
represents positive charge moving toward that plate through its terminal 
lead; this charge cannot pass through the interior of the capacitor, and it 
therefore accumulates on the plate. As a matter of fact, the current and the 
increasing charge are related by the familiar equation

i =   
dq

 __ 
dt

  

Now let us consider this plate as an overgrown node and apply Kirch-
hoff’s current law. It apparently does not hold; current is approaching the 
plate from the external circuit, but it is not flowing out of the plate into the 
“internal circuit.” This dilemma bothered a famous Scottish scientist, James 
Clerk Maxwell, more than a century ago. The unified electromagnetic the-
ory that he subsequently developed hypothesizes a “displacement current” 
that is present wherever an electric field or a voltage is varying with time. 
The displacement current flowing internally between the capacitor plates 
is exactly equal to the conduction current flowing in the capacitor leads; 
Kirchhoff’s current law is therefore satisfied if we include both conduction 
and displacement currents. However, circuit analysis is not concerned with 
this internal displacement current, and since it is fortunately equal to the 
conduction current, we may consider Maxwell’s hypothesis as relating the 
conduction current to the changing voltage across the capacitor.

A capacitor constructed of two parallel conducting plates of area A, sep-
arated by a distance d, has a capacitance C = εA/d, where ε is the permit-
tivity, a constant of the insulating material between the plates; this assumes 
the linear dimensions of the conducting plates are all much greater than 
d. For air or vacuum, ε = ε0 = 8.854 pF/m. Most capacitors employ a thin 

■  FIGURE 7.1 Electrical symbol and current–voltage 
conventions for a capacitor.

i

v+ –

C

(1)  Named in honor of Michael Faraday, a 19th-century English scientist.

hay01307_ch07_229-272.indd   230 23/01/18   8:15 pm



  SECTION 7.1 ThE CAPACITOR 231

dielectric layer with a larger permittivity than air in order to minimize the 
device size. Examples of various types of commercially available capacitors 
are shown in Fig. 7.2, although we should remember that any two conduct-
ing surfaces not in direct contact with each other may be characterized by 
a nonzero (although probably small) capacitance. We should also note that 
a capacitance of several hundred microfarads (µF) is considered “large.”

Several important characteristics of our new mathematical model can be 
discovered from the defining equation, Eq. [1]. A constant voltage across a 
capacitor results in zero current passing through it; a capacitor is thus an 
“open circuit to dc.” This fact is pictorially represented by the capacitor 
symbol. It is also apparent that a sudden jump in the voltage requires an 
infinite current. Since this is physically impossible, we will therefore pro-
hibit the voltage across a capacitor to change in zero time.

(a) (b) (c)

■  FIGURE 7.2 Several examples of commercially available capacitors. (a) Left to right: 270 pF ceramic, 20 µF tantalum, 15 nF polyester, 150 nF polyester. (b) Left: 2000 µF  
40 VdC rated electrolytic, 25,000 µF 35 VdC rated electrolytic. (c) Clockwise from smallest: 100 µF 63 VdC rated electrolytic, 2200 µF 50 VdC rated electrolytic, 55 F 
2.5 VdC rated electrolytic, and 4800 µF 50 VdC rated electrolytic. note that, generally speaking, larger capacitance values require larger packages, with one notable 
exception here. What was the trade-off in that case?
(a-c: ©Steve Durbin)

EXAMPLE 7.1
Determine the current i flowing through the capacitor of Fig. 7.1 for 
the two voltage waveforms of Fig. 7.3 if C = 2 F.

(b)

v (V)

–6
–4
–2
0
2
4
6

–1 0 1
t (s)

2 3 4 5

(a)

–2
–1 0 1

t (s)

v (V)

2 3 4 5–1
0
1
2
3
4
5
6
7
8

■  FIGURE 7.3 (a) A dc voltage applied to the terminals of the capacitor. (b) A sinusoidal voltage 
waveform applied to the capacitor terminals.

(Continued on next page)
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Integral Voltage–Current Relationships
The capacitor voltage may be expressed in terms of the current by integrat-
ing Eq. [1]. We first obtain

dv =   1 __ 
C

   i(t)  dt

and then integrate2 between the times t0 and t and between the correspond-
ing voltages v(t0) and v(t):

  v(t) =   1 _ 
C

    ∫ 
 t  0  
  
 t
    i( t   ′ ) d t   ′  + v( t  0  )  [2]

Equation [2] may also be written as an indefinite integral plus a constant 
of integration:

v(t) =   1 __ 
C

    ∫ 
 
  
 

   i dt + k

The current i is related to the voltage v across the capacitor by Eq. [1]:

i = C   dv __ 
dt

  

For the voltage waveform depicted in Fig. 7.3a, dv/dt = 0, so i = 0; 
the result is plotted in Fig. 7.4a. For the case of the sinusoidal wave-
form of Fig. 7.3b, we expect a cosine current waveform to flow in 
response, having the same frequency and twice the magnitude (since  
C = 2 F). The result is plotted in Fig. 7.4b.

(a)

–2.0

–1 0 1
t (s)

i (A)

2 3 4 5

–1.5
–1.0
–0.5

0
0.5
1.0
1.5
2.0

(b)

i (A)

–10

–5

0

5

10

–1 0 1
t (s)

2 3 4 5

■  FIGURE 7.4 (a) i = 0 since the voltage applied is dc. (b) The current has a cosine form in 
response to an applied sine wave voltage.

PRACTICE 
●

7.1 Determine the current flowing through a 5 mF capacitor in response 
to a voltage v equal to: (a) −20 V; (b) 2e−5t V. 
Ans: 0 A; −50e−5t mA.

(2)  Note that we are employing the mathematically correct procedure of defining a dummy variable t′ in 
situations where the integration variable t is also a limit.
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Finally, in many situations we will find that v(t0), the voltage initially 
across the capacitor, cannot be discerned. In such cases it is mathematically 
convenient to set t0 = −∞ and v(−∞) = 0, so that

v(t) =   1 __ 
C

    ∫ 
−∞

  
 t
    i  d  t   ′ 

Since the integral of the current over any time interval is the corre-
sponding charge accumulated on the capacitor plate into which the current 
is flowing, we may also define capacitance as

q(t) = Cv(t)

where q(t) and v(t) represent instantaneous values of the charge on either 
plate and the voltage between the plates, respectively.

EXAMPLE 7.2
Find the capacitor voltage that is associated with the current shown 
graphically in Fig. 7.5a. The value of the capacitance is 5 µF.

20

10 2 3 4–1

(a)

i (t) (mA)

t (ms)

8

10 2 3 4–1

(b)

v (t) (V)

t (ms)

■  FIGURE 7.5 (a) The current waveform applied to a 5 µF capacitor. (b) The resultant voltage 
waveform obtained by graphical integration.

Equation [2] is the appropriate expression here:

v(t) =   1 __ 
C

    ∫ 
 t  0  
  
 t
    i( t   ′ ) d  t   ′  + v( t  0  )

but now it needs to be interpreted graphically. To do this, we note 
that the difference in voltage between times t and t0 is proportional to 
the area under the current curve defined by the same two times. The 
constant of proportionality is 1/C.

From Fig. 7.5a, we see three separate intervals: t ≤ 0, 0 ≤ t ≤ 2 ms,  
and t ≥ 2 ms. Defining the first interval more specifically as between −∞ 
and 0, so that t0 = −∞, we note two things, both a consequence of the 
fact that the current has always been zero up to t = 0: First,

v( t  0  ) = v(− ∞) = 0

Second, the integral of the current between t0 = –∞ and 0 is simply 
zero, since i = 0 in that interval. Thus,

v(t) = 0 + v(− ∞)      − ∞  ≤ t ≤ 0

or

 v (  t )   = 0        t ≤ 0 
(Continued on next page)

hay01307_ch07_229-272.indd   233 23/01/18   8:15 pm



CHAPTER 7 CAPACITORS And InduCTORS234

Energy Storage
To determine the energy stored in the electric field of a capacitor, we begin 
with the power delivered to it:

p = vi = Cv   dv __ 
dt

  

and simply integrate over the time interval of interest:

 ∫ 
 t  0  
  
 t
    p  d t   ′  = C ∫ 

 t  0  
  
 t
    v   dv ___ 

d t   ′ 
   d t   ′  = C ∫ 

v( t  0  )
  

v(t)
     v   ′  d v   ′  =   1 _ 2   C {    [v(t)]   2  −  [v( t  0  )]   2  }   

Thus,

    w  C  (t) −  w  C  ( t  0  ) =   1 _ 2   C {    [v(t)]   2  −  [v( t  0  )]   2  }     [3]

where the stored energy is wC, measured in joules (J), and the voltage at t0 
is v(t0). If we select a zero-energy reference at t0, implying that the capacitor 
voltage is also zero at that instant, then

   w  C  (t) =   1 _ 2   C  v   2   [4]

Let us consider a simple numerical example. As sketched in Fig. 7.7, 
a sinusoidal voltage source is in parallel with a 1 MΩ resistor and a 20 µF 
capacitor. The parallel resistor may be assumed to represent the finite resis-
tance of the dielectric between the plates of the physical capacitor (an ideal 
capacitor has infinite resistance associated with it).

If we now consider the time interval represented by the rectangu-
lar pulse, we obtain

v(t) =   1 ______ 
5 ×  10   −6 

    ∫ 
0
  
 t
    20 ×  10   −3  d t   ′  + v(0)

Since v(0) = 0,

v(t) = 4000t        0 ≤ t ≤ 2  ms

For the semi-infinite interval following the pulse, the integral of i(t) 
is once again zero, so that

 v (  t )   = 8        t ≥ 2  ms 

The results are shown graphically in Fig. 7.5b.

PRACTICE 
●

7.2 Determine the current through a 100 pF capacitor if its voltage as a 
function of time is given by Fig. 7.6. 
Ans: 0 A, −∞ ≤ t ≤ 1 ms; 200 nA, 1 ms ≤ t ≤ 2 ms; 0 A, t ≥ 2 ms.

2

10 2 3 4–1

v (t) (V)

t (ms)

■ FIGURE 7.6
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Find the maximum energy stored in the capacitor of Fig. 7.7 and 
the energy dissipated in the resistor over the interval 0 < t < 0.5 s.

▶ Identify the goal of the problem.
The energy stored in the capacitor varies with time; we are asked for 
the maximum value over a specific time interval. We are also asked 
to find the total amount of energy dissipated by the resistor over this 
interval. These are two completely different questions.

▶ Collect the known information.
The only source of energy in the circuit is the independent voltage 
source, which has a value of 100 sin 2πt V. We are only interested in 
the time interval of 0 < t < 0.5 s. The circuit is properly labeled.

▶ Devise a plan.
Determine the energy in the capacitor by evaluating the voltage and 
using Eq. [4]. To find the energy dissipated in the resistor during the 
same time interval, integrate the dissipated power,   p  R   =  i  R  2   ⋅ R .

▶ Construct an appropriate set of equations.
The energy stored in the capacitor is

   w  C   (t) =   1 _ 2   C  v   2  = 0.1   sin   2   2πt  J  

We obtain an expression for the power dissipated by the resistor in 
terms of the current iR:

  i  R   =   v __ 
R

   =  10   −4   sin 2πt A 

and so

  p  R   =  i  R  2   R = ( 10   −4  ) ( 10   6  )   sin   2   2πt 

so that the energy dissipated in the resistor between 0 and 0.5 s is

  w  R   =  ∫ 
 0
  
 0.5

     p  R   dt =  ∫ 
 0
  
 0.5

     10   −2    sin   2   2πt  dt  J 

▶ Determine if additional information is required.
We have an expression for the energy stored in the capacitor; a sketch 
is shown in Fig. 7.8. The expression derived for the energy dissipated 
by the resistor does not involve any unknown quantities, and so it may 
also be readily evaluated.

▶ Attempt a solution.
From our sketch of the expression for the energy stored in the 
capacitor, we see that it increases from zero at t = 0 to a maximum  
of 100 mJ at  t =   1 _ 4    s , and then decreases to zero in another    1 _ 4    s . Thus, 
wcmax = 100 mJ. Evaluating our integral expression for the energy 
dissipated in the resistor, we find that wR = 2.5 mJ. (Continued on next page)

iCiR

20 �F1 MΩ100 sin 2�t V v

+

–

+
–

■  FIGURE 7.7 A sinusoidal voltage source is applied 
to a parallel RC network. The 1 MΩ resistor might 
represent the finite resistance of the “real” capacitor’s 
dielectric layer.

0

0.02

0.04

0.06

0.08

0.10

0.1 0.2 0.3 0.4 0.50

wC (t) = 0.1 sin2 2�t  (J)

t (s)

■  FIGURE 7.8 A sketch of the energy stored in the 
capacitor as a function of time.

EXAMPLE 7.3
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▶ Verify the solution. Is it reasonable or expected?
We do not expect to calculate a negative stored energy, which is borne 
out in our sketch. Further, since the maximum value of sin 2πt is 1, the 
maximum energy expected anywhere would be (1/ 2)(20 × 10−6)(100)2 
= 100 mJ.

The resistor dissipated 2.5 mJ in the period of 0 to 500 ms, although 
the capacitor stored a maximum of 100 mJ at one point during that 
interval. What happened to the “other” 97.5 mJ? To answer this, we 
compute the capacitor current

 i  C   = 20 ×  10   −6    dv __ 
dt

   = 0.004π cos 2πt

and the current is defined as flowing into the voltage source

 i  s   = −  i  C   −  i  R  

both of which are plotted in Fig. 7.9. We observe that the current 
flowing through the resistor is a small fraction of the source current–
not entirely surprising as 1 MΩ is a relatively large resistance value. 
As current flows from the source, a small amount is diverted to the 
resistor, with the rest flowing into the capacitor as it charges. After  
t = 250 ms, the source current is seen to change sign; current is now 
flowing from the capacitor back into the source. Most of the energy 
stored in the capacitor is being returned to the ideal voltage source, 
except for the small fraction dissipated in the resistor.

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

0.10

0.08

C
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 (m
A

)

C
ur
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nt

 (A
)

0.06

0.04

0.02

0
0 0.05 0.1 0.15 0.2 0.25

t (s)
0.3 0.35 0.4 0.45 0.5

iCiC

iSiS

iRiR

■  FIGURE 7.9 Plot of the resistor, capacitor, and source currents during the interval of 0 
to 500 ms. note that is is defined as flowing into the positive terminal of the source.

PRACTICE 
●

7.3 Calculate the energy stored in a 1000 μF capacitor at t = 50 μs if the 
voltage across it is given by 1.5 cos 105t volts. 
Ans: 90.52 µJ.
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Important Characteristics of an Ideal Capacitor

1. There is no current through a capacitor unless the voltage across it 
is changing with time. A capacitor is therefore an open circuit to dc.

2. A finite amount of energy can be stored in a capacitor even if 
the current through the capacitor is zero, such as when the volt-
age across it is constant.

3. It is impossible to change the voltage across a capacitor by a 
finite amount in zero time, as this requires an infinite current 
through the capacitor. (A capacitor resists an abrupt change in 
the voltage across it in a manner analogous to the way a spring 
resists an abrupt change in its displacement.)

4. An ideal capacitor never dissipates energy, but only stores 
it. Although this is true for the mathematical model, it is not 
true for a physical capacitor due to finite resistances associ-
ated with the dielectric as well as the packaging. Thus, a real 
capacitor will eventually discharge once disconnected from a 
power source.

7.2 • THE INDUCTOR

Ideal Inductor Model
In the early 1800s Danish scientist Hans Christian Ørsted showed that a 
current-carrying conductor produced a magnetic field (i.e. compass needles 
were affected in the presence of a wire when current was flowing). Shortly 
thereafter, Ampère made some careful measurements which demonstrated 
that this magnetic field was linearly related to the current which produced 
it. The next step occurred some 20 years later when English experimentalist 
Michael Faraday and American inventor Joseph Henry discovered almost 
simultaneously3 that a changing magnetic field could induce a voltage in 
a neighboring circuit. They showed that this voltage was proportional to 
the time rate of change of the current producing the magnetic field. The  
constant of proportionality is what we now call the inductance, symbolized 
by L, and therefore

  v = L   di _ 
dt

    [5]

where we must realize that v and i are both functions of time. When 
we wish to emphasize this, we may do so by using the symbols v(t) 
and i(t).

The circuit symbol for the inductor is shown in Fig. 7.10, and it should 
be noted that the passive sign convention is used, just as it was with the 
resistor and the capacitor. The unit in which inductance is measured is the 
henry (H), and the defining equation shows that the henry is just a shorter 
expression for a volt-second per ampere.

iL L

vL+ –

■  FIGURE 7.10 Electrical symbol and current–
voltage conventions for an inductor.

(3)  Faraday won.
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The inductor whose inductance is defined by Eq. [5] is a mathematical 
model; it is an ideal element which we may use to approximate the behav-
ior of a real device. A physical inductor may be constructed by winding a 
length of wire into a coil. This serves effectively to increase the current that 
is causing the magnetic field and also to increase the “number” of neighbor-
ing circuits into which Faraday’s voltage may be induced. The result of this 
twofold effect is that the inductance of a coil is approximately proportional 
to the square of the number of complete turns made by the conductor out of 
which it is formed. For example, an inductor or “coil” that has the form of 
a long helix of very small pitch is found to have an inductance of μN2A/s, 
where A is the cross-sectional area, s is the axial length of the helix, N is the 
number of complete turns of wire, and µ (mu) is a constant of the material 
inside the helix, called the permeability. For free space (and very closely for 
air), μ = μ0 = 4π × 10−7 H/m = 4π nH/cm. Several examples of commer-
cially available inductors are shown in Fig. 7.11.

Let us now scrutinize Eq. [5] to determine some of the electrical charac-
teristics of the mathematical model. This equation shows that the voltage 
across an inductor is proportional to the time rate of change of the current 
through it. In particular, it shows that there is no voltage across an inductor 
carrying a constant current, regardless of the magnitude of this current. 
Accordingly, we may view an inductor as a short circuit to dc.

Another fact that can be obtained from Eq. [5] is that a sudden or discon-
tinuous change in the current must be associated with an infinite voltage 
across the inductor. In other words, if we wish to produce an abrupt change 
in an inductor current, we must apply an infinite voltage. Although an 
infinite-voltage forcing function might be amusing theoretically, it can never 

(a) (b)

■  FIGURE 7.11 (a) Several different types of commercially available inductors, sometimes also referred to as “chokes.” Clockwise, starting from far 
left: 287 μh ferrite core toroidal inductor, 266 μh ferrite core cylindrical inductor, 215 μh ferrite core inductor designed for VhF frequencies, 85 μh iron 
powder core toroidal inductor, 10 μh bobbin-style inductor, 100 μh axial lead inductor, and 7 μh lossy-core inductor used for RF suppression. (b) An 11 h 
inductor, measuring 10 cm (tall) × 8 cm (wide) × 8 cm (deep).
(a-b: ©Steve Durbin)
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be a part of the phenomena displayed by a real physical device. As we shall 
see shortly, an abrupt change in the inductor current also requires an abrupt 
change in the energy stored in the inductor, and this sudden change in energy 
requires infinite power at that instant; infinite power is again not a part of the 
real physical world. In order to avoid infinite voltage and infinite power, an 
inductor current must not be allowed to jump instantaneously from one 
value to another.

If an attempt is made to open-circuit a physical inductor through which a 
finite current is flowing, an arc may appear across the switch. This is useful 
in the ignition system of some automobiles, where the current through the 
spark coil is interrupted by the distributor and the arc appears across the 
spark plug. Although this does not occur instantaneously, it happens in a 
very short timespan, leading to the creation of a large voltage. The presence 
of a large voltage across a short distance equates to a very large electric 
field; the stored energy is dissipated in ionizing the air in the path of the arc.

Equation [5] may also be interpreted (and solved, if necessary) by graph-
ical methods, as seen in Example 7.4.

EXAMPLE 7.4
Given the waveform of the current in a 3 H inductor as shown in 
Fig. 7.12a, determine the inductor voltage and sketch it.

(a)

1

–1 10 2 3

i(t) (A)

t (s)

(b)

3

–3

–1 10 2 3

v (t) (V)

t (s)

■  FIGURE 7.12 (a) The current waveform in a 3 h inductor. (b) The corresponding voltage 
waveform, v = 3 di/dt.

Defining the voltage v and the current i to satisfy the passive sign 
convention, we may obtain v from Fig. 7.12a using Eq. [5]:

v = 3   di __ 
dt

  

Since the current is zero for t < −1 s, the voltage is zero in this 
interval. The current then begins to increase at the linear rate of 1 A/s, 
and thus a constant voltage of L di/dt = 3 V is produced. During the 
following 2 s interval, the current is constant and the voltage is there-
fore zero. The final decrease of the current results in di/dt = −1 A/s,  
yielding v = −3 V. For t > 3 s, i(t) is a constant (zero), so v(t) = 0  
for that interval. The complete voltage waveform is sketched in Fig. 7.12b.
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Let us now investigate the effect of a more rapid rise and decay of the 
current between the 0 and 1 A values.

PRACTICE 
●

7.4 The current through a 200 mH inductor is shown in Fig. 7.13. Assume 
the passive sign convention, and find vL at t equal to (a) 0; (b) 2 ms; (c) 6 ms. 

4

2

–2

–4

–6

1 2 3 4–3 –2 –1 5 6 7

iL (mA)

t (ms)

■  FIGURE 7.13

Ans: 0.4 V; 0.2 V; –0.267 V.

EXAMPLE 7.5
Find the inductor voltage that results from applying the current 
waveform shown in Fig. 7.14a to the inductor of Example 7.4.

1

–1 10 2

2.1–0.1

3

(a)

i(t) (A)

t (s)

v(t) (V)

30

–30

–1 10 2

2.1–0.1

3

(b)

t (s)

■  FIGURE 7.14 (a) The time required for the current of Fig. 7.12a to change from 0 to 1 and from 
1 to 0 is decreased by a factor of 10. (b) The resultant voltage waveform. The pulse widths are 
exaggerated for clarity.

Note that the intervals for the rise and fall have decreased to 0.1 s. Thus, 
the magnitude of each derivative will be 10 times larger; this condition 
is shown in the current and voltage sketches of Fig. 7.14a and b. In the 
voltage waveforms of Fig. 7.12b and 7.14b, it is interesting to note that 
the area under each voltage pulse is 3 V · s.

Just for curiosity’s sake, let’s continue in the same vein for a moment. A 
further decrease in the rise and fall times of the current waveform will pro-
duce a proportionally larger voltage magnitude, but only within the interval 
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in which the current is increasing or decreasing. An abrupt change in the 
current will cause the infinite voltage “spikes” (each having an area of 3 V · s)  
that are suggested by the waveforms of Fig. 7.15a and b; or, from the equally 
valid but opposite point of view, these infinite voltage spikes are required to 
produce the abrupt changes in the current.

PRACTICE 
●

7.5 The current waveform of Fig. 7.14a has equal rise and fall times of 
duration 0.1 s (100 ms). Calculate the maximum positive and negative 
voltages across the same inductor if the rise and fall times, respectively, 
are changed to (a) 1 ms, 1 ms; (b) 12 μs, 64 μs; (c) 1 s, 1 ns. 

Ans: 3 kV, −3 kV; 250 kV, −46.88 kV; 3 V, −3 GV.

Integral Voltage–Current Relationships
We have defined inductance by a simple differential equation,

v = L   di __ 
dt

  

and we have been able to draw several conclusions about the characteristics 
of an inductor from this relationship. For example, we have found that we 
may consider an inductor to be a short circuit to direct current, and we have 
agreed that we cannot permit an inductor current to change abruptly from 
one value to another, because this would require that an infinite voltage and 
power be associated with the inductor. The simple defining equation for 
inductance contains still more information, however. Rewritten in a slightly 
different form,

di =   1 __ 
L

   v  dt

it invites integration. Let us first consider the limits to be placed on the 
two integrals. We desire the current i at time t, and this pair of quantities 
therefore provides the upper limits on the integrals appearing on the left 
and right sides of the equation, respectively; the lower limits may also 
be kept general by merely assuming that the current is i(t0) at time t0. 
Thus,

 ∫ 
i( t  0  )

  
 i(t)

    d  i   ′  =   1 __ 
L

    ∫ 
 t  0  
  
 t
    v( t   ′ ) d  t   ′ 

which leads to the equation

i(t) − i( t  0  ) =   1 __ 
L

    ∫ 
 t  0  
  
 t
    v d t   ′ 

or

  i(t) =   1 _ 
L

    ∫ 
 t  0  
  
 t
    v d t   ′  + i( t  0  )  [6]

Equation [5] expresses the inductor voltage in terms of the current, 
whereas Eq. [6] gives the current in terms of the voltage. Other forms are 

1

–1 10 2 3

(a)

i (t)  (A)

t  (s)
–1 10 2 3

(b)

v (t) (V)

t  (s)

(to –   )

(to    )

1

–1 10 2 3

(a)

i (t)  (A)

t  (s)
–1 10 2 3

(b)

v (t) (V)

t  (s)

(to –   )

(to    )

■  FIGURE 7.15 (a) The time required for the current 
of Fig. 7.14a to change from 0 to 1 and from 1 to 0 is 
decreased to zero; the rise and fall are abrupt. (b) The 
resultant voltage across the 3 h inductor consists of a 
positive and a negative infinite spike.
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also possible for the latter equation. We may write the integral as an indefi-
nite integral and include a constant of integration k:

 i(t) =   1 __ 
L

    ∫ 
 
  
 

    v dt + k [7]

We also may assume that we are solving a realistic problem in which the 
selection of t0 as –∞ ensures no current or energy in the inductor. Thus, if i 
(t0) = i (−∞) = 0, then

 i(t) =   1 __ 
L

    ∫ 
−∞

  
 t
    v d  t   ′  [8]

Let us investigate the use of these several integrals by working a simple 
example where the voltage across an inductor is specified.

EXAMPLE 7.6
The voltage across a 2 H inductor is known to be 6 cos 5t V. 
Determine the resulting inductor current if i(t = −π/ 2) = 1 A.

From Eq. [6],

i(t) =   1 _ 2    ∫ 
 t  0  
  
 t
    6 cos  5  t   ′   d  t   ′  + i( t  0  )

or

   i(t) =   1 _ 2    (    6 _ 5   )   sin 5t −   1 _ 2    (    6 _ 5   )    sin 5  t  0   + i( t  0  )    
= 0.6 sin 5t − 0.6 sin 5  t  0   + i( t  0  )

  

The first term indicates that the inductor current varies sinusoidally; 
the second and third terms together represent a constant which becomes 
known when the current is numerically specified at some instant of 
time. Using the fact that the current is 1 A at t = −π / 2 s, we identify t0 
as −π / 2 with i(t0) = 1, and find that

i(t) = 0.6 sin 5t − 0.6 sin(− 2.5π) + 1

or

i(t) = 0.6 sin 5t + 1.6

Alternatively, from Eq. [6],

i(t) = 0.6 sin 5t + k

and we establish the numerical value of k by forcing the current to be  
1 A at t = −π / 2:

1 = 0.6 sin (− 2.5π) +k

or

k = 1 + 0.6 = 1.6

and so, as before,

i(t) = 0.6 sin 5t + 1.6
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We should not make any snap judgments, however, as to which single 
form of Eqs. [6], [7], and [8] we are going to use forever after; each has its 
advantages, depending on the problem and the application. Equation [6] 
represents a long, general method, but it shows clearly that the constant of 
integration is a current. Equation [7] is a somewhat more concise expression 
of Eq. [6], but the nature of the integration constant is suppressed. Finally, 
Eq. [8] is an excellent expression, since no constant is necessary; however, 
it applies only when the current is zero at t = −∞ and when the analytical 
expression for the current is not indeterminate there.

Energy Storage
Let us now turn our attention to power and energy. The absorbed power is 
given by the current–voltage product

p = vi = Li   di __ 
dt

  

The energy wL accepted by the inductor is stored in the magnetic field 
around the coil. The change in this energy is expressed by the integral of the 
power over the desired time interval:

 
 ∫ 

 t  0  
  
 t
    p d t   ′ 

  
=

  
L ∫ 

 t  0  
  
 t
    i   di ___ 

d t   ′ 
   d  t   ′  = L ∫ 

i  (   t  0   )   
  

 i  (  t )   
     i   ′  d i   ′ 

    
 
  

=
  

  1 _ 2   L  {    [  i  (  t )    ]     2  −   [  i  (   t  0   )    ]     2  }   
  

Thus,

   w  L  (t) −  w  L  ( t  0  ) =   1 _ 2  L  {    [i(t)]   2  −  [i( t  0  )]   2  }    [9]

Equation [8] is going to cause trouble with this particular voltage. 
We based the equation on the assumption that the current was zero 
when t = −∞. To be sure, this must be true in the real, physical world, 
but we are working in the land of the mathematical model; our elements 
and forcing functions are all idealized. The difficulty arises after we 
integrate, obtaining

i(t) = 0.6 sin 5  t   ′    |    −∞  t
  

and attempt to evaluate the integral at the lower limit:

i(t) = 0.6 sin 5t − 0.6 sin(− ∞)

The sine of ±∞ is indeterminate, and therefore we cannot evaluate 
our expression. Equation [8] is only useful if we are evaluating func-
tions which approach zero as t → −∞.

PRACTICE 
●

7.6 A 100 mH inductor has voltage vL = 2e−3t V across its terminals. 
Determine the resulting inductor current if iL (−0.5) = 1 A. 
Ans: −   20 __ 3    e

−3t + 30.9 A
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where we have again assumed that the current is i(t0) at time t0. In using the 
energy expression, it is customary to assume that a value of t0 is selected at 
which the current is zero; it is also customary to assume that the energy is 
zero at this time. We then have simply

   w  
L
  (t) =   1 _ 2  L  i   2   [10]

where we now understand that our reference for zero energy is any time 
at which the inductor current is zero. At any subsequent time at which the 
current is zero, we also find no energy stored in the coil. Whenever the 
current is not zero, and regardless of its direction or sign, energy is stored 
in the inductor. It follows, therefore, that energy may be delivered to the in-
ductor for a part of the time and recovered from the inductor later. All of the 
stored energy may be recovered from an ideal inductor; there are no storage 
charges or agent’s commissions in the mathematical model. A physical coil, 
however, must be constructed out of real wire and thus will always have a 
resistance associated with it. Energy can no longer be stored and recovered 
without loss.

These ideas may be illustrated by a simple example. In Fig. 7.16, a 3 H 
inductor is shown in series with a 0.1 Ω resistor and a sinusoidal current 
source,  i  s   = 12 sin   πt __ 6   A. The resistor should be interpreted as the resistance 
of the wire which must be associated with the physical coil.

EXAMPLE 7.7
Find the maximum energy stored in the inductor of Fig. 7.16, and 
calculate how much energy is dissipated in the resistor in the time 
during which the energy is being stored in, and then recovered 
from, the inductor.

The energy stored in the inductor is

 w  L   =   1 _ 2   L  i   2  = 216   sin   2    πt __ 6    J

and this energy increases from zero at t = 0 to 216 J at t = 3 s. Thus, the 
maximum energy stored in the inductor is 216 J.

After reaching its peak value at t = 3 s, the energy has completely 
left the inductor 3 s later. Let us see what price we have paid in this coil 
for the privilege of storing and removing 216 J in these 6 seconds. The 
power dissipated in the resistor is easily found as

 p  R   =  i   2  R = 14.4   sin   2    πt __ 6    W

and the energy converted into heat in the resistor within this 6 s interval 
is therefore

 w  R   =  ∫ 
0
  
 6
     p  R   dt =  ∫ 

0
  
 6
    14.4   sin   2    π __ 6   t  dt

i

vL

+

–

vR+ –

0.1 Ω

3 H12 sin      Aπt
6

■  FIGURE 7.16 A sinusoidal current is applied as 
a forcing function to a series RL circuit. The 0.1 Ω 
represents the inherent resistance of the wire from 
which the inductor is fabricated.
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We summarize by listing four key characteristics of an inductor that 
result from its defining equation v = L di/dt:

Important Characteristics of an Ideal Inductor

1. There is no voltage across an inductor unless the current through  
it is changing with time. An inductor is therefore a short circuit  
to dc.

2. A finite amount of energy can be stored in an inductor even if 
the voltage across the inductor is zero, such as when the current 
through it is constant.

3. It is impossible to change the current through an inductor by a 
finite amount in zero time, for this requires an infinite voltage 
across the inductor. (An inductor resists an abrupt change in 
the current through it in a manner analogous to the way a mass 
resists an abrupt change in its velocity.)

4. The inductor never dissipates energy, but only stores it. 
Although this is true for the mathematical model, it is not true 
for a physical inductor due to series resistances. An interesting 
exception is created when a superconducting wire is used to 
build the inductor.

It is interesting to anticipate our discussion of duality in Sec. 7.6 by 
rereading the previous four statements with certain words replaced by their 
“duals.” If capacitor and inductor, capacitance and inductance, voltage 
and current, across and through, open circuit and short circuit, spring and 
mass, and displacement and velocity are interchanged (in either direction), 
the four statements previously given for capacitors are obtained.

or

 w  R   =  ∫ 
0
  
 6
    14.4  (    1 _ 2   )     (  1 − cos   π _ 3   t )   dt = 43.2  J

Thus, we have expended 43.2 J in the process of storing and then 
recovering 216 J in a 6 s interval. This represents 20 percent of the 
maximum stored energy, but it is a reasonable value for many coils 
having this large an inductance. For coils having an inductance of about 
100 µH, we might expect a figure closer to 2 or 3 percent.

PRACTICE 
●

7.7 Let L = 25 mH for the inductor of Fig. 7.10. (a) Find vL at t = 12 
ms if iL = 10te−100t A. (b) Find iL at t = 0.1 s if vL = 6e−12t V and iL (0) = 
10 A. If iL = 8(1 − e−40t) mA, find (c) the power being delivered to  
the inductor at t = 50 ms and (d) the energy stored in the inductor at  
t = 40 ms. 

Ans: −15.06 mV; 24.0 A; 7.49 μW; 0.510 μJ.
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We have been introduced to three different two- 
terminal passive elements: the resistor, the capacitor, 
and the inductor. Each has been defined in terms of its 
current–voltage relationship (v = Ri, i = C dv/dt, and 
v = L di/dt, respectively). From a more fundamental 
perspective, however, we can view these three elements 
as part of a larger picture relating four basic quantities, 
namely, charge q, current i, voltage v, and flux linkage 
φ. Charge, current, and voltage are discussed in Chap. 2. 
Flux linkage is the product of magnetic flux and the 
number of turns of conducting wire linked by the flux, 
and it can be expressed in terms of the voltage v across 
the coil as φ = ∫ v dt or v = dφ/dt.

Capacitor
dq = Cdv

Resistor
dv  = Rdi

Memristor
dφ = Mdq

Inductor
dφ = Ldi

v

φ

i q

dφ
 =

 v
dt

dq = idt

■  FIGURE 7.17 A graphical representation of the four basic 
two-terminal passive elements (resistor, capacitor, inductor, and 
memristor) and their interrelationships. note that flux linkage is 
more commonly represented by the Greek letter λ to distinguish it 
from flux: then λ = Nφ where N is the number of turns and φ is the 
flux. (Reprinted by permission from Macmillan Publishers Ltd. nature 
Publishing Group, “Electronics: The Fourth Element,” Volume 453, 
pg. 42, 2008.)

Figure 7.17 graphically represents how these four 
quantities are interrelated. First, apart from any circuit ele-
ments and their characteristics, we have dq = i dt (Chap. 2) 
and now dφ = v dt. Charge is related to voltage in the 
context of a capacitor, since C = dq/dv or dq = C dv. The 
element we call a resistor provides a direct relationship 

between voltage and current, which for consistency can be 
expressed as dv = R di. Continuing our counterclockwise 
journey around the perimeter of Fig. 7.17, we note that our 
original expression connecting the voltage and current as-
sociated with an inductor can be written in terms of current i  
and flux linkage φ, since rearranging yields v dt = L di,  
and we know dφ = v dt. Thus, for the inductor, we can 
write dφ = L di.

So far, we have traveled from q to v with the aid of a 
capacitor, v to i using the resistor, and i to ϕ using the induc-
tor. However, we have not yet used any element to connect 
φ and q, although symmetry suggests it should be possi-
ble. In the early 1970s, Leon Chua found himself think-
ing along these lines, and he postulated a new device—a 
“missing” two-terminal circuit element—and named it the 
memristor.1 He went on to show that the electrical charac-
teristics of a memristor should be nonlinear and depend on 
its history—in other words, a memristor might be charac-
terized by having a memory (hence its name). Independent 
of his work, others had proposed a similar device, not so 
much for its practical use in real circuits, but for its poten-
tial in device modeling and signal processing.

Not a great deal was heard of this hypothetical element 
afterward, at least until Dmitri Strukov and coworkers at 
HP Labs in Palo Alto published a short paper in 2008 
claiming to have “found” the memristor.2 They offer sev-
eral reasons why it took almost four decades to realize 
the general type of device Chua hypothesized in 1971, 
but one of the most interesting has to do with size. In 
making their prototype memristor, nanotechnology (the 
art of fabricating devices with at least one dimension less 
than 1000 nm, which is approximately 1% of the diame-
ter of human hair) played a key role. A 5 nm thick oxide 
layer sandwiched between platinum electrodes comprises 
the entire device. The nonlinear electrical characteristics 
of the prototype immediately generated considerable 
excitement, most notably for its potential applications in 
integrated circuits, where devices are already approach-
ing their smallest realistic size; many believe new types 
of devices will be required to further extend integrated 
circuit density and functionality. Whether the memris-
tor is the circuit element that will allow this remains to 
be seen—despite many reports of a variety of device 
geometries and current examples of commercial prod-
ucts, there remains much work to be done before the 
memristor technology becomes widespread. 

PRACTICAL APPLICATION
In Search of the Missing Element

PRACTICAL APPLICATION

(1)  L. O. Chua, “Memristor—The missing circuit element,” IEEE Transactions on Circuit Theory CT–18 (5), 1971, p. 507.
(2)  D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature 453, 2008, p. 80.
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7.3 •  INDUCTANCE AND CAPACITANCE  
COMBINATIONS

Now that we have added the inductor and capacitor to our list of passive 
circuit elements, we need to decide whether or not the methods we have de-
veloped for resistive circuit analysis are still valid. It will also be convenient 
to learn how to replace series and parallel combinations of either of these 
elements with simpler equivalents, just as we did with resistors in Chap. 3.

We look first at Kirchhoff’s two laws, both of which are axiomatic. 
However, when we hypothesized these two laws, we did so with no restric-
tions as to the types of elements constituting the network. Both, therefore, 
remain valid.

Inductors in Series
We first consider an ideal voltage source applied to the series combination 
of N inductors, as shown in Fig. 7.18a. We desire a single equivalent induc-
tor, with inductance Leq, which may replace the series combination so that 
the source current i(t) is unchanged. The equivalent circuit is sketched in 
Fig. 7.18b. Applying KVL to the original circuit,

 

 v  s  

  

=

  

 v  1   +  v  2   + ⋅ ⋅ ⋅ + v  N  

      =   L  1     di __ 
dt

   +  L  2     di __ 
dt

   + ⋅ ⋅ ⋅ + L  N     di __ 
dt

      

 

  

=

  

  (   L  1   +  L  2   + ⋅ ⋅ ⋅ + L  N   )     di __ 
dt

  

  

or, written more concisely,

 v  s   =   ∑ 
n = 1

  
N

     v  n   =   ∑ 
n = 1

  
N

     L  n     
di __ 
dt

   =   di __ 
dt

    ∑ 
n = 1

  
N

     L  n  

But for the equivalent circuit we have

 v  s   =  L  eq     
di __ 
dt

  

and thus the equivalent inductance is

 L  eq   =  L  1   +  L  2   + . . . +  L  N  

+
–

i

vNLN

+

–

vs

(a)

v2+ –v1+ –

L1 L2

+
–

i

(b)

Leqvs

■  FIGURE 7.18 (a) A circuit containing N inductors in series. (b) The desired equivalent 
circuit, in which Leq = L1 + L2 + . . . + LN.
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or

  L  eq   =   ∑ 
n=1

  
N
     L  n   [11]

The inductor which is equivalent to several inductors connected in series 
is one whose inductance is the sum of the inductances in the original circuit. 
This is exactly the same result we obtained for resistors in series.

Inductors in Parallel
The combination of a number of parallel inductors is accomplished by writ-
ing the single nodal equation for the original circuit, shown in Fig. 7.19a,

 
    i  s   =   ∑ 

n = 1
  

N
     i  n   =   ∑ 

n = 1
  

N
     [    1 _  L   n  

    ∫ 
 t  0  
  
 t
    v d  t   ′  +  i  n  ( t  0  ) ]   

    
=   (    ∑ 

n = 1
  

N
      1 _  L  n  

   )    ∫ 
 t  0  
  
 t
    v d  t   ′  +   ∑ 

n = 1
  

N
     i  n  ( t  0  )

  

and comparing it with the result for the equivalent circuit of Fig. 7.19b,

 i  s   =   1 ___  L   eq  
    ∫ 

 t  0  
  
 t
    v d  t   ′  +  i  s  ( t  0  )

Since Kirchhoff’s current law demands that is(t0) be equal to the sum of 
the branch currents at t0, the two integral terms must also be equal; hence,

  L  eq   =   1 ______________  1 /  L  1   + 1 /  L  2   + ⋯ +1 /  L  N     [12]

For the special case of two inductors in parallel,

  L  eq   =    L  1    L  2   _____  L  1   +  L  2  
   [13]

and we note that inductors in parallel combine exactly as do resistors in 
parallel.

Capacitors in Series
In order to find a capacitor that is equivalent to N capacitors in series, we 
use the circuit of Fig. 7.20a and its equivalent in Fig. 7.20b to write

 
    v  s   =   ∑ 

n = 1
  

N
     v  n   =   ∑ 

n = 1
  

N
     [    1 _  C  n  

    ∫ 
 t  0  
  
 t
    i d t   ′  +  v  n  ( t  0  ) ]   

    
=   (    ∑ 

n = 1
  

N
      1 _  C  n  

   )    ∫ 
 t  0  
  
 t
    i d t   ′  +   ∑ 

n = 1
  

N
     v  n  ( t  0  )

  

and

 v  s   =   1 ___  C  eq  
    ∫ 

 t  0  
  
 t
    i d  t   ′  +  v  s  ( t  0  )

However, Kirchhoff’s voltage law establishes the equality of vs(t0) and 
the sum of the capacitor voltages at t0; thus

  C  eq   =   1  _______________  1 /  C  1   + 1 /  C  2   + . . . +1 /  C  N     [14]

■  FIGURE 7.19 (a) The parallel combination of N 
inductors. (b) The equivalent circuit, where Leq = [1/L1 + 1/ 
L2 + · · · + 1/LN]−1.

(a)

is LNL1 L2

iNi2i1

v

+

–

(b)

Leqis v

+

–

(a)

is LNL1 L2

iNi2i1

v

+

–

(b)

Leqis v

+

–

■  FIGURE 7.20 (a) A circuit containing N capacitors 
in series. (b) The desired equivalent circuit, where  
Ceq = [1/C1 + 1/C2 + · · · + 1/CN]−1.

+
–

i

vN

+

–
vs CN

(a)

v2+ –v1+ –

C2C1

+
–

i

(b)

Ceqvs

+
–

i

vN

+

–
vs CN

(a)

v2+ –v1+ –

C2C1

+
–

i

(b)

Ceqvs
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and capacitors in series combine as do conductances in series, or resistors 
in parallel. The special case of two capacitors in series, of course, yields

  C  eq   =    C  1    C  2   _____  C  1   +  C  2  
   [15]

Capacitors in Parallel
Finally, the circuits of Fig. 7.21 enable us to establish the value of the capac-
itor which is equivalent to N parallel capacitors as

  C  eq   =  C  1   +  C  2   + ⋯ +  C  N   [16]

and it is no great source of amazement to note that capacitors in parallel 
combine in the same manner in which we combine resistors in series, that 
is, by simply adding all the individual capacitances.

These formulas are well worth memorizing. The formulas applying to 
series and parallel combinations of inductors are identical to those for resis-
tors, so they typically seem “obvious.” Care should be exercised, however, 
in the case of the corresponding expressions for series and parallel combi-
nations of capacitors, as they are opposite those of resistors and inductors, 
often leading to errors when calculations are made too hastily.

(a)

is CNC1 C2

iNi2i1

v

+

–

(b)

Ceqis v

+

–

(a)

is CNC1 C2

iNi2i1

v

+

–

(b)

Ceqis v

+

–

■  FIGURE 7.21 (a) The parallel combination of N 
capacitors. (b) The equivalent circuit, where Ceq = C1 + 
C2 + · · · + CN.

■  FIGURE 7.22 (a) A given LC network. (b) A simpler 
equivalent circuit.

(a)

2 H

3 H

0.8 H

1 μF
6 μF

3 μF

(b)

2 H

3 μF

(a)

2 H

3 H

0.8 H

1 μF
6 μF

3 μF

(b)

2 H

3 μF

EXAMPLE 7.8
Simplify the network of Fig. 7.22a using series–parallel combinations.

The 6 µF and 3 µF series capacitors are first combined into a 2 µF 
equivalent, and this capacitor is then combined with the 1 µF element 
with which it is in parallel to yield an equivalent capacitance of 3 µF. 
In addition, the 3 H and 2 H inductors are replaced by an equivalent 
1.2 H inductor, which is then added to the 0.8 H element to give a total 
equivalent inductance of 2 H. The much simpler (and probably less 
expensive) equivalent network is shown in Fig. 7.22b.

PRACTICE 
●

7.8 Find Ceq for the network of Fig. 7.23. 

0.4 μF

2 μF

1 μF

0.8 μF

7 μF

5 μF

12 μF 5 μFCeq

■  FIGURE 7.23

Ans: 3.18 μF.
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The network shown in Fig. 7.24 contains three inductors and three 
capacitors, but no series or parallel combinations of either the inductors 
or the capacitors can be achieved. Simplification of this network cannot be 
accomplished using the techniques presented here.

3 H 5 H

4 μF 6 μF

1 H

2 μF

■  FIGURE 7.24 An LC network in which no series or parallel 
combinations of either the inductors or the capacitors can be made.

7.4 • LINEARITY AND ITS CONSEQUENCES
Next let us turn to nodal and mesh analysis. Since we already know that 
we may safely apply Kirchhoff’s laws, we can apply them in writing 
a set of equations that are both sufficient and independent. They will be 
constant-coefficient linear “integrodifferential” equations, however, which 
are hard enough to pronounce, let alone solve. Consequently, we shall write 
them now to gain familiarity with the use of Kirchhoff’s laws in RLC cir-
cuits and discuss the solution of the simpler cases in subsequent chapters.

EXAMPLE 7.9
Write appropriate nodal equations for the circuit of Fig. 7.25.

Node voltages are already chosen, so we sum currents leaving the 
central node:

  1 __ 
L

    ∫ 
 t  0  
  
 t
    ( v  1   −  v  s  )  d t   ′  +  i  L  ( t  0  ) +    v  1   −  v  2   ____ 

R
   +  C  2     

d  v  1   ___ 
dt

   = 0

where iL(t0) is the value of the inductor current at the time the integra-
tion begins. At the right-hand node,

 C  1     
d( v  2   −  v  s  ) ______ 

dt
   +   

 v  2   −  v  1   ____ 
R

   −  i  s   = 0

Rewriting these two equations, we have

 
   v  1   __ 
R

   +  C  2     
d  v  1   ___ 
dt

   +   1 __ 
L

    ∫ 
 t  0  
  
 t
     v  1   d t   ′  −    v  2   __ 

R
   =   1 __ 

L
    ∫ 

 t  0  
  
 t
     v  s    d t   ′  −  i  L  ( t  0  )

     
                 −    v  1   __ 

R
   +    v  2   __ 

R
   +  C  1     

d  v  2   ___ 
dt

   =  C  1     
d  v  s   ___ 
dt

   +  i  s  
  

These are the promised integrodifferential equations, and we note 
several interesting points about them. First, the source voltage vs happens 
to enter the equations as an integral and as a derivative, but not simply 
as vs. Since both sources are specified for all time, we should be able to 
evaluate the derivative or integral. Second, the initial value of the induc-
tor current, iL(t0), acts as a (constant) source current at the center node.

RL

C1

vs

vs

v2
v1

is

iL+
– C2

■  FIGURE 7.25 A four-node RLC circuit with node 
voltages assigned.
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We will not attempt the solution of integrodifferential equations here. It 
is worthwhile pointing out, however, that when the voltage forcing functions 
are sinusoidal functions of time, it will be possible to define a voltage–current 
ratio (called impedance) or a current–voltage ratio (called admittance) for 
each of the three passive elements. The factors operating on the two node 
voltages in the preceding equations will then become simple multiplying fac-
tors, and the equations will be linear algebraic equations once again. These 
we may solve by determinants or a simple elimination of variables as before.

We may also show that the benefits of linearity apply to RLC circuits 
as well. In accordance with our previous definition of a linear circuit, these 
circuits are also linear because the voltage–current relationships for the in-
ductor and capacitor are linear relationships. For the inductor, we have

v = L   di __ 
dt

  

and multiplication of the current by some constant K leads to a voltage that 
is also greater by a factor K. In the integral formulation,

i(t) =   1 __ 
L

    ∫ 
 t  0  
  
 t
    v d t   ′  + i( t  0  )

it can be seen that, if each term is to increase by a factor of K, then the initial 
value of the current must also increase by this same factor.

A corresponding investigation of the capacitor shows that it, too, is 
linear. Thus, a circuit composed of independent sources, linear dependent 
sources, and linear resistors, inductors, and capacitors is a linear circuit.

In this linear circuit the response is again proportional to the forcing 
function. The proof of this statement is accomplished by first writing a gen-
eral system of integrodifferential equations. Let us place all the terms hav-
ing the form of Ri, L di/dt, and 1/C ∫ i dt on the left side of each equation, 
and keep the independent source voltages on the right side. As a simple 
example, one of the equations might have the form

Ri + L   di __ 
dt

   +   1 __ 
C

    ∫ 
 t  0  
  
 t
    i d t   ′  +  v  C  ( t  0  ) =  v  s  

If every independent source is now increased by a factor K, then the right 
side of each equation is greater by the factor K. Now each term on the left side 
is either a linear term involving some loop current or an initial capacitor volt-
age. In order to cause all the responses (loop currents) to increase by a factor 
K, it is apparent that we must also increase the initial capacitor voltages by a 
factor K. That is, we must treat the initial capacitor voltage as an independent 
source voltage and increase it also by a factor K. In a similar manner, initial 
inductor currents appear as independent source currents in nodal analysis.

The principle of proportionality between source and response can thus 
be extended to the general RLC circuit, and it follows that the principle 
of superposition also applies. It should be emphasized that initial inductor 
currents and capacitor voltages must be treated as independent sources in 

PRACTICE 
●

7.9 If vC(t) = 4 cos 105t V in the circuit in Fig. 7.26, find vs(t). 

Ans: −2.4 cos 105t V.

+
–vs(t) vC

+

–

2 mH

80 nF

■ FIGURE 7.26
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applying the superposition principle; each initial value must take its turn in 
being rendered inactive. In Chap. 5 we learned that the principle of superpo-
sition is a natural consequence of the linear nature of resistive circuits. The 
resistive circuits are linear because the voltage–current relationship for the 
resistor is linear and Kirchhoff’s laws are linear.

Before we can apply the superposition principle to RLC circuits, however, 
it is first necessary to develop methods of solving the equations describing 
these circuits when only one independent source is present. At this time we 
should understand that a linear circuit will have a response whose amplitude 
is proportional to the amplitude of the source. We should be prepared to ap-
ply superposition later, considering an inductor current or capacitor voltage 
specified at t = t0 as a source that must be deactivated when its turn comes.

Thévenin’s and Norton’s theorems are based on the linearity of the ini-
tial circuit, the applicability of Kirchhoff’s laws, and the superposition prin-
ciple. The general RLC circuit conforms perfectly to these requirements, 
and it follows, therefore, that all linear circuits that contain any combina-
tions of independent voltage and current sources, linear dependent voltage 
and current sources, and linear resistors, inductors, and capacitors may be 
analyzed with the use of these two theorems, if we wish.

7.5 • SIMPLE OP AMP CIRCUITS WITH CAPACITORS
In Chap. 6 we were introduced to several different types of amplifier circuits 
based on the ideal op amp. In almost every case, we found that the output was 
related to the input voltage through some combination of resistance ratios. If we 
replace one or more of these resistors with a capacitor, it is possible to obtain 
some interesting circuits in which the output is proportional to either the deriva-
tive or the integral of the input voltage. Such circuits find widespread use in prac-
tice. For example, a velocity sensor can be connected to a differentiating op amp 
circuit to provide a signal proportional to the acceleration, or an output signal can 
be obtained that represents the total charge incident on a semiconductor surface 
during a specific period of time by simply integrating the measured current.

To create an integrator using an ideal op amp, we ground the noninvert-
ing input, install an ideal capacitor as a feedback element from the output 
back to the inverting input, and connect a signal source vs to the inverting 
input through an ideal resistor as shown in Fig. 7.27.

Performing nodal analysis at the inverting input,

0 =    v  a   −  v  s   ____  R  1  
   + i

We can relate the current i to the voltage across the capacitor,

i =  C  f      
d v   C  f     ___ 
dt

  

resulting in

0 =    v  a   −  v  s   ____  R  1  
   +  C  f      

d v   C  f     ___ 
dt

  

Invoking ideal op amp rule 2, we know that va = vb = 0, so

0 = −     v  s   ___  R  1  
   +  C  f      

d v   C  f     ___ 
dt

  

+

–
vout

–

+
vs

va

vb

R1

Cfi

i

vCf
+ –

+
–

■  FIGURE 7.27 An ideal op amp connected as an 
integrator.
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Integrating and solving for vout, we obtain

 v   C  f     =  v  a   −  v  out   = 0 −  v  out   =   1 ____  R  1    C  f  
    ∫ 

0
  
 t
     v  s    d t   ′  +  v   C  f     (0)

or

   v  out   = −   1 ____  R  1    C  f  
    ∫ 

0
  
 t
     v  s    d t   ′  −  v   C  f     (0)  [17]

We therefore have combined a resistor, a capacitor, and an op amp to 
form an integrator. Note that the first term of the output is 1/RC times the 
negative of the integral of the input from t′ = 0 to t, and the second term is 
the negative of the initial value of vCf. The value of (RC)–1 can be made equal 
to unity, if we wish, by choosing R = 1 MΩ and C = 1 μF, for example; other 
selections may be made that will increase or decrease the output voltage.

Before we leave the integrator circuit, we might anticipate a question from 
the reader: “Could we use an inductor in place of the capacitor and obtain a 
differentiator?” Indeed we could, but circuit designers usually avoid the use 
of inductors whenever possible because of their size, weight, cost, and asso-
ciated resistance and capacitance. Instead, it is possible to interchange the 
positions of the resistor and capacitor in Fig. 7.27 and obtain a differentiator.

EXAMPLE 7.10
Derive an expression for the output voltage of the op amp circuit 
shown in Fig. 7.28.

We begin by writing a nodal equation at the inverting input pin, with  
v   C  1     ≜  v  a   −  v  s  :

0 =  C  1     
d  v   C  1     ___ 

dt
   +   

 v  a   −  v  out   _____  R  f  
  

Invoking ideal op amp rule 2, va = vb = 0. Thus,

 C  1     
d  v   C  1     ___ 

dt
   =   

 v  out   ___  R  f  
  

Solving for vout,

 v  out   =  R  f    C  1     
d  v   C  1     ___ 

dt
  

Since   v   C  1      = va − vs = −vs,

 v  out   = −  R  f    C  1     
d  v  s   ___ 
dt

  

So, simply by swapping the resistor and capacitor in the circuit of 
Fig. 7.27, we obtain a differentiator instead of an integrator.

PRACTICE 
●

7.10 Derive an expression for vout in terms of vs for the circuit shown in 
Fig. 7.29. 
Ans: vout = −Lf  /R1 dvs /dt.

■  FIGURE 7.28 An ideal op amp connected as a 
differentiator.

+

–
vout

–

+
vs

va

vb

Rf
C1

i

vRf
+ –

+
–

■ FIGURE 7.29

+

–
vout

–

+
vs

va

vb

Lf

R1

i

i

vLf
+ –

+
–
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7.6 • DUALITY
The concept of duality applies to many fundamental engineering concepts. 
In this section, we shall define duality in terms of circuit equations. Two 
circuits are “duals” if the mesh equations that characterize one of them have 
the same mathematical form as the nodal equations that characterize the 
other. They are said to be exact duals if each mesh equation of one cir-
cuit is numerically identical with the corresponding nodal equation of the 
other; the current and voltage variables themselves cannot be identical, of 
course. Duality itself merely refers to any of the properties exhibited by dual 
circuits.

Let us use the definition to construct an exact dual circuit by writing the 
two mesh equations for the circuit shown in Fig. 7.30. Two mesh currents i1 
and i2 are assigned, and the mesh equations are

 3 i  1   + 4   d i  1   ___ 
dt

   − 4   d i  2   ___ 
dt

   = 2 cos  6t [18]

 − 4   d i  1   ___ 
dt

   + 4   d i  2   ___ 
dt

   +   1 _ 8    ∫ 
0
  
 t
     i  2   d t   ′  + 5 i  2   = − 10 [19]

We may now construct the two equations that describe the exact dual of 
our circuit. We wish these to be nodal equations, and thus we begin by re-
placing the mesh currents i1 and i2 in Eqs. [18] and [19] with the two nodal 
voltages v1 and v2 respectively. We obtain

 3 v  1   + 4   d v  1   ___ 
dt

   − 4   d v  2   ___ 
dt

   = 2 cos  6t [20]

 − 4   d v  1   ___ 
dt

   + 4   d v  2   ___ 
dt

   +   1 _ 8    ∫ 
0
  
 t
     v  2    d t   ′  + 5 v  2   = − 10 [21]

and we now seek the circuit represented by these two nodal equations.
Let us first draw a line to represent the reference node, and then we may 

establish two nodes at which the positive references for v1 and v2 are located. 
Equation [20] indicates that a current source of 2 cos 6t A is connected be-
tween node 1 and the reference node, oriented to provide a current entering 
node 1. This equation also shows that a 3 S conductance appears between 
node 1 and the reference node. Turning to Eq. [21], we first consider the 
nonmutual terms, i.e., those terms which do not appear in Eq. [20], and they 
instruct us to connect an 8 H inductor and a 5 S conductance (in parallel) 
between node 2 and the reference. The two similar terms in Eqs. [20] and 
[21] represent a 4 F capacitor present mutually at nodes 1 and 2; the circuit 
is completed by connecting this capacitor between the two nodes. The con-
stant term on the right side of Eq. [21] is the value of the inductor current at 
t = 0; in other words, iL(0) = 10 A. The dual circuit is shown in Fig. 7.31; 
since the two sets of equations are numerically identical, the circuits are 
exact duals.

Dual circuits may be obtained more readily than by this method, for the 
equations need not be written. In order to construct the dual of a given cir-
cuit, we think of the circuit in terms of its mesh equations. With each mesh 
we must associate a nonreference node, and, in addition, we must supply the 
reference node. On a diagram of the given circuit we therefore place a node 

■  FIGURE 7.30 A given circuit to which the 
definition of duality may be applied to determine the 
dual circuit. note that vc(0) = 10 V.

vC+ –

5 Ω

3 Ω

2 cos 6t V 4 H

8 F

i1 i2

+
–

■  FIGURE 7.31 The exact dual of the circuit of 
Fig. 7.30.

iL3 S

5 S

Ref.

8 H

4 F v2v1

2 cos 6t A
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in the center of each mesh and supply the reference node as a line near the 
diagram or a loop enclosing the diagram. Each element that appears jointly 
in two meshes is a mutual element and gives rise to identical terms, ex-
cept for sign, in the two corresponding mesh equations. It must be replaced 
by an element that supplies the dual term in the two corresponding nodal 
equations. This dual element must therefore be connected directly between 
the two nonreference nodes that are within the meshes in which the given 
mutual element appears.

The nature of the dual element itself is easily determined; the mathemat-
ical form of the equations will be the same only if inductance is replaced 
by capacitance, capacitance by inductance, conductance by resistance, and 
resistance by conductance. Thus, the 4 H inductor which is common to 
meshes 1 and 2 in the circuit of Fig. 7.30 appears as a 4 F capacitor con-
nected directly between nodes 1 and 2 in the dual circuit.

Elements that appear only in one mesh must have duals that appear 
between the corresponding node and the reference node. Referring again 
to Fig. 7.30, the voltage source 2 cos 6t V appears only in mesh 1; its 
dual is a current source 2 cos 6t A, which is connected only to node 1 
and the reference node. Since the voltage source is clockwise-sensed, 
the current source must be into-the-nonreference-node-sensed. Finally, 
provision must be made for the dual of the initial voltage present across 
the 8 F capacitor in the given circuit. The equations have shown us that 
the dual of this initial voltage across the capacitor is an initial current 
through the inductor in the dual circuit; the numerical values are the 
same, and the correct sign of the initial current may be determined most 
readily by considering both the initial voltage in the given circuit and 
the initial current in the dual circuit as sources. Thus, if vC in the given 
circuit is treated as a source, it would appear as −vC on the right side of 
the mesh equation; in the dual circuit, treating the current iL as a source 
would yield a term −iL on the right side of the nodal equation. Since 
each has the same sign when treated as a source, then, if vC(0) = 10 V, 
iL(0) must be 10 A.

The circuit of Fig. 7.30 is repeated in Fig. 7.32, and its exact dual is 
constructed on the circuit diagram itself by merely drawing the dual of each 
given element between the two nodes that are inside the two meshes that are 
common to the given element. A reference node that surrounds the given 
circuit may be helpful. After the dual circuit is redrawn in more standard 
form, it appears as shown in Fig. 7.31.

■ FIGURE 7.32 The dual of the circuit of Fig. 7.30 is constructed directly from the circuit diagram.

5 Ω5

8 H
4 F 

3 Ω

3

2 cos 6t V

2 cos 6t A

4 H

Ref.

8 F

+
–

Ω

Ω
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An additional example of the construction of a dual circuit is shown in 
Fig. 7.33a and b. Since no particular element values are specified, these two 
circuits are duals, but not necessarily exact duals. The original circuit may 
be recovered from the dual by placing a node in the center of each of the five 
meshes of Fig. 7.33b and proceeding as before.

The concept of duality may also be carried over into the language by which 
we describe circuit analysis or operation. For example, if we are given a voltage 
source in series with a capacitor, we might wish to make the important state-
ment, “The voltage source causes a current to flow through the capacitor.” 
The dual statement is, “The current source causes a voltage to exist across the 
inductor.” The dual of a less carefully worded statement, such as “The current 
goes round and round the series circuit,” may require a little inventiveness.4

Practice in using dual language can be obtained by reading Thévenin’s 
theorem in this sense; Norton’s theorem should result.

We have spoken of dual elements, dual language, and dual circuits. What 
about a dual network? Consider a resistor R and an inductor L in series. The 
dual of this two-terminal network exists and is most readily obtained by 
connecting some ideal source to the given network. The dual circuit is then 
obtained as the dual source in parallel with a conductance G with the same 
magnitude as R, and a capacitance C having the same magnitude as L. We 
consider the dual network as the two-terminal network that is connected to 
the dual source; it is thus a pair of terminals between which G and C are con-
nected in parallel.

Before leaving the definition of duality, we should point out that dual-
ity is defined on the basis of mesh and nodal equations. Since nonplanar 
circuits cannot be described by a system of mesh equations, a circuit that 
cannot be drawn in planar form does not possess a dual.

We plan to use duality principally to reduce the work that we must do 
to analyze the simple standard circuits. After we have analyzed the paral-
lel RC circuit, the series RL circuit requires less attention, not because it 
is less important, but because the analysis of the dual network is already 
known. Since the analysis of some complicated circuit is not apt to be well 
known, duality will usually not provide us with any quick solution.

(a)

+
–

(b)
■  FIGURE 7.33 (a) The dual (in gray) of a given circuit (in black) is constructed on the given circuit.  

(b) The dual circuit is drawn in more conventional form for comparison to the original.

(4)  Someone suggested, “The voltage is across all over the parallel circuit.”
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PRACTICE 
●

7.11 Write the single nodal equation for the circuit of Fig. 7.34a, and 
show, by direct substitution, that v = − 80 e   − 10   6 t  mV is a solution. 
Knowing this, find (a) v1; (b) v2; and (c) i for the circuit of Fig. 7.34b. 

■ FIGURE 7.34

(a)

8e–106t mA 10 Ω 0.2 μFv
+

–

(b)

v2

+

–i

0.1 Ω

0.2 μH

+
–8e–106t mV

v1+ –

(a)

8e–106t mA 10 Ω 0.2 μFv
+

–

(b)

v2

+

–i

0.1 Ω

0.2 μH

+
–8e–106t mV

v1+ –

Ans: −8e−106t mV; 16e−106t mV; −80e−106t mA.

7.7 •  COMPUTER MODELING OF CIRCUITS WITH 
CAPACITORS AND INDUCTORS

When using software to analyze circuits containing capacitors and induc-
tors, we might find it necessary to be able to specify the initial condition 
of each element [i.e., vC(0) and iL(0)]. There are several approaches cur-
rently in use to accomplish this, depending on the specific software pack-
age. Within LTspice, this is achieved by specifying voltages at the nodes 
to which the capacitor is attached, or the current through the inductor. The 
directive named .ic, created using the SPICE Directive command (found 
under the Edit menu), allows us to do this, as illustrated in Fig. 7.35. Upon 
closing the dialog box, the text may be placed anywhere on the schematic.

■  FIGURE 7.35 Edit Text dialog box used to enter initial condition for a capacitor connected between 
a node named left and a node named top. The initial voltage across the capacitor is 1 V, with the 
positive reference on the node named left.
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EXAMPLE 7.11
Simulate the output voltage waveform of the circuit in Fig. 7.36 if  
vs = 1.5 sin 100t V, R1 = 10 kΩ, Cf = 4.7 μF, and vC(0) = 2 V.

■  FIGURE 7.37 The schematic representation of the circuit shown in Fig. 7.36, with the initial 
capacitor voltage set to 2 V using the .ic directive.

We begin by drawing the circuit schematic, making sure to set the ini-
tial voltage across the capacitor (Fig. 7.37). Note that we had to convert 
the frequency from 100 rad/s to 100/2π = 15.92 Hz. For simplicity, 
we also named three nodes (Vs, In, Out) using the Label Net function 
under Edit for the Windows version of LTspice (or Net Name function 
under Draft in the Mac OS version). The ac parameters were set for 
source Vs by right-clicking on the source, then selecting Advanced to 
access the menu in Fig. 7.38.

■  FIGURE 7.38 dialog box for setting parameters of the sinusoidal source for the Windows version 
of LTspice. A slightly different graphical display appears when editing the Advanced setting in the 
Mac OS version.

+

–
vout

–

+
vs

R1

Cf

vC+ –

+
–

■ FIGURE 7.36 An integrating op amp circuit.
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In order to obtain time-varying voltages and currents, we need to perform 
what is referred to as a transient analysis. Under the Edit menu, we select 
SPICE Analysis, which leads to the dialog box re-created in Fig. 7.39. 
Stop time represents the time at which the simulation is terminated; LTspice 
will select its own discrete times at which to calculate the various voltages 
and currents. Occasionally we obtain an error message stating that the tran-
sient solution could not converge, or the output waveform does not appear 
as smooth as we would like. In such situations, it is useful to set a value for 
Maximum Timestep, which has been set to 0.5 ms in this example. Alter-
natively, the SPICE directive can be directly entered on the schematic using 
the text .tran 0 0.5 0 0.5m. Text entry of the SPICE directive is required for 
the Mac OS version which does not offer the SPICE Analysis menu option.

■  FIGURE 7.39 dialog box for setting up a transient analysis. We choose a final time of 0.5 s to 
obtain several periods of the output waveform (1/15.92 ≈ 0.06 s).

From our earlier analysis and Eq. [17], we expect the output to be 
proportional to the negative integral of the input waveform, that is, vout = 
0.319 cos 100t − 2.319 V, as shown in Fig. 7.40. The initial condition 
of 2 V across the capacitor has combined with a constant term from the 
integration to result in a nonzero average value for the output, unlike 
the input which has an average value of zero.

■ FIGURE 7.40 Output for the simulated integrator circuit along with the input waveform for comparison.
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SUMMARY AND REVIEW

A large number of practical circuits can be effectively modeled using only 
resistors and voltage/current sources. However, most interesting everyday 
occurrences somehow involve something changing with time, and in such 
cases intrinsic capacitances and/or inductances can become important. We 
employ such energy storage elements consciously as well, for example, in 
the design of frequency-selective filters, capacitor banks, and electric vehi-
cle motors. 

An ideal capacitor is modeled as having infinite shunt resistance and a 
current which depends on the time rate of change of the terminal voltage. 
Capacitance is measured in units of farads (F). Conversely, an ideal induc-
tor is modeled as having zero series resistance and a terminal voltage which 
depends on the time rate of change of the current. Inductance is measured 
in units of henrys (H). Either element can store energy; the amount of en-
ergy present in a capacitor (stored in its electric field) is proportional to 
the square of the terminal voltage, and the amount of energy present in an 
inductor (stored in its magnetic field) is proportional to the square of its 
current.

As we found for resistors, we can simplify some connections of ca-
pacitors (or inductors) using series/parallel combinations. The validity 
of such equivalents arises from KCL and KVL. Once we have simpli-
fied a circuit as much as possible (taking care not to “combine away” 
a component which is used to define a current or voltage of interest to 
us), nodal and mesh analysis can be applied to circuits with capacitors 
and inductors. 

As an additional review aid, here we list some key points from the chap-
ter and identify relevant example(s).

 The current through a capacitor is given by i = C dv/dt. (Example 7.1)
 The voltage across a capacitor is related to its current by

v(t) =   1 __ 
C

    ∫ 
 t  0  
  
 t
    i( t   ′ ) d t   ′  + v( t  0  )

(Example 7.2)
 A capacitor is an open circuit to dc voltages. (Example 7.1)
 The voltage across an inductor is given by v = L di/dt. (Examples 7.4, 7.5)
 The current through an inductor is related to its voltage by

i(t) =   1 __ 
L

    ∫ 
 t  0  
  
 t
    v d t   ′  + i( t  0  )

(Example 7.6)
 An inductor is a short circuit to dc currents. (Examples 7.4, 7.5)
 The energy presently stored in a capacitor is given by    1 _ 2    C  v   2 , whereas 

the energy presently stored in an inductor is given by    1 _ 2    L  i   2 ; both are 
referenced to a time at which no energy was stored. (Examples 7.3, 7.7)

 Series and parallel combinations of inductors can be combined using 
the same equations as for resistors. (Example 7.8)

 Series and parallel combinations of capacitors work the opposite way 
from the way they do for resistors. (Example 7.8)
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 Since capacitors and inductors are linear elements, KVL, KCL, 
superposition, Thévenin’s and Norton’s theorems, and nodal and mesh 
analysis apply to their circuits as well. (Example 7.9)

 A capacitor as the feedback element in an inverting op amp leads to an 
output voltage proportional to the integral of the input voltage. Swapping 
the input resistor and the feedback capacitor leads to an output voltage 
proportional to the derivative of the input voltage. (Example 7.10)

 LTspice allows us to set the initial voltage across a capacitor and the 
initial current through an inductor. A transient analysis provides de-
tails of the time-dependent response of circuits containing these types 
of elements. (Example 7.11)

READING FURTHER
A detailed guide to characteristics and selection of various capacitor and induc-
tor types can be found in:

H. B. Drexler, Passive Electronic Component Handbook, 2nd ed., C. A. 
Harper, ed. New York: McGraw-Hill, 2003, pp. 69–203.
C. J. Kaiser, The Inductor Handbook. Olathe, Kans.: C.J. Publishing, 1996.

Two books that describe capacitor-based op amp circuits are:

B. Carter, Op Amps Are for Everyone, 4th ed. Boston: Newnes, 2013.
W. G. Jung, IC Op Amp Cookbook, 3rd ed. Upper Saddle River, N.J.: 
Prentice-Hall, 1997.

There are multiple resources now available for learning more about memristor- 
based technology. For example, 

R. Tetzlaff, ed., Memristors and Memristive Systems. Heidelberg, Germany:  
Springer, 2016.

EXERCISES

7.1  The Capacitor
1. Making use of the passive sign convention, determine the current flowing 

through a 100 pF capacitor for t ≥ 0 if its voltage vC(t) is given by (a) 5 V;  
(b) 10e−t V; (c) 2 sin 0.01t V; (d) −5 + 2 sin 0.01t V.

2. Sketch the current flowing through a 10 nF capacitor for t ≥ 0 as a result of the 
waveforms shown in Fig. 7.41. Assume the passive sign convention.

(b)

v (V)

–4

–2

0

2

4

–1 0 1
t (s)

2 3 4 5

(a)

–1 0 1
t (s)

v (V)

2 3 4 5

1
2
3
4
5
6
7

■ FIGURE 7.41
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3. (a) If the voltage waveform depicted in Fig. 7.42 is applied across the terminals 
of a 1 µF electrolytic capacitor, graph the resulting current for t > 0, assuming 
the passive sign convention. (b) Repeat part (a) if the capacitor is replaced with 
a 20 nF capacitor.

1 2

1
2
3
4

3 4 5 6

v (V)

t (s)

■ FIGURE 7.42

4. A capacitor is constructed from two brass plates, each measuring 2.5 mm × 
2.5 mm and 300 µm thick. The two plates are placed such that they face each 
other and are separated by a 25 µm gap. Calculate the resulting capacitance 
if (a) the intervening dielectric has a permittivity of 15ε0; (b) the intervening 
dielectric has a permittivity of 1.5ε0; (c) the plate separation is doubled and 
the gap is filled with air; (d) the plate area is doubled and the gap is filled 
with air.

5. Two conducting metal discs, each having diameter 25 mm, are placed facing 
each other with a uniform gap of 0.1 mm. Compute the capacitance if the gap 
is filled with (a) air; (b) mylar; (c) SiO2 (silicon dioxide).

6. Design a 100 nF capacitor constructed from 1 µm thick gold foil, and which 
fits entirely within a volume equal to that of a standard AAA battery, if the 
only dielectric available has a permittivity of 3.1ε0.

7. Design a capacitor whose capacitance can be varied mechanically between  
100 pF and 200 pF with a simple linear motion of 10 mm.

8. Design a capacitor whose capacitance can be varied between 250 pF and  
500 pF mechanically by squeezing the plates. No more than 0.1 mm motion  
is allowable.

9. A silicon pn junction diode is characterized by a junction capacitance Cj 
defined as

 C  j   =    K  s    ε  0   A _____ 
W

  

   where Ks = 11.8 for silicon, ε0 is the vacuum permittivity, A = the cross- 
sectional area of the junction, and W is known as the depletion width of the 
junction. Width W depends not only on how the diode is fabricated, but also 
on the voltage applied to its two terminals. It can be computed using 

W =  √ 
____________

    2  K  s    ε  0   ____ 
qN

  ( V  bi   −  V  A  )  

   Thus, diodes are often used in electronic circuits since they can be viewed in 
this context as voltage-controlled capacitors. Assuming parameter values of 
N = 5.0 × 1018 cm−3, Vbi = 0.62 V, and using q = 1.6 × 10−19 C, calculate the 
capacitance of a diode with cross-sectional area A = 2 μm2 at applied voltages 
of VA = −1, −3, and −10 V.

10. Assuming the passive sign convention, sketch the voltage which develops 
across the terminals of a 2 F capacitor in response to the current waveforms 
shown in Fig. 7.43. 
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■ FIGURE 7.43

(a) (b)

2

–2

–1 10 2 3

i(t) (A)

t (s)

2

–2

–1 10 2 3

i(t) (A)

t (s)

11. The current flowing through a 1 mF capacitor is shown graphically in Fig. 7.44. 
(a) Assuming the passive sign convention, sketch the resulting voltage wave-
form across the device. (b) Compute the voltage at 200 ms, 600 ms, and 1.2 s.

■ FIGURE 7.44

4

8

0 0.40.2 0.80.6 1.21.0 1.4

i (A)

t (s)

12. Calculate the energy stored in a capacitor at time t = 1 s if (a) C = 1.4 F and  
vC = 8 V, t > 0; (b) C = 22 pF and vC = 0.8 V, t > 0; (c) C = 18 nF, vC (1) = 12 V, 
vC(0) = 2 V, and wC(0) = 295 nJ.

13. A 150 pF capacitor is connected to a voltage source such that vC(t) = 12e−2t V, 
t ≥ 0 and vC(t) = 12 V, t < 0. Calculate the energy stored in the capacitor at t 
equal to (a) 0; (b) 200 ms; (c) 500 ms; (d) 1 s.

14. Calculate the power dissipated in the 40 Ω resistor and the voltage labeled vC 
in each of the circuits depicted in Fig. 7.45.

■ FIGURE 7.45

+
–1.2 V 22 Ω

40 Ω

9.8 mF
9.8 mF

vC

+

–
1.2 V 22 Ω 40 Ω

vC+ –

(a) (b)

+
–

+
–1.2 V 22 Ω

40 Ω

9.8 mF
9.8 mF

vC

+

–
1.2 V 22 Ω 40 Ω

vC+ –

(a) (b)

+
–
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15. For each circuit shown in Fig. 7.46, calculate the voltage labeled vC.

■ FIGURE 7.46

3 mF4.5 nA 7 Ω 5 Ω

10 Ω 13 Ω

vC

–

+3 mF

4.5 nA 13 Ω 7 Ω 5 Ω

10 Ω vC– +

(a) (b)

7.2 The Inductor 
16. Design a 30 nH inductor using 28 AWG solid soft copper wire. Include a 

sketch of your design, and label geometrical parameters as necessary for clarity. 
Assume the coil is filled with air only.

17. If the current flowing through a 75 mH inductor has the waveform shown in Fig. 7.47, 
(a) sketch the voltage which develops across the inductor terminals for t ≥ 0, assuming 
the passive sign convention; and (b) calculate the voltage at t = 1 s, 2.9 s, and 3.1 s.

■ FIGURE 7.47

2

1

–1 10 2 3

i(t) (A)

t (s)

18. The current through a 17 nH aluminum inductor is shown in Fig. 7.48. Sketch 
the resulting voltage waveform for t ≥ 0, assuming the passive sign convention.

■ FIGURE 7.48

2

2
3
4
5

3 4 5 6 7

i(t) (A)

t (μs)

19. Determine the voltage for t ≥ 0 which develops across the terminals of a 4 mH 
inductor if the current (defined consistent with the passive sign convention) is 
(a) −10 mA; (b) 3 sin 6t A; (c)11 + 115  √ 

__
 2   cos (100πt − 9°) A; (d) 15e−t nA; 

(e) 3 + te−10t A.
20. Determine the voltage for t ≥ 0 which develops across the terminals of an 8 pH 

inductor if the current (defined consistent with the passive sign convention) is 
(a) 8 mA; (b) 800 mA; (c) 8 A; (d) 4e−t A; (e) −3 + te−t A.

21. Calculate vL and iL for each of the circuits depicted in Fig. 7.49 if is = 1 mA 
and vs = 2 V.

■ FIGURE 7.49

(a)

4.7 kΩ

12 nH

14 kΩ

vL

+

–
vL

+

–
vL

+

–

vL

+

–
is

(c)

4.7 kΩ 12 nH

+
–

iL

iL

vs

(b)

is

(d )

12 nH

+
–

iL

vs

4.7 kΩ

4.7 kΩ

14 kΩ

12 nH

iL
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22. The current waveform shown in Fig. 7.14 has a rise time of 0.1 s (100 ms) and 
a fall time of the same duration. If the current is applied to the “+” voltage 
reference terminal of a 200 nH inductor, sketch the expected voltage waveform 
if the rise and fall times are changed, respectively, to (a) 200 ms, 200 ms;  
(b) 10 ms, 50 ms.

23. Determine the inductor voltage which results from the current waveform 
shown in Fig. 7.50 (assuming the passive sign convention and L = 1 H) at t 
equal to (a) −1 s; (b) 0 s; (c) 1.5 s; (d) 2.5 s; (e) 4 s; ( f  ) 5 s.

3

2

1

–1

–2

1 2 3 4–3 –2 –1 5 6 7

iL (mA)

t (s)

■ FIGURE 7.50

24. Determine the current flowing through a 6 mH inductor if the voltage (defined 
to be consistent with the passive sign convention) is given by (a) 5 V; (b) 100 
sin 120πt, t ≥ 0 and 0, t < 0.

25. The voltage across a 2 H inductor is given by vL = 4t. With the knowledge 
that iL (−0.1) = 100 μA, calculate the current (assuming it is defined con-
sistent with the passive sign convention) at t equal to (a) 0; (b) 1.5 ms;  
(c) 45 ms.

26. Calculate the energy stored in a 1 nH inductor if the current flowing through it 
is (a) 0 mA; (b) 1 mA; (c) 20 A; (d ) 5 sin 6t mA, t > 0.

27. Determine the amount of energy stored in a 33 mH inductor at t = 1 ms as a 
result of a current iL given by (a) 7 A; (b) 3 − 9e−103t mA.

28. Making the assumption that the circuits in Fig. 7.51 have been connected for a 
very long time, determine the value for each current labeled ix. 

■ FIGURE 7.51

4.7 kΩ

16 kΩ 7 kΩ

10 V 4.7 kΩ

ix

2 μH 6 μH

8 μH 2 kΩ

4 kΩ 5 kΩ

2 A 1 kΩ

ix

10 A

4 nH3 μF

(a) (b)

+
–

4.7 kΩ

16 kΩ 7 kΩ

10 V 4.7 kΩ

ix

2 μH 6 μH

8 μH 2 kΩ

4 kΩ 5 kΩ

2 A 1 kΩ

ix

10 A

4 nH3 μF

(a) (b)

+
–
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29. Calculate the voltage labeled vx in Fig. 7.52, assuming the circuit has 
been running a very long time, if (a) a 10 Ω resistor is connected between 
terminals x and y; (b) a 1 H inductor is connected between terminals x and 
y; (c) a 1 F capacitor is connected between terminals x and y; (d) a 4 H 
inductor in parallel with a 1 Ω resistor is connected between terminals x 
and y.

■ FIGURE 7.52

+
– vx

+

–20 Ω

15 Ω

12 Ω

20 Ω

1 V

5 F

5 A

x
y

2 H2 H

3 H

20 F
5 H

30. For the circuit shown in Fig. 7.53, (a) compute the Thévenin equivalent seen 
by the inductor; (b) determine the power being dissipated by both resistors;  
(c) calculate the energy stored in the inductor.

7.3 Inductance and Capacitance Combinations
31. If each capacitor has a value of 1 F, determine the equivalent capacitance of the 

network shown in Fig. 7.54.
32. Determine an equivalent inductance for the network shown in Fig. 7.55 if each 

inductor has value L.

■ FIGURE 7.55

33. Using as many 1 nH inductors as you like, design two networks, each of which 
has an equivalent inductance of 1.25 nH.

34. Compute the equivalent capacitance Ceq as labeled in Fig. 7.56.

■ FIGURE 7.56

4 F

2 F

2 F

1 F

5 F 1 FCeq

8 F

5 F

7 F

■ FIGURE 7.53

+
– 50 mH4 V

10 kΩ

47 kΩ

■ FIGURE 7.54
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35. Determine the equivalent capacitance Ceq of the network shown in Fig. 7.57.

a b

5 F 1 F

2 F

12 F
4 F

10 F

12 F

7 F

Ceq

■ FIGURE 7.57

36. Apply combinatorial techniques as appropriate to obtain a value for the equiva-
lent inductance Leq as labeled on the network of Fig. 7.58.

■ FIGURE 7.58

a b

5 H 1 H

2 H

12 H

4 H

10 H

12 H

7 H

Leq

37. Reduce the circuit depicted in Fig. 7.59 to as few components as possible, 
noting that the voltage vx is important.

■ FIGURE 7.59

+
–2 V

R

R

R vx

+

–
R

L LC C

C

C
LL

38. Refer to the network shown in Fig. 7.60 and find (a) Req if each element is a 
10 Ω resistor; (b) Leq if each element is a 10 H inductor; and (c) Ceq if each 
element is a 10 F capacitor.

39. Determine the equivalent inductance seen looking into the terminals marked a 
and b of the network represented in Fig. 7.61.

■ FIGURE 7.61

b

a

1 nH2 nH

2 nH

4 nH1 nH

7 nH

■ FIGURE 7.60
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40. Reduce the circuit represented in Fig. 7.62 to the smallest possible number of 
components.

■ FIGURE 7.62

is

R L

L

L

L

R

C

C
C

L

C

41. Reduce the network of Fig. 7.63 to the smallest possible number of compo-
nents if each inductor is 2 nH and each capacitor is 2 nF.

■ FIGURE 7.63

42. For the network of Fig. 7.64, L1 = 1 H, L2 = L3 = 2 H, L4 = L5 = L6 = 3 H.  
(a) Find the equivalent inductance. (b) Derive an expression for a general 
network of this type having N stages, assuming stage N is composed of N 
inductors, each having inductance L henrys.

■ FIGURE 7.64

L4

L5

L6

L2

L1

L3

43. Simplify the network of Fig. 7.65 if each element is a 10 F capacitor.
44. Simplify the network of Fig. 7.65 if each element is a 10 H inductor.

7.4 Linearity and Its Consequences
45. With regard to the circuit represented in Fig. 7.66, (a) write a complete set of 

nodal equations and (b) write a complete set of mesh equations.

■ FIGURE 7.66

R

R

L

C1

vs

vs

v2
v1

is

iL

+
– C2i1 i2

■ FIGURE 7.65
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46. Write mesh equations for the circuit of Fig. 7.67.
47. In the circuit shown in Fig. 7.68, let is = 60e−200t mA with i1(0) = 20 mA.  

(a) Find v(t) for all t. (b) Find i1(t) for t ≥ 0. (c) Find i2(t) for t ≥ 0.

■ FIGURE 7.68

6 H 4 H

i1 i2

is v(t)

+

–

3 H

48. Let vs = 100e−80t V with no initial energy stored in the circuit of Fig. 7.69.  
(a) Find i(t) for all t. (b) Find v1(t) for t ≥ 0. (c) Find v2(t) for t ≥ 0.

49. If it is assumed that all the sources in the circuit of Fig. 7.70 have been con-
nected and operating for a very long time, use the superposition principle to 
find vC(t) and vL(t).

■ FIGURE 7.70

vL+ –

20 Ω 60 mH

9 V 5 μF30 mA

20 mA

40 cos 103t mAvC

+

–

50. For the circuit of Fig. 7.71, assume no energy is stored at t = 0, and write a 
complete set of mesh equations.

■ FIGURE 7.71

+
–

+–
50 mH

50 Ω 100 Ω

0.2vx

1 μF

vx+ –

40e–20t V20e–20t mA

7.5 Simple Op Amp Circuits with Capacitors
51. Interchange the location of R1 and Cf in the circuit of Fig. 7.27, and assume 

that Ri = ∞, Ro = 0, and A = ∞ for the op amp. Find vout(t) as a function of 
vs(t).

52. For the integrating amplifier circuit of Fig. 7.27, R1 = 100 kΩ, Cf = 500 μF, 
and vs = 20 sin 540t mV. Calculate vout.

■ FIGURE 7.67

8 mH

iL

vL

+

–

vC

+

–

+
–vs

vC (0) = 12 V, iL(0) = 2 A

20 Ω 10 Ω

5 μF

i20

■ FIGURE 7.69
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53. Derive an expression for vout in terms of vs for the amplifier circuit shown in 
Fig. 7.72.

54. For the circuit shown in Fig. 7.73, assume no energy is initially stored in the 
capacitor, and determine vout if vs is given by (a) 5 sin 20t mV; (b) 2e-t V.

55. A new piece of equipment designed to make crystals from molten constit-
uents is experiencing too many failures (cracked products). The production 
manager wants to monitor the cooling rate to see if this is related to the 
problem. The system has two output terminals available, where the voltage 
across them is linearly proportional to the crucible temperature such that  
30 mV corresponds to 30°C and 1 V corresponds to 1000°C. Design a cir-
cuit whose voltage output represents the cooling rate, calibrated such that  
1 V = 1°C/s.

56. An altitude sensor on a weather balloon provides a voltage calibrated to 
1 mV = 1 meter (above sea level). Design a circuit to provide a voltage 
signal proportional to the ascent rate (positive) or descent rate (negative) 
such that 1 mV corresponds to a 1 m/s ascent rate. The maximum altitude 
is 1000 m.

57. One problem satellites face is exposure to high-energy particles, which can 
cause damage to sensitive electronics as well as solar arrays used to provide 
power. A new communications satellite is equipped with a high-energy proton 
detector measuring 1 cm × 1 cm. It provides a current directly equal to the 
number of protons impinging the surface per second. Design a circuit whose 
output voltage provides a running total of the number of proton hits, calibrated 
such that 1 V = 1 million hits.

58. The output of a velocity sensor attached to a sensitive piece of mobile equip-
ment is calibrated to provide a signal such that 10 mV corresponds to linear 
motion at 1 m/s. If the equipment is subjected to sudden shock, it can be dam-
aged. Since force = mass × acceleration, monitoring of the rate of change of 
velocity can be used to determine if the equipment is transported improperly. 
(a) Design a circuit to provide a voltage proportional to the linear acceleration 
such that 10 mV = 1 m/s2. (b) How many sensor-circuit combinations does this 
application require?

59. A floating sensor in a certain fuel tank is connected to a variable resistor 
(often called a potentiometer) such that a full tank (100 liters) corresponds 
to a resistance of 10 Ω, and an empty tank corresponds to a resistance of  
0 Ω. (a) Design a circuit that provides an output voltage proportional to 
the fuel remaining, such that a full tank yields a voltage of 5 V, whereas an 
empty tank yields 0 V. (b) Design a circuit to indicate the rate of fuel con-
sumption by providing a voltage output calibrated such that 1 V = 1 liter  
per second.

7.6 Duality
60. (a) If Is = 3 sin t A, draw the exact dual of the circuit depicted in Fig. 7.74.  

(b) Label the new (dual) variables. (c) Write nodal equations for both circuits.
61. (a) Draw the exact dual of the simple circuit shown in Fig. 7.75. (b) Label the 

new (dual) variables. (c) Write mesh equations for both circuits.

■ FIGURE 7.75

+
–

4 H2 sin t  V

10 Ω

7 Ω

■ FIGURE 7.72
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■ FIGURE 7.73

■ FIGURE 7.74
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62. (a) Draw the exact dual of the simple circuit shown in Fig. 7.76 and label the 
new (dual) variables if vs = 2 sin t V. (b) Write a nodal equation for the original 
circuit and a mesh equation for the dual circuit.

■ FIGURE 7.76

10 H100 Ω 10 μF

iL

+
–vs

63. (a) Draw the exact dual of the simple circuit shown in Fig. 7.77. (b) Label the 
new (dual) variables. 

■ FIGURE 7.77

20 Ω

2 Ω 80 Ω

100 V 16 Ω

ix1 H 2 H

3 H

64. Draw the exact dual of the circuit shown in Fig. 7.78. 

■ FIGURE 7.78

1 H

3 Ω 4 Ω

7 F6 F

+
– 10e–2t V

7.7 Computer Modeling of Circuits with Capacitors and Inductors  
65. Taking the bottom node in the circuit of Fig. 7.79 as the reference terminal, 

calculate (a) the current through the inductor and (b) the power dissipated by 
the 46 kΩ resistor. (c) Verify your answers with an appropriate simulation.

■ FIGURE 7.79

80 kΩ

46 kΩ

+
– 6 mH7 V

66. For the four-element circuit shown in Fig. 7.80, (a) calculate the power 
absorbed in each resistor, (b) determine the voltage across the capacitor,  
(c) compute the energy stored in the capacitor, and (d ) verify your answers 
with an appropriate simulation. (Recall that calculations can be performed by 
selecting multiple traces and an operator.) ■ FIGURE 7.80

80 kΩ

46 kΩ

+
– 10 μF7 V
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67. (a) Compute iL and vs as indicated in the circuit of Fig. 7.81. (b) Determine the 
energy stored in the inductor and in the capacitor. (c) Verify your answers with 
an appropriate simulation.

■ FIGURE 7.81

810 Ω 1 μF
iL

120 Ω 440 Ω6 mA

2 H

+

–
vx

68. For the circuit depicted in Fig. 7.82, the value of iL (0) = 1 mA. (a) Compute 
the energy stored in the element at t = 0. (b) Perform a transient simulation of 
the circuit over the range of 0 ≤ t ≤ 500 ns. Determine the value of iL at t = 0, 
130 ns, 260 ns, and 500 ns. (c) What fraction of the initial energy remains in 
the inductor at t = 130 ns? At t = 500 ns?

69. Assume an initial voltage of 9 V across the 10 µF capacitor shown in Fig. 7.83 
(i.e., v(0) = 9 V). (a) Compute the initial energy stored in the capacitor.  
(b) For t > 0, do you expect the energy to remain in the capacitor? Explain.  
(c) Perform a transient simulation of the circuit over the range of 0 ≤ t ≤ 2.5 s  
and determine v(t) at t = 460 ms, 920 ms, and 2.3 s. (c) What fraction of the 
initial energy remains stored in the capacitor at t = 460 ms? At t = 2.3 s?

70. Referring to the circuit of Fig. 7.84, (a) calculate the energy stored in each en-
ergy storage element; (b) verify your answers with an appropriate simulation.

■ FIGURE 7.84
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Chapter-Integrating Exercises 
71. For the circuit of Fig. 7.28, (a) sketch vout over the range of 0 ≤ t ≤ 5 ms if Rf = 

1 kΩ, C1 = 1 nF, and vs is a 1 kHz sinusoidal source having a peak voltage of 2 
V. (b) Using ±15 V supplies for the op amp, perform an appropriate transient 
simulation and plot vout.   

72. (a) Sketch the output function vout of the amplifier circuit in Fig. 7.29 over the 
range of 0 ≤ t ≤ 100 ms if vs is a 60 Hz sinusoidal source having a peak voltage 
of 400 mV, R1 is 1 kΩ, and Lf is 250 mH. (b) Verify your answer with an 
appropriate transient simulation, plotting both vs and vout. (Note the scales are 
very different, so if using LTspice, it may be clearer to use the Add Plot Pane 
under the Plot Settings menu, and plot one trace per pane.)

73. For the circuit of Fig. 7.72, (a) sketch vout over the range of 0 ≤ t ≤ 2.5 ms if 
Rf  = 47 Ω, L1 = 100 mH, and vs is a 2 kHz sinusoidal source having a peak 
voltage of 2 V. (b) Verify your answer with an appropriate transient simulation, 
plotting both vs and vout.

■ FIGURE 7.82

iL

46 kΩ6 mH

■ FIGURE 7.83

46 kΩ10 μF v (t)
+

–

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
In Chap. 7 we wrote equations for the response of several circuits 
containing both inductance and capacitance, but we did not solve 
any of them. Now we are ready to proceed with the solution of the 
simpler circuits, namely, those which contain only resistors and 
inductors, or only resistors and capacitors.

Although the circuits we are about to consider have a very 
elementary appearance, they are also of practical importance. 
Networks of this form find use in electronic amplifiers, automatic 
control systems, operational amplifiers, communications 
equipment, and many other applications. Familiarity with these 
simple circuits will enable us to predict the accuracy with which 
the output of an amplifier can follow an input that is changing 
rapidly with time, or to predict how quickly the speed of a motor 
will change in response to a change in its field current. Our 
understanding of simple RC and RL circuits will also enable us to 
suggest modifications to the amplifier or motor in order to obtain 
a more desirable response.

8.1 • THE SOURCE-FREE RC CIRCUIT
Capacitors and inductors are energy storage elements, where their 
current–voltage relations are described by differential equations 
(namely i = C dv/dt and v = L di/dt). Circuit analysis with these 
elements will require the solution of a differential equation to de-
termine the instantaneous time dependence of current and voltage.  

Basic RC and RL 
 Circuits8

KEY CONCEPTS

RC and RL Time Constants

Natural and Forced 
 Response

Calculating the Time- 
Dependent Response to  
DC Excitation

How to Determine Initial 
Conditions and Their Effect 
on the Circuit Response

Analyzing Circuits with Step 
Function Input and with 
Switches

Construction of Pulse 
Waveforms Using Unit-Step 
Functions

Response of Sequentially 
Switched Circuits
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The circuit response can be divided into two components: the steady-
state response (does not change with time) and the transient response 
(changes with time). Alternatively, the circuit response can be divided 
into the  natural response and the forced response. The natural response 
describes the behavior in the absence of all external sources, depending 
on the “ nature” of the circuit (the types of elements, their sizes, the in-
terconnection of  elements). The forced response describes the additional 
response or “contribution” from external sources. The complete response 
will be the addition of the steady-state and transient, or the natural and 
forced response. For example, the complete solution for a voltage at a node 
in a circuit can be described by

  v  complete   =  v  steady-state   +  v  transient   

or

  v  complete   =  v  natural   +  v  forced   

Let us begin by considering an RC circuit as shown in Fig. 8.1, subject to 
the initial condition v(0) = V0. Note that this circuit does not have an external 
source or forcing function. The solution to this source-free circuit will there-
fore be the natural response of the circuit. An equation for the voltage v can 
be described by writing a KCL equation at the top node of the circuit. 

  C   dv __ 
dt

   +   v __ 
R

   = 0  [1]

Our goal is an expression for v(t) which satisfies this equation and also 
has the value V0 at t = 0. The solution may be obtained by several different 
methods.

Solution by Direct Integration
The solution can be solved directly by separating voltage and time variables 
and then integrating. Combining voltage variables on the left and time and 
circuit constants on the right gives

   dv __ v   = −   1 ___ 
RC

   dt 

Integrating both sides over voltage and time, respectively, results in

  ∫ 
 V  0  

  
  v (  t )  

       dv′ __ 
v′   =  ∫ 

0
  
  t
    −   1 ___ 

RC
   dt′ 

Following integration and evaluating for t > 0 and the initial condition 
V0 at t = 0,

  ln v′|   V  
0
    

v (  t )  
  =  −   1 ___ 

RC
   dt′|   0   t

   

and so,

 ln v(t) − ln   V  0   = −   1 _ 
RC

   (t − 0)  

Taking the exponential of both sides and solving for v(t) gives the final 
solution.

 v  (t)  =  V  0    e   −t/RC  

It may seem unusual to discuss a time-varying voltage 

in a circuit with no sources! Keep in mind that we only 

know the voltage at the time specified as t = 0; we 

don’t know the voltage prior to that time. In the same 

vein, we don’t know what the circuit looked like prior 

to t = 0, either. A nonzero voltage implies energy stor-

age in the capacitor and that a source was present at 

some point. Fortunately, we do not need to know the 

details prior to t = 0 in order to analyze the circuit.

■  FIGURE 8.1 A parallel RC circuit for which v(t) is 
to be determined, subject to the initial condition that 
v(0) = V0.

i

v

+

–

C R

hay01307_ch08_273-324.indd   274 23/01/18   10:10 am
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A More General Solution Approach
Direct integration works well for the source-free RC circuit, but it is lim-
ited to cases where variables can be separated. An alternative method is to 
“guess” or assume a form for the solution and then to test our assumptions. 
Let us examine this approach, as outlined in Fig. 8.3, as it will help us to 
analyze more complex circuits. Many of the differential equations encoun-
tered in circuit analysis have a solution that may be represented by the ex-
ponential function, or by the sum of exponential functions. Let’s assume a 
solution of Eq. [1] as an exponential

 v  (t)  = A e   st  

where A and s are unknown constants. Substituting the assumed solution 
into Eq. [1] we have

 C   
d (  A e   st  )   _____ 

dt
   +   A e   st  ___ 

R
   = 0 

 sC A  e   st  +   
 (  A  e   st  )   ____ 

R
   = 0 

  (sC +   1 __ 
R

  ) A  e   st  = 0 

In order to satisfy this equation for all values of time, it is necessary that 
A = 0, s = −∞, or (sC + 1/R) = 0. The cases A = 0 or s = −∞ would not 
offer a solution to our problem. Therefore, we choose

For the circuit in Fig. 8.2, calculate the time where the voltage v 
decreases to half of the voltage at time t = 0 (v(0) = V0).

The time-dependent voltage is given by  v  (t)  =  V  0    e   −t/RC  , where we are 
asked to find the time where  v (t)  =  V  0   / 2 .

  v  (t)  =  V  0    e   −t/RC  =  V  0   / 2   

Solving for t (noting that the initial value V0 cancels in the equation),

 t = −RC ln (  1 _ 2  ) 

t = − (2 ×  10   3 )   (6 ×  10   −6 )  ln (  1 _ 2  ) 

t = 8 . 3178 ×  10   −3  s = 8 . 3178 ms 

PRACTICE 
●

8.1 For the circuit in Fig. 8.2, what value of capacitance would be 
required to ensure that  v  (t)  <  V  0   / 10  for t > 10 ms? 
Ans: C < 2.1715 μF

EXAMPLE 8.1

■  FIGURE 8.2

v

+

–

6 μF 2 kΩ 

■  FIGURE 8.3 Flowchart for the general approach 
to the solution of first-order differential equations 
where, based on experience or general knowledge, 
we can guess the form of the solution.

Assume a general solution
with appropriate constants.

Substitute the trial solution
into the differential

equation and simplify the
result.

Determine the value for
one constant that does not
result in a trivial solution.

Invoke the initial
condition(s) to determine
values for the remaining

constant(s).

End.
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  (sC +   1 __ 
R

  )  = 0 

 s = −  1 ___ 
RC

   

Substituting into our assumed solution yields

 v  (t)  = A  e   −t/RC  

The remaining unknown constant A can be evaluated by applying the initial 
condition at t = 0, v(0) = V0, resulting in

  v  (t)  =  V  0    e   −t/RC   [2]

For the circuit of Fig. 8.4a, find the voltage labeled v at t = 200 μs.

■  FIGURE 8.4 (a) A simple RC circuit with a switch thrown at time t = 0. (b) The circuit as it 
exists prior to t = 0. (c) The circuit after the switch is thrown, and the 9 V source is removed.

9 V 9 V
–

+
v

–

+
v10 μF

10 μF

10 μF2 Ω

4 Ω

t = 0

(b)(a)

(c)

t ≤ 0

2 Ω

4 Ω

–

+
v

t ≥ 0

2 Ω

4 Ω

+
–

+
–

To find the requested voltage, we will need to draw and analyze two sepa-
rate circuits: one corresponding to before the switch is thrown (Fig. 8.4b), 
and one corresponding to after the switch is thrown (Fig. 8.4c).

The sole purpose of analyzing the circuit of Fig. 8.4b is to obtain an 
initial capacitor voltage; we assume any transients in that circuit died 
out long ago, leaving a purely dc circuit. With no current through either 
the capacitor or the 4 Ω resistor, then,

  v (0) = 9  V  [3]

We next turn our attention to the circuit of Fig. 8.4c, recognizing that

  τ = RC = (2 + 4 ) (10 ×  10   −6  ) = 60 ×  10   −6  s  

Thus, from Eq. [2],

  v (t) = v (0)  e   −t/RC  = v(0)  e   −t/60× 10   −6    [4]

EXAMPLE 8.2
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Accounting for the Energy
Before we turn our attention to the interpretation of the response, let us re-
turn to the circuit of Fig. 8.1 and check the power and energy relationships. 
The power being dissipated in the resistor is

  p  R   =    v   2  __ 
R

   =    V  0  2  ___ 
R

    e   −2t/RC  

and the total energy turned into heat in the resistor is found by integrating 
the instantaneous power from zero time to infinite time:

   
 w  R   =  ∫ 

0
  
 ∞

     p  R   dt =    ( V  0  )   2  _____ 
R

    ∫ 
0
  
 ∞

     e   −2t/RC  dt
     

             =    ( V  0  )   2  _____ 
R

    (  − RC ____ 2  )   e   −2t/RC    |    0  ∞
  =   1 _ 2   C  ( V  0  )   2 

  

This is the result we expect because the total energy stored initially in 
the capacitor is    1 _ 2   C  ( V  0  )   2  , and there is no longer any energy stored in the 
capacitor at infinite time since its voltage eventually drops to zero. All the 
initial energy therefore is accounted for by dissipation in the resistor.

8.2 • PROPERTIES OF THE EXPONENTIAL RESPONSE
Let us now consider the nature of the response in the series RC circuit. We 
have found that the inductor current is represented by

 v  (t)  =  V  0    e   −t/RC  

At t = 0, the voltage has value V0, but as time increases, the voltage decreases 
and approaches zero. The shape of this decaying exponential is seen by the 
plot of v(t)/V0 versus t shown in Fig. 8.6. Since the argument of the exponent 
is unitless, the product of RC has a unit of time. This effective unit of time 
is called the time constant, and it reflects the rate of decay of the voltage 
response of the RC circuit. The time constant is denoted by the Greek letter τ

 τ = RC 

The capacitor voltage must be the same in both circuits at t = 0; no 
such restriction is placed on any other voltage or current. Substituting 
Eq. [3] into Eq. [4],

  v(t ) = 9  e   −t/60× 10   −6     V  

so that v(200 × 10−6) = 321.1 mV (less than 4% of its  maximum value).

PRACTICE 
●

8.2 Noting carefully how the circuit changes once the switch in the 
circuit of Fig. 8.5 is thrown, determine v(t) at t = 0 and at t = 160 μs. 
Ans: 50 V, 18.39 V.

■  FIGURE 8.5

v
+

–
2 μF

t = 0

70 Ω

50 V80 Ω +
–
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CHAPTER 8 BASIC RC AND RL  CIRCUITS278

Since the function we are plotting is e−t/RC, the curve will not change if 
RC remains unchanged. Thus, the same curve must be obtained for every 
series RC circuit having the same RC product and time constant. 

The time constant represents the approximate time decay from the initial 
value. Mathematically, the time constant is also the time that would be re-
quired for the voltage to drop to zero if it continued to drop at its initial rate. 
The rate of decrease (slope) of the voltage response is given by

   d __ 
dt

      v ___  V  0  
  |  t = 0

 =  −RC  e   −  t
 

__ RC    |  t = 0
 = −RC 

Continuing this rate of decay would lead to an intercept on the time axis 
given by  t = RC = τ. 

The time constant of a series RC circuit is shown graphically in Fig. 8.7; 
it is necessary only to draw the tangent to the curve at t = 0 and deter-
mine the intercept of this tangent line with the time axis. This is often a 
convenient way of approximating the time constant from the display on an 
oscilloscope.

An equally important interpretation of the time constant τ is obtained by 
determining the value of v(t)/V0 at t = τ. We have

    v (  τ )   _  V  0  
   =  e   −1  = 0.3679      or      v(τ) = 0.3679  V  0    

0

1

t

v
V0

■  FIGURE 8.6 A plot of e−t/RC versus t.

■  FIGURE 8.7 The time constant τ is RC for a series RC circuit. 
It is the time required for the response curve to drop to zero if it 
decays at a constant rate equal to its initial rate of decay.

0 τ

1

t

v
V0
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Thus, in one time constant the response has dropped to 36.8 percent of 
its initial value; the value of τ may also be determined graphically from this 
fact, as indicated by Fig. 8.8. It is convenient to measure the decay of the 
voltage at intervals of one time constant, and recourse to a calculator shows 
that v(t)/V0 is 0.3679 at t = τ, 0.1353 at t = 2τ, 0.04979 at t = 3τ, 0.01832 at 
t = 4τ, and 0.006738 at t = 5τ. After approximately three to five time con-
stants, most of us would agree that the voltage is a negligible fraction of its 
initial value. Thus, if we are asked, “How long does it take for the voltage to 
decay to zero?” our answer might be, “About five time constants.” At that 
point, the voltage is less than 1 percent of its original value!

■  FIGURE 8.8 The voltage in a series RC circuit is reduced to 
37 percent of its initial value at t = τ, 14 percent at t = 2τ, and 5 
percent at t = 3τ.

0 τ 2τ 3τ

1

0.37

0.14
0.05

t

v
V0

The time constant of a series RC circuit has a time constant τ0. If 
the time constant is now increased by a factor of four,  how would 
the voltage change at a time t = 2τ0?

   v (  t )   =  V  0    e   −t /τ    

The ratio of voltages for the two different time constants is given by

     V  0    e   −2 τ  0   / τ  0    _______ 
 V  0    e   −2 τ  0   /4 τ  0   

   =    e   −2  ___ 
 e   −1/2 

   = 0 . 2231  

Increasing the time constant by a factor of four will result in a much 
faster decay in the voltage response, and the voltage at time time 
t = 2τ0 will be decreased to approximately 22.3% of the original value.

PRACTICE 
●

8.3 In a source-free series RC circuit, find the numerical value of  
the ratio: (a)v(2τ)/v(τ); (b) v(0.5τ)/v(0); (c) t/τ if v(t)/v(0) = 0.2;  
(d) t/τ if v(0) −v(t) = v(0) ln 2.

Ans: 0.368; 0.607; 1.609; 1.181.

EXAMPLE 8.3
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The transient analysis capability of LTspice is very useful when consider-
ing the response of source-free circuits. In this example, we make use of a 
special feature that allows us to vary a component parameter, similar to the 
way we varied the dc voltage in other simulations. We do this by adding 
the SPICE directive .step param. Our complete RC circuit is shown in 
Fig. 8.9, consisting of a 10 μF capacitor with an initial voltage of 5 V, and a 
resistor whose value can be swept. For this example, let us choose 10, 100, 
and 1 kΩ. We can simulate the transient response by the following steps: 

1. Set the initial condition for the circuit. First, label the node for 
the capacitor using Net Name (Cap_voltage for this example). Set 
the initial condition of this node to 5 V using the SPICE Direc-
tive .ic V(Cap_voltage)=5.

2. Define the resistor values. For the value of resistance for the 
resistor component, enter the text {Resistance}, which will replace 
a numerical value with a variable. Define the values you wish to 
simulate using the SPICE Directive .step param Resistance list 
10 100 1k. To help interpret, this directive is stepping through the 
parameter Resistance according to the list of numbers provided. 

3. Define the simulation. Since we intend to examine the tran-
sient response, use the SPICE Directive .tran <Tstop>, 
where <Tstop> is the time where you wish to end the simulation. 
In this case, let us choose 5 ms. 

The resulting circuit schematic, including the labeled SPICE directives, 
is shown in Fig. 8.9.

After running the simulation, the Waveform Data window will 
open. To plot the transient response, use the Add Traces command to 

COMPUTER-AIDED ANALYSIS

■  FIGURE 8.9 Simple RC circuit drawn in lTspice.
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8.3 • THE SOURCE-FREE RL CIRCUIT
Inductors also store energy, similar to capacitors, and would also be  expected 
to show similar time-dependent response in a circuit. Let us see how closely 
the analysis of the parallel (or is it series?) RL circuit shown in Fig. 8.11 
corresponds to that of the RC circuit. 

Let us designate the time-varying current as i(t); with initial value at   
t = 0 as i(0) = I0. Applying KVL to the circuit, we get an equation in terms 
of the unknown current

 Ri +  v  L   = Ri + L   di __ 
dt

   = 0 

or

   di __ 
dt

   +   R __ 
L

   i = 0 

select the Cap_voltage node, or directly click on the node on the circuit 
schematic. The resulting response will then appear in the Waveform 
Data window, as shown in Fig. 8.10. 

Why does a larger value of the time constant RC produce a response 
curve that decays more slowly? Let us consider the effect of each element. 
In terms of the time constant τ, the response of the series RC circuit 
may be written simply as

   v (  t )   =  V  0    e   −t/τ    

An increase in C allows a greater energy storage for the same initial 
voltage, and this larger energy requires a longer time to be dissipated in 
the resistor. We may also increase RC by increasing R. In this case, the 
power flowing into the resistor is greater for the same initial voltage; 
again, a greater time is required to dissipate the stored energy. This 
effect is seen clearly in our simulation result of Fig. 8.10.

■  FIGURE 8.10 Probe output for the node Cap_voltage for the three resistances.

■  FIGURE 8.11 A series RL circuit for which i(t) is  
to be determined, subject to the initial condition  
that i(0) = I0.

i (t)

vR

+

–

vL

+

–
R L
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The differential equation has a familiar form; comparison with 

   dv __ 
dt

   +   v ___ 
RC

   = 0 

shows that the replacement of v by i and RC by L/R produces the identical 
equation we considered previously. It should, since the RL circuit we are 
now analyzing is the dual of the RC circuit we considered first. This dual-
ity forces v(t) for the RC circuit and i(t) for the RL circuit to have identical 
expressions if the resistance of one circuit is equal to the reciprocal of the 
resistance of the other circuit, and if L is numerically equal to C. Thus, the 
response of the RC circuit

 v(t ) = v(0 )  e   −t/RC  =  V  0    e   −t/RC  

enables us to immediately write

   i (  t )   = i (  0 )    e   −tR/L  =  I  0    e   −tR/L    [5]

for the RL circuit. Alternatively, the same result may be obtained by directly 
solving the differential equation using procedures in Sec. 8.1 for the series 
RC circuit. 

Let us discuss the physical nature of the current response of the RL circuit 
as expressed by Eq. [5]. At t = 0 we obtain the correct initial condition, and 
as t becomes infinite, the current approaches zero. This latter result agrees 
with our thinking that if there were any current remaining through the induc-
tor, then energy would continue to flow into the resistor and be dissipated 
as heat. Thus, a final current of zero is necessary. The time constant of the 
RL circuit may be found by using the duality relationships on the expression 
for the time constant of the RC circuit, or it may be found by simply noting 
the time at which the response has dropped to 37 percent of its initial value:

  i(t) =  I  0    e   −tR/L  =  I  0    e   −t /τ   
so that

   τ = L  / R   [6]

Our familiarity with the negative exponential and the significance of the 
time constant τ enables us to sketch the response curve readily (Fig. 8.12). 
Larger values of L or smaller values of R provide larger time constants and 
slower dissipation of the stored energy. A smaller resistance will dissipate a 
smaller power with a given current through it, thus requiring a greater time 
to convert the stored energy into heat; a larger inductance stores a larger 
energy with a given current through it, again requiring a greater time to lose 
this initial energy.

■  FIGURE 8.12 The inductor current i(t) in the 
parallel RL circuit is plotted as a function of time. The 
initial value of i(t) is I0.

0 τ

0.368I0

I0

t

i

If the inductor of Fig. 8.13 has a current iL = 2 A at t = 0, find an 
expression for iL(t) valid for t > 0, and its value at t = 200 μs.

This is the identical type of circuit just considered, so we expect an 
inductor current of the form

   i  L   =  I  0    e   −Rt/L   

EXAMPLE 8.4
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■  FIGURE 8.13 A simple RL circuit in which energy 
is stored in the inductor at t = 0.

iL(t)

vR

+

–

vL

+

–

50 mH
200 Ω

■  FIGURE 8.14 Circuit for Practice Problem 8.4.

1 kΩ

500 nH

iR

EXAMPLE 8.5
For the circuit of Fig. 8.15a, find the voltage labeled v at t = 
200 ms.

(Continued on next page)

▶ Identify the goal of the problem.
The schematic of Fig. 8.15a actually represents two different circuits: 
one with the switch closed (Fig. 8.15b) and one with the switch open 
(Fig. 8.15c). We are asked to find v(0.2) for the circuit shown in  
Fig. 8.15c.

▶ Collect the known information.
Both new circuits are drawn and labeled correctly. We next make the 
assumption that the circuit in Fig. 8.15b has been connected for a 
long time, so any transients have dissipated. We may make such an 
assumption as a general rule unless instructed otherwise. This circuit 
determines iL(0).

▶ Devise a plan.
The circuit of Fig. 8.15c may be analyzed by writing a KVL  
equation. Ultimately we want a differential equation with only v  
and t as variables; we will then solve the differential equation  
for v(t).

▶ Construct an appropriate set of equations.
Referring to Fig. 8.15c, we write

  − v + 10  i  L   + 5   d  i  L   ___ 
dt

   = 0  

Substituting iL = −v/40, we find that

    5 __ 40     dv __ 
dt

   +   (    10 _ 40   + 1 )    v = 0  

where R = 200 Ω, L = 50 mH, and I0 is the initial current flowing 
through the inductor at t = 0. Thus,

   i  L  (t ) = 2  e   −4000t   

Substituting t = 200 × 10−6 s, we find that iL(t) = 898.7 mA, less 
than half the initial value.

PRACTICE 
●

8.4 Determine the current iR through the resistor of Fig. 8.14 at t = 1 ns 
if iR(0) = 6 A.

Ans: 812 mA.

■  FIGURE 8.15 (a) A simple RL circuit with a 
switch thrown at time t = 0. (b) The circuit as it 
exists prior to t = 0. (c) The circuit after the switch 
is thrown and the 24 V source is removed.
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or, more simply,

    dv __ 
dt

   + 10v = 0  [7]

▶ Determine if additional information is required.
From previous experience, we know that a complete expression for 
v will require knowledge of v at a specific instant of time, with t = 0 
being the most convenient. We might be tempted to look at Fig. 8.15b 
and write v(0) = 24 V, but this is only true just before the switch 
opens. The resistor voltage can change to any value in the instant that 
the switch is thrown; only the inductor current must remain un-
changed.

In the circuit of Fig. 8.15b, iL = 24/10 = 2.4 A since the inductor 
acts like a short circuit to a dc current. Therefore, iL(0) = 2.4 A in 
the circuit of Fig. 8.15c as well—a key point in analyzing this type 
of circuit. Therefore, in the circuit of Fig. 8.15c, v(0) = (40)(−2.4) = 
−96 V.

▶ Attempt a solution.
Any of the three basic solution techniques can be brought to bear; 
let’s start by writing the characteristic equation corresponding to 
Eq. [7]:

 s + 10 = 0 

Solving, we find that s = −10, so

  v(t ) = A  e   −10t   [8]

(which, upon substitution into the left-hand side of Eq. [7], results in

  − 10A e   −10t  + 10A e   −10t  = 0  

as expected.)
We find A by setting t = 0 in Eq. [8] and employing the fact that 

v(0) = −96 V. Thus,

  v(t ) = − 96  e   −10t   [9]

and so v(0.2) = −12.99 V, down from a maximum of −96 V.

▶ Verify the solution. Is it reasonable or expected?
Instead of writing a differential equation in v, we could have written 
our differential equation in terms of iL:

 40  i  L   + 10  i  L   + 5   d  i  L   ___ 
dt

   = 0 

or

    d  i  L   ___ 
dt

   + 10  i  L   = 0  

which has the solution iL = Be−10t. With iL(0) = 2.4, we find that iL(t) 
= 2.4e−10t. Since v = −40iL, we once again obtain Eq. [9]. We should 
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note: it is no coincidence that the inductor current and the resistor 
voltage have the same exponential dependence!

PRACTICE 
●

8.5 Determine the inductor voltage v in the circuit of Fig. 8.16 for t > 0.
Ans: −25e−2tV.

10 V
–

+
v 5 H6 Ω

4 Ω

t = 0

iL

■  FIGURE 8.16 Circuit for Practice Problem 8.5.

8.4 • A MORE GENERAL PERSPECTIVE
As seen indirectly from Examples 8.2  and 8.5, regardless of how many 
resistors we have in the circuit, we obtain a single time constant (either   
τ = RC or τ = L/R) when only one energy storage element is present. We can 
formalize this by realizing that the value needed for R is in fact the Thévenin 
equivalent resistance seen by our energy storage element. (Strange as it may 
seem, it is even possible to compute a time constant for a circuit containing 
dependent sources!)

Many of the RC or RL circuits for which we would like to find the natural 
response contain more than a single resistor and capacitor/inductor. Let us 
suppose that we are faced with a circuit containing a single capacitor or in-
ductor, but any number of resistors. It is possible to replace the two-terminal 
resistive network which is across the capacitor or inductor terminals with 
an equivalent resistor, and we may then write down the expression for the 
effective time constant given by

 τ =  R  eq   C 

or

 τ = L /  R  eq   

for RC and RL equivalent circuits, respectively. If there are several capac-
itors (or several inductors) present in a circuit, and they can be combined 
using series and/or parallel combination, then the circuit can be further 
generalized as Ceq (or Leq) with a single time constant. However, be aware 
that this only works if you can combine capacitor or inductor elements in a 
singular equivalent Ceq or Leq; otherwise your circuit will contain multiple 
time constants! 

Based on the exponential time dependence of the capacitor voltage or in-
ductor current, every other voltage and current throughout the circuit must 
follow the same functional behavior. This is made clear by considering the 
capacitor as a voltage source applied to a resistive network. Every current 
and voltage in the resistive network will have the same time dependence 
as the source, as the resistor network will respond instantaneously to any 
changes in the source according to Ohm’s law v = iR. 

Using this time dependence   e   −t/τ  , we can therefore use a general pro-
cedure to solve for any current or voltage in a circuit with a single energy 
storage element.  This technique can be applied to any circuit with one 
inductor and any number of resistors, as well as to those special circuits 
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containing two or more inductors and also two or more resistors that may 
be simplified by resistance or inductance combination to one inductor and 
one resistor.

Source-Free RC and RL Circuit with Single Energy Storage Element

1. Determine the time constant using a Thévenin equivalent circuit.
2. Find the initial condition of the variable of interest.
3. Arrive at the solution.

 v  (t)  = v  ( 0   + )   e   −t /τ   
or 

 i  (t)  = i  ( 0   + )   e   −t /τ  

Initial Conditions: t = 0+ and t = 0−

Finding the initial conditions can perhaps be the trickiest part of solving gen-
eral RC and RL circuits, and the most likely source of error. In the previous 
procedure, why did we use the notation (0+) rather than simply (0)? In the 
case of capacitors, we know that the voltage across a capacitor cannot change 
instantaneously, but the current through the capacitor can change instanta-
neously! For example, when a capacitor is charged to a given voltage and 
holding at steady state, the current is zero. If this capacitor is then switched at 
time t = 0 to a resistive network, the current will instantly change from i = 0  
to a nonzero current to discharge through the network. In other words, the 
voltage just before and after switching are equal v(0−) = v(0+), but the current 
will not be the same, that is, i(0−) ≠ i(0+). Conversely, the current through an 
inductor will not change instantaneously, but the voltage across the inductor 
may change instantaneously such that i(0−) =i(0+) and v(0−) ≠ v(0+).

Therefore, to find our initial condition for our RC or RL circuit, we need 
to analyze our circuit just before and after the event that triggers the time re-
sponse (e.g., a switch). As an example, let us find the current i2 in the circuit 
shown in Fig. 8.17, assuming that some finite amount of energy is stored in 
the inductor at t = 0 so that iL(0) = I0.  

The equivalent resistance the inductor faces is

  R  eq   =  R  3   +  R  4   +    R  1    R  2   _____  R  1   +  R  2  
   

and the time constant is therefore

 τ =   L ___  R  eq  
   

We now need the initial condition, which will be related to our given 
value iL(0+) = I0. Using current division, 

  i  2   ( 0   + )  = −    R  1   _____  R  1   +  R  2  
    I  0   

Finally, we arrive at the solution

   i  2   (t)  =  i  2   (    0   +  )    e   −t/τ   = −    R  1   _____  R  1   +  R  2  
    I  0    e   −t/τ  

■  FIGURE 8.17 A source-free circuit containing 
one inductor and several resistors is analyzed by 
determining the time constant τ = L/Req.

iL

i1 i2

R1 R2 R4

R3 L
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Find v(0+) and i1(0+) for the circuit shown in Fig. 8.18a if v(0−) = V0.

■  FIGURE 8.18 (a) A given circuit containing one capacitor and 
several resistors. (b) The resistors have been replaced by a single 
equivalent resistor; the time constant is simply τ = ReqC.

R1

R2
R3

C

(a)

v
+

–

i1

ReqC

(b)

v

+

–

We first simplify the circuit of Fig. 8.18a to that of Fig. 8.18b, enabling 
us to write

  v =  V  0    e   −t/ R  eq  C   

where

  v ( 0   +  ) = v ( 0   −  ) =  V  0          and         R  eq   =  R  2   +    R  1    R  3   _____  R  1   +  R  3  
    

Every current and voltage in the resistive portion of the network 
must have the form  A e   −t/ R  eq  C  , where A is the initial value of that current 
or voltage. Thus, the current in R1, for example, may be expressed as

   i  1   =  i  1  ( 0   +  )  e   −t/τ   

where

  τ =   (   R  2   +    R  1    R  3   _  R  1   +  R  3  
   )   C  

and i1(0+) remains to be determined from the initial condition. Any 
current flowing in the circuit at t = 0+ must come from the capacitor. 
Therefore, since v cannot change instantaneously, v(0+) = v(0−) = V0 and

   i  1  ( 0   +  ) =    V  0   _____________   R  2   +  R  1    R  3   / ( R  1   +  R  3   )
      R  3   _____  R  1   +  R  3  

    

PRACTICE 
●

8.6 Find values of vC and vo in the circuit of Fig. 8.19 at t equal to (a) 
0−; (b) 0+; (c) 1.3 ms.

■  FIGURE 8.19

+
– 120 V

4 μF

250 Ω 600 Ω 100 Ω

2 kΩ 400 Ω1250 Ω vo

+

–
vC

+

–

t = 0

Ans: 100 V, 38.4 V; 100 V, 25.6 V; 59.5 V, 15.22 V.

EXAMPLE 8.6
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Note that our procedure uses a Thévenin equivalent circuit to describe 
the network connected to our energy storage element. Recalling our prior 
discussions of Thévenin equivalent circuits, they can also contain depen-
dent sources. Our procedure for examining RC and RL circuits similarly 
applies to any network that can be described by a Thévenin equivalent, in-
cluding those with dependent sources. Let us examine cases in the following 
example and practice problem. 

PRACTICE 
●

8.7 At t = 0.15 s in the circuit of Fig. 8.20, find the value of (a) iL;  
(b) i1; (c) i2.

Ans: 0.756 A; 0; 1.244 A.

2 A

2 Ω

8 Ωt = 0 0.4 H

i2 i1 iL

■  FIGURE 8.20

For the circuit of Fig. 8.21a, find the voltage labeled vC for t > 0 if 
vC(0−) = 2 V.

■  FIGURE 8.21 (a) A simple RC circuit containing a dependent source not 
controlled by a capacitor voltage or current. (b) Circuit for finding the Thévenin 
equivalent of the network connected to the capacitor.

20 Ω 20 Ω1.5i1
1.5i1

1 A
i1

vC 1 μF

10 Ω
10 Ω

+

–
i1

Vx

+

–

(a) (b)

The dependent source is not controlled by a capacitor voltage or current, 
so we can start by finding the Thévenin equivalent of the network to the 
left of the capacitor. Connecting a 1 A test source as in Fig. 8.21b,

     V  x   __ 30   + 1 . 5  i  1   = 1  

where

   i  1   =    V  x   __ 30    

Performing a little algebra, we find that Vx = 12 V, so the network 
has a Thévenin equivalent resistance of 12 Ω. Our circuit therefore has 
a time constant

   τ = 12 (  1 ×  10   −6  )   = 12  μs   

The initial condition vC(0+) = vC(0−) = 2 V. Thus,

    v  C  (t) = 2  e   −t /12 ×  10   −6    V   [10]

EXAMPLE 8.7
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Some circuits containing a number of both resistors and capacitors may be 
replaced by an equivalent circuit containing only one resistor and one capac-
itor; it is necessary that the original circuit be one which can be broken into 
two parts, one containing all resistors and the other containing all capacitors, 
such that the two parts are connected by only two ideal conductors. Other-
wise, multiple time constants and multiple exponential terms will be required 
to describe the behavior of the circuit (one time constant for each energy stor-
age element remaining in the circuit after it is reduced as much as possible).

■  FIGURE 8.22 Circuit for Practice Problem 8.8.

PRACTICE 
●

8.8 (a) Regarding the circuit of Fig. 8.22, determine the voltage vc(t) for 
t > 0 if vc(0−) = 11 V. (b) Is the circuit “stable”? 

Ans: vC (t) = 11e−2×103t/3 V, t > 0; Yes, it decays (exponentially) rather than grows 
with time.

2 Ω 1.5v1 2 mF

1 Ω

v1

+

–
vC

+

–

Determine both i1 and iL in the circuit shown in Fig. 8.23a for t > 0.

■  FIGURE 8.23 (a) A circuit with multiple resistors and inductors. (b) After t = 0, 
the circuit simplifies to an equivalent resistance of 110 Ω in series with Leq = 2.2 mH.

iL

i1

18 V

t = 0

90 Ω 3 mH2 mH

1 mH 50 Ω

60 Ω
120 Ω

+
–

(a)

iL

i1

90 Ω 3 mH2 mH

1 mH

(b)

50 Ω

60 Ω
120 Ω

iL

i1

18 V

t = 0

90 Ω 3 mH2 mH

1 mH 50 Ω

60 Ω
120 Ω

+
–

(a)

iL

i1

90 Ω 3 mH2 mH

1 mH

(b)

50 Ω

60 Ω
120 Ω

After t = 0, when the voltage source is disconnected as shown in 
Fig. 8.23b, we easily calculate an equivalent inductance,

   L  eq   =   2 × 3 ____ 2 + 3   + 1 = 2.2  mH  

EXAMPLE 8.8
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As a parting comment, we should be wary of certain situations involving 
only ideal elements which are suddenly connected together. For example, 
we may imagine connecting two ideal capacitors in series having unequal 
voltages prior to t = 0. This poses a problem using our mathematical model 
of an ideal capacitor; however, real capacitors have resistances associated 
with them through which energy can be dissipated.

8.5 • THE UNIT-STEP FUNCTION
We have been studying the response of RC and RL circuits when no sources 
or forcing functions were present. We termed this response the natu-
ral response  because its form depends only on the nature of the circuit. 
The reason that any response at all is obtained arises from the presence 
of initial energy storage within the inductive or capacitive elements in the 
circuit. In some cases we were confronted with circuits containing sources 
and switches; we were informed that certain switching operations were 
performed at t = 0 in order to remove all the sources from the circuit, while 
leaving known amounts of energy stored here and there. In other words, we 
have been solving problems in which energy sources are suddenly removed 
from the circuit; now we must consider that type of response which results 
when energy sources are suddenly applied to a circuit.

We will focus on the response that occurs when the energy sources sud-
denly applied are dc sources. Since every electrical device is intended to be 
energized at least once, and since most devices are turned on and off many 
times in the course of their lifetimes, our study applies to many practical 

an equivalent resistance, in series with the equivalent inductance,

   R  eq   =   90(60 + 120 )  _________ 90 + 180   + 50 = 110  Ω  

and the time constant,

  τ =   
 L  eq   ___  R  eq  

   =   2.2 ×  10   −3  _______ 110   = 20  μs  

Thus, the form of the natural response is Ke−50,000t, where K is an 
unknown constant. Considering the circuit just prior to the switch 
opening (t = 0−), iL = 18/50 A. Since iL(0+) = iL(0−), we know that iL = 
18/50 A or 360 mA at t = 0+, and so

   i  L   =   {   360  mA                   t < 0   
360  e   −50,000t    mA

  
t ≥ 0

    

There is no restriction on i1 changing instantaneously at t = 0, so its 
value at t = 0− (18/90 A or 200 mA) is not relevant to finding i1 for t > 
0. Instead, we must find i1(0+) through our knowledge of iL(0+). Using 
current division,

   i  1  ( 0   +  ) = −  i  L  ( 0   +  )   120 + 60 ________  120 + 60 + 90   = − 240  mA  

Hence,

   i  1   =   {    200  mA                    t < 0   
− 240  e   −50,000t    mA

  
t ≥ 0
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cases. Even though we are now restricting ourselves to dc sources, there are 
still many cases in which these simpler examples correspond to the opera-
tion of physical devices. For example, the first circuit we will analyze could 
represent the buildup of the current when a dc motor is started. The genera-
tion and use of the rectangular voltage pulses needed to represent a number 
or a command in a microprocessor provide many examples in the field of 
electronic or transistor circuitry. Similar circuits are found in the synchroni-
zation and sweep circuits of television receivers, in communication systems 
using pulse modulation, and in radar systems, to name but a few examples.

We have been speaking of the “sudden application” of an energy source, 
and by this phrase we imply its application in zero time.1 The operation of a 
switch in series with a battery is thus equivalent to a forcing function which 
is zero up to the instant that the switch is closed and is equal to the bat-
tery voltage thereafter. The forcing function has a break, or discontinuity, 
at the instant the switch is closed. Certain special forcing functions which 
are discontinuous or have discontinuous derivatives are called singularity 
functions, the two most important of these singularity functions being the 
unit-step function and the unit-impulse function.

We define the unit-step forcing function as a function of time which is 
zero for all values of its argument less than zero and which is unity for all 
positive values of its argument. If we let (t − t0) be the argument and repre-
sent the unit-step function with u, then u(t − t0) must be zero for all values 
of t less than t0, and it must be unity for all values of t greater than t0. At  
t = t0, u(t − t0) changes abruptly from 0 to 1. Its value at t = t0 is not defined, 
but its value is known for all instants of time that are arbitrarily close to t = 
t0. We often indicate this by writing  u  (   t  0  −  )    = 0  and  u  (   t  0  +  )    = 1 . The concise 
mathematical definition of the unit-step forcing function is

 u(t −  t  0   ) =   {   0  t <  t  0    1  
t >  t  0  

   

and the function is shown graphically in Fig. 8.24. Note that a vertical line 
of unit length is shown at t = t0. Although this “riser” is not strictly a part of 
the definition of the unit step, it is usually shown in each drawing.

We also note that the unit step need not be a time function. For example, 
u(x − x0) could be used to denote a unit-step function where x might be a 
distance in meters, for example, or a frequency.

Very often in circuit analysis a discontinuity or a switching action takes 
place at an instant that is defined as t = 0. In that case t0 = 0, and we 
then represent the corresponding unit-step forcing function with u(t − 0), or 
more simply u(t). This is shown in Fig. 8.25. Thus

 u(t ) =   {   0  t < 0  1  
t > 0   

The unit-step forcing function is in itself dimensionless. If we wish it to 
represent a voltage, it is necessary to multiply u(t − t0) by some constant 
voltage, such as 5 V. Thus, v(t) = 5u(t − 0.2) V is an ideal voltage source 
which is zero before t = 0.2 s and a constant 5 V after t = 0.2 s. This forcing 
function is shown connected to a general network in Fig. 8.26a.

0
t

t0

1

u(t – t0)

■  FIGURE 8.24 The unit-step forcing function, 
u(t − t0).

■  FIGURE 8.25 The unit-step forcing function u(t) is 
shown as a function of t.

u(t)

0
t

1

(1) Of course, this is not physically possible. However, if the time scale over which such an event occurs is 
very short compared to all other relevant time scales that describe the operation of a circuit, this is approxi-
mately true and mathematically convenient.
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Physical Sources and the Unit-Step Function
Perhaps we should ask what physical source is the equivalent of this dis-
continuous forcing function. By equivalent, we mean simply that the 
 voltage–current characteristics of the two networks are identical. For the 
step-voltage source of Fig. 8.26a, the voltage–current characteristic is sim-
ple: the voltage is zero prior to t = 0.2 s, it is 5 V after t = 0.2 s, and the 
current may be any (finite) value in either time interval. Our first thoughts 
might produce the attempt at an equivalent shown in Fig. 8.26b, a 5 V dc 
source in series with a switch which closes at t = 0.2 s. This network is not 
equivalent for t < 0.2 s, however, because the voltage across the battery and 
switch is completely unspecified in this time interval. The “equivalent” 
source is an open circuit, and the voltage across it may be anything. After t 
= 0.2 s, the networks are equivalent, and if this is the only time interval in 
which we are interested, and if the initial currents which flow from the two 
networks are identical at t = 0.2 s, then Fig. 8.26b becomes a useful equiv-
alent of Fig. 8.26a.

In order to obtain an exact equivalent for the voltage-step forcing func-
tion, we may provide a single-pole double-throw switch. Before t = 0.2 s, 
the switch serves to ensure zero voltage across the input terminals of the 
general network. After t = 0.2 s, the switch is thrown to provide a constant 
input voltage of 5 V. At t = 0.2 s, the voltage is indeterminate (as is the step 
forcing function), and the battery is momentarily short-circuited (it is fortu-
nate that we are dealing with mathematical models!). This exact equivalent 
of Fig. 8.26a is shown in Fig. 8.26c.

Figure 8.27a shows a current-step forcing function driving a general 
network. If we try to replace this circuit with a dc source in parallel with 
a switch (which opens at t = t0), we must realize that the circuits are 
equivalent after t = t0 but that the responses after t = t0 are alike only 
if the initial conditions are the same. The circuit in Fig. 8.27b implies 
that no voltage exists across the current source terminals for t < t0. This 
is not the case for the circuit of Fig. 8.27a. However, we may often use 
the circuits of Fig. 8.27a and b interchangeably. The exact equivalent of 
Fig. 8.27a is the dual of the circuit of Fig. 8.26c; the exact equivalent of 
Fig. 8.27b cannot be constructed with current- and voltage-step forcing 
functions alone.2

+
–

General
network

(a)

5u(t – 0.2) V
+
–5 V

t = 0.2 s

General
network

(b)

+
–5 V

General
network

(c)

t = 0.2 s

■  FIGURE 8.26 (a) A voltage-step forcing function is shown as the source driving a general network.  
(b) A simple circuit which, although not the exact equivalent of part (a), may be used as its equivalent in many 
cases. (c) An exact equivalent of part (a).

General
network

(a)

I0u(t – t0) I0
General
network

(b)

t = t0

General
network

(a)

I0u(t – t0) I0
General
network

(b)

t = t0

■  FIGURE 8.27 (a) A current-step forcing function 
is applied to a general network. (b) A simple circuit 
which, although not the exact equivalent of part (a), 
may be used as its equivalent in many cases.

(2) The equivalent can be drawn if the current through the switch prior to t = t0 is known.
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The Rectangular Pulse Function
Some very useful forcing functions may be obtained by manipulating the 
unit-step forcing function. Let us define a rectangular voltage pulse by the 
following conditions:

 u(t ) =   
{

   
0
  

     t <  t  0  
    V  0           t  0   < t <  t  1     

0
  

     t >  t  1  
    

The pulse is drawn in Fig. 8.28. Can this pulse be represented in terms 
of the unit-step forcing function? Let us consider the difference of the 
two unit steps, u(t − t0) − u(t − t1). The two step functions are shown in 
Fig. 8.29a, and their difference is a rectangular pulse. The source V0u(t − t0)  
− V0u(t − t1) which provides us with the desired voltage is indicated in 
Fig. 8.29b.

If we have a sinusoidal voltage source Vm sin ωt which is suddenly con-
nected to a network at t = t0, then an appropriate voltage forcing function 
would be v(t) = Vmu(t − t0) sin ωt. If we wish to represent one burst of 
energy from the transmitter for a radio-controlled car operating at 47 MHz 
(295 Mrad/s), we may turn the sinusoidal source off 70 ns later by a second 
unit-step forcing function.3 The voltage pulse is thus

 v(t ) =  V  m   [ u(t −  t  0   ) − u(t −  t  0   − 7 ×  10   −8  ) ]sin(295 ×  10   6  t ) 

This forcing function is sketched in Fig. 8.30.

■  FIGURE 8.28 A useful forcing function, the 
rectangular voltage pulse.

V0

0

v (t)

t0 t1
t

■  FIGURE 8.29 (a) The unit steps u(t − t0) and −u(t − t1). (b) A source 
which yields the rectangular voltage pulse of Fig. 8.28.

0

–1

1

t0 t1

u (t – t0)

–u (t – t1)

(a)

t
+
–

+
–

(b)

V0u(t – t1)

V0u(t – t0)
v (t)

+

–

■  FIGURE 8.30 A 47 MHz radio-frequency pulse, described by v(t) = 
Vm[u(t − t0) − u(t − t0 − 7 × 10−8)] sin(259 × 106t).

0 t0 + 7 × 10–8 
t(s)

v (t)

Vm

–Vm

t0

(3) Apparently, we’re pretty good at the controls of this car. A reaction time of 70 ns?
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PRACTICE 
●

8.9 Evaluate each of the following at t = 0.8: (a) 3u(t) − 2u(−t) + 
0.8u(1 − t); (b) [4u(t)]u(−t); (c) 2u(t) sin πt. 

Ans: 3.8; 0; 1.176.

8.6 • DRIVEN RC CIRCUITS
We are now ready to analyze a circuit with the sudden application of a dc 
source. The circuit consists of a battery whose voltage is V0 in series with a 
switch, a resistor R, and a capacitor C. The switch is closed at t = 0, as indi-
cated on the circuit diagram of Fig 8.31. It is evident that the current i(t) is zero 
before t = 0, and assuming that the capacitor is not charged prior to t = 0, v(t) is 
also zero before t = 0. We can replace the battery and switch by a voltage-step 
forcing function V0    u  (t), which also produces no response prior to t = 0. After  
t = 0, the two circuits are clearly identical. Hence, we seek the voltage v(t) either  
in the given circuit of Fig. 8.31a or in the equivalent circuit of Fig. 8.31b.

We will find v(t) by writing the appropriate circuit equation and then by 
solving the differential equation. Applying KCL for the resistor and capac-
itor current, we get

 C   dv __ 
dt

   +   v −  V  0   ____ 
R

   = 0  (for t > 0)

Rearranging terms to group the forcing function on the right side and 
multiplying by R,

  RC   dv __ 
dt

   + v =  V  0    [11]

As described in Sec. 8.1, the complete solution may be described as the 
sum of two parts: the natural response and the forced response,

 v =  v  n   +  v  f   

where v is the complete response, vn is the natural response, and vf is the 
forced response.

The complete response is composed of two parts, the natural response 
and the forced response. The natural response is a characteristic of the cir-
cuit and not of the sources. Its form may be found by considering the source-
free circuit, and it has an amplitude that depends on both the initial amplitude 
of the source and the initial energy storage. The forced response has the 
characteristics of the forcing function; it is found by pretending that all 
switches were thrown a long time ago. Since at present we are concerned 
only with switches and dc sources, the forced response is merely the solu-
tion of a simple dc circuit problem.

The Natural Response
The natural response is the solution for the case where there is no source or 
forcing function. Removing the source term from Eq. [11] gives

 RC   dv __ 
dt

   + v = 0 

■  FIGURE 8.31 (a) The given circuit. (b) An equivalent 
circuit, possessing the same response v(t) in the case 
of an initially uncharged capacitor.

t = 0
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+
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Our analyses of RC (and RL) circuits thus far have all been source-free, 
where we have already found the natural response 

  v  n   = A  e   −t/RC  

Since the complete solution depends on both the natural response and 
the forced response, the amplitude A may not be the same as the initial 
value. We should only determine the unknown constant A after finding 
the complete solution and applying the initial conditions of the circuit.

The Forced Response
We can use a similar approach to the general solution procedure in Sec. 8.1 to 
find the forced response. In this approach we assume or “guess” a solution and 
apply it to the differential equation. In this case, we have a forcing function that 
is a constant, so let us assume that the forced solution will also be a constant. 

  v  f   = K 

Substituting the forced solution into the differential equation (Eq. [11]) 
gives

 RC   d (K)  ____ 
dt

   + K =  V  0   

Since the constant K is not time dependent, we arrive at

  v  f   = K =  V  0   

We should see that the forced response might have been obtained with-
out evaluating the differential equation because it must be the complete re-
sponse at infinite time. The forced response is thus obtained by inspection 
of the final circuit after the natural response has died out. However, the 
technique outlined may be applied to more complicated forcing functions, 
which may also have a time dependence.

Determination of the Complete Response
The complete solution can be obtained by adding the natural and forced 
solutions, and then applying initial conditions to determine unknown con-
stants. The complete solution is given by

  v =  v  n   +  v  f   = A  e   −t/RC  +  V  0    [12]

For t < 0, the voltage source was zero, and the corresponding capacitor 
voltage is v(0−) = 0. Since the capacitor voltage cannot change instanta-
neously, we also know that v(0+) = v(0−) = 0. Substituting in our complete 
response for t > 0

 v ( 0   + )  = A  e   − (  0 )  /RC  +  V  0   = 0 

 A = − V  0   

Substituting the value for A into Eq. [12]

 v = − V  0    e   −t/RC  +  V  0   

or rearranging, 

 v =  V  0    (1 −  e   −t/RC )  
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A plot of the result is shown in Fig. 8.32, where we see that the capac-
itor voltage builds up from its initial value of zero to its final value of V0, 
with a transient response that has a time constant  τ = RC . The transition is 
effectively accomplished in a time 3τ. In one time constant, the voltage has 
attained 63.2 percent of its final value.

Now suppose that the capacitor in the preceding circuit has an initial 
value that is nonzero, and then it switches at time t = 0 to a larger value, as 
shown in Fig. 8.33. In this case, the capacitor is switching between two dif-
ferent voltage sources. Mathematically, the circuit could also be described 
by a single voltage source of 2 + 3u(t) V. Physical intuition tells us that the 
capacitor would begin with an initial value v (0+) = v(0−) = 2 V and charge 
to a final value of v(∞) = 5 V according to a time constant. Let us confirm 
this mathematically. 

We can find the solution using the same procedure as above, but writing 
variables in more general terms of v(0+) and v(∞). The natural solution is 
the same as before, 

  v  n   = A  e   −t/RC  

while the forced solution may be written more generally as

  v  f   = v (∞)  

to describe the final voltage after the natural response has died out.
The complete solution is given by 

 v =  v  n   +  v  f   = A  e   −t/RC  + v (∞)  

where we again need to find the unknown constant A according to the initial 
conditions. Evaluating at t = 0+,

 v  ( 0   + )  = A  e   − (  0 )  /RC  + v  (∞)  = A + v  (∞)  

Thus,

 A = v  ( 0   + )  − v  (∞)  

and

 v =  [v  ( 0   + )  − v  (∞) ]   e   −t/RC  + v  (∞)  

Substituting numerically, we get

 v =  [2 − 5]   e   −t/ (  120×5× 10   −3  )    + 5 = 5 − 3  e   −t/ (  0.6 s )     V 

■  FIGURE 8.32 The current flowing through the 
inductor of Fig. 8.31 is shown graphically. A line 
extending the initial slope meets the constant forced 
response at t = τ.

0

0.632V0

V0

τ 2τ 3τ

v

t

C = 5 mF

R = 120 Ω

vC (t)
+

–

t = 0

2 V 5 V

■  FIGURE 8.33 Capacitor circuit switching between two 
different voltage supplies.
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The voltage response for this circuit is plotted in Fig 8.34. Analyzing the 
solution, we see that the capacitor voltage increases from 2 V at t = 0 to a 
final value of 5 V according to an exponential relation with time constant 
τ = RC = 0.6 s.

Recall that a circuit with a single capacitor (or equivalent capacitance 
Ceq) will require that every voltage and current throughout the circuit must 
follow the same functional behavior. We can therefore use a general proce-
dure to find the current and voltage anywhere for the step response of an RC 
circuit—without repeating the solution to the differential equation! 

2

5

1 2 3

Forced response
begins around

t = 3τ

v(t) (V)

t (s)t = 0.6 s

■  FIGURE 8.34 Voltage response for the circuit in 
Fig. 8.33.

Procedure for Step Reponse of RC Circuit

1. With all independent sources zeroed out, simplify the circuit to 
determine Req and Ceq, and the time constant τeq = ReqCeq.

2. Determine the initial condition v(0+) or i(0+) [recall the require-
ment that any capacitor voltage vc(0−) = vc(0+)].

3. Determine the final condition v(∞) or i(∞).

4. The final response is given by

 v = v (∞)  +  [v ( 0   + )  − v (∞) ]   e   −t/τ   

or

 i = i (∞)  +  [i ( 0   + )  − i (∞) ]   e   −t/τ  

Find the capacitor voltage vC(t) and the current i(t) in the 200 Ω 
resistor of Fig. 8.35 for all time.

We begin by examining the circuit for  t > 0 to find Req and Ceq and 
the time constant. We only have a single capacitor, given by C = 50 
mF. Replacing the 50 V source with a short circuit and evaluating the 
equivalent resistance to find the time constant (Thévenin equivalent 
resistance “seen” by the capacitor) yields

   R  eq   =   1 ________  
  1 __ 50   +   1 ___ 200   +   1 __ 60  

   = 24  Ω  

and

  τ =  R  eq   C =  (24)   (0 . 050)  = 1.2 s  

To determine the initial conditions, consider the state of the circuit 
at t < 0, corresponding to the switch at position a as represented in 
Fig. 8.35b. As usual, we assume no transients are present, so only a 
forced response due to the 120 V source is relevant to finding vc(0−). 
Simple voltage division then gives us the initial voltage,

   v  C  (0 ) =   50 _____ 50 + 10  (120 ) = 100  V  

EXAMPLE 8.9

(Continued on next page)

  SECTION 8.6 DRIVEN RC CIRCUITS
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a

b
10 Ω

60 Ω
200 Ω

50 Ω

120 V
50 V

50 mF vC (t)

+

–

i (t)

t = 0

t ≤ 0

50 V
+

–
120 V

+

–

200 Ω
50 Ω10 Ω 60 Ω 50 mF vC

+

–

i (t)

(b)(a)

t ≥ 0

50 V
+

–

+

–
+

–

50 Ω200 Ω
60 Ω

50 mF vC

+

–
i (t)

(c)

a

b
10 Ω

60 Ω
200 Ω

50 Ω

120 V
50 V

50 mF vC (t)

+

–

i (t)

t = 0

t ≤ 0

50 V
+

–
120 V

+

–

200 Ω
50 Ω10 Ω 60 Ω 50 mF vC

+

–

i (t)

(b)(a)

t ≥ 0

50 V
+

–

+

–
+

–

50 Ω200 Ω
60 Ω

50 mF vC

+

–
i (t)

(c)

a

b
10 Ω

60 Ω
200 Ω

50 Ω

120 V
50 V

50 mF vC (t)

+

–

i (t)

t = 0

t ≤ 0

50 V
+

–
120 V

+

–

200 Ω
50 Ω10 Ω 60 Ω 50 mF vC

+

–

i (t)

(b)(a)

t ≥ 0

50 V
+

–

+

–
+

–

50 Ω200 Ω
60 Ω

50 mF vC

+

–
i (t)

(c)■  FIGURE 8.35 (a) An RC circuit in which the complete responses vC and i are obtained by 
adding a forced response and a natural response. (b) Circuit for t ≤ 0. (c) Circuit for t ≥ 0.

Since the capacitor voltage cannot change instantaneously, this volt-
age is equally valid at t = 0− and t = 0+.

The corresponding circuit for t > 0 has been redrawn in Fig. 8.35c for 
convenience. In order to evaluate the forced response with the switch at b, 
we wait until all the voltages and currents have stopped changing, thus treat-
ing the capacitor as an open circuit, and use voltage division once more:

   
 v  C   (∞)  = 50  (     200 ∥ 50 ___________  60 + 200 ∥ 50   )   

     
                                    = 50  (      (  50 )   (  200 )   / 250  _______________  60 +  (  50 )   (  200 )   /  (  250 )     )    = 20  V

  

Consequently,

  v  C   =  v  C   (∞)  +  [ v  C   ( 0   + )  −  v  C   (∞) ]   e   −t/τ  

  v  C   =  v  C   = 20 +  (100 − 20)   e   −t/1.2           V 

or
  v  C   = 20 + 80  e   −t/1.2           V          t ≥ 0 

and
  v  C   = 100  V          t < 0 
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This response is sketched in Fig. 8.36a; again the natural response is 
seen to form a transition from the initial to the final response.

Next we attack i(t). This response need not remain constant during 
the instant of switching. With the contact at a, it is evident that i(0−) = 
50/260 = 192.3 mA. We also need to know i(0+) when the contact 
switches to position b, which may be found by fixing our attention on 
the energy-storage element (the capacitor). The fact that vc must remain 
100 V during the switching interval is the governing condition which 
establishes the other currents and voltages at t = 0+. Since vc(0+) = 
100 V, and since the capacitor is in parallel with the 200 Ω resistor, we 
find i(0+) = 0.5 A. When the switch moves to position b, the forced 
response for this current becomes

 i (∞)  =   50  _________________   60 +  (  50 )   (  200 )   /  (  50 + 200 )      (     50 _ 50 + 200   )    = 0.1  A 

Combining the forced and natural responses, we obtain

 i = i (∞)  +  [i ( 0   + )  − i (∞) ]   e   −t/τ   A 

 i = 0 . 1 +  [0 . 5 − 0 . 1]   e   −t/1.2   A 

and thus

    
 i (  t )   = 0.1923  A          t < 0 

     i (  t )   = 0.1 + 0.4  e   −t/1.2   A          t > 0    

or

  i (  t )   = 0.1923 +  (   − 0.0923 + 0.4  e   −t/1.2  )  u (  t )   A  

where the last expression is correct for all t.
The complete response for all t may also be written concisely by 

using u(−t), which is unity for t < 0 and 0 for t > 0. Thus,

  i (  t )   = 0.1923u (   − t )   +  (  0.1 + 0.4  e   −t/1.2  )  u (  t )   A  

This response is sketched in Fig. 8.36b. Note that only four numbers are 
needed to write the functional form of the response for this single-energy- 
storage-element circuit, or to prepare the sketch: the constant value prior to 
switching (0.1923 A), the instantaneous value just after switching (0.5 A),  
the constant forced response (0.1 A), and the time constant (1.2 s). The 
appropriate negative exponential function is then easily written or drawn.

PRACTICE 
●

8.10 For the circuit of Fig. 8.37, find vc(t) at t equal to (a) 0−; (b) 0+; 
(c) ∞; (d) 0.08 s. 

+
–

20 kΩ25 kΩ

80 kΩ1 mA5 μF vC (t)

+

–

10u(t) V

iR

■  FIGURE 8.37

Ans: 20 V; 20 V; 28 V; 24.4 V.

■  FIGURE 8.36 The responses (a) vC and  
(b) i are plotted as functions of time for the circuit  
of Fig. 8.35.
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Developing an Intuitive Understanding
The reason for the two responses, forced and natural, may be seen from 
physical arguments. We know that our circuit will eventually assume the 
forced response. However, at the instant the switches are thrown, the initial 
capacitor voltages (or, in RL  circuits, the currents through the inductors) 
will have values that depend only on the energy stored in these elements. 
These currents or voltages cannot be expected to be the same as the currents 
and voltages demanded by the forced response. Hence, there must be a tran-
sient period during which the currents and voltages change from their given 
initial values to their required final values. The portion of the response that 
provides the transition from initial to final values is the natural response 
(often called the transient response, as we found earlier). If we describe the 
response of the simple source-free RC circuit in these terms, then we should 
say that the forced response is zero and that the natural response serves to 
connect the initial response dictated by the stored energy with the zero value 
of the forced response.

This description is appropriate only for those circuits in which the nat-
ural response eventually dies out. This always occurs in physical circuits 
where some resistance is associated with every element, but there are a 
number of “pathologic” circuits in which the natural response is nonvan-
ishing as time becomes infinite. Those circuits in which trapped currents 
circulate around inductive loops, or voltages are trapped in series strings of 
capacitors, are examples.

8.7 • DRIVEN RL CIRCUITS
The complete response of any RL circuit may also be obtained using a 
virtually identical procedure to what we have already discussed in detail 
for RC circuits. The primary distinction, as in the case of the unforced 
solution for RC and RL circuits, is the difference in time constant and the 
condition for inductors that iL(0−)= iL(0+) . The general procedure can be 
outlined as

Procedure for Step Reponse of RL Circuit

1. With all independent sources zeroed out, simplify the circuit to 
determine Req and Leq, and the time constant τeq = Leq / Req.

2. Determine the initial condition v(0+) or i(0+) [recall the require-
ment that any inductor current iL(0−) = iL(0+)].

3. Determine the final condition v(∞) or i(∞).
4. The final response is given by

 v = v  (∞)  +  [v  ( 0   + )  − v (∞) ]  e   −t/τ  

or

 i = i (∞)  +  [i ( 0   + )  − i (∞) ]  e   −t/τ  
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Determine i(t) for all values of time in the circuit of Fig. 8.38.

■  FIGURE 8.38 The circuit of Example 8.10.

+–

50 V

2 Ω50u (t) V

6 Ω 3 H

i (t)

+
–

The circuit contains a dc voltage source as well as a step-voltage 
source. We might choose to replace everything to the left of the induc-
tor with the Thévenin equivalent, but instead let us merely recognize 
the form of that equivalent as a resistor in series with some voltage 
source. The circuit contains only one energy storage element, the 
 inductor. We first note that

 τ =   L ___  R  eq  
   =   3 ___ 1.5   = 2   s 

Prior to t = 0, the 50 V source is dropped across the 2 Ω resistor (note 
that the 6 Ω resistor is short-circuited by the inductor). The resulting current 
through the inductor is i(0) = 25 A, and it cannot change instantaneously. 
Similarly, the forced response after a long time will have a total voltage 
drop of 100 V across the 2 Ω resistor, resulting in i(∞) = 50 A. Thus,

 i = i (∞)  +  [i ( 0   + )  − i (∞) ]  e   −t/τ  

 i = 50 +  (25 − 50)  e   −0.5t   A         t > 0 

or

 i = 50 − 25  e   −0.5t   A         t > 0 

We complete the solution by also stating

 i = 25  A         t < 0 

or by writing a single expression valid for all t,

  i = 25 + 25 (  1 −  e   −0.5t  )  u (  t )   A  

The complete response is sketched in Fig. 8.39. Note how the natural 
response serves to connect the response for t < 0 with the constant 
forced response.

PRACTICE 
●

8.11 A voltage source, vs = 20u(t) V, is in series with a 200 Ω resistor 
and a 4 H inductor. Find the magnitude of the inductor current at t 
equal to (a) 0−; (b) 0+; (c) 8 ms; (d) 15 ms.
Ans: 0; 0; 32.97 mA; 52.76 mA

EXAMPLE 8.10

■  FIGURE 8.39 The response i(t) of the circuit 
shown in Fig. 8.38 is sketched for values of times 
less and greater than zero.

25

50

0–2 2 4 6

Forced response
begins around

t > 3τi(t) (A)

t (s)
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For the circuit of Fig. 8.40, find i(t) for t = ∞, 3−, 3+, and 100 μs 
after the source changes value.

Long after any transients have died out (t → ∞), the circuit is a simple 
dc circuit driven by a 12 V voltage source. The inductor appears as a 
short circuit, so

  i(∞ ) =   12 ____ 1000   = 12  mA  

What is meant by i(3−)? This is simply a notational convenience to 
indicate the instant before the voltage source changes value. For t < 3, 
u(t − 3) = 0. Thus, i(3−) = 0 as well.

At t = 3+, the forcing function 12u(t − 3) = 12 V. However, since the 
inductor current cannot change in zero time, i(3+) = i(3−) = 0.

The most straightforward approach to analyzing the circuit for t > 3 s 
is to write our solution as

  i(t′) =   (     V  0   _ 
R

   −    V  0   _ 
R

    e   −Rt′/L  )   u(t′)  

where the variable t ′  represents a shift in the time axis such that

  t′ = t − 3  

Therefore, with V0/R = 12 mA and R/L = 20,000 s−1,

  i(t − 3 ) = (12 − 12 e   −20,000(t−3)  )  u(t − 3) mA  [13] 

which can be written more simply as

  i(t) = (12 − 12  e   −20,000(t−3)  )  u(t − 3 ) mA  [14] 

since the unit-step function forces a zero value for t < 3, as required. 
Substituting t = 3.0001 s into Eq. [13] or [14], we find that i = 10.38 
mA at a time 100 μs after the source changes value.

PRACTICE 
●

8.12 The voltage source 60 − 40u(t) V is in series with a 10 Ω resistor 
and a 50 mH inductor. Find the magnitudes of the inductor current and 
voltage at t equal to (a) 0−; (b) 0+; (c) ∞; (d) 3 ms. 

Ans: 6 A, 0 V; 6 A, 40 V; 2 A, 0 V; 4.20 A, 22.0 V.

EXAMPLE 8.11

■  FIGURE 8.40 A simple RL circuit driven by a 
voltage-step forcing function.

+
–

i (t) 1 kΩ

50 mH12u(t – 3) V

PRACTICE 
●

8.13 The circuit shown in Fig. 8.41 has been in the form shown for a 
very long time. The switch opens at t = 0. Find iR at t equal to (a) 0−; 
(b) 0+; (c) ∞; (d) 1.5 ms. 

Ans: 0; 10 mA; 4 mA; 5.34 mA.

■  FIGURE 8.41

iR

0.1 H

t = 0 60 Ω 40 Ω10 mA
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8.8 •  PREDICTING THE RESPONSE OF SEQUENTIALLY 
SWITCHED CIRCUITS

In Example 8.11 we briefly considered the response of an RL circuit to a 
pulse waveform, in which a source was effectively switched into and sub-
sequently switched out of the circuit. This type of situation is common in 
practice, as few circuits are designed to be energized only once (passenger 
vehicle airbag triggering circuits, for example). In predicting the response of 
simple RL and RC circuits subjected to pulses and series of pulses—some-
times referred to as sequentially switched circuits—the key is the relative 
size of the circuit time constant to the various times that define the pulse 
sequence. The underlying principle behind the analysis will be whether the 
energy storage element has time to fully charge before the pulse ends, and 
whether it has time to fully discharge before the next pulse begins.

Consider the circuit shown in Fig. 8.42a, which is connected to a pulsed 
voltage source described by seven separate parameters defined in Fig. 8.42b. 

V2

V1
t

Td

Tperiod

TonTr
Tf

(a) (b)

(c)

V2

V1
t

Td

Tperiod

TonTr
Tf

(a) (b)

(c)

V2

V1
t

Td

Tperiod

TonTr
Tf

(a) (b)

(c)

■  FIGURE 8.42 (a) Schematic of a simple RC circuit connected to a pulsed voltage waveform. (b) Diagram of the SPICE PULSE parameter definitions, and (c) 
definitions for PULSE voltage source in lTspice.
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The waveform is bounded by two values, V1 and V2. The time tr required to 
change from V1 to V2 is called the rise time (Tr), and the time tf required 
to change from V2 to V1 is called the fall time (Tf). The duration WP of the 
pulse is referred to as the pulse width (Ton), and the period (Tperiod) of 
the waveform is the time it takes for the pulse to repeat. Note also that 
SPICE allows a time delay (Td) before the pulse train begins, which can 
be useful in allowing initial transient responses to decay for some circuit 
configurations. The number of cycles can also be specified by (Ncycles). 
To edit these parameters on the voltage source, right-click on the source, 
click on the Advanced button, and choose the style PULSE under the Time 
Domain Function. The window for specifying the voltage source is shown 
in Fig. 8.42c.

For the purposes of this discussion, we set a zero time delay, V1 = 0, 
and V2 = 9 V. The circuit time constant is τ = RC = 1 ms, so we set the 
rise and fall times to be 1 ns. Although SPICE will not allow a voltage to 
change in zero time since it solves the differential equations using discrete 
time intervals, comparing to our circuit time constant 1 ns is a reasonable 
approximation to “instantaneous.”

We will consider four basic cases, summarized in Table 8.1. In the first 
two cases, the pulse width Wp is much longer than the circuit time constant 
τ, so we expect the transients resulting from the beginning of the pulse to die 
out before the pulse is over. In the latter two cases, the opposite is true: The 
pulse width is so short that the capacitor does not have time to fully charge 
before the pulse ends. A similar issue arises when we consider the response 
of the circuit when the time between pulses (T − Wp) is either short (Case 
II) or long (Case III) compared to the circuit time constant.

We qualitatively sketch the circuit response for each of the four cases in 
Fig. 8.43, arbitrarily selecting the capacitor voltage as the quantity of interest as 
any voltage or current is expected to have the same time dependence. In Case 
I, the capacitor has time to both fully charge and fully discharge (Fig. 8.43a), 
whereas in Case II (Fig. 8.43b), when the time between pulses is reduced, it no 
longer has time to fully discharge. In contrast, the capacitor does not have time 
to fully charge in either Case III (Fig. 8.43c) or Case IV (Fig. 8.43d).

Case I: Time Enough to Fully Charge and  
Fully Discharge
We can obtain exact values for the response in each case, of course, by per-
forming a series of analyses. We consider Case I first. Since the capacitor 

Case Pulse Width Wp Period T

I  10 ms (τ ≪ Wp)    20 ms (τ ≪ T − Wp)

II  10 ms (τ ≪ Wp) 10.1 ms (τ ≫ T − Wp)

III 0.1 ms (τ ≫ Wp) 10.1 ms (τ ≪ T − Wp)

IV 0.1 ms (τ ≫ Wp) 0.2 ms (τ ≫ T − Wp)

TABLE 

●

 8.1  Four Separate Cases of Pulse Width and  Period 
Relative to the Circuit Time Constant of 1 ms
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has time to fully charge, the forced response will correspond to the 9 V dc 
driving voltage. The complete response to the first pulse is therefore

   v   C   (  t )   = 9 + A e   −1000t  V  

With v C(0) = 0, A = −9 V and so

    v   C   (  t )   = 9 (  1 −  e   −1000t  )   V   [15]

in the interval of 0 < t < 10 ms. At t = 10 ms, the source drops suddenly to 
0 V, and the capacitor begins to discharge through the resistor. In this time 
interval we are faced with a simple “source-free” RC circuit, and we can 
write the response as

   v   C  (t ) = B e   −1000(t−0.01)            10 < t < 20  ms  [16]

where B = 8.99959 V is found by substituting t = 10 ms in Eq. [15]; we will 
be pragmatic here and round this to 9 V, noting that the value calculated is 
consistent with our assumption that the initial transient dissipates before the 
pulse ends.

At t = 20 ms, the voltage source jumps immediately back to 9 V. The 
capacitor voltage just prior to this event is given by substituting t = 20 ms 
in Eq. [16], leading to vC(20 ms) = 408.6 μV, essentially zero compared to 
the peak value of 9 V.

If we keep to our convention of rounding to four significant digits, the 
capacitor voltage at the beginning of the second pulse is zero, which is 
the same as our starting point. Thus, Eqs. [15] and [16] form the basis of 
the response for all subsequent pulses, and we may write

   v   C  (t ) =   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

9(1 −  e   −1000t  )  V

  

  0 ≤ t ≤ 10  ms

     9 e   −1000(t−0.01)   V  10 < t ≤ 20  ms     
9(1 −  e   −1000(t−0.02)  )  V

  
20 < t ≤ 30  ms

     

9 e   −1000(t−0.03)   V

  

30 < t ≤ 40  ms

    

and so on.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

■  FIGURE 8.43 Capacitor voltage for the RC circuit, with pulse width and period as in (a) Case I; (b) Case II; 
(c) Case III; and (d) Case IV.
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Case II: Time Enough to Fully Charge But  
Not Fully Discharge
Next we consider what happens if the capacitor is not allowed to completely 
discharge (Case II). Equation [15] still describes the situation in the interval 
of 0 < t < 10 ms, and Eq. [16] describes the capacitor voltage in the interval 
between pulses, which has been reduced to 10 < t < 10.1 ms.

Just prior to the onset of the second pulse at t = 10.1 ms, vC is now 
8.144 V; the capacitor has only had 0.1 ms to discharge, and therefore it still 
 retains 82 percent of its maximum energy when the next pulse begins. Thus, 
in the next interval,

   v  C   (  t )   = 9 + C  e   −1000 (  t−10.1× 10   −3  )     V          10.1 < t < 20.1  ms  

where vC(10.1 ms) = 9 + C = 8.144 V, so C = −0.856 V and

   v  C   (  t )   = 9 − 0.856  e   −1000 (  t−10.1× 10   −3  )     V          10.1 < t < 20.1  ms  

which reaches the peak value of 9 V much more quickly than for the previ-
ous pulse.

Case III: No Time to Fully Charge But Time  
to Fully Discharge
What if it isn’t clear that the transient will dissipate before the end of the 
voltage pulse? In fact, this situation arises in Case III. Just as we wrote for 
Case I,

    v  C   (  t )   = 9 + A e   −1000t    V   [17]

still applies to this situation, but now only in the interval 0 < t < 0.1 ms. Our 
initial condition has not changed, so A = −9 V as before. Now, however, just 
before this first pulse ends at t = 0.1 ms, we find that vC = 0.8565 V. This is 
a far cry from the maximum of 9 V possible if we allow the capacitor time 
to fully charge, and it is a direct result of the pulse lasting only one-tenth of 
the circuit time constant.

The capacitor now begins to discharge, so that

   v  C  (t) = B e   −1000(t−1× 10   −4 )            V          0.1 < t < 10.1  ms  [18]

We have already determined that vC(0.1− ms) = 0.8565 V, so vC(0.1+ 
ms) = 0.8565 V and substitution into Eq. [18] yields B = 0.8565 V. Just 
prior to the onset of the second pulse at t = 10.1 ms, the capacitor voltage 
has decayed to essentially 0 V; this is the initial condition at the start of the 
second pulse, and so Eq. [17] can be rewritten as

   v  C  (t ) = 9 − 9 e   −1000(t−10.1× 10   −3 )         V       10.1 < t < 10.2  ms  [19]

to describe the corresponding response.

Case IV: No Time to Fully Charge or Even  
Fully  Discharge
In the last case, we consider the situation where the pulse width and period 
are so short that the capacitor can neither fully charge nor fully discharge in 
any one period. Based on experience, we can write
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    v  C   (  t )   = 9 − 9 e   −1000t    V                         0 < t < 0.1  ms       [20]

    v  C   (  t )   = 0.8565  e   −1000 (  t−1× 10   −4  )      V          0.1 < t < 0.2  ms   [21]

      v  C   (  t )   = 9 +   C  e     −1000 (  t−2× 10   −4  )     V             0.2 < t < 0.3  ms   [22]

      v  C   (  t )   =   D  e     −1000 (  t−3× 10   −4  )     V                   0.3 < t < 0.4  ms   [23]

Just prior to the onset of the second pulse at t = 0.2 ms, the capacitor 
voltage has decayed to vC = 0.7750 V; with insufficient time to fully dis-
charge, it retains a large fraction of the little energy it had time to store 
initially. For the interval of 0.2 < t < 0.3 ms, substitution of vC(0.2+) 
= vC(0.2−) = 0.7750 V into Eq. [22] yields C = −8.225 V. Continuing, 
we evaluate Eq. [22] at t = 0.3 ms and calculate vC = 1.558 V just prior 
to the end of the second pulse. Thus, D = 1.558 V, and our capacitor 
is slowly charging to ever increasing voltage levels over several pulses. 
At this stage it might be useful if we plot the detailed responses, so we 
show the LTspice simulation results of Cases I through IV in Fig. 8.44. 

(a) (b)

(c) (d)

■  FIGURE 8.44 lTspice simulation results corresponding to (a) Case I; (b) Case II; (c) Case III; (d) Case IV.
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Note in particular that in Fig. 8.44d, the small charge/discharge transient 
response similar in shape to that shown in Fig. 8.44a–c is superimposed 
on a charging-type response of the form (1 − e−t/τ). Thus, it takes about 
3 to 5 circuit time constants for the capacitor to charge to its maximum 
value in situations where a single period does not allow it to fully charge 
or discharge!

What we have not yet done is predict the behavior of the response for 
t ≫ 5τ, although we would be interested in doing so, especially if it was 
not necessary to consider a very long sequence of pulses one at a time. We 
note that the response of Fig. 8.44d has an average value of 4.50 V from 
about 4 ms onward. This is exactly half the value we would expect if the 
voltage source pulse width allowed the capacitor to fully charge. In fact, 
this long-term average value can be computed by multiplying the dc 
 capacitor voltage by the ratio of the pulse width to the period.

PRACTICE 
●

8.14 With regard to Fig. 8.45a, sketch iL(t) in the range of 0 < t < 6 s 
for (a) vS(t) = 3u(t) − 3u(t − 2) + 3u(t − 4) − 3u(t − 6) + · · ·;  
(b) vS(t) = 3u(t) − 3u(t − 2) + 3u(t − 2.1) − 3u(t − 4.1) + · · ·. 

Ans: See Fig. 8.45b; see Fig. 8.45c.

iL

100 mHvS (t)

1 Ω

(a)

+
–

0
0

2

4

1 2 3 4 5 6

iL (A)

t (s)

(b)

0
0

2

4

1 2 3 4 5 6

iL (A)

t (s)

(c)

■  FIGURE 8.45 (a) Circuit for Practice Problem 8.14; (b) solution to part (a); (c) solution to part (b).
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Modern digital integrated circuits such as programmable 
array logic (PALs) and microprocessors (Fig. 8.46) are 
composed of interconnected transistor circuits known as 
gates.

Digital signals are represented symbolically by com-
binations of ones and zeros and can be either data or in-
structions (such as “add” or “subtract”). Electrically, we 
represent a logic “1” by a “high” voltage, and a logic 
“0” by a “low” voltage. In practice, there is a range of 
voltages that correspond to each; for example, in the 
7400 series of TTL logic integrated circuits, any voltage 
between 2 and 5 V will be interpreted as a logic 1, and 
any voltage between 0 and 0.8 V will be interpreted as a 
logic 0. Voltages between 0.8 and 2 V do not correspond 
to either logic state, as shown in Fig. 8.47.

A key parameter in digital circuits is the speed at 
which we can effectively use them. In this sense, “speed” 
refers to how quickly we can switch a gate from one logic 
state to another (either logic 0 to logic 1 or vice versa), 
and the time delay required to convey the output of one 
gate to the input of the next gate. Although transistors 
contain “built-in” capacitances that affect their switch-
ing speed, it is the interconnect pathways that currently 
limit the speed of the fastest digital integrated circuits. 
We can model the interconnect pathway between two 
logic gates using a simple RC circuit (although as fea-
ture sizes continue to decrease in modern designs, more 
detailed models are required to accurately predict cir-
cuit performance). For example, consider a 2000 μm 
long pathway 2 μm wide. We can model this pathway 
in a typical silicon-based integrated circuit as having a 

capacitance of 0.5 pF and a resistance of 100 Ω, shown 
schematically in Fig. 8.48.

Let’s assume the voltage vout represents the output 
voltage of a gate that is changing from a logic 0 state to a 
logic 1 state. The voltage vin appears across the input of 
a second gate, and we are interested in how long it takes 
vin to reach the same value as vout.

Assuming the 0.5 pF capacitance that characterizes 
the interconnect pathway is initially discharged [i.e., 
vin(0) = 0], calculating the RC time constant for our path-
way as τ = RC = 50 ps, and defining t = 0 as the time 
when vout changes, we obtain the expression

  v  in  (t) = A e   −t/τ  +  v  out  (0) 

Setting vin(0) = 0, we find that A = −vout(0) so that

  v  in  (t) =  v  out  (0) [ 1 −  e   −t/τ  ] 

PRACTICAL APPLICATION
Frequency Limits in Digital Integrated Circuits

PRACTICAL APPLICATION

(Continued on next page)

■  FIGURE 8.46 A silicon integrated circuit die with dimensions smaller 
than a US 1 cent coin.
(©Photographer’s Choice/Getty Images)

■  FIGURE 8.47 Charge/discharge characteristic of a pathway 
capacitance identifying the TTl voltage ranges for logic 1 and logic 0, 
respectively.
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■  FIGURE 8.48 Circuit model for an integrated circuit pathway.
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Time-Varying Forced Response
Analogous to the switching response just described, how can we determine 
the response of an RC or RL circuit subject to a forcing function other than 
a constant? We can use a similar procedure in determining the forced re-
sponse of the circuit, but now the forced response will have a time-varying 
behavior. Following is an example and practice problem for this type of 
situation.

Upon examining this equation, we see that vin will 
reach the value vout(0) after ∼5τ or 250 ps. If the voltage 
vout changes again before this transient time period is over, 
then the capacitance does not have sufficient time to fully 
charge. In such situations, vin will be less than vout(0). As-
suming that vout(0) equals the minimum logic 1 voltage, for 
example, this means that vin will not correspond to a logic 
1. If vout now suddenly changes to 0 V (logic 0), the capac-
itance will begin to discharge so that vin decreases further. 
Thus, by switching our logic states too quickly, we are un-
able to transfer the information from one gate to another.

The fastest speed at which we can change logic states 
is therefore (5τ)−1. This can be expressed in terms of the 
maximum operating frequency:

  f  max   =   1 ____ 2(5τ )   = 2  GHz 

where the factor of 2 represents a charge/discharge pe-
riod. If we wish to operate our integrated circuit at a 
higher frequency so that calculations can be performed 
more quickly, we need to reduce the interconnect ca-
pacitance and/or the interconnect resistance.

Determine an expression for v(t) in the circuit of Fig. 8.49 valid  
for t > 0.

Based on experience, we expect a complete response of the form

  v(t ) =  v  f   +  v  n    

where vf will likely resemble our forcing function and vn will have the 
form Ae−t/τ.

What is the circuit time constant τ? We replace our source with an 
open circuit and find the Thévenin equivalent resistance in parallel with 
the capacitor:

   R  eq   = 4.7 + 10 = 14.7  Ω  

Thus, our time constant is τ = ReqC = 323.4 μs, or equivalently 1/τ = 
3.092 × 103 s−1.

There are several ways to proceed, although perhaps the most 
straightforward is to perform a source transformation, resulting in a 
voltage source 23.5e−2000t u(t) V in series with 14.7 Ω and 22 μF. (Note 
that this does not change the time constant.)

Writing a simple KVL equation for t > 0, we find that

  23.5 e   −2000t  = (14.7 ) (22 ×  10   −6  )   dv __ 
dt

   + v  

EXAMPLE 8.12

■  FIGURE 8.49 A simple RC circuit driven by an 
exponentially decaying forcing function.

10 Ω

22 μF4.7 Ω v

+

–
5e–2000t u(t) A
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SUMMARY AND REVIEW
In this chapter we learned that circuits containing a single energy storage 
element (either a capacitor or an inductor) can be described by a charac-
teristic time scale, namely, the circuit time constant (τ = RC or τ = L/R, 
respectively). If we try to change the amount of energy stored in the element 
(either charging or discharging), every voltage and current in the circuit will 
include an exponential term of the form e−t/τ. After approximately five time 
constants from the moment we tried to change the amount of stored energy, 
the transient response has essentially disappeared and we are left simply 
with a forced response which arises from the independent sources driving 
the circuit at times t > 0. When determining the forced response in a purely 
dc circuit, we may treat inductors as short circuits and capacitors as open 
circuits.

We started our analysis with so-called source-free circuits to introduce 
the idea of time constants without unnecessary distractions; such circuits 
have zero forced response and a transient response derived entirely from 
the energy stored at t = 0. We reasoned that a capacitor cannot change its 
voltage in zero time (or an infinite current results), and we indicated this 
by introducing the notation vC(0+) = vC(0−). Similarly, the current through 

A little rearranging results in

    dv __ 
dt

   + 3.092 ×  10   3  v = 72.67 ×  10   3     e   −2000t   [24]

where the natural response will be given by an exponential with a time 
constant τ

    v  n   (  t )   = A  e   −t/τ  = A e   −3092t   . 

