
Introduction to Artificial

Intelligence and its applications

Dr. Mohammed Abu Mallouh

Mechatronics Eng.

Hashemite University

Zarqa, Jordan

Dr. Mohammed Abu mallouh- AI 1

•Boston Dog

•Use machine learning.

Play : V1 Boston Dog
Dr. Mohammed Abu mallouh- AI 2

What is Artificial Intelligence (AI)

 Intelligence is related with human ability

to store and recall fact, solve a given

problem based on known fact and

relevant theorem.

 Artificial Intelligence (AI) is the ability of

an electronic device (computer) to

accomplish any tasks that ordinary would

have been handled by human.

Dr. Mohammed Abu mallouh- AI 3

Another definition for AI

-Intelligence is the ability to understand and learn

things.

-Intelligence is the ability to think and

understand instead of doing things by instinct

or automatically.

(Essential English Dictionary,Collins,London,2008)

Intelligence as the ability to learn and

understand, to solve problems and to make

decisions.

Dr. Mohammed Abu mallouh- AI 4

Another definition for AI

 Intelligence:

“the capacity to learn and solve

problems” (Webster’s dictionary)

 In particular, the ability to solve

novel problems the ability to act

rationally the ability to act like

humans.

Dr. Mohammed Abu mallouh- AI 5

Another definition for AI

 The term artificial intelligence was first coined

by John McCarthy in 1956 when he held the

first academic conference on the subject. • Isn't

there a solid definition of intelligence that

doesn't depend on relating it to human

intelligence? Not yet. The problem is that we

cannot yet characterize in general what kinds of

computational procedures we want to call

intelligent. We understand some of the

mechanisms of intelligence and not others.

Dr. Mohammed Abu mallouh- AI 6

-One of the most significant papers on machine

intelligence, “Computing Machinery and

Intelligence’’, was written by the British

mathematician Alan Turing over fifty years ago .

However, it still stands up well under the test of

time, and the Turing’s approach remains universal.

-Turing did not provide definitions of

machines and thinking, he just avoided

semantic arguments by inventing agama ,

the Turing Imitation Game.

Dr. Mohammed Abu mallouh- AI 7

-The imitation game originally included two phases.

In the first phase, the interrogator, a man and a woman are

each placed in separate rooms. The interrogator’s objective

is to work out who is the man and who is the woman by

questioning them.

The man should attempt to deceive the interrogator that he

is the woman, while the woman has to convince the

interrogator that she is the woman.
Dr. Mohammed Abu mallouh- AI 8

-In the second phase of the game, the man is replaced by

a computer programmed to deceive the interrogator as

the man did. It would even be programmed to make

mistakes and provide fuzzy answers in the way a human

would . If the computer can fool the interrogator as

often as the man did, we may say this computer has

passed the intelligent behavior test.
Dr. Mohammed Abu mallouh- AI 9

-The history of artificial intelligence

-The birth of artificial intelligence(1943-1956)

-The rise of artificial intelligence, or the era of great expectations

(1956-late 1960s)

-In the sixties, Al researchers attempted to simulate the thinking

process by inventing general methods for solving broad classes of

problems. They used the general-purpose search mechanism to find a

solution to the problem. Such approaches, now referred to as weak

methods, applied weak information about the

problem domain.

Unfulfilled promises, or the impact of reality

(late 1960s-early 1970s)

The main difficulties for Al in the late 1960s were :

- Because Al researchers were developing general

methods for broad classes of problems, early programs

contained little or even no knowledge about a problem

domain.
Dr. Mohammed Abu mallouh- AI 10

-The technology of expert systems, or the key

to success(early 1970s -mid -1980s)

-Probably the most important development in

the seventies was the realization that the

domain for intelligent machines had to be

sufficiently restricted. Previously, Al researchers

had believed that clever search algorithms and

reasoning techniques could be invented to

emulate general, human-like, problem-solving

methods. A general-purpose search mechanism

could rely on elementary reasoning steps to

find complete solutions and could use weak

knowledge about domain.

Dr. Mohammed Abu mallouh- AI 11

-When weak methods failed, researchers finally realized that

the only way to deliver practical results was to solve typical

cases in narrow areas of expertise, making large reasoning

steps.

-A 1986 survey reported a remarkable number successful

expert system applications in different areas: chemistry,

electronics, engineering, geology, management, medicine,

process control and military science (Waterman,1986).

Although Waterman found nearly 200 expert systems , most

of the applications were in the field of medical diagnosis.

Seven years later a similar survey reported over 2500

developed expert systems (Durkin,1994). The new growing

area was business and manufacturing, which accounted for

about 60% of the applications. Expert system technology had

clearly matured.
Dr. Mohammed Abu mallouh- AI 12

What is Artificial Intelligence (AI)

• Computational models of human

behavior?

• Programs that behave (externally) like

humans

• Computational models of human

“thought”

• Programs that operate (internally) the

way humans do

Dr. Mohammed Abu mallouh- AI 13

Artificial Intelligence Techniques

Applications

• Control

• Estimation

• System Identification

• Optimization

Dr. Mohammed Abu mallouh- AI 14

Biological Neural network

• Computational models of human “thought”

• Programs that operate (internally) the way humans do

• The brain consists of a densely interconnected set of nerve

cells, or basic information-processing units, called neurons.

• The human brain incorporates nearly 10 billion neurons and

60 trillion connections, synapses, between them.

Dr. Mohammed Abu mallouh- AI 15

Artificial Neural network

Dr. Mohammed Abu mallouh- AI 16

Artificial Neural network

The neuron as a simple computing element

Diagram of a neuron

Dr. Mohammed Abu mallouh- AI 17

Artificial Neural network

Advantages

• Learning capabilities

• Generalization

• No Mathematical model

• Fault tolerance

• Parallel processing

Drawbacks

• Lack of design techniques

• Computational effort

Applications

• Control

• Estimation

• System Identification

• Optimization

Dr. Mohammed Abu mallouh- AI 18

Genetic algorithms

Evolutionary computation, or learning by doing

(early 1970s-onwards)

-Natural intelligence is a product of evolution.

Therefore, by simulating biological evolution, we

might expect to discover how living systems are

propelled towards high-level intelligence.

-Nature learns by doing; biological system are not

told how to adept to a specific environment –

they simply compete for survival.

Dr. Mohammed Abu mallouh- AI 19

Genetic algorithms

-The evolutionary approach AI is based on the computational models

of natural selection and genetics.

-Evolutionary computation works by simulating a population of

individuals, evaluating their performance, generating a new

population, and repeating this process a number of times.

-Evolutionary computation combines three main techniques: genetic

algorithms, evolutionary strategies and genetic programming.

-Advantages

• Derivative free

• Avoid local minimal

-Application

• Optimization

• Parameter tuning and estimation Dr. Mohammed Abu mallouh- AI 20

Fuzzy logic

• Computational models of human behavior?

• Programs that behave (externally) like humans

The new era of knowledge engineering, or computing with

words(late 1980s-onwards)

-Neural network technology offers more natural interaction with the

real word than do systems based on symbolic reasoning. Neural

network s can learn, adept to changes in problem's environment,

establish patterns in situations where rules are not known, and deal

with fuzzy or incomplete information.

- However, they lack explanation facilities and usually act as a black

box. The process of training neural networks is slow, and frequent

retraining can cause serious difficulties.

Dr. Mohammed Abu mallouh- AI 21

Fuzzy logic
-Very important technology dealing with vague,

imprecise and uncertain knowledge and data is fuzzy

logic.

-Human experts do not usually think in probability

values, but in such terms as often, generally,

sometimes, occasionally and rarely. Fuzzy logic is

concerned with capturing the meaning of words,

human reasoning and decision making. Fuzzy logic

provides the way to break through the computational

bottlenecks of traditional expert systems.