The forced solution will follow the exponential time response vf(t) = 
Ke−2000t. Substituting the forced solution into Eq. [24] and solving for K, 

    v  f   (  t )   = 66 . 55 e   −2000t    

Combining natural and forced solutions,

  v(t ) = 66.55 e   −2000t  + A e   −3092t  V  [25]

Our only source is controlled by a step function with zero value for 
t < 0, so we know that v(0−) = 0. Since v is a capacitor voltage, v(0+) 
= v(0−), and we therefore find our initial condition v(0) = 0 easily 
enough. Substituting this into Eq. [25], we find A = −66.55 V, and so

  v(t ) = 66.55( e   −2000t  −  e   −3092t  ) V  t > 0  

PRACTICE 
●

8.15 Determine the capacitor voltage v in the circuit of Fig. 8.50 for  
t > 0. 

Ans: 23.5 cos 3t + 22.8 × 10−3 sin 3t − 23.5e−3092t V.

10 Ω

22 F4.7 Ω v

+

–
5 cos 3t u(t) A

■  FIGURE 8.50 A simple RC circuit driven by a 
sinusoidal forcing function.
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an inductor cannot change in zero time, or iL(0+) = iL(0−). The complete 
 response is always the sum of the transient response and the forced re-
sponse. Applying the initial condition to the complete response allows us to 
determine the unknown constant which multiplies the transient term.

We spent a little time discussing modeling switches, both analytically 
and within the context of SPICE. A common mathematical representation 
makes use of the unit-step function u(t − t0), which has zero value for t < 
t0, unity value for t > t0, and is indeterminate for t = t0. Unit-step functions 
can “activate” a circuit (connecting sources so current can flow) for values 
of t preceding a specific time as well as after. Combinations of step func-
tions can be used to create pulses and more complex waveforms. In the 
case of sequentially switched circuits, where sources are connected and 
disconnected repeatedly, we found the behavior of the circuits to depend 
strongly on both period and pulse width as they compare to the circuit time 
constant.

This is a good time to highlight some key points worth reviewing, along 
with relevant example(s).

 The response of a circuit having sources suddenly switched in or out of 
a circuit containing capacitors and inductors will always be composed 
of two parts: a natural response and a forced response.

 The form of the natural response (also referred to as the transient 
response) depends only on the component values and the way they are 
wired together. (Examples 8.1, 8.2, 8.4)

 A circuit reduced to a single equivalent capacitance C and a single equiv-
alent resistance R will have a natural response given by v(t) = V0e

−t/τ, 
where τ = RC is the circuit time constant. (Examples 8.1, 8.2, 8.3)

 A circuit reduced to a single equivalent inductance L and a single equiv-
alent resistance R will have a natural response given by i(t) = I0e

−t/τ, 
where τ = L/R is the circuit time constant. (Examples 8.4 and 8.5)

 Circuits with dependent sources can be represented by a resistance 
using Thévenin procedures. (Examples 8.6, 8.7, 8.8)

 The unit-step function is a useful way to model the closing or opening 
of a switch, provided we are careful to keep an eye on the initial condi-
tions. (Example 8.10)

 The form of the forced response mirrors the form of the forcing func-
tion. Therefore, a dc forcing function always leads to a constant forced 
response. (Examples 8.9 and 8.10)

 The complete response of an RC or RL circuit excited by a dc source will 
have the form f (t) = f (∞) + [  f (0+) − f (∞)]e−t/τ, or total response = final 
value + (initial value − final value)e−t/τ. (Examples 8.9, 8.10, 8.11)

 The complete response for an RC or RL circuit may also be determined 
by writing a single differential equation for the quantity of interest and 
solving. (Example 8.12)

 When dealing with sequentially switched circuits, or circuits connected 
to pulsed waveforms, the relevant issue is whether the energy storage 
element has sufficient time to fully charge and to fully discharge, as 
measured relative to the circuit time constant.
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READING FURTHER
A guide to solution techniques for differential equations can be found in:

W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 
Boundary Value Problems, 7th ed. New York: Wiley, 2002.

A detailed description of transients in electric circuits is given in:

E. Weber, Linear Transient Analysis Volume I. New York: Wiley, 1954. 
(Out of print, but in many university libraries.)

EXERCISES

8.1 The Source-Free RC Circuit
1. A source-free RC circuit has R = 4 kΩ and C = 22 μF, and with the knowledge 

that v(0) = 5 V, (a) write an expression for v(t) valid for t > 0; (b) compute v(t) 
at t = 0, t = 50 ms, and t = 500 ms; and (c) calculate the energy stored in the 
capacitor at t = 0, t = 50 ms, and t = 500 ms.

2. A source-free RC circuit has v(0) = 12 V and R = 100 Ω. (a) Select C such that 
v(250 μs) = 5.215 V; (b) compute the energy stored in the capacitor at t = 0, t 
= 250 μs, t = 500 μs, and t = 1 ms.

3. The resistor in the circuit of Fig. 8.51 has been included to model the dielec-
tric layer separating the plates of the 3.1 nF capacitor, and it has a value of 
55 MΩ. The capacitor is storing 200 mJ of energy just prior to t = 0. (a) Write 
an expression for v(t) valid for t ≥ 0. (b) Compute the energy remaining in the 
capacitor at t = 170 ms. (c) Graph v(t) over the range of 0 < t < 850 ms, and 
identify the value of v(t) when t = 2τ.

4. The resistor in the circuit of Fig. 8.51 has a value of 1 Ω and is connected to 
a 22 mF capacitor. The capacitor dielectric has infinite resistance, and the 
device is storing 891 mJ of energy just prior to t = 0. (a) Write an expression 
for v(t) valid for t ≥ 0. (b) Compute the energy remaining in the capacitor at t 
= 11 ms and 33 ms. (c) If it is determined that the capacitor dielectric is much 
leakier than expected, having a resistance as low as 100 kΩ, repeat parts (a) 
and (b).

5. Calculate the time constant of the circuit depicted in Fig. 8.51 if C = 10 mF 
and R is equal to (a) 1 Ω; (b) 10 Ω; (c) 100 Ω. (d) Verify your answers with an 
appropriate parameter sweep simulation. (Hint: The cursor tool might come in 
handy, and the time constant does not depend on the initial voltage across the 
capacitor.)

6. It is safe to assume that the switch drawn in the circuit of Fig. 8.52 has been 
closed such a long time that any transients which might have arisen from first 
connecting the voltage source have disappeared. (a) Determine the circuit time 
constant. (b) Calculate the voltage v(t) at t = τ, 2τ, and 5τ.

■  FIGURE 8.52

4 V –

+
v 2 nF200 Ω

100 Ω

150 Ω

t = 0

+
–

7. We can safely assume the switch in the circuit of Fig. 8.53 was closed a very 
long time prior to being thrown open at t = 0. (a) Determine the circuit time 
constant. (b) Obtain an expression for i1(t) which is valid for t > 0. (c) Deter-
mine the power dissipated by the 12 Ω resistor at t = 500 ms.

■  FIGURE 8.51
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i

v

+

–

■  FIGURE 8.53

8 V

–

+
v50 mF12 Ω

9 Ω

t = 0

+
–

i1
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8. The switch above the 12 V source in the circuit of Fig. 8.54 has been closed 
since just after the wheel was invented. It is finally thrown open at t = 0. (a) 
Compute the circuit time constant. (b) Obtain an expression for v(t) valid for t 
> 0. (c) Calculate the energy stored in the capacitor 170 ms after the switch is 
opened.

■  FIGURE 8.54

10 kΩ

5 kΩ 1 kΩ

3 kΩ20 kΩ

t = 0

+
–12 V

5 μF
v

+

–

9. For the circuit represented schematically in Fig. 8.55, (a) calculate v(t) at t = 0, 
t = 984 s, and t = 1236 s; (b) determine the energy still stored in the capacitor 
at t = 100 s.

■  FIGURE 8.55

v
+

–
12 mF

t = 0

21 kΩ

20 V82 kΩ +
–

10. The switch in Fig. 8.56 has been closed for a long time, before being opened 
at t = 0. (a) Find an expression for v(t) and i(t) in the figure for t > 0, and (b) 
evaluate v and i at t = 1 ms.

■  FIGURE 8.56

300 Ω

300 Ω 100 Ω

i

t = 0

–

+
v200 mA 6 μF

11. For the circuit in Fig. 8.56, find (a) the total energy stored in the capacitor 
before the switch is opened, (b) find an expression for the energy stored in the 
capacitor and power supplied by the capacitor for t > 0, and (c) plot the result-
ing expressions for w(t) and p(t) using an appropriate range of time.

12. Design a capacitor-based circuit that can achieve the following specifica-
tions simultaneously: (a) an initial voltage of 9 V at t = 0, (b) a voltage 
that decays to 1.2 V at t = 2 ms, (c) a maximum current amplitude  
(absolute value) of 1 mA for t > 0, and (d) a maximum current amplitude 
of 0.4 mA for t > 100 ns. Draw a circuit schematic, and label all compo-
nent values.

8.2 Properties of the Exponential Response
13. (a) Graph the function f (t) = 10e−2 t over the range of 0 ≤ t ≤ 2.5 s using linear 

scales for both y and x axes. (b) Replot with a logarithmic scale for the y axis. 
[Hint: The function semilogy() can be helpful here.] (c) What are the units of 
the 2 in the argument of the exponential? (d) At what time does the function 
reach a value of 9? 8? 1?
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14. The current i(t) flowing through a 1 kΩ resistor is given by i(t) = 5e−10t mA, 
t ≥ 0. (a) Determine the values of t for which the resistor voltage magnitude is 
equal to 5 V, 2.5 V, 0.5 V, and 5 mV. (b) Graph the function over the range of 
0 ≤ t ≤ 1 s using linear scales for both axes. (c) Draw a tangent to your curve at 
t = 0, and determine where the tangent intersects the time axis.

15. Radiocarbon dating has a similar exponential time relation to our circuits. A 
living object contains the same proportion of radioactive 14C as its surround-
ings, but after the object dies, it no longer acquires 14C, for which the radioac-
tive isotopes decay into 12C. The relationship is given by 

 N =  N  0    e   −λt  

  where N0 is the concentration of 14C at time of death, N is the concentration 
at a given time after death, and λ is a constant. Given that the half-life of 14C 
is 5700 years (where N/N0 = 1/2), determine (a) the value (and units!) of the 
constant λ; (b) the approximate age of an extraterrestrial alien fossil discovered 
that has 16 g of 14C, and expected initial concentration of 42 g.

16. For the circuit of Fig. 8.4, compute the time constant if the 4 Ω resistor is 
replaced with (a) a short circuit; (b) a 1 Ω resistor; (c) a series connection of 
two 5 Ω resistors; (d) a 100 Ω resistor. (e) Verify your answers with a suitable 
parameter sweep simulation in SPICE. 

17. Design a circuit which will produce a current of 1 mA at some initial time and 
a current of 368 μA at a time 5 s later. You may specify an initial capacitor 
voltage without showing how it arises.

8.3 The Source-Free RL Circuit
18. Setting R = 1 kΩ and L = 1 nH for the circuit represented in Fig. 8.11, and 

with the knowledge that i(0) = −3 mA, (a) write an expression for i(t) valid for 
all t ≥ 0; (b) compute i(t) at t = 0, t = 1 ps, 2 ps, and 5 ps; and (c) calculate the 
energy stored in the inductor at t = 0, t = 1 ps, and t = 5 ps.

19. If i(0) = 1 A and R = 100 Ω for the circuit of Fig. 8.11, (a) select L such that 
i(50 ms) = 368 mA; (b) compute the energy stored in the inductor at t = 0,  
50 ms, 100 ms, and 150 ms.

20. Referring to the circuit shown in Fig. 8.11, select values for both elements such 
that L/R = 1, i(0) = −5 A, and vR (0) = 10 V. (a) Calculate vR (t) at t = 0, 1, 2, 3, 4, 
and 5 s; (b) compute the power dissipated in the resistor at t = 0, 1 s, and 5 s.  
(c) At t = 5 s, what is the percentage of the initial energy still stored in the inductor? 

21. The circuit depicted in Fig. 8.11 is constructed from components whose value 
is unknown. If a current i(0) of 6 μA initially flows through the inductor, and it 
is determined that i(1 ms) = 2.207 μA, calculate the ratio of R to L.

22. With the assumption that the switch in the circuit of Fig. 8.57 has been closed 
a long, long, long time, calculate iL(t) at (a) the instant just before the switch 
opens; (b) the instant just after the switch opens; (c) t = 15.8 μs; (d) t = 31.5 
μs; (e) t = 78.8 μs.

■  FIGURE 8.57

300 Ω

4 mA 2 mH

t = 0

220 Ω

iL

v

+

–

23. The switch in Fig. 8.57 has been closed since Catfish Hunter last pitched for 
the New York Yankees. Calculate the voltage labeled v as well as the energy 
stored in the inductor at (a) the instant just prior to the switch being thrown 
open; (b) the instant just after the switch is opened; (c) t = 8 μs; (d) t = 80 μs.
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24. The switch in the circuit of Fig. 8.58 has been closed a ridiculously long time 
before suddenly being thrown open at t = 0. (a) Obtain expressions for iL and 
v in the circuit of Fig. 8.58, which are valid for all t ≥ 0. (b) Calculate iL(t) and 
v(t) at the instant just prior to the switch opening, at the instant just after the 
switch opening, and at t = 470 μs.

25. Assuming the switch initially has been open for a really, really long time, (a) 
obtain an expression for iW in the circuit of Fig. 8.59, which is valid for all t ≥ 
0; (b) calculate iW at t = 0 and t = 1.3 ns.

■  FIGURE 8.59

1.5 V 20 μH

5 kΩ 10 kΩ

iLiW

t = 0
+
–

8.4 A More General Perspective
26. (a) Obtain an expression for v(t), the voltage which appears across resistor R3 

in the circuit of Fig. 8.60, which is valid for t > 0. (b) If R1 = 2R2 = 3R3 = 4R4 
= 1.2 kΩ, L = 1 mH, and iL(0−) = 3 mA, calculate v(t = 500 ns).

27. For the circuit of Fig. 8.61, determine ix, iL, and vL at t equal to (a) 0−; (b) 0+.

5 Ω10 Ω

3 Ω

iL

6 nH

t = 0

ix
–

+
vL

+
–4 V

■  FIGURE 8.61

28. The switch shown in Fig. 8.62 had been closed for 6 years prior to being 
flipped open at t = 0. Determine iL, vL, and vR at t equal to (a) 0−; (b) 0+;  
(c) 1 μs; (d) 10 μs.

+
–1.2 V

1 kΩ

vR

+

–

t = 0

1 kΩ 2 kΩ

30 mHiL

vL+ –

■  FIGURE 8.62

29. Obtain expressions for both i1(t) and iL(t) as labeled in Fig. 8.63, which are 
valid for t > 0.

iL

i1

5 A

t = 0

3 Ω 2 H1 H

3 H 2 Ω8 Ω

■  FIGURE 8.63

■  FIGURE 8.58

10 V–

+
v 40 mH25 Ω

10 Ω

t = 0

iL

+
– 50 Ω

i4

R4 R3 R1

L R2iL
v
+

–

■  FIGURE 8.60
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30. The voltage across the resistor in a simple source-free RL circuit is given by 
5e−90 t V, t > 0. The inductor value is not known. (a) At what time will the 
inductor voltage be exactly one-half of its maximum value? (b) At what time 
will the inductor current reach 10 percent of its maximum value?

31. Referring to Fig. 8.64, calculate the currents i1 and i2 at t equal to (a) 1 ms; 
(b) 3 ms.

9 mA

4 Ω

1 Ωt = 0 5 mH

i2 i1 iL

■  FIGURE 8.64

32. (a) Obtain an expression for vx as labeled in the circuit of Fig. 8.65. (b) Evalu-
ate vx at t = 5 ms. (c) Verify your answer with an appropriate SPICE simula-
tion. (Hint: Define the circuit for t > 0 and define an initial value using the .ic 
SPICE directive.)

+
–2 V 10 mH

3 Ω

1 Ω

5 Ω

vx+ –

t = 0

■  FIGURE 8.65

33. Design a complete circuit which provides a voltage vab across two terminals 
labeled a and b, respectively, such that vab = 5 V at t = 0−, 2 V at t = 1 s, and 
less than 60 mV at t = 5. Verify the operation of your circuit using an appropri-
ate SPICE simulation. (Hint: Define the circuit for t > 0 and define an initial 
value using the .ic SPICE directive).

34. Select values for the resistors R0 and R1 in the circuit of Fig. 8.66 such that 
vC(0.65) = 5.22 V and vC(2.21) = 1 V.

R1

R0

10 mF

60 Ω

10 Ω vC+ –

12.5 V t = 2 s

t = 0

+
–

■  FIGURE 8.66

35. A quick measurement determines that the capacitor voltage vC in the circuit of 
Fig. 8.67 is 2.5 V at t = 0−. (a) Determine vC(0+,) i1(0+), and v(0+). (b) Select a 
value of C so that the circuit time constant is equal to 14 s.

36. Determine vC(t) and vo(t) as labeled in the circuit represented by Fig. 8.68 for t 
equal to (a) 0−; (b) 0+; (c) 10 ms; (d) 12 ms.

+
–1 V

1 μF 6 kΩ 2 kΩ2 kΩ

4 kΩ 1 kΩ 5 kΩ

vo

+

–
vC

+

–

t = 0

■  FIGURE 8.68

C vC

+

–

v
+

–

i1

10 Ω
8 Ω

20 Ω

■  FIGURE 8.67
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37. For the circuit shown in Fig. 8.69, determine (a) vC(0−); (b) vC(0+); (c) the 
circuit time constant; (d) vC(3 ms).

1.5i1

i1
vC 1 F

3 kΩ 6 kΩ

5 kΩ
+

–

t = 0

+
–10 V

■  FIGURE 8.69

38. The switch in Fig. 8.70 is moved from A to B at t = 0 after being at A for a long 
time. This places the two capacitors in series, thus allowing equal and opposite 
dc voltages to be trapped on the capacitors. (a) Determine v1(0−), v2(0−), and 
vR(0−). (b) Find v1(0+), v2(0+), and vR(0+). (c) Determine the time constant of 
vR(t). (d) Find vR(t), t > 0. (e) Find i(t). (f) Find v1(t) and v2(t) from i(t) and the 
initial values. (g) Show that the stored energy at t = ∞ plus the total energy dissi-
pated in the 20 kΩ resistor is equal to the energy stored in the capacitors at t = 0.

39. The inductor in Fig. 8.71 is storing 54 nJ at t = 0−. Compute the energy 
 remaining at t equal to (a) 0+; (b) 1 ms; (c) 5 ms.

48 mH

10 Ω

40 Ω

iL
iL
5

■  FIGURE 8.71

8.5 The Unit-Step Function
40. Evaluate the following functions at t = −2, 0+, and +2: (a) f (t) = 3u(t);  

(b) g(t) = 5u(−t) + 3; (c) h(t) = 5u(t − 3); (d) z(t) = 7u(1 − t) + 4u(t + 3).
41. Evaluate the following functions at t = −1, 0, and +3 (assume u(0)=1): (a) f (t) 

= tu(1 − t); (b) g(t) = 8 + 2u(2 − t); (c) h(t) = u(t + 1) − u(t − 1) + u(t + 2) − 
u(t − 4); (d) z(t) = 1 + u(3 − t) + u(t − 2).

42. Sketch the following functions over the range −3 ≤ t ≤ 3: (a) v(t) = 3 − u(2 − t) 
− 2u(t) V; (b) i(t) = u(t) − u(t − 0.5) + u(t − 1) − u(t − 1.5) + u(t − 2)  
− u(t − 2.5) A; (c) q(t) = 8u(−t) C.

43. Use step functions to construct an equation that describes the waveform 
sketched in Fig. 8.72.

44. Employing step functions as appropriate, describe the voltage waveform 
graphed in Fig. 8.73.

100 V 5 F
20 F

5 kΩ 20 kΩBA

vR+ –

v2

+

–v1

+

–

i (t)
t = 0

■  FIGURE 8.70

1 2 3

2

–4

4

4 5 t (s)

v (t) V

–2

■  FIGURE 8.73

0 1 2 3 t–1–2

f (t)

■  FIGURE 8.72
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45. You can use MATLAB to represent the unit-step function using the function 
heaviside(x). Use MATLAB to plot the function shown in Fig. 8.30.

8.6 Driven RC Circuits
46. With reference to the circuit depicted in Fig. 8.74, compute v(t) for (a) t = 0−; 

(b) t = 0+; (c) t = 2 ms; (d) t = 5 ms.

v(t)4 μF6u(t) V 2 kΩ

+

–

500 Ω

■  FIGURE 8.74

47. For the circuit given in Fig. 8.75, (a) determine vC(0−), vC(0+), iC(0−), and 
iC(0+); (b) calculate vC(20 ms) and iC(20 ms). (c) Verify your answer to part (b) 
with an appropriate SPICE simulation.

5 mA12u(t) V vC(t)2 kΩ 20 μF

+

–

2 kΩ iC(t)

■  FIGURE 8.75

48. (a) Obtain an expression for vC in the circuit of Fig. 8.76 valid for all values of 
t. (b) Sketch vC(t) over the range 0 ≤ t ≤ 4 μs.

49. Obtain an equation which describes the behavior of iA as labeled in Fig. 8.77 
over the range of −1 ms ≤ t ≤ 5 ms.

50. You build a portable solar charging circuit consisting of a supercapacitor and a 
solar cell that provides 100 mA and 3 V. If the series resistance is 10 Ω and the 
supercapacitor is 50 F, determine (a) the total energy storage that can be achieved 
by the capacitor, and (b) the time it takes to charge to 95 percent of full capacity.

51. The switch in the circuit of Fig. 8.78 has been closed an incredibly long time, 
before being thrown open at t = 0. (a) Evaluate the current labeled ix at t = 70 
ms. (b) Verify your answer with an appropriate SPICE simulation.

2 mF1 mA

10 Ω 20 Ω

15 Ω 30 Ω

ix

t = 0

■  FIGURE 8.78

52. The switch in the circuit of Fig. 8.78 has been open a really, really, incredibly 
long time, before being closed without further fanfare at t = 0. (a) Evaluate 
the current labeled ix at t = 70 ms. (b) Verify your answer with an appropriate 
SPICE simulation.

1 nF

2 kΩ

1 kΩ3u(t) V vC

+

–

+
–

■  FIGURE 8.76

300 nF

10 V 1 kΩ

3 kΩ

iAt = 0
+
–

■  FIGURE 8.77
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53. The “make-before-break” switch shown in Fig. 8.79 has been in position 
a since the first episode of Jonny Quest aired on television. It is moved to 
position b, finally, at time t = 0. (a) Obtain expressions for i(t) and vC(t) 
valid for all values of t. (b) Determine the energy remaining in the capacitor 
at t = 33 μs.

■  FIGURE 8.79

a

b
5 kΩ

20 kΩ10 Ω
50 Ω

10 V

2 F vC (t)

+

–

i (t)

t = 0

+
–

6 V +
–

54. The switch in the circuit of Fig. 8.80, often called a make-before-break switch 
(since during switching it briefly makes contact with both parts of the circuit 
to ensure a smooth electrical transition), moves to position b at t = 0 only after 
being in position a long enough to ensure all initial transients arising from 
turning on the sources have long since decayed. (a) Determine the power dissi-
pated by the 5 Ω resistor at t = 0−. (b) Determine the power dissipated in the 3 
Ω resistor at t = 2 ms.

■  FIGURE 8.80

a

b

5 Ω

3 Ω

1 Ω
1 Ω

2 Ω

10 mA 1 mF vC (t)

+

–

i (t)

t = 0

4 V +
–

55. Referring to the circuit represented in Fig. 8.81, (a) obtain an equation which 
describes vC valid for all values of t; (b) determine the energy remaining in the 
capacitor at t = 0+, t = 25 μs, and t = 150 μs.

■  FIGURE 8.81

20 μF3 V

10 Ω

5 Ω0.5vx vC

+

–

vx+ – t = 0

+
–

56. The dependent source shown in Fig. 8.81 is unfortunately installed upside 
down during manufacturing, so that the current arrow is pointing downward. 
This is not detected by the quality assurance team, so the unit ships out wired 
improperly. The capacitor is initially discharged. If the 5 Ω resistor is only 
rated to 2 W, after what time t is the circuit likely to fail?

57. For the circuit represented in Fig. 8.82, (a) obtain an expression for v which is 
valid for all values of t; (b) sketch your result for 0 ≤ t ≤ 3 s.■  FIGURE 8.82

1 Ω

1 F1 Ω v

+

–
12e–2t u(t) V

+
–
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58. Obtain an expression for the voltage vx as labeled in the op amp circuit of 
Fig. 8.83.

■  FIGURE 8.83

–

+

8 mF

50 Ω

2 Ω vx

+

–

9u(t) V +
–

8.7 Driven RL Circuits
59. With reference to the simple circuit depicted in Fig. 8.84, compute i(t) for (a) t 

= 0−; (b) t = 0+; (c) t = 1−; (d) t = 1+; (e) t = 2 ms.
60. For the circuit given in Fig. 8.85, (a) determine vL(0−), vL(0+), iL(0−), and 

iL(0+); (b) calculate iL(150 ns). (c) Verify your answer to part (b) with an 
appropriate SPICE simulation.

3 H100 Ω25 Ω vL

+

–

iL

2u (t) mA

■  FIGURE 8.85

61. The circuit depicted in Fig. 8.86 contains two independent sources, one of 
which is only active for t > 0. (a) Obtain an expression for iL(t) valid for all t; 
(b) calculate iL(t) at t = 10 μs, 20 μs, and 50 μs.

1.2 V

1 kΩ

1 kΩ

2 kΩ

10 mH50u(t) mA+
–

iL

■  FIGURE 8.86

62. The circuit shown in Fig. 8.87 is powered by a source which is inactive for  
t < 0. (a) Obtain an expression for i(t) valid for all t. (b) Graph your answer 
over the range of −1 ms ≤ t ≤ 10 ms.

63. For the circuit shown in Fig. 8.88, (a) obtain an expression for i(t) valid for all 
time; (b) obtain an expression for vR(t) valid for all time; and (c) graph both i(t) 
and vR(t) over the range of −1 s ≤ t ≤ 6 s.

30 Ω

5 Ω5 H vR

+

–

12u(t) V +
–

i(t)

■  FIGURE 8.88

64. A series RL circuit has a voltage that steps from zero to 5 V at t = 0 and a 
resistance of 10 Ω. You would like to visualize how the inductance affects the 

+
–

i (t)

1 H

3 kΩ9u(t – 1) V

■  FIGURE 8.84

45 mH

20 Ωi (t)

+
–2u(t) V

■  FIGURE 8.87
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current flow at t = 2 ms. Use SPICE to simulate the current at t = 2 ms for 
inductance in the range of 1 mH to 100 mH. Use a logarithmic scale using a 
SPICE directive such as .step dec param inductance 1m 100m 10. You can 
save and measure data using commands such as .save I(L1); .meas tran out 
find I(L1) AT=2m; .option plotwinsize=0 numdgt=15. Data may then be 
plotted in LTspice by right-clicking in the SPICE error log and selecting plot 
.step’ed .meas data.

65. For the two-source circuit of Fig. 8.89, note that one source is always on.  
(a) Obtain an expression for i(t) valid for all t; (b) determine at what time the 
 energy stored in the inductor reaches 99 percent of its maximum value.

66. (a) Obtain an expression for iL as labeled in Fig. 8.90 which is valid for all 
values of t. (b) Sketch your result over the range −1 ms ≤ t ≤ 3 ms.

50 mH

20 Ω60 Ω

4.5 V iL

t = 0

4.5 V

+–

+
–

■  FIGURE 8.90

67. Obtain an expression for i(t) as labeled in the circuit diagram of Fig. 8.91, and 
determine the power being dissipated in the 40 Ω resistor at t = 2.5 ms.

40 Ω 30 mΩ
30 Ω

i(t)
t = 0

100 mA

200 mA

■  FIGURE 8.91

68. Obtain an expression for i1 as indicated in Fig. 8.92 that is valid for all  
values of t.

+
–

+
–50 nH

5 Ω 5 Ω

3i1

i1

2u(t) V

■  FIGURE 8.92

69. Plot the current i(t) in Fig. 8.93 if (a) R = 10 Ω; (b) R = 1 Ω. In which case 
does the inductor (temporarily) store the most energy? Explain.

70. A dc motor can be modeled as a series RL circuit (though with the addi-
tion of a back emf voltage, which we will ignore in this problem), where 
rotational speed is proportional to the current flowing in the circuit. A motor 
with R = 10 Ω and L = 20 mH has a source voltage of 2.5 V that is suddenly 
increased to 5 V. How long would it take for the motor to reach 95 percent 
of full speed?

5 H

100 Ω

400 Ω

5 V
+–

6u(t) V+
–

i(t)

■  FIGURE 8.89

+
–

+
–

9u (t) V

–9u (t – 1) V

Ri (t)

4 H

■  FIGURE 8.93
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8.8  Predicting the Response of Sequentially Switched Circuits
71. Sketch the current iL of the circuit in Fig. 8.45a if the 100 mH inductor is 

replaced by a 1 nH inductor and is subjected to the waveform vs(t) equal to 
(a) 5u(t) − 5u(t − 10−9) + 5u(t − 2 × 10−9) V, 0 ≤ t ≤ 4 ns; (b) 9u(t) − 5u(t − 
10−8) + 5u(t − 2 × 10−8) V, 0 ≤ t ≤ 40 ns.

72. The 100 mH inductor in the circuit of Fig. 8.45a is replaced with a 1 H induc-
tor. Sketch the inductor current iL if the source vs(t) is equal to (a) 5u(t)  
− 5u(t − 0.01) + 5u(t − 0.02) V, 0 ≤ t ≤ 40ms; (b) 5u(t) − 5u(t − 10)  
+ 5u(t − 10.1) V, 0 ≤ t ≤ 11 s.

73.  Sketch the voltage vC across the capacitor of Fig. 8.94 for at least three periods 
if R = 1 Ω, C = 1 F, and vs(t) is a pulsed waveform having (a) minimum of 0 V, 
maximum of 2 V, rise and fall times of 1 ms, pulse width of 10 s, and period of 
20 s; (b) minimum of 0 V, maximum of 2 V, rise and fall times of 1 ms, pulse 
width of 10 ms, and period of 20 ms. (c) Verify your answers with appropriate 
SPICE simulations.

74. Sketch the voltage vC across the capacitor of Fig. 8.94 for at least three periods 
if R = 1 Ω, C = 1 F, and vs(t) is a pulsed waveform having (a) minimum of 0 
V, maximum of 2 V, rise and fall times of 1 ms, pulse width of 10 s, and period 
of 10.01 s; (b) minimum of 0 V, maximum of 2 V, rise and fall times of 1 ms, 
pulse width of 10 ms, and period of 10 s. (c) Verify your answers with appro-
priate SPICE simulations.

75. A series RC sequentially switched circuit has R = 200 Ω and C = 50 μF. 
The input is a 5 V pulsed voltage source of 50 ms pulse width with a period 
of 55 ms (source is zero volts outside of pulse), and it has zero rise and fall 
time. Calculate the capacitor voltage for three full periods and plot using 
MATLAB.

Chapter-Integrating Exercises
76. Refer to the circuit of Fig. 8.95, which contains a voltage-controlled dependent 

voltage source in addition to two resistors. (a) Compute the circuit time con-
stant. (b) Obtain an expression for vx valid for all t. (c) Plot the power dissipat-
ed in the 4 Ω resistor over the range of six time constants. (d) Repeat parts (a) 
to (c) if the dependent source is installed in the circuit upside down. (e) Are 
both circuit configurations “stable”? Explain.

+
–

3 mH
10 Ω

4 Ω0.1vx vx

+

–

2u(t) mA

■  FIGURE 8.95

77. In the circuit of Fig. 8.95, a 3 mF capacitor is accidentally installed instead 
of the inductor. Unfortunately, that’s not the end of the problems, as it’s 
later determined that the real capacitor is not really well modeled by an 
ideal capacitor, and the dielectric has a resistance of 10 kΩ (which should 
be viewed as connected in parallel to the ideal capacitor). (a) Compute  
the circuit time constant with and without taking the dielectric resistance 
into account. By how much does the dielectric change your answer?  
(b) Calculate vx at t = 200 ms. Does the dielectric resistance affect your 
answer significantly? Explain.

R

CvS
+
– vC

+

–

■  FIGURE 8.94
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78. For the circuit of Fig. 8.96, assuming an ideal op amp, derive an expression for 
vo(t) if vs is equal to (a) 4u(t) V; (b) 4e−130,000tu(t) V.

–

+

vo

+

–

vC
+

–

+
–

vs

300 nF10 Ω

15 Ω

■  FIGURE 8.96

79. The energy storage in capacitors can be used to boost the voltage from a power 
supply to a higher voltage by sequentially switching between parallel and series 
configurations. If the effective time constant of the circuit is longer than the 
switching frequency, you can effectively use this as a DC-DC boost converter, 
typically referred to as a switched capacitor circuit. For the voltage doubler 
switched capacitor circuit shown in Fig. 8.97, design values for C1 and C2 to 
ensure the following specifications: (1) maximum charging cycle time of 0.2 
ms, (2) voltage Vout stays above 9.5 V for 0.5 ms while connected to load. 
Verify and plot the capacitor voltage assuming a charge cycle of 0.2 ms and a 
discharge cycle of 0.5 ms.

C1

RS

RLVout

Vin

C2

+

–

■  FIGURE 8.97

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
In Chap. 8 we studied circuits which contained only one energy 
storage element, combined with a passive network which partly 
determined how long it took either the capacitor or the inductor to 
charge/discharge. The differential equations which resulted from 
analysis were always first-order. In this chapter, we consider more 
complex circuits which contain both an inductor and a capacitor. 
The result is a second-order differential equation for any voltage or 
current of interest. What we learned in Chap. 8 is easily extended 
to the study of these so-called RLC circuits, although now we need 
two initial conditions to solve each differential equation. Such 
circuits occur routinely in a wide variety of applications, including 
oscillators and frequency filters. They are also very useful in 
modeling a number of practical situations, such as automobile 
suspension systems, temperature controllers, and even the response 
of an airplane to changes in elevator and aileron positions.

9.1 • THE SOURCE-FREE PARALLEL CIRCUIT
There are two basic types of RLC circuits: parallel connected and series 
connected. We could start with either, but we somewhat arbitrarily 
choose to begin by considering parallel RLC circuits. This combination 
of ideal elements is a reasonable model for portions of many communi-
cation networks. It represents, for example, an important part of certain 
electronic amplifiers found in radios, enabling the amplifiers to produce 
a large voltage amplification over a narrow band of signal frequencies 
(with almost zero amplification outside this band).

Frequency selectivity of this kind enables us to listen to the trans-
mission of one station while rejecting the transmission of any other 

The RLC Circuit9

KEY CONCEPTS

Resonant Frequency and 
Damping Factor of Series 
and Parallel RLC Circuits

Overdamped Response

Critically Damped Response

Underdamped Response

Making Use of Two Initial 
Conditions

Complete (Natural + Forced) 
Response of RLC Circuits

Representing Differential 
Equations Using Op Amp 
Circuits

hay01307_ch09_325-380.indd   325 23/01/18   7:58 pm



326 CHAPTER 9 THE RLC CIRCUIT

station. Other applications include the use of parallel RLC circuits in frequency 
multiplexing and harmonic-suppression filters. However, even a simple 
discussion of these principles requires an understanding of such terms as reso-
nance, frequency response, and impedance, which we have not yet discussed. 
Let it suffice to say, therefore, that an understanding of the natural behavior of 
the parallel RLC circuit is fundamentally important to future studies of com-
munications networks and filter design, as well as many other applications.

When a physical capacitor is connected in parallel with an inductor and 
the capacitor has associated with it a finite resistance, the resulting network 
can be shown to have an equivalent circuit model like that shown in Fig. 9.1. 
The presence of this resistance can be used to model energy loss in the 
capacitor; over time, all real capacitors will eventually discharge, even if 
disconnected from a circuit. Energy losses in the physical inductor can also 
be taken into account by adding an ideal resistor (in series with the ideal 
inductor). For simplicity, however, we restrict our discussion to the case of 
an essentially ideal inductor in parallel with a “leaky” capacitor.

Just as we did with RL and RC circuits, we first consider the natural 
response of a parallel RLC circuit, where one or both of the energy storage 
elements have some nonzero initial energy (the origin of which for now is 
unimportant). This is represented by the inductor current and the capacitor 
voltage, both specified at t = 0+. Once we’re comfortable with this part of 
RLC circuit analysis, we can easily include dc sources, switches, or step 
sources in the circuit. Then we find the total response, which will be the sum 
of the natural response and the forced response.

Physical Intuition—What’s Going to Happen? 
Before we solve any equations, let us think about how the circuit might be-
have. Suppose we begin with a charged capacitor and zero current flowing 
through the inductor. Our intuition from Chap. 8 suggests that the capacitor 
will begin to discharge, with current flowing through both the resistor and 
the inductor. As current flows through the inductor, it will store energy and 
try to maintain current flow. Energy will continue to be transferred between 
capacitor and inductor, resulting in oscillation. The resistor will dissipate 
some fraction of the energy, or dampen the oscillations. The behavior is 
similar to a mass on a spring, where the spring produces oscillations while 
outside forces such as friction will dampen the oscillations (turns out the 
math, differential equations, are very similar!). The behavior will be deter-
mined by the time dependence or frequency of the oscillations and the mag-
nitude of the damping. In the absence of damping, oscillations will continue 
indefinitely, while large damping effects can stifle oscillations altogether.

Examining our circuit more carefully, let us follow the progression of 
energy transfer, as illustrated in Fig. 9.2:

1. Capacitor discharges, energy stored in inductor, positive v, negative i
2. Inductor releases energy, energy stored in capacitor, negative v, negative i
3. Capacitor charges, energy stored in inductor, negative v, positive i
4. Inductor releases, energy stored in capacitor, positive v, positive i

Throughout the energy transfer, energy is dissipated in the resistor. If the 
energy is dissipated before transfer between capacitor/inductor elements oc-
curs, there will be no oscillation! This qualitative description provides a 

R L C

v

Ref.

i

■  FIGURE 9.1 The source-free parallel RLC circuit.
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  SECTION 9.1 THE SOURCE-FREE PARAllEl CIRCUIT 327

general intuition for energy transfer in RLC circuits (and holds strictly true 
for the case of no damping), though we will find that there are time seg-
ments in the oscillations for damped circuits where the inductor and capac-
itor may both be releasing energy in the circuit. As a result, you will not 
always have a  direct correlation of nodes/antinodes in the oscillating volt-
age and current waveforms. Now let’s dig into the math!

Obtaining the Differential Equation  
for a Parallel RLC Circuit
In the following analysis we will assume that energy may be stored initially 
in both the inductor and the capacitor; in other words, nonzero initial values 
of both inductor current and capacitor voltage may be present. With refer-
ence to the circuit of Fig. 9.1, we may then write the single nodal equation

   v __ 
R

   +   1 __ 
L

    ∫ 
 t  0  
  
t

    v  d  t   ′  − i( t  0  ) + C   dv __ 
dt

   = 0 [1]
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■  FIGURE 9.2 Illustration of general energy transfer, oscillation, and damping characteristics of a parallel RlC circuit. 
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328 CHAPTER 9 THE RLC CIRCUIT

Note that the minus sign is a consequence of the assumed direction for i. 
We may solve Eq. [1] subject to the initial conditions

 i( 0   + ) =  I  0   [2]

and

 v( 0   + ) =  V  0   [3]

When both sides of Eq. [1] are differentiated once with respect to time, the 
result is the linear second-order homogeneous differential equation

 C    d   2  v ___ 
d t   2 

   +   1 __ 
R

     dv __ 
dt

   +   1 __ 
L

   v = 0 [4]

whose solution v(t) is the desired natural response.

Solution of the Differential Equation
There are a number of interesting ways to solve Eq. [4]. Most of these methods 
we will leave to a course in differential equations, selecting only the quickest 
and simplest method to use now. We will assume a solution, relying upon our 
intuition and modest experience to select one of the several possible forms 
that are suitable. Our experience with first-order equations might suggest that 
we at least try the exponential form once more. Thus, we assume

 v = A e   st  [5]

being as general as possible by allowing A and s to be complex numbers if 
necessary. Substituting Eq. [5] into Eq. [4], we obtain

CA s   2   e   st  +   1 __ 
R

   As e   st  +   1 __ 
L

   A e   st  = 0

or

A e   st    (  C s   2  +   1 _ 
R

   s +   1 _ 
L

   )    = 0

In order for this equation to be satisfied for all time, at least one of the three 
factors (A, est, or the expression in parenthesis) must be zero. If either of the 
first two factors is set equal to zero, then v(t) = 0. This is a trivial solution of 
the differential equation which cannot satisfy our given initial conditions. We 
therefore equate the remaining factor to zero:

 C  s   2  +   1 __ 
R

   s +   1 __ 
L

   = 0 [6]

This equation is usually called the auxiliary equation or the characteristic 
equation, as we discussed in Sec. 8.1. If it can be satisfied, then our as-
sumed solution is correct. Since Eq. [6] is a quadratic equation, there are 
two solutions, identified as s1 and s2:

  s  1   = −   1 ____ 2RC
   +  √ 

_________

    (    1 ____ 2RC
   )     

2
  −   1 ___ 

LC
     [7]

and

  s  2   = −   1 ____ 2RC
   −  √ 

_________

    (    1 ____ 2RC
   )     

2
  −   1 ___ 

LC
     [8]
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If either of these two values is used for s in the assumed solution, then 
that solution satisfies the given differential equation; it thus becomes a valid 
solution of the differential equation.

Let us assume that we replace s with s1 in Eq. [5], obtaining

 v  1   =  A  1    e    s  1  t 

and, similarly,

v    2   =  A  2    e    s  2  t 

The former satisfies the differential equation

C    d   2   v  1   ___ 
d  t   2 

   +   1 __ 
R

     d  v  1   ___ 
dt

   +   1 __ 
L

    v  1   = 0

and the latter satisfies

C    d   2   v  2   ___ 
d  t   2 

   +   1 __ 
R

     d  v  2   ___ 
dt

   +   1 __ 
L

    v  2   = 0

Adding these two differential equations and combining similar terms, we have

C    d   2 ( v  1   +  v  2  ) _______ 
d  t   2 

   +   1 __ 
R

     d( v  1   +  v  2  ) ______ 
dt

   +   1 __ 
L

   ( v  1   +  v  2  ) = 0

Linearity triumphs, and it is seen that the sum of the two solutions is also a 
solution. We thus have the general form of the natural response

 v(t) =  A  1    e    s  1  t  +  A  2    e    s  2  t  [9]

where s1 and s2 are given by Eqs. [7] and [8]; A1 and A2 are two arbitrary con-
stants which are to be selected to satisfy the two specified initial conditions.

Definition of Frequency Terms
The form of the natural response as given in Eq. [9] offers little insight into 
the nature of the curve we might obtain if v(t) were plotted as a function 
of time. The relative amplitudes of A1 and A2, for example, will certainly 
be important in determining the shape of the response curve. Furthermore, 
the constants s1 and s2 can be real numbers or conjugate complex numbers, 
depending upon the values of R, L, and C in the given network. These two 
cases will produce fundamentally different response forms. Therefore, it 
will be helpful to make some simplifying substitutions in Eq. [9].

Since the exponents s1t and s2t must be dimensionless, s1 and s2 must 
have the unit of some dimensionless quantity “per second.” From Eqs. [7] 
and [8] we therefore see that the units of 1/ 2RC and 1∕ √ 

___
 LC   must also be 

s−1 (i.e., seconds−1). Units of this type are called frequencies.
Let us define a new term, ω0 (omega-sub-zero, or just omega-zero):

  ω  0   =   1 ___ 
 √ 

___
 LC  
   [10]

and reserve the term resonant frequency for it. On the other hand, we will 
call 1/ 2RC the neper frequency, or the exponential damping coefficient, 
and represent it by the symbol α (alpha):

 α =   1 ____ 2RC
   [11]
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This latter descriptive expression is used because α is a measure of how 
rapidly the natural response decays or damps out to its steady, final value 
(usually zero). Finally, s, s1, and s2, which are quantities that will form the 
basis for some of our later work, are called complex frequencies.

We should note that s1, s2, α, and ω0 are merely symbols used to sim-
plify the discussion of RLC circuits; they are not mysterious new properties 
of any kind. It is easier, for example, to say “alpha“ than it is to say “the 
reciprocal of 2RC.”

Let us collect these results. The natural response of the parallel RLC 
circuit is

 v(t) =  A  1    e    s  1  t  +  A  2    e    s  2  t  [9]

where

  s  1   = − α +  √ 
______

  α   2  −  ω  0  2    [10]

  s  2   = − α −  √ 
______

  α   2  −  ω  0  2    [11]

 α =   1 ____ 2RC
   [12]

  ω  0   =   1 ___ 
 √ 

___
 LC  
   [13]

and A1 and A2 must be found by applying the given initial conditions.
We note two basic scenarios possible with Eqs. [10] and [11] depending 

on the relative sizes of α and ω0 (dictated by the values of R, L, and C). If α 
> ω0, s1 and s2 will both be real numbers, leading to what is referred to as 
an overdamped response. In the opposite case, where α < ω0, both s1 and s2 
will have nonzero imaginary components, leading to what is known as an 
underdamped response. Both of these situations are considered separately 
in the following sections, along with the special case of α = ω0, which leads 
to what is called a critically damped response. We should also note that the 
general response comprised by Eqs. [9] through [13] describes not only the 
voltage but all three branch currents in the parallel RLC circuit; the con-
stants A1 and A2 will be different for each, of course.

The ratio of α to ω0 is called the damping ratio  

by control system engineers and is designated by  

ζ (zeta).

Overdamped: α > ω0

Critically damped: α = ω0

Underdamped: α < ω0

EXAMPLE 9.1
Consider a parallel RLC circuit having an inductance of 10 mH and 
a capacitance of 100 μF. Determine the resistor values that would 
lead to overdamped and underdamped responses.

We first calculate the resonant frequency of the circuit:

  ω  0   =  √ 
___

   1 ___ 
LC

     =  √ 
________________

    1  ________________  
(10 ×  10   −3 ) (100 ×  10   −6 )

     =  10   3    rad / s 

An overdamped response will result if α > ω0; an underdamped 
response will result if α < ω0. Thus,

   1 ____ 2RC
   >  10   3  
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9.2 • THE OVERDAMPED PARALLEL RLC CIRCUIT
A comparison of Eqs. [12] and [13] shows that α will be greater than ω0 if 
LC > 4R2C2. In this case the radical used in calculating s1 and s2 will be real, 
and both s1 and s2 will be real. Moreover, the following inequalities

  
α >  √ 

______
  α   2  −  ω  0  2       

  (   −α −  √ 
_

  α   2  −  ω  0  2    )    <   (   −α +  √ 
_

  α   2  −  ω  0  2    )    < 0
 

may be applied to Eqs. [10] and [11] to show that both s1 and s2 are negative 
real numbers. Thus, the response v(t) can be expressed as the (algebraic) 
sum of two decreasing exponential terms, both of which approach zero as 
time increases. In fact, since the absolute value of s2 is larger than that of 
s1, the term containing s2 has the more rapid rate of decrease, and, for large 
values of time, we may write the limiting expression

v(t) →  A  1    e    s  1  t  → 0       as  t → ∞

The next step is to determine the arbitrary constants A1 and A2 in confor-
mance with the initial conditions. We select a parallel RLC circuit with  R = 6 Ω,  
L = 7 H, and, for ease of computation, C =   1 __ 42   F. The initial energy storage 
is specified by choosing an initial voltage across the circuit v(0) = 0 and an 
initial inductor current i(0) = 10 A, where v and i are defined in Fig. 9.3.

We may easily determine the values of the several parameters

  
 α = 3.5          ω  0   =  √ 

__
 6          

  s  1   = − 1
  

  s  2   = − 6
          (all    s   −1 )     

 
  

and immediately write the general form of the natural response

 v(t) =  A  1    e   −t  +  A  2    e   −6t  [14]

and so

 R <   1 _____________  
(2000) (100 ×  10   −6 )

   

or

 R < 5  Ω  leads to an overdamped response;

R > 5 Ω leads to an underdamped response.

PRACTICE 
●

9.1 A parallel RLC circuit contains a 100 Ω resistor and has the parameter 
values α = 1000 s−1 and ω = 800 rad/s. Find (a) C; (b) L; (c) s1; (d) s2. 
Ans: 5 μF; 312.5 mH; −400 s−1; −1600 s−1.

■  FIGURE 9.3 A parallel RLC circuit used as a 
numerical example. The circuit is overdamped.

v

i iCiR

7 H F1
426 Ω
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Finding Values for A1 and A2
Only the evaluation of the two constants A1 and A2 remains. If we knew 
the response v(t) at two different values of time, these two values could be 
substituted in Eq. [14] and A1 and A2 easily found. However, we know only 
one instantaneous value of v(t),

v(0) = 0

and, therefore,

 0 =  A  1   +  A  2   [15]

We can obtain a second equation relating A1 and A2 by taking the 
derivative of v(t) with respect to time in Eq. [14], determining the initial 
value of this derivative through the use of the remaining initial condition 
i(0) = 10, and equating the results. So, taking the derivative of both sides 
of Eq. [14],

  dv __ 
dt

   = −  A  1    e   −t  − 6  A  2    e   −6t 

and evaluating the derivative at t = 0,

   dv __ 
dt

   |    t = 0
   = −  A  1   − 6  A  2  

we obtain a second equation. Although this may appear to be helpful, we do 
not have a numerical value for the initial value of the derivative, so we do 
not yet have two equations in two unknowns . . . or do we? The expression 
dv/dt suggests a capacitor current, since

 i  C   = C   dv __ 
dt

  

Kirchhoff’s current law must hold at any instant in time, as it is based on 
conservation of electrons. Thus, we may write

−  i  C  (0) + i(0) +  i  R  (0) = 0

Substituting our expression for capacitor current and dividing by C,

   dv __ 
dt

   |    t=0
   =    i  C  (0) ____ 

C
   =   i(0) +  i  R  (0) _______ 

C
   =   i(0) ___ 

C
   = 420  V / s

since zero initial voltage across the resistor requires zero initial current 
through it. We thus have our second equation,

 420 = −  A  1   − 6  A  2   [16]

and simultaneous solution of Eqs. [15] and [16] provides the two ampli-
tudes A1 = 84 and A2 = −84. Therefore, the final numerical solution for the 
natural response of this circuit is

 v(t) = 84( e   −t  −  e   −6t  ) V [17]

For the remainder of our discussions concerning RLC 

circuits, we will always require two initial conditions in 

order to completely specify the response. One condition 

will usually be very easy to apply—either a voltage or 

current at t = 0. It is the second condition that usually 

requires a little effort. Although we will often have both 

an initial current and an initial voltage at our disposal, 

one of these will need to be applied indirectly through 

the derivative of our assumed solution.
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Find an expression for vC(t) valid for t > 0 in the circuit of Fig. 9.4a.

200 Ω

300 Ω

20 nF5 mH

150 V

vC

+

–

iL iR iC

iC
t = 0

200 Ω 20 nF5 mH

iL iR iC

(a) (b)

+
–

■  FIGURE 9.4 (a) An RLC circuit that becomes source-free at t = 0. (b) The circuit for t > 0, in which 
the 150 V source and the 300 Ω resistor have been shorted out by the switch, and so are of no 
further relevance to vC.

▶ Identify the goal of the problem.
We are asked to find the capacitor voltage after the switch is thrown. 
This action leads to no sources remaining connected to either the 
inductor or the capacitor.

▶ Collect the known information.
After the switch is thrown, the capacitor is left in parallel with a 
200 Ω resistor and a 5 mH inductor (Fig. 9.4b). Thus, α = 1/2RC = 
125,000 s−1,   ω  0   = 1 /  √ 

___
 LC   = 100,000  rad/s ,   s  1   = − α +  √ 

______
  α   2  −  ω  0  2    = 

− 50,000    s   −1   and   s  2   = − α −  √ 
______

  α   2  −  ω  0  2    = − 200,000    s   −1  .

▶ Devise a plan.
Since α > ω0, the circuit is overdamped, and so we expect a capacitor 
voltage of the form

  v  C  (t) =  A  1    e    s  1  t  +  A  2    e    s  2  t  

We know s1 and s2; we need to obtain and invoke two initial condi-
tions to determine A1 and A2. To do this, we will analyze the circuit at 
t = 0− (Fig. 9.5a) to find iL(0−) and vC(0−). We will then analyze the 
circuit at t = 0+ with the assumption that neither value changes.

▶ Construct an appropriate set of equations.
From Fig. 9.5a, in which the inductor has been replaced with a short 
circuit and the capacitor with an open circuit, we see that

  i  L  ( 0   − ) = −   150 _______ 200 + 300   = − 300  mA 

and

  v  C  ( 0   − ) = 150   200 _______ 200 + 300   = 60  V 

In Fig. 9.5b, we draw the circuit at t = 0+, representing the inductor 
current and capacitor voltage by ideal sources for simplicity. Since 
neither can change in zero time, we know that vC(0+) = 60 V. (Continued on next page)

EXAMPLE 9.2
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■  FIGURE 9.5 (a) The equivalent circuit at t = 0−; (b) equivalent circuit at 
t = 0+, drawn using ideal sources to represent the initial inductor current 
and initial capacitor voltage.

200 Ω

300 Ω

150 V

iL(0–)

(a)

vC(0–)

+

–

200 Ω

iR(0+) iC(0+)

vC(0+) = vC(0–)
 = 60 V 

iL(0+) = iL(0–)
 = –0.3 A

(b)

+
–

+
–

200 Ω

300 Ω

150 V

iL(0–)

(a)

vC(0–)

+

–

200 Ω

iR(0+) iC(0+)

vC(0+) = vC(0–)
 = 60 V 

iL(0+) = iL(0–)
 = –0.3 A

(b)

+
–

+
–

▶ Determine if additional information is required.
We have an equation for the capacitor voltage: vC(t) = A1e

−50,000t + 
A2e

−200,000t. We now know vC(0) = 60 V, but a third equation is still 
required. Differentiating our capacitor voltage equation, we find

   d v  C   ___ 
dt

   = − 50,000  A  1    e   −50,000t  − 200,000  A  2    e   −200,000t  

which can be related to the capacitor current as iC = C(dvC/dt). 
Returning to Fig. 9.5b, KCL yields

  i  C  ( 0   + ) = −  i  L  ( 0   + ) −  i  R  ( 0   + ) = 0.3 − [  v  C  ( 0   + ) / 200 ] = 0 

▶ Attempt a solution.
Application of our first initial condition yields

  v  C  (0) =  A  1   +  A  2   = 60 

and application of our second initial condition yields

  i  C  (0) = − 20 ×  10   −9 (50,000  A  1   + 200,000  A  2  ) = 0 

Solving, A1 = 80 V and A2 = −20 V, so that

  v  C  (t) = 80  e   −50,000t  − 20  e   −200,000t    V,         t > 0 

▶ Verify the solution. Is it reasonable or expected?
At the very least, we can check our solution at t = 0, verifying that 
vC (0) = 60 V. Differentiating and multiplying by 20 × 10−9, we can 
also verify that iC (0) = 0. Also, since we have a source-free circuit  
for t > 0, we expect that vC (t) must eventually decay to zero as t 
approaches ∞, which our solution does.
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As noted previously, the form of the overdamped response applies to any 
voltage or current quantity, as we explore in the following example.

  SECTION 9.2 THE OVERDAMPED PARAllEl RLC CIRCUIT

PRACTICE 
●

9.2 After being open for a long time, the switch in Fig. 9.6 closes at  
t = 0. Find (a) iL(0−); (b) vC(0−); (c) iR(0+); (d) iC(0+); (e) vC(0.2). 

10 H

24 Ω

48 Ω

vC

+

–

iC iR

iL

t = 0

3u(– t) A F1
240

■  FIGURE 9.6

Ans: 1 A; 48 V; 2 A; −3 A; −17.54 V.

EXAMPLE 9.3

(Continued on next page)

The circuit of Fig. 9.7a reduces to a simple parallel RLC circuit 
after t = 0. Determine an expression for the resistor current iR valid 
for all time.

■  FIGURE 9.7 (a) Circuit for which iR is required. (b) Equivalent 
circuit for t = 0−. (c) Equivalent circuit for t = 0+.

(c)

30 kΩ

iR(0+) iC(0+)

vC(0+)
= 3.75 V 

iL(0+)
= 125 μA

+
–

(b)

2 kΩ

4 V vC(0–)

+

–

iR(0–)
iL(0–)

+
– 30 kΩ

(a)

2 pFiR4 V

2 kΩ 12 mH

30 kΩt = 0+
–

(c)

30 kΩ

iR(0+) iC(0+)

vC(0+)
= 3.75 V 

iL(0+)
= 125 μA

+
–

(b)

2 kΩ

4 V vC(0–)

+

–

iR(0–)
iL(0–)

+
– 30 kΩ

(a)

2 pFiR4 V

2 kΩ 12 mH

30 kΩt = 0+
–

(c)

30 kΩ

iR(0+) iC(0+)

vC(0+)
= 3.75 V 

iL(0+)
= 125 μA

+
–

(b)

2 kΩ

4 V vC(0–)

+

–

iR(0–)
iL(0–)

+
– 30 kΩ

(a)

2 pFiR4 V

2 kΩ 12 mH

30 kΩt = 0+
–
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For t > 0, we have a parallel RLC circuit with R = 30 kΩ, L = 12 mH, 
and C = 2 pF. Thus, α = 8.333 × 106 s−1 and ω0 = 6.455 × 106 rad/s. 
We therefore expect an overdamped response, with s1 = −3.063 × 106 
s−1 and s2 = −13.60 × 106 s−1, so that

   i  R  (t) =  A  1    e    s  1  t  +  A  2    e    s  2  1  ,         t > 0  [18]

To determine numerical values for A1 and A2, we first analyze the 
circuit at t = 0−, as drawn in Fig. 9.7b. We see that iL(0−) = iR(0−) = 
4/32 × 103 = 125 μA, and vC(0−) = 4 × 30/32 = 3.75 V.

In drawing the circuit at t = 0+ (Fig. 9.7c), we only know that iL(0+) 
= 125 μA and vC(0+) = 3.75 V. However, by Ohm’s law we can calcu-
late that iR(0+) = 3.75/30 × 103 = 125 μA, our first initial condition. 
Thus,

   i  R  (0) =  A  1   +  A  2   = 125 ×  10   −6   A [19]

How do we obtain a second initial condition? If we multiply Eq. [18] by 
30 × 103, we obtain an expression for vC(t). Taking the derivative and 
multiplying by 2 pF yields an expression for iC(t):

  i  C   = C   d  v  C   ___ 
dt

   = (2 ×  10   −12 ) (30 ×  10   3 ) ( A  1    s  1    e    s  1  t  +  A  2    s  2    e    s  2  t ) 

By KCL,

  i  C  ( 0   + ) =  i  L  ( 0   + ) −  i  R  ( 0   + ) = 0 

Thus,

   − (2 ×  10   −12 ) (30 ×  10   3 ) (3.063 ×  10   6   A  1   + 13.60 ×  10   6   A  2  ) = 0  [20]

Solving Eqs. [19] and [20], we find that A1 = 161.3 μA and A2 = 
−36.34 μA. Thus,

  i  R   =   {   
125  μA

  
t < 0

     
161.3  e   −3.063× 10   6 t  − 36.34  e   −13.6× 10   6 t   μA     

  
t > 0

   

PRACTICE 
●

9.3 Determine the current iR through the resistor of Fig. 9.8 for t > 0 if 
iL(0−) = 6 A and vC(0+) = 0 V. The configuration of the circuit prior to 
t = 0 is not known. 

Ans: iR(t) = 2.437(  e     −7.823 ×  10     10 t   −   e     −0.511 ×  10     10 t   ) A.

625 pH

iR

iL

3 Ω 4 pF

■  FIGURE 9.8 Circuit for Practice Problem 9.3.

Graphical Representation of the Overdamped Response
Now let us return to Eq. [17] and see what additional information we can 
determine about this circuit. We may interpret the first exponential term 
as having a time constant of 1 s and the other exponential, a time constant 
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of   1 _ 6   s. Each starts with unity amplitude, but the latter decays more rapidly; 
v(t) is never negative. As time becomes infinite, each term approaches zero, 
and the response itself dies out as it should. We therefore have a response 
curve which is zero at t = 0, is zero at t = ∞, and is never negative; since it 
is not everywhere zero, it must possess at least one maximum, and this is not 
a difficult point to determine exactly. We differentiate the response

  dv __ 
dt

   = 84(−  e   −t  + 6  e   −6t )

set the derivative equal to zero to determine the time tm at which the voltage 
becomes maximum,

0 = −  e   − t  m    + 6  e   −6 t  m   

manipulate once,

 e   5 t  m    = 6

and obtain

 t  m   = 0.358  s

and

v( t  m  ) = 48.9  V

A reasonable sketch of the response may be made by plotting the two ex-
ponential terms 84e−t and 84e−6t and then taking their difference. This tech-
nique is illustrated by the curves of Fig. 9.9; the two exponentials are shown 
lightly, and their difference, the total response v(t), is drawn as a colored 
line. The curves also verify our previous prediction that the functional be-
havior of v(t) for very large t is 84e−t, the exponential term containing the 
smaller magnitude of s1 and s2.

A frequently asked question is the length of time it actually takes for the 
transient part of the response to disappear (or “damp out”). In practice, it is 
often desirable to have this transient response approach zero as rapidly as 
possible, that is, to minimize the settling time ts. Theoretically, of course, ts 
is infinite, because v(t) never settles to zero in a finite time. However, a 
negligible response is present after the magnitude of v(t) has settled to 

  SECTION 9.2 THE OVERDAMPED PARAllEl RLC CIRCUIT

20

40

60

80

0

–20

1 2 3 4

i (0) = 10 A
v (0) = 0

a = 3.5
v0 =    6

Overdamped

v (t) (V)

t (s)

7 H F1
426 Ω

v

i

■  FIGURE 9.9 The response v(t) = 84(e−t − e−6t) of the network shown in Fig. 9.3.
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338 CHAPTER 9 THE RLC CIRCUIT

values that remain less than 1 percent of its maximum absolute value |vm|. 
The time that is required for this to occur we define as the settling time. 
Since |vm| = vm = 48.9 V for our example, the settling time is the time re-
quired for the response to drop to 0.489 V. Substituting this value for v(t) in 
Eq. [17] and neglecting the second exponential term, known to be negligi-
ble here, the settling time is found to be 5.15 s.

EXAMPLE 9.4
For t > 0, the capacitor current of a certain source-free parallel 
RLC circuit is given by iC(t) = 2e−2t − 4e−t A. Sketch the current in 
the range 0 < t < 5 s, and determine the settling time.

We first sketch the two terms as shown in Fig. 9.10, then subtract them 
to find iC(t). The maximum value is clearly |−2| = 2 A. We therefore 
need to find the time at which |iC| has decreased to 20 mA, or

  2  e   −2 t  s    − 4  e   − t  s    = − 0.02  [21]

1

0

2

4

3

–1

–2

1

iC(t) (A)

t (s)
54

4e–t

2e–2t

iC(t)

2 3

■  FIGURE 9.10 The current response iC(t) = 2e−2t − 4e−t A, sketched 
alongside its two components.

This equation can be solved using an iterative solver routine on a 
scientific calculator, which returns the solution ts = 5.296 s. If such  
an option is not available, however, we can approximate Eq. [21] for  
t ≥ ts as

  − 4  e   − t  s    = − 0.02  [22]

Solving,

   t  s   = − ln   (    0.02 _ 4   )    = 5.298  s  [23]

which is reasonably close (better than 0.1% accuracy) to the exact 
solution.
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9.3 • CRITICAL DAMPING
The overdamped case is characterized by

α >  ω  0  

or

LC > 4  R   2   C   2 

and leads to negative real values for s1 and s2 and to a response expressed as 
the algebraic sum of two negative exponentials.

Now let us adjust the element values until α and ω0 are equal. This is a 
very special case which is termed critical damping. If we were to try to con-
struct a parallel RLC circuit that is critically damped, we would be attempt-
ing an essentially impossible task, for we could never make α exactly equal 
to ω0. For completeness, however, we will discuss the critically damped 
circuit here because it shows an interesting transition between overdamping 
and underdamping.

Critical damping is achieved when

or    
α =  ω  0       

  LC = 4  R   2   C   2   
L = 4  R   2  C

   
}

     critical damping

We can produce critical damping by changing the value of any of the 
three elements in the numerical example discussed at the end of Sec. 9.1. 

PRACTICE 
●

9.4 (a) Sketch the voltage vR(t) = 2e−t −4e−3t V in the range 0 < t < 5 s. 
(b) Estimate the settling time. (c) Calculate the maximum positive value 
and the time at which it occurs. 
Ans: See Fig. 9.11; 5.9 s; 544 mV, 896 ms.

–0.5

–1.0

0

1.0

0.5

–1.5

–2.0

vR(t) (V)

t (s)
5.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

■  FIGURE 9.11 Response sketched for Practice Problem 9.4a.

“Impossible” is a pretty strong term. We make this 

statement because in practice it is unusual to obtain 

components that are closer than 1 percent of their 

specified values. Thus, obtaining L precisely equal 

to 4R2C is theoretically possible, but not very likely, 

even if we’re willing to measure a drawer full of 

components until we find the right ones.

hay01307_ch09_325-380.indd   339 23/01/18   7:58 pm



340 CHAPTER 9 THE RLC CIRCUIT

We will select R, increasing its value until critical damping is obtained, and 
thus leave ω0 unchanged. The necessary value of R is 7  √ 

__
 6   / 2  Ω; L is still 7 

H, and C remains   1 __ 42   F. We thus find

   
α  =   ω  0    =      √ 

__
 6     s   −1    

 s  1  
  
=

  
 s  2  

  
=

  
−  √ 

__
 6  
  
 s   −1 

  

and recall the initial conditions that were specified, v(0) = 0 and i(0) = 10 A.

Form of a Critically Damped Response
We proceed to try to construct a response as the sum of two exponentials,

v(t) =?   A  1    e   − √ 
__

 6  t  +  A  2    e   − √ 
__

 6  t 

which may be written as

v(t) =?    A  3    e   − √ 
__

 6  t 

At this point, some of us might be feeling that something is wrong. We 
have a response that contains only one arbitrary constant, but there are two 
initial conditions, v(0) = 0 and i(0) = 10 A, both of which must be satisfied 
by this single constant. If we select A3 = 0, then v(t) = 0, which is consist-
ent with our initial capacitor voltage. However, although there is no energy 
stored in the capacitor at t = 0+, we have 350 J of energy initially stored in 
the inductor. This energy will lead to a transient current flowing out of the 
inductor, giving rise to a nonzero voltage across all three elements. This 
seems to be in direct conflict with our proposed solution.

If a mistake has not led to our difficulties, we must have begun with an 
incorrect assumption, and only one assumption has been made. We origi-
nally hypothesized that the differential equation could be solved by assum-
ing an exponential solution, and this turns out to be incorrect for this single 
special case of critical damping. When α = ω0, the differential equation,  
Eq. [4], becomes

   d   2  v ___ 
d  t   2 

   + 2α   dv __ 
dt

   +  α   2  v = 0

The solution of this equation is not a difficult process, but we will avoid 
developing it here, since the equation is a standard type found in the usual 
differential-equation texts. The solution is

  v =  e   −αt ( A  1   t +  A  2  )  [24]

It should be noted that the solution is still expressed as the sum of two 
terms, where one term is the familiar negative exponential and the second 
is t times a negative exponential. We should also note that the solution con-
tains the two expected arbitrary constants.

Finding Values for A1 and A2
Let us now complete our numerical example. After we substitute the known 
value of α in Eq. [24], obtaining

v =  A  1   t  e   − √ 
__

 6  t  +  A  2    e   − √ 
__

 6  t 
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we establish the values of A1 and A2 by first imposing the initial condition 
on v(t) itself, v(0) = 0. Thus, A2 = 0. This simple result occurs because the 
initial value of the response v(t) was selected as zero; the more general case 
will require the solution of two equations simultaneously. The second initial 
condition must be applied to the derivative dv/dt just as in the overdamped 
case. We therefore differentiate, remembering that A2 = 0:

  dv __ 
dt

   =  A  1   t(−  √ 
__

 6  )  e   − √ 
__

 6  t  +  A  1    e   − √ 
__

 6  t 

evaluate at t = 0:

   dv __ 
dt

   |    t = 0
   =  A  1  

and express the derivative in terms of the initial capacitor current:

   dv __ 
dt

   |    t = 0
   =    i  C  (0) ____ 

C
   =    i  R  (0) ____ 

C
   +   i(0) ___ 

C
  

where reference directions for iC, iR, and i are defined in Fig. 9.3. Thus,

 A  1   = 420  V

The response is, therefore,

   v (  t )   = 420t  e   −2.45t    V   [25]

Graphical Representation of the Critically 
Damped Response
Before plotting this response in detail, let us again try to anticipate its form 
by qualitative reasoning. The specified initial value is zero, and Eq. [25] con-
curs. It is not immediately apparent that the response also approaches zero as 
t becomes infinitely large, because te−2.45t is an indeterminate form. However, 
this obstacle is easily overcome by use of L’Hôspital’s rule, which yields

  lim  
t→∞    v(t) = 420    lim  

t→∞     t ___ 
 e   2.45t 

   = 420   lim  
t→∞     1 ______ 

2.45  e   2.45t 
   = 0

and once again we have a response that begins and ends at zero and has 
positive values at all other times. A maximum value vm again occurs at time 
tm; for our example,

 t  m   = 0.408  s         and            v  m   = 63.1   V

This maximum is larger than that obtained in the overdamped case and 
is a result of the smaller losses that occur in the larger resistor; the time of 
the maximum response is slightly later than it was with overdamping. The 
settling time may also be determined by solving

   v  m   ___ 100   = 420  t  s    e   −2.45 t  s   

for ts (by trial-and-error methods or a calculator’s SOLVE routine):

 t  s   = 3.12  s

which is a considerably smaller value than that which arose in the over-
damped case (5.15 s). As a matter of fact, it can be shown that, for given 
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342 CHAPTER 9 THE RLC CIRCUIT

values of L and C, the selection of that value of R which provides critical 
damping will always give a shorter settling time than any choice of R that 
produces an overdamped response. However, a slight improvement (reduc-
tion) in settling time may be obtained by a further slight increase in resis-
tance; a slightly underdamped response that will undershoot the zero axis 
before it dies out will yield the shortest settling time.

The response curve for critical damping is drawn in Fig. 9.12; it may 
be compared with the overdamped (and underdamped) case by reference to 
Fig. 9.17.

20

40

60

80

0

–20

1 2 3 4

v (t) (V)

t (s)

7 H F1
428.57 Ω v

+

–

i

■  FIGURE 9.12 The response v(t) = 420te−2.45t of the network shown in  
Fig. 9.3 with R changed to provide critical damping.

EXAMPLE 9.5
Select a value for R1 such that the circuit of Fig. 9.13 will be charac-
terized by a critically damped response for t > 0, and select a value 
for R2 such that v(0) = 2 V.

■  FIGURE 9.13 A circuit that reduces to a parallel RLC circuit after 
the switch is thrown.

R2

v

+

–

t = 0

5u(– t) A 1 nF

4 H R1

We note that at t = 0−, the current source is on, and the inductor can be 
treated as a short circuit. Thus, v(0−) appears across R2, and is given by

v( 0   − ) = 5  R  2  

and a value of 400 mΩ should be selected for R2 to obtain v(0) = 2 V.
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9.4 • THE UNDERDAMPED PARALLEL RLC CIRCUIT
Let us continue the process begun in Sec. 9.3 by increasing R once more to 
obtain what we will refer to as an underdamped response. Thus, the damp-
ing coefficient α decreases while ω0 remains constant, α2 becomes smaller 
than  ω  0  2 , and the radicand appearing in the expressions for s1 and s2 becomes 
negative. This causes the response to take on a much different character, but 
it is fortunately not necessary to return to the basic differential equation 

After the switch is thrown, the current source has turned itself off 
and R2 is shorted. We are left with a parallel RLC circuit comprised of 
R1, a 4 H inductor, and a 1 nF capacitor.

We may now calculate (for t > 0)

  
 α =   1 ____ 2RC

  
   

                =   1 ________ 
2 ×  10   −9   R  1  

  
 

and

  

 ω  0   =   1 ___ 
 √ 

___
 LC  
  

                  =   1 ______ 
 √ 

_______
 4 ×  10   −9   
     

                 = 15, 810  rad / s

 

Therefore, to establish a critically damped response in the circuit 
for t > 0, we need to set R1 = 31.63 kΩ. (Note: Since we have rounded 
to four significant figures, the pedantic can rightly argue that this is 
still not exactly a critically damped response—a difficult situation to 
create.)

PRACTICE 
●

9.5 (a) Choose R1 in the circuit of Fig. 9.14 so that the response after t 
= 0 will be critically damped. (b) Now select R2 to obtain v(0) = 100 V. 
(c) Find v(t) at t = 1 ms. 

4 H

R2

R1

v

+

–

t = 0

0.5u(– t) A 1 μF

■  FIGURE 9.14

Ans: 1 kΩ; 250 Ω; −212 V.
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again. By using complex numbers, the exponential response turns into a 
damped sinusoidal response; this response is composed entirely of real 
quantities, the complex quantities being necessary only for the derivation.1

The Form of the Underdamped Response
We begin with the exponential form

v(t) =  A  1    e    s  1  t  +  A  2    e    s  2  t 

where

 s  1,2   = − α ±  √ 
______

  α   2  −  ω  0  2   

and then let

 √ 
______

  α   2  −  ω  0  2    =  √ 
___

 − 1    √ 
______

  ω  0  2  −  α   2    = j  √ 
______

  ω  0  2  −  α   2   

where j ≡  √ 
___

 − 1  .
We now take the new radical, which is real for the underdamped case, 

and call it ωd, the natural resonant frequency:

 ω  d   =  √ 
______

  ω  0  2  −  α   2   

The response may now be written as

  v(t) =  e   −αt ( A  1    e   j ω  d   t  +  A  2    e   −j ω  d   t  )  [26]

or, in the longer but equivalent form,

v(t) =  e   −αt    {  ( A  1   +  A  2  )   [     e   j ω  d   t  +  e   −j ω  d   t   ___________ 2   ]    + j( A  1   −  A  2  )   [     e   j ω  d   t  −  e   −j ω  d   t   ___________ 
j2   ]    }   

Applying identities described in Appendix 5, the term in the first square 
brackets in the preceding equation is identically equal to cos ωd t, and the 
second is identically sin ωd t. Hence,

v(t) =  e   −αt  [ ( A  1   +  A  2  ) cos  ω  d   t + j( A  1   −  A  2  )  sin   ω  d   t ]

and the multiplying factors may be assigned new symbols:

  v(t) =  e   −αt ( B  1   cos  ω  d   t +  B  2    sin   ω  d   t)  [27]

where Eqs. [26] and [27] are identical.
It may seem a little odd that our expression originally appeared to have 

a complex component and now is purely real. However, we should remem-
ber that we originally allowed for A1 and A2 to be complex as well as s1 and 
s2. In any event, if we are dealing with the underdamped case, we have now 
left complex numbers behind. This must be true since α, ωd, and t are real 
quantities, so v(t) itself must be a real quantity (which might be presented on 
an oscilloscope, a voltmeter, or a sheet of graph paper). Equation [27] is the 
desired functional form for the underdamped response, and its validity may 
be checked by direct substitution in the original differential equation; this 
exercise is left to the doubters. The two real constants B1 and B2 are again 
selected to fit the given initial conditions.

Electrical engineers use “j” instead of “i” to represent  

 √ 
___

 − 1   to avoid confusion with currents.

(1) A review of complex numbers is presented in Appendix 5.
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We return to our simple parallel RLC circuit of Fig. 9.3 with R = 6 Ω, C =  
1/42 F, and L = 7 H, but we now increase the resistance further to 10.5 Ω. 
Thus,

   
α

  
=

  
  1 ____ 2RC

  
  
=

  
 
  

 s   −1 
   

 ω  0  
  
=

  
  1 ____ RLC

  
  
=

  
 √ 

__
 6  
  
 s   −1 

  

and

 ω  d   =  √ 
______

  ω  0  2  −  α   2    =  √ 
__

 2     rad / s

Except for the evaluation of the arbitrary constants, the response is now known:

v(t) =  e   −2t  ( B  1   cos  √ 
__

 2   t +  B  2    sin  √ 
__

 2   t)

Finding Values for B1 and B2
The determination of the two constants proceeds as before. If we still assume 
that v(0) = 0 and i(0) = 10, then B1 must be zero. Hence

v(t) =  B  2    e   −2t   sin  √ 
__

 2   t

The derivative is

  dv __ 
dt

   =  √ 
__

 2    B  2    e   −2t  cos  √ 
__

 2   t − 2  B  2    e   −2t   sin  √ 
__

 2   t

and at t = 0 it becomes

   dv __ 
dt

   |    t=0
   =  √ 

__
 2    B  2   =    i  C  (0) ____ 

C
   = 420

where iC is defined in Fig. 9.3. Therefore,

v(t) = 210  √ 
__

 2    e   −2t   sin  √ 
__

 2   t

Graphical Representation of the Underdamped 
Response
Notice that, as before, this response function has an initial value of zero 
because of the initial voltage condition we imposed, and a final value of zero 
because the exponential term vanishes for large values of t. As t increases 
from zero through small positive values, v(t) increases as 210  √ 

__
 2    sin    √ 

__
 2   t,  

because the exponential term remains essentially equal to unity. But, at 
some time tm, the exponential function begins to decrease more rapidly than 
sin  √ 

__
 2   t is increasing; thus v(t) reaches a maximum vm and begins to  

decrease. We should note that tm is not the value of t for which sin  √ 
__

 2   t is a 
maximum but must occur somewhat before sin  √ 

__
 2   t reaches its maximum.

When t = π /  √ 
__

 2  , v(t) is zero. Thus, in the interval π /  √ 
__

 2   <  t <  √ 
__

 2   π,  
the response is negative, becoming zero again at t =  √ 

__
 2   π. Hence, v(t) is an 

oscillatory function of time and crosses the time axis an infinite number of 
times at t = nπ /  √ 

__
 2  , where n is any positive integer. In our example, how-

ever, the response is only slightly underdamped, and the exponential term 
causes the function to die out so rapidly that most of the zero crossings will 
not be evident in a sketch.

 2 

  SECTION 9.4 THE UNDERDAMPED PARAllEl RLC CIRCUIT
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346 CHAPTER 9 THE RLC CIRCUIT

The oscillatory nature of the response becomes more noticeable as α 
decreases. If α is zero, which corresponds to an infinitely large resistance, 
then v(t) is an undamped sinusoid that oscillates with constant amplitude. 
There is never a time at which v(t) drops and stays below 1 percent of its 
maximum value; the settling time is therefore infinite. This is not perpetual 
motion; we have merely assumed an initial energy in the circuit and have 
not provided any means to dissipate this energy. It is transferred from its 
initial location in the inductor to the capacitor, then returns to the inductor, 
and so on, forever.

The Role of Finite Resistance
A finite R in the parallel RLC circuit acts as a kind of electrical transfer 
agent. Every time energy is transferred from L to C or from C to L, the 
agent exacts a commission. Before long, the agent has taken all the energy, 
wantonly dissipating every last joule. The L and C are left without a joule of 
their own, without voltage and without current. Actual parallel RLC circuits 
can be made to have effective values of R so large that a natural undamped 
sinusoidal response can be maintained for years without supplying any ad-
ditional energy.

Returning to our specific numerical problem, differentiation locates the 
first maximum of v(t),

 v   m  1     = 71.8  V            at              t   m  1     = 0.435  s

the succeeding minimum,

 v   m  2     = − 0.845  V        at              t   m  2     = 2.66  s

and so on. The response curve is shown in Fig. 9.15. Additional response 
curves for increasingly more underdamped circuits are shown in Fig. 9.16.

The settling time may be obtained by a trial-and-error solution, and for 
R = 10.5 Ω, it turns out to be 2.92 s, somewhat smaller than for critical 
damping. Note that ts is greater than  t   m  2     because the magnitude of  v   m  2     is 
greater than 1 percent of the magnitude of  v   m  1    . This suggests that a slight 

20

40

60

80

0

–20

1 2 3 4

v (t) (V)

t (s)

7 H F1
4210.5 Ω v

+

–

i
vm1

vm2

■  FIGURE 9.15 The response v(t) = 210  √ 
__

 2    e   −2t   sin  √ 
__

 2t   of the network 
shown in Fig. 9.3 with R increased to produce an underdamped response.

hay01307_ch09_325-380.indd   346 23/01/18   7:58 pm



347

decrease in R would reduce the magnitude of the undershoot and permit ts 
to be less than  t   m  2    .

The overdamped, critically damped, and underdamped responses for this 
network as simulated by LTspice are shown on the same graph in Fig. 9.17. 
A comparison of the three curves makes the following general conclusions 
plausible:

 ∙ When the damping is changed by increasing the size of the parallel 
resistance, the maximum magnitude of the response is greater and the 
amount of damping is smaller.

 ∙ The response becomes oscillatory when underdamping is present, and 
the minimum settling time is obtained for slight underdamping.

■  FIGURE 9.16 Simulated underdamped voltage response of the network for three 
different resistance values, showing an increase in the oscillatory behavior as R is 
increased.

■  FIGURE 9.17 Simulated overdamped, critically damped, and underdamped voltage 
response for the example network, obtained by varying the value of the parallel 
resistance R.

  SECTION 9.4 THE UNDERDAMPED PARAllEl RLC CIRCUIT
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EXAMPLE 9.6
Determine iL(t) for the circuit of Fig. 9.18a, and plot the waveform.

(a)

10 H

100 Ω

48 Ω

vC

+

–

iC iR

iL

t = 0

3u(– t) A F1
240

(b) (c)

100 Ω10 H

iC iL iR

F1
240

vC

+

–

3 A 100 Ω

48 Ω

10 H

vC

+

–
iL

iC iR

F1
240

(a)

10 H

100 Ω

48 Ω

vC

+

–

iC iR

iL

t = 0

3u(– t) A F1
240

(b) (c)

100 Ω10 H

iC iL iR

F1
240

vC

+

–

3 A 100 Ω

48 Ω

10 H

vC

+

–
iL

iC iR

F1
240

■  FIGURE 9.18 (a) A parallel RLC circuit for which the current iL(t) is desired. (b) Circuit for t ≥ 0.  
(c) Circuit for determining the initial conditions.

At t = 0, both the 3 A source and the 48 Ω resistor are removed, leaving 
the circuit shown in Fig. 9.18b. Thus, α = 1.2 s−1 and ω0 = 4.899 rad/s. 
Since α < ω0, the circuit is underdamped, and we therefore expect a 
response of the form

   i  L  (t) =  e   −αt ( B  1   cos  ω  d   t +  B  2    sin  ω  d   t)  [28]

where  ω  d   =  √ 
______

  ω  0  2  −  α   2    = 4.750  rad / s. The only remaining step is to 
find B1 and B2.

Figure 9.18c shows the circuit as it exists at t = 0−. We may replace 
the inductor with a short circuit and the capacitor with an open circuit; 
the result is vC(0−) = 97.30 V and iL(0−) = 2.027 A. Since neither quan-
tity can change in zero time, vC(0+) = 97.30 V and iL(0+) = 2.027 A.

Substituting iL(0) = 2.027 into Eq. [28] yields B1 = 2.027 A. To 
determine the other constant, we first differentiate Eq. [28]:

     
d  i  L   ___ 
dt

   =  e   −αt (−  B  1    ω  d    sin  ω  d   t +  B  2    ω  d   cos  ω  d   t)     
           − α  e   −at ( B  1   cos  ω  d   t +  B  2    sin  ω  d   t)

    [29]

and note that vL(t) = L(diL/dt). Referring to the circuit of Fig. 9.18b, we 
see that vL(0+) = vC(0+) = 97.3 V. Thus, multiplying Eq. [29] by L = 10 
H and setting t = 0, we find that

 v  L  (0) = 10( B  2    ω  d  ) − 10α  B  1   = 97.3
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Solving, B2 = 2.561 A, so that

 i  L   =  e   −1.2t (2.027 cos 4.75t + 2.561 sin 4.75t) A

which we have plotted in Fig. 9.19.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

t (s)

iL(t) (A)

■  FIGURE 9.19 Plot of iL(t), showing obvious signs of being an underdamped 
response.

PRACTICE 
●

9.6 The switch in the circuit of Fig. 9.20 has been in the left position for  
a long time; it is moved to the right at t = 0. Find (a) dv/dt at t = 0+;  
(b) v at t = 1 ms; (c) t0, the first value of t greater than zero at which v = 0. 

+ –

3 V 2 H
10 μF

50 kΩ

100 kΩ 500 Ω
v

+

–

t = 0 5u(– t) V

■  FIGURE 9.20

Ans: −1400 V/s; 0.695 V; 1.609 ms.

COMPUTER-AIDED ANALYSIS

One useful feature in SPICE is the ability to perform mathematical 
operations on the voltages and currents that result from a simulation. 
In this example, we will make use of that ability to show the transfer of 
energy in a parallel RLC circuit from a capacitor that initially stores a 
specific amount of energy (1.25 μJ) to an inductor that initially stores 
no energy.

(Continued on next page)

  SECTION 9.4 THE UNDERDAMPED PARAllEl RLC CIRCUIT
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We choose a 100 nF capacitor and a 7 μH inductor, which immediate-
ly enables us to calculate ω0 = 1.195 × 106 s−1. In order to consider over-
damped, critically damped, and underdamped cases, we need to select 
the parallel resistance in such a way as to obtain α > ω0 (overdamped),  
α = ω0 (critically damped), and α < ω0 (underdamped). From our previ-
ous discussions, we know that for a parallel RLC circuit α = (2RC)−1. We 
select R = 4.1833 Ω as a close approximation to the critically damped 
case; obtaining α precisely equal to ω0 is effectively impossible. If we 
increase the resistance, the energy stored in the other two elements is 
dissipated more slowly, resulting in an underdamped response. We select 
R = 100 Ω so that we are well into this regime, and we use R = 1 Ω (a 
very small resistance) to obtain an overdamped response.

We therefore plan to run three separate simulations, varying only the 
resistance R between them. The 1.25 μJ of energy initially stored in the 
capacitor equates to an initial voltage of 5 V, and so we set the initial 
condition of our capacitor accordingly. Since this is a second-order 
circuit, a second initial condition is required, namely the definition that 
the inductor initially stores no energy, or that the current is zero. 

The schematic diagram of the circuit drawn in LTspice is shown in 
Fig. 9.21a. The initial conditions for the voltage on the capacitor and 
current through the inductor are defined using the SPICE directive .ic 
V(Vx)=5 I(L1)=0, where Vx was defined as the net name for the node 
voltage on the capacitor. A transient simulation with an end time of  
3 microseconds is defined using the SPICE directive .tran 3u (the 
underdamped case will be simulated out to 30 microseconds to illus-
trate oscillations). 

Following simulation, we click on Add Trace(s) in the waveform 
window. We wish to plot the energy stored in both the inductor and 
the capacitor as a function of time. For the capacitor, w =    1 _ 2    C   v   2 , so 
we type in the equation in the Expression(s) to Add to Plot field. 
Enter 0.5*100E-9*V(Vx)*V(Vx) and then click OK. We repeat the 
sequence to obtain the energy stored in the inductor, using 7E-6 instead 
of 100E-9, and defining I(L1) instead of V(Vx).

The waveform plots for three separate simulations are provided in 
Fig. 9.21. Since the expressions used unitless constants for capacitance 
and inductance, rather than units of farads and henries, note that the 
output units are shown in V2 and A2 rather than joules. In Fig. 9.21b, 
we see that the energy remaining in the circuit is continuously trans-
ferred back and forth between the capacitor and the inductor until it is 
(eventually) completely dissipated by the resistor. Decreasing the re-
sistance to 4.1833 Ω yields a critically damped circuit, resulting in the 
energy plot of Fig. 9.21c. The oscillatory energy transfer between the 
capacitor and the inductor has been dramatically reduced. We see that 
the energy transferred to the inductor peaks at approximately 0.8 μs and 
then drops to zero. The overdamped response is plotted in Fig. 9.21d. 
We note that the energy is dissipated much more quickly in the case of 
the overdamped response and that very little energy is transferred to the 
inductor, since most of it is now quickly dissipated in the resistor.
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9.5 • THE SOURCE-FREE SERIES RLC CIRCUIT
We now wish to determine the natural response of a circuit model composed 
of an ideal resistor, an ideal inductor, and an ideal capacitor connected in 
series. The ideal resistor may represent a physical resistor connected into a 
series LC or RLC circuit; it may represent the ohmic losses and the losses 
in the ferromagnetic core of the inductor; or it may be used to represent all 
these and other energy-absorbing devices.

The series RLC circuit is the dual of the parallel RLC circuit, and this 
single fact is sufficient to make its analysis a trivial affair. Figure 9.22a 
shows the series circuit. The fundamental integrodifferential equation is

L   di __ 
dt

   + Ri +   1 __ 
C

    ∫ 
 t  0  
  
 t
    i d  t   ′  −  v  C  ( t  0  ) = 0

and should be compared with the analogous equation for the parallel RLC 
circuit, drawn again in Fig. 9.22b,

C   dv __ 
dt

   +   1 __ 
R

   v +   1 __ 
L

    ∫ 
 t  0  
  
 t
    v d  t   ′  −  i  L  ( t  0  ) = 0

■  FIGURE 9.21 Energy transfer in a parallel RLC circuit [shown in (a)] with (b) R = 100 Ω (underdamped); (c) R = 4.1833 Ω (critically damped); and  
(d) R = 1 Ω (overdamped).
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The respective second-order equations obtained by differentiating these 
two equations with respect to time are also duals:

  L    d   2  i ___ 
d  t   2 

   + R   di __ 
dt

   +   1 __ 
C

   i = 0  [30]

  C    d   2  v ___ 
d  t   2 

   +   1 __ 
R

     dv __ 
dt

   +   1 __ 
L

   v = 0  [31]

Our complete discussion of the parallel RLC circuit is directly applica-
ble to the series RLC circuit; the initial conditions on capacitor voltage and 
inductor current are equivalent to the initial conditions on inductor current 
and capacitor voltage; the voltage response becomes a current response. It 
is therefore possible to reread the previous four sections using dual language 
and thereby obtain a complete description of the series RLC circuit. This is 
apt to induce a mild neurosis after the first few paragraphs, though, and does 
not really seem necessary!

A Brief Résumé of the Series Circuit Response
In terms of the circuit shown in Fig. 9.22a, the overdamped response is

i(t) =  A  1    e    s  1  t  +  A  2    e    s  2  t 

where

 s  1,2   = −   R __ 2L
   ±  √ 

________

    (    R __ 2L
   )     

2
  −   1 ___ 

LC
     = − α ±  √ 

______
  α   2  −  ω  0  2   

and thus

  
α =   R __ 2L

  
  

 ω  0   =   1 ___ 
 √ 

___
 LC  
  
 

The form of the critically damped response is

i(t) =  e   −αt ( A  1   t +  A  2  )

and the underdamped response may be written

i(t) =  e   −αt ( B  1   cos  ω  d   t +  B  2   sin  ω  d   t)

i

L

C

R

(a)

vL

+

–

vC +–

LR C

(b)

v

+

–

iCiL

■  FIGURE 9.22 (a) The series RLC circuit which is the dual of (b), a parallel 
RLC circuit. Element values are, of course, not identical in the two circuits.
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where

 ω  d   =  √ 
______

  ω  0  2  −  α   2   

If we work in terms of the parameters α, ω0, and ωd, the mathematical 
forms of the responses for the dual situations are identical. An increase in α 
in either the series or the parallel circuit, while keeping ω0 constant, tends 
toward an overdamped response. We must only exercise caution in the com-
putation of α, which is 1 / 2RC for the parallel circuit and R / 2L for the series 
circuit; thus, α is increased by increasing the series resistance or decreasing 
the parallel resistance. The key equations for parallel and series RLC cir-
cuits are summarized in Table 9.1 for convenience.

  SECTION 9.5 THE SOURCE-FREE SERIES RLC CIRCUIT

TABLE 
●
 9.1 Summary of Relevant Equations for Source-Free RLC Circuits

Condition Criteria α ω0 Response

Overdamped

 α > ω0

   1 ____ 2RC
    (parallel)

   R __ 2L
    (series)

    1 ___ 
 √ 

___
 LC  
       

 A  1    e    s  1  t  +  A  2    e    s  2  t ,  where
   

 s  1,2   = − α ±  √ 
______

  α   2  −  ω  0  2   
   

Critically damped

 α = ω0

   1 ____ 2RC
    (parallel)

   R __ 2L
    (series)

    1 ___ 
 √ 

___
 LC  
     e−αt (A1t + A2)

Underdamped

 α < ω0

   1 ____ 2RC
    (parallel)

   R __ 2L
    (series)

    1 ___ 
 √ 

___
 LC  
    

    e   −αt ( B  1   cos  ω  d   t +  B  2    sin  ω  d   t),
    where   ω  d   =  √ 

______
  ω  0  2  −  α   2      

EXAMPLE 9.7
Given the series RLC circuit of Fig. 9.23 in which L = 1 H,  
R = 2 kΩ, C = 1/401 μF, i(0) = 2 mA, and vC(0) = 2 V, find and 
sketch i(t), t > 0.

We find that α = R/2L = 1000 s−1 and  ω  0   = 1 /  √ 
___

 LC   = 20,025  rad/s. 
This indicates an underdamped response; we therefore calculate the 
value of ωd and obtain 20,000 rad/s. Except for the evaluation of the 
two arbitrary constants, the response is now known:

i(t) =  e   −1000t  ( B  1   cos  20,000t +  B  2    sin 20,000t)

Since we know that i(0) = 2 mA, we may substitute this value into 
our equation for i(t) to obtain

 B  1   = 0.002  A

and thus

 i (  t )   =  e   −1000t   (  0.002  cos  20,000t +  B  2    sin 20,000t )   A 
(Continued on next page)

i

L

C

R vL

+

–

vC +–

■  FIGURE 9.23 A simple source-free RLC circuit with 
energy stored in both the inductor and the capacitor 
at t = 0.
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The remaining initial condition must be applied to the derivative; 
thus,

   
di __ 
dt    =  e   −1000t (− 40 sin 20,000t + 20,000  B  2     cos  20,000t      
          − 2  cos  20,000t − 1000  B  2    sin 20,000t )   

  

and

  

   di __ 
dt

   |    t = 0
   = 20,000  B  2   − 2 =    v  L  (0) ____ 

L
  

     =    v  C  (0) − Ri(0) _________ 
L

              

                  =   2 − 2000(0.002)  ___________ 1   = − 2  A/s

 

so that

 B  2   = 0

The desired response is therefore

 i (  t )   = 2  e   −1000t  cos  20,000t   mA 

A good sketch may be made by first drawing in the two portions of 
the exponential envelope, 2e−1000t and −2e−1000t mA, as shown by the 
dashed lines in Fig. 9.24. The location of the quarter-cycle points of the 
sinusoidal wave at 20,000t = 0, π/2, π, etc., or t = 0.07854k ms, k = 0, 
1, 2, . . . , by light marks on the time axis then permits the oscillatory 
curve to be sketched in quickly.

0

1

2

–1

–2

0.2 0.4 0.6 0.8 1.0

i (t) (mA)

t (ms)

■  FIGURE 9.24 The current response in an underdamped series RLC 
circuit for which = 1000 s−1, ω0 = 20,000 s−1, i(0) = 2 mA, and vC(0) = 2 V. The 
graphical construction is simplified by drawing in the envelope, shown as a 
pair of dashed lines.

The settling time can be determined easily here by using the upper 
portion of the envelope. That is, we set 2  e   −1000 t  s    mA equal to 1 percent 
of its maximum value, 2 mA. Thus,  e   −1000 t  s     = 0.01, and ts = 4.61 ms is 
the approximate value that is usually used.
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As a final example, we pause to consider situations where the circuit in-
cludes a dependent source. If no controlling current or voltage associated with 
the dependent source is of interest, we may simply find the Thévenin equiv-
alent connected to the inductor and capacitor. Otherwise, we are likely faced 
with having to write an appropriate integrodifferential equation, take the indi-
cated derivative, and solve the resulting differential equation as best we can.

  SECTION 9.5 THE SOURCE-FREE SERIES RLC CIRCUIT

PRACTICE 
●

9.7 With reference to the circuit shown in Fig. 9.25, find (a) α; (b) ω0; 
(c) i(0+); (d) di / dt   |    t= 0   +   ; (e) i(12 ms). 

■  FIGURE 9.25

0.5 H 40 μF

100 Ω

i
u(– t) A

Ans: 100 s−1; 224 rad/s; 1 A; 0; −0.1204 A.

EXAMPLE 9.8
Find an expression for vC(t) in the circuit of Fig. 9.26a, valid for t > 0.

10 V 2 Ω

9 Ω
t = 0

5 H
2 mF

i

+ –

3i

+
–

vC –+

(a)

2 Ω 1 A

9 Ω

i

+ –

3i

(b)

vtest

+

–

10 V 2 Ω

9 Ω
t = 0

5 H
2 mF

i

+ –

3i

+
–

vC –+

(a)

2 Ω 1 A

9 Ω

i

+ –

3i

(b)

vtest

+

–

■  FIGURE 9.26 (a) An RLC circuit containing a dependent source.  
(b) Circuit for finding Req.

As we are interested only in vC(t), it is perfectly acceptable to begin by 
finding the Thévenin equivalent resistance connected in series with the 
inductor and capacitor at t = 0+. We do this by connecting a 1 A source 
as shown in Fig. 9.26b, from which we deduce that

 v  
test

   = 11i − 3i = 8i = 8(1) = 8 V
(Continued on next page)
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Thus, Req = 8 Ω, so α = R/2L = 0.8 s−1 and  ω  0   = 1 /  √ 
___

 LC   = 
10 rad/s, meaning that we expect an underdamped response with ωd = 
9.968 rad/s and the form

   v  C  (t) =  e   −0.8t ( B  1   cos  9.968t +  B  2    sin 9.968t)  [32]

In considering the circuit at t = 0−, we note that iL(0−) = 0 due to the 
presence of the capacitor. By Ohm’s law, i(0−) = 5 A, so

 v  C  ( 0   + ) =  v  C  ( 0   − ) = 10 − 3i = 10 − 15 = − 5 V

This last condition substituted into Eq. [32] yields B1 = −5 V. Taking 
the derivative of Eq. [32] and evaluating at t = 0 yield

     d  v  C   ___ 
dt

   |    t=0
   = − 0.8  B  1   + 9.968  B  2   = 4 + 9.968  B  2    [33]

We see from Fig. 9.26a that

i = − C   d  v  C   ___ 
dt

  

Thus, making use of the fact that i(0+) = iL(0−) = 0 in Eq. [33] 
yields B2 = −0.4013 V, and we may write

  v  C   (  t )   = −  e   −0.8t  (  5  cos  9.968t + 0.4013 sin 9.968t )    V         t > 0 

The SPICE simulation of this circuit, shown in Fig. 9.27, confirms 
our analysis.

■  FIGURE 9.27 SPICE simulation of the circuit shown in Fig. 9.26a, plotting the voltage across 
the capacitor [defined by V(va)−V(vb) in the simulation] and comparison to the analytical result. 
Note that in lTspice you may need to check box “Use radian measure in waveform expression“ 
in the Control Panel settings for waveforms, or convert sinusoidal arguments to degrees. 
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357  SECTION 9.6 THE COMPlETE RESPONSE OF THE RLC CIRCUIT

9.6 • THE COMPLETE RESPONSE OF THE RLC CIRCUIT
We now consider those RLC circuits in which dc sources are switched into 
the network and produce forced responses that do not necessarily vanish as 
time becomes infinite.

The general solution is obtained by the same procedure that was fol-
lowed for RL and RC circuits. The basic steps are (not necessarily in this 
order) as follows:

PRACTICE 
●

9.8 Find an expression for iL(t) in the circuit of Fig. 9.28, valid for 
t > 0, if vC(0−) = 10 V and iL(0−) = 0. Note that although it is not 
helpful to apply Thévenin techniques in this instance, the action of 
the dependent source links vC and iL such that a first-order linear 
differential equation results. 

■  FIGURE 9.28 Circuit for Practice Problem 9.8.

2 Ω 5 H

2 Ω

iL

3vC

10 mF

vC –+

Ans: iL(t) = −30e−300t A, t > 0.

Summary of Procedure for Solving RLC Circuits

1. Determine the initial conditions.
2. Obtain a numerical value for the forced response.
3. Write the appropriate form of the natural response with the 

necessary number of unknown constants. Calculate α, ω0, and 
cases of underdamped, critically damped, or overdamped. 

4. Add the forced response and natural response to form the 
complete response.

5. Evaluate the response and its derivative at t = 0, and employ the 
initial conditions to solve for unknown constants. 

We note that it is generally this last step that causes the most trouble for 
students, as the circuit must be carefully evaluated at t = 0 to make full use 
of the initial conditions. Consequently, although the determination of the 
initial conditions is basically no different for a circuit containing dc sources 
from what it is for the source-free circuits that we have already covered in 
some detail, this topic will receive particular emphasis in the examples that 
follow.
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358 CHAPTER 9 THE RLC CIRCUIT

Most of the confusion in determining and applying the initial condi-
tions arises for the simple reason that we do not have a rigorous set of 
rules laid down for us to follow. At some point in each analysis, a situa-
tion usually arises in which some thinking is involved that is more or less 
unique to that particular problem. This is almost always the source of the 
difficulty.

The Easy Part
The complete response (arbitrarily assumed to be a voltage response) of a 
second-order system consists of a forced response,

 v  f   (t) =  V  f  

which is a constant for dc excitation, and a natural response,

 v  n  (t) = A  e    s  1  t  + B  e    s  2  t 

Thus,

v(t) =  V  f   + A  e    s  1  t  + B  e    s  2  t 

We assume that s1, s2, and Vf have already been determined from the 
circuit and the given forcing functions; A and B remain to be found. The 
last equation shows the functional interdependence of A, B, v, and t; and 
substitution of the known value of v at t = 0+ thus provides us with a single 
equation relating A and B, v(0+) = Vf + A + B. This is the easy part.

The Other Part
Another relationship between A and B is necessary, unfortunately, and this 
is normally obtained by taking the derivative of the response,

  dv __ 
dt

   = 0 +  s  1   A  e    s  1  t  +  s  2   B  e    s  2  t 

and inserting the known value of dv/dt at t = 0+. We thus have two equations 
relating A and B, and these may be solved simultaneously to evaluate the 
two constants.

The only remaining problem is that of determining the values of v and 
dv/dt at t = 0+. Let us suppose that v is a capacitor voltage, vC. Since iC =  
C dvC /dt, we should recognize the relationship between the initial value of 
dv/dt and the initial value of some capacitor current. If we can establish a 
value for this initial capacitor current, then we will automatically establish 
the value of dv/dt. Students can usually get v(0+) very easily, but they are 
inclined to stumble a bit in finding the initial value of dv/dt. If we had se-
lected an inductor current iL as our response, then the initial value of diL/dt 
would be intimately related to the initial value of some inductor voltage. 
Variables other than capacitor voltages and inductor currents are determined 
by expressing their initial values and the initial values of their derivatives in 
terms of the corresponding values for vC and iL.

We will illustrate the procedure and find all these values by the careful 
analysis of the circuit shown in Fig. 9.29. To simplify the analysis, an unu-
sual value of capacitance is used again.
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3 H 5 A

30 Ω

vC

+

–
vL

+

–

vR+ –iR

iL iC

4u(t) A F1
27

(a)

vR+ –

iCiL
vL

+

–

vC

+

–

iR

5 A3 H

30 Ω

(b)

F1
27

vR+ –

iCiL
vL

+

–

vC

+

–

iR

5 A4 A 3 H

30 Ω

(c)

F1
27

■  FIGURE 9.29 (a) An RLC circuit that is used to illustrate several procedures by which the initial conditions may be obtained. 
The desired response is nominally taken to be vC(t). (b) t = 0−. (c) t > 0.

EXAMPLE 9.9
There are three passive elements in the circuit shown in Fig. 9.29a, 
and a voltage and a current are defined for each. Find the values of 
these six quantities at both t = 0− and t = 0+.

Our object is to find the value of each current and voltage at both  
t = 0− and t = 0+. Once these quantities are known, the initial values  
of the derivatives may be found easily.

1. t = 0− At t = 0−, only the right-hand current source is active as 
depicted in Fig. 9.29b. The circuit is assumed to have been in this state 
forever, so all currents and voltages are constant. Thus, a dc current 
through the inductor requires zero voltage across it:

 v  L  ( 0   − ) = 0
and a dc voltage across the capacitor (−vR) requires zero current 
through it:

 i  C  ( 0   − ) = 0

We next apply Kirchhoff’s current law to the right-hand node to obtain

 i  R  ( 0   − ) = − 5 A

which also yields

 v  R  ( 0   − ) = − 150 V

We may now use Kirchhoff’s voltage law around the left-hand mesh, 
finding

 v  C  ( 0   − ) = 150 V

while KCL enables us to find the inductor current,

 i  L  ( 0   − ) = 5 A
(Continued on next page)
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360 CHAPTER 9 THE RLC CIRCUIT

2. t = 0+ During the interval from t = 0− to t = 0+, the left-hand current 
source becomes active and many of the voltage and current values at  
t = 0− will change abruptly. The corresponding circuit is shown in 
Fig. 9.29c. However, we should begin by focusing our attention on 
those quantities which cannot change, namely, the inductor current and 
the capacitor voltage. Both of these must remain constant during the 
switching interval. Thus,

 i  L  ( 0   + ) = 5 A         and           v  C  ( 0   + ) = 150 V

Since two currents are now known at the left node, we next obtain

 i  R  ( 0   + ) = − 1 A         and           v  R  ( 0   + ) = − 30 V

so that

 i  C  ( 0   + ) = 4 A         and           v  L  ( 0   + ) = 120 V

and we have our six initial values at t = 0− and six more at t = 0+. 
Among these last six values, only the capacitor voltage and the inductor 
current are unchanged from the t = 0− values.

We could have employed a slightly different method to evaluate these 
currents and voltages at t = 0− and t = 0+. Prior to the switching oper-
ation, only direct currents and voltages exist in the circuit. The inductor 
may therefore be replaced by a short circuit, its dc equivalent, while the 
capacitor is replaced by an open circuit. Redrawn in this manner, the circuit 
of Fig. 9.29a appears as shown in Fig. 9.30a. Only the current source at the 
right is active, and its 5 A flow through the resistor and the inductor. We 
therefore have iR(0−) = −5 A and vR(0−) = −150 V, iL(0−) = 5 A and vL(0−) 
= 0, and iC(0−) = 0 and vC(0−) = 150 V, as before.

5 A

30 Ω

(a)

vC

+

–
vL

+

–

vR+ –iR

iL iC

0 A +
– 5 A5 A

30 Ω

(b)

vC

+

–
vL

+

–

vR+ –iR

iL iC

4 A 150 V

5 A

30 Ω

(a)

vC

+

–
vL

+

–

vR+ –iR

iL iC

0 A +
– 5 A5 A

30 Ω

(b)

vC

+

–
vL

+

–

vR+ –iR

iL iC

4 A 150 V

■  FIGURE 9.30 (a) A simple circuit equivalent to the circuit of Fig. 9.29a for t = 0−. (b) Equivalent 
circuit with labeled voltages and currents valid at the instant defined by t = 0+.
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We now turn to the problem of drawing an equivalent circuit that will 
assist us in determining the several voltages and currents at t = 0+. Each ca-
pacitor voltage and each inductor current must remain constant during the 
switching interval. These conditions are ensured by replacing the inductor 
with a current source and the capacitor with a voltage source. Each source 
serves to maintain a constant response during the discontinuity. The equiva-
lent circuit of Fig. 9.30b results. It should be noted that the circuit shown in 
Fig. 9.30b is valid only for the interval between 0− and 0+.

The voltages and currents at t = 0+ are obtained by analyzing this dc 
circuit. The solution is not difficult, but the relatively large number of 
sources present in the network does produce a somewhat strange sight. 
However, problems of this type were solved in Chap. 3, and nothing new is 
involved. Attacking the currents first, we begin at the upper left node and 
see that iR(0+) = 4 − 5 = −1 A. Moving to the upper right node, we find that  
iC(0+) = −1 + 5 = 4 A. And, of course, iL(0+) = 5 A.

Next we consider the voltages. Using Ohm’s law, we see that vR(0+) = 
30(−1) = −30 V. For the inductor, KVL gives us vL(0+) = −30 + 150 = 120 V.  
Finally, including vC(0+) = 150 V, we have all the values at t = 0+.

PRACTICE 
●

9.9 Let is = 10u(−t) − 20u(t) A in Fig. 9.31. Find (a) iL(0−); (b) vC(0+); 
(c) vR(0+); (d) iL (∞); (e) iL(0.1 ms). 

■  FIGURE 9.31 

10 μF
1 mH

20 Ω

is

vR

+

–
vC

+

–

iL

Ans: 10 A; 200 V; 200 V; −20 A; 2.07 A.
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EXAMPLE 9.10
Complete the determination of the initial conditions in the circuit 
of Fig. 9.29, repeated in Fig. 9.32, by finding values at t = 0+ for 
the first derivatives of the three voltage and three current variables 
defined on the circuit diagram.

3 H 5 A

30 Ω

vC

+

–
vL

+

–

vR+ –iR

iL iC

4u(t) A F1
27

■  FIGURE 9.32 Circuit of Fig. 9.29, repeated for Example 9.10.
(Continued on next page)
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362 CHAPTER 9 THE RLC CIRCUIT

We begin with the two energy storage elements. For the inductor,

 v  L   = L   d  i  L   ___ 
dt

  

and, specifically,

 v  L  ( 0   + ) = L    d  i  L   ___ 
dt

   |    t =  0   + 
  

Thus,

   d  i  L   ___ 
dt

   |    t =  0   + 
   =    v  L  ( 0   + ) _____ 

L
   =   120 ___ 3   = 40 A/s

Similarly,

   d  v  C   ___ 
dt

   |    t =  0   + 
   =    i  C  ( 0   + ) _____ 

C
   =   4 ____ 1 / 27   = 108 V/s

The other four derivatives may be determined by realizing that KCL 
and KVL are both satisfied by the derivatives also. For example, at the 
left-hand node in Fig. 9.32,

4 −  i  L   −  i  R   = 0          t > 0

and thus,

0 −   d  i  L   ___ 
dt

   −   d  i  R   ___ 
dt

   = 0          t > 0

and therefore,

   d  i  R   ___ 
dt

   |    t= 0   + 
   = − 40 A/s

The three remaining initial values of the derivatives are found to be

 
   d  v  R   ___ 
dt

   |    t= 0   + 
   = − 1200 V/s

   
   d  v  L   ___ 
dt

   |    t= 0   + 
   = − 1092 V/s

  

and

   d  i  C   ___ 
dt

   |    t= 0   + 
   = − 40 A/s

Before leaving this problem of the determination of the necessary initial 
values, we should point out that at least one other powerful method of deter-
mining them has been omitted: We could have written general nodal or loop 
equations for the original circuit. Then the substitution of the known zero 
values of inductor voltage and capacitor current at t = 0− would uncover 
several other response values at t = 0− and enable the remainder to be found 
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easily. A similar analysis at t = 0+ must then be made. This is an important 
method, and it becomes a necessary one in more complicated circuits which 
cannot be analyzed by our simpler step-by-step procedures.

Now let us briefly complete the determination of the response vC(t) for 
the original circuit of Fig. 9.32. With both sources dead, the circuit appears 
as a series RLC circuit, and s1 and s2 are easily found to be −1 and −9, 
respectively. The forced response may be found by inspection or, if neces-
sary, by drawing the dc equivalent, which is similar to Fig. 9.30a, with the 
addition of a 4 A current source. The forced response is 150 V. Thus,

 v  C  (t) = 150 + A  e   −t  + B  e   −9t 

and

 v  C  ( 0   + ) = 150 = 150 + A + B

or

A + B = 0

Then,

  d  v  C   ___ 
dt

   = − A  e   −t  − 9B  e   −9t 

and

   d  v  C   ___ 
dt

   |    t= 0   + 
   = 108 = − A − 9B

Finally,

A = 13.5          B = − 13.5

and

 v  C  (t) = 150 + 13.5( e   −t  −  e   −9t ) V

A Quick Summary of the Solution Process
In summary, then, whenever we wish to determine the transient behavior 
of a simple three-element RLC circuit, we must first decide whether we are 
confronted with a series or a parallel circuit, so that we may use the correct 
relationship for α. The two equations are

 
     α =   1 ____ 2RC

         (parallel RLC)
    

  α =   R __ 2L
            (series RLC)

  

Our second decision is made after comparing α with ω0, which is given for 
either circuit by

 ω  0   =   1 ___ 
 √ 

___
 LC  
  

If α > ω0, the circuit is overdamped, and the natural response has the form

 f  n  (t) =  A  1    e    s  1  t  +  A  2    e    s  2  t 

  SECTION 9.6 THE COMPlETE RESPONSE OF THE RLC CIRCUIT
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where

 s  1,2   = − α ±  √ 
______

  α   2  −  ω  0  2   

If α = ω0, then the circuit is critically damped and

 f  n  (t) =  e   −αt ( A  1   t +  A  2  )

And finally, if α < ω0, then we are faced with the underdamped response,

 f  n  (t) =  e   −αt ( A  1   cos  ω  d   t +  A  2    sin  ω  d   t)

where

 ω  d   =  √ 
______

  ω  0  2  −  α   2   

Sudden cardiac arrest, a situation where the heart sud-
denly stops beating, is a life-threatening emergency that 
often results in death if not treated in minutes. One of 
the primary causes of sudden cardiac arrest is ventric-
ular fibrillation, where the lower chambers of the heart 
cease to pump blood, and the electrical rhythm of the 
heart is disrupted. Application of an electrical shock can 
be a life-saving intervention to restore a normal heart 
rhythm. Many public locations now offer automated 
external defibrillators (AEDs) for emergency response. 
The AED includes a device to check heart rhythm and to 
apply an electric shock if necessary. The electric shock 
delivers a dose of electricity to the heart to “reset” the 
heart’s electrical system and cardiac muscle. How does 
an AED work?

A power supply or battery is first used to charge a 
capacitor with the appropriate dose of electricity. A 
voltage of approximately 5 kV is typically used, and it 
is achieved through a DC converter or transformer. An 
electrical shock is then delivered to the patient through a 
discharge from the capacitor via paddles in contact with 
the chest. The electrical current should be sustained on 
the order of milliseconds to be effective. In order to sus-
tain this current flow, an inductance in the circuit is typ-
ically incorporated. The electricity flowing through the 
patient has a resistance that includes current conduction 
through tissue and contact to the paddles, completing a 
series RLC circuit! Examples of typical values for circuit 
elements are C  = 50 μF, L = 50 mH, and R = 50 Ω. 
Under a charging voltage of 5 kV, this would result in an 
electrical shock delivered for approximately 6 ms.

PRACTICAL APPLICATION
Automated External Defibrillators

50.3 mH

31 μF

C1

S1

L1

R1
50 Ω

+

–
5000 V

v1

(b)

■  FIGURE 9.33 (a) Illustration of AED device often located in buildings, 
used to restore normal heart rhythm and (b) example circuit schematic used 
in an AED unit. 
(a: ©Baloncici/123RF)

(a)
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365  SECTION 9.7 THE lOSSlESS LC CIRCUIT

Our last decision depends on the independent sources. If there are none 
acting in the circuit after the switching or discontinuity is completed, then 
the circuit is source-free, and the natural response accounts for the complete 
response. If independent sources are still present, then the circuit is driven, 
and a forced response must be determined. The complete response is then 
the sum

f(t) =  f  f   (t) + f  n  (t)

This is applicable to any current or voltage in the circuit. Our final step is to 
solve for unknown constants given the initial conditions.

PRACTICE 
●

9.10 Let vs = 10 + 20u(t) V in the circuit of Fig. 9.34. Find (a) iL (0); 
(b) vC(0); (c) iL, f; (d) iL(0.1 s). 

+
– 1 mF

15.625 H

50 Ω vC

+

–

iL

vs

■  FIGURE 9.34

Ans: 0.2 A; 10 V; 0.6 A; 0.319 A.

9.7 • THE LOSSLESS LC CIRCUIT
When we considered the source-free RLC circuit, it became apparent that 
the resistor served to dissipate any initial energy stored in the circuit. At 
some point it might occur to us to ask: what would happen if we could 
remove the resistor? If the value of the resistance in a parallel RLC circuit 
becomes infinite, or zero in the case of a series RLC circuit, we have a 
simple LC loop in which an oscillatory response can be maintained forever! 
Let us look briefly at an example of such a circuit, and then discuss another 
means of obtaining an identical response without the need of supplying any 
inductance.

Consider the source-free circuit of Fig. 9.35, in which the large values  
L = 4 H  and C =    1 __ 36    F are used so that the calculations will be simple. We 
let i(0) = −     1 _ 6    A and v(0) = 0. We find that α = 0 and  ω  0  2  = 9   s   −2 , so that  
ωd = 3 rad/s. In the absence of exponential damping, the voltage v is simply

v = A  cos  3t + B sin 3t

Since v(0) = 0, we see that A = 0. Next,

   dv __ 
dt

   |    t=0
   = 3B = −   i(0) ____ 1 / 36  

4 H v

+

–

i

F1
36

■  FIGURE 9.35 This circuit is lossless, and it 
provides the undamped response v = 2 sin 3t V, if  
v(0) = 0 and i  (  0 )    = −     1 __ 6    A.
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366 CHAPTER 9 THE RLC CIRCUIT

But i(0) = −    1 _ 6    A, and therefore dv/dt = 6 V/s at t = 0. We must have B = 2 
V and so

v = 2 sin 3t  V

which is an undamped sinusoidal response; in other words, our voltage 
response does not decay.

EXAMPLE 9.11
Determine i(t) for t > 0 for the circuit shown in Fig 9.36. 

+
–9 V

50 Ω

3 mH

t = 0t = 0

v
+

–
μF

i
40
3

■  FIGURE 9.36 Circuit for Example 9.11.

For t < 0, we see that the capacitor will initially charge to a voltage of 
v(0) = 9 V, and the inductor will have a current i(0) = 0. For t > 0, the 
capacitor disconnects from the voltage source in a charged state and 
connects instantaneously to the inductor. For the LC circuit configura-
tion, we find that α = 0 and  ω  0  2  = 1 /  (     (   3 ×   10   −3    )      (   40 / 3 × 1 ×   10   −6    )   )      s   −2 , 
so that ωd = 5000 rad/s. 

i = A cos (5000t)  + B sin (5000t) 

Since i(0) = 0, A = 0. Applying initial conditions to the derivative of 
current at t = 0+,

   di __ 
dt

   |    t= 0   + 
   = 5000B =   

v (    0   +  )   ____ 
L

  

We know v(0+) = 9 V, thus di/dt = 3000 A/s at t = 0+. B is therefore 0.6 A.  
The resulting current for t > 0 is

i = 0 . 6 sin (5000t)  A

PRACTICE 
●

9.11 Alter the capacitor value and voltage source in Fig. 9.36 to oscil-
late at a frequency of 1 kHz with total energy of 0.96 mJ. 
Ans: 8.44 μF; 15.1 V

Now let us see how we might obtain this voltage without using an LC 
circuit. Our intentions are to write the differential equation that v satisfies 
and then to develop a configuration of op amps that will yield the solution 
to the equation. Although we are working with a specific example, the tech-
nique is a general one that can be used to solve any linear homogeneous 
differential equation.
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For the LC circuit of Fig. 9.35, we select v as our variable and set the 
sum of the downward inductor and capacitor currents equal to zero:

i + C   dv __ 
dt

   =   1 __ 
L

  ∫ v dt + C   dv __ 
dt

   = 0

Differentiating once, we have

  1 __ 
L

   v + C    d   2  v ___ 
d  t   2 

   = 0

or

   d   2  v ___ 
d  t   2 

   = −   1 ___ 
LC

   v

Substituting circuit values yields

   d   2  v ___ 
d  t   2 

   = −9v

In order to solve this differential equation, note that the solution can be 
obtained by integrating twice. Suppose we would like to obtain the same 
oscillator circuit result but eliminate the use of the inductor (which are often 
difficult to obtain, expensive, and not easy to find for integrated circuits). 
Alternatively, we learned that the operational amplifier can behave as an 
integrator, where two cascaded integrators could obtain the same result!

We assume that the highest-order derivative appearing in the differen-
tial equation here, d2v/dt2, is available in our configuration of op amps at 
an arbitrary point A. We now make use of the integrator, with RC = 1, as 
discussed in Sec. 7.5. The input is d2v/dt2, and the output must be −dv/dt, 
where the sign change results from using an inverting op amp configuration 
for the integrator. The negative of the first derivative now forms the input 
to a second integrator, where the output is v(t). To complete the design, 
we need to multiply v by −9 to obtain the second derivative we assumed 
at point A. This is amplification by 9 with a sign change, and it is easily 
accomplished by using the op amp as an inverting amplifier. 

Figure 9.37 shows the circuit of an inverting amplifier. For an ideal op 
amp, both the input current and the input voltage are zero. Thus, the current 
going “east” through R1 is vs /R1, while that traveling west through Rf is vo /Rf.  
Since their sum is zero, we have

   v  0   __  v  s     = −   
 R  f   __  R  1  

  

Thus, we can design for a gain of −9 by setting Rf  = 90 kΩ and R1 = 10 
kΩ, for example.

If we let R be 1 MΩ and C be 1 μF in each of the integrators, then

 v  o   = −  ∫ 
0
  
t

     v  s    d  t   ′  +  v  o  (0)

in each case. The output of the inverting amplifier now forms the assumed 
input at point A, leading to the configuration of op amps shown in Fig. 9.38. 
The initial conditions will be set by storage in the capacitors and will need 
to be matched to the case of the LC circuit. The LC circuit defined zero en-
ergy storage in the capacitor with v = 0, and energy storage in the inductor 

  SECTION 9.7 THE lOSSlESS LC CIRCUIT

+
–

–

+

R1

Rf

vo

+

–vs

■  FIGURE 9.37 The inverting operational 
amplifier provides a gain vo /vs = −Rf /R1, 
assuming an ideal op amp.
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according to i(0) = −1/6 A. We can similarly define an initial voltage for the 
capacitors, drawn in the circuit schematically by a voltage source or short 
circuit connected by switches that open at t = 0. Analysis of our circuit at 
t = 0 indicates that a voltage of v = 2 V is required at the output, and sim-
ilarly for the voltage across the capacitor on the right (and a short circuit 
across the capacitor on the left). If the left switch is closed at t = 0 while the 
two initial-condition switches are opened at the same time, the output of the 
second integrator will be the undamped sine wave v = 2 sin 3t V.

Note that both the LC circuit of Fig. 9.35 and the op amp circuit of Fig. 9.38 
have the same output, but the op amp circuit does not contain a single inductor. 
It simply acts as though it contained an inductor, providing the appropriate si-
nusoidal voltage between its output terminal and ground. This can be a consid-
erable practical or economic advantage in circuit design, as inductors are 
typically bulky, more costly than capacitors, and have more losses associated 
with them (and therefore are not as well approximated by the “ideal” model).

–

+

2 V

1 μF
1 μF

1 MΩ
1 MΩ

10 kΩ

Rf = 90 kΩ

A

d2v
dt2

–9v

– v = 2 sin 3t V

t = 0

t = 0

–

+

t = 0

–

+

dv
dt

■  FIGURE 9.38 Two integrators and an inverting amplifier are connected to provide the solution of the 
differential equation d2v/dt2 = −9v.

PRACTICE 
●

9.12 Give new values for Rf and the two initial voltages in the circuit of 
Fig. 9.38 to provide a circuit that would provide an equivalent output to 
the voltage v(t) in the circuit of Fig. 9.39. 

■  FIGURE 9.39 

8 H12 V

5 mF
1 Ω

5 Ω

v(t)

+

–

t = 0

Ans: 250 kΩ; 400 V; 10 V.
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SUMMARY AND REVIEW

The simple RL and RC circuits examined in Chap. 8 essentially did one of two 
things as the result of throwing a switch: charge or discharge. Which one hap-
pened was determined by the initial charge state of the energy storage element. 
In this chapter, we considered circuits that had two energy storage elements  
(a capacitor and an inductor) and found that things could get pretty interest-
ing. There are two basic configurations of such RLC circuits: parallel con-
nected and series connected. Analysis of such a circuit yields a second-order 
partial differential equation, consistent with the number of distinct energy 
storage elements (if we construct a circuit using only resistors and capacitors 
such that the capacitors cannot be combined using series/parallel techniques, 
we also obtain—eventually—a second-order partial differential equation).

Depending on the value of the resistance connected to our energy stor-
age elements, we found the transient response of an RLC circuit could be 
either overdamped (decaying exponentially) or underdamped (decaying, but 
oscillatory), with a “special case” of critically damped which is difficult to 
achieve in practice. Oscillations can be useful (for example, in transmitting 
information over a wireless network) and not so useful (for example, in acci-
dental feedback situations between an amplifier and a microphone at a con-
cert). Although the oscillations are not sustained in the circuits we examined, 
we have at least seen one way to create them at will, and we can design for 
a specific frequency of operation if so desired. We didn’t end up spending 
a great deal of time with the series-connected RLC circuit because with the 
exception of α, the equations are the same; we need only a minor adjustment 
in how we employ initial conditions to find the two unknown constants char-
acterizing the transient response. Along those lines, there were two “tricks,” 
if you will, that we encountered. One is that to employ the second initial 
condition, we need to take the derivative of our response equation. The sec-
ond is that whether we’re employing KCL or KVL to make use of that initial 
condition, we’re doing so at the instant that t = 0; appreciating this fact can 
simplify equations dramatically by setting t = 0 early.

We wrapped up the chapter by considering the complete response, and our 
approach to this did not differ significantly from what we did in Chap. 8. We 
closed with a brief section on a topic that might have occurred to us at some 
point—what happens when we remove the resistive losses completely (by setting 
parallel resistance to ∞, or series resistance to 0)? We end up with an LC circuit, 
and we saw that we can approximate such an animal with an op amp circuit.

By now the reader is likely ready to finish reviewing key concepts of the 
chapter, so we’ll stop here and list them, along with corresponding exam-
ples in the text.

 Circuits that contain two energy storage devices that cannot be com-
bined using series-parallel combination techniques are described by a 
second-order differential equation.

 Series and parallel RLC circuits fall into one of three categories, de-
pending on the relative values of R, L, and C:

Overdamped    α > ω0

Critically damped  α = ω0

Underdamped    α < ω0

(Example 9.1)
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 For parallel RLC circuits, α = 1/ 2RC and  ω  0   = 1  √ 
___

 LC  . (Example 9.1)
 For series RLC circuits, α = R / 2L and  ω  0   = 1  √ 

___
 LC  . (Example 9.7)

 The typical form of an overdamped response is the sum of two expo-
nential terms, one of which decays more quickly than the other: e.g.,  
A1e

−t + A2e
−6t. (Examples 9.2, 9.3, 9.4)

 The typical form of a critically damped response is e−αt(A1t + A2). 
(Example 9.5)

 The typical form of an underdamped response is an exponentially 
damped sinusoid: e−αt (B1 cos ωdt + B2 sin ωdt). (Examples 9.6, 9.7, 9.8)

 During the transient response of an RLC circuit, energy is transferred 
between energy storage elements to the extent allowed by the resistive 
component of the circuit, which acts to dissipate the energy initially 
stored. (See Computer-Aided Analysis section.)

 The complete response is the sum of the forced and natural responses. 
In this case the total response must be determined before solving for 
the constants. (Examples 9.9, 9.10)

 An RLC circuit without damping can lead to an oscillatory response 
that could be maintained forever. This is possible for an LC circuit 
(though finite resistance always occurs in practice) or a properly de-
signed op amp circuit involving capacitors. (Example 9.11)

READING FURTHER
Many detailed descriptions of analogous networks can be found in Chap. 3 of 

E. Weber, Linear Transient Analysis Volume I. New York: Wiley, 1954. 
(Out of print, but in many university libraries.)

EXERCISES

9.1 The Source-Free Parallel Circuit
1. For a certain source-free parallel RLC circuit, R = 1 kΩ, C = 3 μF, and L is 

such that the circuit response is overdamped. (a) Determine a suitable value of 
L. (b) Write the equation for the voltage v across the resistor if it is known that 
v(0−) = 9 V and dv / dt  |  t= 0   +    = 2 V/s.

2. Element values of 10 mF and 2 nH are employed in the construction of a 
simple source-free parallel RLC circuit. (a) Select R so that the circuit is just 
barely overdamped. (b) Write the equation for the resistor current if its initial 
value is iR(0+) = 13 pA and d  i  R   / dt   |    t= 0   +    = 1 nA/s.

3. If a parallel RLC circuit is constructed from component values C = 16 mF  
and L = 1 mH, choose R such that the circuit is (a) just barely overdamped;  
(b) just barely underdamped; (c) critically damped. (d) Does your answer for 
part (a) change if the resistor tolerance is 1%? 10%? (e) Increase the exponen-
tial damping coefficient for part (c) by 20%. Is the circuit now underdamped, 
overdamped, or still critically damped? Explain.

4. Calculate α, ω0, s1, and s2 for a source-free parallel RLC circuit if (a) R = 4 Ω, 
L = 2.22 H, and C = 12.5 mF; (b) L = 1 nH, C = 1 pF, and R is 1% of the value 
required to make the circuit underdamped. (c) Calculate the damping ratio for 
the circuits of parts (a) and (b).

5. You go to construct the circuit in Exercise 1, only to find no 1 kΩ resistors. In 
fact, all you can find in addition to the capacitor and inductor is a 1-meter-long 
piece of 24 AWG soft solid copper wire. Connecting it in parallel to the two 
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components you did find, compute the value of α, ω0, s1, and s2, and verify that 
the circuit is still overdamped.

6. A parallel RLC circuit has inductance 2 mH and resistance 50 Ω. For capaci-
tance values ranging from 10 nF to 10 μF, (a) plot α and ω0 versus capacitance 
on a log-log plot (and indicate regions for underdamped and overdamped 
response), (b) extract values for C, α, and ω0 for the critical damping case.

7. A parallel RLC circuit is constructed with R = 500 Ω, C = 10 μF, and L such 
that it is critically damped. (a) Determine L. Is this value large or small for a 
printed-circuit-board-mounted component? (b) Add a resistor in parallel to 
the existing components such that the damping ratio is equal to 10. (c) Does 
increasing the damping ratio further lead to an overdamped, critically damped, 
or underdamped circuit? Explain.

9.2 The Overdamped Parallel RLC Circuit
8. A parallel RLC circuit has R = 1 kΩ, L = 50 mH, and C = 2 nF. If the ca-

pacitor is initially charged to 4 V, and the inductor current is initially 50 mA 
(flowing into the positive node of the parallel connection), find an expression 
for the voltage dependence of the circuit and evaluate at time t = 5 μs.

9. The voltage across a capacitor is found to be given by vC(t) = 10e−10t − 5e−4t V.
(a) Plot each of the two components over the range of 0 ≤ t ≤ 1.5 s.
(b) Plot the capacitor voltage over the same time range.

10. The current flowing through a certain inductor is found to be given by iL(t) = 
0.20e−2t − 0.6e−3t V. (a) Plot each of the two components over the range of 0 ≤  
t ≤ 1.5 s. (b) Plot the inductor current over the same time range. (c) Plot the en-
ergy remaining in the inductor (assuming inductance of 1 H) over 0 ≤ t ≤ 1.5 s.

11. The current flowing through a 5 Ω resistor in a source-free parallel RLC circuit 
is determined to be iR(t) = 2e−t − 3e−8t A, t > 0. Determine (a) the maximum 
current and the time at which it occurs; (b) the settling time; (c) the time t 
corresponding to the resistor absorbing 2.5 W of power.

12. For the circuit of Fig. 9.40, obtain an expression for vC(t) valid for all t > 0.

250 mF

20 kΩ

0.1 ΩH

6 V

vC

+

–

iL iC

iR
t = 0

+
–

2
13

■ FIGURE 9.40
13. Consider the circuit depicted in Fig. 9.40. (a) Obtain an expression for iL(t) 

valid for all t > 0. (b) Obtain an expression for iR(t) valid for all t > 0. (c) De-
termine the settling time for both iL and iR.

14. With regard to the circuit represented in Fig. 9.41, determine (a) iC(0−); (b) 
iL(0−); (c) iR(0−); (d) vC(0−); (e) iC(0+); (f) iL(0+); (g) iR(0+); (h) vC(0+).

250 mH

1 Ω

48 Ω

vC

+

–

iC

iR
iL

t = 0

10u(– t) mA 2 mF

■ FIGURE 9.41
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15. (a) Assuming the passive sign convention, obtain an expression for the voltage 
across the 1 Ω resistor in the circuit of Fig. 9.41 which is valid for all t > 0. (b) 
Determine the settling time of the resistor voltage.

16. With regard to the circuit presented in Fig. 9.42, (a) obtain an expression for 
v(t) which is valid for all t > 0; (b) calculate the maximum inductor current and 
identify the time at which it occurs; (c) determine the settling time.

0.2 Ω 4 mF v

+

–
5u(–t) μA

iC

t = 0

1 mH

■ FIGURE 9.42
17. Obtain expressions for the current i(t) and voltage v(t) as labeled in the circuit 

of Fig. 9.43 which are valid for all t > 0.

1 H

310 mA 14 Ω v(t)

+

–

i (t)

t = 0 360 μF

■ FIGURE 9.43
18. Replace the 14 Ω resistor in the circuit of Fig. 9.43 with a 1 Ω resistor.  

(a) Obtain an expression for the energy stored in the capacitor as a function of 
time, valid for t > 0. (b) Determine the time at which the energy in the capac-
itor has been reduced to one-half its maximum value. (c) Verify your answer 
with an appropriate SPICE simulation.

19. Design a complete source-free parallel RLC circuit which exhibits an over-
damped response, has a settling time of 1 s, and has a damping ratio of 15.

20. For the circuit represented by Fig. 9.44, the two resistor values are R1 = 0.752 Ω  
and R2 = 1.268 Ω, respectively. (a) Obtain an expression for the energy stored 
in the capacitor, valid for all t > 0; (b) determine the settling time of the cur-
rent labeled iA.

+ –

vC

+

–iA

1.5 V R1 5 F

R2

2iAt = 0

2 H+
–

■ FIGURE 9.44

9.3 Critical Damping
21. A motor coil having an inductance of 8 H is in parallel with a 2 μF capacitor 

and a resistor of unknown value. The response of the parallel combination is 
determined to be critically damped. (a) Determine the value of the resistor. (b) 
Compute α. (c) Write the equation for the current flowing into the resistor if 
the top node is labeled v, the bottom node is grounded, and v = Rir. (d) Verify 
that your equation is a solution to the circuit differential equation,

  d  i  r   __ 
dt

   + 2α   d  i  r   __ 
dt

   +  α   2   i  r   = 0
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22. The condition for critical damping in an RLC circuit is that the resonant 
frequency ω0 and the exponential damping factor α are equal. This leads to the 
relationship L = 4R2C, which implies that 1 H = 1 Ω2 · F. Verify this equiv-
alence by breaking down each of the three units to fundamental SI units (see 
Chap. 2).

23. A critically damped parallel RLC circuit is constructed from component values 
40 Ω, 8 nF, and 51.2 μH, respectively. (a) Verify that the circuit is indeed 
critically damped. (b) Explain why, in practice, the circuit once fabricated is 
unlikely to be truly critically damped. (c) The inductor initially stores 1 mJ of 
energy while the capacitor is initially discharged. Determine the magnitude of 
the capacitor voltage at t = 500 ns, the maximum absolute capacitor voltage, 
and the settling time.

24. A source-free parallel RLC circuit has an initial capacitor voltage of 9 V and 
inductor current of zero. Design a circuit that is critically damped that ensures 
that voltage oscillations have decayed below 100 mV for time great than 20 μs. 
The resistance can range from 10 Ω to 1 kΩ.

25. A critically damped parallel RLC circuit is constructed from component values 
40 Ω and 2 pF. (a) Determine the value of L, taking care not to over round.  
(b) Explain why, in practice, the circuit once fabricated is unlikely to be truly 
critically damped. (c) The inductor initially stores no energy while the capacitor 
is initially storing 10 pJ. Determine the power absorbed by the resistor at t = 2 ns.

26. For the circuit of Fig. 9.45, is(t) = 30u(−t) mA. (a) Select R1 so that v(0+) = 
6 V. (b) Compute v(2 ms). (c) Determine the settling time of the capacitor 
voltage. (d) Is the inductor current settling time the same as your answer to 
part (c)?

R1

v

+

–

t = 0

is 200 μF

20 mH 5 Ω

iL

■ FIGURE 9.45

27. The inductor in the circuit of Fig. 9.43 is changed such that the circuit response 
is now critically damped. (a) Determine the new inductor value. (b) Calculate 
the energy stored in both the inductor and the capacitor at t = 10 ms.

28. The circuit of Fig. 9.44 is rebuilt such that the quantity controlling the depen-
dent source is now −60iA, a 2 μF capacitor is used instead, and R1 = R2 = 10 Ω. 
(a) Calculate the inductor value required to obtain a critically damped response. 
(b) Determine the power being absorbed by R2 at t = 300 μs.

9.4 The Underdamped Parallel RLC Circuit
29. (a) With respect to the parallel RLC circuit, derive an expression for R in terms 

of C and L to ensure that the response is underdamped. (b) If C = 1 nF and  
L = 10 mH, select R such that an underdamped response is (just barely) 
achieved. (c) If the damping ratio is increased, does the circuit become more 
or less underdamped? Explain. (d) Compute α and ωd for the value of R you 
selected in part (b).

30. The circuit of Fig. 9.1 is constructed using component values 10 kΩ, 72 μH, 
and 18 pF. (a) Compute α, ωd, and ω0. Is the circuit overdamped, critically 
damped, or underdamped? (b) Write the form of the natural capacitor voltage 
response v(t). (c) If the capacitor initially stores 1 nJ of energy, compute v at  
t = 300 ns.
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31. The source-free circuit depicted in Fig. 9.1 is constructed using a 10 mH in-
ductor, a 1 mF capacitor, and a 1.5 kΩ resistor. (a) Calculate α, ωd, and ω0. (b) 
Write the equation which describes the current i for t > 0. (c) Determine the 
maximum value of i, and the time at which it occurs, if the inductor initially 
stores no energy and v(0−) = 9 V.

32. (a) Graph the current i for the circuit described in Exercise 31 for resistor 
values 1.5 kΩ, 15 kΩ, and 150 kΩ. Make three separate graphs, and be sure to 
extend the corresponding time axis to observe the settling time in each case. 
(b) Determine the corresponding settling times.

33. Analyze the circuit described in Exercise 31 to find v(t), t > 0, if R is equal to 
(a) 2 kΩ; (b) 2 Ω. (c) Graph both responses over the range of 0 ≤ t ≤ 60 ms. 
(d) Verify your answers with appropriate SPICE simulations. 

34. A source-free parallel RLC circuit has capacitance of 5 μF and inductance 
of 10 mH. Use SPICE to simulate a range of values for resistance between 
50 Ω and 200 Ω in 10 Ω steps. Determine the resistance in this range that 
ensures that oscillations are below ±200 mV for time greater than 3 ms. 
In addition to a step command, the measure command can be used such 
as .meas tran output max abs(V(Vx)) trig at=3m to find the maximum 
for the voltage Vx for time greater than 3 ms, and it can be assigned to the 
variable output. You will also need to invoke a .save command to store the 
data in the SPICE log file.

35. For the circuit of Fig. 9.46, determine (a) iC(0−); (b) iL(0−); (c) iR(0−); (d) 
vC(0−); (e) iC(0+); (f ) iL(0+); (g) iR(0+); (h) vC(0+).

20 mH

50 Ω

2 Ω

vC

+

–

vL

+

–

iC

iR

iL

t = 0

3u(– t) A 2.5 μF

■ FIGURE 9.46

36. Obtain an expression for vL(t), t > 0, for the circuit shown in Fig. 9.46. Plot the 
waveform, ensuring that you observe the settling time.

37. For the circuit of Fig. 9.47, determine (a) the first time t > 0 when v(t) = 0; (b) 
the settling time.

+ –

2 V 20 mH
2 mF

5 Ω

5 Ω 2 Ω
v

+

–

t = 0

5u(– t) V

+
–

■ FIGURE 9.47

38. (a) Design a parallel RLC circuit that provides a capacitor voltage which oscil-
lates with a frequency of 100 rad/s, with a maximum value of 10 V occurring 
at t = 0, and the second and third maxima both in excess of 6 V. (b) Verify 
your design with an appropriate SPICE simulation.

39. The circuit depicted in Fig. 9.48 is just barely underdamped. (a) Compute  
α and ωd. (b) Obtain an expression for iL(t) valid for t > 0. (c) Determine 
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how much energy is stored in the capacitor, and in the inductor, at  
t = 200 ms.

500 mΩ vC

+

–

iL

2.5u(– t) A
250 mF

160 mH

■ FIGURE 9.48

40. When constructing the circuit of Fig. 9.48, you inadvertently install a 500 MΩ 
resistor by mistake. (a) Compute α and ωd. (b) Obtain an expression for iL(t) 
valid for t > 0. (c) Determine how long it takes for the energy stored in the 
inductor to reach 10% of its maximum value.

9.5 The Source-Free Series RLC Circuit
41. The circuit of Fig. 9.22a is constructed with a 160 mF capacitor and a 250 mH 

inductor. Determine the value of R needed to obtain (a) a critically damped 
response; (b) a “just barely” underdamped response. (c) Compare your answers 
to parts (a) and (b) if the circuit is a parallel RLC circuit.

42. Component values of R = 2 Ω, C = 1 mF, and L = 2 mH are used to construct 
the circuit represented in Fig. 9.22a. If vC(0−) = 1 V and no current initially 
flows through the inductor, calculate i(t) at t = 1 ms, 2 ms, and 3 ms.

43. A source-free series RLC circuit has R = 15 Ω, L = 25 mH, and C = 50 μF. If 
the current flow is initially 300 mA, and the capacitor is initially discharged, 
find an expression for the current dependence of the circuit and evaluate at 
time t = 6 ms.

44. The simple three-element series RLC circuit of Exercise 42 is constructed with 
the same component values, but the initial capacitor voltage vC(0−) = 2 V and 
the initial inductor current i(0−) = 1 mA. (a) Obtain an expression for i(t) valid 
for all t > 0. (b) Verify your solution with an appropriate SPICE simulation.

45. The series RLC circuit of Fig. 9.23 is constructed using R = 1 kΩ, C = 2 mF, 
and L = 1 mH. The initial capacitor voltage vC is −4 V at t = 0−. There is no 
current initially flowing through the inductor. (a) Obtain an expression for  
vC(t) valid for t > 0. (b) Graph over 0 ≤ t ≤ 6 μs.

46. With reference to the circuit depicted in Fig. 9.49, calculate (a) α; (b) ω0; (c) 
i(0+); (d)di / dt   |     0   +   ; (e) i(t) at t = 6 s.

12 H 0.5 F

140 Ω

i
0.5u(– t) A

■ FIGURE 9.49

47. Obtain an equation for vC as labeled in the circuit of Fig. 9.50 valid for all  
t > 0.

9 V 30 Ω

100 Ω
t = 0

90 mH
i

+ –

2i

+
–

40 μF

vC –+

■ FIGURE 9.50
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48. With reference to the series RLC circuit of Fig. 9.50, (a) obtain an expression 
for i, valid for t > 0; (b) calculate i(0.8 ms) and i(4 ms); (c) verify your answers 
to part (b) with an appropriate SPICE simulation.

49. Obtain an expression for i1 as labeled in Fig. 9.51 which is valid for all t > 0.
5 Ω

500 mH

1 mF

iL i1

80 Ω 20i15u(– t) mA +
–

vC

+

–

■ FIGURE 9.51

9.6 The Complete Response of the RLC Circuit
50. The circuit in Fig. 9.52 has the switch in position a for a long time, with the ca-

pacitor discharged. At time t = 0, the switch is moved to position b. Determine 
the initial and final conditions for the capacitor and inductor (both current and 
voltage for each element).

400 Ω

4 mH

t = 0

b
a

20 V 1.6 × 10–3vx 100 nF
10 V

vC

+

–

+
– +

–

300 Ω

vx +–

vL –+

iC

iL

■ FIGURE 9.52

51. For the circuit in Fig. 9.52, determine the value for the capacitor voltage vC(t) 
for time t > 0.

52. In the series circuit of Fig. 9.53, set R = 1 Ω. (a) Compute α and ω0. (b) If is 
= 3u(−t) + 2u(t) mA, determine vR(0−), iL(0−), vC(0−), vR(0+), iL(0+), vC(0+), 
iL(∞), and vC(∞).

20 mF
10 μH

R

is

vR

+

–
vC

+

–

iL

■ FIGURE 9.53

53. Evaluate the derivative of each current and voltage variable labeled in Fig. 9.54 at 
t = 0+.

0.6 H 10 mA

20 kΩ

vC

+

–
vL

+

–

vR+ –iR

iL iC

15u(t) mA  5 nF

■ FIGURE 9.54
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54. Consider the circuit depicted in Fig. 9.55. If vs(t) = −8 + 2u(t) V, determine  
(a) vC(0+); (b) iL(0+); (c) vC(∞); (d) vC(t = 150 ms).

+
– 5 mF

6 mH

15 Ω vC

+

–

iL

vs

■ FIGURE 9.55

55. The 15 Ω resistor in the circuit of Fig. 9.55 is replaced with a 500 mΩ alterna-
tive. If the source voltage is given by vs = 1 − 2u(t) V, determine (a) iL(0+);  
(b) vC(0+); (c) iL(∞); (d) vC(4 ms).

56. In the circuit shown in Fig. 9.56, (a) obtain an expression for iL valid for t > 0 
if i1 = 8 − 10u(t) mA, (b) graph the result for 0 ≤ t ≤ 2 ms.

2 mH

20 nF

10 Ω

iL

i1

■ FIGURE 9.56

57. The 10 Ω resistor in the series RLC circuit of Fig. 9.56 is replaced with a 1 kΩ 
resistor. The source i1 = 5u(t) − 4 mA. (a) Obtain an expression for iL valid for 
all t > 0. (b) Graph the result for 0 ≤ t ≤ 200 μs.

58. For the circuit represented in Fig. 9.57, (a) obtain an expression for vC(t) valid 
for all t > 0. (b) Determine vC at t = 10 ms and t = 600 ms. (c) Verify your 
answers to part (b) with an appropriate SPICE simulation.

0.01 H

0.5 F6 V

1 Ω

5 Ω

vC

+

–

t = 0
+
–

■ FIGURE 9.57

59. Replace the 1 Ω resistor in Fig. 9.57 with a 100 mΩ resistor, and the 5 Ω resis-
tor with a 200 mΩ resistor. Assuming the passive sign convention, (a) obtain 
an expression for the capacitor current which is valid for t > 0, (b) graph the 
result for 0 ≤ t ≤ 2 s.

60. A circuit has an inductive load of 2 μH, a capacitance of 500 nF, and a load 
resistance of 50 Ω. Using strictly a series or parallel configuration with these 
values results in either a circuit with undesirable “ringing” (oscillations) or a 
transient that is too fast. Design a circuit that responds to a voltage pulse which 
reaches half of the final value at a time of 50 μs. You must use the given com-
ponents, but you may add additional resistors.
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61. (a) Adjust the value of the 3 Ω resistor in the circuit represented in Fig. 9.58 
to obtain a “just barely” overdamped response. Using the new resistor value, 
(b) determine expressions for vC(t) and iL(t) for t > 0, and (c) graph the energy 
stored in the capacitor and inductor for t > 0.

3 Ω

2 mH

4 �F

10 Ω

vC

+

–
is

■ FIGURE 9.58

62. Determine expressions for vC(t) and iL(t) in Fig. 9.59 for the time windows  
(a) 0 < t < 2 μs and (b) t > 2 μs.

C

L

R1

L = 1�H; C = 1�F; R1 = 2 Ω; R2 = 1.5454 Ω;
Vin(t) = [u(t) + 2u(t – t1)]V; t1 = 2 �s

R2

vC

+

–

Closed
at t = t1

+
–

iL

Vin(t)

■ FIGURE 9.59

9.7 The Lossless LC Circuit
63. The capacitor in the LC circuit in Fig. 9.60 has initial energy of 20 pJ stored 

at time t = 0, while the inductor has no energy stored at t = 0. (a) Determine 
the capacitor voltage and current for the capacitor for t > 0. (b) Graph the 
energy stored on the capacitor and inductor as a function of time for the range  
0 < t < 5 ns.

10 pH

2 nFv

+

–

i

■ FIGURE 9.60

64. Design an op amp circuit to model the voltage response of the LC circuit 
shown in Fig. 9.60.

65. Refer to Fig. 9.61, and design an op amp circuit whose output will be i(t) for  
t > 0.

20 H
1 mF

i (t)

2u(– t) A

■ FIGURE 9.61
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66. Suppose that the switch in the circuit in Fig. 9.62 is closed for a long time.  
The switch is then opened at time t = 0, and again closed at time t = t1 = 2π s.  
(a) Determine an expression for v(t) for 0 < t < t1 and t > t1. (b) Graph the 
results. 

0.1 H 0.4 F5V v(t)
+

–

0.3125 Ω

+
–

■ FIGURE 9.62

Chapter-Integrating Exercises
67. The capacitor in the circuit of Fig. 9.63 is set to 1 F. Determine vC(t) at  

(a) t = −1 s; (b) t = 0+; (c) t = 20 s.

10 H

1 Ω 1 Ω i1

iL

C

+
–

vC+ –

–2i1

3u(– t) A

■ FIGURE 9.63

68. A particular robotic arm requires a current pulse to start motion. Design an 
RLC circuit that provides a current pulse to a 50 Ω load with amplitude of 500 
mA at 1 ms and maintains a current of 250 mA or higher for a duration of at 
least 1 ms. The current pulse should decay to below 50 mA for t > 15 ms. Plot 
and analyze your result using MATLAB or SPICE simulation to verify your 
design.

69. A spark generator requires a short voltage pulse at 10 kV. Design an RLC cir-
cuit that provides a voltage pulse to a 1 kΩ load with amplitude of 10 kV at 5 
μs and maintains a voltage of 5 kV or higher for a duration of at least 5 μs. The 
voltage pulse should decay to below 500 V for t > 50 μs. Plot and analyze your 
result using MATLAB or SPICE simulation to verify your design. (Before you 
build such a circuit, of course, be sure that your circuit components can operate 
at high voltage!)

70. The physical behavior of automotive suspension systems is similar to an RLC 
circuit. The differential equation is defined by

m    d   2  p(t) _____ 
d  t   2    +  μ  f      

dp(t) ____ 
dt

   + Kp  (  t )    = 0

  where p(t) is the position variable of a piston in the cylinder of a shock ab-
sorber, m is the mass of the wheel, μf is the coefficient of friction, and K is the 
spring constant. The equivalent circuit representation is shown in Fig. 9.64. 
Suppose that the suspension is in its initial position at t = 0 (p(0) = 0), but it 
experiences a bump such that dp/dt at t = 0 is    1 __ 15    m/s. Use the equivalent circuit 
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analogy and either MATLAB or SPICE to plot p(t) for the cases where μf = 
300, 750, and 1500 N·s/m. The system has a spring constant of K = 22 kN/m 
and wheel mass of m = 30 kg. 

C = K–1

L = m

R = �f

i(t) = p(t)

■ FIGURE 9.64

71. A lossless LC circuit can be used to provide controlled oscillations to gen-
erate a controlled frequency for wireless communications. (a) Design an LC 
circuit with amplitude of 5 V and frequency of 400 kHz, where the largest 
possible inductor available is 400 nH. Now suppose that you have an undesired 
resistance of 0.2 mΩ in series with the LC oscillator. (b) Determine if, and how 
much, the frequency changes as a result of the resistance. (c) Determine the 
maximum time that the oscillator can run before the voltage amplitude decays 
to 4.8 V, and (d) determine the energy dissipation during this time period (it 
will be very useful to use software such as MATLAB for calculating the energy 
dissipation!).

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
The complete response of a linear electric circuit is composed 
of two parts, the natural response and the forced response. The 
natural response is the short-lived transient response of a circuit 
to a sudden change in its condition. The forced response is the 
long-term steady-state response of a circuit to any independent 
sources present. Up to this point, the only forced response we have 
considered is that due to dc sources. Another very common forcing 
function is the sinusoidal waveform. This function describes the 
voltage available at household electrical sockets as well as the 
voltage of power lines connected to residential and industrial areas.

In this chapter, we assume that the transient response is of little 
interest, and the steady-state response of a circuit (a phone charger, 
a toaster, or a power distribution network) to a sinusoidal voltage or 
current is needed. We will analyze such circuits using a powerful 
technique that transforms integrodifferential equations into algebraic 
equations. Before we see how that works, it’s useful to quickly review 
a few important attributes of general sinusoids, which will describe 
pretty much all currents and voltages throughout the chapter.

10.1 • CHARACTERISTICS OF SINUSOIDS
Consider a sinusoidally varying voltage

v(t ) =  V  m    sin ωt

shown graphically in Figs. 10.1a and b. The amplitude of the sine 
wave is Vm, and the argument is ωt. The radian frequency, or angu-
lar frequency, is ω. In Fig. 10.1a, Vm sin ωt is plotted as a function of 
the argument ωt, and the periodic nature of the sine wave is evident. 

Sinusoidal  
Steady-State Analysis10

KEY CONCEPTS

Characteristics of Sinusoidal 
Functions

Phasor Representation of 
Sinusoids

Converting Between the 
Time and Frequency 
Domains

Impedance and Admittance

Reactance and Susceptance

Parallel and Series 
Combinations in the 
Frequency Domain

Determination of Forced 
Response Using Phasors

Application of Circuit 
Analysis Techniques in the 
Frequency Domain
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The function repeats itself every 2π radians, and its period is therefore 2π 
radians. In Fig. 10.1b, Vm sin ωt is plotted as a function of t and the period 
is now T. A sine wave having a period T must execute 1/T periods each sec-
ond; its frequency f is 1/T hertz, abbreviated Hz. Thus,

f  =   1 __ 
T

  

and since

ωT = 2π

we obtain the common relationship between frequency and radian frequency,

 ω = 2πf 

Lagging and Leading
A more general form of the sinusoid,

 v(t ) =  V  m    sin (ωt + θ ) [1]

includes a phase angle θ in its argument. Equation [1] is plotted in Fig. 10.2 
as a function of ωt, and the phase angle appears as the number of radians by 
which the original sine wave (shown in green color in the sketch) is shifted 
to the left, or earlier in time. Since corresponding points on the sinusoid Vm 
sin (ωt + θ) occur θ rad, or θ/ω seconds, earlier, we say that Vm sin (ωt + θ) 
leads Vm sin ωt by θ rad. Therefore, it is correct to describe sin ωt as lagging 
sin (ωt + θ) by θ rad, or as leading sin (ωt − θ) by θ rad.

■  FIGURE 10.1 The sinusoidal function v(t) = Vm sin ωt is plotted (a) versus ωt and (b) versus t.

Vm

–Vm

0 π 2π

v (t)

ωt (rad)

(a)

π
2

3π
2

π
2

–

Vm

–Vm

0 T

v (t)

t (s)

(b)

T
4

T
2

3T
4

T
4

–

■  FIGURE 10.2 The sine wave Vm sin (ωt + θ ) leads Vm sin ωt by θ rad.

Vm

–Vm Vm sin (ωt + θ)

Vm sin ωt

π 2π

v

ωt
θ
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In either case (leading or lagging) we say that the sinusoids are out of 
phase. If the phase angles are equal, the sinusoids are said to be in phase.

In electrical engineering, the phase angle is commonly given in degrees, 
rather than radians; to avoid confusion we should be sure to always use the 
degree symbol. Thus, instead of writing

v = 100 sin   (  2π1000t −   π _ 6   )   

we customarily use

v = 100 sin (2π1000t − 30°)

In evaluating this expression at a specific instant of time, e.g., t = 10−4 s,  
2π1000t becomes 0.2π radian, which should be expressed as 36° before 30° 
is subtracted from it. (Don’t confuse your apples with your oranges.)

Two sinusoidal waves whose phases are to be compared must:

1. Both be written as sine waves, or both as cosine waves.
2. Both be written with positive amplitudes.
3. Each have the same frequency.

Converting Sines to Cosines
The sine and cosine are essentially the same function, but with a 90° phase 
difference. Thus, sin ωt = cos(ωt − 90°). Multiples of 360° may be added to 
or subtracted from the argument of any sinusoidal function without chang-
ing the value of the function. Hence, we may say that

  
      v  1   =  V   m  1     cos (  5t +  10   °  )   

                      =  V   m  1      sin (  5t +  10   °  +  90   °  )       
          =  V   m  1      sin (  5t +  100   °  )   

  

leads

 v  2   =  V   m  2      sin (5t −  30   °  )

by 130°. It is also correct to say that v1 lags v2 by 230°, since v1 may be 
written as

 v  1   =  V   m  1      sin (5t −  260   °  )

We assume that  v   m  1     and  v   m  2     are both positive quantities. A graphical 
representation is provided in Fig. 10.3; note that the frequency of both sinu-
soids (5 rad/s in this case) must be the same, or the comparison is meaning-
less. Normally, the difference in phase between two sinusoids is expressed 
by that angle which is less than or equal to 180° in magnitude.

The concept of a leading or lagging relationship between two sinusoids 
will be used extensively, and the relationship is recognizable both mathe-
matically and graphically.

Recall that to convert radians to degrees, we simply 

multiply the angle by 180/π.

note that:

−sin ωt = sin (ωt ± 180°)

−cos ωt = cos(ωt ± 180°)

∓sin ωt = cos(ωt ± 90°)

±cos ωt = sin (ωt ± 90°)

■  FIGURE 10.3 A graphical representation of the 
two sinusoids v1 and v2. The magnitude of each 
sine function is represented by the length of the 
corresponding arrow and the phase angle by the 
orientation with respect to the positive x axis. In this 
diagram, v1 leads v2 by 100° + 30° = 130°, although 
it could also be argued that v2 leads v1 by 230°. It is 
customary, however, to express the phase difference 
by an angle less than or equal to 180° in magnitude.

100°

–30°
0°

–260°

v1

v2
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10.2 •  FORCED RESPONSE TO SINUSOIDAL 
FUNCTIONS

Now that we are familiar with the mathematical characteristics of sinusoids, 
we are ready to apply a sinusoidal forcing function to a simple circuit and 
obtain the forced response. We will first write the differential equation that 
applies to the given circuit. The complete solution of this equation is com-
posed of two parts, the complementary solution (which we call the natural 
response) and the particular integral (or forced response). The methods we 
plan to develop in this chapter assume that we are not interested in the short-
lived transient or natural response of our circuit, but only in the long-term 
or “steady-state” response.

The Steady-State Response
The term steady-state response is used synonymously with forced re-
sponse, and the circuits we are about to analyze are commonly said to be 
in the “sinusoidal steady state.” Unfortunately, steady state carries the 
connotation of “not changing with time” in the minds of many students. 
This is true for dc forcing functions, but the sinusoidal steady-state re-
sponse is definitely changing with time. The steady state simply refers to 
the condition that is reached after the transient or natural response has 
died out.

The forced response has the mathematical form of the forcing function, 
plus all its derivatives and its first integral. With this knowledge, one of the 
methods by which the forced response may be found is to assume a solution 
composed of a sum of such functions, where each function has an unknown 
amplitude to be determined by direct substitution in the differential equa-
tion. As we are about to see, this can be a lengthy process, so we will be 
sufficiently motivated to seek out a simpler alternative.

Consider the series RL circuit shown in Fig. 10.4. The sinusoidal source 
voltage vs = Vm cos ωt has been switched into the circuit at some remote 
time in the past, and the natural response has died out completely. We seek 
the forced (or “steady-state”) response, which must satisfy the differential 
equation

L   di __ 
dt

   + Ri  =  V  m   cos ωt

obtained by applying KVL around the simple loop. At any instant where the 
derivative is equal to zero, we see that the current must have the form i ∝ cos 
ωt. Similarly, at an instant where the current is equal to zero, the derivative 

PRACTICE 
●

10.1 Find the angle by which i1 lags v1 if v1 = 120 cos(120πt − 40°) V 
and i1 equals (a) 2.5 cos(120πt + 20°) A; (b) 1.4 sin (120πt − 70°) A; 
(c) −0.8 cos(120πt − 110°) A. 
10.2 Determine values for A, B, C, and θ if 40 cos(100t − 40°) − 20 
sin (100t + 170°) = A cos 100t + B sin 100t = C cos(100t + θ). 
Ans: 10.1: −60°; 120°; −110°. 10.2: 27.2; 45.4; 52.9; −59.1°.

■  FIGURE 10.4 A series RL circuit for which the 
forced response is desired.

i

L

R

vs (t) = Vm cos ωt +
–
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must be proportional to cos ωt, implying a current of the form sin ωt. We 
might expect, therefore, that the forced response will have the general form

i(t ) =  I  1   cos ωt +  I  2    sin ωt

where I1 and I2 are real constants whose values depend upon Vm, R, L, and 
ω. No constant or exponential function can be present. Substituting the as-
sumed form for the solution in the differential equation yields

L(−  I  1   ω sin ωt +  I  2   ω cos ωt ) + R( I  1   cos ωt +  I  2    sin ωt ) =  V  m   cos ωt

If we collect the cosine and sine terms, we obtain

(− L  I  1   ω + R  I  2   )  sin ωt + (L  I  2   ω + R  I  1   −  V  m   )  cos ωt = 0

This equation must be true for all values of t, which can be achieved only if 
the factors multiplying cos ωt and sin ωt are each zero. Thus,

− ωL  I  1   + R  I  2   = 0        and        ωL  I  2   + R  I  1   −  V  m   = 0

and simultaneous solution for I1 and I2 leads to

 I  1   =   
R  V  m  
 ______ 

 R   2  +  ω   2   L   2 
              I  2   =   

ωL  V  m  
 ______ 

 R   2  +  ω   2   L   2 
  

Thus, the forced response is obtained:

  i(t ) =   R  V  m   ______ 
 R   2  +  ω   2   L   2 

   cos ωt +   ωL  V  m   ______ 
 R   2  +  ω   2   L   2 

    sin ωt  [2]

A More Compact and User-Friendly Form
Although accurate, this expression is slightly cumbersome; a clearer picture 
of the response can be obtained by expressing it as a single sinusoid or co-
sinusoid with a phase angle. We choose to express the response as a cosine 
function,

 i(t ) = A cos (ωt − θ ) [3]

At least two methods of obtaining the values of A and θ suggest them-
selves. We might substitute Eq. [3] directly in the original differential equa-
tion, or we could simply equate the two solutions, Eqs. [2] and [3]. Selecting 
the latter method, and expanding the function cos(ωt − θ):

A cos θ cos ωt + A sin θ sin ωt =   R  V  m   ______ 
 R   2  +  ω   2   L   2 

   cos ωt +   ωL  V  m   ______ 
 R   2  +  ω   2   L   2 

   sin ωt

All that remains is to collect terms and perform a bit of algebra, an exercise 
left to the reader. The result is

θ =  tan   −1    ωL ___ 
R

  

and

A =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
  

and so the alternative form of the forced response therefore becomes

 i(t ) =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
   cos   (  ωt −  tan   −1    ωL _ 

R
   )    [4]

Several useful trigonometric identities are provided in 

the back of the book.
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With this form, it is easy to see that the amplitude of the response is 
proportional to the amplitude of the forcing function; if it were not, the 
linearity concept would have to be discarded. The current is seen to lag 
the applied voltage by tan−1 (ωL/R), an angle between 0 and 90°. When  
ω = 0 or L = 0, the current must be in phase with the voltage; since the 
former situation is direct current and the latter provides a resistive circuit, 
the result agrees with our previous experience. If R = 0, the current lags 
the voltage by 90°. In an inductor, then, if the passive sign convention is 
satisfied, the current lags the voltage by exactly 90°. In a similar manner 
we can show that the current through a capacitor leads the voltage across 
it by 90°.

The phase difference between the current and voltage depends upon the 
ratio of the quantity ωL to R. We call ωL the inductive reactance of the in-
ductor; it is measured in ohms, and it is a measure of the opposition that is 
offered by the inductor to the passage of a sinusoidal current.

once upon a time, the symbol E (for electromotive 

force) was used to designate voltages. Then every 

student learned the phase “elI the ICe man” as a 

reminder that voltage leads current in an inductive 

circuit, while current leads voltage in a capacitive  

circuit. now that we use V instead, it just isn’t the same.

EXAMPLE 10.1
Find the current iL in the circuit shown in Fig. 10.5a, if the tran-
sients have already died out.

iL

(a)

100 Ω30 mH

25 Ω

10 cos 103t V
+
–

(b)

b

a
100 Ω

25 Ω

10 cos 103t V +
–

voc

+

–

20 Ω

(c)

8 cos 103t V 30 mH

iL

+
–

iL

(a)

100 Ω30 mH

25 Ω

10 cos 103t V
+
–

(b)

b

a
100 Ω

25 Ω

10 cos 103t V +
–

voc

+

–

20 Ω

(c)

8 cos 103t V 30 mH

iL

+
–

iL

(a)

100 Ω30 mH

25 Ω

10 cos 103t V
+
–

(b)

b

a
100 Ω

25 Ω

10 cos 103t V +
–

voc

+

–

20 Ω

(c)

8 cos 103t V 30 mH

iL

+
–

■  FIGURE 10.5 (a) The circuit for example 10.1, in which the current iL is desired. (b) The 
Thévenin equivalent is desired at terminals a and b. (c) The simplified circuit.

Although this circuit has a sinusoidal source and a single inductor, 
it contains two resistors and is not a single loop. In order to apply the 
results of the preceding analysis, we need to seek the Thévenin equiva-
lent as viewed from terminals a and b in Fig. 10.5b.

The open-circuit voltage voc is

  v  oc   = (10 cos  10   3  t)   100 _ 100 + 25   = 8 cos  10   3  t V 
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■  FIGURE 10.7

iR

3 kΩ 100 mH

1 kΩ

vs
+
–

is iL

vL

+

–

Since there are no dependent sources in sight, we find Rth by shorting 
out the independent source and calculating the resistance of the passive 
network, so Rth = (25 × 100)/(25 + 100) = 20 Ω.

Now we do have a series RL circuit, with L = 30 mH, Rth =  
20 Ω, and a source voltage of 8 cos 103t V, as shown in Fig. 10.5c. 
Thus, applying Eq. [4], which was derived for a general RL series 
circuit,

 
 i  L  
  

=
  
  8  ________________   
 √ 

__________________
    20   2  +   (   10   3  × 30 ×  10   −3  )     2   
   cos   (   10   3  t −  tan   −1    30 _ 20   )   

      
 
  

     =
  
222 cos   (   10   3  t −  56.3   °  )             mA

  

The voltage and current waveforms are plotted in Fig. 10.6.

■  FIGURE 10.6 Voltage and current waveforms on a dual axis plot, generated using MATlAB:

≫ t                  =              linspace(0,8e – 3,1000); 
≫ v     =              8*cos(1000*t); 
≫ i                         =              0.222*cos(1000*t – 56.3*pi/180); 
≫ plotyy(t,v,t,i); 
≫ xlabel(‘time (s)’);

Note that there is not a 90° phase difference between the current 
and voltage waveforms of the plot. This is because we are not plot-
ting the inductor voltage, which is left as an exercise for the reader.

PRACTICE 
●

10.3 Let vs = 40 cos 8000t V in the circuit of Fig. 10.7. Use Thévenin’s 
theorem where it will do the most good, and find the value at t = 0 for 
(a) iL; (b) vL; (c) iR; (d) is. 

Ans: 18.71 mA; 15.97 V; 5.32 mA; 24.0 mA.
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10.3 • THE COMPLEX FORCING FUNCTION
The method we just employed works—the correct answer is obtained in 
a straightforward manner. However, it isn’t particularly graceful, and after 
being applied to a few circuits, it remains as clunky and cumbersome as the 
first time we use it. The real problem isn’t the time-varying source—it’s the 
inductor (or capacitor), since a purely resistive circuit is no more difficult 
to analyze with sinusoidal sources than with dc sources, as only algebraic 
equations result. It turns out that there is an alternative approach for obtain-
ing the sinusoidal steady-state response of any linear circuit, using simple 
algebraic expressions.

The basic idea is that sinusoids and exponentials are related through 
complex numbers. Euler’s identity, for example, tells us that

 e   jθ  = cos θ + j sin θ

Whereas taking the derivative of a cosine function yields a (negative) sine 
function, the derivative of an exponential is simply a scaled version of the 
same exponential. If at this point the reader is thinking, “All this is great, 
but there are no imaginary numbers in any circuit I ever plan to build!” 
that may well be true. What we’re about to see, however, is that adding 
imaginary sources to our circuits leads to complex sources which (surpris-
ingly) simplify the analysis process. It might seem like a strange idea at first, 
but a moment’s reflection should remind us that superposition requires any 
imaginary sources we might add to cause only imaginary responses, and 
real sources can only lead to real responses. Thus, at any point, we should 
be able to separate the two by simply taking the real part of any complex 
voltage or current.

In Fig. 10.8, a sinusoidal source

   V  m   cos (ωt + θ )  [5]

is connected to a general network, which we will assume to contain 
only passive elements (i.e., no independent sources) in order to keep 
things simple. A current response in some other branch of the network 
is to be determined, and the parameters appearing in Eq. [5] are all real 
quantities.

■  FIGURE 10.8 The sinusoidal forcing function Vm cos (ωt + θ) 
produces the steady-state sinusoidal response Im cos (ωt + ϕ).

N+
–Vm cos (ωt + θ) Im cos (ωt + ϕ)

We have shown that we may represent the response by the general cosine 
function

  I  m   cos (ωt + ϕ ) [6]

A sinusoidal forcing function always produces a sinusoidal forced response 
of the same frequency in a linear circuit.

Appendix 5 defines the complex number and related 

terms, reviews complex arithmetic, and develops 

euler’s identity and the relationship between expo-

nential and polar forms.
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Now let us change our time reference by shifting the phase of the forcing 
function by 90°, or changing the instant that we call t = 0. Thus, the forcing 
function

  V  m   cos (ωt + θ −  90   °  ) =  V  m   sin (ωt + ϕ ) [7]

when applied to the same network will produce a corresponding response

  I  m   cos (ωt + ϕ −  90   °  ) =  I  m   sin (ωt + ϕ ) [8]

We next depart from physical reality by applying an imaginary forcing func-
tion, one that cannot be applied in the laboratory but can be applied mathe-
matically. It’s worth the effort, as we’re about to see.

Imaginary Sources Lead to . . . Imaginary Responses
We construct an imaginary source very simply; it is only necessary to mul-
tiply Eq. [7] by j, the imaginary operator. We thus apply

 j  V  m   sin (ωt + θ ) [9]

What is the response? If we had doubled the source, then the principle of 
linearity would require that we double the response; multiplication of the 
forcing function by a constant k would result in the multiplication of the 
response by the same constant k. The fact that our constant is √ 

___
 − 1  does not  

destroy this relationship. The response to the imaginary source of Eq. [9] 
is thus

 j  I  m   sin (ωt + ϕ ) [10]

The imaginary source and response are indicated in Fig. 10.9.

■  FIGURE 10.9 The imaginary sinusoidal forcing function jVm   sin (ωt + θ ) 
produces the imaginary sinusoidal response jIm   sin (ωt + ϕ) in the network 
of Fig. 10.8.

jIm sin (ωt + ϕ)jVm sin (ωt + θ) N
+
–

Applying a Complex Forcing Function
We have applied a real source and obtained a real response; we have also 
applied an imaginary source and obtained an imaginary response. Since we 
are dealing with a linear circuit, we may use the superposition theorem to 
find the response to a complex forcing function which is the sum of the real 
and imaginary forcing functions. Thus, the sum of the forcing functions of 
Eqs. [5] and [9],

  V  m   cos (ωt + θ ) + j  V  m   sin (ωt + θ ) [11]

must produce a response that is the sum of Eqs. [6] and [10],

  I  m   cos (ωt + ϕ ) + j  I  m   sin (ωt + ϕ ) [12]
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The complex source and response may be represented more simply by 
applying Euler’s identity, i.e., cos (ωt + θ ) + j sin (ωt + θ) = e j(ωt + θ ). Thus, 
the source of Eq. [11] may be written as

  V  m    e   j(ωt+θ)  [13]

and the response of Eq. [12] is

  I  m    e   j(ωt+ϕ)  [14]

The complex source and response are illustrated in Fig. 10.10.

■  FIGURE 10.10 The complex forcing function  V  m    e   j(ωt + θ)  
produces the complex response  I  m    e    j(ωt + θ)  in the network 
of Fig. 10.8.

Ime j (ωt + ϕ)Vme j (ωt + θ) N
+
–

Again, linearity assures us that the real part of the complex response is 
produced by the real part of the complex forcing function, while the imag-
inary part of the response is caused by the imaginary part of the complex 
forcing function. Our plan is that instead of applying a real forcing function 
to obtain the desired real response, we will substitute a complex forcing 
function whose real part is the given real forcing function; we expect to 
obtain a complex response whose real part is the desired real response. The 
advantage of this procedure is that the integrodifferential equations describ-
ing the steady-state response of a circuit will now become simple algebraic 
equations.

An Algebraic Alternative to Differential Equations
Let’s try out this idea on the simple RL series circuit shown in Fig. 10.11. 
The real source Vm cos ωt is applied; the real response i(t) is desired. 
Since

 V  m   cos ωt = Re {  V  m   cos ωt + j  V  m   sin ωt}= Re { V  m    e   jωt }

the necessary complex source is

 V  m    e   jωt 

We express the complex response that results in terms of an unknown 
amplitude Im and an unknown phase angle ϕ:

 I  m    e   j(ωt+ϕ) 

Writing the differential equation for this particular circuit,

Ri + L   di __ 
dt

   =  v  s  
■  FIGURE 10.11 A simple circuit in the sinusoidal 

steady state is to be analyzed by the application of a 
complex forcing function.

i

L

R

vs = Vm cos ωt +
–
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we insert our complex expressions for vs and i:

R  I  m    e   j(ωt+ϕ)  + L   d __ 
dt

   ( I  m    e   j(ωt+ϕ)  )  =  V  m    e   jωt 

take the indicated derivative:

R  I  m    e   j(ωt+ϕ)  + jωL  I  m    e   j(ωt+ϕ)  =  V  m    e   jωt 

and obtain an algebraic equation. In order to determine the values of Im and 
ϕ, we divide throughout by the common factor e jωt:

R  I  m    e   jϕ  + jωL  I  m    e   jϕ  =  V  m  

factor the left side:

 I  m    e   jϕ (R + jωL )  =  V  m  

rearrange:

 I  m    e   jϕ  =   
 V  m  
 ______ 

R + jωL
  

and identify Im and ϕ by expressing the right side of the equation in expo-
nential or polar form:

  I  m    e   jϕ  =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
    e   j[− tan   −1 (ωL/R)]  [15]

Thus,

 I  m   =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
  

and

ϕ = −  tan   −1    ωL ___ 
R

  

In polar notation, this may be written as

 I  m    ∕ϕ 

or

 V  m   ∕  √ 
________

  R   2  +  ω   2   L   2    ∕−  tan   −1 (ωL / R) 

The complex response is given by Eq. [15]. Since Im and ϕ are readily iden-
tified, we can write the expression for i(t) immediately. However, if we feel 
like using a more rigorous approach, we may obtain the real response i(t) by 
reinserting the e jωt factor on both sides of Eq. [15] and taking the real part. 
Either way, we find that

i(t ) =  I  m   cos (ωt + ϕ ) =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
    cos   (  ωt −  tan   −1    ωL

 _ 
R

   )   

which agrees with the response obtained in Eq. [4] for the same circuit.
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■  FIGURE 10.12 (a) An RC circuit for which the 
sinusoidal steady-state capacitor voltage is required. 
(b) Modified circuit, with the real source replaced with 
a complex source.

+
– vC

+

–

1 Ω

2 F3 cos 5t V

(a)

+
– vC2

+

–

1 Ω

2 F3e j5t V

(b)

iC2

+
– vC

+

–

1 Ω

2 F3 cos 5t V

(a)

+
– vC2

+

–

1 Ω

2 F3e j5t V

(b)

iC2

EXAMPLE 10.2
For the simple RC circuit of Fig. 10.12a, substitute an appropriate com-
plex source and use it to solve for the steady-state capacitor voltage.

Since the real source is 3 cos 5t, we “replace” it with a complex 
source 3e j5t V. We’ll call the new capacitor voltage vC2 and define a 
capacitor current iC2 consistent with the passive sign convention  
(Fig. 10.12b).

The differential equation can be now obtained by simple application 
of KVL,

− 3  e   j5t  + 1  i   C  2     +  v   C  2     = 0

or

− 3  e   j5t  + 2   
d  v   C  2     ___ 

dt
   +  v   C  2     = 0

We anticipate a steady-state response of the same form as our source; in 
other words,

 v   C  2     =  V  m    e   j5t 

Substituting this into our differential equation and rearranging terms 
yields

j 10  V  m    e   j5t  +  V  m    e   j5t  = 3  e   j5t 

Canceling the exponential term, we find that

 V  m   =   3 _____ 1 + j10   =   3 _____ 
 √ 

_____
 1 +  10   2   
    ∕−  tan   −1 (10 / 1)  V

and our steady-state capacitor voltage is given by

Re { v   C  2    }= Re { 29.85  e   −j 84.3   °    e   j5t   mV}= 29.85 cos (5t −  84.3   °  ) mV

PRACTICE 
●

10.4 Evaluate and express the result in rectangular form: 
(a)[(2  ∕30   °   ) (5 ∕−  110   °   )](1 + j2); (b)(5 ∕−  200   °   ) + 4  ∕20   °  . Evaluate  
and express the result in polar form: (c) (2 − j7)∕(3 − j); (d)8 − j4 +  
[(5  ∕80   °   )∕(2  ∕20   °   )].
10.5 If the use of the passive sign convention is specified, find the (a) 
complex voltage that results when the complex current 4e j800t A is ap-
plied to the series combination of a 1 mF capacitor and a 2 Ω resistor; 
(b) complex current that results when the complex voltage 100e j2000t V 
is applied to the parallel combination of a 10 mH inductor and a 50 Ω 
resistor. 

Ans: 10.4: 21.4 − j6.38; −0.940 + j3.08; 2.30 ∕−55.6° ; 9.43 ∕−11.22° . 
10.5: 9.43e j(800t−32.0°) V; 5.39e j(2000t−68.2°) A.