-At the heart of fuzzy logic lies the concept of a

linguistic variable. The values of the linguistic variable

are words rather than numbers. Dr. Mohammed Abu mallouh- AI 22

Fuzzy logic

Benefits derived from the application of fuzzy logic

models in knowledge-based and decision-support

systems can be summarized as follow:

-Improved computational power: Fuzzy rule-based

systems perform faster than conventional expert

systems and require fewer rules. A fuzzy expert

systems merges the rules, making them more

powerful. Lotfi Zadeh believes that in a few years

most expert systems will use fuzzy logic to solve

highly nonlinear and computationally difficult

problems.
Dr. Mohammed Abu mallouh- AI 23

Fuzzy logic
Computational models of human behavior?

Programs that behave (externally) like humans

Unlike two-valued Boolean logic,, fuzzy logic is multi-valued.. It deals with

degrees of membership and degrees of truth.. Fuzzy logic uses the

continuum of logical values between 0 (completely false) and 1 (completely

true).

Dr. Mohammed Abu mallouh- AI 24

Fuzzy logic

Dr. Mohammed Abu mallouh- AI 25

Fuzzy logic

Dr. Mohammed Abu mallouh- AI 26

Applications and examples of AI
•Deep Blue defeated the world chess champion Garry

Kasparov in 1997.

•In 1997, the Deep Blue chess program created by

IBM, beat the current world chess champion, Gary

Kasparov.

Dr. Mohammed Abu mallouh- AI 27

Deep Blue

Play : V2 Deep Blue

Dr. Mohammed Abu mallouh- AI 28

Autonomous Robotic ground

vehicle
•Defense Advanced Research Projects Agency (DARPA) Grand Challenge

•Cash prizes ($1 to $2 million) offered to first robots to complete a

long course completely unassisted.

•Stimulates research in vision, robotics, planning, machine learning.

Dr. Mohammed Abu mallouh- AI 29

DARPA

•2004 Grand Challenge:

150 mile route in Nevada desert

Furthest any robot went was about 7 miles

•2005 Grand Challenge:

132 mile race

Narrow tunnels, winding mountain passes, etc

Stanford 1st, CMU 2nd, both finished in about 6

hours

•2007 Urban Grand Challenge
Dr. Mohammed Abu mallouh- AI 30

Stanley Autonomous Robotic ground vehicle

winner of DARPA 2005

Stanley Robot
Stanford Racing Team www.stanfordracing.org

Play : V3 Stanley Autonomous Robotic ground
vehicle winner of DARPA Dr. Mohammed Abu mallouh- AI 31

Face recognition

Dr. Mohammed Abu mallouh- AI 32

Aviation

• Optimizing the use of airspace.

• Reducing the cost of flying.

• Meeting Air Traffic Control(ATC) requirements.

• Aiding the decision making process of the flight

crew.

• Aiding maintenance activity.

• Assisting data management.
Dr. Mohammed Abu mallouh- AI 33

Fuzzy Logic in Automotive Engineering
•Antilock Braking System (ABS) -Nissan and Mitsubishi.

•Engine Control-Nok and Nissan.

•Automatic transmission systems- Nissan, Honda, GM.

•Cruise control – Peugeot, Citroën.

Dr. Mohammed Abu mallouh- AI 34

AI In Medicine
•MYCIN: early expert system that used artificial intelligence to

identify bacteria causing severe infections.

Dr. Mohammed Abu mallouh- AI 35

AI In Robotics
•Tennis playing robot.

Dr. Mohammed Abu mallouh- AI 36

AI In IBM Watson
•IBM Watson is a technology platform that uses natural language

processing and machine learning to reveal insights from large

amounts of unstructured data.

Dr. Mohammed Abu mallouh- AI 37

AI In IBM Watson
•Question Answering.

•Jeopardy! game player.

Play : V4 IBM Watson

Dr. Mohammed Abu mallouh- AI 38

Contemporary Issue In AI

Dr. Mohammed Abu mallouh- AI 39

References

1. Introduction to Artificial Intelligence, CS 271, Instructor: Professor

Padhraic Smyth

2. http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-

watson.html

3. https://www.youtube.com/watch?v=qO1i7-Qx00k

4. Introduction to Artificial Intelligence, CS540-2, Bryan R. Gibson

5. DR. A. F. ADEKOYA, Department of Computer Science, University of

Agriculture, Abeokuta, Nigeria. www.unaab.edu.ng

6. https://courses.csail.mit.edu/6.825/

7. Negnevitsky, Pearson Education, 2011

8. http://www.ncl.ac.uk/eece/staff/profile/shady.gadoue

Dr. Mohammed Abu mallouh- AI 40

Lecture 4
Fuzzy expert systems:

Fuzzy logic

■Introduction, or what is fuzzy thinking?

■Fuzzy sets

■Linguistic variables and hedges

■Operations of fuzzy sets

■Fuzzy rules

■Summary

Introduction, or what is fuzzy thinking?

■Experts rely on common sense when they solve

problems.

■How can we represent expert knowledge that uses

vague and ambiguous terms in a computer?

■Fuzzy logic is based on the idea that all things admit

of degrees. Temperature, height, speed, distance- all

come on a sliding scale.

• Negnevitsky, Pearson Education, 2011

• Boolean logic uses sharp distinctions. It forces

us to draw lines between members of a class

and non- members. For instance, we may say,

Tom is tall because his height is 181 cm.If we

drew a line at 180 cm, we would find that

David, who is 179 cm, is small. Is David really a

small man or we have just drawn an arbitrary

line in the sand?

• Fuzzy logic reflects how people think. It

attempts to model our sense of words, our

decision making and our common sense. As

a result, it is leading to new, more human,

intelligent systems.

■ In 1965 Lotfi Zadeh, published his

famous paper “Fuzzy set Zadeh extended

the work on possibility theory into a

formal system of mathematical logic, and

introduced a new concept for applying

natural language terms.

This new logic for representing and

manipulating fuzzy terms was called fuzzy

logic, and Zadeh became the Master of

fuzzy logic.

■ Why fuzzy?

As Zadeh said, the term is concrete,

immediate and descriptive; we all know

what it means. However, many people in

the West were repelled by the word

fuzzy, because it is usually used in a

negative sense.

■ Why logic?

Fuzziness rests on fuzzy set theory, and

fuzzy logic is just a small part of that

theory.

 Fuzzy logic is a set of mathematical

principles for knowledge representation

based on degrees of membership.

 Unlike two-valued Boolean logic, fuzzy

logic is multi-valued. It deals with degrees

of membership and degrees of truth.

 Fuzzy logic uses the continuum of logical

values between 0 (completely false) and 1

(completely true).Instead of just black and

white, it employs the spectrum of colors,

accepting that things can be partly true

and partly false at the same time.

Range of logical values in Boolean and fuzzy logic

Negnevitsky, Pearson Education, 2011

Fuzzy sets

 The classical example in fuzzy sets is tall men. The

elements of the fuzzy set “tall men” are all men,

but their degrees of membership depend on their

height.

Name

Height, cm
Degree of Membership

Crisp Fuzzy

Chris 208 1 1.00

Mark 205 1 1.00

John 198 1 0.98

Tom 181 1 0.82

David 179 0 0.78

Mike 172 0 0.24

Bob 167 0 0.15

Steven 158 0 0.06

Bill 155 0 0.01

Peter 152 0 0.00

Crisp and fuzzy sets of “tall men”

■The x-axis represents the universe of

discourse - the range of all possible values

applicable to a chosen variable. In our case, the

variable is the man height. According to this

representation, the universe of men’s heights

consists of all tall men.

■The y-axis represents the membership value

of the fuzzy set. In our case, the fuzzy set of “tall

men” maps height values into corresponding

membership values.

A fuzzy set is a set with fuzzy boundaries.

■ Let X be the universe of discourse and its elements be

denoted as x. In the classical set theory, crisp set A of X is

defined as function called the characteristic function of A

This set maps universe X to a set of two elements.

For any element x of universe X, characteristic

function is equal to 1 if x is an element of set

A, and is equal to 0 if x is not an element of A.

A xif1,
A xif0,

)(where{0,1},:)({

 xF xXxF A

)(xF A

)(xF A

In the fuzzy theory, fuzzy set A of universe X is defined by

function called the membership function of set A .mA(x):

mA(x) : X [0, 1], where mA(x) = 1 if x is totally in A;

mA(x)= 0 if x is not in A;

0 < mA(x) < 1 if x is partly in A.

This set allows a continuum of possible choices. For any

element x of universe X, membership function mA(x) equals

the degree to which x is an element of fuzzy set A. This

degree, a value between 0 and 1, represents the degree of

membership, also called membership value, of element x in

set A.

How to represent a fuzzy set in a computer ?

■ First, we determine the membership functions. In

our “tall men” example, we can obtain fuzzy sets of

tall, short and average men.

■The universe of discourse - the men’s heights -

consists of three sets: short, average and tall men. As

you will see, a man who is 184 cm tall is a member of

the average men set with a degree of membership of

0.1, and at the same time, he is also a member of the

tall men set with a degree of 0.4.

Crisp and fuzzy sets of short, average and tall men

Linguistic variables and hedges

■At the root of fuzzy set theory lies the idea

of linguistic variables.

■A linguistic variable is a fuzzy variable. For

example, the statement “John is tall” implies

that the linguistic variable John takes the

linguistic value tall.

In fuzzy expert systems, linguistic variables

are used in fuzzy rules. For example:

IF wind is strong

THEN sailing is good

IF project duration is long

THEN completion risk is high

IF speed is slow

THEN stopping distance is short

 The range of possible values of a linguistic variable

represents the universe of discourse of that

variable. For example, the universe of discourse of

the linguistic variable speed might have the range

between 0 and 220 km/h and may include such

fuzzy subsets as very slow, slow, medium, fast, and

very fast.

■A linguistic variable carries with it the concept of

fuzzy set qualifiers, called hedges.

■ Hedges are terms that modify the shape of fuzzy

sets. They include adverbs such as very, somewhat,

quite, more or less and slightly.

Fuzzy rules

 In 1973, Lotfi Zadeh published his

second most influential paper.

This paper outlined a new

approach to analysis of complex

systems, in which Zadeh suggested

capturing human knowledge in

fuzzy rules.

What is a fuzzy rule?

 A fuzzy rule can be defined as a conditional

statement in the form:

IF x is A

THEN y is B

 where x and y are linguistic variables; and A and B

are linguistic values determined by fuzzy sets on

the universe of discourses X and Y, respectively.

What is the difference between

classical and fuzzy rules?

A classical IF-THEN rule uses binary logic,

for example,

Rule: 1

IF speed is > 100

THEN stopping distance is long

Rule: 2

IF speed is < 40

THEN stopping distance is short

The variable speed can have any numerical value between 0

and 220 km/h, but the linguistic variable stopping_distance can

take either value long or short. In other words, classical rules

are expressed in the black-and-white language of Boolean

logic.

We can also represent the stopping distance rules in a fuzzy

form:

Rule: 1

IF speed is fast

THEN stopping distance is long

Rule: 2

IF speed is slow

THEN stopping distance is short

 In fuzzy rules, the linguistic variable speed also has the range

(the universe of discourse) between 0 and 220 km/h, but this

range includes fuzzy sets, such as slow, medium and fast. The

universe of discourse of the linguistic variable

stopping_distance can be between 0 and 300 m and may

include such fuzzy sets as short, medium and long.

 Fuzzy rules relate fuzzy sets.

 In a fuzzy system, all rules fire to some

extent, or in other words they fire

partially. If the antecedent is true to

some degree of membership, then the

consequent is also true to that same

degree.

Fuzzy sets of tall and heavy men

These fuzzy sets provide the basis for a weight estimation

model. The model is based on a relationship between a man’s

height and his weight:

IF height is tall

THEN weight is heavy

The value of the output or a truth membership grade of

the rule consequent can be estimated directly from a

corresponding truth membership grade in the antecedent.

This form of fuzzy inference uses a method called

monotonic selection.

A fuzzy rule can have multiple antecedents, for

example:

IF service is excellent

OR food is delicious

THEN tip is generous

IF project_duration is long

AND project_staffing is large

AND project_funding is inadequate

THEN risk is high

The consequent of a fuzzy rule can also

include multiple parts, for instance:

IF temperature is hot

THEN hot water is reduced;

cold-water is increased

Lecture 5

Fuzzy expert systems:

Fuzzy inference

■ Mamdani fuzzy inference

■ Sugeno fuzzy inference

■ Case study

■ Summary

Fuzzy inference

The most commonly used fuzzy inference

technique is the so-called Mamdani method.In

1975, Professor Ebrahim Mamdani of London

University built one of the first fuzzy systems to

control a steam engine and boiler combination.

He applied a set of fuzzy rules supplied by

experienced human operators.

Mamdani fuzzy Inference

The Mamdani-style fuzzy inference

process is performed in four steps:

● fuzzification of the input variables,

● rule evaluation;

● aggregation of the rule outputs, and

finally

● defuzzification.

We examine a simple two-input one-output problem that

includes three rules:

Rule: 1 Rule: 1

IF x is A3 IF project_funding is adequate

OR y is B1 OR project_staffing is small

THEN z is C1 THEN risk is low

Rule: 2 Rule: 2

IF x is A2 IF project_funding is marginal

AND y is B2 AND project_staffing is large

THEN z is C2 THEN risk is normal

Rule: 3 Rule: 3

IF x is A1 IF project_funding is inadequate

THEN z is C3 THEN risk is high

Step 1: Fuzzification

The first step is to take the crisp inputs, x1 and y1

(project funding and project staffing), and determine

the degree to which these inputs belong to each of the

appropriate fuzzy sets.

Step 2: Rule Evaluation

The second step is to take the fuzzified inputs,

m(x=A1) = 0.5, m(x=A2) = 0.2, m(y=B1) = 0.1 and

m(y=B2) =0.7, and apply them to the antecedents of

the fuzzy rules. If a given fuzzy rule has multiple

antecedents, the fuzzy operator (AND or OR) is used

to obtain a single number that represents the result of

the antecedent evaluation. This number (the truth

value) is then applied to the consequent membership

function.

 To evaluate the disjunction of the rule antecedents, we use

the OR fuzzy operation. Typically, fuzzy expert systems

make use of the classical fuzzy operation union:

 Similarly, in order to evaluate the conjunction of the rule

antecedents, we apply the AND fuzzy operation

intersection:

)](),(max[)(Xxx
BABA

mmm

)](),(min[)(Xxx
BABA

mmm

Mamdani-style rule evaluation

Now the result of the antecedent evaluation can be

applied to the membership function of the consequent.

■The most common method of correlating the rule

consequent with the truth value of the rule antecedent

is to cut the consequent membership function at the

level of the antecedent truth. This method is called

clipping. Since the top of the membership function is

sliced, the clipped fuzzy set loses some information.

However, clipping is still often preferred because it

involves less complex and faster mathematics, and

generates an aggregated output surface that is easier to

defuzzify.

While clipping is a frequently used

method, scaling offers a better approach

for preserving the original shape of the

fuzzy set. The original membership

function of the rule consequent is adjusted

by multiplying all its membership degrees

by the truth value of the rule antecedent.

This method, which generally loses less

information, can be very useful in fuzzy

expert systems.

Clipped and scaled membership

functions

Step 3: Aggregation of the rule

outputs

Aggregation is the process of unification of the

outputs of all rules.We take the membership

functions of all rule consequents previously clipped

or scaled and combine them into a single fuzzy set.

The input of the aggregation process is the list of

clipped or scaled consequent membership

functions, and the output is one fuzzy set for each

output variable.

Aggregation of the rule outputs

Step 4: Defuzzification

The last step in the fuzzy inference process is

defuzzification. Fuzziness helps us to evaluate

the rules, but the final output of a fuzzy

system has to be a crisp number. The input

for the defuzzification process is the aggregate

output fuzzy set and the output is a single

number.