(If you have trouble working this practice problem, 

turn to Appendix 5.)
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10.4 • THE PHASOR
In the last section, we saw that the addition of an imaginary sinusoidal source 
led to algebraic equations which describe the sinusoidal steady-state re-
sponse of a circuit. An intermediate step of our analysis was the “ canceling” 
of the complex exponential term—once its derivative was taken, we appar-
ently had no further use for it until the real form of the response was desired. 
Even then, it was possible to read the magnitude and phase angle directly 
from our analysis, and hence skip the step where we overtly take the real 
part. Another way of looking at this is that every voltage and current in our 
circuit contains the same factor e jωt, and the frequency, although relevant to 
our analysis, does not change as we move through the circuit. Dragging it 
around, then, is a bit of a waste of time.

Looking back at Example 10.2, then, we could have represented our source as

3  e   j  0   °    V   (or even just 3 V)

and our capacitor voltage as Vme jϕ, which we ultimately found was 
0.02985e−j84.3° V. Knowledge of the source frequency is implicit here; with-
out it, we cannot reconstruct any voltage or current.

These complex quantities are usually written in polar form rather than 
exponential form in order to achieve a slight additional saving of time and 
effort. For example, a source voltage

v(t ) =  V  m   cos ωt =  V  m   cos (ωt +  0   °  )

we now represent in complex form as

 V  m     ∕0   °  
and its current response

i(t) =  I  m   cos (ωt + ϕ )
becomes

 I  m    ∕ϕ 
This abbreviated complex representation is called a phasor.1

Let us review the steps by which a real sinusoidal voltage or current is 
transformed into a phasor, and then we will be able to define a phasor more 
meaningfully and to assign a symbol to represent it.

A real sinusoidal current

i(t )  =  I  m   cos (ωt + ϕ )

is expressed as the real part of a complex quantity by invoking Euler’s identity

 i(t )  = Re {    I  m    e   j(ωt+ϕ)  }   

We then represent the current as a complex quantity by dropping the instruction 
Re{}, thus adding an imaginary component to the current without affecting the 
real component; further simplification is achieved by suppressing the factor e jωt:

I =  I  m    e   jϕ 
and writing the result in polar form:

I =  I  m    ∕ϕ 

e j  0 = cos 0 + j sin 0 = 1

Remember that none of the steady-state circuits we 

are considering will respond at a frequency other 

than that of the excitation source, so that the value of 

ω is always known.

(1) Not to be confused with the phaser, an interesting device featured in a popular television series….
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This abbreviated complex representation is the phasor representation; pha-
sors are complex quantities and hence are printed in boldface type. Capital let-
ters are used for the phasor representation of an electrical quantity because the 
phasor is not an instantaneous function of time; it contains only amplitude and 
phase information. We recognize this difference in viewpoint by referring to i(t) 
as a time-domain representation and terming the phasor I a frequency-domain 
representation. It should be noted that the frequency-domain expression of a 
current or voltage does not explicitly include the frequency. The process of 
returning to the time domain from the frequency domain is exactly the reverse 
of the previous sequence. Thus, given the phasor voltage

V = 115  ∕−  45°      volts

and the knowledge that ω = 500 rad/s, we can write the time-domain equiv-
alent directly:

v(t )  = 115 cos (500t −  45   °  )  volts

If desired as a sine wave, v(t) could also be written

v(t )  = 115 sin (500t +  45   °  )  volts

PRACTICE 
●

10.6 Let ω = 2000 rad/s and t = 1 ms. Find the instantaneous value of 
each of the currents given here in phasor form: (a) j10 A; (b) 20 + j10 A; 
(c) 20 + j(10   ∕20   °   )  A. 
Ans: −9.09 A; −17.42 A; −15.44 A.

  The process by which we change i(t) into I is called a 
phasor transformation from the time domain to the 
frequency domain.

i(t) = Im cos (ωt + ϕ)

i(t) = Re{Im e j(ωt + ϕ)}

I = Ime jϕ

I = Im ϕ

EXAMPLE 10.3
Transform the time-domain voltage v(t) = 100 cos (400t − 30°) volts 
into the frequency domain.

The time-domain expression is already in the form of a cosine wave 
with a phase angle. Thus, suppressing ω = 400 rad/s,

V = 100  ∕−  30   °    volts

Note that we skipped several steps in writing this representation 
directly. Occasionally, this is a source of confusion for students, as they 
may forget that the phasor representation is not equal to the time-domain 
voltage v(t). Rather, it is a simplified form of a complex function formed 
by adding an imaginary component to the real function v(t).

PRACTICE 
●

10.7 Transform each of the following functions of time into phasor 
form: (a) −5 sin (580t − 110°); (b) 3 cos 600t − 5 sin (600t + 110°); 
(c) 8 cos (4t − 30°) + 4 sin (4t − 100°). Hint: First convert each into a 
single cosine function with a positive magnitude. 

Ans: 5∕−20° ; 2.41∕−134.8° ; 4.46∕−47.9°.

Several useful trigonometric identities are provided in 

the back of the book for convenience.
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The real power of the phasor-based analysis technique lies in the fact 
that it is possible to define algebraic relationships between the voltage and 
current for inductors and capacitors, just as we have always been able to do 
in the case of resistors. Now that we can transform into and out of the fre-
quency domain, we can proceed to our simplification of sinusoidal steady-
state analysis by establishing the relationship between the phasor voltage 
and phasor current for each of the three passive elements.

The Resistor
The resistor provides the simplest case. In the time domain, as indicated by 
Fig. 10.13a, the defining equation is

v(t ) = Ri(t )

Now let us apply the complex voltage

 v(t )  =  V  m    e   j(ωt+θ)  =  V  m   cos (ωt + θ ) + j  V  m    sin (ωt + θ ) [16]

and assume the complex current response

 i(t )  =  I  m    e   j(ωt+ϕ)  =  I  m   cos (ωt + ϕ ) + j  I  m    sin (ωt + ϕ ) [17]

so that

 V  m    e   j(ωt+θ)  = Ri(t ) = R  I  m    e   j(ωt+ϕ) 

Dividing throughout by e jωt, we find

 V  m    e   jθ  = R  I  m    e   jϕ 

or, in polar form,

Vm  θ = RIm  ϕ

But Vm  θ and Im  ϕ merely represent the general voltage and current pha-
sors V and I. Thus,

  V = RI  [18]

The voltage–current relationship in phasor form for a resistor has the same 
form as the relationship between the time-domain voltage and current. The 
defining equation in phasor form is illustrated in Fig. 10.13b. The angles θ 
and ϕ are equal, so the current and voltage are always in phase.

As an example of the use of both the time-domain and frequency- 
domain relationships, let us assume that a voltage of 8 cos(100t − 50°) V is 
across a 4 Ω resistor. Working in the time domain, we find that the current 
must be

i(t )  =   
v(t )

 ___ 
R

   = 2 cos (100t −  50   ° ) A

The phasor form of the same voltage is 8   −  50   °   V, and therefore

I =   V __ 
R

   = 2   −  50   °   A

ohm’s law holds true both in the time domain and in 

the frequency domain. In other words, the voltage 

across a resistor is always given by the resistance 

times the current flowing through the element.

/

■  FIGURE 10.13 A resistor and its associated 
voltage and current in (a) the time domain, v = Ri; and 
(b) the frequency domain, V = RI.

i

v = Ri

+

–

(a)

R

I

V = RI

+

–

(b)

R

/ /
/ /

/
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If we transform this answer back to the time domain, it is evident that the 
same expression for the current is obtained. We conclude that there is no 
saving in time or effort when a resistive circuit is analyzed in the frequency 
domain.

The Inductor
Let us now turn to the inductor. The time-domain representation is shown in 
Fig. 10.14a, and the defining equation, a time-domain expression, is

  v(t )  = L   di(t ) ____ 
dt

    [19]

After substituting the complex voltage equation [16] and complex current 
equation [17] into Eq. [19], we have

 V  m    e   j (ωt+θ)  = L   d __ 
dt

    I  m    e   j (ωt+ϕ) 

Taking the indicated derivative:

 V  m    e   j (ωt+θ)  = jωL  I  m    e   j (ωt+ϕ) 

and dividing through by e jωt:

 V  m    e   jθ  = jωL  I  m    e   jϕ 

we obtain the desired phasor relationship

  V = jωLI  [20]

The time-domain differential equation [19] has become the algebraic equa-
tion [20] in the frequency domain. The phasor relationship is indicated in 
Fig. 10.14b. Note that the angle of the factor jωL is exactly +90° and that I 
must therefore lag V by 90° in an inductor.

■  FIGURE 10.14 An inductor and its associated 
voltage and current in (a) the time domain, v = L di/dt; 
and (b) the frequency domain, V = jωLI.

di
dt

i

v = L     

+

–

(a)

L

I

V = jωLI

+

–

(b)

L

EXAMPLE 10.4
Apply the voltage 8    −5  0   °    V at a frequency ω = 100 rad/s to a 4 H 
inductor, and determine the phasor current and the time-domain 
current.

We make use of the expression we just obtained for the inductor,

I =   V ____ 
jωL

   =   8   −  50   °   ______ 
j100(4 )   = − j0.02   −  50   °   = (1   −  90   °   ) (0.02   −  50   °   )

or

I = 0.02   −  140   °     A

If we express this current in the time domain, it becomes

i(t ) = 0.02 cos (100t −  140   °  ) A = 20 cos (100t −  140   °  ) mA

/

/ / /

/
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The Capacitor
The final element to consider is the capacitor. The time-domain current–
voltage relationship is

i(t )  = C   
dv(t )

 ____ 
dt

  

The equivalent expression in the frequency domain is obtained once more 
by letting v(t) and i(t) be the complex quantities of Eqs. [16] and [17], taking 
the indicated derivative, suppressing e jωt, and recognizing the phasors V 
and I. Doing this, we find

 I = jωCV [21]

Thus, I leads V by 90° in a capacitor. This, of course, does not mean that 
a current response is present one-quarter of a period earlier than the voltage 
that caused it! We are studying steady-state response, and we find that the 
current maximum is caused by the increasing voltage that occurs 90° earlier 
than the voltage maximum.

The time-domain and frequency-domain representations are compared 
in Fig. 10.15a and b. We have now obtained the V–I relationships for the 
three passive elements. These results are summarized in Table 10.1, where 
the time-domain v–i expressions and the frequency-domain V–I relation-
ships are shown in adjacent columns for the three circuit elements. All the 
phasor equations are algebraic. Each is also linear, and the equations relat-
ing to inductance and capacitance bear a great similarity to Ohm’s law. In 
fact, we will indeed use them as we use Ohm’s law.

Time Domain Frequency Domain

Ri

v+ –

Li

v+ –

Ci

v+ –

v = Ri V = RI
RI

V+ –

V+ –

V+ –

I

I

jωL

1/jωC

v = L    di __ 
dt

   V = jωLI

v =   1 __ 
C

   ∫ i dt V =    1 ___ 
jωC 

   I

TABLE 

●

 10.1  Comparison of Time-Domain and Frequency- 
Domain Voltage–Current Expressions

Kirchhoff’s Laws Using Phasors
Kirchhoff’s voltage law in the time domain is

 v  1  (t ) +  v  2  (t ) + ⋯ +  v  N  (t ) = 0

We now use Euler’s identity to replace each real voltage vi with a complex 
voltage having the same real part, suppress e jωt throughout, and obtain

 V  1   +  V  2   + ⋯ + V  N   = 0

Thus, we see that Kirchhoff’s voltage law applies to phasor voltages just 
as it did in the time domain. Kirchhoff’s current law can be shown to hold 
for phasor currents by a similar argument.

■  FIGURE 10.15 (a) The time-domain and (b) the 
frequency-domain relationships between capacitor 
current and voltage.

i = C

v

+

–

(a)

C

dv
dt I = jωCV

V

+

–

(b)

C
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Now let us look briefly at the series RL circuit that we have considered several 
times before. The circuit is shown in Fig. 10.16, and a phasor current and  several 
phasor voltages are indicated. We may obtain the desired response, a time- 
domain current, by first finding the phasor current. From Kirchhoff’s voltage law,

 V  R   +  V  L   =  V  s  

and using the recently obtained V–I relationships for the elements, we have

RI + jωLI =  V  s  

The phasor current is then found in terms of the source voltage Vs:

I =    V  s   ______ 
R + jωL

  

Let us select a source-voltage amplitude of Vm and a phase angle of 0°. Thus,

I =    V  m    ∕0   °   ______ 
R + jωL

  

The current may be transformed to the time domain by first writing it in 
polar form:

I =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
   ∕[−  tan   −1 (ωL / R )] 

and then following the familiar sequence of steps to obtain in a very simple 
manner the same result we obtained the “hard way” earlier in this chapter.

■  FIGURE 10.16 The series RL circuit with a phasor 
voltage applied.

VL

+

–

VR+ –
+
–Vs L

RI

EXAMPLE 10.5
For the RLC circuit of Fig. 10.17, determine Is and is(t) if both 
sources operate at ω = 2 rad/s, and IC = 2∕28° A.

The fact that we are given IC and asked for Is is all the prompting we 
need to consider applying KCL. If we label the capacitor voltage VC 
consistent with the passive sign convention, then

 V  C   =   1 ____ 
jωC

    I  C   =   
− j

 __ 2    I  C   =   
− j

 __ 2  (2  ∕28   °   )  = (0.5 ∕−  90   °   ) (2∕  28   °   )  = 1 ∕−  62   °   V

This voltage also appears across the 2 Ω resistor, so the current  I   R  2     
flowing downward through that branch is

 I   R  2     =   1 _ 2    V  C   =   1 _ 2   ∕−  62   °   A

KCL then yields 

 I  s   =  I   R  2     +  I  C   =    1 _ 2   ∕−  62   °   + 2 ∕−  28   °   = 2.06  ∕  14   °   A

Thus Is and a knowledge of ω permit us to write is(t) directly:

 i  s  (t )  = 2.06 cos (2t +  14   °  )   A
ICIR2

IL

2 Ω2 H 1 F

1 Ω

Vs

Is

+
–

IR1

■  FIGURE 10.17 A three-mesh circuit. each source 
operates at the same frequency ω.

PRACTICE 
●

10.8 In the circuit of Fig. 10.17, both sources operate at ω = 1 rad/s. If 
I  C   = 2  ∕28   °   A and  I  L   = 3  ∕53   °   A, calculate (a) Is; (b) Vs; (c)  i   R  1     (t). 

Ans: 3∕−62° A; 3.71∕−4.5° V; 3.22 cos(t − 4.5°) A.
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10.5 • IMPEDANCE AND ADMITTANCE
The current–voltage relationships for the three passive elements in the fre-
quency domain are (assuming that the passive sign convention is satisfied)

V = RI         V = jωL I         V =   I ____ jωC  

If these equations are written as phasor voltage/phasor current ratios

  V __ I   = R            V __ I   = jωL            V __ I   =   1 ____ jωC  

we find that these ratios are simple quantities that depend on element values 
(and frequency also, in the case of inductance and capacitance). We treat 
these ratios in the same manner that we treat resistances, provided we re-
member that they are complex quantities.

Let us define the ratio of the phasor voltage to the phasor current as 
impedance, symbolized by the letter Z. The impedance is a complex 
quantity having the dimensions of ohms. Impedance is not a phasor and 
cannot be transformed to the time domain by multiplying by e jωt and 
taking the real part. Instead, we think of an inductor as being repre-
sented in the time domain by its inductance L and in the frequency do-
main by its impedance jωL. A capacitor in the time domain has a 
capacitance C; in the frequency domain, it has an impedance 1/jωC. 
Impedance is a part of the frequency domain and not a concept that is a 
part of the time domain.

Series Impedance Combinations
The validity of Kirchhoff’s two laws in the frequency domain leads to the 
fact that impedances may be combined in series and parallel by the same 
rules we established for resistances. For example, at ω = 10 × 103 rad/s, a 
5 mH inductor in series with a 100 μF capacitor may be replaced by the sum 
of the individual impedances. The impedance of the inductor is

 Z  L   = jωL = j 50 Ω

and the impedance of the capacitor is

 Z  C   =   1 ____ jωC   =   
− j

 ___ ωC   = − j 1  Ω

The impedance of the series combination is therefore

 Z  eq   =  Z  L   +  Z  C   = j 50 − j 1 = j 49  Ω

The impedance of inductors and capacitors is a function of frequency, and 
this equivalent impedance is thus applicable only at the single frequency at 
which it was calculated, ω = 10,000 rad/s. If we change the frequency to  
ω = 5000 rad/s, for example, Zeq = j23 Ω.

Parallel Impedance Combinations
The parallel combination of the 5 mH inductor and the 100 μF capacitor 
at ω = 10,000 rad/s is calculated in exactly the same fashion in which we 

 ZR = R

   ZL = jωL

 ZC =   1 ____ jωC  

Recall that   1 _ j   = − j.
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calculated parallel resistances:

 Z  eq   =   
(j50 ) (− j1 )

 _______ 
j50 − j1   =   50 ___ 

j49   = − j1.020  Ω

At ω = 5000 rad/s, the parallel equivalent is −j2.17 Ω.

Reactance
Of course, we may choose to express impedance in either rectangular (Z = 
R + jX) or polar  (Z =  |  Z |    ∕θ  )  form. In rectangular form, we can see clearly 
the real part which arises only from real resistances, and an imaginary com-
ponent, termed the reactance, which arises from the energy storage ele-
ments. Both resistance and reactance have units of ohms, but reactance will 
always depend upon frequency. An ideal resistor has zero reactance; an 
ideal inductor or capacitor is purely reactive (i.e., characterized by zero re-
sistance). Can a series or parallel combination include both a capacitor and 
an inductor, and yet have zero reactance? Sure! Consider the series connec-
tion of a 1 Ω resistor, a 1 F capacitor, and a 1 H inductor driven at ω = 1 
rad/s. Zeq = 1 − j(1)(1) + j(1)(1) = 1 Ω. At that frequency, the equivalent is 
a simple 1 Ω resistor. However, even small deviations from ω = 1 rad/s lead 
to nonzero reactance.

EXAMPLE 10.6
Determine the equivalent impedance of the network shown in 
Fig. 10.18a, given an operating frequency of 5 rad/s.

■  FIGURE 10.18 (a) A network that is to be replaced 
by a single equivalent impedance. (b) The elements 
are replaced by their impedances at ω = 5 rad/s.

10 Ω 6 Ω

(a)

500 mF

2 H200 mF

10 Ω 6 Ω

(b)

– j0.4 Ω

j10 Ω– j V

10 Ω 6 Ω

(a)

500 mF

2 H200 mF

10 Ω 6 Ω

(b)

– j0.4 Ω

j10 Ω– j V

We begin by converting the resistors, capacitors, and inductor into the 
corresponding impedances as shown in Fig. 10.18b.
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It is important to note that the resistive component of the impedance is 
not necessarily equal to the resistance of the resistor that is present in the 
network. For example, a 10 Ω resistor and a 5 H inductor in series at ω =  
4 rad/s have an equivalent impedance Z = 10 + j20 Ω, or, in polar form, 
22.4∕  63.4   °   Ω. In this case, the resistive component of the impedance is 
equal to the resistance of the series resistor because the network is a simple 
series network. However, if these same two elements are placed in parallel, 
the equivalent impedance is 10(j20)/(10 + j20) Ω, or 8 + j4 Ω. The resistive 
component of the impedance is now 8 Ω.

Upon examining the resulting network, we observe that the 
6 Ω impedance is in parallel with −j0.4 Ω. This combination is 
equivalent to

  (6 ) (− j0.4 ) _______ 6 − j0.4    = 0.02655 − j0.3982  Ω

which is in series with both the −j Ω and j10 Ω impedances, so that we 
have

0.0265 − j0.3982 − j + j10 = 0.02655 + j8.602  Ω

This new impedance is in parallel with 10 Ω, so the equivalent imped-
ance of the network is

 
        10 ∥ (0.02655 + j8.602)  =   10(0.02655 + j8.602 )  ______________  10 + 0.02655 + j8.602  

      
                                                = 4.255 + j4.929  Ω

  

Alternatively, we can express the impedance in polar form as  
6.511  ∕49.20   °   Ω.

PRACTICE 
●

10.9 With reference to the network shown in Fig. 10.19, find the input 
impedance Zin that would be measured between terminals: (a) a and g; 
(b) b and g; (c) a and b. 

■  FIGURE 10.19

10 Ω 20 mH5 mH

ω = 1000 rad/s

100 μF

200 μF
a b

g g

Ans: 2.81 + j4.49 Ω; 1.798 − j1.124 Ω; 0.1124 − j3.82 Ω
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EXAMPLE 10.7
Find the current i(t) in the circuit shown in Fig. 10.20 a.

■  FIGURE 10.20 (a) An RLC circuit for which the sinusoidal forced response i(t) is desired.  
(b) The frequency-domain equivalent of the given circuit at ω = 3000 rad/s.

1.5 kΩ

1 kΩ

H
+
–

(a)

vs(t) = 40 sin 3000t V

i (t)

1
3 μF1

6

1.5 kΩ

1 kΩ

j1 kΩ – j2 kΩ+
–

(b)

I

Vs = 40  –90° V

1.5 kΩ

1 kΩ

H
+
–

(a)

vs(t) = 40 sin 3000t V

i (t)

1
3 μF1

6

1.5 kΩ

1 kΩ

j1 kΩ – j2 kΩ+
–

(b)

I

Vs = 40  –90° V

▶ Identify the goal of the problem.
We need to find the sinusoidal steady-state current flowing through 
the 1.5 kΩ resistor due to the 3000 rad/s voltage source.

▶ Collect the known information.
We begin by drawing a frequency-domain circuit. The source is 
transformed to the frequency-domain representation 40∕ −  90   °   V, the 
frequency domain response is represented as I, and the impedances 
of the inductor and capacitor, determined at ω = 3000 rad/s, are j kΩ 
and −j2 kΩ, respectively. The corresponding frequency-domain 
circuit is shown in Fig. 10.20b.

▶ Devise a plan.
We will analyze the circuit of Fig. 10.20b to obtain I; combining 
 impedances and invoking Ohm’s law is one possible approach. We 
will then make use of the fact that we know ω = 3000 rad/s to  
convert I into a time-domain expression.

▶ Construct an appropriate set of equations.

  

 Z  eq    = 1.5 +   (j ) (1 − 2j ) _______ 
j + 1 − 2j

   = 1.5 +   2 + j ___ 1 − j  

            = 1.5 +   2 + j ___ 1 − j     
1 + j ___ 1 + j   = 1.5 +   1 + j3 ____ 2      

     = 2 + j1.5 = 2.5∕  36.87   °    kΩ          
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Before we begin to write great numbers of equations in the time domain 
or in the frequency domain, it is very important that we shun the construc-
tion of equations that are partly in the time domain, partly in the frequency 
domain, and wholly incorrect. One clue that a faux pas of this type has been 
committed is the sight of both a complex number and a t in the same equa-
tion, except in the factor e jωt. And, since e jωt plays a much bigger role in 
derivations than in applications, it is pretty safe to say that students who find 
they have just created an equation containing j and t, or∠ and t, have created 
a monster that the world would be better off without.

The phasor current is then simply

I =    V  s   ___  Z  eq  
  

▶ Determine if additional information is required.
Substituting known values, we find that

I =   40 ∕−  90   °   _______ 
2.5  ∕36.87   °  

    mA

which, along with the knowledge that ω = 3000 rad/s, is sufficient to 
solve for i(t).

▶ Attempt a solution.
This complex expression is easily simplified to a single complex 
number in polar form:

I =   40 ___ 2.5     ∕−  90   °  −  36.87   °   mA = 16.00 ∕−  126.9   °   mA 

Upon transforming the current to the time domain, the desired 
response is obtained:

i(t ) = 16 cos (3000t −  126.9   °  )           mA

▶ Verify the solution. Is it reasonable or expected?
The effective impedance connected to the source has an angle 
of +36.87°, indicating that it has a net inductive character, or that the 
current will lag the voltage. Since the voltage source has a phase angle 
of −90° (once converted to a cosine source), we see that our answer is 
consistent.

PRACTICE 
●

10.10 In the frequency-domain circuit of Fig. 10.21, find (a) I1; (b) I2; 
(c) I3. 

Ans: 28.3∕45° A; 20∕90° A; 20∕0° A.

I2
I3

5 Ω+
–100  0° V

– j5 Ω

j5 Ω

I1

■  FIGURE 10.21
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For example, a few equations back we saw

I =    V  s   ___  Z  eq  
   =   40 ∕−  90   °   _______ 

2.5  ∕36.9   °  
   = 16 ∕−  126.9   °   mA

Please do not try anything like the following:

i(t )  =    40 sin 3000t _________ 
2.5 ∕ 36.9   °  

             or          i(t )  =    40 sin 3000t _________ 2 + j1.5  

Admittance
Although the concept of impedance is very useful, and familiar in a 
way based on our experience with resistors, the reciprocal is often just 
as valuable. We define this quantity as the admittance Y of a circuit 
element or passive network, and it is simply the ratio of current to 
voltage.

The real part of the admittance is the conductance G, and the imaginary 
part of the admittance is the susceptance B. Thus,

 Y = G + jB =   1 __ Z   =   1 ____ 
R + jX   [22]

The real part of the admittance is the conductance G, and the imaginary 
part is the susceptance B. All three quantities (Y, G, and B) are measured in 
siemens.

Equation [22] should be scrutinized carefully; it does not state that the 
real part of the admittance is equal to the reciprocal of the real part of the 
impedance, or that the imaginary part of the admittance is equal to the re-
ciprocal of the imaginary part of the impedance!

PRACTICE 
●

10.11 Determine the admittance (in rectangular form) of (a) an imped-
ance Z = 1000 + j400 Ω; (b) a network consisting of the parallel com-
bination of an 800 Ω resistor, a 1 mH inductor, and a 2 nF capacitor, if 
ω = 1 Mrad/s; (c) a network consisting of the series combination of an 
800 Ω resistor, a 1 mH inductor, and a 2 nF capacitor, if ω = 1 Mrad/s. 

Ans: 0.862 − j 0.345 mS; 1.25 + j1 mS; 0.899 − j 0.562 mS.

10.6 • NODAL AND MESH ANALYSIS
We previously achieved a great deal with nodal and mesh analysis tech-
niques, and it’s reasonable to ask if a similar procedure might be valid in 
terms of phasors and impedances for the sinusoidal steady state. We already 
know that both of Kirchhoff’s laws are valid for phasors; also, we have an 
Ohm-like law for the passive elements V = ZI. We may therefore analyze 
circuits by nodal techniques in the sinusoidal steady state. Using similar 
arguments, we can establish that mesh analysis methods are valid (and often 
useful) as well.

 

 Y  R   =   1 __ R  

   Y  L   =   1 ____ jωL    

 Y  C   = jωC

 

There is a general (unitless) term for both impedance 

and admittance–immitance–which is sometimes 

used, but not very often.

hay01307_ch10_381-430.indd   404 23/01/18   10:17 am



  SECTION 10.6 noDAl AnD MeSh AnAlySIS 405

EXAMPLE 10.8

(Continued on next page)

Find the time-domain node voltages v1(t) and v2(t) in the circuit 
shown in Fig. 10.22.

0.5 A–90°10 Ωj5 Ω5 ΩA0°1

– j5 Ω

V1 V2

j10 Ω
– j10 Ω

■  FIGURE 10.22 A frequency-domain circuit for which node voltages V1 and V2 are identified.

Two current sources are given as phasors, and phasor node voltages V1 
and V2 are indicated. At the left node we apply KCL, yielding:

   V  1   __ 5   +    V  1   ____ − j10   +    V  1   −  V  2   _____ − j 5   +    V  1   −  V  2   _____ 
j10   = 1∕  0   °   = 1 + j 0

At the right node,

   V  2   −  V  1   _____ − j 5   +    V  2   −  V  1   _____ 
j10   +    V  2   __ 

j 5   +    V  2   __ 10   = − (0.5 ∕−  90   °   ) = j 0.5

Combining terms, we have

(0.2 + j 0.2 )  V  1   − j 0.1  V  2   = 1

and

− j0.1  V  1   + (0.1 − j 0.1 )  V  2   = j 0.5

These equations are easily solved on most scientific calculators, result-
ing in V1 = 1 − j 2 V and V2 = −2 + j 4 V.

The time-domain solutions are obtained by expressing V1 and V2 in 
polar form:

 
   V  1   = 2.24 ∕−  63.4   °  

   
 V  2   = 4.47  ∕116.6   °  

  

and passing to the time domain:

   v  1  (t )  = 2.24 cos (ωt −  63.4   °  )   V              v  2  (t )  = 4.47 cos (ωt +  116.6   °  )   V 

Note that the value of ω would have to be known in order to compute 
the impedance values given on the circuit diagram. Also, both sources 
must be operating at the same frequency.

hay01307_ch10_381-430.indd   405 23/01/18   10:17 am



CHAPTER 10 SInUSoIDAl STeADy-STATe AnAlySIS406

Now let us look at an example of mesh analysis, keeping in mind again 
that all sources must be operating at the same frequency. Otherwise, it is 
impossible to define a numerical value for any reactance in the circuit. As 
we see in the next section, the only way out of such a dilemma is to apply 
superposition.

PRACTICE 
●

10.12 Use nodal analysis on the circuit of Fig. 10.23 to find V1 and V2. 

■  FIGURE 10.23

V2
V1

50 –90° mA

20 0° mA j50 mS

– j25 mS

40 mS

Ans: 1.062∕23.3° V; 1.593∕−50.0° V.

EXAMPLE 10.9
Obtain expressions for the time-domain currents i1 and i2 in the 
circuit given as Fig. 10.24a.

■  FIGURE 10.24 (a) A time-domain circuit containing a 
dependent source. (b) The corresponding frequency-domain 
circuit.

3 Ω

+
–

+
–

(a)

10 cos 103t V 2i14 mH

500 μF i2i1

3 Ω

I1 I2
+
–

+
–

(b)

10  0° V 2I1

j4 Ω

– j2 Ω
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10.7 •  SUPERPOSITION, SOURCE TRANSFORMATIONS, 
AND THÉVENIN’S THEOREM

After inductors and capacitors were introduced in Chap. 7, we found that 
circuits containing these linear elements were still linear, and hence that 
the benefits of linearity were again available. Included among these were 
the superposition principle, Thévenin’s and Norton’s theorems, and source 
transformations. Thus, we know that these methods may be used on the cir-
cuits we are now considering; the fact that we happen to be applying sinu-
soidal sources and are seeking only the forced response is immaterial. The 
fact that we are analyzing the circuits in terms of phasors is also immaterial; 
they are still linear circuits. We might also remember that linearity and su-
perposition were invoked when we combined real and imaginary sources to 
obtain a complex source.

Noting from the left source that ω = 103 rad/s, we draw the 
frequency-domain circuit of Fig. 10.24b and assign mesh currents 
I1 and I2. Around mesh 1,

3  I  1   + j4( I  1   −  I  2   ) = 10∕  0   °  

or

(3 + j4 )  I  1   − j4  I  2   = 10

while mesh 2 leads to

j4( I  2   −  I  1   ) − j2  I  2   + 2  I  1   = 0

or

(2 − j4 )  I  1   + j2  I  2   = 0

Solving,

 
 I  1   =   14 + j8 _____ 13   = 1.24∕  29.7   °    A

    
  I  2   =   20 + j30 _____ 13   = 2.77  ∕56.3   °    A

 

Hence,

  I  1  (t ) = 1.24 cos ( 10   3  t +  29.7   °  ) A    
 I  2  (t ) = 2.77 cos ( 10   3  t +  56.3   °  ) A

 

PRACTICE 
●

10.13 Use mesh analysis on the circuit of Fig. 10.25 to find I1 and I2. 

Ans: 4.87∕−164.6° A; 7.17∕−144.9° A. ■  FIGURE 10.25

10   0° V

I1 I2

+
– 15  90° V 20  0° V

j5 Ω – j4 Ω3 Ω

+
–

+
–
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One final comment is in order. Up to this point, we have restricted our-
selves to considering either single-source circuits or multiple-source cir-
cuits in which every source operates at the exact same frequency. This is 
necessary in order to define specific impedance values for inductive and 
capacitive elements. However, the concept of phasor analysis can be easily 
extended to circuits with multiple sources operating at different frequencies. 

Transistor-based amplifier circuits are an integral part 
of many modern electronic instruments. One common 
application is in mobile telephones (Fig. 10.26), where 
audio signals are superimposed on high-frequency carri-
er waves. Unfortunately, transistors have built-in capaci-
tances that lead to limitations in the frequencies at which 
they can be used, and this fact must be considered when 
choosing a transistor for a particular application.

■  FIGURE 10.26 Transistor amplifiers are used in many devices, including 
mobile phones. linear circuit models are often used to analyze their 
performance as a function of frequency. (©pim pic/Shutterstock)

Figure 10.27a shows what is commonly referred to 
as a high-frequency hybrid-π model for a bipolar junc-
tion transistor. In practice, although transistors are non-
linear devices, we find that this simple linear circuit 
does a reasonably accurate job of modeling the actual 
device behavior. The two capacitors Cπ and Cμ are used 
to represent internal capacitances that characterize the 
particular transistor being used; additional capacitors as 
well as resistors can be added to increase the accuracy of 
the model as needed. Figure 10.27b shows the transistor 
model inserted into an amplifier circuit known as a com-
mon emitter amplifier.

Assuming a sinusoidal steady-state signal repre-
sented by its Thévenin equivalent Vs and Rs, we are 
interested in the ratio of the output voltage Vout to the 
input voltage Vin. The presence of the internal transis-
tor capacitances leads to a reduction in amplification 
as the frequency of Vs is increased; this ultimately 
limits the frequencies at which the circuit will operate 
properly. Writing a single nodal equation at the output 
yields

−  g  m      V  π   =    V  out   −  V  in   ______ 1 / jω  C  μ        +    V  out   _______  R  C   ∥  R  L    

PRACTICAL APPLICATION
Cutoff Frequency of a Transistor Amplifier

rπ Cπ

(a)

gmVπ

Cμ

Collector

Emitter

Base

Vπ

+

–
rπ Cπ

(b)

gmVπ

Cμ

Rs Vin Vout

RB RC RL
+
–

Vπ

+

–
Vs

■  FIGURE 10.27 (a) high-frequency hybrid-π transistor model. (b) Common-emitter amplifier circuit using the hybrid-π transistor model.
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In such instances, we simply employ superposition to determine the volt-
ages and currents due to each source, and then add the results in the time 
domain. If several sources are operating at the same frequency, superposi-
tion will also allow us to consider those sources at the same time and to add 
the resulting response to the response(s) of any other source(s) operating at 
a different frequency.

Solving for Vout in terms of Vin, and noting that Vπ = Vin, 
we obtain an expression for the amplifier gain

 
   V  out   ___  V  in  

   =   
−  g  m  ( R  C   ∥  R  L   ) (1 / jω  C  μ   ) + ( R  C   ∥  R  L   )

   _________________________   ( R  C   ∥  R  L   ) + (1 / jω  C  μ   )  
     

  =   
−  g  m  ( R  C   ∥  R  L   ) + jω( R  C   ∥  R  L   )  C  μ  

   ______________________  1 + jω( R  C   ∥  R  L   )  C  μ    
  

Given the typical values gm = 30 mS, RC = RL = 2 kΩ, 
and Cμ = 5 pF, we can plot the magnitude of the gain as a 
function of frequency (recalling that ω = 2πf). The semi-
logarithmic plot is shown in Fig. 10.28a, and the MAT-
LAB script used to generate the figure is given in Fig. 
10.28b. It is interesting, but maybe not totally surprising, 
to see that a characteristic such as the amplifier gain is 
dependent on frequency. In fact, we might be able to con-
template using such a circuit as a means of filtering out 
frequencies we aren’t interested in. However, at least for 
relatively low frequencies, we see that the gain is essen-
tially independent of the frequency of our input source.

When characterizing amplifiers, it is common to 
reference the frequency at which the voltage gain is 
reduced to 1 /  √ 

__
 2  times its maximum value. From Fig. 

10.28a, we see that the maximum gain magnitude is 30, 
and the gain magnitude is reduced to 30 /  √ 

__
 2   = 21 at a 

frequency of approximately 30 MHz. This frequency is 
often called the cutoff or corner frequency of the am-
plifier. If operation at a higher frequency is required, 
either the internal capacitances must be reduced (i.e., a 
different transistor must be used) or the circuit must be 
redesigned in some way.

We should note at this point that defining the gain 
relative to Vin does not present a complete picture of 
the frequency-dependent behavior of the amplifier. This 
may be apparent if we briefly consider the capacitance  
ω → ∞ ,    Z   C  π     → 0, so Vin → 0. This effect does not mani-
fest itself in the simple equation we derived. A more com-
prehensive approach is to develop an equation for Vout in 
terms of Vs, in which case both capacitances will appear 
in the expression; this requires a little bit more algebra.

■  FIGURE 10.28 (a) Amplifier gain as a function of frequency. We see that at high frequencies, it is no longer amplifying effectively. (b) MATlAB script used to 
create plot. note that ‘i ’ is used for the imaginary number, not ‘j’.

(a) (b)
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EXAMPLE 10.10
Use superposition to find v1 for the circuit of Fig. 10.22, repeated as 
Fig. 10.29a for convenience.

0.5 A–90°10 Ωj5 Ω5 ΩA0°1

– j5 Ω

V1 V2

j10 Ω
– j10 Ω

(a)

Ref.
(b)

0.5 A–90°1 0° A 2 + j4 Ω4 – j2 Ω

V1 V2
–j10 Ω

■  FIGURE 10.29 (a) Circuit of Fig. 10.22 for which V1 is desired, (b) V1 may be found by using 
superposition of the separate phasor responses.

First we redraw the circuit as Fig. 10.29b, where each pair of parallel 
impedances is replaced by a single equivalent impedance. That is, 5 || − 
j10 Ω is 4 − j2 Ω; j10 || − j5 Ω is −j10 Ω; and 10 || j5 is equal to 2 + j4 
Ω. To find V1, we first activate only the left source and find the partial 
response, V1L. The1∕  0   °  source is in parallel with an impedance of

(4 − j2 ) ∥ (− j10 + 2 + j4 )

so that

 
    V  1L   = 1∕  0   °    (4 − j2 ) (− j10 + 2 + j4 )  _____________  4 − j2 − j10 + 2 + j4  

    
=   − 4 − j28 ______ 6 − j8   = 2 − j2  V    

  

With only the right source active, current division and Ohm’s law yield

 V  1R   = (− 0.5∕ −  90   °   )   (    2 + j4  ______________  4 − j2 − j10 + 2 + j4   )   (4 − j2 )  = − 1  V

Summing, then,

 V  1   =  V  1L   +  V  1R   = 2 − j2 − 1 = 1 − j2    V

which agrees with our previous result from Example 10.8.
As we will see, superposition is also extremely useful when dealing 

with a circuit in which not all sources operate at the same frequency.

0.5 A–90°10 Ωj5 Ω5 ΩA0°1

– j5 Ω

V1 V2

j10 Ω
– j10 Ω

(a)

Ref.
(b)

0.5 A–90°1 0° A 2 + j4 Ω4 – j2 Ω

V1 V2
–j10 Ω
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PRACTICE 
●

10.14 If superposition is used on the circuit of Fig. 10.30, find V1 with 
(a) only the 20∕  0   °   mA source operating; (b) only the 50 ∕−  90   °   mA 
source operating. 

V2
V1

50 –90° mA

20 0° mA j50 mS

– j25 mS

40 mS

■  FIGURE 10.30

Ans: 0.1951 − j 0.556 V; 0.780 + j0.976 V.

EXAMPLE 10.11

Determine the Thévenin equivalent seen by the −j10 Ω impedance 
of Fig. 10.31a, and use this to compute V1.

Ref.
(a)

0.5 A–90°1 0° A 2 + j4 Ω4 – j2 Ω

V1 V2
–j10 Ω

0°A1 –90° A0.54 – j2 Ω 2 + j4 Ω

(b)

Voc+ –

4 – j2 Ω 2 + j4 Ω

Zth

(c)

6 + j2 Ω

1 2
–j10 Ω

(d )

Vth

+ –

I1

Ref.
(a)

0.5 A–90°1 0° A 2 + j4 Ω4 – j2 Ω

V1 V2
–j10 Ω

0°A1 –90° A0.54 – j2 Ω 2 + j4 Ω

(b)

Voc+ –

4 – j2 Ω 2 + j4 Ω

Zth

(c)

6 + j2 Ω

1 2
–j10 Ω

(d )

Vth

+ –

I1

Ref.
(a)

0.5 A–90°1 0° A 2 + j4 Ω4 – j2 Ω

V1 V2
–j10 Ω

0°A1 –90° A0.54 – j2 Ω 2 + j4 Ω

(b)

Voc+ –

4 – j2 Ω 2 + j4 Ω

Zth

(c)

6 + j2 Ω

1 2
–j10 Ω

(d )

Vth

+ –

I1

■  FIGURE 10.31 (a) Circuit of Fig. 10.29b. The Thévenin equivalent seen by the 
−j 10 Ω impedance is desired. (b) Voc is defined. (c) Zth is defined. (d) The circuit is 
redrawn using the Thévenin equivalent.

(Continued on next page)
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The open-circuit voltage, defined in Fig. 10.31b, is

 
  V  oc   = 1 (  ∕  0   °   )   (  4 − j2 )   −  (   − 0.5 ∕−  90   °   )   (  2 + j4 )   

     
       = 4 − j2 + 2 − j1 = 6 − j3  V

  

The impedance of the inactive circuit of Fig. 10.31c as viewed from the 
load terminals is simply the sum of the two remaining impedances. Hence,

 Z  th   = 6 + j2  Ω

Thus, when we reconnect the circuit as in Fig. 10.31d, the current di-
rected from node 1 toward node 2 through the −j10 Ω load is

 I  12   =   6 − j3 _______ 6 + j2 − j10   = 0.6 + j 0.3  A

We now know the current flowing through the −j10 Ω impedance 
of Fig. 10.31a. Note that we cannot compute V1 using the circuit of 
Fig.10.31d as the reference node no longer exists. Returning to the original 
circuit, then, and subtracting the 0.6 + j0.3 A current from the left source 
current, the downward current through the (4 − j2) Ω branch is found:

 I  1   = 1 − 0.6 − j0.3 = 0.4 − j0.3   A

and, thus,

  I  1   =  (  0.4 − j0.3 )   (  4 − j2 )   = 1 − j2   V 

as before.
We might have been clever and used Norton’s theorem on the three 

elements on the right of Fig. 10.31a, assuming that our chief interest is 
in V1. Source transformations can also be used repeatedly to simplify the 
circuit. Thus, all the shortcuts and tricks that arose in Chaps. 4 and 5 are 
available for circuit analysis in the frequency domain. The slight addition-
al complexity that is apparent now arises from the necessity of using com-
plex numbers and not from any more involved theoretical considerations.

PRACTICE 
●

10.15 For the circuit of Fig. 10.32, find the (a) open-circuit voltage Vab; 
(b) downward current in a short circuit between a and b; (c) Thévenin 
equivalent impedance Zab in parallel with the current source. 

10 Ω

3  30° A – j5 Ω

j5 Ω

a

b

■  FIGURE 10.32

Ans: 16.77∕−33.4° V; 2.60 + j1.500 A; 2.5 − j5 Ω.
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EXAMPLE 10.12

(Continued on next page)

Determine the power dissipated by the 10 Ω resistor in the circuit 
of Fig. 10.33a.

(a)

10 Ω

5 cos 3t A 2 cos 5t A0.2 F 0.5 F

(b)

10 Ω

–j Ω –j0.4 Ω 0° A2

I ʹ

–j0.6667 Ω–j1.667 Ω

(c)

10 Ω

0° A5

Iʺ

(a)

10 Ω

5 cos 3t A 2 cos 5t A0.2 F 0.5 F

(b)

10 Ω

–j Ω –j0.4 Ω 0° A2

I ʹ

–j0.6667 Ω–j1.667 Ω

(c)

10 Ω

0° A5

Iʺ

(a)

10 Ω

5 cos 3t A 2 cos 5t A0.2 F 0.5 F

(b)

10 Ω

–j Ω –j0.4 Ω 0° A2

I ʹ

–j0.6667 Ω–j1.667 Ω

(c)

10 Ω

0° A5

Iʺ

■  FIGURE 10.33 (a) A simple circuit having sources operating at different 
frequencies. (b) Circuit with the left source killed. (c) Circuit with the right  
source killed.

After glancing at the circuit, we might be tempted to write two quick 
nodal equations, or perhaps perform two sets of source transforma-
tions and launch immediately into finding the voltage across the 10 Ω 
resistor.

Unfortunately, this is impossible, since we have two sources operat-
ing at different frequencies. In such a situation, there is no way to com-
pute the impedance of any capacitor or inductor in the circuit—which ω 
would we use?

The only way out of this dilemma is to employ superposition, 
grouping all sources with the same frequency in the same subcircuit, as 
shown in Fig. 10.33b and c.

In the subcircuit of Fig. 10.33b, we quickly compute the current I′ 
using current division:

 
        I   ′  = 2 ∕ 0   °    [    − j0.4 ___________ 10 − j − j0.4   ]   

    
          = 79.23 ∕−  82.03   °   mA

  

In future studies of signal processing, we will also be 

introduced to the method of Jean-Baptiste Joseph 

Fourier, a French mathematician who developed 

a technique for representing almost any arbitrary 

function by a combination of sinusoids. When working 

with linear circuits, once we know the response of a 

particular circuit to a general sinusoidal forcing func-

tion, we can easily predict the response of the circuit 

to an arbitrary waveform represented by a Fourier 

series function, simply by using superposition.
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so that

 i   ′  = 79.23 cos (5t −  82.03   °  )  mA

Likewise, we find that

 
 I   ″  = 5∕  0   °    [    − j1.667  _______________  10 − j0.6667 − j1.667   ]   

    
    = 811.7 ∕−  76.86   °   mA

  

so that

 i   ″  = 811.7 cos (3t −  76.86   °  )  mA

It should be noted at this point that no matter how tempted we might be 
to add the two phasor currents I′ and I″, in Fig. 10.33b and c, this 
would be incorrect. Our next step is to add the two time-domain 
currents, square the result, and multiply by 10 to obtain the power 
absorbed by the 10 Ω resistor in Fig. 10.33a:

 
 p  10    

=
  
  (  i′ + i″ )     2  × 10

   
 
  

=
  
10   [  79.23 cos   (  5t −  82.03   °  )    + 811.7 cos   (  3t −  76.86   °  )    ]     2   μW

 

PRACTICE 
●

10.16 Determine the current i through the 4 Ω resistor of Fig. 10.34. 

■  FIGURE 10.34

3 H 1 H

4 Ω 4 cos 5t V3 cos 2t V +
–

+
–

i

Ans: i = 175.6 cos(2t − 20.55°) + 547.1 cos(5t − 43.16°) mA.

COMPUTER-AIDED ANALYSIS

Sinusoidal steady state circuit analysis can be accomplished in LTspice 
by defining AC parameters of magnitude and phase for current and 
voltage sources.

Let’s simulate the circuit of Fig. 10.20a, shown redrawn in Fig. 10.35.
The parameters for the source are accessed by right-clicking on the 

voltage source, then selecting Advanced (Fig. 10.36). The frequency 
of the source for this simulation is actually defined through the SPICE 
Analysis dialog box, which creates the .ac command we place on the 
schematic (alternatively on Mac OS, a SPICE directive may be directly 
entered). We select a Linear sweep and set Number of points to 1. 
Since we are only interested in the frequency of 3000 rad/s (477.5 Hz), 
we set both Start Frequency and End Frequency to 477.5.
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■  FIGURE 10.35 The circuit of Fig. 10.20a, operating at ω = 3000 
rad/s. The current through the 1.5 kΩ resistor is desired. note that if the 
resistor is rotated during placement, a 180° phase shift is introduced 
in the simulation result for I(R1), since the direction of current flow 
for the component is defined as being into the first node in its netlist 
description.

■  FIGURE 10.36 Dialog box for setting source parameters.

The simulation results appear after we select Run under 
Simulate. We find that for resistor R1 we have a magnitude of 
0.0159976 A, or 16 mA, at a phase angle of −36.8671°. Thus, the 
current through R1 is

  I = 16 sin (  3000t −  36.9   °  )   mA     
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10.8 • PHASOR DIAGRAMS
The phasor diagram is a name given to a sketch in the complex plane show-
ing the relationships of the phasor voltages and phasor currents throughout 
a specific circuit. We are already familiar with the use of the complex plane 
in the graphical identification of complex numbers and in their addition and 
subtraction. Since phasor voltages and currents are complex numbers, they 
may also be identified as points in a complex plane. For example, the phasor 
voltage  V  1   = 6 + j8 = 10  ∕53.1   °   V is identified on the complex voltage plane 
shown in Fig. 10.37. The x axis is the real voltage axis, and the y axis is the 
imaginary voltage axis; the voltage V1 is located by an arrow drawn from 
the origin. Since addition and subtraction are particularly easy to perform 
and display on a complex plane, phasors may be easily added and subtracted 
in a phasor diagram. Multiplication and division result in the addition and 
subtraction of angles and a change of amplitude. Figure 10.38a shows the 
sum of V1 and a second phasor voltage  V  2   = 3 − j4 = 5∕ −  53.1   °   V, and 
Fig. 10.38b shows the current I1, which is the product of V1 and the admit-
tance Y = 1 + j1 S.

This last phasor diagram shows both current and voltage phasors on the 
same complex plane; it is understood that each will have its own amplitude 
scale, but a common angle scale. For example, a phasor voltage 1 cm long 
might represent 100 V, while a phasor current 1 cm long could indicate 3 mA. 
Plotting both phasors on the same diagram enables us to easily determine 
which waveform is leading and which is lagging.

The phasor diagram also offers an interesting interpretation of the 
time-domain to frequency-domain transformation, since the diagram may 
be interpreted from either the time- or the frequency-domain viewpoint. Up 
to this point, we have been using the frequency-domain interpretation, as 
we have been showing phasors directly on the phasor diagram. However, 
let us proceed to a time-domain viewpoint by first showing the phasor volt-
age V = Vm∕α as sketched in Fig. 10.39a. In order to transform V to the 
time domain, the next necessary step is the multiplication of the phasor by 
e jωt; thus we now have the complex voltage  V  m    e   jα   e   jωt  =  V  m   ∕ωt + α . This 
voltage may also be interpreted as a phasor, one which possesses a phase 
angle that increases linearly with time. On a phasor diagram it therefore rep-
resents a rotating line segment, the instantaneous position being ωt radians 
ahead (counterclockwise) of Vm∕α. Both Vm∕α and  V  m   ∕ωt + α  are shown on 
the phasor diagram of Fig. 10.39b. The passage to the time domain is now 

■  FIGURE 10.37 A simple phasor diagram shows 
the single voltage phasor  V  1   = 6 + j8  = 10 ∕  53.1   °    V.

Imaginary
axis (V)

6

j8

Real axis (V)

10

53.1°

V1

■  FIGURE 10.38 (a) A phasor diagram showing the 
sum of  V  1   = 6 + j8 V and  V  2   = 3 − j4 V,    V  1   +  V  2   = 9 
+ j4  V = 9.85∕   24.0   °    V. (b) The phasor diagram shows 
V1 and I1, where I1 = YV1 and Y = (1 + j1 ) S =    √ 

__
 2    ∕45   °   S. 

The current and voltage amplitude scales are different.

I1 = (1 + j1)V1

 = (√2  45°)V1

V1

V2

V1 + V2

(a)

V1

(b)

45°

I1 = (1 + j1)V1

 = (√2  45°)V1

V1

V2

V1 + V2

(a)

V1

(b)

45°

(a)

αVm Vm

α

(b)

α
α

Vm

ωt + α

ωt + α

Vm

ωt

■  FIGURE 10.39 The phasor voltage  V  m  ∕α. (b) The complex voltage  V  m   ∕ωt + α  is shown 
as a phasor at a particular instant of time. This phasor leads  V  m  ∕α by ωt radians.
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completed by taking the real part of  V  m   ∕ωt + α . The real part of this com-
plex quantity is the projection of  V  m   ∕ωt + α  on the real axis: Vm cos(ωt + α).

In summary, then, the frequency-domain phasor appears on the phasor 
diagram, and the transformation to the time domain is accomplished by 
allowing the phasor to rotate in a counterclockwise direction at an angular 
velocity of ω rad/s and then visualizing the projection on the real axis. It 
is helpful to think of the arrow representing the phasor V on the phasor 
diagram as the photographic snapshot, taken at ωt = 0, of a rotating arrow 
whose projection on the real axis is the instantaneous voltage v(t).

Let us now construct the phasor diagrams for several simple circuits. 
The series RLC circuit shown in Fig. 10.40a has several different voltages 
associated with it, but only a single current. The phasor diagram is con-
structed most easily by employing the single current as the reference pha-
sor. Let us arbitrarily select I =  I  m    ∕0   °   and place it along the real axis of the 
phasor diagram, Fig. 10.40b. The resistor, capacitor, and inductor voltages 
may then be calculated and placed on the diagram, where the 90° phase 
relationships stand out clearly. The sum of these three voltages is the source 
voltage, and for this circuit, which is in what we will define in a subsequent 
chapter as the “resonant condition” since ZC = −ZL, the source voltage and 
resistor voltage are equal. The total voltage across the resistor and inductor 
or resistor and capacitor is obtained from the diagram by adding the appro-
priate phasors as shown.

Figure 10.41a is a simple parallel circuit in which it is logical to use 
the single voltage between the two nodes as a reference phasor. Suppose 
that V = 1∕  0   °   V. The resistor current,  I  R   = 0.2∕  0   °   A, is in phase with this 
voltage, and the capacitor current, IC = j0.1 A, leads the reference voltage 
by 90°. After these two currents are added to the phasor diagram, shown as 
Fig. 10.41b, they may be summed to obtain the source current. The result 
is Is = 0.2 + j0.1 A.

IR IC

5 Ω 50 μFIs V

+

–

ω = 2000 rad/s

(a) (b)

Is = 0.2 + j0.1 A
IC = j0.1 A

IR = 0.2 A V = 1  0° V

■  FIGURE 10.41 (a) A parallel RC circuit. (b) The phasor diagram for this circuit; the node voltage V is used 
as a convenient reference phasor.

If the source current is specified initially as the convenient value of  
1  ∕0   °    A and the node voltage is not initially known, it is still convenient to 
begin construction of the phasor diagram by assuming a node voltage (for 
example, V = 1  ∕0   °    V once again) and using it as the reference phasor. The 
diagram is then completed as before, and the source current that flows as a 
result of the assumed node voltage is again found to be 0.2 + j0.1 A. The true 
source current is 1  ∕0   °    A, however, and thus the true node voltage is obtained 
by multiplying the assumed node voltage by 1  ∕0   °   / (0.2 + j0.1); the true node 
voltage is therefore 4 − j2  V =  √ 

___
 20   ∕−  26.6   °    V. The assumed voltage leads to 

■  FIGURE 10.40 (a) A series RLC circuit. (b) The 
phasor diagram for this circuit; the current I is used as 
a convenient reference phasor.

10 Ω

VC

+

–

VL+ –

VR+ –

+
–Vs –j50 Ω

j50 Ω

(a)

I

VL

VC

VR = Vs

VR + VL

VR + VC

(b)

I

10 Ω

VC

+

–

VL+ –

VR+ –

+
–Vs –j50 Ω

j50 Ω

(a)

I

VL

VC

VR = Vs

VR + VL

VR + VC

(b)

I
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a phasor diagram which differs from the true phasor diagram by a change of 
scale (the assumed diagram is smaller by a factor of 1 /  √ 

___
 20  ) and an angular 

rotation (the assumed diagram is rotated counterclockwise through 26.6°).

EXAMPLE 10.13
Construct a phasor diagram showing IR, IL, and IC for the circuit of 
Fig. 10.42. Combining these currents, determine the angle by which 
Is leads IR, IC, and Ix.

We begin by choosing a suitable reference phasor. Upon examining 
the circuit and the variables to be determined, we see that once V is 
known, IR, IL, and IC can be computed by simple application of Ohm’s 
law. Thus, we select V = 1∕  0   °   V for simplicity’s sake, and subsequently 
compute

  
 I  R  

  
=

  
(0.2 ) 1  0°

  
=

  
0.2  0° A

     I  L    =  (− j 0.1 ) 1  0°  =  0.1  − 90° A    
 I  C  

  
=

  
( j 0.3 ) 1  0°

  
=

  
0.3  90° A

   

The corresponding phasor diagram is shown in Fig. 10.43a. We 
also need to find the phasor currents Is and Ix. Figure 10.43b shows 
the determination of  I  x   =  I  L   +  I  R   = 0.2 − j0.1 = 0.224 ∕−  26.6   °   A, 
and Fig. 10.43c shows the determination of  I  s   =  I  C   +  I  x   = 0.283  
∕45   °   A. From Fig. 10.43c, we ascertain that Is leads IR by 45°, IC by 
−45°, and Ix by 45° + 26.6° = 71.6°. These angles are only relative, 
however; the exact numerical values will depend on Is, upon which 
the actual value of V (assumed here to be 1  ∕0   °   V for convenience) 
also depends.

IL

IC

IR

(a)

IL

IC

IR

Ix = IL + IR 

(b)

IL
Ix

IC

IR

Is = IC + Ix

(c)

■  FIGURE 10.43 (a) Phasor diagram constructed using a reference value of V = 1/0°. (b) 
graphical determination of Ix = IL + IR. (c) graphical determination of Is = IC + Ix.

PRACTICE 
●

10.17 Select some convenient reference value for IC in the circuit of 
Fig. 10.44; draw a phasor diagram showing VR, V2, V1, and Vs; and mea-
sure the ratio of the lengths of (a) Vs to V1; (b) V1 to V2; (c) Vs to VR. 

Ans: 1.90; 1.00; 2.12

■  FIGURE 10.42 A simple circuit for which several 
currents are required.

V

+

–
j0.3 S –j0.1 S

ILIC

0.2 SIs

Ix IR

2 Ω

2 Ω VR

+

–

V2

+

–

V1+ – IC

+
–

Vs j2 Ω

– j1 Ω

■  FIGURE 10.44

/
/

/

/
/
/
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SUMMARY AND REVIEW

This chapter dealt with the steady-state response of circuits to sinusoidal 
excitation. This is a limited analysis of a circuit in some respects, as the 
transient behavior is completely ignored. In many situations, such an ap-
proach is more than adequate, and reducing the amount of information we 
seek about a circuit speeds up the analysis considerably. The fundamental 
idea behind what we did was that an imaginary source was added to every 
real sinusoidal source; then Euler’s identity converted the combined source 
to a complex exponential. Since the derivative of an exponential is simply 
another exponential, what would otherwise be integrodifferential equations 
arising from mesh or nodal analysis become algebraic equations.

A few new terms were introduced: lagging, leading, impedance, ad-
mittance, and a particularly important one,  phasor. Phasor relationships 
between current and voltage gave rise to the concept of impedance, where 
resistors are represented by a real number (resistance, as before), and in-
ductors are represented by Z = jωL while capacitors are represented by 
−j/ωC (ω being the operating frequency of our sources). From that point 
forward, all the circuit analysis techniques learned in Chaps. 3 to 5 apply.

It might seem odd to have an imaginary number as part of our solution, 
but we found that recovering the time-domain solution to our analysis is 
straightforward once the voltage or current is expressed in polar form. The 
magnitude of our quantity of interest is the magnitude of the cosine func-
tion, the phase angle is the phase of the cosine term, and the frequency 
is obtained from the original circuit (it disappears from view during the 
analysis, but the circuits we are analyzing do not change it in any way). We 
concluded the chapter with an introduction to the concept of phasor dia-
grams. Prior to inexpensive scientific calculators such tools were invaluable 
in analyzing many sinusoidal circuits. They still find use in the analysis of 
ac power systems, as we see in subsequent chapters.

A concise list of key concepts of the chapter is presented below for the 
convenience of the reader, along with the corresponding example numbers.

 If two sine waves (or two cosine waves) both have positive magnitudes 
and the same frequency, it is possible to determine which waveform is 
leading and which is lagging by comparing their phase angles.

 The forced response of a linear circuit to a sinusoidal voltage or current 
source can always be written as a single sinusoid having the same 
frequency as the sinusoidal source. (Example 10.1)

 A phasor has both a magnitude and a phase angle; the frequency is under-
stood to be that of the sinusoidal source driving the circuit. (Example 10.2)

 A phasor transform may be performed on any sinusoidal function, and 
vice versa: V  m   cos (ωt + ϕ ) ↔  V  m   ∕ϕ . (Example 10.3)

 When transforming a time-domain circuit into the corresponding fre-
quency-domain circuit, resistors, capacitors, and inductors are replaced 
by impedances (or, occasionally, by admittances). (Examples 10.4, 10.6)
∙ The impedance of a resistor is simply its resistance.
∙ The impedance of a capacitor is 1/jωC.
∙ The impedance of an inductor is jωL.
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 Impedances combine both in series and in parallel combinations in the 
same manner as resistors. (Example 10.6)

 All analysis techniques previously used on resistive circuits apply to 
circuits with capacitors and/or inductors once all elements are replaced 
by their frequency-domain equivalents. (Examples 10.5, 10.7, 10.8, 
10.9, 10.10, 10.11)

 Phasor analysis can only be performed on single-frequency circuits. 
Otherwise, superposition must be invoked, and the time-domain partial 
responses added to obtain the complete response. (Example 10.12)

 The power behind phasor diagrams is evident when a convenient forc-
ing function is used initially, and the final result scaled appropriately. 
(Example 10.13)

READING FURTHER
A good additional reference to phasor-based analysis techniques can be 
found in:

R. A. DeCarlo and P. M. Lin, Linear Circuits, 3rd ed. Dubuque, IA: 
Kendall Hunt Publishing, 2009.

Frequency-dependent transistor models are discussed from a phasor perspec-
tive in Chap. 7 of: 

W. H. Hayt, Jr., and G. W. Neudeck, Electronic Circuit Analysis and 
Design, 2nd ed. New York: Wiley, 1995.

EXERCISES

10.1 Characteristics of Sinusoids
1. Evaluate the following: (a) 5 sin (5t − 9°) at t = 0, 0.01, and 0.1 s; (b) 4 cos 2t 

at t = 0, 1, and 1.5 s; (c) 3.2 cos (6t + 15°) at t = 0, 0.01, and 0.1 s.
2. (a) Express each of the following as a single cosine function: 300 sin 628t,  

4 sin (3πt + 30°), 14 sin (50t − 5°) − 10 cos 50t. (b) Express each of the follow-
ing as a single sine function: 2 cos (100t + 45°), 3 cos 4000t, 5 cos (2t − 90°) 
+ 10 sin (2t).

3. Determine the angle by which v1 leads i1 if v1 = 10 cos (10t − 45°) and  
i1 is equal to (a) 5 cos 10t; (b) 5 cos (10t − 80°); (c) 5 cos (10t − 40°);  
(d) 5 cos (10t + 40°); (e) 5 sin (10t − 19°).

4. Determine the angle by which v1 lags i1 if v1 = 3 cos (104t − 5°) and i1 is equal 
to (a) 5 cos 104t; (b) 5 cos (104t − 14°); (c) 5 cos (104t − 23°); (d) 5 cos (104t 
+ 23°); (e) 5 sin (104t − 390°).

5. Determine which waveform in each of the following pairs is lagging: (a) cos 4t, 
sin 4t; (b) cos (4t − 80°), cos (4t); (c) cos (4t + 80°), cos 4t; (d) −sin 5t, cos (5t 
+ 2°); (e) sin 5t + cos 5t, cos (5t − 45°).

6. Calculate the first three instants in time (t > 0) for which the following func-
tions are zero, by first converting to a single sinusoid: (a) cos 3t − 7 sin 3t; 
(b) cos (10t + 45°); (c) cos 5t − sin 5t.

7. (a) Determine the first two instants in time (t > 0) for which each of the func-
tions in Exercise 6 are equal to unity, by first converting to a single sinusoid. 
(b) Verify your answers by plotting each waveform using an appropriate 
software package.
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8. The concept of Fourier series is a powerful means of analyzing periodic wave
forms in terms of sinusoids. For example, the triangle wave in Fig. 10.45 can 
be represented by the infinite sum

v(t ) =   8 __ 
 π   2 

    (  sin πt −   1 _ 
 3   2 

   sin 3πt +   1 _ 
 5   2 

   sin 5πt −   1 _ 
 7   2 

   sin 7πt + ⋯ )   

  where in practice perhaps the first several terms provide an accurate enough 
approximation. (a) Compute the exact value of v(t) at t = 0.25 s by first obtain-
ing an equation for the corresponding segment of the waveform. (b) Compute 
the approximate value at t = 0.25 s using the first term of the Fourier series 
only. (c) Repeat part (b) using the first three terms. (d) Plot v(t) using the first 
term only. (e) Plot v(t) using the first two terms only. (f) Plot v(t) using the first 
three terms only.

■  FIGURE 10.45

1

–1

1 2 3

v (t) (V)

t (s)

9. Household electrical voltages are typically quoted as either 110 V, 115 V, or 
120 V. However, these values do not represent the peak ac voltage. Rather, they 
represent what is known as the root mean square of the voltage, defined as

 V  rms   =  √ 

_______________

    1 __ 
T

    ∫ 
0
  
T

     V  m  2    cos   2 (ωt ) dt  

  where T = the period of the waveform, Vm is the peak voltage, and ω = the 
waveform frequency (f = 60 Hz in North America). (a) Perform the indicated 
integration, and show that for a sinusoidal voltage,

 V  rms   =    V  m   ___ 
 √ 

__
 2  
  

  (b) Compute the peak voltages corresponding to the rms voltages of 110, 115, 
and 120 V.

10.2 Forced Response to Sinusoidal Functions
10. If the source vs in Fig. 10.46 is equal to 4.53 cos 30 t V, (a) obtain iL at t = 0 

assuming no transients are present; (b) obtain an expression for vL (t) in terms 
of a single sinusoid, valid for t > 0, again assuming no transients are present.

■  FIGURE 10.46

iR

1 Ω 3 mH

10 Ω

vs
+
–

is iL

vL

+

–
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11. Assuming there are no longer any transients present, determine the current 
labeled iL in the circuit of Fig. 10.47. Express your answer as a single 
 sinusoid.

■  FIGURE 10.47

iL

1 Ω 2 Ω10 mH

1 Ω

25 cos 100t A

12. Calculate the power dissipated in the 2 Ω resistor of Fig. 10.47 assuming there 
are no transients present. Express your answer in terms of a single sinusoidal 
function.

13. Obtain an expression for vC as labeled in Fig. 10.48, in terms of a single 
 sinusoidal function. You may assume all transients have died out long before 
t = 0.

14. Calculate the energy stored in the capacitor of the circuit depicted in Fig. 10.48 
at t = 785 ms and t = 1.57 s.

15. Obtain an expression for the power dissipated in the 10 Ω resistor of Fig. 10.49, 
assuming no transients present.

■  FIGURE 10.49

iL

10 Ωcos 6t A 0.5 H0.2iL

10.3 The Complex Forcing Function
16. Express the following complex numbers in rectangular form: (a) 50 ∕−  75   °  ; 

(b) 19e j30°; (c) 2.5∕ −  30   °   + 0.5∕  45   °  . Convert the following to polar form:  
(d) (2 + j2)(2 − j2); (e ) (2 + j2) (5  ∕22   °   ).

17. Express the following in polar form: (a) 1 + e j45°; (b) (−j)(j2); (c) 32. Express 
the following in rectangular form: (d) 2 − e j45°; (e) − j + 5∕  0   °  .

18. Evaluate the following, and express your answer in polar form: (a) 4(8 − j8); 
(b) 4∕  5   °   − 2  ∕15   °  ; (c) (2 + j9) − 5  ∕0   °  ; (d )   

− j
 _____ 10 + 5j

   − 3 ∕ 40   °  + 2 .

19. Evaluate the following, and express your answer in rectangular form:  

(a) 3(3  ∕30   °   ); (b) 2  ∕25   °   + 5 ∕−  10   °  ; (c) (12 + j 90) − 5 ∕ 30   °  ; (d )   
10 + 5j

 _____ 8 − j   + 2  ∕60   °   + 1.

20. Perform the indicated operations, and express the answer in both rectangular 
and polar forms: 

(a)   2 + j3 ______ 1 + 8  ∕90   °     − 4; (b)  (    10 ∕ 25   °   _ 5 ∕−  10   °     +   3 ∕ 15   °   _ 3 − j5   )     j 2; 

(c)   [    (1 − j ) (1 + j ) +1  ∕0   °    _____________ − j   ]   (3 ∕−  90   °   ) +   j ____ 
 1∕−  45   °  

  .

21. Insert an appropriate complex source into the circuit represented in Fig. 10.50, 
and use it to determine steady-state expressions for iC(t) and vC(t).

■  FIGURE 10.48

+
–

vC+ –

5 Ω

2 F

3 cos 4t V

■  FIGURE 10.50

+
– vC

+

–

5 Ω

130 mF5 sin 20t V

iC
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22. For the circuit of Fig. 10.51, if is = 2 cos 5t A, use a suitable complex source 
replacement to obtain a steady-state expression for iL(t).

23. In the circuit depicted in Fig. 10.51, if is is modified such that iL(t) =  
1.8 cos (5t + 26.6°) A, determine is (t).

24. Employ a suitable complex source to determine the steady-state current iL in 
the circuit of Fig. 10.52.

■  FIGURE 10.51

iL

is 0.4 H 2 Ω

■  FIGURE 10.52

iL

6 Ω

0.01 F 0.4 H5 sin (35t – 10°) A

10.4 The Phasor
25. Transform each of the following into phasor form: (a) 28 cos (20t); (b) 32 sin 

(2t − 90°); (c) sin (9t + 45°); (d) 5 cos 10t + 8 cos(10t + 45°).
26. Transform each of the following into phasor form: (a) 11 sin 100t; (b) 11 cos 

100t; (c) 11 cos(100t − 90°); (d) 3 cos 100t − 3 sin 100t.
27. Assuming an operating frequency of 1 kHz, transform the following phasor 

expressions into a single cosine function in the time domain: (a) 9  ∕65   °   V; 

(b)   2∕  31   °   ____ 4  ∕25   °      A; (c) 22∕  14   °   − 8∕  33   °   V.

28. The following complex voltages are written in a combination of rectangular 
and polar form. Rewrite each, using conventional phasor notation (i.e., a mag-

nitude and angle): (a)   2 − j ____ 
5  ∕45   °  

    V; (b)   6  ∕20   °   ____ 1000   − j V; (c) (j )(52.5∕ −  90   °   ) V.

29. Assuming an operating frequency of 50 Hz, compute the instantaneous voltage at 
t = 10 ms and t = 25 ms for each of the phasor quantities represented in Exercise 28.

30. Assuming an operating frequency of 50 Hz, compute the instantaneous voltage 
at t = 10 ms and t = 25 ms for each of the quantities represented in Exercise 27.

31. Assuming the passive sign convention and an operating frequency of 5 rad/s, 
calcualte the phasor voltage which develops across the following when driven 
by the phasor current I = 2∕  0   °   mA: (a) a 1 kΩ resistor; (b) a 1 mF capacitor; 
(c) a 1 nH inductor.

32. (a) A series connection is formed between a 1 Ω resistor, a 1 F capacitor, and 
a 1 H inductor, in that order. Assuming operation at ω = 1 rad/s, what are the 
magnitude and phase angle of the phasor current which yields a voltage of  
1  ∕30   °    V across the resistor (assume the passive sign convention)? (b) Com-
pute the ratio of the phasor voltage across the resistor to the phasor voltage 
which appears across the capacitor-inductor combination. (c) The frequency is 
doubled. Calculate the new ratio of the phasor voltage across the resistor to the 
phasor voltage across the capacitor-inductor combination.

33. Assuming the passive sign convention and an operating frequency of 314 rad/s, 
calculate the phasor voltage V which appears across each of the following 
when driven by the phasor current I = 10∕  0   °   mA: (a) a 2 Ω resistor; (b) a 1 F 
capacitor; (c) a 1 H inductor; (d) a 2 Ω resistor in series with a 1 F capacitor; 
(e) a 2 Ω resistor in series with a 1 H inductor. (f) Calculate the instantaneous 
value of each voltage determined in parts (a) to (e) at t = 0.

34. In the circuit of Fig. 10.53, which is shown in the phasor (frequency)  domain, 
I10 is determined to be 2∕  42   °   mA; (a) what is the likely type of element con-
nected to the right of the 25 Ω resistor and (b) what is its value, assuming the 
voltage source operates at a frequency of 1000 rad/s?
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■  FIGURE 10.53

I

25 Ω

10 Ω

+
–

Vs

V+ –I10

35. The circuit of Fig. 10.53 is shown represented in the phasor (frequency) 
 domain. If  I  10   = 4  ∕35   °   A, V = 10∕  35   °   V, and I = 2∕  35   °   A, (a) across what  
type of element does V appear, and what is its value? (b) Determine the  
value of Vs.

10.5 Impedance and Admittance 
36. (a) Obtain an expression for the equivalent impedance Zeq of a 1 Ω resistor 

in series with a 2 F capacitor as a function of ω. (b) Plot the magnitude of 
Zeq as a function of ω over the range 0.1 < ω < 100 rad/s (use a logarith-
mic scale for the frequency axis). (c) Plot the angle (in degrees) of Zeq as a 
function of ω over the range 0.1 < ω < 100 rad/s (use a logarithmic scale 
for the frequency axis). [Hint: semilogx() in MATLAB is a useful plotting 
function.]

37. Determine the equivalent impedance of the following, assuming an operating 
frequency of 20 rad/s: (a) 1 kΩ in parallel with 1 mH; (b) 10 Ω in parallel with 
the series combination of 1 F and 1 H.

38. (a) Obtain an expression for the equivalent impedance Zeq of a 1 Ω resistor 
in parallel with a 10 mH inductor as a function of ω over the range 1 < ω < 
105 rad/s (use a logarithmic scale for the frequency axis). (b) Plot the angle 
(in degrees) of Zeq as a function of ω over the range 1 < ω < 105 rad/s (use a 
logarithmic scale for the frequency axis). [Hint: semilogx() in MATLAB is a 
useful plotting function.]

39. Determine the equivalent admittance of the following, assuming an operating 
frequency of 1000 rad/s: (a) 25 Ω in series with 20 mH; (b) 25 Ω in parallel 
with 20 mH; (c) 25 Ω in parallel with 20 mH in parallel with 20 mF.

40. Consider the network depicted in Fig. 10.54, and determine the equivalent 
impedance seen looking into the open terminals if (a) ω = 1 rad/s; (b) ω = 10 
rad/s; (c) ω = 100 rad/s.

41. Exchange the capacitor and inductor in the network shown in Fig. 10.54, and 
calculate the equivalent impedance looking into the open terminals if ω = 
25 rad/s.

42. Find V in Fig. 10.55 if the box contains (a) 3 Ω in series with 2 mH; (b) 3 Ω 
in series with 125 μF; (c) 3 Ω, 2 mH, and 125 μF in series; (d) 3 Ω, 2 mH, and 
125 μF in series, but ω = 4 krad/s.

43. Calculate the equivalent impedance seen at the open terminals of the network 
shown in Fig. 10.56 if f is equal to (a) 1 Hz; (b) 1 kHz; (c) 1 MHz; (d) 1 GHz.

■  FIGURE 10.56

60 Ω 60 Ω60 Ω

10 mH

30 μF

a

b

■  FIGURE 10.54

25 Ω 55 Ω 20 mH

20 Ω10 mF

■  FIGURE 10.55

3  –20° A
ω = 2 krad/s V

+

–

hay01307_ch10_381-430.indd   424 23/01/18   10:18 am



   exeRCISeS 425

44. Employ phasor-based analysis to obtain an expression for i(t) in the circuit of 
Fig. 10.57.

■  FIGURE 10.57

1 mF 20 mH4 cos (100t – 20°) A

i(t)

5 Ω

2 Ω

45. Design a suitable combination of resistors, capacitors, and/or inductors which 
has an equivalent impedance at ω = 100 rad/s of (a) 1 Ω using at least one 
inductor; (b) 7  ∕10   °   Ω; (c) 3 – j4 Ω.

46. Design a suitable combination of resistors, capacitors, and/or inductors which 
has an equivalent admittance at ω 10 rad/s of (a) 1 S using at least one capaci-
tor; (b) 12∕ −  18   °   S; (c) 2 + j mS.

10.6 Nodal and Mesh Analysis
47. For the circuit depicted in Fig. 10.58, (a) redraw with appropriate phasors and 

impedances labeled; (b) employ nodal analysis to determine the two nodal 
voltages v1(t) and v2(t).

■  FIGURE 10.58

2 Ω400 mF 5 Ω3 Ω

2 F

100 mH

v1(t) v2(t)

3 cos 10t A 2 cos 10t A

48. For the circuit illustrated in Fig. 10.59, (a) redraw, labeling appropriate phasor 
and impedance quantities; (b) determine expressions for the three time-domain 
mesh currents.

■  FIGURE 10.59

1.5 cos (10t – 42°) mA

2.5 cos 10t mA

100 mH

220 mF 2 Ω

v1(t) v2(t)

49. Referring to the circuit of Fig. 10.59, employ phasor-based analysis techniques 
to determine the two nodal voltages.

50. In the phasor-domain circuit represented by Fig. 10.60, let  V  1   = 10∕ −  80   °   V,   
V  2   = 4 ∕−  0   °   V, and  V  3   = 2∕ −  23   °   V. Calculate I1 and I2. ■  FIGURE 10.60

I1

V1

I2

+
– V2

+
– V3

+
–

j30 Ω 55 Ω – j20 Ω
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51. With regard to the two-mesh phasor-domain circuit depicted in Fig. 10.60, calcu-
late the ratio of I1 to I2 if  V  1   = 3∕  0   °    V,  V  2   = 5.5 ∕−  130   °   V, and  V  3   = 1.5  ∕17   °   V.

52. Employ phasor analysis techniques to obtain expressions for the two mesh 
currents i1 and i2 as shown in Fig. 10.61.

■  FIGURE 10.61

2 Ω

+
–

+
–2.5 cos (10t + 9°) V 5i11 H

330 mF i2i1

53. Determine IB in the circuit of Fig. 10.62 if  I  1   = 5 ∕−  18   °   A and  I  2   = 2∕  5   °   A.

■  FIGURE 10.62

j2 Ω

j3.8 Ω

–j4 Ω

2 Ω

1 Ω

V2

I2I1

IB

54. Determine V2 in the circuit of Fig. 10.62 if  I  1   = 15  ∕0   °   A and  I  2   = 25  ∕131   °   A.
55. Employ phasor analysis to obtain an expression for vx as labeled in the circuit 

of Fig. 10.63.

■  FIGURE 10.63

vx

+

–

ix

+
–

2 Ω 4.7 Ω

2 Ω

1 Ω4 cos 20t V 100 mH

10 mF

56. Determine the current ix in the circuit of Fig. 10.63.
57. Obtain an expression for each of the four (clockwise) mesh currents for the 

circuit of Fig. 10.64 if v1 = 133 cos(14t + 77°) V and v2 = 55 cos(14t + 22°) V.

■  FIGURE 10.64

28 mH 32 mH

100 mF

Ref.

0.4 Ω

0.8 Ω 0.6 Ω

v1 v2
+
–

+
–
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58. Determine the nodal voltages for the circuit of Fig. 10.64, using the bottom 
node as the reference node, if v1 = 0.009 cos (500t + 0.5°) V and v2 =  
0.004 cos (500t + 1.5°) V.

59. The op amp shown in Fig. 10.65 has an infinite input impedance, zero output 
impedance, and a large but finite (positive, real) gain, A = −Vo/Vi. (a) Con-
struct a basic differentiator by letting Zf = Rf, find Vo/Vs, and then show that 
Vo/Vs → −jωC1Rf as A→∞. (b) Let Zf represent Cf and Rf in parallel, find Vo /
Vs, and then show that Vo/Vs → −jωC1Rf / (1 + jωCf Rf) as A→∞.

60. Obtain an expression for each of the four mesh currents labeled in the circuit of 
Fig. 10.66.

■  FIGURE 10.66

+ –

0.005i1

70 mH

250 mF250 mF
9 cos 20t V 9 sin 20t V3 Ω

5 Ω

+
–

+
–i1

i2

i3

i4

10.7 Superposition, Source Transformations, and Thévenin’s  
Theorem
61. Determine the individual contribution each current source makes to the two 

nodal voltages V1 and V2 as represented in Fig. 10.67.

■  FIGURE 10.67

3 kΩ j2 kΩj8 kΩ

–j5 kΩ

–j3 kΩ 3 kΩ

V1 V2

3 –41° mA 5 13° mA

62. Determine V1 and V2 in Fig. 10.68 if  I  1   = 33∕  3   °   mA and  I  2   = 51∕ −  91   °   mA.
63. The phasor domain circuit of Fig. 10.68 was drawn assuming an operating fre-

quency of 2.5 rad/s. Unfortunately, the manufacturing unit installed the wrong 
sources, each operating at a different frequency. If i1(t) = 4 cos 40t mA and 
i2(t) = 4 sin 30t mA, calculate v1(t) and v2(t).

64. Obtain the Thévenin equivalent seen by the (2 − j) Ω impedance of Fig. 10.69, 
and employ it to determine the current I1.

■  FIGURE 10.69

Ref.

j2 Ω

V1 V2
(2 – j) Ω

1.5 A24° 2 A38°4 Ω10°

I1

■  FIGURE 10.65

+

–
Vo

+

–
Vi

–

+
+
–

C1

Z f

Vs

■  FIGURE 10.68

V2

I2

I1

V1

j3 Ω

– j5 Ω

2 Ω
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65. The (2 − j) Ω impedance in the circuit of Fig. 10.69 is replaced with a (1 + j) Ω  
impedance. Perform a source transformation on each source, simplify the 
resulting circuit as much as possible, and calculate the current flowing through 
the (1 + j) Ω impedance.

66. With regard to the circuit depicted in Fig. 10.70, (a) calculate the Thévenin 
equivalent seen looking into the terminals marked a and b; (b) determine the 
Norton equivalent seen looking into the terminals marked a and b; (c) compute 
the current flowing from a to b if a (7 − j2) Ω impedance is connected across 
them.

■  FIGURE 10.70

12 Ω

22  30° A j10 Ω
–j34 Ω

a

b

67. In the circuit of Fig. 10.71, is1 = 8 cos (4t − 9°) A, is2 = 5 cos 4t A, and 
vs3 = 2 sin 4t V. (a) Redraw the circuit in the phasor domain; (b) reduce the 
circuit to a single current source with the assistance of a source transfor-
mation; (c) calculate vL(t). (d) Verify your solution with an appropriate 
simulation.

68. Determine the individual contribution of each source in Fig. 10.72 to the 
voltage v1(t).

■  FIGURE 10.72

i1

+
–

1 Ω

2 Ω50 mF

50 mH 2.1 cos 20t V3 sin 20t A

v1+ –

69. Determine the power dissipated by the 1 Ω resistor in the circuit of Fig. 10.73. 
Verify your solution with an appropriate LTspice simulation.

■  FIGURE 10.73

15 mF 25 mF

1 Ω 5 Ω

+
–5 cos 20t A 110 cos 20t V

70. Use ω = 1 rad/s, and find the Norton equivalent of the network shown in 
Fig. 10.74. Construct the Norton equivalent as a current source IN in parallel 
with a resistance RN and either an inductance LN or a capacitance CN.

■  FIGURE 10.71

vL

+

–

+– 1 Ω

5 H

vs3

is2is1

■  FIGURE 10.74

a

b

VL+ –

+
–

2 H

1 F

0.25VL1 0° V
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10.8 Phasor Diagrams
71. The source Is in the circuit of Fig. 10.75 is selected such that V = 5  ∕120   °   V. 

(a) Construct a phasor diagram showing IR, IL, and IC. (b) Use the diagram to 
determine the angle by which Is leads IR, IC, and Is.

■  FIGURE 10.75

j10 S –j2 S 1 S

IC IL

Is V

+

–

Ix IR

72. Let  V  1   = 100∕  0   °   V,   |   V  2   |     = 140 V, and   |   V  1   +  V  2   |     = 120 V. Use graphical meth-
ods to find two possible values for the angle of V2.

73. (a) Calculate values for IL, IR, IC, VL, VR, and VC for the circuit shown in 
Fig. 10.76. (b) Using scales of 50 V to 1 in and 25 A to 1 in, show all  
seven quantities on a phasor diagram, and indicate that IL = IR + IC and  
Vs = VL + VR.

■  FIGURE 10.76

ICIR

2 ΩVR

+

–
VC

+

–
Vs = 100 0° V

IL

+
–

j2.5 Ω

– j1 Ω

VL+ –

74. In the circuit of Fig. 10.77, (a) find values for I1, I2, and I3. (b) Show Vs, I1, I2, 
and I3 on a phasor diagram (scales of 50 V/in and 2 A/in work fine). (c) Find Is 
graphically and give its amplitude and phase angle.

■  FIGURE 10.77

I1

I2

Is I3

30 Ω50 Ω

j40 Ω– j30 Ω40 30° Ω

Vs = 120 0° V
+
–

75. The voltage source Vs in Fig. 10.78 is chosen such that  I  C     = 1∕  0   °   A. (a) Draw 
a phasor diagram showing V1, V2, Vs, and VR. (b) Use the diagram to deter-
mine the ratio of V2 to V1. ■  FIGURE 10.78

5 Ω

3 Ω V2

+

–

VR

+

–

V1+ – IC

+
–

Vs j2 Ω

– j4 Ω
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Chapter-Integrating Exercises 
76. For the circuit shown in Fig. 10.79, (a) draw the phasor representation of the 

circuit; (b) determine the Thévenin equivalent seen by the capacitor, and use it 
to calculate vC(t). (c) Determine the current flowing out of the positive refer-
ence terminal of the voltage source. (d) Verify your solution with an appropri-
ate LTspice simulation.

100 mH

15 mF

150 mH2 Ω

1 Ω

2 sin (20t + 45°) A5 sin (20t + 12°) V +
–

vC+ –

■  FIGURE 10.79

77. The circuit of Fig. 10.79 is unfortunately operating differently than speci-
fied; the frequency of the current source is only 19 rad/s. Calculate the actual 
capacitor voltage, and compare it to the expected voltage had the circuit been 
operating correctly.

78. For the circuit shown in Fig. 10.80, (a) draw the corresponding phasor repre-
sentation; (b) obtain an expression for Vo /Vs; (c) plot |Vo /Vs|, the magnitude 
of the phasor voltage ratio, as a function of frequency ω over the range 0.01 
≤ ω ≤ 100 rad/s (use a logarithmic x axis). (d) Does the circuit transfer low 
frequencies or high frequencies more effectively to the output?

79. (a) Replace the inductor in the circuit of Fig. 10.80 with a 1 F capacitor and 
repeat Exercise 10.78. (b) If we design the “corner frequency” of the circuit as 
the frequency at which the output is reduced to1 /  √ 

__
 2   times its maximum value, 

redesign the circuit to achieve a corner frequency of 2 kHz.
80. Design a purely passive network (containing only resistors, capacitors, and 

inductors) which has an impedance of 0.5∕ 5. 7   °   Ω at a frequency of f = 628 Hz.

■  FIGURE 10.80

+

–

vo(t)vs(t)

1 Ω

1 H+
–

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
Often an integral part of circuit analysis is the determination of 
either power delivered or power absorbed (or both). In the context 
of ac power, we find that the rather simple approach we have 
taken previously does not provide a convenient picture of how a 
particular system is operating, so we introduce several different 
power-related quantities in this chapter.

We begin by considering instantaneous power, the product 
of the time-domain voltage and time-domain current associated 
with the element or network of interest. The instantaneous power 
is sometimes quite useful in its own right because its maximum 
value might have to be limited to avoid exceeding the safe operating 
range of a physical device. For example, transistor and vacuum-tube 
power amplifiers both produce a distorted output, and speakers give 
a distorted sound, when the peak power exceeds a certain limiting 
value. However, we are mainly interested in instantaneous power 
for the simple reason that it provides us with the means to calculate 
a more important quantity, the average power. In a similar way, 
the progress of a cross-country road trip is best described by the 
average velocity; our interest in the instantaneous velocity is limited 
to the avoidance of maximum velocities that will endanger our 
safety or arouse the highway patrol.

In practical problems we will deal with values of average 
power which range from the small fraction of a picowatt available 
in a telemetry signal from outer space, to the few watts of audio 
power supplied to the speakers in a good stereo system, to the 
several hundred watts required to run the morning coffee pot, or 

AC Circuit Power 
Analysis11

KEY CONCEPTS

Calculating Instantaneous 
Power

Average Power Supplied by 
a Sinusoidal Source

Root-Mean-Square (RMS) 
Values

Reactive Power

The Relationship Between 
Complex, Average, and 
Reactive Power

Power Factor of a Load
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to the 10 billion watts generated at the Grand Coulee Dam. Still, we will 
see that even the concept of average power has its limitations, especially 
when dealing with the energy exchange between reactive loads and power 
sources. This is easily handled by introducing the concepts of reactive 
power, complex power, and the power factor—all very common terms in 
the power industry.

11.1 • INSTANTANEOUS POWER
The instantaneous power delivered to any device is given by the product of 
the instantaneous voltage across the device and the instantaneous current 
through it (the passive sign convention is assumed). Thus,1

  p(t) = v(t) i(t)  [1]

If the device in question is a resistor of resistance R, then the power may be 
expressed solely in terms of either the current or the voltage:

  p(t) = v(t) i(t) =  i   2 (t) R =    v   2 (t) ____ 
R

    [2]

If the voltage and current are associated with a device that is entirely induc-
tive, then

  p(t) = v(t) i(t) = Li(t)   di(t) ____ 
dt

   =   1 __ 
L

   v(t)  ∫ 
−∞

  
t

    v( t   ′ )  d  t   ′   [3]

where we will arbitrarily assume that the voltage is zero at t = −∞. In the 
case of a capacitor,

  p(t) = v(t) i(t) = Cv(t)   dv(t) ____ 
dt

   =   1 __ 
C

   i(t)  ∫ 
−∞

  
t

    i( t   ′ )  d  t   ′   [4]

where a similar assumption about the current is made.
For example, consider the series RL circuit as shown in Fig. 11.1,  excited 

by a step-voltage source. The familiar current response is

 i(t) =    V  0   __ 
R

   (1 −  e   −Rt / L ) u(t) 

and thus the total power delivered by the source or absorbed by the passive 
network is

 p(t) = v(t) i(t) =    V  0  
2  __ 

R
   (1 −  e   −Rt / L ) u(t) 

since v = V0.
The power delivered to the resistor is

  p  R  (t) =  i   2 (t) R =    V  0  
2  __ 

R
    (1 −  e   −Rt / L )   2  u(t) 

(1) Earlier, we agreed that lowercase variables in italics were understood to be functions of time, and we 
have carried on in this spirit up to now. However, in order to emphasize the fact that these quantities must 
be evaluated at a specific instant in time, we will explicitly denote the time dependence throughout this 
chapter.

+
–

i

vL

+

–

V0u(t) L

R

■  FIGURE 11.1 The instantaneous power that is 
delivered to R is   P  R    (  t )    =  i   2   (  t )   R =   (   V  0  2  / R )     (  1 −  e   −Rt / L  )     2  u  (  t )    .
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In order to determine the power absorbed by the inductor, we first obtain 
the inductor voltage:

  v  L  (t) = L   di(t) ____ 
dt

   

 =  V  0    e   −Rt / L  u(t) +   L V  0   ____ 
R

   (1 −   e   −Rt / L  )    du(t) _____ 
dt

    

 =   V  0      e   −Rt / L   u(t)

since du(t)  /dt is zero for t > 0 and (1 −   e   −Rt/ L  ) is zero at t = 0. The power 
absorbed by the inductor is therefore

  p  L  (t) =  v  L  (t) i(t) =    V  0  
2  __ 

R
    e   −Rt / L (1 −  e   −Rt / L ) u(t) 

Only a few algebraic manipulations are required to show that

 p(t) =  p  R  (t) +  p  L  (t) 

which serves to check the accuracy of our work; the results are sketched in 
Fig. 11.2.

Power Due to Sinusoidal Excitation
Let us change the voltage source in the circuit of Fig. 11.1 to the sinusoidal 
source Vm cos ωt. The familiar time-domain steady-state response is

 i(t) =  I  m   cos (ωt + ϕ) 

where

  I  m   =    V  m   _______  
 √ 

________
  R   2  +  ω   2   L   2   
               and            ϕ = −  tan   −1    ωL ___ 

R
   

The instantaneous power delivered to the entire circuit in the sinusoidal 
steady state is, therefore,

 p(t) = v(t) i(t) =  V  m    I  m   cos (ωt + ϕ) cos ωt 

which we will find convenient to rewrite in a form obtained by using the 
trigonometric identity for the product of two cosine functions. Thus,

  p  (  t )    =    V  m    I  m   ____ 2     [  cos   (  2ωt + ϕ )    + cos ϕ ]   

 =       V  m    I  m   ____ 2   cos ϕ 


    
constant

    +       V  m    I  m   ____ 2   cos   (  2ωt + ϕ )     


    
periodic with frequency 2ω

   

The last equation possesses several characteristics that are true in gen-
eral for circuits in the sinusoidal steady state. One term, the first, is not a 
function of time; and a second term is included which has a cyclic varia-
tion at twice the applied frequency. Since this term is a cosine wave, and 
since sine waves and cosine waves have average values which are zero 
(when averaged over an integral number of periods), this example suggests 
that the average power is    1 __ 2     V  m    I  m   cos ϕ ; as we will see shortly, this is indeed 
the case.

■  FIGURE 11.2 Sketch of p(t),   p  R   (t), and   p  L   (t). As the 
transient dies out, the circuit returns to steady-state 
operation. Since the only source remaining in the 
circuit is dc, the inductor eventually acts as a short 
circuit, absorbing zero power.

Power supplied by source

Power absorbed by resistor

Power absorbed by inductor

t

Power
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A voltage source, 40 + 60u(t) V, a 5 μF capacitor, and a 200 Ω 
resistor form a series circuit. Find the power being absorbed by the 
capacitor and by the resistor at t = 1.2 ms.

At t = 0−, no current is flowing and so 40 V appears across the capaci-
tor. At t = 0+, the voltage across the capacitor–resistor series combina-
tion jumps to 100 V. Since vC cannot change in zero time, the resistor 
voltage at t = 0+ is 60 V.

The current flowing through all three elements at t = 0+ is therefore 
60/200 = 300 mA and for t > 0 is given by

  i(t) = 300  e   −t / τ   mA  

where τ = RC = 1 ms. Thus, the current flowing at t = 1.2 ms is 90.36 
mA, and the power being absorbed by the resistor at that instant is 
simply

   i   2 (t) R = 1.633  W  

The instantaneous power absorbed by the capacitor is i(t)vC(t). Recog-
nizing that the total voltage across both elements for t > 0 will always 
be 100 V, and that the resistor voltage is given by 60  e   −t / τ  ,

  v  C  (t) = 100 − 60  e   −t / τ   V

and we find that vC (1.2 ms) = 100 − 60e−1.2 = 81.93 V. Thus,  
the  power being absorbed by the capacitor at t = 1.2 ms is  
(90.36 mA) (81.93 V) = 7.403 W.

PRACTICE 
●

11.1 A current source of 12 cos 2000t A, a 200 Ω resistor, and a 0.2 H 
inductor are in parallel. Assume steady-state conditions exist. At t = 1 
ms, find the power being absorbed by the (a) resistor; (b) inductor;  
(c) sinusoidal source. 
Ans: 13.98 kW; −5.63 kW; −8.35 kW.

EXAMPLE 11.1

11.2 • AVERAGE POWER
When we speak of an average value for the instantaneous power, the time in-
terval over which the averaging process takes place must be clearly defined. 
Let us first select a general interval of time from t1 to t2. We may then obtain 
the average value by integrating p(t) from t1 to t2 and dividing the result by 
the time interval t2 − t1. Thus,

  P =   1 ____  t  2   −  t  1      ∫ 
 t  1  
  
 t  2  
    p(t)  dt  [5]

The average value is denoted by the capital letter P, since it is not a function 
of time, and it usually appears without any specific subscripts that identify 
it as an average value. Although P is not a function of time, it is a function 

hay01307_ch11_431-470.indd   434 23/01/18   10:22 am



  SECTION 11.2 AVeRAge PoweR 435

of t1 and t2, the two instants of time which define the interval of integration. 
This dependence of P on a specific time interval may be expressed in a 
simpler manner if p(t) is a periodic function. We consider this important 
case first.

Average Power for Periodic Waveforms
Let us assume that our forcing function and the circuit responses are all 
 periodic; a steady-state condition has been reached, although not necessar-
ily the sinusoidal steady state. We may define a periodic function f(t) math-
ematically by requiring that

  f(t) = f(t + T)  [6]

where T is the period. We now show that the average value of the instanta-
neous power as expressed by Eq. [5] may be computed over an interval of 
one period having an arbitrary beginning.

A general periodic waveform is shown in Fig. 11.3 and identified as p(t). 
We first compute the average power by integrating from t1 to a time t2 which 
is one period later, t2 = t1 + T:

  P  1   =   1 __ 
T

    ∫ 
 t  1  
  
 t  1  +T

    p(t)  dt 

and then by integrating from some other time tx to tx + T:

  P  x   =   1 __ 
T

    ∫ 
 t  x  
  
 t  x  +T

    p(t)  dt 

The equality of P1 and Px should be evident from the graphical interpre-
tation of the integrals; the periodic nature of the curve requires the two areas 
to be equal. Thus, the average power may be computed by integrating the 
instantaneous power over any interval that is one period in length and then 
dividing by the period:

  P =   1 __ 
T

    ∫ 
 t  x  
  
 t  x  +T

    p(t)  dt  [7]

It is important to note that we may also integrate over any integral num-
ber of periods, provided that we divide by the same integral number of pe-
riods. Expanding this result to the limit approaching an infinite number of 
periods results in the following integral in terms of the continuous variable τ:

  P =   lim  
τ→∞

     1 _ τ    ∫ 
−τ/2

  
τ/2

    p(t)  dt  [8]

We will find it convenient on several occasions to integrate periodic func-
tions over this “infinite period.”

Average Power in the Sinusoidal Steady State
Now let us obtain the general result for the sinusoidal steady state. We 
 assume the general sinusoidal voltage

 v(t) =  V  m   cos (ωt + θ) 

and current

 i(t) =  I  m   cos (ωt + ϕ) 

■  FIGURE 11.3 The average value P of a periodic 
function p(t) is the same over any period T.

t1
t1 + T tx + T

tx

p(t)

t
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associated with the device in question. The instantaneous power is

 p(t)  =  V  m    I  m   cos (ωt + θ) cos (ωt + ϕ) 

Again expressing the product of two cosine functions as one-half the 
sum of the cosine of the difference angle and the cosine of the sum angle,

  p (t)  =     1 _ 2    V  m    I  m   cos (  θ − ϕ )    


   
constant

    +     1 _ 2    V  m    I  m   cos (  2ωt + θ + ϕ )    


    
periodic with frequency 2ω

     [9]

we may save ourselves some integration by an inspection of the result. The 
first term is a constant, independent of t. The remaining term is a cosine 
function; p(t) is therefore periodic, and its period is    1 _ 2  T . Note that the period 
T is associated with the given current and voltage, and not with the power; 
the power function has a period    1 _ 2  T . However, we may integrate over an 
interval of T to determine the average value if we wish; it is necessary only 
that we also divide by T. Our familiarity with cosine and sine waves, how-
ever, shows that the average value of either over a period is zero. There is 
thus no need to integrate Eq. [9] formally; by inspection, the average value 
of the second term is zero over a period T (or    1 _ 2  T ), and the average value of 
the first term, a constant, must be that constant itself. Thus,

  P =   1 _ 2    V  m    I  m   cos (  θ − ϕ )    [10]

This important result, introduced in the previous section for a specific 
circuit, is therefore quite general for the sinusoidal steady state. The average 
power is one-half the product of the crest amplitude of the voltage, the crest 
amplitude of the current, and the cosine of the phase-angle difference be-
tween the current and the voltage; the sign of the difference is immaterial. 
The average power may also be written in phasor notation as

 P =   1 _ 2   Re { VI   * }  

Two special cases are worth isolating for consideration: the average 
power delivered to an ideal resistor and that to an ideal reactor (any combi-
nation of only capacitors and inductors).

Recall that  T =   1 _ f   =   2π __ ω   .

The notation I* denotes the complex conjugate of 

the complex number I. It is formed by replacing all 

“j”s with “−j”s. See Appendix 5 for more details.

Given the time-domain voltage v = 4 cos(πt/6) V, find both the 
 average power and an expression for the instantaneous power  
that result when the corresponding phasor voltage V = 4 0° V  
is applied across an impedance Z = 2 60° Ω.

The phasor current is V / Z = 2 − 60° A, and so the average power is

 P =   1 _ 2   (4) (2) cos    60   ∘  = 2  W 

We can write the time-domain voltage,

 v(t) = 4 cos   πt __ 6    V 

EXAMPLE 11.2
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Average Power Absorbed by an Ideal Resistor
The phase-angle difference between the current through and the voltage 
across a pure resistor is zero. Thus,

  P  R   =   1 _ 2    V  m    I  m   cos 0 =   1 _ 2    V  m    I  m   

or

   P  R   =   1 _ 2    I  m  2   R  [11]

or

   P  R   =    V  m  2   ___ 2R
    [12] 

The same result is obtained using the phasor form, since the value {VI*} will 
be a real number, and thus  P =   1 _ 2   Re {VI *}  =   1 _ 2   Re   { ( I  m   R)   I  m   0°}   =   1 _ 2    I  m  2   R.

and the time-domain current,

 i(t) = 2 cos   (    πt _ 6   −  60   ∘  )    A 

The instantaneous power, therefore, is given by their product:

   
p  (  t )   

  
=

  
8 cos   πt __ 6   cos   (    πt _ 6   − 60° )   

    
 
  

=
  
2 + 4 cos   (    πt _ 3   − 60° )    W

   

All three quantities are sketched on the same time axis in Fig. 11.4. 
Both the 2 W average value of the power and its period of 6 s, one-half 
the period of either the current or the voltage, are evident. The zero 
value of the instantaneous power at each instant when either the voltage 
or current is zero is also apparent.

6 p

v

i

4

–2
–4

1

–1 64–3

2 3 5 8 12

p, v, i (W, V, A)

t(s)

■  FIGURE 11.4 Curves of v(t), i(t), and p(t) are plotted as functions of time for a 
simple circuit in which the phasor voltage V = 4 0° V is applied to the impedance 
Z = 2  60° Ω at ω = π/6 rad/s.

PRACTICE 
●

11.2 Given the phasor voltage V = 115   √ 
__

 2   45° V across an impedance 
Z = 16.26 19.3° Ω, obtain an expression for the instantaneous power, 
and compute the average power if ω = 50 rad/s. 
Ans: 767.5 + 813.2 cos(100t + 70.7°) W; 767.5 W.
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The last two formulas, enabling us to determine the average power de-
livered to a pure resistance from a knowledge of either the sinusoidal cur-
rent or voltage, are simple and important. Unfortunately, they are often 
misused. The most common error is made in trying to apply them in cases 
where the voltage included in Eq. [12] is not the voltage across the resistor. 
If care is taken to use the current through the resistor in Eq. [11] and the 
voltage across the resistor in Eq. [12], satisfactory operation is guaranteed. 
Also, do not forget the factor of    1 _ 2   !

Average Power Absorbed by Purely  
Reactive Elements
The average power delivered to any device which is purely reactive (i.e., con-
tains no resistors) must be zero. This is a direct result of the 90° phase dif-
ference which must exist between current and voltage; hence, cos(θ − ϕ) = 
cos± 90° = 0 (or in phasor notation, VI* is an imaginary number) 

  P  X   = 0 

The average power delivered to any network composed entirely of 
ideal inductors and capacitors is zero; the instantaneous power is zero 
only at specific instants. Thus, power flows into the network for a part of 
the cycle and out of the network during another portion of the cycle, with 
no power lost.

Keep in mind that we are computing the average 

power delivered to a resistor by a sinusoidal source; 

take care not to confuse this quantity with the 

 instantaneous power, which has a similar form.

Find the average power being delivered to an impedance  
ZL = 8 − j11 Ω by a current I= 5 20° A.

We may find the solution quite rapidly by using Eq. [11]. Only the 8 Ω 
resistance enters the average-power calculation, since the j11 Ω compo-
nent will not absorb any average power. Thus,

  P =   1 _ 2   ( 5)   2  8 = 100  W  

We can also solve the problem directly using phasors, requiring a bit 
more computation:

I = 5 20°  = 4.6985 + j1.7101 A 

 V =  IZ  L   =  (4 . 6985 + j1 . 7101)  (8 − j11)  = 56 . 3988 − j38 . 0023  V 

 P =   1 _ 2   Re { VI   * }  =   1 _ 2   Re { (56 . 3988 − j38 . 0023)  (4 . 6985 − 1 . 7101) } 

P = 100 W 

PRACTICE 
●

11.3 Calculate the average power delivered to the impedance 6 25°  Ω 
by the current I = 2 + j5 A. 

Ans: 78.85 W.

EXAMPLE 11.3
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Find the average power absorbed by each of the three passive elements 
in Fig. 11.5, as well as the average power supplied by each source.

■  FIGURE 11.5 The average power delivered to each reactive 
element is zero in the sinusoidal steady state.

I1 I22 Ω

j2 Ω –j2 Ω

0° V100° V20
+
–

+
–

Without even analyzing the circuit, we already know that the average 
power absorbed by the two reactive elements is zero.

The values of I1 and I2 are found by any of several methods, such as 
mesh analysis, nodal analysis, or superposition. They are

  
I1 = 5 − j10 = 11.18 − 63.43° A

    
I2 = 5 − j5 = 7.071 − 45° A

   

The downward current through the 2 Ω resistor is
I1 − I2 = − j5 = 5 − 90° A

so that Im = 5 A, and the average power absorbed by the resistor is 
found most easily by Eq. [11]:

  P  R   =   1 _ 2    I  m  2   R =   1 _ 2  ( 5)   2  2 = 25  W 

This result may be checked by using Eq. [10] or Eq. [12]. We next turn 
to the left source. The voltage 20 0° V and associated current I1 = 
11.18 − 63.43° A satisfy the active sign convention, and thus the power 
delivered by this source is

  P  left   =   1 _ 2   (20) (11.18) cos  [ 0° − (− 63.43°) ] = 50  W 

In a similar manner, we find that the right source is actually absorb-
ing power according to the passive sign convention,

  P  right   =   1 _ 2   (10) (7.071) cos (0° + 45°) = 25  W 

Since 50 = 25 + 25, the power relations check.

PRACTICE 
●

11.4 For the circuit of Fig. 11.6, compute the average power delivered 
to each of the passive elements. Verify your answer by computing the 
power delivered by each source. 

■  FIGURE 11.6

– j100 Ω

2 Ω

j45 Ω

I1 I2 0° V550° V10
+
–

+
–

Ans: 0, 37.6 mW, 0, 42.0 mW, −4.4 mW.

EXAMPLE 11.4
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Average Power for Nonperiodic Functions
We should pay some attention to nonperiodic functions. One practical ex-
ample of a nonperiodic power function for which an average power value 
is desired is the power output of a radio telescope directed toward a “radio 
star.” Another is the sum of a number of periodic functions, each function 
having a different period, such that no greater common period can be found 
for the combination. For example, the current

  i(t)  =  sin t +  sin πt  [13]

is nonperiodic because the ratio of the periods of the two sine waves is an 
irrational number. At t = 0, both terms are zero and increasing. But the first 
term is zero and increasing only when t = 2 π n, where n is an integer, and 
thus periodicity demands that π t or π(2 π n) must equal 2 π m, where m is also 
an integer. No solution (integral values for both m and n) for this equation 
is possible. It may be illuminating to compare the nonperiodic expression in 
Eq. [13] with the periodic function

  i(t) =  sin t +  sin 3.14t  [14]

where 3.14 is an exact decimal expression and is not to be interpreted as 
3.141592.... With a little effort,2 it can be shown that the period of this cur-
rent wave is 100π seconds.

The average value of the power delivered to a 1 Ω resistor by either a 
periodic current such as Eq. [14] or a nonperiodic current such as Eq. [13] 
may be found by integrating over an infinite interval. Much of the actual in-
tegration can be avoided because of our thorough knowledge of the average 
values of simple functions. We therefore obtain the average power delivered 
by the current in Eq. [13] by applying Eq. [8]:

 P =   lim  
τ→∞     1 _ τ    ∫ 

−τ/2
  

τ/2
    ( sin   2   t +  sin   2   πt + 2 sin t  sin πt) dt 

We now consider P as the sum of three average values. The average 
value of sin2 t over an infinite interval is found by replacing sin2 t with 
(  1 _ 2   −   1 _ 2   cos  2t) ; the average is simply    1 _ 2   . Similarly, the average value of sin2 
πt is also    1 _ 2   . And the last term can be expressed as the sum of two cosine 
functions, each of which must certainly have an average value of zero. Thus,

 P =   1 _ 2   +   1 _ 2   = 1  W 

An identical result is obtained for the periodic current of Eq. [14]. 
 Applying this same method to a current function which is the sum of several 
sinusoids of different periods and arbitrary amplitudes,

  i(t) =  I  m1   cos  ω  1   t +  I  m2   cos  ω  2   t + ⋯ +  I  mN   cos  ω  N   t  [15]

we find the average power delivered to a resistance R,

  P =   1 _ 2   ( I  m1  2   +  I  m2  2   + ⋯ +  I  mN  2  ) R  [16]

(2) T1 = 2π and T2 = 2π/3.14. Therefore, we seek integral values of m and n such that 2πn = 2πm /  3.14, 
or 3.14n = m, or    314 ___ 100    n = m or 157n = 50m. Thus, the smallest integral values for n and m are n = 50 and 
m = 157. The period is therefore T = 2πn = 100π, or T = 2π(157/3.14) = 100π s.
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The result is unchanged if an arbitrary phase angle is assigned to each 
component of the current. This important result is surprisingly simple when 
we think of the steps required for its derivation: squaring the current func-
tion, integrating, and taking the limit. The result is also just plain surprising, 
because it shows that, in this special case of a current such as Eq. [15], 
where each term has a unique frequency, superposition is applicable to 
power. Superposition is not applicable for a current which is the sum of two 
direct currents, nor is it applicable for a current which is the sum of two si-
nusoids of the same frequency.

11.3 • MAXIMUM POWER TRANSFER
We previously considered the maximum power transfer theorem as it 
 applied to resistive loads and resistive source impedances. For a Thévenin 
source VTH and impedance ZTH = RTH + jXTH connected to a load ZL =  
RL + jXL, it may be shown that the average power delivered to the load is 
a maximum when RL = RTH and XL = −XTH, that is, when ZL =   Z  TH  *   . This 

Find the average power delivered to a 4 Ω resistor by the current  
i1 = 2 cos 10t − 3 cos 20t A.

Since the two cosine terms are at different frequencies, the two 
average-power values may be calculated separately and added. 
Thus, this current delivers    1 _ 2  ( 2   2 ) 4 +   1 _ 2  ( 3   2 ) 4 = 8 + 18 = 26  W  to a 
4 Ω resistor.

EXAMPLE 11.5

Find the average power delivered to a 4 Ω resistor by the current  
i2 = 2 cos 10t − 3 cos 10t A.

Here, the two components of the current are at the same frequency, 
and they must therefore be combined into a single sinusoid at that 
 frequency. Thus, i2 = 2 cos 10t − 3 cos 10t = −cos 10t delivers only  
   1 _ 2   ( 1   2 ) 4 = 2  W  of average power to a 4 Ω resistor.

PRACTICE 
●

11.5 A voltage source vs is connected across a 4 Ω resistor. Find the 
average power absorbed by the resistor if vs equals (a) 8 sin 200t V;  
(b) 8 sin 200t − 6 cos(200t − 45°) V; (c) 8 sin 200t − 4 sin 100t V;  
(d) 8 sin 200t − 6 cos(200t − 45°) − 5 sin 100t + 4 V. 

Ans: 8.00 W; 4.01 W; 10.00 W; 11.14 W.

EXAMPLE 11.6
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result is often dignified by calling it the maximum power transfer theorem 
for the sinusoidal steady state:

An independent voltage source in series with ZTH or an independent 
current source in parallel with ZTH delivers a maximum average power 
to a load ZL when   Z  L   =  Z  TH  *   .

Average Power Delivered to Load
The details of the proof for maximum power transfer are left to the reader, 
but the basic approach can be understood by considering average power 
delivered to the load of the simple loop circuit of Fig. 11.7. The Thévenin 
equivalent impedance ZTH may be written as the sum of two components, 
RTH + jXTH, and in a similar fashion the load impedance ZL may be written 
as RL + jXL. The current flowing through the loop is

  
 I  L  

  
=

  
   V  TH   ______  Z  TH   +  Z  L       

 
  

=
  
   V  TH    _____________   R  TH   + j  X  TH   +  R  L   + j  X  L     =    V  TH    ______________   R  TH   +  R  L   + j  (   X  TH   +  X  L   )     

  

and

  
 V  L  

  
=

  
 V  TH      Z  L   ______  Z  TH   +  Z  L    

   
 
  

=
  
 V  TH      R  L   + j  X  L    _____________   R  TH   + j  X  TH   +  R  L   + j  X  L     =  V  TH      R  L   + j  X  L    ______________   R  TH   +  R  L   + j  (   X  TH   +  X  L   )     

  

The magnitude of IL is

    |    V  TH   |    ________________   
 √ 

__________________
     (    R  TH   +  R  L   )     2  +   (    X  TH   +  X  L   )     2   
   

and the phase angle is

  VTH  −  tan   −1   (      X  TH   +  X  L   _  R  TH   +  R  L     )    

Similarly, the magnitude of VL is

     |    V  TH   |    √ 
______

  R  L  2  +  X  L  2     ________________   
 √ 

__________________
     (    R  TH   +  R  L   )     2  +   (    X  TH   +  X  L   )     2   
   

and its phase angle is

  VTH  +  tan   −1   (      X  L   _  R  L     )    −  tan   −1   (      X  TH   +  X  L   _  R  TH   +  R  L     )    

Referring to Eq. [10], then, we find an expression for the average power P 
delivered to the load impedance ZL:

  P =   
  1 _ 2    |  V  TH  |   2   √ 

______
  R  L  2  +  X  L  2   
  ________________   

 ( R  TH   +  R  L  )   2  +  ( X  TH   +  X  L  )   2 
   cos   (   tan   −1   (     X  L   _  R  L     )    )     [17]

■  FIGURE 11.7 A simple loop circuit used to illus-
trate the derivation of the maximum power transfer 
theorem as it applies to circuits operating in the 
sinusoidal steady state.

VL

+

–

VTH

IL
+
–

ZTH

ZL
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Impedance Matching
We know that maximum power transfer occurs when the load resistance 
is equal to the series resistance of the circuit delivering power; or simi-
larly, the impedance of the load is the complex conjugate of the imped-
ance of the circuit delivering power. However, the power delivery circuit 
typically has a different impedance than the load, and in fact this may 
be desirable. For example, the output resistance of a power amplifier 
should be less than the resistance of a speaker, due to the behavior of the 
speaker as a load, the mechanical response, etc. How can we maximize 
power delivery in such cases? For sinusoidal inputs, we can introduce 

In order to prove that maximum average power is indeed delivered to 
the  load when   Z  L   =  Z  TH  *   , we must perform two separate steps. First, the 
derivative of Eq. [17] with respect to RL must be set to zero. Second, the 
derivative of Eq. [17] with respect to XL must be set to zero. The remaining 
details are left as an exercise for the avid reader.

A particular circuit is composed of the series combination of a 
sinusoidal voltage source 3 cos(100t − 3°) V, a 500 Ω resistor, a 30 
mH inductor, and an unknown impedance. If we are assured that 
the voltage source is delivering maximum average power to the 
unknown impedance, what is its value?

The phasor representation of the circuit is sketched in Fig. 11.8. The 
circuit is easily seen as an unknown impedance Z? in series with a 
Thévenin equivalent consisting of the 3 − 3° V source and a Thévenin 
impedance 500 + j3 Ω.

Since the circuit of Fig. 11.8 is already in the form required to 
employ the maximum average power transfer theorem, we know that 
maximum average power will be transferred to an impedance equal to 
the complex conjugate of ZTH, or

  Z  ?   =  Z  TH  *   = 500 − j3  Ω 

This impedance can be constructed in several ways, the simplest being a 
500 Ω resistor in series with a capacitor having impedance − j3 Ω. Since 
the operating frequency of the circuit is 100 rad/s, this  corresponds to a 
capacitance of 3.333 mF.

PRACTICE 
●

11.6 If the 30 mH inductor of Example 11.7 is replaced with a 10 μF 
capacitor, what is the value of the inductive component of the unknown 
impedance Z? if it is known that Z? is absorbing maximum power? 

Ans: 10 H.

EXAMPLE 11.7

■  FIGURE 11.8 The phasor representation of a 
simple series circuit composed of a sinusoidal volt-
age source, a resistor, an inductor, and an unknown 
impedance.

500 Ω j3 Ω

–3° V3 +
– Z?
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intermediate impedance matching circuitry such that the impedance be-
tween source and load are complex conjugates, as illustrated in Fig. 11.9. 
Impedance matching is particularly important for applications dealing 
with very weak signals or where power is critical, where any power loss 
is a big problem. For example, impedance matching on the antenna on 
your radio or mobile phone will be critical in determining your range and 
battery life.

Consider a power amplifier at a frequency of 31.83 MHz with output 
resistance of 100 Ω acting as a source to power a 50 Ω antenna. Adding a 50 
pF capacitor in parallel results in a load impedance of 

  Z  C   =   1 ___ 
jωC

   =   1  _____________________   
j (2π × 31 . 83 ×  10   6 )  (50 ×  10   −12 ) 

   = −j100 

The impedance observed by the load is therefore

  Z  eq   =    R  S    Z  C   _____  R  S   +  Z  C  
   =   

 (100)  (−j100)   _________ 100 − j100   = 50 − j50 

We have now transformed the source to have an impedance with a real 
part of 50 Ω, by adding a capacitor in parallel! Note that while the equiv-
alent impedance has changed to 50 − j50, the Thévenin equivalent source 
is given by 

  V  TH   =   
 (−j100)  _______ 100 − j100    V  S   =  (  1 _ 2   − j   1 _ 2  )   V  S   =    V  S   __ 

 √ 
__

 2  
      −45°  

To complete the impedance match, we now need to incorporate an 
element to cancel the imaginary part of the impedance that the load sees. 
An inductor with impedance  jωL can be added in series with a value 
of +j50, requiring L = 50/(2π × 31.83 × 106) = 250 nH. We have now 
completed an impedance matching network that will deliver maximum 
power to the load. The addition of the parallel capacitor and series in-
ductor is known as an L matching network. As matching requirements 
may vary, there are many other matching network topographies, includ-
ing the Pi network and T network, which are left for more advanced 
study of this topic (and used in end of chapter exercises). While the 
preceding example examines the case of a purely resistive impedance 
for both source and load, the impedance matching concept is also appli-
cable for complex impedance (along with the expected feature of more 
complicated algebraic computation!). 

■  FIGURE 11.9 Illustration of impedance matching circuitry for maximum power delivery to a load.

+
– VSVS

Impedance
Matching
Circuity

+
–

⇒S2ZL ZL

Zs Zs
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VS
31.83 MHz

100 Ω

50 Ω

⇒50 pF –j100 ΩVS
31.83 MHz

100 Ω

50 Ω +
–

+
–

+
–

+
–

50 – j50 Ω

50 Ω
VS



⇒50 pF –j100 ΩVS
31.83 MHz

100 Ω 250 nH

j50 Ω

50 Ω +
– 50 Ω

VS



50 Ω

(a)

(b)

(c)

–45°

–45°

■  FIGURE 11.10 Impedance matching example for a circuit with sinusoidal input and source and load re-
sistances that are not equal. (a) The original circuit, (b) addition of a capacitor in parallel, and (c) capacitor 
in parallel and inductor in series to provide impedance matching condition for the defined frequency of 
the sinusoidal source.

Calculate and compare the average power delivered to the load for 
the three circuit configurations in Fig. 11.10 subject to a source 
with amplitude of Vm = 5 V.

For the first case in (a) with no matching circuitry, the current 
amplitude is Im = 5/(100 + 50) = 1/30 A. The power dissipated by 
the load is  

 P =   1 _ 2    I  m  2   R =   1 _ 2     (  1 __ 30  )    
2
  (50)  = 27 . 78 mW 

For the circuit in (b), the current in the load will vary due to the 
addition of the capacitor in parallel. From the equivalent impedance 
shown on the right side of (b),

  I  L   =   
5 (  1 _ 2   − j   1 _ 2  ) 

 ______ 100 − j50   = 0 . 03 − j0 . 01 = 0 . 03162  −18 . 435°  A 

resulting in an average power in the load of   

 P =   1 _ 2     (0 . 03162)    2   (50)  = 25 . 00 mW 

EXAMPLE 11.8

(Continued on next page)
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11.4 • EFFECTIVE VALUES OF CURRENT AND VOLTAGE
In North America, most power outlets deliver a sinusoidal voltage having 
a frequency of 60 Hz and a “voltage” of 115 V (elsewhere, 50 Hz and 240 
V are typically encountered). But what is meant by “115 volts”? This is 
certainly not the instantaneous value of the voltage, for the voltage is not a 
constant. The value of 115 V is also not the amplitude which we have been 
symbolizing as Vm; if we displayed the voltage waveform on a calibrated 
oscilloscope, we would find that the amplitude of this voltage at one of our 
ac outlets is  115  √ 

__
 2   , or 162.6, volts. We also cannot fit the concept of an 

average value to the 115 V, because the average value of the sine wave is 
zero. We might come a little closer by trying the magnitude of the average 
over a positive or negative half cycle; by using a rectifier-type voltmeter at 
the outlet, we should measure 103.5 V. As it turns out, however, 115 V is the 
effective value of this sinusoidal voltage; it is a measure of the effectiveness 
of a voltage source in delivering power to a resistive load.

Effective Value of a Periodic Waveform
Let us arbitrarily define effective value in terms of a current waveform, 
although a voltage could equally well be selected. The effective value of any 
periodic current is equal to the value of the direct current which, flowing 
through an R ohm resistor, delivers the same average power to the resistor 
as does the periodic current.

In other words, we allow the given periodic current to flow through the 
resistor, determine the instantaneous power i2 R, and then find the average 
value of i2 R over a period; this is the average power. We then cause a direct 

Repeating for the complete matching circuit in (c), the current and 
average power are

  I  L   =   
5 (  1 _ 2   − j   1 _ 2  ) 

 ______ 100   = 0 . 025 − j0 . 025 = 0 . 03536  −45°  A 

 P =   1 _ 2     (0 . 03536)    2   (50)  = 31 . 26 mW 

We see that the matching circuit provides substantial improvement 
in power delivery to the load! Note that the incorporation of the parallel 
capacitor alone to provide the matching real part of the source imped-
ance actually decreased the power delivered to the load. Incorporating 
the inductive element to cancel the reactive part of the impedance was 
necessary for maximum power delivery.

PRACTICE 
●

11.7 For the circuit in Fig. 11.10a, calculate the values for a capacitor 
and inductor to achieve impedance matching if the source frequency is 
changed to 100 MHz. 

Ans: 15.915 pF and 79.58 nH
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current to flow through this same resistor and adjust the value of the direct 
current until the same value of average power is obtained. The resulting 
magnitude of the direct current is equal to the effective value of the given 
periodic current. These ideas are illustrated in Fig. 11.11.

The general mathematical expression for the effective value of i(t) is 
now easily obtained. The average power delivered to the resistor by the 
periodic current i(t) is

 P =   1 __ 
T

    ∫ 
 0
  
T

     i   2  R  dt =   R __ 
T

    ∫ 
 0
  
T

     i   2   dt 

where the period of i(t) is T. The power delivered by the direct current is

 P =  I  eff  2   R 

Equating the power expressions and solving for Ieff, we get

   I  eff   =  √ 

_

   1 _ 
T

    ∫ 
 0
  
T

     i   2   dt    [18]

The result is independent of the resistance R, as it must be to provide us with 
a worthwhile concept. A similar expression is obtained for the effective 
value of a periodic voltage by replacing i and Ieff by v and Veff, respectively.

Notice that the effective value is obtained by first squaring the time 
function, then taking the average value of the squared function over a pe-
riod, and finally taking the square root of the average of the squared func-
tion. In short, the operation involved in finding an effective value is the 
(square) root of the mean of the square; for this reason, the effective value 
is often called the root-mean-square value, or simply the rms value.

Effective (RMS) Value of a Sinusoidal Waveform
The most important special case is that of the sinusoidal waveform. Let us 
select the sinusoidal current

 i(t) =  I  m   cos (ωt + ϕ) 

which has a period

 T =   2π __ ω   

and substitute in Eq. [18] to obtain the effective value

  

 I  eff  

  

=

  

 √ 

_________________

    1 __ 
T

    ∫ 
 0
  
T

     I  m  2    cos   2   (  ωt + ϕ )   dt  

    
 
  

=
  
 I  m    √ 

_______________________

     ω __ 2π
    ∫ 

 0
  
2π/ω

      [    1 _ 2   +   1 _ 2   cos   (  2ωt + 2ϕ )    ]   dt  
     

 
  

=
  
 I  m    √ 

_______
   ω __ 4π

    [ t ]  0  2π/ω   
   

 

  

=

  

   I  m   __ 
 √ 

__
 2  
  

   

Thus the effective value of a sinusoidal current is a real quantity which is 
independent of the phase angle and numerically equal to  1 /  √ 

__
 2   = 0.707 

times the amplitude of the current. A current   √ 
__

 2   cos (ωt + ϕ)   A , therefore, 

■  FIGURE 11.11 If the resistor receives the same 
average power in parts a and b, then the effective 
value of i(t) is equal to Ieff, and the effective value of 
v(t) is equal to Veff.

+
–

i (t)

Rv(t)

(a)

R

Ieff

Veff

(b)

+
–

i (t)

Rv(t)

(a)

R

Ieff

Veff

(b)
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has an effective value of 1 A and will deliver the same average power to any 
resistor as will a direct current of 1 A.

It should be noted carefully that the  √ 
__

 2    factor that we obtained as the 
ratio of the amplitude of the periodic current to the effective value is appli-
cable only when the periodic function is sinusoidal. For a sawtooth wave-
form, for example, the effective value is equal to the maximum value divided 
by  √ 

__
 3   . The factor by which the maximum value must be divided to obtain 

the effective value depends on the mathematical form of the given periodic 
function; it may be either rational or irrational, depending on the nature of 
the function.

Use of RMS Values to Compute Average Power
The use of the effective value also slightly simplifies the expression for the 
average power delivered by a sinusoidal current or voltage by avoiding the 
use of the factor    1 _ 2   . For example, the average power delivered to an R ohm 
resistor by a sinusoidal current is

 P =   1 _ 2    I  m  2   R 

Since   I  eff   =  I  m   /  √ 
__

 2   , the average power may be written as

  P =  I  eff  2   R  [19]

The other power expressions may also be written in terms of effective values:

   P =  V  eff    I  eff   cos (  θ − ϕ )     [20]

  P =    V  eff  2   ___ 
R

    [21]

Although we have succeeded in eliminating the factor    1 _ 2    from our aver-
age-power relationships, we must now take care to determine whether a si-
nusoidal quantity is expressed in terms of its amplitude or its effective value. 
In practice, the effective value is usually used in the fields of power trans-
mission or distribution and of rotating machinery; in the areas of electronics 
and communications, the amplitude is more commonly used. We will as-
sume that the amplitude is specified unless the term “rms” is explicitly 
used, or we are otherwise instructed.

In the sinusoidal steady state, phasor voltages and currents may be 
given either as effective values or as amplitudes; the two expressions dif-
fer only by a factor of   √ 

__
 2   . The voltage 50 30° Vis expressed in terms of 

an amplitude; as an rms voltage, we should describe the same voltage as 
35.4 30° V rms.

Effective Value with Multiple-Frequency Circuits
In order to determine the effective value of a periodic or nonperiodic wave-
form which is composed of the sum of a number of sinusoids of differ-
ent frequencies, we may use the appropriate average-power relationship of 
Eq. [16], developed in Sec. 11.2, rewritten in terms of the effective values 
of the several components:

  P = ( I  left  
2   +  I  2eff  

2   + ⋯ +  I  Neff  
2  ) R  [22]

The fact that the effective value is defined in terms 

of an equivalent dc quantity provides us with aver-

age-power formulas for resistive circuits which are 

identical with those used in dc analysis.
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From this we see that the effective value of a current which is composed 
of any number of sinusoidal currents of different frequencies can be ex-
pressed as

   I  eff   =  √ 
_____________

   I  left  
2   +  I  2eff  

2   + ⋯ +  I  Neff  
2      [23]

These results indicate that if a sinusoidal current of 5 A rms at 60 Hz flows 
through a 2 Ω resistor, an average power of 52(2) = 50 W is absorbed by the 
resistor; if a second current—perhaps 3 A rms at 120 Hz, for example—is 
also present, the absorbed power is 32(2) + 50 = 68 W. Using Eq. [23] 
instead, we find that the effective value of the sum of the 60 and 120 Hz 
currents is 5.831 A. Thus, P = 5.8312(2) = 68 W as before. However, if the 
second current is also at 60 Hz, the effective value of the sum of the two 
60 Hz currents may have any value between 2 and 8 A. Thus, the absorbed 
power may have any value between 8 W and 128 W, depending on the rela-
tive phase of the two current components.

PRACTICE 
●

11.8  Calculate the effective value of each of the periodic voltages: 
(a) 6 cos 25t; (b) 6 cos 25t + 4 sin(25t + 30°); (c) 6 cos 25t +  
5 cos2(25t); (d) 6 cos 25t + 5 sin 30t + 4 V. 
Ans: 4.24 V; 6.16 V; 5.23 V; 6.82 V.

note that the effective value of a dc quantity K is 

simply K, not    K __ 
 √ 

__
 2  
   .

Several useful techniques are available through SPICE for calculation 
of power quantities. In particular, the built-in functions allow us to plot 
the instantaneous power and compute the average power. For example, 
consider the simple voltage divider circuit of Fig. 11.12, which is being 

COMPUTER-AIDED ANALYSIS

(Continued on next page)
■  FIGURE 11.12 A simple voltage divider circuit driven by a 115 V rms source operating 

at 60 Hz.
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driven by a 60 Hz sine wave with an amplitude of  115  √ 
__

 2    V. The resis-
tors represent a typical power supply from the wall plug, an undesired 
series resistance of 0.05 Ω, and a load such as a heater at 15 Ω. We be-
gin by performing a transient simulation over one period of the voltage 
waveform,    1 __ 60   s  (16.67 ms).

Similar to plotting current for a circuit element, the instantaneous 
power can be plotted by clicking on an element in the schematic after 
running the simulation. To plot instantaneous power in LTspice, press 
alt and click on the element (you will see a thermometer icon appear 
instead of a current probe when placing the cursor over the circuit 
element). Power waveforms can also be plotted by directly entering an 
expression to add to the plot (e.g., V(load)*I(Rload)). The waveforms 
for instantaneous power dissipated in resistor Rseries and Rload are 
plotted in Fig. 11.13.

■  FIGURE 11.13 Instantaneous power associated with resistors Rseries and Rload  
of Fig. 11.12.

An easy way to obtain the average power in LTspice is to press 
Ctrl and click on the variable expression in the waveform window.  
A data summary will appear, as shown in Fig. 11.14, which includes 
the average value (875.41 W for Rload and 2.918 W for Rseries).  
This agrees with our expectation for average power in Rload to be  
   1 _ 2  (162.6   15 ______ 15 + 0 . 05  )(162 .   6  ____  15 . 05  ) = 875  W , and it can similarly be verified 
for Rseries. In summary, we see that the load dissipates approximately 
875 W of average power, while the undesired series resistance wastes 
approximately 3 W of average power. While this example is a relatively 
simple case of a voltage divider that is easily calculated by hand, more 
complex circuits can benefit greatly from the use of SPICE for power 
analysis.
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11.5 • APPARENT POWER AND POWER FACTOR
Historically, the introduction of the concepts of apparent power and power 
factor can be traced to the electric power industry, where large amounts 
of electric energy must be transferred from one point to another; the effi-
ciency with which this transfer is effected is related directly to the cost of 
the electric energy, which is eventually paid by the consumer. Customers 
who provide loads which result in a relatively poor transmission efficiency 
must pay a greater price for each kilowatt hour (kWh) of electric energy 
they receive and use. In a similar way, customers who need a costlier invest-
ment in transmission and distribution equipment by the power company will 
also pay more for each kilowatthour unless the company is benevolent and 
enjoys losing money.

Let us first define apparent power and power factor and then show 
briefly how these terms are related to practical economic situations. We 
assume that the sinusoidal voltage

 v =  V  m   cos (ωt + θ) 

is applied to a network and the resultant sinusoidal current is

 i =  I  m   cos (ωt + ϕ) 

The phase angle by which the voltage leads the current is therefore  
(θ − ϕ). The average power delivered to the network, assuming a passive 
sign convention at its input terminals, may be expressed either in terms of 
the maximum values:

 P =   1 _ 2    V  m    I  m   cos (θ − ϕ) 

or in terms of the effective values:

 P =  V  eff    I  eff   cos (θ − ϕ) 

■  FIGURE 11.14 window indicating average power for the resistor Rload.
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If our applied voltage and current responses had been dc quantities, the 
average power delivered to the network would have been given simply by 
the product of the voltage and the current. Applying this dc technique to the 
sinusoidal problem, we should obtain a value for the absorbed power which 
is “apparently” given by the familiar product Veff Ieff. However, this product 
of the effective values of the voltage and current is not the average power; 
we define it as the apparent power. Dimensionally, apparent power must be 
measured in the same units as real power, since cos(θ − ϕ) is dimensionless, 
but in order to avoid confusion, the term volt-amperes, or VA, is applied to 
the apparent power. Since cos(θ − ϕ) cannot have a magnitude greater than 
unity, the magnitude of the real power can never be greater than the magni-
tude of the apparent power.

The ratio of the real or average power to the apparent power is called the 
power factor, symbolized by PF. Hence,

 PF =   average power  ___________  apparent power   =   P _____  V  eff    I  eff  
   

In the sinusoidal case, the power factor is simply cos(θ − ϕ), where  
(θ − ϕ) is the angle by which the voltage leads the current. This relationship 
is the reason why the angle (θ − ϕ) is often referred to as the PF angle.

For a purely resistive load, the voltage and current are in phase, (θ − ϕ) 
is zero, and the PF is unity. In other words, the apparent power and the av-
erage power are equal. Unity PF, however, may also be achieved for loads 
that contain both inductance and capacitance if the element values and the 
operating frequency are carefully selected to provide an input impedance 
having a zero phase angle. A purely reactive load, that is, one containing no 
resistance, will cause a phase difference between the voltage and current of 
either plus or minus 90°, and the PF is therefore zero.

Between these two extreme cases there are the general networks for 
which the PF can range from zero to unity. A PF of 0.5, for example, indi-
cates a load having an input impedance with a phase angle of either 60° or 
−60°; the former describes an inductive load, since the voltage leads the 
current by 60°, while the latter refers to a capacitive load. The ambiguity in 
the exact nature of the load is resolved by referring to a leading PF or a 
lagging PF, the terms leading or lagging referring to the phase of the cur-
rent with respect to the voltage. Thus, an inductive load will have a lagging 
PF and a capacitive load a leading PF.

Apparent power is not a concept which is limited to 

sinusoidal forcing functions and responses. It may be 

determined for any current and voltage waveshapes 

by simply taking the product of the effective values of 

the current and voltage.

EXAMPLE 11.9
Calculate values for the average power delivered to each of the 
two loads shown in Fig. 11.15, the apparent power supplied by the 
source, and the power factor of the combined loads.

▶ Identify the goal of the problem.
The average power refers to the power drawn by the resistive compo-
nents of the load elements; the apparent power is the product of the 
effective voltage and the effective current of the load combination.
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▶ Collect the known information.
The effective voltage is 60 V rms, which appears across a combined 
load of 2 − j + 1 + j5 = 3 + j4 Ω.

▶ Devise a plan.
Simple phasor analysis will provide the current. Knowing voltage and 
current will enable us to calculate average power and apparent power; 
these two quantities can be used to obtain the power factor.

▶ Construct an appropriate set of equations.
The average power P supplied to a load is given by

 P =  I  eff  
2   R 

where R is the real part of the load impedance. The apparent power 
supplied by the source is Veff Ieff, where Veff = 60 V rms.

The power factor is calculated as the ratio of these two quantities:

 P F =   average power  ___________  apparent power   =   P _____  V  eff    I  eff  
   

▶ Determine if additional information is required.
We require Ieff:

 I =   60 0° ______ 3 + j4   = 12   − 53.13 ° A  rms 

so Ieff = 12 A rms, and angle (I) = −53.13°.

▶ Attempt a solution.
The average power delivered to the top load is given by

  P  upper   =  I  eff  2    R  top   =  (12)   2 (2) = 288  W 

and the average power delivered to the right load is given by

  P  lower   =  I  eff  2    R  right   =  (12)   2 (1) = 144  W 

The source itself supplies an apparent power of Veff Ieff = (60)(12) = 
720 VA.

Finally, the power factor of the combined loads is found by con-
sidering the voltage and current associated with the combined loads. 
This power factor is, of course, identical to the power factor for the 
source. Thus

 P F =   P _____  V  eff    I  eff  
   =   432 _____ 60 (  12 )     = 0.6  lagging 

since the combined load is inductive.

▶ Verify the solution. Is it reasonable or expected?
The total average power delivered to the source is 288 + 144 = 432 
W. The average power supplied by the source is

  P =  V  eff    I  eff   cos (  angle  (V) − angle  (I) )   =  (  60 )   (  12 )  cos (  0 + 53.13° )   
= 432  W  

■  FIGURE 11.15 A circuit in which we seek the 
average power delivered to each element, the 
apparent power supplied by the source, and the 
power factor of the combined load.

I
2 – j1 Ω

1 + j5 Ω0° V rms60
+
–

(Continued on next page)
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11.6 • COMPLEX POWER
As we saw in Chap. 10, “complex” numbers do not actually “compli-
cate” analysis. By allowing us to carry two pieces of information to-
gether through a series of calculations via the “real” and “imaginary” 
components, they often greatly simplify what might otherwise be tedious 
calculations. This is particularly true with power, since we have resistive 
as well as inductive and capacitive elements in a general load. In this 
section, we define complex power to allow us to calculate the various 
contributions to the total power in a clean, efficient fashion. The mag-
nitude of the complex power is simply the apparent power. The real part 
is the average power and—as we are about to see—the imaginary part is 
a new quantity, termed the reactive power, which describes the rate of 
energy transfer into and out of reactive load components (e.g., inductors 
and capacitors).

We define complex power with reference to a general sinusoidal voltage   
V  eff   =  V  eff     θ    across a pair of terminals and a general sinusoidal current  
  I  eff   =  I  eff     ϕ   flowing into one of the terminals in such a way as to satisfy the 
passive sign convention. The average power P absorbed by the two-terminal 
network is thus

 P =  V  eff    I  eff   cos (θ − ϕ) 

Complex nomenclature is next introduced by making use of Euler’s formula 
in the same way we did in introducing phasors. We express P as

 P =  V  eff    I  eff   Re {  e   j(θ−ϕ) } 

or

 P = Re {  V  eff    e   jθ   I  eff    e   −jϕ } 

The phasor voltage may now be recognized as the first two factors 
within the brackets in the preceding equation, but the second two factors 
do not quite correspond to the phasor current because the angle includes a 
minus sign, which is not present in the expression for the phasor current. 
That is, the phasor current is

  I  eff   =  I  eff    e   jϕ  

so we see the power balance is correct.
We might also write the combined load impedance as 5 53.1° Ω, 

identify 53.1° as the PF angle, and thus have a PF of cos 53.1° = 0.6 
lagging.

PRACTICE 
●

11.9 For the circuit of Fig. 11.16, determine the power factor of the 
combined loads if ZL = 10 Ω. 
Ans: 0.9966 leading.■  FIGURE 11.16

Is

0° V rms60 +
–

2 – j1 Ω

ZL
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and we therefore must make use of conjugate notation:

  I  eff  *   =  I  eff    e   −jϕ  

Hence

  P = Re {    V  eff    I  eff  *   }    

and we may now let power become complex by defining the complex 
power S as

  S =  V  eff    I  eff  *    [24]

If we first inspect the polar or exponential form of the complex power,

 S =  V  eff    I  eff    e   j(θ−ϕ)  

we see that the magnitude of S, Veff Ieff, is the apparent power. The angle 
of S, (θ − ϕ), is the PF angle (i.e., the angle by which the voltage leads the 
current).

In rectangular form, we have

  S = P + jQ  [25]

where P is the average power, as before. The imaginary part of the complex 
power is symbolized as Q and is termed the reactive power. The dimensions 
of Q are the same as those of the real power P, the complex power S, and the 
apparent power |S|. In order to avoid confusion with these other quantities, 
the unit of Q is defined as the volt-ampere-reactive (abbreviated VAR). 
From Eqs. [24] and [25], it is seen that

  Q =  V  eff    I  eff    sin (θ − ϕ)  [26]

The physical interpretation of reactive power is the time rate of energy 
flow back and forth between the source (i.e., the utility company) and the 
reactive components of the load (i.e., inductances and capacitances). These 
components alternately charge and discharge, which leads to current flow 
from and to the source, respectively.

The relevant quantities are summarized in Table 11.1 for convenience.

The sign of the reactive power characterizes the 

 nature of a passive load at which Veff and Ieff are 

 specified. If the load is inductive, then (θ − ϕ) is 

an angle between 0 and 90°, the sine of this angle 

is positive, and the reactive power is positive. A 

 capacitive load results in a negative reactive power.

Quantity Symbol Formula Units

Average power P Veff Ieff  cos(θ − ϕ) watt (W)

Reactive power Q Veff Ieff  sin(θ − ϕ) volt-ampere-reactive (VAR)

Complex power S P + jQ

  V  eff    I  eff    θ − ϕ  volt-ampere (VA)

  V  eff    I  eff  *   

Apparent power ∣S∣ Veff Ieff volt-ampere (VA)

TABLE 

●

 11.1  Summary of Quantities Related to  
Complex Power
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The Power Triangle
A commonly employed graphical representation of complex power is 
known as the power triangle and is illustrated in Fig. 11.17. The diagram 
shows that only two of the three power quantities are required, as the third 
may be obtained by trigonometric relationships. If the power triangle lies 
in the first quadrant (θ − ϕ > 0), the power factor is lagging (correspond-
ing to an inductive load); if the power triangle lies in the fourth quadrant  
(θ − ϕ <  0), the power factor is leading (corresponding to a capacitive 
load). A great deal of qualitative information concerning our load is there-
fore available at a glance.

Another interpretation of reactive power may be seen by constructing a 
phasor diagram containing Veff and Ieff as shown in Fig. 11.18. If the phasor 
current is resolved into two components, one in phase with the voltage, hav-
ing a magnitude Ieff cos(θ − ϕ), and one 90° out of phase with the voltage, 
with magnitude equal to Ieff sin |θ − ϕ|, then it is clear that the real power is 
given by the product of the magnitude of the voltage phasor and the com-
ponent of the phasor current which is in phase with the voltage. Moreover, 
the product of the magnitude of the voltage phasor and the component of 
the phasor current which is 90° out of phase with the voltage is the reactive 
power Q. It is common to speak of the component of a phasor which is 90° 
out of phase with some other phasor as a quadrature component. Thus Q is 
simply Veff times the quadrature component of Ieff. Q is also known as the 
quadrature power.

Power Measurement
Strictly speaking, a wattmeter measures average real power P drawn by a 
load, and a varmeter reads the average reactive power Q drawn by a load. 
However, it is common to find both features in the same meter, which 
is often also capable of measuring apparent power and power factor  
(Fig. 11.19).

■  FIGURE 11.18 The current phasor Ieff is resolved 
into two components, one in phase with the voltage 
phasor Veff and the other 90° out of phase with the 
voltage phasor. This latter component is called a 
quadrature component.

Real

Ieff cos (θ ‒ ϕ)
Ieff sin ∣θ ‒ ϕ ∣

Imaginary

Ieff

Veff

θ ‒ ϕ

■  FIGURE 11.19 example of a clamp-on digital power meter capable of 
measuring ac currents and voltages.

 (©KhotenkoVolodymyr/Getty Images)

■  FIGURE 11.17 The power triangle representa-
tion of complex power.

S

P

Q

θ ‒ ϕ Re
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When electric power is being supplied to large industrial 
consumers by a power company, the company will of-
ten include a PF clause in its rate schedules. Under this 
clause, an additional charge is made to the consumer 
whenever the PF drops below a certain specified value, 
usually about 0.85 lagging. Very little industrial power is 
consumed at leading PFs because of the nature of typi-
cal industrial loads. There are several reasons that force 
the power company to make this additional charge for 
low PFs. In the first place, larger current-carrying ca-
pacity must be built into its generators in order to pro-
vide the larger currents that go with lower-PF operation 
at constant power and constant voltage. Another reason 
is found in the increased losses in its transmission and 
distribution system.

In an effort to recoup losses and encourage its cus-
tomers to operate at high PF, a certain utility charges a 
penalty of $0.22/kVAR for each kVAR above a bench-
mark value computed as 0.62 times the average power 
demand:

  
S

  
=

  
P + jQ = P + j0.62P = P  (  1 + j0.62 )   

     
 
  

=
  
P  (  1.177  31.8 °  )   

   

This benchmark targets a PF of 0.85 lagging, as cos 
31.8° = 0.85 and Q is positive; this is represented graph-
ically in Fig. 11.20. Customers with a PF smaller than 
the benchmark value are subject to financial penalties.

The reactive power requirement is commonly ad-
justed through the installation of compensation capac-
itors placed in parallel with the load (typically at the 

substation outside the customer’s facility). This is anal-
ogous to the impedance matching circuitry described in 
Sec. 11.3. The value of the required capacitance can be 
shown to be

  C =   P(tan  θ  old   − tan  θ  new  )  ______________  
ω  V  rms  2  

    [27] 

where ω is the frequency, θold is the present PF angle, 
and θnew is the target PF angle. For convenience, how-
ever, compensation capacitor banks are manufactured in 
specific increments rated in units of kVAR capacity. An 
example of such an installation is shown in Fig. 11.21.

Now let us consider a specific example. A particular 
industrial machine plant has a monthly peak demand of 
5000 kW and a monthly reactive requirement of 6000 
kVAR. Using the rate schedule above, what is the an-
nual cost to this utility customer associated with PF pen-
alties? If compensation is available through the utility 
company at a cost of $2390 per 1000 kVAR increment 
and $3130 per 2000 kVAR increment, what is the most 
cost- effective solution for the customer?

The PF of the installation is the angle of the com-
plex power S, which in this case is 5000 + j6000 kVA. 
Thus, the angle is tan−1(6000/5000) = 50.19° and the 
PF is 0.64 lagging. The benchmark reactive power value, 
computed as 0.62 times the peak demand, is 0.62(5000) 
= 3100 kVAR. So the plant is drawing 6000 − 3100 = 
2900 kVAR more reactive power than the utility com-
pany is willing to allow without penalty. This represents 
an annual assessment of 12(2900)(0.22) = $7656 in 
 addition to regular electricity costs.

PRACTICAL APPLICATION
Power Factor Correction

PRACTICAL APPLICATION

(Continued on next page)

■  FIGURE 11.20 Plot showing acceptable ratio of reactive power to 
average power for power factor benchmark of 0.85 lagging.
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■  FIGURE 11.21 A compensation capacitor installation. 
 (©Kitja Chavanavech/123RF)
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It is easy to show that the complex power delivered to several inter-
connected loads is the sum of the complex powers delivered to each of the 
individual loads, no matter how the loads are interconnected. For example, 
consider the two loads shown connected in parallel in Fig. 11.22. If rms 
values are assumed, the complex power drawn by the combined load is

 S = V I   *  = V  ( I  1   +  I  2  )   *  = V( I  1  *  +  I  2  * ) 

and thus

 S = V I  1  *  + V I  2  *  

as stated.

■  FIGURE 11.22 A circuit used to show that the 
complex power drawn by two parallel loads is the 
sum of the complex powers drawn by the individual 
loads.

V

+

–

I2I1I

S2S1

If the customer chooses to have a single 1000 
kVAR increment installed (at a cost of $2390), the ex-
cess reactive power draw is reduced to 2900 − 1000 
= 1900 kVAR, so the annual penalty is now 12(1900)
(0.22) = $5016. The total cost this year is then $5016 
+ $2390 = $7406, for a savings of $250. If the cus-
tomer chooses to have a single 2000 kVAR increment 
installed (at a cost of $3130), the excess reactive power 

draw is reduced to 2900 − 2000 = 900 kVAR, so the 
annual penalty is now 12(900)(0.22) = $2376. The to-
tal cost this year is then $2376 + $3130 = $5506, for a 
first-year savings of $2150. If, however, the customer 
goes overboard and installs 3000 kVAR of compensa-
tion capacitors so that no penalty is assessed, it will 
actually cost $14 more in the first year than if only 
2000 kVAR were installed.

An industrial consumer is operating a 50 kW (67.1 hp) induction 
motor at a lagging PF of 0.8. The source voltage is 230 V rms. In 
order to obtain lower electrical rates, the customer wishes to raise 
the PF to 0.95 lagging. Specify a suitable solution.

Although the PF might be raised by increasing the real power and 
maintaining the reactive power constant, this would not result in a low-
er bill and is not a cure that interests the consumer. A purely reactive 
load must be added to the system, and it is clear that it must be added 
in parallel, since the supply voltage to the induction motor must not 
change. The circuit of Fig. 11.23 is thus applicable if we interpret S1 
as the induction motor’s complex power and S2 as the complex power 
drawn by the corrective device.

The complex power supplied to the induction motor must have a real 
part of 50 kW and an angle of cos−1(0.8), or 36.9°. Hence,

  S  1   =   50  36.9 ° ________ 0.8   = 50 + j37.5  kVA 

In order to achieve a PF of 0.95, the total complex power must become

 S =  S  1   +  S  2   =   50 ____ 0.95    cos−1(0.95)  = 50 + j16.43  kVA 

EXAMPLE 11.10

■  FIGURE 11.23

V

+

–

I2I1I

S2S1

(motor) (corrective
device)
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Thus, the complex power drawn by the corrective load is

  S  2   = − j21.07  kVA 

The necessary load impedance Z2 may be found in several simple 
steps. We select a phase angle of 0° for the voltage source, and there-
fore the current drawn by Z2 is

  I  2  *  =    S  2   __ V   =   − j21,070 _______ 230   = − j91.6  A 

or

  I  2   = j91.6  A 

Therefore,

  Z  2   =   V __  I  2  
   =   230 ____ 

j91.6   = − j2.51  Ω 

If the operating frequency is 60 Hz, this load can be provided by a 1056 
μF capacitor connected in parallel with the motor. However, its initial 
cost, maintenance, and depreciation must be covered by the reduction in 
the electric bill.

PRACTICE 
●

11.10 For the circuit shown in Fig. 11.24, find the complex power 
absorbed by the (a) 1 Ω resistor; (b) −j10 Ω capacitor; (c) 5 + j10 Ω 
impedance; (d) source.

Ans: 26.6 + j0 VA; 0 − j1331VA; 532 + j1065 VA; −559 + j266 VA.

■  FIGURE 11.24

0° V rms120 +
–

5 Ω

1 Ω

j10 Ω

–j10 Ω

11.11 A 440 V rms source supplies power to a load ZL = 10 + j2 Ω 
through a transmission line having a total resistance of 1.5 Ω. Find (a) 
the average and apparent power supplied to the load; (b) the average 
and apparent power lost in the transmission line; (c) the average and 
apparent power supplied by the source; (d) the power factor at which 
the source operates. 

Ans: 14.21 kW, 14.49 kVA; 2.131 kW, 2.131 kVA; 16.34 kW, 16.59 kVA; 0.985 lag.
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SUMMARY AND REVIEW
In this chapter, we introduced a fair number of new power-related terms 
(summarized in Table 11.2), which might have come as a bit of a surprise 
after watts did so well for us up to this point. The new terminology is largely 
relevant to ac power systems, where voltages and currents are generally as-
sumed to be sinusoidal (the prevalence of switched-mode power supplies in 
many computer systems can alter this situation, a topic of more advanced 
power engineering texts). After clarifying what is meant by instantaneous 
power, we discussed the concept of average power P. This quantity is not a 
function of time, but it is a strong function of the phase difference between 
sinusoidal voltage and current waveforms. Maximum power transfer to a 
load is found when the source and load impedance are complex conjugates, 
where impedance matching circuitry may be introduced between the source 
and load to provide this condition. Purely reactive elements such as ideal 
inductors and capacitors absorb zero average power. Since such elements do 
increase the magnitude of the current flowing between the source and load, 
however, two new terms find common usage: apparent power and power fac-
tor. The average power and apparent power are identical when voltage and 
current are in phase (i.e., associated with a purely resistive load). The power 
factor gives us a numerical gauge of how reactive a particular load is: a unity 
power factor (PF) corresponds to a purely resistive load (if inductors are 
present, they are being “canceled” by an appropriate capacitance); a zero PF 
indicates a purely reactive load, and the sign of the angle indicates whether 
the load is capacitive or inductive. Putting all of these concepts together al-
lowed us to create a more compact representation known as complex power, 
S. The magnitude of S is the apparent power, P is the real part of S, and Q, 
the reactive power (zero for resistive loads), is the imaginary part of S.

Along the way, we paused to introduce the notion of effective values 
of current and voltage, often referred to as rms values. Care must be taken 

Term Symbol Unit Description

Instantaneous power p(t) W p(t) = v(t)i(t). It is the value of the power at a specific instant in time. It is not 
the product of the voltage and current phasors!

Average power P W In the sinusoidal steady state,  P =   1 _ 2    V  m    I  m   cos (θ − ϕ) , where θ is the angle of 
the voltage and ϕ is the angle of the current. Reactances do not contribute to P.

Effective or rms value Vrms or Irms V or A Defined, e.g., as   I  eff   =  √ 

_______

   1 __ 
T

    ∫ 
0
  
T

     i   2   dt   ; if i(t) is sinusoidal, then   I  eff   =  I  m   /  √ 
__

 2   .

Apparent power ∣S∣ VA ∣S∣ = Veff Ieff, and is the maximum value the average power can be; P = ∣S∣ only 
for purely resistive loads.

Power factor PF None Ratio of the average power to the apparent power. The PF is unity for a purely 
resistive load, and zero for a purely reactive load.

Reactive power Q VAR A means of measuring the energy flow rate to and from reactive loads.

Complex power S VA A convenient complex quantity that contains both the average power P and the 
reactive power Q: S = P + jQ.

TABLE 
●
 11.2  A Summary of AC Power Terms
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from this point forward to establish whether a particular voltage or current 
value is being quoted as a magnitude or its corresponding rms value because 
an approximate 40 percent error can be introduced. Interestingly, we also 
discovered an extension of the maximum power theorem encountered in 
Chap. 5, namely, that maximum average power is delivered to a load whose 
impedance ZL is the complex conjugate of the Thévenin equivalent imped-
ance of the network to which it is connected.

For convenience, key points of the chapter are summarized in the fol-
lowing list, along with corresponding example numbers.

 The instantaneous power absorbed by an element is given by the 
 expression p(t) = v(t)i(t). (Examples 11.1, 11.2)

 The average power delivered to an impedance by a sinusoidal source 
is    1 _ 2    V  m    I  m   cos (θ − ϕ) , where θ = the voltage phase angle and ϕ = the 
phase angle of the current. (Example 11.2)

 Only the resistive component of a load draws nonzero average power. 
The average power delivered to the reactive component of a load is 
zero. (Examples 11.3, 11.4, 11.5, 11.6)

 Maximum average power transfer occurs when the condition   Z  L   =  Z  TH  *   
is satisfied. (Example 11.7)

 Power delivery to a load may be improved using a matching network. 
(Example 11.8)

 The effective or rms value of a sinusoidal waveform is obtained by 
dividing its amplitude by  √ 

__
 2   . (Example 11.9)

 The power factor (PF) of a load is the ratio of its average dissipated 
power to the apparent power. (Example 11.9)

 A purely resistive load will have a unity power factor. A purely reactive 
load will have a zero power factor. (Example 11.10)

 Complex power is defined as S = P + jQ, or  S =  V  eff    I  eff  *   . It is mea-
sured in units of volt-amperes (VA). (Example 11.10)

 Reactive power Q is the imaginary component of the complex pow-
er; it is a measure of the energy flow rate into or out of the reactive 
components of a load. Its unit is the volt-ampere-reactive (VAR). 
( Example 11.10)

 Capacitors are commonly used to improve the PF of industrial loads 
to minimize the reactive power required from the utility company. 
( Example 11.10)

READING FURTHER
A good overview of ac power concepts can be found in Chap. 2 of: 

B. M. Weedy, B. J. Cory, N. Jenkins, Janaka B. Ekanayake, Goran Strbac, 
Electric Power Systems, 5th ed. Chichester, England: Wiley, 2012.

Contemporary issues pertaining to ac power systems can be found in:

International Journal of Electrical Power & Energy Systems. Guildford, 
England: IPC Science and Technology Press, 1979–. ISSN: 0142-0615.
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EXERCISES

11.1 Instantaneous Power
1. Determine the instantaneous power delivered to the 1 Ω resistor of Fig. 11.25 

at t = 0, t = 1 s, and t = 2 s if vs is equal to (a) 9 V; (b) 9 sin 2t V; (c) 9 sin  
(2t + 13°) V; (d) 9e−t V.

2. Determine the power absorbed at t = 1.5 ms by each of the three elements  
of the circuit shown in Fig. 11.26 if vs is equal to (a) 30u(−t) V;  
(b) 10 + 20u(t) V.

3. Calculate the power absorbed at t = 0−, t = 0+, and t = 200 ms by each of  
the elements in the circuit of Fig. 11.27 if vs is equal to (a) −10u(−t) V;  
(b) 20 + 5u(t) V.

■  FIGURE 11.27

250 mH

1 Ωi (t)

vs
+
–

4. Three elements are connected in parallel: a 1 kΩ resistor, a 15 mH inductor, 
and a 100 cos (2 × 105t) mA sinusoidal source. All transients have long since 
died out, so the circuit is operating in steady state. Determine the power being 
absorbed by each element at t = 10 μs.

5. Let is = 4u(−t) A in the circuit of Fig. 11.28. (a) Show that, for all t > 0, the in-
stantaneous power absorbed by the resistor is equal in magnitude but  opposite 
in sign to the instantaneous power absorbed by the capacitor. (b) Determine the 
power absorbed by the resistor at t = 60 ms.

6. The current source in the circuit of Fig. 11.28 is given by is = 8 − 7u(t) A. Com-
pute the power absorbed by all three elements at t = 0−, t = 0+, and t = 75 ms.

7. Assuming no transients are present, calculate the power absorbed by each 
element shown in the circuit of Fig. 11.29 at t = 0, 10, and 20 ms.

■  FIGURE 11.29

2.5 cos 10t A 1 Ω

4 Ω

4 μF

8. Calculate in Fig. 11.30 the power absorbed by the inductor at t = 0 and t = 1 s 
if vs = 10u(t) V.

9. Use SPICE to plot the instantaneous power for each circuit element of the 
circuit shown in Fig. 11.30 in the range of 0 to 10 s. Explain how/where power 
is being transferred in the circuit.

10. If we take a typical cloud-to-ground lightning stroke to represent a current of 
30 kA over an interval of 150 μs, calculate (a) the instantaneous power deliv-
ered to a copper rod having resistance 1.2 mΩ during the stroke; (b) the total 
energy delivered to the rod.

11.2 Average Power
11. The phasor current I = 9 15°  mA (corresponding to a sinusoid operating at 45 

rad/s) is applied to the series combination of a 18 kΩ resistor and a 1 μF capac-
itor. Obtain an expression for (a) the instantaneous power and (b) the average 
power absorbed by the combined load.

■  FIGURE 11.28

6 Ω 10 mFis

■  FIGURE 11.30

1 Ω

10 Ω 2 F 0.5 H+
–vs

■  FIGURE 11.25

i

vs

4 Ω

1 Ω
+
–

■  FIGURE 11.26

i

vCvs

+

–

500 Ω

4 μF+
–
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12. A phasor voltage V = 100 45°  V (the sinusoid operates at 155 rad/s) is 
applied to the parallel combination of a 1 Ω resistor and a 1 mH inductor. (a) 
Obtain an expression for the average power absorbed by each passive element. 
(b) Graph the instantaneous power supplied to the parallel combination, along 
with the instantaneous power absorbed by each element separately. (Use a 
single graph.)

13. Calculate the average power delivered by the current 4 −j2 A to (a) Z = 9 Ω; 
(b) Z = −j1000 Ω; (c) Z = 1 −j2 + j3 Ω; (d) Z = 6 32°  Ω; (e) Z =    1.5  − 19° _____ 2 + j    kΩ.

14. With regard to the two-mesh circuit depicted in Fig. 11.31, determine the av-
erage power absorbed by each passive element and the average power supplied 
by each source, and verify that the total supplied average power = the total 
absorbed average power.

■  FIGURE 11.31

– j3.1 Ω

j7 Ω

5 Ω

I1 I2 0° V152–40° V79
+
–

+
–

15. Find the average power for each element in the circuit of Fig. 11.32.

■  FIGURE 11.32

j2

–j2

4 Ω

90°200°40 +
–

+
–

16. (a) Calculate the average power absorbed by each passive element in the circuit 
of Fig. 11.33, and verify that it equals the average power supplied by the 
source. (b) Check your solution with an appropriate SPICE simulation.

■  FIGURE 11.33

–j1.5 Ω

3 Ω1 Ω

j2.8 Ω3° V194 +
–

17. Determine the average power supplied by the dependent source in the circuit of 
Fig. 11.34.

18. (a) Calculate the average power supplied to each passive element in the circuit 
of Fig. 11.35. (b) Determine the power supplied by each source. (c) Replace 
the 8 Ω resistive load with an impedance capable of drawing maximum average 
power from the remainder of the circuit.

Ix

j1.92 Ω

–j2 A 4.8 Ω 8 Ω1.6Ix

■  FIGURE 11.35

■  FIGURE 11.34

VC

+

–

2 Ω

– j2 Ω

3 Ω

+
–0° V20 2VC
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19. Calculate the average power delivered to a 2.2 Ω load by the voltage vs equal to 
(a) 5 V; (b) 4 cos 80t − 8 sin 80t V; (c) 10 cos 100t + 12.5 cos (100t + 19°) V.

11.3 Maximum Power Transfer
20. The circuit in Fig. 11.36 has a series resistance of RS = 50 Ω and load resistance 

of RL = 82 Ω. If the impedance of the inductor is j40 Ω, what would be the 
required impedance of the capacitor to ensure maximum power transfer to RL?

■  FIGURE 11.36

RS

VS RLC

L

21. The circuit in Fig. 11.36 has a 60 Hz source with series resistance RS = 50 Ω, 
delivering power to a load of RL = 250 Ω. The source also has an inductive 
element with L = 265.3 mH. Calculate the parallel capacitance C that would 
provide maximum power transfer to the parallel combination of RL and C.

22. The circuit in Fig. 11.37 is used to deliver power to a set of 8 Ω speakers (i.e., 
RL = 8 Ω). Calculate the frequency (f in Hz) and value of inductance (L) where 
maximum power is transferred to the speakers if the source resistance is RS = 
136 Ω and the capacitance C = 936.2 nF.

23. The circuit in Fig. 11.37 is used to deliver power to an antenna at a frequency 
of 300 MHz. Calculate the load resistance RL where maximum power is trans-
ferred to the antenna if the source resistance is RS = 400 Ω, the capacitance 
C = 2.653 pF, and the inductance is L = 84.88 nH.

24. (a) What load impedance ZL will draw the maximum average power from 
the source shown in Fig. 11.38? (b) Calculate the maximum average power 
supplied to the load.

j700 Ω

225 Ω

60° V15 +
– ZL

■  FIGURE 11.38

25. The inductance of Fig. 11.38 is replaced by the impedance 9 − j8 kΩ. Repeat 
Exercise 24.

11.4 Effective Values of Current and Voltage
26. Calculate the effective value of the following waveforms: (a) 7 sin 30t V; 

(b)100 cos 80t mA; (c) 120  √ 
__

 2   cos  (5000t −  45   ∘ )  V ; (d)    100 ___ 
 √ 

__
 2  
   sin (2t + 72°)  A .

27. Determine the effective value of the following waveforms:  
(a) 62.5 cos 100t mV; (b) 1.95 cos 2t A; (c)  208  √ 

__
 2   cos  (100πt + 29°)  V ; 

(d)    400 ___ 
 √ 

__
 2  
   sin (2000t − 14°)   A .

28. Compute the effective value of (a) i(t) = 3 sin 4t A; (b) v(t) = 4 sin 20t cos 10t; 
(c) i(t) = 2 − sin 10t mA; (d) the waveform plotted in Fig. 11.39.

■  FIGURE 11.39

2.82

1 2 3 4 5 6 7

i(t) (mA)

t (s)

■  FIGURE 11.37

RS

VS RLC

L
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29. For each waveform plotted in Fig. 11.40, determine its frequency, period, and 
rms value.

1

–2

0 2

4

86

10–2

(a)

i (A)

t (s)

5

0–1–2 1 2 3 4 5 6–3

(b)

i (A)

t (ms)

■  FIGURE 11.40

30. The capacitance value of the circuit shown in Fig. 11.29 is changed to 40 mF. 
Find the effective current and voltage for each element in the circuit following 
this change. 

31. The series combination of a 1 kΩ resistor and a 2 H inductor must not dissipate 
more than 250 mW of power at any instant. Assuming a sinusoidal current 
with ω = 500 rad/s, what is the largest rms current that can be tolerated?

32. For each of the following waveforms, determine its period, frequency, and 
 effective value: (a) 5 V; (b) 2 sin 80t − 7 cos 20t + 5 V; (c) 5 cos 50t + 3 sin 50t 
V; (d) 8 cos2 90t mA. (e) Verify your answers with an appropriate simulation.

33. With regard to the circuit of Fig. 11.41, determine whether a purely real value 
of R can result in equal rms voltages across the 14 mH inductor and the resistor 
R. If so, calculate R and the rms voltage across it; if not, explain why not.

208 cos 40t V R

14 mH

28 mH+
–

■  FIGURE 11.41

34. (a) Calculate both the average and rms values of the waveform plotted in 
Fig. 11.42. (b) Verify your solutions with appropriate SPICE simulations. 
(Hint: You may want to employ two pulse waveforms added together.) 

■  FIGURE 11.42

1

2

–1 0 1 2 3 4 5 6 7

v (t)

t (s)
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11.5 Apparent Power and Power Factor
35. For the circuit of Fig. 11.43, compute the average power delivered to each 

load, the apparent power supplied by the source, and the power factor of the 
 combined loads if (a) Z1 = 14 32°  Ω and Z2 = 22 Ω; (b) Z1 = 2 0°  Ω and  
Z2 = 6 − j Ω; (c) Z1 = 100 70°  Ω and Z2 = 75 90°  Ω.

■  FIGURE 11.43

I

3° V rms119
+
–

Z1

Z2

36. Calculate the power factor of the combined loads of the circuit depicted in 
Fig. 11.43 if (a) both loads are purely resistive; (b) both loads are purely induc-
tive and ω = 100 rad/s; (c) both loads are purely capacitive and ω = 200 rad/s; 
(d) Z1 = 2Z2 = 5 − j8 Ω.

37. A given load is connected to an ac power system. If it is known that the load 
is characterized by resistive losses and either capacitors, inductors, or nei-
ther (but not both), which type of reactive element is part of the load if the 
power factor is measured to be (a) unity; (b) 0.85 lagging; (c) 0.221 leading; 
(d) cos (−90°)?

38. An unknown load is connected to a standard European household outlet 
(240 V rms, 50 Hz). Determine the phase angle difference between the volt-
age and current, and whether the voltage leads or lags the current, if (a) V = 
240 243° V rms and I = 3 9° A rms; (b) the power factor of the load is 0.55 
 lagging; (c) the power factor of the load is 0.685 leading; (d) the capacitive 
load draws 100 W average power and 500 volt-amperes apparent power.

39. (a) Design a load which draws an average power of 25 W at a leading PF of 
0.88 from a standard North American household outlet (120 V rms, 60 Hz).  
(b) Design a capacitor-free load which draws an average power of 150 W  
and an apparent power of 25 W from a household outlet in eastern Japan  
(110 V rms, 50 Hz).

40. Assuming an operating frequency of 40 rad/s for the circuit shown in Fig. 
11.44, and a load impedance of 50 − 100° Ω, calculate (a) the instantaneous 
power separately delivered to the load and to the 1 kΩ shunt resistance at 
t = 20 ms; (b) the average power delivered to both passive elements; (c) the 
apparent power delivered to the load; (d) the power factor at which the source 
is operating.

■  FIGURE 11.44

I

1 kΩ20° mA275 Load

41. Calculate the power factor at which the source in Fig. 11.44 is operating if the 
load is (a) purely resistive; (b) 1000 + j 900 Ω; (c) 500 − 5° Ω.

42. Determine the load impedance for the circuit depicted in Fig. 11.44  
if the source is operating at a PF of (a) 0.95 leading; (b) unity;  
(c) 0.45 lagging.

43. For the circuit of Fig. 11.45, find the apparent power delivered to each load, 
and the power factor at which the source operates, if (a) ZA = 5 − j 2 Ω,  
ZB = 3 Ω, ZC = 8 + j 4 Ω, and ZD = 15 − 30°  Ω; (b) ZA = 2 − 15°  Ω,  
ZB = 1 Ω, ZC = 2 + j Ω, ZD = 4 45°  Ω.

0° V rms200 +
–

ZA

ZB ZD

ZC

■  FIGURE 11.45
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11.6 Complex Power
44. Compute the complex power S (in polar form) drawn by a certain load if 

it is known that (a) it draws 100 W average power at a lagging PF of 0.75; 
(b) it draws a current I = 9 + j5 A rms when connected to the voltage  
120 32°  V rms; (c) it draws 1000 W average power and 10 VAR reactive 
power at a leading PF; (d) it draws an apparent power of 450 W at a lag-
ging PF of 0.65.

45. Calculate the apparent power, power factor, and reactive power associated with 
a load if it draws complex power S equal to (a) 1 + j0.5 kVA; (b) 400 VA; 
(c) 150 − 21°VA; (d) 75 25°VA.

46. For each power triangle depicted in Fig. 11.46, determine S (in polar form) and 
the PF.

1.5

S S
1.0

0.5

1

(a)

2 3
Re (W) Re (kW)

1

2

3

4

1

(b)

2

Im (VAR) Im (kVAR)

■  FIGURE 11.46

47. Referring to the network represented in Fig. 11.23, if the motor draws complex 
power 150 24° VA, (a) determine the PF at which the source is operating;  
(b) determine the impedance of the corrective device required to change the PF 
of the source to 0.98 lagging. (c) Is it physically possible to obtain a leading PF 
for the source? Explain.

48. Determine the complex power absorbed by each passive component in the 
circuit of Fig. 11.47, and the power factor at which the source is operating.

45° V rms240 +
–

18 Ω

18 Ω

j10 Ω

1000 Ω–j5 Ω

■  FIGURE 11.47

49. What value of capacitance must be added in parallel to the 10 Ω resistor of Fig. 
11.48 to increase the PF of the source to 0.95 at 50 Hz?

j20 Ω–j10 Ω

20 Ω 10 Ω+
–0° V rms100

■  FIGURE 11.48
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50. The kiln operation of a local lumberyard has a monthly average power demand 
of 175 kW, but associated with that is an average monthly reactive power draw 
of 205 kVAR. If the lumberyard’s utility company charges $0.15 per kVAR 
for each kVAR above the benchmark value (0.7 times the peak average power 
demand), (a) estimate the annual cost to the lumberyard from PF penalties; 
(b) calculate the money saved in the first and second years, respectively, if 
100 kVAR compensation capacitors are available for purchase at $75 each 
(installed).

51. Calculate the complex power delivered to each passive component of the 
circuit shown in Fig. 11.49, and determine the power factor of the source.

10 Ω 15 Ω+
––17° V rms50

–j25 Ωj30 Ω

■  FIGURE 11.49

52. Replace the 10 Ω resistor in the circuit of Fig. 11.49 with a 200 mH inductor, 
assume an operating frequency of 10 rad/s, and calculate (a) the PF of the 
source; (b) the apparent power supplied by the source; (c) the reactive power 
delivered by the source.

53. Instead of including a capacitor as indicated in Fig. 11.49, the circuit is erro-
neously constructed using two identical inductors, each having an impedance 
of j30 W at the operating frequency of 50 Hz. (a) Compute the complex power 
delivered to each passive component. (b) Verify your solution by calculating 
the complex power supplied by the source. (c) At what power factor is the 
source operating?

54. Making use of the general strategy employed in Example 11.9, derive Eq. [27], 
which enables the corrective value of capacitance to be calculated for a general 
operating frequency.

Chapter-Integrating Exercises
55. A load is drawing 10 A rms when connected to a 1200 V rms supply running at 

50 Hz. If the source is operating at a lagging PF of 0.9, calculate (a) the peak 
voltage magnitude; (b) the instantaneous power absorbed by the load at t = 1 
ms; (c) the apparent power supplied by the source; (d) the reactive power sup-
plied to the load; (e) the load impedance; and (f) the complex power supplied 
by the source (in polar form).

56. For the circuit of Fig. 11.50, assume the source operates at a frequency of 
100 rad/s. (a) Determine the PF at which the source is operating. (b) Cal-
culate the apparent power absorbed by each of the three passive elements. 
(c) Compute the average power supplied by the source. (d) Determine 
the Thévenin equivalent seen looking into the terminals marked a and b, 
and calculate the average power delivered to a 100 Ω resistor connected 
between the same terminals.

50 Ω

a

b

0° A5

j60 Ω 80 Ω

■  FIGURE 11.50
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57. Remove the 50 Ω resistor in Fig. 11.50, assume an operating frequency  
of 50 Hz, and a load of 100 Ω connected between terminals a and b.  
(a) determine the power factor at which the load is operating; (b) compute 
the average power delivered by the source; (c) compute the instantaneous 
power absorbed by the inductance at t = 2 ms; (d) determine the capacitance 
that must be connected between the terminals marked a and b to increase the 
PF of the source to 0.95.

58. A source 45 sin 32t V is connected in series with a 5 Ω resistor and a  
20 mH inductor. Calculate (a) the reactive power delivered by the source;  
(b) the apparent power absorbed by each of the three elements; (c) the complex 
power S absorbed by each element; (d) the power factor at which the source is 
 operating.

59. For the circuit of Fig. 11.40, (a) derive an expression for the complex power 
delivered by the source in terms of the unknown resistance R and algebraic 
expressions for inductor reactances X1 and X2; (b) compute the necessary 
capacitance that must be added in parallel to the 28 mH inductor to achieve a 
unity PF for the case of R=2 Ω.

60. The circuit in Fig. 11.51 uses a Pi network to match the impedance between 
source and load for maximum power transfer. A 60 Hz source has a series 
impedance of 50 + j5 Ω. What load impedance would a Pi network with CS = 
70.1 μF, CL = 39.8 μF, and L = 0.225 H correspond to for maximum power 
transfer?

RS + jXS

VS RL + jXLCS

L

Pi Network LoadSource

CL

■  FIGURE 11.51

61. The circuit in Fig. 11.51 uses a Pi network to match the impedance between 
source and load for maximum power transfer. A 1 kHz source has a series 
impedance of 50 + j4 Ω. What inductance would a Pi network with CS = 
506 nF, CL = 970 nF require for maximum power transfer to a load with 
499 + j23 Ω?

62. The circuit in Fig. 11.52 uses a T network to match the impedance between 
source and load for maximum power transfer. A 60 Hz source has a series 
impedance of 50 + j5 Ω. What load impedance would a T network with LS = 
0.385 H, C = 25.4 μF, and LL = 0.566 H correspond to for maximum power 
transfer?

RS + jXS

VS RL + jXL

LLLS

T Network LoadSource

C

■  FIGURE 11.52
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63. The circuit in Fig. 11.52 uses a T network to match the impedance between 
source and load for maximum power transfer. A 1 kHz source has a series 
impedance of 50 + j4 Ω. What capacitance would a T network with LS = LL = 
20.4 mH require for maximum power transfer to a load with 40 − j8 Ω?

64. You would like to maximize power transfer to a 50 Ω antenna for VHF com-
munications at 100 MHz. The source has an impedance of 10 + j5 Ω at this 
frequency. Design a T or Pi matching network for maximum power transfer 
(see Figs. 11.51 and 11.52). Simulate your design using SPICE, and use an 
appropriate supporting argument to verify maximum power transfer.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
The vast majority of power is supplied to consumers in the form of 
sinusoidal voltages and currents, typically referred to as alternating 
current or simply ac. Although there are exceptions—for example, 
some types of train motors—most equipment is designed to run 
on either 50 or 60 Hz. Most 60 Hz systems are now standardized 
to run on 120 V, whereas 50 Hz systems typically correspond 
to 240 V (both voltages being quoted in rms units). The actual 
voltage delivered to an appliance can vary somewhat from these 
values, and distribution systems employ significantly higher 
voltages to minimize the current and hence cable size. Originally 
Thomas Edison advocated a purely dc power distribution network, 
purportedly due to his preference for the simple algebra required 
to analyze such circuits. Nikola Tesla and George Westinghouse, 
two other pioneers in the field of electricity, proposed ac 
distribution systems as the achievable losses were significantly 
lower. Ultimately they were more persuasive, despite some rather 
theatrical demonstrations on the part of Edison.

The transient response of ac power systems is of interest 
when determining the peak power demand, since most equipment 
requires more current to start up than it does to run continuously. 
Often, however, it is the steady-state operation that is of primary 
interest, so our experience with phasor-based analysis will prove 
to be handy. In this chapter we introduce a new type of voltage 
source, the three-phase source, which can be connected in either a 
three- or four-wire Y configuration or a three-wire Δ configuration. 
Loads can also be either Y- or Δ-connected, depending on the 
application.

Polyphase Circuits12

KEY CONCEPTS

Single-Phase Systems

Three-Phase Systems

Three-Phase Sources

Line Versus Phase Voltage

Line Versus Phase Current

Y-Connected Networks

Δ-Connected Networks

Balanced Loads

Per-Phase Analysis

Power Measurement in 
Three-Phase Systems
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12.1 • POLYPHASE SYSTEMS
In this chapter, we introduce the concept of polyphase sources, focus-
ing on three-phase systems in particular. There are distinct advantages 
when using rotating machinery to generate three-phase power rather than 
single-phase power, and there are economical advantages in favor of the 
transmission of power in a three-phase system. In particular, motors used 
in large refrigeration systems and in machining facilities are often wired 
for three-phase power. For the remaining applications, once we have be-
come familiar with the basics of polyphase systems, we will find that it is 
simple to obtain single-phase power by just connecting to a single “leg” 
of a polyphase system.