 There are several defuzzification methods, but probably the

most popular one is the centroid technique. It finds the

point where a vertical line would slice the aggregate set

into two equal masses. Mathematically this centre of gravity

(COG) can be expressed as:

dxx

xdxx

COG

A

b

a
A

)(

)(

m

m

 Centroid defuzzification method finds a point

representing the centre of gravity of the fuzzy set, A,

on the interval, ab.

 A reasonable estimate can be obtained by calculating

it over a sample of points.

Sugeno fuzzy inference

■ Mamdani-style inference, as we have just seen,

requires us to find the centroid of a two-dimensional

shape by integrating across a continuously varying

function. In general, this process is not computationally

efficient.

■ Michio Sugeno suggested to use a single spike, a

singleton, as the membership function of the rule

consequent. A singleton, or more precisely a fuzzy

singleton, is a fuzzy set with a membership function

that is unity at a single particular point on the universe

of discourse and zero everywhere else.

Sugeno-style fuzzy inference is very similar to the

Mamdani method. Sugeno changed only a rule

consequent. Instead of a fuzzy set, he used a

mathematical function of the input variable. The format

of the Sugeno-style fuzzy rule is :

IF x is A

AND y is B

THEN z is f (x, y)

where x, y and z are linguistic variables; A and B are

fuzzy sets on universe of discourses X and Y,

respectively; and f (x, y) is a mathematical function.

 The most commonly used zero-order

Sugeno fuzzy model applies fuzzy rules in

the following form:

IF x is A

AND y is B

THEN z is k

where k is a constant.

 In this case, the output of each fuzzy rule is

constant. All consequent membership

functions are represented by singleton

spikes.

Sugeno-style rule evaluation

Sugeno-style aggregation of the rule

outputs

Weighted average (WA):

Sugeno-style defuzzification

How to make a decision on which

method to apply - Mamdani or

Sugeno?

■ Mamdani method is widely accepted for

capturing expert knowledge. It allows us to

describe the expertise in more intuitive, more

human-like manner. However, Mamdani-type fuzzy

inference entails a substantial computational

burden.

■ On the other hand, Sugeno method is

computationally effective and works well with

optimization and adaptive techniques, which makes

it very attractive in control problems, particularly

for dynamic nonlinear systems.

Process of developing a fuzzy expert

system

1. Specify the problem and define linguistic

variables.

2. Determine fuzzy sets.

3. Elicit and construct fuzzy rules.

4. Encode the fuzzy sets, fuzzy rules and

procedures to perform fuzzy inference into the

expert system.

5. Evaluate and tune the system.

Artificial neural networks:

Supervised learning

• Introduction, or how the brain works

• The neuron as a simple computing element

• The perceptron

• Multilayer neural networks

• Accelerated learning in multilayer neural

networks

• Summary

Introduction, or how the brain
works

▪ Machine learning involves adaptive

mechanisms that enable computers to learn

from experience, learn by example and learn

by analogy.

▪ Learning capabilities can improve the

performance of an intelligent system over

time. The most popular approaches to

machine learning are artificial neural

networks and genetic algorithms.

• A neural network can be defined as a model of reasoning

based on the human brain.

• The brain consists of a densely interconnected set of

nerve cells, or basic information-processing units, called

neurons.

• The human brain incorporates nearly 10 billion neurons

and 60 trillion connections, synapses, between them.

• By using multiple neurons simultaneously, the brain can

perform its functions much faster than the fastest

computers in existence.

• Each neuron has a very simple structure, but an army of

such elements constitutes a tremendous processing power.

• A neuron consists of a cell body, soma, a number of fibers

called dendrites, and a single long fiber called the axon.

Biological neural network

• Our brain can be considered as a highly complex, non-linear and parallel

information-processing system.

❑ Information is stored and processed in a neural network simultaneously

throughout the whole network, rather than at specific locations. In

other words, in neural networks, both data and its processing are global

rather than local.

❑ Learning is a fundamental and essential characteristic of biological neural

networks. The ease with which they can learn led to attempts to

emulate a biological neural network in a computer.
❑ An artificial neural network consists of a number of very simple

processors, also called neurons, which are analogous to the biological

neurons in the brain.

❑ The neurons are connected by weighted links passing signals from one

neuron to another.

❑ The output signal is transmitted through the neuron’s outgoing

connection. The outgoing connection splits into a number of branches

that transmit the same signal. The outgoing branches terminate at the

incoming connections of other neurons in the network.

Architecture of a typical artificial
neural network

Analogy between biological and

artificial neural networks

Biological Neural Network Artificial Neural Network

• Soma • Neuron

• Dendrite • Input

• Axon • Output

• Synapse • Weight

The neuron as a simple computing
element

Input Signals Weights Output Signals

x1

x2

w1

w2

xn

wn

Diagramof a neuron

❑The neuron computes the weighted sum of the input

signals and compares the result with a threshold value, q.

If the net input is less than the threshold, the neuron output

is 0, But if the net input is greater than or equal to the

threshold, the neuron becomes activated and its output

attains a value +1.

The neuron uses the following transfer or activation

function:

❑This type of activation function is called a step function.

𝑌 = ቊ
+1, if 𝑋 ≥ θ
0, if 𝑋 < θ

𝑋 =

𝑖=1

𝑛

𝑥𝑖𝑤𝑖

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0 X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function

=

0 if ,0

0 if ,1

X

X
Y step

−

+
=

0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y

−+
=

1

1
XY linear =

Can a single neuron learn a task?

• In 1958, Frank Rosenblatt introduced a

training algorithm that provided the first

procedure for training a simple ANN: a

perceptron.

• The perceptron is the simplest form of a

neural network. It consists of a single neuron

with adjustable synaptic weights and a hard

limiter.

Single-layer two-input perceptron

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner

q

𝑌 = ቊ
+1, if 𝑋 ≥ θ
−1, if 𝑋 < θ 𝑋 =

𝑖=1

𝑛

𝑥𝑖𝑤𝑖

−1

The Perceptron

• The weighted sum of the inputs is applied to the hard limiter, which

produces an output equal to +1 if its input is positive and -1 if it is

negative.

• The aim of the perceptron is to classify inputs, x1, x2, . . ., xn, into one

of two classes, say A1 and A2.

• In the case of an elementary perceptron, the n- dimensional space is

divided by a hyper plane into two decision regions. The hyper plane is

defined by the linearly separable function:

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 − θ = 0

Linear Separability

Consider a perceptron processor that only has 2

input . So (θ = 𝑤0)

Which is just

Now let’s look at the locus of points for which

When plotted in the space of the values of and

this is just the equation of a straight line .

𝑎 = −𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

𝑤0(−1) + 𝑤1𝑥1 + 𝑤2𝑥2 = 0

𝑥1 𝑥2

2 1 1 2 0 2(, /) /x ax b where a w w and b w w= + = =

• For inputs x that fall on one side line , the activation (a)will be

>0,and thus the output (y)will be 1. On the other side (and

right on the line)the output will be -1.

• So each set of values for w defines a straight line decision

boundary and any possible line can be represented by some

value of w .

−𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 = 0

• So obviously , if we had a problem for which the examples did not separate

nicely, we could not solve the problem completely using a perceptron

processor.

• If the set of input/output pairs can be separated with a straight line , then it

has the property of being linearly separable.

• (For input vectors of higher dimension, the boundary is a higher dimension

hyper plane.Eg., a plane in a 3D input space)

−𝑤0 + 𝑤1𝑥1 +𝑤2𝑥2 = 0

Linear separability in the perceptron's

x1

x2

Class A2

Class A1

1

2

x1w1 + x2w2 − q = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x2

x1

x3
x1w1 + x2w2 + x3w3 − q = 0

1
2

➢ It is important to distinguish between the ability to perform

perfectly on the set of examples, and having a perceptron that is

able to continue to perform for examples that were not used

during the training of the perceptron’s weights. That is an issue

of how well the examples predict the subsequent inputs.

•Consider the XOR Problem : To form a decision boundary for the
XOR function.

•This task is not linearly separable. It would require 2 decision boundaries to
separate the two classes.

➢This task can be solved with 2 perceptron

processors (one for each decision

boundary), and a third that resolves their

outputs. There are many possible solutions

in terms of the values of the weights and

thresholds.

In general, networks of perceptron-like

processors can solve most non-linearly

separable tasks by using more than one

layer of processors. Rosenblatt(and

others)realized this in the 1960’s, but did

not have a learning rule that would work

effectively with more than one level(it

wasn’t invented until the mid 1970’s).

❖What if we have more a single output ?

❖Then it is really like each processor operating on its own with the
same inputs.

❖Can perceptrons be used for tasks that are

not linearly separable ?

With modifications, yes.

•If the task is not linearly separable, we accept

that the result will not be perfect, but we wish

to minimize the number of errors.

•The number of errors is defined by the values
of the weights.

How does the perceptron learn its

classification tasks?

This is done by making small adjustments in the weights to reduce the

difference between the actual and desired outputs of the perceptron. The

initial weights are randomly assigned, usually in the range [-0.5, 0.5], and then

updated to obtain the output consistent with the training examples.

• If at iteration p, the actual output is Y(p) and the desired output is Yd (p),
then the error is given by:

• Iteration p here refers to the pth training example presented to the

perceptron.

• If the error, e(p), is positive, we need to increase perceptron output Y(p),

but if it is negative, we need to decrease Y(p).

𝑒(𝑝) = 𝑌𝑑(𝑝) − 𝑌(𝑝) where p = 1, 2, 3, . . .

The perceptron learning rule

where p = 1, 2, 3, . . .

a is the learning rate, a positive

constant less than unity.

𝑤𝑖(𝑝 + 1) = 𝑤𝑖(𝑝) + 𝛼 ⋅ 𝑥𝑖(𝑝) ⋅ 𝑒(𝑝)

• A learning rule is a strategy by which example input/output pairs

can be used to incrementally change the weights in away that

gradually improves the performance of the network.

The perceptron learning rule involves the example input x, the

computed output y, and the desired output d .

Where α is a small learning parameter

• Whenever the (y=1, and d=0)error occurs, it is because the

activation a was too large, and decrementing the weights will

reduce the activation for the same input. Similarly, the (y=0,and

d=1)will result in appropriate increasing of activation for the same
input .

𝐼𝑓 𝑦 = 1, 𝑎𝑛𝑑 𝑑 = 0:𝑤𝑖 ← 𝑤𝑖 − α𝑥𝑖(𝑤𝑖 = 1, , 𝑛)
𝐼𝑓 𝑦 = 0, 𝑎𝑛𝑑 𝑑 = 1:𝑤𝑖 ← 𝑤𝑖 − α𝑥𝑖(𝑤𝑖 = 1, , 𝑛)

Perceptron’s training algorithm

Step 1: Initialisation

Set initial weights w1, w2,…, wn and threshold

q to random numbers in the range

[−0.5, 0.5].

Perceptron’s training algorithm

(continued)
Step 2: Activation

Activate the perceptron by applying inputs

x1(p), x2(p),…, xn(p) and desired output Yd

(p). Calculate the actual output at iteration

p = 1

where n is the number of the perceptron

inputs, and step is a step activation function.

𝑌(𝑝) = 𝑠𝑡𝑒𝑝

𝑖=1

𝑛

𝑥𝑖(𝑝) 𝑤𝑖(𝑝) − θ

Perceptron’s training algorithm
If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

Step 3: Weight training

Update the weights of the perceptron

where wi(p) is the weight correction at
iteration p.

The weight correction is computed by the delta

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and
repeat the process until convergence.

𝑤𝑖(𝑝 + 1) = 𝑤𝑖(𝑝) + Δ𝑤𝑖(𝑝)

Δ𝑤𝑖(𝑝) = 𝛼 ⋅ 𝑥𝑖(𝑝) ⋅ 𝑒(𝑝)

Example of perceptron learning: the logical operation AND

Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired

output

Yd

1

Initial

weights

w1 w2

1

0.3

−0.1

0

0

1

0

Actual

output

Y

Error

e

0

0

−1

1

Final

weights

w1 w2

0.3

0.3

0.2

0.3

−0.1

−0.1

−0.1

 0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0

0

1

1

0

0

−1

0

0.3

0.3

0.2

0.2

 0.0

 0.0

 0.0

 0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

0

0

1

0

0

0

−1

1

0.2

0.2

0.1

0.2

 0.0

 0.0

 0.0

 0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

0

−1

0

0.2

0.2

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

Threshold: q = 0.2; learning rate: a = 0.1

Example of perceptron learning: the

logical operation AND
Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired
output

Yd

1

Initial

weights
w1 w2

1

0.3

0.3

0.3

0.2

−0.1

−0.1

−0.1

−0.1

0

0

1

0

Actual
output

Y

Error

e

0

0

−1

1

Final

weights
w1 w2

0.3

0.3

0.2

0.3

−0.1

−0.1

−0.1

 0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0.3

0.3

0.2

0

0

1

1

0

0

−1

0

0.3

0.3

0.2

0.2

 0.0

 0.0

 0.0

 0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

0

0

1

0

0

0

−1

1

0.2

0.2

0.1

0.2

 0.0

 0.0

 0.0

 0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

0

−1

0

0.2

0.2

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

Threshold: q = 0.2; learning rate: a = 0.1

Multilayer neural networks

 A multilayer perceptron is a feed forward

neural network with one or more hidden

layers.

 The network consists of an input layer of

source neurons, at least one middle or

hidden layer of computational neurons, and

an output layer of computational neurons.

 The input signals are propagated in a

forward direction on a layer-by-layer basis.

Multilayer perceptron with two
hidden layers

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

What does the middle layer

hide?

◦ A hidden layer “hides” its desired output.
Neurons in the hidden layer cannot be observed
through the input/output behaviour of the
network. There is no obvious way to know what
the desired output of the hidden layer should be.

◦ Commercial ANNs incorporate three and
sometimes four layers, including one or two
hidden layers. Each layer can contain from 10 to
1000 neurons. Experimental neural networks may
have five or even six layers, including three or
four hidden layers, and utilise millions of neurons.

To overcome the limitations of perceptrons, networks require more than one

processing layer . If we try to extend the error-correction learning (as used in

Adeline) to more layers, we encounter the credit-assignment problem: How to

determine which nodes are responsible for an outcome.

We consider a back propagation network with 2 processing layers, though they
could have more. The layers are output, hidden, and input (which is just fan-in).

BACKPROPAGATION

NETWORKS

Each processing node uses

• The activation of node j is the sum of each of its inputs x0, x1,…,

xn times each of its weights or the corresponding inputWij

• Sometimes we refer to the inputs as y0, y1,…, yn because they are

often outputs of the nodes 1,…,n.

• Each processing node has a bias (for threshold) input x0=-1.

• Each processing node creates an output signal,
Which is the sigmoidal function.

𝑎𝑗 =

𝑖=0

𝑛

𝑋𝑖𝑊𝑖𝑗

1
()

1
j a

y f a
e −

= =
+

𝑊𝑖𝑗

The training data consists of examples of inputs and

desired outputs :{(x1, d1),…(xp , dp)}

In general , we define a measure of error for any

particular trial:

Where yk are the outputs of each of the m output

nodes, and dk are the components of the desired

result.

Usually the error function is the sum of square errors

, or mean error.

𝑒𝑟𝑟𝑜𝑟 =

𝑖=1

𝑚

𝑒2(𝑦𝑘 , 𝑑𝑘)

𝜕𝐸/𝜕𝑊𝑖𝑗

Consider the projection of a

single weight ij in the error

surface.

is the direction of

steepest ascent, and so

is the direction of steepest

descent.