Let us look briefly at the most common polyphase system, a balanced 
three-phase system. The source has three terminals (not counting a neutral 
or ground connection), and voltmeter measurements will show that sinusoi-
dal voltages of equal amplitude are present between any two terminals. 
However, these voltages are not in phase; each of the three voltages is 120° 
out of phase with each of the other two, the sign of the phase angle depend-
ing on the sense of the voltages. One possible set of voltages is shown in 
Fig. 12.1. A balanced load draws power equally from all three phases. At no 
instant does the instantaneous power drawn by the total load reach zero; in 
fact, the total instantaneous power is constant. This is an advantage in rotat-
ing machinery, for it keeps the torque on the rotor much more constant than 
it would be if a single-phase source were used. As a result, there is less 
vibration.

The use of a higher number of phases, such as 6- and 12-phase systems, 
is limited almost entirely to the supply of power to large rectifiers. Rectifi-
ers convert alternating current to direct current by allowing current to flow 
to the load in only one direction, so that the sign of the voltage across the 

■  FIGURE 12.1 An example set of three voltages, each of which is 120° 
out of phase with the other two. As can be seen, only one of the voltages 
is zero at any particular instant.
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  SECTION 12.1 POLYPHASE SYSTEMS 473

load remains the same. The rectifier output is a direct current plus a smaller 
pulsating component, or ripple, which decreases as the number of phases 
increases.

Almost without exception, polyphase systems in practice contain 
sources which may be closely approximated by ideal voltage sources or by 
ideal voltage sources in series with small internal impedances. Three-phase 
current sources are extremely rare.

Double-Subscript Notation
It is convenient to describe polyphase voltages and currents using 
double-subscript notation. With this notation, a voltage or current, such as 
Vab or IaA, has more meaning than if it were indicated simply as V3 or Ix. 
By definition, the voltage of point a with respect to point b is Vab. Thus, the 
plus sign is located at a, as indicated in Fig. 12.2a. We therefore consider 
the double subscripts to be equivalent to a plus-minus sign pair; the use of 
both would be redundant. With reference to Fig. 12.2b, for example, we see 
that Vad  = Vab + Vcd. The advantage of the double-subscript notation lies in 
the fact that Kirchhoff’s voltage law requires the voltage between two points 
to be the same, regardless of the path chosen between the points; thus Vad  =  
Vab + Vbd = Vac + Vcd = Vab + Vbc + Vcd, and so forth. The benefit of 
this is that KVL may be satisfied without reference to the circuit diagram; 
correct equations may be written even though a point, or subscript letter, is 
included which is not marked on the diagram. For example, we might have 
written Vad = Vax + Vxd, where x identifies the location of any interesting 
point of our choice.

One possible representation of a three-phase system of voltages1 is 
shown in Fig. 12.3. Let us assume that the voltages Van, Vbn, and Vcn are 
known:

 
 V  an  

  
=

  
100 

 
   0   °   V

    V  bn    =  100   −  120   °   V   
 V  cn  

  
=

  
100   −  240   °   V

 

The voltage Vab may be found, with an eye on the subscripts, as

 

 V  ab  

  

=

  

 V  an   +  V  nb   =  V  an   −  V  bn  

       =  100     0   °   − 100   −  120   °   V       =  100 −   (  − 50 − j86.6 )    V    

 

  

=

  

173.2     30   °   V

  

The three given voltages and the construction of the phasor Vab are 
shown on the phasor diagram of Fig. 12.4.

A double-subscript notation may also be applied to currents. We define 
the current Iab as the current flowing from a to b by the most direct path. In 
every complete circuit we consider, there must of course be at least two 
possible paths between the points a and b, and we agree that we will not use 
double-subscript notation unless it is obvious that one path is much shorter, 
or much more direct. Usually this path is through a single element. Thus, the 

/
/

/

120° V

+–

+
–

+
–

c

b

an

100

–120° V100 0° V100

■  FIGURE 12.3 A network used as a numerical 
example of double-subscript voltage notation. The 
voltages are implicitly understood to be in rms units.

Vab

+

–

+
–

a

b
(a) (b)

a c
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Vab

+

–

+
–

a

b
(a) (b)

a c

b d

■  FIGURE 12.2 (a) The definition of the voltage Vab. 
(b) Vad = Vab + Vbc + Vcd = Vab + Vcd.

Vcn

Vbn

Van

Vnb Vab = Van + Vnb

30°

120°
120°

■  FIGURE 12.4 This phasor diagram illustrates 
the graphical use of the double-subscript voltage 
convention to obtain Vab for the network of Fig. 12.3.

(1) In keeping with power industry convention, rms values for currents and voltages will be used implicitly 
throughout this chapter.

/

/

/
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474 CHAPTER 12 POLYPHASE CIRCUITS

current Iab is correctly indicated in Fig. 12.5. In fact, we do not even need 
the direction arrow when talking about this current; the subscripts tell us the 
direction. However, the identification of a current as Icd for the circuit of 
Fig. 12.5 would cause confusion.

Icd?Icd?Iab
+
–

a

c

d

b

■  FIGURE 12.5 An illustration of the use and 
misuse of the double-subscript convention for current 
notation.

PRACTICE 
●

12.1 Let  V  ab   = 100    0   °    V,  V  bd   = 40    80   °    V, and  V  ca   =  70    200   °    V. Find 
(a) Vad; (b) Vbc; (c) Vcd. 
12.2 Refer to the circuit of Fig. 12.6 and let Ifj = 3 A, Ide = 2 A, and  
Ihd = −6 A. Find (a) Icd; (b) Ief ; (c) Iij. 

5 A

2 A

8 A 4 A

10 A

c

g

k

h i

d e

l

a b

j

f

■  FIGURE 12.6

Ans: 12.1: 114.0  20.2° V; 41.8  145.0° V; 44.0  20.6° V. 12.2: −3 A; 7 A; 7 A.

12.2 • SINGLE-PHASE THREE-WIRE SYSTEMS
Before studying polyphase systems in detail, it can be helpful to start with 
a simple single-phase three-wire system. A single-phase three-wire source 
is defined as a source having three output terminals, such as a, n, and b in 
Fig. 12.7a, at which the phasor voltages Van and Vnb are equal. The source 
may therefore be represented by the combination of two identical voltage 
sources; in Fig. 12.7b, Van = Vnb = V1. It is apparent that Vab = 2Van = 2Vnb,  
and we therefore have a source to which loads operating at either of two 
voltages may be connected. The normal North American household system 
is single-phase three-wire, permitting the operation of both 120 V and 240 
V appliances. The higher-voltage appliances are normally those drawing 
larger amounts of power; operation at higher voltage results in a smaller 
current draw for the same power. Smaller-diameter wire may consequently 
be used safely in the appliance, the household distribution system, and the 
distribution system of the utility company, as larger-diameter wire must be 

■  FIGURE 12.7 (a) A single-phase three-wire source. 
(b) The representation of a single-phase three-wire 
source by two identical voltage sources.
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  SECTION 12.2 SINgLE-PHASE THREE-WIRE SYSTEMS 475

used with higher currents to reduce the heat produced due to the resistance 
of the wire.

The name single-phase arises because the voltages Van and Vnb, being 
equal, must have the same phase angle. From another viewpoint, however, 
the voltages between the outer wires and the central wire, which is usually 
referred to as the neutral, are exactly 180° out of phase. That is, Van = −Vbn, 
and Van + Vbn = 0. Later, we will see that balanced polyphase systems are 
characterized by a set of voltages of equal amplitude whose (phasor) sum is 
zero. From this viewpoint, then, the single-phase three-wire system is really 
a balanced two-phase system. Two-phase, however, is a term that is tradi-
tionally reserved for a relatively unimportant unbalanced system utilizing 
two voltage sources 90° out of phase.

Let us now consider a single-phase three-wire system that contains iden-
tical loads Zp between each outer wire and the neutral (Fig. 12.8). We first 
assume that the wires connecting the source to the load are perfect conduc-
tors. Since

 V  an   =  V  nb  

then,

 I  aA   =    V  an   ___  Z  p  
   =  I  Bb   =    V  nb   ___  Z  p  

  

and therefore

 I  nN   =  I  Bb   +  I  Aa   =  I  Bb   −  I  aA   = 0

Thus, there is no current in the neutral wire, and it could be removed with-
out changing any current or voltage in the system. This result is achieved 
through the equality of the two loads and of the two sources.

Effect of Finite Wire Impedance
We next consider the effect of a finite impedance in each of the wires. If lines 
aA and bB each have the same impedance, this impedance may be added to 
Zp, resulting in two equal loads once more, and zero neutral current. Now let 
us allow the neutral wire to possess some impedance Zn. Without carrying 
out any detailed analysis, superposition should show us that the symmetry 
of the circuit will still cause zero neutral current. Moreover, the addition of 
any impedance connected directly from one of the outer lines to the other 
outer line also yields a symmetrical circuit and zero neutral current. Thus, 
zero neutral current is a consequence of a balanced, or symmetrical, load; 
nonzero impedance in the neutral wire does not destroy the symmetry.

The most general single-phase three-wire system will contain unequal 
loads between each outside line and the neutral and another load directly 
between the two outer lines; the impedances of the two outer lines may 
be expected to be approximately equal, but the neutral impedance is often 
slightly larger. Let us consider an example of such a system, with particular 
interest in the current that may flow now through the neutral wire, as well 
as the overall efficiency with which our system is transmitting power to the 
unbalanced load.

+
–

+
–

a A

N

Bb

Vnb

Van Zp

Zp

n

■  FIGURE 12.8 A simple single-phase three-wire 
system. The two loads are identical, and the neutral 
current is zero.
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476 CHAPTER 12 POLYPHASE CIRCUITS

EXAMPLE 12.1
Analyze the system shown in Fig. 12.9 and determine the power 
delivered to each of the three loads as well as the power lost in the 
neutral wire and each of the two lines.

I1

I3

I2

0° V rms115

0° V rms115

+
–

+
–

a

b

n

1 Ω

50 Ω 20 Ω

j10 Ω100 Ω

3 Ω

1 Ω

A

B

N

■  FIGURE 12.9 A typical single-phase three-wire system.

▶ Identify the goal of the problem.
The three loads in the circuit are the 50 Ω resistor, the 100 Ω resistor, 
and a 20 + j10 Ω impedance. Each of the two lines has a resistance of 
1 Ω, and the neutral wire has a resistance of 3 Ω. We need the current 
through each of these in order to determine power.

▶ Collect the known information.
We have a single-phase three-wire system; the circuit diagram of 
Fig. 12.9 is completely labeled. The computed currents will be in 
rms units.

▶ Devise a plan.
The circuit is conducive to mesh analysis, having three clearly defined 
meshes. The result of the analysis will be a set of mesh currents, 
which can then be used to compute absorbed power.

▶ Construct an appropriate set of equations.
The three mesh equations are:

 
− 115    0   °   +  I  1   + 50  (   I  1   −  I  2   )    + 3  (   I  1   −  I  3   )   

  
=

  
0
       (  20 + j10 )    I  2   + 100  (   I  2   −  I  3   )    + 50  (   I  2   −  I  1   )     =  0     

− 115     0   °   + 3  (   I  3   −  I  1   )    + 100  (   I  3   −  I  2   )    +  I  3  
  
=

  
0
 

which can be rearranged to obtain the following three equations

  
54  I  1  

  
− 50  I  2  

  
−  3  I  3  

  
=

  
115    0   °  

     − 50  I  1    +   (  170 + j10 )    I  2    −  100  I  3    =  0    
− 3  I  1  

  
− 100  I  2  

  
+ 100  I  3  

  
=

  
115    0   °  

 

▶ Determine if additional information is required.
We have a set of three equations in three unknowns, so it is possible to 
attempt a solution at this point.

/

/

/

/
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▶ Attempt a solution.
Solving for the phasor currents I1, I2, and I3 using a scientific calcula-
tor, we find

 
 I  1  

  
=

  
11.24   −  19.83   °   A

    I  2    =  9.389   −  24.47   °   A   
 I  3  

  
=

  
10.37   −  21.80   °   A

 

The currents in the outer lines are thus

 I  aA   =  I  1   = 11.24   −  19.83   °    A

and

 I  bB   =  I  3   = 10.37    158.20   °    A

and the smaller neutral current is

 I  nN   =  I  3   −  I  1   = 0.9459   −  177.7   °    A

The average power drawn by each load may thus be determined:

  
 P  50  

  
=

  
  |    I  1   −  I  2     |     2   (  50 )    = 206 W 

     P  100    =    |    I  3   −  I  2     |     2   (  100 )    = 117 W     
 P  20+j10  

  
=

  
  |    I  2     |     2   (  20 )    = 1763 W 

  

The total load power is 2086 W. The loss in each of the wires is next 
found:

  
 P  aA  

  
=

  
  |    I  1     |     2   (  1 )    = 126 W 

    P  bB    =    |    I  3     |     2   (  1 )    = 108 W    
 P  nN  

  
=

  
  |    I  nN     |     2   (  3 )    = 3 W 

  

giving a total line loss of 237 W. The wires are evidently quite long; 
otherwise, the relatively high power loss in the two outer lines would 
cause a dangerous temperature rise.

▶ Verify the solution. Is it reasonable or expected?
The total absorbed power is 206 + 117 + 1763 + 237, or 2323 W, 
which may be checked by finding the power delivered by each voltage 
source:

   P  an   = 115(11.24) cos  19.83   °  = 1216  W    
 P  bn   = 115(10.37) cos  21.80   °  = 1107  W

 

or a total of 2323 W. The transmission efficiency for the system is

η =   total power delivered to load   ____________________  total power generated   =   2086 _______ 2086 + 237   = 89.8%

This value would be unbelievable for a steam engine or an internal 
combustion engine, but it is too low for a well-designed distribution 
system. Larger-diameter wires should be used if the source and the 
load cannot be placed closer to each other.

Note that we do not need to include a factor of    1 _ 2    since 

we are working with rms current values.

Imagine the heat produced by two 100 W light bulbs! 

These outer wires must dissipate the same amount 

of power. In order to keep their temperature down, a 

large surface area is required.

(Continued on next page)

/
/
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478 CHAPTER 12 POLYPHASE CIRCUITS

12.3 • THREE-PHASE Y-Y CONNECTION
Three-phase sources have three terminals, called the line terminals, and 
they may or may not have a fourth terminal, the neutral connection. We will 
begin by discussing a three-phase source that does have a neutral connec-
tion. It may be represented by three ideal voltage sources connected in a Y, 
as shown in Fig. 12.11; terminals a, b, c, and n are available. We will con-
sider only balanced three-phase sources, which may be defined as having

  |   V  an   |    =   |   V  bn   |    =   |   V  cn   |   
and

 V  an   +  V  bn   +  V  cn   = 0

These three voltages, each existing between one line and the neutral, are 
called phase voltages. If we arbitrarily choose Van as the reference, or define

 V  an   =  V  p      0   °  

where we will consistently use Vp to represent the rms amplitude of any of the 
phase voltages, then the definition of the three-phase source indicates that either

 V  bn   =  V  p     −  120   °        and        V  cn   =  V  p     −  240   °  

or

 V  bn   =  V  p      120   °        and        V  cn   =  V  p       240   °  

The former is called positive phase sequence, or abc phase sequence, and 
is shown in Fig. 12.12a; the latter is termed negative phase sequence, or 
cba phase sequence, and is indicated by the phasor diagram of Fig. 12.12b.

A phasor diagram showing the two source voltages, the currents in 
the outer lines, and the current in the neutral is constructed in Fig. 12.10. 
The fact that IaA + IbB + InN = 0 is indicated on the diagram.

■  FIGURE 12.10 The source voltages and three of the currents in the circuit 
of Fig. 12.9 are shown on a phasor diagram. Note that IaA + IbB + InN = 0.

IbB

IaA + IbB

InN

IaA

Vbn Van

PRACTICE 
●

12.3 Modify Fig. 12.9 by adding a 1.5 Ω resistance to each of the two 
outer lines, and a 2.5 Ω resistance to the neutral wire. Find the average 
power delivered to each of the three loads. 
Ans: 153.1 W; 95.8 W; 1374 W.

+
–

+
–+ –

A

B

N

C

a

n

c

b

Van

Vbn

Vcn

■  FIGURE 12.11 A Y-connected three-phase four-
wire source.
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The actual phase sequence of a physical three-phase source depends on the 
arbitrary choice of the three terminals to be lettered a, b, and c. They may 
always be chosen to provide positive phase sequence, and we will assume 
that this has been done in most of the systems we consider.

Line-to-Line Voltages
Let us next find the line-to-line voltages (often simply called the line voltages) 
which are present when the phase voltages are those of Fig. 12.12a. It is easiest 
to do this with the help of a phasor diagram, since the angles are all multiples 
of 30°. The necessary construction is shown in Fig. 12.13; the results are

   
 V  ab  

  
=

  
 √ 

__
 3    V  p      30   °  

    V  bc    =   √ 
__

 3    V  p     −  90   °     
 V  ca  

  
=

  
 √ 

__
 3    V  p     −  210   °  

   
[1] 

  [2] 
  [3]

Kirchhoff’s voltage law requires the sum of these three voltages to be zero; 
the reader is encouraged to verify this as an exercise.

If the rms amplitude of any of the line voltages is denoted by VL, then 
one of the important characteristics of the Y-connected three-phase source 
may be expressed as

  V  L   =  √ 
_

 3    V  p   

Note that with positive phase sequence, Van leads Vbn and Vbn leads Vcn, 
in each case by 120°, and also that Vab leads Vbc and Vbc leads Vca, again 
by 120°. The statement is true for negative phase sequence if “lags” is sub-
stituted for “leads.”

Now let us connect a balanced Y-connected three-phase load to our 
source, using three lines and a neutral, as drawn in Fig. 12.14. The load is 

0°Van = Vp

–120°Vbn = Vp

–240° VVcn = Vp

(+) sequence

(a)

0°Van = Vp

240°Vcn = Vp

120°Vbn = Vp

(–) sequence

(b)

■  FIGURE 12.12 (a) Positive, or abc, phase sequence. (b) Negative, or cba, phase sequence.

VcnVca

Vbn

Vbc

Van

Vab

30°

■  FIGURE 12.13 A phasor diagram which is used 
to determine the line voltages from the given phase 
voltages. Or, algebraically,  V  ab    =  V  an    −  V  bn    =  
 V  p        0   °   −  V  p       −  120   °   =  V  p    −  V  p    cos   (  −  120   °  )    − 

j  V  p    sin   (  −  120   °  )    =  V  p     (  1 +   1 _ 2   + j  √ 
_

 3   / 2 )    =  
 √ 

__
 3    V  p        30   °  .

■  FIGURE 12.14 A balanced three-phase system, connected Y-Y and including a neutral.
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480 CHAPTER 12 POLYPHASE CIRCUITS

represented by an impedance Zp between each line and the neutral wire. 
The three line currents are found very easily, since we really have three 
single-phase circuits that possess one common lead:2

 

 I  aA  

  

=

  

   V  an   ___  Z  p  
  

   I  bB    =     V  an   ___  Z  p  
   =    V  an     −  120   °   _______  Z  p  

   =  I  aA     −  120   °      

 I  cC  

  

=

  

 I  aA     −  240   °  

  

and therefore

 I  Nn   =  I  aA   +  I  bB   +  I  cC   = 0

Thus, the neutral carries no current if the source and load are both bal-
anced and if the four wires have zero impedance. How will this change if an 
impedance ZL is inserted in series with each of the three lines and an imped-
ance Zn is inserted in the neutral? The line impedances may be combined with 
the three load impedances; this effective load is still balanced, and a perfectly 
conducting neutral wire could be removed. Thus, if no change is produced in 
the system with a short circuit or an open circuit between n and N, any imped-
ance may be inserted in the neutral and the neutral current will remain zero.

It follows that, if we have balanced sources, balanced loads, and bal-
anced line impedances, a neutral wire of any impedance may be replaced by 
any other impedance, including a short circuit or an open circuit; the re-
placement will not affect the system’s voltages or currents. It is often help-
ful to visualize a short circuit between the two neutral points, whether a 
neutral wire is actually present or not; the problem is then reduced to three 
single-phase problems, all identical except for the consistent difference in 
phase angle. We say that we thus work the problem on a “per-phase” basis.

EXAMPLE 12.2
For the circuit of Fig. 12.15, find both the phase and line currents, 
and the phase and line voltages throughout the circuit; then calcu-
late the total power dissipated in the load.

+
–

+
–+ –

60° Ω1000° V rms200

Balanced
(+) sequence

B

C

A

N
n

b

c

a

■  FIGURE 12.15 A balanced three-phase, three-wire, Y-Y connected system.

(2) This can be seen to be true by applying superposition and looking at each phase one at a time.

/ /

/
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Since one of the source phase voltages is given and we are told to use 
the positive phase sequence, the three phase voltages are:

 V  an   = 200    0   °    V           V  bn   = 200   −  120   °    V           V  cn   = 200   −  240   °    V

The line voltage is 200  √ 
__

 3   = 346 V; the phase angle of each line 
voltage can be determined by constructing a phasor diagram, as we did 
in Fig. 12.13 (as a matter of fact, the phasor diagram of Fig. 12.13 is 
applicable), subtracting the phase voltages using a scientific calculator, 
or by invoking Eqs. [1] to [3]. We find that Vab = 346    30   °    V,  
 V  bc   = 346   −  90   °    V, and  V  ca   = 346   −  210   °    V.

The line current for phase A is

 I  aA   =    V  an   ___  Z  p  
   =   200    0   °   ______ 

100    60   °  
   = 2   −  60   °   A

Since we know this is a balanced three-phase system, we may write the 
remaining line currents based on IaA:

 
 I  bB  

  
=

  
2    (  −  60   °  −  120   °  )   

  
=

  
2   −  180   °   A

     
 I  cC  

  
=

  
2    (  −  60   °  −  240   °  )   

  
=

  
2   −  300   °   A

 

Finally, the average power absorbed by phase A is  Re {    V  an     I  aA  *   }   , or 

 P  AN   = 200(2) cos ( 0   °  +  60   ° ) = 200  W

Thus, the total average power drawn by the three-phase load is 600 W.
The phasor diagram for this circuit is shown in Fig. 12.16. Once we 

knew any of the line voltage magnitudes and any of the line current 
magnitudes, the angles for all three voltages and all three currents could 
have been obtained by simply reading the diagram.

PRACTICE 
●

12.4 A balanced three-phase three-wire system has a Y-connected load. 
Each phase contains three loads in parallel: −j100 Ω, 100 Ω, and 50 + 
j50 Ω. Assume positive phase sequence with  V  ab   = 400    0   °    V. Find  
(a) Van; (b) IaA; (c) the total power drawn by the load. 
Ans: 231  −30° V; 4.62  −30° A; 3200 W.

Vca
Vcn Vab

Van

Vbc

Vbn

IbB

IaA

IcC

30°
60°

■  FIGURE 12.16 The phasor diagram that applies to 
the circuit of Fig. 12.15.

Before working another example, this would be a good opportunity to 
quickly explore a statement made in Sec. 12.1, that even though phase volt-
ages and currents have zero value at specific instants in time (every 1/120 s 
in North America), the instantaneous power delivered to the total load is 
never zero. Consider phase A of Example 12.2 once more, with the phase 
voltage and current written in the time domain:

 v  AN   = 200  √ 
__

 2   cos (120πt +  0   ° )   V

and

 i  AN   = 2  √ 
__

 2   cos (120πt +  60   ° )   A

The factor of  √ 
__

 2   is required to convert from rms units.

/ / /
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482 CHAPTER 12 POLYPHASE CIRCUITS

Thus, the instantaneous power absorbed by phase A is

 
 p  A    (  t )   

  
=

  
 v  AN    i  AN  

  
=

  
800 cos   (  120πt )    cos  (  120πt −  60   °  )   

              =  400  [  cos   (  −  60   °  )    + cos   (  240πt −  60   °  )    ]         
 
  

 
  

 
  

=
  
200 + 400 cos   (  240πt −  60   °  )    W

  

in a similar fashion,

 p  B  (t) = 200 + 400 cos (240πt −  300   ° )   W

and

 p  C  (t) = 200 + 400 cos (240πt −  180   ° )   W

The instantaneous power absorbed by the total load is therefore

p(t) =  p  A  (t) +  p  B  (t) +  p  C  (t) = 600  W

independent of time, and the same value as the average power computed in 
Example 12.2.

EXAMPLE 12.3
A balanced three-phase system with a line voltage of 300 V is sup-
plying a balanced Y-connected load with 1200 W at a leading PF of 
0.8. Find the line current and the per-phase load impedance.

The phase voltage is 300 /  √ 
__

 3     V and the per-phase power is 1200/3 = 
400 W. Thus the line current may be found from the power relationship

400 =   300 ___ 
 √ 

__
 3  
   ( I  L  ) (0.8)

and the line current is therefore 2.89 A. The phase impedance magnitude 
is given by

  |   Z  P   |    =   
 V  p   __  I  L     =   300 /  √ 

__
 3   _____ 2.89   = 60  Ω

Since the PF is 0.8 leading, the impedance phase angle is −36.9°; thus  
 Z  p   = 60   −  36.9   °   Ω.

PRACTICE 
●

12.5 A balanced three-phase three-wire system has a line voltage of 
500 V. Two balanced Y-connected loads are present. One is a capacitive 
load with 7 − j2 Ω per phase, and the other is an inductive load with  
4 + j2 Ω per phase. Find (a) the phase voltage; (b) the line current;  
(c) the total power drawn by the load; (d) the power factor at which the 
source is operating. 
Ans: 289 V; 97.5 A; 83.0 kW; 0.983 lagging.

/
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  SECTION 12.3 THREE-PHASE Y-Y CONNECTION 483

EXAMPLE 12.4
A balanced 600 W lighting load is added (in parallel) to the system 
of Example 12.3. Determine the new line current.

We first sketch a suitable per-phase circuit, as shown in Fig. 12.17. The 
600 W load is assumed to be a balanced load evenly distributed among 
the three phases, resulting in an additional 200 W consumed by each 
phase.

The amplitude of the lighting current (labeled I1) is determined by

200 =   300 ___ 
 √ 

__
 3  
     |   I  1   |   cos  0   ° 

so that

  |   I  1   |    = 1.155  A

In a similar way, the amplitude of the capacitive load current (labeled I2)  
is found to be unchanged from its previous value, since the voltage 
across it has remained the same:

  |   I  2   |    = 2.89  A

If we assume that the phase with which we are working has a phase 
voltage with an angle of 0°, then since cos−1(0.8) = 36.9°,

 I  1   = 1.155    0   °   A             I  2   = 2.89   + 36.9   °    A

and the line current is

 I  L   =  I  1   +  I  2   = 3.87   + 26.6   °    A

We can check our results by computing the power generated by this 
phase of the source

 P  p   =   300 ___ 
 √ 

__
 3  
   3.87 cos (+ 26.6   ° ) = 600  W

which agrees with the fact that the individual phase is known to be sup-
plying 200 W to the new lighting load, as well as 400 W to the original 
load.

PRACTICE 
●

12.6 Three balanced Y-connected loads are installed on a balanced 
three-phase four-wire system. Load 1 draws a total power of 6 kW 
at unity PF, load 2 pulls 10 kVA at PF = 0.96 lagging, and load 3 
demands 7 kW at 0.85 lagging. If the phase voltage at the loads is 
135 V, if each line has a resistance of 0.1 Ω, and if the neutral has a 
resistance of 1 Ω, find (a) the total power drawn by the loads; (b) the 
combined PF of the loads; (c) the total power lost in the four lines; 
(d) the phase voltage at the source; (e) the power factor at which the 
source is operating. 
Ans: 22.6 kW; 0.954 lag; 1027 W; 140.6 V; 0.957 lagging.

I2IL

I1

+
–

300
3

V rms 200 W
400 W
0.8 PF
leading

■  FIGURE 12.17 The per-phase circuit that is used 
to analyze a balanced three-phase example.

/ /

/
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484 CHAPTER 12 POLYPHASE CIRCUITS

If an unbalanced Y-connected load is present in an otherwise balanced 
three-phase system, the circuit may still be analyzed on a per-phase basis if 
the neutral wire is present and if it has zero impedance. If either of these 
conditions is not met, other methods must be used, such as mesh or nodal 
analysis. However, engineers who spend most of their time with unbalanced 
three-phase systems will find the use of symmetrical components a great 
time saver. We leave this topic for more specialized texts.

12.4 • THE DELTA (Δ) CONNECTION
An alternative to the Y-connected load is the Δ-connected configuration, as 
shown in Fig. 12.18. This type of configuration is very common and does 
not have a neutral connection.

Let us consider a balanced Δ-connected load which consists of an im-
pedance Zp inserted between each pair of lines. With reference to Fig. 12.18, 
let us assume known line voltages

 V  L   =   |   V  ab   |    =   |   V  bc   |    =   |   V  ca   |   
or known phase voltages

 V  P   =   |   V  an   |    =   |   V  bn   |    =   |   V  cn   |   
where

 V  L   =  √ 
__

 3    V  p         and        V  ab   =  √ 
__

 3    V  p      30   °  

as we found previously. Because the voltage across each branch of the Δ is 
known, the phase currents are easily found:

 I  AB   =    V  ab   ___  Z  p  
             I  BC   =    V  bc   ___  Z  p  

             I  CA   =    V  ca   ___  Z  p  
  

and their differences provide us with the line currents, such as

 I  aA   =  I  AB   −  I  CA  

Since we are working with a balanced system, the three phase currents are 
of equal amplitude:

 I  p   =   |   I  AB   |    =   |   I  BC   |    =   |   I  CA   |   
The line currents are also equal in amplitude; the symmetry is apparent 
from the phasor diagram of Fig. 12.19. We thus have

 I  L   =   |   I  aA   |    =   |   I  bB   |    =   |   I  cC   |   
and

 I  L   =  √ 
__

 3    I  p  

+
–

+
–+ –

a b

c

A

C

B
n

Zp

Zp

Zp

■  FIGURE 12.18 A balanced Δ-connected load is present on a three-
wire three-phase system. The source happens to be Y-connected.

/
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485  SECTION 12.4 THE DELTA (Δ) CONNECTION

Let us disregard the source for the moment and consider only the bal-
anced load. If the load is Δ-connected, then the phase voltage and the line 
voltage are indistinguishable, but the line current is larger than the phase 
current by a factor of  √ 

__
 3  ; with a Y-connected load, however, the phase 

current and the line current refer to the same current, and the line voltage is 
greater than the phase voltage by a factor of  √ 

__
 3  .

VCA

ICA

IAB

IaA

IcC

Vcn VAB

Van

VBC

Vbn
IBC

IbB

■  FIGURE 12.19 A phasor diagram that could apply to the 
circuit of Fig. 12.18 if Zp were an inductive impedance.

EXAMPLE 12.5
Determine the amplitude of the line current in a three-phase system 
with a line voltage of 300 V that supplies 1200 W to a Δ-connected 
load at a lagging PF of 0.8; then find the phase impedance.

Let us again consider a single phase. It draws 400 W, 0.8 lagging PF, at 
a 300 V line voltage. Thus,

400 = 300( I  p  ) (0.8)

and

 I  p   = 1.667  A

and the relationship between phase currents and line currents yields

 I  L   =  √ 
__

 3  (1.667) = 2.89  A

Next, the phase angle of the load is cos−1(0.8) = 36.9°, and therefore 
the impedance in each phase must be

 Z  p   =   300 ____ 1.667      36.9   °   = 180    36.9   °   Ω

PRACTICE 
●

12.7 Each phase of a balanced three-phase Δ-connected load consists 
of a 200 mH inductor in series with the parallel combination of a 5 μF 
capacitor and a 200 Ω resistance. Assume zero line resistance and a  
phase voltage of 200 V at ω = 400 rad/s. Find (a) the phase current;  
(b) the line current; (c) the total power absorbed by the load. 
Ans: 1.158 A; 2.01 A; 693 W.

Again, keep in mind that we are assuming all voltages 

and currents are quoted as rms values.

/ /
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486 CHAPTER 12 POLYPHASE CIRCUITS

The √ 
__

 3   factor not only relates phase and line quantities but also appears 
in a useful expression for the total power drawn by any balanced three-phase 
load. If we assume a Y-connected load with a power-factor angle θ, the 
power taken by any phase is

 P  p   =  V  p    I  p   cos θ =  V  p    I  L   cos θ =    V  L   __ 
 √ 

__
 3  
    I  L   cos θ

and the total power is

P = 3  P  p   =  √ 
__

 3    V  L    I  L   cos θ

In a similar way, the power delivered to each phase of a Δ-connected load is

 P  p   =  V  p    I  p   cos θ =  V  L    I  P   cos θ =  V  L      I  L   __ 
 √ 

__
 3  
   cos θ

giving a total power

  P = 3  P  p   =  √ 
__

 3    V  L    I  L   cos θ  [4]

Thus Eq. [4] enables us to calculate the total power delivered to a bal-
anced load from a knowledge of the magnitude of the line voltage, of the 
line current, and of the phase angle of the load impedance (or admittance), 
regardless of whether the load is Y-connected or Δ-connected. The line 

EXAMPLE 12.6
Determine the amplitude of the line current in a three-phase system 
with a 300 V line voltage that supplies 1200 W to a Y-connected 
load at a lagging PF of 0.8. (This is the same circuit as in Example 
12.5, but with a Y-connected load instead.)

On a per-phase basis, we now have a phase voltage of 300 /  √ 
__

 3    V, a 
power of 400 W, and a lagging PF of 0.8. Thus,

400 =   300 ___ 
 √ 

__
 3  
  ( I  p  ) (0.8)

and

 I  p   = 2.89        (and so   I  L   = 2.89  A)

The phase angle of the load is again 36.9°, and thus the impedance in 
each phase of the Y is

 Z  p   =   300 /  √ 
__

 3   _____ 2.89      36.9   °   = 60    36.9   °   Ω

PRACTICE 
●

12.8 A balanced three-phase three-wire system is terminated with two 
Δ-connected loads in parallel. Load 1 draws 40 kVA at a lagging PF of 
0.8, while load 2 absorbs 24 kW at a leading PF of 0.9. Assume no line 
resistance, and let  V  ab   = 440    30   °    V. Find (a) the total power drawn by 
the loads; (b) the phase current IAB1 for the lagging load; (c) IAB2; (d ) IaA. 
Ans: 56.0 kW; 30.3  −6.87° A; 20.2  55.8° A; 75.3  −12.46° A.

/ /

/ /

/

/
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current in Examples 12.5 and 12.6 can now be obtained in two simple 
steps:

1200 =  √ 
__

 3  (300) ( I  L  ) (0.8)

Therefore,

 I  L   =   5 __ 
 √ 

__
 3  
   = 2.89  A

A brief comparison of phase and line voltages as well as phase and line 
currents is presented in Table 12.1 for both Y- and Δ-connected loads pow-
ered by a Y-connected three-phase source.

Δ-Connected Sources
The source may also be connected in a Δ configuration. This is not typical, 
however, for a slight unbalance in the source phases can lead to large cur-
rents circulating in the Δ loop. For example, let us call the three  single-phase 
sources Vab, Vbc, and Vcd. Before closing the Δ by connecting d to a, let us 
determine the unbalance by measuring the sum Vab + Vbc + Vca. Suppose 
that the amplitude of the result is only 1 percent of the line voltage. The cir-
culating current is thus approximately    1 _ 3    percent of the line voltage divided 
by the internal impedance of any source. How large is this impedance 
apt to be? It must depend on the current that the source is expected to 
deliver with a negligible drop in terminal voltage. If we assume that this 
maximum current causes a 1 percent drop in the terminal voltage, then 
the circulating current is one-third of the maximum current! This reduces 
the useful current capacity of the source and also increases the losses in 
the system.

  SECTION 12.4 THE DELTA (Δ) CONNECTION

TABLE 

●

 12.1  Comparison of Y- and Δ-Connected Three-Phase Loads. Vp Is the Voltage 
Magnitude of Each Y-Connected Source Phase

Load Phase Voltage Line Voltage Phase Current Line Current Power per Phase

Y   
  V  AN  

  
=

  
 V  P      0   °  

    V  BN    =   V  P     −  120   °     
 V  CN  

  
=

  
 V  P     −  240   °  

    

 V  AB  

  

=

  

 V  ab  

  

 

  

=

  

  (   √ 
_

 3      30   °   )    V  AN  

   

 

  

=

  

 √ 
__

 3    V  P      30   °  

   
 V  BC  

  
=

  
 V  bc  

     =    (   √ 
_

 3      30   °   )    V  BN     
 
  

=
  
 √ 

__
 3    V  P     −  90   °  

   

 V  CA  

  

=

  

 V  ca  

  

 

  

=

  

  (   √ 
_

 3      30   °   )    V  CN  

   

 

  

=

  

 √ 
__

 3    V  P     −  210   °  

     

 I  aA  

  

=

  

 I  AN  

  

=

  

   V  AN   ___  Z  P    

    I  bB    =   I  BN    =     V  BN   ___  Z  P       

 I  cC  

  

=

  

 I  C N  

  

=

  

   V  CN   ___  Z  P    

    

 I  aA  

  

=

  

 I  AN  

  

=

  

   V  AN   ___  Z  P    

    I  bB    =   I  BN    =     V  BN   ___  Z  P       

 I  cC  

  

=

  

 I  C N  

  

=

  

   V  CN   ___  Z  P    

    V  L      I  L   __ 
 √ 

__
 3  
   cos  θ 

Δ   

 V  AB  

  

=

  

 V  ab  

  

 

  

=

  

 √ 
__

 3    V  P      30   °  

   
 V  BC  

  
=

  
 V  bc    

 
  

=
  
 √ 

__
 3    V  P     −  90   °  

   

 V  CA  

  

=

  

 V  ca  

  

 

  

=

  

 √ 
__

 3    V  P     −  120   °  

    

 V  AB  

  

=

  

 V  ab  

  

 

  

=

  

 √ 
__

 3    V  P      30   °  

   
 V  BC  

  
=

  
 V  bc    

 
  

=
  
 √ 

__
 3    V  P     −  90   °  

   

 V  CA  

  

=

  

 V  ca  

  

 

  

=

  

 √ 
__

 3    V  P     −  120   °  

    

 I  AB  

  

=

  

   V  AB   ___  Z  P    

   I  BC    =     V  BC   ___  Z  P      

 I  CA  

  

=

  

   V  CA   ___  Z  P    

    

 I  aA  

  

=

  

  (   √ 
_

 3     −  30   °   )       V  AB   ___  Z  P    

    I  bB    =    (   √ 
_

 3     −  30   °   )       V  BC   ___  Z  P       

 I  cC  

  

=

  

  (   √ 
_

 3     −  30   °   )       V  CA   ___  Z  P    

    V  L      I  L   __ 
 √ 

__
 3  
   cos  θ 

/
/
/

/

/

/

/
/

/
/

/
/

/

/

/

/

/
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Today, electrical power is generated by a rather wide va-
riety of techniques. For example, direct conversion of so-
lar energy into electricity using photovoltaic (solar cell) 
technology results in the production of dc power. Despite 
representing a very environmentally friendly technology, 
however, photovoltaic-based installations are at present 
more expensive than other means of producing elec-
tricity, and they require the use of inverters to convert 
the dc power into ac. Other technologies such as wind 
turbine, geothermal, hydrodynamic, nuclear, and fossil 
fuel–based generators are often more economical by 
comparison. In these systems, a shaft is rotated through 
the action of a prime mover, such as wind on a propeller, 
or water or steam on turbine blades (Fig. 12.20).

Once a prime mover has been harnessed to generate 
rotational movement of a shaft, there are several means of 
converting this mechanical energy into electrical energy. 
One example is a synchronous generator (Fig. 12.21). 
These machines are composed of two main sections: a sta-
tionary part, called the stator, and a rotating part, termed 
the rotor. DC current is supplied to coils of wire wound 
about the rotor to generate a magnetic field, which is ro-
tated through the action of the prime mover. A set of three-
phase voltages is then induced at a second set of windings 
around the stator. Synchronous generators get their name 

from the fact that the frequency of the ac voltage produced 
is synchronized with the mechanical rotation of the rotor.

The actual demand on a stand-alone generator can 
vary greatly as various loads are added or removed, 
such as when air conditioning units kick on or lighting 
is turned on or off. The voltage output of a generator 
should ideally be independent of the load, but this is not 
the case in practice. The voltage EA induced in any given 
stator phase, often referred to as the internal generated 
voltage, has a magnitude given by

 E  A   = Kϕω

where K is a constant dependent on the way the machine 
is constructed, ϕ is the magnetic flux produced by the 
field windings on the rotor (and hence is independent of 
the load), and ω is the speed of rotation, which depends 
only on the prime mover and not the load attached to 
the generator. Thus, changing the load does not affect 
the magnitude of EA. The internal generated voltage can 
be related to the phase voltage Vϕ and the phase current 
IA by

 E  A   =  V  ϕ   + j  X  S    I  A  

where XS is the synchronous reactance of the genera-
tor. If the load is increased, then a larger current I′A will 

PRACTICAL APPLICATION
Power-Generating Systems

■  FIGURE 12.20 Wind-energy harvesting installation at Altamont Pass, California, which consists of over 7000 individual windmills.
(©Digital Vision/PunchStock RF)
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be drawn from the generator. If the power factor is not 
changed (i.e., the angle between Vϕ and IA remains con-
stant), Vϕ will be reduced since EA cannot change.

For example, consider the phasor diagram of 
Fig. 12.22a, which depicts the voltage–current output of a 
single phase of a generator connected to a load with a lag-
ging power factor of cos θ. The internal generated voltage 
EA is also shown. If an additional load is added without 
changing the power factor, as represented in Fig. 12.22b, 
the supplied current IA increases to I′A. However, the 
magnitude of the internal generated voltage, formed by 
the sum of the phasors jXSI′A and V′ϕ, must remain un-
changed. Thus, E′A = EA, and so the voltage output (V′ϕ) 
of the generator will be slightly reduced, as depicted in 
Fig. 12.22b.

The voltage regulation of a generator is defined as

% regulation =    V  no load   −  V  full load    ___________  V  full load  
   × 100

Ideally, the regulation should be as close to zero as pos-
sible, but this can only be accomplished if the dc cur-
rent used to control the flux ϕ around the field winding 
is varied in order to compensate for changing load con-
ditions; this can quickly become rather cumbersome. 
Thus, when designing a power generation facility, sev-
eral smaller generators connected in parallel are usually 
preferable to one large generator capable of handling 
the peak load. Each generator can be operated at or near 
full load, so the voltage output is essentially constant; 
individual generators can be added or removed from the 
system depending on the demand.

θ Vϕ

jXSIA

EA

IA

(a)

EA

θ Vϕ

jXSIA

IAIA

EʹA
jXSIʹA

IʹA

Vʹϕ

(b)

θ Vϕ

jXSIA

EA

IA

(a)

EA

θ Vϕ

jXSIA

IAIA

EʹA
jXSIʹA

IʹA

Vʹϕ

(b)

■  FIGURE 12.22 Phasor diagrams describing the effect of loading 
on a stand-alone synchronous generator. (a) generator connected to 
a load having a lagging power factor of cos θ. (b) An additional load is 
added without changing the power factor. The magnitude of the internal 
generated voltage EA remains the same while the output current increases. 
Consequently, the output voltage Vϕ is reduced.

■  FIGURE 12.21 The 24-pole rotor of a synchronous generator as it is 
being lowered into position.
(Courtesy of Dr. Wade Enright, Te Kura Pukaha Vira O Te 
Whare Wananga O Waitaha, Aotearoa)

hay01307_ch12_471-506.indd   489 23/01/18   8:29 pm
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We should also note that balanced three-phase sources may be trans-
formed from Y to Δ, or vice versa, without affecting the load currents or 
voltages. The necessary relationships between the line and phase voltages 
are shown in Fig. 12.13 for the case where Van has a reference phase angle 
of 0°. This transformation enables us to use whichever source connection 
we prefer, and all the load relationships will be correct. Of course, we can-
not specify any currents or voltages within the source until we know how 
it is actually connected. Balanced three-phase loads may be transformed 
between Y- and Δ-connected configurations using the relation

 Z  Y   =    Z  Δ   __ 3  

which is probably worth remembering.

12.5 •  POWER MEASUREMENT IN 
THREE-PHASE SYSTEMS

Use of the Wattmeter
In large electrical systems, not only are voltage and current important to 
know, but power is quoted so often that measuring it directly proves highly 
valuable. This is typically performed using a device known as a wattmeter, 
which must have the ability to establish both the voltage and the current 
associated with either the source, the load, or both. Modern devices are very 
similar to the digital multimeter, providing a numerical display of the quan-
tity being measured. These devices often make use of the fact that current 
gives rise to a magnetic field, which can be measured without breaking the 
circuit. However, in the field we still encounter analog versions of the multi-
meter, and they continue to have some advantages over digital versions, such 
as the ability to function without a separate power source (e.g., battery), and 
secondary information that comes from watching a needle move as opposed 
to numbers seemingly jumping around randomly on a display. Thus, in this 
section, we focus on power measurement using a traditional analog meter, 
as switching to a digital device is straightforward if one is available. Before 
embarking on a discussion of the specialized techniques used to measure 
power in three-phase systems, it is to our advantage to briefly consider how 
a wattmeter is used in a single-phase circuit.

Power measurement is most often accomplished at frequencies below a 
few hundred hertz through the use of a wattmeter that contains two separate 
coils. One of these coils is made of heavy wire, having a very low resistance, 
and is called the current coil; the second coil is composed of a much greater 
number of turns of fine wire, with relatively high resistance, and is termed 
the potential coil, or voltage coil. Additional resistance may also be inserted 
internally or externally in series with the potential coil. The torque applied 
to the moving system and the pointer is proportional to the instantaneous 
product of the currents flowing in the two coils. The mechanical inertia of 
the moving system, however, causes a deflection that is proportional to the 
average value of this torque.

The wattmeter is used by connecting it into a network in such a way 
that the current flowing in the current coil is the current flowing into the 
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network and the voltage across the potential coil is the voltage across the 
two terminals of the network. The current in the potential coil is thus the 
input voltage divided by the resistance of the potential coil.

It is apparent that the wattmeter has four available terminals, and correct 
connections must be made to these terminals in order to obtain an upscale 
reading on the meter. To be specific, let us assume that we are measuring the 
power absorbed by a passive network. The current coil is inserted in series 
with one of the two conductors connected to the load, and the potential coil 
is installed between the two conductors, usually on the “load side” of the 
current coil. The potential coil terminals are often indicated by arrows, as 
shown in Fig. 12.23a. Each coil has two terminals, and the proper relation-
ship between the sense of the current and voltage must be observed. One 
end of each coil is usually marked (+), and an upscale reading is obtained 
if a positive current is flowing into the (+) end of the current coil while the 
(+) terminal of the potential coil is positive with respect to the unmarked 
end. The wattmeter shown in the network of Fig. 12.23a therefore gives 
an upscale deflection when the network to the right is absorbing power. A 
reversal of either coil, but not both, will cause the meter to try to deflect 
downscale; a reversal of both coils will never affect the reading.

As an example of the use of such a wattmeter in measuring average 
power, let us consider the circuit shown in Fig. 12.23b. The connection 
of the wattmeter is such that an upscale reading corresponds to a positive 
absorbed power for the network to the right of the meter, that is, the right 
source. The power absorbed by this source is given by

P =   |   V  2   |      |  I |    cos (ang  V  2   − ang I)

(a)

Potential
coil

Current
coil

+ + Passive
network

10 Ω

V1 =

10 V

j5 Ω

I

(b)

+ +
90° V100

V2 =
0° V100

+
–

+
–

(a)

Potential
coil

Current
coil

+ + Passive
network

10 Ω

V1 =

10 V

j5 Ω

I

(b)

+ +
90° V100

V2 =
0° V100

+
–

+
–

■  FIGURE 12.23 (a) A wattmeter connection that will ensure an upscale reading for the power 
absorbed by the passive network. (b) An example in which the wattmeter is installed to give an upscale 
indication of the power absorbed by the right source.
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Using superposition or mesh analysis, we find the current is

I = 11.18    153.4   °    A

and thus the absorbed power is

P = (100) (11.18) cos ( 0   °  −  153.4   ° ) = − 1000  W

The pointer therefore rests against the downscale stop. In practice, the po-
tential coil can be reversed more quickly than the current coil, and this re-
versal provides an upscale reading of 1000 W.

PRACTICE 
●

12.9 Determine the wattmeter reading in Fig. 12.24, state whether or not 
the potential coil had to be reversed in order to obtain an upscale reading, 
and identify the device or devices absorbing or generating this power. 
The (+) terminal of the wattmeter is connected to (a) x; (b) y; (c) z. 

4 Ω

150 + j130 V

6 Ω– j12 Ω

j2 Ω z y x

+ +
0° V100 +

–

+ –
■  FIGURE 12.24

Ans: 1200 W, as is, P6Ω (absorbed); 2200 W, as is, P4Ω + P6Ω (absorbed); 500 W, 
reversed, absorbed by 100 V.

The Wattmeter in a Three-Phase System
At first glance, measurement of the power drawn by a three-phase load 
seems to be a simple problem. We need place only one wattmeter in each of 
the three phases and add the results. For example, the proper connections 
for a Y-connected load are shown in Fig. 12.25a. Each wattmeter has its 
current coil inserted in one phase of the load and its potential coil con-
nected between the line side of that load and the neutral. In a similar way, 
three wattmeters may be connected as shown in Fig. 12.25b to measure the 
total power taken by a Δ-connected load. The methods are theoretically 
correct, but they may be useless in practice because the neutral of the Y is 
not always accessible and the phases of the Δ are not available. A three-
phase rotating machine, for example, has only three accessible terminals, 
those which we have been calling A, B, and C.

Clearly, we have a need for a method of measuring the total power drawn 
by a three-phase load having only three accessible terminals; measurements 
may be made on the “line” side of these terminals, but not on the “load” 
side. Such a method is available and is capable of measuring the power 
taken by an unbalanced load from an unbalanced source. Let us connect 

/
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three wattmeters in such a way that each has its current coil in one line and 
its voltage coil between that line and some common point x, as shown in 
Fig. 12.26. Although a system with a Y-connected load is illustrated, the 
arguments we present are equally valid for a Δ-connected load. The point 
x may be some unspecified point in the three-phase system, or it may be 
merely a point in space at which the three potential coils have a common 
node. The average power indicated by wattmeter A must be

 P  A   =   1 __ 
T

    ∫ 
0
  
T

     v  Ax    i  aA   dt

(a)

+

+

+
+

+

+

n

C

B
A

+

+

+

+

C

A
B

(b)

+
+

■  FIGURE 12.25 Three wattmeters are connected in such a way that each reads the power taken by one phase of a three-
phase load, and the sum of the readings is the total power. (a) A Y-connected load. (b) A Δ-connected load. Neither the loads 
nor the source need be balanced.

++

A

A

B x

C

N

C

Ba

b

c

++

++

ZC

ZBZA

■  FIGURE 12.26 A method of connecting three wattmeters to measure 
the total power taken by a three-phase load. Only the three terminals of 
the load are accessible.
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where T is the period of all the source voltages. The readings of the other 
two wattmeters are given by similar expressions, and the total average power 
drawn by the load is therefore

P =  P  A   +  P  B   +  P  C   =   1 __ 
T

    ∫ 
 0
  
T

    ( v  Ax    i  aA   +  v  Bx    i  bB   +  v  Cx    i  cC  )  dt

Each of the three voltages in the preceding expression may be written 
in terms of a phase voltage and the voltage between point x and the neutral,

 
 v  Ax  

  
=

  
 v  AN   +  v  Nx  

    v  Bx    =   v  BN   +  v  Nx     
 v  Cx  

  
=

  
 v  CN   +  v  Nx  

 

and, therefore,

 
P

  
=

  
  1 __ 
T

    ∫ 
 0
  
T

      (   v  AN    i  aA   +  v  BN    i  bB   +  v  CN    i  cC   )    dt
     

 
  

 
  

+  1 __ 
T

    ∫ 
 0
  
T

     v  Nx    (   i  aA   +  i  bB   +  i  cC   )    dt

  

However, the entire three-phase load may be considered to be a supernode, 
and Kirchhoff’s current law requires

 i  aA   +  i  bB   +  i  cC   = 0

Thus

P =   1 __ 
T

    ∫ 
 0
  
T

    ( v  AN    i  aA   +  v  BN    i  bB   +  v  CN    i  cC  ) dt

Reference to the circuit diagram shows that this sum is indeed the sum of 
the average powers taken by each phase of the load, and the sum of the 
readings of the three wattmeters therefore represents the total average power 
drawn by the entire load!

Let us illustrate this procedure with a numerical example before we dis-
cover that one of these three wattmeters is really superfluous. We will as-
sume a balanced source,

 
 V  ab  

  
=

  
100    0   °   V

    V  bc    =  100   −  120   °   V   
 V  ca  

  
=

  
100    −  240   °   V

 

or

 

 V  an  

  

=

  

  100 ___ 
 √ 

__
 3  
      −  30   °   V

    V  bn    =    100 ___ 
 √ 

__
 3  
      −  150   °   V   

 V  cn  

  

=

  

  100 ___ 
 √ 

__
 3  
      −  270   °   V

 

and an unbalanced load,

 
 Z  A  

  
=

  
− j10 Ω

    Z  B    =  j10 Ω  
 Z  C  

  
=

  
10 Ω

  

/ 
/ 
/

/

/

/
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Let us assume ideal wattmeters, connected as illustrated in Fig. 12.26, 
with point x located on the neutral of the source n. The three line currents 
may be obtained by mesh analysis,

 
 I  aA  

  
=

  
19.32    15   °   A

    I  bB    =  19.32    165   °   A   
 I  cC  

  
=

  
10   −  90   °   A

  

The voltage between the neutrals is

 V  nN    =  V  nb   +  V  BN   =  V  nb   +  V  bB  (  j10) = 157.7   −  90   °   V

The average power indicated by each wattmeter may be calculated,

 

 P  A  

  

=

  

 V  p    I  aA   cos   (  ang  V  an   − ang  I  aA   )   

    

 

  

=

  

  100 ___ 
 √ 

__
 3  
   19.32 cos   (  −  30   °  −  15   °  )    = 788.7 W

      P  B    =    100 ___ 
 √ 

__
 3  
   19.32 cos   (  −  150   °  −  165   °  )    = 788.7 W     

 P  C  

  

=

  

  100 ___ 
 √ 

__
 3  
   10 cos   (  −  270   °  +  90   °  )    = − 577.4 W

  

or a total power of 1 kW. Since an rms current of 10 A flows through the 
resistive load, the total power drawn by the load is

P  =  10   2 (10) = 1  kW

and the two methods agree.

The Two-Wattmeter Method
We have proved that point x, the common connection of the three potential 
coils, may be located any place we wish without affecting the algebraic sum 
of the three wattmeter readings. Let us now consider the effect of placing 
point x, this common connection of the three wattmeters, directly on one 
of the lines. If, for example, one end of each potential coil is returned to 
B, then there is no voltage across the potential coil of wattmeter B and this 
meter must read zero. It may therefore be removed, and the algebraic sum of 
the remaining two wattmeter readings is still the total power drawn by the 
load. When the location of x is selected in this way, we describe the method 
of power measurement as the two-wattmeter method. The sum of the read-
ings indicates the total power, regardless of (1) load unbalance, (2) source 
unbalance, (3) differences in the two wattmeters, and (4) the waveform of 
the periodic source. The only assumption we have made is that wattmeter 
corrections are sufficiently small that we can ignore them. In Fig. 12.26, 
for example, the current coil of each meter has passing through it the line 
current drawn by the load plus the current taken by the potential coil. Since 
the latter current is usually quite small, its effect may be estimated from a 
knowledge of the resistance of the potential coil and voltage across it. These 
two quantities enable a close estimate to be made of the power dissipated in 
the potential coil.

In the numerical example described previously, let us now assume that 
two wattmeters are used, one with current coil in line A and potential coil 

Note that the reading of one of the wattmeters is 

negative. Our previous discussion on the basic use of 

a wattmeter indicates that an upscale reading on that 

meter can only be obtained after either the potential 

coil or the current coil is reversed.

/
/
/

/
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between lines A and B, the other with current coil in line C and potential coil 
between C and B. The first meter reads

 
 P  1  

  
=

  
 V  AB    I  aA   cos   (  ang   V  AB   − ang   I  aA   )   

       =  100  (  19.32 )   cos   (   0   °  −  15   °  )       
 
  

=
  
1866 W

  

and the second

 
 P  2  

  
=

  
 V  CB    I  cC   cos   (  ang   V  CB   − ang   I  cC   )   

       =  100  (  10 )   cos   (   60   °  +  90   °  )       
 
  

=
  
− 866 W

  

and, therefore,

P  =  P  1   +  P  2   = 1866 − 866 = 1000  W

as we expect from recent experience with the circuit.
In the case of a balanced load, the two-wattmeter method enables the PF 

angle to be determined, as well as the total power drawn by the load. Let us 
assume a load impedance with a phase angle θ; either a Y or Δ connection 
may be used, and we will assume the Δ connection shown in Fig. 12.27. 
The construction of a standard phasor diagram, such as that of Fig. 12.19, 
enables us to determine the proper phase angle between the several line 
voltages and line currents. We therefore determine the readings

 
 P  1  

  
=

  
  |    V  AB   |   |  I  aA   |   cos   (  ang   V  AB   − ang   I  aA   )    

     
 
  

=
  
 V  L    I  L    cos   (   30   °  + θ )   

  

and

 
 P  2  

  
=

  
  |    V  CB   |   |  I  cC   |   cos   (  ang   V  CB   − ang   I  cC   )    

     
 
  

=
  
 V  L    I  L    cos   (   30   °  − θ )   

  

The ratio of the two readings is

     P  1   __  P  2  
   =   cos ( 30   °  + θ) _________ 

cos ( 30   °  − θ)
    [5]

+

+

+

A
B

C

1

a

+
2

c

b

│Z
p │  θ

│Zp│ θ

│Z
p│

  θ

■  FIGURE 12.27 Two wattmeters connected to read the total power 
drawn by a balanced three-phase load.
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If we expand the cosine terms, this equation is easily solved for tan θ,

  tan θ =  √ 
__

 3      P  2   −  P  1   _____  P  2   +  P  1  
    [6]

Thus, equal wattmeter readings indicate a unity PF load; equal and 
opposite readings indicate a purely reactive load; a reading of P2 which 
is (algebraically) greater than P1 indicates an inductive impedance; and a 
reading of P2 which is less than P1 signifies a capacitive load. How can we 
tell which wattmeter reads P1 and which reads P2? It is true that P1 is in line 
A, and P2 is in line C, and our positive phase-sequence system forces Van 
to lag Vcn. This is enough information to differentiate between two watt-
meters, but it is confusing to apply in practice. Even if we were unable to 
distinguish between the two, we know the magnitude of the phase angle, but 
not its sign. This is often sufficient information; if the load is an induction 
motor, the angle must be positive and we do not need to make any tests to 
determine which reading is which. If no previous knowledge of the load is 
assumed, then there are several methods of resolving the ambiguity. Per-
haps the simplest method is that which involves adding a high-impedance 
reactive load, say, a three-phase capacitor, across the unknown load. The 
load must become more capacitive. Thus, if the magnitude of tan θ (or the 
magnitude of θ) decreases, then the load was inductive, whereas an increase 
in the magnitude of tan θ signifies an original capacitive impedance.

EXAMPLE 12.7
The balanced load in Fig. 12.28 is fed by a balanced three-phase 
system having  V  ab   = 230    0   °   V rms and positive phase sequence. Find 
the reading of each wattmeter and the total power drawn by the load.

The potential coil of wattmeter #1 is connected to measure the voltage 
Vac, and its current coil is measuring the phase current IaA. Since we 
know to use the positive phase sequence, the line voltages are

 
 V  ab  

  
=

  
230    0   °   V

    V  bc    =  230   −  120   °   V   
 V  ca  

  
=

  
230    120   °   V

  

Note that  V  ac   = −  V  ca   = 230   −  60   °    V.

+

+

+

A 4 Ω j15 Ω

1

a

+

B
N

C

2

b

c

■  FIGURE 12.28 A balanced three-phase system connected to a balanced three-phase 
load, the power of which is being measured using the two-wattmeter technique. (Continued on next page)

/
/
/

/

/
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SUMMARY AND REVIEW

Polyphase circuits are not encountered directly by everyone but are part 
of almost every large building installation. In this chapter we studied how 
three voltages, each 120° out of phase with the others, can be supplied by 
a single generator (and hence have the same frequency) and connected to 
a three-component load. For the sake of convenience we introduced the  
double-subscript notation, which is commonly employed. A three-phase sys-
tem will have at least three terminals; a neutral wire connection is not manda-
tory but is common at least for the source. If a Δ-connected load is employed, 
then there is no neutral connection to it. When a neutral wire is present, we 
can define phase voltages Van, Vbn, and Vcn between each phase (a, b, or c) 
and neutral. Kirchhoff’s voltage law requires that these three phase voltages 
sum to zero, regardless of whether a positive or negative phase sequence re-
lates their angles. Line voltages (i.e., between phases) can be related directly 
to the phase voltages; for a Δ-connected load they are equal. In a similar fash-
ion, line currents and phase currents can be directly related to one another; 
in a Y-connected load, they are equal. Symmetry often allows us to perform 
the analysis on a per-phase basis, simplifying our calculations considerably.

The phase current IaA is given by the phase voltage Van divided by the 
phase impedance 4 + j15 Ω,

  I  aA    =     V  an   _____ 4 + j15   =   
  (  230 /  √ 

_
 3   )      −  30   °  

  __________ 4 + j15    A    
 
  

=
  
8.554   −  105.1   °   A

  

We may now compute the power measured by wattmeter #1 as

 
 P  1  

  
=

  
  |   V  ac   |      |   I  aA   |    cos   (  ang   V  ac   − ang   I  aA   )   

        =    (  230 )     (  8.554 )    cos   (  −  60   °  +  105.1   °  )    W     
 
  

=
  
1389 W

  

In a similar fashion, we determine that

 
 P  2  

  
=

  
  |   V  bc   |      |   I  bB   |    cos   (  ang   V  bc   − ang   I  bB   )   

        =    (  230 )     (  8.554 )    cos   (  −  120   °  −  134.9   °  )    W     
 
  

=
  
− 512.5 W

  

Thus, the total average power absorbed by the load is

P =  P  1   +  P  2   = 876.5  W

PRACTICE 
●

12.10 For the circuit of Fig. 12.26, let the loads be  Z  A   = 25    60   °   Ω,  
 Z  B   = 50   −  60   °   Ω,  Z  C   = 50    60   °   Ω,  V  AB   = 600    0   °   V rms with (+)  
phase sequence, and locate point x at C. Find (a) PA; (b) PB; (c) PC. 
Ans: 0; 7200 W; 0.

Since this measurement would result in the meter 

pegged at downscale, one of the coils would need to 

be reversed in order to take the reading.

/

/

/
// /
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A concise list of key concepts of the chapter is presented below for the 
convenience of the reader, along with the corresponding example numbers.

 The majority of electricity production is in the form of three-phase 
power.

 Most residential electricity in North America is in the form of 
 single-phase alternating current at a frequency of 60 Hz and an rms 
voltage of 115–120 V. Elsewhere, 50 Hz at 230–240 V rms is most 
common. In Japan, the voltage is 100 V, but either frequency can be 
encountered, depending on the region.

 Double-subscript notation is commonly employed in power systems for 
both voltages and currents. (Example 12.1)

 Three-phase sources can be either Y- or Δ-connected. Both types of 
sources have three terminals, one for each phase; Y-connected sources 
have a neutral connection as well. (Example 12.2)

 In a balanced three-phase system, each phase voltage has the same 
magnitude but is 120° out of phase with the other two. (Example 12.2)

 Loads in a three-phase system may be either Y- or Δ-connected.
 In a balanced Y-connected source with positive (“abc”) phase se-

quence, the line voltages are

 
 V  ab   =  √ 

__
 3    V  p      30   °            V  bc   =  √ 

__
 3    V  p     −  90   °  

    
 V  ca   =  √ 

__
 3    V  p     −  210   °  

  

where the phase voltages are

 V  an   =  V  p      0   °            V  bn   =  V  p     −  120   °            V  cn   =  V  p     −  240   °  

(Example 12.2)
 In a system with a Y-connected load, the line currents are equal to the 

phase currents. (Examples 12.3, 12.4, 12.6)
 In a Δ-connected load, the line voltages are equal to the phase voltages. 

(Example 12.5)
 In a balanced system with positive phase sequence and a balanced 

Δ-connected load, the line currents are

 I  a   =  I  AB    √ 
__

 3     −  30   °            I  b   =  I  BC    √ 
__

 3     −  150   °            I  c   =  I  CA    √ 
__

 3     + 90   °  

where the phase currents are

 I  AB   =    V  AB   ___  Z  Δ     =    V  ab   ___  Z  Δ               I  BC   =    V  BC   ___  Z  Δ     =    V  bc   ___  Z  Δ               I  CA   =    V  CA   ___  Z  Δ     =    V  ca   ___  Z  Δ    

(Example 12.5)
 Most power calculations are performed on a per-phase basis, assuming 

a balanced system; otherwise, nodal/mesh analysis is always a valid 
approach. (Examples 12.3, 12.4, 12.5)

 The power in a three-phase system (balanced or unbalanced) can be 
measured with only two wattmeters. (Example 12.7)

 The instantaneous power in any balanced three-phase system is 
constant.

/ /
/

///

/ / /
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READING FURTHER
A good overview of ac power concepts can be found in Chap. 2 of: 

B. M. Weedy, B. J. Cory, N. Jenkins, J. B. Ekanayake, and G. Strbac, Elec-
tric Power Systems, 5th ed. Chichester, England: Wiley, 2012.

Contemporary issues pertaining to ac power systems can be found in:

International Journal of Electrical Power & Energy Systems. Elsevier, 
1979–. ISSN: 0142-0615.

EXERCISES

12.1 Polyphase Systems
1. An unknown three-terminal device has leads named b, c, and e. When installed 

in one particular circuit, measurements indicated that Vec = −9 V and  
Veb = −0.65 V. (a) Calculate Vcb. (b) Determine the power dissipated in the  
b-e junction if the current Ib flowing into the terminal marked b is equal to  
1 μA.

2. A common type of transistor is known as the MESFET, which is an acronym 
for metal-semiconductor field effect transistor. It has three terminals, named 
the gate (g), the source (s), and the drain (d). As an example, consider one 
particular MESFET operating in a circuit such that Vsg = 0.2 V and Vds = 3 V.  
(a) Calculate Vgs and Vdg. (b) If a gate current Ig = 100 pA is found to be flowing 
into the gate terminal, compute the power lost at the gate-source junction.

3. For a certain Y-connected three-phase source,  V  an   = 400    33   °    V,  
 V  bn   = 400    153   °    V, and  V  cx   = 160    208   °    V. Determine (a) Vcn;  
(b) Van − Vbn; (c) Vax; (d) Vbx.

4. Describe what is meant by a “polyphase” source, state one possible advan-
tage of such sources that might outweigh their additional complexity over 
 single-phase sources of power, and explain the difference between “balanced” 
and “unbalanced” sources.

5. Several of the voltages associated with a certain circuit are given by  
 V  12   = 9    30   °    V,  V  32   = 3    130   °    V, and  V  14   = 2    10   °    V. Determine V21, V13,  
V34, and V24.

6. The nodal voltages which describe a particular circuit can be expressed as V14 = 
9 − j V, V24 = 3 + j3 V, and V34 = 8 V. Calculate V12, V32, and V13. Express 
your answers in phasor form.

7. In the circuit of Fig. 12.29, the resistor markings unfortunately have been omit-
ted, but several of the currents are known. Specifically, Iad = 1 A. (a) Compute 
Iab, Icd, Ide, Ife, and Ibe. (b) If Vba = 125 V, determine the value of the resistor 
linking nodes a and b.

■  FIGURE 12.29 

8 A 10 A

c d e

a b

f

8. For the circuit shown in Fig. 12.30, (a) determine Igh, Icd, and Idh. (b) Calculate 
Ied, Iei, and Ijf. (c) If all resistors in the circuit each have a value of 1 Ω, deter-
mine the three clockwise-flowing mesh currents.

/
/ /

/ / /
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■  FIGURE 12.30 

5 A
4 A

c

g h i

d e

j

f

9. Additional resistors are added in parallel to the resistors between terminals d 
and e, and terminals f and j, respectively, of the circuit in Fig. 12.30. (a) Which 
voltages may still be described using double-subscript notation? (b) Which line 
currents may still be described by double-subscript notation?

12.2 Single-Phase Three-Wire Systems
10. Most consumer electronics are powered by 110 V outlets, but several types 

of appliances (such as clothes dryers) are powered from 220 V outlets. Lower 
voltages are generally safer. What, then, motivates manufacturers of some 
pieces of equipment to design them to run on 220 V?

11. The single-phase three-wire system of Fig. 12.31 has three separate load im-
pedances. If the source is balanced and Van = 110 + j0 V rms, (a) express Van 
and Vbn in phasor notation. (b) Determine the phasor voltage which appears 
across the impedance Z3. (c) Determine the average power delivered by the two 
sources if Z1 = 50 + j0 Ω, Z2 = 100 + j45 Ω, and Z3 = 100 − j90 Ω. (d) Rep-
resent load Z3 by a series connection of two elements, and state their respective 
values if the sources operate at 60 Hz.

12. For the system represented in Fig. 12.32, the ohmic losses in the neutral wire 
are so small they can be neglected, and it can be adequately modeled as a short 
circuit. (a) Calculate the power lost in the two lines as a result of their nonzero 
resistance. (b) Compute the average power delivered to the load. (c) Determine 
the power factor of the total load.

 ■  FIGURE 12.32 
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13. Referring to the balanced load represented in Fig. 12.33, if it is connected  
to a three-wire balanced source operating at 50 Hz such that VAN = 115 V,  
(a) determine the power factor of the load if the capacitor is omitted;  
(b) determine the value of capacitance C that will achieve a unity power 
factor for the total load.

14. In the three-wire system of Fig. 12.32, (a) replace the 50 Ω resistor with a  
200 Ω resistor, and calculate the current flowing through the neutral wire.  
(b) Determine a new value for the 50 Ω resistor such that the neutral wire 
current magnitude is 25% that of line current IaA.

■  FIGURE 12.31 
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■  FIGURE 12.33 

10 + j2 Ω

A

N C

B

10 + j2 Ω

hay01307_ch12_471-506.indd   501 23/01/18   8:29 pm



CHAPTER 12 POLYPHASE CIRCUITS502

12.3 Three-Phase Y-Y Connection
15. (a) Show that if  V  an   = 400    33   °    V,  V  bn   = 400   −  87   °    V, and  V  cn   = 400   −  207   °    V, 

then Van + Vbn + Vcn = 0. (b) Do the voltages in part (a) represent positive or 
negative phase sequence? Explain.

16. Consider a simple positive phase sequence, three-phase, three-wire system 
operated at 50 Hz and with a balanced load. Each phase voltage of 240 V is 
connected across a load composed of a series-connected 50 Ω and 500 mH 
combination. Calculate (a) each line current; (b) the power factor of the load; 
(c) the total power supplied by the three-phase source.

17. Assume the system shown in Fig. 12.34 is balanced, Rw = 0,  V  an   = 208    0   °    V, 
and a positive phase sequence applies. Calculate all phase and line currents, 
and all phase and line voltages, if Zp is equal to (a) 1 kΩ; (b) 100 + j48 Ω;  
(c) 100 − j48 Ω.

■  FIGURE 12.34 
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18. Repeat Exercise 17 with Rw = 10 Ω, and verify your answers with an appropri-
ate set of simulations if the operating frequency is 60 Hz.

19. Each impedance Zp in the balanced three-phase system of Fig. 12.34 is 
constructed using the parallel combination of a 1 mF capacitance, a 100 mH 
inductance, and a 10 Ω resistance. The sources have positive phase sequence 
and operate at 50 Hz. If  V  ab   = 208    0   °    V, and Rw = 0, calculate (a) all phase 
voltages; (b) all line voltages; (c) all three line currents; (d) the total power 
drawn by the load.

20. With the assumption that the three-phase system pictured in Fig. 12.34 is 
balanced with a line voltage of 100 V, calculate the line current and per-phase 
load impedance if Rw = 0 and the load draws (a) 1 kW at a PF of 0.85 lagging; 
(b) 300 W per phase at a PF of 0.92 leading.

21. The balanced three-phase system of Fig. 12.34 is characterized by a positive 
phase sequence and a line voltage of 300 V. And Zp is given by the parallel 
combination of a 5 − j3 Ω capacitive load and a 9 + j2 Ω inductive load. If  
Rw = 0, calculate (a) the power factor of the source; (b) the total power 
supplied by the source. (c) Repeat parts (a) and (b) if Rw = 1 Ω.

22. A balanced Y-connected load of 100 + j50 Ω is connected to a balanced 
three-phase source. If the line current is 42 A and the source supplies 12 kW, 
determine (a) the line voltage; (b) the phase voltage.

23. A three-phase system is constructed from a balanced Y-connected source 
operating at 50 Hz and having a line voltage of 210 V, and each phase of the 
balanced load draws 130 W at a leading power factor of 0.75. (a) Calculate the 
line current and the total power supplied to the load. (b) If a purely resistive 
load of 1 Ω is connected in parallel with each existing load, calculate the new 
line current and total power supplied to the load. (c) Verify your answers using 
appropriate simulations.

/ / /
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24. Returning to the balanced three-phase system described in Exercise 21, deter-
mine the complex power delivered to the load for both Rw = 0 and Rw = 1 Ω.

25. Each load in the circuit of Fig. 12.34 is composed of a 1.5 H inductor in 
parallel with a 100 μF capacitor and a 1 kΩ resistor. The resistance is labeled 
Rw = 0 Ω. Using positive phase sequence with  V  ab   = 115    0   °    Vat f = 60 Hz, 
determine the rms line current and the total power delivered to the load. Verify 
your answers with an appropriate simulation.

12.4 The Delta (Δ) Connection
26. A particular balanced three-phase system is supplying a Δ-connected load with 

10 kW at a leading power factor of 0.7. If the phase voltage is 208 V and the 
source operates at 50 Hz, (a) compute the line current; (b) determine the phase 
impedance; (c) calculate the new power factor and new total power delivered  
to the load if a 2.5 H inductor is connected in parallel with each phase of  
the load.

27. If each of the three phases in a balanced Δ-connected load is composed of a 
10 mF capacitor in parallel with a series-connected 470 Ω resistor and 4 mH 
inductor combination, assume a phase voltage of 400 V at 50 Hz. (a) Calculate 
the phase current; (b) the line current; (c) the line voltage; (d) the power factor 
at which the source operates; (e) the total power delivered to the load.

28. A three-phase load is to be powered by a three-wire, three-phase, Y-connected 
source having phase voltage of 400 V and operating at 50 Hz. Each phase of 
the load consists of a parallel combination of a 500 Ω resistor, 10 mH inductor, 
and 1 mF capacitor. (a) Compute the line current, line voltage, phase current, 
and power factor of the load if the load is also Y-connected. (b) Rewire the load 
so that it is Δ-connected, and find the same quantities requested in part (a).

29. For the two situations described in Exercise 28, compute the total power deliv-
ered to each of the two loads.

30. Two Δ-connected loads are connected in parallel and powered by a balanced  
Y-connected system. The smaller of the two loads draws 10 kVA at a lagging 
PF of 0.75, and the larger draws 25 kVA at a leading PF of 0.80. The line 
voltage is 400 V. Calculate (a) the power factor at which the source is 
operating; (b) the total power drawn by the two loads; (c) the phase current  
of each load.

31. For the balanced three-phase system shown in Fig. 12.35, it is determined that 
100 W is lost in each wire. If the phase voltage of the source is 400 V, and the 
load draws 12 kW at a lagging PF of 0.83, determine the wire resistance Rw.

■  FIGURE 12.35 
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32. The balanced Δ-connected load in Fig. 12.35 is demanding 10 kVA at a  
lagging PF of 0.91. If line losses are negligible, calculate IbB and Van if  
 V  ca   = 160    30   °    V and the source voltages are described using positive phase 
sequence.

/
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33. Repeat Exercise 32 if Rw = 1 Ω. Verify your solution using an appropriate 
simulation.

34. Compute IaA, IAB, and Van if the Δ-connected load of Fig. 12.35 draws a total 
complex power of 1800 + j700 W, Rw = 1.2 Ω, and the source generates a 
complex power of 1850 + j700 W.

35. A balanced three-phase system having line voltage of 240 V rms contains a 
Δ-connected load of 12 + j kΩ per phase and also a Y-connected load of  
5 + j3 kΩ per phase. Find the line current, the power taken by the combined 
load, and the power factor of the load.

12.5 Power Measurement in Three-Phase Systems
36. Determine the wattmeter reading (stating whether or not the leads had to 

be reversed to obtain it) in the circuit of Fig. 12.36 if terminals A and B, 
respectively, are connected to (a) x and y; (b) x and z; (c) y and z.

■  FIGURE 12.36 
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37. A wattmeter is connected into the circuit of Fig. 12.37 so that I1 enters the (+) 
terminal of the current coil, while V2 is the voltage across the potential coil. Find 
the wattmeter reading, and verify your solution with an appropriate simulation.

■  FIGURE 12.37 
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38. Find the reading of the wattmeter connected in the circuit of Fig. 12.38.

■  FIGURE 12.38 
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39. (a) Find both wattmeter readings in Fig. 12.39 if  V  A   = 100    0   °    V rms,  
 V  B   = 50    90   °   V rms, ZA = 10 − j10 Ω, ZB = 8 + j6 Ω, and ZC = 30 + j10 Ω. 
(b) Is the sum of these readings equal to the total power taken by the three 
loads? Verify your answer with an appropriate simulation.

■  FIGURE 12.39 
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40. Circuit values for Fig. 12.40 are  V  ab   = 200    0   °  ,  V  bc   = 200    120   °  ,  
 V  ca   = 200    240   °   V rms,  Z  4   =  Z  5   =  Z  6   = 25    30   °   Ω,  Z  1   =  Z  2   =  Z  3   =  
50   −  60   °   Ω. Find the reading for each wattmeter.

■  FIGURE 12.40 
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Chapter-Integrating Exercises
41. Explain under what circumstances a Δ-connected load might be preferred over 

a Y-connected load which draws the same average and complex powers.
42. A certain 208 V, 60 Hz, three-phase source is connected in a Y configuration 

and exhibits positive phase sequence. Each phase of the balanced load  
consists of a coil best modeled as a 0.2 Ω resistance in series with a 580 mH 
inductance. (a) Determine the line voltages and the phase currents if the  
load is Δ-connected. (b) Repeat part (a) if the load is Y-connected  
instead.

/
/
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/
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/
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43. (a) Is the load represented in Fig. 12.41 considered a three-phase load? Explain. 
(b) If ZAN = 1 − j7 Ω,  Z  BN   = 3    22   °   Ω and ZAB = 2 + j Ω, calculate all  
phase (and line) currents and voltages assuming a phase to neutral voltage of 
120 VAC (the two phases are 180° out of phase). (c) Under what circumstances 
does current flow in the neutral wire?

■  FIGURE 12.41 
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44. The computer equipment in a small manufacturing plant all runs on standard 
120 VAC, but only 208 VAC three-phase power is available. Explain how the 
computer equipment can be connected to the existing power wiring.

/

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
Whenever current flows through a conductor, whether as ac or dc, 
a magnetic field is generated about that conductor. In the context of 
circuits, we often refer to the magnetic flux through a loop of wire. 
This is the average normal component of the magnetic field density 
emanating from the loop multiplied, by the surface area of the loop. 
When a time-varying magnetic field generated by one loop penetrates 
a second loop, a voltage is induced between the ends of the second 
wire. In order to distinguish this phenomenon from the “inductance” 
we defined earlier, more properly termed “self-inductance,” we will 
define a new term, mutual inductance.

There is no such device as a “mutual inductor,” but the 
principle forms the basis for an extremely important device—the 
transformer. A transformer consists of two coils of wire separated 
by a small distance, and is commonly used to convert ac voltages 
to higher or lower values depending on the application. Every 
electrical appliance that requires dc current to operate but plugs 
into an ac wall outlet makes use of a transformer to adjust voltage 
levels prior to rectification, a function typically performed by 
diodes and described in every introductory electronics text.

13.1 • MUTUAL INDUCTANCE
When we defined inductance in Chap. 7, we did so by specifying the 
relationship between the terminal voltage and current,

v  (  t )    = L   di   (  t )    ____ 
dt

  

Magnetically 
Coupled Circuits13

KEY CONCEPTS

Mutual Inductance

Self-Inductance

The Dot Convention

Reflected Impedance
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The Ideal Transformer
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Impedance Matching

Voltage Level Adjustment

SPICE Analysis of Circuits 
with Transformers
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where the passive sign convention is assumed. The physical basis for such a 
current–voltage characteristic rests upon two things:

1. The production of a magnetic flux by a current, the flux being pro-
portional to the current in linear inductors.

2. The production of a voltage by the time-varying magnetic field, the 
voltage being proportional to the time rate of change of the magnetic 
field or the magnetic flux.

Coefficient of Mutual Inductance
Mutual inductance results from a slight extension of this same argument. 
A current flowing in one coil establishes a magnetic flux about that coil 
and also about a second coil nearby. The time-varying flux surrounding 
the second coil produces a voltage across the terminals of the second coil; 
this voltage is proportional to the time rate of change of the current flowing 
through the first coil. Figure 13.1a shows a simple model of two coils L1 and 
L2, sufficiently close together that the flux produced by a current i1(t) flow-
ing through L1 establishes an open-circuit voltage v2(t) across the terminals 
of L2. Without considering the proper algebraic sign for the relationship at 
this point, we define the coefficient of mutual inductance, or simply mutual 
inductance, M21, as

  v  2     (  t )    =  M  21     
d  i  1    (  t )    ____ 

dt
   [1]

■  FIGURE 13.1 (a) A current i1 through L1 produces an open-circuit voltage v2 
across L2. (b) A current i2 through L2 produces an open-circuit voltage v1 across L1.
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–
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L2v1 L1 i2

+

–

M

The order of the subscripts on M21 indicates that a voltage response is pro-
duced at L2 by a current source at L1. If the system is reversed, as indicated 
in Fig. 13.1b, then we have

  v  1     (  t )    =  M  12     
d  i  2     (  t )    ____ 

dt
   [2]

Two coefficients of mutual inductance are not necessary, however; we will 
use energy relationships a little later to prove that M12 and M21 are equal. 
Thus, M12 = M21 = M. The existence of mutual coupling between two coils 
is indicated by a double-headed arrow, as shown in Fig. 13.1a and b.

Mutual inductance is measured in henrys and, like resistance, induc-
tance, and capacitance, is a positive quantity.1 The voltage M di/dt, however, 
may appear as either a positive or a negative quantity depending on whether 
the current is increasing or decreasing at a particular instant in time.

(1) Mutual inductance is not universally assumed to be positive. It is particularly convenient to allow it to 
“carry its own sign” when three or more coils are involved and each coil interacts with each other coil. We 
will restrict our attention to the more important simple case of two coils.
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Dot Convention
The inductor is a two-terminal element, and we can use the passive sign 
convention in order to select the correct sign for the voltage L di/dt or jωLI. 
If the current enters the terminal at which the positive voltage reference is 
located, then the positive sign is used. Mutual inductance, however, cannot 
be treated in exactly the same way because four terminals are involved. The 
choice of a correct sign is established by the use of one of several possibil-
ities that include the “dot convention,” or by an examination of the partic-
ular way in which each coil is wound. We will use the dot convention and 
merely look briefly at the physical construction of the coils; the use of other 
special symbols is not necessary when only two coils are coupled.

The dot convention makes use of a large dot placed at one end of each 
of the two coils which are mutually coupled. We determine the sign of the 
mutual voltage as follows:

A current entering the dotted terminal of one coil produces an open-circuit 
voltage with a positive voltage reference at the dotted terminal of the 
second coil.

Thus, in Fig. 13.2a, i1 enters the dotted terminal of L1, v2 is sensed posi-
tively at the dotted terminal of L2, and v2 = M di1/dt. We have found previ-
ously that it is often not possible to select voltages or currents throughout a 
circuit so that the passive sign convention is everywhere satisfied; the same 
situation arises with mutual coupling. For example, it may be more conve-
nient to represent v2 by a positive voltage reference at the undotted terminal, 
as shown in Fig. 13.2b; then v2 = −M di1 /dt. Currents that enter the dotted 
terminal are also not always available, as indicated by Fig. 13.2c and d. We 
note then that:

A current entering the undotted terminal of one coil provides a voltage 
that is positively sensed at the undotted terminal of the second coil.

Note that the preceding discussion does not include any contribution to the volt-
age from self-induction, which would occur if i2 were nonzero. We will con-
sider this important situation in detail, but a quick example first is appropriate.

■  FIGURE 13.2 Current entering the dotted terminal 
of one coil produces a voltage that is sensed positively 
at the dotted terminal of the second coil. Current 
entering the undotted terminal of one coil produces 
a voltage that is sensed positively at the undotted 
terminal of the second coil.
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EXAMPLE 13.1
For the circuit shown in Fig. 13.3, (a) determine v1 if i2 = 5 sin 45t A 
and i1 = 0; (b) determine v2 if i1 = −8e−t A and i2 = 0.

(a) Since the current i2 is entering the undotted terminal of the right 
coil, the positive reference for the voltage induced across the left coil is 
the undotted terminal. Thus, we have an open-circuit voltage

 v  1   = −   (  2 )     (  45 )     (  5 cos 45t )    = − 450 cos 45t V

appearing across the terminals of the left coil as a result of the 
time-varying magnetic flux generated by i2 flowing into the right coil. 
Since no current flows through the coil on the left, there is no contribu-
tion to v1 from self-induction.

(Continued on next page)

v2

+

–

v1

+

–

i1 i2

L2L1

M = 2 H

■  FIGURE 13.3 The dot convention provides a 
relationship between the terminal at which a current 
enters one coil and the positive voltage reference for 
the other coil.
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Combined Mutual and Self-Induction Voltage
So far, we have considered only a mutual voltage present across an 
open-circuited coil. In general, a nonzero current will be flowing in each 
of the two coils, and a mutual voltage will be produced in each coil be-
cause of the current flowing in the other coil. This mutual voltage is pres-
ent independently of and in addition to any voltage of self-induction. In 
other words, the voltage across the terminals of L1 will be composed of 
two terms, L1 di1/dt and M di2/dt, each carrying a sign depending on the 
current directions, the assumed voltage sense, and the placement of the 
two dots. In the portion of a circuit drawn in Fig. 13.4, currents i1 and i2 
are shown, each entering a dotted terminal. The voltage across L1 is thus 
composed of two parts,

 v  1   =  L  1     
d  i  1   ___ 
dt

   + M   d  i  2   ___ 
dt

  

as is the voltage across L2,

 v  2   =  L  2     
d  i  2   ___ 
dt

   + M   d  i  1   ___ 
dt

  

In Fig. 13.5 the currents and voltages are not selected with the object of 
obtaining all positive terms for v1 and v2. By inspecting only the reference 
symbols for i1 and v1, it is apparent that the passive sign convention is not 
satisfied and the sign of L1 di1/dt must therefore be negative. An identical 
conclusion is reached for the term L2 di2/dt. The mutual term of v2 is signed 
by inspecting the direction of i1 and v2; since i1 enters the dotted terminal 
and v2 is sensed positive at the dotted terminal, the sign of M di/dt must be 
positive. Finally, i2 enters the undotted terminal of L2, and v1 is sensed posi-
tive at the undotted terminal of L1; hence, the mutual portion of v1, M di2/dt,  
must also be positive. Thus, we have

 v  1   = −  L  1     
d  i  1   ___ 
dt

   + M   d  i  2   ___ 
dt

              v  2   = −  L  2     
d  i  2   ___ 
dt

   + M   d  i  1   ___ 
dt

  

The same considerations lead to identical choices of signs for excitation by 
a sinusoidal source operating at frequency ω

 V  1   = − jω  L  1    I  1   + jωM  I  2             V  2   = − jω  L  2    I  2   + jωM  I  1  

(b) We now have a current entering a dotted terminal, but v2 has its 
positive reference at the undotted terminal. Thus,

 v  2   = −   (  2 )     (  − 1 )     (  − 8  e   −t  )    = − 16  e   −t   V

PRACTICE 
●

13.1 Assuming M = 10 H, coil L2 is open-circuited, and i1 = −2e−5t A, 
find the voltage v2 for (a) Fig. 13.2a; (b) Fig. 13.2b. 

Ans: 100e−5t V; −100e−5t V.

■  FIGURE 13.4 Since the pairs v1, i1 and v2, i2 each 
satisfy the passive sign convention, the voltages of 
self-induction are both positive; since i1 and i2 each 
enter dotted terminals, and since v1 and v2 are both 
positively sensed at the dotted terminals, the voltages 
of mutual induction are also both positive.
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■  FIGURE 13.5 Since the pairs v1, i1 and v2, i2 are 
not sensed according to the passive sign convention, 
the voltages of self-induction are both negative; 
since i1 enters the dotted terminal and v2 is positively 
sensed at the dotted terminal, the mutual term of v2 is 
positive; and since i2 enters the undotted terminal and 
v1 is positively sensed at the undotted terminal, the 
mutual term of v1 is also positive.
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Physical Basis of the Dot Convention
We can gain a more complete understanding of the dot symbolism by looking 
at the physical basis for the convention; the meaning of the dots is now inter-
preted in terms of magnetic flux. Two coils are shown wound on a cylindrical 
form in Fig. 13.6, and the direction of each winding is evident. Let us assume 
that the current i1 is positive and increasing with time. The magnetic flux that 
i1 produces within the form has a direction which may be found by the right-
hand rule: When the right hand is wrapped around the coil with the fingers 
pointing in the direction of current flow, the thumb indicates the direction of 
the flux within the coil. Thus i1 produces a flux which is directed downward; 
since i1 is increasing with time, the flux, which is proportional to i1, is also 
increasing with time. Turning now to the second coil, let us also think of i2 
as positive and increasing; the application of the right-hand rule shows that i2 
also produces a magnetic flux which is directed downward and is increasing. 
In other words, the assumed currents i1 and i2 produce additive fluxes.

The voltage across the terminals of any coil results from the time rate of 
change of the flux within that coil. The voltage across the terminals of the 
first coil is therefore greater with i2 flowing than it would be if i2 were zero; i2 
induces a voltage in the first coil which has the same sense as the self-induced 
voltage in that coil. The sign of the self-induced voltage is known from the 
passive sign convention, and the sign of the mutual voltage is thus obtained.

The dot convention enables us to suppress the physical construction of 
the coils by placing a dot at one terminal of each coil such that currents en-
tering dot-marked terminals produce additive fluxes. It is apparent that there 
are always two possible locations for the dots, because both dots may always 
be moved to the other ends of the coils, and additive fluxes will still result.

■  FIGURE 13.6 The physical construction of two 
mutually coupled coils. From a consideration of the 
direction of magnetic flux produced by each coil, it is 
shown that dots may be placed either on the upper 
terminal of each coil or on the lower terminal of each coil.

i1

i2

For the circuit shown in Fig. 13.7a, find the ratio of the output  
voltage across the 400 Ω resistor to the source voltage, expressed  
using phasor notation.

I1 I20° V

1 Ω j90 Ω

j10 Ω
400 Ωj kΩ

V1 = 10
ω = 10 rad/s

+
– V2

+

–

(b)

v1 = 10 cos 10t V

M = 9 H

v2

+

–

+
– 400 Ω

1 Ω

100 H

(a)

1 H i2i1
I1 I20° V

1 Ω j90 Ω

j10 Ω
400 Ωj kΩ

V1 = 10
ω = 10 rad/s

+
– V2

+

–

(b)

v1 = 10 cos 10t V

M = 9 H

v2

+

–

+
– 400 Ω

1 Ω

100 H

(a)

1 H i2i1

■  FIGURE 13.7 (a) A circuit containing mutual inductance in which the voltage ratio V2/V1 is desired. (b) Self- and 
mutual inductances are replaced by the corresponding impedances.

▶ Identify the goal of the problem.
We need a numerical value for V2. We will then divide by 10    0   °   V.

▶ Collect the known information.
We begin by replacing the 1 H and 100 H inductances with their corresponding impedances, j10 Ω and j KΩ, 
respectively (Fig. 13.7b). We also replace the 9 H mutual inductance with jωM = j 90 Ω.

▶ Devise a plan.
Mesh analysis is likely to be a good approach, as we have a circuit with two clearly defined meshes. Once we find 
I2, V2 is simply 400I2.

/

(Continued on next page)

EXAMPLE 13.2
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▶ Construct an appropriate set of equations.
In the left mesh, the sign of the mutual term is determined by apply-
ing the dot convention. Since I2 enters the undotted terminal of L2, 
the mutual voltage across L1 must have the positive reference at the 
undotted terminal. Thus,

  (  1 + j 10 )     I  1   − j 90  I  2   = 10    0   °  

Since I1 enters the dot-marked terminal, the mutual term in the right 
mesh has its (+) reference at the dotted terminal of the 100 H induc-
tor. Therefore, we may write

  (  400 + j 1000 )     I  2   − j 90  I  1   = 0

▶ Determine if additional information is required.
We have two equations in two unknowns, I1 and I2. Once we solve for 
the two currents, the output voltage V2 may be obtained by multiply-
ing I2 by 400 Ω.

▶ Attempt a solution.
Upon solving these two equations with a scientific calculator, we find 
that

 I  2   = 0.172   −  16.70   °   A

Thus,

 
   V  2   __  V  1  

  
  

=
  

  400(0.172   −  16.70   °   )  ______________  
10    0   °  

  
    

 

  

=

  

6.880   −  16.70   °  

  

▶ Verify the solution. Is it reasonable or expected?
We note that the output voltage V2 is actually larger in magnitude 
than the input voltage V1. Should we always expect this result? The 
answer is no. As we will see in later sections, the transformer can be 
constructed to achieve either a reduction or an increase in the voltage. 
We can perform a quick estimate, however, and at least find an upper 
and lower bound for our answer. If the 400 Ω resistor is replaced with 
a short circuit, V2 = 0. If instead we replace the 400 Ω resistor with an 
open circuit, I2 = 0 and hence

 V  1   =   (  1 + jω  L  1   )    I  1  

and

 V  2   = jωM  I  1  

Solving, we find that the maximum value we could expect for V2/V1 
is 8.955  5.711°. Thus, our answer at least appears reasonable.

/

/

/
/

/

/
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The output voltage of the circuit in Fig. 13.7a is greater in mag-
nitude than the input voltage, so a voltage gain is possible with this 
type of circuit. It is also interesting to consider this voltage ratio as a 
function of ω.

To find I2( jω) for this particular circuit, we write the mesh equations in 
terms of an unspecified angular frequency ω:

  (  1 + jω )    I  1                        − jω9  I  2   = 10     0   °  

and

− jω9  I  1   +   (  400 + jω100 )    I  2   = 0

Solving by substitution, we find that

 I  2   =   
j90ω
 _____________  

400 + j500ω − 19  ω   2 
  

Thus, we obtain the ratio of output voltage to input voltage as a function of 
frequency ω

 
   V  2   __  V  1  

  
  

=
  

  400  I  2   ____ 10  
   

 
  

=
  

  jω3600  _____________  
400 + j500ω − 19  ω   2 

  
 

The magnitude of this ratio, sometimes referred to as the circuit transfer 
function, is plotted in Fig. 13.8 and has a peak magnitude of approximately 7  
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■  FIGURE 13.8 The voltage gain |V2/V1| of the circuit shown in 
Fig. 13.7a is plotted as a function of ω using the following MATLAB script:

 ≫ w = linspace(0,30,1000);
 ≫ num = j*w*3600;
 ≫ for indx = 1:1000
 den = 400 + j*500*w(indx) −19*w(indx)*w(indx);
 gain(indx) = num(indx)/den;
 end
 ≫ plot(w, abs(gain));
 ≫ xlabel(‘Frequency (rad/s)’);
 ≫ ylabel(‘Magnitude of Voltage Gain’);

/
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near a frequency of 4.6 rad/s. However, for very small or very large frequen-
cies, the magnitude of the transfer function is less than unity.

The circuit is still passive, except for the voltage source, and the voltage 
gain must not be mistakenly interpreted as a power gain. At ω = 10 rad/s, 
the voltage gain is 6.88, but the ideal voltage source, having a terminal volt-
age of 10 V, delivers a total power of 8.07 W, of which only 5.94 W reaches 
the 400 Ω resistor. The ratio of the output power to the source power, which 
we may define as the power gain, is thus 0.736.

PRACTICE 
●

13.2 For the circuit of Fig. 13.9, write appropriate mesh equations for 
the left mesh and the right mesh if vs = 20e−1000t V. 

3 mH

10 Ω5 mH2 mH

i2i13 Ω

+
–

vs

■  FIGURE 13.9

Ans: 20e−1000t = 3i1 + 0.002 di1/dt − 0.003 di2/dt; 10i2 + 0.005 di2/dt −  
0.003 di1/dt = 0.

EXAMPLE 13.3
Write a complete set of phasor mesh equations for the circuit of 
Fig. 13.10a.

■  FIGURE 13.10 (a) A three-mesh circuit with mutual coupling. (b) 
The 1 F capacitance as well as the self- and mutual inductances are 
replaced by their corresponding impedances.

3 Ω

6 H7 H

v1
i2 i3i1

M  = 2 H

+
–

5 Ω 1 F 5 Ω

(b)(a)

j2ω Ω

j6ω Ω

j ω
1  Ω

j7ω Ω 3 ΩV1
I1 I2 I3+

–

3 Ω

6 H7 H

v1
i2 i3i1

M  = 2 H

+
–

5 Ω 1 F 5 Ω

(b)(a)

j2ω Ω

j6ω Ω

j ω
1  Ω

j7ω Ω 3 ΩV1
I1 I2 I3+

–
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13.2 • ENERGY CONSIDERATIONS
Let us now consider the energy stored in a pair of mutually coupled induc-
tors. The results will be useful in several different ways. We will first justify 
our assumption that M12 = M21, and we may then determine the maximum 
possible value of the mutual inductance between two given inductors.

Once again, our first step is to replace both the mutual inductance and 
the two self-inductances with their corresponding impedances as shown 
in Fig. 13.10b. Applying Kirchhoff’s voltage law to the first mesh, a 
positive sign for the mutual term is ensured by selecting (I3 − I2) as the 
current through the second coil. Thus,

5  I  1   + 7jω  (   I  1   −  I  2   )    + 2jω  (   I  3   −  I  2   )    =  V  1  

or

    (  5 + 7jω )    I  1   − 9jω  I  2   + 2jω  I  3   =  V  1    [3]

The second mesh requires two self-inductance terms and two mutual 
inductance terms. Paying close attention to dots, we obtain

 
7jω  (   I  2   −  I  1   )     +  2jω  (   I  2   −  I  3   )   

  
+

  
  1 __ 
jω

    I  2   + 6jω  (   I  2   −  I  3   )   
     

 
  

 
  

+2jω  (   I  2   −  I  1   )    = 0
  

or

  − 9jω  I  1   +   (  17jω +   1 _ 
jω

   )    I  2   − 8jω  I  3   = 0  [4]

Finally, for the third mesh,

6jω  (   I  3   −  I  2   )    + 2jω  (   I  1   −  I  2   )    + 3  I  3   = 0

or
  2jω  I  1   − 8jω  I  2   +   (  3 + 6jω )    I  3   = 0  [5]

Equations [3] to [5] may be solved by any of the conventional methods.

PRACTICE 
●

13.3 For the circuit of Fig. 13.11, write an appropriate mesh equation in 
terms of the phasor currents I1 and I2 for the (a) left mesh; (b) right mesh. 

■  FIGURE 13.11

3 mH

10 Ω5 mH2 mH

i2i13 Ω

+
–

vs

Ans: Vs = (3 + j10)I1 − j15I2; 0 = −j15I1 + (10 + j25)I2.
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Equality of M12 and M21
The pair of coupled coils shown in Fig. 13.12 has currents, voltages, and po-
larity dots indicated. In order to show that M12 = M21 we begin by letting all 
currents and voltages be zero, thus establishing zero initial energy storage in 
the network. We then open-circuit the right-hand terminal pair and increase 
i1 from zero to some constant (dc) value I1 at time t = t1. The power entering 
the network from the left at any instant is

 v  1    i  1   =  L  1     
d  i  1   ___ 
dt

    i  1  

and the power entering from the right is

 v  2    i  2   = 0

since i2 = 0.
The energy stored within the network when i1 = I1 is thus

 ∫ 
0
  
  t  1  

     v  1    i  1   dt =  ∫ 
0
  
  I  1  

     L  1    i  1   d  i  1   =   1 _ 2    L  1    I  1  
2 

We now hold i1 constant (i1 = I1), and we let i2 change from zero at t = t1 to 
some constant value I2 at t = t2. The energy delivered from the right-hand 
source is thus

 ∫ 
 t  1  
  
  t  2  

     v  2    i  2   dt =  ∫ 
0
  
  I  2  

     L  2    i  2   d  i  2   =   1 _ 2    L  2    I  2  
2 

However, even though the value of i1 remains constant, the left-hand source 
also delivers energy to the network during this time interval:

 ∫ 
 t  1  
  
  t  2  

     v  1    i  1   dt =  ∫ 
 t  1  
  
  t  2  

     M  12     
d  i  2   ___ 
dt

    i  1   dt =  M  12    I  1    ∫ 
0
  
  I  2  

    d  i  2   =  M  12    I  1    I  2  

The total energy stored in the network when both i1 and i2 have reached 
constant values is

 W  total   =   1 _ 2    L  1    I  1  2  +   1 _ 2    L  2    I  2  2  +  M  12    I  1    I  2  

Now, we may establish the same final currents in this network by allow-
ing the currents to reach their final values in the reverse order, that is, first 
increasing i2 from zero to I2 and then holding i2 constant while i1 increases 
from zero to I1. If the total energy stored is calculated for this experiment, 
the result is found to be

 W  total   =   1 _ 2    L  1    I  1  
2  +   1 _ 2    L  2    I  2  

2  +  M  12    I  1    I  2  

The only difference is the interchange of the mutual inductances M21 and 
M12. The initial and final conditions in the network are the same, however, 
and so the two values of the stored energy must be identical. Thus,

M12 = M21 = M

and

 W =   1 _ 2    L  1    I  1  
2  +   1 _ 2    L  2    I  2  

2  + M  I  1    I  2   [6]

■  FIGURE 13.12 A pair of coupled coils with a 
mutual inductance of M12 = M21 = M.

i1 i2

L2 v2 L1

+

–

v1

+

–

M
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If one current enters a dot-marked terminal while the other leaves a dot-
marked terminal, the sign of the mutual energy term is reversed:

 W =   1 _ 2    L  1    I  1  
2  +   1 _ 2    L  2    I  2  

2  − M  I  1    I  2   [7]

Although Eqs. [6] and [7] were derived by treating the final values of 
the two currents as constants, these “constants” can have any value, and the 
energy expressions correctly represent the energy stored when the instanta-
neous values of i1 and i2 are I1 and I2, respectively. In other words, lowercase 
symbols might just as well be used:

 w  (  t )    =   1 _ 2    L  1     [   i  1    (  t )    ]     2  +   1 _ 2    L  2     [   i  2    (  t )    ]     2  ± M   [   i  1    (  t )    ]     [   i  2    (  t )    ]    [8]

The only assumption upon which Eq. [8] is based is the logical establish-
ment of a zero-energy reference level when both currents are zero.

Establishing an Upper Limit for M
Equation [8] may now be used to establish an upper limit for the value of M. 
Since w(t) represents the energy stored within a passive network, it cannot 
be negative for any values of i1, i2, L1, L2, or M. Let us assume first that i1 
and i2 are either both positive or both negative; their product is therefore 
positive. From Eq. [8], the only case in which the energy could possibly be 
negative is

w =   1 _ 2    L  1    i  1  2  +   1 _ 2    L  2    i  2  2  − M  i  1    i  2  

which we may write, by completing the square, as

w =   1 _ 2     (   √ 
__

  L  1      i  1   −  √ 
__

  L  2      i  2   )     2  +  √ 
____

  L  1    L  2      i  1    i  2   − M  i  1    i  2  

Since in reality the energy cannot be negative, the right-hand side of 
this equation cannot be negative. The first term, however, may be as small 
as zero, so we have the restriction that the sum of the last two terms cannot 
be negative. Hence,

 √ 
____

  L  1    L  2     ≥ M

or

  M ≤  √ 
____

  L  1    L  2      [9]

There is, therefore, an upper limit to the possible magnitude of the mu-
tual inductance; it can be no larger than the geometric mean of the in-
ductances of the two coils between which the mutual inductance exists. 
Although we have derived this inequality on the assumption that i1 and 
i2 carried the same algebraic sign, a similar development is possible if 
the signs are opposite; it is necessary only to select the positive sign in 
Eq. [8].

We might also have demonstrated the truth of inequality [9] from a 
physical consideration of the magnetic coupling; if we think of i2 as being 
zero and the current i1 as establishing the magnetic flux linking both L1 
and L2, it is apparent that the flux within L2 cannot be greater than the flux 
within L1, which represents the total flux. Qualitatively, then, there is an 
upper limit to the magnitude of the mutual inductance possible between two 
given inductors.
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The Coupling Coefficient
The degree to which M approaches its maximum value is described by the 
coupling coefficient, defined as

 k =   M ____ 
 √ 

____
  L  1    L  2    
   [10]

since M ≤  √ 
____

  L  1    L  2    ,

0 ≤ k ≤ 1

The larger values of the coefficient of coupling are obtained with coils 
which are physically closer, which are wound or oriented to provide a larger 
common magnetic flux, or which are provided with a common path through 
a material which serves to concentrate and localize the magnetic flux (a 
high-permeability material). Coils having a coefficient of coupling close to 
unity are said to be tightly coupled.

EXAMPLE 13.4
In Fig. 13.13, let L1 = 0.4 H, L2 = 2.5 H, k = 0.6, and i1 = 4i2 = 
20 cos(500t − 20°) mA. Determine both v1(0) and the total energy 
stored in the system at t = 0.

In order to determine the value of v1, we need to include the contribu-
tions from both the self-inductance of coil 1 and the mutual inductance. 
Thus, paying attention to the dot convention,

 v  1    (  t )    =  L  1     
d  i  1   ___ 
dt

   + M   d  i  2   ___ 
dt

  

To evaluate this quantity, we require a value for M. This is obtained 
from Eq. [10],

M = k  √ 
____

  L  1    L  2     = 0.6  √ 
________

   (  0.4 )     (  2.5 )      = 0.6 H

Thus, v1(0) = 0.4[−10 sin(−20°)] + 0.6[−2.5 sin (−20°)] = 1.881 V.
The total energy is found by summing the energy stored in each 

inductor, which has three separate components since the two coils are 
known to be magnetically coupled. Since both currents enter a “dotted” 
terminal,

w  (  t )    =   1 _ 2    L  1     [   i  1    (  t )    ]     2  +   1 _ 2    L  2     [   i  2    (  t )    ]     2  + M  [   i  1    (  t )    ]     [   i  2    (  t )    ]   

Since i1(0) = 20 cos (−20°) = 18.79 mA and i2(0) = 0.25i1(0) = 4.698 
mA, we find that the total energy stored in the two coils at t = 0 is 
151.2 μJ.

PRACTICE 
●

13.4 Let is = 2 cos 10t A in the circuit of Fig. 13.14, and find the total 
energy stored in the passive network at t = 0 if k = 0.6 and terminals x 
and y are (a) left open-circuited; (b) short-circuited. 

Ans: 0.8 J; 0.512 J.

i1 i2

L2 v2 L1

+

–

v1

+

–

M

■  FIGURE 13.13 Two coils with a coupling 
coefficient of 0.6, L1 = 0.4 H and L2 = 2.5 H.

2.5 H0.4 H

3 Ω

is

xM

y

■  FIGURE 13.14
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13.3 • THE LINEAR TRANSFORMER
We are now ready to apply our knowledge of magnetic coupling to the description 
of two specific practical devices, each of which may be represented by a model 
containing mutual inductance. Both of the devices are transformers, a term which 
we define as a network containing two or more coils which are deliberately cou-
pled magnetically (Fig. 13.15). In this section we consider the linear transformer, 
which happens to be an excellent model for devices used at radio frequencies, or 
higher frequencies. In Sec. 13.4 we will consider the ideal transformer, which is 
an idealized lossless and unity-coupled model of a linear transformer.

■  FIGURE 13.15 A selection of small transformers for use in electronic applications; the AA battery is 
shown for scale only. (©Steve Durbin)

In Fig. 13.16 a transformer is shown with two mesh currents identified. 
The first mesh, usually containing the source, is called the primary, while 
the second mesh, usually containing the load, is known as the secondary. 
The inductors labeled L1 and L2 are also referred to as the primary and sec-
ondary, respectively, of the transformer. We will assume that the transformer 
is linear. This implies that no magnetic material (which may cause a non-
linear flux-versus-current relationship) is employed. Without such material, 
however, it is difficult to achieve a coupling coefficient greater than a few 
tenths. The two resistors serve to account for the resistance of the wire out 
of which the primary and secondary coils are wound, and any other losses.

Reflected Impedance
Consider the input impedance offered at the terminals of the primary cir-
cuit. The two mesh equations are

  V  s   =   (   R  1   + jω  L  1   )    I  1   − jωM  I  2   [11]

and

 0 = − jωM  I  1   +   (   R  2   + jω  L  2   +  Z  L   )    I  2   [12]

M

VL

+

–

+
–

Vs I2I1

R1 R2

L2L1 ZL

■  FIGURE 13.16 A linear transformer containing 
a source in the primary circuit and a load in the 
secondary circuit. Resistance is also included in both 
the primary and the secondary.
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We may simplify by defining

 Z  11   =  R  1   + jω  L  1         and         Z  22    =  R  2   + jω  L  2   +  Z  L   =  R  22   +  jX  22   

so that

  
 V  s    

=
  

 Z  11    I  1   − jωM  I  2     0  =  − jωM  I  1   +  Z  22    I  2  
  

[13]
[14]

Solving the second equation for I2 and inserting the result in the first 
equation enable us to find the input impedance,

  Z  in   =    V  s   __  I  1  
   =  Z  11   −     (  jω )     2   M   2  ______  Z  22  

   [15]

Before manipulating this expression any further, we can draw several 
exciting conclusions. The input impedance is independent of the location of 
the dots on either winding, which determines the sign involving M in Eqs. 
[11] to [15]. The input impedance is simply Z11 if the coupling is reduced 
to zero. As the coupling is increased from zero, the input impedance differs 
from Z11 by an amount ω2M2/Z22, termed the reflected impedance. The 
nature of this change is more evident if we expand this expression

 Z  in   =  Z  11   +       ω   2   M   2  ______  R  22   + j  X  22  
   


   

Reflected impedance

  

and rationalize the reflected impedance,

 Z  in   =  Z  11   +      𝜔   2   M   2   R  22   ______ 
 R  22  2   +  X  22  2  

   − j    𝜔   2   M   2   X  22   _______ 
 R  22  2   +  X  22  2  

    


    

Reflected impedance

   

Since  ω   2   M   2   R  22   /   (   R  22  2   +  X  22  2   )    must be positive, it is evident that the pres-
ence of the secondary increases the losses in the primary circuit. In other 
words, the presence of the secondary might be accounted for in the primary 
circuit by increasing the value of R1. Moreover, the reactance which the sec-
ondary reflects into the primary circuit has a sign which is opposite to that 
of X22. This reactance X22 is the sum of ωL2 and XL; it is necessarily positive 
for inductive loads and either positive or negative for capacitive loads.

Zin is the impedance seen looking into the primary 

coil of the transformer.

EXAMPLE 13.5
A linear transformer has R1 = R2 = 2 Ω, L1 = 4 mH, L2 = 8 mH, 
and ZL = 10 Ω. For operation at ω = 5000 rad/s, find M such that 
Zin is all real. 

The input impedance Zin will be all real when X11 is equal to the imagi-
nary part of the reflected impedance such that the reactance will cancel. 

 X  11   = ω  L  1   =    ω   2   M   2   X  22   _______ 
 R  22  2   +  X  22  2  

  

Solving for M,

M =  √ 

_________

     L  1   ( R  22  2   +  X  22  2  )   _________ 
ω  X  22  

    

Inserting values, where R22 = 2 + 10 = 12 Ω and X22 = ωL2 = 40 Ω

M =  √ 
______________

     (4 ×  10   −3 )  ( 12   2  +  40   2 )   ______________  
 (5 ×  10   3 )  (40) 

     = 5.906 mH
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T and Π Equivalent Networks
It is often convenient to replace a transformer with an equivalent network in 
the form of a T or Π. If we separate the primary and secondary resistances 
from the transformer, only the pair of mutually coupled inductors remains, 
as shown in Fig. 13.17. Note that the two lower terminals of the transformer 
are connected together to form a three-terminal network. We do this because 
both of our equivalent networks are also three-terminal networks. The dif-
ferential equations describing this circuit are, once again,

  v  1   =  L  1     
d  i  1   ___ 
dt

   + M   d  i  2   ___ 
dt

   [16]

and

  v  2   = M   d  i  1   ___ 
dt

   +  L  2     
d  i  2   ___ 
dt

   [17]

The form of these two equations is familiar and may be easily interpreted in 
terms of mesh analysis with currents i1 and i2 where the two meshes share 
a common self-inductance M. An equivalent network consisting of L1 − M, 
M, and L2 − M is shown in Fig. 13.18, resulting in identical pairs of equa-
tions relating v1, i1, v2, and i2 for the two networks.

■  FIGURE 13.18 The T equivalent of the transformer 
shown in Fig. 13.17.

i1 i2

v2

+

–

v1

+

–

M

L1 – M L2 – M

If either of the dots on the windings of the given transformer is placed on 
the opposite end of its coil, the sign of the mutual terms in Eqs. [16] and [17] 
will be negative. This is analogous to replacing M with −M, and such a replace-
ment in the network of Fig. 13.18 leads to the correct equivalent for this case. 
(The three self-inductance values would then be L1 + M, −M, and L2 + M.)

The inductances in the T equivalent are all self-inductances; no mutual 
inductance is present. It is possible that negative values of inductance may 
be obtained for the equivalent circuit, but this is immaterial if our only de-
sire is a mathematical analysis. There are times when procedures for syn-
thesizing networks to provide a desired transfer function lead to circuits 
containing a T network having a negative inductance; this network may then 
be realized by the use of an appropriate linear transformer.

PRACTICE 
●

13.5 Element values for a certain linear transformer are R1 = 3 Ω,  
R2 = 6 Ω, L1 = 2 mH, L2 = 10 mH, and M = 4 mH. If ω = 5000 rad/s, 
find Zin for cases where ZL is equal to (a) 10 Ω; (b) j20 Ω; (c) 10 + j20 Ω; 
(d) −j20 Ω. 

Ans: 5.32 + j2.74 Ω; 3.49 + j4.33 Ω; 4.24 + j4.57 Ω; 5.56 − j2.82 Ω.

■  FIGURE 13.17 A given transformer which is to be 
replaced by an equivalent Π or T network.

i1 i2

L2 v2 L1

+

–

v1

+

–

M
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EXAMPLE 13.6
Find the T equivalent of the linear transformer shown in 
Fig. 13.19a.

We identify L1 = 30 mH, L2 = 60 mH, and M = 40 mH, and note that 
the dots are both at the upper terminals, as they are in the basic circuit 
of Fig. 13.17.

Hence, L1 − M = −10 mH is in the upper left arm, L2 − M = 20 
mH is at the upper right, and the center stem contains M = 40 mH. The 
complete equivalent T is shown in Fig. 13.19b.

To demonstrate the equivalence, let us leave terminals C and D  
open-circuited and apply vAB = 10 cos 100t V to the input in Fig. 13.19a. 
Thus,

 i  1   =   1 _______ 
30 ×  10   −3 

   ∫ 10 cos   (  100t )   dt = 3.33 sin  100t A

and

  v  CD    =  M   d  i  1   ___ 
dt

   = 40 ×  10   −3  × 3.33 × 100 cos  100t     
 
  

=
  

13.33 cos  100t V
  

Applying the same voltage in the T equivalent, we find that

 i  1   =   1 ____________  
  (  − 10 + 40 )    ×  10   −3 

   ∫ 10 cos   (  100t )   dt = 3.33 sin  100t A

once again. Also, the voltage at C and D is equal to the voltage across 
the 40 mH inductor. Thus,

 v  CD   = 40 ×  10   −3  × 3.33 × 100 cos  100t = 13.33 cos  100t V

and the two networks yield equal results.

PRACTICE 
●

13.6 (a) If the two networks shown in Fig. 13.20 are equivalent, specify 
values for Lx, Ly, and Lz. (b) Repeat if the dot on the secondary in 
Fig. 13.20b is located at the bottom of the coil. 

(a)

C

D

A

B

Lz

LyLx

(b)

3.5 H

6 H2 H

A C

B D

■  FIGURE 13.20

Ans: 1.5, 2.5, 3.5 H; 5.5, 9.5, −3.5 H

Obtaining the equivalent Π network is more complicated. The equiv-
alent network may be represented as a pair of nodal equations, where a 
step-current source must be installed at each node in order to provide the 

i1 i2

(a)

40 mH

60 mH30 mH

A C

B D

i2i1

(b)

C

D

A

B

40 mH

20 mH–10 mH

i1 i2

(a)

40 mH

60 mH30 mH

A C

B D

i2i1

(b)

C

D

A

B

40 mH

20 mH–10 mH

■  FIGURE 13.19 (a) A linear transformer used as 
an example. (b) The T-equivalent network of the 
transformer.
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proper initial conditions. Integration is required due to the relation of nodal 
voltages to inductance, where the factors multiplying each integral have the 
general form of inverses of certain equivalent inductances. The resulting 
equivalent Π network is shown in Fig. 13.21.

 L  A   =   
 L  1    L  2   −  M   2 

 _______  L  2   − M  

 L  B   =   
 L  1    L  2   −  M   2 

 _______ 
M

  

 L  C   =   
 L  1    L  2   −  M   2 

 _______  L  1   − M  

■  FIGURE 13.21 The Π network which is equivalent to the transformer shown in Fig. 13.17.

i1

L1L2 – M2

L2 – M
L1L2 – M2

L1 – M

L1L2 – M2

M

i1(0)u (t) i2(0)u (t)LA LC

LB

v1

+

–

v2

+

–

i2

No magnetic coupling is present among the inductors in the equivalent Π, and 
the initial currents in the three self-inductances are zero. We may compensate 
for a reversal of either dot in the given transformer by merely changing the 
sign of M in the equivalent network. Also, just as we found in the equivalent 
T, negative self-inductances may appear in the equivalent Π network.

EXAMPLE 13.7
Find the equivalent Π network of the transformer in Fig. 13.19a, 
assuming zero initial currents.

Since the term L1L2 − M2 is common to LA, LB, and LC, we begin by 
evaluating this quantity, obtaining

30 ×  10   −3  × 60 ×  10   −3  −   (  40 ×  10   −3  )     2  = 2 ×  10   −4    H   2 

Thus,

  
 L  A  

  
=

  
   L  1    L  2   −  M   2  _______  L  2   − M  

  
=

  
  2 ×  10   −4  _______ 
20 ×  10   −3 

  
  
=

  
10 mH

     
 L  C  

  
=

  
   L  1    L  2   −  M   2  _______  L  1   − M  

  
=

  
− 20 mH

  
 
  

 
 

and

 L  B   =    L  1    L  2   −  M   2  _______ 
M

   = 5 mH

The equivalent Π network is shown in Fig. 13.22. (Continued on next page)

i2i1
C

D

A

B

–20 mH

5 mH

10 mH

■  FIGURE 13.22 The Π equivalent of the linear 
transformer shown in Fig. 13.19a. It is assumed that 
i1(0) = 0 and i2(0) = 0.
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If we again check our result by letting vAB = 10 cos 100t V with terminals 
C-D open-circuited, the output voltage is quickly obtained by voltage division:

 v  CD   =   − 20 ×  10   −3   _____________  
5 ×  10   −3  − 20 ×  10   −3 

   10 cos  100t = 13.33 cos  100t V

as before. Thus, the network in Fig. 13.22 is electrically equivalent to 
the networks in Fig. 13.19a and b.

PRACTICE 
●

13.7 If the networks in Fig. 13.23 are equivalent, specify values (in 
mH) for LA, LB, and LC. 

(b)

3.4 H

6 H2 H

A C

B D
(a)

i2i1
C

D

A

B

LA LC

LB

(b)

3.4 H

6 H2 H

A C

B D
(a)

i2i1
C

D

A

B

LA LC

LB

■  FIGURE 13.23

Ans: LA = 169.2 mH, LB = 129.4 mH, LC = −314.3 mH.

COMPUTER-AIDED ANALYSIS

The ability to simulate circuits that contain magnetically coupled induc-
tances is a useful skill, especially with circuit dimensions continuing to 
decrease. As various loops and partial loops of conductors are brought 
closer in new designs, various circuits and subcircuits that are intended 
to be isolated from one another inadvertently become coupled through 
stray magnetic fields and interact with one another. LTspice allows us 
to specify mutual inductance using a SPICE directive called a K state-
ment, which links a pair of inductors in the schematic by a coupling 
coefficient k in the range of 0 ≤ k ≤ 1.

For example, consider the circuit of Fig. 13.19a, which consists of 
two coils whose coupling is described by a mutual inductance of M =  
40 mH, corresponding to a coupling coefficient of k = 0.9428. The basic 
circuit schematic is shown in Fig. 13.24a. The two coupled inductors, 
L1 and L2, are specified along with the coupling coefficient through a  
SPICE directive K1 L1 L2 0.9428, which defines the coupling K1  
between inductors L1 and L2 with a coupling coefficient of k = 0.9428.
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(a)

(b)

■  FIGURE 13.24 (a) The circuit of Fig. 13.19a, modified to meet simulation requirements. (b) 
Simulation output showing the voltage waveforms for VAB and VCD.

The circuit is connected to a 100 rad/s (15.92 Hz) sinusoidal volt-
age source. It is also necessary to add two resistors to the schematic in 
order for LTspice to perform the simulation without generating an error 
message. First, a small series resistance has been inserted between the 
voltage source and L1; a value of 1 pΩ was selected to minimize its 
effects. Second, a 1000 MΩ resistor (essentially infinite) was connect-
ed to L2. The output of the simulation is a voltage magnitude of 13.33 
V that is in phase with the sinusoidal input; in agreement with the 
values calculated by hand in Example 13.6.
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13.4 • THE IDEAL TRANSFORMER
An ideal transformer is a linear transformer that is lossless and perfectly 
coupled. In other words, there are no resistive losses and there is no leakage 
flux associated with the magnetic coupling (i.e., k = 1). The ideal transformer 
is a useful approximation for the case where the coupling coefficient is near 
unity and both the primary and secondary inductive reactances are extremely 
large in comparison with the terminating impedances. These characteristics 
are closely approached by most well-designed iron-core transformers for 
common ranges of frequencies and terminal impedances. The approximate 
analysis of a circuit containing an iron-core transformer may be achieved 
very simply by replacing that transformer with an ideal transformer.

Turns Ratio of an Ideal Transformer
One new concept arises with the ideal transformer: the turns ratio a. The 
self-inductance of a coil is proportional to the square of the number of 
turns of wire forming the coil. This relationship is valid only if all the flux 
established by the current flowing in the coil links all the turns. In order 
to develop this result quantitatively it is necessary to utilize magnetic field 
concepts, a subject that is not included in our discussion of circuit analysis. 
However, a qualitative argument may suffice. If a current i flows through a 
coil of N turns, then N times the magnetic flux of a single-turn coil will be 
produced. If we think of the N turns as being coincident, then all the flux 
certainly links all the turns. As the current and flux change with time, a 
voltage is then induced in each turn which is N times larger than that caused 
by a single-turn coil. Thus, the voltage induced in the N-turn coil must be 
N2 times the single-turn voltage. From this, the proportionality between 
inductance and the square of the numbers of turns arises. It follows that

    L  2   __  L  1  
   =    N  2  

2  __ 
 N  1  

2 
   =  a   2  [18]

or

  a =    N  2   _  N  1  
    [19]

Figure 13.25 shows an ideal transformer to which a secondary load is con-
nected. The ideal nature of the transformer is established by several conven-
tions: the use of the vertical lines between the two coils to indicate the iron 
laminations present in many iron-core transformers, the unity value of the 
coupling coefficient, and the presence of the symbol 1:a, suggesting a turns 
ratio of N1 to N2.

Let us analyze this transformer in the sinusoidal steady state. The two 
mesh equations are

  V  1   = jω  L  1    I  1   − jωM  I  2   [20]

  0 = − jωM  I  1   +   (   Z  L   + jω  L  2   )    I  2    [21]

I2I1 L2L1V1

+

–

V2

+

–

1 : a

k = 1

ZL

■  FIGURE 13.25 An ideal transformer is connected 
to a general load impedance.
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First, consider the input impedance of an ideal transformer. By solving 
Eq. [21] for I2 and substituting in Eq. [20], we obtain

 V  1   =  I  1   jω  L  1   +  I  1      ω   2   M   2  ______  Z  L   + jω  L  2  
  

and

 Z  in   =    V  1   __  I  1  
   = jω  L  1   +    ω   2   M   2  ______  Z  L   + jω  L  2  

  

Since k = 1, M2 = L1L2, so

 Z  in   = jω  L  1   +    ω   2   L  1    L  2   ______  Z  L   + jω  L  2  
  

and substituting L2 = a2L1,

 Z  in   = jω  L  1   +    ω   2   a   2   L  1  2  ________  
 Z  L   + jω  a   2   L  1  

  

Besides a unity coupling coefficient, another characteristic of an ideal 
transformer is an extremely large impedance for both the primary and 
secondary coils, regardless of the operating frequency. This suggests that 
the ideal case would be for both L1 and L2 to tend to infinity. Now if we let 
L1 become infinite, both of the terms on the right-hand side of the preced-
ing equation become infinite, and the result is indeterminate. Thus, it is 
necessary to first combine these two terms. The input impedance may be 
rewritten as:

 Z  in   =   jω  L  1    Z  L   ________  
 Z  L   + jω  a   2   L  1  

   =    Z  L   __________  
 ( Z  L   / jω  L  1  )  +  a   2 

  

Now as L1 → ∞, and for finite ZL, we see that Zin becomes

 Z  in   =    Z  L   __ 
 a   2 

  

The first important characteristic of the ideal transformer is therefore its 
ability to change the magnitude of an impedance, or to change impedance 
level. An ideal transformer having 100 primary turns and 10,000 second-
ary turns has a turns ratio of 10,000/100, or 100. Any impedance placed 
across the secondary then appears at the primary terminals reduced in 
magnitude by a factor of 1002, or 10,000. A 20,000 Ω resistor looks like 2 
Ω, a 200 mH inductor looks like 20 μH, and a 100 pF capacitor looks like 
1 μF. If the primary and secondary windings are interchanged, then a = 
0.01 and the load impedance is apparently increased in magnitude. In 
practice, this holds when ZL is very small in comparison with jωL2, where 
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the ideal transformer model will become invalid if the load impedance 
becomes significant.

Use of Transformers for Impedance Matching
A practical example of the use of an iron-core transformer as a device 
for changing impedance level is in the coupling of an amplifier to a 
speaker system. In order to achieve maximum power transfer, we know 
that the resistance of the load should be equal to the internal resistance 
of the source; the speaker usually has an impedance magnitude (often 
assumed to be a resistance) of only a few ohms, while an amplifier may 
possess an internal resistance of several thousand ohms. Thus, an ideal 
transformer is required in which N2 < N1. For example, if the amplifier 
internal impedance is 4000 Ω and the speaker impedance is 8 Ω, then 
we desire that

 Z  in   = 4000 =    Z  L   __ 
 a   2 

   =   8 __ 
 a   2 

  

And solving for a,

a =    N  2   __  N  1  
   =   1 _____ 22.36  

Use of Transformers for Current Adjustment
There is a simple relationship between the primary and secondary currents 
I1 and I2 in an ideal transformer. From Eq. [23],

   I  2   __  I  1  
   =   jωM ______  Z  L   + jω  L  2  

  

Once again we allow L2 to become infinite, and it follows that

   I  2   __  I  1  
   =   jωM ____ 

jω  L  2  
   =  √ 

__

    L  1   __  L  2  
    

or

     I  2   _  I  1  
   =   1 _ a    [22]

Thus, the ratio of the primary and secondary currents is the turns ratio. If we 
have N2 > N1, then a > 1, and it is apparent that the larger current flows in 
the winding with the smaller number of turns. In other words,

 N  1    I  1   =  N  2    I  2  

It should also be noted that the current ratio is the negative of the turns ratio 
if either current is reversed or if either dot location is changed.

In our example in which an ideal transformer was used to change the 
impedance level to efficiently match a speaker to an amplifier, an rms cur-
rent of 50 mA at 1000 Hz in the primary causes an rms current of 1.12 A at 
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1000 Hz in the secondary. The power delivered to the speaker is (1.12)2(8), 
or 10 W, and the power delivered to the transformer by the power amplifier 
is (0.05)2(4000), or 10 W. The result confirms energy conservation, since 
the ideal transformer contains neither an active device which can generate 
power nor any resistor which can absorb power.

Use of Transformers for Voltage Level Adjustment
Since the power delivered to the ideal transformer is identical with that de-
livered to the load, whereas the primary and secondary currents are related 
by the turns ratio, it should seem reasonable that the primary and secondary 
voltages must also be related to the turns ratio. If we define the secondary 
voltage, or load voltage, as

 V  2   =  I  2    Z  L  

and the primary voltage as the voltage across L1, then

 V  1   =  I  1    Z  in   =  I  1     
 Z  L   __ 
 a   2 

  

The ratio of the two voltages then becomes

   V  2   __  V  1  
   =  a   2     I  2   __  I  1  

  

or

     V  2   _  V  1  
   = a =    N  2   _  N  1  

    [23]

The ratio of the secondary to the primary voltage is equal to the turns ratio. 
Note that this equation is the opposite of Eq. [22], and this is a common 
source of error for students. This ratio may also be negative if either voltage 
is reversed or either dot location is changed.

Simply by choosing the turns ratio, therefore, we can now change any 
ac voltage to any other ac voltage. If a > 1, the secondary voltage will be 
greater than the primary voltage, and we have what is commonly referred to 
as a step-up transformer. If a < 1, the secondary voltage will be less than 
the primary voltage, and we have a step-down transformer. Utility compa-
nies typically generate power at a voltage in the range of 12 kV to 25 kV. Al-
though this is a rather large voltage, transmission losses over long distances 
can be reduced by increasing the level to several hundred thousand volts 
using a step-up transformer (Fig. 13.26a). This voltage is then reduced to 
several tens of kilovolts at substations for local power distribution using step-
down transformers (Fig. 13.26b). Additional step-down transformers are 
located outside buildings to reduce the voltage from the transmission voltage 
to the 110 V or 220 V level required to operate machinery (Fig. 13.26c).

Combining the voltage and current ratios, Eqs. [22] and [23],

 V  2    I  2   =  V  1    I  1  

and we see that the primary and secondary complex voltamperes are equal. 
The magnitude of this product is usually specified as a maximum allowable 
value on power transformers. 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

■  FIGURE 13.26 (a) A step-up transformer 
used to increase the generator output voltage for 
transmission. (b) Substation transformer used to 
reduce the voltage from the 220 kV transmission level 
to several tens of kilovolts for local distribution. (c) 
Step-down transformer used to reduce the distribution 
voltage level to 240 V for power consumption.  
(Courtesy of Dr. Wade Enright, Te Kura 
Pukaha Vira O Te Whare Wananga O 
Waitaha, Aotearoa)
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EXAMPLE 13.8
For the circuit given in Fig. 13.27, determine the average power 
dissipated in the 10 kΩ resistor.

V2

+

–

V1

+

–

1 : 10

I1 I2
+
–

100 Ω

10 kΩ50 V rms

■  FIGURE 13.27 A simple ideal transformer circuit.

The average power dissipated by the 10 kΩ resistor is simply

P = 10, 000  ∣ I  2  ∣   2 
The 50 V rms source “sees” a transformer input impedance of ZL/a2 or 
100 Ω. Thus, we obtain

 I  1   =   50 _______ 100 + 100   = 250 mA rms

From Eq. [27], I2 = (1/a)I1 = 25 mA rms, so we find that the 10 kΩ 
resistor dissipates 6.25 W.

PRACTICE 
●

13.8 Repeat Example 13.8 using voltages to compute the dissipated 
power. 

Ans: 6.25 W.

Voltage Relationship in the Time Domain
The characteristics of the ideal transformer that we have obtained have all 
been determined by phasor analysis. They are certainly true in the sinusoidal 
steady state, but we have no reason to believe that they are correct for the com-
plete response. Actually, they are applicable in general, and the demonstration 
that this statement is true is much simpler than the phasor-based analysis we 
have just completed. Let us now determine how the time-domain quantities v1 
and v2 are related in the ideal transformer. Returning to the circuit shown in 
Fig. 13.17 and the two equations, [16] and [17], describing it, we may solve 
the second equation for di2/dt and substitute in the first equation:

 v  1   =  L  1     
d  i  1   ___ 
dt

   +   M __  L  2  
    v  2   −    M   2  ___  L  2  

     d  i  1   ___ 
dt

  

However, for unity coupling, M2 = L1L2, and so

 v  1   =   M __  L  2  
    v  2   =  √ 

__

    L  1   __  L  2  
      v  2   =   1 _ a    v  2  

The relationship between primary and secondary voltage therefore does 
apply to the complete time-domain response.
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For the most part, we have neglected the various types 
of losses that may be present in a particular transformer. 
When dealing with large power transformers, however, 
close attention must be paid to such nonidealities, de-
spite overall efficiencies of typically 97 percent or more. 
Although such a high efficiency may seem nearly ide-
al, it can represent a great deal of wasted energy when 
the transformer is handling several thousand amperes. 
So-called i2R (pronounced “eye-squared-R”) losses rep-
resent power dissipated as heat, which can increase the 
temperature of the transformer coils. Wire resistance in-
creases with temperature, so heating only leads to greater 
losses. High temperatures can also lead to degradation of 
the wire insulation, resulting in shorter transformer life. 
As a result, many modern power transformers employ a 
liquid oil bath to remove excess heat from the transform-
er coils. Such an approach has its drawbacks, however, 
including environmental impact and fire danger from 
leaking oil as a result of corrosion over time (Fig. 13.28).

One possible means of improving the performance 
of such transformers is to make use of superconducting 
wire to replace the resistive coils of a standard trans-
former design. Superconductors are materials that are 
resistive at high temperatures but suddenly show no 
resistance to the flow of current below a critical tem-
perature. Most elements are superconducting only near 
absolute zero, requiring expensive liquid helium–based 
cryogenic cooling. With the discovery in the 1980s of 
ceramic superconductors with critical temperatures of 
90 K (−183°C) and higher, it became possible to replace 
helium–based equipment with significantly cheaper liq-
uid nitrogen systems.

Figure 13.29 shows a prototype partial-core super-
conducting transformer being developed at the University 
of Canterbury. This design uses environmentally benign 
liquid nitrogen in place of an oil bath, and it is also sig-
nificantly smaller than a comparably rated conventional 
transformer. The result is a measurable improvement in 
overall transformer efficiency, which translates into op-
erational cost savings for the owner.

Still, all designs have disadvantages that must be 
weighed against their potential advantages, and super-
conducting transformers are no exception. The most sig-
nificant obstacle at present is the relatively high cost of 

PRACTICAL APPLICATION
Superconducting Transformers

PRACTICAL APPLICATION

■  FIGURE 13.28 Fire that broke out in 2004 at the 340,000 V American 
Electric Power Substation near Mishawaka, Indiana. (©Greg Swiercz/
South Bend Tribune/AP Images)

■  FIGURE 13.29 Prototype 15 kVA partial core superconducting power 
transformer. (Courtesy of Department of Electrical and Computer 
Engineering, University of Canterbury)

(Continued on next page)
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An expression relating primary and secondary current in the time 
domain is most quickly obtained by dividing Eq. [16] throughout by L1,

   v  1   __  L  1  
   =   d  i  1   ___ 

dt
   +   M __  L  1  

     d  i  2   ___ 
dt

   =   d  i  1   ___ 
dt

   + a   d  i  2   ___ 
dt

  

and then invoking one of the hypotheses underlying the ideal transformer: 
L1 must be infinite. If we assume that v1 is not infinite, then

  d  i  1   ___ 
dt

   = − a   d  i  2   ___ 
dt

  

Integrating,

 i  1   = − a  i  2   + A

where A is a constant of integration that does not vary with time. Thus, if we 
neglect any direct currents in the two windings and fix our attention only on 
the time-varying portion of the response, then

 i  1   = − a  i  2  

The minus sign arises from the placement of the dots and the selection of 
the current directions in Fig. 13.17.

The same current and voltage relationships are therefore obtained 
in the time domain as were obtained previously in the frequency do-
main, provided that dc components are ignored. The time-domain 
results are more general, but they have been obtained by a less infor-
mative process.

Equivalent Circuits
The characteristics of the ideal transformer which we have established 
may be used to simplify circuits in which ideal transformers appear. 
Let us assume, for purposes of illustration, that everything to the left of 
the primary terminals has been replaced by its Thévenin equivalent, as 
has the network to the right of the secondary terminals. We thus con-
sider the circuit shown in Fig. 13.30. Excitation at any frequency ω is 
assumed.

fabricating superconducting wire several kilometers in 
length compared to copper wire. Part of this is due to the 
challenge of fabricating long wires from ceramic mate-
rials, but part of it is also due to the silver tubing used to 
surround the superconductor to provide a low-resistance 
current path in the event of a cooling system failure 
(although less expensive than silver, copper reacts with 
the ceramic and is therefore not a viable alternative). The 

net result is that although a superconducting transformer 
is likely to save a utility money over a long period of 
time—many transformers see over 30 years of service—
the initial cost is much higher than for a traditional resis-
tive transformer. At present, many companies (including 
utilities) are driven by short-term cost considerations 
and are not always eager to make large capital invest-
ments with only long-term cost benefits.
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Thévenin’s or Norton’s theorem may be used to achieve an equivalent 
circuit that does not contain a transformer. For example, let us determine 
the Thévenin equivalent of the network to the left of the secondary termi-
nals. Open-circuiting the secondary, I2 = 0 and therefore I1 = 0 (remember 
that L1 is infinite). No voltage appears across Zg1, and thus V1 = Vs1 and 
V2oc = aVs1. The Thévenin impedance is obtained by setting Vs1 to zero 
and utilizing the square of the turns ratio, being careful to use the recipro-
cal turns ratio, since we are looking in at the secondary terminals. Thus, 
ZTH2 = Zg1a

2.
As a check on our equivalent, let us also determine the short-circuit 

secondary current I2sc. With the secondary short-circuited, the pri-
mary generator faces an impedance of Zg1, and, thus, I1 = Vs1/Zg1. 
Therefore, I2sc = Vs1/aZg1. The ratio of the open-circuit voltage to the 
short-circuit current is a2Zg1, as it should be. The Thévenin equiva-
lent of the transformer and primary circuit is shown in the circuit of 
Fig. 13.31.

V2

+

–

I2

Vs2aVs1
+
–

+
–

a2Zg1 Zg2

■  FIGURE 13.31 The Thévenin equivalent of the network 
to the left of the secondary terminals in Fig. 13.30 is used to 
simplify that circuit.

Each primary voltage may therefore be multiplied by the turns ra-
tio, each primary current divided by the turns ratio, and each primary 
impedance multiplied by the square of the turns ratio; and then these 
modified voltages, currents, and impedances replace the given voltages, 
currents, and impedances plus the transformer. If either dot is inter-
changed, the equivalent may be obtained by using the negative of the 
turns ratio.

V2

+

–

V1

+

–

I2I1

Vs2Vs1

1 : a

k = 1

+
–

+
–

Zg1 Zg2

■  FIGURE 13.30 The networks connected to the primary and secondary 
terminals of an ideal transformer are represented by their Thévenin equivalents.
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Note that this equivalence, as illustrated by Fig. 13.31, is possible only 
if the network connected to the two primary terminals, and that connected 
to the two secondary terminals, can be replaced by their Thévenin equiva-
lents. That is, each must be a two-terminal network. For example, if we cut 
the two primary leads at the transformer, the circuit must be divided into 
two separate networks; there can be no element or network bridging across 
the transformer between primary and secondary.

A similar analysis of the transformer and the secondary network shows 
that everything to the right of the primary terminals may be replaced by an 
identical network without the transformer, each voltage being divided by a, 
each current being multiplied by a, and each impedance being divided by 
a2. A reversal of either winding requires the use of a turns ratio of −a.

EXAMPLE 13.9
For the circuit given in Fig. 13.32, determine the equivalent circuit 
in which the transformer and the secondary circuit are replaced, 
and also that in which the transformer and the primary circuit are 
replaced.

V2

+

–

V1

+

–

1 : 10

I1 I2
+
–

100 Ω

10 kΩ50 V rms

■  FIGURE 13.32 A simple circuit in which a resistive load is 
matched to the source impedance by means of an ideal transformer.

This is the same circuit we analyzed in Example 13.8. As before, the 
input impedance is 10,000/(10)2, or 100 Ω and so ∣I1∣ = 250 mA rms. 
We can also compute the voltage across the primary coil

 ∣ V  1  ∣  =  ∣50 − 100  I  1  ∣  = 25 V rms

and thus find that the source delivers (25 × 10−3) (50) = 12.5 W, of 
which (25 × 10−3)2(100) = 6.25 W is dissipated in the internal resis-
tance of the source and 12.5 − 6.25 = 6.25 W is delivered to the load. 
This is the condition for maximum power transfer to the load.

If the secondary circuit and the ideal transformer are removed by 
the use of the Thévenin equivalent, the 50 V source and 100 Ω resistor 
simply see a 100 Ω impedance, and the simplified circuit of Fig. 13.33a 
is obtained. The primary current and voltage are now immediately 
evident.

If, instead, the network to the left of the secondary terminals is 
replaced by its Thévenin equivalent, we find (keeping in mind the 
location of the dots) VTH = −10(50) = −500 V rms, and ZTH = 
(−10)2(100) = 10 kΩ; the resulting circuit is shown in Fig. 13.33b.

I1

+
– 100 Ω

100 Ω

50 V rms V1

+

–

(a)

I2

+
–

10 kΩ

–500 V rms V2

+

–

(b)

10 kΩ

I1

+
– 100 Ω

100 Ω

50 V rms V1

+

–

(a)

I2

+
–

10 kΩ

–500 V rms V2

+

–

(b)

10 kΩ

■  FIGURE 13.33 The circuit of Fig. 13.32 is simplified 
by replacing (a) the transformer and secondary circuit 
with the Thévenin equivalent or (b) the transformer 
and primary circuit with the Thévenin equivalent.
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SUMMARY AND REVIEW

Transformers play a critical role in the power industry, allowing voltages to 
be stepped up for transmission and stepped down to the level required for 
individual pieces of equipment. In this chapter, we studied transformers in 
the broader context of magnetically coupled circuits, where the magnetic 
flux associated with current can link two or more elements in a circuit (or 
even neighboring circuits). This is most easily understood by extending the 
concept of inductance studied in Chap. 7 to introduce the idea of mutual 
inductance (also having units of henrys). We saw that the coefficient M of 
mutual inductance is limited to less than the geometric mean of the two 
inductances being coupled (i.e., M ≤  √ 

____
  L  1    L  2    ), and we used the dot conven-

tion to determine the polarity of the voltage induced across one inductance 
as a result of current flowing through the other. When the two inductances 
are not particularly close, M might be rather small. However, in the case 
of a well-designed transformer, it might approach its maximum value. To 
describe such situations, we introduced the concept of the coupling coef-
ficient k. When dealing with a linear transformer, analysis may be assisted 
by representing the element with an equivalent T (or, less commonly, Π) 
network, but a great deal of circuit analysis is performed assuming an ideal 
transformer. In such cases we no longer concern ourselves with M or k, but 
rather the turns ratio a. We saw that the voltages across the primary and 
secondary coils, as well as their individual currents, are related by this pa-
rameter. This approximation is very useful for both analysis and design. We 
concluded the chapter with a brief discussion of how Thévenin’s theorem 
can be applied to circuits with ideal transformers.

We could continue, as the study of inductively coupled circuits is an 
interesting and important topic, but at this point it might be appropriate to 
list some of the key concepts we have already discussed, along with corre-
sponding example numbers.

 Mutual inductance describes the voltage induced at the ends of a coil 
due to the magnetic field generated by a second coil. (Example 13.1)

PRACTICE 
●

13.9 Let N1 = 1000 turns and N2 = 5000 turns in the ideal transformer 
shown in Fig. 13.34. If ZL = 500 − j400 Ω, find the average power 
delivered to ZL for (a)  I  2   = 1.4    20   °   A rms; (b)  V  2   = 900    40   °   V rms;  
(c)  V  1   = 80    100   °   V rms; (d)  I  1   = 6    45   °   A rms; (e)  V  s   = 200    0   °   V rms. 

V2

+

–

V1

+

–

N1 : N2

+
–

10 Ω

Vs

I1 I2

ZL

■  FIGURE 13.34

Ans: 980 W; 988 W; 195.1 W; 720 W; 692 W.

/ /
/ / /
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 The dot convention allows a sign to be assigned to the mutual induc-
tance term. (Example 13.1)

 According to the dot convention, a current entering the dotted terminal 
of one coil produces an open-circuit voltage with a positive voltage ref-
erence at the dotted terminal of the second coil. (Examples 13.1, 13.2, 
13.3)

 The total energy stored in a pair of coupled coils has three separate 
terms: the energy stored in each self-inductance (  1 _ 2   L  i   2 ), and the energy 
stored in the mutual inductance (Mi1i2). (Example 13.4)

 The coupling coefficient is given by k = M /  √ 
____

  L  1    L  2     and is restricted to 
values between 0 and 1. (Example 13.4)

 A linear transformer consists of two coupled coils: the primary wind-
ing and the secondary winding. (Examples 13.5, 13.6, 13.7)

 An ideal transformer is a useful approximation for practical iron-core 
transformers. The coupling coefficient is taken to be unity, and the 
inductance values are assumed to be infinite. (Examples 13.8, 13.9)

 The turns ratio a = N2/N1 of an ideal transformer relates the primary 
and secondary coil voltages: V2 = aV1. (Example 13.9)

 The turns ratio a also relates the currents in the primary and secondary 
coils: I1 = aI2. (Examples 13.8, 13.9)

READING FURTHER
Almost everything you ever wanted to know about transformers can be found in:

M. Heathcote, J&P Transformer Book, 13th ed. Oxford: Reed Educational 
and Professional Publishing Ltd., 2007.

Another comprehensive transformer title is:

W. T. McLyman, Transformer and Inductor Design Handbook, 4th ed. 
New York: Marcel Dekker, 2011.

A good transformer book with a strong economic focus is:

B. K. Kennedy, Energy Efficient Transformers. New York: McGraw-Hill, 1998.

EXERCISES

13.1 Mutual Inductance
1. Consider the two inductances depicted in Fig. 13.35. Set L1 = 10 mH, L2 = 

5 mH, and M = 1 mH. Determine the steady-state expression for (a) v1 if i1 = 
0 and i2 = 5 cos 8t A; (b) v2 if i1 = 3 sin 100t A and i2 = 0; (c) v2 if i1 =  
5 cos (8t − 40°) A and i2 = 4 sin 8t A.

i1 i2

L2L1

M

v2

+

–

v1

+

–

■  FIGURE 13.35
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2. With respect to Fig. 13.36, assume L1 = 500 mH, L2 = 250 mH, and  
M = 20 mH. Determine the steady-state expression for (a) v1 if i1 = 0 and  
i2 = 3 cos 80t A; (b) v2 if i1 = 4 cos (30t − 15°) A and i2 = 0. (c) Repeat parts 
(a) and (b) if M is increased to 200 mH.

3. The circuit in Fig. 13.36 has a sinusoidal input at ω=2,000 rad/s with I1 =  
2    30   °   A and 100 Ω resistor attached across the terminals labeled v2. For the 
case where L1 = 400 mH, L2 = 100 mH, and M = 50 mH, determine V1, I2, 
and V2 in phasor form.

4. In Fig. 13.37, set L1 = 1 μH, L2 = 2 μH, and M = 150 nH. Obtain a steady-state 
expression for (a) v1 if i2 = −cos 70t mA and i1 = 0; (b) v2 if i1 = 55 cos (5t − 
30°) A; (c) v2 if i1 = 6 sin 5t A and i2 = 3 sin 5t A.

■  FIGURE 13.37

i1 i2

L2L1

M

v2

+

–

v1

–

+

5. For the configuration of Fig. 13.38, L1 = 0.5L2 = 1 mH and M = 0.85  √ 
____

  L  1    L  2    . 
Calculate v2(t) if (a) i2 = 0 and i1 = 5e−t mA; (b) i2 = 0 and i1 = 5 cos 10t mA; 
(c) i2 = 5 cos 70t mA and i1 = 0.5i2.

6. The circuit in Fig. 13.38 has a sinusoidal input at ω = 1,000 rad/s with I1 = 
3    45   °   A and a 100 Ω resistor attached across the terminals labeled v2. For the 
case where L1 = 50 mH, L2 = 250 mH, and M = 0.75  √ 

____
  L  1    L  2    , determine V1, 

I2, and V2 in phasor form.
7. The physical construction of three pairs of coupled coils is shown in Fig. 13.39. 

Show the two different possible locations for the two dots on each pair of coils.

/

/

1

2
3

4

(a)

1

2

3

4

(b)

2 1

3 4

(c)

■  FIGURE 13.39

■  FIGURE 13.38

i1 i2

L2L1

M

v2

+

–

v1

–

+

■  FIGURE 13.36

i1 i2

L2L1

M

v2

+

–

v1

–

+

8. In the circuit of Fig. 13.40, i1 = 5 cos (100t − 80°) mA, L1 = 1 H, and L2 = 2 
H. If v2 = 250 sin (100t − 80°) mV, calculate M.

v2

+

–

M

L1 L2i1

■  FIGURE 13.40
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9. In the circuit represented in Fig. 13.40, determine i1 if v2(t) = 4 cos 5t V, L1 = 
1 mH, L2 = 4 mH, and M = 1.5 mH.

10. Calculate v1 and v2 if i1 = 5 sin 40t mA and i2 = 5 cos 40t mA, L1 = 1 mH,  
L2 = 3 mH, and M = 0.5 mH, for the coupled inductances shown in  
(a) Fig. 13.37; (b) Fig. 13.38.

11. Calculate v1 and v2 if i1 = 3 cos (2000t + 13°) mA and i2 = 5 sin 400t mA,  
L1 = 1 mH, L2 = 3 mH, and M = 200 nH, for the coupled inductances shown in 
(a) Fig. 13.35; (b) Fig. 13.36.

12. For the circuit of Fig. 13.41, calculate I1, I2, V2/V1, and I2/I1.

I1 I2

4.7 kΩ 500 Ωj750 Ω

j2 kΩ 870 Ωj1.8 kΩ0° VV1 = 40 +
– V2

+

–

■  FIGURE 13.41

13. For the circuit of Fig. 13.42, plot the magnitude of V2/V1 as a function of 
frequency ω, over the range 0 ≤ ω ≤ 2 rad/s.

I1 I2

1 Ω 1 Ωj2ω Ω

j4ω 1 Ωj6ω0° VV1 = 40 +
– V2

+

–

■  FIGURE 13.42

14. For the circuit of Fig. 13.43, (a) draw the phasor representation; (b) write a 
complete set of mesh equations; (c) calculate i2(t) if v1(t) = 8 sin 720t V.

2 Ω
2 mH1 mH

v1
i2 i3i1

M  = 500 nH

+
–

1.8 Ω 1 mF

■  FIGURE 13.43

15. In the circuit of Fig. 13.43, M is reduced by an order of magnitude. Calculate i3 
if v1 = 10 cos (800t − 20°) V.

16. In the circuit shown in Fig. 13.44, find the average power absorbed by (a) the 
source; (b) each of the two resistors; (c) each of the two inductances; (d ) the 
mutual inductance.

1 H

+
– 5 Ω

10 Ω

3 H5 H2 cos 10t V

■  FIGURE 13.44
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17. The circuit of Fig. 13.45 is designed to drive a simple 8 Ω speaker. What value 
of M results in 1 W of average power being delivered to the speaker?

15 mH 3 mH 8 Ω
(speaker)

M

+
–15 cos 200t V

■  FIGURE 13.45

18. Determine an expression for ic(t) valid for t > 0 in the circuit of Fig. 13.46, if 
vs(t) = 10t2u(t) / (t2 + 0.01) V.

+
–

vs

+

–

vx

+

–

iC

100vx 1 μF

15 mH

10 mH 40 mH

■  FIGURE 13.46

19. For the coupled inductor network of Fig. 13.47a, set L1 = 20 mH, L2 = 30 mH, 
M = 10 mH, and obtain equations for vA and vB if (a) i1 = 0 and i2 = 5 sin 10t; 
(b) i1 = 5 cos 20t and i2 = 2 cos (20t−100°) mA. (c) Express V1 and V2 as 
functions of IA and IB for the network shown in Fig. 13.47b.

20. Note that there is no mutual coupling between the 5 H and 6 H inductors in the 
circuit of Fig. 13.48. (a) Write a set of equations in terms of I1( jω), I2( jω), and 
I3( jω). (b) Find I3( jω), if ω = 2 rad/s.

I1

100  

4 Ω

5 Ω

6 H
0 H

3 H

4 H

5 H

2 H

6 Ω
+
–

I3

I2

■  FIGURE 13.48

21. Find V1( jω) and V2( jω) in terms of I1( jω) and I2( jω) for each circuit of 
Fig. 13.49. 

V2

+

–
V1

+

–

(a)

L1 L2

R1 R2

MI1 I2

V2

–

+
V1

+

–

(b)

L1 L2

R1 R2
M

I1 I2

■  FIGURE 13.49

22. (a) Find Zin( jω) for the network of Fig 13.50. (b) Plot Zin over the frequency 
range of 0 ≤ ω ≤ 1000 rad/s. (c) Find Zin( jω) for ω = 50 rad/s.

V1

+

–

V2

+

–

IA

IB

M

L1

L2
vA

+

–

L2L1

(a)

M
i2

vB+ –
i1

(b)

V1

+

–

V2

+

–

IA

IB

M

L1

L2
vA

+

–

L2L1

(a)

M
i2

vB+ –
i1

(b)

■  FIGURE 13.47

Zin 5 Ω

0.2 H

0.5 H0.1 H

2 Ω

■  FIGURE 13.50
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13.2 Energy Considerations
23. For the coupled coils of Fig. 13.51, L1 = L2 = 10 H, and M is equal to its max-

imum possible value. (a) Compute the coupling coefficient k. (b) Calculate the 
energy stored in the magnetic field linking the two coils at t = 200 ms if i1 = 
10 cos 4t mA and i2 = 2 cos 4t mA.

24. With regard to the coupled inductors shown in Fig. 13.51, L1 = 10 mH, L2 = 5 mH, 
and k = 0.75. (a) Compute M. (b) If i1 = 100 sin 40t mA, and i2 = 0, compute the total 
energy stored in the system at t = 2 ms. (c) Repeat part (b) if i2 is set to 75 cos 40t mA.

25. For the circuit of Fig. 13.52, L1 = 4 mH, L2 = 12 mH, R1 = 1 Ω, R2 = 10 Ω, and 
v1 = 2 cos 8t V. (a) Obtain an equation for the phasor V2 as a function of k and 
circuit parameters. (b) Plot the magnitude and phase angle of V2 as a function of k. 

26. Connect a load  Z  L   = 5    33   °   Ω to the right-hand terminals of Fig. 13.51. Derive 
an expression for the input impedance at f = 100 Hz, seen looking into the left-
hand terminals, if L1 = 1.5 mH, L2 = 3 mH, and k = 0.55.

27. Consider the circuit represented in Fig. 13.53. The coupling coefficient k = 
0.75. If is = 5 cos 200t mA, calculate the total energy stored at t = 0 and t = 5 
ms if (a) a-b is open-circuited (as shown); (b) a-b is short-circuited.

is 1.2 mH 12 mH 100 mΩ

M3 mH a b

■  FIGURE 13.53

28. Compute v1, v2, and the average power delivered to each resistor in the circuit 
of Fig. 13.54.

1 H

1 H

1 H

1 H

4 cos 5t V

1 Ω

2 Ω

k2 = 0.82

k1 = 0.64

+
–

–

+
v1

–

+
v2

■  FIGURE 13.54

13.3 The Linear Transformer
29. Assume the following values for the circuit depicted schematically in Fig. 13.16: 

R1 = R2 = 5 Ω, L1 = 2 μH, L2 = 1 μH, and M = 800 nH. Calculate the input im-
pedance for ω = 107 rad/s if ZL is equal to (a) 1 Ω; (b) j Ω; (c) −j Ω; (d) 5    33   °   Ω.

30. Determine the T equivalent of the linear transformer represented in Fig. 13.55 
(draw and label an appropriate diagram).

i1 i2
25 nH

13 nH130 nH

A C

B D

■  FIGURE 13.55

/

/

i1 i2

L2 v2 L1

+

–

v1

+

–

M

■  FIGURE 13.51

+

–

k

+
–

v1

R1

L1 R2L2 v2

■  FIGURE 13.52
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31. (a) Draw and label an appropriate diagram of a T equivalent network for the 
linear transformer shown in Fig. 13.56. (b) Calculate the open circuit voltage 
phasor VCD for the case where VAB = 5    45   °   V(frequency of 60 Hz).

32. Represent the T network shown in Fig. 13.57 as an equivalent linear transformer 
if (a) Lx = 1 H, Ly = 2 H, and Lz = 4 H; (b) Lx = 10 mH, Ly = 50 mH, and Lz = 
22 mH.

■  FIGURE 13.57

i2i1
C

D

A

B

Lz

LyLx

33. Assuming zero initial currents, obtain an equivalent Π network of the trans-
former depicted in Fig. 13.55.

34. (a) Draw and label a suitable equivalent Π network of the linear transformer 
shown in Fig. 13.56, assuming zero initial currents. (b) Verify their equiva-
lence with an appropriate simulation.

35. Represent the Π network of Fig. 13.58 as an equivalent linear transformer with 
zero initial currents if (a) LA = 1 H, LB = 2 H, and LC = 4 H; (b) LA = 10 mH, 
LB = 50 mH, and LC = 22 mH.

36. For the circuit of Fig. 13.59, determine an expression for (a) IL/Vs;  
(b) V1/Vs.

■  FIGURE 13.59

2 Ω

1.5 Ω
2 H

8 H4 Hvs
+
–

iL

v1

+

–

37. (a) For the circuit of Fig. 13.60, if vs = 8 cos 1000t V, calculate vo.  
(b) Verify your solution with an appropriate LTspice simulation.

■  FIGURE 13.60

k = 1k = 0.9

50 mH
5 mH25 mH10 mH 10 Ω vo

+

–

2 Ω

+
–vs

38. For the circuit of Fig. 13.60, redraw using equivalent T networks. Calculate vo 
for the case where vs = 12 sin 500t V. 

13.4 The Ideal Transformer
39. Calculate I2 and V2 for the ideal transformer circuit of Fig. 13.61 if (a)  V  1   = 4  

   32   °   V and  Z  L   = 1 − j Ω; (b)  V  1   = 4    32   °   V and ZL = 0; (c)  V  1   = 2    118   °   V and  
Z  L   = 1.5    10   °   Ω.

40. With respect to the ideal transformer circuit depicted in Fig. 13.61, calculate I2 
and V2 if (a)  I  1   = 244    0   °   mA and ZL = 5 − j2 Ω; (b)  I  1   = 100    10   °   mA and  
ZL = j2 Ω.

/

/ / /
/

/ /

■  FIGURE 13.56

i1 i2
1 H

2 H25 H

A C

B D

■  FIGURE 13.61

I2I1V1

+

–

V2

+

–

1 : 6

ZL

i2i1
C

D

A

B

LA LC

LB

■  FIGURE 13.58
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41. Calculate the average power delivered to the 400 mΩ and 21 Ω resistors, 
respectively, in the circuit of Fig. 13.62.

■  FIGURE 13.62

v2

+

–

v1

+

–

1 : 100

i1 i2
+
–

3 Ω 400 mΩ

21 Ω2 cos 280t V

42. With regard to the ideal transformer circuit represented in Fig. 13.62, deter-
mine an equivalent circuit in which (a) the transformer and primary circuit are 
replaced, so that V2 and I2 are unchanged; (b) the transformer and secondary 
circuit are replaced, so that V1 and I1 are unchanged.

43. Calculate the average power delivered to each resistor shown in Fig. 13.63.

■  FIGURE 13.63

50 Ω 38 Ω

1.5 Ω

1:41:9

5 cos 120πt A 9 Ω

44. With respect to the circuit depicted in Fig. 13.64, calculate (a) the voltages v1 
and v2; (b) the average power delivered to each resistor.

2 Ω 4 Ω

2.7 kΩ

2:155:1

25 cos 120πt mA
+

–

v1 v2

+

–

100 Ω

■  FIGURE 13.64

45. For the circuit of Fig. 13.65, vs = 117 sin 500t V. Calculate v2 if the terminals 
marked a and b are (a) left open-circuited; (b) short-circuited; (c) bridged by a 
2 Ω resistor.

v2

+

–

1 Ω

4 Ωvs

30:1

+
–

a b

■  FIGURE 13.65

46. The turns ratio of the ideal transformer in Fig. 13.65 is changed from 30:1 
to 1:3. Take vs = 720 cos 120π t V, and calculate v2 if terminals a and b are 
(a) short-circuited; (b) bridged by a 10 Ω resistor; (c) bridged by a 1 MΩ 
resistor.
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47. For the circuit of Fig. 13.66, R1 = 1 Ω, R2 = 4 Ω, and RL = 1 Ω. Select a and 
b to achieve a peak voltage of 200 mV magnitude across RL.

2 cos 10t V

1:1 a:b

+
– 1.85 Ω

R1 R2 iL

RLvx

+

–

■  FIGURE 13.66

48. Calculate vx for the circuit of Fig. 13.66 if a = 0.01, b = 1, R1 = 300 Ω, R2 = 
14 Ω, and RL = 1 kΩ.

49. (a) Referring to the ideal transformer circuit in Fig. 13.68, determine the load 
current iL if b = 0.25, a = 1, R1 = 2.2 Ω, R2 = 3.1 Ω, and RL = 200 Ω. (b) 
Verify your solution with an appropriate LTspice simulation.

50. Determine the equivalent impedance of the network in Fig. 13.67 as seen look-
ing into terminals a and b. Find the current through the circuit if it is connected 
to the wall plug with 120 Vrms / 60 Hz. 

3 Ω

1 Ω

3:2

10Ix
+
–

Ix

a

b

■  FIGURE 13.67

Chapter-Integrating Exercises
51. A transformer whose nameplate reads  2300 / 230 V, 25 kVA  operates with 

primary and secondary voltages of 2300 V and 230 V rms, respectively, and 
can supply 25 kVA from its secondary winding. If this transformer is supplied 
with 2300 V rms and is connected to secondary loads requiring 8 kW at unity 
PF and 15 kVA at 0.8 PF lagging, (a) what is the primary current? (b) How 
many kilowatts can the transformer still supply to a load operating at 0.95 PF 
lagging?

52. A friend brings a vintage stereo system back from a recent trip to War-
nemünde, unaware that it was designed to operate on twice the supply voltage 
(240 VAC) available at American household outlets. Design a circuit to allow 
your friend to listen to the stereo in the United States, assuming the operating 
frequency (50 Hz in Germany, 60 Hz in the United States) difference can be 
neglected.

53. As the lead singer in the local rock band, you just secured your first “gig” to 
perform at the local spring festival. As you are setting up your sound system, 
you notice that the output of the power amplifier (50 V peak) has a step up 
transformer marked 70.7 Vrms and 50 Ω, and that this output is supplied 
to three speakers in parallel: two speakers marked 8 ohm and one speaker 
marked 4 Ω, with a step down transformer for each speaker. (a) Explain 
why the transformer configuration is used. (b) Sketch a schematic diagram 
of the audio circuit, indicating desired turns ratio for all step up/step down 
transformers. 

54. Obtain an expression for V2/Vs in the circuit of Fig. 13.68 if (a) L1 = 100 mH, 
L2 = 500 mH, and M is its maximum possible value; (b) L1 = 5L2 = 1.4 H and 
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k = 87% of its maximum possible value; (c) the two coils can be treated as an 
ideal transformer, the left-hand coil having 500 turns and the right-hand coil 
having 10,000 turns.

5 Ω

Vs
+
– V2

+

–
40 ΩL2L1

■  FIGURE 13.68

55. You notice your neighbor has installed a large coil of wire in close proximity 
to the power line coming into your house (underground cables are not available 
in your neighborhood). (a) What is the likely intention of your neighbor? (b) Is 
the plan likely to succeed? Explain. (c) When confronted, your neighbor sim-
ply shrugs and claims there’s no way it can cost you anything, anyway, since 
nothing of his is touching anything on your property. True or not? Explain.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
When faced with time-varying sources, or a circuit with switches, 
we have several choices with respect to the analysis approach. 
Chapters 7 through 9 detail direct differential equation–based 
analysis, which is particularly useful when examining turn-on or 
turn-off transients. In contrast, Chaps. 10 to 13 describe analysis 
situations where sinusoidal excitation is assumed, and transients 
are of little or no interest. Unfortunately, not all sources are 
sinusoidal, and there are times when both transient and steady-state 
responses are required. In such instances, the Laplace transform 
proves to be a highly valuable tool.

Many textbooks simply launch straight into the Laplace 
transform integral, but such an approach conveys no intuitive 
understanding. For this reason, we have chosen to first introduce 
what may strike the reader at first as a somewhat unexpected 
concept—the notion of a “complex” frequency. Simply a 
mathematical convenience, complex frequency allows us to 
manipulate both periodic and nonperiodic time-varying quantities 
in parallel, greatly simplifying the analysis. After getting a feel for 
the basic idea, we develop it as a specific circuit analysis method.

14.1 • COMPLEX FREQUENCY
We introduce the notion of complex frequency by considering a 
(purely real) exponentially damped sinusoidal function, such as the 
voltage

  v  (  t )    =  V  m    e   σt  cos   (  ωt + θ )     [1]

Circuit Analysis 
in the s-Domain14

KEY CONCEPTS

Complex Frequency

The Laplace Transform and 
Inverse Transforms

Use of Transform Tables

Method of Residuals

Initial Value and Final Value 
Theorems

Impedance in the s-Domain

Modeling Initial Conditions 
with Ideal Sources

Circuit Analysis in the 
s-Domain

Identifying Poles and Zeros 
in Transfer Functions

Impulse Response of a 
Circuit

Use of Convolution to 
Determine System Response
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546 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

where σ (sigma) is a real quantity and is usually negative. Although we of-
ten refer to this function as being “damped,” it is conceivable that we might 
occasionally encounter a situation where σ > 0 and hence the sinusoidal 
amplitude is increasing. (In Chap. 9, our study of the natural response of the 
RLC circuit also indicates that σ is the negative of the exponential damping 
coefficient.)

Note that we may construct a constant voltage from Eq. [1] by letting  
σ = ω = 0:

  v  (  t )    =  V  m   cos   (  θ )    =  V  0    [2]

If we set only σ equal to zero, then we obtain a general sinusoidal voltage

  v  (  t )    =  V  m   cos   (  ωt + θ )     [3]

and if ω = 0, we have the exponential voltage

  v  (  t )    =  V  m   cos θ   e   σt  =  V  0    e   σt   [4]

Thus, the damped sinusoid of Eq. [1] includes as special cases the dc  
Eq. [2], sinusoidal Eq. [3], and exponential Eq. [4] functions.

Some additional insight into the significance of σ can be obtained by 
comparing the exponential function of Eq. [4] with the complex representa-
tion of a sinusoidal function with a zero-degree phase angle,

  v  (  t )    =  V  0    e   jωt   [5]

It is apparent that the two functions, Eqs. [4] and [5], have much in com-
mon. The only difference is that the exponent in Eq. [4] is real and the one 
in Eq. [5] is imaginary. The similarity between the two functions is empha-
sized by describing σ as a “frequency.” This choice of terminology will be 
discussed in detail in the following sections, but for now we need merely 
note that σ is specifically termed the real part of the complex frequency. It 
should not be called the “real frequency,” however, for this is a term that is 
more suitable for f (or, loosely, for ω). We will also refer to σ as the neper 
frequency, the name arising from the dimensionless unit of the exponent of e.  
Thus, given e7t the dimensions of 7t are nepers (Np), and 7 is the neper 
frequency in nepers per second.

The General Form
The forced response of a network to a general forcing function of the form 
of Eq. [1] can be found very simply by using a method almost identical with 
that used in phasor-based analysis. Once we are able to find the forced re-
sponse to this damped sinusoid, we will also have found the forced response 
to a dc voltage, an exponential voltage, and a sinusoidal voltage. First we 
consider σ and ω as the real and imaginary parts of a complex frequency.

We suggest that any function that may be written in the form

  f  (  t )    = K  e   st   [6]

where K and s are complex constants (independent of time) is characterized 
by the complex frequency s. The complex frequency s is therefore simply 

The neper itself was named after the Scottish philoso-

pher and mathematician John Napier (1550–1617) and 

his napierian logarithm system; the spelling of his name 

is historically uncertain (see, for example, H. A. Wheeler, 

IRE Transactions on Circuit Theory 2, 1955, p. 219).
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the factor that multiplies t in this complex exponential representation. Until 
we can determine the complex frequency of a given function by inspection, 
it is necessary to write the function in the form of Eq. [6].

The DC Case
We apply this definition first to the more familiar forcing functions. For 
example, a constant voltage

 v  (  t )    =  V  0   

may be written in the form

 v  (  t )    =  V  0    e     (  0 )   t  

Therefore, we conclude that the complex frequency of a dc voltage or cur-
rent is zero (i.e., s = 0).

The Exponential Case
The next simple case is the exponential function

 v  (  t )    =  V  0    e   σt  

which is already in the required form. The complex frequency of this volt-
age is therefore σ (i.e., s = σ + j 0).

The Sinusoidal Case
Now let us consider a sinusoidal voltage, one that may provide a slight sur-
prise. Given

 v  (  t )    =  V  m   cos   (  ωt + θ )    

we want to find an equivalent expression in terms of the complex expo-
nential. From our past experience, we therefore use the formula we derived 
from Euler’s identity,

 cos   (  ωt + θ )    =   1 _ 2    [   e   j   (  ωt+θ )     +  e   −j   (  ωt+θ )     ]    

and obtain

  
 v  (  t )   

  
=

  
  1 _ 2    V  m    [   e   j   (  ωt+θ )     +  e   −j   (  ωt+θ )     ]   

    
 
  

=
  
  (    1 _ 2    V  m    e   j θ  )    e   j ωt  +   (    1 _ 2    V  m    e   −j θ  )    e   −j ωt 

  

or

 v  (  t )    =  K  1    e    s  1  t  +  K  2    e    s  2  t  

We have the sum of two complex exponentials, and two complex fre-
quencies are therefore present, one for each term. The complex frequency of 
the first term is s = s1 = j ω, and that of the second term is s = s2 = −j ω. 
These two values of s are conjugates, or   s  2   =  s  1  *   and the two values of K are  
also conjugates:   K  1   =   1 _ 2    V  m    e   j θ   and   K  2   =  K  1  *  =   1 _ 2    V  m    e   −j θ  . The entire first 
term and the entire second term are therefore conjugates, which we might 
have expected inasmuch as their sum must be a real quantity, v(t).

The complex conjugate of any number can be obtained 

by simply replacing all occurrences of “j” with “−j.” The 

concept arises from our arbitrary choice of  j = + √ 
___

 − 1   .  

However, the negative root is just as valid, which 

leads us to the definition of a complex conjugate.
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548 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

The Exponentially Damped Sinusoidal Case
Finally, let us determine the complex frequency or frequencies associated 
with the exponentially damped sinusoidal function, Eq. [1]. We again use 
Euler’s formula to obtain a complex exponential representation:

  
  v  (  t )   

  
=

  
 V  m    e   σt  cos   (  ωt + θ )   

   
 
  

=
  
  1 _ 2    V  m    e   σt   [   e   j 

  (  ωt+θ )     +  e   −j   (  ωt+θ )     ]   
  

and thus

 v  (  t )    =   1 _ 2    V  m    e   j θ   e   j   (  σ + j ω )   t  +   1 _ 2    V  m    e   −j θ   e   j   (  σ − j ω )   t  

We find that a conjugate complex pair of frequencies, s1 = σ + j ω and  
  s  2   =  s  1  ∗  = σ − j ω , is also required to describe the exponentially damped 
sinusoid. In general, neither σ nor ω is zero, and the exponentially varying 
sinusoidal waveform is the general case; the constant, sinusoidal, and expo-
nential waveforms are special cases.

The Relationship of s to Reality
A positive real value of s, e.g., s = 5 + j 0, identifies an exponentially in-
creasing function Ke+5t, where K must be real if the function is to be a 
physical one. A negative real value for s, such as s = −5 + j 0, refers to an 
exponentially decreasing function Ke−5t.

A purely imaginary value of s, such as j 10, can never be associated with 
a purely real quantity. The functional form is Kej 10t, which can also be writ-
ten as K(cos 10t + j sin 10t); it obviously has both a real and an imaginary 
part, each of which is sinusoidal. In order to construct a real function, we 
must consider conjugate values of s, such as s1,2 = ± j 10, with which we 
must associate conjugate values of K. Loosely speaking, however, we may 
identify either of the complex frequencies s1 = +j 10 or s2 = −j 10 with a 
sinusoidal voltage at the radian frequency of 10 rad/s; the presence of the 
conjugate complex frequency is understood. The amplitude and phase angle 
of the sinusoidal voltage will depend on the choice of K for each of the two 
frequencies. Thus, selecting s1 = j 10 and K1 = 6 − j 8, where

 v  (  t )    =  K  1    e    s  1  t  +  K  2    e    s  2  t              s  2   =  s  1  *            and            K  2   =  K  1  *  

we obtain the real sinusoid 20 cos(10t − 53.1°).
In a similar manner, a general value for s, such as 3 − j 5, can be associ-

ated with a real quantity only if it is accompanied by its conjugate, 3 + j 5.  
Speaking loosely again, we may think of either of these two conjugate 
frequencies as describing an exponentially increasing sinusoidal function, 
e3t cos 5t; the specific amplitude and phase angle will again depend on the 
values of the conjugate complex K terms.

By now we should have achieved some appreciation of the physical na-
ture of the complex frequency s; in general, it describes an exponentially 
varying sinusoid. The real part of s is associated with the exponential varia-
tion; if it is negative, the function decays as t increases; if it is positive, the 
function increases; and if it is zero, the sinusoidal amplitude is constant. The 
larger the magnitude of the real part of s, the greater is the rate of exponential 

Note that |6 − j8| = 10,

so that Vm = 2|K| = 20.

Also, ang(6 − j8) = −53.13°.

Large magnitudes for the real part of s, the imaginary 

part of s, or the magnitude of s indicate a rapidly 

varying function.
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increase or decrease. The imaginary part of s describes the sinusoidal varia-
tion; it is specifically the radian frequency. A large magnitude for the imag-
inary part of s indicates a more rapidly changing function of time.

It is customary to use the letter σ to designate the real part of s, and 
ω (not jω) to designate the imaginary part:

  s = σ + jω  [7]

The radian frequency is sometimes referred to as the “real frequency,” but 
this terminology can be very confusing when we find that we must then say 
that “the real frequency is the imaginary part of the complex frequency”! 
When we need to be specific, we will call s the complex frequency, σ the 
neper frequency, ω the radian frequency, and f = ω/2π the cyclic frequency; 
when no confusion seems likely, it is permissible to use “frequency” to refer 
to any of these four quantities. The neper frequency is measured in nepers 
per second, radian frequency is measured in radians per second, and com-
plex frequency s is measured in units which are variously termed complex 
nepers per second or complex radians per second.

PRACTICE 
●

14.1 Identify all the complex frequencies present in these real 
functions: (a) (2e−100t + e−200t) sin 2000t; (b) (2 − e−10t) cos(4t + ϕ); 
(c) e−10t cos 10t sin 40t. 
14.2 Use real constants A, B, C, ϕ, and so forth, to construct the general 
form of the real function of time for a current having components at 
these frequencies: (a) 0, 10, −10 s−1; (b) −5, j 8, −5 − j 8 s−1; (c) −20, 
20, −20 + j 20, 20 −j 20 s−1. 
Ans: 14.1: −100 + j 2000, −100 − j 2000, −200 + j 2000, −200 − j 2000 s−1; j 4, −j 4, 
−10 + j 4, −10 − j 4 s−1; −10 + j 30, −10 − j 30, −10 + j 50, −10 − j 50 s−1; 14.2: A 
+ Be10t + Ce−10t ; Ae−5t + B cos(8t + ϕ1) + Ce−5t × cos (8t + ϕ2); Ae−20t + Be20t + 
Ce−20t cos(20t + ϕ1) + De20t cos (20t + ϕ2) .

14.2 • DEFINITION OF THE LAPLACE TRANSFORM
Shortly after being exposed to the use of the sinusoidal forcing function in circuits 
with energy storage elements, the tedium and complexity of solving the integro-
differential equations caused us to begin casting about for an easier way to work 
problems. The phasor transform was the result, and we might remember that we 
were led to it through consideration of a complex forcing function of the form V0e j θ 
e j ωt. As soon as we concluded that we did not need the factor containing t, we were 
left with the phasor V0e j θ; we had arrived at the frequency domain.

Now a little flexing of our cerebral cortex has caused us to apply a forc-
ing function of the form V0e

j θ e(σ + j ω)t, leading to the invention of the com-
plex frequency s, and thereby relegating all our previous functional forms 
to special cases: dc (s = 0), exponential (s = σ), sinusoidal (s = j ω), and 
exponential sinusoid (s = σ + j ω). By analogy to our previous experience 
with phasors, we saw that in these cases we may omit the factor containing 
t and once again obtain a solution by working in the frequency domain.
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The Laplace Transform
We know that sinusoidal forcing functions lead to sinusoidal responses, and 
also that exponential forcing functions lead to exponential responses. However, 
as practicing engineers we will encounter many waveforms that are neither 
sinusoidal nor exponential, such as square waves, sawtooth waveforms, and 
pulses beginning at arbitrary instants of time. When such forcing functions are 
applied to a linear circuit, we will see that the response is neither similar to the 
form of the excitation waveform nor exponential. As a result, we cannot elimi-
nate the terms containing t to form a frequency-domain response. This is rather 
unfortunate, as working in the frequency domain has proved to be rather useful.

There is a solution, however, which makes use of a technique that allows 
us to expand any function into a sum of exponential waveforms, each with its 
own complex frequency, and thus building on what we have already learned. 
Since we are considering linear circuits, we know that the total response of 
our circuit can be obtained by simply adding the individual response to each 
exponential waveform (i.e., by applying superposition). And, in dealing with 
each exponential waveform, we may once again neglect any terms containing 
t and work instead in the frequency domain. It unfortunately takes an infinite 
number of exponential terms to accurately represent a general time function, 
so taking a brute-force approach and applying superposition to the exponen-
tial series might be somewhat insane. Instead, we will sum these terms by 
performing an integration, leading to a frequency-domain function.