We are interested in changing

the weight to a value that

decreases the error , so

tells us in what direction to
move the weight value.

𝑒 = 𝑑 − 𝑎, 𝐸 =
σ𝑒

2

2
.

𝑎 =

𝑖=0

𝑛

𝑋𝑖𝑊𝑖

𝑊𝑖𝑗

−𝜕𝐸/𝜕𝑊𝑖𝑗

−𝜕𝐸/𝜕𝑊𝑖𝑗

/E W−

we use gradient descant to determine the direction of

change of the weights w

We consider the adjustment to be made to individual

weights wij ,which is the weight to node j from its i th

input. Regardless of what layer it is in, we want to

make the adjustment:

We have:

△𝑊𝑖𝑗= − 𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗

Total net work error

Individual node error

Output is function of activation

Value of node’s activation is sum of
weight inputs

ywaayydee iijjjjjjj
fE ==−==)4(,)()3(,)2(,

2

1
)1(

2

We calculate the change that we wish to make to each weight in the output
layer.

This is a lots the rule that was used for the Perceptron. Constant × error × input .

The difference is that 𝛿𝑗
0, the error at output node j, is the usual error

,scaled by a factor of .

)(yd jj
−

)(a j
f

)1()(so

)(1)((

)1/(1)1/(1

)1/()(

)1/(1)(

0

2

2

jjjjj

xx

xx

x

yyyd

xfxf

xf

xf

ee

ee

e

−−=

−=

+−+=

+=

+=

−−

−−

−

•But bear in mind that this is only true if f(x) is the sigmoidal

function. Other output functions can also be used , so is

the more general form.

❖Note that the output function for Back propagation must be
differentiable.

f ′(aj)

1 𝐸 = 1

2
σ𝑒2, (2)𝑒𝑗=𝑑𝑗-𝑦𝑗 , (3)𝑦𝑗=f(𝑎𝑗) , (4)𝑎𝑗=σ𝑤𝑖𝑗 𝑦𝑖

Now, let’s consider how to calculate △𝑤𝑖𝑗 for the

hidden nodes.

△𝑤𝑖𝑗 = - α 𝜕𝐸/𝜕𝑤𝑖𝑗

= -α 𝜕𝐸/𝜕𝑦𝑗 . 𝜕𝑦𝑗/ 𝜕𝑎𝑗 . 𝜕𝑎𝑗/ 𝜕𝑤𝑖𝑗 then using(3) and (4) as before

= - α 𝜕𝐸/𝜕𝑦𝑗 . ൯𝑓′(𝑎𝑗 . 𝑦𝑖

= α σ(𝛿𝑘
0 𝑤𝑗𝑘) . ൯𝑓′(𝑎𝑗 . 𝑦𝑖

= α 𝛿𝑗
ℎ 𝑦𝑖 where 𝛿𝑗

ℎ
= σ(𝛿𝑘

0 𝑤𝑗𝑘) . ൯𝑓′(𝑎𝑗

Later we will see why these

Outlined expressions are
equal

The missing step in the derivation:

𝐸 =
1

2

𝑘

𝑒𝑘
2 so

𝜕E/𝜕yj =

𝑘

𝑒𝑘𝜕𝑒𝑘/𝜕𝑦𝑗 (j ≠ k, as it does for output nodes)

=

𝑘

𝑒𝑘𝜕𝑒𝑘/𝑎𝑘 . 𝜕𝑎𝑘/𝜕𝑦𝑗

= −

𝑘

𝑒𝑘𝑓
′(𝑎𝑘). 𝜕𝑎𝑘/𝜕𝑦𝑗

= −

𝑘

𝑒𝑘𝑓
′(𝑎𝑘).𝑤𝑘𝑗

= −

k

𝛿k
0𝑤𝑘𝑗

𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘 = 𝑑𝑘 − 𝑓(𝑎𝑘) , so
𝜕ek/𝜕𝑎𝑘 = −𝑓′(𝑎𝑘)

𝑎𝑘 =

𝑗

𝑤𝑘𝑗𝑦𝑗 , so

𝜕𝑎𝑘/𝜕𝑦𝑘 = 𝑤𝑘𝑗

𝜕 E/𝜕
yσ𝑘 𝛿𝑘

0𝑤𝑘𝑗j
but

𝛿j
0 = 𝑒𝑗𝑓

′(𝑎𝑗)

𝜕 E/ 𝜕 yσ𝑘 𝛿𝑘
0𝑤𝑘𝑗j

Back-propagation neural

network
• Learning in a multilayer network proceeds the same way as for a

perceptron.

• A training set of input patterns is presented to the network.

• The network computes its output pattern, and if there is an
error - or in other words a difference between actual and
desired output patterns - the weights are adjusted to reduce this
error.

• In a back-propagation neural network,thelearning algorithm has
two phases.

• First, a training input pattern is presented to the network input
layer. The network propagates the input pattern from layer to
layer until the output pattern is generated by the output layer.

• If this pattern is different from the desired output, an error is
calculated and then propagated backwards through the network
from the output layer to the input layer. The weights are
modified as the error is propagated.

Three-layer back-propagation

neural network

Input

layer

xi

x1

x2

xn

1

2

i

n

Output

layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden

layer

wij

1

2

j

m

The back-propagation training

algorithm
Step 1: Initialisation

Set all the weights and threshold levels of the
network to random numbers uniformly
distributed inside a small range:

where Fi is the total number of inputs of neuron
i in the network. The weight initialisation is done
on a neuron-by-neuron basis.

−
2.4

𝐹𝑖
, +

2.4

𝐹𝑖

Step 2: Activation

Activate the back-propagation neural network by applying inputs
x1(p), x2(p),…, xn(p) and desired outputs yd,1(p), yd,2(p),…,
yd,n(p).

(A)Calculate the actual outputs of the neurons in the hidden
layer:

where n is the number of inputs of neuron j in the hidden layer,
and sigmoid is the sigmoid activation function.

𝑦𝑗(𝑝) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑖=1

𝑛

𝑥𝑖(𝑝) ⋅ 𝑤𝑖𝑗(𝑝) − θ𝑗

Step 2: Activation (continued)

(B)Calculate the actual outputs of the

neurons in the output layer:

where m is the number of inputs of neuron

k in the output layer.

𝑦𝑘(𝑝) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑗=1

𝑚

𝑥𝑗𝑘(𝑝) ⋅ 𝑤𝑗𝑘(𝑝) − θ𝑘

Step 3: Weight training

Update the weights in the back-propagation network propagating
backward the errors associated with output neurons.

(a) Calculate the error gradient for the neurons in the output layer:

Where

Calculate the weight corrections:

Update the weights at the output neurons:

𝛿𝑘(𝑝) = 𝑦𝑘(𝑝) ⋅ 1 − 𝑦𝑘(𝑝) ⋅ 𝑒𝑘(𝑝)

𝑒𝑘(𝑝) = 𝑦𝑑,𝑘(𝑝) − 𝑦𝑘(𝑝)

Δ𝑤𝑗𝑘(𝑝) = 𝛼 ⋅ 𝑦𝑗(𝑝) ⋅ 𝛿𝑘(𝑝)

)()()1(pwpwpw jkjkjk +=+

Step 3: Weight training

(continued)

(b) Calculate the error gradient for the neurons in the hidden layer:

Calculate the weight corrections:

Update the weights at the hidden neurons:

𝛿𝑗(𝑝) = 𝑦𝑗(𝑝) ⋅ [1 − 𝑦𝑗(𝑝)] ⋅

𝑘=1

𝑙

𝛿𝑘(𝑝) w𝑗𝑘(𝑝)

Δ𝑤𝑖𝑗(𝑝) = 𝛼 ⋅ 𝑦𝑖(𝑝) ⋅ 𝛿𝑗(𝑝)

)()()1(pwpwpw ijijij +=+

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and
repeat the process until the selected error
criterion is satisfied.

As an example, we may consider the three-layer
back-propagation network. Suppose that the
network is required to perform logical
operation Exclusive-OR. Recall that a single-layer
perceptron could not do this operation. Now
we will apply the three-layer net.

Three-layer network for solving the Exclusive-

OR operation

y55

x1 31

x2

Input

layer

Output

layer

Hidden layer

42

q3

w13

w24

w23

w24

w35

w45

q4

q5

−1

−1

−1

▪ The effect of the threshold applied to a

neuron inthe hidden or output layer is

represented by its weight, q, connected to a

fixed input equal to −1.

▪ The initial weights and threshold levels are

set randomly as follows:

w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35

= −1.2,

w45 = 1.1, q3 = 0.8, q4 = −0.1 and q5 = 0.3.

y3 = sigmoid (x1w13 + x2w23 − q3) = 1/[1+ e−(1×0.5+1×0.4−1×0.8)] = 0.5250

y4 = sigmoid (x1w14 + x2w24 − q4) = 1/[1+ e−(1×0.9+1×1.0+1×0.1)] = 0.8808

➢We consider a training set where inputs x1

and x2 are equal to 1 and desired output yd,5

is 0. The actual outputs of neurons 3 and 4

in the hidden layer are calculated as

➢Now the actual output of neuron 5 in the output

layer is determined as:

y5 = sigmoid(y3w35 +y4w45 − q5) = 1/[1+ e−(−0.5250×1.2+0.8808×1.1−1×0.3)]= 0.5097

e = yd ,5 − y5 = 0 − 0.5097 = −0.5097

Thus, the following error is obtained:

 The next step is weight training. To update the
weights and threshold levels in our network, we
propagate the error, e, from the output layer
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in
the output layer:

 Then we determine the weight corrections assuming
that the learning rate parameter, a, is equal to 0.1:

𝛿5 = 𝑦5 (1 − 𝑦5) e = 0.5097 ⋅ (1 − 0.5097) ⋅ (−0.5097) = −0.1274

Δ𝑤35 = 𝛼 ⋅ 𝑦3 ⋅ 𝛿5 = 0.1 ⋅ 0.5250 ⋅ (−0.1274) = −0.0067

Δ𝑤45 = 𝛼 ⋅ 𝑦4 ⋅ 𝛿5 = 0.1 ⋅ 0.8808 ⋅ (−0.1274) = −0.0112

Δθ5 = 𝛼 ⋅ (−1) ⋅ 𝛿5 = 0.1 ⋅ (−1) ⋅ (−0.1274) = −0.0127

• Next we calculate the error gradients for neurons 3 and 4 in the

hidden layer:

𝛿3 = 𝑦3(1 − 𝑦3) ⋅ 𝛿5 ⋅ w35 = 0.5250 ⋅ (1 − 0.5250) ⋅ (−0.1274) ⋅ (−1.2) = 0.0381

𝛿4 = 𝑦4(1 − 𝑦4) ⋅ 𝛿5 ⋅ w45 = 0.8808 ⋅ (1 − 0.8808) ⋅ (−0.127 4) ⋅ 1.1 = −0.0147

• We then determine the weight corrections:

Δ𝑤13 = 𝛼 ⋅ 𝑥1 ⋅ 𝛿3 = 0.1 ⋅ 1 ⋅ 0.0381 = 0.0038

Δ𝑤23 = 𝛼 ⋅ 𝑥2 ⋅ 𝛿3 = 0.1 ⋅ 1 ⋅ 0.0381 = 0.0038

Δθ3 = 𝛼 ⋅ (−1) ⋅ 𝛿3 = 0.1 ⋅ (−1) ⋅ 0.0381 = −0.0038

Δ𝑤14 = 𝛼 ⋅ 𝑥1 ⋅ 𝛿4 = 0.1 ⋅ 1 ⋅ (−0.0147) = −0.0015

Δ𝑤24 = 𝛼 ⋅ 𝑥2 ⋅ 𝛿4 = 0.1 ⋅ 1 ⋅ (−0.0147) = −0.0015

Δθ4 = 𝛼 ⋅ (−1) ⋅ 𝛿4 = 0.1 ⋅ (−1) ⋅ (−0.0147) = 0.0015

• At last, we update all weights and threshold:

5038.00038.05.0131313 =+=+= www

8985.00015.09.0141414 =−=+= www

4038.00038.04.0232323 =+=+= www

9985.00015.00.1242424 =−=+= www

2067.10067.02.1353535 −=−−=+= www

0888.10112.01.1454545 =−=+= www

7962.00038.08.0333 =−=q+q=q

0985.00015.01.0444 −=+−=q+q=q

3127.00127.03.0555 =+=q+q=q

• The training process is repeated until the sum of squared errors is

less than 0.001.

Learning curve for operation

Exclusive-OR

0 50 100 150 200

10
1

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Sum-Squared Network Error for 224 Epochs

10
0

10
-1

10
-2

10
-3

10
-4

traingd Gradient Descent

Final results of three-layer

network learning

Inputs

x1 x2

1

0

1

0

1

1

0

0

0

1

1

Desired
output

yd

0

 0.0155

Actual
output

y5

Y

Error

e

Sum of
squared
errors

e
 0.9849

 0.9849

 0.0175

−0.0155

 0.0151

 0.0151

−0.0175

0.0010

Network represented by McCulloch-Pitts

model for

solving the Exclusive-OR operation

y55

x1 31

x2 42

+1.0

−1

−1

−1
+1.0

+1.0

+1.0

+1.5

+1.0

+0.5

+0.5−2.0

• We can accelerate training by including a

momentum term in the delta rule:

where is a positive number (0 1) called the

momentum constant. Typically, the momentum

constant is set to 0.95.

https://youtu.be/6iwvtzXZ4Mo?t=14

Δ𝑤𝑗𝑘(𝑝) = 𝛽 ⋅ Δ𝑤𝑗𝑘(𝑝 − 1) + 𝛼 ⋅ 𝑦𝑗(𝑝) ⋅ 𝛿𝑘(𝑝)

Accelerated learning in

multilayer neural networks

• We can accelerate training by including a

momentum term in the delta rule:

https://youtu.be/6iwvtzXZ4Mo?t=14

Δ𝑤𝑗𝑘(𝑝) = 𝛽 ⋅ Δ𝑤𝑗𝑘(𝑝 − 1) + 𝛼 ⋅ 𝑦𝑗(𝑝) ⋅ 𝛿𝑘(𝑝)

Accelerated learning

Learning with momentum for

operation Exclusive-OR

0 20 40 60 80 100 120
10

-4

10
-2

10
0

10
2

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Training for 126 Epochs

0 100 140
-1

-0.5

0

0.5

1

1.5

Epoch

L
e

a
rn

in
g

 R
a

te

10
-3

10
1

10
-1

20 40 60 80 120

Learning with adaptive learning rate
To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Heuristic 1

If the change of the sum of squared errors has the same

algebraic sign for several consequent epochs, then the

learning rate parameter, a, should be increased.

Heuristic 2

If the algebraic sign of the change of the sum of squared

errors alternates for several consequent epochs, then the

learning rate parameter, a, should be decreased.

https://youtu.be/TOtKVUtpz-s

Learning with adaptive learning rate
To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Heuristic 1

If the change of the sum of squared errors has the same

algebraic sign for several consequent epochs, then the

learning rate parameter, a, should be increased.

Heuristic 2

If the algebraic sign of the change of the sum of squared

errors alternates for several consequent epochs, then the

learning rate parameter, a, should be decreased.

https://youtu.be/TOtKVUtpz-s

• If the error is less than the previous one, the

learning rate is increased (typically by multiplying

by 1.05).

• If the sum of squared errors at the current epoch

exceeds the previous value by more than a

predefined ratio (typically 1.04), the learning rate

parameter is decreased (typically by multiplying by

0.7) and new weights and thresholds are

calculated.