We formalize this approach using what is known as a Laplace transform, 
defined for a general function f (t) as

  F  (  s )    =  ∫ 
−∞

  
∞

     e   −s t  f   (  t )   dt  [8]

The mathematical derivation of this integral operation requires an under-
standing of Fourier series and the Fourier transform, which are discussed in 
Chap. 18. The fundamental concept behind the Laplace transform, however, 
can be understood based on our discussion of complex frequency, as well 
as our prior experience with both phasors and converting back and forth 
between the time domain and the frequency domain. In fact, that is precisely 
what the Laplace transform does: it converts the general time-domain func-
tion f(t) into a corresponding frequency-domain representation, F(s).

Equation [8] defines the two-sided, or bilateral, Laplace transform of 
f (t). The term two-sided or bilateral is used to emphasize the fact that both 
positive and negative values of t are included in the range of integration. 
The inverse operation, often referred to as the inverse Laplace transform, is 
also defined as an integral expression1

  f  (  t )    =   1 ___ 2πj
    ∫ 

 σ  0  − j∞
  

  σ  0   + j∞
     e   st  F  (  s )   ds  [9]

where the real constant σ0 is included in the limits to ensure convergence of 
this improper integral; the two equations [8] and [9] constitute the two-sided 
Laplace transform pair. The good news is that Eq. [9] need never be invoked 
in the study of circuit analysis: there is a quick and easy alternative to look 
forward to learning.

(1)  If we ignore the distracting factor of 1/2πj and view the integral as a summation over all frequencies 
such that f (t) ∝ Σ[F(s) ds]est, this reinforces the notion that f (t) is indeed a sum of complex frequency 
terms having a magnitude proportional to F(s).
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The One-Sided Laplace Transform
In many of our circuit analysis problems, the forcing and response functions 
do not exist forever in time, but rather they are initiated at some specific in-
stant that we usually select as t = 0. Thus, for time functions that do not exist 
for t < 0, or for those time functions whose behavior for t < 0 is of no inter-
est, the time-domain description can be thought of as v(t)u(t). The defining 
integral for the Laplace transform is taken with the lower limit at t = 0− in 
order to include the effect of any discontinuity at t = 0, such as an impulse 
or a higher-order singularity. The corresponding Laplace transform is then

 F  (  s )    =  ∫ 
−∞

  
∞

     e   −st  f  (  t )   u  (  t )   dt =  ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt 

This defines the one-sided Laplace transform of f (t), or simply the Laplace 
transform of f (t), one-sided being understood. (Eq. 8 then is referred to as 
the two-sided Laplace transform.) 

The inverse transform expression remains unchanged, but when evalu-
ated, it is understood to be valid only for t > 0. Here then is the definition of 
the Laplace transform pair that we will use from now on:

  F  (  s )    =  ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt  [10]

   f  (  t )     =    1 _ 2πj
    ∫ 

 σ  0  −j∞
  

 σ  0  +j∞
     e   st  F  (  s )   ds    

f  (  t )   
  

⇔
  

F  (  s )   
    [11]

The script ℒ may also be used to indicate the direct or inverse Laplace 
transform operation:

 F  (  s )    = ℒ {  f  (  t )    }          and         f   (  t )    =  ℒ   −1  {  F  (  s )    }   

EXAMPLE 14.1
Compute the Laplace transform of the function f (t) = 2u(t − 3).

In order to find the one-sided Laplace transform of f (t) = 2u(t − 3), we 
must evaluate the integral

 

 

  

F  (  s )   

  

=

  

 ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt

      =   ∫ 
 0   − 

  
∞

     e   −st  2u  (  t − 3 )   dt    

 

  

=

  

2 ∫ 
3
  
∞

     e   −st  dt

   

Simplifying, we find

F  (  s )    = −  2 ___ s    e   −st    |    3  ∞
  = −  2 ___ s    (  0 −  e   −3s  )    =   2 _ s    e   −3s 

(Continued on next page)
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552 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

14.3 •  LAPLACE TRANSFORMS OF SIMPLE 
TIME FUNCTIONS

In this section we will begin to build up a catalog of Laplace transforms 
for those time functions most often encountered in circuit analysis; we will 
assume for now that the function of interest is a voltage, although such a 
choice is completely arbitrary. We will create this catalog, at least initially, 
by using the definition,

V  (  s )    =  ∫ 
 0   − 

  
∞

     e   −st  v  (  t )   dt = ℒ {  v  (  t )    }   

which, along with the expression for the inverse transform,

v  (  t )    =   1 ___ 2πj
    ∫ 

 σ  0  −j∞
  

 σ  0  +j∞
     e   st  V  (  s )   ds =  ℒ   −1  {  V  (  s )    }   

establishes a one-to-one correspondence between v(t) and V(s). That is, for 
every v(t) for which V(s) exists, there is a unique V(s). At this point, we may 
be looking with some trepidation at the rather ominous form given for the 
inverse transform. Fear not! As we will see shortly, an introductory study 
of Laplace transform theory does not require actual evaluation of this in-
tegral. By going from the time domain to the frequency domain and taking 
advantage of the uniqueness just mentioned, we will be able to generate a 
catalog of transform pairs that will already contain the corresponding time 
function for nearly every transform that we wish to invert.

Before we continue, however, we should pause to consider whether there 
is any chance that the transform may not even exist for some v(t) that con-
cerns us. A set of conditions sufficient to ensure the absolute convergence 
of the Laplace integral for Re{s} > σ0 is

1. The function v(t) is integrable in every finite interval t1 < t < t2, where 
0 ≤ t1 < t2 < ∞.

2.   lim  
t→∞    e   − σ  0  t   |  v  (  t )    |    exists for some value of σ0.

Time functions that do not satisfy these conditions are seldom encountered 
by the circuit analyst.2

PRACTICE 
●

14.3 Let f (t) = −6e−2t [u(t + 3) − u(t − 2)]. Find the (a) two-sided 
F(s); (b) one-sided F(s). 

Ans:    6 ___ 2+s    [e
−4−2s − e6+3s];    6 ___ 2+s    [e

−4−2s − 1].

(2)  Examples of such functions are   e    t   
2    and   e    e   t   , but not tn or nt. For a somewhat more detailed discussion of 

the Laplace transform and its applications, refer to Clare D. McGillem and George R. Cooper, Continuous 
and Discrete Signal and System Analysis, 3d ed. Oxford University Press, North Carolina: 1991, Chap. 5.
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The Unit-Step Function u(t)
We first examine the Laplace transform of the unit-step function u(t). From 
the defining equation, we may write

 
 ℒ {  u  (  t )    }   

  
=

  
 ∫ 

 0   − 
  

∞
     e   −st  u  (  t )   dt =  ∫ 

0
  
∞

     e   −st  dt
    

 
  

=
  
−   1 _ s    e   −st    |    0  ∞

  =   1 _ s  
  

for Re{s} > 0, to satisfy condition 2. Thus,

  u  (  t )    ⇔   1 _ s    [12]

and our first Laplace transform pair has been established with great ease.

The Unit-Impulse Function δ(t − t0)
A singularity function whose transform is of considerable interest is the 
unit-impulse function δ(t − t0). This function, plotted in Fig. 14.1, seems 
rather strange at first but is enormously useful in practice. The unit-impulse 
function is defined to have an area of unity, so that

 
δ  (  t −  t  0   )    = 0       t

  
≠

  
 t  0  

   
 ∫ 

 t  0  −ε
  

 t  0  +ε

    δ  (  t −  t  0   )    dt
  
=

  
1
  

where ε is a small constant. Thus, this “function” (a naming that makes 
many purist mathematicians cringe) has a nonzero value only at the point t0. 
For t0 > 0−, we therefore find the Laplace transform to be

    ℒ {  δ  (  t −  t  0   )    }     =   ∫ 
 0   − 

  
∞

     e   −st  δ  (  t −  t  0   )    dt =  e   −s t  0        
 
  

=
  
δ  (  t −  t  0   )    ⇔  e   −s t  0   

    
[13]

In particular, note that we obtain

  δ  (  t )    ⇔ 1  [14]

for t0 = 0.
An interesting feature of the unit-impulse function is known as the sift-

ing property. Consider the integral of the impulse function multiplied by an 
arbitrary function f (t):

 ∫ 
−∞

  
∞

    f  (  t )   δ  (  t −  t  0   )   dt

Since the function δ(t − t0) is zero everywhere except at t = t0, the value of 
this integral is simply f (t0). The property turns out to be very useful in sim-
plifying integral expressions containing the unit-impulse function.

The Exponential Function e−αt

Recalling our past interest in the exponential function, we examine its transform,

 
 ℒ {   e   −αt  u  (  t )    }   

  
=

  
 ∫ 

 0   − 
  

∞
     e   −αt   e   −st  dt

    
 
  

=
  
−   1 ___ s + α    e   −  (  s+α )   t    |    0  ∞

  =   1 ___ s + α  
 

The double arrow notation is commonly used to 

indicate Laplace transform pairs.

■  FIGURE 14.1 The unit-impulse function δ(t − t0). 
This function is often used to approximate a signal 
pulse whose duration is very short compared to circuit 
time constants.

t0
t
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554 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

and therefore,

   e   −αt  u  (  t )    ⇔   1 ___ s + α    [15]

It is understood that Re{s} > −α.

The Ramp Function tu(t)
As a final example, for the moment, let us consider the ramp function tu(t).
We obtain

   
ℒ { tu(t )} =  ∫ 

 0   − 
  

∞
    t  e   −st  dt =   1 __ 

 s   2 
  
   

tu  (  t )    ⇔   1 __ 
 s   2 

  
    [16]

either by a straightforward integration by parts or from a table of integrals.
So what of the function te−αtu(t)? We leave it to the reader to show that

  t  e   −αt  μ  (  t )    ⇔   1 _____ 
  (  s + α )     2 

    [17]

There are, of course, quite a few additional time functions worth consider-
ing, but it may be best if we pause for the moment to consider the reverse 
of the process—the inverse Laplace transform—before returning to add to 
our list.

PRACTICE 
●

14.4 Determine V(s) if v(t) equals (a) 4δ(t) − 3u(t); (b) 4δ(t − 2) − 3tu(t); 
(c) [u(t)] [u(t − 2)]. 
14.5 Determine v(t) if V(s) equals (a) 10; (b) 10/s; (c) 10/s2;  
(d) 10/[s(s + 10)]; (e) 10s/(s + 10). 

Ans: 14.4: (4s − 3)/s; 4e−2s − (3/s2); e−2s/s. 14.5: 10δ(t); 10u(t); 10tu(t);  
u(t) − e−10tu(t); 10δ(t) − 100e−10tu(t).

14.4 • INVERSE TRANSFORM TECHNIQUES

The Linearity Theorem
Although we mentioned that Eq. [9] can be applied to convert an s-domain 
expression into a time-domain expression, we also alluded to the fact that 
this is far more work than required—if we’re willing to exploit the unique-
ness of any Laplace transform pair. In order to fully capitalize on this fact, 
we must first introduce one of several helpful and well-known Laplace 
transform theorems—the linearity theorem. This theorem states that the 
Laplace transform of the sum of two or more time functions is equal to  
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the sum of the transforms of the individual time functions. For two time 
functions we have

 

 ℒ {    f  1    (  t )    +  f  2    (  t )    }   

  

=

  

 ∫ 
 0   − 

  
∞

     e   −st  [  f  1    (  t )    +  f  2    (  t )    ]dt

        =   ∫ 
 0   − 

  
∞

     e   −st   f  1    (  t )   dt +  ∫ 
 0   − 

  
∞

     e   −st   f  2    (  t )   dt
     

 

  

=

  

 F  1    (  s )    +  F  2    (  s )   

  

As an example of the use of this theorem, suppose that we have a Laplace 
transform V(s) and want to know the corresponding time function v(t). It 
will often be possible to decompose V(s) into the sum of two or more func-
tions, e.g., V1(s) and V2(s), whose inverse transforms, v1(t) and v2(t), are 
already tabulated. It then becomes a simple matter to apply the linearity 
theorem and write

 
v  (  t )   

  
=

  
  ℒ   −1  {  V  (  s )    }   =  ℒ   −1  {    V  1    (  s )    +  V  2    (  s )    }   

     
 
  

=
  
  ℒ   −1  {    V  1    (  s )    }   +  ℒ   −1  {    V  2    (  s )    }   =  v  1    (  t )    +  v  2    (  t )    

 

Another important consequence of the linearity theorem is evident by 
studying the definition of the Laplace transform. Since we are working with 
an integral, the Laplace transform of a constant times a function is equal 
to the constant times the Laplace transform of the function. In other words,

 ℒ {  kv  (  t )    }   = kℒ {  v  (  t )    }   

or

kv  (  t )    ⇔ kV  (  s )   

where k is a constant of proportionality. This result is extremely handy in 
many situations that arise from circuit analysis, as we will see.

This is known as the “additive property’’ of the 

Laplace transform.

This is known as the “homogeneity property’’ of the 

Laplace transform.

EXAMPLE 14.2
Given the function G(s) = (7/s) − 31/(s + 17), obtain g(t).

This s-domain function is composed of the sum of two terms, 7/s and 
−31/(s + 17). Through the linearity theorem we know that g(t) will be 
composed of two terms as well, each the inverse Laplace transform of 
one of the two s-domain terms:

g  (  t )    =  ℒ   −1   {    7 _ s   }    −  ℒ   −1   {    31 _ s + 17   }   

Let’s begin with the first term. The homogeneity property of the 
Laplace transform allows us to write that

 ℒ   −1   {    7 _ s   }    = 7  ℒ   −1   {    1 _ s   }    = 7u  (  t )   

Thus, we have made use of the known transform pair u(t) ⇔ 1/s and the 
homogeneity property to find this first component of g(t). In a similar 
fashion, we find that  ℒ   −1    {  31 _____ s  +  17  }   = 31  e   −17t  u  (  t )   . Putting these two 
terms together,

g  (  t )    =   [  7 − 31  e   −17t  ]   u  (  t )   (Continued on next page)
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556 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Inverse Transform Techniques for Rational Functions
In analyzing circuits with multiple energy storage elements, we will often 
encounter s-domain expressions that are ratios of s-polynomials. We thus 
expect to routinely encounter expressions of the form

V  (  s )    =   N  (  s )    ____ D  (  s )     

where N(s) and D(s) are polynomials in s. The values of s which lead to  
N(s) = 0 are referred to as zeros of V(s), and those values of s which lead to 
D(s) = 0 are referred to as poles of V(s).

Rather than rolling up our sleeves and invoking Eq. [9] each time we 
need to find an inverse transform, it is often possible to decompose these 
expressions using the method of residues into simpler terms whose inverse 
transforms are already known. The criterion for this is that V(s) must be a 
rational function for which the degree of the numerator N(s) must be less 
than that of the denominator D(s). If it is not, we must first perform a simple 
division step, as shown in the following example. The result will include an 
impulse function (assuming the degree of the numerator is the same as that 
of the denominator) and a rational function. The inverse transform of the 
first is simple; the straightforward method of residues applies to the rational 
function if its inverse transform is not already known.

In practice, it is seldom necessary to ever invoke 

Eq. [9] for functions encountered in circuit analysis, 

provided that we are clever in using the various 

techniques presented in this chapter.

PRACTICE 
●

14.6 Given H  (  s )    =   2 _ s   −   4 __ 
 s   2 

   +   3.5 ___________    (  s + 10 )     (  s + 10 )     , obtain h(t). 

Ans: h(t) = [2 − 4t + 3.5te−10t]u(t).

EXAMPLE 14.3

Calculate the inverse transform of F  (  s )    = 2    s + 2 _____ s   .

Since the degree of the numerator is equal to the degree of the denom-
inator, F(s) is not a rational function. Thus, we begin by performing 
long division:

2
F(s) = s)2s + 4

2s
4

so that F(s) = 2 + (4/s). By the linearity theorem,

  ℒ   −1  {  F  (  s )    }   =  ℒ   −1  {  2 }   +  L   −1   {    4 _ s   }    = 2δ  (  t )    + 4u  (  t )    

(It should be noted that this particular function can be simplified with-
out the process of long division; such a route was chosen to provide an 
example of the basic process.)

PRACTICE 
●

14.7 Given the function Q  (  s )    =    3  s   2  − 4 _______ 
 s   2 

   , find q(t). 
Ans: q(t) = 3δ(t) − 4tu(t).
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In employing the method of residues, essentially performing a partial 
fraction expansion of V(s), we focus our attention on the roots of the de-
nominator. Thus, it is first necessary to factor the s-polynomial that com-
prises D(s) into a product of binomial terms. The roots of D(s) may be any 
combination of distinct or repeated roots, and they may be real or complex. 
It is worth noting, however, that complex roots always occur as conjugate 
pairs, provided that the coefficients of D(s) are real.

Distinct Poles and the Method of Residues
As a specific example, let us determine the inverse Laplace transform of

V  (  s )    =   1 ________   (s + α)   (  s + β )     

The denominator has been factored into two distinct roots, −α and −β. Al-
though it is possible to substitute this expression in the defining equation for 
the inverse transform, it is much easier to use the linearity theorem. Using 
partial-fraction expansion, we can split the given transform into the sum of 
two simpler transforms,

V  (  s )    =   A ___ s + α   +   B ___ s + β  

where A and B may be found by any of several methods. Perhaps the quick-
est solution is obtained by recognizing that

 
A

  
=

  
  lim  s→−α

    [  (s + α ) V(s ) −   (s + α ) _ (s + β )   B ]   
    

 
  

=
  
  lim  s→−α

    [    1 _ s + β   − 0 ]    =   1 ___ 
β − α  

  

Recognizing that the second term is always zero, in practice we would sim-
ply write

A =   (  s + α )   V  (  s )     |    s = −α  

Similarly,

B =   (  s + β )   V  (  s )     |    s = −β   =   1 ___ 
α − β  

and therefore,

V  (  s )    =   1 /   (  β − α )    ______ s + α   +   1 /   (  α − β )    ______ s + β  

We have already evaluated inverse transforms of this form, and so

 
v  (  t )   

  
=

  
  1 ___ 
β − α    e   −αt  u  (  t )    +   1 ___ 

α − β    e   −βt  u  (  t )   
    

 
  

=
  
  1 ___ 
β − α    (   e   −αt  −  e   −βt  )   u  (  t )   

  

If we wished, we could now include this as a new entry in our catalog of 
Laplace pairs,

  1 ___ 
β − α    (   e   −αt  −  e   −βt  )   u  (  t )    ⇔   1 ________   (s + α )     (  s + β )     

In this equation, we use the single-fraction (i.e., 

nonexpanded) version of V(s).
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This approach is easily extended to functions whose denominators are 
higher-order s-polynomials, although the operations can become somewhat 
tedious. It should also be noted that we did not specify that the constants A and 
B must be real. However, in situations where α and β are complex, we will find 
that α and β are also complex conjugates (this is not required mathematically, 
but it is required for physical circuits). In such instances, we will also find that 
A = B*; in other words, the coefficients will be complex conjugates as well.

EXAMPLE 14.4
Determine the inverse transform of

P  (  s )    =   7s + 5 ____ 
 s   2  + s

  

We see that P(s) is a rational function (the degree of the numerator is 
one, whereas the degree of the denominator is two), so we begin by 
factoring the denominator and write:

P  (  s )    =   7s + 5 _____ s  (  s + 1 )      =    a __ s    +   b ___ s + 1  

where our next step is to determine values for a and b. Applying the 
method of residues,

a =   7s + 5 ____ s + 1     |    s=0
   = 5    and     b =    7s + 5 ______ s      |    s= −1

   = 2

We may now write P(s) as

P  (  s )    =   5 _ s   +   2 ___ s + 1  

the inverse transform of which is simply p(t) = [5 + 2e−t]u(t).

PRACTICE 
●

14.8 Given the function Q  (  s )    =    11s + 30 ________ 
 s   2   + 3s

   , find q(t). 

Ans: q(t) = [10 + e−3t]u(t).

Repeated Poles
A closely related situation is that of repeated poles. Consider the function

V  (  s )    =   N  (  s )    _____   (  s − p )     n   

which we want to expand into

V  (  s )    =    a  n   _____   (  s − p )     n    +    a  n−1   ______ 
  (  s − p )     n−1 

   + ⋅ ⋅ ⋅ +   a  1   ____  (  s − p )    

To determine each constant, we first multiply the nonexpanded version of V(s) 
by (s − p)n. The constant an is found by evaluating the resulting expression 
at s = p. The remaining constants are found by differentiating the expression  
(s − p)nV(s) the appropriate number of times prior to evaluating at s = p, and di-
viding by a factorial term. The differentiation procedure removes the constants 
previously found, and evaluating at s = p removes the remaining constants.
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For example, an−2 is found by evaluating

  1 __ 2 !     
 d   2  ___ 
d  s   2 

     [    (  s − p )     n  V  (  s )    ]    s=p  

and the term an−k is found by evaluating

  1 __ 
k !     

 d   k  ___ 
d  s   k 

     [    (  s − p )     n  V  (  s )    ]    s=p  

To illustrate the basic procedure, let’s find the inverse Laplace transform of 
a function having a combination of both situations: one pole at s = 0 and 
two poles at s = −6.

EXAMPLE 14.5
Compute the inverse transform of the function

V  (  s )    =   2 _________  
 s   3  + 12  s   2  + 36s

  

We note that the denominator can be easily factored, leading to

V  (  s )    =   2 _________  s  (  s + 6 )     (  s + 6 )      =   2 ______ 
s   (  s + 6 )     2 

  

As promised, we see that there are indeed three poles, one at s = 0, and 
two at s = −6. Next, we expand the function into

V  (  s )    =    a  1   _____ 
  (  s + 6 )     2 

   +    a  2   ____  (  s + 6 )     +    a  3   __ s  

and apply our new procedure to obtain the unknown constants a1 and 
a2; we will find a3 using the previous procedure. Thus,

 a  1   =   [   (s + 6)   2    2 ______ 
s   (  s + 6 )     2 

   ]    
s=−6

   =   2 _ s     |    s=−6
   = −   1 _ 3  

and

 a  2   =   d __ 
ds

     [   (s + 6)   2    2 ______ 
s   (  s + 6 )     2 

   ]    
s=−6

   =   d __ 
ds

    (    2 _ s   )     |    s=−6
   = −   2 __ 

 s   2 
     |    s=−6

   = −   1 __ 18  

The remaining constant a3 is found using the procedure for distinct poles

 a  3   = s   2 ______ 
s   (  s + 6 )     2 

     |    s=0
   =   2 __ 

 6   2 
   =   1 __ 18  

Thus, we may now write V(s) as

V  (  s )    =    
−   1 _ 3   _______ 

 (s + 6)   2 
    +    

−   1 __ 18   ______ (s + 6)    +    
  1 __ 18   __ s   

Using the linearity theorem, the inverse transform of V(s) can now 
be found by simply determining the inverse transform of each term. We 
see that the first term on the right is of the form

  K _____ 
  (  s + α )     2 

  
(Continued on next page)
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and making use of Eq. [17], we find that its inverse transform is  
−    1 _ 3    t e   −6t  u  (  t )   . In a similar fashion, we find that the inverse transform of 
the second term is −    1 __ 18     e   −6t  u  (  t )   , and that of the third term is    1 __ 18    u  (  t )   .

Thus,

v  (  t )    = −   1 _ 3   t e   −6t  u  (  t )    −   1 __ 18    e   −6t  u  (  t )    +   1 __ 18   u  (  t )   

or, more compactly,

v  (  t )    =   1 __ 18    [  1 −   (  1 + 6t )    e   −6t  ]   u  (  t )   

PRACTICE 
●

14.9 Determine g(t) if G(s) =    3 _______________  
s3 + 5s2 + 8s + 4

    .

Ans: g(t) = 3[e−t − te−2t − e−2t]u(t).

COMPUTER-AIDED ANALYSIS

MATLAB can be used to assist in the solution of equations arising 
from the analysis of circuits with time-varying excitation in several 
different ways. The most straightforward technique makes use of ordi-
nary differential equation (ODE) solver routines ode23() and ode45(). 
These two routines are based on numerical methods of solving differ-
ential equations, with ode45() having greater accuracy. The solution is 
determined only at discrete points, however, and therefore is not known 
for all values of time. For many applications this is adequate, provided 
a sufficient density of points is used.

The Laplace transform technique provides us with the means of 
obtaining an exact expression for the solution of differential equations, 
and as such has many advantages over the use of numerical ODE solu-
tion techniques. Another significant advantage to the Laplace transform 
technique will become apparent in subsequent chapters when we study 
the significance of the form of s-domain expressions, particularly once 
we factor the denominator polynomials.

As we have already seen, lookup tables can be handy when working 
with Laplace transforms, although the method of residues can become 
somewhat tedious for functions with higher-order polynomials in their 
denominators. In these instances MATLAB can also be of assistance, as 
it contains several useful functions for the manipulation of polynomial 
expressions.

In MATLAB, the polynomial

p  (  x )    =  a  n    x   n  +  a  n−1    x   n−1  + ⋅ ⋅ ⋅ + a  1   x +  a  0  

is stored as the vector [an an−1 . . . a1 a0]. Thus, to define the polynomi-
als N(s) = 2 and D(s) = s3 + 12s2 + 36s we write

≫ N = [2];
≫ D = [1 12 36 0];
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14.5 •  BASIC THEOREMS FOR THE LAPLACE 
TRANSFORM

We can now consider two theorems that might be considered collectively 
the raison d’être for Laplace transforms in circuit analysis—the time differ-
entiation and integration theorems. These will help us transform the deriva-
tives and integrals appearing in the time-domain circuit equations.

The roots of either polynomial can be obtained by invoking the 
function roots(p), where p is a vector containing the coefficients of the 
polynomial. For example,

≫ q = [1 8 16];
≫ roots (q)

yields
ans =
    −4
    −4

MATLAB also enables us to determine the residues of the rational 
function N(s)/D(s) using the function residue(). For example,

≫ [r p y] = residue (N, D);

returns three vectors r, p, and y, such that

   N  (  s )    ____ D  (  s )      =    r  1   ____ x −  p  1     +    r  2   ____ x −  p  2     + ⋅ ⋅ ⋅ +   r  n   ____ x −  p  n     + y  (  s )    

in the case of no multiple poles; in the case of n multiple poles,

   N  (  s )    ____ D  (  s )      =    r  1   _____  (  x − p )     +    r  2   _____ 
  (  x − p )     2 

   + ⋅ ⋅ ⋅ +    r  n   _____   (  x − p )     n    + y  (  s )    

Note that as long as the order of the numerator polynomial is less than 
the order of the denominator polynomial, the vector y(s) will always be 
empty.

Executing the command without the semicolon results in the output

r =
  −0.0556
  −0.3333
   0.0556
p =
  −6
  −6
   0
y =
   [ ]

which agrees with the answer found in Example 14.5.

hay01307_ch14_545-583.indd   561 23/01/18   6:08 pm



562 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Time Differentiation Theorem
Let us look at time differentiation first by considering a time function v(t) 
whose Laplace transform V(s) is known to exist. We want the transform of 
the first derivative of v(t),

ℒ  {    dv _ 
dt

   }    =  ∫ 
 0   − 

  
∞

     e   −st    dv __ 
dt

   dt

This can be integrated by parts:

U =  e   −st         dV =   dv __ 
dt

   dt

with the result

 ℒ  {    dv _ 
dt

   }    = v  (  t )    e   −st    |     0   −   
∞

   +  s ∫ 
 0   − 

  
∞

     e   −st  v  (  t )   dt 

The first term on the right must approach zero as t increases without limit; 
otherwise V(s) would not exist. Hence,

 ℒ  {    dv _ 
dt

   }    = 0 − v  (   0   −  )    + sV  (  s )    

and

   dv __ 
dt

   ⇔ sV  (  s )    − v  (   0   −  )    

Similar relationships may be developed for higher-order derivatives:

     d   2  v ___ 
d t   2 

   ⇔  s   2  V  (  s )    − sv  (   0   −  )    −  v   ′   (   0   −  )     [18]

     d   3  v ___ 
d t   3 

   ⇔  s   3  V  (  s )    −  s   2  v  (   0   −  )    − s  v   ′   (   0   −  )    −  v   ″   (   0   −  )     [19]

where v′(0−) is the value of the first derivative of v(t) evaluated at t = 0−, 
v″(0−) is the initial value of the second derivative of v(t), and so forth. When 
all initial conditions are zero, we see that differentiating once with respect 
to t in the time domain corresponds to multiplication by s in the frequency 
domain; differentiating twice in the time domain corresponds to multiplica-
tion by s2 in the frequency domain, and so on. Thus, differentiation in the 
time domain is equivalent to multiplication in the frequency domain. This is 
a substantial simplification! We also notice that, when the initial conditions 
are not zero, their presence is still accounted for.

EXAMPLE 14.6
Given the series RL circuit shown in Fig. 14.2, calculate the current 
through the 4 Ω resistor, given the initial condition shown.

▶ Identify the goal of the problem.
We need to find an expression for the current labeled i(t).

▶ Collect the known information.
The network is driven by a step voltage, and we are given an initial 
value of the current (at t = 0−) of 5 A.

▶ Devise a plan.
Applying KVL to the circuit will result in a differential equation with 
i(t) as the unknown. Taking the Laplace transform of both sides of this

i (t)

+
–

2 H

4 Ω

i (0–) = 5 A

3u (t) V

■  FIGURE 14.2 A circuit that is analyzed by trans-
forming the differential equation 2 di/dt + 4i = 3u(t) 
into 2[sl(s) − i(0−)] + 4l(s) = 3/s.
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equation will convert it to the s-domain. Solving the resulting algebra-
ic equation for I(s), the inverse Laplace transform will yield i(t).

▶ Construct an appropriate set of equations.
Using KVL to write the single-loop equation in the time domain,

 2   di __ 
dt

   + 4i = 3u  (  t )    

Now, we take the Laplace transform of each term, so that

 2  [  sI  (  s )    − i  (   0   −  )    ]    + 4I  (  s )    =   3 _ s   

▶ Determine if additional information is required.
We have an equation that may be solved for the frequency-domain 
representation I(s) of our goal, i(t).

▶ Attempt a solution.
We next solve for I(s), substituting i(0−) = 5:

   (  2s + 4 )   I  (  s )    =   3 _ s   + 10 

and

 I  (  s )    =   1.5 _____ s  (  s + 2 )      +   5 ___ s + 2   

Applying the method of residues to the first term,

   1.5 ___ s + 2     |    s=0
   = 0.75    and        1.5 ___ s     |    s=−2

   = − 0.75 

so that

 I  (  s )    =   0.75 ____ s   +   4.25 ____ s + 2   

We then use our known transform pairs to invert:

  
i  (  t )   

  
=

  
0.75u  (  t )    + 4.25  e   −2t  u  (  t )   

    
 
  

=
  
  (  0.75 + 4.25  e   −2t  )   u  (  t )    A

  

▶ Verify the solution. Is it reasonable or expected?
Based on our previous experience with this type of circuit, we ex-
pected a dc forced response plus an exponentially decaying natural 
response. At t = 0, we obtain i(0) = 5 A, as required, and as t → ∞,  
 i  (  t )    →   3 _ 4    A as we would expect.

Our solution for i(t) is therefore complete. Both the forced response 
0.75u(t) and the natural response 4.25e−2tu(t) are present, and the 
initial condition was automatically incorporated into the solution. 
The method illustrates a very painless way of obtaining the complete 
solution to many differential equations.

PRACTICE 
●

14.10 Use Laplace transform methods to find i(t) in the circuit of 
Fig. 14.3. 
Ans: (0.25 + 4.75e−20t )u(t) A.

i

+
–

4 Ω

δ(t) + u(t) V 0.2 H

■ FIGURE 14.3
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564 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Time-Integration Theorem
The same kind of simplification can be accomplished when we meet the op-
eration of integration with respect to time in our circuit equations. Let us de-
termine the Laplace transform of the time function described by   ∫  0   −   

t
    v  (  x )   dx ,

 ℒ  {   ∫ 
 0   − 

  
t

    v  (  x )   dx }    =  ∫ 
 0   − 

  
∞

     e   −st   [   ∫ 
 0   − 

  
t

    v  (  x )   dx ]   dt 

Integrating by parts, we let

  
u
  

=
  
 ∫ 

 0   − 
  
t

    v  (  x )   dx         dv =  e   −st  dt
    

du

  
=

  
v  (  t )   dt                  v = −   1 _ s    e   −st 

  

Then

  ℒ  {   ∫ 
 0   − 

  
t

    v  (  x )   dx }   
  
=

  
  {    [   ∫ 

 0   − 
  
t

    v  (  x )   dx ]     [  −   1 _ s    e   −st  ]    }    
t= 0   − 

  
t=∞

   −  ∫ 
 0   − 

  
∞

    −   1 _ s    e   −st  v  (  t )   dt

       
 
  

=
  
  [  −   1 _ s    e   −st   ∫ 

 0   − 
  
t

    v  (  x )   dx ]    
 0   − 

  
∞

   +   1 _ s   V  (  s )   
   

But, since e−st → 0 as t → ∞, the first term on the right vanishes at the up-
per limit, and when t → 0−, the integral in this term likewise vanishes. This 
leaves only the V(s)/s term, so that

   ∫ 
 0   − 

  
t

    v  (  x )   dx ⇔   V  (  s )    ____ s    [20]

and thus integration in the time domain corresponds to division by s in the 
frequency domain. Once more, a relatively complicated calculus operation 
in the time domain simplifies to an algebraic operation in the frequency 
domain.

EXAMPLE 14.7
Determine i(t) for t > 0 in the series RC circuit shown in Fig. 14.4.

We first write the single-loop equation,

 u  (  t )    − 4i  (  t )    + 16 ∫ 
−∞

  
t

    i  (   t   ′  )   d t   ′  

In order to apply the time-integration theorem, we must arrange for the 
lower limit of integration to be 0−. Thus, we set

  
16 ∫ 

−∞
  

t

    i  (   t   ′  )   d t   ′ 
  
=

  
16 ∫ 

−∞
  

 0   − 
    i  (   t   ′  )   d  t   ′  + 16 ∫ 

 0   − 
  
t

    i  (   t   ′  )   d  t   ′ 
     

 
  

=
  
v  (   0   −  )    + 16 ∫ 

 0   − 
  
t

    i  (   t   ′  )   d  t   ′ 
   

Therefore,

 u  (  t )    = 4i  (  t )    = v  (   0   −  )    + 16 ∫ 
 0   − 

  
t

    i  (   t   ′  )   d t   ′  

i (t)4 Ω

v (0–) = 9 V

+
–u (t) 1 F16 v (t)

+

–

■  FIGURE 14.4 A circuit illustrating the use of the 

Laplace transform pair  ∫ 
 0   − 

  
t
    i  (   t   ′  )   d  t   ′  ⇔   1 _ s   l  (  s )   .
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We next take the Laplace transform of both sides of this equation. Since 
we are using the one-sided transform, ℒ{v(0−)} is simply ℒ{v(0−)u(t)}, 
and thus

   1 _ s   = 4I  (  s )    +   9 _ s   +   16 __ s   I  (  s )    

Solving for I(s),

 I  (  s )    = −   2 ___ s + 4   

the desired result is immediately obtained,

 i  (  t )    = − 2  e   −4t  u  (  t )    A 

EXAMPLE 14.8
Find v(t) for the same circuit, repeated as Fig. 14.5 for convenience.

This time we write a single nodal equation,

   v  (  t )    − u  (  t )    _______ 4   +   1 __ 16     dv __ 
dt

   = 0 

Taking the Laplace transform, we obtain

   V  (  s )    ____ 4   −   1 __ 4s   +   1 __ 16   sV  (  s )    −   v  (   0   −  )    ____ 16   = 0 

or

 V  (  s )     (  1 +   s _ 4   )    =   1 _ s   +   9 _ 4   

Thus,

  

V  (  s )   

  

=

  

  4 _____ s  (  s + 4 )      +   9 ___ s + 4  

      =    1 _ s   −   1 ___ s + 4   +   9 ___ s + 4     

 

  

=

  

  1 _ s   +   8 ___ s + 4  

   

and taking the inverse transform,

 v  (  t )    =   (  1 + 8  e   −4t  )   u  (  t )    V 

To check this result, we note that (   1 __ 16   )dv/dt should yield the previous 
expression for i(t). For t > 0,

   1 __ 16     dv __ 
dt

   =   1 __ 16    (  − 32 )    e   −4t  = − 2  e   −4t  

which is in agreement with what was found in Example 14.7.

PRACTICE 
●

14.11 Find v(t) at t = 800 ms for the circuit of Fig. 14.6. 
Ans: 802 mV.

i (t)

+
–

4 Ω

1 F16

v (0–) = 9 V

u(t) v (t)

+

–

■  FIGURE 14.5 The circuit of Fig. 14.4 repeated, in 
which the voltage v(t) is required.

5 Ω

+
–2tu(t) V 0.1 F v (t)

+

–

■  FIGURE 14.6
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566 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Laplace Transforms of Sinusoids
To illustrate the use of both the linearity theorem and the time-differentiation 
theorem, not to mention the addition of a most important pair to our forth-
coming Laplace transform table, let us establish the Laplace transform of 
sin ωt u(t). We could use the defining integral expression with integration 
by parts, but this is needlessly difficult. Instead, we use the relationship

 sin ωt =   1 __ 2j
    (   e   jωt  −  e   −jωt  )    

The transform of the sum of these two terms is just the sum of the trans-
forms, and each term is an exponential function for which we already have 
the transform. We may immediately write

 ℒ  {  sin  ωt u  (  t )    }    =   1 __ 2j
    (    1 _ s − jω   −   1 _ s + jω   )    =   ω _____ 

 s   2  +  ω   2 
   

  sin ωt u  (  t )    ⇔   ω _____ 
 s   2  +  ω   2 

    [21]

We next use the time-differentiation theorem to determine the transform of 
cos ωt u(t), which is proportional to the derivative of sin ωt. That is,

 ℒ  {  cos ωt u  (  t )    }    = ℒ  {    1 _ ω     d _ 
dt

    [  sin ωt u  (  t )    ]    }    =   1 __ ω   s   ω _____ 
 s   2  +  ω   2 

   

  cos ωt u  (  t )    ⇔   s _____ 
 s   2  +  ω   2 

    [22]

The Time-Shift Theorem
As we have seen in some of our earlier transient problems, not all forcing 
functions begin at t = 0. What happens to the transform of a time function 
if that function is simply shifted in time by some known amount? In par-
ticular, if the transform of f (t)u(t) is the known function F(s), then what is 
the transform of f (t − a)u(t − a), the original time function delayed by a 
seconds (and not existing for t < a)? Working directly from the definition of 
the Laplace transform, we get

  
ℒ  {  f  (  t − a )   u  (  t − a )    }   

  
=

  
 ∫ 

 0   − 
  

∞
     e   −st  f  (  t − a )   u  (  t − a )   dt

     
 
  

=
  
 ∫ 

 a   − 
  

∞
     e   −st  f  (  t − a )   dt

   

for t ≥ a−. Choosing a new variable of integration, τ = t − a, we obtain

 ℒ  {  f  (  t − a )   u  (  t − a )    }    =  ∫ 
 0   − 

  
∞

     e   −s  (  τ+a )     f  (  τ )   dτ =  e   −as  F  (  s )    

Therefore,

  f  (  t − a )   u  (  t − a )    ⇔  e   −as  F  (  s )             (  a ≥ 0 )     [23]

This result is known as the time-shift theorem, and it simply states that if 
a time function is delayed by a time a in the time domain, the result in the 
frequency domain is a multiplication by e−as.

Note that we have made use of the fact that  

 sin 𝜔 t   |    t=0   = 0 .
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At this point we have obtained a number of entries for the catalog of 
Laplace transform pairs that we agreed to construct earlier. Included are the 
transforms of the impulse function, the step function, the exponential func-
tion, the ramp function, the sine and cosine functions, and the sum of two 
exponentials. In addition, we have noted the consequences in the s domain 
of the time-domain operations of addition, multiplication by a constant, dif-
ferentiation, and integration. These results are collected in Tables 14.1 and 
14.2; several others which are derived in Appendix 7 are also included.

1 2 3 4 65

u (t – 2)

–u (t – 5)

t

■ FIGURE 14.7 Plot of u(t − 2) − u(t − 5).

EXAMPLE 14.9
Determine the transform of the rectangular pulse v(t) = u(t − 2) − 
u(t − 5).

This pulse, shown plotted in Fig. 14.7, has unit value for the time in-
terval 2 < t < 5, and zero value elsewhere. We know that the transform 
of u(t) is just 1/s, and since u(t − 2) is simply u(t) delayed by 2 s, the 
transform of this delayed function is e−2s/s. Similarly, the transform of 
u(t − 5) is e−5s/s. It follows, then, that the desired transform is

 V  (  s )    =    e   −2s  ___ s   −    e   −5s  ___ s   =    e   −2s  −  e   −5s  ______ s   

It was not necessary to revert to the definition of the Laplace transform 
in order to determine V(s).

PRACTICE 
●

14.12 Obtain the Laplace transform of the time function shown in 
Fig. 14.8. 
Ans: (5/s)(2e−2s − e−4s − e−5s).

10

5

0 1 2 3 4 5 6

f (t)

t (s)

■ FIGURE 14.8

TABLE 
●
 14.1 Laplace Transform Pairs

 f  (  t   )    =  ℒ   −1    {  F  (  s )    }     F  (  s )    = ℒ  {  f  (  t )    }     f  (  t )    =  ℒ   −1    {  F  (  s )    }     F  (  s )    = ℒ  {  f  (  t )    }    

δ(t) 1    1 ____ 
β  −  α   ( e   −αt  −  e   −βt  )u  (  t )       1 __________   (s  +  α )     (  s  +  β )      

u(t)    1 _ s   sin ωt u(t)    ω _____ 
 s   2    +    ω   2 

   

tu(t)    1 __ 
 s   2 

   cos ωt u(t)    s _____ 
 s   2    +    ω   2 

   

    t   n−1  ______   (  n  −  1 )    !   u  (  t )   , n = 1, 2, ...    1 __  s   n    sin (ωt + θ) u(t)    s sin θ  +  ω cos    θ  ___________  
 s   2    +    ω   2 

   

e−αtu(t)    1 ____ s  +  α   cos (ωt + θ) u(t)    s cos θ  −  ω sin    θ  ___________  
 s   2    +    ω   2 

   

te−αtu(t)    1 ______ 
  (  s  +  α )     2 

   e−αt sin ωt u(t)    ω _________  
  (  s  +  α )     2    +    ω   2 

   

    t   n−1  ______   (  n  −  1 )    !    e   −αt  u  (  t )   ,  n = 1,2,...    1 ______   (  s  +  α )     n    e−αt cos ωt u(t)    s  +  α _________  
  (  s  +  α )     2    +    ω   2 
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568 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

14.6 •  THE INITIAL-VALUE AND FINAL-VALUE 
THEOREMS

The last two fundamental theorems that we will discuss are known as the 
initial-value and final-value theorems. They will enable us to evaluate f (0+) 
and f (∞) by examining the limiting values of sF(s). Such an ability can be 
invaluable; if only the initial and final values are needed for a particular 
function of interest, there is no need to take the time to perform an inverse 
transform operation.

The Initial-Value Theorem
To derive the initial-value theorem, we consider the Laplace transform of 
the derivative once again,

 ℒ  {    df
 _ 

dt
   }    = sF  (  s )    − f  (   0   −  )    =  ∫ 

 0   − 
  

∞
     e   −st    df __ 

dt
   dt 

TABLE 
●
 14.2 Laplace Transform Operations

Operation f (t) F(s)

Addition f1(t) ±  f2(t) F1(s) ± F2(s)

Scalar multiplication kf (t) kF(s)

Time differentiation    df __ 
dt

   sF(s) − f (0−)

    d   2  f ___ 
d  t   2 

   s2F(s) − sf (0−) − f  ′(0−)

    d   3  f ___ 
d  t   3 

   s3F(s) − s2f (0−) − sf  ′(0−) − f  ″(0−)

Time integration   ∫ 
 0   − 

  
t

    f  (  t )   dt    1 _ s   F  (  s )    

  ∫ 
−∞

  
t

    f  (  t )   dt    1 _ s   F  (  s )    +   1 _ s    ∫ 
−∞

  
 0   − 

    f  (  t )   dt 

Convolution f1(t) *f2(t) F1(s)F2(s)

Time shift f (t − a)u(t − a), a ≥ 0 e−asF(s)

Frequency shift f (t)e−at F(s + a)

Frequency differentiation t f (t)  −   dF  (  s )    ____ 
ds   

Frequency integration    f  
(  t )    ___ t     ∫ 

s
  
∞

    F  (  s )   ds  

Scaling f (at), a ≥ 0    1 _ a   F  (    s _ a   )    

Initial value f (0+)    lim  s →∞    sF  (  s )    

Final value f (∞)    lim  
s→0 

    sF  (  s )    , all poles of sF(s) in LHP

Time periodicity f (t) = f (t + nT),
n = 1, 2, …

   1 _____ 
1 −  e   − T  s   

     F  1    (  s )    ,

where   F  1    (  s )    =  ∫ 
 0   − 

  
T

    f  (  t )    e   −st   dt 
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We now let s approach infinity. By breaking the integral into two parts,

   lim  s→∞    [  sF  (  s )    − f   (   0   −  )    ]    =   lim  s→∞    (   ∫ 
 0   − 

  
 0   + 

     e   0     df
 _ 

dt
   dt +  ∫ 

 0   + 
  

∞
     e   −st     df

 _ 
dt

   dt )    

we see that the second integral must approach zero in the limit, since the 
integrand itself approaches zero. Also, f (0−) is not a function of s, and it 
may be removed from the left limit:

  − f   (   0   −  )    +   lim  s→∞    [  sF  (  s )    ]     =    lim  s→∞    ∫ 
 0   − 

  
 0   + 

    df =   lim  s→∞    [   f   (   0   +  )    − f  (   0   −  )    ]         
 
  

 =
  
f 
 
 (   0   +  )    − f   (   0   −  )   

   

and finally,

 f   (   0   +  )    =   lim  
s→∞

    [  sF  (  s )    ]    

or

    lim  
t→ 0   +  

   f   (  t )    =   lim  
s→∞

    [  sF  (  s )    ]     [24]

This is the mathematical statement of the initial-value theorem. It states 
that the initial value of the time function f (t) can be obtained from its 
Laplace transform F(s) by first multiplying the transform by s and then let-
ting s approach infinity. Note that the initial value of f (t) we obtain is the 
limit from the right.

The initial-value theorem, along with the final-value theorem that we will 
consider in a moment, is useful in checking the results of a transformation or 
an inverse transformation. For example, when we first calculated the trans-
form of cos(ω0t)u(t), we obtained  s /   (   s   2  +  ω  0  2  )    . After noting that f (0+) = 1,  
we can make a partial check on the validity of this result by applying the 
initial-value theorem:

   lim  
s→∞

    (  s   s _ 
 s   2  +  ω  0  2 

   )    = 1 

and the check is accomplished.

The Final-Value Theorem
The final-value theorem is not quite as useful as the initial-value theorem, 
for it can be used only with a certain class of transforms. In order to deter-
mine whether a transform fits into this class, the denominator of F(s) must 
be evaluated to find all values of s for which it is zero, i.e., the poles of F(s). 
Only those transforms F(s) whose poles lie entirely within the left half of 
the s plane (i.e., σ < 0), except for a simple pole at s = 0, are suitable for 
use with the final-value theorem. We again consider the Laplace transform 
of df/dt,

  ∫ 
 0   − 

  
∞

     e   −st     df __ 
dt

   dt = sF  (  s )    − f  (   0   −  )    

this time in the limit as s approaches zero,

   lim  s→∞    ∫ 
 0   − 

  
∞

     e   −st    df __ 
dt

   dt =   lim  s→∞    [  sF  (  s )    − f  (   0   −  )    ]    =  ∫ 
 0   − 

  
∞

      df __ 
dt

   dt 
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570 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

We assume that both f (t) and its first derivative are transformable. Now, the 
last term of this equation is readily expressed as a limit,

  
 ∫ 

 0   − 
  

∞
      df __ 
dt

   dt
  
=

  
  lim  
t→∞

    ∫ 
 0   − 

  
t

      df __ 
dt

   dt
   

 
  

=
  
  lim  
t→∞

  
 
  [    f 

 
 (  t )    − f   (   0   −  )    ]   

  

By recognizing that f (0−) is a constant, a comparison of the last two equa-
tions shows us that

   lim  
t→∞   f  (  t )    =  lim  

s→0
      [  sF  (  s )    ]    

which is the final-value theorem. In applying this theorem, it is necessary 
to know that f (∞), the limit of f (t) as t becomes infinite, exists or—what 
amounts to the same thing—that the poles of F(s) all lie within the left half 
of the s plane except for (possibly) a simple pole at the origin. The product 
sF(s) thus has all of its poles lying within the left half plane.

EXAMPLE 14.10
Use the final-value theorem to determine f (∞) for the function  
(1 − e−at)u(t), where a > 0.

Without even using the final-value theorem, we see immediately that  
f (∞) = 1. The transform of f (t) is

  
F  (  s )   

  
=

  
  1 _ s   −   1 ___ s + a  

   
 
  

=
  
  a _____ s  (  s + a )     

   

The poles of F(s) are s = 0 and s = −a. Thus, the nonzero pole of F(s) 
lies in the left-hand s-plane, as we were assured that a > 0; we find that 
we may indeed apply the final-value theorem to this function. Multiply-
ing by s and letting s approach zero, we obtain

  lim  
s→0

      [  sF  (  s )    ]    =  lim  
s→0

       a ___ s + a   = 1 

which agrees with f (∞).
If f (t) is a sinusoid, however, so that F(s) has poles on the jω axis, 

then a blind use of the final-value theorem might lead us to conclude 
that the final value is zero. We know, however, that the final value of 
either sin ω0t or cos ω0t is indeterminate. So, beware of jω-axis poles!

PRACTICE 
●

14.13 Without finding f (t) first, determine f (0+) and f (∞) for each  
of the following transforms: (a) 4e−2s(s + 50)/s; (b) (s2 + 6)/(s2 + 7);  
(c) (5s2 + 10)/[2s(s2 + 3s + 5)]. 
Ans: 0, 200; ∞, indeterminate (poles lie on the jω axis); 2.5, 1.
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  SECTION 14.7 Z(S) AND Y(S) 571

14.7 • Z(S) AND Y(S)
Having been introduced to the concept of complex frequency and to the 
Laplace transform technique, we now are ready to see the details of how 
circuit analysis in the s-domain actually works. As the reader might suspect, 
particularly if Chap. 10 has already been studied, in fact several shortcuts 
are routinely applied. The first of these is to create a new way of viewing 
capacitors and inductors, so that s-domain nodal and mesh equations can 
be written directly. As part of this method, we will learn how to take care 
to account for initial conditions. Another “shortcut” is the concept of a cir-
cuit transfer function. This general function can be exploited to predict the 
response of a circuit to various inputs, its stability, and even its frequency- 
selective response.

The key concept that makes phasors so useful in the analysis of sinusoi-
dal steady-state circuits is the transformation of resistors, capacitors, and 
inductors into impedances. Circuit analysis then proceeds using the basic 
techniques of nodal or mesh analysis, superposition, source transformation, 
as well as Thévenin or Norton equivalents. This concept can be extended 
to the s-domain, since the sinusoidal steady state is included in s-domain 
analysis as a special case (where σ = 0).

Resistors in the Frequency Domain
Let’s begin with the simplest situation: a resistor connected to a voltage 
source v(t). Ohm’s law specifies that

v(t) = Ri(t)

Taking the Laplace transform of both sides,

 V  (  s )    = RI  (  s )    

Thus, the ratio of the frequency-domain representation of the voltage to the 
frequency-domain representation of the current is simply the resistance, R. 
Since we are working in the frequency domain, we refer to this quantity as 
an impedance for the sake of clarity, but we still assign it the unit ohms (Ω):

  Z  (  s )    ≡   V  (  s )    ____ I  (  s )      = R  [25]

Just as we found in working with phasors in the sinusoidal steady state, the 
impedance of a resistor does not depend on frequency. The admittance Y(s) 
of a resistor, defined as the ratio of I(s) to V(s), is simply 1/R; the unit of 
admittance is the siemen (S).

Inductors in the Frequency Domain
Next, we consider an inductor connected to some time-varying voltage 
source v(t), as shown in Fig. 14.9a. Since

 v  (  t )    = L   di __ 
dt

   

taking the Laplace transform of both sides of this equation yields

  V  (  s )    = L  [  sI  (  s )    − i  (   0   −  )    ]     [26]

v (t)

+

–

i (t)

(a)

L

(b)

–Li (0–)

Z (s) = sL
V(s)

+

–

I(s)

+
–

■  FIGURE 14.9 (a) Inductor in the time domain.  
(b) The complete model for an inductor in the 
frequency domain, consisting of an impedance sL and 
a voltage source −Li(0−) that incorporates the effects of 
nonzero initial conditions on the element.
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572 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

We now have two terms: sLI(s) and Li(0−). In situations where we have zero 
initial energy stored in the inductor (i.e., i(0−) = 0), then

 V  (  s )    = sLI  (  s )    

so that

  Z  (  s )    ≡   V  (  s )    ____ I  (  s )      = sL  [27]

Equation [27] may be further simplified if we are only interested in the 
sinusoidal steady-state response. It is permissible to neglect the initial con-
ditions in such instances as they only affect the nature of the transient re-
sponse. Thus, we substitute s = jω and find

 Z  (  jω )    = jωL 

as was obtained previously in Chap. 10.

Modeling Inductors in the s-Domain
Although we refer to the quantity in Eq. [27] as the impedance of an induc-
tor, we must remember that it was obtained by assuming zero initial current. 
In the more general situation where energy is stored in the element at t = 0−, 
this quantity is not sufficient to represent the inductor in the frequency do-
main. Fortunately, it is possible to include the initial condition by modeling 
an inductor as an impedance in combination with either a voltage or current 
source. To do this, we begin by rearranging Eq. [26] as

  V  (  s )    = sLI  (  s )    − Li  (   0   −  )     [28]

The second term on the right will be a constant: the inductance L in henrys 
multiplied by the initial current i(0−) in amperes. The result is a constant 
voltage term that is subtracted from the frequency-dependent term sLI(s). 
A small leap of intuition at this point leads us to the realization that we can 
model a single inductor L as a two-component frequency-domain element, 
as shown in Fig. 14.9b.

The frequency-domain inductor model shown in Fig. 14.9b consists of 
an impedance sL and a voltage source Li(0−). The voltage across the im-
pedance sL is given by Ohm’s law as sLI(s). Since the two-element com-
bination in Fig. 14.9b is linear, every circuit analysis technique previously 
explored can be brought to bear in the s-domain as well. For example, it is 
possible to perform a source transformation on the model in order to obtain 
an impedance sL in parallel with a current source [−Li(0−)]/sL = −i(0−)/s. 
This can be verified by taking Eq. [28] and solving for I(s):

   
I  (  s )   

  
=

  
  V  (  s )    + Li  (   0   −  )     _________ sL

  
   

 
  

=
  
  V  (  s )    ____ sL

   +   i  (   0   −  )    ____ s  
    [29]

We are once again left with two terms. The first term on the right is simply 
an admittance 1/sL times the voltage V(s). The second term on the right is 
a current, although it has units of ampere·seconds. Thus, we can model this 
equation with two separate components: an admittance 1/sL in parallel with 
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  SECTION 14.7 Z(S) AND Y(S) 573

a current source i(0−)/s; the resulting model is shown in Fig. 14.10. The 
choice of whether to use the model of Fig. 14.9b or that shown in Fig. 14.10 
is usually made depending on which one will result in simpler equations. 
Note that although Fig. 14.10 shows the inductor symbol labeled with an 
admittance Y(s) = 1/sL, it can also be viewed as an impedance Z(s) = sL; 
again, the choice of which to use is generally based on personal preference.

A brief comment on units is in order. When we take the Laplace trans-
form of a current i(t), we are integrating over time. Thus, the units of I(s) are 
technically ampere·seconds; in a similar fashion, the units of V(s) are 
volt·seconds. However, it is the convention to drop the seconds and assign 
I(s) the units of amperes, and to measure V(s) in volts. This convention does 
not present any problems until we scrutinize an equation such as Eq. [29] and 
see a term like i(0−)/s seemingly in conflict with the units of I(s) on the left-
hand side. Although we will continue to measure these phasor quantities in 
“amperes” and “volts,” when checking the units of an equation to verify 
algebra, we must remember the seconds!

V(s)

+

–

I(s)

Y(s) =
i (0–)

s
1
sL

■  FIGURE 14.10 An alternative frequency-domain 
model for the inductor, consisting of an admittance  
1/sL and a current source i (0−)/s.

EXAMPLE 14.11
Calculate the voltage v(t) shown in Fig. 14.11a, given an initial 
current i(0−) = 1 A.

+
–

1 Ω

2 H
3e–8tu (t)

volts
v (t)

+

–

i (t)

(a) (b)

+
–

+
–

V(s)

+

–

1 Ω

I(s)

V

–2 V

2s Ω

3
s + 8

■  FIGURE 14.11 (a) A simple resistor-inductor circuit for which the voltage v(t) is 
desired. (b) The equivalent frequency-domain circuit, including the initial current in the 
inductor through the use of a series voltage source −Li(0−).

We begin by first converting the circuit in Fig. 14.11a to its frequency- 
domain equivalent, shown in Fig. 14.11b; the inductor has been replaced 
with a two-component model: an impedance sL = 2s Ω and an indepen-
dent voltage source −Li(0−) = −2 V.

We seek the quantity labeled V(s), as its inverse transform will result 
in v(t). Note that V(s) appears across the entire inductor model and not 
just the impedance component.

Taking a straightforward route, we write

 I  (  s )    =   
  3 ____ s  +  8   + 2

 _____ 1 + 2s   =   s + 9.5 _________    (  s + 8 )     (  s + 0.5 )      

and
 V  (  s )    = 2s I  (  s )    − 2 (Continued on next page)
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574 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Modeling Capacitors in the s-Domain
The same concepts apply to capacitors in the s-domain as well. Follow-
ing the passive sign convention as illustrated in Fig. 14.13a, the governing 
equation for capacitors is

 i = C   dv __ 
dt

   

Taking the Laplace transform of both sides results in

 I  (  s )    = C  [  sV  (  s )    − v  (   0   −  )    ]    

so that

 V  (  s )    =   2s  (  s + 9.5 )     _________    (  s + 8 )     (  s + 0.5 )      − 2 

Before attempting to take the inverse Laplace transform of this 
expression, it is well worth a little time and effort to simplify it first. 
Thus,

 V  (  s )    =   2s − 8 _________    (  s + 8 )     (  s + 0.5 )      

Employing the technique of partial-fraction expansion (on paper or 
with the assistance of MATLAB), we find that

 V  (  s )    =   3.2 ___ s + 8   −   1.2 ____ s + 0.5   

Referring to Table 14.1, then, the inverse transform is found to be

v(t) = [3.2e−8t − 1.2e−0.5t]u(t)  V

PRACTICE 
●

14.14 Determine the current i(t) in the circuit of Fig. 14.12. 
Ans:    1 _ 3    [1 − 13e−4t]u(t) A.

+
–

12 Ω

4u (t) V 3 H

i (0–) = –4 A

i (t)

■  FIGURE 14.12

v (t)

+

–

i (t)

(a)

C

V(s)

+

–

I (s)

(b)

Cv (0–)Y(s) = sC
V(s)

+

–

I (s)

(c)

v (0–)
s

Z(s) = 1
sC

+
–

■  FIGURE 14.13 (a) Capacitor in the time domain, with v(t) and i(t) labeled. (b) Frequency-domain 
model of a capacitor with initial voltage v(0−). (c) An equivalent model obtained by performing a source 
transformation.
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or

  I  (  s )    = sCV  (  s )    − Cv  (   0   −  )     [30]

which can be modeled as an admittance sC in parallel with a current source 
Cv(0−) as shown in Fig. 14.13b. Performing a source transformation on 
this circuit (taking care to follow the passive sign convention) results in an 
equivalent model for the capacitor consisting of an impedance 1/sC in series 
with a voltage source v(0−)/s, as shown in Fig. 14.13c.

In working with these s-domain equivalents, we should be careful not 
to be confused with the independent sources being used to include initial 
conditions. The initial condition for an inductor is given as i(0−); this 
term may appear as part of either a voltage source or a current source, 
depending on which model is chosen. The initial condition for a capacitor 
is given as v(0−); this term may thus appear as part of either a voltage 
source or a current source. A very common mistake for students working 
with s-domain analysis for the first time is to always use v(0−) for the 
voltage source component of the model, even when dealing with an 
inductor.

Determine vC(t) in the circuit of Fig. 14.14a, given an initial voltage 
vC(0−) = −2 V.

▶ Identify the goal of the problem.
An expression for the capacitor voltage, vC(t).

▶ Collect the known information.
The problem specifies an initial capacitor voltage of −2 V.

▶ Devise a plan.
Our first step is to draw the equivalent s-domain circuit; in doing so, 
we must choose between the two possible capacitor models. With no 
clear benefit in choosing one over the other, we select the current-
source-based model, as in Fig. 14.14b.

▶ Construct an appropriate set of equations.
We proceed with the analysis by writing a single nodal equation:

 − 1 =    V  C   ___ 2 / s   +    V  C   − 9 / s ______ 3   

▶ Determine if additional information is required.
We have one equation in one unknown, the frequency-domain repre-
sentation of the desired capacitor voltage.

▶ Attempt a solution.
Solving for VC, we find that

  V  C   =   18 / s − 6 ______ 3s + 2   = − 2   s − 3 ______ s  (  s + 2 / 3 )      

EXAMPLE 14.12

+
–

3 Ω

–1 AV Ω VC (s)

+

–

(b)

2
s

9
s

+
–

3 Ω

9u (t) V 0.5 F vC(t)

+

–

(a)

+
–

3 Ω

–1 AV Ω VC (s)

+

–

(b)

2
s

9
s

+
–

3 Ω

9u (t) V 0.5 F vC(t)

+

–

(a)

■  FIGURE 14.14 (a) A circuit for which the current 
vC (t) is required. (b) Frequency-domain equivalent 
circuit, employing the current-source-based model to 
account for the initial condition of the capacitor.

(Continued on next page)
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576 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

The results of this section are summarized in Table 14.3. Note that in 
each case, we have assumed the passive sign convention to relate voltage 
polarity and current direction.

14.8 •  NODAL AND MESH ANALYSIS  
IN THE s-DOMAIN

In Chap. 10, we learned how to transform time-domain circuits driven by 
sinusoidal sources into their frequency-domain equivalents. The benefits 
of this transformation were immediately evident, as we were no longer re-
quired to solve integrodifferential equations. Nodal and mesh analysis of 
such circuits (restricted to determining only the steady-state response) re-
sulted in algebraic expressions in terms of jω, where ω is the frequency the 
frequency of the sources.

We have now seen that the concept of impedance can be extended to the 
more general case of complex frequency (s = σ + jω). Once we transform 
circuits from the time domain into the frequency domain, performing nodal 
or mesh analysis will once again result in purely algebraic expressions, this 
time in terms of the complex frequency s. Solution of the resulting equa-
tions requires the use of variable substitution, Cramer’s rule, or software 
capable of symbolic algebra manipulation (e.g., MATLAB). In this section, 
we present two examples of reasonable complexity so that we may examine 
these issues in greater detail. First, however, we consider how MATLAB 
can be used to assist us in such endeavors.

Partial fraction expansion yields

  V  C   =   9 _ s   −   11 _____ s + 2 / 3   

We obtain vC(t) by taking the inverse Laplace transform of this ex-
pression, resulting in

  v  C    (  t )    = 9u  (  t )    − 11  e   −2t/3  u  (  t )     V 

or, more compactly,

  v  C    (  t )    =   [  9 − 11  e   −2t/3  ]   u  (  t )     V 

▶ Verify the solution. Is it reasonable or expected?
A quick check for t = 0 yields vC(t) = −2 V, as it should based on our 
knowledge of the initial condition. Also, as t → ∞, vC(t) → 9 V, as we 
would expect from Fig. 14.14a once the transient has died out.

PRACTICE 
●

14.15 Repeat Example 14.12 using the voltage-source–based capacitor 
model. 

Ans: [9 − 11e−2t/3]u(t) V.
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TABLE 

●

 14.3  Summary of Element Representations in the Time  
and Frequency Domains

Time Domain Frequency Domain

V(s)

+

–

I (s)

Z (s) = R

V(s) = RI (s)

V(s)

+

–

I (s)

Y(s) =

I (s) =     V(s)1
R

1
R

v (t)

+

–

i (t)

L

v (t) = L di
dt

V(s)

+

–

I (s)

Z(s) = sL

V(s) = sLI (s) –Li (0–)

+
– –Li (0–)

I (s) = +

V(s)

+

–

I(s)

Y(s) =
i (0–)

s
1
sL

V(s)
sL

i (0–)
s

V(s)

+

–

I (s)

Z (s) =

V(s) = +

+
–

I (s)
sC

v (0–)
s

v (0–)
s

1
sC

Resistor

Inductor

Capacitor

v (t)

+

–

i (t)

R

v (t) = Ri (t)

I (s) = sCV(s) – Cv (0–) 

V(s)

+

–

I(s)

Y(s) = sC Cv (0–)
v (t)

+

–

i (t)

i (t) = C dv
dt

C

COMPUTER-AIDED ANALYSIS

In Sec. 14.4, we saw that MATLAB can be used to determine the resi-
dues of rational functions in the s-domain, making the inverse Laplace 
transform process significantly easier. However, the software package 
is actually much more powerful, having many built-in routines for the 
manipulation of algebraic expressions. In fact, as we will see in this 
example, MATLAB is even capable of performing inverse Laplace 
transforms directly from the rational functions we obtain through circuit 
analysis.

(Continued on next page)
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578 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

Let’s begin by seeing how MATLAB can be used to work with 
algebraic expressions. These expressions are stored as character strings, 
with the apostrophe symbol (’) used in the defining expression. For 
example, we previously represented the polynomial p(s) = s3 − 12s + 6 
as a vector:

≫ p = [1     0     −12     6];

However, we can also represent it symbolically:
≫ p = ‘s^3 − 12*s + 6’;

These two representations are not equal in MATLAB; they are two 
distinct concepts. When we wish to manipulate an algebraic expression 
symbolically, the second representation is necessary. This ability is 
especially useful in working with simultaneous equations.

Consider the set of equations

  
  (  3s + 10 )    I  1   − 10  I  2  

  
=

  
  4 ___ s + 2  

    
− 10  I  1   +   (  4s + 10 )    I  2  

  
=

  
−   2 ___ s + 1  

  

Using MATLAB’s symbolic notation, we define two string variables:
  ≫ eqn1 = ‘(3*s + 10)*I1 − 10*I2 = 4/(s + 2)’;
  ≫ eqn2 = ‘−10*I1 + (4*s + 10)*I2 = −2/(s + 1)’;

Note that the entire equation has been included in each string; our goal 
is to solve the two equations for the variables I1 and I2. MATLAB 
provides a special routine, solve(), that can manipulate the equations for 
us. It is invoked by listing the separate equations (defined as strings), 
followed by a list of the unknowns (also defined as strings):

≫ solution = solve(eqn1, eqn2, ‘I1’, ‘I2’);

The answer is stored in the variable solution, although in a somewhat 
unexpected form. MATLAB returns the answer in what is termed a struc-
ture, a construct that will be familiar to C programmers. At this stage, 
however, all we need to know is how to extract our answer. If we type

≫ I1 = solution.I1

we obtain the response
I1 = (2 * (4 * s + 9))/((6 * s + 35) * (s + 1) * (s + 2))

indicating that an s-polynomial expression has been assigned to the 
variable I1. You can also express the result in a nicer-looking format 
using the function pretty(). 

≫ pretty (I1)
(4 s + 9) 2
− − − − − − − − − − − − − − − − − − − − − − − − − −
(6 s + 35) (s + 1) (s + 2)

A similar operation is used for the variable I2.
We can now proceed directly to determining the inverse Laplace 

transform using the function ilaplace():
≫ i1 = ilaplace (I1)
≫ i1 = (10 * exp (−t))/29 − (2 * exp (−2 * t))/23 − (172 * exp (−(35 * t)/6))/667
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In this manner, we can quickly obtain the solution to simultaneous 
equations resulting from nodal or mesh analysis, and we can also obtain 
the inverse Laplace transforms. The command ezplot(i1) allows us to 
see what the solution looks like, if we’re so inclined. It should be noted 
that complicated expressions sometimes may confuse MATLAB; in 
such situations, ilaplace() may not return a useful answer.

It is worth mentioning a few related functions, as they can also  
be used to quickly check answers obtained by hand. The function 
numden() converts a rational function into two separate variables: one 
containing the numerator and the other containing the denominator.  
For example,

≫ [N,D] = numden (I1)

returns two algebraic expressions stored in N and D, respectively:
≫ [N, D] = numden (I1)
N =
8 * s + 18
D =
(6 * s + 35) * (s + 1) * (s + 2)

In order to apply our previous experience with the function residue(), 
we need to convert each symbolic (string) expression into a vector 
containing the coefficients of the polynomial. This is achieved using 
the command sym2poly():

≫ n = sym2poly (N)
n =
8 18
and
≫ d = sym2poly (D)
d =
6 53 117 70

after which we can determine the residues:
≫ [r p y] = residue (n, d)
r =
−0.2579
−0.0870
0.3448
p =
−5.8333
−2.0000
−1.0000
y =
[ ]

which is in agreement with what we obtained using ilaplace().

With these new MATLAB skills, (or a deep-seated desire to try an alter-
native approach such as Cramer’s rule or direct substitution), we are ready 
to proceed to analyze a few circuits.

  SECTION 14.8 NODAL AND MESH ANALYSIS IN THE s-DOMAIN
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580 CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN

EXAMPLE 14.13
Determine the two mesh currents i1 and i2 in the circuit of 
Fig. 14.15a. There is no energy initially stored in the circuit.

■  FIGURE 14.15 (a) A two-mesh circuit for which the individual mesh currents are desired.  
(b) The frequency-domain equivalent circuit.

+
– +

–
4e–2t u(t) V 2e–t u(t) V

4 H

10 Ω

(a)

i2(t)i1(t)

F1
3

+
– +

– V

3/s Ω 4s Ω

10 Ω

(b)

I2(s)I1(s) 2
s + 1V4

s + 2

+
– +

–
4e–2t u(t) V 2e–t u(t) V

4 H

10 Ω

(a)

i2(t)i1(t)

F1
3

+
– +

– V

3/s Ω 4s Ω

10 Ω

(b)

I2(s)I1(s) 2
s + 1V4

s + 2

As always, our first step is to draw the appropriate frequency-domain 
equivalent circuit. Since we have zero energy stored in the circuit at t = 0−,  
we replace the    1 _ 3    F  capacitor with a 3/s Ω impedance, and the 4 H 
inductor with a 4s Ω impedance, as shown in Fig. 14.15b.

Next, we write two mesh equations just as we have before:

 −   4 ___ s + 2   +   3 _ s    I  1   + 10  I  1   − 10  I  2   = 0 

or

   (    3 _ s   + 10 )    I  1   − 10  I  2   =   4 ___ s + 2              (  mesh 1 )    

and

   − 2 ___ s + 1   + 10  I  2   − 10  I  1   + 4s  I  2   = 0 

or

 − 10  I  1   +   (  4s + 10 )    I  2   =   2 ___ s + 1             (  mesh 2 )    

Solving for I1 and I2, we find that

  I  1   =   
2s  (  4  s   2  + 19s + 20 )   

  _________________   
20  s   4  + 66  s   3  + 73  s   2  + 57s + 30

     A 

and

  I  2   =   30  s   2  + 43s + 6  __________________   
  (  s + 2 )     (  20  s   3  + 26  s   2  + 21s + 15 )   

     A 
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We were (indirectly) told that no current flows through 

the inductor at t = 0−. Therefore, i2(0−) = 0, and 

consequently i2(0+) must be zero as well. Does this 

result hold true for our answer?

All that remains is for us to take the inverse Laplace transform of each 
function, after which we find that

   i  1    (  t )     =  − 96.39  e   −2t  − 344.8  e   −t  + 841.2  e   −0.15t  cos 0.8529t      
 
  

=
  
+ 197.7  e   −0.15t  sin 0.8529t   mA

   

and

   i  2    (  t )     =  − 481.9  e   −2t  − 241.4  e   −t  + 723.3  e   −0.15t  cos 0.8529t      
 
  

=
  
+ 472.8  e   −0.15t  sin 0.8529t   mA

   

PRACTICE 
●

14.16 Find the mesh currents i1 and i2 in the circuit of Fig. 14.16. You 
may assume no energy is stored in the circuit at t = 0−. 

Ans: i1 = e−2t/3 cos   (  4 __ 3    √ 
__

 2t  )   +   ( √ 
__

 2  /8)   e−2t/3 sin   (  4 __ 3    √ 
__

 2t  )   A;

i2 = −   2 __ 3    +    2 __ 3   e−2t/3 cos   (  4 __ 3   √ 
__

 2t  )   +   (13 √ 
__

 2  /24)  e−2t/3 sin   (  4 __ 3   √ 
__

 2t  )   A.

EXAMPLE 14.14

(Continued on next page)

Calculate the voltage vx in the circuit of Fig. 14.17 using nodal 
analysis techniques.

4 H

+
–

+
–2 + 5u(t) V 4u(t) V1 Ω

F1
2 vx

Ref
■  FIGURE 14.17 A simple four-node circuit containing two 

energy storage elements.

The first step is to draw the corresponding s-domain circuit. We see that 
the    1 _ 2    F  capacitor has an initial voltage of 2 V across it at t = 0−, requir-
ing that we employ one of the two models of Fig. 14.13. Since we are to 
use nodal analysis, perhaps the model of Fig. 14.13b is the better route. 
The resulting circuit is shown in Fig. 14.18.

With two of the three nodal voltages specified, we have only one 
nodal equation to write:

 − 1 =    V  x   − 7 / s ______ 2 / s   +  V  x   +    V  x   − 4 / s ______ 4s   
so that

  V  x   =   10  s   2  + 4 _________  
s  (  2  s   2  + 4s + 1 )   

   =   5  s   2  + 2  _____________   
s  (  s + 1 +    √ 

_
 2   _ 2   )     (  s + 1 −    √ 

_
 2   _ 2   )   

   

The nodal voltage vx is found by taking the inverse Laplace transform, 
and we find that

  v  x   =   [  4 + 6.864  e   +1.707t  − 5.864  e   −0.2929t  ]   u  (  t )    

+
–

+
–

4s Ω

1 Ω

1 A

Ref

V7
s

Ω2
s

V4
s

Vx

■  FIGURE 14.18 The s-domain equivalent circuit 
of Fig. 14.17.

+
–

+
–3u(t) V 2u(t) V

F 1 H

3 Ω
i2(t)i1(t)

1
4

■  FIGURE 14.16

  SECTION 14.8 NODAL AND MESH ANALYSIS IN THE s-DOMAIN
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or

  v  x   =   [  4 −  e   −t   (  9  √ 
_

 2   sinh    √ 
_

 2   _ 2   t − cosh    √ 
_

 2   _ 2   t )    ]   u  (  t )    

Is our answer correct? One way to check is to evaluate the capacitor 
voltage at t = 0, since we know it to be 2 V. Thus,

  V  C   =   7 _ s   −  V  x   =   4  s   2  + 28s + 3  _________  
s  (  2  s   2  + 4s + 1 )   

   

Multiplying VC by s and taking the limit as s → ∞, we find that

  v  c    (   0   +  )    =   lim  
s→∞

    [    4  s   2  + 28s + 3  ____________  
2  s   2  + 4s + 1

   ]    = 2 V 

as expected.

PRACTICE 
●

14.17 Employ nodal analysis to calculate vx(t) for the circuit of Fig. 14.19. 

+
–

+
–1 + 4u(t) V 1 + 4u(t) V

Ref

4 H

1 Ω

F1
2 vx

■  FIGURE 14.19 For Practice Problem 14.17.

Ans: [5 + 5.657(e−1.707t − e−0.2929t)]u(t).

EXAMPLE 14.15
Use nodal analysis to determine the voltages v1, v2, and v3 in the 
circuit of Fig. 14.20a. No energy is stored in the circuit at t = 0−.

100 Ω

0.1e–3t u (t)
amperes

6 H

F 0.2v2(t)

v1(t) v2(t) v3(t)

(a)

F1
7

1
2

100 Ω

A

6s Ω

7/s Ω 2/s Ω 0.2V2

V1 V2 V3

(b)

0.1
s + 3

100 Ω

0.1e–3t u (t)
amperes

6 H

F 0.2v2(t)

v1(t) v2(t) v3(t)

(a)

F1
7

1
2

100 Ω

A

6s Ω

7/s Ω 2/s Ω 0.2V2

V1 V2 V3

(b)

0.1
s + 3

■  FIGURE 14.20 (a) A four-node circuit containing two capacitors and one inductor, none 
of which are storing energy at t = 0−. (b) The frequency-domain equivalent circuit.
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This circuit consists of three separate energy storage elements, none of 
which is storing any energy at t = 0−. Thus, each may be replaced by its 
corresponding impedance as shown in Fig. 14.20b. We also note the pres-
ence of a dependent current source controlled by the nodal voltage v2(t).

Beginning at node 1, we write the following equation:

   0.1 ___ s + 3   =    V  1   −  V  2   _____ 100   

or

   10 ___ s + 3   =  V  1   −  V  2            (  node 1 )    

and at node 2,

 0 =    V  2   −  V  1   _____ 100   +    V  2   ___ 7 / s   +    V  2   −  V  3   _____ 6s   

or

 − 42s  V  1   +   (  600  s   2  + 42s + 700 )    V  2   − 700  V  3   = 0              (  node 2 )    

and finally, at node 3,

 − 0.2  V  2   =    V  3   −  V  2   _____ 6s   +    V  3   ___ 2 / s   

or

   (  1.2s − 1 )    V  2   +   (  3  s   2  + 1 )    V  3   = 0 

Solving this set of equations for the nodal voltages, we obtain

  

 V  1  

  

=

  

3   100  s   3  + 7  s   2  + 150s + 49  ______________  
  (  s + 3 )     (  30  s   3  + 45s + 14 )   

  

     V  2    =  7   3  s   2  + 1  ______________  
  (  s + 3 )     (  30  s   3  + 45s + 14 )   

      

 V  3  

  

=

  

− 1.4   6s − 5  ______________  
  (  s + 3 )     (  30  s   3  + 45s + 14 )   

  

  

The only remaining step is to take the inverse Laplace transform of 
each voltage, so that, for t > 0,

  

 v  1    (  t )   

  

=

  

9.789  e   −3t  + 0.06173  e   −0.2941t  + 0.1488  e   0.1471t  cos   (  1.25 1t )   

       

 

  

 

  

+ 0.05172  e   0.1471t  sin   (  1.251t )    V

     v  2    (  t )     =  − 0.2105  e   −3t  + 0.06173  e   −0.2941t  + 0.1488  e   0.1471t  cos   (  1.25 1t )          
 
  

 
  

+ 0.05172  e   0.1471t  sin   (  1.251t )    V
    

 v  3    (  t )   

  

=

  

− 0.03459  e   −3t  + 0.06631  e   −0.2941t  − 0.03172  e   0.1471t  cos   (  1.25 1t )   

       

 

  

 

  

− 0.06362  e   0.1471t  sin   (  1.251t )    V

   

Note that the response grows exponentially as a result of the action of 
the dependent current source. In essence, the circuit is “running away,” 
indicating that at some point a component will melt, explode, or fail in 
some related fashion. Although analyzing such circuits can evidently 
entail a great deal of work, the advantages to s-domain techniques are 
clear once we contemplate performing the analysis in the time domain!

  SECTION 14.8 NODAL AND MESH ANALYSIS IN THE s-DOMAIN
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CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN584

14.9 • ADDITIONAL CIRCUIT ANALYSIS TECHNIQUES
Depending on the specific goal in analyzing a particular circuit, we often 
find that we can simplify our task by carefully choosing our analysis tech-
nique. For example, it is seldom desirable to apply superposition to a circuit 
containing 215 independent sources, as such an approach requires analysis 
of 215 separate circuits! By treating passive elements such as capacitors and 
inductors as impedances, however, we are free to apply any of the circuit 
analysis techniques studied in Chaps. 3, 4, and 5 to circuits that have been 
transformed to their s-domain equivalents.

Thus, superposition, source transformations, Thévenin’s theorem, and 
Norton’s theorem all apply in the s-domain.

EXAMPLE 14.16
Simplify the circuit of Fig. 14.22a using source transformations, 
and determine an expression for the voltage v(t).

With no initial currents or voltages specified, and a u(t) multiplying the volt-
age source, we conclude that there is no energy initially stored in the circuit. 
Thus, we draw the frequency-domain circuit as shown in Fig. 14.22b.

Our strategy will be to perform several source transformations in 
succession in order to combine the two 2/s Ω impedances and the 10 Ω 
resistor; we must leave the 9s Ω impedance alone as the desired quanti-
ty V(s) appears across its terminals. We may now transform the voltage 
source and the leftmost 2/s Ω impedance into a current source

I  (  s )    =   (    2s _ 
 s   2  + 9

   )     (    s _ 2   )    =    s   2  ____ 
 s   2  + 9

      A

in parallel with a 2/s Ω impedance.
As depicted in Fig. 14.23a, after this transformation, we have  

Z1 ≡ (2/s)||10 = 20/(10s + 2) Ω facing the current source. Performing 
another source transformation, we obtain a voltage source V2(s) such 
that

 V  2    (  s )    =   (     s   2  _ 
 s   2  + 9

   )     (    20 _ 10s + 2   )   

This voltage source is in series with Z1 and also with the remaining 2/s 
impedance; combining Z1 and 2/s into a new impedance Z2 yields

 Z  2   =   20 _____ 10s + 2   +   2 _ s   =   40s + 4 _______ s  (  10s + 2 )         Ω

(a)

10 Ω
2 cos 3t u(t)

volts

0.5 F 0.5 F

v (t)

+

–

+
– 9 H

(b)

10 ΩV

2/s Ω 2/s Ω

V(s)

+

–
9s Ω2s

s2 + 9
+
–

(a)

10 Ω
2 cos 3t u(t)

volts

0.5 F 0.5 F

v (t)

+

–

+
– 9 H

(b)

10 ΩV

2/s Ω 2/s Ω

V(s)

+

–
9s Ω2s

s2 + 9
+
–

■  FIGURE 14.22 (a) Circuit to be simplified using 
source transformations. (b) Frequency-domain 
representation.

PRACTICE 
●

14.18 Use nodal analysis to determine the voltages v1, v2, and v3 in  
the circuit of Fig. 14.21. Assume there is zero energy stored in the 
inductors at t = 0−. 

Ans: v1(t) = −30δ(t) − 14u(t) V; v2(t) = −14u(t) V; v3(t) = 24δ(t) − 14u(t) V.

8 H

10u(t) A 3u(t) A2 Ω

v1(t) v2(t) v3(t)3 H

■  FIGURE 14.21
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The resulting circuit is shown in Fig. 14.23b. At this stage, we are now 
ready to obtain an expression for the voltage V(s) using simple voltage 
division:

 

V  (  s )   

  

=

  

  (     s   2  _ 
 s   2  + 9

   )     (    20 _ 10s + 2   )     9s __________  
9s +   [    40s  +  4 _ s  (  10s  +  2 )      ]   

  

     

 

  

=

  

  180  s   4   __________________   
  (   s   2  + 9 )     (  90  s   3  + 18  s   2  + 40s + 4 )   

  

  

Both terms in the denominator have complex roots. Employing MAT-
LAB to expand the denominator and then determine the residues,

≫ syms s;
≫ d1=s^2 + 9;
≫ d2=90*s^3 +  18*s^2 + 40*s + 4;
≫ d=d1*d2;
≫ denominator=expand(d)
≫ den=sym2poly(denom)
den =
90 18 850 166 360 36
≫ num=[180 0 0 0  0];
≫ [r p y]=residue(num,den);

we find

 
V  (  s )   

  
=

  
  1.047 + j0.0716  __________ s − j3   +   1.047 − j0.0716  __________ s + j3   −   0.0471 + j0.0191  ______________  s + 0.04885 − j0.6573  

       
 
  

=
  
  0.0471 − j0.0191  ______________  s + 0.04885 + j0.6573   +   5.590 ×  10   −5   _________ s + 0.1023  

  

Taking the inverse transform of each term, writing 1.047 + j0.0716 as 
1.049e j3.912° and 0.0471 + j0.0191 as 0.05083e j157.9° results in

 

v  (  t )   

  

=

  

1.049  e   j 3.912   ∘    e   j3t  u  (  t )    + 1.049  e   −j 3.912   ∘    e   −j3t  u  (  t )   

           + 0.05083  e   −j 157.9   ∘    e   −0.04885t   e   −j0.6573t  u  (  t )        
 
  

 
  

+ 0.05083  e   +j 157.9   ∘    e   −0.04885t   e   +j0.6573t  u  (  t )   
     

 

  

 

  

+ 5.590 ×  10   −5   e   −0.1023t  u  (  t )   

  

Converting the complex exponentials to sinusoids then allows us to 
write a slightly simplified expression for our voltage

 
v  (  t )   

  
=

  
  [  5.590 ×  10   −5   e   −0.1023t  + 2.098 cos   (  3t +  3.912   ∘  )    ]   

      
 
  

 
  

  [  +0.1017  e   −0.04885t  cos   (  0.6573t +  157.9   ∘  )    ]   u  (  t )           V
 

PRACTICE 
●

14.19 Using the method of source transformation, reduce the circuit of 
Fig. 14.24 to a single s-domain current source in parallel with a single 
impedance. 

Ans: Is =    35 ________ 
s2(18s + 63)

    A, Zs =    72s2 + 252s ______________  
18s3 + 63s2 + 12s + 28

    Ω.

note that each term having a complex pole has a 

companion term that is its complex conjugate. For any 

physical system, complex poles will always occur in 

conjugate pairs.

■  FIGURE 14.24

+
– 7 Ω5u(t) V

3 H 6 H

0.25 F

A

B

■  FIGURE 14.23 (a) Circuit after first source 
transformation. (b) Final circuit to be analyzed for V(s).

V2
+
–

(b)

Z2

V(s)

+

–
9s ΩA V(s)

+

–

(a)

9s Ωs2

s2 + 9
Z1

Ω2
s

V2
+
–

(b)

Z2

V(s)

+

–
9s ΩA V(s)

+

–

(a)

9s Ωs2

s2 + 9
Z1

Ω2
s
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EXAMPLE 14.17

Find the frequency-domain Thévenin equivalent of the highlighted 
network shown in Fig. 14.25a.

RE RLRC

gvπ

rπCπ Cμvs

Rs

vπ

–

+

vo

+

–

(a)

+
–

RE1 A RLRC

gVπ

rπ1/sCπ 1/sCμVπ

+

–
Vo

+

–

(b)

Vin

+

–

■  FIGURE 14.25 (a) An equivalent circuit for the “common base” transistor amplifier. 
(b) the frequency-domain equivalent circuit with a 1 A test source substituted for the 
input source represented by vs and Rs.

We are being asked to determine the Thévenin equivalent of the circuit 
connected to the input device; this quantity is often referred to as the 
input impedance of the amplifier circuit. After converting the circuit to 
its frequency-domain equivalent, we replace the input device (vs and Rs) 
with a 1 A “test” source, as shown in Fig. 14.25b. The input impedance 
Zin is then

 Z  in   =    V  in   ___ 1  

or simply Vin. We must find an expression for this quantity in terms of 
the 1 A source, resistors and capacitors, and/or the dependent source 
parameter g.

Writing a single nodal equation at the input, then, we find that

1 + g  V  π   =    V  in   ___  Z  eq  
  

where

 Z  eq   ≡  R  E    ‖    1 _ s  C  π  
   ‖    r  π   =    R  E    r  π   ___________   r  π   +  R  E   + s  R  E    r  π    C  π  

  

Since Vπ = −Vin, we find that

 Z  in   =  V  in   =    R  E    r  π    ________________    r  π   +  R  E   + s  R  E    r  π    C  π   + g  R  E    r  π  
     

this particular circuit is known as the “hybrid π” mod-

el for a special type of single-transistor circuit known 

as the common base amplifier. the two capacitors, 

Cπ and Cμ, represent capacitances internal to the 

transistor and are typically on the order of a few pF. 

the resistor RL in the circuit represents the thévenin 

equivalent resistance of the output device, which 

could be a speaker or even a semiconductor laser. 

the voltage source vs and the resistor Rs together 

represent the thévenin equivalent of the input device, 

which may be a microphone, a light-sensitive resistor, 

or possibly a radio antenna.
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14.10 • POLES, ZEROS, AND TRANSFER FUNCTIONS
In this section, we define terminology that will be very useful in examining 
system response (applicable to circuits and many other fields of study such 
as control systems), namely, poles, zeros, and transfer functions.

Consider the simple circuit in Fig. 14.27a. The s-domain equivalent is 
given in Fig. 14.27b, and nodal analysis yields

0 =    V  out   ____ 1 / sC
   +    V  out   −  V  in   ______ 

R
  

Rearranging and solving for Vout, we find

 V  out   =    V  in   _____ 1 + sRC
  

or

  H  (  s )    ≡    V  out   ___  V  in  
   =   1 _____ 1 + sRC

    [31]

where H(s) is the transfer function of the circuit, defined as the ratio of the 
output to the input. We could just as easily specify a particular current as 
either the input or output quantity, leading to a different transfer function for 
the same circuit. Circuit schematics are typically read from left to right, so 
designers often place the input of a circuit on the left of the schematic and 
the output terminals on the right, at least to the extent where it is possible.

The concept of a transfer function is very important, both in terms of 
circuit analysis and in other areas of engineering. There are two reasons for 
this. First, once we know the transfer function of a particular circuit, we can 
easily find the output that results from any input. All we need to do is multi-
ply H(s) by the input quantity and take the inverse transform of the resulting 
expression. Second, the form of the transfer function contains a great deal 
of information about the behavior we might expect from a particular circuit 
(or system).

In order to evaluate the stability of a system, it is necessary to determine 
the poles and zeros of the transfer function H(s). Writing Eq. [31] as

  H  (  s )    =   1 / RC ______ s + 1 / RC
    [32]

we see that the magnitude of this function approaches zero as s → ∞. Thus, 
we say that H(s) has a zero at s = ∞. The function approaches infinity  

When computing magnitude, it is customary to 

consider +∞ and −∞ as being the same frequency. the 

phase angle of the response at very large positive 

and negative values of ω need not be the same, 

however.

PRACTICE 
●

14.20 Working in the s-domain, find the Norton equivalent connected 
to the 1 Ω resistor in the circuit of Fig. 14.26. 
Ans: Isc = 3(s + 1)/4s A; Zth = 4/(s + 1) Ω.

+
–

1 Ω

4 Ω3u(t) V 0.25 F

■  FIGURE 14.26

vin(t)

+

–
vout(t)

+

–

(a)

R

C Vin(s)

+

–
Vout(s)

+

–

(b)

R

sC
1

vin(t)

+

–
vout(t)

+

–

(a)

R

C Vin(s)

+

–
Vout(s)

+

–

(b)

R

sC
1

■  FIGURE 14.27 (a) A simple resistor-capacitor 
circuit, with an input voltage and output voltage 
specified. (b) the s-domain equivalent circuit.
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at s = −1/RC; we therefore say that H(s) has a pole at s = −1/RC. These 
frequencies are termed critical frequencies.

Pole-Zero Constellations
There is a useful method for visualizing poles and zeroes of a transfer func-
tion with an eye toward evaluating system stability. Let us conceptualize the 
s plane as a floor, and then imagine a large elastic sheet laid on it. We now 
fix our attention on all the poles and zeros of the response. At each zero, the 
response is zero, the height of the sheet must be zero, and we therefore tack 
the sheet to the floor. At the value of s corresponding to each pole, we may 
prop up the sheet with a thin vertical rod. Zeros and poles at infinity must 
be treated by using a large-radius clamping ring or a high circular fence, 
respectively. If we have used an infinitely large, weightless, perfectly elastic 
sheet, tacked down with vanishingly small tacks, and propped up with in-
finitely long, zero-diameter rods, then the elastic sheet assumes a height that 
is exactly proportional to the magnitude of the response.

These comments may be illustrated by considering the configuration of 
the poles and zeros, sometimes called a pole-zero constellation, that locates 
all the critical frequencies of a frequency-domain quantity, for example, 
an impedance Z(s). A pole-zero constellation for an example impedance 
is shown in Fig. 14.28; in such a diagram, poles are denoted by crosses and 
zeros by circles. If we visualize an elastic-sheet model, tacked down at s = 
−2 + j0 and propped up at s = −1 + j5 and at s = −1 − j5, we should see 
a terrain whose distinguishing features are two mountains and one conical 
crater or depression. The portion of the model for the upper LHP is shown 
in Fig. 14.28b.

Let us now build up the expression for Z(s) that leads to this pole-zero 
configuration. The zero requires a factor of (s + 2) in the numerator, and 
the two poles require the factors (s + 1 − j5) and (s + 1 + j5) in the denom-
inator. Except for a multiplying constant k, we now know the form of Z(s):

Z  (  s )    = k   s + 2  _____________    (  s + 1 − j5 )     (  s + 1 + j5 )     

jω

s plane

–2
σ

–1 + j5

–1 – j5

(a)

jω

–1 + j5

|Z( jω)|

|Z(σ)|

σ
(b)

■  FIGURE 14.28 (a) the pole-zero constellation of some impedance Z(s). (b) A portion of the elastic-sheet 
model of the magnitude of Z(s).
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or

 Z  (  s )    = k   s + 2 _______ 
 s   2  + 2s + 26

   [33]

In order to determine k, we require a value for Z(s) at some s other than a 
critical frequency. For this function, let us suppose we are told Z(0) = 1. By 
direct substitution in Eq. [33], we find that k is 13, and therefore

 Z  (  s )    = 13   s + 2 _______ 
 s   2  + 2s + 26

   [34]

The plots |Z(σ)| versus σ and |Z(jω)| versus ω may be obtained exactly from 
Eq. [34], but the general form of the function is apparent from the pole-zero 
configuration and the elastic-sheet analogy. Portions of these two curves 
appear at the sides of the model shown in Fig. 14.28b.

PRACTICE 
●

14.21 The parallel combination of 0.25 mH and 5 Ω is in series with 
the parallel combination of 40 μF and 5 Ω. (a) Find Zin(s), the input 
impedance of the series combination. (b) Specify all the zeros of Zin(s). 
(c) Specify all the poles of Zin(s). (d) Draw the pole-zero configuration. 

Ans: 5(s2 + 10,000s + 108)/(s2 + 25,000s + 108) Ω; −5 ± j8.66 krad/s; −5, −20 krad/s.

14.11 • CONVOLUTION
The s-domain techniques we have developed up to this point are very useful 
in determining the current and voltage response of a particular circuit. How-
ever, in practice we are often faced with circuits to which arbitrary sources 
can be connected, and we need an efficient way to determine the new output 
each time. This is easily accomplished if we can characterize the basic cir-
cuit by a transfer function called the system function.

The analysis can proceed in either the time domain or the frequency do-
main, although it is generally more useful to work in the frequency domain. 
In such situations, we have a simple four-step process:

1. Determine the circuit system function (if not already known);
2. Obtain the Laplace transform of the forcing function to be applied;
3. Multiply this transform and the system function; and finally
4. Perform an inverse transform operation on the product to find the 

output.

By these means some relatively complicated integral expressions will 
be reduced to simple functions of s, and the mathematical operations of 
integration and differentiation will be replaced by the simpler operations of 
algebraic multiplication and division.
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The Impulse Response
Consider a linear electrical network N, without initial stored energy, to which 
a forcing function x(t) is applied. At some point in this circuit, a response 
function y(t) is present. We show this in block diagram form in Fig. 14.29a 
along with sketches of generic time functions. The forcing function is shown 
to exist only in the interval a < t < b. Thus, y(t) exists only for t > a.

The question that we now wish to answer is this: “If we know the form 
of x(t), how is y(t) described?” To answer this question, we need to know 
something about N, such as its response when the forcing function is a unit 
impulse δ(t). That is, we are assuming that we know h(t), the response func-
tion resulting when a unit impulse is supplied as the forcing function at  
t = 0, as shown in Fig. 14.29b. The function h(t) is commonly called the 
unit-impulse response function, or the impulse response.

Based on our knowledge of Laplace transforms, we can view this from a 
slightly different perspective. Transforming x(t) into X(s) and y(t) into Y(s), 
we define the system transfer function H(s) as

H  (  s )    ≡   Y  (  s )    ____ X  (  s )     

If x(t) = δ(t), then according to Table 14.1, X(s) = 1. Thus, H(s) = Y(s) and 
so in this instance h(t) = y(t).

N y (t)x (t)

ba
t

(a)

x (t)

ba
t

y (t)

N h (t)δ(t)

t
(b)

(1)

x (t) = δ(t)

t

y (t) = h (t)

N

(c)

h (t – λ)δ(t – λ)

N

(d )

x (λ) h (t – λ)x (λ) δ(t – λ)

N

(e)

x (λ) h (t – λ) dλx (λ) δ(t – λ) dλ∫ ∞

–∞
∫ ∞

–∞

N

( f )

x (λ) h (t – λ) dλ = y (t)x (t) ∫ ∞

–∞

■  FIGURE 14.29 A conceptual development of the convolution integral.
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Instead of applying the unit impulse at time t = 0, let us now suppose 
that it is applied at time t = λ (lambda). We see that the only change in the 
output is a time delay. Thus, the output becomes h(t − λ) when the input is 
δ(t − λ), as shown in Fig. 14.29c. Next, suppose that the input impulse has 
some strength other than unity. Specifically, let the strength of the impulse 
be numerically equal to the value of x(t) when t = λ. This value x(λ) is a con-
stant; we know that the multiplication of a single forcing function in a linear 
circuit by a constant simply causes the response to change proportionately. 
Thus, if the input is changed to x(λ)δ(t − λ), then the response becomes  
x(λ)h(t − λ), as shown in Fig. 14.29d.

Now let us sum this latest input over all possible values of λ and use the 
result as a forcing function for N. Linearity decrees that the output must 
be equal to the sum of the responses resulting from the use of all possible 
values of λ. Loosely speaking, the integral of the input produces the integral 
of the output, as shown in Fig. 14.29e. But what is the input now? Given 
the sifting property3 of the unit impulse, we see that the input is simply x(t), 
the original input. Thus, Fig. 14.29e may be represented as in Fig. 14.29f.

The Convolution Integral
If the input to our system N is the forcing function x(t), we know the output 
must be the function x(t) as depicted in Fig. 14.29a. Thus, from Fig. 14.29f 
we conclude that

  y  (  t )    =  ∫ 
−∞

  
∞

    x  (  λ )   h  (  t − λ )   dλ  [35]

where h(t) is the impulse response of N. This important relationship is 
known far and wide as the convolution integral. In words, this last equa-
tion states that the output is equal to the input convolved with the impulse 
response. It is often abbreviated by means of

y  (  t )    = x  (  t )    ∗ h  (  t )   

where the asterisk is read “convolved with.”
Equation [35] sometimes appears in a slightly different but equivalent 

form. If we let z = t − λ, then dλ = −dz, and the expression for y(t) becomes

y  (  t )    =  ∫ 
∞

  
−∞

    − x  (  t − z )   h  (  z )   dz =  ∫ 
−∞

  
∞

    x  (  t − z )   h  (  z )   dz

and since the symbol that we use for the variable of integration is unimport-
ant, we can modify Eq. [35] to write

   
y  (  t )   

  
=

  
x  (  t )    ∗ h  (  t )   

  
=

  
 ∫ 

−∞
  

∞
    x  (  z )   h  (  t − z )   dz

    
 
  

 
  

 
  

=
  
 ∫ 

−∞
  

∞
    x  (  t − z )   h  (  z )   dz

   [36]

Convolution and Realizable Systems
The result that we have in Eq. [36] is very general; it applies to any linear 
system. However, we are usually interested in physically realizable sys-
tems, those that do exist or could exist, and such systems have a property 
that modifies the convolution integral slightly. That is, the response of the 

Be careful not to confuse this new notation with 

multiplication!

(3)  The sifting property of the impulse function, described in Section 14.5, states that   ∫ −∞    ∞     f (t)δ(t−t0)dt = f (t0).
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system cannot begin before the forcing function is applied. In particular, h(t) 
is the response of the system resulting from the application of a unit impulse 
at t = 0. Therefore, h(t) cannot exist for t < 0. It follows that, in the second 
integral of Eq. [36], the integrand is zero when z < 0; in the first integral, the 
integrand is zero when (t − z) is negative, or when z > t. Therefore, for real-
izable systems the limits of integration change in the convolution integrals:

   
y  (  t )   

  
=

  
x  (  t )    ∗ h  (  t )   

  
=

  
 ∫ 

−∞
  

 t
    x  (  z )   h  (  t − z )   dz

    
 
  

 
  

 
  

=
  
 ∫ 

0
  
 ∞

    x  (  t − z )   h  (  z )   dz

    [37]

Equations [36] and [37] are both valid, but the latter is more spe-
cific when we are speaking of realizable linear systems, and well worth 
memorizing.

Graphical Method of Convolution
Before discussing the significance of the impulse response of a circuit any 
further, let us consider a numerical example that will give us some insight 
into just how the convolution integral can be evaluated. Although the ex-
pression itself is simple enough, the evaluation is sometimes troublesome, 
especially with regard to the values used as the limits of integration.

Suppose that the input is a rectangular voltage pulse that starts at t = 0, 
has a duration of 1 second, and is 1 V in amplitude:

x  (  t )    =  v  i    (  t )    = u  (  t )    − u  (  t − 1 )   

Suppose also that this voltage pulse is applied to a circuit whose impulse 
response is known to be an exponential function of the form:

h  (  t )    = 2  e   −t  u  (  t )   

We wish to evaluate the output voltage vo(t), and we can write the answer 
immediately in integral form,

 
y  (  t )   

  
=

  
 v  o    (  t )    =  v  i    (  t )    ∗ h  (  t )    =  ∫ 

0
  
 ∞

     v  i    (  t − z )   h  (  z )   dz
     

 
  

=
  
 ∫ 

0
  
 ∞

      [  u  (  t − z )    − u  (  t − z − 1 )    ]     [  2  e   −z  u  (  z )    ]   dz

 

Obtaining this expression for vo(t) is simple enough, but the presence of 
the many unit-step functions tends to make its evaluation confusing and 
possibly even a little obnoxious. Careful attention must be paid to the deter-
mination of those portions of the range of integration in which the integrand 
is zero.

Let us use some graphical assistance to help us understand what the 
convolution integral says. We begin by drawing several z axes lined up one 
above the other, as shown in Fig. 14.30. We know what vi(t) looks like, and 
so we know what vi(z) looks like also; this is plotted as Fig. 14.30a. The 
function vi(−z) is simply vi(z) run backward with respect to z, or rotated 
about the ordinate axis; it is shown in Fig. 14.30b. Next we wish to rep-
resent vi(t − z), which is vi(−z) after it is shifted to the right by an amount  
z = t as shown in Fig. 14.30c. On the next z axis, in Fig. 14.30d, our impulse 
response h(z) = 2e−zu(z) is plotted.

1
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z

(a)

vi (z)

1

–1
z

(b)

vi (–z)

1

t – 1 t
z

vi (t – z)

(c)
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1
z

(d )
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2

1

1 2 3
z

(e)

vi (t – z)h(z)

t
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∫ ∞
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z
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■  FIGURE 14.30 Graphical concepts in evaluating a 
convolution integral.
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The next step is to multiply the two functions vi(t − z) and h(z); the result 
for an arbitrary value of t < 1 is shown in Fig. 14.30e. We are after a value 
for the output vo(t), which is given by the area under the product curve 
(shown shaded in the figure).

First consider t < 0. There is no overlap between vi(t − z) and h(z), so  
vo = 0. As we increase t, we slide the pulse shown in Fig. 14.30c to the right, 
leading to an overlap with h(z) once t > 0. The area under the corresponding 
curve of Fig. 14.30e continues to increase as we increase the value of t until 
we reach t = 1. As t increases above this value, a gap opens up between z = 
0 and the leading edge of the pulse, as shown in Fig. 14.30f. As a result, the 
overlap with h(z) decreases.

In other words, for values of t that lie between zero and unity, we must 
integrate from z = 0 to z = t; for values of t that exceed unity, the range of 
integration is t −1 < z < t. Thus, we may write

 v  0    (  t )    =   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

0

  

t < 0

     ∫ 
0
  
 t
    2  e   −z  dz = 2  (  1 −  e   −t  )     0 ≤ t ≤ 1    

 ∫ 
t−1

  
 t
    2  e   −z  dz = 2  (  e − 1 )    e   −t 

  

t > 1

   

This function is shown plotted versus the time variable t in Fig. 14.31, and 
our solution is completed.

2

1

t

vo(t)

10 2 3
■  FIGURE 14.31 the output function vo obtained by graphical convolution.

EXAMPLE 14.18
Apply a unit-step function, x(t) = u(t), as the input to a system 
whose impulse response is h(t) = u(t) − 2u(t − 1) + u(t − 2), and 
determine the corresponding output y(t) = x(t) * h(t).

Our first step is to plot both x(t) and h(t), as shown in Fig. 14.32.

1

0

x(t)

t

(a) (b)

0 1 2

1

h(t)

t

–1

■  FIGURE 14.32 sketches of (a) the input signal x(t) = u(t) and (b) the unit-impulse 
response h(t) = u(t) − 2u(t − 1) + u(t − 2), for a linear system.

(Continued on next page)
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We arbitrarily choose to evaluate the first integral of Eq. [37],

y  (  t )    =  ∫ 
−∞

  
t

    x  (  z )   h  (  t − z )   dz

and prepare a sequence of sketches to help select the correct limits of 
integration. Figure 14.33 shows these functions in order: the input x(z) as 
a function of z; the impulse response h(z); the curve of h(−z), which is just 
h(z) rotated about the vertical axis; and h(t − z), obtained by sliding h(−z) 
to the right t units. For this sketch, we have selected t in the range 0 < t < 1.

1

0

x(z)

z

(a)

1

0 1 2

h (z)

z

(b)

–1

1

0–1–2

h (–z)

z

(c)

–1

1

t  – 2

t  – 1

h (t – z)

z

(d )

–1

t

■  FIGURE 14.33 (a) the input signal and (b) the impulse response are plotted as functions of z.  
(c) h(−z) is obtained by flipping h(z) about the vertical axis, and (d) h(t − z) results when h(−z) is slid  
t units to the right.

It is now possible to visualize the product of the first graph, x(z), and 
the last, h(t − z), for the various ranges of t. When t is less than zero, 
there is no overlap, and

y  (  t )    = 0       t < 0

For the case sketched in Fig. 14.33d, h(t − z) has a nonzero overlap 
with x(z) from z = 0 to z = t, and each is unity in value. Thus,

y  (  t )    =  ∫ 
0
  
t

      (  1 × 1 )   dz = t         0 < t < 1

When t lies between 1 and 2, h(t − z) has slid far enough to the right 
to bring under the step function that part of the negative square wave 
extending from z = 0 to z = t − 1. We then have

y  (  t )    =  ∫ 
0
  
t−1

    [ 1 ×   (  − 1 )   ]   dz +  ∫ 
t−1

  
t

      (  1 × 1 )   dz = − z   |    z=0  
z=t−1  + z   |    z=t−1  

z=t  

Therefore,

y  (  t )    = −   (  t − 1 )    + t −   (  t − 1 )    = 2 − t         1 < t < 2
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Convolution and the Laplace Transform
Convolution has applications in a wide variety of disciplines beyond linear 
circuit analysis, including image processing, communications, and semi-
conductor transport theory. It is often helpful therefore to have a graphical 
intuition of the basic process, even if the integral expressions of Eqs. [36] 
and [37] are not always the best solution route. One powerful alternative 
approach makes use of properties of the Laplace transform—hence our in-
troduction to convolution in this chapter.

Let F1(s) and F2(s) be the Laplace transforms of f1(t) and f2(t), respec-
tively, and consider the Laplace transform of f1(t) * f2(t),

ℒ {  f  1    (  t )    ∗  f  2    (  t )   }= L  {   ∫ 
−∞

  
∞

     f  1    (  λ )    f  2    (  t − λ )   dλ }   

One of these time functions will typically be the forcing function that is 
applied at the input terminals of a linear circuit, and the other will be the 
unit-impulse response of the circuit.

Finally, when t is greater than 2, h(t − z) has slid far enough to the right 
that it lies entirely to the right of z = 0. The intersection with the unit 
step is complete, and

y  (  t )    =  ∫ 
t−2

  
t−1

    [ 1 ×   (  − 1 )   ]   dz +  ∫ 
t−1

  
t

      (  1 × 1 )   dz = − z   |    z=t−2  
z=t−1  + z   |    z=t−1  

z=t  

or

y  (  t )    = −   (  t − 1 )    +   (  t − 2 )    + t −   (  t − 1 )    = 0         t > 2

These four segments of y(t) are collected as a continuous curve in 
Fig. 14.34.

1

0 1 2

y (t)

t

■  FIGURE 14.34 the result of convolving x(t) and h(t) as shown in Fig. 14.32.

PRACTICE 
●

14.22 Repeat Example 14.18 using the second integral of Eq. [37].
14.23 The impulse response of a network is given by h(t) = 5u(t − 1). If 
an input signal x(t) = 2[u(t) − u(t − 3)] is applied, determine the output 
y(t) at t equal to (a) −0.5; (b) 0.5; (c) 2.5; (d) 3.5. 

Ans: 14.23: 0; 0; 15; 25.
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Since we are now dealing with time functions that do not exist prior to  
t = 0− (the definition of the Laplace transform forces us to assume this), the 
lower limit of integration can be changed to 0−. Then, using the definition 
of the Laplace transform, we get

ℒ  {   f  1    (  t )    ∗  f  2    (  t )    }    =  ∫ 
 0   − 

  
∞

     e   −st   [   ∫ 
 0   − 

  
∞

     f  1    (  λ )    f  2    (  t − λ )   dλ ]   dt

Since e−st does not depend upon λ, we can move this factor inside the inner 
integral. If we do this and also reverse the order of integration, the result is

ℒ  {   f  1    (  t )    ∗  f  2    (  t )    }    =  ∫ 
 0   − 

  
∞

      [   ∫ 
 0   − 

  
∞

     e   −st   f  1    (  λ )    f  2    (  t − λ )   dt ]   dλ

Continuing with the same type of trickery, we note that f1(λ) does not de-
pend upon t, and so it can be moved outside the inner integral:

ℒ  {   f  1    (  t )    ∗  f  2    (  t )    }    =  ∫ 
 0   − 

  
∞

     f  1    (  λ )     [   ∫ 
 0   − 

  
∞

     e   −st   f  2    (  t − λ )   dt ]   dλ

We then make the substitution x = t − λ in the bracketed integral (where we 
may treat λ as a constant):

 

ℒ  {   f  1    (  t )    ∗  f  2    (  t )    }   

  

=

  

 ∫ 
 0   − 

  
∞

     f  1    (  λ )     [   ∫ 
−λ

  
∞

     e   −s  (  x+λ )      f  2    (  x )   dx ]   dλ

     
 
  

=
  
 ∫ 

 0   − 
  

∞
     f  1    (  λ )    e   −sλ   [   ∫ 

−λ
  

∞
     e   −sx   f  2    (  x )   dx ]   dλ

     
 
  

=
  
 ∫ 

 0   − 
  

∞
     f  1    (  λ )    e   −sλ   [   F  2    (  s )    ]   dλ

     

 

  

=

  

 F  2    (  s )    ∫ 
 0   − 

  
∞

     f  1    (  λ )    e   −sλ  dλ

  

Since the remaining integral is simply F1(s), we find that

  ℒ  {   f  1    (  t )    ∗  f  2    (  t )    }    =  F  1    (  s )    ⋅  F  2    (  s )     [38]

Stated slightly differently, we may conclude that the inverse transform of 
the product of two transforms is the convolution of the individual inverse 
transforms, a result that is sometimes useful in obtaining inverse transforms.

EXAMPLE 14.19
Find v(t) by applying convolution techniques, given that V(s) =  
1/[(s + α) (s + β)].

We obtained the inverse transform of this particular function in Sec. 14.4 
using a partial-fraction expansion. We now identify V(s) as the product 
of two transforms,

 V  1    (  s )    =   1 ___ s + α  

and

 V  2    (  s )    =   1 ___ s + β  
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Further Comments on Transfer Functions
As we have noted several times before, the output vo(t) at some point in a 
linear circuit can be obtained by convolving the input vi(t) with the 
unit-impulse response h(t). However, we must remember that the impulse 
response results from the application of a unit impulse at t = 0 with all 
initial conditions zero. Under these conditions, the Laplace transform of 
vo(t) is

ℒ  {   v  o    (  t )    }    =  V  0    (  s )    = ℒ  {   v  i    (  t )    ∗ h  (  t )    }    =  V  i    (  s )     [  ℒ  {  h  (  t )    }    ]   

Thus, the ratio Vo(s)/Vi(s) is equal to the transform of the impulse response, 
which we shall denote by H(s),

 ℒ  {  h  (  t )    }    = H  (  s )    =    V  o    (  s )    ____  V  i    (  s )      [39]

From Eq. [39] we see that the impulse response and the transfer function 
make up a Laplace transform pair,

h  (  t )    ⇔ H  (  s )   

where

 v  1    (  t )    =  e   −αt  u  (  t )   

and

 v  2    (  t )    =  e   −βt  u  (  t )   

The desired v(t) can be expressed as

 

v  (  t )   

  

=

  

 ℒ   −1   {   V  1    (  s )    V  2    (  s )    }    =  v  1    (  t )    ∗  v  2    (  t )    =  ∫ 
 0   − 

  
∞

     v  1    (  λ )    v  2    (  t − λ )   dλ

         =   ∫ 
 0   − 

  
∞

     e   −αλ  u  (  λ )    e   −β  (  t−λ )     u  (  t − λ )   dλ =  ∫ 
 0   − 

  
 t
     e   −αλ   e   −βt   e   βλ   dλ      

 

  

=

  

 e   −βt   ∫ 
 0   − 

  
 t
     e     (  β−α )   λ  dλ =  e   −βt     e     (  β−α )   t  − 1 ______ 

β − α   u  (  t )   

  

or, more compactly,

v  (  t )    =   1 ___ 
β − α

    (   e   −αt  −  e   −βt  )   u  (  t )   

which is the same result that we obtained before using partial-fraction 
expansion. Note that it is necessary to insert the unit step u(t) in the 
result because all (one-sided) Laplace transforms are valid only for 
nonnegative time.

PRACTICE 
●

14.24 Repeat Example 14.18, performing the convolution in the s-domain.

Was the result easier to obtain by this method? not 

unless one is in love with convolution integrals! the 

partial-fraction-expansion method is usually simpler, 

assuming that the expansion itself is not too cumber-

some. however, the operation of convolution is easier 

to perform in the s-domain, since it only requires 

multiplication.
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EXAMPLE 14.20
Determine the impulse response of the circuit in Fig. 14.35a, and use 
this to compute the forced response vo(t) if the input vin(t) = 6e−t u(t) V.

vin

+

–
vo

+

–

(a)

1 Ω

(b)

2 Ω

500 mF

vo

+

–

1 Ω

2 Ω

500 mF

δ(t) +
–

■  FIGURE 14.35 (a) A simple circuit to which an exponential input is applied at t = 0. (b) Circuit 
used to determine h(t).

We first connect an impulse voltage pulse δ(t) V to the circuit as shown 
in Fig. 14.35b. Although we may work in either the time domain with 
h(t) or the s-domain with H(s), we choose the latter, so we next consid-
er the s-domain representation of Fig. 14.35b as depicted in Fig. 14.36.

■  FIGURE 14.36 Circuit used to find H(s).

Vo

+

–

1 Ω

2 Ω1 V +
–

Ω2
s

The impulse response H(s) is given by

H  (  s )    =   
 V  o   __ 1  

so our immediate goal is to find Vo—a task easily performed by simple 
voltage division:

 V  o     |     v  in   = ∂  (  t )      =   2 _____ 
2 / s + 2

   =   s ___ s + 1   = H  (  s )   

We may now find vo(t) when vin = 6e−tu(t) using convolution, as

 v  in   =  ℒ   −1   {   V  in    (  s )    ⋅ H  (  s )    }   

Since Vin(s) = 6/(s + 1),

 V  o   =   6s _____ 
  (  s + 1 )     2 

   =   6 ___ s + 1   −   6 _____ 
  (  s + 1 )     2 

  

Taking the inverse Laplace transform, we find that

 v  o    (  t )    = 6  e   −t   (  1 − t )   u  (  t )      V

PRACTICE 
●

14.25 Referring to the circuit of Fig. 14.35a, use convolution to obtain 
vo(t) if vin = tu(t) V. 

Ans: vo(t) = (1 − e−t )u(t) V.
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14.12 •  A TECHNIQUE FOR SYNTHESIZING THE 
VOLTAGE RATIO H(s) = Vout/Vin

Much of the discussion in this chapter has been related to the poles and ze-
ros of a transfer function. Now let us see how we might determine a network 
that can provide a desired transfer function. We consider only a small part 
of the general problem, working with a transfer function of the form H(s) = 
Vout(s)/Vin(s), as indicated in Fig. 14.37. For simplicity, we restrict H(s) to 
critical frequencies on the negative σ axis (including the origin). Thus, we 
will consider transfer functions such as

 H  1    (  s )    =   10  (  s + 2 )    ______ s + 5  

or

 H  2    (  s )    =   − 5s _____ 
  (  s + 8 )     2 

  

or

 H  3    (  s )    = 0.1s  (  s + 2 )   

Let us begin by finding the voltage gain of the network of Fig. 14.38, which 
contains an ideal op amp. The voltage between the two input terminals of 
the op amp is essentially zero, and the input impedance of the op amp is 
essentially infinite. We therefore may set the sum of the currents entering 
the inverting input terminal equal to zero:

   V  in   ___  Z  1  
   +    V  out   ___  Z  f  

   = 0

or

   V  out   ___  V  in  
   = −   

 Z  f   __  Z  1  
  

If Zf and Z1 are both resistances, the circuit acts as an inverting amplifier, or 
possibly an attenuator (if the ratio is less than unity). Our present interest, 
however, lies with those cases in which one of these impedances is a resis-
tance while the other is an RC network.

In Fig. 14.39a, we let Z1 = R1, while Zf is the parallel combination of Rf 
and Cf. Therefore,

 Z  f   =   
 R  f   / s  C  f   ________  

 R  f   +   (  1 + s  C  f   )   
   =   

 R  f   ______ 1 + s  C  f    R  f  
   =   

1 /  C  f   ________ 
s +   (  1 /  R  f    C  f   )   

  

and

H  (  s )    =    V  out   ___  V  in  
   = −   

 Z  f   __  Z  1  
   = −   

1 /  R  1    C  f   ________ 
s +   (  1 /  R  f    C  f   )   

  

We have a transfer function with a single (finite) critical frequency, a 
pole at s = −1/Rf Cf.

Moving on to Fig. 14.39b, we now let Zf be resistive while Z1 is an RC 
parallel combination:

 Z  1   =   1 /  C  1   ________ s +   (  1 /  R  1    C  1   )   
  

Vout

+

–
Network+

–Vin

■  FIGURE 14.37 Given H(s) = Vout/Vin, we seek a 
network having a specified H(s).

–

+
Vin

+

–
Vout

+

–

Z1

Zf

■  FIGURE 14.38 For an ideal op amp, H(s) = Vout/
Vin = −Zf/Z1.
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and

H  (  s )    =   
 V  out   ___  V  in  

   = −   
 Z  f  

 __ 
 Z  1  

   = −  R  f    C  1    (  s +   1 _ 
 R  1    C  1  

   )   

The only finite critical frequency is a zero at s = −1/R1C1.
For our ideal op amps, the output or Thévenin impedance is zero and 

therefore Vout and Vout/Vin are not functions of any load ZL that may be placed 
across the output terminals. This includes the input to another op amp as well, 
and therefore we may connect circuits having poles and zeros at specified 
locations in cascade, where the output of one op amp is connected directly to 
the input of the next, and thus generates any desired transfer function.

–

+
Vin

+

–
Vout

+

–

R1

(a)

Rf

Cf

–

+
Vin

+

–
Vout

+

–

(b)

R1

C1

Rf

■  FIGURE 14.39 (a) the transfer function H(s) = Vout/Vin has a pole at s = −1/Rf  Cf. (b) here, there is a zero at s = −1/R1C1.

EXAMPLE 14.21
Synthesize a circuit that will yield the transfer function H(s) =  
Vout/Vin = 10(s + 2)/(s + 5).

The pole at s = −5 may be obtained by a network of the form of  
Fig. 14.39a. Calling this network A, we have 1/RfACfA = 5. We arbitrari-
ly select RfA = 100 kΩ; therefore, CfA = 2 μF. For this portion of the 
complete circuit,

 H  A    (  s )    = −   
1 /  R  1A    C  fA  

 _________  
s +   (  1 /  R  fA    C  fA   )      =   5 ×  10   5  /  R  1A   ________ s + 5  

Next, we consider the zero at s = −2. From Fig. 14.39b, 1/R1BC1B = 2, 
and, with R1B = 100 kΩ, we have C1B = 5 μF. Thus

 
 H  B    (  s )   

  
=

  
−  R  fB    C  1B    (  s +   1 _  R  1B    C  1B     )   

    
 
  

=
  
− 5 ×  10   −6   R  fB    (  s + 2 )   

  

and

H(s )   =    H  A  (s )  H  B  (s )   =  2.5   
 R  fB  

 ___  R  1A       
s + 2 ___ s + 5  

We complete the design by letting RfB = 100 kΩ and R1A = 25 kΩ. The 
result is shown in Fig. 14.40. The capacitors in this circuit are fairly 
large, but this is a direct consequence of the low frequencies selected 
for the pole and zero of H(s). 

If H(s) were changed to 10(s + 2000)/(s + 5000), we could use 2 
and 5 nF values.
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–

+
Vin

+

–

25 kΩ

100 kΩ

2 μF

–

+
Vout

+

–

100 kΩ

5 μF

100 kΩ

■  FIGURE 14.40 this network contains two ideal op amps and gives the voltage transfer 
function H(s) = Vout/Vin = 10(s + 2)/(s + 5).

PRACTICE 
●

14.26 Specify suitable element values for Z1 and Zf in each of  
three cascaded stages to realize the transfer function  
H(s) = −20s2/(s + 1000). 

Ans: 1 μF || ∞, 1 MΩ; 1 μF || ∞, 1 MΩ; 100 kΩ || 10 nF, 5 MΩ.

At several points throughout this book, we have inves-
tigated the behavior of various circuits responding to 
sinusoidal excitation. The creation of sinusoidal wave-
forms, however, is an interesting topic in itself. Genera-
tion of large sinusoidal voltages and currents is straight-
forward using magnets and rotating coils of wire, for 
example, but such an approach is not easily scaled down 
for the creation of small signals. Instead, low-current 
applications typically make use of what is known as an 
oscillator, which exploits the concept of positive feed-
back using an appropriate amplifier circuit. Oscillator 
circuits are an integral component of many consumer 
products, such as the touch screen in Fig. 14.41. These 
touch screens are often based on capacitive sensing, 
where touching the screen will change the ac coupling 
to an oscillator circuit, thereby changing the oscillation 
frequency. 

One straightforward but useful oscillator circuit is 
known as the Wien-bridge oscillator, shown in Fig. 14.42.

The circuit resembles a noninverting op amp circuit, 
with a resistor R1 connected between the inverting input 
pin and ground, and a resistor Rf connected between the 
output and the inverting input pin. The resistor Rf supplies 

what is referred to as a negative feedback path, since it 
connects the output of the amplifier to the inverting input. 
Any increase Δ Vo in the output then leads to a reduction 
of the input, which in turn leads to a smaller output; this 
process increases the stability of the output voltage Vo. 
The gain of the op amp, defined as the ratio of Vo to Vi, is 
determined by the relative sizes of R1 and Rf .

■  FIGURE 14.41 Many consumer electronic products, such as this 
GPs receiver, rely on oscillator circuits to provide a reference frequency. 
(©Aleksandra suzi/shutterstock)

PRACTICAL APPLICATIONPRACTICAL APPLICATION
Design of Oscillator Circuits

(Continued on next page)
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R1

Vi

R
R

1/sC
1/sC

Vo

Rf

–

+

■  FIGURE 14.42 A Wien-bridge oscillator circuit.

The positive feedback loop consists of two separate 
resistor-capacitor combinations, defined as Zs = R + 1/sC  
and Zp = R||(1/sC). The values we choose for R and C 
allow us to design an oscillator having a specific fre-
quency (the internal capacitances of the op amp itself 
will limit the maximum frequency that can be obtained). 
In order to determine the relationship between R, C, and 
the oscillation frequency, we seek an expression for the 
amplifier gain, Vo/Vi.

Recalling the two ideal op amp rules as discussed in 
Chap. 6 and examining the circuit in Fig. 14.42 closely, 
we recognize that Zp and Zs form a voltage divider such 
that

   V  i   =  V  o     
 Z  p   _____  Z  p   +  Z  s  

    [40]

Simplifying the expressions for Zp = R||(1/sC) = R/(1 + 
sRC), and Zs = R + 1/sC = (1 + sRC)/sC, we find that

   
   V  i   __  V  o  

  
  
=

  
  

  R ______ 1  +  sRC
  
  ___________  

  1  +  sRC ______ sC
   +   R ______ 1  +  sRC

  
  
    

 

  

=

  

  sRC  _____________  
1  +  3sRC  +    s   2   R   2   C   2 

  

   [41]

Since we are interested in the sinusoidal steady-state 
operation of the amplifier, we replace s with jω, so 
that

   
   V  i   __  V  o  

  
  
=

  
  jωRC  _______________  
1 + 3jωRC +   (  jω )     2   R   2   C   2 

  
    

 
  

=
  
  jωRC  _____________  
1 −  ω   2   R   2   C   2  + 3jωRC

  
    [42]

This expression for the gain is real only when ω = 1/RC. 
Thus, we can design an amplifier to operate at a partic-
ular frequency f = ω/2π = 1/2π RC by selecting values 
for R and C.

As an example, let’s design a Wien-bridge oscillator 
to generate a sinusoidal signal at a frequency of 20 Hz, 
the commonly accepted lower frequency of the audio 
range. We require a frequency ω = 2πf = (6.28)(20) = 
125.6 rad/s. Once we specify a value for R, the neces-
sary value for C is known (and vice versa). Assuming 
that we happen to have a 1 μF capacitor handy, we thus 
compute a required resistance of R = 7962 Ω. Since 
this is not a standard resistor value, we will likely have 
to use several resistors in series and/or parallel com-
binations to obtain the necessary value. Referring to 
Fig. 14.42 in preparation for simulating the circuit us-
ing SPICE, however, we notice that no values for Rf or 
R1 have been specified.

Although Eq. [40] correctly specifies the relationship 
between Vo and Vi, we may also write another equation 
relating these quantities:

0 =   
 V  i   __  R  1  

   +   
 V  i   −  V  o   _____  R  f  

  

which can be rearranged to obtain

     V  o   __  V  i  
   = 1 +   

 R  f   __  R  1  
    [43]

Setting ω = 1/RC in Eq. [42] results in

   V  i   __  V  o  
   =   1 _ 3  

Therefore, we need to select values of R1 and Rf such 
that Rf /R1 = 2. Unfortunately, if we proceed to perform 
a transient SPICE analysis on the circuit selecting Rf =  
2 kΩ and R1 = 1 kΩ, for example, we will likely be disap-
pointed in the outcome. In order to ensure that the circuit 
is indeed unstable (a necessary condition for oscillations 
to begin), it is necessary to have Rf /R1 slightly greater than 
2. The simulated output of our final design (R = 7962 Ω,  
C = 1 μF, Rf = 2.01 kΩ, and R1 = 1 kΩ) is shown in 
Fig. 14.43. Note that the magnitude of the oscillations is 
increasing in the plot; in practice, nonlinear circuit ele-
ments are required to stabilize the voltage magnitude of 
the oscillator circuit.
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SUMMARY AND REVIEW
The primary topic of this chapter was circuit analysis using the Laplace 
transform, a mathematical tool for converting well-behaved time-domain 
functions into frequency-domain expressions. Before introducing the trans-
form, we first considered the notion of a complex frequency, which we re-
ferred to as s. This convenient term has both a real (σ) and imaginary (ω) 
component, so it can be written as s = σ + jω. 

One of the most surprising things is that day-to-day circuit analysis 
does not technically require direct implementation of either the Laplace 
transform integral or its corresponding inverse integral! Instead, look-up 
tables are routinely employed, and the s-polynomials which result from 
analyzing circuits in the s-domain are factored into smaller, easily recog-
nizable terms. This works because each Laplace transform pair is unique. 
There are several theorems associated with Laplace transforms which 
do see daily usage, however. These include the linearity theorem, the 
time-differentiation theorem, and the time-integration theorem. The time-
shift as well as initial-value and final-value theorems are also commonly 
employed.

Ultimately, we exploit these techniques in the s-domain by replacing 
capacitors and inductors with appropriate impedances, which can be written 
in such a way as to include initial conditions. The concept of impedance (or 
admittance) allows us to directly construct s-domain equations which de-
scribe nodal voltages, mesh currents, etc., without having to rely on taking 
the Laplace transform of each term of an integrodifferential equation. 

■  FIGURE 14.43 simulated output of the Wien-bridge oscillator designed for operation at 20 hz.
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We also introduced the notion of a system transfer function, which al-
lows the input to a network to be changed easily, and the new output pre-
dicted. Working in the s-domain proved very natural here, and we saw that 
convolution of two time-domain functions is easily performed by multiply-
ing their s-domain equivalents.

In our analysis, we examined the complex-frequency plane, which al-
lows us to create a graphical representation of any s-domain expression. In 
particular, it provides a tidy means for readily identifying poles and zeros. 
Since the sources connected to a circuit only determine the magnitude of 
the transient response, and not the form of the transient response itself, we 
found that s-domain analysis can reveal details about the natural as well as 
forced response of a network. 

These topics will be revisited in future studies of signal analysis, and 
the concept of convolution in particular is applicable to a broad range of 
applications. At this stage, however, perhaps we should pause and allow 
the reader to focus on key issues and identify relevant examples as a start to 
reviewing what we have discussed.

 The complex frequency s = σ + jω is the general case; dc (s = 0), 
exponential (ω = 0), and sinusoidal (σ = 0) functions are special cases.

 In circuit analysis problems, we convert time-domain functions into  
the frequency domain using the one-sided Laplace transform:

 F  (  s )    =  ∫ 
 0   − 

  
 ∞

     e   −st  f  (  t )   dt. (Example 14.1)

 The inverse Laplace transform converts frequency-domain expres-
sions into the time domain. However, it is seldom needed due to the 
existence of tables listing Laplace transform pairs. (Example 14.2, 
Table 14.1)

 The unit-impulse function is a common approximation to pulses with 
very narrow widths compared to circuit time constants. It is nonzero 
only at a single point, and has unity area.

 ℒ  {   f  1    (  t )    +  f  2    (  t )    }    = ℒ  {   f  1    (  t )    }    + ℒ  {   f  2    (  t )    }           (additive property)
 ℒ  {  kf  (  t )    }    = kℒ  {  f  (  t )    }   , k = constant        (homogeneity property)
 Inverse transforms are typically found using a combination of 

partial-fraction expansion techniques and various operations (Table 14.2) 
to simplify s-domain quantities into expressions that can be found in 
transform tables such as Table 14.1. (Examples 14.3, 14.4, 14.5, 14.9)

 The differentiation and integration theorems allow us to convert 
integrodifferential equations in the time domain into simple algebraic 
equations in the frequency domain. (Examples 14.6, 14.7, 14.8)

 The initial-value and final-value theorems are useful when only the 
specific values f (t = 0+) or f (t →∞) are desired. (Example 14.10)

 Resistors may be represented in the frequency domain by an imped-
ance having the same magnitude. (Example 14.11)

 Inductors may be represented in the frequency domain by an imped-
ance sL. If the initial current is nonzero, then the impedance must be 
placed in series with a voltage source −Li(0−) or in parallel with a 
current source i(0−)/s. (Example 14.11)
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 Capacitors may be represented in the frequency domain by an imped-
ance 1/sC. If the initial voltage is nonzero, then the impedance must 
be placed in series with a voltage source v(0−)/s or in parallel with a 
current source Cv(0−). (Example 14.12)

 Circuits may be analyzed using s-domain techniques to determine its 
transient response. (Examples 14.11, 14.12, 14.13, 14.14, 14.15, 14.16)

 Nodal and mesh analysis in the s-domain lead to simultaneous equa-
tions in terms of s-polynomials. MATLAB is a particularly useful tool 
for solving such systems of equations. (Examples 14.13, 14.14, 14.15)

 Superposition, source transformation, and the Thévenin and Norton 
theorems all apply in the s-domain. (Examples 14.16, 14.17)

 A circuit transfer function H(s) is defined as the ratio of the s-domain 
output to the s-domain input. Either quantity may be a voltage or a 
current. (Example 14.18, 14.20)

 The zeros of H(s) are those values that result in zero magnitude. The 
poles of H(s) are those values that result in infinite magnitude.

 Convolution provides us with both an analytic and a graphical means 
of determining the output of a circuit from its impulse response h(t). 
(Examples 14.18, 14.19, 14.20)

 There are several graphical approaches to representing s-domain 
expressions in terms of poles and zeros. Such plots can be used to 
synthesize a circuit to obtain a desired response. (Example 14.21)

 Single op amp stages can be used to synthesize transfer functions hav-
ing either a zero or a pole. More complex functions can be synthesized 
by cascading multiple stages. (Example 14.21)

READING FURTHER
An easily readable development of the Laplace transform and some of its key 
properties can be found in Chap. 4 of:

A. Pinkus and S. Zafrany, Fourier Series and Integral Transforms. Cam-
bridge, United Kingdom: Cambridge University Press, 1997.

A much more detailed treatment of integral transforms and their application to 
science and engineering problems can be found in:

B. Davies, Integral Transforms and Their Applications, 3rd ed. New York: 
Springer-Verlag, 2002.

Stability and the Routh test are discussed in Chap. 5 of:

K. Ogata, Modern Control Engineering, 4th ed. Englewood Cliffs, N.J.: 
Prentice-Hall, 2002.

More details regarding s-domain analysis of systems, use of Laplace transforms, 
and properties of transfer functions can be found in:

K. Ogata, Modern Control Engineering, 4th ed. Englewood Cliffs, N.J.: 
Prentice-Hall, 2002.

A good discussion of various types of oscillator circuits can be found in:

R. Mancini, Op Amps for Everyone, 2nd ed. Amsterdam: Newnes, 2003.
and

G. Clayton and S. Winder, Operational Amplifiers, 5th ed. Amsterdam: 
Newnes, 2003.
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EXERCISES

14.1 Complex Frequency
1. Determine the conjugate of each of the following: (a) 8 − j; (b) 8e−9t; (c) 22.5; 

(d) 4e j 9; (e) j2e−j 11.
2. Compute the complex conjugate of each of the following expressions: (a) −1; 

(b)   − j ____ 5    20   ∘    ; (c) 5e−j5 + 2e j 3; (d)  (  2 + j )     (  8    30   ∘   )     e   j    2t .

3. Several real voltages are written down on a piece of paper, but coffee spills 
across half of each one. Complete the voltage expression if the legible part is 
(a) 5e −j 50t; (b) (2 + j)e j 9t; (c) (1 − j)e j78t; (d) −je−5t. Assume the units of each 
voltage are volts (V).

4. State the complex frequency or frequencies associated with each function:  
(a) f (t) = sin 100t; (b) f (t) = 10; (c) g(t) = 5e−7t cos 80t; (d) f (t) = 5e8t;  
(e) g(t) = (4e−2 t − e−t) cos(4t − 95°).

5. For each of the following functions, determine the complex frequency s as well 
as s*: (a) 7e−9t sin (100t + 9°); (b) cos 9t; (c) 2 sin 45t; (d) e7t cos 7t.

6. Use real constants A, B, θ, ϕ, etc. to construct the general form of a real-time 
function characterized by the following frequency components: (a) 10 − j 3 s−1; 
(b) 0.25 s−1; (c) 0, 1, −j, 1 + j (all s−1).

7. The following voltage sources AeBt cos(Ct + θ) are connected (one at a time) to 
a 280 Ω resistor. Calculate the resulting current at t = 0, 0.1, and 0.5 s, assum-
ing the passive sign convention: (a) A = 1 V, B = 0.2 Hz, C = 0, θ = 45°;  
(b) A = 285 mV, B = −1 Hz, C = 2 rad/s, θ = −45°.

8. Your neighbor’s cell phone interferes with your laptop speaker system whenev-
er the phone is connecting to the local network. Connecting an oscilloscope to 
the output jack of your computer, you observe a voltage waveform that can be 
described by a complex frequency s = −1 + j200π s−1. (a) What can you deduce 
about your neighbor’s movements? (b) The imaginary part of the complex 
frequency starts to decrease suddenly. Alter your deduction as appropriate.

9. Compute the real part of each of the following complex functions: (a) v(t) = 
9e−j 4t V; (b) v(t) = 12− j 9 V; (c) 5 cos 100t − j43 sin 100t V; (d) (2 + j)e j 3t V.

10. Your new assistant has measured the signal coming from a piece of test 
equipment, writing v(t) = Vx e

(−2 + j 60)t, where Vx = 8 − j100 V. (a) There is 
a missing term. What is it, and how can you tell it’s missing? (b) What is the 
complex frequency of the signal? (c) What is the significance of the fact that 
Im{Vx} > Re{Vx}? (d) What is the significance of the fact that |Re{s}| < 
|Im{s}|?

14.2 Definition of the Laplace Transform
11. Calculate, with the assistance of Eq. [10] (and showing intermediate steps), the 

Laplace transform of the following: (a) 2.1u(t); (b) 2u(t − 1); (c) 5u(t − 2) − 2u(t); 
(d) 3u(t − b), where b > 0.

12. Employ the one-sided Laplace transform integral (with intermediate steps 
explicitly included) to compute the s-domain expressions which correspond to 
the following: (a) 5u(t − 6); (b) 2e−tu(t); (c) 2e−tu(t − 1); (d) e−2t sin5t u(t).

13. With the assistance of Eq. [10] and showing appropriate intermediate steps, 
compute the one-sided Laplace transform of the following: (a) (t − 1)u(t − 1);  
(b) t 2u(t); (c) sin2t u(t); (d) cos100t u(t).

14. The Laplace transform of tf (t), assuming ℒ{f (t)} = F(s), is given by −    d __ 
ds    F  (  s )   .  

Test this by comparing the predicted result to what is found by directly em-
ploying Eq. [10] for (a) tu(t); (b) t2u(t); (c) t3u(t); (d) te−tu(t).

14.3 Laplace Transforms of Simple Time Functions
15. For the following functions, specify the range of σ0 for which the one-sided La-

place transform exists: (a) t + 4; (b) (t + 1)(t − 2); (c) e−t / 2u(t); (d) sin 10t u(t + 1).

//
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16. Show, with the assistance of Eq. [10], that ℒ{f (t) + g(t) + h(t)} = ℒ{ f (t) + 
ℒ{g(t)} + ℒ{h(t)}.

17. Determine F(s) if f (t) is equal to (a) 3u(t − 2); (b) 3e−2tu(t) + 5u(t); (c) δ(t) + 
u(t) − tu(t); (d) 5δ(t).

18. Obtain an expression for G(s) if g(t) is given by (a) [5u(t)]2 − u(t); (b) 2u(t) − 
2u(t − 2); (c) tu(2t).

19. Without recourse to Eq. [11], obtain an expression for f (t) if F(s) is given by 
(a)    1 _ s  ; (b) 1.55 −   2 _ s  ; (c)   1 _____ s  +  1.5  ; (d)   5 __ 

 s   2 
   +   5 _ s   + 5. 

20. Obtain an expression for g(t) without employing the inverse Laplace 

transform integral, if G(s) is known to be (a)   1.5 ______ 
  (  s  +  9 )     2 

  ; (b)   2 _ s   − 0; (c) π; 
(d)   a ______ 

  (  s  +  1 )     2 
   − a,  a > 0. 

21. Evaluate the following: (a) δ(t) at t = 1; (b) 5δ(t + 1) + u(t + 1) at t = 0;  

(c)  ∫ 
−1

  
2
    δ  (  t )   dt; (d) 3 −  ∫ 

−1
  

2
    2δ  (  t )   dt.

22. Evaluate the following: (a) [δ(2t)]2 at t = 1; (b) 2δ(t − 1) + u(−t + 1) at t = 0; 

(c)   1 _ 3    ∫ 
−0.001

  
0.003

    δ  (  t )   dt; (d)   1 _ 2     [   ∫ 
−∞

  
∞

   δ(t  −  1 ) dt ]     
2
 .

23. Evaluate the following expressions at t = 0:

  (a) ∫ 
−∞

  
+∞

    2δ  (  t − 1 )   dt; (b)  
 ∫ 

−∞
  

+∞
    δ  (  t  +  1 )   dt

  __________ 
u  (  t  +  1 )     ; (c)  

 √ 

_____________

  3 ∫ 
−∞

  
+∞

    δ  (  t  −  2 )   dt  
  ___________  

  [  u  (  1  −  t )    ]     3 
   −  √ 

_______
 u  (  t  +  2 )     ; 

(d)   

⎡

 ⎢ 
⎣
    
 ∫ 

−∞
  

+∞
    δ  (  t  −  1 )   dt

  __________  
 ∫ 

−∞
  

+∞
    δ  (  t + 1 )   dt

   

⎤

 ⎥ 
⎦
     

2

 .

24. Evaluate the following:

  (a)  ∫ 
−∞

  
+∞

     e   −100  δ  (  t −   1 _ 5   )   dt; (b)  ∫ 
−∞

  
+∞

    4tδ  (  t − 2 )   dt; (c)  ∫ 
−∞

  
+∞

    4  t   2  δ  (  t − 1.5 )   dt; 

(d)    
 ∫ 

−∞
  

+∞
      (  4 − t )   δ  (  t − 1 )   dt

  _____________  
 ∫ 

−∞
  

+∞
      (  4 − t )   δ  (  t + 1 )   

  .

14.4 Inverse Transform Techniques
25. Determine the inverse transform of F(s) equal to (a) 5 +   5 __ 

 s   2 
   −   5 _____  (  s  +  1 )    ;  

(b)   1 _ s   +   5 _______  (  0.1s  +  4 )     − 3; (c) −   1 __ 2s   +   1 _____ 
  (  0.5s )     2 

   +   4 __________    (  s  +  5 )     (  s  +  5 )      + 2; 

(d)   4 __________    (  s  +  5 )     (  s  +  5 )      +   2 ____ s  +  1   +   1 ____ s  +  3  .

26. Obtain an expression for g(t) if G(s) is given by (a)   3  (  s  +  1 )    ______ 
  (  s  +  1 )     2 

   +   2s __ 
 s   2 

   −   1 ______ 
  (  s  +  2 )     2 

  ; 
(b) −   10 ______ 

  (  s  +  3 )     3 
  ; (c) 19 −   8 ______ 

  (  s  +  3 )     2 
   +   18 ________  

 s   2    +  6s  +  9
  .

27. Reconstruct the time-domain function if its transform is (a)   s ______ s  (  s  +  2 )     ; (b) 1;  

(c) 3   s  +  2 _________  
 (   s   2    +  2s  +  4 )  

  ; (d) 4   s _____ 2s  +  3  .

28. Determine the inverse transform of V(s) equal to (a)   s  +  2 ____ 2s  ; (b)   s  +  8 ____ s   +   2       _____ 
 s   2 

  ; 

(c)   s  +  1 ______ s  (  s  +  2 )      +   2  s   2  − 1 _____ 
 s   2 

  ; (d)    s   2    +  4s  +  4  ________ s  .

29. Obtain the time-domain expression which corresponds to each of the fol-

lowing s-domain functions: (a) 2   
3s  +     1 _ 2  

 _____ 
 s   2    +  3s

  ; (b) 7 −   
s  +     1 _ 2  
 ________  

 s   2    +  3s  +  2
  ; (c)   2 __ 

 s   2 
  ; 

(d)   2 __________    (  s  +  1 )     (  s  +  1 )     ; (e)   14  ______________    (  s  +  1 )     (  s  +  4 )     (  s  +  5 )     .
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30. Find the inverse Laplace transform of the following: (a)   1 _________  
 s   2    +  9s  +  20

  ; 

(b)   4 ___________  
 s   3    +  18  s   2    +  17s

  ; (c)   3  ___________________   s  (  s  +  1 )     (  s  +  4 )     (  s  +  5 )     (  s  +  2 )     . (d) Verify your 

answers with MATLAB.

31. Determine the inverse Laplace transform of each of the following s-domain ex-
pressions: (a)   1 __________  

  (  s  +  2 )     2   (  s  +  1 )   
  ; (b)   s _____________  

  (   s   2    +  4s  +  4 )     (  s  +  2 )   
  ; (c)   1 ________  

 s   2    +  8s  +  7
  .  

(d) Verify your answers with MATLAB.

32. Given the following expressions in the s-domain, determine the corresponding  
time-domain functions: (a)   1 __ 3s   −   1 _____ 2s  +  1   +   3 __________  

 s   3    +  8  s   2    +  16s
   − 1; (b)   1 ______ 

 (3s + 5 )   2 
  ;  

(c)   2s ______ 
  (  s  +  a )     2 

  .

33. Compute ℒ−1{G(s)} if G(s) is given by (a)   3s ____________  
  (  s / 2  +  2 )     2   (  s  +  2 )   

  ;  

(b) 3 − 3   s  ________________   
  (  2  s   2    +  24s  +  70 )     (  s  +  5 )   

  ; (c) 2 −   1 ______ s  +  100   +   s ______ 
 s   2    +  100

  ;  

(d) ℒ{tu(2t)}.

34. Obtain the time-domain expression which corresponds to the following  
s-domain functions: (a)   1 ______ 

  (  s  +  2 )     2 
  ; (b)   4 ______ 

  (  s  +  1 )     2 
  ; (c)   1 __________  s(s + 4 ) (s + 6 )  .  

(d) Verify your solutions with MATLAB.

14.5 Basic Theorems for the Laplace Transform
35. Take the Laplace transform of the following equations:

  (a) 5 di/dt − 7 d2i/dt2 + 9i = 4; (b) m   
 d   2  p

 ___ 
d  t   2 

     +    μ  f      
dp

 __ 
dt

     +  kp  (  t )    = 0, the equation 

that describes the “force-free” response of a simple shock absorber system; 

(c)   
dΔ  n  p   ____ 

dt
   = −   

Δ  n  p   ___ τ    +  G  L  , with τ = constant, which describes the recombination 
rate of excess electrons (Δnp) in p-type silicon under optical illumination (GL is 
a constant proportional to the light intensity).

36. With regard to the circuit depicted in Fig. 14.44, the initial voltage across the 
capacitor is v(0−) = 1.5 V and the current source is is = 700u(t) mA. (a) Write 
the differential equation which arises from KCL, in terms of the nodal voltage 
v(t). (b) Take the Laplace transform of the differential equation. (c) Determine 
the frequency-domain representation of the nodal voltage. (d) Solve for the 
time-domain voltage v(t).

37. For the circuit of Fig. 14.44, if  I  s   =   2 ____ s  +  1    mA, (a) write the time-domain nod-

al equation in terms of v(t); (b) solve for V(s); (c) determine the time-domain 
voltage v(t).

38. The voltage source in the circuit of Fig. 14.3 is replaced with one whose 
s-domain equivalent is   2 _ s   −   1 ____ s  +  1    V. The initial condition is unchanged.  
(a) Write the s-domain KVL equation in terms of I(s). (b) Solve for i(t).

39. For the circuit of Fig. 14.45, vs(t) = 2u(t) V and the capacitor initially stores 
zero energy. (a) Write the time-domain loop equation in terms of the current 
i(t). (b) Obtain the s-domain representation of this integral equation. (c) Solve 
for i(t).

40. The s-domain representation of the voltage source in Fig. 14.45 is  
 V  s    (  s )    =   2 ____ s  +  1    V. The initial voltage across the capacitor, defined using 
the passive sign convention in terms of the current i, is 4.5 V. (a) Write the 
time-domain integral equation that arises from application of KVL. (b) By first 
solving for I(s), determine the time-domain current i(t).

is 500 mFv
+

–
2 Ω

■  FIGURE 14.44

■  FIGURE 14.45

i (t)200 mF

+
–vs v (t)

+

–
5 Ω
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41. If the current source of Fig. 14.46 is given by 450u(t) mA, and ix (0) =  
150 mA, work initially in the s-domain to obtain an expression for v(t) 
valid for t > 0.

42. Obtain, through purely legitimate means, an s-domain expression which corre-
sponds to the time-domain waveform plotted in Fig. 14.47.

14.6 The Initial-Value and Final-Value Theorems
43. Employ the initial-value theorem to determine the initial value of each of  

the following time-domain functions: (a) 2u(t); (b) 2e−tu(t); (c) u(t − 6);  
(d) cos 5t u(t).

44. Employ the initial-value theorem to determine the initial value of each 
of the following time-domain functions: (a) u(t − 3); (b) 2e−(t−2)u(t − 2); 

(c)   
u  (  t  −  2 )     +     [  u  (  t )    ]     2 

  ____________ 2  ; (d) sin 5t e−2tu(t).

45. Make use of the final-value theorem (if appropriate) to ascertain f (∞)  
for (a)   1 ____ s  +  2   −   2 _ s  ; (b)   2s __________    (  s  +  2 )     (  s  +  1 )     ; (c)   1 __________    (  s  +  2 )     (  s  +  4 )      +   2 _ s  ; 

(d)   1 _____________  
  (   s   2    +  s  −  6 )     (  s  +  9 )   

  .

46. Without recourse to f (t), determine f (0+) and f (∞) (or show they do not exist) 
for each of the following s-domain expressions: (a)   1 _____ s  +  18  ; (b) 10  (    1 _ 

 s   2 
   +   3 _ s   )   ; 

(c)    s   2  − 4 _________  
 s   3    +  8  s   2    +  4s

  ; (d)    s   2    +  2 _________  
 s   3    +  3  s   2    +  5s

  .

47. Apply the initial- or final-value theorems as appropriate to determine f (0+) and 
f (∞) for the following functions: (a)   s  +  2 ________  

 s   2    +  8s  +  4
  ; (b)   1 ____________  

 s   2    (  s  +  4 )     2    (  s  +  6 )     3 
  ;  

(c)   4  s   2    +  1  ___________  
  (  s  +  1 )     2    (  s  +  2 )     2 

  .

48. Determine which of the following functions are appropriate for the final-value 
theorem:

  (a)   1 _____  (  s  −  1 )    ; (b)   10 ________  
 s   2    −  4s  +  4

  ; (c)   13 ____________  
 s   3    −  5  s   2    +  8s  −  6

  ; 

(d)   3  _______________   
2  s   3    −  10  s   2    +  16s  −  12

  .

14.7 Z(s) and Y(s)
49. Draw an s-domain equivalent of the circuit depicted in Fig. 14.48, if the only 

quantity of interest is v(t). (Hint: Omit the source, but don’t ignore it.)
50. For the circuit represented in Fig. 14.49, draw an s-domain equivalent and 

analyze it to obtain a value for i(t) if i(0) is equal to (a) 0; (b) −2 A.

■  FIGURE 14.49

+
–

5 Ω

2 AV Ω VC (s)

+

–

1.5
s

2
s

51. For the circuit of Fig. 14.49, draw an s-domain equivalent and analyze it to 
obtain a value for v(t) if i(0) is equal to (a) 0; (b) 3 A.

52. With respect to the s-domain circuit drawn in Fig. 14.50, (a) calculate VC(s); 
(b) determine vC(t), t > 0; (c) draw the time-domain representation of the 
circuit.

■  FIGURE 14.46

ix

is 1.5 Hv
+

–
1 Ω

■  FIGURE 14.47

12

6

0 1 2 3 4 5 6

f (t)

t (s)

■  FIGURE 14.48

4 Ω

1.5 H2 A v (t)

+

–

t = 0

■  FIGURE 14.50

+
–

5 Ω

2 AV Ω VC (s)

+

–

1.5
s

2
s
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53. Determine v(t) for t > 0 for the circuit shown in Fig. 14.51.

■  FIGURE 14.51

+
–

73 Ω1 Ω

30 mH

2000 μF

7.2 V v (t)

+

–

t = 0

54. Determine the input impedance Zin(s) seen looking into the terminals of 
the network depicted in Fig. 14.52. Express your answer as a ratio of two 
s-polynomials.

■  FIGURE 14.52

Zin

500 mH

3.3 Ω 250 mF

55. With respect to the network of Fig. 14.53, obtain an expression for the 
input admittance Y(s) as labeled. Express your answer as a ratio of two 
s-polynomials.

56. For the circuit of Fig. 14.54, (a) draw both s-domain equivalent circuits;  
(b) choose one and solve for V(s); (c) determine v(t).

■  FIGURE 14.54

+
–

200 mH

2e–2tu(t) V

i (0–) = 0.5 A

1 kΩ

v (t)+ –

i (t)

14.8 Nodal and Mesh Analysis in the s-Domain
57. For the circuit given in Fig. 14.55, (a) draw the s-domain equivalent; (b) write 

the three s-domain mesh equations; (c) determine i1, i2, and i3.

■  FIGURE 14.55

2e–tu(t) V –4u(t) V

1 Ω

i3(t)

i2(t)i1(t)+
– +

–

500 mF 500 mF

3 Ω

■  FIGURE 14.53

Y(s)
1.5 Ω

333 mF 4.7 Ω

1.7 H
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58. For the circuit shown in Fig. 14.56, (a) write an s-domain nodal equation for 
Vx(s); (b) solve for vx(t).

■  FIGURE 14.56

250 mF

–
+

+
–2u(t) V 3u(t) V5 Ω

800 mH vx

Ref

59. Determine v1 and v2 for the circuit of Fig. 14.57 using nodal analysis in the 
s-domain.

1 Ω

2 Ω

2 H2u(t) A 5u(t) A

v1 v2200 mF

■  FIGURE 14.57

60. The 2u(t) A source in Fig. 14.57 is replaced with a 4e−tu(t) A source. Employ 
s-domain analysis to determine the power dissipated by the 1 Ω resistor.

61. For the circuit shown in Fig. 14.58, let is1 = 3u(t) A and is2 = 5 sin 2t A. Work-
ing initially in the s-domain, obtain an expression for vx(t).

5 Ω 2 H

0.1 F

vx

+

–

is1 is2

■  FIGURE 14.58

62. Determine the mesh current i1(t) in Fig. 14.59 if the current through the 1 mH 
inductor (i2 − i4) is 1 A at t = 0−. 

■  FIGURE 14.59

+ –

2 Ω

1 mH

0.005i1

1000 μF750 μF
6 cos (2t –13°) u(t) V 6 cos 2t u(t) V

i4i2

i3i1

+
–

+
–
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63. Assuming no energy initially stored in the circuit of Fig. 14.60, determine the 
value of v2 at t equal to (a) 1 ms; (b) 100 ms; (c) 10 s.

■  FIGURE 14.60

3v2

5v2

100 Ω

2 mH

500 μF600 μF
14tu(t) V +

–

v2

14.9 Additional Circuit Analysis Techniques
64. Using repeated source transformations, obtain an s-domain expression for the 

Thévenin equivalent seen by the element labeled Z in the circuit of Fig. 14.61.

■  FIGURE 14.61

+
– 8s Ω

20 Ω 14 Ω

ZΩ12
s

I(s)

V(s + 1)(s + 2)
s

65. For the circuit shown in Fig. 14.62, determine the s-domain Thévenin 
equivalent seen by the (a) 2 Ω resistor; (b) 4 Ω resistor; (c) 1.2 F capacitor;  
(d) current source.

4 Ω

2 Ω

3 H

iC (t)

i2u(t) A 1.2 F

■  FIGURE 14.62

66. Use s-domain techniques and MATLAB to determine the capacitor current 
iC (t) for the circuit of Fig. 14.62. Compare results using the residue and ila-
place MATLAB functions.

67. For the circuit of Fig. 14.63, take is(t) = 5u(t) A and determine (a) the Thévenin 
equivalent impedance seen by the 10 Ω resistor; (b) the inductor current iL(t).

3.5 Ωis 5 H

3 Ω

10 Ω

i xiL

■  FIGURE 14.63

68. For the s-domain circuit of Fig. 14.64, determine the Thévenin equivalent seen 
looking into the terminals marked a and b.■  FIGURE 14.64

2 Ω 5 Ω5 H

I2

5I2

a

b
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14.10 Poles, Zeros, and Transfer Functions
69. Determine the poles and zeros of the following s-domain functions:

  (a)   s ______ s  +  12.5  ; (b)   
s  (  s  +  1 )   

 __________    (  s  +  5 )     (  s  +  3 )     ; (c)   s  +  4 ________  
 s   2    +  8s  +  7

  ; (d)    s   2    −  s  −  2  ___________  
3  s   3    +  24  s   2    +  21s

  .

70. Use appropriate means to ascertain the poles and zeros of 

  (a) s  +  4; (b)   2s _________  
 s   2    −  8s  +  16

  ; (c)    4 ____________  
 s   2    +  8s  +  7

   ; (d)   s  −  5 ________  
 s   3    −  7s  +  6

  .

71. Consider the following expressions and determine the critical frequencies of 
each:

  (a) 5  +    s    − 1 ; (b)   
s  (  s  +  1 )     (  s  +  4 )   

  __________  
  (  s  +  5 )     (  s  +  3 )     2 

  ; (c)   1 ____ 
 s   2    +  4

  ; (d)   0.5  s   2    −  18 _______ 
 s   2    +  1

  .

72. For the network represented schematically in Fig. 14.65, (a) write the transfer 
function H(s) ≡ Vout(s)/Vin(s); (b) determine the poles and zeros of H(s).

73. For each of the two networks represented schematically in Fig. 14.66, (a) write the 
transfer function H(s) ≡ Vout(s)/Vin(s); (b) determine the poles and zeros of H(s).

■  FIGURE 14.66

vin(t)

+

–
vout(t)

+

–

(a)

L

R vin(t)

+

–
vout(t)

+

–

(b)

R

L

74. Specify the poles and zeros of Y(s) as defined by Fig. 14.53.
75. If a network is found to have the transfer function H  (  s )    =   s ________  

 s   2    +  8s  +  7
  , deter-

mine the s-domain output voltage for vin(t) equal to (a) 3u(t) V; (b) 25e−2tu(t) V;  
(c) 4u(t + 1) V; (d) 2 sin 5t u(t) V.

14.11 Convolution
76. Referring to Fig. 14.67, employ Eq. [36] to obtain x(t) * y(t).

■  FIGURE 14.67

1

0

x(t)

t

3

10

y(t)

t

77. With respect to the functions x(t) and y(t) as plotted in Fig. 14.67, use Eq. [36] 
to obtain (a) x(t) * x(t); (b) y(t) * δ(t).

 78.  Employ graphical convolution techniques to determine f *g if f (t) = 5u(t) and 
g(t) = 2u(t) − 2u(t − 2) + 2u(t − 4) − 2u(t − 6).

 79.  Let h(t) = 2e−3tu(t) and x(t) = u(t) − δ(t). Find y(t) = h(t) * x(t) by (a) using 
convolution in the time domain; (b) finding H(s) and X(s) and then obtaining 
ℒ−1{H(s)X(s)}.

 80.  Determine the impulse response h(t) of the network shown in Fig. 14.68.  
(b) Use convolution to determine vo(t) if vin(t) = 8u(t) V.

vin(t)

+

–
vout(t)

+

–

C

R

■  FIGURE 14.65

■  FIGURE 14.68

1 H

4 Ω

5 Ωvin(t)

+

–

vo(t)

+

–

500 mF
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CHAPTER 14 CIRCUIT ANALYSIS IN THE s-DOMAIN614

14.12 A Technique for Synthesizing the Voltage Ratio H(s) = Vout/Vin

 81.  Design a circuit which produces the transfer function H(s) = Vout/Vin equal to  
(a) 5  (  s  +  1 )   ; (b)   5 _____  (  s  +  1 )    ; (c) 5   s  +  1 ____ s  +  2  .

 82.  Design a circuit which produces the transfer function H(s) = Vout/Vin equal to 
(a) 2   (  s + 1 )     2 ; (b)   3 _____________    (  s  +  500 )     (  s  +  100 )     .

 83. Design a circuit which produces the transfer function

   H  (  s )    =    V  out   ___  V  in  
   = 3   s  +  50 ______ 

  (  s  +  75 )     2 
  .

 84.  Find H(s) = Vout/Vin as a ratio of polynomials in s for the op-amp circuit of 
Fig. 14.38, given the impedance values (in Ω): (a) Z1(s) = 103 + (108/s),  
Zf (s) = 5000; (b) Z1(s) = 5000, Zf (s) = 103 + (108/s); (c) Z1(s) = 103 + 
(108/s), Zf (s) = 104 + (108/s).

Chapter-Integrating Exercises 
 85.  Design a circuit that provides a frequency of 16 Hz, which is near the lower 

end of the human hearing range. Verify your design with an appropriate simu-
lation.

 86.  An easy way to get somebody’s attention is to use a dual-tone horn with 
prescribed pitches! Design a horn for your autonomous vehicle to provide a 
voltage output composed of a 1477 Hz and 852 Hz signal.

 87.  Many people with partial hearing loss, especially the elderly, have difficulty in 
detecting standard smoke detectors. An alternative is to lower the frequency to 
approximately 261.6 Hz. Design a circuit which provides such a signal.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
We have already been introduced to the concept of frequency 
response, meaning that the behavior of our circuit can change 
dramatically depending on the frequency (or frequencies) of 
operation—a radical departure from our first experiences with 
simple dc circuits. In this chapter we take the topic to a more 
refined level, as even simple circuits designed for specific frequency 
response can be enormously useful in a wide variety of everyday 
applications. In fact, we make use of frequency-selective circuits 
throughout the day, probably without even realizing it. For example, 
switching to our favorite radio station is in fact tuning our radio to 
selectively amplify a narrow band of signal frequencies; heating 
microwave popcorn is possible while watching television or talking 
on a cell phone because the frequencies of each device can be 
isolated from one another. In addition, studying frequency response 
and filters can be enjoyable because it gives us the opportunity to 
push past the analysis of existing circuits to design complex circuits 
from scratch to meet sometimes stringent specifications. We’ll start 
this journey with a short discussion of resonance, loss, quality factor, 
and bandwidth—important concepts for filters as well as any circuit 
(or system, for that matter) containing energy storage elements.

15.1 • TRANSFER FUNCTION
We have seen that the characteristics of a network can vary drasti-
cally at different frequencies. For example, a capacitor looks like 
an open circuit (high impedance) at low frequency and like a short 

Frequency Response15

KEY CONCEPTS

Resonant Frequency of 
Circuits with Inductors and 
Capacitors

Transfer Function

Bode Diagram Techniques

Quality Factor

Bandwidth

Frequency and Magnitude 
Scaling

Low- and High-Pass Filters

Bandpass Filter Design

Active Filters

Butterworth Filter Design
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CHAPTER 15 FReQuenCy ReSPonSe616

circuit (low impedance) at high frequency. An important way of describing 
the frequency response of a network is through the transfer function H(s) 
describing the output of the network divided by the input as a function of 
complex frequency s, as discussed in Chap. 14. Since we are interested 
in studying the dependence of the network on frequency, we will focus 
our attention on the case where s = jω and therefore the transfer function 
H(s) = H( jω). The network can consist of a voltage or current as the input, 
where the corresponding transfer function can be defined as a voltage gain, 
current gain, impedance, or admittance. Thus, the transfer function will take 
one of the following forms:

H ( jω)  =   
 V  out   ( jω)  ______  V  in   ( jω)    = Voltage gain

H ( jω)  =   
 I  out   ( jω)  _____  I  in   ( jω)    = Current gain

H ( jω)  =   
 V  out   ( jω)  ______  I  in   ( jω)    = Transfer impedance

H ( jω)  =   
 I  out   ( jω)  _____  V  in   ( jω)    = Transfer admittance

The transfer function is extremely useful because it provides a way of de-
scribing the output of a network for any input. For our case of frequency 
response, the transfer function can be represented in phasor form  H (   jω )   = 
H (   jω )     ϕ (   jω )    , where H( jω) and ϕ( jω) are the frequency-dependent magni-
tude and phase, respectively. The character of the network will defined by 
the magnitude and phase frequency response. 

EXAMPLE 15.1
Determine the transfer function of the RC circuit in Fig. 15.1, 
 defined as H = Vout/Vin. Construct a plot of the magnitude and 
phase as a function of frequency.

■  FIGURE 15.1 example RC network, 
the transfer function of which is of 
interest.

Vin

+

–
Vout

+

–

R

C

As we have observed in the circuit of Fig. 14.27, the circuit is a voltage 
divider with transfer function given by

H ( jω)  =   
 V  out   ( jω)  ______  V  in   ( jω)    =   

  1 ___ 
jωC

  
 _____ 

R +   1 ___ 
jωC

  
   =   1 ______ 1 + jωCR

  

/
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  SECTION 15.1 TRAnSFeR FunCTIon 617

The circuit has a pole at ω = j/CR, which is at the natural frequency 
ω0 = 1/CR. It is useful to rewrite the transfer function in terms of ω0

H (jω)  =   1 ______ 1 + jω /  ω  0  
  

The magnitude and phase are given by

H =   1 ________  
 √ 

_________
 1 +   (ω /  ω  0  )    2   
  

and

ϕ = − tan   -1  (  ω __  ω  0    ) 

The resulting plot is shown in Fig. 15.2, produced in MATLAB using 
the following code to describe magnitude and phase:

omega=linspace(0,10,100); % define frequency vector omega
for i=1:100;  % step through all points in frequency
 H(i)=1/sqrt(1+omega(i)^2);
 phi(i)=-atan(omega(i))*180/pi;
end

We see that the transfer function magnitude is unity and phase is zero at 
low frequency, since the capacitor has a very high impedance, behaving 
as an open circuit. As frequency increases, the capacitor impedance 
decreases and eventually reaches the short-circuit condition, where 
the transfer function magnitude and phase become zero and −90°, 
respectively. The natural frequency ω0 is a point of interest, where the 
magnitude and phase are 1 /   √ 

__
 2    and −45°, respectively. 

0

0.5

1

0 2

|H
|

4 6 8 10

|H (ω0)| = 1
2

 ω/ω0

–40

0

–20

–60

–80

0 2

ϕ 
(d

eg
re

es
)

ϕ (ω0) = –45° 

4 6 8 10
 ω/ω0

■  FIGURE 15.2 Frequency response of the magnitude and phase of RC network. 

(Continued on next page)
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15.2 • BODE DIAGRAMS
In this section we will discover a quick method of obtaining an approximate 
picture of the amplitude and phase variation of a given transfer function as 
functions of ω. Accurate curves may, of course, be plotted after calculating 
values with a programmable calculator or a computer; curves may also be 
produced directly on the computer. Our object here, however, is to obtain a 
better picture of the response than we could visualize from a pole-zero plot, 
but yet not mount an all-out computational offensive. Furthermore, we will 
be using logarithmic scales for frequency and magnitude, providing an im-
proved snapshot of frequency response over a wide range of values. 

The Decibel (dB) Scale
The approximate response curve we construct is called an asymptotic plot, 
or a Bode plot, or a Bode diagram, after its developer, Hendrik W. Bode, 
who was an electrical engineer and mathematician with the Bell Telephone 
Laboratories. Both the magnitude and phase curves are shown using a log-
arithmic frequency scale for the abscissa, and the magnitude itself is also 
shown in logarithmic units called decibels (dB). We define the value of 
∣H( jω)∣ in dB as follows:

  H  dB   = 20 log  |  H( jω ) |   
where the common logarithm (base 10) is used. (A multiplier of 10 instead 
of 20 is used for power transfer functions, but we will not need it here.) The 
inverse operation is

  |  H( jω) |    =  10    H  dB  /20  

Before we actually begin a detailed discussion of the technique for drawing 
Bode diagrams, it will help to gain some feeling for the size of the decibel 
unit, to learn a few of its important values, and to recall some of the proper-
ties of the logarithm. Since log 1 = 0, log 2 = 0.30103, and log 10 = 1, we 
note the correspondences:

 
  |  H( jω ) |   

  
=

  
1 ⇔  H  dB   = 0

     |  H( jω ) |     =  2 ⇔  H  dB   ≈ 6 dB    
  |  H( jω ) |   

  
=

  
10 ⇔  H  dB   = 20 dB

 

An increase of ∣H( jω)∣ by a factor of 10 corresponds to an increase in HdB 
by 20 dB. Moreover, log 10n = n, and thus 10n ⇔ 20n dB, so that 1000 
corresponds to 60 dB, while 0.01 is represented as −40 dB. Using only 
the values already given, we may also note that 20 log 5 = 20 log   10 __ 2   = 20 

The decibel is named in honor of  

Alexander Graham Bell.

PRACTICE 
●

15.1 Write an expression for the transfer function of the RC network in 
Fig 15.1 after switching the positions of the resistor and capacitor such 
that Vout is now the voltage drop across the resistor. Evaluate at ω = 0, 
ω = ω0 = 1/CR, and ω = ∞. 

Ans: jωCR/( jωCR + 1). At ω = 0, H = 0 and ϕ = 90°. At ω = ω0, H = 1/  √ 
___

 (2)    and 
ϕ = 45°. At ω = ∞, H = 1 and ϕ = 0.
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  SECTION 15.2 BoDe DIAGRAMS 619

Determination of Asymptotes
Our next step is to factor H(s) to display its poles and zeros. We first con-
sider a zero at s = −a, written in a standardized form as

 H(s) = 1 +   s _ a   [1]

The Bode diagram for this function consists of the two asymptotic curves 
approached by HdB for very large and very small values of ω. Thus, we 
begin by finding

 ∣H( jω) ∣ =  |  1 +   jω _ a    |    =  √ 
_

 1 +    ω   2  _ 
 a   2 

     

and thus

  H  dB   = 20 log  |  1 +   jω _ a    |   = 20 log  √ 
_

 1 +    ω   2  _ 
 a   2 

     

When ω ≪ a,

 H  dB   ≈ 20 log 1 = 0           (ω ≪ a)

This simple asymptote is shown in Fig. 15.3. It is drawn as a solid line for 
ω < a and as a dashed line for ω > a.

When ω ≫ a,

 H  dB   ≈ 20 log   ω __ a    (ω ≫ a)

At ω = a, HdB = 0; at ω = 10a, HdB = 20 dB; and at ω = 100a, HdB = 
40 dB. Thus, the value of HdB increases 20 dB for every tenfold increase in 
frequency. The asymptote therefore has a slope of 20 dB/decade. Since HdB 
increases by 6 dB when ω doubles, an alternate value for the slope is 6 dB/
octave. The high-frequency asymptote is also shown in Fig. 15.3, a solid 
line for ω > a, and a broken line for ω < a. Note that the two asymptotes in-
tersect at ω = a, the frequency of the zero. This frequency is also described 
as the corner, break, 3 dB, or half-power frequency.

A decade refers to a range of frequencies defined by 

a factor of 10, such as 3 Hz to 30 Hz, or 12.5 MHz to 

125 MHz. An octave refers to a range of frequencies 

defined by a factor of 2, such as 7 GHz to 14 GHz.

PRACTICE 
●

15.2 Calculate HdB at ω = 146 rad/s if H(s) equals (a) 20/(s + 100);  
(b) 20(s + 100); (c) 20s. Calculate ∣H( jω)∣ if HdB equals (d) 29.2 dB; 
(e) −15.6 dB; ( f) −0.318 dB. 

Ans: −18.94 dB; 71.0 dB; 69.3 dB; 28.8; 0.1660; 0.964.

log 10 − 20 log 2 = 20 − 6 = 14 dB, and thus 5 ⇔ 14 dB. Also, log  √ 
__

 x   =  
  1 __ 2   log  x, and therefore  √ 

__
 2   ⇔ 3 dB and 1 /  √ 

__
 2   ⇔ −3 dB.1

We will write our transfer functions in terms of s, substituting s = jω 
when we are ready to find the magnitude or phase angle. If desired, the 
magnitude may be written in terms of dB at that point.

(1) Note that we are being slightly dishonest here by using 20 log 2 = 6 dB rather than 6.02 dB. It is 
customary, however, to represent   √ 

__
 2    as 3 dB; since the dB scale is inherently logarithmic, the small inac-

curacy is seldom significant.
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CHAPTER 15 FReQuenCy ReSPonSe620

Smoothing Bode Plots
Let us see how much error is embodied in our asymptotic response curve. 
At the corner frequency (ω = a),

 H  dB   = 20 log  √ 
____

 1 +    a   2  __ 
 a   2 

     = 3 dB

as compared with an asymptotic value of 0 dB. At ω = 0.5a, we have

 H  dB   = 20 log  √ 
____

 1.25   ≈ 1 dB

Thus, the exact response is represented by a smooth curve that lies 3 dB 
above the asymptotic response at ω = a, and 1 dB above it at ω = 0.5a (and 
also at ω = 2a). This information can always be used to smooth out the 
corner if a more exact result is desired.

Multiple Terms
Most transfer functions will consist of more than a simple zero (or simple 
pole). This, however, is easily handled by the Bode method, since we are in 
fact working with logarithms. For example, consider a function

H(s) = K  (  1 +   s _  s  1     )     (  1 +   s _  s  2     )   

where K = constant, and −s1 and −s2 represent the two zeros of our function 
H(s). For this function HdB may be written as

 
 H  dB  

  
=

  
 20 log  |  K  (  1 +   jω _  s  1     )     (  1 +   jω _  s  2     )    |       

 
  

=
  
20 log   [  K  √ 

_

 1 +   (    ω _  s  1     )     
2
     √ 
_

 1 +   (    ω _  s  2     )     
2
     ]   

 

or

 H  dB   = 20 log K + 20 log  √ 
______

 1 +   (     ω __  s  1     )     
2
    + 20 log  √ 

______

 1 +   (     ω __  s  2     )     
2
   

note that we continue to abide by the convention of 

taking  √ 
__

 2   as corresponding to 3 dB.

–20

20

40

0
0.1a0.01a 10a 100aa

HdB

ω(log)

■  FIGURE 15.3 The Bode amplitude plot for H(s) = 1 + s/a consists of the 
low- and high-frequency asymptotes, shown as dashed lines. They intersect on 
the abscissa at the corner frequency. The Bode plot represents the response in 
terms of two asymptotes, both straight lines and both easily drawn.
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Phase Response
Returning to the transfer function of Eq. [1], we would now like to deter-
mine the phase response for the simple zero,

ang  H( jω) = ang  (  1 +   
jω

 _ a   )    =  tan   −1    ω __ a  

EXAMPLE 15.2
Obtain the Bode plot of the input impedance of the network shown 
in Fig. 15.4.

We begin by writing the input impedance,

 Z  in  (s) = H(s) = 20 + 0.2s

Putting this in standard form, we obtain

H(s) = 20  (  1 +   s
 _ 100   )   

The two factors constituting H(s) are a zero at s = −100, leading to a 
break frequency of ω = 100 rad/s, and a constant equivalent to 20 log 
20 = 26 dB. Each of these is sketched lightly in Fig. 15.5a. Since we 
are working with the logarithm of ∣H( jω)∣, we next add together the 
Bode plots corresponding to the individual factors. The resultant mag-
nitude plot appears as Fig. 15.5b. No attempt has been made to smooth 
out the corner with a +3 dB correction at ω = 100 rad/s; this is left to 
the reader as a quick exercise.

(a)

1 10 100

+ 20 dB/dec.

20 log 20 = 26 dB

1000

40

20

ω(log)
(rad/s)

HdB

(b)

1 10 100

26 dB

1000

40

20

ω(log)
(rad/s)

HdB

+ 20 dB/dec.

■  FIGURE 15.5 (a) The Bode plots for the factors of H(s) = 20(1 + s/100) are sketched individually. 
(b) The composite Bode plot is shown as the sum of the plots of part (a).

PRACTICE 
●

15.3 Construct a Bode magnitude plot for H(s) = 50 + s. 

Ans: 34 dB, ω < 50 rad/s; slope = +20 dB/decade ω > 50 rad/s.

H(s) = Zin (s) 0.2 H

20 Ω

■  FIGURE 15.4 If H(s) is selected as Zin(s) for this 
network, then the Bode plot for HdB is constructed as 
shown in Fig. 15.5.

which is simply the sum of a constant (frequency-independent) term 20 
log K and two simple zero terms of the form previously considered. In 
other words, we may construct a sketch of HdB by simply graphically 
adding the plots of the separate terms. We explore this in the following 
example.
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This expression is also represented by its asymptotes, although three 
straight-line segments are required. For ω ≪ a, ang H( jω) ≈ 0°, and we use 
this as our asymptote when ω < 0.1a:

ang H( jω) =  0   °   (ω < 0.1a)

At the high end, ω ≫ a, we have ang H( jω) ≈ 90°, and we use this above 
ω = 10a:

ang H( jω) =  90   °   (ω > 10a)

Since the angle is 45° at ω = a, we now construct the straight-line asymp-
tote extending from 0° at ω = 0.1a through 45° at ω = a, to 90° at ω = 10a. 
This straight line has a slope of 45°/decade. It is shown as a solid curve in 
Fig. 15.6, while the exact angle response is shown as a broken line. The max-
imum differences between the asymptotic and true responses are ± 5.71° at 
ω = 0.1a and 10a. Errors of ∓ 5.29° occur at ω = 0.394a and 2.54a; the error 
is zero at ω = 0.159a, a, and 6.31a. The phase angle plot is typically left as 
a straight-line approximation, although smooth curves can also be drawn in 
a manner similar to that depicted in Fig. 15.6 by the dashed line.

135°

90°

45°

0°
0.1a0.01a 10a 100aa

ang H( jω)

ω(log)

■  FIGURE 15.6 The asymptotic angle response for H(s) = 1 + s/a is shown as 
the three straight-line segments in solid color. The endpoints of the ramp are 0° 
at 0.1a and 90° at 10a. The dashed line represents a more accurate (smoothed) 
response.

It is worth pausing briefly here to consider what the phase plot is telling 
us. In the case of a simple zero at s = a, we see that for frequencies much 
less than the corner frequency, the phase of the response function is 0°. 
For high frequencies, however (ω ≫ a), the phase is 90°. In the vicinity of 
the corner frequency, the phase of the transfer function varies somewhat 
rapidly. The actual phase angle imparted to the response can therefore be 
selected through the design of the circuit (which determines a).

PRACTICE 
●

15.4 Draw the Bode phase plot for the transfer function of 
Example 15.2. 

Ans: 0°, ω ≤ 10; 90°, ω ≥ 1000; 45°, ω = 100; 45°/dec slope, 10 < ω < 1000. (ω in 
rad/s).
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Additional Considerations in Creating Bode Plots
We next consider a simple pole, similar to the RC network shown in 
Example 15.1:

 H(s) =   1 _____ 1 + s / a   [2]

Since this is the reciprocal of a zero, the logarithmic operation leads to a 
Bode plot which is the negative of that obtained previously. The amplitude 
is 0 dB up to ω = a, and then the slope is −20 dB/decade for ω > a. The 
angle plot is 0° for ω < 0.1a, −90° for ω > 10a, and −45° at ω = a, and it 
has a slope of −45°/decade when 0.1a < ω < 10a. The reader is encouraged 
to generate the Bode plot for this function by working directly with Eq. [2].

Another term that can appear in H(s) is a factor of s in the numerator or 
denominator. If H(s) = s, then

  H  dB   = 20 log  |  ω |   
Thus, we have an infinite straight line passing through 0 dB at ω = 1 and hav-
ing a slope everywhere of 20 dB/decade. This is shown in Fig. 15.7a. If the s 
factor occurs in the denominator, a straight line is obtained having a slope of 
−20 dB/decade and passing through 0 dB at ω = 1, as shown in Fig. 15.7b.

20

–20

0.1 1 10

(a)

100

Slope of + 20 dB
per decade

HdB

ω(log)
(rad/s)

20

–20

0.1 1 10

(b)

100

HdB

ω(log)
(rad/s)

Slope of – 20 dB
per decade

■  FIGURE 15.7 The asymptotic diagrams are shown for (a) H(s) = s and (b) H(s) = 1/s. Both are infinitely  
long straight lines passing through 0 dB at ω = 1 and having slopes of ±20 dB/decade.

Another simple term found in H(s) is the multiplying constant K. This 
yields a Bode plot which is a horizontal straight line lying 20 log ∣K∣ dB 
above the abscissa. It will actually be below the abscissa if ∣K∣ < 1.

EXAMPLE 15.3
Obtain the Bode plot for the gain of the circuit shown in Fig. 15.8.

Vx

+

–
Vout

+

–

+
– 4 kΩ 10 nF 5 kΩVin

Vx
200

20 μF1 kΩ

■  FIGURE 15.8 If H(s) = Vout/Vin, this amplifier is found to have the Bode 
amplitude plot shown in Fig. 15.9b, and the phase plot shown in Fig. 15.10.

(Continued on next page)
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We work from left to right through the circuit and write the expression 
for the voltage gain,

H(s ) =    V  out   ___  V  in  
   =   4000 __________  

5000 +  10   6  / 20s
    (  −   1 _ 200   )     5000( 10   8  / s) _________  

5000 +  10   8  / s
  

which simplifies (mercifully) to

  H(s ) =   − 2s  ________________  (1 + s / 10 ) (1 + s / 20, 000 )    [3]

We see a constant, 20 log |−2| = 6 dB, break points at ω = 10 rad/s 
and ω = 20,000 rad/s, and a linear factor s. Each of these is sketched in 
Fig. 15.9a, and the four sketches are added to give the Bode magnitude 
plot in Fig. 15.9b.

40

20

–20

0.1 1 10 100

6 dB

103 104 105 106

(a)

ω(log)
(rad/s)

Vout
Vin dB

40

20

–20

0.1 1 10 100 103 104 105 106

(b)

ω(log)
(rad/s)

Vout
Vin dB

40

20

–20

0.1 1 10 100

6 dB

103 104 105 106

(a)

ω(log)
(rad/s)

Vout
Vin dB

40

20

–20

0.1 1 10 100 103 104 105 106

(b)

ω(log)
(rad/s)

Vout
Vin dB

■  FIGURE 15.9 (a) Individual Bode magnitude sketches are made for the factors 
(−2), (s), (1 + s/10) − 1, and (1 + s/20, 000) − 1. (b) The four separate plots of part 
(a) are added to give the Bode magnitude plots for the amplifier of Fig. 15.8.

PRACTICE 
●

15.5 Construct a Bode magnitude plot for H(s) equal to  
(a) 50/(s + 100); (b) (s + 10)/(s + 100); (c) (s + 10)/s. 

Ans: (a) −6 dB, ω < 100; −20 dB/decade, ω > 100; (b) −20 dB, ω < 10; +20 dB/
decade, 10 < ω < 100; 0 dB, ω > 100; (c) 0 dB, ω > 10; −20 dB/decade, ω < 10. 
All ω in rad/s.
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Before we construct the phase plot for the amplifier of Fig. 15.8, let us 
take a few moments to investigate several of the details of the magnitude 
plot.

First, it is wise not to rely too heavily on graphical addition of the 
individual magnitude plots. Instead, the exact value of the combined 
magnitude plot may be found easily at selected points by considering the 
asymptotic value of each factor of H(s) at the point in question. For ex-
ample, in the flat region of Fig. 15.9a between ω = 10 and ω = 20,000, 
we are below the corner at ω = 20,000, and so we represent (1 + 
s/20,000) by 1; but we are above ω = 10, so (1 + s/10) is represented as 
ω/10. Hence,

 
 H  dB  

  
=

  
 20 log  |     − 2ω _ (ω / 10) (1)    |      

 
  

=
  
20 log 20 = 26 dB           (10 < ω < 20, 000)

 

We might also wish to know the frequency at which the asymptotic re-
sponse crosses the abscissa at the high end. The two factors are expressed 
here as ω/10 and ω/20,000; thus

  H  dB   = 20 log  |     − 2ω ______________  (ω / 10 ) (ω / 20, 000)    |    = 20 log  |     400, 000 _ ω    |   
Since HdB = 0 at the abscissa crossing, 400,000/ω = 1, and therefore ω = 
400,000 rad/s.

Many times we do not need an accurate Bode plot drawn on printed 
semilog paper. Instead we construct a rough logarithmic frequency axis on 
simple lined paper. After selecting the interval for a decade—say, a distance 
L extending from ω = ω1 to ω = 10ω1 to (where ω1 is usually an integral 
power of 10)—we let x locate the distance that ω lies to the right of ω1, so 
that x/L = log(ω/ω1). Of particular help is the knowledge that x = 0.3L when 
ω = 2ω1, x = 0.6L at ω = 4ω1, and x = 0.7L at ω = 5ω1.

EXAMPLE 15.4
Draw the phase plot for the transfer function given by Eq. [3], 
H(s) = −2s/[(1 + s/10)(1 + s/20,000)].

We begin by inspecting H( jω):

 H( jω) =   − j2ω  __________________   (1 + jω / 10 ) (1 + jω / 20, 000 )   [4]

The angle of the numerator is a constant, −90°.
The remaining factors are represented as the sum of the angles con-

tributed by break points at ω = 10 and ω = 20,000. These three terms 
appear as broken-line asymptotic curves in Fig. 15.10, and their sum is 
shown as the solid curve. An equivalent representation is obtained if the 
curve is shifted upward by 360°.

(Continued on next page)
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Higher-Order Terms
The zeros and poles that we have been considering are all first-order terms, 
such as s±1, (1 + 0.2s)±1, and so forth. We may extend our analysis to 
higher-order poles and zeros very easily, however. A term s±n yields a mag-
nitude response that passes through ω = 1 with a slope of ±20n dB/ decade; 
the phase response is a constant angle of ±90n°. Also, a multiple zero,  
(1 + s/a)n, must represent the sum of n of the magnitude-response curves, 
or n of the phase-response curves of the simple zero. We therefore obtain an 
asymptotic magnitude plot that is 0 dB for ω < a and has a slope of 20n dB/
decade when ω < a; the error is −3n dB at ω = a, and −n dB at ω = 0.5a 
and 2a. The phase plot is 0° for ω < 0.1a, 90n° for ω > 10a, 45n° at ω = a, 

90°

–90°

–180°

–270°

10° 10 100 103

2 × 105

2 × 103

104 105 106 107

ang H( jω)

ω(log)
(rad/s)

■  FIGURE 15.10 The solid curve displays the asymptotic phase response of the 
amplifier shown in Fig. 15.8.

Exact values can also be obtained for the asymptotic phase re-
sponse. For example, at ω = 104 rad/s, the angle in Fig. 15.10 is 
obtained from the numerator and denominator terms in Eq. [4]. The 
numerator angle is −90°. The angle for the pole at ω = 10 is −90°, 
since ω is greater than 10 times the corner frequency. Between 0.1 
and 10 times the corner frequency, we recall that the slope is −45° per 
decade for a simple pole. For the break point at 20,000 rad/s, we there-
fore calculate the angle, −45° log(ω/0.1a) = −45° log[10,000/(0.1 × 
20,000)] = −31.5°.

The algebraic sum of these three contributions is −90° − 90° − 31.5° =  
−211.5°, a value that appears to be moderately near the asymptotic 
phase curve of Fig. 15.10.

PRACTICE 
●

15.6 Draw the Bode phase plot for H(s) equal to (a) 50/(s + 100);  
(b) (s + 10)/(s + 100); (c) (s + 10)/s. 

Ans: (a) 0°, ω < 10; −45°/decade, 10 < ω < 1000; −90°, ω > 1000; (b) 0°, ω < 1;  
+45°/decade, 1 < ω < 10; 45°, 10 < ω < 100; −45°/decade, 100 < ω < 1000; 0°,  
ω > 1000; (c) −90°, ω < 1; +45°/decade, 1 < ω < 100; 0°, ω > 100.
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and a straight line with a slope of 45n°/decade for 0.1a < ω < 10a, and it 
has errors as large as ±5.71n° at two frequencies.

The asymptotic magnitude and phase curves associated with a factor 
such as (1 + s/20)−3 may be drawn quickly, but the relatively large errors 
associated with the higher powers should be kept in mind.

Complex Conjugate Pairs
The last type of factor we should consider represents a conjugate complex pair 
of poles or zeros. We adopt the following as the standard form for a pair of zeros:

H(s) = 1 + 2ζ  (    s _  ω  0     )    +   (    s __  ω  0     )     
2
 

The paired complex zeros or poles are a defining characteristic of reso-
nance in circuits, which will be covered in the following sections of this 
chapter. The quantity ζ is the damping factor, and we will see shortly that 
ω0 is the corner frequency of the asymptotic response. The damping factor 
is analogous to the damping coefficient we have studied in the RLC circuits 
of Chap. 9. In the field of system theory or automatic control theory, it is 
traditional to describe damping in a form that utilizes the dimensionless 
parameter ζ (zeta) and the characteristic equation

 s   2  + 2ζ  ω  0   s +  ω  0  
2 

If ζ = 1, we see that H(s) = 1 + 2(s/ω0) + (s/ω0)2 = (1 + s/ω0)2, a second-order 
zero such as we have just considered. If ζ > 1, then H(s) may be factored 
to show two simple zeros. Thus, if ζ = 1.25, then H(s) = 1 + 2.5(s/ω0) + 
(s/ω0)2 = (1 + s/2ω0)(1 + s/0.5ω0), and we again have a familiar situation.

A new case arises when 0 ≤ ζ ≤ 1. There is no need to find values for 
the conjugate complex pair of roots. Instead, we determine the low- and 
high-frequency asymptotic values for both the magnitude and phase re-
sponse, and we then apply a correction that depends on the value of ζ.

For the magnitude response, we have

   H  dB   = 20 log  |  H(  jω )  |    =  20 log  |  1 + j2ζ  (    ω _  ω  0     )    −   (    ω _  ω  0     )     
2
  |    [5]

When ω ≪ ω0, HdB = 20 log |1| = 0 dB. This is the low-frequency as-
ymptote. Next, if ω ≫ ω0, only the squared term is important, and HdB = 
20 log |−(ω/ω0)2| = 40 log(ω/ω0). We have a slope of +40 dB/decade. This 
is the high-frequency asymptote, and the two asymptotes intersect at 0 dB, 
ω = ω0. The solid curve in Fig. 15.11 shows this asymptotic representation 
of the magnitude response. However, a correction must be applied in the 
neighborhood of the corner frequency. We let ω = ω0 in Eq. [5] and have

   H  dB   = 20 log  |   j2ζ  (    ω _  ω  0     )    |    = 20 log (2ζ )  [6]

If ζ = 1, a limiting case, the correction is +6 dB; for ζ = 0.5, no correction is 
required; and if ζ = 0.1, the correction is −14 dB. Knowing this one correction 
value is often sufficient to draw a satisfactory asymptotic magnitude response. 
Figure 15.11 shows more accurate curves for ζ = 1, 0.5, 0.25, and 0.1, as calculated 
from Eq. [5]. For example, if ζ = 0.25, then the exact value of HdB at ω = 0.5ω0 is

 H  dB   = 20 log  ∣ 1 + j0.25 − 0.25 ∣ = 20 log  √ 
__________

   0.75   2  +  0.25   2    = − 2.0 dB

The negative peaks do not show a minimum value exactly at ω = ω0, as we can see 
by the curve for ζ = 0.5. The valley is always found at a slightly lower frequency.
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If then ζ = 0, then H( jω0) = 0 and HdB = −∞. Bode plots are not usually 
drawn for this situation.

Our last task is to draw the asymptotic phase response for H( jω) = 1 + 
j2ζ(ω/ω0) − (ω/ω0)2. Below ω = 0.1ω0, we let ang H( jω) = 0°; above ω = 
10ω0, we have ang H( jω) = ang [−(ω/ω0)2] = 180°. At the corner frequency, 
ang H( jω0) = ang ( j2ζ) = 90°. In the interval 0.1ω0 < ω < 10ω0, we begin with 
the straight line shown as a solid curve in Fig. 15.12. It extends from (0.1ω0, 0°), 
through (ω0, 90°), and terminates at (10ω0, 180°); it has a slope of 90°/decade.

30°

60°

90° +90°/dec

ζ = 0.1
ζ = 0.25

ζ = 0.5

ζ = 1120°

150°

180°

0.1ω0 10ω0ω00.01ω0

ang H( jω)

ω(log)
(rad/s)

■  FIGURE 15.12 The straight-line approximation to the phase characteristic for H( jω) = 1 + 
j2ζ(ω/ω0) − (ω/ω0)2 is shown as a solid curve, and the true phase response is shown for ζ = 
1, 0.5, 0.25, and 0.1 as broken lines.

We must now provide some correction to this basic curve for various 
values of ζ. From Eq. [5], we may obtain

ang H( jω ) =  tan   −1    2ζ(ω /  ω  0   ) ________ 
1 −  (ω /  ω  0   )   2 

  

–10

10

20

ζ = 1
ζ = 0.5

ζ = 0.25

ζ = 0.1

30

0.1ω0

+40 dB/dec.

ω0 10ω00.01ω0

HdB

ω(log)
(rad/s)

■  FIGURE 15.11 Bode amplitude plots are shown for H(s) = 1 + 2ζ(s/ω0) + 
(s/ω0)2 for several values of the damping factor ζ.
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One accurate value above and one below ω = ω0 may be sufficient to give 
an approximate shape to the curve. If we take ω = 0.5ω0, we find ang 
H( j0.5ω0) = tan−1(4ζ/3), while the angle is 180° − tan−1(4ζ/3) at ω = 2ω0. 
Phase curves are shown as broken lines in Fig. 15.12 for ζ = 1, 0.5, 0.25, 
and 0.1; heavy dots identify accurate values at ω = 0.5ω0 and ω = 2ω0.

If the quadratic factor appears in the denominator, both the magnitude 
and phase curves are the negatives of those just discussed. We conclude 
with an example that contains both linear and quadratic factors.

EXAMPLE 15.5
Construct the Bode plot for the transfer function  
H(s) = 100,000s/[(s + 1)(10,000 + 20s + s2)].

Let’s consider the quadratic factor first and arrange it in a form such 
that we can see the value of ζ. We begin by dividing the second-order 
factor by its constant term, 10,000:

H(s) =   10s  __________________   
(1 + s ) (1 + 0.002s + 0.0001  s   2  )

  

An inspection of the s2 term next shows that  ω  0   =  √ 
________

 1 / 0.0001   = 100. 
Then the linear term of the quadratic is written to display the factor 2, 
the factor (s/ω0), and finally the factor ζ:

H(s) =   10s  ________________________    
(1 + s ) [ 1 + (2 ) (0.1 ) (s / 100 ) + (s / 100 )   2  ]

  

We see that ζ = 0.1.
The asymptotes of the magnitude-response curve are sketched in 

lightly in Fig. 15.13: 20 dB for the factor of 10, an infinite straight 
line through ω = 1 with a +20 dB/decade slope for the s factor, a 
corner at ω = 1 for the simple pole, and a corner at ω = 100 with a 
slope of −40 dB/decade for the second-order term in the denominator. 
Adding these four curves and supplying a correction of +14 dB for the 
quadratic factor lead to the heavy curve of Fig. 15.13.

–20

20

0.1 1 10 100

HdB

ω(log)
(rad/s)

■  FIGURE 15.13 The Bode magnitude plot of the transfer function  

H(s) =   
100, 000𝗌  ________________________  

(s + 1 ) (10, 000 + 20s  + s2 )
  .

(Continued on next page)
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The phase response contains three components: +90° for the factor 
s; 0° for ω < 0.1, −90° for ω > 10, and −45°/decade for the simple 
pole; and 0° for ω < 10, −180° for ω > 1000, and −90° per decade for 
the quadratic factor. The addition of these three asymptotes plus some 
improvement for ζ = 0.1 is shown as the solid curve in Fig. 15.14.

90°

–90°

–180°

10.1 10 100 1000

ang H( jω)

ω(log)
(rad/s)

■  FIGURE 15.14 The Bode magnitude plot of the transfer function  

H(s) =   
100, 000𝗌  ________________________  

(s + 1 ) (10, 000 + 20s  + s2 )
  .

PRACTICE 
●

15.7 If H(s) = 1000s2/(s2 + 5s + 100), sketch the Bode amplitude plot 
and calculate a value for (a) ω when HdB = 0; (b) HdB at ω = 1; (c) HdB 
as ω → ∞. 

Ans: 0.316 rad/s; 20 dB; 60 dB.

COMPUTER-AIDED ANALYSIS

The technique of generating Bode plots is a valuable one. There are many 
situations in which an approximate diagram is needed quickly (such as 
on exams, or when evaluating a particular circuit topology for a specific 
application), and simply knowing the general shape of the response is 
adequate. Further, Bode plots can be invaluable when designing filters in 
terms of enabling us to select factors and coefficient values.

In situations where exact response curves are required (such as when 
verifying a final circuit design), there are several computer-assisted options 
available to the engineer. The first technique we will consider here is the use 
of MATLAB to generate a frequency response curve. In order to accom-
plish this, the circuit must first be analyzed to obtain the correct transfer 
function. However, it is not necessary to factor or simplify the expression.

Consider the circuit in Fig. 15.8. We previously determined that the 
transfer function for this circuit can be expressed as

H(s) =   − 2s  ________________  (1 + s / 10 ) (1 + s / 20, 000 )  

hay01307_ch15_615-686.indd   630 23/01/18   6:50 pm



  SECTION 15.2 BoDe DIAGRAMS 631

We seek a detailed graph of this function over the frequency range of 100 
mrad/s to 1 Mrad/s. Since the final graph will be plotted on a logarithmic 
scale, there is no need to uniformly space our discrete frequencies. Instead, 
we use the MATLAB function logspace() to generate a frequency vector, 
where the first two arguments represent the power of 10 for starting and end-
ing frequencies, respectively (−1 and 6 in the present example), and the third 
argument is the total number of points desired. Thus, our MATLAB script is

≫ w = logspace(−1,6,100);
≫ denom = (1 + j*w/10) .* (1 + j*w/20000);
≫ H = −2*j*w ./ denom;
≫ Hdb = 20*log10(abs(H));
≫ semi logx (w,Hdb)
≫ xlabel(‘frequency (rad/s)’)
≫ ylabel (‘|H( jw)| (dB)’)

which yields the graph depicted in Fig. 15.15.
30
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104 106

■  FIGURE 15.15 Plot of HdB generated using MATLAB.

A few comments about the MATLAB code are warranted. First, 
note that we have substituted s = jω in our expression for H(s). Also, 
MATLAB treats the variable w as a vector, or one-dimensional matrix. 
As such, this variable can cause difficulties in the denominator of an 
expression as MATLAB will try to apply matrix algebra rules to any 
expression. Thus, the denominator of H( jω) is computed in a separate 
line, and the operator “.*” is required instead of “*” to multiply the two 
terms. This new operator is equivalent to the following MATLAB code:

≫ for k = 1:100
denom = (1 + j*w(k)/10) * (1 + j*w(k)/20000);
end

In a similar fashion, the new operator “. / ” is used in the subsequent  
line of code. The results are desired in dB, so the function log10() is 
invoked; log() represents the natural logarithm in MATLAB. Finally,

(Continued on next page)
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the new plot command semilogx() is used to generate a graph with the 
x axis having a logarithmic scale. The reader is encouraged at this point 
to return to previous examples and use these techniques to generate 
exact curves for comparison to the corresponding Bode plots.

LTspice is also commonly used to generate frequency response curves, 
especially to evaluate a final design. Figure 15.16a depicts the circuit of 
Fig. 15.8, where the voltage across the resistor R3 represents the desired 
output voltage. The source component V1 has been defined with an AC am-
plitude of 1 V (edit the voltage source to define Small Signal Parameters 
(.AC) to have an AC amplitude of 1). The resulting Vout will then corre-
spond to the transfer function due to our convenient choice of an input of 
1 V. An ac sweep simulation is required to determine the frequency response 
of our circuit; Fig. 15.16b was generated using 100 points on a decade scale 
ranging from 10 mHz to 1 MHz using the SPICE directive .ac dec 100 10m 
1meg. (Note the simulation has been performed in Hz, not rad/s.)

(a)

(b)

■  FIGURE 15.16 (a) The circuit of Fig. 15.8. (b) Frequency response of the circuit in terms of 
transfer function magnitude (solid line, axis in dB) and phase angle (dashed line, axis in degrees).
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15.3 • PARALLEL RESONANCE
Suppose that a certain forcing function is found to contain sinusoidal com-
ponents having frequencies within the range of 10 to 100 Hz. Now let 
us imagine that this forcing function is applied to a network that has the 
property that all sinusoidal voltages with frequencies from zero to 200 Hz 
applied at the input terminals appear doubled in magnitude at the output 
terminals, with no change in phase angle. The output function is therefore 
an undistorted replica of the input function, but with twice the amplitude. 
If, however, the network has a frequency response such that the magnitudes 
of input sinusoids between 10 and 50 Hz are multiplied by a different factor 
than are those between 50 and 100 Hz, then the output would in general 
be distorted; it would no longer be a magnified version of the input. This 
distorted output might be desirable in some cases and undesirable in oth-
ers, such as in tuning circuits for radio transmitters/receivers. That is, the 
network frequency response might be chosen deliberately to reject some 
frequency components of the forcing function, or to emphasize others.

Such behavior is characteristic of tuned circuits or resonant circuits, as 
we will see in this chapter. In discussing resonance we will be able to apply 
all the methods we have discussed in presenting frequency response.

Resonance
In this section we will begin the study of a very important phenomenon that 
may occur in circuits that contain both inductors and capacitors. The phe-
nomenon is called resonance, and it may be loosely described as the con-
dition existing in any physical system when a fixed-amplitude sinusoidal 
forcing function produces a response of maximum amplitude. However, we 
often speak of resonance as occurring even when the forcing function is not 
sinusoidal. The resonant system may be electrical, mechanical, hydraulic, 
acoustic, or some other kind, but we will restrict our attention, for the most 
part, to electrical systems.

Resonance is a familiar phenomenon. Jumping up and down on the 
bumper of an automobile, for example, can put the vehicle into rather large 
oscillatory motion if the jumping is done at the proper frequency (about 
one jump per second), and if the shock absorbers are somewhat decrepit. 
However, if the jumping frequency is increased or decreased, the vibrational 
response of the automobile will be considerably less than it was before. A 
further illustration is furnished in the case of an opera singer who can shatter 
crystal goblets by means of a well-formed note at the proper frequency. In 
each of these examples, we are thinking of frequency as being adjusted until 
resonance occurs; it is also possible to adjust the size, shape, and material of 
the mechanical object being vibrated, but this may not be so easily accom-
plished physically. The condition of resonance may or may not be desirable, 
depending upon the purpose which the physical system is to serve. In the au-
tomotive example, a large amplitude of vibration may help to separate locked 
bumpers, but it would be somewhat disagreeable at 65 mph (105 km/h).

Let us now define resonance more carefully. In a two-terminal electri-
cal network containing at least one inductor and one capacitor, we define 
resonance as the condition which exists when the input impedance of the 
network is purely resistive. Thus,
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a network is in resonance (or resonant) when the voltage and current at 
the network input terminals are in phase.

We will also find that a maximum-amplitude response is produced in the 
network when it is in the resonant condition.

We first apply the definition of resonance to a parallel RLC network 
driven by a sinusoidal current source as shown in Fig. 15.17. In many prac-
tical situations, this circuit is a very good approximation to the circuit we 
might build in the laboratory by connecting a physical inductor in parallel 
with a physical capacitor, where the parallel combination is driven by an 
energy source having a very high output impedance. The steady-state ad-
mittance offered to the ideal current source is

 Y  =     1 __ 
R

   + j  (  ωC −   1 _ 
ωL

   )    [7]

Resonance occurs when the voltage and current at the input terminals are in 
phase. This corresponds to a purely real admittance, so that the necessary 
condition is given by

ωC −   1 ___ 
ωL

   = 0

The resonant condition may be achieved by adjusting L, C, or ω; we will 
devote our attention to the case for which ω is the variable. Hence, the res-
onant frequency ω0 is

  ω  0   =   1 ___ 
 √ 

___
 LC  
    rad/s [8]

or

  f  0   =   1 _____ 
2π  √ 

___
 LC  
    Hz [9]

This resonant frequency ω0 is identical to the resonant frequency defined in 
Eq. [10], Chap. 9.

The pole-zero configuration of the admittance function can also be used 
to considerable advantage here. Given Y(s),

Y(s) =    1 __ 
R

   +   1 __ sL
   + sC

or

 Y(s) = C     s   2  + s / RC + 1 / LC  ___________ s   [10]

we may display the zeros of Y(s) by factoring the numerator:

Y(s) = C   (s + α − j  ω  d   ) (s + α + j ω  d   )   _______________  s  

where α and ωd represent the same quantities that they did when we dis-
cussed the natural response of the parallel RLC circuit in Sec. 9.4. That is, α 
is the exponential damping coefficient,

α =   1 ____ 2RC
  

V

+

–

ILC
ICIL

I R L C

■  FIGURE 15.17 The parallel combination of a 
resistor, an inductor, and a capacitor, often referred to 
as a parallel resonant circuit.
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and ωd is the natural resonant frequency (not the resonant frequency ω0),

 ω  d   =  √ 
______

  ω  0  2  −  α   2   

The pole-zero constellation shown in Fig. 15.18a follows directly from the 
factored form.

–α

s-plane
Y(s)

jω0
jωd

– jωd

ω0

jω

(a)

σ

jωd

jω

– jωd

–α σ

(b)

■  FIGURE 15.18 (a) The pole-zero constellation of the input admittance of a 
parallel resonant circuit is shown on the s-plane;  ω  0  2  =  α   2  +  ω  d  2 . (b) The pole-
zero constellation of the input impedance.

In view of the relationship among α, ωd, and ω0, it is apparent that the 
distance from the origin of the s plane to one of the admittance zeros is nu-
merically equal to ω0. Given the pole-zero configuration, the resonant fre-
quency may therefore be obtained by purely graphical methods. We merely 
swing an arc, using the origin of the s plane as a center, through one of the 
zeros. The intersection of this arc and the positive jω axis locates the point 
s = jω0. It is evident that ω0 is slightly greater than the natural resonant fre-
quency ωd, but their ratio approaches unity as the ratio of ωd to α increases.

Resonance and the Voltage Response
Next let us examine the magnitude of the response, the voltage V(s) indi-
cated in Fig. 15.17, as the frequency ω of the forcing function is varied. 
If we assume a constant-amplitude sinusoidal current source, the voltage 
response is proportional to the input impedance. This response can be ob-
tained from the pole-zero plot of the impedance

Z(s) =   s / C  _______________   (s + α − j  ω  d   ) (s + α + j  ω  d   )
  

shown in Fig. 15.18b. The response of course starts at zero, reaches a maxi-
mum value in the vicinity of the natural resonant frequency, and then drops 
again to zero as ω becomes infinite. The frequency response is sketched in 
Fig. 15.19. The maximum value of the response is indicated as R times the 
amplitude of the source current, implying that the maximum magnitude of 
the circuit impedance is R; moreover, the response maximum is shown to 
occur exactly at the resonant frequency ω0. Two additional frequencies, ω1 
and ω2, which we will later use as a measure of the width of the response 
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curve, are also identified. Let us first show that the maximum impedance 
magnitude is R and that this maximum occurs at resonance.

ω1 ω0 ω2

|V( jω)|

|I|R

0.707|I|R

ω

■  FIGURE 15.19 The magnitude of the voltage response of a parallel 
resonant circuit is shown as a function of frequency.

The admittance, as specified by Eq. [7], possesses a constant conduc-
tance and a susceptance which has a minimum magnitude (zero) at reso-
nance. The minimum admittance magnitude therefore occurs at resonance, 
and it is 1/R. Hence, the maximum impedance magnitude is R, and it occurs 
at resonance.

At the resonant frequency, therefore, the voltage across the parallel reso-
nant circuit of Fig. 15.17 is simply IR, and the entire source current I flows 
through the resistor. However, current is also present in L and C. For the in-
ductor, IL,0 = VL,0 /jω 0 L = IR/jω0L, and the capacitor current at resonance is 
IC,0 = ( jω0C) VC,0 = jω0CRI. Since 1/ω0C = ω0L at resonance, we find that

  I  
C,0

   = −  I  
L,0

   = j  ω  
0
   CRI [11]

and

 I  C,0   +  I  L,0   =  I  LC   = 0

Thus, the net current flowing into the LC combination is zero. The maximum 
value of the response magnitude and the frequency at which it occurs are not 
always found so easily. In less standard resonant circuits, we may find it neces-
sary to express the magnitude of the response in analytical form, usually as the 
square root of the sum of the real part squared and the imaginary part squared; 
then we should differentiate this expression with respect to frequency, equate the 
derivative to zero, solve for the frequency of maximum response, and finally 
substitute this frequency in the magnitude expression to obtain the  maximum- 
amplitude response. The procedure may be carried out for this simple case 
merely as a corroborative exercise but, as we have seen, it is not necessary.

Quality Factor
It should be emphasized that, although the height of the response curve of 
Fig. 15.19 depends only upon the value of R for constant-amplitude excitation, 
the width of the curve or the steepness of the sides depends upon the other two 
element values also. We will shortly relate the “width of the response curve” 
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to a more carefully defined quantity, the bandwidth, but it is helpful to express 
this relationship in terms of a very important parameter, the quality factor Q.

We will find that the sharpness of the response curve of any resonant 
circuit is determined by the maximum amount of energy that can be stored 
in the circuit, compared with the energy that is lost during one complete 
period of the response.

We define Q as

  Q = quality factor ≡ 2π   maximum  energy  stored  ___________________   total  energy  lost per  period    [12]

The proportionality constant 2π is included in the definition in order to simplify 
the more useful expressions for Q which we will now obtain. Since energy can 
be stored only in the inductor and the capacitor, and can be lost only in the re-
sistor, we may express Q in terms of the instantaneous energy associated with 
each of the reactive elements and the average power PR dissipated in the resistor:

Q = 2π   [  w  L  (t) +  w  C  (t ) ]max  _____________  P  R   T  

where T is the period of the sinusoidal frequency at which Q is evaluated.
Now let us apply this definition to the parallel RLC circuit of Fig. 15.17 

and determine the value of Q at the resonant frequency; this value of Q is 
denoted by Q0. We select the current forcing function

i(t ) =  I  m   cos  ω  0   t

and obtain the corresponding voltage response at resonance,

v(t ) = Ri(t ) = R  I  m   cos  ω  0   t

The energy stored in the capacitor is then

 w  C  (t ) =   1 _ 2   C  v   2  =    I  m  2    R   2  C _____ 2    cos   2   ω  0   t

and the instantaneous energy stored in the inductor is given by

 w  L  (t ) =   1 _ 2   L  i  L  2  =   1 _ 2   L   (    1 __ 
L

   ∫ v dt )     
2
  =   1 __ 2L

     [    R  I  m   ___  ω  0     sin    ω  0   t ]     
2
 

so that

 w  L  (t ) =    I  m  2    R   2  C _____ 2    sin   2   ω  0   t

The total instantaneous stored energy is therefore constant:

w(t ) =  w  L  (t ) + w  C  (t ) =    I  m  2    R   2  C _____ 2  

and this constant value must also be the maximum value. In order to find the 
energy lost in the resistor in one period, we take the average power absorbed 
by the resistor (see Sec. 11.2),

 P  R   =   1 _ 2    I  m  2   R

and multiply by one period, obtaining

 P  R   T =   1 ___ 2  f  0  
    I  m  2   R

We should be very careful not to confuse the quality 

factor with charge or reactive power, all of which 

unfortunately are represented by the letter Q.
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We thus find the quality factor at resonance:

 Q  0   = 2π    I  m  2    R   2  C / 2 ______ 
 I  m  2   R / 2  f  0  

  

or

  Q  0   = 2π  f  0   RC =  ω  0   RC [13]

This equation holds only for the parallel RLC circuit of Fig. 15.17. Equiv-
alent expressions for Q0 which are often quite useful may be obtained by 
substitution:

  Q  0   = R  √ 
__

   C __ 
L

     =   R ____  |    X  C,0   |     =   R ____  |    X  L,0   |     [14]

So we see that for this specific circuit, decreasing the resistance decreases 
Q0; the lower the resistance, the greater the amount of energy lost in the el-
ement. Intriguingly, increasing the capacitance increases Q0, but increasing 
the inductance leads to a reduction in Q0. These statements, of course, apply 
to operation of the circuit at the resonant frequency.

Other Interpretations of Q
Another useful interpretation of Q is obtained when we inspect the inductor 
and capacitor currents at resonance, as given by Eq. [11],

  I  C,0   = −  I  L,0   = j  ω  0   CRI = j  Q  0   I [15]

Note that each is Q0 times the source current in amplitude and that each is 
180∘ out of phase with the other. Thus, if we apply 2 mA at the resonant 
frequency to a parallel resonant circuit with a Q0 of 50, we find 2 mA in the 
resistor, and 100 mA in both the inductor and the capacitor. A parallel reso-
nant circuit can therefore act as a current amplifier, but not, of course, as a 
power amplifier, since it is a passive network.

Resonance, by definition, is fundamentally associated with the forced 
response, since it is defined in terms of a (purely resistive) input impedance, 
a sinusoidal steady-state concept. The two most important parameters of a 
resonant circuit are perhaps the resonant frequency ω0 and the quality factor 
Q0. Both the exponential damping coefficient and the natural resonant fre-
quency may be expressed in terms of ω0 and Q0:

α =   1 ____ 2RC
   =   1 _________  2( Q  0   /  ω  0   C ) C  

or

 α =    ω  0   ___ 2  Q  0  
   [16]

and

 ω  d   =  √ 
______

  ω  0  2  −  α   2   

or

  ω  d   =  ω  0    √ 

________

 1 −   (    1 ___ 2  Q  0  
   )     

2
    [17]
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Damping Factor
For future reference it may be helpful to note one additional relationship 
involving ω0 and Q0. The quadratic factor appearing in the numerator of 
Eq. [10],

 s   2  +   1 ___ 
RC

   s +   1 ___ 
LC

  

may be written in terms of α and ω0:

 s   2  + 2αs +  ω  0  
2 

or in the form with the damping factor ζ (zeta)

 s   2  + 2ζ  ω  0   s +  ω  0  2 

Comparison of these expressions allows us to relate ζ to other parameters:

 ζ =   α __  ω  0     =   1 ___ 2  Q  0  
   [18]

EXAMPLE 15.6
Consider a parallel RLC circuit such that L = 2 mH, Q0 = 5, and  
C = 10 nF. Determine the value of R and the magnitude of the 
steady-state admittance at 0.1ω0, ω0, and 1.1ω0.

We derived several expressions for Q0, a parameter directly related to 
energy loss, and hence the resistance in our circuit. Rearranging the 
expression in Eq. [14], we calculate

R =  Q  0    √ 
__

   L __ 
C

     = 2.236 kΩ

Next, we compute ω0, a term we may recall from Chap. 9,

 ω  0   =   1 ___ 
 √ 

___
 LC  
   = 223.6 krad/s

or, alternatively, we may exploit Eq. [13] and obtain the same answer,

 ω  0   =    Q  0   ___ 
RC

   = 223.6 krad/s

The admittance of any parallel RLC network is simply

Y =   1 __ 
R

   + jωC +   1 ___ 
jωL

  

and hence

∣Y ∣   =   1 __ 
R

   + jωC +   1 ___ 
jωL

  

evaluated at the three designated frequencies is equal to

  |  Y(0.9  ω  0   )  |    =  6.504 ×  10   −4   S                 |  Y( ω  0   )  |    =  4.472 ×  10   −4   S 

  |  Y(1.1  ω  0   )  |    = 6.182 ×  10   −4   S 
(Continued on next page)
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Now let us interpret Q0 in terms of the pole-zero locations of the admittance 
Y(s) of the parallel RLC circuit. We will keep ω0 constant; this may be done, for 
example, by changing R while holding L and C constant. As Q0 is increased, the 
relationships relating α, Q0, and ω0 indicate that the two zeros must move closer to 
the jω axis. These relationships also show that the zeros must simultaneously move 
away from the σ axis. The exact nature of the movement becomes clearer when we 
remember that the point at which s = jω0 could be located on the jω axis by swing-
ing an arc, centered at the origin, through one of the zeros and over to the positive 
jω axis; since ω0 is to be held constant, the radius must be constant, and the zeros 
must therefore move along this arc toward the positive jω axis as Q0 increases.

The two zeros are indicated in Fig. 15.20, and the arrows show the path 
they take as R increases. When R is infinite, Q0 is also infinite, and the two 
zeros are found at s = ±  jω0 on the jω axis. As R decreases, the zeros move 
toward the σ axis along the circular locus, joining to form a double zero  
on the σ axis at  s = −ω0 when R =   1 _ 2    √ 

____
 L / C   or  Q  0   =   1 _ 2  . This condition may 

be recalled as that for critical damping, so that ωd = 0 and α = ω0. Lower 
values of R and lower values of Q0 cause the zeros to separate and move in 
opposite directions on the negative σ axis, but these low values of Q0 are not 
really typical of resonant circuits and we need not track them any further.

Later, we will use the criterion Q0 ≥ 5 to describe a high-Q circuit. 
When Q0 = 5, the zeros are located at s = −0.1 ω0 ± j 0.995ω0, and thus ω0 
and ωd differ by only one-half of 1 percent.

15.4 • BANDWIDTH AND HIGH-Q CIRCUITS
We continue our discussion of parallel resonance by defining half-power 
frequencies and bandwidth, and then we will make good use of these new 
concepts in obtaining approximate response data for high-Q circuits. The 
“width” of a resonance response curve, such as the one shown in Fig. 15.19, 

We thus obtain a minimum impedance at the resonant frequency, or a 
maximum voltage response to a particular input current. If we quickly 
compute the reactance at these three frequencies, we find

X(0.9  ω  0   ) = − 4.72 ×  10   −4   S            X(1.1  ω  0   ) = 4.72 ×  10   −4   S

X( ω  0   ) = − 1.36 ×  10   −7   S

We leave it to the reader to show that our value for X(ω0) is nonzero 
only as a result of rounding error.

PRACTICE 
●

15.8 A parallel resonant circuit is composed of the elements R = 8 kΩ, 
L = 50 mH, and C = 80 nF. Compute (a) ω0; (b) Q0; (c) ωd; (d) α; (e) ζ. 
15.9 Determine the values of R, L, and C in a parallel resonant circuit for 
which ω0 = 1000 rad/s, ωd = 998 rad/s, and Yin = 1 mS at resonance. 

Ans: 15.8: 15.811 krad/s; 10.12; 15.792 krad/s; 781 Np/s; 0.0494. 15.9: 1000 Ω; 
126.4 mH; 7.91 μF.

jω0
jωd

–jω0

–ω0

ω0

ω0

–α

–jωd

jω

σ

Q0 =
1 Y(s)
2

R   =

Q0 = ∞
R   = ∞

1
2

L
C

■  FIGURE 15.20 The two zeros of the admittance 
Y(s), located at s = −α ± jωd, provide a semicircular 
locus as R increases from    1 __ 2     √ 

____
 L / C   to ∞.
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may now be defined more carefully and related to Q0. Let us first define 
the two half-power frequencies ω1 and ω2 as those frequencies at which the 
magnitude of the input admittance of a parallel resonant circuit is greater 
than the magnitude at resonance by a factor of √ 

__
 2  . Since the response curve 

of Fig. 15.19 displays the voltage produced across the parallel circuit by a 
sinusoidal current source as a function of frequency, the half-power fre-
quencies also locate those points at which the voltage response is 1 /  √ 

__
 2  , or 

0.707, times its maximum value. A similar relationship holds for the imped-
ance magnitude. We will designate ω1 as the lower half-power frequency 
and ω2 as the upper half-power frequency.

Bandwidth
The (half-power) bandwidth of a resonant circuit is defined as the differ-
ence of these two half-power frequencies.

   ≡  ω  
2
   −  ω  

1
   [19]

We tend to think of bandwidth as the “width” of the response curve, even 
though the curve actually extends from ω = 0 to ω = ∞. More exactly, the 
half-power bandwidth is measured by that portion of the response curve 
which is equal to or greater than 70.7 percent of the maximum value, as 
illustrated in Fig. 15.21.

ω1 ω0 ω2

|V( jω)|

|I|R

0.707|I|R

ω

■  FIGURE 15.21 The bandwidth of the circuit response is highlighted in 
green; it corresponds to the portion of the response curve greater than or 
equal to 70.7 percent of the maximum value.

We can express the bandwidth in terms of Q0 and the resonant frequency. 
In order to do so, we first express the admittance of the parallel RLC circuit,

Y =   1 __ 
R

   + j  (  ωC −   1 _ 
ωL

   )   

in terms of Q0:

Y =   1 __ 
R

   + j   1 __ 
R

    (    ω  ω  0   CR
 _  ω  0     −    ω  0   R _ 

ω  ω  0   L
   )   

or

 Y =   1 __ 
R

    [  1 + j  Q  0    (    ω _  ω  0     −    ω  0   _ ω   )    ]    [20]

These names arise from the fact that a voltage which is 

1 /  √ 
__

 2   times the resonant voltage is equivalent to a 

squared voltage which is one-half the squared voltage at 

resonance. Thus, at the half-power frequencies, the resis-

tor absorbs one-half the power that it does at resonance.
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We note again that the magnitude of the admittance at resonance is 1/R, 
and we then realize that an admittance magnitude of  √ 

__
 2   / R can occur only 

when a frequency is selected such that the imaginary part of the bracketed 
quantity has a magnitude of unity. Thus

 Q  0    (     ω  1   _  ω  0     −    ω  0   _  ω  1     )    = − 1         and          Q  0    (     ω  2   _  ω  0     −    ω  0   _  ω  2     )    = 1

Solving, we have

  ω  1   =  ω  0    [   √ 

___________

 1 +   (    1 _ 2  Q  0  
   )     

2
    −   1 _ 2  Q  0  

   ]    [21]

  ω  2   =  ω  0    [   √ 

___________

 1 +   (    1 _ 2  Q  0  
   )     

2
    +   1 _ 2  Q  0  

   ]    [22]

Although these expressions are somewhat unwieldy, their difference pro-
vides a very simple formula for the bandwidth:

 =  ω  2   −  ω  1   =    ω  0   __  Q  0  
  

Equations [15] and [16] may be multiplied by each other to show that ω0 is 
exactly equal to the geometric mean of the half-power frequencies:

 ω  0  2  =  ω  1    ω  2  

or

 ω  0   =  √ 
_____

  ω  1    ω  2    

Circuits possessing a higher Q0 have a narrower bandwidth, or a sharper re-
sponse curve; they have greater frequency selectivity, or higher quality (factor).

Approximations for High-Q Circuits
Many resonant circuits are deliberately designed to have a large Q0 in order 
to take advantage of the narrow bandwidth and high frequency selectivity as-
sociated with such circuits. When Q0 is larger than about 5, it is possible to 
make some useful approximations in the expressions for the upper and lower 
half-power frequencies and in the general expressions for the response in the 
neighborhood of resonance. Let us arbitrarily refer to a “high-Q circuit” as one 
for which Q0 is equal to or greater than 5. The pole-zero configuration of Y(s) 
for a parallel RLC circuit having a Q0 of about 5 is shown in Fig. 15.22. Since

α =    ω  0   ___ 2  Q  0  
  

then

α =   1 _ 2   

and the locations of the two zeros s1 and s2 may be approximated:

 
 s  1,2  

  
=

  
− α ± j  ω  d  

   
 
  

≈
  
−   1 _ 2    ± j  ω  0  

 

Keep in mind that ω2 > ω0, while ωl < ω0.
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Moreover, the locations of the two half-power frequencies (on the positive 
jω axis) may also be determined in a concise approximate form:

 ω  1,2   =  ω  0    [   √ 

___________

 1 +   (    1 _ 2  Q  0  
   )     

2
    ∓   1 _ 2  Q  0  

   ]    ≈  ω  0    (  1 ∓   1 _ 2  Q  0  
   )   

or

  ω  1,2   ≈  ω  0   ∓   1 _ 2    [23]

In a high-Q circuit, therefore, each half-power frequency is located approx-
imately one-half bandwidth from the resonant frequency; this is indicated in 
Fig. 15.22.

The approximate relationships for ω1 and ω2 in Eq. [17] may be added 
to show that ω0 is approximately equal to the arithmetic mean of ω1 and ω2 
in high-Q circuits:

 ω  0   ≈   1 _ 2  ( ω  1   +  ω  2   )

Now let us visualize a test point slightly above jω0 on the jω axis. In order 
to determine the admittance offered by the parallel RLC network at this 
frequency, we construct the three vectors from the critical frequencies to 
the test point. If the test point is close to jω0, then the vector from the pole 
is approximately jω0 and that from the lower zero is nearly j2ω0. The admit-
tance is therefore given approximately by

 Y(s) ≈ C   ( j2  ω  0   ) (s −  s  1   )  _________ 
j  ω  0  

   ≈ 2C(s −  s  1   ) [24]

where C is the capacitance, as shown in Eq. [10]. In order to determine a 
useful approximation for the vector (s − s1), let us consider an enlarged view 
of that portion of the s plane in the neighborhood of the zero s1 (Fig. 15.23).

In terms of its cartesian components, we see that

s −  s  1   ≈   1 _ 2    + j (ω −  ω  0   )

where this expression would be exact if ω0 were replaced by ωd. We now sub-
stitute this equation in the approximation for Y(s), Eq. [24], and factor out   1 _ 2   :

Y(s) ≈ 2C   (    1 _ 2    )    
(

1 + j   ω − ω0 ______ 
  1 _ 2   

  
)

 

or

Y(s) ≈   1 __ 
R

      
(

1 + j   ω − ω0 ______ 
  1 _ 2   

  
)

  

The fraction  (ω −  ω  0  ) /  (     1 _ 2    )    may be interpreted as the “number of half- 
bandwidths off resonance” and abbreviated by N. Thus,

 Y(s) ≈   1 __ 
R

  (1 + jN ) [25]

jω2 =  j(ω0 +   )
jωd =  jω0

jω

σ

1
2 1

2

jω1 =  j(ω0 –    )

s plane

s1

Y(s)

1
2



– 1
2 

s2

.

.

.

■  FIGURE 15.22 The pole-zero constellation of Y(s) 
for a parallel RLC circuit. The two zeros are exactly  
   1 __ 2      Np/s (or rad/s) to the left of the jω axis and 
approximately jω0 rad/s (or np/s) from the σ axis. The 
upper and lower half-power frequencies are separated 
exactly  rad/s, and each is approximately    1 __ 2      rad/s 
away from the resonant frequency and the natural 
resonant frequency.

jω0 (approx.)

s – s1



jω

s = jω

1
2

s1

■  FIGURE 15.23 An enlarged portion of the pole-
zero constellation for Y(s) of a high-Q0 parallel RLC 
circuit.
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where

 N =   ω − ω0 ______ 
  1 _ 2   

   [26]

At the upper half-power frequency,  ω  2   ≈  ω  0   +   1 _ 2   , N = +1, and we are one 
half-bandwidth above resonance. For the lower half-power frequency,  ω  1   ≈  
ω  0   −   1 _ 2   , so that N = −1, locating us one half-bandwidth below resonance.

Equation [25] is much easier to use than the exact relationships we have 
had up to now. It shows that the magnitude of the admittance is

|Y(  jω) |  ≈   1 __ 
R

    √ 
_____

 1 +  N   2   

while the angle of Y( jω) is given by the inverse tangent of N:

ang Y( jω) ≈  tan   −1  N

EXAMPLE 15.7
Estimate the location of the two half-power frequencies of the volt-
age response of a parallel RLC network for which R = 40 kΩ, L =  
1 H, and C =    1 __ 64     μF, and determine the approximate value of the 
admittance for an operating frequency of 8200 rad/s.

▶ Identify the goal of the problem.
We seek the lower and upper half-power frequencies of the voltage 
response as well as Y(ω0). Since we are asked to “estimate” and “ap-
proximate,” the implication is that this is a high-Q circuit, an assump-
tion we should verify.

▶ Collect the known information.
Given R, L, and C, we can compute ω0 and Q0. If Q0 ≥ 5, we may invoke 
approximate expressions for half-power frequencies and admittance near 
resonance, but we could compute these quantities exactly if required.

▶ Devise a plan.
To use approximate expressions, we must first determine Q0, the qual-
ity factor at resonance, as well as the bandwidth.

The resonant frequency ω0 is given as 1 /  √ 
___

 LC   = 8  krad/s. Thus, 
Q0 = ω0RC = 5, and the bandwidth is ω0/Q0 = 1.6 krad/s. The value 
of Q0 for this circuit is sufficient to employ “high-Q” approximations.

▶ Construct an appropriate set of equations.
The bandwidth is simply

 =    ω  0   __  Q  0  
   = 1600 rad/s

and so

 ω  1   ≈  ω  0   −    __ 2   = 7200 rad/s   ω  1   ≈  ω  0   +    __ 2   = 8800  rad/s

Equation [25] states that
Y(s) ≈   1 __ 

R
   (1 + jN )

so

|Y( jω)|  ≈   1 __ 
R

    √ 
_____

 1 +  N   2     and  ang Y( jω) ≈  tan   −1  N
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We conclude our coverage of the parallel resonant circuit by reviewing 
some key conclusions we have reached:

 ∙ The resonant frequency ω0 is the frequency at which the imaginary part 
of the input admittance becomes zero, or the angle of the admittance 
becomes zero. For this circuit,  ω  0   = 1 /  √ 

___
 LC  .

 ∙ The circuit’s figure of merit Q0 is defined as 2π times the ratio of the 
maximum energy stored in the circuit to the energy lost each period in 
the circuit. For this circuit, Q0 = ω0RC.

 ∙ We defined two half-power frequencies, ω1 and ω2, as the frequencies 
at which the admittance magnitude is √ 

__
 2   times the minimum admit-

tance magnitude. (These are also the frequencies at which the voltage 
response is 70.7 percent of the maximum response.)

 ∙ The exact expressions for ω1 and ω2 are

 ω  1,2   =   ω  0    [ √ 
___________

 1 +   (  1 ____ 2  Q  0  
  )    

2
    ∓   1 ____ 2  Q  0  

  ]  

▶ Determine if additional information is required.
We still require N, which tells us how many half-bandwidths ω is 
from the resonant frequency ω0:

N = (8.2 − 8 ) / 0.8 = 0.25

▶ Attempt a solution.
Now we are ready to employ our approximate relationships for the 
magnitude and angle of the network admittance,

ang Y ≈  tan   −1  0.25 =  14.04   ° 

and

|Y | ≈ 25  √ 
________

 1 +  (0.25 )   2    = 25.77 μS

▶ Verify the solution. Is it reasonable or expected?
An exact calculation of the admittance using Eq. [7] shows that

Y( j8200) = 25.75    13.87   °   μS

The approximate method therefore leads to values of admittance mag-
nitude and angle that are reasonably accurate (better than 2 percent) 
for this frequency. We leave it to the reader to judge the accuracy of 
our prediction for ω1 and ω2.

PRACTICE 
●

15.10 A marginally high-Q parallel resonant circuit has f0 = 440 Hz 
with Q0 = 6. Use Eqs. [21] and [22] to obtain accurate values for (a) f1; 
(b) f2. Now use Eq. [23] to calculate approximate values for (c) f1;  
(d) f2. 

Ans: 404.9 Hz; 478.2 Hz; 403.3 Hz; 476.7 Hz.

/
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 ∙ The approximate (high-Q0) expressions for ω1 and ω2 are

 ω  1,2   ≈  ω  0   ∓   1 _ 2   

 ∙ The half-power bandwidth  is given by

 =  ω  2   −  ω  1   =    ω  0   __  Q  0  
  

 ∙ The input admittance may also be expressed in approximate form for 
high-Q circuits:

Y ≈   1 __ 
R

  (1 + jN ) =   1 __ 
R

    √ 
_____

 1 +  N   2       tan   −1  N 

where N is defined as the number of half-bandwidths off resonance, or

N =   ω − ω0 ______ 
  1 _ 2   

  

This approximation is valid for 0.9ω0 ≤ ω ≤ 1.1ω0.

15.5 • SERIES RESONANCE
Although we probably find less use for the series RLC circuit than we do for 
the parallel RLC circuit, it is still worthy of our attention. We will consider 
the circuit shown in Fig. 15.24. It should be noted that the various circuit 
elements are given the subscript s (for series) for the time being in order 
to avoid confusing them with the parallel elements when the circuits are 
compared.

Our discussion of parallel resonance occupied two sections of consid-
erable length. We could now give the series RLC circuit the same kind of 
treatment, but it is much cleverer to avoid such needless repetition and use 
the concept of duality. For simplicity, let us concentrate on the conclu-
sions presented in the last paragraph of the preceding section on parallel 
resonance. The important results are contained there, and the use of dual 
language enables us to transcribe this paragraph to present the important 
results for the series RLC circuit.

“We conclude our coverage of the series resonant circuit by reviewing 
some key conclusions we have reached:

 ∙ The resonant frequency ω0 is the frequency at which the imaginary 
part of the input impedance becomes zero, or the angle of the imped-
ance becomes zero. For this circuit,  ω  0   = 1 /  √ 

____
  C  s    L  s    .

 ∙ The circuit’s figure of merit Q0 is defined as 2π times the ratio of the 
maximum energy stored in the circuit to the energy lost each period in 
the circuit. For this circuit,  Q  0   =  ω  0    L  S   /  R  S  .

 ∙ We defined two half-power frequencies, ω1 and ω2, as the frequen-
cies at which the impedance magnitude is √ 

__
 2   times the minimum 

Again, this paragraph is the same as the last para-

graph of Sec. 15.4, with the parallel RLC language 

converted to series RLC language using duality 

(hence the quotation marks).

+
–

Is

Vs Cs

LsRs

■  FIGURE 15.24 A series resonant circuit.

/
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impedance magnitude. (These are also the frequencies at which the 
current response is 70.7 percent of the maximum response.)

 ∙ The exact expressions for ω1 and ω2 are

 ω  1, 2   =  ω  0    [   √ 

___________

 1 +   (    1 _ 2  Q  0  
   )     

2
    ∓   1 _ 2  Q  0  

   ]   

 ∙ The approximate (high-Q0) expressions for ω1 and ω2 are

 ω  1, 2   ≈  ω  0   ∓   1 _ 2   

 ∙ The half-power bandwidth  is given by

 =  ω  2   −  ω  2   =    ω  0   __  Q  0  
  

 ∙ The input admittance may also be expressed in approximate form for 
high-Q circuits:

Y ≈   1 __ 
R

  (1 + jN ) =   1 __ 
R

    √ 
_____

 1 +  N   2        tan   −1  N 

where N is defined as the number of half-bandwidths off resonance, or

N =   ω − ω0 ______ 
  1 _ 2   

  

This approximation is valid for 0.9ω0 ≤ ω ≤ 1.1ω0.”

From this point on, we will no longer identify series resonant circuits by 
use of the subscript s, unless clarity requires it.

EXAMPLE 15.8
The voltage vs = 100 cos ωt mV is applied to a series resonant 
circuit composed of a 10 Ω resistance, a 200 nF capacitance, and 
a 2 mH inductance. Use both exact and approximate methods to 
calculate the current amplitude if ω = 48 krad/s.

The resonant frequency of the circuit is given by

 ω  0   =   1 ___ 
 √ 

___
 LC  
   =   1  ________________   

 √ 
__________________

  (2 ×  10   −3  ) (200 ×  10   −9  )  
   = 50 krad/s

Since we are operating at ω = 48 krad/s, which is within 10 percent of 
the resonant frequency, it is reasonable to apply our approximate rela-
tionships to estimate the equivalent impedance of the network provided 
that we find that we are working with a high-Q circuit:

 Z  eq   ≈ R  √ 
_____

 1 +  N   2        tan   −1  N 
(Continued on next page)

/

/
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The series resonant circuit is characterized by a minimum impedance 
at resonance, whereas the parallel resonant circuit produces a maximum 
resonant impedance. The latter circuit provides inductor currents and ca-
pacitor currents at resonance which have amplitudes Q0 times as great as 
the source current; the series resonant circuit provides inductor voltages 
and capacitor voltages which are greater than the source voltage by the 
factor Q0s. The series circuit thus provides voltage amplification at 
resonance.

A comparison of our results for series and parallel resonance, as well 
as the exact and approximate expressions we have developed, appears in 
Table 15.1.

where N is computed once we determine Q0. This is a series circuit, so

 Q  0   =    ω  0   L ___ 
R

   =   (50 ×  10   3  ) (2 ×  10   −3  )  ______________ 10   = 10

which qualifies as a high-Q circuit. Thus,

 =    ω  0   __  Q  0  
   =   50 ×  10   3  ______ 10   = 5 krad/s

The number of half-bandwidths off resonance (N) is therefore

N =   ω −  ω  0   ____  ∕ 2   =   48 − 50 _____ 2.5   = − 0.8

Thus,

 Z  eq   ≈ R  √ 
_____

 1 +  N   2        tan   −1  N  = 12.81    −  38.66   °   Ω

The approximate current magnitude is then

   |    V  s   |   ____ 
 |    Z  eq   |     =   100 ____ 12.81   = 7.806 mA

Using the exact expressions, we find that I = 7.746    39.24   °   mA and thus

∣I∣ = 7.746 mA

PRACTICE 
●

15.11 A series resonant circuit has a bandwidth of 100 Hz and contains 
a 20 mH inductance and a 2 μF capacitance. Determine (a) f0; (b) Q0; 
(c) Zin at resonance; (d) f2. 

Ans: 796 Hz; 7.96; 12.57 + j0 Ω; 846 Hz (approx.).

/

/

/
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15.6 • OTHER RESONANT FORMS
The parallel and series RLC circuits of the previous two sections repre-
sent idealized resonant circuits. The degree of accuracy with which the 
idealized model fits an actual circuit depends on the operating frequency 
range, the Q of the circuit, the materials present in the physical elements, 
the element sizes, and many other factors. We are not studying the tech-
niques for determining the best model of a given physical circuit, for this 
requires some knowledge of electromagnetic field theory and the properties 
of materials; we are, however, concerned with the problem of reducing a 

Yp

I

IL IC

R L C

 Q  0   =  ω  0   RC           α =   1 ____ 2RC
  

  |    I  L  ( j  ω  0   )  |   =  |    I  C  ( j  ω  0   )  |   =  Q  0   |  I( j  ω  0   )  |   

 Y  p   =   1 __ 
R

    [  1 + j  Q  0    (    ω _  ω  0     −    ω  0   _ ω   )    ]   

Zs V

R L

CVC

+

–

VL+ –+

–

 Q  0   =    ω  0   L ___ 
R

               α =   R __ 2L
  

  |    V  L  ( j  ω  0   )  |   =  |    V  C  ( j  ω  0   )  |   =  Q  0   |  V( j  ω  0   )  |   

 Z  s   = R  [  1 + j  Q  0    (    ω _  ω  0     −    ω  0   _ ω   )    ]   

Exact expressions
 ω  0   =   1 ___ 

 √ 
___

 LC  
   =  √ 

_____
  ω  1    ω  2    

 

     ω  d  

  

=

  

 √ 
______

  ω  0  2  −  α   2    =  ω  0    √ 

________

 1 −   (    1 ___ 2  Q  0  
   )     

2
   

     
   ω  1,2  

  
=

  
 ω  0    [   √ 

___________

 1 +   (    1 _ 2  Q  0  
   )     

2
    ∓   1 _ 2  Q  0  

   ]   
    

     N
  

=
  
  ω −  ω  0   ____ 

  1 _ 2   
  

   

    

  

=

  

 ω  2   −  ω  1   =    ω  0   __  Q  0  
   = 2α

  

Approximate expressions
( Q  0   ≥ 5         0.9  ω  0   ≤ ω ≤ 1.1  ω  0  )

 ω  d   ≈  ω  0  

 ω  1,2   ≈  ω  0   ∓   1 _ 2  

 ω  0   ≈   1 _ 2    (   ω  1   +  ω  2   )   

 Y  p   ≈    √ 
_____

 1 +  N   2    _____ 
R

      tan   −1  N 

 Z  s   ≈ R  √ 
_____

 1 +  N   2       tan   −1  N 

TABLE 
●
 15.1 A Short Summary of Resonance

/

/
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more complicated model to one of the two simpler models with which we 
are more familiar.

The network shown in Fig. 15.25a is a reasonably accurate model for 
the parallel combination of a physical inductor, capacitor, and resistor. The 
resistor labeled R1 is a hypothetical resistor that is included to account for 
the ohmic, core, and radiation losses of the physical coil. The losses in 
the dielectric within the physical capacitor, as well as the resistance of the 
physical resistor in the given RLC circuit, are accounted for by the resistor 
labeled R2. In this model, there is no way to combine elements and produce 
a simpler model which is equivalent to the original model for all frequen-
cies. We will show, however, that a simpler equivalent may be constructed 
which is valid over a frequency band that is usually large enough to include 
all frequencies of interest. The equivalent will take the form of the network 
shown in Fig. 15.25b.

Before we learn how to develop such an equivalent circuit, let us first 
consider the given circuit, Fig. 15.25a. The resonant radian frequency for 
this network is not 1 /  √ 

___
 LC  , although if R1 is sufficiently small it may be 

very close to this value. The definition of resonance is unchanged, and we 
may determine the resonant frequency by setting the imaginary part of the 
input admittance equal to zero:

Im  { Y( jω)} = Im   {    1 _  R  2  
   + jωC +   1 _  R  1   + jωL

   }    = 0

or

 
Im

  
  {    1 _  R  2  

   + jωC +   1 _  R  1   + jωL
      R  1   − jωL

 _  R  1   − jωL
   }   

    
 
  

= Im   {    1 _ 
 R   2 

   + jωC +    R  1   − jωL
 _ 

 R  1  
2  +  ω   2   L   2 

   }    = 0
 

Thus, we have the resonance condition that

C =   L ______ 
 R  1  

2  +  ω   2   L   2 
  

and so

  ω  0   =  √ 

________

   1 ___ 
LC

   −   (     R  1   __ 
L

   )     
2
    [27]

We note that ω0 is less than 1 /  √ 
___

 LC  , but sufficiently small values of the 
ratio R1/L may result in a negligible difference between ω0 and 1 /  √ 

___
 LC  .

The maximum magnitude of the input impedance also deserves consid-
eration. It is not R2, and it does not occur at ω0 (or at ω = 1 /  √ 

___
 LC  ). The 

proof of these statements will not be shown, because the expressions soon 
become algebraically cumbersome; the theory, however, is straightforward. 
Let us be content with a numerical example.

(a)

Y

R1

L

C R2

(b)

Re Le Ce

(a)

Y

R1

L

C R2

(b)

Re Le Ce

■  FIGURE 15.25 (a) A useful model of a physical 
network which consists of a physical inductor, capacitor, 
and resistor in parallel. (b) A network which can be 
equivalent to part (a) over a narrow frequency band.
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Equivalent Series and Parallel Combinations
In order to transform the given circuit of Fig. 15.25a into an equivalent of 
the form shown in Fig. 15.25b, we must discuss the Q of a simple series or 
parallel combination of a resistor and a reactor (inductor or capacitor). We 
first consider the series circuit shown in Fig. 15.27a. The Q of this network 

EXAMPLE 15.9
Using the values R1 = 2 Ω, L = 1 H, C = 125 mF, and R2 = 3 Ω for 
Fig. 15.25a, determine the resonant frequency and the impedance 
at resonance.

Substituting the appropriate values in Eq. [27], we find

 ω  0   =  √ 
_____

 8 −  2   2    = 2  rad/s

and this enables us to calculate the input admittance,

Y =   1 _ 3   + j2  (    1 _ 8   )    +   1 _______ 2 + j(2) (1)   =   1 _ 3   +   1 _ 4   = 0.583  S

and then the input impedance at resonance:

Z( j2) =   1 ____ 0.583   = 1.714 Ω

At the frequency which would be the resonant frequency if R1 were 
zero,

  1 ___ 
 √ 

___
 LC  
   = 2.83  rad∕s

the input impedance would be

Z( j2.83) = 1.947   −  13.26   °   Ω

As can be seen in Fig. 15.26, however, the frequency at which the maxi-
mum impedance magnitude occurs, indicated by ωm, can be determined 
to be ωm = 3.26 rad/s, and the maximum impedance magnitude is

Z( j3.26) = 1.980   −  21.4   °   Ω

The impedance magnitude at resonance and the maximum  magnitude 
differ by about 16 percent. Although it is true that such an error may 
be neglected occasionally in practice, it is too large to neglect on 
an exam. (The later work in this section will show that the Q of the 
 inductor-resistor combination at 2 rad/s is unity; this low value accounts 
for the 16 percent discrepancy.)

PRACTICE 
●

15.12 Referring to the circuit of Fig. 15.25a, let R1 = 1 kΩ and C = 
2.533 pF. Determine the inductance necessary to select a resonant fre-
quency of 1 MHz. (Hint: Recall that ω = 2π f.) 

Ans: 10 mH.

Im
pe

da
nc

e 
m

ag
ni

tu
de

 (o
hm

s)

0.8
0 2 4

Frequency (rad/s)
6 8 10

1.2

1.4

1.6

1.8

2

1

■  FIGURE 15.26 Plot of |Z| vs. ω, generated using the 
following MATLAB script:  
≫ omega = linspace(0,10,100);
≫ for i = 1:100
Y(i) = 1/3 + j*omega(i)/8 + 1/(2 + 
j*omega(i));
Z(i) = 1/Y(i);
end
≫ plot(omega,abs(Z));
≫ xlabel(‘frequency (rad/s)’);
≫ ylabel(‘impedance magnitude (ohms)’);

/

/
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is again defined as 2π times the ratio of the maximum stored energy to the 
energy lost each period, but the Q may be evaluated at any frequency we 
choose. In other words, Q is a function of ω. It is true that we will choose to 
evaluate it at a frequency which is, or apparently is, the resonant frequency 
of some network of which the series arm is a part. This frequency, however, 
is not known until a more complete circuit is available. The reader is en-
couraged to show that the Q of this series arm is |Xs|  /Rs, whereas the Q of 
the parallel network of Fig. 15.27b is Rp /|Xp|.

(a)

Ys

Rs

jXs Rp

(b)

Yp jXp

■  FIGURE 15.27 (a) A series network which consists of a resistance 
Rs and an inductive or capacitive reactance Xs may be transformed into 
(b) a parallel network such that Ys = Yp at one specific frequency. The 
reverse transformation is equally possible.

Let us now carry out the details necessary to find values for Rp and Xp so 
that the parallel network of Fig. 15.27b is equivalent to the series network of 
Fig. 15.27a at some single specific frequency. We equate Ys and Yp,

 
 Y  s   =   1 _____  R  s   + j  X  s  

  
  
=

  
   R  s   − j  X  s   _____ 
 R  s  2  +  X  s  2 

  
   

 
  

=
  
 Y  p   =   1 __  R  p  

   − j   1 __  X  p  
  
 

and obtain

 
 R  p  

  
=

  
   R  s  2  +  X  s  2  _____  R  s  

  
   

 X  p  
  
=

  
   R  s  2  +  X  s  2  _____  X  s  

  
 

Dividing these two expressions, we find

  
 R  p   __  X  p  

   =    X  s   __  R  s  
  

It follows that the Q’s of the series and parallel networks must be equal:

 Q  p   =  Q  s   = Q

The transformation equations may therefore be simplified:

  R  p   =  R  s  (1 +  Q   2  ) [28]

  X  p   =  X  s    (  1 +   1 _ 
 Q   2 

   )    [29]

Also Rs and Xs may be found if Rp and Xp are the given values; the transfor-
mation in either direction may be performed.
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If Q ≥ 5, little error is introduced by using the approximate relationships

  R  p   ≈  Q   2   R  s   [30]

  X  p   ≈  X  s           ( C  p   ≈  C  s         or        L  p   ≈  L  s   ) [31]

EXAMPLE 15.10
Find the parallel equivalent of the series combination of a 100 mH 
inductor and a 5 Ω resistor at a frequency of 1000 rad/s. Details 
of the network to which this series combination is connected are 
unavailable.

At ω = 1000 rad/s, Xs = 1000(100 × 10−3) = 100 Ω. The Q of this 
series combination is

Q =    X  s   __  R  s  
   =   100 ___ 5   = 20

Since the Q is sufficiently high (20 is much greater than 5), we use  
Eqs. [30] and [31] to obtain

 R  p   ≈  Q   2   R  s   = 2000  Ω          and            L  p   ≈  L  s   = 100  mH

Our assertion here is that a 100 mH inductor in series with a 5 Ω resis-
tor provides essentially the same input impedance as does a 100 mH 
inductor in parallel with a 2000 Ω resistor at the frequency 1000 rad/s.

To check the accuracy of the equivalence, let us evaluate the input 
impedance for each network at 1000 rad/s. We find

 
 Z  s   ( j1000)

  
=

  
5 + j100 = 100.1    87.1   °   Ω

    
 Z  p   ( j1000)

  
=

  
  2000( j100 ) ________ 2000 + j100   = 99.9    87.1   °   Ω

 

and conclude that the accuracy of our approximation at the transforma-
tion frequency is pretty impressive. The accuracy at 900 rad/s is also 
reasonably good, because

 
 Z  s  ( j900) = 90.1    86.8   °   Ω

   
 Z  p  ( j900) = 89.9    87.4   °   Ω

  

PRACTICE 
●

15.13 At ω = 1000 rad/s, find a parallel network that is equivalent to 
the series combination in Fig. 15.28a. 
15.14 Find a series equivalent for the parallel network shown in 
Fig. 15.28b, assuming ω = 1000 rad/s. 

Ans: 15.13: 8 H, 640 kΩ; 15.14: 5 H, 250 Ω.

8 H

100 Ω

(a)

100 kΩ 5 H

(b)

■  FIGURE 15.28 (a) A series network for which an 
equivalent parallel network (at ω = 1000 rad/s) is 
needed. (b) A parallel network for which an equivalent 
series network (at ω = 1000 rad/s) is needed.

As a further example of the replacement of a more complicated resonant 
circuit by an equivalent series or parallel RLC circuit, let us consider a prob-
lem in electronic instrumentation. The simple series RLC network in 
Fig. 15.29a is excited by a sinusoidal voltage source at the network’s 

An “ideal” meter is an instrument that measures a 

particular quantity of interest without disturbing the 

circuit being tested. 

/

/

/
/
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Before the voltmeter is connected, we compute that the resonant fre-
quency is 105 rad/s, Q0 = 50, the current is 25 mA, and the rms capacitor 
voltage is 25 V. (As indicated at the end of Sec. 15.5, this voltage is Q0 times 
the applied voltage.) Thus, if the voltmeter were ideal, it would read 25 V 
when connected across the capacitor.

However, when the actual voltmeter is connected, the circuit shown in 
Fig. 15.29b results. In order to obtain a series RLC circuit, it is now nec-
essary to replace the parallel RC network with a series RC network. Let us 
assume that the Q of this RC network is sufficiently high that the equivalent 
series capacitor will be the same as the given parallel capacitor. We do this 
in order to approximate the resonant frequency of the final series RLC cir-
cuit. Thus, if the series RLC circuit also contains a 0.01 µF capacitor, the 
resonant frequency remains 105 rad/s. We need to know this estimated res-
onant frequency in order to calculate the Q of the parallel RC network; it is

Q =   
 R  p   ___ 

 |    X  p   |     = ω  R  p    C  p   =  10   5 ( 10   5  ) ( 10   −8  ) = 100

Since this value is greater than 5, our vicious circle of assumptions is jus-
tified, and the equivalent series RC network consists of the capacitor Cs = 
0.01 μF and the resistor

 R  s   ≈   
 R  p   __ 
 Q   2 

   = 10  Ω

Hence, the equivalent circuit of Fig. 15.29c is obtained. The resonant Q of 
this circuit is now only 33.3, and thus the voltage across the capacitor in the 

VC

+

–

20 Ω

0.01 μF 100 kΩ
0.5 V rms

ω = ω0

10 mH

(a)

+
– VM

VC

+

–

20 Ω

0.01 μF

10 Ω0.5 V rms
ω = ω0 ≐ 105

10 mH

(c)

+
– '

VC

+

–

20 Ω

0.01 μF 100 kΩ
0.5 V rms

ω = ω0 ≐ 105

10 mH

(b)

+
– '

■  FIGURE 15.29 (a) A given series resonant circuit in which the capacitor voltage is to be measured by a nonideal electronic voltmeter.  
(b) The effect of the voltmeter is included in the circuit; it reads  𝖵  c  ′  . (c) A series resonant circuit is obtained when the parallel RC network in part 
(b) is replaced by the series RC network which is equivalent at 105 rad/s.

resonant frequency. The effective (rms) value of the source voltage is 0.5 V, 
and we wish to measure the effective value of the voltage across the capac-
itor with an electronic voltmeter (VM) having an internal resistance of 
100,000 Ω. That is, an equivalent representation of the voltmeter is an ideal 
voltmeter in parallel with a 100 kΩ resistor.
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circuit of Fig. 15.29c is16   2 _ 3    V. But we need to find   |   V  C  ′   |   , the voltage across 
the series RC combination; we obtain

  |   V  C  ′   |    =   0.5 ___ 30    |  10 − j1000 |    = 16.67 V

The capacitor voltage and   |   V  C  ′   |    are essentially equal, since the voltage across 
the 10 Ω resistor is quite small.

The final conclusion must be that an apparently good voltmeter may still 
produce a severe effect on the response of a high-Q resonant circuit. A sim-
ilar effect may occur when a nonideal ammeter is inserted in the circuit.

We wrap up this section with a technical fable.

𝒪nce upon a time there was a student named Sean, who had a professor 
identified simply as Dr. Abel.

In the laboratory one afternoon, Dr. Abel gave Sean three practical cir-
cuit devices: a resistor, an inductor, and a capacitor, having nominal ele-
ment values of 20 Ω, 20 mH, and 1 µF. The student was asked to connect a 
variable-frequency voltage source to the series combination of these three 
elements, to measure the resultant voltage across the resistor as a function 
of frequency, and then to calculate numerical values for the resonant fre-
quency, the Q at resonance, and the half-power bandwidth. The student 
was also asked to predict the results of the experiment before making the 
measurements.

Sean first drew an equivalent circuit for this problem that was like the 
circuit of Fig. 15.30 and then calculated

 f  0   =   1 _____ 
2π  √ 

___
 LC  
   =   1 _____________  

2π  √ 
_____________

  20 ×  10   −3  ×  10   −6   
   = 1125  Hz

 Q  0   =    ω  0   L ___ 
R

   = 7.07

 =    f  0   __  Q  0  
   = 159  Hz

Next, Sean made the measurements that Dr. Abel requested, compared them 
with the predicted values, and then felt a strong urge to transfer to the busi-
ness school. The results were

 f  0   = 1000  Hz          Q  0   = 0.625         = 1600  Hz

Sean knew that discrepancies of this magnitude could not be characterized 
as being “within engineering accuracy” or “due to meter errors.” Sadly, the 
results were handed to the professor.

Remembering many past errors in judgment, some of which were even 
(possibly) self-made, Dr. Abel smiled kindly and called Sean’s attention to 
the Q-meter (or impedance bridge) which is present in most well-equipped 
laboratories, and suggested that it might be used to find out what these prac-
tical circuit elements really looked like at some convenient frequency near 
resonance, 1000 Hz, for example.

Upon doing so, Sean discovered that the resistor had a measured value 
of 18 Ω and the inductor was 21.4 mH with a Q of 1.2, while the capacitor 
had a capacitance of 1.41 µF and a dissipation factor (the reciprocal of Q) 
equal to 0.123.

vs vo

+

–

1 μF

20 Ω

20 mH

+
–

■  FIGURE 15.30 A first model for a 20 mH inductor, 
a 1 μF capacitor, and a 20 Ω resistor in series with a 
voltage generator.
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So, with the hope that springs eternal within the heart of every engi-
neering undergraduate, Sean reasoned that a better model for the practical 
inductor would be 21.4 mH in series with ωL /Q = 112 Ω, while a more ap-
propriate model for the capacitor would be 1.41 µF in series with 1/ωC Q = 
13.9 Ω. Using these data, Sean prepared the modified circuit model shown 
as Fig. 15.31 and calculated a new set of predicted values:

 f  0   =   1  ___________________   
2π  √ 

____________________
   21.4 ×  10   −3  × 1.41 ×  10   −6   
   = 916  Hz

 Q  0   =   2π × 916 × 21.4 ×  10   −3   ________________  143.9   = 0.856

 = 916 ∕ 0.856 = 1070  Hz
Since these results were much closer to the measured values, Sean was much 
happier. Dr. Abel, however, being a stickler for detail, pondered the differences 
in the predicted and measured values for both Q0 and the bandwidth. “Have 
you,” Dr. Abel asked, “given any consideration to the output impedance of the 
voltage source?” “Not yet,” said Sean, trotting back to the laboratory bench.

It turned out that the output impedance in question was 50 Ω, and so 
Sean added this value to the circuit diagram, as shown in Fig. 15.32. Using 
the new equivalent resistance value of 193.9 Ω, improved values for Q0 and 
  were then obtained:

 Q  0   = 0.635        = 1442  Hz

vo

+

–

vs

+

–

1.41 μF
18 Ω

50 Ω 13.9 Ω21.4 mH

+
–

112 Ω

■  FIGURE 15.32 The final model also contains the output 
resistance of the voltage source.

Since all the theoretical and experimental values now agreed within 
10 percent, Sean was once again an enthusiastic, confident engineering 
student, motivated to start homework early and read the textbook prior to 
class.2 Dr. Abel simply nodded her head agreeably as she moralized:

When using real devices,
Watch the models that you choose;
Think well before you calculate,
And mind your Z’s and Q’s!

vs vo

+

–

1.41 μF
18 Ω

112 Ω 13.9 Ω21.4 mH

+
–

■  FIGURE 15.31 An improved model in which 
more accurate values are used and the losses in the 
inductor and capacitor are acknowledged.

PRACTICE 
●

15.15 The series combination of 10 Ω and 10 nF is in parallel with the 
series combination of 20 Ω and 10 mH. (a) Find the approximate reso-
nant frequency of the parallel network. (b) Find the Q of the RC branch. 
(c) Find the Q of the RL branch. (d) Find the three-element equivalent 
of the original network. 
Ans: 105 rad/s; 100; 50; 10 nF || 10 mH || 33.3 kΩ.

(2) Okay, this last part is a bit much. Sorry about that.
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15.7 • SCALING
Some of the examples and problems that we have been solving have involved 
circuits containing passive element values ranging around a few ohms, a few 
henrys, and a few farads. The applied frequencies were a few radians per sec-
ond. These particular numerical values were used not because they are those 
commonly met in practice, but because arithmetic manipulations are so much 
easier than they would be if it were necessary to carry along various powers of 
10 throughout the calculations. The scaling procedures that will be discussed 
in this section enable us to analyze networks composed of practical-sized 
elements by scaling the element values to permit more convenient numerical 
calculations. We will consider both magnitude scaling and frequency scaling.

Let us select the parallel resonant circuit shown in Fig. 15.33a as our ex-
ample. The impractical element values lead to the unlikely response curve 
drawn as Fig. 15.33b; the maximum impedance is 2.5 Ω, the resonant fre-
quency is 1 rad/s, Q0 is 5, and the bandwidth is 0.2 rad/s. These numerical val-
ues are much more characteristic of the electrical analog of some mechanical 
system than they are of any basically electrical device. We have convenient 
numbers with which to calculate, but an impractical circuit to construct.

Our goal is to scale this network in such a way as to provide an imped-
ance maximum of 5000 Ω at a resonant frequency of 5 × 106 rad/s, or 
796 kHz. In other words, we may use the same response curve shown in 
Fig. 15.33b if every number on the ordinate scale is increased by a factor of 
2000 and every number on the abscissa scale is increased by a factor of 5 × 
106. We will treat this as two problems: (1) scaling in magnitude by a factor 
of 2000 and (2) scaling in frequency by a factor of 5 × 106.

Magnitude scaling is defined as the process by which the impedance of a 
two-terminal network is increased by a factor of Km, the frequency remaining 
constant. The factor Km is real and positive; it may be greater or smaller than 
unity. We will understand that the shorter statement “the network is scaled in 
magnitude by a factor of 2” indicates that the impedance of the new network 
is to be twice that of the old network at any frequency. Let us now determine 
how we must scale each type of passive element. To increase the input im-
pedance of a network by a factor of Km, it is sufficient to increase the imped-
ance of each element in the network by this same factor. Thus, a resistance R 
must be replaced by a resistance Km R. Each inductance must also exhibit an 
impedance which is Km times as great at any frequency. In order to increase 
an impedance sL by a factor of Km when s remains constant, the inductance 
L must be replaced by an inductance Km L. In a similar manner, each capaci-
tance C must be replaced by a capacitance C/Km. In summary, these changes 
will produce a network which is scaled in magnitude by a factor of Km:

  

R →  K  m   R

  L →  K  m   L  
C →   C _  K  m    

   

⎫
 

⎪
 ⎬ 

⎪
 

⎭
            magnitude  scaling

When each element in the network of Fig. 15.33a is scaled in magnitude 
by a factor of 2000, the network shown in Fig. 15.34a results. The response 
curve shown in Fig. 15.34b indicates that no change in the previously drawn 
response curve need be made other than a change in the scale of the ordinate.

Recall that “ordinate” refers to the vertical axis and 

“abscissa” refers to the horizontal axis.

Z

(a)

2.5 Ω 2 F1 H2

(b)
0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

ω (rad/s)

Z (Ω)

Z

(a)

2.5 Ω 2 F1 H2

(b)
0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

ω (rad/s)

Z (Ω)

■  FIGURE 15.33 (a) A parallel resonant circuit used 
as an example to illustrate magnitude and frequency 
scaling. (b) The magnitude of the input impedance is 
shown as a function of frequency.
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Let us now take this new network and scale it in frequency. We define fre-
quency scaling as the process by which the frequency at which any impedance 
occurs is increased by a factor of Kf. Again, we will make use of the shorter ex-
pression “the network is scaled in frequency by a factor of 2” to indicate that the 
same impedance is now obtained at a frequency twice as great. Frequency scal-
ing is accomplished by scaling each passive element in frequency. It is apparent 
that no resistor is affected. The impedance of any inductor is sL, and if this same 
impedance is to be obtained at a frequency Kf times as great, then the inductance 
L must be replaced by an inductance of L /Kf. Similarly, a capacitance C is to be 
replaced by a capacitance C/Kf. Thus, if a network is to be scaled in frequency by 
a factor of Kf, then the changes necessary in each passive element are

  

R → R

  
L →   L _  K  f  

  
  

C →   C _  K  f  
  
  

⎫

 
⎪

 ⎬ 
⎪

 

⎭

            frequency  scaling

When each element of the magnitude-scaled network of Fig. 15.34a is 
scaled in frequency by a factor of 5 × 106, the network of Fig. 15.35a is 
obtained. The corresponding response curve is shown in Fig. 15.35b.

The circuit elements in this last network have values which are easily 
achieved in physical circuits; the network can actually be built and tested. It fol-
lows that, if the original network of Fig. 15.33a were actually an analog of some 
mechanical resonant system, we could have scaled this analog in both magnitude 
and frequency in order to achieve a network which we might construct in the 
laboratory; tests that are expensive or inconvenient to run on the mechanical 
system could then be made on the scaled electrical system, and the results should 
then be “unscaled” and converted into mechanical units to complete the analysis.

An impedance that is given as a function of s may also be scaled in mag-
nitude or frequency, and this may be done without any knowledge of the spe-
cific elements of which the two-terminal network is composed. In order to 
scale Z(s) in magnitude, the definition of magnitude scaling shows that it is 
necessary only to multiply Z(s) by Km in order to obtain the magnitude-scaled 
impedance. Hence, the impedance Z′(s) of the magnitude-scaled network is

 Z   ′ (s) =  K  m   Z(s)

Z'

(a)

5 kΩ 10–3 F1000 H

(b)
0 0.5 1 1.5 2

1

2

3

4

5

ω (rad/s)

|Z'| (kΩ)

■  FIGURE 15.34 (a) The network of Fig. 15.33a after being scaled in magnitude by a factor Km = 2000. (b) The 
corresponding response curve.

Z''

(a)

5 kΩ 200 μH 200 pF

(b)
0 2.5 5 7.5 10

1

2

3

4

5

ω (Mrad/s)

|Z''| (kΩ)

Z''

(a)

5 kΩ 200 μH 200 pF

(b)
0 2.5 5 7.5 10

1

2

3

4

5

ω (Mrad/s)

|Z''| (kΩ)

■  FIGURE 15.35 (a) The network of Fig. 15.34a after 
being scaled in frequency by a factor Kf = 5 × 106. (b) The 
corresponding response curve.
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If Z′(s) is now to be scaled in frequency by a factor of 5 × 106, then Z″(s) 
and Z′(s) are to provide identical values of impedance if Z″(s) is evaluated 
at a frequency Kf times that at which Z′(s) is evaluated, or

 Z   ″ (s) =  Z   ′   (    s _  K  f  
   )   

Although scaling is a process normally applied to passive elements, de-
pendent sources may also be scaled in magnitude and frequency. We assume 
that the output of any source is given as kxvx or kyiy, where kx has the dimen-
sions of an admittance for a dependent current source and is dimensionless for 
a dependent voltage source, while ky has the dimensions of ohms for a depen-
dent voltage source and is dimensionless for a dependent current source. If the 
network containing the dependent source is scaled in magnitude by Km, then 
it is necessary only to treat kx or ky as if it were the type of element consistent 
with its dimensions. That is, if kx (or ky) is dimensionless, it is left unchanged; 
if it is an admittance, it is divided by Km; and if it is an impedance, it is multi-
plied by Km. Frequency scaling does not affect the dependent sources.

EXAMPLE 15.11
Scale the network shown in Fig. 15.36 by Km = 20 and Kf = 50, and 
then find Zin(s) for the scaled network.

0.5s Ω0.2V1

20/s Ω
1 AVin

+

–

V1+ –

(c)

Zin

V1+ –

0.2V1

0.05 F

0.5 H

(a)

Zin 200 mH0.01V1

50 μF

V1+ –

(b)

■  FIGURE 15.36 (a) A network to be magnitude-scaled by a factor of 20, and frequency-scaled by 
a factor of 50. (b) The scaled network. (c) A 1 A test source is applied to the input terminals in order to 
obtain the impedance of the unscaled network in part (a).

Magnitude scaling of the capacitor is accomplished by dividing 0.05 F 
by the scaling factor Km = 20, and frequency scaling is accomplished 
by dividing by Kf = 50. Carrying out both operations simultaneously,

 C  scaled   =   0.05 ______ (20) (50)   = 50 μF

The inductor is also scaled:

 L  scaled   =   (20) (0.5) _______ 50   = 200  mH

In scaling the dependent source, only magnitude scaling need be con-
sidered, as frequency scaling does not affect dependent sources. Since

(Continued on next page)
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15.8 • BASIC FILTER DESIGN
The design of filters is a very practical (and interesting) subject, worthy of a 
separate textbook in its own right. In this section, we introduce some of the 
basic concepts of filtering and explore both passive and active filter circuits. 
These circuits may be very simple, consisting of a single capacitor or inductor 
whose addition to a given network leads to improved performance. They may 
also be fairly sophisticated, consisting of many resistors, capacitors, induc-
tors, and op amps in order to obtain the precise response curve required for a 
given application. Filters are used in modern electronics to obtain dc voltages 
in power supplies, eliminate noise in communication channels, separate radio 
and television channels from the multiplexed signal provided by antennas, 
and boost the bass signal in a car stereo, to name just a few applications.

The underlying concept of a filter is that it selects the frequencies that may 
pass through a network. There are several varieties, depending on the needs of 
a particular application. A low-pass filter, the response of which is illustrated 
in Fig. 15.37a, passes frequencies below a cutoff frequency, while significantly 
damping frequencies above that cutoff. A high-pass filter, on the other hand, does 
just the opposite, as shown in Fig. 15.37b. The chief figure of merit of a filter is the 

this is a voltage-controlled current source, the multiplying constant 
0.2 has units of A/V, or S. Since the factor has units of admittance, we 
divide by Km, so the new term is 0.01V1. The resulting (scaled) network 
is shown in Fig. 15.36b.

To find the impedance of the new network, we need to apply a 1 
A test source at the input terminals. We may work with either circuit; 
however, let’s proceed by first finding the impedance of the unscaled 
network in Fig. 15.36a, and then scaling the result.

Referring to Fig. 15.36c,

 V  in   =  V  1   + 0.5s(1 − 0.2  V  1  )

Also,

 V  1   =   20 __ s  (1)

Performing the indicated substitution followed by a little algebraic 
manipulation yields

 Z  in   =    V  in   ___ 1   =    s   2  − 4s + 40 _______ 2s  

To scale this quantity to correspond to the circuit of Fig. 15.36b, we 
multiply by Km = 20 and replace s with s/Kf = s/50. Thus,

 Z   in  scaled     =   0.2  s   2  − 40s + 20,000  _____________ s   

PRACTICE 
●

15.16 A parallel resonant circuit is defined by C = 0.01 F,  = 2.5 rad/s, 
and ω0 = 20 rad/s. Find the values of R and L if the network is scaled  
in (a) magnitude by a factor of 800; (b) frequency by a factor of 104;  
(c) magnitude by a factor of 800 and frequency by a factor of 104. 

Ans: 32 kΩ, 200 H; 40 Ω, 25 μH; 32 kΩ, 20 mH.
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sharpness of the cutoff, or the steepness of the curve in the vicinity of the corner 
frequency. In general, steeper response curves require more complex circuits.

Combining a low-pass and a high-pass filter can lead to what is known as 
a bandpass filter, as illustrated by the response curve shown in Fig. 15.37c. 
In this type of filter, the region between the two corner frequencies is re-
ferred to as the passband; the region outside the passband is referred to as 
the stopband. These terms may also be applied to the low- and high-pass 
filters, as indicated in Fig. 15.37a and b. We can also create a bandstop 
filter, which allows both high and low frequencies to pass but attenuates any 
signal with a frequency between the two corner frequencies (Fig. 15.37d).

The notch filter is a specialized bandstop filter, designed with a narrow 
response characteristic that blocks a single frequency component of a sig-
nal. Multiband filters are also possible; these are filter circuits which have 
multiple passbands and stopbands. The design of such filters is straightfor-
ward, but it is beyond the range of this book.

Passive Low-Pass and High-Pass Filters
A filter can be constructed by simply using a single capacitor and a single resis-
tor, as shown in Fig. 15.38a. The transfer function for this low-pass filter circuit is

 H(s) ≡    V  out   ___  V  in  
   =    1 _______ 1 + RCs    [32]

|H
| (

dB
)

Frequency (Hz)

(a)

101 102 103

Passband

104 105 106 107
–60

–50

–40

–30

–20

–10

0

10

Stopband

|H
| (

dB
)

Frequency (Hz)
(d )

100 105 1010

Stopband

–60

–80

–100

–120

–140

–40

–20

0

High-
frequency
passband

Low-
frequency
passband|H

| (
dB

)

Frequency (Hz)

(c)

102 103

Passband

104 105 106 107
–60

–50

–40

–30

–20

–10

0

10

Low-frequency
stopband

High-frequency
stopband

|H
| (

dB
)

Frequency (Hz)

(b)

101 102 103

Passband

104 105 106 107
–60

–50

–40

–30

–20

–10

0

10

Stopband

■  FIGURE 15.37 Frequency response curves for (a) a low-pass filter; (b) a high-pass filter; (c) a bandpass filter; (d) a bandstop 
filter. In each diagram, a solid dot corresponds to −3 dB.
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(a) (b)

Vin

+

–
Vout

+

–

R

C

(a) (b)

Vin

+

–
Vout

+

–

R

C

■  FIGURE 15.38 (a) A simple low-pass RC filter. (b) Simulated frequency response 
for R = 500 Ω and C = 2 nF, showing a corner frequency at 159 kHz.

H(s) has a single corner frequency, which occurs at ω = 1/RC, and a zero at s = 
∞, leading to its “low-pass” filtering behavior. Low frequencies (s → 0) result 
in |H(s)| near its maximum value (unity, or 0 dB), and high frequencies (s → 0) 
result in |H(s)| → 0. This behavior can be understood qualitatively by consid-
ering the impedance of the capacitor: as the frequency increases, the capacitor 
begins to act like a short-circuit to ac signals, leading to a reduction in the output 
voltage. An example response curve for such a filter with R = 500 Ω and C = 
2 nF is shown in Fig. 15.38b; the corner frequency of 159 kHz (1 Mrad/s) can 
be found by moving the cursor to −3 dB. The sharpness of the response curve 
in the vicinity of the cutoff frequency can be improved by moving to a circuit 
containing additional reactive (i.e., capacitive and/or inductive) elements.

A high-pass filter can be constructed by simply swapping the locations 
of the resistor and capacitor in Fig. 15.38a, as we see in the next example.

EXAMPLE 15.12
Design a high-pass filter with a corner frequency of 3 kHz.

We begin by selecting a circuit topology. Since no requirements as to the 
sharpness of the response are given, we choose the simple circuit of Fig. 15.39.

The transfer function of this circuit is easily found to be

H(s) ≡    V  out   ___  V  in  
   =   RCs _____ 1 + RCs  
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+
–Vin R

C

Vout

+

–

■  FIGURE 15.39 A simple high-pass filter circuit, for 
which values for R and C must be selected to obtain a 
cutoff frequency of 3 kHz.

which has a zero at s = 0 and a pole at s = −1/RC, leading to “high-
pass” filter behavior (i.e., ∣H∣ → 0 as ω → ∞).

The corner frequency of the filter circuit is ωc = 1/RC, and we seek 
a value of ωc = 2π fc = 2π (3000) = 18.85 krad/s. Again, we must select 
a value for either R or C. In practice, our decision would most likely be 
based on the values of resistors and capacitors at hand, but since no such 
information has been provided here, we are free to make arbitrary choices.

We therefore choose the standard resistor value 4.7 kΩ for R, leading 
to a requirement of C = 11.29 nF.

The only remaining step is to verify our design with an LTspice sim-
ulation; the predicted frequency response curve is shown in Fig. 15.40.

■  FIGURE 15.40 Simulated frequency response of the final filter design, showing a cutoff (3 dB) 
frequency of 3 kHz as expected

PRACTICE 
●

15.17 Design a high-pass filter with a cutoff frequency of 13.56 MHz, a 
common RF power supply frequency.

Ans: One possibility is the circuit of Fig. 15.39 where RC = 1.174 × 10−8 s.  
Example values are C = 2 pF and R = 5.87 kΩ.

Bandpass Filters
We have already seen several circuits earlier in this chapter which could be 
classified as “bandpass” filters (e.g., Figs. 15.17 and 15.24). Consider the 
simple circuit of Fig. 15.41, in which the output is taken across the resistor. 
The transfer function of this circuit is easily found to be

  A  V   =   sRC __________  
LC  s   2  + RCs + 1

   [33]

The magnitude of this function is (after a few algebraic maneuvers)

 | A  V   |   =     ωRC  ______________   
 √ 

________________
   (1 −  ω   2  LC )   2  +  ω   2   R   2   C   2   
   [34]

Vo

+

–

+
–Vi R

CL

■  FIGURE 15.41 A simple bandpass filter, constructed 
using a series RLC circuit.
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which, in the limit of ω → 0, becomes

  |    A  V    |    ≈ ωRC → 0 

and in the limit of ω → ∞ becomes

∣ A  V   ∣   ≈   R ___ 
ωL

   → 0

We know from our experience with Bode plots that Eq. [33] represents three 
critical frequencies: one zero and two poles. In order to obtain a bandpass 
filter response with a peak value of unity (0 dB), both pole frequencies must 
be greater than 1 rad/s, the 0 dB crossover frequency of the zero term. These 
two critical frequencies can be obtained by factoring Eq. [33] or determining 
the values of ω at which Eq. [34] is equal to 1 /  √ 

__
 2  . The center frequency 

of this filter then occurs at ω = 1 /  √ 
___

 LC  . Thus, applying a minor amount of 
algebraic manipulation after setting Eq. [34] equal to 1 /  √ 

__
 2  , we find that

   (  1 − LC  ω  c  2  )     2  =  ω  c  2   R   2   C   2  [35]

Taking the square root of both sides yields

LC  ω  c  2  + RC  ω  c   − 1 = 0

Applying the quadratic equation, we find that

  ω  c   = −   R __ 2L
   ±    √ 

_________
  R   2   C   2  + 4LC    ________ 2LC

   [36]

Negative frequency is a nonphysical solution to our original equation, and so 
only the positive radicand of Eq. [36] is applicable. However, we may have been 
a little too hasty in taking the positive square root of both sides of Eq. [35]. Con-
sidering the negative square root as well, which is equally valid, we also obtain

  ω  c   =   R __ 2L
   ±    √ 

_________
  R   2   C   2  + 4LC    ________ 2LC

   [37]

from which it can be shown that only the positive radicand is physical. Thus, 
we obtain ωL from Eq. [36] and ωH from Eq. [37]; since ωH − ωL = , sim-
ple algebra shows that  = R/L.

EXAMPLE 15.13
Design a bandpass filter characterized by a bandwidth of 1 MHz 
and a high-frequency cutoff of 1.1 MHz.

We choose the circuit topology of Fig. 15.41, and we begin by determin-
ing the corner frequencies required. The bandwidth is given by fH − fL, so

 f  L   = 1.1 ×  10   6  − 1 ×  10   6  = 100  kHz

and

 ω  L   = 2π  f  L   = 628.3  krad/s

The high-frequency cutoff (ωH) is simply 6.912 Mrad/s.
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In order to proceed to design a circuit with these characteristics, it 
is necessary to obtain an expression for each frequency in terms of the 
variables R, L, and C.

Setting Eq. [37] equal to 2π(1.1 × 106) allows us to solve for 1/LC, 
as we already know that  = 2π(fH − fL) = 6.283 × 106.

  1 _ 2    +   [    1 _ 4        2  +   1 ___ 
LC

   ]     
1/2

  = 2π(1.1 ×  10   6  )

Solving, we find that 1/LC = 4.343 × 1012. Arbitrarily selecting L = 
50 mH, we obtain R = 314 kΩ and C = 4.6 pF. It should be noted that 
there is no unique solution for this “design” problem—R, L, or C can be 
selected as a starting point.

LTspice verification of our design is shown in Fig. 15.42.

(a) (b)

(a) (b)■  FIGURE 15.42 Simulated response of the bandpass filter design showing a 
bandwidth of 1 MHz and a high-frequency cutoff of 1.1 MHz as desired.

(Continued on next page)
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The type of circuit we have been considering is known as a passive filter, 
as it is constructed of only passive components (i.e., no transistors, op amps, 
or other “active” elements). Although passive filters are relatively common, 
they are not well suited to all applications. The gain (defined as the output 
voltage divided by the input voltage) of a passive filter can be difficult to 
set, and amplification is often desirable in filter circuits.

Active Filters
The use of an active element such as the op amp in filter design can over-
come many of the shortcomings of passive filters. As we saw in Chap. 6, op 
amp circuits can easily be designed to provide gain. Op amp circuits can also 
exhibit inductorlike behavior through the strategic location of capacitors.

The internal circuitry of an op amp contains very small capacitances 
(typically on the order of 100 pF), and these limit the maximum frequency 
at which the op amp will function properly. Thus, any op amp circuit will 
behave as a low-pass filter, with a cutoff frequency for modern devices of 
perhaps 20 MHz or more (depending on the circuit gain).

PRACTICE 
●

15.18 Design a bandpass filter with a low-frequency cutoff of 100 rad/s 
and a high-frequency cutoff of 10 krad/s. 
Ans: One possible answer of many: R = 990 Ω, L = 100 mH, and C = 10 μF.

EXAMPLE 15.14
Design an active low-pass filter with a cutoff frequency of 10 kHz 
and a voltage gain of 40 dB.

For frequencies much less than 10 kHz, we require an amplifier circuit capable 
of providing a gain of 40 dB, or 100 V/V. This can be accomplished by simply 
using a noninverting amplifier (such as the one shown in Fig. 15.43a) with

  
 R  f   __  R  1  

   + 1 = 100

–

+
Vo

R1

Rf

V1

(a)

–

+
Vo

R1
C

Rf

V1

V+

(b)

R2

+
–

–

+
Vo

R1

Rf

V1

(a)

–

+
Vo

R1
C

Rf

V1

V+

(b)

R2

+
–

■  FIGURE 15.43 (a) A simple noninverting op amp circuit. (b) A low-pass filter 
consisting of a resistor R2 and a capacitor C has been added to the input.
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To provide a high-frequency corner at 10 kHz, we require a low-pass 
filter at the input to the op amp (as in Fig. 15.43b). To derive the trans-
fer function, we begin at the noninverting input,

 V  +   =  V  i     1 / sC _______  R  2   + 1 / sC
   =  V  i     1 ______ 1 + s  R  2   C

  

At the inverting input we have

   V  o   −  V  +   _____  R  f  
   =    V  +   ___  R  1  

  

Combining these two equations and solving for Vo, we find that

 V  o   =  V  i    (    1 _ 1 + s  R  2   C
   )     (  1 +   

 R  f   _  R  1  
   )   

The maximum value of the gain AV = Vo /Vi is 1 + Rf /R1, so we set this 
quantity equal to 100. Since neither resistor appears in the expression 
for the corner frequency (R2C)−1, either may be selected first. We thus 
choose R1 = 1 kΩ, so Rf = 99 kΩ.

Arbitrarily selecting C = 1 μF, we find that

 R  2   =   1 __________  
2π(10 ×  10   3  ) C

   = 15.9  Ω

At this point, our design is complete. Or is it? The simulated frequency 
response of this circuit is shown in Fig. 15.44a.

It is readily apparent that our design does not in fact meet the 10 kHz 
cutoff specification. What did we do wrong? A careful check of our al-
gebra does not yield any errors, so an erroneous assumption must have 
been made somewhere. The simulation was performed using a μA741 
op amp, as opposed to the ideal op amp assumed in the derivations. 
It turns out that this is the source of our discomfort—the same circuit 
with an LT1028 op amp substituted for the μA741 results in a cutoff 
frequency of 10 kHz as desired; the corresponding simulation result is 
shown in Fig. 15.44b.

Unfortunately, the μA741 op amp with a gain of 40 dB has a corner 
frequency in the vicinity of 10 kHz, which cannot be neglected in 
this instance. The LT1028, however, is designed for high speed/high 
frequency operation and does not reach its first corner frequency until 
approximately 75 kHz, which is far enough away from 10 kHz that it 
does not affect our design.

PRACTICE 
●

15.19 Design a low-pass filter circuit with a gain of 30 dB and a cutoff 
frequency of 1 kHz. 
Ans: One possible answer of many: R1 = 100 kΩ, Rf = 3.062MΩ, R2 = 79.58 Ω, and 
C = 2 μF.

(a) (b)

■  FIGURE 15.44 (a) Frequency response for filter 
circuit using a μA741 op amp, showing a corner 
frequency of 6.4 kHz. (b) Frequency response of the 
same filter circuit, but using an LT1028 op amp instead. 
The cutoff frequency for this circuit is 10.0 kHz, the 
desired value.

(a) (b)
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We often wish to be able to independently adjust the 
bass, treble, and midrange settings on a sound system, 
even for inexpensive equipment. The audio frequency 
range (at least for the human ear) is commonly accepted 
to be 20 Hz to 20 kHz, with bass corresponding to lower 
frequencies (< 500 Hz or so) and treble corresponding 
to higher frequencies (> 5 kHz or thereabouts).

Designing a simple graphic equalizer is a relatively 
straightforward endeavor, although a system such as 
that shown in Fig. 15.45 requires a bit more effort. In 
the bass, midrange, treble type of equalizer common on 
many portable radios, the main signal (provided by the 
radio receiver circuit, or perhaps a CD player) consists 
of a wide spectrum of frequencies having a bandwidth 
of approximately 20 kHz.

■  FIGURE 15.45 An example of a graphic equalizer. 

(©winnond/Shutterstock)

This signal must be sent to three different op amp 
circuits, each with a different filter at the input. The bass 
adjustment circuit will require a low-pass filter, the tre-
ble adjustment circuit will require a high-pass filter, and 
the midrange adjustment circuit requires a bandpass fil-
ter. The output of each op amp circuit is then fed into a 
summing amplifier circuit; a block diagram of the com-
plete circuit is shown in Fig. 15.46.

Low-pass
filter

Bandpass
filter

High-pass
filter

Amplifier

Amplifier

Amplifier

Summing
amplifier SpeakerVin

■  FIGURE 15.46 Block diagram of a simple graphic equalizer circuit.

Our basic building block is shown in Fig. 15.47. 
This circuit consists of a noninverting op amp circuit 

characterized by a voltage gain of 1 + Rf /R1, and a sim-
ple low-pass filter composed of a resistor R2 and a ca-
pacitor C. The feedback resistor Rf is a variable resistor 
(sometimes referred to as a potentiometer), and it allows 
the gain to be varied through the rotation of a knob; the 
layperson would call this resistor the volume control. 
The low-pass filter network restricts the frequencies that 
will enter the op amp and hence be amplified; the cor-
ner frequency is simply (R2C)−1. If the circuit designer 
needs to allow the user to also select the break frequency 
for the filter, R2 may be replaced by a potentiometer, or, 
alternatively, C could be replaced by a variable capaci-
tor. The remaining stages are constructed in essentially 
the same way, but with a different filter network at the 
input. For example, the high-pass filter for treble will 
swap positions for R2 and C.

–

+
Vo

R1

C

Rf

Vin

R2

+
–

■  FIGURE 15.47 The bass adjustment section of the 
amplifier circuit.

In order to keep the resistors, capacitors, and op amps 
separate, we should add an appropriate subscript to each 
as an indication of the stage to which it belongs (t, m, 
b). Beginning with the treble stage, we have already 
encountered problems in using the μA741 in the 10 to 
20 kHz range at high gain, so perhaps the LT1028 is a 
better choice here as well. Selecting a treble cutoff fre-
quency of 5 kHz (there is some variation among values 
selected by different audio circuit designers), we require

  1 ____ 
 R  2t    C  t  

   = 2π (5 ×  10   3  ) = 3.142 ×  10   4 

Arbitrarily selecting Ct = 1 μF results in a required value 
of 31.83 Ω for R2t. Selecting Cb = 1 μF as well (perhaps 
we can negotiate a quantity discount), we need R2b = 
318.3 Ω for a bass cutoff frequency of 500 Hz. We leave 
the design of a suitable bandpass filter for the reader.

The next part of our design is to choose suitable val-
ues for R1t and R1b, as well as the corresponding feedback 
resistors. Without any instructions to the contrary, it is 
probably simplest to make both stages identical. There-
fore, we arbitrarily select both R1t and R1b as 1 kΩ, and 
Rf t and Rf b as 10 kΩ potentiometers (meaning that the 

PRACTICAL APPLICATION
Bass, Treble, and Midrange Adjustment

PRACTICAL APPLICATION
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15.9 • ADVANCED FILTER DESIGN
Although the basic filters we have encountered so far function adequately 
for a number of applications, their characteristics are far from an ideal 
“step-function-like” magnitude response. Fortunately, we have alterna-
tives—known as higher-order filters—with improved behavior, at the cost 
of increased complexity and more components. For example, the general 
low-pass filter transfer function of order n may be written as

N(s) =   K  a  0    _______________   
 s   n  +  a  n−1    s   n−1  + ⋯ + a  1   s +  a  0  

  

and that of the general high-pass filter (of order n) is only subtly different:

N(s) =   K  s   n   _______________   
 s   n  +  a  n−1    s   n−1  + ⋯ + a  1   s +  a  0  

  

range will be from 0 to 10 kΩ). This allows the volume 
of one signal to be up to 11 times louder than the other. 

Now that the design of the filter stage is complete, we 
are ready to consider the design of the summing stage. 
We use an inverting op amp configuration, with the out-
put of each of the filter op amp stages fed directly into 
its own 1 kΩ resistor. The other terminal of each 1 kΩ 
resistor is then connected to the inverting input of the 

summing amplifier stage. The appropriate potentiometer 
for the summing amplifier stage must be selected in or-
der to prevent saturation, so knowledge of both the input 
voltage range and the output speaker wattage is required. 
To illustrate the design, a simulation of the circuit with 
treble (low pass) and bass (high pass) components (with-
out the mid-range bandpass filter) is shown in Fig. 15.48, 
along with the resulting summing output with gain of 10.  

■  FIGURE 15.48 Simulated frequency response of the low-pass, high-pass, and summing output of the audio 
equalizer circuit .
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To represent a bandpass filter, we need only alter the numerator to 
Ksn/2, and the band-reject filter (shown in Fig. 15.37d) has the transfer 
function

N(s) =   K  ( s   2  +  ω  0  2  )   n/2   _______________   
 s   n  +  a  n−1    s   n−1  + ⋯ + a  1   s +  a  0  

  

Design of a specific filter, then, requires selecting the appropriate transfer 
function and choosing a class of polynomials which specify the coefficients 
a1, a2, etc. In this section, we introduce filters based on Butterworth and 
Chebyshev polynomials, two of the types most commonly employed in fil-
ter design.

The low-pass Butterworth filter is one of the best-known filters. It is 
characterized by an amplitude magnitude

∣H( jω) ∣ =   K ________  
 √ 

__________
  1 +  (ω /  ω  c   )   2n   
           n = 1, 2, 3, …

which is sketched in Fig. 15.49a for n = 1, 2, and 3; K is a real constant, 
and ωc represents the critical frequency. As can be seen, the magnitude 
approaches a step-function-like shape as the order n increases. In con-
trast, the low-pass Chebyshev filter is characterized by rather prominent 
ripples in the passband, the number of which depends upon the order 
of the filter as illustrated in Fig. 15.49b. Its magnitude response is de-
scribed by

∣H( jω ) ∣  =   K __________  
 √ 

____________
  1 +  β   2   C  n  2 (ω /  ω  c   )  
           n = 1, 2, 3, …

where β is a real constant known as the ripple factor and Cn(ω/ωc) denotes 
the Chebyshev polynomial of the first kind of degree n. For convenience, 
selected coefficients of both polynomial types are listed in Table 15.2.

(b)(a)

■  FIGURE 15.49 Plot of |H( jω)| for first-, second-, and third-order low-pass (a) Butterworth filters and (b) Chebyshev filters. All filters were normalized to a corner 
frequency of 1 rad/s.

670
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The Sallen-Key Amplifier
As seen in Sec. 14.12, we may create an op-amp-based filter circuit having 
a double pole simply by cascading two circuits such as the one shown in 
Fig. 14.39a, in which case we obtain a transfer function

 H(s) =   
 (1 /  R  1    C  f   )   2   _______________  

 s   2  + 2 /  R  f    C  f   +  (1 /  R  f    C  f   )   2 
   [38]

If we wish to improve upon this basic approach, a circuit worth considering 
is known as the Sallen-Key amplifier, shown in Fig. 15.50, configured as a 
low-pass filter. Analysis of this circuit by nodal analysis is straightforward. 
We first define the gain G of the noninverting amplifier as

 G ≡    R  A   +  R  B   _____  R  B     [39]

Then voltage division yields

  V  y   =  V  x     1 ______ 1 +  R  2    C  2   s
   [40]

and we may write a single nodal equation

 0 =    V  x   −  V  i   _____  R  1  
   +   

 V  x   −  V  y   _____  R  2  
   +    V  x   −  V  o   _____ 1 / s  C  1  

   [41]

Subtituting Eqs. [39] and [40] into Eq. [41] and performing a few algebraic 
maneuvers, we arrive at an expression for the transfer function of the amplifier,

    V  o   __  V  i  
   =   G /  R  1    R  2    C  1    C  2     _______________________    

 s   2  +   [    1 _  R  1    C  1  
   +   1 _  R  2    C  1  

   +   1  −  G _  R  2    C  2  
   ]   s +   1 _______  R  1    R  2    C  1    C  2  

  
   [42]

Butterworth

n a0 a1 a2 a3 a4

1 1.0000
2 1.0000 1.4142
3 1.0000 2.0000 2.0000
4 1.0000 2.6131 3.4142 2.6131
5 1.0000 3.2361 5.2361 5.2361 3.2361

Chebyshev ( β = 0.9976)

n a0 a1 a2 a3 a4

1 1.0024
2 0.7080 0.6449
3 0.2506 0.9284 0.5972
4 0.1770 0.4048 1.1691 0.5816
5 0.0626 0.4080 0.5489 1.4150 0.5744

TABLE 

●

 15.2  Coefficients for Low-Pass Butterworth and Chebyshev 
( β = 0.9976, or 3 dB) Filter Functions, Normalized to ωc = 1

+

–Vx

Vy

Vi
Vo

R2

RARB

R1

C2

C1

■  FIGURE 15.50 General low-pass Sallen-Key filter 
circuit.
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Noting that the coefficients in Table 15.2 represent filters with a cutoff fre-
quency of 1 rad/s, so that when finished we will need to make use of the 
simple scaling techniques described in Sec. 15.7, we are now ready to ex-
plore the design of a second-order Butterworth low-pass filter.

Design of high-pass filters based on the Sallen-Key model is similarly 
straightforward; the only modification required is to replace capacitors C1 
and C2 with resistors, and resistors R1 and R2 with capacitors. The remain-
der of the circuit remains unchanged. Nodal analysis of the resulting circuit 
with C1 = C2 = C and R1 = R2 = R yields

  a  0   =   1 ____ 
 R   2   C   2 

   [43]

and

  a  1   =   3 − G ____ 
RC

   [44]

as we found for the low-pass filter.
Higher-order filters can be realized by cascading appropriate op amp stages. 

For example, Butterworth filters of odd order (e.g., 3, 5, …) require an addi-
tional pole at s = −1. Thus, a third-order Butterworth filter is constructed using 
a Sallen-Key stage which provides a transfer function denominator D(s) of

        s   2  + s + 1        
  (  s + 1 )      s   3  + 2  s   2  + 2s + 1  

___
  ⟌  
 

or

 D(s) =  s   2  + s + 1 [45]

with an additional op amp stage such as the one in Fig. 14.39a to provide 
the term (s + 1).

EXAMPLE 15.15
Design a second-order low-pass Butterworth filter having a gain of 
4 and a corner frequency at 1400 rad/s.

We begin by selecting the Sallen-Key prototype shown in Fig. 15.50, 
and we opt for the simplification which arises when we set R1 = R2 = 
R and C1 = C2 = C. With a second-order Butterworth filter we expect 
from Table 15.2 to have a denominator polynomial

 s   2  + 1.4142s + 1
and comparing to Eq. [44]

RC = 1
and

  2 ___ 
RC

   +   1 − G ____ 
RC

   = 1.414

hence

G =    R  A   +  R  B   _____  R  B     = 1.586

We first set values for the two resistors in our gain network (which do not need 
to undergo scaling) by arbitrarily choosing RB = 1 k Ω, so that RA = 586 Ω.
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Next, we note that if C = 1 F, then R = 1 Ω, neither of which is 
a particularly conventional value. Instead we select C′ = 1 μF; this 
requires scaling the resistor by 106. We also need to frequency-scale to 
1400 rad/s. Thus,

 10   −6   F  =    1 F ____  k  m    k  f  
   =   1 F ______ 1400  k  m    

and km = 714 Ω. Consequently, R′ = km R = 714 Ω.
Unfortunately, our design is not quite done. We were constrained to 

an amplifier gain of 1.586, or 4 dB, but the specifications called for a 
gain of 4, or 12 dB. The only option available to us is to feed the output 
of our circuit into a noninverting amplifier such as the one in Fig. 6.7a. 
Choosing 1 kΩ and 1.52 kΩ for R1 (output stage) and Rf completes the 
design.

PRACTICE 
●

15.20 Design a second-order Butterworth low-pass filter having a gain 
of 10 dB and a cutoff frequency of 1000 Hz. 
Ans: A two-stage circuit, with the output of the circuit of Fig. 15.50 fed into the 
input of a noninverting amplifier, with component values C1 = C2 = 1 μF, R1 = R2 = 
159 Ω, RA = 586 Ω, RB = 1 kΩ (stage 1) and R1 = 1 kΩ, Rf = 994 Ω (stage 2).

EXAMPLE 15.16
Design a third-order low-pass Butterworth filter having a voltage 
gain magnitude of 4 and a corner frequency at 2000 rad/s.

We begin by again selecting the Sallen-Key prototype shown in Fig. 15.50, 
and we opt for the simplification which arises when we set R1 = R2 = R and 
C1 = C2 = C. We will also add an input stage of the form shown in Fig. 14.39a 
to add the necessary pole. The basic design is shown in Fig. 15.51.

+

–

–

+ Vx

Vy

Vo

Vi
RR

R1

RARB

C

C

Rf

Cf

■  FIGURE 15.51 Basic structure of the proposed third-order low-pass Butterworth filter, 
with component values still to be chosen.

(Continued on next page)
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Design of Chebyshev filters proceeds along the same lines as that of 
Butterworth filters, except we have more choices now with the ripple fac-
tor. Also, for filters not having a 3 dB ripple factor, the critical frequency 
is where the ripple channel in the passband terminates, which is slightly 
different than what we have specified previously. Filters with order n > 2 
are constructed by cascading stages, either multiple Sallen-Key stages for 
even orders, or a simple stage such as Fig. 14.39a in conjunction with the 
appropriate number of Sallen-Key stages for odd orders. For filters with a 
specific gain requirement, an op amp stage containing only resistors is typ-
ically required at the output.

SUMMARY AND REVIEW
We began this chapter with a short discussion of resonance. Of course the 
reader was likely to already have an intuitive understanding of the basic 
concept—timing when to kick our legs on a swing as a child; watching 

Comparing Eqs. [41], [42], and [43], we determine that our design 
must ensure that

1 =   1 ____ 
 R   2   C   2 

  

and

1 =   3 − G ____ 
RC

  

Consequently, RC = 1 and G = 4. If we choose RA = 3 kΩ, it follows 
that RB = 1 kΩ. We may scale these values later if we choose when 
adjusting for operation at 2000 rad/s, but this is unnecessary as the dc 
gain is set by the ratio of the two resistors.

Initially we design for R = 1 Ω and C = 1 F as this automatically 
satisfies the RC = 1 requirement. Neither value being easy to locate, 
however, we select a more reasonable capacitor value of 0.1 µF, which 
combined with our frequency scaling factor kf  = 2000, results in a 
resistor scaling factor km = 5000. Thus, R = 5 kΩ in our final design.

All that remains is to select values for R1, Rf, and Cf in our front-end 
stage. Recall that the transfer function of this stage is

−   
1 /  R  1    C  f   ________ 

s + (1 /  R  f    C  f   )
  

Setting Rf  = 1 Ω and Cf  = 1 F initially allows the pole to be properly 
located prior to scaling operations, which dictate that we build the cir-
cuit with Rf  = 5 kΩ and Cf  = 0.1 F. Our only remaining choice, then, 
is to ensure that R1 allows us to meet our gain requirement of 4. Since 
we have already achieved this with our Sallen-Key stage, R1 must be 
equal to Rf, or 5 kΩ.
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videos of crystal glasses shattering under the power of a trained soprano’s 
voice; instinctively slowing down when driving over a corrugated surface. 
In the context of linear circuit analysis, we found (perhaps surprisingly) 
that a frequency can be chosen even for networks with capacitors and in-
ductors such that the voltage and current are in phase (hence the network 
appears purely resistive at that particular frequency). How quickly our cir-
cuit response changes as we move “off resonance” was related to a new 
term—the quality factor (Q) of our circuit. After defining what is meant 
by critical frequencies for our circuit response, we introduced the concept 
of bandwidth, and we discovered that our expressions may be simplified 
rather dramatically for high-Q (Q > 5) circuits. We briefly extended this 
discussion to consider the differences between series and parallel circuits 
near resonance, along with more practical networks which cannot be 
classed as either.

The remainder of this chapter dealt with the analysis and design of fil-
ter circuits. Prior to launching into that discussion, the topic of “scaled” 
circuit components dealt with both frequency and magnitude scaling as 
a convenient design tool. We also introduced the handy method of Bode 
plots, which allows us to quickly sketch a reasonable approximation to 
the response of a filter circuit as a function of frequency. We next con-
sidered both passive and active filters, starting with simple designs us-
ing a single capacitor to achieve either low-pass or high-pass behavior. 
Shortly thereafter, bandpass filter design was studied. Although they are 
straightforward to work with, the response of such simple circuits is not 
particularly abrupt. As an alternative, filter designs based on either But-
terworth or Chebyshev polynomials were examined, with higher-order 
filters yielding sharper magnitude response at the expense of increased 
complexity.

 Transfer functions describe the input/output relations of a circuit, and 
can be written in terms of various combinations of input current or 
voltage and output current or voltage. (Example 15.1)

 A Bode plot is a useful representation of the transfer function, where 
the magnitude (in dB) and phase are plotted on a logarithmic frequency 
scale. Linear approximations based on location of poles and zeros may 
be used to approximate Bode plots to quickly determine the behavior of 
a transfer function. (Examples 15.2–15.5)

 Resonance is the condition in which a fixed-amplitude sinusoidal 
forcing function produces a response of maximum amplitude. Resonant 
behavior can be defined by the quality factor, half-power frequency, 
and bandwidth. Examples 15.6, 15.7, 15,8, 15.9, 15.10

 In a high-Q circuit, each half-power frequency is located 
approximately one-half bandwidth from the resonant frequency. 
(Example 15.7)

 A series resonant circuit is characterized by a low impedance at res-
onance, whereas a parallel resonant circuit is characterized by a high 
impedance at resonance. (Examples 15.6 and 15.8)
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 Impractical values for components often make design easier. The 
transfer function of a network may be scaled in magnitude or 
frequency using appropriate replacement values for components. 
(Example 15.11)

 The four basic types of filters are low-pass, high-pass, bandpass, and 
bandstop. (Examples 15.12 and 15.13)

 Passive filters use only resistors, capacitors, and inductors; active 
filters are based on op amps or other active elements. (Example 15.14)

 Butterworth and Chebyshev filters can be designed based on the simple 
Sallen-Key amplifier. Filter gain typically must be adjusted by adding 
a purely resistor-based amplifier circuit at the output. (Examples 15.15 
and 15.16)

READING FURTHER
A good discussion of a large variety of filters can be found in:

J. T. Taylor and Q. Huang, eds., CRC Handbook of Electrical Filters. Boca 
Raton, Fla.: CRC Press, 1997.

A comprehensive compilation of various active filter circuits and design proce-
dures is given in:

D. Lancaster, Lancaster’s Active Filter Cookbook, 2nd ed. Burlington, 
Mass.: Newnes, 1996.

Additional filter references which the reader might find useful include:

D. E. Johnson and J. L. Hilburn, Rapid Practical Design of Active Filters. 
New York: John Wiley & Sons, Inc., 1975.
J. V. Wait, L. P. Huelsman, and G. A. Korn, Introduction to Operational 
Amplifier Theory and Applications, 2nd ed. New York: McGraw-Hill, 
1992.

EXERCISES

15.1 Transfer Function
1. For the RL circuit in Fig. 15.52, (a)  determine the transer function defined as 

H( jω) = vout/vin; (b) for the case of R = 200 Ω and L = 5 mH, construct a plot 
of the magnitude and phase as a function of frequency; and (c) evaluate the 
magnitude and phase at a frequency of 10 kHz.

L voutvin

+

–

+
–

R

■  FIGURE 15.52
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2. For the RL circuit in Fig. 15.52, switch the positions of the resistor and 
inductor such that vout is the voltage drop across the resistor. (a) Write an 
expression or the transfer function, defined as H( jω) = vout/vin; (b) for the case 
of R = 200 Ω and L = 5 mH, construct a plot of the magnitude and phase as a 
function of frequency; and (c) evaluate the magnitude and phase at a frequen-
cy of 10 kHz. 

3. Examine the series RLC circuit in Fig. 15.53, with R = 100 Ω, L = 5 mH, and 
C = 2 μF. Calculate the magnitude of the transfer function H( jω) = vout/vin at 
frequencies of 0, 2 kHz, and ∞ for the three cases where (a) vout = vR,  
(b) vout = vL, and (c) vout = vC.

vC

vR vL

vin

+
+

–

– + –

R

C+
–

L

■  FIGURE 15.53

4. For the circuit in Fig. 15.54, (a) derive an algebraic expression for the 
transfer function H( jω) = vout/iin terms of circuit components R1, R2, C1, 
and C2; and (b) evaluate the magnitude of H at frequencies of 100 Hz,  
10 kHz, and 1 MHz for case where R1 = 20 kΩ, R2 = 5 kΩ, C1 = 10 nF, and 
C2 = 40 nF. 

■  FIGURE 15.54

iin vout

+

–
C2

R2

C1R1

5. For the circuit in Fig. 15.55, (a) derive an algebraic expression for the transfer 
function H( jω) = iout/vin in terms of circuit components R1, R2, L1, and L2;  
(b) evaluate the the magnitude of H( jω) at frequencies of 10 kHz, 1 MHz, and 
100 MHz for the case where R1 = 3 kΩ, R2 = 12 kΩ, L1 = 5 mH, and L2 = 
8 mH; (c) qualitatively, explain the behavior of the transfer function magnitude 
frequency response. 

6. For the circuit in Fig. 15.56, (a) determine the transfer function H( jω) = 
Vout/Vin in terms of circuit parameters R1, R2, and C; (b) determine the mag-
nitude and phase of the transfer function at ω = 0, 3 × 104 rad/s, and as  
ω → ∞ for the case where circuit values are R1 = 500 Ω, R2 = 40 kΩ, and  
C = 10 nF. 

■  FIGURE 15.56

+

–Vin
Vout

R1

R1

R2

C

C

■  FIGURE 15.55
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7. For the circuit in Fig. 15.57, (a) determine the transfer function H(s) = Vout/Vin in 
terms of circuit parameters R1, R2, R3, L1, and L2; (b) determine the magnitude and 
phase of the transfer function at ω = 0, 3 × 103 rad/s, and as ω → ∞ for the case 
where circuit values are R1 = 2 kΩ, R2 = 2 kΩ, R3 = 20 kΩ, L1 = 2 H, and L2 = 2 H. 

■  FIGURE 15.57

+

–Vin
Vout

R1

R2

R3
L2

L1

15.2 Bode Diagrams
8. Sketch the Bode magnitude and phase plots for the following functions:

  (a) 3 + 4s; (b)   1 _____ 3 + 4s  .

9. For the following functions, sketch the Bode magnitude and phase plots:

  (a) 25  (  1 +   s _ 3   )     (  5 + s )   ; (b)   0.1 __________    (  1 + 5s )     (  2 + s )     .

10. Use the Bode approach to sketch the magnitude of each of the following re-
sponses, then verify your solutions with appropriate MATLAB simulations:

  (a) 3   s _________ 
 s   2  + 7s + 10

  ; (b)   4 __________  
 s   3  + 7  s   2  + 12s

  .

11. If a particular network is described by transfer function H(s), use MATLAB to 
plot the magnitude and phase Bode plot for H(s) equal to

  (a)   s + 300 _______ s  (  5s + 8 )     ; (b)   
s  (   s   2  + 7s + 7 )   

  __________ 
s   (  2s + 4 )     2 

  .

12. Use MATLAB to plot the magnitude and phase Bode plot for each of the 
following transfer functions:

  (a)   s + 1 ______ 
s   (  s + 2 )     2 

  ; (b) 5    s   2  + s ____ s + 2  .

13. Determine the Bode magnitude plot for the following transfer functions, and 
compare to what is predicted using MATLAB: 

  (a) s2 + 0.2s + 1; (b)  (    s _ 4   )     
2
  + 0.1  (    s _ 4   )    + 1.

14. Determine the Bode magnitude and phase plot for each of the following:

  (a)   3 + 0.1s +  s   2  / 3  __________ 
 s   2  + 1

  ; (b) 2    s   2  + 9s + 20 _________ 
 s   2    (  s + 1 )     3 

  .

15. For the series RLC circuit in Fig. 15.53, the transfer function for the case of 
H(s) = vc/vin can be written in the form of

  H  (  s )    =   1 ___________  
1 + 2ζ  (    s _  ω  0     )    +   (    s __  ω  0     )     

2
 
  .

  (a) Find the values of ζ and ω0 in terms of circuit values R, L, and C; (b) for 
a fixed value of R = 50 Ω, choose values for L and C to achieve ω0 = 2 × 103 
rad/s and three cases of of ζ = 0.1, 0.5, and 1; (c) use MATLAB to construct 
magnitude Bode plots for the three cases in part (b). 
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16. Repeat Exercise 15 for the series RLC circuit in the case where H(s) = vL/vin. 
(a) Determine the new form of the transfer function in terms of parameters ζ 
and ω0, relating each to circuit values R, L, and C; (b) for a fixed value of R = 
100 Ω, choose values for L and C to achieve ω0 = 5 × 103 rad/s and three cases 
of ζ = 0.1, 0.5, and 1; (c) use MATLAB to construct magnitude Bode plots for 
the three cases in part (b). 

17. For the circuit of Fig. 15.56, construct a magnitude and phase Bode plot for the 
transfer function H(s) = Vout/Vin and circuit values of R1 = 500 Ω, R2 = 40 kΩ, 
and C1 = 10 nF.

18. Construct a magnitude and phase Bode plot for the transfer function H(s) = 
Vout/Vin  for the circuit shown in Fig. 15.57 and circuit values of R1 = R2 = 
2 kΩ, R3 = 20 kΩ, and L1 = L2 = 2H.

19. For the circuit in Fig. 15.54, use LTspice to construct a Bode plot of 
the frequency response for the case where R1 = 20 kΩ, R2 = 5 kΩ, C1 = 
10 nF, and C2 = 40 nF. Use your plot to estimate locations of poles and 
zeros.

20. For the circuit in Fig. 15.55, use LTspice to construct a Bode plot of the fre-
quency response for the case where R1 = 3 kΩ, R2 = 12 kΩ, L1 = 5 mH, and  
L2 = 8 mH. Use your plot to estimate locations of poles and zeros.

15.3 Parallel Resonance
21. Compute Q0 and ζ for a simple parallel RLC network if (a) R = 1 kΩ, C = 

10 mF, and L = 1 H; (b) R = 1 Ω, C = 10 mF, and L = 1 H; (c) R = 1 kΩ, C = 
1 F, and L = 1 H; (d ) R = 1 Ω, C = 1 F, and L = 1 H.

22. A certain parallel RLC circuit is built using component values L = 50 mH and 
C = 33 mF. If Q0 = 10, determine the value of R, and sketch the magnitude of 
the steady-state impedance over the range of 2 < ω < 40 rad/s.

23. A parallel RLC network is constructed using R = 5 Ω, L = 100 mH, and C = 
1 mF. (a) Compute Q0. (b) Determine at which frequencies the impedance 
magnitude drops to 90% of its maximum value.

24. For the network of Fig. 15.58, derive an expression for the steady-state 
input impedance and determine the frequency at which it has maximum 
amplitude.

1 Ω

100 kΩ

2 Ω

200 mH

10 μF

■  FIGURE 15.58

25. Plot the input admittance of the network depicted in Fig. 15.58 using a 
logarithmic frequency and magnitude scale over the range 0.1ω0 < ω0 < 
10ω0, and determine the resonant frequency and the bandwidth of the 
network.

26. Delete the 2 Ω resistor in the network of Fig. 15.58 and determine  
(a) the magnitude of the input impedance at resonance and (b) the 
resonant frequency.
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27. Delete the 1 Ω resistor in the network of Fig. 15.58 and determine  
(a) the magnitude of the input impedance at resonance and (b) the 
resonant frequency.

28. A varactor is a semiconductor device whose reactance may be varied by apply-
ing a bias voltage. The quality factor can be expressed3 as

  Q ≈   ω  C  J    R  P   _________  
1 +  ω   2   C  J  

2   R  P    R  S  
  

  where CJ is the junction capacitance (which depends on the voltage applied 
to the device), RS is the series resistance of the device, and RP is an equivalent 
parallel resistance term. (a) If CJ = 3.77 pF at 1.5 V, RP = 1.5 MΩ, and RS = 
2.8 Ω plot the quality factor as a function of frequency ω. (b) Differentiate the 
expression for Q to obtain both ω0 and Qmax.

15.4 Bandwidth and High-Q Circuits
29. The circuit of Fig. 15.17 is built using component values L = 1 mH and C = 

100 µF. If Q0 = 15, determine the bandwidth and estimate the magnitude and 
angle of the input impedance for operation at (a) 3162 rad/s; (b) 3000 rad/s;  
(c) 3200 rad/s; (d) 2000 rad/s.

30. A parallel RLC network is constructed with a 5 mH inductor, and the remain-
ing component values are chosen such that Q0 = 6.5 and ω0 = 1000 rad/s. 
Determine the approximate value of the input impedance magnitude for 
operation at (a) 500 rad/s; (b) 750 rad/s; (c) 900 rad/s; (d) 1100 rad/s. 
(e) Plot your estimates along with the exact result using a linear frequency 
(rad/s) axis.

31. A parallel RLC network is constructed with a 200 μH inductor, and the re-
maining component values are chosen such that Q0 = 8 and ω0 = 5000 rad/s. 
Use approximate expressions to estimate the input impedance angle for 
operation at (a) 2000 rad/s; (b) 3000 rad/s; (c) 4000 rad/s; (d) 4500 rad/s. 
(e) Plot your estimates along with the exact result using a linear frequency 
(rad/s) axis.

32. Find the bandwidth of each of the response curves shown in Fig. 15.59.

■  FIGURE 15.59
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33. A parallel RLC circuit is constructed such that it has the impedance magnitude 
characteristic plotted in Fig. 15.60. (a) Determine the resistor value. (b) Deter-
mine the capacitor value if a 1 H inductor was used. (c) Obtain values for the 
bandwidth, Q0, and both the low half-power frequency and the high half-power 
frequency.

(3) S. M. Sze, Physics of Semiconductor Devices, 2d ed. New York: Wiley, 1981, p. 116.
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■  FIGURE 15.60

15.5 Series Resonance
34. A series RLC circuit is constructed using component values R = 100 Ω 

and L = 1.5 mH along with a sinusoidal voltage source vs. If Q0 = 7, determine 
(a) the magnitude of the impedance at 500 Mrad/s; (b) the current which flows 
in response to a voltage vs = 2.5 cos(425 × 106t) V.

35. With regard to the series RLC circuit described in Exercise 34, adjust the 
resistor value such that Q0 is reduced to 5, and (a) estimate the angle of the 
impedance at 90 krad/s, 100 krad/s, and 110 krad/s. (b) Determine the percent 
error in the estimated values, compared to the exact expression.

36. An RLC circuit is constructed using R = 5 Ω, L = 20 mH, and C = 1 mF. Cal-
culate Q0, the bandwidth, and the magnitude of the impedance at 0.95ω0 if the 
circuit is (a) parallel-connected; (b) series-connected. (c) Verify your solutions 
using appropriate LTspice simulations. 

37. Inspect the circuit of Fig. 15.61, noting the amplitude of the source voltage. 
Now decide whether you would be willing to put your bare hands across the 
capacitor if the circuit were actually built in the lab. Plot |VC| versus ω to 
justify your answer.

125 Ω

1.5 V

10 Ω

0.105V1

4 H

VC

+

–

+
– μF1

4

V1+ –

■  FIGURE 15.61

38. After deriving Zin(s) in Fig. 15.62, find (a) ω0; (b) Q0.

50 nF0.5VR

10 Ω 1 mH

VR +–

Zin

■  FIGURE 15.62

15.6 Other Resonant Forms
39. For the network of Fig. 15.25a, R1 = 100 Ω, R2 = 150 Ω, L = 30 mH, and 

C is chosen so that ω0 = 750 rad/s. Calculate the impedance magnitude at 
(a) the frequency corresponding to resonance when R1 = 0; (b) 700 rad/s; 
(c) 800 rad/s.
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40. Assuming an operating frequency of 200 rad/s, find a series equivalent of 
the parallel combination of a 500 Ω resistor and (a) a 1.5 μF capacitor; (b) a 
200 mH inductor.

41. If the frequency of operation is either 40 rad/s or 80 rad/s, find a parallel equiv-
alent of the series combination of a 2 Ω resistor and (a) a 100 mF capacitor;  
(b) a 3 mH inductor.

42. For the network represented in Fig. 15.63, determine the resonant frequency 
and the corresponding value of ∣Zin∣.

22 Ω

10 Ω

100 μF

15 Ω 75 mH 50 μF100 mHZin

■  FIGURE 15.63

43. For the circuit shown in Fig. 15.64, the voltage source has magnitude 1 V and 
phase angle 0°. Determine the resonant frequency ω0 and the value of Vx at 
0.95ω0.

5 mH

12 mH

1.8 Ω

5 Ω

35 mF
+
–

Vx+ –

■  FIGURE 15.64

15.7 Scaling
44. A parallel RLC circuit is constructed using component values R = 1 Ω, C = 

3 F, and L =   1 _ 3    H. Determine the required component values if the network is 
to have (a) a resonant frequency of 200 kHz; (b) a peak impedance of 500 kΩ; 
(c) a resonant frequency of 750 kHz and an impedance magnitude at reso-
nance of 25 Ω.

45. A series RLC circuit is constructed using component values R = 1 Ω, C = 5 F, 
and L =   1 _ 5    H. Determine the required component values if the network is to 
have (a) a resonant frequency of 430 Hz; (b) a peak impedance of 100 Ω;  
(c) a resonant frequency of 75 kHz and an impedance magnitude at resonance 
of 15 kΩ.

46. Scale the network shown in Fig. 15.65 by Km = 200 and Kf  = 700, and obtain 
an expression for the new impedance Zin(s).

5 Ω 1 H

500 mF

0.2I1

I1

Zin (s)

■  FIGURE 15.65

47. The filter shown in Fig. 15.66a has the response curve shown in 
Fig. 15.66b. (a) Scale the filter so that it operates between a 50 Ω source 
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and a 50 Ω load and has a cutoff frequency of 20 kHz. (b) Draw the new 
response curve.

31.8 μH9.82 μH 9.82 μH100 Ω

2.57 nF2.57 nF 100 Ω Vout

+

–

0° V100
+
–

(a)

(b)
1 2 3

50

f (MHz)

|Vout| (V)

■  FIGURE 15.66

48. (a) Draw the new configuration for Fig. 15.67 after the network is scaled by 
Km = 250 and Kf = 400. (b) Determine the Thévenin equivalent of the scaled 
network at ω = 1 krad/s.

0.1 F

2 H
a

b

5 Ω 4Ix

Ix
+
–

■  FIGURE 15.67

15.8 Basic Filter Design
49. Examine the filter for the circuit in Fig. 15.68. (a) Without going through 

a full mathematical analysis of the circuit, determine what kind of filter 
this is. (b) Determine an expression for the transfer function H(s) =  
vout/vin. (c) Use MATLAB to construct a Bode plot (with frequency in Hz) 
for R1 = R2 = 50 Ω, C1 = 50 nF, C2 = 225 nF, L1 = 563 μH, and L2 =  
125 μH. 

R2L2C2

C1R1 L1

Vin

+

–

Vout

+

–

■  FIGURE 15.68

50. Examine the filter for the circuit in Fig. 15.69. (a) Without going through a 
full mathematical analysis of the circuit, determine what kind of filter this is. 
(b) Determine an expression for the transfer function H(s) = vout/vin. (c) Use 
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 MATLAB to construct a Bode plot (with frequency in Hz) for R1 = R2 = 10 kΩ,  
C1 = 159 nF, C2 = 1.59 nF. 

–

+
–

+

C2
R1

R2C1

VoutVin

+

–

+

–

■  FIGURE 15.69

51. (a) Design a high-pass filter with a corner frequency of 100 rad/s.  
(b) Verify your design with an appropriate LTspice simulation.

52. (a) Design a low-pass filter with a break frequency of 1450 rad/s. (b) Sketch 
the Bode magnitude and phase plots for your design. (c) Verify your filter 
performance with an appropriate simulation.

53. (a) Design a bandpass filter characterized by a bandwidth of 1000 rad/s and a 
low-frequency corner of 250 Hz. (b) Verify your design with an appropriate 
LTspice simulation.

54. Design a notch filter which removes 60 Hz “noise” from power line influences 
on a particular signal by taking the output across the inductor-capacitor series 
connection in the circuit of Fig. 15.41.

55. Design a low-pass filter characterized by a voltage gain of 25 dB and a corner 
frequency of 5000 rad/s.

56. Design a high-pass filter characterized by a voltage gain of 30 dB and a corner 
frequency of 50 rad/s.

57. The circuit in Fig. 15.70 is known as a “notch” filter, used to remove a narrow 
range of frequencies (for example, an undesired resonance). (a) Determine the 
transfer function for this circuit; (b) plot the magnitude Bode plot for this filter; 
(c) determine the center frequency for the notch filter and the reduction in 
magnitude at the center frequency (in dB).

Vin Vout

–

+

5.11 kΩ

511 Ω

120 nF

9.5 µF

511 Ω

511 Ω

■  FIGURE 15.70

58. (a) Design a two-stage op amp filter circuit with a bandwidth of 1000 rad/s, a 
low-frequency cutoff of 100 rad/s, and a voltage gain of 20 dB. (b) Verify your 
design with an appropriate LTspice simulation.
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59. Design a circuit which removes the entire audio frequency range (approximate-
ly 20 Hz to 20 kHz, for human hearing) but amplifies the signal voltage of all 
other frequencies by a factor of 15.

15.9 Advanced Filter Design
60. The circuit in Fig. 15.71 is a low-pass Butterworth filter, whose primary virtue is to 

have an extremely flat passband. (a) Determine the transfer function H(s) = Vout(s)/
Vin(s), (b) plot the magnitude Bode plot, using frequency in Hz rather than rad/s, 
and (c) determine the cutoff frequency and attenuation for the filter (in dB/decade). 

Vout

Vin
+

–
+

–

R

C

R2

1 kΩ
1 kΩ 1 kΩ

1 kΩ 1 kΩ

R1

C1

C2

+

–

R4R3

C3

C4
16 nF 13 nF

4.9 nF

19 nF
51 nF

■  FIGURE 15.71

61. Design a second-order low-pass filter having a voltage gain of 5 dB and a 
cutoff frequency of 1700 kHz based on (a) Butterworth polynomials; (b) Che-
byshev polynomials for a 3 dB ripple factor.

62. If a high-pass filter is required having gain of 6 dB and a cutoff frequency of 
350 Hz, design a suitable second-order Butterworth-based solution.

63. (a) Design a second-order high-pass Butterworth filter with a cutoff frequency 
of 2000 Hz and a voltage gain of 4.5 dB. (b) Verify your design with an appro-
priate simulation.

64. (a) Design a third-order low-pass Butterworth filter having a gain of 13 dB and 
a corner frequency at 1800 Hz. (b) Compare your filter response to that of a 
Chebyshev filter with the same specifications.

65. Design a fourth-order high-pass Butterworth filter having a minimum gain of 
15 dB and a corner frequency of 1100 rad/s.

66. Choose parameters for the circuit described by Eq. [36] such that it has a 
cutoff frequency at 450 rad/s, and compare its performance to a comparable 
second-order Butterworth filter.

67. (a) Design a Sallen-Key low-pass filter with a corner frequency of 10 kHz and 
Q = 0.5. (b) Simulate the frequency response of the circuit using LTspice.

68. (a) Design a Sallen-Key high-pass filter with a corner frequency of 2 kHz and  
Q = 0.5. (b) Simulate the frequency response of the circuit using LTspice.

Chapter-Integrating Exercises
69. A piezoelectric sensor has an equivalent circuit representation as shown in 

Fig. 15.72. Determine (a) the transfer function H(s) = Vout/Vin; (b) plot the 
frequency response (Bode plot) for the case where Ce = 100 nF, C0 = 200 nF, 
Lm = 20 μH, and Ri = 50 kΩ, and (c) comment on the approximate frequency 
range where the sensor would be useful. 

+
– Ri

Ce
Lm

Vin VoutC0

■  FIGURE 15.72
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70. Design a parallel resonant circuit for an AM radio so that a variable induc-
tor can adjust the resonant frequency over the AM broadcast band, 535 to 
1605 kHz, with Q0 = 45 at one end of the band and Q0 ≤ 45 throughout the 
band. Let R = 20 kΩ, and specify values for C, Lmin, and Lmax.

71. The network of Fig. 15.72 was implemented as a low-pass filter designed 
with a corner frequency of 1250 rad/s. Its performance is inadequate in two 
respects: (1) a voltage gain of at least 2 dB is required, and (2) the magnitude 
of the output voltage does not decrease quickly enough in the stopband. Design 
a better alternative if only one op amp is available and only two 1 μF capacitors 
can be located.

72. Determine the effect of component tolerance on the circuit designed in Exam-
ple 15.15 if each component is specified to be only within 10% of its stated 
value.

73. Design a filter circuit that can be used for a hearing aid in the 100 and 18 kHz 
audio frequency band, meeting the following requirements: The circuit should 
reject frequencies outside of the audio band with a roll-off of at least 20 dB/
decade, in order to minimize power delivery to the output, the circuit should 
provide a gain of 60 dB in the audio range, and the circuit should provide an 
additional gain of 12 dB in the 900 Hz to 18 kHz range to compensate for 
selective hearing loss of high-pitch audio. Plot the resulting frequency response 
using LTspice.

74. Refer to the bass, treble, and midrange adjustment circuit described in 
Sec. 15.8. Using the example as a starting point, design the full graphic 
equalizer circuit, including the midrange bandpass filter. After completing the 
design, simulate the frequency response with LTspice (show each filter output 
and the resulting summing amplifier output) for the following cases: (a) all 
filters at maximum output; (b) bass at maximum and midrange and treble each 
at 50%; (c) midrange at maximum and bass and treble each at 50%; (d) treble at 
maximum and bass and midrange each at 50%.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
A general network having two pairs of terminals, one often labeled 
the “input terminals” and the other the “output terminals,” is an 
important building block in many types of systems, including 
electronic, communication, automatic control, transmission, and 
distribution systems, as well as other systems in which an electrical 
signal or electric energy enters the input terminals, is acted upon 
by the network, and leaves via the output terminals. The output 
terminal pair may very well connect with the input terminal pair 
of another network. When we studied the concept of Thévenin and 
Norton equivalent networks in Chap. 5, we were introduced to the 
idea that it is not always necessary to know the detailed workings 
of part of a circuit. This chapter extends such concepts to linear 
networks, resulting in parameters that allow us to predict how any 
network will interact with other networks.

16.1 • ONE-PORT NETWORKS
A pair of terminals at which a signal may enter or leave a network 
is called a port; a network having only one such pair of terminals 
is called a one-port network, or simply a one-port. No connections 
may be made to any other nodes internal to the one-port, and there-
fore ia must equal ib in the one-port shown in Fig. 16.1a. When more 
than one pair of terminals is present, the network is known as a 
multiport network. The two-port network to which this chapter is 
principally devoted is shown in Fig. 16.1b. The currents in the two 
leads making up each port must be equal, and so it follows that ia = 
ib and ic = id in the two-port shown in Fig. 16.1b. Sources and loads 
must be connected directly across the two terminals of a port if the 
methods of this chapter are to be used. In other words, each port can 

Two-Port Networks16

KEY CONCEPTS

One-Port and Two-Port 
Networks

Admittance (y) Parameters

Impedance (z) Parameters

Hybrid (h) Parameters

Transmission (t) Parameters

Transformation Between y, 
z, h, and t Parameters

Circuit Analysis Using 
Network Parameters
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be connected only to a one-port network or to a port of another multiport 
network. For example, no device may be connected between terminals a and 
c of the two-port network in Fig. 16.1b. If such a circuit must be analyzed, 
general loop or nodal equations should be written.

Some of the introductory study of one- and two-port networks is accom-
plished best by using a generalized network notation and the abbreviated 
nomenclature for determinants introduced in Appendix 2. Thus, if we write 
a set of loop equations for a passive network,

  

  Z  11    I  1   +  Z  12    I  2   +  Z  13    I  3   + ⋅ ⋅ ⋅ +  Z  1N    I  N   =  V  1  

     
  Z  21    I  1   +  Z  22    I  2   +  Z  23    I  3   + ⋅ ⋅ ⋅ +  Z  2N    I  N   =  V  2  

       Z  31    I  1   +  Z  32    I  2   +  Z  33    I  3   + ⋅ ⋅ ⋅ +  Z  3N    I  N   =  V  3       
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

     

 Z  N1    I  1   +  Z  N2    I  2   +  Z  N3    I  3   + ⋅ ⋅ ⋅ +  Z  NN    I  N   =  V  N  

  [1]

then the coefficient of each current will be an impedance Zij(s), and the 
circuit determinant, or determinant of the coefficients, is

  Δ  Z   =   |     Z  11  

  

 Z  12  

  

 Z  13  

  

⋅ ⋅ ⋅

  

 Z  1N  

    
 Z  21  

  
 Z  22  

  
 Z  23  

  
⋅ ⋅ ⋅

  
 Z  2N  

     Z  31     Z  32     Z  33    ⋅ ⋅ ⋅   Z  3N      
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

    

 Z  N1  

  

 Z  N2  

  

 Z  N3  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |    [2]

Here N loops have been assumed, the currents appear in subscript order in each 
equation, and the order of the equations is the same as that of the currents. We 
also assume that KVL is applied so that the sign of each Zii term (Z11, Z22, … , 
ZNN) is positive; the sign of any Zij (i ≠ j) or mutual term may be either positive 
or negative, depending on the reference directions assigned to Ii and Ij.

If there are dependent sources within the network, then it is possible that 
not all the coefficients in the loop equations represent resistances or imped-
ances. Even so, we will continue to refer to the circuit determinant as ΔZ.

The use of minor notation (Appendix 2) allows for the input or driving-point 
impedance at the terminals of a one-port network to be expressed very con-
cisely. The result is also applicable to a two-port network if one of the two ports 
is terminated in a passive impedance, including an open or a short circuit.

Let us suppose that the one-port network shown in Fig. 16.2 is com-
posed entirely of passive elements and dependent sources; linearity is also 
assumed. An ideal voltage source V1 is connected to the port, and the source 
current is identified as the current in loop 1. Employing Cramer’s rule, then,

 I  1   =   

 |     V  1  

  

 Z  12  

  

 Z  13  

  

⋅ ⋅ ⋅

  

 Z  1N  

   
0
  

 Z  22  
  

 Z  23  
  

⋅ ⋅ ⋅
  

 Z  2N  
   0   Z  32     Z  33    ⋅ ⋅ ⋅   Z  3N     

⋅ ⋅ ⋅
  

⋅ ⋅ ⋅
  

⋅ ⋅ ⋅
  

⋅ ⋅ ⋅
  

⋅ ⋅ ⋅
   

0

  

 Z  N2  

  

 Z  N3  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |     _____________________________________________________________________________________________________   

 |     Z  11  

  

 Z  12  

  

 Z  13  

  

⋅ ⋅ ⋅

  

 Z  1N  

    
 Z  21  

  
 Z  22  

  
 Z  23  

  
⋅ ⋅ ⋅

  
 Z  2N  

     Z  31     Z  32     Z  33    ⋅ ⋅ ⋅   Z  3N      
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

    

 Z  N1  

  

 Z  N2  

  

 Z  N3  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |  
  

Cramer’s rule is reviewed in Appendix 2.

■  FIGURE 16.1 (a) A one-port network. (b) A two-port 
network. Connections between terminals a and b, or 
c and d, are allowed; if connections between a and 
c are required, for example, then alternative analysis 
techniques are needed.

ia

ib
(a)

ia ic

idib
(b)

a

b

c

d

■  FIGURE 16.2 An ideal voltage source V1 is 
connected to the single port of a linear one-port 
network containing no independent sources;  
Zin = ΔZ/Δ11.

I1
+
–V1

Linear
network
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or, more concisely,

 I  1   =    V  1    Δ  11   _____  Δ  Z    

Thus,

   Z  in   =    V  1   __  I  1  
   =    Δ  Z   ___  Δ  11  

    [3]

EXAMPLE 16.1
Calculate the input impedance for the one-port resistive network 
shown in Fig. 16.3.

2 Ω 4 Ω10 Ω

20 Ω

1 Ω5 Ω

V1

+

–

I3I2

I4

I1

■  FIGURE 16.3 An example one-port network containing 
only resistive elements.

We first assign the four mesh currents as shown and write the corre-
sponding mesh equations by inspection:

 

 V  1  

  

=

  

10  I  1  

  

−

  

10  I  2  

  

 

  

 

  

 

  

 

    
0
  
=

  
− 10  I  1    

+
  
17  I  2    

−
  
2  I  3    

−
  

5  I  4      
0
  
=

  
 
  
−

  
2  I  2  

  
+

  
7  I  3  

  
−

  
 I  4  

    

0

  

=

  

 

  

−

  

5  I  2  

  

−

  

 I  3  

  

+

  

26  I  4  

 

The circuit determinant is then given by

 Δ  Z   =   |    10
  

− 10
  

0
  

0
   − 10  17  − 2  − 5   0  − 2  7  − 1   

0

  

− 5

  

− 1

  

26

  |   
and has the value 9680 Ω4. Eliminating the first row and first column, 
we have

 Δ  11   =   |    17
  

− 2
  

− 5
   − 2     7  − 1   

− 5
  

− 1
  

 26
  |    = 2778   Ω   3 

Thus, Eq. [3] provides the value of the input impedance,

 Z  in   =   9680 ____ 2778   = 3.485 Ω
(Continued on next page)
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PRACTICE 
●

16.1 Find the input impedance of the network shown in Fig. 16.4 if it is 
formed into a one-port network by breaking it at terminals (a) a and a′; 
(b) b and b′; (c) c and c′. 

5 Ω 6 Ω 7 Ω

3 Ω 4 Ω

2 Ω

a

c c'

a'
b
b'

■  FIGURE 16.4

Ans: 9.47 Ω; 10.63 Ω; 7.58 Ω.

EXAMPLE 16.2
Find the input impedance of the network shown in Fig. 16.5.

2 Ω 4 Ω10 Ω

0.5Ia

1 Ω5 Ω

V1

+

–

Ia

I3I2

I4

I1

■  FIGURE 16.5 A one-port network containing a dependent source.

The four mesh equations are written in terms of the four assigned mesh 
currents:

  
10  I  1  

  
−

  
10  I  2  

  
 
  

 
  

 
  

 
  
=

  
 V  1  

    − 10  I  1    +  17  I  2    −  2  I  3    −  5  I  4    =  0     
 
  
−

  
2  I  2  

  
+

  
7  I  3  

  
−

  
 I  4  

  
=

  
0 

 

and

 I  4   = − 0.5  I  a   = − 0.5  (   I  4   −  I  3   )   
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We may also select a similar procedure using nodal equations, yielding 
the input admittance:

   Y  in   =   1 ___  Z  in  
   =    Δ  Y   ___  Δ  11  

    [4]

where Δ11 now refers to the minor of ΔY.

or

− 0.5  I  3   + 1.5  I  4   = 0

Thus we can write

 Δ  Z   =   |    10
  

− 10
  

0
  

0
   − 10  17  − 2  − 5   0  − 2  7  − 1   

0

  

0

  

− 0.5

  

1.5

  |    = 590   Ω   4 

while

 Δ  11   =   |    17
  

− 2
  

− 5
   − 2     7  − 1   

   0
  

− 0.5
  

1.5
  |    = 159   Ω   3 

giving

 Z  in   =   590 ___ 159   = 3.711 Ω

PRACTICE 
●

16.2 Write a set of nodal equations for the circuit of Fig. 16.6, calculate 
ΔY, and then find the input admittance seen between (a) node 1 and the 
reference node; (b) node 2 and the reference. 

+ –

5 S 10 S 3V2

0.2V3

V1
V2 V3

20 S

2 S

■  FIGURE 16.6

Ans: 10.68 S; 13.16 S.
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Exercises 9 and 10 at the end of the chapter give one-ports that can be 
built using operational amplifiers. These exercises illustrate that negative 
resistances may be obtained from networks whose only passive circuit ele-
ments are resistors, and that inductors may be simulated with only resistors 
and capacitors.

16.2 • ADMITTANCE PARAMETERS
Let us now turn our attention to two-port networks. We will assume in all 
that follows that the network is composed of linear elements and contains no 
independent sources; dependent sources are permissible, however. Further 
conditions will also be placed on the network in some special cases.

EXAMPLE 16.3
Use Eq. [4] to again determine the input impedance of the network 
shown in Fig. 16.3, repeated here as Fig. 16.7.

2 Ω 4 Ω10 Ω

20 Ω

1 Ω5 Ω

V1

+

–

I3I2

I4

I1

■  FIGURE 16.7 The circuit from example 16.1, repeated for convenience.

We first order the node voltages V1, V2, and V3 from left to right, select 
the reference at the bottom node, and then write the system admittance 
matrix by inspection:

 Δ  Y   =   |      0.35
  

− 0.2
  

− 0.05
   − 0.2     1.7  − 1   

− 0.05

  

− 1

  

   1.3

  |    = 0.3473   S   3 

 Δ  11   =   |   1.7  − 1  − 1  1.3  |    = 1.21   S   2 

so that

 Y  in   =   0.3473 _____ 1.21   = 0.2870 S

which corresponds to

 Z  in   =   1 ____ 0.287   = 3.484 Ω

which agrees with our previous answer to within expected rounding 
error (we only retained four digits throughout the calculations).
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We will consider the two-port as it is shown in Fig. 16.8; the voltage and 
current at the input terminals are V1 and I1, and V2 and I2 are specified at 
the output port. The directions of I1 and I2 are both customarily selected as 
into the network at the upper conductors (and out at the lower conductors). 
Since the network is linear and contains no independent sources within it, I1 
may be considered to be the superposition of two components, one caused 
by V1 and the other by V2. When the same argument is applied to I2, we may 
begin with the set of equations

  
 I  1    

 =
  
 y  11    V  1   +  y  12    V  2      I  2  

   =   y  21    V  1   +  y  22    V  2  
  

[5] 
[6]

where the y’s are no more than proportionality constants, or unknown co-
efficients, for the present. However, it should be clear that their dimensions 
must be A/V, or S. They are therefore called the y (or admittance) parame-
ters, and are defined by Eqs. [5] and [6].

The y parameters, as well as other sets of parameters we will define later 
in the chapter, are represented concisely as matrices. Here, we define the  
(2 × 1) column matrix I,

 I =   [    I  1     I  2  
  ]    [7]

the (2 × 2) square matrix of the y parameters,

 y =   [   
 y  11    

 y  12     y  21     y  22    ]    [8]

and the (2 × 1) column matrix V,

 V =   [    V  1     V  2  
  ]    [9]

Thus, we may write the matrix equation I = yV, or

  [    I  1     I  2  
  ]    =   [   

 y  11    
 y  12     y  21     y  22    ]     [    V  1     V  2  

  ]   

and matrix multiplication of the right-hand side gives us the equality

  [    I  1     I  2  
  ]    =   [   

 y  11    V  1   +  y  12    V  2      y  21    V  1   +  y  22    V  2  
  ]   

These (2 × 1) matrices must be equal, element by element, and thus we are 
led to the defining equations, [5] and [6].

The most useful and informative way to attach a physical meaning to 
the y parameters is through a direct inspection of Eqs. [5] and [6]. Consider 
Eq. [5], for example; if we let V2 be zero, then we see that y11 must be given 
by the ratio of I1 to V1. We therefore describe y11 as the admittance mea-
sured at the input terminals with the output terminals short-circuited (V2 = 
0). Since there can be no question which terminals are short-circuited, y11 
is best described as the short-circuit input admittance. Alternatively, we 
might describe y11 as the reciprocal of the input impedance measured with 
the output terminals short-circuited, but a description as an admittance is 
obviously more direct. It is not the name of the parameter that is important. 

The notation adopted in this text to represent a matrix 

is standard, but it also can be easily confused with 

our previous notation for phasors or general complex 

quantities. The nature of any such symbol should be 

clear from the context in which it is used.

V2

+

–
V1

+

–

I2I1

Linear
network

■  FIGURE 16.8 A general two-port with terminal 
voltages and currents specified. The two-port is 
composed of linear elements, possibly including 
dependent sources, but not containing any 
independent sources.
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Rather, it is the conditions which must be applied to Eq. [5] or [6], and 
hence to the network, that are most meaningful; when the conditions are de-
termined, the parameter can be found directly from an analysis of the circuit 
(or by experiment on the physical circuit). Each of the y parameters may be 
described as a current–voltage ratio with either V1 = 0 (the input terminals 
short-circuited) or V2 = 0 (the output terminals short-circuited):

   

 y  11  

  

=

  

   I  1   _  V  1  
     |     V  2  =0  

   
 y  12  

  
=

  
   I  1   _  V  2  

     |     V  1  =0  
   

 y  21  
  
=

  
   I  2   _  V  1  

     |     V  2  =0  
   

 y  22  

  

=

  

   I  2   _  V  2  
     |     V  1  =0  

   

[10]

[11]

[12]

[13]

Because each parameter is an admittance which is obtained by short- 
circuiting either the output or the input port, the y parameters are known 
as the short-circuit admittance parameters. The specific name of y11 is 
the short-circuit input admittance, y22 is the short-circuit output admit-
tance, and y12 and y21 are the short-circuit transfer admittances.

EXAMPLE 16.4
Find the four short-circuit admittance parameters for the resistive 
two-port shown in Fig. 16.9.

The values of the parameters may be easily established by applying 
Eqs. [10] to [13], which we obtained directly from the defining equa-
tions, [5] and [6]. To determine y11, we short-circuit the output and find 
the ratio of I1 to V1. This may be done by letting V1 = 1 V, for then y11 
= I1. By inspection of Fig. 16.9, it is apparent that 1 V applied at the 
input with the output short-circuited will cause an input current of  
   (    1 __ 5   +   1 __ 10   )    , or 0.3 A. Hence,

 y  11   = 0.3 S

In order to find y12, we short-circuit the input terminals and apply  
1 V at the output terminals. The input current flows through the short 
circuit and is  I  1   = −    1 __ 10    A. Thus

 y  12   = − 0.1 S

By similar methods,

 y  21   = − 0.1 S          y  22   = 0.15 S

The describing equations for this two-port in terms of the admittance 
parameters are, therefore,

    I  1     =     0.3  V  1   − 0.1    V  2      I  2  
   =  − 0.1  V  1   + 0.15  V  2  

   [14] 
[15]

■  FIGURE 16.9 A resistive two-port.

10 Ω

5 Ω 20 Ω V2

+

–

V1

+

–

I2I1
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In general, it is easier to use Eq. [10], [11], [12], or [13] when only 
one parameter is desired. If we need all of them, however, it is usually 
easier to assign V1 and V2 to the input and output nodes, to assign other 
node-to-reference voltages at any interior nodes, and then to carry through 
with the general solution.

In order to see what use might be made of such a system of equations, let 
us now terminate each port with some specific one-port network. Consider 

and

y =   [    0.3  − 0.1     − 0.1  0.15  ]             (  all S )   

It is not necessary to find these parameters one at a time by using Eqs. 
[10] to [13], however. We may find them all at once—as shown in the 
next example.

EXAMPLE 16.5
Assign node voltages V1 and V2 in the two-port of Fig. 16.9 and 
write the expressions for I1 and I2 in terms of them.

We have

 I  1   =    V  1   __ 5   +    V  1   −  V  2   _____ 10   = 0.3  V  1   − 0.1  V  2  

and

 I  2   =    V  2   −  V  1   _____ 10   +    V  2   __ 20   = − 0.1  V  1   + 0.15  V  2  

These equations are identical with Eqs. [14] and [15], and the four y 
parameters may be read from them directly.

PRACTICE 
●

16.3 By applying the appropriate 1 V sources and short circuits to the 
circuit shown in Fig. 16.10, find (a) y11; (b) y21; (c) y22; (d) y12. 

■  FIGURE 16.10

20 Ω

10 Ω

40 Ω

5 Ω

V2

+

–

V1

+

–

I2I1

Ans: 0.1192 S; −0.1115 S; 0.1269 S; −0.1115 S.
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the simple two-port network of Example 16.4, shown in Fig. 16.11 with 
a practical current source connected to the input port and a resistive load 
connected to the output port. A relationship must now exist between V1 
and I1 that is independent of the two-port network. This relationship may 
be determined solely from this external circuit. If we apply KCL (or write a 
single nodal equation) at the input,

 I  1   = 15 − 0.1  V  1  

For the output, Ohm’s law yields

 I  2   = − 0.25  V  2  

Substituting these expressions for I1 and I2 in Eqs. [14] and [15], we have

 15  =  0.4  V  1   − 0.1  V  2       0  =  − 0.1  V  1   + 0.4  V  2    
 

from which are obtained

 V  1   = 40 V          V  2   = 10 V

The input and output currents are also easily found:

 I  1   = 11 A          I  2   = − 2.5 A

and the complete terminal characteristics of this resistive two-port are then 
known.

The advantages of two-port analysis do not show up very strongly for 
such a simple example, but it should be apparent that once the y parameters 
are determined for a more complicated two-port, the performance of the 
two-port for different terminal conditions is easily determined; it is neces-
sary only to relate V1 to I1 at the input and V2 to I2 at the output.

In the example just concluded, y12 and y21 were both found to be −0.1 S. 
It is not difficult to show that this equality is also obtained if three general 
impedances ZA, ZB, and ZC are contained in this Π network. It is somewhat 
more difficult to determine the specific conditions which are necessary in 
order that y12 = y21, but the use of determinant notation is of some help. Let 
us see if the relationships of Eqs. [10] to [13] can be expressed in terms of 
the impedance determinant and its minors.

Since our concern is with the two-port and not with the specific net-
works with which it is terminated, we will let V1 and V2 be represented by 
two ideal voltage sources. Equation [10] is applied by letting V2 = 0 (thus 
short-circuiting the output) and finding the input admittance. The network 
now, however, is simply a one-port, and the input impedance of a one-port 
was found in Sec. 16.1. We select loop 1 to include the input terminals, and 

10 Ω
5 Ω10 Ω15 A 20 Ω 4 ΩV2

+

–

V1

+

–

I2I1

■  FIGURE 16.11 The resistive two-port network of Fig. 16.9, terminated 
with specific one-port networks.
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let I1 be that loop’s current; we identify (−I2) as the loop current in loop 
2 and assign the remaining loop currents in any convenient manner. Thus,

 Z  in    |   V  2  =0   =    Δ  Z   ___  Δ  11  
  

and, therefore,

 y  11   =    Δ  11   ___  Δ  Z    

Similarly,

 y  22   =    Δ  22   ___  Δ  Z    

In order to find y12, we let V1 = 0 and find I1 as a function of V2. We find 
that I1 is given by the ratio

 I  1   =   

 |    0

  

 Z  12  

  

⋅ ⋅ ⋅

  

 Z  1N  

   
−  V  2  

  
 Z  22  

  
⋅ ⋅ ⋅

  
 Z  2N  

   0   Z  32    ⋅ ⋅ ⋅   Z  3N     
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

   

0

  

 Z  N2  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |    ____________________________________________________________________________________  

 |     Z  11  

  

 Z  12  

  

⋅ ⋅ ⋅

  

 Z  1N  

   
 Z  21  

  
 Z  22  

  
⋅ ⋅ ⋅

  
 Z  2N  

    Z  31     Z  32    ⋅ ⋅ ⋅   Z  3N     
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

   

 Z  N1  

  

 Z  N2  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |  
  

Thus,

 I  1   = −     (  −  V  2   )    Δ  21   _______  Δ  Z    

and

 y  12   =    Δ  21   ___  Δ  Z    

In a similar manner, we may show that

 y  21   =    Δ  12   ___  Δ  Z    

The equality of y12 and y21 is thus contingent on the equality of the two 
minors of ΔZ–Δ12 and Δ21. These two minors are

 Δ  21   =   |     Z  12  

  

 Z  13  

  

 Z  14  

  

⋅ ⋅ ⋅

  

 Z  1N  

    
 Z  32  

  
 Z  33  

  
 Z  34  

  
⋅ ⋅ ⋅

  
 Z  3N  

     Z  42     Z  43     Z  44    ⋅ ⋅ ⋅   Z  4N      
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

    

 Z  N2  

  

 Z  N3  

  

 Z  N4  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |   
and

 Δ  12   =   |     Z  21  

  

 Z  23  

  

 Z  24  

  

⋅ ⋅ ⋅

  

 Z  2N  

    
 Z  31  

  
 Z  33  

  
 Z  34  

  
⋅ ⋅ ⋅

  
 Z  3N  

     Z  41     Z  43     Z  44    ⋅ ⋅ ⋅   Z  4N      
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

  
⋅ ⋅ ⋅

    

 Z  N1  

  

 Z  N3  

  

 Z  N4  

  

⋅ ⋅ ⋅

  

 Z  NN  

  |   
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Their equality is shown by first interchanging the rows and columns of one 
minor (for example, Δ21), an operation which any college algebra book 
proves is valid, and then letting every mutual impedance Zij be replaced by 
Zji. Thus, we set

Z12 = Z21        Z23 = Z32        etc.

This equality of Zij and Zji is evident for the three familiar passive 
elements—the resistor, capacitor, and inductor—and it is also true for mutual 
inductance. However, it is not true for every type of device which we may 
wish to include inside a two-port network. Specifically, it is not true in general 
for a dependent source, and it is not true for the gyrator, a useful model for 
Hall-effect devices and for waveguide sections containing ferrites. Over a nar-
row range of radian frequencies, the gyrator provides an additional phase shift 
of 180° for a signal passing from the output to the input over that for a signal 
in the forward direction, and thus y12 = −y21. A common type of passive ele-
ment leading to the inequality of Zij and Zji, however, is a nonlinear element.

Any device for which Zij = Zji is called a bilateral element, and a circuit 
which contains only bilateral elements is called a bilateral circuit. We have 
therefore shown that an important property of a bilateral two-port is

y12 = y21

and this property is glorified by stating it as the reciprocity theorem:

In any passive linear bilateral network, if the single voltage source Vx in 
branch x produces the current response Iy in branch y, then the removal 
of the voltage source from branch x and its insertion in branch y will 
produce the current response Iy in branch x.

If we had been working with the admittance determinant of the circuit and had 
proved that the minors Δ21 and Δ12 of the admittance determinant ΔY were 
equal, then we should have obtained the reciprocity theorem in its dual form:

In any passive linear bilateral network, if the single current source Ix be-
tween nodes x and x′ produces the voltage response Vy between nodes 
y and y′, then the removal of the current source from nodes x and x′ and 
its insertion between nodes y and y′ will produce the voltage response 
Vy between nodes x and x′.

In other words, the interchange of an ideal current source and an ideal voltme-
ter in any passive linear bilateral circuit will not change the voltmeter reading.

Another way of stating the theorem is to say that the 

interchange of an ideal voltage source and an ideal 

ammeter in any passive, linear, bilateral circuit will not 

change the ammeter reading.

In other words, the interchange of an ideal current 

source and an ideal voltmeter in any passive linear 

bilateral circuit will not change the voltmeter reading.

PRACTICE 
●

16.4 In the circuit of Fig. 16.10, let I1 and I2 represent ideal current 
sources. Assign the node voltage V1 at the input, V2 at the output, and 
Vx from the central node to the reference node. Write three nodal equa-
tions, eliminate Vx to obtain two equations, and then rearrange these 
equations into the form of Eqs. [5] and [6] so that all four y parameters 
may be read directly from the equations. 
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16.3 • SOME EQUIVALENT NETWORKS
When analyzing electronic circuits, it is often necessary to replace the ac-
tive device (and perhaps some of its associated passive circuitry) with an 
equivalent two-port containing only three or four impedances. The validity 
of the equivalent may be restricted to small signal amplitudes and a single 
frequency, or perhaps a limited range of frequencies. The equivalent is also 
a linear approximation of a nonlinear circuit. However, if we are faced with 
a network containing a number of resistors, capacitors, and inductors, plus 
a transistor labeled 2N3823, then we cannot analyze the circuit by any of 
the techniques we have studied previously; the transistor must first be re-
placed by a linear model, just as we replaced the op amp by a linear model 
in Chap. 6. The y parameters provide one such model in the form of a two-
port network that is often used at high frequencies. Another common linear 
model for a transistor appears in Sec. 16.5.

The two equations that determine the short-circuit admittance 
parameters,

   
 I  1    

=
  
 y  11    V  1   +  y  12    V  2      I  2  

  =   y  21    V  1   +  y  22    V  2  
   

[16] 
[17]

have the form of a pair of nodal equations written for a circuit containing two 
nonreference nodes. The determination of an equivalent circuit that leads to 
Eqs. [16] and [17] is made more difficult by the inequality, in general, of y12 
and y21; it helps to resort to a little trickery in order to obtain a pair of equa-
tions that possess equal mutual coefficients. Let us both add and subtract 
y12V1 (the term we would like to see present on the right side of Eq. [17]):

   I  2   =  y  12    V  1   +  y  22    V  2   +   (   y  21   −  y  12   )    V  1    [18]

or

   I  2   −   (   y  21   −  y  12   )    V  1   =  y  12    V  1   +  y  22    V  2    [19]

The right-hand sides of Eqs. [16] and [19] now show the proper symmetry 
for a bilateral circuit; the left-hand side of Eq. [19] may be interpreted as the 
algebraic sum of two current sources, one an independent source I2 entering 
node 2, and the other a dependent source (y21 − y12)V1 leaving node 2.

Let us now “read” the equivalent network from Eqs. [16] and [19]. We 
first provide a reference node, and then a node labeled V1 and one labeled 

16.5 Find y for the two-port shown in Fig. 16.12. 

■  FIGURE 16.12

10 Ω0.2V2 0.5I1

5 Ω

V2

+

–

V1

+

–

I2I1

Ans: 16.4:   [      0.1192   –0.1115   − 0.1115    0.1269   ]      (  all S )  .  16.5:   [    0.6   0    − 0.2  0.2  ]      (  all S )   .
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V2. From Eq. [16], we establish the current I1 flowing into node 1, we sup-
ply a mutual admittance (−y12) between nodes 1 and 2, and we supply an 
admittance of (y11 + y12) between node 1 and the reference node. With V2 = 
0, the ratio of I1 to V1 is then y11, as it should be. Now consider Eq. [19]; 
we cause the current I2 to flow into the second node, we cause the current 
(y21 − y12)V1 to leave the node, we note that the proper admittance (−y12) 
exists between the nodes, and we complete the circuit by installing the ad-
mittance (y22 + y12) from node 2 to the reference node. The completed cir-
cuit is shown in Fig. 16.13a.

Another form of equivalent network is obtained by subtracting and add-
ing y21 V2 in Eq. [16]; this equivalent circuit is shown in Fig. 16.13b. If the 
two-port is bilateral, then y12 = y21, and either of the equivalents reduces to 
a simple passive Π network. The dependent source disappears. This equiva-
lent of the bilateral two-port is shown in Fig. 16.13c.

There are several uses to which these equivalent circuits may be put. In the 
first place, we have succeeded in showing that an equivalent of any complicated 
linear two-port exists. It does not matter how many nodes or loops are con-
tained within the network; the equivalent is no more complex than the circuits 
of Fig. 16.13. One of these may be much simpler to use than the given circuit 
if we are interested only in the terminal characteristics of the given network.

The three-terminal network shown in Fig. 16.14a is often referred to 
as a Δ of impedances, while that in Fig. 16.14b is called a Y. One network 
may be replaced by the other if certain specific relationships between the 
impedances are satisfied, and these interrelationships may be established by 
the use of the y parameters. We find that

 

 y  11  

  

=

  

  1 __  Z  A     +   1 __  Z  B     =   1 _____________   Z  1   +  Z  2    Z  3   /   (   Z  2   +  Z  3   )   
  

      y  12    =   y  21   = −   1 __  Z  B     =   −  Z  3    ____________   Z  1    Z  2   +  Z  2    Z  3   +  Z  3    Z  1  
       

 y  22  

  

=

  

  1 __  Z  C     +   1 __  Z  B     =   1 _____________   Z  2   +  Z  1    Z  3   /   (   Z  1   +  Z  3   )   
  

  

(y21 – y12) V1

V2

+

–

V1

+

–

I2I1

y11 + y12 y22 + y12

–y12

(a)

V2

+

–

V1

+

–

I2I1

(c)

y11 + y12 y22 + y12

–y12

(y12 – y21) V2

V2

+

–

V1

+

–

I2I1

(b)

y11 + y21 y22 + y21

–y21

■  FIGURE 16.13 (a, b) Two-ports which are equivalent to any general linear two-port. The dependent source in part (a) depends on V1, and that in part 
(b) depends on V2. (c) An equivalent for a bilateral network.

■  FIGURE 16.14 The three-terminal Δ network (a) 
and the three-terminal Y network (b) are equivalent if 
the six impedances satisfy the conditions of the Y-Δ 
(or Π-T) transformation, eqs. [20] to [25].

(a)

ZB

ZA ZC

(b)

Z3

Z2Z1

(a)

ZB

ZA ZC

(b)

Z3

Z2Z1
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These equations may be solved for ZA, ZB, and ZC in terms of Z1, Z2,  
and Z3:

     

 Z  A  

  

=

  

   Z  1    Z  2   +  Z  2    Z  3   +  Z  3    Z  1    _____________  Z  2  
  

     Z  B    =     Z  1    Z  2   +  Z  2    Z  3   +  Z  3    Z  1    _____________  Z  3  
      

 Z  C  

  

=

  

   Z  1    Z  2   +  Z  2    Z  3   +  Z  3    Z  1    _____________  Z  1  
  

    

[20]

[21]

[22]

or, for the inverse relationships:

    

 Z  1  

  

=

  

   Z  A    Z  B   ___________   Z  A   +  Z  B   +  Z  C    

    Z  2    =     Z  B    Z  C   ___________   Z  A   +  Z  B   +  Z  C       

 Z  3  

  

=

  

   Z  C    Z  A   ___________   Z  A   +  Z  B   +  Z  C    

    

[23]

[24]

[25]

The reader may recall these useful relationships from 

Chap. 5, where their derivation was described.

These equations enable us to transform easily between the equivalent Y and 
Δ networks, a process known as the Y–Δ transformation (or Π–T transfor-
mation if the networks are drawn in the forms of those letters). In going 
from Y to Δ, Eqs. [20] to [22], first find the value of the common numerator 
as the sum of the products of the impedances in the Y taken two at a time. 
Each impedance in the Δ is then found by dividing the numerator by the 
impedance of that element in the Y which has no common node with the 
desired Δ element. Conversely, given the Δ, first take the sum of the three 
impedances around the Δ; then divide the product of the two Δ impedances 
having a common node with the desired Y element by that sum.

These transformations are often useful in simplifying passive networks, 
particularly resistive ones, thus avoiding the need for any mesh or nodal 
analysis.

EXAMPLE 16.6
Find the input resistance of the circuit shown in Fig. 16.15a.

■  FIGURE 16.15 (a) A resistive network whose input resistance is desired. This example is 
repeated from Chap. 5. (b) The upper Δ is replaced by an equivalent Y. (c, d  ) series and parallel 
combinations give the equivalent input resistance    159

 ___ 71    Ω.

(a)

1 Ω 4 Ω

3 Ω

2 Ω 5 Ω

159
71

(d )

Ω

1
2

(c)

Ω

13
2 Ω19

8 Ω

1
2

(b)

2 Ω 5 Ω

Ω
3
2 Ω3

8 Ω

(Continued on next page)
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Now let us tackle a slightly more complicated example, shown as 
Fig. 16.16. We note that the circuit contains a dependent source, and thus 
the Y–Δ transformation is not applicable.

We first make a Δ–Y transformation on the upper Δ appearing in Fig. 
16.15a. The sum of the three resistances forming this Δ is 1 + 4 + 3 = 
8 Ω. The product of the two resistors connected to the top node is 1 × 
4 = 4 Ω2. Thus, the upper resistor of the Y is    4 _ 8   , or    1 _ 2    Ω. Repeating this 
procedure for the other two resistors, we obtain the network shown in 
Fig. 16.15b.

We next make the series and parallel combinations indicated, obtain-
ing in succession Fig. 16.15c and d. Thus, the input resistance of the 
circuit in Fig. 16.15a is found to be    159 ___ 71    or 2.24 Ω.

EXAMPLE 16.7
The circuit shown in Fig. 16.16 is an approximate linear equivalent 
of a transistor amplifier in which the emitter terminal is the bottom 
node, the base terminal is the upper input node, and the collector 
terminal is the upper output node. A 2000 Ω resistor is connected 
between collector and base for some special application and makes 
the analysis of the circuit more difficult. Determine the y parame-
ters for this circuit.

V2

+

–
V1

+

–

I1 I2

500 Ω

0.0395V1
10 kΩ

2000 Ω

■  FIGURE 16.16 The linear equivalent circuit of a transistor in common 
emitter configuration with resistive feedback between collector and base.

▶ Identify the goal of the problem.
Cutting through the problem-specific jargon, we realize that we have 
been presented with a two-port network and require the y parameters.

▶ Collect the known information.
Figure 16.16 shows a two-port network with V1, I1, V2, and I2 already 
indicated, and a value for each component has been provided.

▶ Devise a plan.
There are several ways we might think about this circuit. If we 
recognize it as being in the form of the equivalent circuit shown in 
Fig. 16.13a, then we may immediately determine the values of the 
y parameters. If recognition is not immediate, then the y parameters 
may be determined for the two-port by applying the relationships of 
Eqs. [10] to [13]. We also might avoid any use of two-port analysis 
methods and write equations directly for the circuit as it stands. The 
first option seems best in this case.
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▶ Construct an appropriate set of equations.
By inspection, we find that −y21 corresponds to the admittance of 
our 2 kΩ resistor, that y11 + y12 corresponds to the admittance of the 
500 Ω resistor, the gain of the dependent current source corresponds 
to y21 − y12, and finally that y22 + y12 corresponds to the admittance 
of the 10 kΩ resistor. Hence we may write

 

 y  12  

  

=

  

−   1 ____ 2000  

   
 y  11    

=
  
  1 ___ 500   −  y  12     

 y  21  
  
=

  
0.0395 +  y  12  

   

 y  22  

  

=

  

  1 _____ 10, 000   −  y  12  

 

▶ Determine if additional information is required.
With the equations written as they are, we see that once y12 is comput-
ed, the remaining y parameters may also be obtained.

▶ Attempt a solution.
Plugging the numbers into a calculator, we find that

 

 y  12  

  

=

  

−   1 ____ 2000   = − 0.5 mS

    y  11    =    1 ___ 500   −   (  −   1 _ 2000   )    = 2.5 mS    

 y  22  

  

=

  

  1 _____ 10, 000   −   (  −   1 _ 2000   )    = 0.6 mS

 

and

 y  21   = 0.0395 +   (  −   1 _ 2000   )    = 39 mS

The following equations must then apply:

    I  1    =  2.5  V  1   − 0.5  V  2      I  2  
  =  39  V  1   + 0.6  V  2  

    [26] 
[27]

where we are now using units of mA, V, and mS or kΩ.

▶ Verify the solution. Is it reasonable or expected?
Writing two nodal equations directly from the circuit, we find

 I  1   =    V  1   −  V  2   _____ 2   +    V  1   ___ 0.5           or           I  1   = 2.5  V  1   − 0.5  V  2  

and

− 39.5  V  1   +  I  2   =    V  2   −  V  1   _____ 2   +    V  2   __ 10          or         I  2   = 39  V  1   + 0.6  V  2  

which agree with Eqs. [26] and [27] obtained directly from the y 
parameters.
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Now let us make use of Eqs. [26] and [27] by analyzing the perfor-
mance of the two-port in Fig. 16.16 under several different operating condi-
tions. We first provide a current source of 1  0° mA at the input and connect 
a 0.5 kΩ (2 mS) load to the output. The terminating networks are therefore 
both one-ports and give us the following specific information relating I1 to 
V1 and I2 to V2:

 I  1   = 1   (  for any   V  1   )            I  2   = − 2  V  2  

We now have four equations in the four variables, V1, V2, I1, and I2. Sub-
stituting the two one-port relationships in Eqs. [26] and [27], we obtain two 
equations relating V1 and V2:

1 = 2.5  V  1   − 0.5  V  2            0 = 39  V  1   + 2.6  V  2  

Solving, we find that

  V  1    =  0.1 V      V  2    =  − 1.5 V    
   I  1  

  
=

  
1 mA

  
 
  
  I  2  

  
=

  
3 mA

  

These four values apply to the two-port operating with a prescribed input 
(I1 = 1 mA) and a specified load (RL = 0.5 kΩ).

The performance of an amplifier is often described by giving a few spe-
cific values. Let us calculate four of these values for this two-port with its 
terminations. We will define and evaluate the voltage gain, the current gain, 
the power gain, and the input impedance.

The voltage gain GV is

 G  V   =    V  2   __  V  1  
  

From the numerical results, it is easy to see that GV = −15.
The current gain GI is defined as

 G  I   =    I  2   __  I  1  
  

and we have

 G  I   = 3

Let us define and calculate the power gain GP for an assumed sinusoidal 
excitation. We have

 G  P   =    P  out   ___  P  in  
   =   

Re  {  −   1 _ 2    V  2    I  2  *  }   
  _________  

Re  {    1 _ 2    V  1    I  1  *  }   
   = 45

The device might be termed either a voltage, a current, or a power amplifier, 
since all the gains are greater than unity. If the 2 kΩ resistor were removed, 
the power gain would rise to 354.

The input and output impedances of the amplifier are often desired in order 
that maximum power transfer may be achieved to or from an adjacent two-
port. We define the input impedance Zin as the ratio of input voltage to current:

 Z  in   =    V  1   __  I  1  
   = 0.1 kΩ

/
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This is the impedance offered to the current source when the 500 Ω load is 
connected to the output. (With the output short-circuited, the input imped-
ance is necessarily 1/y11, or 400 Ω.)

It should be noted that the input impedance cannot be determined by 
replacing every source with its internal impedance and then combining re-
sistances or conductances. In the given circuit, such a procedure would 
yield a value of 416 Ω. The error, of course, comes from treating the depen-
dent source as an independent source. If we think of the input impedance as 
being numerically equal to the input voltage produced by an input current of 
1 A, the application of the 1 A source produces some input voltage V1, and 
the strength of the dependent source (0.0395V1) cannot be zero. We should 
recall that when we obtain the Thévenin equivalent impedance of a circuit 
containing a dependent source along with one or more independent sources, 
we must replace the independent sources with short circuits or open cir-
cuits, but a dependent source must not be deactivated. Of course, if the 
voltage or current on which the dependent source depends is zero, then the 
dependent source will itself be inactive; occasionally a circuit may be sim-
plified by recognizing such an occurrence.

Besides GV, GI, GP, and Zin, there is one other performance parameter 
that is quite useful. This is the output impedance Zout, and it is determined 
for a different circuit configuration.

The output impedance is just another term for the Thévenin impedance 
appearing in the Thévenin equivalent circuit of that portion of the network 
faced by the load. In our circuit, which we have assumed is driven by a 
1  0° mA current source, we therefore replace this independent source with 
an open circuit, leave the dependent source alone, and seek the input im-
pedance seen looking to the left from the output terminals (with the load 
removed). Thus, we define

 Z  out   =  V  2     |     I  2  =1 A with all other independent sources deactivated and  R  L   removed  

We therefore remove the load resistor, apply1  0° mA (since we are working 
in V, mA, and kΩ) at the output terminals, and determine V2. We place these 
requirements on Eqs. [26] and [27] and obtain

0 = 2.5  V  1   − 0.5  V  2           1 = 39  V  1   + 0.6  V  2  

Solving,

 V  2   = 0.1190 V

and thus

 Z  out   = 0.1190 kΩ

An alternative procedure might be to find the open-circuit output volt-
age and the short-circuit output current. That is, the Thévenin impedance is 
the output impedance:

 Z  out   =  Z  th   = −    V  2oc   ___  I  2sc  
  

Carrying out this procedure, we first rekindle the independent source so that 
I1 = 1 mA, and then open-circuit the load so that I2 = 0. We have

1 = 2.5  V  1   − 0.5  V  2           0 = 39  V  1   + 0.6  V  2  

/

/
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and thus

 V  2oc   = − 1.857 V

Next, we apply short-circuit conditions by setting V2 = 0 and again let I1 = 
1 mA. We find that

 I  1   = 1 = 2.5  V  1   − 0          I  2   = 39  V  1   + 0

and thus

 I  2sc   = 15.6 mA

The assumed directions of V2 and I2 therefore result in a Thévenin or output 
impedance

 Z  out   = −    V  2oc   ___  I  2sc  
   = −   − 1.857 _____ 15.6   = 0.1190 kΩ

as before.
We now have enough information to enable us to draw the Thévenin or 

Norton equivalent of the two-port of Fig. 16.16 when it is driven by a 1  0° mA 
current source and terminated in a 500 Ω load. Thus, the Norton equivalent 
presented to the load must contain a current source equal to the short-circuit 
current I2sc in parallel with the output impedance; this equivalent is shown 
in Fig. 16.17a. Also, the Thévenin equivalent offered to the 1  0° mA input 
source must consist solely of the input impedance, as drawn in Fig. 16.17b.

Before leaving the y parameters, we should recognize their usefulness in 
describing the parallel connection of two-ports, as indicated in Fig. 16.18. 
When we first defined a port in Sec. 16.1, we noted that the currents entering 
and leaving the two terminals of a port had to be equal, and there could be no 
external connections made that bridged between ports. Apparently the parallel 
connection shown in Fig. 16.18 violates this condition. However, if each two-
port has a reference node that is common to its input and output port, and if 
the two-ports are connected in parallel so that they have a common reference 
node, then all ports remain ports after the connection. Thus, for the A network,

 I  A   =  y  A    V  A  

V2

+

–

I2

119 Ω15.6 mA

(a)

V1

+

–

I1

100 Ω

(b)

V2

+

–

I2

119 Ω15.6 mA

(a)

V1

+

–

I1

100 Ω

(b)

■  FIGURE 16.17 (a) The Norton equivalent of the 
network in Fig. 16.16 to the left of the output terminal, 
 I   1   = 1   0° mA. (b) The Thévenin equivalent of that 
portion of the network to the right of the input 
terminals, if  I  2   = − 2  V  2    mA.

■  FIGURE 16.18 The parallel connection of two two-port networks. 
If both inputs and outputs have the same reference node, then the 
admittance matrix y = yA + yB.

VA2

+

–
VA1

+

–I1 I2

IA2IA1

IB1 IB2

Network A

Network B

/

/
/
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where

 I  A   =   [    I  A1     I  A2  
  ]           and            V  A   =   [    V  A1     V  A2  

  ]   

and for the B network

 I  B   =  y  B    V  B  

But

 V  A   =  V  B   = V        and        I =  I  A   +  I  B  

Thus,

I =   (   y  A   +  y  B   )   V

and we see that each y parameter of the parallel network is given as the sum 
of the corresponding parameters of the individual networks,

 y =  y  A   +  y  B   [28]

This may be extended to any number of two-ports connected in parallel.

PRACTICE 
●

16.6 Find y and Zout for the terminated two-port shown in Fig. 16.19. 

+
– V1

+

–

V2

+

–

I1 I2200 Ω

1 kΩ3 kΩ5 kΩ 20I110–3V2Vs

■  FIGURE 16.19

16.7 Use Δ–Y and Y–Δ transformations to determine Rin for the net-
work shown in (a) Fig. 16.20a; (b) Fig. 16.20b. 

■  FIGURE 16.20

Each R is 47 Ω
(a)

Rin

4 Ω

2 Ω

1 Ω 18 Ω

12 Ω

2 Ω 6 Ω

3 Ω

(b)

Rin

Ans: 16.6:   [         2 × 10−4
        −10−3

   
− 4 × 10−3  20.3 × 10−3  ]    (S); 51.1 Ω. 16.7: 53.71 Ω, 1.311 Ω.
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16.4 • IMPEDANCE PARAMETERS
The concept of two-port parameters has been introduced in terms of the 
short-circuit admittance parameters. There are other sets of parameters, 
however, and each set is associated with a particular class of networks for 
which its use provides the simplest analysis. We will consider three other 
types of parameters: the open-circuit impedance parameters, which are the 
subject of this section; and the hybrid and the transmission parameters, 
which are discussed in following sections.

We begin again with a general linear two-port that does not contain any 
independent sources; the currents and voltages are assigned as before (Fig. 
16.8). Now let us consider the voltage V1 as the response produced by two 
current sources I1 and I2. We thus write for V1

  V  1   =  z  11    I  1   +  z  12    I  2   [29]

and for V2

  V  2   =  z  21    I  1   +  z  22    I  2   [30]

or

 V =   [    V  1     V  2  
  ]    = zI =   [    z  11     z  12     z  21     z  22    ]     [    I  1     I  2  

  ]    [31]

Of course, in using these equations it is not necessary that I1 and I2 be cur-
rent sources; nor is it necessary that V1 and V2 be voltage sources. In gen-
eral, we may have any networks terminating the two-port at either end. As 
the equations are written, we probably think of V1 and V2 as given quanti-
ties, or independent variables, and I1 and I2 as unknowns, or dependent 
variables.

The six ways in which two equations may be written to relate these four 
quantities define the different systems of parameters. We study the four 
most important of these six systems of parameters.

The most informative description of the z parameters, defined in Eqs. 
[29] and [30], is obtained by setting each of the currents equal to zero. 
Thus

    

 z  11  

  

=

  

   V  1   _  I  1  
     |     I  2  =0  

   
 z  12  

  
=

  
   V  1   _  I  2  

     |     I  1  =0  
   

 z  21  
  
=

  
   V  2   _  I  1  

     |     I  2  =0  
   

 z  22  

  

=

  

   V  2   _  I  2  
     |     I  1  =0  

    

[32]

[33]

[34]

[35]

Since zero current results from an open-circuit termination, the z parame-
ters are known as the open-circuit impedance parameters. They are easily 
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related to the short-circuit admittance parameters by solving Eqs. [29] and 
[30] for I1 and I2:

 I  1   =   
 |    V  1     z  12     V  2  

   z  22  
  |  
 ____________ 

 |    z  11     z  12     z  21     z  22    |  
  

or

 I  1   =   (     z  22   ____________   z  11    z  22   −  z  12    z  21     )    V  1   −   (     z  12   ____________   z  11    z  22   −  z  12    z  21     )    V  2  

Using determinant notation, and being careful that the subscript is a lower-
case z, we assume that ΔZ ≠ 0 and obtain

 y  11   =    Δ  11   ___  Δ  z  
   =    z  22   __  Δ  z  

             y  12   = −    Δ  21   ___  Δ  z  
   = −    z  12   __  Δ  z  

  

and from solving for I2,

 y  21   = −    Δ  12   ___  Δ  z  
   = −    z  21   __  Δ  z  

             y  22   =    Δ  22   ___  Δ  z  
   =    z  11   __  Δ  z  

  

In a similar manner, the z parameters may be expressed in terms of the 
admittance parameters. Transformations of this nature are possible between 
any of the various parameter systems, and quite a collection of occasionally 
useful formulas may be obtained. Transformations between the y and z pa-
rameters (as well as the h and t parameters which we will consider in the 
following sections) are given in Table 16.1 as a helpful reference.

y z h t

y

y11 y12     z  22   __  Δ  z  
      −  z  12   ___  Δ  z  

      1 ___  h  11  
      −  h  12   ____  h  11  

       t  22   __  t  12        −  Δ  t   ___  t  12     

y21 y22    −  z  21   ___  Δ  z  
       z  11   __  Δ  z  

       h  21   ___  h  11  
       Δ  h   ___  h  11  

      − 1 ___  t  12         t  11   __  t  12     

z
    y  22   __  Δ  y  

      −  y  12   ____  Δ  y  
   z11 z12     Δ  h   ___  h  22  

       h  12   ___  h  22  
       t  11   __  t  21         Δ  t   __  t  21     

   −  y  21   ____  Δ  y  
       y  11   __  Δ  y  

   z21 z22    −  h  21   ____  h  22  
      1 ___  h  22  

      1 __  t  21         t  22   __  t  21     

h
   1 __  y  11        −  y  12   ____  y  11         Δ  z   __  z  22         z  12   __  z  22     h11 h12     t  12   __  t  22         Δ  T   __  t  22     

   
y21 ___ y11

      
 Δ  y   __  y  11        −  z  21   ___  z  22        1 __  z  22     h21 h22    − 1 ___  t  22         t  21   __  t  22     

t
   − y22 ____ y21

      − 1 ___  z  21         z  11   __  z  21         Δ  z   __  z  21     
   −  Δ  h   ___  h  21  

      −  h  11   ____  h  21  
   t11 t12

   
−  Δ  y   ___  y  21        −  y  11   ____  y  21        1 __  z  21         z  22   __  z  21        −  h  22   ____  h  21  

      − 1 ___  h  21  
   t21 t22

For all parameter sets: Δp = p11p22 − p12p21.

TABLE 
●
 16.1  Transformations Between y, z, h, and t Parameters
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If the two-port is a bilateral network, reciprocity is present; it is easy to 
show that this results in the equality of z12 and z21.

Equivalent circuits may again be obtained from an inspection of Eqs. 
[29] and [30]; their construction is facilitated by adding and subtracting 
either z12I1 in Eq. [30] or z21I2 in Eq. [29]. Each of these equivalent circuits 
contains a dependent voltage source.

Let us leave the derivation of such an equivalent to some leisure mo-
ment, and consider next an example of a rather general nature. Can we 
construct a general Thévenin equivalent of the two-port, as viewed from 
the output terminals? It is necessary first to assume a specific input circuit 
configuration, and we will select an independent voltage source Vs (positive 
sign at top) in series with a generator impedance Zg. Thus

 V  s   =  V  1   +  I  1    Z  g  

Combining this result with Eqs. [29] and [30], we may eliminate V1 and I1 
and obtain

 V  2   =    z  21   _____  z  11   +  Z  g  
    V  s   +   (   z  22   −    z  12    z  21   _  z  11   +  Z  g  

   )    I  2  

The Thévenin equivalent circuit may be drawn directly from this equation; 
it is shown in Fig. 16.21. The output impedance, expressed in terms of the 
z parameters, is

 Z  out   =  z  22   −    z  12    z  21   _____  z  11   +  Z  g  
  

If the generator impedance is zero, the simpler expression

 Z  out   =    z  11    z  22   −  z  12    z  21    _________  z  11     =    Δ  z   ___  Δ  22  
   =   1 __  y  22                 (   z  g   = 0 )   

is obtained. For this special case, the output admittance is identical to y22, 
as indicated by the basic relationship of Eq. [13].

EXAMPLE 16.8
Given the set of impedance parameters

z =   [        10   3   10    
−  10   6 

  
 10   4 

  ]               (  all Ω )   

which is representative of a bipolar junction transistor operat-
ing in the common-emitter configuration, determine the voltage, 
current, and power gains, as well as the input and output imped-
ances. The two-port is driven by an ideal sinusoidal voltage source 
Vs in series with a 500 Ω resistor, and terminated in a 10 kΩ load 
resistor.

The two describing equations for the two-port are

    V  1    =      10   3   I  1   + 10    I  2     
 V  2  

  
=

  
−  10   6   I  1   +  10   4    I  2  

   [36] 
[37]

+
– V2

+

–

I2

Vs
z21

z11 + Zg

z22 –
z12 z21

z11 + Zg

■  FIGURE 16.21 The Thévenin equivalent of a 
general two-port, as viewed from the output terminals, 
expressed in terms of the open-circuit impedance 
parameters.
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The y parameters are useful when two-ports are interconnected in par-
allel, and, in a dual manner, the z parameters simplify the problem of a 
series connection of networks, shown in Fig. 16.22. Note that the series 
connection is not the same as the cascade connection that we will discuss 
later in connection with the transmission parameters. If each two-port  
has a common reference node for its input and output, and if the references 
are connected together as indicated in Fig. 16.22, then I1 flows through 
the input ports of the two networks in series. A similar statement holds 
for I2. Thus, ports remain ports after the interconnection. It follows that 
I = IA = IB and

 
V

  
=

  
 V  A   +  V  B   =  z  A    I  A   +  z  B    I  B  

    
 
  

=
  
  (   z  A   +  z  B   )   I = zI

  

and the characterizing equations of the input and output networks are

   
 V  s    

=
  
500  I  1   +  V  1     

 V  2  
  
=

  
−  10   4   I  2  

    
[38] 
[39]

From these last four equations, we may easily obtain expressions for 
V1, I1, V2, and I2 in terms of Vs:

 
 V  1  

  
=

  
0.75  V  s              I     1   =    V  s   ____ 2000  

    
 V  2  

  
=

  
− 250  V  s                 I  2   =    V  s   __ 40  

  

From this information, it is simple to determine the voltage gain,

 G  V   =    V  2   __  V  1  
   = − 333

the current gain,

 G  I   =    I  2   __  I  1  
   = 50

the power gain,

 G  P   =   
Re  {  −   1 _ 2    V  2    I  2  *  }   

  _________  
Re  {    1 _ 2    V  1    I  1  *  }   

   = 16, 670

and the input impedance,

 Z  in   =    V  1   __  I  1  
   = 1500 Ω

The output impedance may be obtained by referring to Fig. 16.21:

 Z  out   =  z  22   −    z  12    z  21   _____  z  11   +  Z  g  
   = 16.67 kΩ

In accordance with the predictions of the maximum power transfer 
theorem, the power gain reaches a maximum value when  Z  L   =  Z  out  *   = 
16.67 kΩ; that maximum value is 17,045.

hay01307_ch16_687-732.indd   711 23/01/18   6:58 pm



CHAPTER 16 TwO-POrT NeTwOrks712

where

z =  z  A   +  z  B  

so that z11 = z11A + z11B, and so forth.

V1

+

–

V2A

+

–

V2B

+

–

I2 = I2A

I1 = I1B

I1 = I1A

V1A

+

–

I1

V1B

+

–

Network A

Network B

■  FIGURE 16.22 The series connection of two two-port networks is 
made by connecting the four common reference nodes together; then 
the matrix Z = ZA + ZB.

PRACTICE 
●

16.8 Find z for the two-port shown in (a) Fig. 16.23a; (b) Fig. 16.23b. 
16.9 Find z for the two-port shown in Fig. 16.23c. 

+
–

V2

+

–

V1

+

–

25 Ω

20 Ω 50 Ω

0.5V2

(c)

V1

+

–

V2

+

–

25 Ω

20 Ω 50 Ω

(a)

V1

+

–

V2

+

–

25 Ω40 Ω

20 Ω 50 Ω

(b)

■  FIGURE 16.23

Ans: 16.8:   [   45   25  25  75   ]      (  Ω )  ,    [   21.2   11.76   11.76  67.6   ]      (  Ω )  .  16.9:   [   70   100  50  150   ]      (  Ω )   .
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16.5 • HYBRID PARAMETERS
The difficulty in measuring quantities such as the open-circuit impedance 
parameters arises when a parameter such as z21 must be measured. A known 
sinusoidal current is easily supplied at the input terminals, but because of 
the exceedingly high output impedance of the transistor circuit, it is difficult 
to open-circuit the output terminals and yet supply the necessary dc biasing 
voltages and measure the sinusoidal output voltage. A short-circuit current 
measurement at the output terminals is much simpler to implement.

The hybrid parameters are defined by writing the pair of equations relat-
ing V1, I1, V2, and I2 as if V1 and I2 were the independent variables:

   V  1    =   h  11    I  1   +  h  12    V  2        I  2  
  =   h  21    I  1   +  h  22    V  2  

  [40] 
[41]

or

   [    V  1     I  2  
   ]    = h  [    I  1     V  2  

  ]    [42]

The nature of the parameters is made clear by first setting V2 = 0. Thus,

 
 h  11  

  
=

  
   V  1   __  I  1  

     |     V  2  =0  
  
=

  
short-circuit input impedance

     
 h  21  

  
=

  
   I  2   __  I  1  

     |     V  2  =0  
  

=
  
short-circuit forward current gain

 

Letting I1 = 0, we obtain

 
 h  12  

  
=

  
   V  1   __  V  2  

     |     I  1  =0  
  
=

  
open-circuit reverse voltage gain

     
 h  22  

  
=

  
   I  2   __  V  2  

     |     I  1  =0  
  
=

  
open-circuit output admittance

  

Since the parameters represent an impedance, an admittance, a voltage gain, 
and a current gain, they are called the “hybrid” parameters.

The subscript designations for these parameters are often simplified 
when they are applied to transistors. Thus, h11, h12, h21, and h22 become 
hi, hr, hf, and ho, respectively, where the subscripts denote input, reverse, 
forward, and output.

V1

+

–

V2

+

–

I1 I2

1 Ω 6 Ω

4 Ω

■  FIGURE 16.24 A bilateral network for which the h 
parameters are found: h12 = −h21.

EXAMPLE 16.9
Find h for the bilateral resistive circuit drawn in Fig. 16.24.

With the output short-circuited (V2 = 0), the application of a 1 A source 
at the input (I1 = 1 A) produces an input voltage of 3.4 V (V1 = 3.4 V); 
hence, h11 = 3.4 Ω. Under these same conditions, the output current is 
easily obtained by current division: I2 = −0.4 A; thus, h21 = −0.4.

The remaining two parameters are obtained with the input 
open-circuited (I1 = 0). We apply 1 V to the output terminals (V2 = 1 V).

(Continued on next page)
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The circuit shown in Fig. 16.26 is a direct translation of the two 
defining equations, [40] and [41]. The first represents KVL about the 
input loop, while the second is obtained from KCL at the upper output 
node. This circuit is also a popular transistor equivalent circuit. Let us 
assume some reasonable values for the common-emitter configuration: 
h11 = 1200 Ω, h12 = 2 × 10−4, h21 = 50, h22 = 50 × 10−6 S, a voltage 
generator of 1  0° mV in series with 800 Ω, and a 5 kΩ load. For the 
input,

 10   −3  =   (  1200 + 800 )    I  1   + 2 ×  10   −4   V  2  

and at the output,

 I  2   = − 2 ×  10   −4   V  2   = 50  I  1   + 50 ×  10   −6   V  2  

The response at the input terminals is 0.4 V (V1 = 0.4 V), and thus 
h12 = 0.4. The current delivered by this source at the output terminals is 
0.1 A (I2 = 0.1 A), and therefore h22 = 0.1 S.

We therefore have h =  [    3.4 Ω  0.4      − 0.4      0.1 S  ]   . It is a consequence of the 

reciprocity theorem that h12 = −h21 for a bilateral network.

PRACTICE 
●

16.10 Find h for the two-port shown in (a) Fig. 16.25a; (b) Fig. 16.25b. 

V1

+

–

V2

+

–

40 Ω

20 Ω

(a)

V1

+

–

V2

+

–

40 Ω

10 Ω

(b)
■  FIGURE 10.25

16.11 If h =   [       5 Ω  2  − 0.5    0.1 S  ]   , find (a) y; (b) z. 

Ans: 16.10:   [         20Ω  1  − 1   25 mS  ]   ,   [       8Ω  0.8  −0.8  20 mS  ]   . 16.11:   [      0.2   −0.4  − 0.1     0.3  ]    (S),  

  [   15   20  5  10   ]      (  Ω )   .

+
–V1

+

–

V2

+

–

I1 I2h11 (Ω)

h12V2 h21I1 h22 (Ω)

■  FIGURE 16.26 The four h parameters are referred to a 
two-port. The pertinent equations are V1 = h11I1 + h12V2 and I2 = 
h2I1 + h22V2.

/
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Parameter values for bipolar junction transistors are 
commonly quoted in terms of h parameters. Invented 
in the late 1940s by researchers at Bell Laboratories 
(Fig. 16.27), the transistor is a nonlinear three-terminal 
passive semiconductor device that forms the basis for al-
most all amplifiers and digital logic circuits.

The three terminals of a transistor are labeled the base 
(b), collector (c), and emitter (e) as shown in Fig. 16.28, 
and are named after their roles in the transport of charge 
within the device. The h parameters of a bipolar junction 
transistor are typically measured with the emitter terminal 
grounded, also known as the common-emitter configura-
tion; the base is then designated as the input and the col-
lector as the output. As mentioned previously, however, 
the transistor is a nonlinear device, and so definition of h 
parameters which are valid for all voltages and currents is 
not possible. Therefore, it is common practice to quote h 
parameters at a specific value of collector current IC and 

collector-emitter voltage VCE. Another consequence of 
the nonlinearity of the device is that ac h parameters and 
dc h parameters are often quite different in value.

There are many types of instruments which may be 
employed to obtain the h parameters for a particular 
transistor. One example is a semiconductor parameter 
analyzer, shown in Fig. 16.29. This instrument sweeps 
the desired current (plotted on the vertical axis) against 
a specified voltage (plotted on the horizontal axis). A 
“family” of curves is produced by varying a third param-
eter, often the base current, in discrete steps.

As an example, the manufacturer of the 2N3904 
NPN silicon transistor quotes h parameters as indicated 
in Table 16.2; note that the specific parameters are given 
alternative designations (hie, hre, etc.) by transistor en-
gineers. The measurements were made at IC = 1.0 mA, 
VCE = 10 V dc, and f = 1.0 kHz.

Just for fun, one of the authors and a friend decided 
to measure these parameters for themselves. Grabbing an 
inexpensive device off the shelf and using the instrument 
in Fig. 16.29, they found

 
 h  oe    

=
  
3.3 μS

  
 
  
 h  fe    

=
  
109

    
 h  ie  

  
=

  
3.02 kΩ

  
 
  
 h  re  

  
=

  
4 ×  10   −3 

 

the first three of which were all well within the manu-
facturer’s published tolerances, although much closer to 
the minimum values than to the maximum values. The 
value for hre, however, was an order of magnitude larger 
than the maximum value specified by the manufacturer’s 

PRACTICAL APPLICATION
Characterizing Transistors

PRACTICAL APPLICATION

■  FIGURE 16.27 Photograph of the first demonstrated bipolar junction 
transistor (“bjt”). (©lucent Technologies Inc./Bell labs)

VCE

VCB

VBE

+

–

+

–

+

–

IC

IE

IB

Collector

Emitter

Base

■  FIGURE 16.28 schematic of a bjt showing currents and voltages defined 
using the Ieee convention.

■  FIGURE 16.29 display snapshot of an HP 4155A semiconductor 
Parameter Analyzer used to measure the h parameters of a 2N3904 bipolar 
junction transistor (bjt). (©steve durbin)

(Continued on next page)
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Solving,

 
 I  1    

=
  
0.510 μA

  
 
  
 V  1    

=
  
0.592 mV

    
 I  2  

  
=

  
20.4 μA

  
 
  
 V  2  

  
=

  
− 102 mV

  

Through the transistor we have a current gain of 40, a voltage gain of 
−172, and a power gain of 6880. The input impedance to the transistor is 
1160 Ω, and a few more calculations show that the output impedance is 
22.2 kΩ.

Hybrid parameters may be added directly when two-ports are connected 
in series at the input and in parallel at the output. This is called a series- 
parallel interconnection, and it is not used very often.

16.6 • TRANSMISSION PARAMETERS
The last two-port parameters that we will consider are called the t  parameters,  
the ABCD parameters, or simply the transmission parameters. They are 
defined by

  V  1   =  t  11    V  2   −  t  12    I  2   [43]

and

  I  1   =  t  21    V  2   −  t  22    I  2   [44]

or

   [    V  1     I  1  
   ]    = t  [    V  2    −  I  2  

  ]    [45]

where V1, V2, I1, and I2 are defined as usual (Fig. 16.8). The minus signs 
that appear in Eqs. [43] and [44] should be associated with the output 

datasheet! This was rather disconcerting, as we thought 
we were doing pretty well up to that point.

 Upon further reflection, we realized that the exper-
imental setup allowed the device to heat up during the 
measurement, as we were sweeping below and above 
IC = 1 mA. Transistors, unfortunately, can change their 

properties rather dramatically as a function of tempera-
ture; the manufacturer values were specifically for 25°C. 
Once the current sweep was changed to minimize device 
heating, we obtained a value of 2.0 × 10−4 for hre. Linear 
circuits are by far much easier to work with, but nonlin-
ear circuits can be much more interesting!

Parameter Name Specification Units

hie(h11) Input impedance 1.0−10 kΩ

hre(h12) Voltage feedback ratio 0.5−8.0 × 10−4 −

hfe(h21) Small-signal current gain 100−400 −

hoe(h22) Output admittance 1.0−40 µS

TABLE 
●
 16.2  Summary of 2N3904 AC Parameters
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current, as (−I2). Thus, both I1 and −I2 are directed to the right, the direc-
tion of energy or signal transmission.

Other widely used nomenclature for this set of parameters is

   [    t  11     t  12     t  21  
   t  22  

  ]    =   [   A  B  C  D  ]    [46]

Note that there are no minus signs in the t or ABCD matrices.
Looking again at Eqs. [43] to [45], we see that the quantities on the left, 

often thought of as the given or independent variables, are the input voltage 
and current, V1 and I1; the dependent variables, V2 and I2, are the output 
quantities. Thus, the transmission parameters provide a direct relationship 
between input and output. Their major use arises in transmission-line anal-
ysis and in cascaded networks.

Let us find the t parameters for the bilateral resistive two-port of Fig. 
16.30a. To illustrate one possible procedure for finding a single parameter, 
consider

 t  12   =    V  1   ___ −  I  2  
     |     V  2  =0  

We therefore short-circuit the output (V2 = 0) and set V1 = 1 V, as shown 
in Fig. 16.30b. Note that we cannot set the denominator equal to unity by 
placing a 1 A current source at the output; we already have a short cir-
cuit there. The equivalent resistance offered to the 1 V source is Req =  
2 + (4 || 10) Ω, and we then use current division to get

−  I  2   =   1 _________ 2 +   (  4 ∥ 10 )      ×   10 ____ 10 + 4   =   5 __ 34    A

Hence,

 t  12   =   1 ___ −  I  2  
   =   34 __ 5   = 6.8 Ω

If it is necessary to find all four parameters, we write any convenient 
pair of equations using all four terminal quantities, V1, V2, I1, and I2. From 
Fig. 16.30a, we have two mesh equations:

   V  1    =  12  I  1   + 10  I  2      V  2  
  =  10  I  1   + 14  I  2  

  
[47] 
[48]

Solving Eq. [48] for I1, we get

 I  1   = 0.1  V  2   − 1.4  I  2  

so that t21 = 0.1 S and t22 = 1.4. Substituting the expression for I1 in Eq. [47], 
we find

 V  1   = 12  (  0.1  V  2   − 1.4  I  2   )    + 10  I  2   = 1.2  V  2   − 6.8  I  2  

and t11 = 1.2 and t12 = 6.8 Ω, once again.
For reciprocal networks, the determinant of the t matrix is equal to unity:

 Δ  t   =  t  11    t  22   −  t  12    t  21   = 1

V1

+

–

V2

+

–

I1 I2

2 Ω 4 Ω

10 Ω

(a)

–I2

2 Ω

1 V

4 Ω

10 Ω

(b)

+
–

V1

+

–

V2

+

–

I1 I2

2 Ω 4 Ω

10 Ω

(a)

–I2

2 Ω

1 V

4 Ω

10 Ω

(b)

+
–

■  FIGURE 16.30 (a) A two-port resistive network for 
which the t parameters are to be found. (b) To find t12, 
set V1 = 1 v with V2 = 0; then t12 = 1/(−I2) = 6.8 Ω.
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In the resistive example of Fig. 16.30, Δt = 1.2 × 1.4 − 6.8 × 0.1 = 1. Good!
We conclude our two-port discussion by connecting two two-ports in 

cascade, as illustrated for two networks in Fig. 16.31. Terminal voltages and 
currents are indicated for each two-port, and the corresponding t parameter 
relationships are, for network A,

V1
+
– V4

+
–V2 V3

+
–

I1 –I4I3–I2

Network A Network B

■  FIGURE 16.31 when two-port networks A and B are cascaded, the t 
parameter matrix for the combined network is given by the matrix product  
t = tAtB.

  [    V  1     I  1  
   ]    =  t  A    [    V  2    −  I  2  

  ]    =  t  A    [    V  3     I  3  
   ]   

and for network B,

  [    V  3     I  3  
   ]    =  t  B    [    V  4    −  I  4  

  ]   

Combining these results, we have

  [    V  1     I  1  
   ]    =  t  A    t  B    [    V  4    −  I  4  

  ]   

Therefore, the t parameters for the cascaded networks are found by the ma-
trix product,

t =  t  A    t  B  

This product is not obtained by multiplying corresponding elements in the 
two matrices. If necessary, review the correct procedure for matrix multipli-
cation in Appendix 2.

EXAMPLE 16.10
Find the t parameters for the cascaded networks shown in 
Fig. 16.32.

2 Ω 4 Ω

10 Ω

Network A

4 Ω 8 Ω

20 Ω

Network B

■  FIGURE 16.32 A cascaded connection.
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Network A is the two-port of Fig. 16.32, and, therefore

 t  A   =   [    1.2     6.8 Ω  0.1 S  1.4      ]   

while network B has resistance values twice as large, so that

 t  B   =   [    1.2       13.6 Ω   0.05 S  1.4      ]   

For the combined network,

 
t
  
=

  
 t  A    t  B   =   [   1.2  6.8  0.1  1.4  ]     [   1.2    13.6  0.05    1.4  ]   

    
 
  

=
  
  [   1.2 × 1.2 + 6.8 × 0.05  1.2 × 13.6 + 6.8 × 1.4     0.1 × 1.2 × 1.4 × 0.05  0.1 × 13.6 + 1.4 × 1.4  ]   

 

and

t =   [    1.78     25.84 Ω   0.19 S  3.32      ]   

PRACTICE 
●

16.12 Given t =   [    3.2     8 Ω  0.2 S  4    ]   , find (a) z; (b) t for two identical networks 

in cascade; (c) z for two identical networks in cascade. 

Ans:   [   16   56    5  20   ]      (  Ω )  ;    [   11.84  57.6 Ω     1.44S  14.6   ]   ;   [   8.22   87.1  0.694  12.22  ]      (  Ω )   .

COMPUTER-AIDED ANALYSIS

The characterization of two-port networks using t parameters creates 
the opportunity for vastly simplified analysis of cascaded two-port 
network circuits. As seen in this section, where, for example,

 t  A   =   [    1.2     6.8 Ω  0.1 S  1.4      ]   

and

 t  B   =   [    1.2       13.6 Ω   0.05 S  1.4      ]   

we found that the t parameters characterizing the cascaded network can 
be found by simply multiplying tA and tB:

t =  t  A   ·  t  B  

Such matrix operations are easily carried out using scientific calcula-
tors or software packages such as MATLAB. The MATLAB script,

(Continued on next page)
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SUMMARY AND REVIEW
In this chapter we encountered a somewhat abstract way to represent net-
works. This new approach is especially useful if the network is passive and 
if it will either be connected somehow to other networks at some point or 
perhaps component values will often be changed. We introduced the con-
cept through the idea of a one-port network, where all we really did was de-
termine the Thévenin equivalent resistance (or impedance, more generally 
speaking). Our first exposure to the idea of a two-port network (perhaps one 
port is an input, the other an output?) was through admittance parameters, 
also called y parameters. The result is a matrix which, when multiplied by 
the vector containing the terminal voltages, yields a vector with the currents 
into each port. A little manipulation yielded what we called Δ–Y equiva-
lents in Chap. 5. The direct counterpart to y parameters are z parameters, 
where each matrix element is the ratio of a voltage to a current. Occasion-
ally y and z parameters are not particularly convenient, so we also intro-
duced “hybrid” or h parameters, as well as “transmission” or t parameters, 
also referred to as ABCD parameters.

Table 16.1 summarizes the conversion process between y, z, h, and t 
parameters; having one set of parameters which completely describes a net-
work is sufficent regardless of what type of matrix we prefer for a particular 
analysis.

for example, would be

 

≫  tA =   [  1.2 6.8; 0.1 1.4 ]    ;

    

≫  tB =   [  1.2 13.6; 0.05 1.4 ]    ;

    

  ≫  t = tA * tB

     
t  =

  

 

 

      1.7800       25.8400

    

      0.1900       3.3200

  

as we found in Example 16.10.
In terms of entering matrices in MATLAB, each has a case-sensitive 

variable name (tA, tB, and t in this example). Matrix elements are en-
tered a row at a time, beginning with the top row; rows are separated by 
a semicolon. Again, the reader should always be careful to remember 
that the order of operations is critical when performing matrix algebra. 
For example, tB*tA results in a totally different matrix than the one we 
sought:

 t  B   ·  t  A   =   [   2.8  27.2  0.2    2.3  ]   

For simple matrices such as seen in this example, a scientific calculator 
is just as handy (if not more so). However, larger cascaded networks are 
more easily handled on a computer, where it is more convenient to see 
all arrays on the screen simultaneously.
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As a convenience to the reader, we will now proceed directly to a list of 
key concepts in the chapter, along with correponding examples.

 In order to employ the analysis methods described in this chapter, it is 
critical to remember that each port can only be connected to either a 
one-port network or a port of another multiport network.

 The input impedance of a one-port (passive) linear network can be obtained 
using either nodal or mesh analysis; in some instances the set of coeffi-
cients can be written directly by inspection. (Examples 16.1, 16.2, 16.3)

 The defining equations for analyzing a two-port network in terms of its 
admittance (y) parameters are:

 I  1   =  y  11    V  1   +  y  12    V  2          and           I  2   =  y  21    V  1   +  y  22    V  2  

where

 
 y  11  

  
=

  
   I  1   __  V  1  

     |     V  2  =0  
  

 
  
 y  12  

  
=

  
   I  1   __  V  2  

     |     V  1  =0  
    

 y  21  
  
=

  
   I  2   __  V  1  

     |     V  2  =0  
  
and

  
 y  22  

  
=

  
   I  2   __  V  2  

     |     V  1  =0  
 

(Examples 16.4, 16.5, 16.7)
 The defining equations for analyzing a two-port network in terms of its 

impedance (z) parameters are:

 V  1   =  z  11    I  1   +  z  12    I  2          and        V  2   =  z  21    I  1   +  z  22    I  2  

(Example 16.8)
 The defining equations for analyzing a two-port network in terms of its 

hybrid (h) parameters are:

 V  1   =  h  11    I  1   +  h  12    V  2         and         I  2   =  h  21    I  1   +  h  22    V  2  

(Example 16.9)
 The defining equations for analyzing a two-port network in terms of its 

transmission (t) parameters (also called the ABCD parameters) are:

 V  1   =  t  11    V  2   −  t  12    I  2           and          I  1   =  t  21    V  2   −  t  22    I  2  

(Example 16.10)
 It is straightforward to convert between h, z, t, and y parameters, de-

pending on circuit analysis needs; the transformations are summarized 
in Table 16.1. (Example 16.6)

READING FURTHER
Further details of matrix methods for circuit analysis can be found in:

R. A. DeCarlo and P. M. Lin, Linear Circuit Analysis, 2nd ed. New York: 
Oxford University Press, 2001.

Analysis of transistor circuits using network parameters is described in:

W. H. Hayt, Jr., and G. W. Neudeck, Electronic Circuit Analysis and 
Design, 2nd ed. New York: Wiley, 1995.
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EXERCISES

16.1 One-Port Networks
1. Consider the following system of equations, which represents a resistive two-

port network:

  
2  I  1  

  
 
  

 
  
−

  
 I  3  

  
=

  
15

    − 3  I  1    +  2  I  2    +  7  I  3    =  − 2   
4  I  1  

  
−

  
7  I  2  

  
+

  
2  I  3  

  
=

  
0
 

2. For the following system of equations, (a) write the set of equations in matrix 
form. (b) Use ΔY to calculate V2 only.  

 
100  V  1  

  
−

  
45  V  2  

  
+

  
30  V  3  

  
=

  
0.2

    75  V  1          +  80  V  3    =  − 0.1    
48  V  1  

  
+

  
200  V  2  

  
+

  
42  V  3  

  
=

  
0.5

 

3. With regard to the passive network depicted in Fig. 16.33, (a) obtain 
the three mesh equations; (b) compute ΔZ; and (c) calculate the input 
impedance.

■  FIGURE 16.33

V1

+

–

22 Ω

47 Ω 10 Ω 10 Ω

47 Ω

I1 I2 I3

4. Determine the input impedance of the network shown in Fig. 16.34 after first 
calculating ΔZ.

■  FIGURE 16.34

1 kΩ

100 Ω

870 Ω

220 Ω

100 Ω870 Ω

V1

+

–

I3I2

I4

I5

I1

5. For the one-port network represented schematically in Fig. 16.35, choose the 
bottom node as the reference; name the junction between the 3, 10, and 20 S 
conductances V2 and the remaining node V3. (a) Write the three nodal equa-
tions. (b) Compute ΔY. (c) Calculate the input admittance.

■  FIGURE 16.35

V1

+

–

3 S 10 S

20 S 5 S

2 S
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6. Calculate ΔZ and Zin for the network of Fig. 16.36 if ω is equal to (a) 1 rad/s; 
(b) 320 krad/s.

■  FIGURE 16.36

100 mH 100 mH

Zin 50 mH 6 Ω 20 nF

7. Set ω = 100π rad/s in the one-port of Fig. 16.36. (a) Calculate ΔY and the 
input admittance at ω, Yin(ω). (b) A sinusoidal current source having magni-
tude 100 A, frequency 100π rad/s, and 0° phase is connected to the network. 
Calculate the voltage across the current source (express answer as a phasor).

8. With reference to the one-port of Fig. 16.37, which contains a dependent cur-
rent source controlled by a resistor voltage, (a) calculate ΔZ; (b) compute Zin.

■  FIGURE 16.37

V1

+

–
4 Ω 0.2V110 Ω

5 Ω 10 Ω
Zin

9. For the ideal op amp circuit represented in Fig. 16.38, the input resistance 
is defined by looking between the positive input terminal of the op amp and 
ground. (a) Write the appropriate nodal equations for the one-port. (b) Obtain 
an expression for Rin. Is your answer somewhat unexpected? Explain.

10. (a) If both the op amps shown in the circuit of Fig. 16.39 are assumed to be 
ideal (Ri = ∞, Ro = 0, and A = ∞), find Zin. (b) R1 = 4 kΩ, R2 = 10 kΩ, R3 = 
10 kΩ, R4 = 1 kΩ, and C = 200 pF; show that Zin = jωLin, where Lin = 0.8 mH.

■  FIGURE 16.39

–

+

–

+

Zin

R1 R2 R3

C

R4

16.2 Admittance Parameters
11. Obtain a complete set of y parameters which describes the two-port shown in 

Fig. 16.40.

■  FIGURE 16.40

10 kΩ

1 kΩ 8 kΩ V2

+

–

V1

+

–

I2I1

■  FIGURE 16.38

–

+

28 Ω

28 Ω
Rx

Rin
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12. (a) Determine the short-circuit admittance parameters which completely de-
scribe the two-port network of Fig. 16.41. (b) If V1 = 3 V and V2 = −2 V, use 
your answer in part (a) to compute I1 and I2.

13. (a) Determine the y parameters for the two-port of Fig. 16.42. (b) Define the 
bottom node of Fig. 16.42 as the reference node, and apply nodal analysis to 
obtain expressions for I1 and I2 in terms of V1 and V2. Use these expressions to 
write down the admittance matrix. (c) If V1 = 2V2 = 10 V, calculate the power 
dissipated in the 100 mS conductance.

14. Obtain a complete set of y parameters to describe the two-port network depict-
ed in Fig. 16.43.

■  FIGURE 16.43

54 Ω

50 Ω

40 Ω

V2

+

–

V1

+

–

I2I1

15. The circuit of Fig. 16.44 is simply the two-port of Fig. 16.40 terminated by 
a passive one-port and a separate one-port consisting of a voltage source 
in series with a resistor. (a) Determine the complete set of admittance 
parameters which describes the two-port network. (Hint: Draw the two-
port by itself, properly labeled with a voltage and current at each port.) (b) 
Calculate the power dissipated in the passive one-port, using your answer 
to part (a).

■  FIGURE 16.44

10 kΩ

10 Ω

1 kΩ 8 kΩ 4 ΩV2

+

–

V1

+

–

I2I1

+
–15 V

16. Replace the 10 Ω resistor of Fig. 16.44 with a 1 kΩ resistor, the 15 V source 
with a 9 V source, and the 4 Ω resistor with a 4 kΩ resistor. (a) Determine 
the complete set of admittance parameters which describes the two-port 
network consisting of the 1 kΩ, 10 kΩ, and 8 kΩ resistors. (Hint: Draw the 
two-port by itself, properly labeled with a voltage and current at each port.) 
(b) Calculate the power dissipated in the passive one-port, using your answer 
to part (a).

17. Calculate the admittance parameters which describe the two-port depicted in 
Fig. 16.45.

■  FIGURE 16.45

1 Ω 1 Ω

5 Ω V2

+

–

V1

+

–

I2I1

2I1

■  FIGURE 16.41

10 Ω

8 Ω

11 Ω 20 Ω V2

+

–

V1

+

–

I2I1

■  FIGURE 16.42

0.05 S

0.15 S

0.1 S 0.25 S V2

+

–

V1

+

–

I2I1
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18. Obtain the y parameter for the network shown in Fig. 16.46 and use it to 
determine I1 and I2 if (a) V1 = 0, V2 = 1 V; (b) V1 = −8 V, V2 = 3 V;  
(c) V1 = V2 = 5 V.

■  FIGURE 16.46

5 kΩ0.6V2 0.1I1

10 kΩ20 kΩ

V2

+

–

V1

+

–

I2I1

19. Employ an appropriate method to obtain y for the network of Fig. 16.47.

■  FIGURE 16.47

V1

+

–

V2

+

–

I2

I1

5 Ω

1 Ω

0.3I1

2 Ω

20. The metal-oxide-semiconductor field effect transistor (MOSFET), a 
three-terminal nonlinear element used in many electronics applications, is 
often specified in terms of its y parameters. The ac parameters are strongly 
dependent on the measurement conditions and are commonly named yis, yrs, 
yfs, and yos, as in

       
 I  g    

=
  
 y  is    V  gs   +  y  rs    V  ds      I  d  

  =   y  fs    V  gs   +  y  os    V  ds  
   [49] 

[50]

  where Ig is the transistor gate current, Id is the transistor drain current, 
and the third terminal (the source) is common to the input and output 
during the measurement. Thus, Vgs is the voltage between the gate and the 
source, and Vds is the voltage between the drain and the source. The typical 
high-frequency model used to approximate the behavior of a MOSFET is 
shown in Fig. 16.48.

■  FIGURE 16.48

G

S

D

S

Cgd

Cgs rdgmvπ Cdsvπ

+

–

  (a) For the configuration stated above, which transistor terminal is used as the 
input, and which terminal is used as the output? (b) Derive expressions for the 
parameters yis, yrs, yfs, and yos defined in Eqs. [49] and [50], in terms of the 
model parameters Cgs, Cgd, gm, rd, and Cds of Fig. 16.48. (c) Compute yis, yrs, 
yfs, and yos if gm = 4.7 mS, Cgs = 3.4 pF, Cgd = 1.4 pF, Cds = 0.4 pF, and rd = 
10 kΩ.

16.3 Some Equivalent Networks
21. For the two-port displayed in Fig. 16.49, (a) determine the input resistance; (b) 

compute the power dissipated by the network if connected in parallel with a 1 
A current source. ■  FIGURE 16.49

15 Ω

27 Ω 40 Ω

12 Ω

20 Ω
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22. With reference to the two networks in Fig. 16.50, convert the Δ-connected 
network to a Y-connected network, and vice versa.

■  FIGURE 16.50

6 Ω

3 Ω 2 Ω
a

c

b

d

470 Ω
a

c

b

d

220 Ω 100 Ω

23. Determine the input impedance Zin of the one-port shown in Fig. 16.51 if ω is 
equal to (a) 50 rad/s; (b) 1000 rad/s.

■  FIGURE 16.51

5 H

1 H 5 H

3 H

2 H

Z in 50 mF

0.02 F

24. Determine the input impedance Zin of the one-port shown in Fig. 16.52 if ω is 
equal to (a) 50 rad/s; (b) 1000 rad/s.

■  FIGURE 16.52

6 Ω

2 H

5 H

3 H5 mF

3 mF

4 Ω

Z in

25. Employ Δ–Y conversion techniques as appropriate to determine the input resis-
tance Rin of the one-port shown in Fig. 16.53.

■  FIGURE 16.53

4 MΩ

600 kΩ

2 MΩ

500 kΩ 1 MΩ

3 MΩ

700 kΩ 220 kΩ

400 kΩ

Rin
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26. Employ appropriate techniques to find a value for the input resistance of the 
one-port network represented by the schematic of Fig. 16.54.

■  FIGURE 16.54

5 Ω

9 Ω3 Ω

6 Ω7 Ω

2 Ω
12 Ω10 Ω

12 Ω

6 Ω
4 Ω

27. (a) Determine the parameter values required to model the network of 
Fig. 16.43 with the alternative network shown in Fig. 16.13a. (b) Verify that 
the two networks are in fact equivalent by computing the power dissipated in 
a 2 Ω resistor connected to the right of each network and connecting a 1 A 
current source to the left-hand terminals.

28. (a) The network of Fig. 16.13b is equivalent to the network of Fig. 16.43, 
assuming the appropriate parameter values are chosen. (a) Compute the 
necessary parameter values. (b) Verify the equivalence of the two networks by 
terminating each with a 1 Ω resistor (across their V2 terminals), connecting a 
10 mA source to the other terminals, and showing that I1, V1, I2, and V2 are 
equal for both networks.

29. Compute the three parameter values necessary to construct an equivalent 
network for Fig. 16.43 modeled after the network of Fig. 16.13c. Verify their 
equivalence with an appropriate computer simulation. (Hint: Connect some 
type of source(s) and load(s).)

30. It is possible to construct an alternative two-port to the one shown in Fig. 16.47 
by selecting appropriate parameter values as labeled on the diagram in 
Fig. 16.13. (a) Construct such an equivalent network. (b) Verify their equiva-
lence with an appropriate computer simulation. (Hint: Connect some type of 
source(s) and load(s).)

31. Let y =   [      0.1  − 0.05   − 0.5     0.2   ]      (S) for the two-port of Fig. 16.55. Find (a) GV;  

(b) GI; (c) GP; (d) Zin; (e) Zout. (f  ) If the reverse voltage gain Gv,rev is defined 
as V1/V2 with Vs = 0 and RL removed, calculate Gv,rev. (g) If the insertion 
power gain Gins is defined as the ratio of P5Ω with the two-port in place to P5Ω 
with the two-port replaced by jumpers connecting each input terminal to the 
corresponding output terminal, calculate Gins.

■  FIGURE 16.55

V2

+

–
yV1

+

–

10 Ω

5 ΩVs = 1 V
+
–

16.4 Impedance Parameters
32. Convert the following z parameters to y parameters, or vice versa, as appropriate:

 
 z  =    [   2  3  5  2  ]      Ω

  
 
  
 
  
 z  =    [   100  37  25  90  ]      Ω

    
 y  =    [   1  5  6  3  ]      S

  
 
  
 
  
 y  =    [    1  2  − 1  3  ]      S
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33. Determine the complete set of z parameters for the network represented in 
Fig. 16.56.

34. The network of Fig. 16.56 is terminated with a 10 Ω resistor across terminals 
b and d, and a 6 mA sinusoidal current source operating at 100 Hz in paral-
lel with a 50 Ω resistor is connected across terminals a and c. Calculate the 
voltage, current, and power gains, respectively, as well as the input and output 
impedance.

35. The two-port networks of Fig. 16.50 are connected in series. (a) Determine 
the impedance parameters for the series connection by first finding the z 
parameters of the individual networks. (b) If the two networks are instead 
connected in parallel, determine the admittance parameters of the combina-
tion by first finding the y parameters of the individual networks. (c) Verify 
your answer to part (b) by using Table 16.1 in conjunction with your answer 
to part (a).

36. (a) Use an appropriate method to obtain the impedance parameters which de-
scribe the network illustrated in Fig. 16.57. (b) If a 1 V source in series with a 
1 kΩ resistor is connected to the left-hand port such that the negative reference 
terminal of the source is connected to the common terminal of the network, 
and a 5 kΩ load is connected across the right-hand terminals, compute the 
current, voltage, and power gain.

37. Determine the impedance parameters for the two-port exhibited in Fig. 16.58.

■  FIGURE 16.58

V1

+

–

V2

+

–

2 Ω

5 Ω 0.1V10.8V2
+
–

38. Obtain both the impedance and admittance parameters for the two-port net-
work of Fig. 16.59.

■  FIGURE 16.59
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I1 I2
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100 Ω

0.08V10.2V2

39. Find the four z parameters at ω = 108 rad/s for the transistor high-frequency 
equivalent circuit shown in Fig. 16.60.

■  FIGURE 16.60
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10 kΩ100 kΩ 0.01V1

1 pF
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16.5 Hybrid Parameters
40. Determine the h parameters which describe the purely resistive network shown 

in Fig. 16.56 by connecting appropriate 1 V, 1 A, and short circuits to termi-
nals as required.

■  FIGURE 16.56
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■  FIGURE 16.57
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41. (a) Obtain the h parameters of the two-ports of Fig. 16.61. (b) Repeat for the 
left-hand network, if both resistors are replaced with 1 Ω resistors.

■  FIGURE 16.61
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–

25 Ω
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42. If h for some particular two-port is given by h =   [    2 kΩ  − 3        5          0.01 S  ]   , calculate  
(a) z; (b) y.

43. The hybrid parameters h =   [   75 Ω  − 2  5  0.1 S  ]   describe a particular network. Deter-

mine the new h parameters if a 17 Ω resistor is connected in parallel with the 
input terminals.

44. A bipolar junction transistor is connected in common-emitter configuration 
and found to have h parameters h11 = 5 kΩ, h12 = 0.55 × 10−4, h21 = 300, and 
h22 = 39 µS. (a) Write h in matrix form. (b) Determine the small-signal current 
gain. (c) Determine the output resistance in kΩ. (d ) If a sinusoidal voltage 
source having frequency 100 rad/s and amplitude 5 mV in series with a 100 Ω 
resistor is connected to the input terminals, calculate the peak voltage which 
appears across the output terminals.

45. The two-port which plays a central role in the circuit of Fig. 16.62 can be char-
acterized by hybrid parameters h =   [    1 Ω  − 1     2        0.5 S  ]   . Determine I1, I2, V1,  
and V2.

■  FIGURE 16.62
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–
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5 Ω

2 Ω1 V

I1 I2

46. The two networks of Fig. 16.61 are connected in series by connecting the ter-
minals as illustrated in Fig. 16.22 (assume the left-hand network of Fig. 16.61 
is network A). Determine the new set of h parameters which describe the series 
connection.

47. The two networks of Fig. 16.61 are connected in parallel by tying the corre-
sponding input terminals together, and then tying the corresponding output 
terminals together. Determine the new set of h parameters which describe the 
parallel connection.

48. Find y, z, and h for both of the two-ports shown in Fig. 16.63. If any parameter 
is infinite, skip that parameter set. 

■  FIGURE 16.63

(a)

R

(b)

R
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49. (a) Find h for the two-port of Fig. 16.64. (b) Find Zout if the input contains Vs 
in series with Rs = 200 Ω.

■  FIGURE 16.64

+
–

V1

+

–

V2

+

–

10 kΩ

1 kΩ 10–5V2 100V1

16.6 Transmission Parameters
50. (a) With the assistance of appropriate mesh equations, determine the ABCD 

matrix which represents the two-port shown in Fig. 16.9. (b) Convert your 
answer to h.

51. (a) Employ suitably written mesh equations to obtain the t parameters which 
characterize the network of Fig. 16.57. (b) If currents I1 and I2 are defined as 
flowing into the (+) reference terminals of V1 and V2, respectively, compute 
the voltages if I1 = 2I2 = 3 mA.

52. Consider the following matrices: a =

  [   5  2  4  1  ]           b =   [   1.5  1     1     0.5  ]             c =   [   − 4     2  ]   

Calculate (a) a · b; (b) b · a; (c) a · c; (d) b · c; (e) b · a · c; (  f  ) a · a.

53. Two networks are represented by the following impedance matrices:

 z  1   =   [   4  5  8  1  ]    Ω and  z  2   =   [   1.1    2.2  0.89  1.8  ]    Ω, respectively.

  (a) Determine the t matrix which characterizes the cascaded network resulting 
from connecting network 2 to the output of network 1. (b) Reverse the order of 
the networks and compute the new t matrix which results.

54. The two-port of Fig. 16.65 can be viewed as three separate cascaded two-
ports A, B, and C. (a) Compute t for each network. (b) Obtain t for the cascad-
ed network. (c) Verify your answer by naming the two middle nodes Vx and 
Vy, respectively, writing nodal equations, obtaining the admittance parameters 
from your nodal equations, and converting to t parameters using Table 16.1.

■  FIGURE 16.65

6 Ω4 Ω

3 Ω 5 Ω1 Ω

2 Ω

A B C

V1

+

–

V2

+

–

I2I1

55. Consider the two separate two-ports of Fig. 16.61. Determine the ABCD matrix 
which characterizes the cascaded network resulting from connecting (a) the 
output of the left-hand network to the input of the right-hand network; (b) the 
output of the right-hand network to the input of the left-hand network.

56. (a) Determine the t parameters which describe the two-port of Fig. 16.58.  
(b) Compute Zout if a practical voltage source having a 30 Ω series resistance is 
connected to the input terminals of the network.
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57. Three identical networks to the one depicted in Fig. 16.56 are cascaded togeth-
er. Determine the t parameters which fully represent the result.

58. (a) Find ta, tb, and tc for the networks shown in Fig. 16.66a, b, and c. (b) By 
using the rules for interconnecting two-ports in cascade, find t for the network 
of Fig. 16.66d. 

■  FIGURE 16.66

R

(a)

V1

+

–

V2

+

–

2 Ω 20 Ω1:4

10 Ω 50 Ω

(d )

1:a

(c)

R

(b)

Chapter-Integrating Exercises
59. (a) Obtain y, z, h, and t parameters for the network shown in Fig. 16.67 using 

either the defining equations or mesh/nodal equations. (b) Verify your answers 
using the relationships in Table 16.1.

5 Ω 2 Ω
a

c

b

d

10 Ω

■  FIGURE 16.67

60. Four networks, each identical to the one depicted in Fig. 16.67, are connect-
ed in parallel such that all terminals labeled a are tied together, all terminals 
designated b are tied together, and all terminals labeled c and d are connected. 
Obtain the y, z, h, and t parameters which describe the parallel-connected 
network.

61. A cascaded 12-element network is formed using four two-port networks iden-
tical to the one shown in Fig. 16.67. Determine the y, z, h, and t parameters 
which describe the result.

62. The concept of ABCD matrices extends to systems beyond electrical circuits. 
For example, they are commonly employed for ray-tracing calculations in 
optical systems. In that case, we envision parallel input and output planes in 
xy, skewered by an optical axis z. An inbound ray crosses the input plane a 
distance x = rin from the optical axis, making an angle θin. The corresponding 
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parameters rout, θout for the outbound ray crossing the output plane are then 
given by the ABCD matrix such that

  [   
 r  out     θ  out  

  ]    =   [    A  B  
C

  
D

  ]     [   
 r  in     θ  in  

  ]   

Each type of optical element (e.g., mirror, lens, or even propagation through 
free space) has its own ABCD matrix. If the ray passes through several 
elements, the net effect can be predicted by simply cascading the individual 
ABCD matrices (in the proper order).

  (a) Obtain expressions for A, B, C, and D similar to Eqs. [32] to [35]. 
  (b) If the ABCD matrix for a perfectly reflecting flat mirror is given by   

 [   1  0  0  1  ]   , sketch the system along with the inbound and outbound rays, taking 
care to note the orientation of the mirror.

63. Continuing from Exercise 62, the behavior of a ray propagating through free 

space a distance d can be modeled with the ABCD matrix  [   1  d  0  1  ]   . (a) Show that 

the same result is obtained (rout, θout) whether a single ABCD matrix is used 
with d, or two cascaded matrices are used, each with d/2. (b) What are the units 
of A, B, C, and D, respectively? (c) A thin lens can be reasonably represented 

by the ABCD matrix  
[

    
1
  
0
  –   1 _ 

f
    1  

]
   . If the input ray is given by rin = 1 cm, θin = 12°, 

and f = 10 cm, compute rout and θout.

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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INTRODUCTION
In this chapter we continue our introduction to circuit analysis by 
studying periodic functions in both the time and frequency domains. 
Specifically, we will consider forcing functions which are periodic and 
have functional natures which satisfy certain mathematical restrictions 
that are characteristic of any function which we can generate in the 
laboratory. Such functions may be represented as the sum of an infinite 
number of sine and cosine functions which are harmonically related. 
Therefore, since the forced response to each sinusoidal component can 
be determined easily by sinusoidal steady-state analysis, the response 
of the linear network to the general periodic forcing function may be 
obtained by superposing the partial responses.

The topic of Fourier series is of vital importance in a number 
of fields, particularly communications. The use of Fourier-based 
techniques to assist in circuit analysis, however, had been slowly 
falling out of fashion for a number of years. Now as we face an 
increasingly larger fraction of global power usage coming from 
equipment employing pulse-modulated power supplies (e.g., 
computers), the subject of harmonics in power systems and power 
electronics is rapidly becoming a serious problem in even large-
scale generation plants. It is only with Fourier-based analysis that 
the underlying problems and possible solutions can be understood.

17.1 •  TRIGONOMETRIC FORM OF 
THE FOURIER SERIES

We know that the complete response of a linear circuit to an arbi-
trary forcing function is composed of the sum of a forced response 
and a natural response. The natural response has been considered 

Fourier Circuit 
Analysis17

KEY CONCEPTS

Representing Periodic 
Functions as a Sum of Sines 
and Cosines

Harmonic Frequencies

Even and Odd Symmetry

Half-Wave Symmetry

Complex Form of the 
Fourier Series

Discrete Line Spectra

Fourier Transform

Using Fourier Series  
and Fourier Transform  
Techniques in Circuit Analysis

System Response and 
Convolution in the 
Frequency Domain
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734 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

both in the time domain (Chaps. 7, 8, and 9) and in the frequency domain 
(Chaps. 14 and 15). The forced response has also been considered from 
several perspectives, including the phasor-based techniques of Chap. 10. As 
we have discovered, in some cases we need both components of the total re-
sponse of a particular circuit, while in others we need only the natural or the 
forced response. In this section, we refocus our attention on forcing func-
tions that are sinusoidal in nature, and we discover how to write a general 
periodic function as a sum of such functions—leading us into a discussion 
of a new set of circuit analysis procedures.

Harmonics
Some feeling for the validity of representing a general periodic function by 
an infinite sum of sine and cosine functions may be gained by considering a 
simple example. Let us first assume a cosine function of radian frequency ω0,

  v  1    (  t )    = 2 cos  ω  0   t 

where

  ω  0   = 2π  f  0   

and the period T is

 T =   1 __  f  0  
   =   2π __  ω  0     

Although T does not usually carry a zero subscript, it is the period of the 
fundamental frequency. The harmonics of this sinusoid have frequencies 
nω0, where ω0 is the fundamental frequency and n = 1, 2, 3, . . . . The fre-
quency of the first harmonic is the fundamental frequency.

Next let us combine this with a third-harmonic voltage given by

  v  3    (  t )    = cos 3  ω  0   t 

The fundamental v1(t), the third harmonic v3(t), and the sum of these two 
waves v(t) are shown as functions of time in Fig. 17.1a. Note that the sum is 
also periodic, with period T = 2π/ω0.

The form of the resultant periodic function changes as the phase and am-
plitude of the third-harmonic component change. Thus, Fig. 17.1b shows the 
effect of combining v1(t) and a third harmonic of slightly larger amplitude,

  v  3    (  t )    = 2 cos 3 ω  0  t 

By shifting the phase of the third harmonic by 90 degrees to give

  v  3    (  t )    = sin 3 ω  0  t 

the sum, shown in Fig. 17.1c, takes on a still different character. In all cases, 
the period of the resultant waveform is the same as the period of the funda-
mental waveform. The nature of the waveform depends on the amplitude 
and phase of every possible harmonic component, and we will find that we 
can generate waveforms which have extremely nonsinusoidal characteristics 
by an appropriate combination of sinusoidal functions.

After we have become familiar with the use of the sum of an infinite 
number of sine and cosine functions to represent a periodic waveform, we 
will consider the frequency-domain representation of a general nonperiodic 
waveform in a manner similar to the Laplace transform.
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The Fourier Series
We first consider a periodic function f(t), defined in Sec. 11.2 by the func-
tional relationship

 f  (  t )    = f  (  t + T  )    

PRACTICE 
●

17.1 Let a third-harmonic voltage be added to the fundamental to yield 
v = 2 cos ω0t + Vm3 sin 3ω0t, the waveform shown in Fig. 17.1c for  
Vm3 = 1. (a) Find the value of Vm3 so that v(t) will have zero slope at 
ω0t = 2π/3. (b) Evaluate v(t) at ω0t = 2π/3. 

Ans: 0.577; −1.000.
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■  FIGURE 17.1 Several example waveforms combining a fundamental and a third harmonic. The fundamental is v1 (t) = 2 cos ω0t, and the third harmonic is  
(a) v3 (t) = cos 3ω0 t; (b) v3 (t) = 2 cos 3ω0 t; (c) v3 (t) = sin 3ω0 t.

(a) (b)

(c)
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736 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

where T is the period. We further assume that the function f(t) satisfies the 
following properties:

1. f (t) is single-valued everywhere; that is, f (t) satisfies the mathe-
matical definition of a function.

2. The integral   ∫ 
 t  0  
   t  0  +T      | f  (  t )   dt|   exists (i.e., is not infinite) for any 

choice of t0.
3. f (t) has a finite number of discontinuities in any one period.
4. f (t) has a finite number of maxima and minima in any one period.

Given such a periodic function f (t), the Fourier theorem states that f(t) may 
be represented by the infinite series

   

f  (  t )   

  

=

  

 a  0   +  a  1   cos  ω  0  t +  a  2   cos 2 ω  0  t + ⋅ ⋅ ⋅

           +  b  1   sin  ω  0  t +  b  2   sin 2 ω  0  t + ⋅ ⋅ ⋅    
 
  

=
  
 a  0   +   ∑ 

n=1
  

∞
     (   a  n   cos n ω  0  t +  b  n   sin n ω  0  t )   

    [1]

where the fundamental frequency ω0 is related to the period T by

  ω  0   =   2π __ 
T

   

and where a0, an, and bn are constants that depend upon n and f(t). Equation 
[1] is the trigonometric form of the Fourier series for f(t), and the process 
of determining the values of the constants a0, an, and bn is called Fourier 
analysis. Our object is not the proof of this theorem, but only a simple de-
velopment of the procedures of Fourier analysis and a feeling that the the-
orem is plausible.

Some Useful Trigonometric Integrals
Before we discuss the evaluation of the constants appearing in the Fourier 
series, let us collect a set of useful trigonometric integrals. We let both n and 
k represent any element of the set of integers 1, 2, 3, . . . . In the following 
integrals, 0 and T are used as the integration limits, but it is understood that 
any interval of one period is equally correct.

   ∫  
0
  
T

    sin n ω  0   t dt = 0  [2]

   ∫ 
0
  
T

    cos n ω  0   t dt = 0  [3]

   ∫ 
0
  
T

    sin k ω  0  t cos n ω  0   t dt = 0  [4]

   ∫ 
0
  
T

    sin k ω  0  t sin n ω  0   t dt = 0           (  k ≠ n )     [5]

   ∫ 
0
  
T

    cos k ω  0  t cos n ω  0   t dt = 0          (  k ≠ n )     [6]

We will take f (t) to represent either a voltage or a 

current waveform, and any such waveform which 

we can actually produce must satisfy these four 

conditions; perhaps it should be noted, however, that 

certain mathematical functions do exist for which 

these four conditions are not satisfied.
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Those cases which are excepted in Eqs. [5] and [6] are also easily evaluated; 
we obtain

   ∫ 
0
  
T

     sin   2  n  ω  0   t dt =   T __ 2    [7]

   ∫ 
0
  
T

     cos   2  n  ω  0   t dt =   T __ 2    [8]

Evaluation of the Fourier Coefficients
The evaluation of the unknown constants in the Fourier series may now be 
accomplished readily. We first attack a0. If we integrate each side of Eq. [1] 
over a full period, we obtain

  ∫ 
0
  
T

    f  (  t )   dt =  ∫ 
0
  
T

     a  0   dt +  ∫ 
0
  
T

      ∑ 
n=1

  
∞

      (   a  n   cos n  ω  0   t +  b  n   sin n  ω  0   t )   dt 

But every term in the summation is of the form of Eq. [2] or [3], and thus

  ∫ 
0
  
T

    f  (  t )   dt =  a  0   T 

or

   a  0   =   1 __ 
T

    ∫ 
0
  
T

    f  (  t )   dt  [9]

This constant a0 is simply the average value of f(t) over a period, and we 
therefore describe it as the dc component of f(t).

To evaluate one of the cosine coefficients, for example, ak, the coeffi-
cient of cos kω0t, we first multiply each side of Eq. [1] by cos kω0t and then 
integrate both sides of the equation over a full period:

  

 ∫ 
0
  
T

    f  (  t )   cos k  ω  0   t dt

  

=

  

 ∫ 
0
  
T

     a  0   cos k  ω  0   t dt

           + ∫ 
0
  
T

      ∑ 
n=1

  
∞

     a  n   cos k  ω  0   t cos n  ω  0   t dt      

 

  

 

  

+ ∫ 
0
  
T

      ∑ 
n=1

  
∞

     b  n   cos k  ω  0   t sin n  ω  0   t dt

   

From Eqs. [3], [4], and [6] we note that every term on the right-hand side of 
this equation is zero except for the single an term where k = n. We evaluate 
that term using Eq. [8], and in so doing we find ak, or an:

   a  n   =   2 __ 
T

    ∫ 
0
  
T

    f  (  t )   cos n  ω  0   t dt  [10]

This result is twice the average value of the product f(t) cos nω0t over a period.
In a similar way, we obtain bk by multiplying by sin kω0t integrating over 

a period, noting that all but one of the terms on the right-hand side are zero, 
and performing that single integration by Eq. [7]. The result is

   b  n   =   2 __ 
T

    ∫ 
0
  
T

    f  (  t )   sin n  ω  0   t dt  [11]

which is twice the average value of f(t) sin nω0t over a period.
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Equations [9] to [11] now enable us to determine values for a0 and all the 
an and bn in the Fourier series, Eq. [1], as summarized below:

   
f(t)

  
=

  
 a  0   +   ∑ 

n=1
  

∞
   ( a  n   cos n  ω  0   t +  b  n   sin n  ω  0   t)

     
  ω  0  

  
=

  
  2π ___ 
T

   = 2π  f  0  
    [1]

                 a  0   =   1 __ 
T

    ∫ 
0
  
T

    f  (  t )    dt   [9]

          a  n   =   2 __ 
T

    ∫ 
0
  
T

    f  (  t )   cos n  ω  0   t dt   [10]

          b  n   =   2 __ 
T

    ∫ 
0
  
T

    f  (  t )   sin n  ω  0   t dt   [11]

EXAMPLE 17.1
The sawtooth waveform shown in Fig. 17.2 represents the periodic 
voltage response of an integrator circuit, such as that obtained in 
digital imaging. Find the Fourier series representation of this wave-
form, and plot for the cases of n = 3 and n = 30.

▶ Identify the goal of the problem.
We are presented with a periodic function and are asked to find the 
Fourier series representation. If not for the removal of all negative 
voltages, the problem would be trivial because only one sinusoid 
would be required.
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■ FIGURE 17.2 A periodic sawtooth function of an integrator circuit.
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▶ Collect the known information.
In order to represent this voltage as a Fourier series, we must first 
determine the period and then express the graphical voltage as an 
analytical function of time. From the graph, the period is seen to be

 T = 1 s 

and

  ω  0   = 2π rad/s 

▶ Devise a plan.
The most straightforward approach is to apply Eqs. [9] to [11] to 
calculate the set of coefficients a0, an, and bn. To do this, we need a 
functional expression for v(t), which is a linear function that repeats 
each period

 v  (  t )    =    t __ 
T

       0 ≤ t ≤ 1  

▶ Construct an appropriate set of equations.
The zero-frequency component is easily obtained:

  a  0   =   1 __ 
T

    ∫ 
0
  
T

      t __ 
T

   dt =   1 __ 
 T   2 

      (   t   
2  _ 2  )     

0
  

T

  =   1 _ 2   

The amplitude of a general cosine term is

  a  n   =   2 __ 
T

    ∫ 
0
  
T

      t __ 
T

   cos (n  ω  0   t) dt

 a  n   =     2 _ 
 T   2 

   [  1 _ 
  (n  ω  0  )    2 

   cos (n  ω  0   t)  +   t _ n  ω  0     sin (n  ω  0   t) ]    
0
  

T
 

 a  n   = 0 ! 

and the amplitude of a general sine term is

  b  n   =   2 __ 
T

    ∫ 
0
  
T

      t __ 
T

   sin (n  ω  0   t) dt

 b  n   =     2 _ 
 T   2 

   [−  t _ n  ω  0     cos (n  ω  0   t)  +   1 _ 
  (n  ω  0  )    2 

   sin (n  ω  0   t) ]    
0
  

T
  

 b  n   = −  1 ___ nπ   

▶ Determine if additional information is required.
We now have the required coefficients for the Fourier series 
representation. 

▶ Attempt a solution.
Combining terms, we have

 v (t)  =   1 _ 2   −   ∑ 
n=1

  
∞

      1 ___ nπ   sin (n  ω  0   t)  

Notice that integration over an entire period must be 

broken up into subintervals of the period, in each of 

which the functional form of v (t) is known.

(Continued on next page)
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740 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

▶ Verify the solution. Is it reasonable or expected?
Our solution can be checked by plotting the function for an increas-
ing number of terms, as shown in Fig. 17.3. As can be seen, as more 
terms are included, the more the plot resembles that of Fig. 17.3. For 
n = 3, there are only a few sinusoids to work with, resulting in a rela-
tively inaccurate representation of the sawtooth function. For n = 30, 
the superposition of a large number of sinusoids of varying frequency 
provides a close representation of the sawtooth signal. 
t=linspace(0,5,1000); % vector for time over 1000 points
T=1; % Period
w0=2*pi/T; % natural frequency
a0=0.5; % constant
for i=1:1000;
    sum=0; % begin sum
    for k=1:3; % loop for n=3
        sum=sum-1/k/pi*sin(k*w0*t(i));
    end
    f3(i)=a0+sum; % function for n=3
    sum=0;
    for k=1:30; % loop for n=30
        sum=sum-1/k/pi*sin(k*w0*t(i));
    end
    f30(i)=a0+sum; % function for n=30
end
figure(1)
plot(t,f3,t,f30,’LineWidth’,1.0)
xlabel(‘Time (s)’)
ylabel(‘Voltage (V)’)
legend(‘n=3’,’n=30’)
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■  FIGURE 17.3 Solution truncated after n = 3 and n = 30 terms, showing convergence to the 
sawtooth function v (t).
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Line and Phase Spectra
We depicted the function v(t) of Example 17.1 , graphically and analytically— 
both representations being in the time domain. The Fourier series represen-
tation of v(t) is also a time-domain expression, but it may be transformed 
into a frequency-domain representation as well. For example, Fig. 17.5 
shows the amplitude of each frequency component of v(t), a type of plot 
known as a line spectrum. Here, the magnitude of each frequency compo-
nent (i.e., |a0|, |b1|, etc.) is indicated by the length of the vertical line at the 
corresponding frequency (ω0, 2ω0, etc.).

PRACTICE 
●

17.2 A periodic waveform f(t) is described as follows: f(t) = −4,  
0 < t < 0.3; f(t) = 6, 0.3 < t < 0.4; f(t) = 0, 0.4 < t < 0.5; T = 0.5.  
Evaluate (a) a0; (b) a3; (c) b1. 
17.3 Write the Fourier series for the three voltage waveforms shown in 
Fig. 17.4. 

–1 0

–1

+1

1 2 3 4

v (V)

t (s)

(a)

–1

–1

0

1

1 2 3 4

v (V)

t (s)

(c)

–1

–1

0

1

1 2 3 4

v (V)

t (s)

(b)

■  FIGURE 17.4

Ans: 17.2:−1.200; 1.383; −4.44. 17.3: (4/π) (sin πt +   1 _ 3   sin 3πt +   1 _ 5   sin 5πt + · · ·) V; 
(4/π) (cos πt −   1 _ 3   cos 3πt +   1 _ 5   cos 5πt − · · ·)  V; (8/π2) (sin πt −   1 _ 9   sin 3πt  
+   1 __ 25   sin 5πt − · · ·) .
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742 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

Such a plot, sometimes referred to as a discrete spectrum, gives a great 
deal of information at a glance. In particular, we can see how many terms of 
the series are required to obtain a reasonable approximation of the original 
waveform. In the line spectrum of Fig. 17.5, we note that the 8th and 10th 
harmonics (20 and 25 Hz, respectively) add only a small correction. Trun-
cating the series after the 6th harmonic therefore should lead to a reasonable 
approximation; the reader can judge this for herself/himself by considering 
Fig. 17.3.

One note of caution must be injected. The example we have considered 
contains no cosine terms, and the amplitude of the nth harmonic is therefore 
|bn|. If an is not zero, then the amplitude of the component at a frequency 
nω0 must be  √ 

_____
  a  n  2  +  b  n  2    . This is the general quantity which we must show in 

a line spectrum. When we discuss the complex form of the Fourier series, 
we will see that this amplitude is obtained more directly.

In addition to the amplitude spectrum, we may construct a discrete phase 
spectrum. At any frequency nω0, we combine the cosine and sine terms to 
determine the phase angle ϕn:

  
 a  n   cos n  ω  0   t +  b  n   sin n  ω  0   t

  
=

  
 √ 

_____
  a  n  2  +  b  n  2    cos   (  n  ω  0   t +  tan   −1    −  b  n   _  a  n     )   

      
 
  

=
  
 √ 

_____
  a  n  2  +  b  n  2    cos   (  n  ω  0   t +  ϕ  n   )   

   

or

  ϕ  n   =  tan   −1    −  b  n   ___  a  n     

The Fourier series obtained for this example includes no cosine terms. 
It is possible to anticipate the absence of certain terms in a Fourier series, 

■  FIGURE 17.5 The discrete line spectrum of v (t) as represented in Example 17.1, showing the 
first ten frequency components. 
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  SECTION 17.2 THE USE OF SYmmETRY 743

before any integrations are performed, by an inspection of the symmetry of 
the given time function. We will investigate the use of symmetry in Sec. 17.2.

17.2 • THE USE OF SYMMETRY

Even and Odd Symmetry
The two types of symmetry which are most readily recognized are even- 
function symmetry and odd-function symmetry, or simply even symmetry and 
odd symmetry. We say that f(t) possesses the property of even symmetry if

  f  (  t )    = f  (  − t )     [12]

Such functions as t2, cos 3t, ln(cos t), sin2 7t, and a constant C all possess 
even symmetry; the replacement of t with (−t) does not change the value 
of any of these functions. This type of symmetry may also be recognized 
graphically, for if f(t) = f (−t), then mirror symmetry exists about the f(t) 
axis. The function shown in Fig. 17.6a possesses even symmetry; if the fig-
ure were to be folded along the f(t) axis, then the portions of the graph for 
positive and negative time would fit exactly, one on top of the other.

We define odd symmetry by stating that if odd symmetry is a property 
of f(t), then

  f  (  t )    = − f  (  − t )     [13]

In other words, if t is replaced by (−t), then the negative of the given func-
tion is obtained; for example, t, sin t, t cos 70t,  t √ 

____
 1 +  t   2    , and the function 

sketched in Fig. 17.6b are all odd functions and possess odd symmetry. The 
graphical characteristics of odd symmetry are apparent if the portion of f(t) 
for t > 0 is rotated about the positive t axis and the resultant figure is then 
rotated about the f(t) axis; the two curves will fit exactly, one on top of the 
other. That is, we now have symmetry about the origin, rather than about the 
f(t) axis as we did for even functions.

Having definitions for even and odd symmetry, we should note that the 
product of two functions with even symmetry, or of two functions with odd 
symmetry, yields a function with even symmetry. Furthermore, the product 
of an even and an odd function gives a function with odd symmetry.

Symmetry and Fourier Series Terms
Now let us investigate the effect that even symmetry produces in a Fourier 
series. If we think of the expression which equates an even function f(t) and 
the sum of an infinite number of sine and cosine functions, then it is appar-
ent that the sum must also be an even function. A sine wave, however, is an 
odd function, and no sum of sine waves can produce any even function other 
than zero (which is both even and odd). It is thus plausible that the Fourier 
series of any even function is composed of only a constant and cosine func-
tions. Let us now show carefully that bn = 0. We have

  
 b  n  

  
=

  
  2 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    sin n  ω  0   t dt

    
 
  

=
  
  2 __ 
T

    [   ∫ 
−T/2

  
0
    f  (  t )    sin n  ω  0   t dt +  ∫ 

0
  
T/2

    f  (  t )   sin n  ω  0   t dt ]   
  

■  FIGURE 17.6 (a) A waveform showing even 
symmetry. (b) A waveform showing odd symmetry.
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744 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

We replace the variable t in the first integral with −τ, or τ = −t, and make 
use of the fact that f(t) = f (−t) = f (τ):

  
 b  n  

  
=

  
  2 __ 
T

    [   ∫ 
T/2

  
0
    f  (  − τ )    sin   (  − n  ω  0   τ )     (  − dτ )    +  ∫ 

0
  
T/2

    f  (  t )    sin n  ω  0   t dt ]   
      

 
  

=
  
  2 __ 
T

    [  −  ∫ 
0
  
T/2

    f  (  τ )    sin  n  ω  0   τ dτ +  ∫ 
0
  
T/2

    f  (  t )    sin n  ω  0   t dt ]   
   

but the symbol we use to identify the variable of integration cannot affect 
the value of the integral. Thus,

  ∫ 
0
  
T/2

    f  (  τ )    sin n  ω  0   τ dτ =  ∫ 
0
  
T/2

    f  (  t )    sin n  ω  0   t dt 

and

   b  n   = 0           (  even sym. )     [14]

No sine terms are present. Therefore, if f(t) shows even symmetry, then bn = 
0; conversely, if bn = 0, then f(t) must have even symmetry.

A similar examination of the expression for an leads to an integral over 
the half period extending from t = 0 to  t =   1 _ 2   T :

   a  n   =   4 __ 
T

    ∫ 
0
  
T/2

    f  (  t )    cos n  ω  0   t dt        (  even sym. )     [15]

The fact that an may be obtained for an even function by taking “twice the 
integral over half the range” should seem logical.

A function having odd symmetry can contain no constant term or cosine 
terms in its Fourier expansion. Let us prove the second part of this state-
ment. We have

  
 a  n  

  
=

  
  2 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    cos n  ω  0   t dt

    
 
  

=
  
  2 __ 
T

    [   ∫ 
−T/2

  
0
    f  (  t )    cos n  ω  0   t dt +  ∫ 

0
  
T/2

    f  (  t )    cos n  ω  0   t dt ]   
  

and we now let t = −τ in the first integral:

  
 a  n  

  
=

  
  2 __ 
T

    [   ∫ 
T/2

  
0
    f  (  − τ )    cos   (  − n  ω  0   τ )     (  − dτ )    +  ∫ 

0
  
T/2

    f  (  t )    cos n  ω  0   t dt ]   
      

 
  

=
  
  2 __ 
T

    [   ∫ 
0
  
T/2

    f  (  − τ )    cos n  ω  0   τ dτ +  ∫ 
0
  
T/2

    f  (  t )    cos n  ω  0   t dt ]   
   

But f (−τ) = −f (τ), and therefore

   a  n   = 0         (  odd sym. )     [16]

A similar, but simpler, proof shows that

  a  0   = 0          (  odd sym. )    

With odd symmetry, therefore, an = 0 and a0 = 0; conversely, if an = 0 and 
a0 = 0, odd symmetry is present.
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  SECTION 17.2 THE USE OF SYmmETRY 745

The values of bn may again be obtained by integrating over half the range:

   b  n   =   4 __ 
T

    ∫ 
0
  
T/2

    f  (  t )    sin n  ω  0   t dt         (  odd sym. )     [17]

Half-Wave Symmetry
The Fourier series for both of these square waves have one other inter-
esting characteristic: neither contains any even harmonics.1 That is, the 
only frequency components present in the series have frequencies which 
are odd multiples of the fundamental frequency; an and bn are zero for 
even values of n. This result is caused by another type of symmetry, 
called half-wave symmetry. We will say that f(t) possesses half-wave 
symmetry if

 f  (  t )    = − f  (  t −   1 _ 2   T )    

or the equivalent expression,

 f  (  t )    = − f  (  t −   1 _ 2   T )    

Except for a change of sign, each half cycle is like the adjacent half cycles. 
Half-wave symmetry, unlike even and odd symmetry, is not a function 
of the choice of the point t = 0. Thus, we can state that the square wave 
(Fig. 17.4a or b) shows half-wave symmetry. Neither waveform shown in 
Fig. 17.6 has half-wave symmetry, but the two somewhat similar functions 
plotted in Fig. 17.7 do possess half-wave symmetry.

It may be shown that the Fourier series of any function which has half-
wave symmetry contains only odd harmonics. Let us consider the coeffi-
cients an. We have again

  
 a  n  

  
=

  
  2 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    cos n  ω  0   t dt

    
 
  

=
  
  2 __ 
T

    [   ∫ 
−T/2

  
0
    f  (  t )    cos n  ω  0   t dt +  ∫ 

0
  
T/2

    f  (  t )    cos n  ω  0   t dt ]   
  

which we may represent as

  a  n   =   2 __ 
T

     (   I  1   +  I  2   )    

Now we substitute the new variable  τ = t +   1 _ 2   T  in the integral I1:

  
 I  1  

  
=

  
 ∫ 

0
  
T/2

    f  (  τ −   1 _ 2   T )    cos n  ω  0    (  τ −   1 _ 2   T )   dτ
     

 
  

=
  
 ∫ 

0
  
T/2

    − f  (  τ )     (  cos n  ω  0   τ cos   n  ω  0   T _ 2   + sin n  ω  0   τ sin   n  ω  0   T _ 2   )   dτ

  

■  FIGURE 17.7 (a) A waveform somewhat similar to 
the one shown in Fig. 17.6a but possessing half-wave 
symmetry. (b) A waveform somewhat similar to the one 
shown in Fig. 17.6b but possessing half-wave symmetry.
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(1) Constant vigilance is required to avoid confusion between an even function and an even harmonic, or 
between an odd function and an odd harmonic. For example, b10 is the coefficient of an even harmonic, 
and it is zero if f (t) is an even function.
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746 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

But ω0T is 2π, and thus

 sin   n  ω  0   T ____ 2   = sin nπ = 0 

Hence

  I  1   = − cos nπ ∫ 
0
  
T/2

    f  (  τ )    cos n  ω  0   τ dτ 

After noting the form of I2, we therefore may write

  a  n   =   2 __ 
T

    (  1 − cos nπ )    ∫ 
0
  
T/2

    f  (  t )    cos n  ω  0   t dt 

The factor (1 − cos nπ) indicates that an is zero if n is even. Thus,

   a  n   =   
{

     
4 _ 
T

    ∫ 
0
  
T/2

    f  (  t )    cos n  ω  0   t dt     n odd    
0
  

 
  
n even

           (    1 _ 2   -wave sym. )     [18]

A similar investigation shows that bn is also zero for all even n, and therefore

   b  n   =   
{

     
4 _ 
T

    ∫ 
0
  
T/2

    f  (  t )    sin n  ω  0   t dt     n odd    
0
  

 
  
n even

          (    1 _ 2   -wave sym. )      [19]

It should be noted that half-wave symmetry may be present in a wave-
form which also shows odd symmetry or even symmetry. The waveform 
sketched in Fig. 17.7a, for example, possesses both even symmetry and 
half-wave symmetry. When a waveform possesses half-wave symmetry 
and either even or odd symmetry, then it is possible to reconstruct the 
waveform if the function is known over any quarter-period interval. The 
value of an or bn may also be found by integrating over any quarter period. 
Thus,

    
 a  n   =   8 _ 

T
    ∫ 

0
  
T/4

    f  (  t )    cos n  ω  0   t dt
  
 
  
n odd

    
 a  n   = 0

  
 
  
n even

    

 b  n   = 0

  

 

  

all n

   

⎫

 
⎪

 ⎬ 
⎪

 

⎭

          (    1 _ 2   -wave and even sym. )     [20]

    

 a  n   = 0

  

 

  

all n

     b  n   =   8 _ 
T

    ∫ 
0
  
T/4

    f  (  t )    sin  n  ω  0   t dt     n odd    

 b  n   = 0

  

 

  

n even

  

⎫

 
⎪

 ⎬ 
⎪

 

⎭

          (    1 _ 2   -wave and odd sym. )     [21]

Table 17.1 provides a short summary of the simplifications arising from the 
various types of symmetry discussed.

It is always worthwhile to spend a few moments 

investigating the symmetry of a function for which a 

Fourier series is to be determined.
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TABLE 
●
 17.1 Summary of Symmetry-Based Simplifications in Fourier Series

Symmetry Type Characteristic Simplification

Even  f  (  t )    = − f  (  t )      b  n   = 0 

Odd  f  (  t )    = − f  (  − t )      a  n   = 0 

Half-Wave  f  (  t )    = − f  (  t −   T _ 2   )    

or

 f  (  t )    = − f  (  t +   T _ 2   )    

  a  n   =   
{

     
4 _ 
T

    ∫ 
0
  
T/2

    f  (  t )    cos n  ω  0   t dt     n odd    
0
  

 
  
n even

   

  b  n   =   
{

     
4 _ 
T

    ∫ 
0
  
T/2

    f  (  t )    sin n  ω  0   t dt     n odd    
0
  

 
  
n even

   

Half-Wave and Even  f  (  t )    = − f  (  t −   T _ 2   )    and

  f  (  t )    = − f  (  t )    
or

 f  (  t )    = − f  (  t +   T _ 2   )    and

  f  (  t )    = − f  (  t )    

  a  n   =   
{

     
8 _ 
T

    ∫ 
0
  
T/4

    f  (   t  1   )    cos n  ω  0   t dt     n odd    
0
  

 
  
n even

   

  b  n   = 0                                         all n 

Half-Wave and Odd  f  (  t )    = − f  (  t −   T _ 2   )    and 

 f  (  t )    = − f  (  − t )    

or

 f  (  t )    = − f  (  t +   T _ 2   )    and 

 f  (  t )    = − f  (  − t )    

  a  n   = 0                                         all n 

  b  n   =   
{

     
8 _ 
T

    ∫ 
0
  
T/4

    f  (  t )    sin n  ω  0   t dt     n odd    
0
  

 
  
n even

   

PRACTICE 
●

17.4 Sketch each of the functions described; state whether or not even 
symmetry, odd symmetry, and half-wave symmetry are present; and 
give the period: (a) v = 0, −2 < t < 0 and 2 < t < 4; v = 5, 0 < t < 2;  
v = −5, 4 < t < 6; repeats; (b) v = 10, 1 < t < 3; v = 0, 3 < t < 7;  
v = −10, 7 < t < 9; repeats; (c) v = 8t, −1 < t < 1; v = 0, 1 < t < 3; 
repeats. 

17.5 Determine the Fourier series for the waveforms of Practice 
Problem 17.4a and b. 

Ans: 17.4: No, no, yes, 8; no, no, no, 8; no, yes, no, 4. 

17.5:    ∑ 
n=1(odd)

  
∞

       10 __ nπ      (sin   nπ
 __ 2   cos   nπt

 __ 4   + sin   nπt
 __ 4  )  ; 

   ∑ 
n=1

  
∞

        10 __ nπ      [ (sin   3nπ ___ 4   − 3 sin   nπ __ 4  ) cos   nπt __ 4   +  (cos   nπ __ 4   − cos   3nπ ___ 4  ) sin   nπt __ 4  ]   
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748 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

17.3 •  COMPLETE RESPONSE TO PERIODIC 
FORCING FUNCTIONS

Through the use of the Fourier series, we may now express an arbitrary 
periodic forcing function as the sum of an infinite number of sinusoidal 
forcing functions. The forced response to each of these functions may be 
determined by conventional steady-state analysis, and the form of the nat-
ural response may be determined from the poles of an appropriate network 
transfer function. The initial conditions existing throughout the network, 
including the initial value of the forced response, enable the amplitude of 
the natural response to be selected; the complete response is then obtained 
as the sum of the forced and natural responses.

10

0– π 2π

vs(t) (V)

t  (s)
π
2

π
2

3π
2

(b)

+
–

(a)

4 Ωvs(t)

t = 0 2 H i(t)

10

0– π 2π

vs(t) (V)

t  (s)
π
2

π
2

3π
2

(b)

+
–

(a)

4 Ωvs(t)

t = 0 2 H i(t)

■  FIGURE 17.8 (a) A simple series RL circuit 
subjected to a periodic forcing function vs(t). (b) The 
form of the forcing function.

EXAMPLE 17.2
For the circuit of Fig. 17.8a, determine the periodic response i(t) 
corresponding to the forcing function shown in Fig. 17.8b if i(0) = 0.

The forcing function has a fundamental frequency ω0 = 2 rad/s, and its 
Fourier series may be written down by comparison with the Fourier se-
ries developed for the waveform of Fig. 17.4b in the solution of Practice 
Problem 17.3,

  v  s    (  t )    = 5 +   20 __ π     ∑ 
n=1  (  odd )   

  
∞

      sin 2nt _____ n   

We will find the forced response for the nth harmonic by working in the 
frequency domain. Thus,

  v  sn    (  t )    =   20 ___ nπ    sin 2nt 

and

  V  sn   =   20 ___ nπ     −  90   °   = − j   20 ___ nπ   

The impedance offered by the RL circuit at this frequency is

  Z  n   = 4 + j  (  2n )   (2) = 4 + j4n 

and thus the component of the forced response at this frequency is

  I  fn   =    V  sn   ___  Z  n  
   =   − j5 _______ 

nπ  (  1 + jn )      

Transforming to the time domain, we have

  
 i  fn  

  
=

  
  5 ___ nπ     1 ____ 

 √ 
_____

 1 +  n   2   
   cos (2nt −  90   ∘  −  tan   −1  n)

     
 
  

=
  
  5 ______ 
π  (  1 +  n   2  )   

    (    sin 2nt _ n   − cos 2nt )   
   

/

Recall that Vm sin ωt is equal to Vm cos(ωt − 90°), 

corresponding to   V  m     −  90   °   = − j  V  m   ./
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In obtaining this solution, we have had to use many of the most general 
concepts introduced in this and the preceding 16 chapters. Some we did 
not have to use because of the simple nature of this particular circuit, but 
their places in the general analysis were indicated. In this sense, we may 
look upon the solution of this problem as a significant achievement in our 
introductory study of circuit analysis. In spite of this glorious feeling of ac-
complishment, however, it must be pointed out that the complete response, 
as obtained in Example 17.2 in analytical form, is not of much value as it 
stands; it furnishes no clear picture of the nature of the response. What we 
really need is a sketch of i(t) as a function of time. This may be obtained by 
a laborious calculation at a sufficient number of instants of time; a desktop 
computer or a programmable calculator can be of great assistance here. The 
sketch may be approximated by the graphical addition of the natural re-
sponse, the dc term, and the first few harmonics; this is an unrewarding task.

When all is said and done, the most informative solution of this problem 
is probably obtained by making a repeated transient analysis. That is, the 
form of the response can certainly be calculated in the interval from t = 0 
to t = π/2 s; it is an exponential rising toward 2.5 A. After determining the 

Since the response to the dc component is simply 5 V/4 Ω = 1.25 A, 
the forced response may be expressed as the summation

  i  f     (  t )    = 1.25 +   5 __ π     ∑ 
n=1  (  odd )   

  
∞

     [    sin 2nt _ 
n  (  1 +  n   2  )   

   −   cos 2nt _ 
1 +  n   2 

   ]    

The familiar natural response of this simple circuit is the single expo-
nential term [characterizing the single pole of the transfer function,  
If /Vs = 1/(4 + 2s)]

  i  n    (  t )    = A  e   −2t  

The complete response is therefore the sum

 i  (  t )    =  i  f     (  t )    +  i  n    (  t )    

Letting t = 0, we find A using i (0) = 0:

 A = − 1.25 +   5 __ π     ∑ 
n=1  (  odd )   

  
∞

      1 ____ 
1 +  n   2 

   

Although correct, it is more convenient to use the numerical value of 
the summation. The sum of the first 5 terms of  Σ 1 /   (  1 +  n   2  )     is 0.671, 
the sum of the first 10 terms is 0.695, the sum of the first 20 terms is 
0.708, and the exact sum is 0.720 to three significant figures. Thus

 A = − 1.25 +   5 __ π    (  0.720 )    = − 0.104 

and

  
i  (  t )   

  
=

  
− 0.104  e   −2t  + 1.25

   
 
  

 
  

+   5 __ π     ∑ 
n=1  (  odd )   

  
∞

      [    sin 2nt _ 
n  (  1 +  n   2  )   

   −   cos 2nt _ 
1 +  n   2 

   ]        amperes
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750 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

value at the end of this first interval, we have an initial condition for the next 
(π/2)-second interval. The process is repeated until the response assumes a 
generally periodic nature. The method is eminently suitable to this example, 
for there is negligible change in the current waveform in the successive pe-
riods π/2 < t < 3π/2 and 3π/2 < t < 5π/2. The complete current response is 
sketched in Fig. 17.9.

■  FIGURE 17.9 The initial portion of the complete response of 
the circuit of Fig. 17.8a to the forcing function of Fig. 17.8.

0 π 2π
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PRACTICE 
●

17.6 Use the methods of Chap. 8 to determine the value of the current 
sketched in Fig. 17.9 at t equal to (a) π/2; (b) π; (c) 3π/2. 

Ans: 2.392 A; 0.1034 A; 2.396 A.

17.4 • COMPLEX FORM OF THE FOURIER SERIES
In obtaining a frequency spectrum, we have seen that the amplitude of each 
frequency component depends on both an and bn; that is, the sine term and 
the cosine term both contribute to the amplitude. The exact expression 
for this amplitude is  √ 

_____
  a  n  2  +  b  n  2    . It is also possible to obtain the amplitude 

directly by using a form of Fourier series in which each term is a cosine 
function with a phase angle; the amplitude and phase angle are functions of 
f (t) and n. An even more convenient and concise form of the Fourier series 
is obtained if the sines and cosines are expressed as exponential functions 
with complex multiplying constants.

Let us first take the trigonometric form of the Fourier series:

 f  (  t )    =  a  0   +   ∑ 
n=1

  
∞

     (   a  n   cos n  ω  0   t +  b  n   sin n  ω  0   t )    

and then substitute the exponential forms for the sine and cosine. After 
rearranging,

 f  (  t )    =  a  0   +   ∑ 
n=1

  
∞

     (   e   jn ω  0  t     a  n   − j  b  n   _ 2   +  e   −jn ω  0  t     a  n   + j  b  n   _ 2   )    

The reader may recall the identities

 sin α =    e   jα  −  e   −jα  ______ j2   

and

 cos α =    e   jα  +  e   −jα  ______ 2   
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We now define a complex constant cn:

   c  n   =   1 _ 2    (   a  n   − j  b  n   )             (  n = 1,  2, 3, . . . )     [22]

The values of an, bn, and cn all depend on n and f(t). Suppose we now replace 
n with (−n); how do the values of the constants change? The coefficients an 
and bn are defined by Eqs. [10] and [11], and it is evident that

  a  −n   =  a  n   

but

  b  −n   = −  b  n   

From Eq. [22], then,

   c  −n   =   1 _ 2    (   a  n   + j  b  n   )             (  n = 1,  2, 3, . . . )     [23]

Thus,

  c  n   =  c  −n  *   

We also let

  c  0   =  a  0   

We may therefore express f(t) as

 f  (  t )    =  c  0   +   ∑ 
n=1

  
∞

     c  n    e   jn ω  0  t  +   ∑ 
n=1

  
∞

     c  −n    e   −jn ω  0  t  

or

 f  (  t )    =   ∑ 
n=0

  
∞

     c  n    e   jn ω  0  t  +   ∑ 
n=1

  
∞

     c  −n    e   −jn ω  0  t  

Finally, instead of summing the second series over the positive integers 
from 1 to ∞, let us sum over the negative integers from −1 to −∞:

 f  (  t )    =   ∑ 
n=0

  
∞

     c  n    e   jn ω  0  t  +   ∑ 
n=−1

  
−∞

     c  n    e   jn ω  0  t  

or

  f  (  t )    =   ∑ 
n=−∞

  
∞

     c  n    e   jn ω  0  t   [24]

By agreement, a summation from −∞ to ∞ is understood to include a term 
for n = 0.

Equation [24] is the complex form of the Fourier series for f(t); its con-
ciseness is one of the most important reasons for its use. In order to obtain 
the expression by which a particular complex coefficient cn may be evalu-
ated, we substitute Eqs. [10] and [11] in Eq. [22]:

  c  n   =   1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    cos n  ω  0   t dt − j   1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    sin n  ω  0   t dt 
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and then we use the exponential equivalents of the sine and cosine and 
simplify:

   c  n   =   1 _ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    e   −jn ω  0  t   dt  [25]

Thus, a single concise equation serves to replace the two equations required 
for the trigonometric form of the Fourier series. Instead of evaluating two 
integrals to find the Fourier coefficients, only one integration is required; 
moreover, it is almost always a simpler integration. It should be noted that 
the integral of Eq. [25] contains the multiplying factor 1/T, whereas the 
integrals for an and bn both contain the factor 2/T.

Collecting the two basic relationships for the exponential form of the 
Fourier series, we have

   
f  (  t )    =   ∑ 

n=−∞
  

∞
     c  n    e   jn ω  0  t 

   
 c  n   =   1 _ 

T
    ∫ 

−T/2
  

T/2
    f  (  t )    e   −jn ω  0  t   dt

   
[25]

where ω0 = 2π/T as usual.
The amplitude of the component of the exponential Fourier series at  

ω = nω0, where n = 0, ±1, ±2, . . . , is |cn|. We may plot a discrete frequency 
spectrum giving |cn| versus nω0 or nf0, using an abscissa that shows both 
positive and negative values; and when we do this, the graph is symmetrical 
about the origin, since Eqs. [22] and [23] show that |cn| = |c−n|.

We note also from Eqs. [24] and [25] that the amplitude of the sinusoidal 
component at ω = nω0, where n = 1, 2, 3, . . . , is   √ 

_____
  a  n  2  +  b  n  2    = 2  |   c  n   |    = 2  |   c  −n   |    =  

  |   c  n   |    +   |   c  −n   |    . For the dc component, a0 = c0.
The exponential Fourier coefficients, given by Eq. [25], are also affected 

by the presence of certain symmetries in f(t). Thus, appropriate expressions 
for cn are

  

 c  n  

  

=

  

  2 __ 
T

    ∫ 
0
  
T/2

    f  (  t )   cos n  ω  0   t dt

  

 

  

  (  even sym. )   

     

 c  n  

  

=

  

  − j2 ___ 
T

    ∫ 
0
  
T/2

    f  (  t )   sin n  ω  0   t dt

  

 

  

  (  odd sym. )   

     

 c  n  

  

=

  

  
{

     
2 _ 
T

    ∫ 
0
  
T/2

    f  (  t )    e   −jn ω  0  t   dt   
0
   

  

   
 
 

  

  
  (  n odd,    1 _ 2   -wave sym. )   

   
  (  n even,    1 _ 2   -wave sym. )   

 

      

 c  n  

  

=

  

  
{

     
4 _ 
T

    ∫ 
0
  
T/4

    f  (  t )   cos n  ω  0   t dt   
0
   

  

 

  

 
  (  n odd,    1 _ 2   -wave and even sym. )   

    
  (  n even,    1 _ 2   -wave and even sym. )   

 

       

 c  n  

  

=

  

  
{

     
− j4 _ 
T

    ∫ 
0
  
T/4

    f  (  t )   sin n  ω  0   t dt   
0
   

  

 

  

 
  (  n odd,    1 _ 2   -wave and odd sym. )   

    
  (  n even,    1 _ 2   -wave and odd sym. )   

 

   

[24]

[26]

[27]

[28a]

[28b]

[29a]

[29b]

[30a]

[30b]

(even sym.)

(odd sym.)

  (n odd,    1 __ 2   -wave sym.)  
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EXAMPLE 17.3
Determine cn for the square wave of Fig. 17.10.

■  FIGURE 17.10 A square wave function possessing both even and half-wave symmetry.

–1 0

–1

1

1 2 3 4

v (V)

t (s)

This square wave possesses both even and half-wave symmetry. If we 
ignore the symmetry and use our general equation [25], with T = 2 and 
ω0 = 2π/2 = π, we have

  

 c  n  

  

=

  

  1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    e   −jn ω  0  t   dt

   

 

  

=

  

  1 _ 2    [   ∫ 
−1

  
−0.5

    −  e   −jnπt   dt +  ∫ 
−0.5

  
0.5

     e   −jnπt   dt −  ∫ 
0.5

  
1
     e   −jnπt   dt ]   

      
 
  

=
  
  1 _ 2    [    − 1 _ − jnπ

    (   e   −jnπt  )     |    −1
  

−0.5
  +   1 _ − jnπ

    (   e   −jnπt  )     |    −0.5
  

0.5
   +   − 1 _ − jnπ

    (   e   −jnπt  )     |    0.5
  

1
   ]   

      
 
  

=
  
  1 ____ 
j2nπ

    (   e   jnπ/2  −  e   jnπ  −  e   −jnπ/2  +  e   jnπ/2  +  e   −jnπ  −  e   −jnπ/2  )   
      

 

  

=

  

2    e   jnπ/2  −  e   −jnπ/2   ________ 
j2nπ

   −    e   jnπ  −  e   −jnπ  _______ 
j2nπ

  

    

 

  

=

  

  1 ___ nπ    [  2 sin   nπ _ 2   − sin nπ ]   

   

We thus find that c0 = 0, c1 = 2/π, c2 = 0, c3 = −2/3π, c4 = 0,  
c5 = 2/5π, and so forth. These values agree with the trigonometric 
Fourier series given as the answer we obtained in Practice Problem 17.3 
for the same waveform shown in Fig. 17.4b if we remember that  
an = 2cn when bn = 0.

Utilizing the symmetry of the waveform (even and half-wave), there 
is less work when we apply Eqs. [29a] and [29b], leading to

  

 c  n  

  

=

  

  4 __ 
T

    ∫ 
0
  
T/4

    f  (  t )   cos n  ω  0   t dt

       =    4 _ 2    ∫ 
0
  
0.5

    cos nπt dt =   2 ___ nπ    (  sin nπt )     |    0  0.5
     

 

  

=

  

  
{

     
2 _ nπ   sin   nπ _ 2         (  n odd )      

0
  

 
  
  (  n even )   

  

   

These results are the same as those we just obtained when we did not 
take the symmetry of the waveform into account.
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754 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

Now let us consider a more difficult, more interesting example.

EXAMPLE 17.4
A certain function f (t) is a train of rectangular pulses of amplitude 
vo and duration τ, recurring periodically every T seconds, as shown 
in Fig. 17.11. Find the exponential Fourier series for f (t).

0

V0

T
t

t0 2T–T

v (t)

t

■ FIGURE 17.11 A periodic sequence of rectangular pulses.

The fundamental frequency is f0 = 1/T. No symmetry is present, and the 
value of a general complex coefficient is found from Eq. [25]:

  

 c  n  

  

=

  

  1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    e   −jn ω  0  t   dt =    V  0   __ 
T

    ∫ 
 t  0  
  
 t  0  +τ

     e   −jn ω  0  t   dt

     

 

  

=

  

   V  0   ______ − jn  ω  0   T
    (   e   −jn ω  0    (   t  0  +τ )     −  e   −jn ω  0   t  0    )   

       =    2  V  0   ____ 
n  ω  0   T

    e   −jn ω  0    (   t  0  +τ/2 )     sin   (    1 _ 2   n  ω  0   τ )       

 

  

=

  

   V  0   τ ___ 
T

     
sin   (    1 _ 2   n  ω  0   τ )   

  ________ 
  1 _ 2   n  ω  0   τ

    e   −jn ω  0    (   t  0  +τ/2 )    

   

The magnitude of cn is therefore

    |   c  n   |    =    V  0   τ ___ 
T

    |    sin   (    1 _ 2   n  ω  0   τ )   
  ____________ 

  1 _ 2   n  ω  0   τ
   |     [31]

and the angle of cn is

  ang  c  n   = − n  ω  0    (   t  0   +   τ _ 2   )             (   possibly plus 180   °  )     [32]

Equations [31] and [32] represent our solution to this exponential 
Fourier series problem.

The Sampling Function
The trigonometric factor in Eq. [31] occurs frequently in modern commu-
nication theory, and it is called the sampling function. The “sampling” 
refers to the time function of Fig. 17.11 from which the sampling function 
is derived. The product of this sequence of pulses and any other function f(t) 
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represents samples of f(t) every T seconds if τ is small and vo = 1.  
We define

 Sa  (  x )    =   sin x ____ x   

Because of the way in which it helps to determine the amplitude of the 
various frequency components in f(t), it is worth our while to discover the 
important characteristics of this function. First, we note that Sa(x) is zero 
whenever x is an integral multiple of π; that is,

 Sa  (  nπ )    = 0       n = 1,  2, 3, . . . 

When x is zero, the function is indeterminate, but it is easy to show that its 
value is unity:

 Sa  (  0 )    = 1 

The magnitude of Sa(x) therefore decreases from unity at x = 0 to zero at  
x = π. As x increases from π to 2π, |Sa(x)| increases from zero to a maximum 
less than unity, and then decreases to zero once again. As x continues to 
increase, the successive maxima continually become smaller because the 
numerator of Sa(x) cannot exceed unity and the denominator is continually 
increasing. Also, Sa(x) shows even symmetry.

Now let us construct the line spectrum. We first consider |cn|, writing  
Eq. [31] in terms of the fundamental cyclic frequency f0:

    |   c  n   |    =    V  0   τ ___ 
T

    |    sin   (  nπ  f  0   τ )    _ 
nπ  f  0   τ

   |     [33]

The amplitude of any cn is obtained from Eq. [33] by using the known val-
ues τ and T = 1/f0 and selecting the desired value of n, n = 0, ±1, ±2, . . . . 
Instead of evaluating Eq. [33] at these discrete frequencies, let us sketch the 
envelope of |cn| by considering the frequency nf0 to be a continuous variable. 
That is, f, which is nf0, can actually take on only the discrete values of the 
harmonic frequencies 0, ±f0, ±2f0, ±3f0, and so forth, but we may think of 
n for the moment as a continuous variable. When f is zero, |cn| is evidently 
voτ/T, and when f has increased to 1/τ, |cn| is zero. The resultant envelope 
is first sketched as in Fig. 17.12a. The line spectrum is then obtained by 
simply erecting a vertical line at each harmonic frequency, as shown in 
the sketch. The amplitudes shown are those of the cn. The particular case 
sketched applies to the case where τ/T = 1/(1.5π) = 0.212. In this example, 
it happens that there is no harmonic exactly at that frequency at which the 
envelope amplitude is zero; another choice of τ or T could produce such an 
occurrence, however.

In Fig. 17.12b, the amplitude of the sinusoidal component is plotted as 
a function of frequency. Note again that a0 = c0 and  √ 

_____
  a  n  2  +  b  n  2    =   |   c  n   |    +   |   c  −n   |    .

There are several observations and conclusions which we may make 
about the line spectrum of a periodic sequence of rectangular pulses, as 
given in Fig. 17.12b. With respect to the envelope of the discrete spectrum, 
it is evident that the “width” of the envelope depends upon τ, and not upon 
T. As a matter of fact, the shape of the envelope is not a function of T. It 
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■  FIGURE 17.12 (a) The discrete line spectrum of |cn| versus f = nf0, n = 0, ±1, ±2, . . . , 
corresponding to the pulse train shown in Fig. 17.11. (b)   √ 

_____
  a   2  +  b   2     versus f = nf0, n = 0, 1, 2, . . . ,  

for the same pulse train.
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follows that the bandwidth of a filter which is designed to pass the periodic 
pulses is a function of the pulse width τ, but not of the pulse period T; an 
inspection of Fig. 17.12b indicates that the required bandwidth is about  
1/τ Hz. If the pulse period T is increased (or the pulse repetition frequency f0  
is decreased), the bandwidth 1/τ does not change, but the number of spectral 
lines between zero frequency and 1/τ Hz increases, albeit discontinuously; 
the amplitude of each line is inversely proportional to T. Finally, a shift  
in the time origin does not change the line spectrum; that is, |cn| is not a 
function of t0. The relative phases of the frequency components do change 
with the choice of t0.

PRACTICE 
●

17.7 Determine the general coefficient cn in the complex Fourier series 
for the waveform shown in (a) Fig. 17.4a; (b) Fig. 17.4c. 

Ans: −j2/(nπ) for n odd, 0 for n even; −j[4/(n2π 2)] sin nπ/2 for all n.

17.5 • DEFINITION OF THE FOURIER TRANSFORM
Now that we are familiar with the basic concepts of the Fourier series 
representation of periodic functions, let us proceed to define the Fourier 
transform by first recalling the spectrum of the periodic train of rectangular 
pulses we obtained in Sec. 17.4. That was a discrete line spectrum, which 
is the type that we must always obtain for periodic functions of time. The 
spectrum was discrete in the sense that it was not a smooth or continu-
ous function of frequency; instead, it had nonzero values only at specific 
frequencies.

There are many important forcing functions, however, that are not peri-
odic functions of time, such as a single rectangular pulse, a step function, a 
ramp function, or the somewhat strange type of function called the impulse 
function defined in Chap. 14. Frequency spectra may be obtained for such 
nonperiodic functions, but they will be continuous spectra in which some 
energy, in general, may be found in any nonzero frequency interval, no mat-
ter how small.

We will develop this concept by beginning with a periodic function and 
then letting the period become infinite. Our experience with periodic rec-
tangular pulses should indicate that the envelope will decrease in amplitude 
without otherwise changing shape, and that more and more frequency com-
ponents will be found in any given frequency interval. In the limit, we should 
expect an envelope of vanishingly small amplitude, filled with an infinite 
number of frequency components separated by vanishingly small frequency 
intervals. The number of frequency components between 0 and 100 Hz, 
for example, becomes infinite, but the amplitude of each one approaches 
zero. At first thought, a spectrum of zero amplitude is a puzzling concept. 
We know that the line spectrum of a periodic forcing function shows the 
amplitude of each frequency component. But what does the zero-amplitude 
continuous spectrum of a nonperiodic forcing function signify? That ques-
tion will be answered in the following section; now we proceed to carry out 
the limiting procedure just suggested.
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We begin with the exponential form of the Fourier series:

  f  (  t )    =   ∑ 
n=−∞

  
∞

     c  n    e   jn ω  0  t   [34]

where

   c  n   =   1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    e   −jn ω  0  t   dt  [35]

and

   ω  0   =   2π __ 
T

    [36]

We now let

 T → ∞ 

and thus, from Eq. [36], ω0 must become vanishingly small. We represent 
this limit by a differential:

  ω  0   → dω 

Thus

    1 __ 
T

   =    ω  0   __ 2π
   →   dω ___ 2π

    [37]

Finally, the frequency of any “harmonic” nω0 must now correspond to the 
general frequency variable which describes the continuous spectrum. In 
other words, n must tend to infinity as ω0 approaches zero, so that the prod-
uct is finite:

  n  ω  0   → ω  [38]

When these four limiting operations are applied to Eq. [35], we find that 
cn must approach zero, as we had previously presumed. If we multiply each 
side of Eq. [35] by the period T and then undertake the limiting process, a 
nontrivial result is obtained:

  c  n   T →  ∫ 
−∞

  
∞

    f  (  t )    e   −jωt  dt 

The right-hand side of this expression is a function of ω (and not of t), and 
we represent it by F(jω):

  F  (  jω )    =  ∫ 
−∞

  
∞

    f  (  t )    e   −jωt  dt  [39]

Now let us apply the limiting process to Eq. [34]. We begin by multiply-
ing and dividing the summation by T,

 f  (  t )    =   ∑ 
n=−∞

  
∞

     c  n   T  e   jn ω  0  t    1 __ 
T

   

next replacing cnT with the new quantity F(  jω), and then making use of 
expressions [42] and [43]. In the limit, the summation becomes an integral, 
and

  f  (  t )    =   1 __ 2π
    ∫ 

−∞
  

∞
    F  (  jω )    e   jωt  dω  [40]
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Equations [39] and [40] are collectively called the Fourier transform pair. 
The function F(jω) is the Fourier transform of f(t), and f(t) is the inverse 
Fourier transform of F(jω).

This transform-pair relationship is very important! We should memo-
rize it, draw arrows pointing to it, and mentally keep it on the conscious 
level. We emphasize the importance of these relations by repeating them in  
boxed form:

   
   F  (   jω )    =  ∫ 

−∞
  

∞
     e   −jωt  f  (  t )   dt

   
f  (  t )    =   1 __ 2π

    ∫ 
−∞

  
∞

     e   jωt  F  (   jω )   dω

   
[41b]

The exponential terms in these two equations carry opposite signs for the 
exponents. To keep them straight, it may help to note that the positive sign 
is associated with the expression for f(t), as it is with the complex Fourier 
series, Eq. [34].

It is appropriate to raise one question at this time. For the Fourier trans-
form relationships of Eq. [41], can we obtain the Fourier transform of any 
arbitrarily chosen f (t)? It turns out that the answer is affirmative for almost 
any voltage or current that we can actually produce. A sufficient condition 
for the existence of  F  (   jω )     is that

  ∫ 
−∞

  
∞

     |   f  (  t )   |    dt < ∞  

This condition is not necessary, however, because some functions that do 
not meet it still have a Fourier transform; the step function is one such exam-
ple. Furthermore, we will see later that f(t) does not even need to be nonpe-
riodic in order to have a Fourier transform; the Fourier series representation 
for a periodic time function is just a special case of the more general Fourier 
transform representation.

As we indicated earlier, the Fourier transform-pair relationship is 
unique. For a given f(t) there is one specific F(  jω); and for a given F(  jω) 
there is one specific f(t).

[41a]

The reader may have already noticed a few 

similarities between the Fourier transform and the 

Laplace transform. Key differences between the 

two include the fact that initial energy storage is not 

easily incorporated in circuit analysis using Fourier 

transforms, while it is very easily incorporated in the 

case of Laplace transforms. Also, there are several 

time functions (e.g., the increasing exponential) for 

which a Fourier transform does not exist. However, 

if it is spectral information as opposed to transient 

response in which we are primarily concerned, the 

Fourier transform is the ticket.

EXAMPLE 17.5
Use the Fourier transform to obtain the continuous spectrum of the 
single rectangular pulse in Fig. 17.13a.

The pulse is a truncated version of the sequence considered previously 
in Fig. 17.11 and is described by

 f  (  t )    =   {    V  o        t  0   < t <  t  0   + τ   
0
  

 
  
t <  t  0    and t >  t  0   + τ

   

(Continued on next page)
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The Fourier transform of f(t) is found from Eq. [41a]:

 F  (   jω )    =  ∫ 
 t  0  
  
 t  0  +τ

     V  0    e   −jωt  dt 

and this may be easily integrated and simplified:

 F  (   jω )    =  V  0   τ   
sin   1 _ 2   ωτ

 ______ 
  1 _ 2   ωτ

    e   −jω  (   t  0  +τ/2 )     

■  FIGURE 17.13 (a) A single rectangular pulse identical to those of the sequence in Fig. 17.11.  
(b) A plot of |F(  jω)| corresponding to the pulse, with vo = 1, τ = 1, and t0 = 0. The frequency axis 
has been normalized to the value of f0 = 1/1.5 π corresponding to Fig. 17.12a to allow comparison; 
note that f0 has no meaning or relevance in the context of F( jω).
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The magnitude of F( jω) yields the continuous frequency spectrum, and 
it is of the form of the sampling function. The value of F(0) is voτ. The 
shape of the spectrum is identical with the envelope in Fig. 17.12b. A 
plot of |F( jω)| as a function of ω does not indicate the magnitude of the 
voltage present at any given frequency. What is it, then? Examination of 
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17.6 •  SOME PROPERTIES OF THE FOURIER 
TRANSFORM

Our object in this section is to establish several of the mathematical prop-
erties of the Fourier transform and, even more important, to understand its 
physical significance. We begin by using Euler’s identity to replace e−jωt in 
Eq. [41a]:

  F  (   jω )    =  ∫ 
−∞

  
∞

    f  (  t )   cos ωt dt − j ∫ 
−∞

  
∞

    f  (  t )   sin ωt dt  [42]

Since f(t), cos ωt, and sin ωt are all real functions of time, both the integrals 
in Eq. [42] are real functions of ω. Thus, by letting

  F  (   jω )    = A  (  ω )    + jB  (  ω )    =   |  F  (  jω )    |    e   jϕ  (  ω )      [43]

we have

 A(ω) =  −  ∫ 
−∞

  
∞

     f(t)cos ωt dt [44]

  B  (  ω )    = −  ∫ 
−∞

  
∞

    f  (  t )   sin ωt dt  [45]

    |  F  (  jω )    |    =  √ 
___________

   A   2   (  ω )    +  B   2   (  ω )       [46]

and

  ϕ  (  ω )    =  tan   −1    B  (  ω )    ____ 
A  (  ω )       [47]

Replacing ω with −ω shows that A(ω) and |F( jω)| are both even functions 
of ω, while B(ω) and ϕ(ω) are both odd functions of ω.

Now, if f(t) is an even function of t, then the integrand of Eq. [45] is an 
odd function of t, and the symmetrical limits force B(ω) to be zero; thus, if 
f(t) is even, its Fourier transform F( jω) is a real, even function of ω, and the 
phase function ϕ(ω) is zero or π for all ω. However, if f(t) is an odd function 

Eq. [40] shows that, if f(t) is a voltage waveform, then F(jω) is 
dimensionally “volts per unit frequency.”

PRACTICE 
●

17.8 If f(t) = −10 V, −0.2 < t < −0.1 s, f(t) = 10 V, 0.1 < t < 0.2 s,  
and f(t) = 0 for all other t, evaluate F(jω) for ω equal to (a) 0;  
(b) 10π rad/s; (c) −10π rad/s; (d) 15π rad/s; (e) −20π rad/s. 
17.9 If F(jω) = −10 V/(rad/s) for −4 < ω < −2 rad/s, +10 V/(rad/s)  
for 2 < ω < 4 rad/s, and 0 for all other ω, find the numerical value of 
f(t) at t equal to (a) 10−4 s; (b) 10−2 s; (c) π/4 s; (d) π/2 s; (e) π s. 
Ans: 17.8: 0; j1.273 V/(rad/s); −j1.273 V/(rad/s); −j0.424 V/(rad/s); 0. 
17.9: j1.9099 × 10−3 V; j0.1910 V; j4.05 V; −j4.05 V; 0.

hay01307_ch17_733-790.indd   761 23/01/18   7:15 pm



762 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

of t, then A(ω) = 0 and F( jω) is both odd and a pure imaginary function 
of ω; ϕ(ω) is ±π/2. In general, however, F( jω) is a complex function of ω.

Finally, we note that the replacement of ω by −ω in Eq. [42] forms the 
conjugate of F( jω). Thus,

 F  (  − jω )    = A  (  ω )    − jB  (  ω )    =  F   *   (   jω )    

and we have

 F  (   jω )   F  (  − jω )    = F  (   jω )    F   ∗   (   jω )    =  A   2   (  ω )    +  B   2   (  ω )    =   |  F  (   jω )    |     2  

Physical Significance of the Fourier Transform
With these basic mathematical properties of the Fourier transform in mind, 
we are now ready to consider its physical significance. Let us suppose that 
f(t) is either the voltage across or the current through a 1 Ω resistor, so that 
f  2(t) is the instantaneous power delivered to the 1 Ω resistor by f(t). Inte-
grating this power over all time, we obtain the total energy delivered by f(t) 
to the 1 Ω resistor,

   W  1Ω   =  ∫ 
−∞

  
∞

     f    2   (  t )   dt  [48]

Now let us resort to a little trickery. Thinking of the integrand in Eq. [48] as 
f(t) times itself, we replace one of those functions with Eq. [41b]:

  W  1Ω   =  ∫ 
−∞

  
∞

    f  (  t )     [    1 _ 2π
    ∫ 

−∞
  

∞
     e   jωt  F  (  jω )   dω ]   dt 

Since f(t) is not a function of the variable of integration ω, we may move it 
inside the bracketed integral and then interchange the order of integration:

  W  1Ω   =   1 __ 2π
    ∫ 

−∞
  

∞
      [   ∫ 

−∞
  

∞
    F  (  jω )    e   jωt  f  (  t )   dt ]   dω 

Next we shift F( jω) outside the inner integral, causing that integral to be-
come F(−jω):

  W  1Ω   =   1 __ 2π
    ∫ 

−∞
  

∞
    F  (  jω )   F  (  − jω )   dω =   1 __ 2π

    ∫ 
−∞

  
∞

      |  F  (  jω )    |     2  dω 

Collecting these results,

   ∫ 
−∞

  
∞

     f    2   (  t )   dt =   1 __ 2π
    ∫ 

−∞
  

∞
      |  F  (  jω )    |     2  dω  [49]

Equation [49] is a very useful expression known as Parseval’s theorem. 
This theorem, along with Eq. [48], tells us that the energy associated with 
f(t) can be obtained either from an integration over all time in the time do-
main or by 1/(2π) times an integration over all (radian) frequency in the 
frequency domain.

Parseval’s theorem also leads us to a greater understanding and interpre-
tation of the meaning of the Fourier transform. Consider a voltage v(t) with 
Fourier transform Fv(jω) and 1 Ω energy W1Ω:

  W  1Ω   =   1 __ 2π
    ∫ 

−∞
  

∞
      |   F  v    (  jω )    |     2  dω =   1 __ π    ∫ 

0
  
∞

      |   F  v    (  jω )    |     2  dω 

marc Antoine Parseval-Deschenes was a rather 

obscure French mathematician, geographer, and 

occasional poet who published these results in 

1805, seventeen years before Fourier published his 

theorem.
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where the rightmost equality follows from the fact that |Fv( jω)|2 is an even 
function of ω. Then, since ω = 2πf, we can write

   W  1Ω   =  ∫ 
−∞

  
∞

      |   F  v    (  jω )    |     2  df = 2 ∫ 
0
  
∞

      |   F  v    (  jω )    |     2  df  [50]

Figure 17.14 illustrates a typical plot of |Fv( jω)|2 as a function of both ω and 
f. If we divide the frequency scale up into vanishingly small increments df, 
Eq. [50] shows us that the area of a differential slice under the |Fv( jω)|2 
curve, having a width df, is |Fv( jω)|2 df. This area is shown shaded. The sum 
of all such areas, as f ranges from minus to plus infinity, is the total 1 Ω 
energy contained in v(t). Thus, |Fv( jω)|2 is the (1 Ω) energy density or 
energy per unit bandwidth (J/Hz) of v(t), and this energy density is always a 
real, even, nonnegative function of ω. By integrating |Fv( jω)|2 over an 
appropriate frequency interval, we can calculate that portion of the total 
energy lying within the chosen interval. Note that the energy density is not 
a function of the phase of Fv(jω), and thus there are an infinite number of 
time functions and Fourier transforms that possess identical energy-density 
functions.

■  FIGURE 17.14 The area of the slice |Fv( jω)|2 is the 1 Ω energy 
associated with v(t) lying in the bandwidth df.

0
0

│Fv ( jω)2│

ω
fdω

df

EXAMPLE 17.6
The one-sided [i.e., v(t) = 0 for t < 0] exponential pulse

v(t) = 4e−3tu(t)  V

is applied to the input of an ideal bandpass filter. If the filter pass-
band is defined by 1 < | f | < 2 Hz, calculate the total output energy.

We call the filter output voltage vo(t). The energy in vo(t) will therefore 
be equal to the energy of that part of v(t) having frequency components 
in the intervals 1 < f < 2 and −2 < f < −1. We determine the Fourier 
transform of v(t),

  
 F  v    (  jω )   

  
=

  
4 ∫ 

−∞
  

∞
     e   −jωt   e   −3t  u  (  t )   dt

    
 
  

=
  
4 ∫ 

0
  
∞

     e   −  (  3+jω )   t  dt =   4 ____ 3 + jω  
  

(Continued on next page)
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764 CHAPTER 17 FOURIER CIRCUIT ANALYSIS

In general, we see that an ideal bandpass filter enables us to remove en-
ergy from prescribed frequency ranges while still retaining the energy con-
tained in other frequency ranges. The Fourier transform helps us to describe 
the filtering action quantitatively without actually evaluating vo(t), although 
we will see later that the Fourier transform can also be used to obtain the 
expression for vo(t) if we wish to do so.

and then we may calculate the total 1 Ω energy in the input signal  
by either

  
 W  1Ω  

  
=

  
  1 __ 2π

    ∫ 
−∞

  
∞

      |   F  v    (  jω )    |     2  dω
    

 
  

=
  
  8 __ π    ∫ 

−∞
  

∞
      dω ____ 
9 +  ω   2 

   =   16 __ π    ∫ 
0
  
∞

      dω ____ 
9 +  ω   2 

   =   8 _ 3   J
  

or

  W  1Ω   =  ∫ 
−∞

  
∞

     v   2   (  t )   dt = 16 ∫ 
0
  
∞

     e   −6t   dt =   8 _ 3   J 

The total energy in vo(t), however, is smaller:

  
 W  o1  

  
=

  
  1 __ 2π

    ∫ 
−4π

  
−2π

      16 dω _____ 
9 +  ω   2 

   +   1 __ 2π
    ∫ 

2π
  
4π

      16 dω _____ 
9 +  ω   2 

  
     

 
  

=
  
  16 __ π    ∫ 

2π
  
4π

      dω ____ 
9 +  ω   2 

   =   16 __ 3π
    (   tan   −1    4π _ 3   −  tan   −1    2π _ 3   )    = 358 mJ

  

PRACTICE 
●

17.10 If i(t) = 10e20t [u(t + 0.1) − u(t − 0.1)] A, find (a) Fi (j0);  
(b) Fi (j10); (c) Ai (10); (d) Bi (10); (e) ϕi (10). 
17.11 Find the 1 Ω energy associated with the current  
 i  (  t )    = 20  e   −10t  u  (  t )    A  in the interval (a) −0.1 < t < 0.1 s;  
(b) −10 < ω < 10 rad/s; (c) 10 < ω < ∞ rad/s. 

Ans: 17.10: 3.63 A/(rad/s); 3.33  −31.7° A/(rad/s); 2.83 A/(rad/s); −1.749 A/(rad/s); 
−31.7°. 17.11: 17.29 J; 10 J; 5 J.

/

17.7 •  FOURIER TRANSFORM PAIRS FOR SOME 
SIMPLE TIME FUNCTIONS

The Unit-Impulse Function
We now seek the Fourier transform of the unit impulse  δ  (  t −  t  0   )    , a function 
we introduced in Sec. 14.3. That is, we are interested in the spectral proper-
ties or frequency-domain description of this singularity function. If we use 
the notation  ℱ {} to symbolize “Fourier transform of {},” then

 ℱ  {  δ  (  t −  t  0   )    }    =  ∫ 
−∞

  
∞

     e   −jωt  δ  (  t −  t  0   )   dt 

From our earlier discussion of this type of integral, we have

 ℱ  {  δ  (  t −  t  0   )    }    =  e   −jω t  0    = cos ω  t  0   − j sin ω  t  0   
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This complex function of ω leads to the 1 Ω energy-density function,

   |  ℱ  {  δ  (  t −  t  0   )    }    |     2  =  cos   2  ω  t  0   +  sin   2  ω  t  0   = 1 

This remarkable result says that the (1 Ω) energy per unit bandwidth is 
unity at all frequencies, and that the total energy in the unit impulse is in-
finitely large. No wonder, then, that we must conclude that the unit impulse 
is “impractical” in the sense that it cannot be generated in the laboratory. 
Moreover, even if one were available to us, it must appear distorted af-
ter being subjected to the finite bandwidth of any practical laboratory 
instrument.

Since there is a unique one-to-one correspondence between a time func-
tion and its Fourier transform, we can say that the inverse Fourier transform 
of   e   −jω t  0     is  δ  (  t −  t  0   )    . Utilizing the symbol  ℱ −1{} for the inverse transform, 
we have

  ℱ   −1   {   e   −jω t  0    }    = δ  (  t −  t  0   )    

Thus, we now know that

   1 __ 2π
    ∫ 

−∞
  

∞
     e   jωt   e   −jω t  0    dω = δ  (  t −  t  0   )    

even though we would fail in an attempt at the direct evaluation of this im-
proper integral. Symbolically, we may write

  δ  (  t −  t  0   )    ⇔  e   −jω t  0     [52]

where ⇔ indicates that the two functions constitute a Fourier transform pair.
Continuing with our consideration of the unit-impulse function, let us 

consider a Fourier transform in that form,

 F  (  jω )    = δ  (  ω −  ω  0   )    

which is a unit impulse in the frequency domain located at ω = ω0. Then 
f(t) must be

 f  (  t )    =  ℱ   −1   {  F  (  jω )    }    =   1 __ 2π
    ∫ 

−∞
  

∞
     e   jωt  δ  (  ω −  ω  0   )   dω =   1 __ 2π

    e   j ω  0  t  

where we have used the sifting property of the unit impulse. Thus we may 
now write

   1 __ 2π
    e   j ω  0  t  ⇔ δ  (  ω −  ω  0   )    

or

   e   j ω  0  t  ⇔ 2πδ  (  ω −  ω  0   )     [52]

Also, by a simple sign change we obtain

   e   −j ω  0  t  ⇔ 2πδ  (  ω +  ω  0   )     [53]

Clearly, the time function is complex in both expressions [57] and [58], and 
does not exist in the real world of the laboratory.

However, we know that

 cos  ω  0   t =   1 _ 2    e   j ω  0  t  +   1 _ 2    e   −j ω  0  t  
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and it is easily seen from the definition of the Fourier transform that

  ℱ  {   f  1    (  t )    }    + ℱ  {   f  2    (  t )    }    = ℱ  {   f  1    (  t )    +  f  2    (  t )    }     [54]

Therefore,

  
ℱ  {  cos  ω  0   t }   

  
=

  
ℱ  {    1 _ 2    e   j ω  0  t  }    + ℱ  {    1 _ 2    e   −j ω  0  t  }   

     
 
  

=
  
πδ  (  ω −  ω  0   )    + πδ  (  ω +  ω  0   )   

   

which indicates that the frequency-domain description of cos ω0t shows a 
pair of impulses, located at ω = ±ω0. This should not be a great surprise, 
for in our first discussion of complex frequency in Chap. 14, we noted that 
a sinusoidal function of time was always represented by a pair of imaginary 
frequencies located at s = ±  jω0. We have, therefore,

  cos  ω  0   t ⇔ π  [  δ  (  ω +  ω  0   )    + δ  (  ω −  ω  0   )    ]     [55]

The Constant Forcing Function
To find the Fourier transform of a constant function of time, f(t) = K, our first 
inclination might be to substitute this constant in the defining equation for 
the Fourier transform and evaluate the resulting integral. If we did, we would 
find ourselves with an indeterminate expression on our hands. Fortunately, 
however, we have already solved this problem, for from expression [58],

  e   −j ω  0  t  ⇔ 2πδ  (  ω +  ω  0   )    

We see that if we simply let ω0 = 0, then the resulting transform pair is

  1 ⇔ 2πδ  (  ω )     [56]

from which it follows that

  K ⇔ 2πKδ  (  ω )     [57]

and our problem is solved. The frequency spectrum of a constant function 
of time consists only of a component at ω = 0, which we knew all along.

The Signum Function
As another example, let us obtain the Fourier transform of a singularity 
function known as the signum function, sgn(t), defined by

  sgn   (  t )    =   {   − 1  t < 0  1  
t > 0    [58]

or

 sgn   (  t )    = u  (  t )    − u  (  − t )    

Again, if we should try to substitute this time function in the defining equa-
tion for the Fourier transform, we would face an indeterminate expression 
upon substitution of the limits of integration. This same problem will arise 
every time we try to obtain the Fourier transform of a time function that 
does not approach zero as |t| approaches infinity. Fortunately, we can avoid 
this situation by using the Laplace transform, as it contains a built-in con-
vergence factor that cures many of the inconvenient ills associated with the 
evaluation of certain Fourier transforms.
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Along those lines, the signum function under consideration can be writ-
ten as

 sgn   (  t )    =   lim  
a→0

    [   e   −at  u  (  t )    −  e   at  u  (  − t )    ]    

Notice that the expression within the brackets does approach zero as |t| gets 
very large. Using the definition of the Fourier transform, we obtain

  
ℱ  {  sgn   (  t )    }   

  
=

  
  lim  
a→0

    [   ∫ 
0
  
∞

     e   −jωt   e   −at  dt −  ∫ 
−∞

  
0
     e   −jωt   e   at  dt ]   

      
 
  

=
  
  lim  
a→0

     − j2ω _____ 
 ω   2  +  a   2 

   =   2 __ 
jω

  
   

The real component is zero, since sgn(t) is an odd function of t. Thus,

  sgn   (  t )    ⇔   2 __ 
jω

    [59]

The Unit-Step Function
As a final example in this section, let us look at the familiar unit-step func-
tion, u(t). Making use of our work on the signum function in the preceding 
paragraphs, we represent the unit step by

 u  (  t )    =   1 _ 2   +   1 _ 2   sgn   (  t )    

and obtain the Fourier transform pair

  u  (  t )    ⇔   [  πδ  (  ω )    +   1 _ 
jω

   ]     [60]

Table 17.2 presents the conclusions drawn from the examples discussed in 
this section, along with a few others that have not been detailed here.

EXAMPLE 17.7
Use Table 17.2 to find the Fourier transform of the time function 
3e−t cos 4 t u(t).

From the next to the last entry in the table, we have

  e   −αt  cos  ω  d   t u  (  t )    ⇔   α + jω _________  
  (  α + jω )     2  +  ω  d  2 

   

We therefore identify α as 1 and ωd as 4, and have

 F  (  jω )    = 3   1 + jω _________  
  (  1 + jω )     2  + 16

   

PRACTICE 
●

17.12 Evaluate the Fourier transform at ω = 12 for the time function  
(a) 4u(t) − 10δ(t); (b) 5e−8t u(t); (c) 4 cos 8tu(t); (d) −4 sgn(t). 
17.13 Find f (t) at t = 2 if F( jω) is equal to (a) 5e−j3ω − j (4/ω);  
(b) 8[δ(ω − 3) + δ(ω + 3)]; (c) (8/ω) sin 5ω. 

Ans: 17.12: 10.01  −178.1°; 0.347  −56.3°; −j 0.6; j 0.667. 17.13: 2.00; 2.45; 4.00.//
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TABLE 
●
 17.2 A Summary of Some Fourier Transform Pairs

f(t) f(t) ℱ{f(t)} = F(    jω) |F(    jω)|

(1)

t0
t  δ  (  t −  t  0   )      e   −jω t  0    ω

1

Complex
t   e   j ω  0  t   2πδ  (  ω −  ω  0   )    ω

(2π)

ω0

1
t

–1
 cos  ω  0   t  π  [  δ  (  ω +  ω  0   )    + δ  (  ω −  ω  0   )    ]    ω

(π)

ω0–ω0

(π)

1

t 1  2πδ  (  ω )    ω

(2π)

1
t

–1
 sgn   (  t )       2 __ 

jω
   ω

1

t  u  (  t )     πδ  (  ω )    +   1 __ 
jω

   ω(π)

1

t   e   −αt  u  (  t )       1 _____ 
α  +  jω   

1
α

ω

t    [   e   −αt  cos  ω  d   t ]   u  (  t )       α  +  jω  __________  
  (  α  +  jω )     2    +    ω  d  2 

   ωωd–ωd

t

1

T
2

– T
2

 u  (  t +   1 _ 2   T )    − u  (  t −   1 _ 2   T )    
 T   

sin   ωT ___ 2  
 _____ 

  ωT ___ 2  
   ω2π

T
– 2π

T
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17.8 •  THE FOURIER TRANSFORM OF A GENERAL 
PERIODIC TIME FUNCTION

In Sec. 17.5 we remarked that we would be able to show that periodic time 
functions, as well as nonperiodic functions, possess Fourier transforms. 
Let us now establish this fact on a rigorous basis. Consider a periodic time 
function f(t) with period T and Fourier series expansion, as outlined by  
Eqs. [34], [35], and [36], repeated here for convenience:

  f  (  t )    =   ∑ 
n=−∞

  
∞

     c  n    e   jn ω  0  t   [34]

   c  n   =   1 __ 
T

    ∫ 
−T/2

  
T/2

    f  (  t )    e   −jn ω  0  t  dt  [35]

and

   ω  0   =   2π __ 
T

    [36]

Bearing in mind that the Fourier transform of a sum is just the sum of the 
transforms of the terms in the sum, and that cn is not a function of time, we 
can write

 ℱ  {  f  (  t )    }    = ℱ  {    ∑ 
n=−∞

  
∞

     c  n    e   jn ω  0  t  }    =   ∑ 
n=−∞

  
∞

     c  n   ℱ  {   e   jn ω  0  t  }    

After obtaining the transform of   e   jn ω  0  t   from expression [57], we have

  f  (  t )    ⇔ 2π  ∑ 
n=−∞

  
∞

     c  n   δ  (  ω − n  ω  0   )     [61]

This shows that f(t) has a discrete spectrum consisting of impulses located 
at points on the ω axis given by ω = nω0, n = … , −2, −1, 0, 1, … . The 
strength of each impulse is 2π times the value of the corresponding Fourier 
coefficient appearing in the complex form of the Fourier series expansion 
for f(t).

As a check on our work, let us see whether the inverse Fourier transform 
of the right side of expression [66] is once again f(t). This inverse transform 
can be written as

  ℱ   −1   {  F  (  jω )    }    =   1 __ 2π
    ∫ 

−∞
  

∞
     e   jωt   [  2π  ∑ 

n=−∞
  

∞
     c  n   δ  (  ω − n  ω  0   )    ]   dω  =   ?   f  (  t )    

Since the exponential term does not contain the index of summation n, we 
can interchange the order of the integration and summation operations:

  ℱ   −1   {  F  (  jω )    }    =   ∑ 
n=−∞

  
∞

     ∫ 
−∞

  
∞

     c  n    e   jωt  δ  (  ω − n  ω  0   )   dω  =   ?   f  (  t )    

Because it is not a function of the variable of integration, cn can be treated 
as a constant. Then, using the sifting property of the impulse, we obtain

  ℱ   −1   {  F  (  jω )    }    =   ∑ 
n=−∞

  
∞

     c  n    e   jn ω  0  t   =   ?   f  (  t )    
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which is exactly the same as Eq. [34], the complex Fourier series ex-
pansion for f(t). The question marks in the preceding equations can now 
be removed, and the existence of the Fourier transform for a periodic 
time function is established. This should come as no great surprise, 
however. In the last section we evaluated the Fourier transform of a co-
sine function, which is certainly periodic, although we made no direct 
reference to its periodicity. However, we did use a backhanded approach 
in getting the transform. But now we have a mathematical tool by which 
the transform can be obtained more directly. To demonstrate this pro-
cedure, consider f(t) = cos ω0t once more. First we evaluate the Fourier 
coefficients cn:

  c  n   =   1 __ 
T

    ∫ 
−T/2

  
T/2

    cos  ω  0  t  e   −jn ω  0  t  dt =   {     
1 _ 2    n = ±1  
0
  

otherwise
   

Then

 ℱ  {  f  (  t )    }    = 2π  ∑ 
n=−∞

  
∞

     c  n   δ  (  ω − n  ω  0   )    

This expression has values that are nonzero only when n = ±1, and it fol-
lows, therefore, that the entire summation reduces to

 ℱ  {  cos  ω  0   t }    = π  [  δ  (  ω −  ω  0   )    + δ  (  ω +  ω  0   )    ]    

which is precisely the expression that we obtained before. What a relief!

PRACTICE 
●

17.14 Find (a)  ℱ {5 sin2 3t}; (b)  ℱ {A sin ω0t}; (c)  ℱ {6 cos (8t + 0.1π)}.

Ans: 2.5π[2δ(ω) − δ(ω + 6) − δ(ω − 6)]; jπ A[δ(ω + ω0) − δ(ω − ω0)];  
[18.85  18°] δ(ω − 8) + [18.85  −18°] δ(ω + 8)./ /

17.9 •  THE SYSTEM FUNCTION AND RESPONSE 
IN THE FREQUENCY DOMAIN

In Sec. 14.11, the problem of determining the output of a physical system 
in terms of the input and the impulse response was solved by using the 
convolution integral and initially working in the time domain. The input, 
the output, and the impulse response are all time functions. Subsequently, 
we found that it was often more convenient to perform such operations in 
the frequency domain, as the Laplace transform of the convolution of two 
functions is simply the product of each function in the frequency domain. 
Along the same lines, we find the same is true when working with Fourier 
transforms.

To do this we examine the Fourier transform of the system output. As-
suming arbitrarily that the input and output are voltages, we apply the basic 
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definition of the Fourier transform and express the output by the convolu-
tion integral:

 ℱ  {   v  0    (  t )    }    =  F  0    (   jω )    =  ∫ 
−∞

  
∞

     e   −jωt   [   ∫ 
−∞

  
∞

     v  i    (  t − z )   h  (  z )   dz ]   dt 

where we again assume no initial energy storage. At first glance this ex-
pression may seem rather formidable, but it can be reduced to a result that 
is surprisingly simple. We may move the exponential term inside the inner 
integral because it does not contain the variable of integration z. Next we 
reverse the order of integration, obtaining

  F  0    (   jω )    =  ∫ 
−∞

  
∞

      [   ∫ 
−∞

  
∞

     e   −jωt   v  i    (  t − z )   h  (  z )   dt ]   dz 

Since it is not a function of t, we can extract h(z) from the inner integral and 
simplify the integration with respect to t by a change of variable, t − z = x:

  
 F  0    (   jω )   

  
=

  
 ∫ 

−∞
  

∞
    h  (  z )     [   ∫ 

−∞
  

∞
     e   −jω  (  x+z )      v  i    (  x )   dx ]   dz

     
 
  

=
  
 ∫ 

−∞
  

∞
     e   −jωz  h  (  z )     [   ∫ 

−∞
  

∞
     e   −jωx   v  i    (  x )   dx ]   dz

  

But now the sun is starting to break through, for the inner integral is merely 
the Fourier transform of vi(t). Furthermore, it contains no z terms and can be 
treated as a constant in any integration involving z. Thus, we can move this 
transform, Fi( jω), completely outside all the integral signs:

  F  0    (   jω )    =  F  i    (   jω )    ∫ 
−∞

  
∞

     e   −jωz  h  (  z )   dz 

Finally, the remaining integral exhibits our old friend once more, another 
Fourier transform! This one is the Fourier transform of the impulse re-
sponse, which we will designate by the notation H(jω). Therefore, all our 
work has boiled down to the simple result:

  F  0    (   jω )    =  F  i    (   jω )   H  (   jω )    =  F  i    (   jω )   ℱ  {  h  (  t )    }    

This is another important result: it defines the system function H( jω) as the 
ratio of the Fourier transform of the response function to the Fourier trans-
form of the forcing function. Moreover, the system function and the impulse 
response constitute a Fourier transform pair:

  h  (  t )    ⇔ H  (   jω )     [62]

The development in the preceding paragraph also serves to prove the 
general statement that the Fourier transform of the convolution of two time 
functions is the product of their Fourier transforms,

  ℱ  {   f  (  t )    ∗ g  (  t )    }    =  F  f     (  jω )    F  g    (   jω )     [63]
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The foregoing comments might make us wonder once again why we would 
ever choose to work in the time domain at all, but we must always remember 
that we seldom get something for nothing. A poet once said, “Our sincerest 
laughter/with some pain is fraught.”2 The pain herein is the occasional dif-
ficulty in obtaining the inverse Fourier transform of a response function, for 
reasons of mathematical complexity. On the other hand, a simple desktop 
computer can convolve two time functions with magnificent celerity. For 
that matter, it can also obtain an FFT (fast Fourier transform) quite rapidly. 
Consequently there is no clear-cut advantage between working in the time 
domain and in the frequency domain. A decision must be made each time a 
new problem arises; it should be based on the information available and on 
the computational facilities at hand.

Consider a forcing function of the form

  v  i    (  t )    = u  (  t )    − u  (  t − 1 )    

and a unit-impulse response defined by

 h  (  t )    = 2  e   −t  u  (  t )    

We first obtain the corresponding Fourier transforms. The forcing function 
is the difference between two unit-step functions. These two functions are 
identical, except that one is initiated 1 s after the other. We will evaluate the 
response due to u(t); the response due to u(t − 1) is the same, but delayed in 
time by 1 s. The difference between these two partial responses will be the 
total response due to vi(t).

The Fourier transform of u(t) was obtained in Sec. 17.7:

 ℱ  {  u  (  t )    }    = πδ  (  ω )    +   1 __ 
jω

   

The system function is obtained by taking the Fourier transform of h(t), 
listed in Table 17.2,

 ℱ  {  h  (  t )    }    = H  (   jω )    = ℱ  {  2  e   −t  u  (  t )    }    =   2 ____ 1 + jω   

The inverse transform of the product of these two functions yields that com-
ponent of vo(t) caused by u(t),

  v  o1    (  t )    =  ℱ   −1   {    2πδ  (  ω )    _ 1 + jω   +   2 _ 
jω  (  1 + jω )      }    

Using the sifting property of the unit impulse, the inverse transform of the 
first term is just a constant equal to unity. Thus,

  v  o1    (  t )    = 1 +  ℱ   −1   {    2 _ 
jω  (  1 + jω )      }    

The second term contains a product of terms in the denominator, each of 
the form (α + jω), and its inverse transform is found most easily by making 
use of the partial-fraction expansion that we developed in Sec. 14.4. Let us 

To recapitulate, if we know the Fourier transforms of 

the forcing function and the impulse response, then 

the Fourier transform of the response function can be 

obtained as their product. The result is a description 

of the response function in the frequency domain; the 

time-domain description of the response function is 

obtained by simply taking the inverse Fourier trans-

form. Thus we see that the process of convolution in 

the time domain is equivalent to the relatively simple 

operation of multiplication in the frequency domain.

(2) P. B. Shelley, “To a Skylark,” 1821.
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select a technique for obtaining a partial-fraction expansion that has one big 
advantage—it always works, although faster methods are usually available 
for most situations. We assign an unknown quantity in the numerator of 
each fraction, here two in number,

   2 _______ 
jω  (  1 + jω )      =   A __ 

jω
   +   B ____ 1 + jω   

and then substitute a corresponding number of simple values for jω. Here 
we let jω = 1:

 1 = A +   B __ 2   

and then let jω = −2:

 1 = −   A __ 2   − B 

This leads to A = 2 and B = −2. Thus,

  ℱ   −1   {    2 _ 
jω  (  1 + jω )      }    =  ℱ   −1   {    2 _ 

jω
   −   2 _ 1 + jω   }    = sgn   (  t )    − 2  e   −t  u  (  t )    

so that

  
 v  o1    (  t )   

  
=

  
1 + sgn   (  t )    − 2  e   −t  u  (  t )   

       =  2u  (  t )    − 2  e   −t  u  (  t )      
 
  

=
  
2  (  1 −  e   −t  )   u  (  t )   

   

It follows that vo2(t), the component of vo(t) produced by u(t − 1), is

  v  o2    (  t )    = 2  (  1 −  e   −  (  t−1 )     )   u  (  t − 1 )    

Therefore,

  
 v  o    (  t )   

  
=

  
 v  o1    (  t )    −  v  o2    (  t )   

      =  2  (  1 −  e   −t  )   u  (  t )    − 2  (  1 −  e   −t+1  )   u  (  t − 1 )     

The discontinuities at t = 0 and t = 1 dictate a separation into three time 
intervals:

  v  o    (  t )    =   
{

   
0
  

 
  
t < 0

   2  (  1 −  e   −t  )        0 < t < 1   
2  (  e − 1 )    e   −t 

  
 
  
t > 1

    

PRACTICE 
●

17.15 The impulse response of a certain linear network is h(t) = 
6e−20t u(t). The input signal is 3e−6t u(t) V. Find (a) H( jω); (b) Vi (jω); 
(c) Vo( jω); (d) vo(0.1); (e) vo(0.3); (f) vo,max. 

Ans: 6/(20 + jω); 3/(6 + jω); 18/[(20 + jω)(6 + jω)]; 0.532 V; 0.209 V; 0.5372.
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COMPUTER-AIDED ANALYSIS

The material presented in this chapter forms the foundation for many 
advanced fields of study, including signal processing, communications, 
and controls. We can only introduce some of the more fundamental 
concepts within the context of an introductory circuits text, but even at 
this point some of the power of Fourier-based analysis can be brought 
to bear. As a first example, consider the op amp circuit of Fig. 17.15 
constructed in LTspice.

■  FIGURE 17.15 An inverting amplifier circuit with a voltage gain of −10, driven by a 
sinusoidal input operating at 100 Hz.

The circuit has a voltage gain of −10, and so we would expect a si-
nusoidal output of 10 V amplitude. This is indeed what we obtain from 
a transient analysis of the circuit, as shown in Fig. 17.16.

■ FIGURE 17.16 Simulated output voltage of the amplifier circuit shown in Fig. 17.15.

hay01307_ch17_733-790.indd   774 23/01/18   7:15 pm



  SECTION 17.9 THE SYSTEm FUNCTION AND RESPONSE IN THE FREqUENCY DOmAIN 775

■ FIGURE 17.17 Discrete approximation to the Fourier transform of Fig. 17.16.

LTspice allows us to determine the frequency spectrum of the output 
voltage through what is known as a fast Fourier transform (FFT), a discrete- 
time approximation to the exact Fourier transform of the signal. In the 
waveform window, right-click and select View -> FFT.  The result is the 
plot shown in Fig. 17.17. Note that several plotting options are available, 
including dB scale and log frequency. It is often useful to examine both the 
dB scale and log scale for frequency, as we have for Bode plots. The result 
of our amplifier shows a dominant single feature at a frequency of 100 Hz. 
Other components are observed, which are a combination of noise from nu-
merical analysis and response of the op amp according to the SPICE model.

As the input voltage magnitude is increased, the output of the ampli-
fier approaches the saturation condition determined by the positive and 
negative dc supply voltages (±15 V in this example). This behavior is 
evident in the simulation result of Fig. 17.18, which corresponds to an

■  FIGURE 17.18 Transient analysis simulation results for the amplifier circuit when the 
input voltage magnitude is increased to 1.8 V. Saturation effects manifest themselves in the 
plot as clipped waveform extrema. (Continued on next page)
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■  FIGURE 17.19 Frequency spectrum of the waveform depicted in Fig. 17.18, showing the 
presence of several harmonic components in addition to the fundamental frequency. The 
finite width of the features is an artifact of the numerical discretization (a set of discrete 
time values was used).

input voltage magnitude of 1.8 V. A key feature of interest is that the 
output voltage waveform is no longer a pure sinusoid. As a result, we 
expect nonzero values at harmonic frequencies to appear in the frequen-
cy spectrum of the function, as is the case in Fig. 17.19. The effect of 
reaching saturation in the amplifier circuit is a distortion of the signal; 
if connected to a speaker, we do not hear a “clean” 100 Hz waveform. 
Instead, we now hear a superposition of waveforms which include not 
only the 100 Hz fundamental frequency, but significant harmonic com-
ponents at 300 and 500 Hz as well. Further distortion of the waveform 
would increase the amount of energy in harmonic frequencies,  

■  FIGURE 17.20 Severe effects of amplifier saturation are observed in the simulated 
response to a 15 V sinusoidal input.
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17.10 •  THE PHYSICAL SIGNIFICANCE 
OF THE SYSTEM FUNCTION

In this section we will try to connect several aspects of the Fourier trans-
form with work we completed in earlier chapters.

Given a general linear two-port network N without any initial energy 
storage, we assume sinusoidal forcing and response functions, arbitrarily 
taken to be voltages, as shown in Fig. 17.22. We let the input voltage be 
simply A cos(ωxt + θ), and the output can be described in general terms as  
vo(t) = B cos(ωxt + ϕ), where the amplitude B and phase angle ϕ are func-
tions of ωx. In phasor form, we can write the forcing and response functions 
as Vi = Ae jθ and Vo = Be jϕ. The ratio of the phasor response to the phasor 
forcing function is a complex number that is a function of ωx:

    V  o   __  V  i  
   = G  (   ω  x   )    =   B __ 

A
    e   j  (  ϕ−θ )     

where B/A is the amplitude of G and ϕ − θ is its phase angle. This transfer func-
tion G(ωx) could be obtained in the laboratory by varying ωx over a large range 

■  FIGURE 17.21 An FFT of the waveform shows a significant increase in the fraction of 
energy present in harmonics as opposed to the fundamental frequency of 100 Hz.

so contributions from higher-frequency harmonics would become 
more significant. This is evident in the simulation results of Fig. 17.20 
and 17.21, which show the output voltage in the time and frequency 
domains, respectively.

■  FIGURE 17.22 Sinusoidal analysis can be used to determine the 
transfer function H( jωx) = (B/A)e j(ϕ−θ ), where B and ϕ are functions 
of ωx.

vo(t) = B cos (ωx t + ϕ)vi (t) = A cos (ωx t + θ) N

+

–

+

–
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of values and measuring the amplitude B/A and phase ϕ − θ for each value of 
ωx. If we then plotted each of these parameters as a function of frequency, the 
resultant pair of curves would completely describe the transfer function.

Now let us hold these comments in the backs of our minds for a moment 
as we consider a slightly different aspect of the same analysis problem.

For the circuit with sinusoidal input and output shown in Fig. 17.22, 
what is the system function H( jω)? To answer this question, we begin with 
the definition of H( jω) as the ratio of the Fourier transforms of the out-
put and the input. Both of these time functions involve the functional form 
cos(ωxt + β), whose Fourier transform we have not evaluated as yet, al-
though we can handle cos ωxt. The transform we need is

 ℱ  {  cos   (   ω  x   t + β )    }    =  ∫ 
−∞

  
∞

     e   −jωt  cos   (   ω  x   t + β )   dt 

If we make the substitution ωxt + β = ωxτ, then

  
ℱ  {  cos   (   ω  x   t + β )    }   

  
=

  
 ∫ 

−∞
  

∞
     e   −jωτ+jωβ/ ω  x    cos  ω  x   τ dτ

        =   e   jωβ/ ω  x    ℱ  {  cos  ω  x   t }        

 

  

=

  

π  e   jωβ/ ω  x     [  δ  (  ω −  ω  x   )    + δ  (  ω +  ω  x   )    ]   

  

This is a new Fourier transform pair,

  cos   (   ω  x   t + β )    ⇔ π  e   jωβ/ ω  x     [  δ  (  ω −  ω  x   )    + δ  (  ω +  ω  x   )    ]     [64]

which we can now use to evaluate the desired system function,

  

H  (  jω )   

  

=

  

  ℱ  {  B cos   (   ω  x   t + ϕ )    }     ____________  ℱ  {  A cos   (   ω  x   t + θ )    }     

       =    πB  e   jωϕ/ ω  x     [  δ  (  ω −  ω  x   )    + δ  (  ω +  ω  x   )    ]      ____________________   
πA  e   jωθ/ ω  x     [  δ  (  ω −  ω  x   )    + δ  (  ω +  ω  x   )    ]   

       

 

  

=

  

  B __ 
A

    e   jω  (  ϕ−θ )   / ω  x   

   

Now we recall the expression for G(ωx),

 G  (   ω  x   )    =   B __ 
A

    e   j  (  ϕ−θ )     

where B and ϕ were evaluated at ω = ωx, and we see that evaluating at 
H(jω) at ω = ωx gives

 H  (   ω  x   )    = G  (   ω  x   )    =   B __ 
A

    e   j  (  ϕ−θ )     

Since there is nothing special about the x subscript, we conclude that the 
system function and the transfer function are identical:

  H  (   jω )    = G  (  ω )     [65]

The fact that one argument is ω while the other is indicated by jω is imma-
terial and arbitrary; the j merely makes possible a more direct comparison 
between the Fourier and Laplace transforms.

Equation [65] represents a direct connection between Fourier trans-
form techniques and sinusoidal steady-state analysis. Our previous work on 
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steady-state sinusoidal analysis using phasors was but a special case of the 
more general techniques of Fourier transform analysis. It was “special” in 
the sense that the inputs and outputs were sinusoids, whereas the use of 
Fourier transforms and system functions enables us to handle nonsinusoidal 
forcing functions and responses.

Thus, to find the system function H( jω) for a network, all we need to do 
is to determine the corresponding sinusoidal transfer function as a function 
of ω (or jω).

EXAMPLE 17.8
Find the voltage across the inductor of the circuit shown in 
Fig. 17.23a when the input voltage is a simple exponentially decay-
ing pulse, as indicated.

We need the system function; but it is not necessary to apply an 
impulse, find the impulse response, and then determine its inverse 
transform. Instead we use Eq. [65] to obtain the system function H( jω) 
by assuming that the input and output voltages are both sinusoids de-
scribed by their corresponding phasors, as shown in Fig. 17.23b.
Using voltage division, we have

 H  (   jω )    =    V  o   __  V  i  
   =   j2ω _____ 4 + j2ω

   

The transform of the forcing function is

 ℱ  {   v  i    (  t )    }    =   5 ____ 3 + jω   

and thus the transform of vo(t) is given as

  

ℱ  {   v  o    (  t )    }   

  

=

  

H  (   jω )   ℱ  {   v  i    (  t )    }   

       =    j2ω _____ 4 + j2ω
     5 ____ 3 + jω      

 

  

=

  

  15 ____ 3 + jω   −   10 ____ 2 + jω  

  

where the partial fractions appearing in the last step help to determine 
the inverse Fourier transform

  
 v  o    (  t )   

  
=

  
 ℱ   −1   {    15 _ 3 + jω   −   10 _ 2 + jω   }   

       =  15  e   −3t  u  (  t )    − 10  e   −2t  u  (  t )       

 

  

=

  

5  (  3  e   −3t  − 2  e   −2t  )   u  (  t )    V

   

Our problem is completed without fuss, convolution, or differential 
equations.

PRACTICE 
●

17.16 Use Fourier transform techniques on the circuit of Fig. 17.24 to 
find i1(t) at t = 1.5 ms if is equals (a) δ(t) A; (b) u(t) A; (c) cos 500t A. 

Ans: −141.7 A; 0.683 A; 0.308 A.

■  FIGURE 17.23 (a) The response vo(t) caused by  
vi(t) is desired. (b) The system function H( jω) may  
be determined by sinusoidal steady-state analysis:  
H( jω) = Vo/ Vi.

+
–

vo(t)

+

–

(a)

4 Ω

2 Hvi (t) =
5e–3tu(t) V

+

–

(b)

4 Ω

j2ω ΩVi Vo
+
–

4 Ω

6 Ω 20 mHis

i1

■  FIGURE 17.24
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Epilogue
Returning again to Eq. [65], the identity between the system function H(jω) 
and the sinusoidal steady-state transfer function G(ω), we may now consider 
the system function as the ratio of the output phasor to the input phasor. Sup-
pose that we hold the input-phasor amplitude at unity and the phase angle at 
zero. Then the output phasor is H(jω). Under these conditions, if we record 
the output amplitude and phase as functions of ω, for all ω, we have re-
corded the system function H(jω) as a function of ω, for all ω. We thus have 
examined the system response under the condition that an infinite number 
of sinusoids, all with unity amplitude and zero phase, were successively 
applied at the input. Now suppose that our input is a single unit impulse, 

Although a great deal of progress has been made toward 
developing a complete understanding of the function of 
muscle, there remain many open questions. A great deal 
of research in this field has been carried out using ver-
tebrate skeletal muscle, in particular the sartorius or leg 
muscle of the frog (Fig. 17.25).

■  FIGURE 17.25 Close-up of a frog against an orange background.

(©IT Stock/PunchStock RF)

Of the many analytical techniques scientists use, one 
of the most common is electron microscopy. Figure 17.26 

PRACTICAL APPLICATION
Image Processing

■  FIGURE 17.26 Electron micrograph of a region of frog sartorius muscle 
tissue. False color has been employed for clarity.

(Courtesy Professor John M. Squire, Imperial College, London)

shows an electron micrograph of frog sartorius mus-
cle tissue, sectioned in such a fashion as to highlight 
the regular arrangement of myosin, a filamentary type 
of contractile protein. Of interest to structural biolo-
gists are the periodicity and disorder of these proteins 
over a large area of muscle tissue. In order to develop 
a model for these characteristics, a numerical approach 
is preferable, where the analysis of such images can be 
automated. As can be seen in the figure, however, the 
image produced by the electron microscope can be con-
taminated by a high level of background noise, making 
automated identification of the myosin filaments prone 
to error.

Introduced with the intent of ultimately assisting 
us in the analysis of time-varying linear circuits, the 
Fourier-based techniques of this chapter are in fact very 
powerful general methods which find application in 
many other situations. Among these, the field of image 
processing makes frequent use of Fourier techniques, es-
pecially through the fast Fourier transform and related 
numerical methods. The image of Fig. 17.26 can be de-
scribed by a spatial function f (x, y) where f (x, y) = 0 
corresponds to white, f (x, y) = 1 corresponds to red, 
and (x, y) denotes a pixel location in the image. Defin-
ing a filter function h(x, y) that has the appearance of 
Fig. 17.27a, the convolution operation

 g  (  x,  y )    = f  (  x,  y )    ∗ h  (  x,  y )    

results in the image of Fig. 17.27b in which the myosin 
filaments (viewed on end) are more clearly identifiable.

In practice, this image processing is performed in 
the frequency domain, where the FFT of both f and h 
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and look at the impulse response h(t). Is the information we examine really 
any different from what we just obtained? The Fourier transform of the 
unit impulse is a constant equal to unity, indicating that all frequency com-
ponents are present, all with the same magnitude, and all with zero phase. 
Our system response is the sum of the responses to all these components. 
The result might be viewed at the output on a cathode-ray oscilloscope. It is 
evident that the system function and the impulse-response function contain 
equivalent information regarding the response of the system.

We therefore have two different methods of describing the response of 
a system to a general forcing function; one is a time-domain description, 
and the other a frequency-domain description. Working in the time domain, 

are calculated, and the resulting matrices multiplied to-
gether.

An inverse FFT operation then produces the filtered 
image of Fig. 17.27b. Why does this convolution equate 
to a filtering operation? The myosin filament arrange-
ment possesses hexagonal symmetry, as does the filter 
function h(x, y)—in a sense, both the myosin filament 

arrangement and the filter function possess the same 
spatial frequencies. The convolution of f with h results 
in a reinforcement of the hexagonal pattern within the 
original image and the removal of noise pixels (which 
do not possess hexagonal symmetry). This can be un-
derstood qualitatively if we model a horizontal row of 
Fig. 17.26 as a sinusoidal function f (x) = cos ω0t, which 
has the Fourier transform shown in Fig. 17.28a—a 
matched pair of impulse functions separated by 2ω0. If 
we convolve this function with a filter function h(x) =  
cos  ω1t, the Fourier transform of which is depicted 
in Fig. 17.28b, we get zero if ω1 ≠ ω0; the frequen-
cies (periodicities) of the two functions do not match. 
If, instead, we choose a filter function with the same 
frequency as f (x), the convolution has a nonzero value  
at ω = ± ω0.

■  FIGURE 17.27 (a) Spatial filter having hexagonal symmetry. (b) Image 
after convolution and inverse discrete Fourier transform are performed, 
showing a reduction in background noise.

(Courtesy Professor John M. Squire, Imperial College, London)

(a)

(b)

■  FIGURE 17.28 (a) Fourier transform of f (x) = cos ω0t. 
(b) Fourier transform of h(x) = cos ω1t.

ω

(a)

ω0‒ω0



ω

(b)

ω1‒ω1



ω

(a)

ω0‒ω0



ω

(b)

ω1‒ω1
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we convolve the forcing function with the impulse response of the system 
to obtain the response function. As we saw when we first considered con-
volution, this procedure may be interpreted by thinking of the input as a 
continuum of impulses of different strengths and times of application; the 
output which results is a continuum of impulse responses.

In the frequency domain, however, we determine the response by multi-
plying the Fourier transform of the forcing function by the system function. 
In this case we interpret the transform of the forcing function as a frequency 
spectrum, or a continuum of sinusoids. Multiplying this by the system func-
tion, we obtain the response function, also as a continuum of sinusoids.

SUMMARY AND REVIEW

Whether we choose to think of the output as a continuum of impulse re-
sponses or as a continuum of sinusoidal responses, the linearity of the net-
work and the superposition principle enable us to determine the total output 
as a time function by summing over all frequencies (the inverse Fourier 
transform), or as a frequency function by summing over all time (the Fourier 
transform).

Unfortunately, both of these techniques have some difficulties or limita-
tions associated with their use. In using convolution, the integral itself can 
often be rather difficult to evaluate when complicated forcing functions or 
impulse-response functions are present. Furthermore, from the experimen-
tal point of view, we cannot really measure the impulse response of a system 
because we cannot actually generate an impulse. Even if we approximated 
the impulse by a narrow high-amplitude pulse, we would probably drive our 
system into saturation and out of its linear operating range.

With regard to the frequency domain, we encounter one absolute limita-
tion in that we may easily hypothesize forcing functions that we would like 
to apply theoretically that do not possess Fourier transforms. Moreover, if 
we wish to find the time-domain description of the response function, we 
must evaluate an inverse Fourier transform, and some of these inversions 
can be extremely difficult.

Finally, neither of these techniques offers a very convenient method 
of handling initial conditions. For this, the Laplace transform is clearly 
superior.

The greatest benefits derived from the use of the Fourier transform arise 
through the abundance of useful information it provides about the spectral 
properties of a signal, particularly the energy or power per unit bandwidth. 
Some of this information is also easily obtained through the Laplace trans-
form; we must leave a detailed discussion of the relative merits of each to 
more advanced signals and systems courses.

So, why has this all been withheld until now? The best answer is prob-
ably that these powerful techniques can overcomplicate the solution of 
simple problems and tend to obscure the physical interpretation of the per-
formance of the simpler networks. For example, if we are interested only in 
the forced response, then there is little point in using the Laplace transform 
and obtaining both the forced and natural response after laboring through a 
difficult inverse transform operation.
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Well, we could go on, but all good things must come to an end. Best of 
luck to you in your future studies.

 The harmonic frequencies of a sinusoid having the fundamental 
frequency ω0 are nω0, where n is an integer. (Examples 17.1, 17.2)

 The Fourier theorem states that provided a function f(t) satisfies certain 
key properties, it may be represented by the infinite series  
  a  0   +  ∑ n=1  ∞     (   a  n   cos n  ω  0   t +  b  n   sin n  ω  0   t )    , where   a  0   =   (  1 / T )    ∫ 0  

T
    f  (  t )   dt , 

  a  n   =   (  2 / T )    ∫ 0  
T
    f  (  t )   cos n  ω  0   t dt , and   b  n   =   (  2 / T )    ∫ 0  

T
    f  (  t )   sin n  ω  0   t dt .  

(Example 17.1)
 A function f(t) possesses even symmetry if f(t) = f (−t).
 A function f(t) possesses odd symmetry if f(t) = −f (−t).
 A function f(t) possesses half-wave symmetry if  f  (  t )    = − f  (  t −   1 _ 2   T )    .
 The Fourier series of an even function is composed of only a constant 

and cosine functions.
 The Fourier series of an odd function is composed of only sine functions.
 The Fourier series of any function possessing half-wave symmetry 

contains only odd harmonics.
 The Fourier series of a function may also be expressed in complex or 

exponential form, where  f  (  t )    =  ∑ n=−∞  ∞     c  n    e   jn ω  0  t   and   c  n   =   (  1 / T )    
 ∫ −T/2  

T/2
    f  (  t )    e   −jn ω  0  t  dt . (Examples 17.3, 17.4)

 The Fourier transform allows us to represent time-varying functions 
in the frequency domain, in a manner similar to that of the Laplace 
transform. The defining equations are  F  (  jω )    =  ∫ −∞  ∞

     e   −jωt  f  (  t )    dt  and  
 f  (  t )    =   (  1 / 2π )    ∫ −∞  ∞

     e   jωt  F  (  jω )   dω . (Examples 17.5, 17.6, 17.7)
 Fourier transform analysis can be implemented to analyze circuits 

containing resistors, inductors, and/or capacitors in a manner similar to 
what is done using Laplace transforms. (Example 17.8)

READING FURTHER
A very readable treatment of Fourier analysis can be found in:

A. Pinkus and S. Zafrany, Fourier Series and Integral Transforms. 
Cambridge: Cambridge University Press, 1997.

Finally, for those interested in learning more about muscle research, including 
electron microscopy of tissue, an excellent treatment can be found in:

J. Squire, The Structural Basis of Muscular Contraction. New York: 
Plenum Press, 1981.

EXERCISES

17.1 Trigonometric Form of the Fourier Series
1. Determine the fundamental frequency, fundamental radian frequency, and 

period of the following: (a) 5 sin 9t; (b) 200 cos 70t; (c) 4 sin(4t − 10°);  
(d) 4 sin(4t + 10°).

2. Plot multiple periods of the first, third, and fifth harmonics on the same graph 
of each of the following periodic waveforms (three separate graphs in total are 
desired): (a) 3 sin t; (b) 40 cos 100t; (c) 2 cos(10t − 90°).
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3. Calculate a0 for the following: (a) 4 sin 4t; (b) 4 cos 4t; (c) 4 + cos 4t;  
(d) 4 cos(4t + 40°).

4. Compute a0, a1, and b1 for the following functions: (a) 2 cos 3t; (b) 3 − cos 3t; 
(c) 4 sin(4t − 35°).

5. Calculate the Fourier coefficients a0, a1, a2, a3, b1, b2, and b3 for the periodic 
function f(t) = 2u(t) − 2u(t + 1) + 2u(t + 2) − 2u(t + 3) + ··· .

6. (a) Compute the Fourier coefficients a0, a1, a2, a3, a4, b1, b2, b3, and b4 for the 
periodic function g(t) partially sketched in Fig. 17.29. (b) Plot g(t) along with 
the Fourier series representation truncated after n = 4.

2

–2 21 43

g (t)

t 

–2

■  FIGURE 17.29 

7. For the periodic waveform f(t) represented in Fig. 17.30, calculate a1, a2, a3 
and b1, b2, b3.

■  FIGURE 17.30 

5

10

–5 0 5 10

f (t)

t (s)

8. With respect to the periodic waveform sketched in Fig. 17.30, let gn(t) repre-
sent the Fourier series representation of f(t) truncated at n. [For example, if n = 
1, g1(t) has three terms, defined through a0, a1 and b1.] (a) Sketch g2(t), g3(t), 
and g5(t), along with f(t). (b) Calculate f (2.5), g2(2.5), g3(2.5), and g5(2.5).

9. With respect to the periodic waveform g(t) sketched in Fig. 17.29, define yn(t) 
which represents the Fourier series representation truncated at n. (For example, 
y2(t) has five terms, defined through a0, a1, a2, b1, and b2.) (a) Plot y3(t) and 
y5(t) along with g(t). (b) Compute y1(0.5), y2(0.5), y3(0.5), and g(0.5).

10. Determine expressions for an and bn for g(t − 1) if the periodic waveform g(t) 
is defined as sketched in Fig. 17.29.

11. A “half-sinusoidal” waveform is shown in Fig. 17.31, which is the output of a half-
wave rectifier used to help convert a sinusoidal input to dc. Find the Fourier series 
representation and plot the signal and Fourier series representation for n = 10 terms.

■  FIGURE 17.31 

0–0.2–0.4 0.40.2

Vm

v (t)

t (s)
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12. Plot the line spectrum (limited to the six largest terms) for the waveform shown 
in Fig. 17.4a.

13. Plot the line spectrum (limited to the five largest terms) for the waveform of 
Fig. 17.4b.

14. Plot the line spectrum (limited to the five largest terms) for the waveform 
represented by the graph of Fig. 17.4c.

15. Plot the line spectrum for the waveform shown in Fig. 17.31.

17.2 The Use of Symmetry
16. State whether the following exhibit odd symmetry, even symmetry, and/or half-

wave symmetry: (a) 4 sin 100t; (b) 4 cos 100t; (c) 4 cos(4t + 70°); (d) 4 cos 
100t + 4; (e) each waveform in Fig. 17.4.

17. Determine whether the following exhibit odd symmetry, even symmetry, and/
or half-wave symmetry: (a) the waveform in Fig. 17.29; (b) g(t − 1), if g(t) is 
represented in Fig. 17.29; (c) g(t + 1), if g(t) is represented in Fig. 17.29;  
(d) the waveform of Fig. 17.30.

18. A periodic function has the form f(t) = t2 over the period −π < t < π. De-
termine if the function has even or odd symmetry, and evaluate the Fourier 
coefficients for n = 1, 2, and 3.

19. The nonperiodic waveform g(t) is defined in Fig. 17.32. Use it to create a new 
function y(t) such that y(t) is identical to g(t) over the range of 0 < t < 4 and 
also is characterized by a period T = 8 and has (a) odd symmetry; (b) even 
symmetry; (c) both even and half-wave symmetry; (d) both odd and half-wave 
symmetry.

20. Calculate a0, a1, a2, a3 and b1, b2, b3 for the periodic waveform v(t) represented 
in Fig. 17.33.

■  FIGURE 17.33 

t  (s)
1 2 3–3 –2 –1

–1

1

v (t) (V)

21. Design a triangular waveform having a peak magnitude of 3, a period of 2 s, 
and characterized by (a) half-wave and even symmetry; (b) half-wave and odd 
symmetry.

22. Make use of symmetry as much as possible to obtain numerical values for a0, 
an, and bn, 1 ≤ n ≤ 10, for the waveform shown in Fig. 17.34.

■  FIGURE 17.34 

t (ms)

f (t)

2

–10

4

–4 –2 6

8 12 14

10

■  FIGURE 17.32 

20 1 3 4

5

t
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17.3 Complete Response to Periodic Forcing Functions
23. For the circuit of Fig. 17.35a, calculate v(t) in a Fourier series representation if 

is(t) is given by Fig. 17.35b and v(0) = 0.
24. If the waveform shown in Fig. 17.36 is applied to the circuit of Fig. 17.8a, 

calculate i(t) in a Fourier series representation.

■  FIGURE 17.36 

t (s)

vs(t) (V)

12

0– π
10

π
10

π
5

25. The circuit of Fig. 17.37a is subjected to the waveform depicted in Fig. 17.37b. 
Determine the steady-state voltage v(t) in a Fourier series representation.■  FIGURE 17.35 

1 Ω 2 Fis

(a)

v

+

–

t = 0 10

0– π 2π

is (mA)

t (s)
π
2

π
2

3π
2

(b)

1 Ω 2 Fis

(a)

v

+

–

t = 0 10

0– π 2π

is (mA)

t (s)
π
2

π
2

3π
2

(b)

■  FIGURE 17.37 
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5 mH
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(b)
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26. Apply the waveform of Fig. 17.38 to the circuit of Fig. 17.37a, and calculate 
the steady-state current iL(t) in a Fourier series representation.

■  FIGURE 17.38 

–1

–4

0

4

1 2 3 4

iS (A)
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17.4 Complex Form of the Fourier Series
27. Let the function v(t) be defined as indicated in Fig. 17.10. Determine cn for  

(a) v(t + 0.5); (b) v(t − 0.5).
28. Calculate c0, c±1, and c±2 for the waveform of Fig. 17.38.
29. Determine the first five terms of the exponential Fourier series representation 

of the waveform graphed in Fig. 17.35b.
30. For the periodic waveform shown in Fig. 17.39, determine (a) the period T;  

(b) c0, c±1, c±2, and c±3.

■  FIGURE 17.39 

t (s)

–10

–3 –2 –1
1 3

4

–10

f (t)

2

31. For the periodic waveform represented in Fig. 17.40, calculate (a) the period T; 
(b) c1 and c2.

■  FIGURE 17.40 

100

1 2 3 4 5 6

f (t)

t  (ms)

32. Determine the Fourier coefficients ci for the sawtooth signal in Fig 17.2 in 
Example 17.1. Plot the resulting v(t) for n = 50.

33. A pulse sequence has a period of 5 μs, an amplitude of unity for −0.6 < t < 
− 0.4 μs and for 0.4 < t < 0.6 μs, and zero amplitude elsewhere in the period 
interval. This series of pulses might represent the decimal number 3 being 
transmitted in binary form by a digital computer. (a) Find cn. (b) Evaluate c4. 
(c) Evaluate c0. (d) Find |cn|max. (e) Find N so that |cn| ≤ 0.1 |cn|max for all n > N. 
(f) What bandwidth is required to transmit this portion of the spectrum?

34. Let a periodic voltage vs(t) be equal to 40 V for  0 < t <   1 __ 96   , and to 0 for    1 __ 96   <  
t <   1 __ 16    s . If  T =   1 __ 16    s , find (a) c3; (b) the power delivered to the load in the 
circuit of Fig. 17.41.

■  FIGURE 17.41 
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17.5 Definition of the Fourier Transform
35. Given

 g  (  t )    =   {   5  − 1 < t < 1   
0
  

elsewhere
   }    

sketch (a) g(t); (b) G(jω).
36. For the function v(t) = 2u(t) − 2u(t + 2) + 2u(t + 4) − 2u(t + 6) V, sketch  

(a) v(t); (b) V(jω).
37. Use the Fourier transform to obtain and plot the continuous spectrum of the 

square wave voltage that is periodic with  v  (  t )    =  5  − 10u(t −   T __ 2  )V  over the 
period 0 < t < T.

38. Employ Eq. [41a] to calculate G(jω) if g(t) is (a) 5e−tu(t); (b) 5te−tu(t).
39. Obtain the Fourier transform F(jω) of the single triangle pulse plotted in  

Fig. 17.42.

■  FIGURE 17.42 

15

0 3– 3

f (t)

t

40. Determine the Fourier transform F(jω) of the single sinusoidal pulse waveform 
shown in Fig. 17.43.

17.6 Some Properties of the Fourier Transform
41. For g(t) = 3e−tu(t), calculate (a) G(jω); (b) ϕ(ω).
42. The voltage pulse 2e−tu(t) V is applied to the input of an ideal bandpass filter. 

The passband of the filter is defined by 100 < | f | < 500 Hz. Calculate the total 
output energy.

43. Given that v(t) = 4e−|t| V, calculate the frequency range in which 85% of the  
1 Ω energy lies.

44. Use the definition of the Fourier transform to prove the following results, 
where ℱ{f(t)} = F( jω): (a) ℱ{f (t − t0)} = e−jωt0ℱ{f(t)};  
(b) ℱ{d f (t)/dt} = jωℱ{f(t)}; (c) ℱ{f (kt)} = (1/|k|)F( jω/k);  
(d) ℱ{f (−t)} = F(−jω); (e) ℱ{t f (t)} = j d[F(jω)]/dω.

17.7 Fourier Transform Pairs for Some Simple Time Functions
45. Determine the Fourier transform of the following: (a) 5u(t) − 2 sgn(t);  

(b) 2 cos 3t − 2; (c) 4e−j3t + 4ej3t + 5u(t).
46. Find the Fourier transform of each of the following: (a) 85u(t + 2) − 50u(t − 2); 

(b) 5δ(t) − 2 cos 4t.
47. Find F(jω) if f(t) is given by (a) 2 cos 10t; (b) e−4tu(t); (c) 5 sgn(t).
48. Determine f(t) if F(jω) is given by (a) 4δ(ω); (b) 2/(5000 + jω); (c) e−j120ω.
49. Obtain an expression for f(t) if F(jω) is given by  

(a)  − j   231 ___ ω   ; (b)    1 + j2 _____ 
1 + j4

   ; (c)  5δ  (  ω )    +   1 _____ 2 + j10   .

17.8 The Fourier Transform of a General Periodic Time Function
50. Calculate the Fourier transform of the following functions: (a) 2 cos2 5t;  

(b) 7 sin 4t cos 3t; (c) 3 sin(4t − 40°).
51. Determine the Fourier transform of the periodic function g(t), which is defined 

over the range 0 < t < 10 s by (t) = 2u(t) − 3u(t − 4) + 2u(t − 8).

■  FIGURE 17.43 
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52. If  F  (  jω )    = 20 ∑ n=1  ∞      [  1 /   (    |  n |    !+1 )    ]   δ  (  ω − 20n )    , find the value of f (0.05).
53. Given the periodic waveform shown in Fig. 17.44, determine its Fourier transform.

■  FIGURE 17.44 
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17.9 The System Function and Response in the Frequency Domain
54. If a system is described by transfer function h(t) = 2u(t) + 2u(t − 1), use convo-

lution to calculate the output (time domain) if the input is (a) 2u(t); (b) 2te−2tu(t).
55. Given the input function x(t) = 5e−5tu(t), employ convolution to obtain a 

time-domain output if the system transfer function h(t) is given by (a) 3u(t + 1); 
(b) 10te−tu(t).

56. (a) Design a noninverting amplifier having a gain of 10. If the circuit is con-
structed using an op amp powered by ±15 V supplies, determine the FFT of 
the output through appropriate simulations if the input voltage operates at 1 
kHz and has magnitude (b) 10 mV; (c) 1 V; (d) 2 V.

57. (a) Design an inverting amplifier having a gain of 5. If the circuit is 
constructed using an op amp powered by ±10 V supplies, perform appropriate 
simulations to determine the FFT of the output voltage if the input voltage has 
a frequency of 10 kHz and magnitude (b) 500 mV; (c) 1.8 V; (d) 3 V.

17.10 The Physical Significance of the System Function
58. With respect to the circuit of Fig. 17.45, calculate vo(t) using Fourier 

techniques if vi(t) = 2te−tu(t) V.
59. After the inductor of Fig. 17.45 is surreptitiously replaced with a 2 F capacitor, 

calculate vo(t) using Fourier techniques if vi(t) is equal to (a) 5u(t) V;  
(b) 3e−4tu(t) V.

60. Employ Fourier-based techniques to calculate vC(t) as labeled in Fig. 17.46 if 
vi(t) is equal to (a) 2u(t) V; (b) 2δ(t) V.

■  FIGURE 17.46 

500 mF
+
–

2 Ω
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+

–

200 mH

vi (t)

61. Employ Fourier-based techniques to calculate vo(t) as labeled in Fig. 17.47 if 
vi(t) is equal to (a) 5u(t) V; (b) 3δ(t) V.

■  FIGURE 17.47 
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+

–
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■  FIGURE 17.45 
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62. Employ Fourier-based techniques to calculate vo(t) as labeled in Fig. 17.47 if 
vi(t) is equal to (a) 5u(t − 1) V; (b) 2 + 8e−tu(t) V.

Chapter-Integrating Exercises
63. Apply the pulse waveform of Fig. 17.48a as the voltage input vi(t) to the circuit 

shown in Fig. 17.45, and calculate vC(t).

■  FIGURE 17.48 

2

1

–2 0 2 4 6

h (t)

t

(a)

10

5

–2 0 2 4 6

x (t)

t

(b)

64. Apply the pulse waveform of Fig. 17.48b as the voltage input vi(t) to the circuit 
shown in Fig. 17.46, and calculate and plot vC(t). Use of software such as 
MATLAB will be very helpful for this problem!

65. Apply the pulse waveform of Fig. 17.48b as the voltage input vi(t) to the circuit 
shown in Fig. 17.47, and calculate and plot vo(t). Use of software such as 
MATLAB will be very helpful for this problem!

66. Design an audio amplifier with gain of 10, using power supplies of VCC = ±12 V, 
and choose an appropriate op amp for audio applications, such as the OP27. 
Use a SPICE simulation to determine the maximum in harmonic distortion, 
defined as PHD = Pharmonic − Pfundamental (in dB), for the cases of input with 
amplitude of 1.2 V at frequencies (a) 250 Hz (bass), (b) 1 kHz (mid-range), 
and (c) 4 kHz (treble).

Design elements: Cockpit: ©Purestock/SuperStock; Wind Turbines: ©Russell Illig/Getty Images;  
Circuit Board: ©Shutterstock
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AN INTRODUCTION TO 
NETWORK TOPOLOGY

After working a good number of circuits problems, it slowly becomes evi-
dent that many of the circuits we encounter have a lot in common, at least in 
terms of the arrangement of components. From this realization, it is possible 
to create a more abstract view of circuits which we call network topology, a 
subject we introduce in this appendix.

A1.1 • TREES AND GENERAL NODAL ANALYSIS
We now plan to generalize the method of nodal analysis that we have come 
to know and love. Since nodal analysis is applicable to any network, we can-
not promise that we will be able to solve a wider class of circuit problems. 
We can, however, look forward to being able to select a general nodal anal-
ysis method for any particular problem that may result in fewer equations 
and less work.

We must first extend our list of definitions relating to network topol-
ogy. We begin by defining topology itself as a branch of geometry which 
is concerned with those properties of a geometrical figure which are un-
changed when the figure is twisted, bent, folded, stretched, squeezed, or 
tied in knots, with the provision that no parts of the figure are to be cut 
apart or to be joined together. A sphere and a tetrahedron are topologically 
identical, as are a square and a circle. In terms of electric circuits, then, 
we are not now concerned with the particular types of elements appearing 
in the circuit, but only with the way in which branches and nodes are ar-
ranged. As a matter of fact, we usually suppress the nature of the elements 
and simplify the drawing of the circuit by showing the elements as lines. 
The resultant drawing is called a linear graph, or simply a graph. A circuit 
and its graph are shown in Fig. A1.1. Note that all nodes are identified by 
heavy dots in the graph.

Since the topological properties of the circuit or its graph are unchanged 
when it is distorted, the three graphs shown in Fig. A1.2 are all topologically  
identical with the circuit and graph of Fig. A1.1.

Topological terms that we already know and have been using correctly 
are

Node: A point at which two or more elements have a common 
connection.
Path: A set of elements that may be traversed in order without passing 
through the same node twice.
Branch: A single path, containing one simple element, which connects 
one node to any other node.

APPENDIX        •  1

+
–

+–

(a) (b)

+
–

+–

(a) (b)

■  FIGURE A1.1 (a) A given circuit. (b) The linear 
graph of this circuit.
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Loop: A closed path.
Mesh: A loop which does not contain any other loops within it.
Planar circuit: A circuit which may be drawn on a plane surface in 
such a way that no branch passes over or under any other branch.
Nonplanar circuit: Any circuit which is not planar.

The graphs of Fig. A1.2 each contain 12 branches and 7 nodes.
Three new properties of a linear graph must now be defined—a tree, a 

cotree, and a link. We define a tree as any set of branches which does not 
contain any loops and yet connects every node to every other node, not 
necessarily directly. There are usually a number of different trees which 
may be drawn for a network, and the number increases rapidly as the com-
plexity of the network increases. The simple graph shown in Fig. A1.3a has 
eight possible trees, four of which are shown by heavy lines in Fig. A1.3b,  
c, d, and e.

■  FIGURE A1.2 (a, b, c) Alternative linear graphs of the circuit of Fig. A1.1.

(a) (c)(b)

■  FIGURE A1.3 (a) The linear graph of a three-node network. (b, c, d, e) Four of the eight different trees 
which may be drawn for this graph are shown by the black lines.

(a) (e)(d)(c)(b)

In Fig. A1.4a a more complex graph is shown. Figure A1.4b shows one 
possible tree, and Fig. A1.4c and d show sets of branches which are not trees 
because neither set satisfies the definition.

After a tree has been specified, those branches that are not part of the 
tree form the cotree, or complement of the tree. The lightly drawn branches 
in Fig. A1.3b to e show the cotrees that correspond to the heavier trees.

Once we understand the construction of a tree and its cotree, the concept 
of the link is very simple, for a link is any branch belonging to the cotree. It 
is evident that any particular branch may or may not be a link, depending on 
the particular tree which is selected.

The number of links in a graph may easily be related to the number of 
branches and nodes. If the graph has N nodes, then exactly (N – 1) branches 
are required to construct a tree because the first branch chosen connects two 
nodes and each additional branch includes one more node.

■  FIGURE A1.4 (a) A linear graph. (b) A possible 
tree for this graph. (c, d) These sets of branches do 
not satisfy the definition of a tree.

(a) (d)(c)(b)(a) (d)(c)(b)

(a) (d)(c)(b)(a) (d)(c)(b)
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Thus, given B branches, the number of links L must be

 L = B − (N − 1 ) 

or

  L = B − N + 1  [1]

There are L branches in the cotree and (N – 1) branches in the tree.
In any of the graphs shown in Fig. A1.3, we note that 3 = 5 – 3 + 1, and 

in the graph of Fig. A1.4b, 6 = 10 – 5 + 1. A network may be in several 
disconnected parts, and Eq. [1] may be made more general by replacing +1 
with + S, where S is the number of separate parts. However, it is also pos-
sible to connect two separate parts by a single conductor, thus causing two 
nodes to form one node; no current can flow through this single conductor. 
This process may be used to join any number of separate parts, and thus we 
will not suffer any loss of generality if we restrict our attention to circuits 
for which S = 1.

We are now ready to discuss a method by which we may write a set of 
nodal equations that are independent and sufficient. The method will enable 
us to obtain many different sets of equations for the same network, and all 
the sets will be valid. However, the method does not provide us with every 
possible set of equations. Let us first describe the procedure, illustrate it by 
three examples, and then point out the reason that the equations are inde-
pendent and sufficient.

Given a network, we should:

1. Draw a graph and then identify a tree.
2. Place all voltage sources in the tree.
3. Place all current sources in the cotree.
4. Place all control-voltage branches for voltage-controlled dependent 

sources in the tree, if possible.
5. Place all control-current branches for current-controlled dependent 

sources in the cotree, if possible.

The last four steps effectively associate voltages with the tree and currents 
with the cotree.

We now assign a voltage variable (with its plus-minus pair) across each 
of the (N – 1) branches in the tree. A branch containing a voltage source 
(dependent or independent) should be assigned that source voltage, and a 
branch containing a controlling voltage should be assigned that controlling 
voltage. The number of new variables that we have introduced is therefore 
equal to the number of branches in the tree (N – 1), reduced by the number 
of voltage sources in the tree, and reduced also by the number of control 
voltages we were able to locate in the tree. In Example A1.3, we will find 
that the number of new variables required may be zero.

Having a set of variables, we now need to write a set of equations that are 
sufficient to determine these variables. The equations are obtained through 
the application of KCL. Voltage sources are handled in the same way that 
they were in our earlier attack on nodal analysis; each voltage source and the 
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two nodes at its terminals constitute a supernode or a part of a supernode. 
Kirchhoff’s current law is then applied at all but one of the remaining nodes 
and supernodes. We set the sum of the currents leaving the node in all of 
the branches connected to it equal to zero. Each current is expressed in 
terms of the voltage variables we just assigned. One node may be ignored, 
just as was the case earlier for the reference node. Finally, in case there are 
current-controlled dependent sources, we must write an equation for each 
control current that relates it to the voltage variables; this also is no different 
from the procedure used before with nodal analysis.

Let us try out this process on the circuit shown in Fig. A1.5a. It contains 
four nodes and five branches, and its graph is shown in Fig. A1.5b.

EXAMPLE A1.1
Find the value of vx in the circuit of Fig. A1.5a.

■  FIGURE A1.5 (a) A circuit used as an example for general nodal analysis. (b) The 
graph of the given circuit. (c) The voltage source and the control voltage are placed 
in the tree, while the current source goes in the cotree. (d) The tree is completed and 
a voltage is assigned across each tree branch.

vx
14

(a)

4 Ω

15 Ω8 Ω

100 V +
–

vx+ –

(d)

vx+ – v1+ –

100 V

+

–
(c)

(b)

In accordance with steps 2 and 3 of the tree-drawing procedure, we 
place the voltage source in the tree and the current source in the cotree. 
Following step 4, we see that the vx branch may also be placed in the 
tree, since it does not form any loop which would violate the definition 
of a tree. We have now arrived at the two tree branches and the single 
link shown in Fig. A1.5c, and we see that we do not yet have a tree, 
since the right node is not connected to the others by a path through 
tree branches. The only possible way to complete the tree is shown in 
Fig. A1.5d. The 100 V source voltage, the control voltage vx, and a 
new voltage variable v1 are next assigned to the three tree branches as 
shown.

We therefore have two unknowns, vx and v1, and we need to obtain 
two equations in terms of them. There are four nodes, but the presence
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of the voltage source causes two of them to form a single supernode. 
Kirchhoff’s current law may be applied at any two of the three remain-
ing nodes or supernodes. Let’s attack the right node first. The current 
leaving to the left is –v1/15, while that leaving downward is –vx /14. 
Thus, our first equation is

 −    v  1   __ 15   +   −  v  x   ___ 14   = 0 

The central node at the top looks easier than the supernode, and so we 
set the sum of the current to the left (–vx/8), the current to the right 
(v1/15), and the downward current through the 4 Ω resistor equal to 
zero. This latter current is given by the voltage across the resistor divid-
ed by 4 Ω, but there is no voltage labeled on that link. However, when a 
tree is constructed according to the definition, there is a path through it 
from any node to any other node. Then, since every branch in the tree is 
assigned a voltage, we may express the voltage across any link in terms 
of the tree-branch voltages. This downward current is therefore (–vx + 
100)/4, and we have the second equation,

 −    v  x   __ 8   +    v  1   __ 15   +   −  v  x   + 100 _______ 4   = 0 

The simultaneous solution of these two nodal equations gives

  v  1   = − 60 V          v  x   = 56 V 

EXAMPLE A1.2
Find the values of vx and vy in the circuit of Fig. A1.6a.

■  FIGURE A1.6 (a) A circuit with five nodes. (b) A tree is chosen such that both 
voltage sources and both control voltages are tree branches.
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We draw a tree so that both voltage sources and both control voltages 
appear as tree-branch voltages and, hence, as assigned variables. As it 
happens, these four branches constitute a tree, Fig. A1.6b, and tree-
branch voltages vx, 1, vy, and 4vy are chosen, as shown.

(Continued on next page)
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We will discuss the problem of finding the best analysis scheme in the 
following section.

If we needed to know some other voltage, current, or power in the pre-
vious example, one additional step would give the answer. For example, the 
power provided by the 3 A source is

 3 (− 30 −   32 ___ 3  )  = − 122 W 

We conclude by discussing the sufficiency of the assumed set of tree-branch 
voltages and the independence of the nodal equations. If these tree-branch 
voltages are sufficient, then the voltage of every branch in either the tree or 
the cotree must be obtainable from a knowledge of the values of all the tree-
branch voltages. This is certainly true for those branches in the tree. For the 
links we know that each link extends between two nodes, and, by definition, 
the tree must also connect those two nodes. Hence, every link voltage may 
also be established in terms of the tree-branch voltages.

Once the voltage across every branch in the circuit is known, then all the 
currents may be found by using either the given value of the current if the 
branch consists of a current source, by using Ohm’s law if it is a resistive 
branch, or by using KCL and these current values if the branch happens to 

Both voltage sources define supernodes, and we apply KCL twice, 
once to the top node,

2vx + 1(vx – vy – 4vy) = 2
and once to the supernode consisting of the right node, the bottom 
node, and the dependent voltage source,

1vy + 2(vy – 1) + 1(4vy + vy – vx) = 2vx

Instead of the four equations we would expect using previously studied 
techniques, we have only two, and we find easily that   v  x   =   26 __ 9   V and  
  v  y   =   4 _ 3   V.

EXAMPLE A1.3
Find the value of vx in the circuit of Fig. A1.7a.

The two voltage sources and the control voltage establish the three-
branch tree shown in Fig. A1.7b. Since the two upper nodes and the 
lower right node all join to form one supernode, we need write only one 
KCL equation. Selecting the lower left node, we have

 − 1 −    v  x   __ 4   + 3 +   −  v  x   + 30 + 6  v  x    _________ 5   = 0 

and it follows that   v  x   = −    32 __ 3    V. In spite of the apparent complexity of 
this circuit, the use of general nodal analysis has led to an easy solution. 
Employing mesh currents or node-to-reference voltages would require 
more equations and more effort.

■  FIGURE A1.7 (a) A circuit for which only one 
general nodal equation need be written. (b) The tree 
and the tree-branch voltages used.
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be a voltage source. Thus, all the voltages and currents are determined, and 
sufficiency is demonstrated.

To demonstrate independency, let us satisfy ourselves by assuming the 
situation where the only sources in the network are independent current 
sources. As we have noticed earlier, independent voltage sources in the cir-
cuit result in fewer equations, while dependent sources usually necessitate a 
greater number of equations. With independent current sources only, there 
will then be precisely (N – 1) nodal equations written in terms of (N – 1) 
tree-branch voltages. To show that these (N – 1) equations are independent, 
visualize the application of KCL to the (N – 1) different nodes. Each time 
we write the KCL equation, there is a new tree branch involved—the one 
which connects that node to the remainder of the tree. Since that circuit 
element has not appeared in any previous equation, we must obtain an in-
dependent equation. This is true for each of the (N – 1) nodes in turn, and 
hence we have (N – 1) independent equations.

PRACTICE 
●

A1.1 (a) How many trees may be constructed for the circuit of Fig. A1.8 
that follow all five of the tree-drawing suggestions listed earlier?  
(b) Draw a suitable tree, write two equations in two unknowns, and find 
i3. (c) What power is supplied by the dependent source? 

+
–

+
–

i3

12 Ω

8 Ω5 Ω

9 A25 V

■  FIGURE A1.8

Ans: 1; 7.2 A; 547 W.

A1.2 • LINKS AND LOOP ANALYSIS
Now we will consider the use of a tree to obtain a suitable set of loop equations. 
In some respects this is the dual of the method of writing nodal equations. 
Again it should be pointed out that, although we are able to guarantee that any 
set of equations we write will be both sufficient and independent, we should 
not expect that the method will lead directly to every possible set of equations.

We again begin by constructing a tree, and we use the same set of rules 
as we did for general nodal analysis. The objective for either nodal or loop 
analysis is to place voltages in the tree and currents in the cotree; this is a 
mandatory rule for sources and a desirable rule for controlling quantities.

Now, however, instead of assigning a voltage to each branch in the tree, 
we assign a current (including reference arrow, of course) to each element 
in the cotree or to each link. If there were 10 links, we would assign exactly 
10 link currents. Any link that contains a current source is assigned that 
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source current as the link current. Note that each link current may also be 
thought of as a loop current, for the link must extend between two specific 
nodes, and there must also be a path between those same two nodes through 
the tree. Thus, with each link there is associated a single specific loop that 
includes that one link and a unique path through the tree. It is evident that 
the assigned current may be thought of either as a loop current or as a link 
current. The link connotation is most helpful at the time the currents are 
being defined, for one must be established for each link; the loop interpre-
tation is more convenient at equation-writing time, because we will apply 
KVL around each loop.

Let us try out this process of defining link currents by considering the 
circuit shown in Fig. A1.9a. The tree selected is one of several that might 
be constructed for which the voltage source is in a tree branch and the cur-
rent source is in a link. Let us first consider the link containing the current 
source. The loop associated with this link is the left-hand mesh, and so we 
show our link current flowing about the perimeter of this mesh (Fig. A1.9b). 
An obvious choice for the symbol for this link current is “7 A.” Remember 
that no other current can flow through this particular link, and thus its value 
must be exactly the strength of the current source.

■  FIGURE A1.9 (a) A simple circuit. (b) A tree is chosen such that the current 
source is in a link and the voltage source is in a tree branch.
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1 Ω
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2 Ω

3 Ω7 V
7 A

(b)

7 A

iB
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We next turn our attention to the 3 Ω resistor link. The loop associated 
with it is the upper right-hand mesh, and this loop (or mesh) current is defined 
as iA and also shown in Fig. A1.9b. The last link is the lower 1 Ω resistor, and 
the only path between its terminals through the tree is around the perimeter of 
the circuit. That link current is called iB, and the arrow indicating its path and 
reference direction appears in Fig. A1.9b. It is not a mesh current.

Note that each link has only one current present in it, but a tree branch 
may have any number from 1 to the total number of link currents assigned. 
The use of long, almost closed, arrows to indicate the loops helps to indicate 
which loop currents flow through which tree branch and what their refer-
ence directions are.

A KVL equation must now be written around each of these loops. The 
variables used are the assigned link currents. Since the voltage across a 
current source cannot be expressed in terms of the source current, and since 
we have already used the value of the source current as the link current, we 
discard any loop containing a current source.
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EXAMPLE A1.4

EXAMPLE A1.5

For the example of Fig. A1.9, find the values of iA and iB.

We first traverse the iA loop, proceeding clockwise from its lower left 
corner. The current going our way in the 1 Ω resistor is (iA – 7), in the  
2 Ω element it is (iA + iB), and in the link it is simply iB. Thus

1(iA – 7) + 2(iA + iB) + 3iA = 0
For the iB link, clockwise travel from the lower left corner leads to

–7 + 2(iA + iB) + 1iB = 0
Traversal of the loop defined by the 7 A link is not required. Solving,  
we have iA = 0.5 A, iB = 2 A, once again. The solution has been 
achieved with one less equation than before!

Evaluate i1 in the circuit shown in Fig. A1.10a.

■  FIGURE A1.10 (a) A circuit for which i1 may be found with one equation 
using general loop analysis. (b) The only tree that satisfies the rules outlined 
in Sec. A1.1. (c) The three link currents are shown with their loops.
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+ –
i1

(a)

5 Ω 2 Ω 4 Ω19 V

30 V 25 V4 A 1.5i1

4 A

i1

(c)

1.5i1

(b)

This circuit contains six nodes, and its tree therefore must have five 
branches. Since there are eight elements in the network, there are three 
links in the cotree. If we place the three voltage sources in the tree and 
the two current sources and the current control in the cotree, we are led 
to the tree shown in Fig. A1.10b. The source current of 4 A defines a

(Continued on next page)
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How may we demonstrate sufficiency? Let us visualize a tree. It con-
tains no loops and therefore contains at least two nodes to each of which 
only one tree branch is connected. The current in each of these two branches 
is easily found from the known link currents by applying KCL. If there are 
other nodes at which only one tree branch is connected, these tree-branch 
currents may also be immediately obtained. In the tree shown in Fig. A1.11, 
we thus have found the currents in branches a, b, c, and d. Now we move 
along the branches of the tree, finding the currents in tree branches e and f; 
the process may be continued until all the branch currents are determined. 
The link currents are therefore sufficient to determine all branch currents. It 
is helpful to look at the situation where an incorrect “tree” has been drawn 
which contains a loop. Even if all the link currents were zero, a current 
might still circulate about this “tree loop.” Hence, the link currents could 
not determine this current, and they would not represent a sufficient set. 
Such a “tree” is by definition impossible.

To demonstrate independence, let us satisfy ourselves by assuming the 
situation where the only sources in the network are independent voltage 
sources. As we have noticed earlier, independent current sources in the cir-
cuit result in fewer equations, while dependent sources usually necessitate a 
greater number of equations. If only independent voltage sources are present, 
there will then be precisely (B – N + 1) loop equations written in terms of the 
(B – N + 1) link currents. To show that these (B – N + 1) loop equations are 
independent, it is necessary only to point out that each represents the appli-
cation of KVL around a loop which contains one link not appearing in any 
other equation. We might visualize a different resistance R1, R2, . . . , RB – N + 1  
in each of these links, and it is then apparent that one equation can never be 
obtained from the others, since each contains one coefficient not appearing 
in any other equation.

Hence, the link currents are sufficient to enable a complete solution to 
be obtained, and the set of loop equations which we use to find the link 
currents is a set of independent equations.

loop as shown in Fig. A1.10c. The dependent source establishes the 
loop current 1.5i1 around the right mesh, and the control current i1 
gives us the remaining loop current about the perimeter of the circuit. 
Note that all three currents flow through the 4 Ω resistor.

We have only one unknown quantity, i1, and after discarding the 
loops defined by the two current sources, we apply KVL around the 
outside of the circuit:

–30 + 5(–i1) + 19 + 2(–i1 – 4) + 4(–i1 – 4 + 1.5i1) – 25 = 0
Besides the three voltage sources, there are three resistors in this loop. 
The 5 Ω resistor has one loop current in it, since it is also a link; the  
2 Ω resistor contains two loop currents; and the 4 Ω resistor has three. 
A carefully drawn set of loop currents is a necessity if errors in skipping 
currents, utilizing extra ones, or erring in choosing the correct direction 
are to be avoided. The foregoing equation is guaranteed, however, and it 
leads to i1 = –12 A.

■  FIGURE A1.11 A tree that is used as an example 
to illustrate the sufficiency of the link currents.

a

e

d
g

c

f

b
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  APPENDIX 1 AN INTRODUCTION TO NETWORK TOPOLOGY 801

Having looked at both general nodal analysis and loop analysis, we 
should now consider the advantages and disadvantages of each method so 
that an intelligent choice of a plan of attack can be made on a given analysis 
problem.

The nodal method in general requires (N – 1) equations, but this num-
ber is reduced by 1 for each independent or dependent voltage source in a 
tree branch, and increased by 1 for each dependent source that is voltage- 
controlled by a link voltage, or current-controlled.

The loop method basically involves (B – N + 1) equations. However, 
each independent or dependent current source in a link reduces this num-
ber by 1, while each dependent source that is current-controlled by a tree-
branch current, or is voltage-controlled, increases the number by 1.

As a grand finale for this discussion, let us inspect the T-equivalent cir-
cuit model for a transistor shown in Fig. A1.12, to which is connected a 
sinusoidal source, 4 sin 1000t mV, and a 10 kΩ load.

EXAMPLE A1.6
Find the input (emitter) current ie and the load voltage vL in the  
circuit of Fig. A1.12, assuming typical values for the emitter  
resistance re = 50 Ω; the base resistance rb = 500 Ω; the collector 
resistance rc = 20 kΩ; and the common-base forward-current- 
transfer ratio α = 0.99.

■  FIGURE A1.12 A sinusoidal voltage source and a 10 kΩ load are con-
nected to the T-equivalent circuit of a transistor. The common connection 
between the input and output is at the base terminal of the transistor, and 
the arrangement is called the common-base configuration.

vL

+

–

vs =
4 sin 1000 t

mV

ie

αie

CollectorEmitter

Base

10 kΩrb

re rc
+
–

Although the details are requested in the practice problems that follow, 
we should see readily that the analysis of this circuit might be accom-
plished by drawing trees requiring three general nodal equations (N – 1 
– 1 + 1) or two loop equations (B – N + 1 – 1). We might also note that 
three equations are required in terms of node-to-reference voltages, as 
are three mesh equations.

No matter which method we choose, these results are obtained for 
this specific circuit:

   i  e    =  18.42 sin 1000t     μA   
 v  L  

  
=

  
122.6 sin 1000t

  
 
  
mV

  

(Continued on next page)

hay01307_app01_791-802.indd   801 23/01/18   10:49 am



APPENDIX 1 AN INTRODUCTION TO NETWORK TOPOLOGY802

and we therefore find that this transistor circuit provides a voltage gain 
(vL/vs) of 30.6, a current gain (vL/10,000ie) of 0.666, and a power gain 
equal to the product 30.6(0.666) = 20.4. Higher gains could be secured 
by operating this transistor in a common-emitter configuration.

PRACTICE 
●

A1.2 Draw a suitable tree and use general loop analysis to find i10 in the 
circuit of (a) Fig. A1.13a by writing just one equation with i10 as the 
variable; (b) Fig. A1.13b by writing just two equations with i10 and i3 as 
the variables. 

i10

(a)

2 kΩ

10 kΩ

20 kΩ5 kΩ5 mA

0.4i10

+
–

i10

i3

20 Ω 4 Ω

6 Ω 24 Ω

10 Ω2 A

100 V

(b)

3i3

■  FIGURE A1.13

A1.3 For the transistor amplifier equivalent circuit shown in Fig. A1.12, 
let re = 50 Ω, rb = 500 Ω, rc = 20 kΩ, and α = 0.99, and find both ie 
and vL by drawing a suitable tree and using (a) two loop equations;  
(b) three nodal equations with a common reference node for the voltage; 
(c) three nodal equations without a common reference node. 

A1.4 Determine the Thévenin and Norton equivalent circuits presented 
to the 10 kΩ load in Fig. A1.12 by finding (a) the open-circuit value of vL; 
(b) the (downward) short-circuit current; (c) the Thévenin equivalent 
resistance. All circuit values are given in Practice Problem A1.3.

Ans: A1.2: −4.00 mA; 4.69 A. A1.3: 18.42 sin 1000t μA; 122.6 sin 1000t mV.  
A1.4: 147.6 sin 1000t mV; 72.2 sin 1000t μA; 2.05 kΩ.
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803

SOLUTION OF SIMULTANEOUS 
EQUATIONS

Consider the simple system of equations

   7  v  1    −  3  v  2    −    4  v  3    =  − 11   [1]

   − 3  v  1    +  6  v  2    −    2  v  3    =    3   [2]

  − 4  v  1    −  2  v  2    + 11  v  3     =     25  [3]

This set of equations could be solved by a systematic elimination of the vari-
ables. Such a procedure is lengthy, however, and may never yield answers 
if done unsystematically for a greater number of simultaneous equations. 
Fortunately, there are many more options available to us, some of which we 
will explore in this appendix.

The Scientific Calculator
Perhaps the most straightforward approach when faced with a system of 
equations such as Eqs. [1] to [3], in which we have numerical coefficients 
and are only interested in the specific values of our unknowns (as opposed 
to algebraic relationships), is to employ any of the various scientific calcula-
tors currently on the market. For example, on a Texas Instruments TI-84, we 
can employ the Polynomial Root Finder and Simultaneous Equation Solver 
(you may need to install the application using TI ConnectTM). Pressing 
the APPS key and scrolling down, find the application named PLYSmlt2. 
Running and continuing past the welcome screen shows the Main Menu of 
Fig. A2.1a. Selecting the second menu item results in the screen shown in 
Fig. A2.1b, where we have chosen three equations in three unknowns. After 

APPENDIX        •  2

■  FIGURE A2.1 Screen sequence for solving Eqs. [1] to [3] as seen on 
a TI-84 running the Simultaneous Equation Solver application.

(a) (b)

(c) (d)
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pressing NEXT, we are presented with a screen similar to that shown in 
Fig. A2.1c. After we have finished entering all coefficients, pressing the 
SOLVE button yields the Solution screen depicted in Fig. A2.1d. Since we 
did not name the variables, a slight mental conversion is required to realize 
X1 = v1, X2 = v2, etc.

It should be noted that each calculator capable of solving simultaneous 
equations has its own procedure for entering the required information—
therefore, it is a good idea not to throw away anything marked “Owner’s 
Manual” or “Instructions,” no matter how tempting such an action might be.

Matrices
Another powerful approach to the solution of a system of equations is based 
on the concept of matrices. Consider Eqs. [1], [2], and [3]. The array of the 
constant coefficients of the equations,

 G =   
[

   
   7

  
− 3

  
− 4

  − 3     6  − 2  
− 4

  
− 2

  
  11

  
]

    

is called a matrix; the symbol G has been selected since each element of the 
matrix is a conductance value. A matrix itself has no “value”; it is merely 
an ordered array of elements. We use a letter in boldface type to represent a 
matrix, and we enclose the array itself by square brackets.

A matrix having m rows and n columns is called an (m × n) (pronounced 
“m by n”) matrix. Thus,

 A =   [      2  0  5  − 1  6  3  ]    

is a (2 × 3) matrix, and the G matrix of our example is a (3 × 3) matrix. An 
(n × n) matrix is a square matrix of order n.

An (m × 1) matrix is called a column matrix, or a vector. Thus,

  V =  [    V  1     V  2  
  ]    

is a (2 × 1) column matrix of phasor voltages, and

  I =  [    I  1     I  2  
  ]    

is a (2 × 1) phasor-current vector. A (1 × n) matrix is known as a row vector.
Two (m × n) matrices are equal if their corresponding elements are 

equal. Thus, if ajk is that element of A located in row j and column k and bjk 
is the element at row j and column k in matrix B, then A = B if and only if 
ajk = bjk for all 1 ≤ j ≤ m and 1 ≤ k ≤ n. Thus, if

   [    V  1     V  2  
  ]   =  [    z  11    I  1   +  z  12    I  2      z  12    I  1   +  z  22    I  2  

  ]    

then V1 = z11I1 + z12I2 and V2 = z21I1 + z22I2.
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Two (m × n) matrices may be added by adding corresponding elements. 
Thus,

   [    2  0  5  − 1  6  3  ]    +   [    1  2  3  − 3  − 2  − 1  ]    =   [    3  2  8  − 4  4  2  ]    

Next let us consider the matrix product AB, where A is an (m × n) matrix 
and B is a (p × q) matrix. If n = p, the matrices are said to be conformal, 
and their product exists. That is, matrix multiplication is defined only for 
the case where the number of columns of the first matrix in the product is 
equal to the number of rows in the second matrix.

The formal definition of matrix multiplication states that the product of 
the (m × n) matrix A and the (n × q) matrix B is an (m × q) matrix having 
elements cjk, 1 ≤  j ≤ m and 1 ≤ k ≤ q, where

  c  jk   =  a  j1    b  1k   +  a  j2    b  2k   + · · · +  a  jn    b  nk   

That is, to find the element in the second row and third column of the prod-
uct, we multiply each of the elements in the second row of A by the corre-
sponding element in the third column of B and then add the n results. For 
example, given the (2 × 3) matrix A and the (3 × 2) matrix B,

   [    a  11     a  12     a  13     a  21     a  22     a  23    ]   
[

   
 b  11  

  
 b  12  

   b  21     b  22    
 b  31  

  
 b  32  

  
]

     =      

 

  

 

  

 

 

   [     (    a  11    b  11   +  a  12    b  21   +  a  13    b  31   )       (    a  11    b  12   +  a  12    b  22   +  a  13    b  32   )           (    a  21    b  11   +  a  22    b  21   +  a  23    b  31   )   
    (    a  21    b  12   +  a  22    b  22   +  a  23    b  32   )   

  ]    

The result is a (2 × 2) matrix.
As a numerical example of matrix multiplication, we take

   [      3     2  1  − 2  − 2  4  ]     
[

    
2
  

3
  − 2  − 1  

4
  

− 3
  
]

    =   [     6       4  16  − 16   ]    

where 6 = (3)(2) + (2)(–2) + (1)(4), 4 = (3)(3) + (2)(–1) + (1)(–3), and 
so forth.

Matrix multiplication is not commutative. For example, given the (3 × 2)  
matrix C and the (2 × 1) matrix D, it is evident that the product CD may be 
calculated, but the product DC is not even defined.

As a final example, let

  t  A   =   [    2  3  − 1  4  ]    

and

  t  B   =   [   3  1  5  0  ]    

so that both tAtB and tBtA are defined. However,

  t  A    t  B   =   [   21     2  17  − 1  ]    
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while

  t  B    t  A   =   [     5  13  10  15  ]    

PRACTICE 
●

A2.1 Given  A =   [   1  − 3  3      5  ]    ,  B =   [      4  − 1  − 2    3  ]    ,  C =   [   50  30  ]    , and  V =   [    V  1     V  2  
  ]    , 

find (a) A + B; (b) AB; (c) BA; (d) AV + BC; (e) A2 = AA. 

Ans:   [ 5  −4  1     8 ]  ;   [ 10  −10    2      12  ]  ;   [ 1  −17  7     21 ]  ;   [   V1  −  3V2  +  170   3V1
  +  5V2

  −  10  ]  ;   [ −8  −18  18     16 ]  

Matrix Inversion
If we write our system of equations using matrix notation,

    
[

   
   7

  
− 3

  
− 4

  − 3     6  − 2  
− 4

  
− 2

  
  11

  
]

     [   
 v  1  

   v  2    
 v  3  

  ]    =   
[

   
− 11

       3  
   25

  
]

     [4]

we may solve for the voltage vector by multiplying both sides of Eq. [4] by 
the inverse of our matrix G:

   G   −1   
[

   
   7

  
− 3

  
− 4

  − 3     6  − 2  
− 4

  
− 2

  
  11

  
]

     [   
 v  1  

   v  2    
 v  3  

  ]    =  G   −1   
[

   
− 11

       3  
   25

  
]

     [5]

This procedure makes use of the identity G–1G = I, where I is the identity 
matrix, a square matrix of the same size as G, with zeros everywhere except 
on the diagonal. Each element on the diagonal of an identity matrix is unity. 
Thus, Eq. [5] becomes

   
[

   
1
  
0
  
0
  0  1  0  

0
  
0
  
1
  
]

     [   
 v  1  

   v  2    
 v  3  

  ]    =  G   −1   
[

   
− 11

       3  
   25

   
]

    

which may be simplified to

   [   
 v  1  

   v  2    
 v  3  

  ]    =  G   −1   
[

   
− 11

       3  
   25

   
]

    

since the identity matrix times any vector is simply equal to that vector 
(the proof is left to the reader as a 30-second exercise). The solution of 
our system of equations has therefore been transformed into the problem of 
obtaining the inverse matrix of G. Many scientific calculators provide the 
means of performing matrix algebra.
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Returning to the TI-84, we press 2ND and MATRIX to obtain the 
screen shown in Fig. A2.2a. Scrolling horizontally to EDIT, we press the 
ENTER key, and select a 3 × 3 matrix, resulting in a screen similar to that 
shown in Fig. A2.2b. Once we have finished entering the matrix, we press 
2ND and QUIT. Returning to the MATRIX editor, we create a 3 × 1 vector 
named B, as shown in Fig. A2.2c. We are now (finally) ready to solve for the 
solution vector. Pressing 2ND and MATRIX, under NAMES we select [A] 
and press ENTER, followed by the x –1 key. Next, we select [B] the same 
way (we could have pressed the multiplication key in between but it is not 
necessary). The result of our calculation is shown in Fig. A2.2d, and agrees 
with our earlier exercise.

■ FIGURE A2.2 Sequence of screens for matrix solution. 
(a) Matrix editor screen; (b) entering terms; (c) creating 
right-hand side vector; (d) solving matrix equation.

(a) (b)

(c) (d)

Determinants
Although a matrix itself has no “value,” the determinant of a square matrix 
does have a value. To be precise, we should say that the determinant of a 
matrix is a value, but common usage enables us to speak of both the array 
itself and its value as the determinant. We shall symbolize a determinant by 
Δ, and employ a suitable subscript to denote the matrix to which the deter-
minant refers. Thus,

  Δ  G   =   |      7  
− 3

  
− 4

  − 3     6  − 2  
− 4

  
− 2

  
  11

  |    
Note that simple vertical lines are used to enclose the determinant.

The value of any determinant is obtained by expanding it in terms of 
its minors. To do this, we select any row j or any column k, multiply each 
element in that row or column by its minor and by (–1) j+k, and then add the 
products. The minor of the element appearing in both row j and column k  
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is the determinant obtained when row j and column k are removed; it is 
indicated by Δjk.

As an example, let us expand the determinant ΔG along column 3. We 
first multiply the (–4) at the top of this column by (–1)1+3 = 1 and then by 
its minor:

 (− 4)  (− 1)   1+3    |   − 3     6  − 4  − 2   |    
and then repeat for the other two elements in column 3, adding the results:

 − 4   |   − 3     6  − 4  − 2   |    + 2   |      7  − 3  − 4  − 2  |    + 11   |      7  − 3  − 3     6  |    
The minors contain only two rows and two columns. They are of order 2, 
and their values are easily determined by expanding in terms of minors 
again, here a trivial operation. Thus, for the first determinant, we expand 
along the first column by multiplying (–3) by (–1)1+1 and its minor, which 
is merely the element (–2), and then multiplying (–4) by (–1)2+1 and by 6. 
Thus,

   |   − 3     6  − 4  − 2   |    = (− 3 ) (− 2 ) − 4(− 6 ) = 30 

It is usually easier to remember the result for a second-order determinant as 
“upper left times lower right minus upper right times lower left.” Finally,

  

 Δ  G  

  

=

  

− 4 [ (− 3 ) (− 2 ) − 6(− 4 ) ]

    
 
  

 
  

+2 [ (7 ) (− 2 ) − (− 3 ) (− 4 ) ]
          +11 [ (7 ) (6 ) − (− 3 ) (− 3 ) ]    

 
  

=
  

− 4(30 ) +2(− 26 ) +11(33 )
    

 

  

=

  

191

   

For practice, let us expand this same determinant along the first row:

  
 Δ  G  

  
=

  
7  |    6  − 2  − 2  11  |    − (− 3 )   |   − 3  − 2  − 4  11  |    + (− 4 )   |   − 3  6  − 4  − 2  |   

         =  7(62 ) +3(− 41 ) − 4(30 )    

 

  

=

  

191

   

The expansion by minors is valid for a determinant of any order.
Repeating these rules for evaluating a determinant in more general 

terms, we would say, given a matrix a,

 a =   
[

    
 a  11            a  12     · · ·    a  1N  

    a  21            a  22     · · ·    a  2N     · · · · · · · · · · · · · · ·   
 a  N1            a  N2     · · ·    a  NN  

  
]

    

that Δa may be obtained by expansion in terms of minors along any row j:

  
 Δ  a  

  
=

  
 a  j1    (− 1 )   j+1   Δ  j1   +  a  j2    (− 1 )   j+2   Δ  j2   + · · · + a  jN    (− 1 )   j+N   Δ  jN  

      
 
  

=
  
  ∑ 
n=1

  
N
     a  jn    (− 1 )   j+n   Δ  jn  
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or along any column k:

  
 Δ  a  

  
=

  
 a  1k    (− 1 )   1+k   Δ  1k   +  a  2k    (− 1 )   2+k   Δ  2k   + · · · +  a  Nk    (− 1 )   N+k   Δ  Nk  

      
 
  

=
  
  ∑ 
n=1

  
N
     a  nk    (− 1 )   n+k   Δ  nk  

   

The cofactor Cjk of the element appearing in both row j and column k is 
simply (–1) j+k times the minor Δjk. Thus, C11 = Δ11, but C12 = –Δ12. We 
may now write

  Δ  a   =   ∑ 
n=1

  
N
     a  jn    C  jn   =   ∑ 

n=1
  

N
     a  nk    C  nk   

As an example, let us consider this fourth-order determinant:

 Δ =   |    2
  

− 1
  

− 2
  

0
   − 1  4  2  − 3   − 2  − 1  5  − 1   

0

  

− 3

  

3

  

2

  |    
We find

  

 Δ  11  

  

=

  

  |    4
  
2
  
− 3

  − 1  5  − 1  
− 3

  
3
  

2
  |   
  

=

  

4(10 + 3) + 1(4 + 9) − 3(− 2 + 15) = 26

      

 Δ  12  

  

=

  

  |   − 1
  
2
  
− 3

  − 2  5  − 1  
0
  
3
  

2
  |   
  

=

  

− 1(10 + 3) + 2(4 + 9) + 0 = 13

   

and C11 = 26, whereas C12 = –13. Finding the value of Δ for practice, we 
have

  
Δ

  
=

  
2  C  11   + (− 1 )  C  12   + (− 2 )  C  13   + 0

    
 
  

=
  
2(26 ) +(− 1 ) (− 13 ) +(− 2 ) (3 ) +0 = 59

  

Cramer’s Rule
We next consider Cramer’s rule, which enables us to find the values of 
the unknown variables. It is also useful in solving systems of equations 
where numerical coefficients have not yet been specified, thus confounding 
our calculators. Let us again consider Eqs. [1], [2], and [3]; we define the 
determinant Δ1 as that determinant which is obtained when the first column 
of ΔG is replaced by the three constants on the right-hand sides of the three 
equations. Thus,

  Δ  1   =   |   − 11
  
− 3

  
− 4

  3  6  − 2  
25

  
− 2

  
11

  |    
We expand along the first column:

  
 Δ  1    

=
  
− 11  |    6  − 2  − 2  11  |    − 3  |   − 3  − 4  − 2  11  |    + 25  |   − 3  − 4  6  − 2  |        

 
  

=
  
− 682 + 123 + 750 = 191
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Cramer’s rule then states that

  v  1   =     Δ  1   ___  Δ  G     =   191 ___ 191   = 1 V 

and

  v  2   =     Δ  2   ___  Δ  G     =   |    7
  
− 11

  
− 4

  − 3  3  − 2  
− 4

  
25

  
11

  |    =   581 − 63 − 136  _________ 191   = 2 V 

and finally,

  v  3   =     Δ  3   ___  Δ  G     =   |    7
  
− 3

  
− 11

  − 3  6  3  
− 4

  
− 2

  
25

  |    =   1092 − 291 − 228  ___________ 191   = 3 V 

Cramer’s rule is applicable to a system of N simultaneous linear equations 
in N unknowns; for the ith variable vi :

  v  i   =     Δ  i   ___  Δ  G     

PRACTICE 
●

A2.2 Evaluate

(a)    |    2  − 3  − 2  5  |    ;  (b)    |   1  
− 1

  
0
  4  2  − 3  

3
  

− 2
  

5
  |    ;  (c)    |    2

  
− 3

  
1
  

5
   − 3  1  − 1  0   0  4  2  − 3   

6

  

3

  

− 2

  

5

  |    .   
(d) Find i2 if 5i1 – 2i2 – i3 = 100, –2i1 + 6i2 – 3i3 – i4 = 0, 
–i1 – 3i2 + 4i3 – i4 = 0, and –i2 – i3 = 0.

Ans: 4; 33; −411; 1.266.
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A PROOF OF THÉVENIN’S THEOREM

Here we prove Thévenin’s theorem in the same form in which it is stated in 
Sec. 5.4 of Chap. 5:

Given any linear circuit, rearrange it in the form of two networks A  
and B connected by two wires. Define a voltage voc as the open-circuit 
voltage which appears across the terminals of A when B is disconnected. 
Then all currents and voltages in B will remain unchanged if all 
independent voltage and current sources in A are “zeroed out,” and an 
independent voltage source voc is connected, with proper polarity, in 
series with the dead (inactive) A network.

We will effect our proof by showing that the original A network and the 
Thévenin equivalent of the A network both cause the same current to flow 
into the terminals of the B network. If the currents are the same, then the 
voltages must be the same; in other words, if we apply a certain current, 
which we might think of as a current source, to the B network, then the 
current source and the B network constitute a circuit that has a specif-
ic input voltage as a response. Thus, the current determines the voltage. 
Alternatively we could, if we wished, show that the terminal voltage at B is 
unchanged, because the voltage also determines the current uniquely. If the 
input voltage and current to the B network are unchanged, then it follows 
that the currents and voltages throughout the B network are also unchanged.

Let us first prove the theorem for the case where the B network is inactive 
(no independent sources). After this step has been accomplished, we may then 
use the superposition principle to extend the theorem to include B networks 
that contain independent sources. Each network may contain dependent 
sources, provided that their control variables are in the same network.

The current i, flowing in the upper conductor from the A network to the 
B network in Fig. A3.1a, is therefore caused entirely by the independent 

APPENDIX        •  3

A

B
(no inde-
pendent
sources)

i

(a)

A

(dead)

B
(no inde-
pendent
sources)

i

(c)

+–

vx = vocvoc

+

–

A

B
(no inde-
pendent
sources)

0

(b)

+ –

vx

■ FIGURE A3.1 (a) A general linear network A and a network B that contains no independent sources. Controls for dependent sources must appear 
in the same part of the network. (b) The Thévenin source is inserted in the circuit and adjusted until i = 0. No voltage appears across network B and thus 
vx = voc. The Thévenin source thus produces a current –i while network A provides i. (c) The Thévenin source is reversed and network A is zeroed out. 
The current is therefore i.
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sources present in the A network. Suppose now that we add an additional 
voltage source vx, which we shall call the Thévenin source, in the conductor 
in which i is measured, as shown in Fig. A3.1b, and then adjust the mag-
nitude and time variation of vx until the current is reduced to zero. By our 
definition of voc, then, the voltage across the terminals of A must be voc, 
since i = 0. Network B contains no independent sources, and no current is 
entering its terminals; therefore, there is no voltage across the terminals of 
the B network, and by Kirchhoff’s voltage law the voltage of the Thévenin 
source is voc volts, vx = voc. Moreover, since the Thévenin source and the 
A network jointly deliver no current to B, and since the A network by itself 
delivers a current i, superposition requires that the Thévenin source acting 
by itself must deliver a current of –i to B. The source acting alone in a 
reversed direction, as shown in Fig. A3.1c, therefore produces a current 
i in the upper lead. This situation, however, is the same as the conclusion 
reached by Thévenin’s theorem: the Thévenin source voc acting in series 
with the inactive A network is equivalent to the given network.

Now let us consider the case where the B network may be an active 
network. We now think of the current i, flowing from the A network to 
the B network in the upper conductor, as being composed of two parts, iA 
and iB, where iA is the current produced by A acting alone and the current 
iB is due to B acting alone. Our ability to divide the current into these two 
components is a direct consequence of the applicability of the superposition 
principle to these two linear networks; the complete response and the two 
partial responses are indicated by the diagrams of Fig. A3.2.

AIf: B

(dead)

iA

(a)

Athen: B

i = iA + iB

(c)

Aand: B

(dead)

iB

(b)
■ FIGURE A3.2 superposition enables the current i to be considered as the sum of two partial responses.

The partial response iA has already been considered; if network B is 
inactive, we know that network A may be replaced by the Thévenin source 
and the inactive A network. In other words, of the three sources which we 
must keep in mind—those in A, those in B, and the Thévenin source—the 
partial response iA occurs when A and B are dead and the Thévenin source is 
active. Preparing for the use of superposition, we now let A remain inactive, 
but turn on B and turn off the Thévenin source; by definition, the partial 
response iB is obtained. Superimposing the results, the response when A is 
dead and both the Thévenin source and B are active is iA + iB. This sum is 
the original current i, and the situation wherein the Thévenin source and B 
are active but A is dead is the desired Thévenin equivalent circuit. Thus the 
active network A may be replaced by its Thévenin source, the open-circuit 
voltage, in series with the inactive A network, regardless of the status of the 
B network; it may be either active or inactive.
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AN LTspice® TUTORIAL

SPICE is an acronym for Simulation Program with Integrated Circuit Em-
phasis. A powerful program, it is an industry standard and used throughout 
the world for a variety of circuit analysis applications. SPICE was originally 
developed in the early 1970s by Donald O. Peterson and coworkers at the 
University of California at Berkeley. Interestingly, Peterson advocated free 
and unhindered distribution of knowledge created in university labs, choos-
ing to make an impact as opposed to profiting financially. There are now 
several variations of SPICE available on a variety of computing platforms, 
as well as competing software products.

The goal of this appendix is to simply introduce the basics of computer- 
aided circuit analysis using LTspice (www.linear.com); additional details 
are presented in the main text as well as in the references listed under Read-
ing Further. The student (and instructor) should not feel limited to any one 
package—the authors have selected this one simply as an example, in part 
because it is both freeware and supported on both Windows and Mac OS X.  
Advanced topics covered in the references include how to determine the 
sensitivity of an output variable to changes in a specific component value; 
how to obtain plots of the output versus a source value; determining ac 
output as a function of source frequency; methods for performing noise and 
distortion analyses; nonlinear component models; and how to model tem-
perature effects on specific types of circuits.

Getting Started
The first step is to download and install the software, available at http://
www.linear.com/designtools/software/#LTspice. The website also includes 
a “Getting Started Guide” and shortcuts for Mac OS X.

Mac OS X users: The user interface is somewhat different from the 
Windows version, so you will need to become familiar with shortcuts and 
a way to right-click. Right-clicking can usually be accomplished using 
Ctrl+click with a mouse or a two-finger click with a track pad.

A computer-aided circuit analysis consists of three separate steps: (1) 
drawing the schematic, (2) simulating the circuit, and (3) extracting the de-
sired information from the simulation output. Begin by launching LTspice 
and selecting New Schematic under File. A blank schematic window will 
open, where you will place components, connect components with wires, 
and define simulation parameters. To add, move, or delete components 
and wires, right-click on the schematic (and/or choose appropriate menu 
items for the Windows version) to select the appropriate option, as shown 
in Fig. A4.1. 

APPENDIX        •  4
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Let us get started by analyzing the basic series circuit with a voltage 
source, resistor, and a lamp (light bulb that has a circuit equivalent of a 
resistor). The objective is to find the current through the lamp and the volt-
age across the lamp. Begin by creating a new schematic. Add components 
and wire them together using the following procedure.

 ∙ Add new components using Draft ▸ Component (Mac OS X) or  
the appropriate choice under Edit. For this example, we will choose 
voltage source (voltage) and resistors (res) in Mac OS X, or in 
 Windows, typing voltage in the pop-up menu from Component,  
then selecting Resistor in a separate step (again, under Edit).  
Use edit tools to move or delete components, and the shortcut 
Ctrl+R to rotate objects. Note that the top (vertical) node of the 
resistor as it first appears is the default + reference terminal for 
the device.

 ∙ Add a reference ground node, using Draft ▸ Net Name, then select 
GND (global node 0) and place. In Windows, you can select the 
ground symbol from the menu bar, or select Place GND under Edit. 

 ∙ Connect the components with wires using Draft ▸ Wires. In 
 Windows, you can select the pencil symbol from the menu bar, or 
Draw Wire under Edit. Be careful not to wire across a component 
by accident!

 ∙ Define component values by right-clicking on each component and 
changing the value.

Prior to simulating our circuit, we save it by selecting Save from the File 
menu. Your circuit should look very similar to Fig. A4.2, with the exception 
of the .op, which we are now ready to obtain.

To run a simulation, we need to first define the type of simulation. In 
our case, we are simply interested in the dc voltage and current. To define 
the simulation to find the dc values, click Draft ▸ SPICE Directive (in 
Windows, this is found under the Edit menu). In the dialog box that ap-
pears, type the command .op, which refers to the DC operating point of 
the circuit, and place the text anywhere on the schematic. There are six 

■ FIGURE A4.1 New schematic window in LTspice Mac OS X version.
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 different types of analyses that can be performed, each with a different 
analysis command:

 ∙ .tran     Transient analysis
 ∙ .ac         Small signal AC
 ∙ .dc         DC sweep
 ∙ .noise    Noise
 ∙ .tf          DC transfer function
 ∙ .op         DC operating point

Now run the simulation by clicking Run (the running person in the upper 
left corner, or right-click and select Run)! In Windows you can also select 
Run under Simulate.

Following a successful simulation, you will see a new window of Wave-
form Data. Resulting values from the simulation will be shown here, but 
now you need to specify the variables that you are interested in viewing. 
There are at least three methods of specifying output and displaying it either 
in the Waveform Data window or directly on the circuit schematic:

1. On the circuit schematic, use Draft ▸ .op Data Label. Place the label 
on a node of interest, and the DC operating point will appear. Note that 
this only works for node voltage, not current. Example results for a 
data label is also shown in Fig. A4.3.

2. On the Waveform Data window, click on Add Trace(s). Select the 
variables of interest to show on the Waveform Data. Moving the cursor 
on the circuit schematic will also show a “voltage probe” when the 
cursor is on a node, or a “current probe” when the cursor is on a circuit 
element. Clicking on the desired value will add to the display in the 
Waveform Data window. Note that the x axis of the Waveform Data 
window is time or frequency, and it will be much more interesting for 
transient and AC analysis.

3. In the log file (shortcut Command+L), all node voltages and element 
currents should be listed.

■ FIGURE A4.2 Schematic of series circuit with a lamp (represented by an 80 Ω 
resistor) drawn in LTspice. Note that units are not shown; prefixes such as k for kilo, m 
for milli, and Meg for mega are acceptable alternatives to decimal or scientific notation.
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The resulting output using these three methods is shown in Fig. A4.3, where 
we find Iout = 0.1111 A and Vout = 8.8889 V. 

Fortunately, our simulation yields the expected result, where most of the 
voltage from the 9 V source is dropped across the lamp, and only a small 
fraction of the voltage is dropped across the 1 Ω series resistance. 

This example of simulating a lamp circuit is intended to simply get you 
started in using LTspice. More sophisticated analysis and functions are 
described throughout the text in the highlighted Computer-Aided Analysis 
sections as new circuits concepts are introduced. 

READING FURTHER
Some good resources devoted to LTspice simulation are:

The LTwiki online at http://ltwiki.org/?title=Main_Page
Gilles Brocard, The LTSpice IV Simulator: Manual, Methods and Applica-
tions, Künzelsau: Swiridoff Verlag, 2013.
A. K. Singh and R. Singh, Electronics Circuit SPICE Simulations 
with LTspice: A Schematic Based Approach, CreateSpace Independent 
Publishing, 2015.

An interesting history of circuit simulators, as well as Donald Peterson’s contribu-
tions to the field, can be found in:

T. Perry, “Donald O. Peterson [electronic engineering biography],” IEEE 
Spectrum 35, 1998, pp. 22–27.

■  FIGURE A4.3 LTspice dc operating point results shown using three different methods:  
(a) .op data label on schematic, (b) waveform data window, and (c) log file.

(a)
(b)

(c)
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COMPLEX NUMBERS

This appendix includes sections covering the definition of a complex num-
ber, the basic arithmetic operations for complex numbers, Euler’s identity, 
and the exponential and polar forms of the complex number. 

A5.1 • THE COMPLEX NUMBER
Our early training in mathematics dealt exclusively with real numbers, such 
as 4,  −   2 _ 7   , and π. Soon, however, we began to encounter algebraic equations, 
such as x2 = – 3, which could not be satisfied by any real number. Such an 
equation can be solved only through the introduction of the imaginary unit, 
or the imaginary operator, which we shall designate by the symbol j. By  
definition, j2 = – 1, and thus  j =  √ 

___
 − 1   , j3 = – j, j 4 = 1, and so forth. The 

product of a real number and the imaginary operator is called an imaginary 
number, and the sum of a real number and an imaginary number is called a 
complex number. Thus, a number having the form a + jb, where a and b are 
real numbers, is a complex number.

We shall designate a complex number by means of a special single sym-
bol; thus, A = a + jb. The complex nature of the number is indicated by 
the use of boldface type; in handwritten material, a bar over the letter is 
customary. The complex number A just shown is described as having a real 
component or real part a and an imaginary component or imaginary part b. 
This is also expressed as

   Re{A} = a    Im{A} = b   

The imaginary component of A is not jb. By definition, the imaginary com-
ponent is a real number.

It should be noted that all real numbers may be regarded as complex 
numbers having imaginary parts equal to zero. The real numbers are there-
fore included in the system of complex numbers, and we may now consider 
them as a special case. When we define the fundamental arithmetic oper-
ations for complex numbers, we should therefore expect them to reduce 
to the corresponding definitions for real numbers if the imaginary part of 
every complex number is set equal to zero.

Since any complex number is completely characterized by a pair of real 
numbers, such as a and b in the previous example, we can obtain some 
visual assistance by representing a complex number graphically on a rec-
tangular, or Cartesian, coordinate system. By providing ourselves with a 
real axis and an imaginary axis, as shown in Fig. A5.1, we form a complex 
plane, or Argand diagram, on which any complex number can be repre-
sented as a single point. The complex numbers M = 3 + j1 and N = 2 – j2 

The choice of the words imaginary and complex 

is unfortunate. They are used here and in the 

mathematical literature as technical terms to 

designate a class of numbers. To interpret imaginary 

as “not pertaining to the physical world” or complex as 

“complicated” is neither justified nor intended.

Mathematicians designate the imaginary operator by 

the symbol i, but it is customary to use j in electrical 

engineering in order to avoid confusion with the 

symbol for current.

APPENDIX        •  5
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are indicated. It is important to understand that this complex plane is only 
a visual aid; it is not at all essential to the mathematical statements which 
follow.

j3

j2

j1

–j1

–j2

–1 1 2 3

M

N

4 50
Real

Imaginary

■  FIGURE A5.1 The complex numbers M = 3 + j1 and 
N = 2 – j2 are shown on the complex plane.

We define two complex numbers as being equal if, and only if, their real 
parts are equal and their imaginary parts are equal. Graphically, then, to 
each point in the complex plane there corresponds only one complex num-
ber, and conversely, to each complex number there corresponds only one 
point in the complex plane. Thus, suppose we are given the two complex 
numbers

 A = a + jb   and   B = c + jd 

Then, if

 A = B 

it is necessary that

 a = c   and   b = d 

A complex number expressed as the sum of a real number and an imaginary 
number, such as A = a + jb, is said to be in rectangular or Cartesian form. 
Other forms for a complex number will appear shortly.

Let us now define the fundamental operations of addition, subtraction, 
multiplication, and division for complex numbers. The sum of two complex 
numbers is defined as the complex number whose real part is the sum of the 
real parts of the two complex numbers and whose imaginary part is the sum 
of the imaginary parts of the two complex numbers. Thus,

 (a + jb) + (c + jd ) = (a + c) + j(b + d ) 

For example,

 (3 + j4) + (4 − j2) = 7 + j2 

The difference of two complex numbers is taken in a similar manner; for 
example,

 (3 + j4) − (4 − j2) = −1 + j6 
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Addition and subtraction of complex numbers may also be accomplished 
graphically on the complex plane. Each complex number is represented as 
a vector, or directed line segment, and the sum is obtained by completing 
the parallelogram, illustrated by Fig. A5.2a, or by connecting the vectors in 
a head-to-tail manner, as shown in Fig. A5.2b. A graphical sketch is often 
useful as a check for a more exact numerical solution.

The product of two complex numbers is defined by

 (a + jb ) (c + jd ) = (ac − bd ) + j(bc + ad ) 

This result may be easily obtained by a direct multiplication of the two 
binomial terms, using the rules of the algebra of real numbers, and then 
simplifying the result by letting j2 = –1. For example,

  
(3 + j4) (4 − j2)

  
=

  
12 − j6 + j16 − 8  j   2 

      =  12 + j10 + 8   
 
  
=

  
20 + j10

   

It is easier to multiply the complex numbers by this method, particularly 
if we immediately replace j 2 with –1, than it is to substitute in the general 
formula that defines the multiplication.

Before defining the operation of division for complex numbers, we 
should define the conjugate of a complex number. The conjugate of the 
complex number A = a + jb is a – jb and is represented as A*. The conju-
gate of any complex number is therefore easily obtained by merely changing 
the sign of the imaginary part of the complex number. Thus, if

 A = 5 + j3 
then

  A   *  = 5 − j3 
It is evident that the conjugate of any complicated complex expression may 
be found by replacing every complex term in the expression by its conju-
gate, which may be obtained by replacing every j in the expression by –j.

The definitions of addition, subtraction, and multiplication show that 
the following statements are true: the sum of a complex number and its 
conjugate is a real number; the difference of a complex number and its 
conjugate is an imaginary number; and the product of a complex number 
and its conjugate is a real number. It is also evident that if A* is the con-
jugate of A, then A is the conjugate of A*; in other words, A = (A*)*. A 
complex number and its conjugate are said to form a conjugate complex 
pair of numbers.

We now define the quotient of two complex numbers:

   A __ B   =   (A) ( B   * ) ______ 
(B) ( B   * )

   

and thus

   a + jb ____ 
c + jd   =   (ac + bd ) + j(bc − ad )  _____________  

 c   2  +  d   2 
   

In any physical problem, a complex number will 

somehow be accompanied by its conjugate.

■  FIGURE A5.2 (a) The sum of the complex 
numbers M = 3 + j1 and N = 2 – j2 is obtained by 
constructing a parallelogram. (b) The sum of the 
same two complex numbers is found by a head-to-
tail combination.

M

N

M + N = 5 – j1

Real

Imaginary

(a)

M

M + N = 5 – j1

N
Real

Imaginary

(b)

M

N

M + N = 5 – j1

Real

Imaginary

(a)

M

M + N = 5 – j1

N
Real

Imaginary

(b)

hay01307_app05_817-826.indd   819 22/01/18   3:40 pm



APPENDIX 5 COMPLEX NUMBERS820

We multiply numerator and denominator by the conjugate of the denom-
inator in order to obtain a denominator which is real; this process is called 
rationalizing the denominator. As a numerical example,

  
  3 + j4 ____ 4 − j2  

  
=

  
  (3 + j4 ) (4 + j2 )  _________  (4 − j2 ) (4 + j2 )      

 
  

=
  

  4 + j22 _____ 16 + 4   = 0.2 + j1.1
  

The addition or subtraction of two complex numbers which are each ex-
pressed in rectangular form is a relatively simple operation; multiplication 
or division of two complex numbers in rectangular form, however, is a rath-
er unwieldy process. These latter two operations will be found to be much 
simpler when the complex numbers are given in either exponential or polar 
form. These forms will be introduced in Secs. A5.3 and A5.4.

PRACTICE 
●

A5.1 Let A = –4 + j5, B = 3 – j2, and C = –6 – j5, and find  
(a) C – B; (b) 2A – 3B + 5C; (c) j5C2(A + B); (d) B Re{A} + A Re{B}. 

A5.2 Using the same values for A, B, and C as in the previous 
problem, find (a) [(A – A*)(B + B*)*]*; (b) (1/C) – (1/B)*;  
(c) (B + C)/(2BC). 

Ans: A5.1: −9 − j3; −47 − j9; 27 − j191; −24 + j23. A5.2: −j60;  
−0.329 + j 0.236; 0.0662 + j 0.1179.

A5.2 • EULER’S IDENTITY
In Chap. 9 we encounter functions of time which contain complex numbers, 
and we are concerned with the differentiation and integration of these func-
tions with respect to the real variable t. We differentiate and integrate such 
functions with respect to t by exactly the same procedures we use for real 
functions of time. That is, the complex constants are treated just as though 
they were real constants when performing the operations of differentiation 
or integration. If f(t) is a complex function of time, such as

 f(t) = a cos ct + jb sin ct 

then

   df(t) ____ 
dt

   = − ac sin ct + jbc cos ct 

and

 ∫  f(t) dt =   a _ c   sin ct − j   b __ c   cos ct + C 

where the constant of integration C is a complex number in general.
It is sometimes necessary to differentiate or integrate a function of a 

complex variable with respect to that complex variable. In general, the 
successful accomplishment of either of these operations requires that the 
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function which is to be differentiated or integrated satisfy certain condi-
tions. All our functions do meet these conditions, and integration or differ-
entiation with respect to a complex variable is achieved by using methods 
identical to those used for real variables.

At this time we must make use of a very important fundamental rela-
tionship known as Euler’s identity (pronounced “oilers”). We shall prove 
this identity, for it is extremely useful in representing a complex number in 
a form other than rectangular form.

The proof is based on the power series expansions of cos θ, sin θ, and ez, 
given toward the back of your favorite college calculus text:

  
cos θ = 1 −    θ   2  __ 2 !   +    θ   4  __ 4 !   −    θ   6  __ 6 !   + · · ·

    
sin θ = θ −    θ   3  __ 3 !   +    θ   5  __ 5 !   −    θ   7  __ 7 !   + · · ·

   

or

 cos θ + j sin θ = 1 + jθ −    θ   2  __ 2 !   − j    θ   3  __ 3 !   +    θ   4  __ 4 !   + j    θ   5  __ 5 !   − · · · 

and

  e   z  = 1 + z +    z   2  __ 2 !   +    z   3  __ 3 !   +    z   4  __ 4 !   +    z   5  __ 5 !   + · · · 

so that

  e   jθ  = 1 + jθ −    θ   2  __ 2 !   − j    θ   3  __ 3 !   +    θ   4  __ 4 !   + · · · 

We conclude that

   e   jθ  = cos θ + j sin θ  [1]
or, if we let z = –jθ, we find that

   e   −jθ  = cos θ − j sin θ  [2]
By adding and subtracting Eqs. [1] and [2], we obtain the two expres-
sions which we use without proof in our study of the underdamped natural 
response of the parallel and series RLC circuits,

   
cos θ

  
=

  
  1 _ 2   ( e   jθ  +  e   −jθ  )

   
sin θ

  
=

  
− j   1 _ 2   ( e   jθ  +  e   −jθ  )

   
[4]

[3]

PRACTICE 
●

A5.3 Use Eqs. [1] through [4] to evaluate (a) e–j1; (b) e1–j1;  
(c) cos(–j1); (d) sin(–j1). 

A5.4 Evaluate at t = 0.5: (a)(d /dt)(3 cos 2t – j2 sin 2t);
(b)  ∫ 0  

t
   (3 cos 2t − j2 sin 2t)dt . Evaluate at s = 1 + j2: (c)  ∫ s  

∞
     s   −3  ds ;

(d) (d /ds)[3/(s + 2)]. 

Ans: A5.3: 0.540 − j0.841; 1.469 − j2.29; 1.543; −j1.175. A5.4: −5.05 − j2.16; 
1.262 − j0.460; −0.06 − j0.08; −0.0888 + j0.213.
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A5.3 • THE EXPONENTIAL FORM
Let us now take Euler’s identity

  e   jθ  = cos θ + j sin θ 
and multiply each side by the real positive number C:

  C  e   jθ  = C cos θ + jC sin θ  [5]

The right-hand side of Eq. [5] consists of the sum of a real number and an 
imaginary number and thus represents a complex number in rectangular 
form; let us call this complex number A, where A = a + jb. By equating 
the real parts

  a = C cos θ  [6]

and the imaginary parts

  b = C sin θ  [7]

then squaring and adding Eqs. [6] and [7],

  a   2  +  b   2  =  C   2  

or

  C = + √ 
_____

  a   2  +  b   2     [8]

and dividing Eq. [7] by Eq. [6]:

   b __ a   = tan θ 
or

  θ =  tan   −1    b __ a    [9]
we obtain the relationships of Eqs. [8] and [9], which enable us to determine 
C and θ from a knowledge of a and b. For example, if A = 4 + j2, then we 
identify a as 4 and b as 2 and find C and θ:

   C
  
=

  
 √ 

_____
  4   2  +  2   2   
  
=

  
4.47

   
θ
  

=
  
 tan   −1    2 _ 4  

  
=

  
 26.6   ° 

  

We could use this new information to write A in the form

 A = 4.47 cos  26.6   °  + j4.47 sin  26.6   °  

but it is the form of the left-hand side of Eq. [5] which will prove to be the 
more useful:

 A = C  e   jθ  = 4.47  e   j 26.6   °   

A complex number expressed in this manner is said to be in exponential 
form. The real positive multiplying factor C is known as the amplitude or 
magnitude, and the real quantity θ appearing in the exponent is called the 
argument or angle. A mathematician would always express θ in radians and 
would write

 A = 4.47  e   j0.464  
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but engineers customarily work in terms of degrees. The use of the degree 
symbol (°) in the exponent should make confusion impossible.

To recapitulate, if we have a complex number which is given in rectan-
gular form,

 A = a + jb 
and wish to express it in exponential form,

 A = C  e   jθ  

we may find C and θ by Eqs. [8] and [9]. If we are given the complex num-
ber in exponential form, then we may find a and b by Eqs. [6] and [7].

When A is expressed in terms of numerical values, the transformation 
between exponential (or polar) and rectangular forms is available as a built-
in operation on most handheld scientific calculators.

One question will be found to arise in the determination of the angle θ 
by using the arctangent relationship of Eq. [9]. This function is multivalued, 
and an appropriate angle must be selected from various possibilities. One 
method by which the choice may be made is to select an angle for which the 
sine and cosine have the proper signs to produce the required values of a and 
b from Eqs. [6] and [7]. For example, let us convert

 V = 4 − j3 
to exponential form. The amplitude is

 C =  √ 
________

  4   2  +  (− 3 )   2    = 5 

and the angle is

  θ =  tan   −1    − 3 ___ 4    [10]

A value of θ has to be selected which leads to a positive value for cos θ, 
since 4 = 5 cos θ, and a negative value for sin θ, since –3 = 5 sin θ. We 
therefore obtain θ = –36.9°, 323.1°, –396.9°, and so forth. Any of these 
angles is correct, and we usually select that one which is the simplest, here, 
–36.9°. We should note that the alternative solution of Eq. [10], θ = 143.1°, 
is not correct, because cos θ is negative and sin θ is positive.

A simpler method of selecting the correct angle is available if we rep-
resent the complex number graphically in the complex plane. Let us first 
select a complex number, given in rectangular form, A = a + jb, which 
lies in the first quadrant of the complex plane, as illustrated in Fig. A5.3.  
If we draw a line from the origin to the point which represents the com-
plex number, we shall have constructed a right triangle whose hypote-
nuse is evidently the amplitude of the exponential representation of the 
complex number. In other words,  C =  √ 

_____
  a   2  +  b   2    . Moreover, the counter-

clockwise angle which the line makes with the positive real axis is seen 
to be the angle θ of the exponential representation, because a = C cos θ  
and b = C sin θ. Now if we are given the rectangular form of a com-
plex number which lies in another quadrant, such as V = 4 – j3, which 
is depicted in Fig. A5.4, the correct angle is graphically evident, either 
–36.9° or 323.1° for this example. The sketch may often be visualized 
and need not be drawn.

■  FIGURE A5.3 A complex number may be 
represented by a point in the complex plane by 
choosing the correct real and imaginary parts from 
the rectangular form, or by selecting the magnitude 
and angle from the exponential form.

Imaginary

a = C cos θ

C = a2 + b2

b = C sin θ

Real
θ

– j3

C = 5

V

4

Imaginary

Real
θ = 323.1° θ = –36.9°

■  FIGURE A5.4 The complex number  
V = 4 – j3 = 5e–j36.9° is represented in the  
complex plane.
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If the rectangular form of the complex number has a negative real part, 
it is often easier to work with the negative of the complex number, thus 
avoiding angles greater than 90° in magnitude. For example, given

 I = − 5 + j2 
we write

 I = − (5 − j2) 
and then transform (5 – j2) to exponential form:

 I = − C  e   jθ  
where

 C =  √ 
___

 29   = 5.39    and    θ =  tan   −1    − 2 ___ 5   = −  21.8   °  
We therefore have

 I = − 5.39  e   −j 21.8   °   
The negative sign may be removed from the complex number by increasing 
or decreasing the angle by 180°, as shown by reference to a sketch in the 
complex plane. Thus, the result may be expressed in exponential form as

 I = 5.39  e   j 158.2   ∘       or    I = 5.39  e   −j 201.8   ∘   
Note that use of an electronic calculator in the inverse tangent mode always 
yields angles having magnitudes less than 90°. Thus, both tan–1[(–3)/4] 
and tan–1[3/(–4)] come out as –36.9°. Calculators capable of performing 
rectangular-to-polar conversion, however, give the correct angle in all cases.

One last remark about the exponential representation of a complex num-
ber should be made. Two complex numbers, both written in exponential 
form, are equal if, and only if, their amplitudes are equal and their angles are 
equivalent. Equivalent angles are those which differ by multiples of 360°.

For example, if A = Cejθ and B = Dejϕ, then if A = B, it is necessary that 
C = D and θ = ϕ ± (360°)n, where n = 0, 1, 2, 3, . . . .

PRACTICE 
●

A5.5 Express each of the following complex numbers in exponential 
form, using an angle lying in the range –180°< θ ≤ 180°: (a) –18.5 – 
j26.1; (b) 17.9 – j12.2; (c) –21.6 + j31.2. 

A5.6 Express each of these complex numbers in rectangular form: (a) 
61.2e–j111.1°; (b) –36.2e j108°; (c) 5e–j2.5. 

Ans: A5.5: 32.0e−j125.3°; 21.7e−j34.3°; 37.9e j124.7°. A5.6: −22.0 − j57.1;  
11.19 − j34.4; −4.01 − j2.99.

A5.4 • THE POLAR FORM
The third (and last) form in which we may represent a complex number is 
essentially the same as the exponential form, except for a slight difference 
in symbolism. We use an angle sign (∠) to replace the combination e  j. Thus, 
the exponential representation of a complex number A,

 A = C  e   jθ  
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may be written somewhat more concisely as

 A = C   θ  

The complex number is now said to be expressed in polar form, a name 
which suggests the representation of a point in a (complex) plane through 
the use of polar coordinates.

It is apparent that transformation from rectangular to polar form or 
from polar form to rectangular form is basically the same as transformation 
between rectangular and exponential form. The same relationships exist 
between C, θ, a, and b.

The complex number

 A = − 2 + j5 

is thus written in exponential form as

 A = 5.39  e   j 111.8   ∘   
and in polar form as

 A = 5.39    111.8   °   
In order to appreciate the utility of the exponential and polar forms, let us 
consider the multiplication and division of two complex numbers represent-
ed in exponential or polar form. If we are given

 A = 5    53.1   °      and    B = 15   −  36.9   °   

then the expression of these two complex numbers in exponential form

 A = 5  e   j 53.1   °     and  B = 15  e   −j 36.9   °   

enables us to write the product as a complex number in exponential form 
whose amplitude is the product of the amplitudes and whose angle is the 
algebraic sum of the angles, in accordance with the normal rules for multi-
plying two exponential quantities:

 (A)(B) = (5)(15)  e   j( 53.1   ° − 36.9   ° )  

or

 AB = 75  e   j 16.2   °   = 75    16.2   °   

From the definition of the polar form, it is evident that

   A __ B   = 0.333    90   °   

Addition and subtraction of complex numbers are accomplished most easily 
by operating on complex numbers in rectangular form, and the addition or 
subtraction of two complex numbers given in exponential or polar form 
should begin with the conversion of the two complex numbers to rectangu-
lar form. The reverse situation applies to multiplication and division; two 
numbers given in rectangular form should be transformed to polar form, 
unless the numbers happen to be small integers. For example, if we wish 
to multiply (1 – j3) by (2 + j1), it is easier to multiply them directly as they 
stand and obtain (5 – j5). If the numbers can be multiplied mentally, then 
time is wasted in transforming them to polar form.

/

/

/ /

/

/
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We should now try to become familiar with the three different forms in 
which complex numbers may be expressed and with the rapid conversion 
from one form to another. The relationships among the three forms seem 
almost endless, and the following lengthy equation summarizes the various 
interrelationships

  

A

  

=

  

a + jb

  
 
  

=
  
 Re{A} + j Im{A} 

      =  C  e   jθ   
 
  

=
  
 √ 

_____
  a   2  +  b   2     e   j  tan   −1 (b/a) 

   

 

  

=

  

 √ 
_____

  a   2  +  b   2       tan   −1  (b / a)  

  

Most of the conversions from one form to another can be done quickly with 
the help of a calculator, and many calculators are equipped to solve linear 
equations with complex numbers.

We shall find that complex numbers are a convenient mathematical arti-
fice which facilitates the analysis of real physical situations.

/

PRACTICE 
●

A5.7 Express the result of each of these complex-number manipula-
tions in polar form, using six significant figures just for the pure joy of 
calculating (a)  [2 − (1   −  41   °  )]/ (0.3    41   °  ) ; (b)  50/(2.87   83  .6   °    
+ 5.16   63  .2   °  ) ; (c)  4    18   °   − 6   − 75°  + 5   28°  . 

A5.8 Find Z in rectangular form if (a) Z + j2 = 3/Z;  
(b) Z = 2 ln(2 – j3); (c) sinZ = 3.

Ans: A5.7: 4.69179  −13.2183°; 6.318 33  −70.4626°; 11.5066  54.5969°. A5.8:  
±1.414 − j1; 2.56 − j1.966; 1.571 ± j1.763.

/ / /
/ / / /

/ / /
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A BRIEF MATLAB® TUTORIAL

The intention of this tutorial is to provide a brief introduction to some basic 
concepts required to use a powerful software package known as MATLAB. 
The use of MATLAB is a completely optional part of the material in this 
textbook, but as it is becoming an increasingly common tool in all areas of 
electrical engineering, we felt that it was worthwhile to provide students 
with the opportunity to begin exploring some of its features, particularly 
in plotting 2D and 3D functions, performing matrix operations, solving si-
multaneous equations, and manipulating algebraic expressions. While some 
institutions provide the full version of MATLAB for their students, at the 
time of this writing, a student version is available at reduced cost from The 
MathWorks, Inc. (http://www.mathworks.com/academia/student_version/).

Getting Started
MATLAB is launched by clicking on the program icon; the typical open-
ing window is shown in Fig. A6.1. Programs may be run from files or by 

APPENDIX        •  6

■ FIGURE A6.1 MATLAB command window upon start-up.
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directly entering commands in the window. MATLAB also has extensive 
online help resources, useful for both beginners and advanced users. Typical 
MATLAB programs very much resemble programs written in C, although 
familiarity with this language is by no means required.

Variables and Mathematical Operations
MATLAB makes a great deal more sense once the user realizes that all 
variables are matrices, even if simply 1 × 1 matrices. Variable names can 
be up to 19 characters in length, which is extremely useful in constructing 
programs with adequate readability. The first character must be a letter, but 
all remaining characters can be any letter or number; the underscore (_) 
character may also be used. Variable names in MATLAB are case-sensitive. 
MATLAB includes several predefined variables. Relevant predefined vari-
ables for the material presented in this text include:

eps The machine accuracy
realmin The smallest (positive) floating-point number handled by the 

computer
realmax The largest floating-point number handled by the computer
inf Infinity (defined as 1/0)
NaN Literally, “Not a Number.” This includes situations such as 0/0
pi π (3.14159 . . .)
i, j Both are initially defined as   √ 

___
 − 1   . They may be assigned other 

values by the user

A complete list of currently defined variables can be obtained with the com-
mand who. Variables are assigned by using an equal sign (=). If the state-
ment is terminated with a semicolon (;), then another prompt appears. If 
the statement is simply terminated by a carriage return (i.e., by pressing the 
Enter key), then the variable is repeated. For example,

≫input_voltage = 5;
≫input_current = 1e − 3
input_current =
1.0000e−003
≫

Complex variables are easy to define in MATLAB; for example,
≫s = 9 + j*5;

creates a complex variable s with value 9 + j5.
A matrix other than a 1 × 1 matrix is defined using brackets. For exam-

ple, we would express the matrix  t =   [   2  − 1  3  0  ]     in MATLAB as
≫t = [2  −1;3  0];

Note that the matrix elements are entered a row at a time; row elements are 
separated by a space, and rows are separated by a semicolon (;). The same arith-
metic operations are available for matrices; so, for example, we may find t + t as

≫t + t
ans =
 4  −2
 6   0

Second color has been used to differentiate program-

generated text from user-generated text for the 

convenience of the reader only. We should note that 

the most recent versions of MATLAB use color to 

separate different types of text (functions, variables, 

etc.) and to highlight potential typographical errors.
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Arithmetic operators include:

^ power \ left division
* multiplication + addition
/ right (ordinary) division − subtraction

The order of operations is important. The order of precedence is power, then 
multiplication and division, then addition and subtraction.

≫x = 1 + 5 ^ 2 * 3
  x =
   76

The concept of left division may seem strange at first, but is very useful in 
matrix algebra. For example,

≫1/5
ans =
  0.2000
≫1\5
ans =
   5
≫5\1
ans =
   0.2000

And, in the case of the matrix equation Ax = B, where

 A =   [   2  4  1  6  ]         and      B =   [   − 1  2  ]    

we find x with
≫A = [2 4; 1 6];
≫B = [−1; 2];
≫x = A\B
x =

  −1.7500
   0.6250

Alternatively, we can also write
≫x = A^ − 1 * B
x =
  −1.7500
  0.6250

or
≫inv (A) * B
ans =
 −1.7500
  0.6250

When in doubt, parentheses can help a great deal.
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Some Useful Functions
Space requirements prevent us from listing every function contained in 
MATLAB. Some of the more basic ones include:

abs(x) |x| log10(x) log10x
exp(x) ex sin(x) sin x asin(x) sin–1x
sqrt(x)   √ 

__
 x    cos(x) cos x acos(x) cos–1x

log(x) In tan(x) tan x atan(x) tan–1x

Functions useful for manipulating complex variables include:

real(s) Re{s}
imag(s) Im{s}
abs(s)   √ 

_____
  a   2  +  b   2    , where s ≡a + jb

angle(s) tan–1 (b/a), where s ≡a + jb
conj(s) complex conjugate of s

Another extremely useful command, often forgotten, is simply help.
Occasionally we require a vector, such as when we plan to create a plot. 

The command linspace (min, max, number of points) is invaluable in such 
instances:

≫frequency = linspace (0, 10, 5)
frequency =
    0  2.5000  5.0000  7.5000  10.0000

A useful cousin is the command logspace().

Generating Plots
Plotting with MATLAB is extremely easy. For example, Fig. A6.2 shows 
the result of executing the following MATLAB program:

≫x = linspace (0, 2 * pi,100);
≫y = sin (x);
≫plot (x, y);
≫xlabel (‘Angle (radians)‘)
≫ylabel (‘f(x)‘);

Writing Programs
Although the MATLAB examples in this text are presented as lines 
typed into the Command Window, it is possible (and often prudent, 
if repetition is an issue) to write a program so that calculations are 
more convenient. This is accomplished in MATLAB by writing what is 
termed an m-file, which is simply a text file saved with an “.m” exten-
sion (for example, first_program.m). In a nod to Kernighan and Ritchie, 
we pull down New Script under the Home  tab, which opens up the 
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editor. (Note that you can use another editor, for example, WordPad, if 
you prefer.)

We type in
r = input('Hello, World')

as shown in Fig. A6.3.
We next save it as first_program in a convenient directory, taking 

care to select MATLAB Files (*.m) under File Type. Under the Home 
tab, we select Open, and find first_program.m. This reopens the editor 
(so we could have skipped closing it earlier). We run our program by 
selecting Run under the Editor tab. In the Command Window, we see 
our greeting; MATLAB is waiting for a keyboard response, so just hit 
the Enter key.

■  FIGURE A6.2 An example plot of sin(x), 0 < x < 2π,  
generated using MATLAB. The variable x is a vector comprised 
of 100 equally spaced elements.

■  FIGURE A6.3 example m-file created in m-file editor.
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Let’s expand a previous example to allow the magnitude to be user 
selected as in Fig. A6.4. We are now allowed to enter an arbitrary amplitude 
for our plot.

■  FIGURE A6.4 example m-file for generating sine wave plot.

We leave it to the reader to choose when to write a program/m-file and 
when to simply use the Command Window directly.

Directly entering examples from this textbook into MATLAB should 
work as intended. However, please be cautious in cutting and pasting from 
electronic versions of the textbook, since symbols used to typeset characters 
are not always interpreted correctly in MATLAB (in particular, the “minus 
sign” character used in type setting versus the hyphen character used in 
MATLAB programming). 

READING FURTHER
There are a large number of excellent MATLAB references available, with new 
titles appearing regularly. An additional resource is online:

https://www.mathworks.com/help/matlab/
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ADDITIONAL LAPLACE 
TRANSFORM THEOREMS

In this appendix, we briefly present several Laplace transform theorems 
typically used in more advanced situations in addition to those described 
in Chap. 14.

Transforms of Periodic Time Functions
The time-shift theorem is very useful in evaluating the transform of periodic 
time functions. Suppose that f (t) is periodic with a period T for positive 
values of t. The behavior of f (t) for t < 0 has no effect on the (one-sided) 
Laplace transform, as we know. Thus, f (t) can be written as

f(t) = f(t − nT)    n = 0,  1,  2,   .   .  .

If we now define a new time function which is nonzero only in the first 
period of f (t),

 f  1  (t) =  [u(t) − u(t − T )] f (t)

then the original f (t) can be represented as the sum of an infinite number of 
such functions, delayed by integral multiples of T. That is,

 

f(t)

  

=

  

[u(t) − u(t − T)] f(t)

    
 
  

 
  

+ [u(t − T ) − u(t − 2T)] f(t)
    

 
  

 
  

+ [u(t − 2T ) − u(t − 3T )] f (t) + · · ·
     

 

  

=

  

 f  1  (t) +   f  1  (t − T ) +   f  1  (t − 2T ) + · · ·

  

or

f  (  t )    =   ∑ 
n=0

  
∞

     f  1    (  t − nT )   

The Laplace transform of this sum is just the sum of the transforms,

F  (  s )    =   ∑ 
n=0

  
∞

    ℒ  {   f  1    (  t − nT  )    }   

so that the time-shift theorem leads to

F  (  s )    =   ∑ 
n=0

  
∞

     e   −nTs   F  1    (  s )   

where

 F  1    (  s )    = ℒ  {   f  1    (  t )    }    =  ∫ 
 0   − 

  
T

     e   −st  f  (  t )   dt
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Since F1(s) is not a function of n, it can be removed from the summation, 
and F(s) becomes

F(s) =  F  1  (s)[1 +  e   −       Ts  +  e   −       2Ts  + · · ·]

When we apply the binomial theorem to the bracketed expression, it simpli-
fies to 1/(1 – e–Ts). Thus, we conclude that the periodic function f (t), with 
period T, has a Laplace transform expressed by

  F  (  s )    =    F  1  (s) _____ 
1 −  e   −Ts 

    [1]

where

   F  1  (s) = ℒ{[u(t) − u(t − T )] f(t)}  [2]

is the transform of the first period of the time function.
To illustrate the use of this transform theorem for periodic functions, 

let us apply it to the familiar rectangular pulse train, Fig. A7.1. We may 
describe this periodic function analytically:

v  (  t )    =   ∑ 
n=0

  
∞

     V  0    [  u  (  t − nT )    − u  (  t − nT − τ )    ]     t > 0

■  FIGURE A7.1 A periodic train of rectangular pulses for which  
F(s) = (V0/s)(1 – e–sτ )/(1 – e–sT).

0 τ

v (t)

V0

t
T T + τ 2T 2T + τ

The function V1(s) is simple to calculate:

 V  1    (  s )    =  V  0    ∫ 
 0   − 

  
τ

     e   −st dt =    V  0   __ s     (  1 −  e   sτ  )   

Now, to obtain the desired transform, we just divide by (1 – e–sT ):

  V  (  s )    =    V  0    (  1 −  e   −sτ  )    ________ 
s  (  1 −  e   −sT  )   

    [3]

We should note how several different theorems show up in the transform in 
Eq. [3]. The (1 – e–sT) factor in the denominator accounts for the periodicity 
of the function, the e–sτ term in the numerator arises from the time delay of 
the negative square wave that turns off the pulse, and the V0/s factor is, of 
course, the transform of the step functions involved in v(t).
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EXAMPLE A7.1
Determine the transform of the periodic function of Fig. A7.2.

We begin by writing an equation which describes f (t), a function com-
posed of alternating positive and negative impulse functions.

f  (  t )    = 2δ  (  t − 1 )    − 2δ  (  t − 3 )    + 2δ  (  t − 5 )    − 2δ  (  t − 7 )    + ⋅ ⋅ ⋅

Defining a new function f1 and recognizing a period T = 4 s,

 f  1    (  t )    = 2  [  δ  (  t − 1 )    − δ  (  t − 3 )    ]   

we can make use of the time periodicity operation as listed in Table 
14.2 to find F(s)

  F  (  s )    =   1 _____ 
1 −  e   − T  s   

    F  1    (  s )     [4]

where

 F  1    (  s )    =  ∫ 
 0   − 

  
T

    f  (  t )    e   −st  dt =  ∫ 
 0   − 

  
4
     f  1    (  t )    e   −st  dt

There are several ways to evaluate this integral. The easiest is to recog-
nize that its value will remain the same if the upper limit is increased to 
∞, allowing us to make use of the time-shift theorem. Thus,

   F  1    (  s )    = 1  [   e   −s  −  e   −3s  ]     [5] 

Our example is completed by multiplying Eq. [5] by the factor indicated 
in Eq. [4], so that

F  (  s )    =   2 _____ 
1 −  e   −4s 

    (   e   −s  −  e   −3s  )    =   2  e   −s  _____ 
1 +  e   −2s 

  

PRACTICE 
●

A7.1 Determine the Laplace transform of the periodic function shown 
in Fig. A7.3. 

Ans:   (  8 ________ 
s2 + π 2/4

  )      s + (π/2)e−s + (π/2)e−3s − se−4s
   _________________________  

1 − e−4s   

■  FIGURE A7.2 A periodic function based on 
unit-impulse functions.
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■  FIGURE A7.3
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8

f (t)

Frequency Shifting
The next new theorem establishes a relationship between F(s) = ℒ{f (t)} 
and F(s + a). We consider the Laplace transform of e–at f (t),

ℒ  {   e   −at  f  (  t )    }    =  ∫ 
 0   − 

  
∞

     e   −st   e   −at  f  (  t )   dt =  ∫ 
 0   − 

  
∞

     e   −  (  s+a )   t  f  (  t )   dt

Looking carefully at this result, we note that the integral on the right is iden-
tical to that defining F(s) with one exception: (s + a) appears in place of s.
Thus,

   e   −at  f  (  t )    ⇔ F  (  s + a )     [6]
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Differentiation in the Frequency Domain
Next let us examine the consequences of differentiating F(s) with respect to 
s. The result is

 
  d __ 
ds

   F  (  s )   
  
=

  
  d __ 
ds

    ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt
    

 
  

=
  
 ∫ 

 0   − 
  

∞
    − t e   −st  f  (  t )   dt =  ∫ 

 0   − 
  

∞
     e   −st   [  − tf  (  t )    ]   dt

 

which is simply the Laplace transform of [–t f(t)]. We therefore conclude 
that differentiation with respect to s in the frequency domain results in mul-
tiplication by –t in the time domain, or

  − tf  (  t )    ⇔   d __ 
ds

   F  (  s )     [8]

Suppose now that f (t) is the unit-ramp function tu(t), whose transform we 
know is 1/s2. We can use our newly acquired frequency-differentiation the-
orem to determine the inverse transform of 1/s3 as follows:

  d __ 
ds

    (    1 _ 
 s   2 

   )    = −   2 __ 
 s   3 

   ⇔ − t  ℒ   −1   {    1 _ 
 s   2 

   }    = −  t   2  u  (  t )   

and

     t   
2  u  (  t )    ____ 2   ⇔   1 __ 

 s   3 
    [9]

Continuing with the same procedure, we find

     t   
3  __ 3 !   u  (  t )    ⇔   1 __ 

 s   4 
    [10]

and in general

     t    (  n−1 )    _____   (  n − 1 )    !   u  (  t )    ⇔   1 __  s   n     [11]

We conclude that replacing s with (s + a) in the frequency domain cor-
responds to multiplication by e–at in the time domain. This is known as the 
frequency-shift theorem. It can be put to immediate use in evaluating the 
transform of the exponentially damped cosine function that we used exten-
sively in previous work. Beginning with the known transform of the cosine 
function,

ℒ  {  cos  ω  0   t }    = F  (  s )    =   s _____ 
 s   2  +  ω  0  2 

  

then the transform of e–at cos ω0 t must be F(s + a):

  ℒ  {   e   −at  cos  ω  0   t }    = F  (  s + a )    =   s + a ________  
  (  s + a )     2  +  ω  0  2 

    [7]

PRACTICE 
●

A7.2 Find ℒ{e–2t sin(5t + 0.2π)u(t)}. 
Ans: (0.588s + 4.05) / (s2 + 4s + 29).
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Integration in the Frequency Domain
The effect on f (t) of integrating F(s) with respect to s may be shown by 
beginning with the definition once more,

F  (  s )    =  ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt

performing the frequency integration from s to ∞,

 ∫ 
s
  
∞

    F  (  s )   ds =  ∫ 
s
  
∞

      [   ∫ 
 0   − 

  
∞

     e   −st  f  (  t )   dt ]   ds

interchanging the order of integration,

 ∫ 
s
  
∞

    F  (  s )   ds =  ∫ 
 0   − 

  
∞

      [   ∫ 
s
  
∞

     e   −st  ds ]   f  (  t )   dt

and performing the inner integration,

 ∫ 
s
  
∞

    F  (  s )   ds =  ∫ 
 0   − 

  
∞

      [  −   1 _ t    e   −st  ]    
s
  

∞
  f  (  t )   dt =  ∫ 

 0   − 
  

∞
      f  
(  t )    ___ t    e   −st  dt

Thus,

    f  
(  t )    ___ t   ⇔  ∫ 

s
  
∞

    F  (  s )   ds  [12]

For example, we have already established the transform pair

sin  ω  0   t u  (  t )    ⇔    ω  0   _____ 
 s   2  +  ω  0  2 

  

Therefore,

ℒ  {    sin  ω  0   t u  (  t )    _ t   }    =  ∫ 
s
  
∞

       ω  0   ds _____ 
 s   2  +  ω  0  2 

   =  tan   −1    s __  ω  0       |    s  ∞ 

and we have

    sin  ω  0   t u  (  t )    ________ t   ⇔   π __ 2   −  tan   −1    s __  ω  0      [13]

PRACTICE 
●

A7.3 Find ℒ{t sin(5t + 0.2π)u(t)}. 

Ans: (0.588s2 + 8.09s − 14.69) / (s2 + 25)2.

PRACTICE 
●

A7.4 Find ℒ{sin2 5tu(t)/t}. 

Ans:    1 _ 4    ln[(s2 + 100) / s2] ln[(s2 + 100) / s2].
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The Time-Scaling Theorem
We next develop the time-scaling theorem of Laplace transform theory by 
evaluating the transform of f (at), assuming that ℒ{f (t)} is known. The 
procedure is very simple:

 ℒ {f(at)}  =  ∫ 
 0   − 

  
∞

     e   −st f(at) dt =   1 _ a    ∫ 
 0   − 

  
∞

     e   −(s/a)λ f(λ) dλ 

where the change of variable at = λ has been employed. The last integral 
is recognizable as 1/a times the Laplace transform of f (t), except that s is 
replaced by s/a in the transform. It follows that

  f(at) ⇔   1 _ a   F  (    s _ a   )     [14]

As an elementary example of the use of this time-scaling theorem, consider 
the determination of the transform of a 1 kHz cosine wave. Assuming we 
know the transform of a 1 rad/s cosine wave,

cos t u(t) ⇔   s ____ 
 s   2  + 1

  

the result is

 ℒ {cos 2000πt u(t)}  =   1 _ 2000π
      s / 2000π ___________  
 (s / 2000π)   2  + 1

   =   s ____________  
 s   2  +  (2000π)   2 

   

PRACTICE 
●

A7.5 Find ℒ{sin2 5t u(t)}.  

Ans: 50 / [s(s2 + 100)].
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THE COMPLEX FREQUENCY PLANE

Circuits with even a comparatively small number of elements can lead to 
rather unwieldy s-domain expressions. In such instances, a graphical rep-
resentation of a particular circuit response or transfer function can provide 
useful insights. In this appendix, we introduce one such approach, based on 
the idea of the complex-frequency plane (Fig. A8.1). Complex frequency 
has two components (σ and ω), so we are naturally drawn to representing 
our functions using a three-dimensional model.

Since ω represents an oscillating function, there is no physical distinc-
tion between a positive and negative frequency. In the case of σ, however, 
which can be identified with an exponential term, positive values are in-
creasing in magnitude, whereas negative values are decaying. The origin of 
the s plane corresponds to dc (no time variation). A pictorial summary of 
these ideas is presented in Fig. A8.2.

To construct an appropriate three-dimensional representation of some 
function F(s), we first note that we have its magnitude in mind, although the 

APPENDIX        •  8

■  FIGURE A8.1 The complex-frequency plane, also 
referred to as the s plane.

jω

s plane

σ

■  FIGURE A8.2 An illustration of the physical meaning of positive and negative values for σ and 
ω, as would be represented on the complex-frequency plane. When ω = 0, a function will have no 
oscillatory component; when σ = 0, the function is purely sinusoidal except when ω is also zero.

jω

σ

t t t

t t t

t t t
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phase will have a strong complex-frequency dependence as well and may be 
graphed in a similar fashion. Thus, we will begin by substituting σ + jω for s 
in our function F(s), then proceed to determine an expression for |F(s)|. We 
next draw an axis perpendicular to the s plane, and we use this to plot |F(s)| 
for each value of σ and ω. The basic process is illustrated in Example 8.1.

EXAMPLE A8.1
Sketch the admittance of the series combination of a 1 H inductor 
and a 3 Ω resistor as a function of both jω and σ.

The admittance of these two series elements is given by

 Y  (  s )    =   1 ___ s + 3   

Substituting s = σ + jω, we find the magnitude of the function is

   |  Y  (  s )    |    =   1 ________  
 √ 

_________
    (  σ + 3 )     2  +  ω   2   
   

When s = −3 + j0, the response magnitude is infinite; when s is 
infinite, the magnitude of Y(s) is zero. Thus our model must have 
infinite height over the point (−3 + j0), and it must have zero height at 
all points infinitely far away from the origin. A cutaway view of such a 
model is shown in Fig. A8.3a.

■  FIGURE A8.3 (a) A cutaway view of a clay model whose top surface repre-
sents |Y(s)| for the series combination of a 1 h inductor and a 3 Ω resistor. (b) |Y(s)| 
as a function of ω. (c) |Y(s)| as a function of σ.

σ

jω

(a)

|Y|

–3

|Y|

(b)
ω

|Y|

(c)
σ

–3

hay01307_app08_839-846.indd   840 23/01/18   10:52 am



  APPENDIX 8 The Complex FrequenCy plAne 841

Building on this concept, there is a tremendous amount of information 
contained in the pole-zero plot of a forced response. We will now consider 
how such plots can be used to obtain the complete response of a circuit—
natural plus forced—provided the initial conditions are known. The advan-
tage of such an approach is a more intuitive linkage between the location of 
the critical frequencies, easily visualized through the pole-zero plot, and the 
desired response.

Let us introduce the method by considering the simplest example, 
a series RL circuit as shown in Fig. A8.5. A general voltage source vs(t) 

Once the model is constructed, it is possible to visualize the varia-
tion of |Y| as a function of ω (with σ = 0) by cutting the model with a 
perpendicular plane containing the jω axis. The model shown in Fig. 
A8.3a happens to be cut along this plane, and the desired plot of |Y| 
versus ω can be seen; the curve is also drawn in Fig. A8.3b. In a similar 
manner, a vertical plane containing the σ axis enables us to obtain |Y| 
versus σ (with ω = 0), as shown in Fig. A8.3c.

PRACTICE 
●

A8.1 Sketch the magnitude of the impedance Z(s) = 2 + 5s as a func-
tion of σ and jω. 

■  FIGURE A8.4 Solution for practice problem A8.1, 
generated with the following code:

≫ sigma = linspace( − 10, 10, 21);
≫ omega = linspace( − 10, 10,21);
≫ [X, Y] = meshgrid(sigma,omega);
≫ Z = abs(2 + 5*X + j*5*Y);
≫ colormap(hsv);
≫ s = [−5 3 8];
≫ surfl(X,Y,Z,s);
≫ view (−20,5)

Ans: See Fig. A8.4.
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causes the current i (t) to flow after closure of the switch at t = 0. The com-
plete response i(t) for t > 0 is composed of a natural response and a forced 
response:

 i  (  t )    =  i  n    (  t )    +  i  f    (  t )    

We may find the forced response by working in the frequency domain, as-
suming, of course, that vs(t) has a functional form that we can transform to 
the frequency domain; if vs(t) = 1/(1 + t2), for example, we must proceed 
as best we can from the basic differential equation for the circuit. For the 
circuit of Fig. A8.5, we have

  I  f    (  s )    =    V  s   ____ 
R + sL

   

or

   I  f     (  s )    =   1 __ 
L

      V  s   _____ s + R / L    [1]

Next we consider the natural response. From previous experience, we know 
that the form will be a decaying exponential with the time constant L/R, but 
let’s pretend that we are finding it for the first time. The form of the natural 
(source-free) response is, by definition, independent of the forcing func-
tion; the forcing function contributes only to the magnitude of the natural 
response. To find the proper form, we turn off all independent sources; here, 
vs(t) is replaced by a short circuit. Next, we try to obtain the natural response 
as a limiting case of the forced response. Returning to the frequency-domain 
expression of Eq. [1], we obediently set Vs = 0. On the surface, it appears 
that I(s) must also be zero, but this is not necessarily true if we are operating 
at a complex frequency that is a simple pole of I(s). Specifically, the de-
nominator and the numerator may both be zero so that I(s) need not be zero.

Let us inspect this new idea from a slightly different vantage point. We 
fix our attention on the ratio of the desired forced response to the forcing 
function. We designate this ratio H(s) and define it to be the circuit transfer 
function. Then,

   
 I  f   

  (  s )   
 ___  V  s  

   = H  (  s )    =   1 _______ 
L  (  s + R / L )      

In this example, the transfer function is the input admittance faced by Vs. 
We seek the natural (source-free) response by setting Vs = 0. However,  

■  FIGURE A8.5 An example that illustrates the 
determination of the complete response through a 
knowledge of the critical frequencies of the imped-
ance faced by the source.

+
–

i (t)

vs(t) L

R
t = 0

What does it mean to “operate” at a complex 

frequency? how could we possibly accomplish such 

a thing in a real laboratory? In this instance, it is 

important to remember how we invented complex 

frequency to begin with: It is a means of describing 

a sinusoidal function of frequency ω multiplied by an 

exponential function eσt. Such types of signals are 

very easy to generate with real (i.e., nonimaginary) 

laboratory equipment. Thus, we need only set the 

value for σ and the value for ω in order to “operate” 

at s = σ + jω.
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If (s) = VsH(s), and if Vs = 0, a nonzero value for the current can be obtained 
only by operating at a pole of H(s). The poles of the transfer function there-
fore assume a special significance.

In this example, we see that the pole of the transfer function occurs at 
s = −R/L + j0, as shown in Fig. A8.6. If we choose to operate at this par-
ticular complex frequency, the only finite current that could result must be 
a constant in the s-domain (i.e., frequency-independent). We thus obtain the 
natural response

 I  (  s = −   R _ 
L

   + j0 )    = A 

where A is an unknown constant. We next wish to transform this natural 
response to the time domain. Our knee-jerk reaction might be to try to apply 
inverse Laplace transform techniques in this situation. However, we have 
already specified a value of s, so that such an approach is not valid. Instead, 
we look to the real part of our general function est, such that

  i  n    (  t )    = Re  {  A  e   st  }    = Re  {  A  e   −Rt/L  }    

In this case we find

  i  n    (  t )    = A  e   −Rt/L  

so that the total response is then

 i  (  t )    = A  e   −Rt/L  +  i  f    (  t )    

and A may be determined once the initial conditions are specified for this 
circuit. The forced response if (t) is obtained by finding the inverse Laplace 
transform of If (s).

A More General Perspective
Figure A8.7 shows single sources connected to networks containing no 
independent sources. The desired response, which might be some current 
I1(s) or some voltage V2(s), may be expressed by a transfer function that 
displays all the critical frequencies. To be specific, we select the response 
V2(s) in Fig. A8.7a:

    V  2    (  s )    ____  V  s  
   = H  (  s )    = k     (  s −  s  1   )     (  s −  s  3   )    . . .  __________    (  s −  s  2   )     (  s −  s  4   )    . . .

   

■  FIGURE A8.6 pole-zero constellation of the transfer 
function H(s) showing the single pole at s = −R/L.

–R/L

jω

s
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The poles of H(s) occur at s = s2, s4, . . . , and so a finite voltage V2(s) at 
each of these frequencies must be a possible functional form for the natural 
response. Thus, we think of a zero-volt source (which is just a short-circuit) 
applied to the input terminals; the natural response that occurs when the 
input terminals are short-circuited must therefore have the form

  v  2n    (  t )    =  A  2    e    s  2  t  +  A  4    e    s  4  t  + · · · 

where each A must be evaluated in terms of the initial conditions (including 
the initial value of any voltage source applied at the input terminals).

To find the form of the natural response i1n(t) in Fig. A8.7a, we should 
determine the poles of the transfer function, H(s) = I1(s)/Vs. The transfer 
functions applying to the situations depicted in Fig. A8.7b would be I1(s)/Is 
and V2(s)/Is, and their poles then determine the natural responses i1n(t) and 
v2n(t), respectively.

If the natural response is desired for a network that does not contain 
any independent sources, then a source Vs or Is may be inserted at any con-
venient point, restricted only by the condition that the original network is 
obtained when the source is set to zero. The corresponding transfer function 
is then determined and its poles specify the natural frequencies. Note that 
the same frequencies must be obtained for any of the many source locations 
possible. If the network already contains a source, that source may be set 
equal to zero and another source inserted at a more convenient point.

A Special Case
Before we illustrate this method with an example, completeness requires 
us to acknowledge a special case that might arise. This occurs when the 
network in Fig. A8.7a or b contains two or more parts that are isolated from 
each other. For example, we might have the parallel combination of three 
networks: R1 in series with C, R2 in series with L, and a short circuit. Clear-
ly, a voltage source in series with R1 and C cannot produce any current in R2 
and L; that transfer function would be zero. To find the form of the natural 
response of the inductor voltage, for example, the voltage source must be 
installed in the R2L network. A case of this type can often be recognized by 
an inspection of the network before a source is installed; but if it is not, then 
a transfer function equal to zero will be obtained. When H(s) = 0, we obtain 
no information about the frequencies characterizing the natural response, 
and a more suitable location for the source must be used.

■  FIGURE A8.7 The poles of the response, I1(s) or V2(s), produced by (a) a voltage source 
Vs or (b) a current source Is. The poles determine the form of the natural response, i1n (t) or 
v2n (t), that occurs when Vs is replaced by a short circuit or Is by an open circuit and some 
initial energy is available.

V2(s)+ –

I1(s)Vs

Network
without

independent
sources

+
–

(a)

V2(s)+ –

I1(s)Is

Network
without

independent
sources

(b)
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For the source-free circuit of Fig. A8.8, determine expressions for i1 
and i2 for t > 0, given the initial conditions i1(0) = i2(0) = 11 A.

■  FIGURE A8.8 A circuit for which the natural 
responses i1 and i2 are desired.

i1 i2

x y

2 H

3 H

1 Ω

2 Ω

Let us install a voltage source Vs between points x and y and find the 
transfer function H(s) = I1(s)/Vs, which also happens to be the input 
admittance seen by the voltage source. We have

  I  1    (  s )    =    V  s   ____________  2s + 1 + 6s /   (  3s + 2 )      =     (  3s + 2 )    V  s   ________  
6  s   2  + 13s + 2

   

or

 H  (  s )    =    I  1    (  s )    ____  V  s  
   =   

  1 _ 2    (  s +   2 _ 3   )   
 ________  

  (  s + 2 )     (  s +   1 _ 6   )   
   

From recent experience, we know at a glance that i1 must be of the form

  i  1    (  t )    = A  e   −2t  + B  e   −t/6  

The solution is completed by using the given initial conditions to estab-
lish the values of A and B. Since i1(0) is given as 11 amperes,

 11 = A + B 

The necessary additional equation is obtained by writing the KVL 
equation around the perimeter of our circuit:

 1  i  1   + 2   d  i  1   ___ 
dt

   + 2  i  2   = 0 

and solving for the derivative:

   d  i  1   ___ 
dt

     |    t=0
   = −   1 _ 2    [  2  i  2    (  0 )    + 1  i  1    (  0 )    ]    = −   22 + 11 _____ 2   = − 2A −   1 _ 6   B 

Thus, A = 8 and B = 3, and so the desired solution is

i1(t) = 8e−2t + 3e−t/6    amperes

The natural frequencies constituting i2 are the same as those of i1, and a 
similar procedure used to evaluate the arbitrary constants leads to

i2(t) = 12e−2t − e−t/6    amperes

EXAMPLE A8.2
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PRACTICE 
●

A8.2 If a current source i1(t) = u(t) A is present at a-b in Fig. A8.9 with 
the arrow entering a, find H(s) = Vcd/I1, and specify the natural fre-
quencies present in vcd (t). 

a

b

c

d

300 Ω 200 Ω

0.1 μF

■  FIGURE A8.9

Ans: 120s/(s + 20,000) Ω, −20,000 s−1.
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A
abc phase sequence, 478
Abscissa, 657
Absorbed power, 18
AC circuit power analysis, 431–470

apparent power and power factor, 
451–455, 466

average power, 434–441, 455, 
462–464

absorbed by an ideal resistor, 
437–438

absorbed by purely reactive 
elements, 438

for nonperiodic functions, 
440–441

not to be confused with 
instantaneous power, 438

for periodic waveforms, 435
in the sinusoidal steady state, 

435–436
complex power, 454–459,  

467–468
power measurement, 456
power triangle, 456
reactive power, 454–455

computer-aided analysis, 449–451
effective values of current and 

voltage, 446–451, 464–465
effective value of periodic 

waveform, 446–447
effective (RMS) value of sinusoidal 

waveform, 447–448
effective value with multiple- 

frequency circuits, 448–449
use of RMS values to compute 

average power, 448
instantaneous power, 432–434, 462

power due to sinusoidal excitation, 
433

LTspice, 449–451
maximum power transfer, 441–446, 

464
average power delivered to load, 

442–443
impedance matching, 443–446

practical application: power factor 
correction, 457–458

summary and review, 460–461
AC power terms, summary of, 460

apparent power, 460
average power, 460
complex power, 460
effective or rms value, 460
instantaneous power, 460
power factor, 460
reactive power, 460

Active filters, 666–667
Admittance and impedance, 399–404, 

424–425
admittance, 404

parameters, two-port networks, 
692–699, 723–725

parallel impedance combinations, 
399–400

reactance, 400–404
series impedance combinations, 399

Advanced filter design
frequency response, 669–674, 685

Butterworth filters, 670–674
Chebyshev filters, 670–672, 674
Sallen-Key amplifier, 671–674

Algebraic alternative to differential 
equations, 390–391

Ampère, A.M., 14, 237
Amperes, 12–14
Analysis, defined, 6
Analysis and design, 6
Analytical Engine, 6, 8
Apparent power, 451–452, 460

power factor and, 451–455, 466
Argand diagram, 817
Asymptotes, determination of

Bode diagrams, 619–620
Attenuators, 188, 599
Automated defibrillators, 364
Auxiliary equation, 328
Average power, 434–441, 455, 460, 

462–464
absorbed by an ideal resistor, 

437–438

absorbed by purely reactive 
elements, 438

delivered to load, 442–443
for nonperiodic functions, 440–441
not to be confused with 

instantaneous power, 438
for periodic waveforms, 435
in the sinusoidal steady state, 

435–436

B
Babbage, Charles, 8
Bandpass filters, 661, 663–666
Bandstop filters, 661
Bandwidth and high-Q circuits

frequency response, 640–646, 
680–681

approximations for high-Q 
circuits, 642–646

bandwidth, 641–642
Basic components and electric  

circuits, 11–42
charge, 13–14, 35–39
computer-aided analysis, 30–31
current, 35–39

damped sinusoidal current, 15
direct current (dc), 15
exponential current, 15
sinusoidal current (ac), 15

energy, 19–21, 35–39
Ohm’s law, 25–33, 39–41

conductance, 30–31
fuses, 30
power absorption, 26–27
practical application (wire gauge), 

28–29
power (p), 17–19, 35–39

absorbed, 18
negative, 18
passive sign convention, 18
supplied, 18

summary and review, 33–34
units and scales, 11–13, 34–35
voltage, 16, 35–39

defined, 16

INDEX •  
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Basic components . . . (Continued)
voltage and current sources, 20–25, 

39
dependent sources, 22–23
independent current sources, 22
independent voltage sources, 

21–22
networks and circuits, 24–25

Basic filter design
frequency response, 660–669, 

683–685
active filters, 666–667
bandpass filters, 663–666
passive low-pass and high-pass 

filters, 661–663
Bass, treble, and midrange adjustment, 

668–669
Battery capacity, 20
Bode, Hendrik W., 618
Bode diagrams, 618–632, 678–679

complex conjugate pairs, 627–629
computer-aided analysis,  

630–632
decibel (dB) scale, 618–619
determination of asymptotes, 

619–620
higher-order terms, 626–627
multiple terms, 620–621
phase response, 621–622
smoothing Bode plots, 620
using MATLAB, 630–632

Branch
defined, 791
voltage and current laws, 44,  

71–72
Break frequency, 619
Buffers, 190
Butterworth filters, 670–674
Butterworth polynomial, 670

C
C (Coulomb), 13
CAD (computer-aided design)

for rapid analysis of circuits, 111
Candela, 12
Capacitors and inductors, 229–272

capacitors, 229–237, 261–264
energy storage, 234–237
ideal capacitor model, 229–232, 

237

integral voltage–current 
relationships, 232–234

computer modeling of circuits with 
capacitors and inductors, 
257–259, 271–272

duality, 245, 254–257, 270–271
inductance and capacitance 

combinations, 247–250, 
266–268

capacitors in parallel, 249–250
capacitors in series, 248–249
inductors in parallel, 248
inductors in series, 247–248

inductors, 237–246, 264–266
energy storage, 243–245
ideal inductor model, 237–241, 245
integral voltage–current 

relationships, 241–243
linearity and its consequences, 

250–252, 268–269
practical application: in search of 

the missing element (the 
memristor), 246

simple op amp circuits with capacitors, 
252–253, 269–270

summary and review, 260–261
Cascaded stages

operational amplifiers (OAs), 
195–199, 221–223

Cavendish, Henry, 26
cba phase sequence, 478
Characteristic equation, 328
Characterizing transistors, 715–716
Charge, 13–14, 35–39
Chassis ground, 69
Chebyshev filters, 670–672, 674
Chebyshev polynomial, 670
Chua, Leon, 236
Circuit

defined, 24
elements of, 21, 24

Circuit analysis, relationship to 
engineering, 5–6

“translating” relevant variables, 5
Circuit analysis techniques, 133–184

delta–wye conversion, 166–168, 
181–183

linearity and superposition, 133–144, 
171–173

computer-aided analysis, 141–143

limitations of superposition, 
143–144

linear circuit, defined, 134
linear dependent source, defined, 

134
linear element, defined, 133
linear elements and linear circuits, 

133–134
linear voltage–current relationship, 

defined, 133–134
superposition, defined, 133
superposition principle, 134–136
superposition procedure, 

summarized, 140
LTspice

circuits in the sinusoidal steady 
state, analyzing, 414–415

circuits that contain magnetically 
coupled inductances, 
simulating, 524–526

circuits with capacitors and 
inductors, modeling, 
257–259

maximum power transfer, 163–165, 
179–181

theorem, 163
practical application: digital multimeter 

(DMM), 161–162
s-domain. See s-domain circuit 

analysis
selecting an approach, 168–169, 183
source transformations, 144–151, 

173–176
equivalent practical sources, 

146–147
key points, 150–151
practical current sources, 146
practical voltage sources, 144–145
procedure, summarized, 151

summary and review, 169–170
Thévenin and Norton equivalent 

circuits, 4, 152–162, 
176–179

key points, 155–156
Norton’s theorem, 4, 156
procedure recap, 160, 162
Thévenin equivalent resistance, 155
Thévenin’s theorem, 4, 154
when dependent sources are 

present, 158

hay01307_ind_847-860.indd   848 23/01/18   7:20 pm



  INDEX 849

CMRR (common-mode rejection ratio), 
212

Coefficient of mutual inductance, 508
Column matrix, 804
Common-mode rejection, 212

common-mode rejection ratio 
(CMRR), 212

operational amplifiers (OAs), 212
Comparators, 201–206

computer-aided analysis, 201–202
feedback, 201–206
hysteresis, 204
memory, 204
positive feedback configuration, 

203–204
Schmitt trigger, 204–206

Complete response to periodic forcing 
functions

Fourier circuit analysis, 748–750, 
786

Complex conjugate, 547
Complex conjugate pairs

Bode diagrams, 627–629
Complex forcing function, 388–392, 

422–423
algebraic alternative to differential 

equations, 390–391
applying, 389–390
imaginary sources lead to imaginary 

responses, 389
Complex form of Fourier series, 

750–757, 787
sampling function, 754–757

Complex frequency, 330
s-domain circuit analysis, 545–549, 

606
DC case, 547
exponential case, 547
exponentially damped sinusoidal 

case, 548
general form, 546–547
neper frequency, 546
relationship of s to reality, 

548–549
sinusoidal case, 547

Complex frequency plane, 839–846
general perspective, 843–844
special case, 844

Complex numbers, 817–826
defined, 817

Euler’s identity, 820–821
exponential form, 822–824
introduction, 817–820
polar form, 824–826

Complex plane, 817
Complex power, 454–460, 467–468

power measurement, 456
power triangle, 456
reactive power, 454–455

Components and electric circuits. See 
Basic components and 
electric circuits

Computer-aided analysis, 6–9
Computer-aided design (CAD)

for rapid analysis of circuits, 111
Conductance, 404

Ohm’s law, 30–31
Conjugates, 547

of complex numbers, 819
Constant forcing function, 766
Convolution

s-domain circuit analysis, 589–598, 
613–614

convolution and realizable 
systems, 591–592

convolution integral, 591
graphical method of convolution, 

592–593
impulse response, 590–591
Laplace transform and, 595–596
transfer functions, further 

comments on, 597
Corner frequency, 619
Cosines, 383–384
Cotrees, 792–793
Coulomb (C), 13
Coupling coefficient, 518
Cramer’s rule, 688, 809–810
Critical damping, RLC circuit, 339–343, 

347, 353, 372–373
finding values for A1 and A2, 

340–341
form of a critically damped response, 

340
graphical representation of critically 

damped response, 341–343
Current, 35–39

damped sinusoidal current, 15
defined, 13–14
direct current (dc), 15

exponential current, 15
sinusoidal current (AC), 15

Current adjustment, use of transformers 
for, 528–529

Current and voltage, effective values of, 
446–451, 464–465

effective value of periodic waveform, 
446–447

effective (RMS) value of sinusoidal 
waveform, 447–448

effective value with multiple- 
frequency circuits, 448–449

use of RMS values to compute 
average power, 448

Current and voltage laws, 43–84
branches, 44, 71–72
Kirchhoff’s current law (KCL), 

43–46, 72–74
Kirchhoff’s voltage law (KVL), 43, 

46–50, 74–76
loops, 44, 71–72
nodes, 44, 71–72

distributed-parameter network, 43
lumped-parameter network, 43

paths, 44, 71–72
practical application: ground 

connections, 69–70
chassis ground, 69
earth ground, 69
signal ground, 69

resistors in series and parallel, 
59–65, 79–81

series and parallel connected sources, 
55–59, 78–79

single-loop circuits, 50–53,  
76–77

single-node-pair circuits, 53–55, 
77–78

summary and review, 70–71
voltage and current division, 65–68, 

81–82
Current and voltage sources, 20–25,  

39
dependent sources, 22–23
independent current sources, 22
independent voltage sources,  

21–22
networks and circuits, 24–25

cutoff frequency of transistor amplifier, 
408–409
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D
Damped sinusoidal current, 15
Damping factor, 627, 639–640
Damping oscillations, 326–327
dc (direct current), 15

analysis, 4
current source, 22
parameter sweep

LTspice, 141–143
voltage source, 22

Decade, 619
Decibel (dB), 618–619
Deep Learning Neural Network 

processor, 7
Delta (Δ) connection

polyphase circuits, 484–487, 
503–504

Δ−connected sources, 487, 490
Delta–wye conversion, 166–168, 

181–183
Dependent sources, 22–23, 288
Designed

defined, 6
Determinants (matrix), 807–809
Determination of asymptotes

Bode diagrams, 619–620
Difference amplifiers, 191–192
Differential equation

obtaining for a parallel RLC circuit, 
327–328

solution for a parallel RLC circuit, 
328–329

Differential input voltage, 211
Digital multimeter (DMM), 161–162
Digital power meter, clamp-on, 456
Direct current (dc). See dc (direct 

current)
Discrete spectrum, 742
Distributed-parameter network, 43
DMM (digital multimeter), 161–162
Dot convention, 509–515
Double-subscript notation, 473–474
Driven RC circuits, 294–300,  

319–321
complete response, determination of, 

295–297
developing an intuitive understand-

ing, 300
forced response, 295
natural response, 294–295

Driven RL circuits, 300–302, 321–322
Duality

capacitors and inductors, 245, 
254–257, 270–271

E
Earth ground, 69
ECG (electrocardiogram), 208–209
Edison, Thomas, 471
Effective or RMS value, 460
Effective values of current and voltage, 

446–451, 464–465
effective value of periodic waveform, 

446–447
effective (RMS) value of sinusoidal 

waveform, 447–448
effective value with 

multiple-frequency circuits, 
448–449

use of RMS values to compute 
average power, 448

Electrical wire materials and 
resistivities, 28

Electric circuits and basic components. 
See Basic components and 
electric circuits

Electrocardiogram (ECG), 208–209
Energy, 19–21, 35–39
Energy density, 763
Energy storage

capacitors, 234–237
inductors, 243–245

ENIAC, 8
Equivalent circuits

ideal transformers, 532–535
Equivalent networks

two-port networks, 699–707, 
725–727

Equivalent practical sources,  
146–147

Euler’s identity
complex numbers, 820–821

Even and odd symmetry, 743
Fourier circuit analysis, 743

Exponential current, 15
Exponential damping coefficient

frequencies, 329
Exponential form of complex numbers, 

822–824

Exponential response, properties of, 
277–281, 314–315

RC and RL circuits, basic, 277–281, 
314–315

time constant, 278–280

F
F (farad), 230
Faraday, Michael, 237
Feedback, 199–201

negative, 199–201
operational amplifiers (OAs), 

199–209, 223–226
positive, 199–201, 203

Fiber optic intercom, 193–194
Filter design, frequency response, 

660–669, 683–685
active filters, 666–667
bandpass filters, 663–666
passive low-pass and high-pass 

filters, 661–663
Finite resistance, 346–347
Finite wire impedance, 475
Forced response, 384, 733–734

driven RC circuits, 295
source-free RC circuits, 274

Fourier circuit analysis, 733–790
complete response to periodic 

forcing functions, 748–750, 
786

complex form of Fourier series, 
750–757, 787

sampling function, 754–757
computer-aided analysis, 774–777
definition of Fourier transform, 

757–761, 788
Fourier transform of a general 

periodic time function, 
769–770, 788–789

Fourier transform pairs for simple 
time functions, 764–767, 
788

constant forcing function, 766
signum function, 766–767
unit-impulse function, 764–766
unit-step function, 767

Laplace transform, similarities to, 
759

LTspice for, 774–777
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physical significance of system 
function, 777–779, 789–790

practical application: image processing, 
780–781

properties of Fourier transform, 
761–764, 788

physical significance of Fourier 
transform, 762–764

summary and review, 780–783
summary of some Fourier transform 

pairs, 768
symmetry, 743–747, 785

even and odd symmetry, 743
half-wave symmetry, 745–747
symmetry and Fourier series 

terms, 743–745
system function and response 

in frequency domain, 
770–773, 789

trigonometric form of Fourier series, 
733–743, 783–785

Fourier coefficients, evaluation of, 
737–738

Fourier series, 735–736
harmonics, 734–735
line and phase spectra, 741–743
useful trigonometric integrals, 

736–737
Frequencies, 329–330

complex frequency, 330
exponential damping coefficient, 329
neper frequency, 329
resonant frequency, 329

Frequency domain
differentiation in Laplace transform, 

836–837
integration in Laplace transform, 837

Frequency limits in digital integrated 
circuits, 309–310

Frequency response, 4, 615–686
advanced filter design, 669–674,  

685
Butterworth filters, 670–674
Chebyshev filters, 670–672, 674
Sallen-Key amplifier,  

671–674
bandwidth and high-Q circuits, 

640–646, 680–681
approximations for high-Q 

circuits, 642–646

bandwidth, 641–642
basic filter design, 660–669, 

683–685
active filters, 666–667
bandpass filters, 663–666
passive low-pass and high-pass 

filters, 661–663
Bode diagrams, 618–632,  

678–679
complex conjugate pairs,  

627–629
computer-aided analysis,  

630–632
decibel (dB) scale, 618–619
determination of asymptotes, 

619–620
higher-order terms, 626–627
multiple terms, 620–621
phase response, 621–622
smoothing Bode plots, 620

linear circuit analysis, 4
other resonant forms, 649–656, 

681–682
equivalent series and parallel 

combinations, 651–656
parallel resonance, 633–640, 

679–680
damping factor, 639–640
quality factor (Q), 636–638
resonance, 633–635
resonance and the voltage 

response, 635–636
practical application: bass, treble, 

and midrange adjustment, 
668–669

scaling, 657–660, 682–683
frequency scaling, 657–659
magnitude scaling, 657–659

series resonance, 646–649, 681
summary and review, 674–676
transfer function, 615–618,  

676–678
Frequency scaling, 657–659
Frequency selectivity, 642
Frequency shifting

Laplace transform, 835–836
Fundamental frequency, 734–735
Fuses

Ohm’s law, 30

G
Graphic equalizer, 668–669
Ground connections, 69–70

chassis ground, 69
earth ground, 69
signal ground, 69

H
h, z, y, and t parameters, transformations 

between, 709
Half-power frequency, 619
Half-wave symmetry, 745–747

Fourier circuit analysis, 745–747
Harmonics, 734–735
Henry (H), 237
Henry, Joseph, 237
High-pass filters, 660–661
High-Q circuits, approximations for, 

642–646
Hybrid parameters

two-port networks, 713–716, 
728–730

Hybrid π model, 586
Hysteresis

comparators, 204

I
Ideal op amp, 186–195, 210, 219–221

computer-aided analysis, 194–195
difference amplifiers, 191–192
inverting amplifiers, 187–190, 192
noninverting amplifiers, 188–190, 

192
practical application: fiber optic 

intercom, 193–194
rules, 187
summing amplifiers, 190–192, 195
voltage followers (unity gain 

amplifiers), 189–190, 192
Ideal transformers, 526–535, 542–543

equivalent circuits, 532–535
turns ratio, 526–528
use of transformers for current 

adjustment, 528–529
use of transformers for impedance 

matching, 528
use of transformers for voltage level 

adjustment, 529
voltage relationship in the time 

domain, 530, 532
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Image processing, Fourier-based 
techniques in, 780–781

Imaginary number, 817
Imaginary sources lead to imaginary 

responses, 389
Imaginary unit, 817
Immitance, 404
Impedance and admittance, 399–404, 

424–425
admittance, 404

parameters, two-port networks, 
692–699, 723–725

impedance
matching, 443–446, 528
parameters, two-port networks, 

708–712, 727–728
parallel impedance combinations,  

399–400
reactance, 400–404
series impedance combinations, 399

Independent current sources, 22
Independent voltage sources, 21–22
Inductors and capacitors, 229–272

capacitors, 229–237, 261–264
energy storage, 234–237
ideal capacitor model, 229–232, 

237
integral voltage–current 

relationships, 232–234
computer modeling of circuits with 

capacitors and inductors, 
257–259, 271–272

duality, 245, 254–257, 270–271
inductance and capacitance 

combinations, 247–250, 
266–268

capacitors in parallel, 249–250
capacitors in series, 248–249
inductors in parallel, 248
inductors in series, 247–248

inductors, 237–246, 264–266, 396
energy storage, 243–245
ideal inductor model, 237–241, 245
integral voltage–current 

relationships, 241–243
linearity and its consequences, 

250–252, 268–269
practical application: in search of 

the missing element (the 
memristor), 246

simple op amp circuits with 
capacitors, 252–253, 
269–270

summary and review, 260–261
Input bias current, 211
Input offset voltage

operational amplifiers (OAs), 214
Instantaneous power, 432–434, 460,  

462
not to be confused with average 

power, 438
power due to sinusoidal excitation, 

433
Instrumentation amplifiers, 206–209

feedback, 206–209
practical application: electrocardiogram 

(ECG), 208–209
Integral voltage–current relationships

capacitors, 232–234
International System of Units (SI), 12

base units, 12–13
prefixes, 12–13

Introduction, 1–10
analysis and design, 6
computer-aided analysis, 6–9
frequency response, 4
linear circuit analysis, 2–4
nonlinear problems, 2–3
overview of text, 2–4
phasor analysis, 4
problem solving

art of, 1–2
strategies, successful, 9–10

relationship of circuit analysis to 
engineering, 5–6

“translating” relevant variables, 5
sinusoidal analysis, 4
transient analysis, 4

Inverse transform techniques, 554–560, 
607–608

distinct poles and the method of 
residues, 557–558

inverse transform techniques for 
rational functions,  
556–557

linearity theorem, 554–556
repeated poles, 558–560

Inverting amplifiers, 187–190, 192
Inverting input

operational amplifiers (OAs), 186

J
Joule (J), 12, 20

K
Kelvin, 12
Kilogram, 12
Kilowatt hour (kWh), 20, 451
Kirchhoff, Robert, 44
Kirchhoff’s current law (KCL), 43–46, 

72–74
Kirchhoff’s voltage law (KVL), 43, 

46–50, 74–76
Kirchoff’s laws using phasors, 397–398

L
Lagging and leading, 382–383
Laplace transform

advanced theorems, 833–838
differentiation in frequency 

domain, 836–837
frequency shifting, 835–836
integration in frequency domain, 

837
time-scaling theorem, 838
transforms of periodic time 

functions, 833–835
basic theorems, 561–568, 608–609

time differentiation theorem, 562
time-integration theorem, 

564–565
time-shift theorem, 566–567
transforms of sinusoids, 566

defined, 549–552, 606
one-sided, 551–552
operations, 568
pairs, 567
similarities to Fourier transform, 759
simple time functions, 552–554, 

606–607
exponential function e–αt, 553–554
ramp function tu(t), 554
unit-impulse function δ(t – t0), 

553
unit-step function u(t), 553

Line and phase spectra, 741–743
Linear circuit

analysis, 2–4
DC analysis, 4
frequency response, 4
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sinusoidal analysis, 4
transient analysis, 4

defined, 134
Linear dependent source, defined, 134
Linear element, defined, 133
Linearity

consequences, 250–252, 268–269
superposition and, 133–144, 

171–173
Linear resistors, 26
Linear transformers, 519–526, 540–542

primary, 519
reflected impedance, 519–521
secondary, 519
T and Π equivalent networks, 

521–524
Linear voltage–current relationship, 

133–134
Line spectrum, 741–743
Line-to-line voltages, 479–484
Links, 792–793

network topology, 797–802
Loops

defined, 792
voltage and current laws, 44, 71–72

Lossless LC circuits, 365–368, 378–379
Low-pass filters, 660
LTspice, 111–113, 303–304

AC circuit power analysis, 449–451
bandpass filter design, 665
circuits in the sinusoidal steady state, 

analyzing, 414–415
circuits that contain magnetically 

coupled inductances, 
simulating, 524–526

circuits with capacitors and inductors. 
modeling, 257–259

dc parameter sweep, 141–143
Fourier-based analysis with, 774–777
mathematical operations on voltages 

and currents that result 
from a simulation, 349–351

op amp circuits
analyzing, 194–195
simulating, 215–217

sequentially switched circuits, 
307–308

transient analysis, 280–281
tutorial, 813–817

Lumped-parameter network, 43

M
Magnetically coupled circuits, 507–544

computer-aided analysis, 524–526
energy considerations, 515–518, 540

coupling coefficient, 518
equality of M12 and M21, 516–517
establishing an upper limit for M, 

517
ideal transformers, 526–535, 

542–543
equivalent circuits, 532–535
turns ratio, 526–528
use of transformers for current 

adjustment, 528–529
use of transformers for impedance 

matching, 528
use of transformers for voltage 

level adjustment, 529
voltage relationship in the time 

domain, 530, 532
linear transformers, 519–526, 

540–542
primary, 519
reflected impedance, 519–521
secondary, 519
T and Π equivalent networks,  

521–524
mutual inductance, 507–515, 

536–539
coefficient of mutual inductance, 

508
combined mutual and self- 

induction voltage, 510
dot convention, 509–515

practical application: superconducting 
transformers, 531–532

summary and review, 535–536
Magnetic flux, 507–508
Magnitude scaling, 657–659
MATLAB, 31–32, 90–91, 617

Bode diagrams, 630–632
characterization of two-port networks 

using transmission 
parameters, 719–720

s-domain circuit analysis, 560–561, 
577–579

tutorial, 827–832
generating plots, 830
getting started, 827–828
useful functions, 830

variables and mathematical 
operations, 828–829

writing programs, 830–832
Matrices, 804–806
Matrix inversion, 806–807
Maximum power transfer, 163–165, 

179–181, 441–446, 464
average power delivered to load, 

442–443
impedance matching, 443–446
theorem, 163

Memristor, 246
Mesh, defined, 101, 792
Mesh and nodal analysis, 4, 85–132

comparison of nodal versus mesh 
analysis, 109–111, 
128–130

computer-aided circuit analysis, 
111–114, 130

mesh analysis, 85, 99–109,  
123–126

mesh current, 101–105
planar circuit, 100
procedure, summarized,  

105–106
supermesh, 106–109, 126–128

nodal analysis, 85–99, 117–120
procedure, summarized, 95
reference node, 86–87
supernodes, 95–99, 120–123

practical application: node-based 
circuit definition, 114

summary and review, 114–117
Metal oxide semiconductor field effect 

transistor (MOSFET), 25
Meter, 12
Midrange, bass, and treble adjustment, 

668–669
Mole, 12
Molecular beam epitaxy crystal growth 

facility, 5
Multiband filters, 661
Multiple-frequency circuits, 448–449
Multiport networks, 687
Mutual inductance, 507–515,  

536–539
coefficient of mutual inductance, 508
combined mutual and self-induction 

voltage, 510
dot convention, 509–515
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N
National Bureau of Standards, 11–12
Natural resonant frequency, 344
Natural response, 733–734

driven RC circuits, 294–295
source-free RC circuits, 274

Negative feedback, 199–201
Negative feedback path, 601
Negative phase sequence, 478
Negative power, 18
Neper frequency, 329, 546
Nepers (Np), 546
Networks, 24–25

defined, 24
topology, 791–802

links and loop analysis, 797–802
trees and general nodal analysis, 

791–797
Nodal and mesh analysis, 4, 85–132

comparison of nodal versus mesh 
analysis, 109–111, 
128–130

computer-aided circuit analysis, 
111–114, 130

mesh analysis, 85, 99–109, 123–126
mesh, defined, 101
mesh current, 101–105
planar circuit, 100
procedure, summarized, 105–106
supermesh, 106–109, 126–128

nodal analysis, 85–99, 117–120
procedure, summarized, 95
reference node, 86–87
supernodes, 95–99, 120–123

practical application: node-based 
circuit definition, 114

in the s-domain, 576, 580–584, 
610–612

sinusoidal steady-state analysis, 
404–407, 425–427

summary and review, 114–117
Nodes

analysis. See Nodal and mesh 
analysis

defined, 791
voltage and current laws, 44, 71–72

distributed-parameter network, 43
lumped-parameter network, 43

Noninverting amplifiers, 188–190, 192
Noninverting input, 186

Nonlinear problems, 2–3
Nonperiodic functions, average power 

for, 440–441
Nonplanar circuit, defined, 792
Norton and Thévenin equivalent circuits, 

4, 152–162, 176–179
key points, 155–156
Norton’s theorem, 4, 156
procedure recap, 160, 162
Thévenin equivalent resistance, 155
Thévenin’s theorem, 4, 154
when dependent sources are present, 

158
Notch filters, 661

O
Octave, 619
Odd and even symmetry, 743

Fourier circuit analysis, 743
Ohm, Georg Simon, 25
Ohm’s law, 25–33, 39–41, 395

conductance, 30–31
fuses, 30
power absorption, 26–27
practical application (wire gauge), 

28–29
One-port networks, 687–692, 722–723
One-sided Laplace transform, definition 

of, 551–552
Open circuit

defined, 33
Operational amplifiers (OAs), 185–228

background, 185–186
cascaded stages, 195–199, 221–223
circuits with capacitors, 252–253,  

269–270
computer-aided analysis, 215–217
defined, 186
feedback, comparators, and the 

instrumentation amplifier, 
199–209, 223–226

comparators, 201–206
instrumentation amplifiers, 

206–209
negative and positive feedback, 

199–201
ideal op amp, 186–195, 210, 

219–221
computer-aided analysis,  

194–195

difference amplifiers, 191–192
inverting amplifiers, 187–190, 

192
noninverting amplifiers, 188–190, 

192
practical application: fiber optic 

intercom, 193–194
rules, 187
summing amplifiers, 190–192, 

195
voltage followers (unity gain 

amplifiers), 189–190, 192
inverting input, 186
LTspice

analyzing, 194–195
simulating, 215–217

noninverting input, 186
practical considerations, 209–217, 

226–227
common-mode rejection, 212
derivation of ideal op amp rules, 

211–212
input offset voltage, 214
more detailed op amp model,  

209–211
nonideality, 214
packaging, 214–215
saturation, 212–214

summary and review, 218–219
Ordinate, 657
Ørsted, Hans Christian, 237
Oscillation, 326–327
Oscillators, 601–603
Overdamped parallel RLC circuits, 

331–339, 371–372
finding values for A1 and A2, 

332–336
graphical representation of the 

overdamped response, 
336–338

Overdamped response, 330–331, 347, 
353

P
p (power). See Power (p)
Packaging

operational amplifiers (OAs), 214–215
Parallel

capacitors, 249–250
defined, 53
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inductors, 248
transforming current source and 

resistor combination, 150
Parallel resonance, 633–640, 679–680

damping factor, 639–640
quality factor (Q), 636–638
voltage response and, 635–636

Parseval-Deschenes, Marc Antoine, 762
Passband, 661
Passive devices, 185
Passive low-pass and high-pass filters, 

661–663
Passive sign convention, 18
Paths

defined, 791
voltage and current laws, 44, 71–72

Periodic time function, general
Fourier transform, 769–770, 

788–789
Periodic time functions

Laplace transform, 833–835
Periodic waveforms

average power for, 435
effective values of current and 

voltage, 446–447
PF. See Power factor
Phase and line spectra, 741–743
Phase response

Bode diagrams, 621–622
Phase voltages, 478
Phasor analysis, 4
Phasor diagrams

sinusoidal steady-state analysis, 
416–418, 429

Phasors, 393–398, 423–424
capacitors, 397
inductors, 396
Kirchoff’s laws using phasors, 

397–398
resistors, 395–396

Philbrick K2-W op amp, 185–186
Physically realizable systems, 591
Planar circuit, defined, 792
Polar form of complex numbers, 

824–826
Poles of F(s), 569
Poles of V(s), 556
Polyphase circuits, 471–506

delta (Δ) connection, 484–487, 
503–504

Δ−connected sources, 487, 490
polyphase systems, 472–474, 

500–501
balanced load, 472
double-subscript notation, 

473–474
power measurement in three-

phase systems, 490–498, 
504–505

two-wattmeter method, 495–498
wattmeter, use of, 490–492
wattmeter in a three phase system, 

492–495
practical application: power- 

generating systems, 488–489
single-phase three-wire systems, 

474–478, 501
effect of finite wire impedance, 

475
term “single phase,” 475

summary and review, 498–499
three-phase Y-Y connection, 

478–484, 502–503
line-to-line voltages, 479–484

Port, defined, 687
Positive feedback, 199–201, 203, 601
Positive feedback configuration

comparators, 203–204
Positive phase sequence, 478
Power (p), 17–19, 35–39

absorbed, 18, 26–27
negative, 18
passive sign convention, 18
supplied, 18

Power analysis, AC circuit. See AC 
circuit power analysis

Power factor (PF), 451–454, 460
angle, 452–454
apparent power and, 451–455, 466
correction, 457–458

Power-generating systems, 488–489
Power measurement, 456
Power triangle, 456
Practical current sources, 146
Practical voltage sources, 144–145
Primary transformers, 519
Problem solving

art of, 1–2
strategies, successful, 9–10

testing the solution, 9

Pulse waveforms using unit-step 
functions, 303–304

Q
Quadrature component, 456
Quadrature power, 456
Quality factor (Q), 636–638

R
Ramp function tu(t)

Laplace transform of simple time 
functions, 554

Rational functions, 556
Rationalizing the denominator, 820
RC and RL circuits, basic, 273–324

computer-aided analysis,  
280–281

driven RC circuits, 294–300, 
319–321

complete response, determination 
of, 295–297

developing an intuitive 
understanding, 300

forced response, 295
natural response, 294–295

driven RL circuits, 300–302, 
321–322

exponential response, properties of, 
277–281, 314–315

time constant, 278–280
general perspective, 285–290, 

316–318
initial conditions: t = 0+ and t = 0¯, 

286–290
source-free RC and RL circuit 

with single energy storage 
element, 286

practical application: frequency 
limits in digital integrated 
circuits, 309–310

predicting the response of 
sequentially switched 
circuits, 303–311, 323

I: time enough to fully charge and 
fully discharge, 304–305

II: time enough to fully charge but 
not fully discharge, 306

III: no time to fully charge but 
time to fully discharge, 306
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RC and RL circuits, basic (Continued)
IV: no time to fully charge or even 

fully discharge, 306–308
source-free RC circuits, 273–277, 

313–314
energy, accounting for, 277
forced response, 274
general solution approach, 

275–277
natural response, 274
solution by direct integration, 

272–273
steady-state response, 274
transient response, 274

source-free RL circuit, 281–285, 
315–316

summary and review, 311–312
time-varying forced response, 

310–311
unit-step function, 290–294, 

318–319
physical sources and the unit-step 

function, 292
rectangular pulse function, 

293–294
singularity functions, 291

Reactive power, 454–455, 460
Real component, 817
Real part, 817
Rectangular pulse function, 293–294
Rectifiers, 472–473
Reflected impedance

transformers, 519–521
Resistors, 395–396

packages, 26
in series and parallel, 59–65, 79–81

Resonance, 633–635
voltage response and, 635–636

Resonant frequency, 329
Ripple constant, 670
RL and RC circuits, basic, 273–324

computer-aided analysis, 280–281
driven RC circuits, 294–300, 

319–321
complete response, determination 

of, 295–297
developing an intuitive 

understanding, 300
forced response, 295
natural response, 294–295

driven RL circuits, 300–302, 
321–322

exponential response, properties of, 
277–281, 314–315

time constant, 278–280
general perspective, 285–290, 

316–318
initial conditions: t = 0+ and  

t = 0¯, 286–290
source-free RC and RL circuit 

with single energy storage 
element, 286

practical application: frequency 
limits in digital integrated 
circuits, 309–310

predicting the response of 
sequentially switched 
circuits, 303–311, 323

I: time enough to fully charge  
and fully discharge, 
304–305

II: time enough to fully charge but 
not fully discharge, 306

III: no time to fully charge but 
time to fully discharge, 306

IV: no time to fully charge or even 
fully discharge, 306–308

source-free RC circuits, 273–277, 
313–314

energy, accounting for, 277
forced response, 274
general solution approach, 

275–277
natural response, 274
solution by direct integration, 

272–273
steady-state response, 274
transient response, 274

source-free RL circuit, 281–285, 
315–316

summary and review, 311–312
time-varying forced response, 

310–311
unit-step function, 290–294, 

318–319
physical sources and the unit-step 

function, 292
rectangular pulse function, 

293–294
singularity functions, 291

RLC circuit, 325–380
complete response of, 357–365,  

376–378
summary, 357, 363–365

computer-aided analysis, 349–351
critical damping, 339–343, 372–373

finding values for A1 and A2, 
340–341

form of a critically damped 
response, 340

graphical representation of 
critically damped response, 
341–343

forced response, 326, 357–358,  
363, 365

lossless LC circuits, 365–368, 
378–379

natural response, 325–332, 351, 
357–358, 363, 365

overdamped parallel RLC circuits, 
331–339, 371–372

finding values for A1 and A2, 
332–336

graphical representation of the 
overdamped response, 
336–338

practical application: automated 
defibrillators, 364

source-free parallel circuits, 
325–331, 370–371

definition of frequency terms,  
329–330

obtaining the differential equation 
for a parallel RLC circuit, 
327–328

physical intuition, 326–327
solution of the differential 

equation, 328–329
source-free series RLC circuits, 

351–357, 375–376
series circuit response, 352–357

summary and review, 369–370
underdamped parallel RLC circuits, 

343–351, 373–375
finding values for B1 and B2, 345
form of the underdamped 

response, 344–345
graphical representation of under-

damped response, 345–346
role of finite resistance, 346–347
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Robotic manipulaor, 6
Root-mean-square (RMS) value, 

447–448
used to compute average power, 448

S
Sallen-Key amplifier, 671–674
Sampling function

complex form of Fourier series, 
754–757

Saturation, 200
operational amplifiers (OAs), 

212–214
Scales and units, 11–13, 34–35
Scaling, 657–660, 682–683

frequency scaling, 657–659
magnitude scaling, 657–659

Schmitt trigger
comparators, 204–206

Scientific calculators, 803–804
s-domain circuit analysis, 545–614

complex frequency, 545–549, 606
DC case, 547
exponential case, 547
exponentially damped sinusoidal 

case, 548
general form, 546–547
neper frequency, 546
relationship of s to reality, 

548–549
sinusoidal case, 547

computer-aided analysis, 560–561, 
577–579

convolution, 589–598, 613–614
convolution and realizable 

systems, 591–592
convolution integral, 591
graphical method of convolution, 

592–593
impulse response, 590–591
Laplace transform and, 595–596
transfer functions, further 

comments on, 597
element representations in the time 

and frequency domains, 
summary of, 577

initial-value and final-value 
theorems, 568–570, 609

final-value theorem, 569–570
initial value theorem, 568–569

inverse transform techniques, 
554–560, 607–608

distinct poles and the method of 
residues, 557–558

inverse transform techniques for 
rational functions, 556–557

linearity theorem, 554–556
repeated poles, 558–560

Laplace transform, definition of, 
549–552, 606

Laplace transform of simple time 
functions, 552–554, 
606–607

exponential function e–αt, 553–554
ramp function tu(t), 554
unit-impulse function δ(t – t0), 

553
unit-step function u(t), 553

nodal and mesh analysis in the 
s-domain, 576, 580–584, 
610–612

poles, zeros, and transfer functions, 
587–589, 613

pole-zero constellations, 588–589
practical application: design of 

oscillator circuits, 601–603
summary and review, 603–605
technique for synthesizing voltage 

ratio H(s) = Vout/Vin, 
599–600, 614

using MATLAB, 560–561, 577–579
Z(s) and Y(s), 571–576, 609–610

inductors in the frequency 
domain, 571–572

modeling capacitors in the  
s-domain, 574–575

modeling inductors in the  
s-domain, 572–574

resistors in the frequency domain, 
571

Second, 12
Secondary transformers, 519
Sequentially switched circuits

LTspice, 307–308
predicting the response of, 303–311, 

323
I: time enough to fully charge and 

fully discharge, 304–305
II: time enough to fully charge but 

not fully discharge, 306

III: no time to fully charge but 
time to fully discharge, 306

IV: no time to fully charge or even 
fully discharge, 306–308

Series
capacitors, 248–249
circuit response, 352–357
inductors, 247–248
resonance, 646–649, 681
transforming a voltage source, 150

Series and parallel connected sources, 
55–59, 78–79

Settling time, 337
Short circuit, defined, 33
Short-circuit admittance parameters,  

694–695
Short-circuit input admittance,  

693–694
Short-circuit output admittance, 

694–695
Short-circuit transfer admittances, 

694–695
SI (International System of Units)

prefixes, 12–13
Sifting property, 553
Signal ground, 69
Signum function, 766–767
Simple time functions

Fourier transform pairs for, 764–767, 
788

constant forcing function, 766
signum function, 766–767
unit-impulse function, 764–766
unit-step function, 767

Simultaneous equations, solution of, 
803–810

Cramer’s rule, 809–810
determinants, 807–809
matrices, 804–806
matrix inversion, 806–807
scientific calculators, 803–804

Single-loop circuits, 50–53, 76–77
Single-node-pair circuits, 53–55,  

77–78
Single-phase three-wire systems, 

474–478, 501
effect of finite wire impedance, 475
term “single phase,” 475

Singularity functions, 291
Sinuosidal current (ac), 15
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Sinusoidal analysis, 4
linear circuit analysis, 4

Sinusoidal excitation, instantaneous 
power due to, 433

Sinusoidal steady state, average power 
in, 435–436

Sinusoidal steady-state analysis, 
381–430

characteristics of sinusoids, 381–384, 
420–421

converting sines to cosines, 
383–384

lagging and leading, 382–383
complex forcing function, 388–392, 

422–423
algebraic alternative to differential 

equations, 390–391
applying, 389–390
imaginary sources lead to 

imaginary responses, 389
computer-aided analysis, 414–415
forced response to sinusoidal functions, 

384–387, 421–422
compact and user-friendly form, 

385–386
steady-state response, 384–385

impedance and admittance, 399–404, 
424–425

admittance, 404
parallel impedance combinations, 

399–400
reactance, 400–404
series impedance combinations, 

399
nodal and mesh analysis, 404–407, 

425–427
phasor diagrams, 416–418, 429
phasors, 393–398, 423–424

capacitors, 397
inductors, 396
Kirchoff’s laws using phasors,  

397–398
resistors, 395–396

practical application: cutoff frequency  
of transistor amplifier, 
408–409

summary and review, 419–420
superposition, source transformations, 

and Thévenin’s theorem, 
407–414, 427–428

Sinusoidal waveform
effective (RMS) value of,  

447–448
Source-free parallel circuits, 325–331, 

370–371
definition of frequency terms, 

329–330
obtaining the differential equation 

for a parallel RLC circuit, 
327–328

physical intuition, 326–327
solution of the differential equation, 

328–329
Source-free RC circuits, 273–277, 

313–314
energy, accounting for, 277
forced response, 274
general solution approach,  

275–277
natural response, 274
solution by direct integration, 

272–273
steady-state response, 274
transient response, 274

Source-free RL circuits, 281–285, 
315–316

Source-free series RLC circuits, 
351–357, 375–376

series circuit response, 352–357
Source transformations, 4, 144–151, 

173–176, 407–414, 
427–428

equivalent practical sources, 
146–147

key points, 150–151
practical current sources, 146
practical voltage sources,  

144–145
procedure, summarized, 151

Space shuttle design, 6
SPICE (Simulation Program with 

Integrated Circuit Emphasis), 
111–113, 303–304

AC circuit power analysis,  
449–451

bandpass filter design, 665
circuits including dependent source, 

simulating, 356
circuits in the sinusoidal steady state, 

analyzing, 414–415

circuits that contain magnetically 
coupled inductances, 
simulating, 524–526

circuits with capacitors and inductors. 
modeling, 257–259

comparator circuit, simulating, 
201–202

dc parameter sweep, 141–143
Fourier-based analysis with,  

774–777
mathematical operations on voltages 

and currents that result 
from a simulation, 349–351

op amp circuits
analyzing, 194–195
simulating, 215–217

sequentially switched circuits, 
307–308

transient analysis, 280–281
tutorial, 813–817
Wien-bridge oscillator, designing, 

601–603
Square matrix, 804
Stable state, 200
Steady-state response

source-free RC circuits, 274
Stopband, 661
Strukov, Dmitri, 246
Summing amplifiers, 190–192, 195
Superconducting transformers,  

531–532
Supermesh, 106–109, 126–128
Supernodes, 95–99, 120–123

analysis procedure, summarized, 
97–98

Superposition, 4, 134–136, 407–414,  
427–428

defined, 133
limits of, 143–144
procedure, summarized, 140
theorem, 135

Supplied power, 18
Susceptance, 404
Symmetry

Fourier circuit analysis, 743–747, 785
even and odd symmetry, 743
half-wave symmetry, 745–747
symmetry and Fourier series 

terms, 743–745
System function, 589
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T
t, z, h, and y parameters, transformations 

between, 709
T and Π equivalent networks,  

521–524
Tesla, Nikola, 471
Testing the solution, 9
Thévenin and Norton equivalent 

circuits, 4, 152–162, 
176–179

key points, 155–156
Norton’s theorem, 4, 156
procedure recap, 160, 162
Thévenin equivalent circuit, 288
Thévenin equivalent resistance, 155
Thévenin’s theorem, 4, 154, 

407–414, 427–428
proof of, 811–812

when dependent sources are present, 
158

Three-phase systems, power measurement 
in, 490–498, 504–505

two-wattmeter method, 495–498
wattmeter, use of, 490–492
wattmeter in a three phase system, 

492–495
Three-phase Y-Y connection, 478–484, 

502–503
line-to-line voltages, 479–484

Time-domain and frequency-domain 
voltage–current expressions, 
comparison of, 397

Time-scaling theorem
Laplace transform, 838

Time-varying forced response,  
310–311

RC and RL circuits, basic, 310–311
Topology, defined, 791
Transfer function, 587–588, 615–618, 

676–678
H( jω), 616

H(s), 616
Transformers, 507

step-down transformers, 529
step-up transformers, 529

Transient analysis, 4
linear circuit analysis, 4
LTspice, 280–281

Transient response
source-free RC circuits, 274

Transmission parameters
two-port networks, 716–720, 

730–731
computer-aided analysis,  

719–720
Treble, bass, and midrange adjustment, 

668–669
Trees, 792–793
Trigonometeric form of Fourier series, 

733–743, 783–785
Fourier coefficients, evaluation of, 

737–738
Fourier series, 735–736

Turns ratio, 526–528
Two-port networks, 687–732

admittance parameters, 692–699, 
723–725

matrix notation, 693
equivalent networks, 699–707, 

725–727
hybrid parameters, 713–716, 

728–730
impedance parameters, 708–712, 

727–728
one-port networks, 687–692, 

722–723
practical application: characterizing 

transistors, 715–716
summary and review, 720–721
transmission parameters, 716–720, 

730–731
computer-aided analysis,  

719–720
Two-wattmeter method, 495–498

U
Underdamped parallel RLC circuits, 

343–351, 373–375
finding values for B1 and B2, 345
form of the underdamped response, 

344–345
graphical representation of 

underdamped response,  
345–346

role of finite resistance, 346–347
Underdamped response, 330–331, 343, 

347, 353
Unit-impulse function, 291

Fourier transform pairs for,  
764–766

Unit-impulse function δ(t – t0)
Laplace transform of simple time 

functions, 553
Units and scales, 11–13, 34–35
Unit-step function, 290–294,  

318–319
fourier transform pairs for, 767
physical sources and the unit-step 

function, 292
rectangular pulse function,  

293–294
singularity functions, 291

Unity gain amplifiers (voltage followers), 
189–190, 192

Unstable runaway state, 200

V
VA (volt-ampere), 452
VAR (volt-ampere-reactive), 455
Vector, 91, 804
Voltage, 16, 35–39

defined, 16
Voltage and current, effective values  

of, 446–451, 464–465
Voltage and current laws, 43–84

branches, 44, 71–72
Kirchhoff’s current law (KCL), 

43–46, 72–74
Kirchhoff’s voltage law (KVL), 43, 

46–50, 74–76
loops, 44, 71–72
nodes, 44, 71–72

distributed-parameter network, 43
lumped-parameter network, 43

paths, 44, 71–72
practical application: ground 

connections, 69–70
chassis ground, 69
earth ground, 69
signal ground, 69

resistors in series and parallel, 
59–65, 79–81

series and parallel connected sources, 
55–59, 78–79

single-loop circuits, 50–53, 76–77
single-node-pair circuits, 53–55, 

77–78
summary and review, 70–71
voltage and current division, 65–68, 

81–82
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Voltage and current sources, 20–25, 39
dependent sources, 22–23
independent current sources, 22
independent voltage sources, 21–22
networks and circuits, 24–25

Voltage followers (unity gain amplifiers), 
189–190, 192

Voltage level adjustment, use of 
transformers for, 529

Voltages and currents that result from a 
simulation, mathematical 
operations on

LTspice, 349–351
Volt-ampere-reactive (VAR), 455
Volt-amperes (VA), 452

W
Watt (W), 12
Watt hours (Wh), 20
Wattmeters

in three phase system, 492–495
two-wattmeter method, 495–498
use of, 490–492

Westinghouse, George, 471
Wien-bridge oscillator, 601
Wire gauges and resistance of solid 

copper wire, 29

Y
y, z, h, and t parameters, transformations 

between, 709

Z
z, y, h, and t parameters, transformations 

between, 709
Z(s) and Y(s), 571–576, 609–610

inductors in the frequency domain, 
571–572

modeling capacitors in the s-domain, 
574–575

modeling inductors in the s-domain, 
572–574

resistors in the frequency domain, 
571

Zeros of V(s), 556
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The Resistor Color Code

Band color Black Brown Red Orange Yellow Green Blue Violet Gray White

Numeric value 0 1 2 3 4 5 6 7 8 9

1st  number

2nd  number Tolerance band (e.g. gold = 5%
silver = 10%, none = 20%)

Multiplier

1. Write down the numeric value corresponding to the first band on the left.
2. Write down the numeric value corresponding to the second band from the left.
3. Write down the number of zeros indicated by the multiplier band, which represents a power of 10 (black = 

no extra zeros, brown = 1 zero, etc.). A gold multiplier band indicates that the decimal is shifted one place 
to the left; a silver multiplier band indicates that the decimal is shifted two places to the left.

4. The tolerance band represents the precision. So, for example, we would not be surprised to find a 100 Ω 
5 percent tolerance resistor that measures anywhere in the range of 95 to 105 Ω.

Example

Red Red Orange Gold = 22,000 or 22 × 103 = 22 KΩ, 5% tolerance

Blue Gray Gold = 6.8 or 68 × 10−1 = 6.8 Ω, 20% tolerance

Standard 5 Percent Tolerance Resistor Values

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 Ω

10. 11. 12. 13. 15. 16. 18. 20. 22. 24. 27. 30. 33. 36. 39. 43. 47. 51. 56. 62. 68. 75. 82. 91. Ω

100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 Ω

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 K Ω

10. 11. 12. 13. 15. 16. 18. 20. 22. 24. 27. 30. 33. 36. 39. 43. 47. 51. 56. 62. 68. 75. 82. 91. K Ω

100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 K Ω

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 M Ω

TABLE 
●
 14.1 Laplace Transform Pairs

 f    (  t   )    =  ℒ   −1    {  F  (  s )    }     F  (  s )    = ℒ  {  f    (  t )    }     f    (  t )    =  ℒ   −1   {  F  (  s )    }     F  (  s )    = ℒ  {  f    (  t )    }    

δ(t) 1    1 ____ 
β − α   ( e   −αt  −  e   −βt  )u  (  t )       1 __________   (s + α )      (  s + β )      

u(t)    1 _ s   sin ωt u(t)    ω _____ 
 s   2   +   ω   2 

   

tu(t)    1 __ 
 s   2 

   cos ωt u(t)    s _____ 
 s   2   +   ω   2 

   

    t   n−1  ______   (  n − 1 )    !   u  (  t )   , n = 1, 2, . . .    1 __  s   n    sin (ωt + θ) u(t)    s sin θ + ω cos θ  ____________ 
 s   2  +  ω   2 

   

e−αtu(t)    1 ____ s + α   cos (ωt + θ) u(t)    s cos θ − ω sin θ  ____________ 
 s   2  +  ω   2 

   

te−αtu(t)    1 ______ 
  (  s + α )     2 

   e−αt sin ωt u(t)    ω _________  
  (  s + α )     2   +   ω   2 

   

    t   n−1  ______   (  n − 1 )    !    e   −αt  u  (  t )   ,  n = 1,2, . . .    1 ______   (  s + α )     n    e−αt cos ωt u(t)    s + α _________  
  (  s + α )     2   +   ω   2 
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Name Circuit Schematic Input-Output Relation

Inverting Amplifier Rf

R1
–

+

i

i
+
–v in

vout

+

–

  v  out   = −   
 R  f   __  R  1  

    v  in   

Noninverting Amplifier Rf

R1
–

+

+
–

vin

vout

+

–

  v  out   =   (  1 +   
 R  f   _  R  1  

   )    v  in   

Voltage Follower  
(also known as a  
Unity Gain Amplifier)

–

+

v in
+
–

vout

+

–

  v  out   =  v  in   

Summing Amplifier

–

+

i

vout

+

–

R

R RL

R

v1

va

vb

Rf

i3

i2

i1
+
–

v2
+
–

v3
+
–

  v  out   = −   
 R  f   __ 
R

     (   v  1   +  v  2   +  v  3   )    

Difference Amplifier

–

+

i

vout

+

–

R

RL
R

R
v1

va

vb

R

i2

i1

+
– v2

+
–

  v  out   =  v  2   −  v  1   

TABLE 
●
 6.1 Summary of Basic Op Amp Circuits
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A Short Table of Integrals

 ∫  sin   2   ax dx =   x _ 2   −   sin  2ax ______ 4a
   

 ∫  cos   2   ax dx =   x _ 2   +   sin  2ax ______ 4a
   

 ∫ x sin  ax dx =   1 __ 
 a   2 

   (sin  ax − ax cos  ax) 

 ∫  x   2   sin  ax dx =   1 __ 
 a   3 

   (2ax sin  ax + 2 cos  ax −   a   2   x   2   cos  ax) 

 ∫ x cos  ax dx =   1 __ 
 a   2 

   (cos  ax + ax sin  ax) 

 ∫  x   2  cos  ax dx =   1 __ 
 a   3 

   (2ax cos  ax − 2 sin  ax +   a   2   x   2   sin  ax) 

 ∫ sin  ax sin  bx dx =   sin (a − b )x _________ 2(a − b )   −   sin (a + b )x _________ 2(a + b )  ;    a   2   ≠   b   2  

 ∫ sin  ax cos  bx dx = −   cos (a − b )x _________ 2(a − b )   −   cos (a + b )x _________ 2(a + b )  ;    a   2   ≠   b   2  

 ∫ cos  ax cos  bx dx =   sin (a − b )x _________ 2(a − b )   +   sin (a + b )x _________ 2(a + b )  ;    a   2   ≠   b   2  

 ∫ x  e   ax   dx =    e   ax  __ 
 a   2 

   (ax − 1) 

 ∫  x   2   e   ax   dx =    e   ax  __ 
 a   3 

   ( a   2   x   2   − 2ax + 2) 

 ∫  e   ax  sin  bx dx =    e   ax  _____ 
 a   2   +   b   2 

   (a sin  bx − b cos  bx) 

 ∫  e   ax  cos  bx dx =    e   ax  _____ 
 a   2   +   b   2 

   (a cos  bx + b sin  bx) 

 ∫   dx _____ 
 a   2   +   x   2 

   =   1 _ a    tan   −1     x _ a   
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  ∫ 
0
  
∞

      sin  ax _____ x   dx =   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

    
  1 _ 2  π

  
   a > 0

  0     a = 0   
−   1 _ 2  π

  
   a < 0

   

  ∫ 
0
  
π

     sin   2   x dx =  ∫ 
0
  
π

     cos   2  x dx =   π __ 2   

  ∫ 
0
  
π

    sin mx sin nx dx =  ∫ 
0
  
π

   cos mx cos nx dx = 0; m ≠ n, m and n integers 

  ∫ 
0
  
π

    sin mx cos nx dx =   
{

   
0
  

m − n even
     2m _ 

 m   2  −  n   2 
    m − n odd    

A Short Table of Trigonometric Identities

 sin   (  α ± β )    = sin α cos β ± cos α sin β 

 cos   (  α ± β )    = cos α cos β ∓ sin α sin β 

 cos   (  α ±   90   ∘  )    = ∓ sin α 

 sin   (  α ±   90   ∘  )    = ± cos α 

 cos  α cos  β =   1 _ 2   cos (α + β ) +   1 _ 2   cos (α − β ) 

 sin  α sin  β =   1 _ 2   cos (α − β ) −   1 _ 2   cos (α + β ) 

 sin  α cos  β =   1 _ 2   sin (α + β ) +   1 _ 2   sin (α − β ) 

 sin 2α = 2 sin α cos α 

 cos 2α = 2 cos   2  α − 1 = 1 − 2 sin   2  α = cos   2  α − sin   2  α 

  sin   2   α =   1 _ 2   (1 − cos 2α) 

  cos   2  α =   1 _ 2   (1 + cos 2α) 

 sin α =    e   jα  −  e   −jα  ______ 
j2   

 cos α =    e   jα  +  e   −jα  ______ 2   

  e   ±jα   =  cos  α ± j sin  α 

 A cos  α + B sin  α =   √ 
_______

  A   2   +   B   2     cos   (  α +   tan   −1     − B _ 
A

   )    
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