Learning with adaptive

learning rate

0 10 20 30 40 50 60 70 80 90 100

Epoch

Training for 103 Epochs

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

L
ea

rn
in

g
 R

at
e

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

ar
ed

 E
rr

o
r

10
-3

10
1

10
-1

Learning with momentum and

adaptive learning rate

0 10 20 30 40 50 60 70 80

Epoch

Training for 85 Epochs

0 10 20 30 40 50 60 70 80 90
0

0.5

1

2.5

Epoch

L
ea

rn
in

g
 R

at
e

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

10
-3

10
1

10
-1

1.5

2

Divide Data for Optimal Neural
Network Training

• One of the problems that occur during neural network training is called

over fitting (overtraining). The error on the training set is driven to a

very small value, but when new data is presented to the network the

error is large. The network has memorized the training examples, but it

has not learned to generalize to new situations.

• Note that if the number of parameters in the network is much smaller

than the total number of points in the training set, then there is little or

no chance of over fitting. If you can easily collect more data and

increase the size of the training set, then there is no need to worry

about over fitting.

• One of the methods for improving generalization of a neural network is

early stopping.

Divide Data for Optimal Neural
Network Training

When training multilayer networks, the general practice is to first divide

the data into three subsets.

1) The first subset is the training set, which is used for computing the

gradient and updating the network weights and biases.

2) The second subset is the validation set. The error on the validation

set is monitored during the training process. The validation error

normally decreases during the initial phase of training, as does the

training set error. However, when the network begins to overfit the

data, the error on the validation set typically begins to rise. The

network weights and biases are saved at the minimum of the

validation set error.

3) The test set represents a new data that were not used in training

or validation to see how the system behaves for totally new data. It

is also useful to plot the test set error during the training process. If

the error on the test set reaches a minimum at a significantly

different iteration number than the validation set error, this might

indicate a poor division of the data set.

Divide Data for Optimal Neural
Network Training

Applications

NN toolbox

As an example, the file housing. Mat contains a predefined set of

input and target vectors. The input vectors define data regarding

real-estate properties and the target values define relative

values of the properties . Load the data using the following

command:

Load house_dataset

Loading this file creates two variables. The input matrix house

Inputs consists of 506 column vectors of 13 real estate variables

for 506 different houses .The target matrix house Targets
consists of the corresponding 506 relative valuations.

NN toolbox

Chapter 5:

Evolutionary Computation and Genetic

algorithms

▪ Introduction, or can evolution be intelligent?

▪ Simulation of natural evolution

▪ Genetic algorithms

▪ Case study: maintenance scheduling with

genetic algorithms

▪ Summary

Can evolution be intelligent ?

▪ Intelligence can be defined as the capability of a system

to adapt its behavior to ever-changing environment.

▪ Evolutionary computation simulates evolution on a

computer.

▪ The result of such a simulation is a series of

optimization algorithms, usually based on a simple set of

rules.

▪ Optimization iteratively improves the quality of solutions

until an optimal, or at least feasible, solution is found.

▪ If, over successive generations, the organism survives, we can say

that this organism is capable of learning to predict changes in its

environment.

▪ The evolutionary approach is based on computational models of

natural selection and genetics. We call them evolutionary

computation, an umbrella term that combines genetic algorithms,

evolution strategies and genetic programming.

Evolutionary Computation

▪ Evolution can be seen as a process leading to the

maintenance of a population’s ability to survive and

reproduce in a specific environment. This ability is called

evolutionary fitness.

▪ Evolutionary fitness can also be viewed as a measure of

the organism’s ability to anticipate changes in its

environment.

▪ The fitness, or the quantitative measure of the ability to

predict environmental changes and respond adequately,

can be considered as the quality that is optimized in

natural life.

Simulation of natural evolution

How is a population with increasing
fitness generated?

▪ Let us consider a population of rabbits. Some rabbits

are faster than others, and we may say that these

rabbits possess superior fitness, because they have a

greater chance of avoiding foxes, surviving and then

breeding.

▪ If two parents have superior fitness, there is a good

chance that a combination of their genes will produce an

offspring with even higher fitness. Over time the entire

population of rabbits becomes faster to meet their

environmental challenges in the face of foxes.

Simulation of natural evolution

▪ All methods of evolutionary computation simulate

natural evolution by creating a population of individuals,

evaluating their fitness, generating a new population

through genetic operations, and repeating this process a

number of times.

▪ We will start with Genetic Algorithms (GAs) as most of

the other evolutionary algorithms can be viewed as

variations of genetic algorithms .

Genetic Algorithms

▪ In the early 1970s, John Holland introduced the

concept of genetic algorithms.

▪ His aim was to make computers do what nature does.

▪ Holland was concerned with algorithms that manipulate

strings of binary digits.

▪ Each artificial “chromosomes” consists of a number of

“genes”, and each gene is represented by 0 or 1:

1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1

▪ Nature has an ability to adapt and learn without being told

what to do.

▪ In other words, nature finds good chromosomes blindly. GAs

do the same.

▪ Two mechanisms link a GA to the problem it is solving:

encoding and evaluation.

▪ The GA uses a measure of fitness of individual chromosomes

to carry out reproduction.

▪ As reproduction takes place, the crossover operator

exchanges parts of two single chromosomes, and the

mutation operator changes the gene value in some randomly
chosen location of the chromosome.

Genetic Algorithms

Basic genetic algorithms

Step 1: Represent the problem variable domain

as a chromosome of a fixed length, choose the

size of a chromosome population N, the

crossover probability pc and the mutation

probability pm.

Step 2: Define a fitness function to measure the

performance, or fitness, of an individual

chromosome in the problem domain. The fitness

function establishes the basis for selecting

chromosomes that will be mated during

reproduction

Step 3: Randomly generate an initial population of

chromosomes of size N:

Step 4: Calculate the fitness of each individual chromosome:

Step 5: Select a pair of chromosomes for mating from the

current population. Parent chromosomes are selected with a

probability related to their fitness

1 2, ,..., nx x x

1 2(), (),..., ()nf x f x f x

Step 6: Create a pair of offspring chromosomes by

applying the genetic operators − crossover and mutation.

Step 7: Place the created offspring chromosomes in the

new population

Step 8: Repeat Step 5 until the size of the new

chromosome population becomes equal to the size of the

initial population, N.

Step 9: Replace the initial (parent) chromosome

population with the new (offspring) population.

Step 10: Go to Step 4, and repeat the process until

the termination criterion is satisfied

Genetic algorithms

▪ GA represents an iterative process. Each iteration is

called a generation. A typical number of generations for

a simple GA can range from 50 to over 500. The entire

set of generations is called a run.

▪ Because GAs use a stochastic search method, the

fitness of a population may remain stable for a number

of generations before a superior chromosome appears.

▪ A common practice is to terminate a GA after a

specified number of generations and then examine the

best chromosomes in the population. If no satisfactory

solution is found, the GA is restarted

Genetic algorithms: case study

• A simple example will help us to understand how a GA works.

• Let us find the maximum value of the function

where parameter x varies between 0 and 15.

• For simplicity, we may assume that x takes only integer

values. Thus, chromosomes can be built with only four genes:

2(15)x x−

• Suppose that the size of the chromosome

population N is 6

• The crossover probability equals 0.7

• The mutation probability equals 0.001

• The fitness function in our example is defined

by:

2() 15f x x x= −

cp

mp

Genetic algorithms: case study

The fitness function and chromosome locations

▪ In natural selection, only the fittest species can

survive, breed, and thereby pass their genes on to the

next generation.

▪ GAs use a similar approach, but unlike nature, the

size of the chromosome population remains

unchanged from one generation to the next.

▪ The last column in Table shows the ratio of the

individual chromosome’s fitness to the population’s

total fitness.

▪ This ratio determines the chromosome’s chance of

being selected for mating. The chromosome’s

average fitness improves from one generation to the

next.

Roulette wheel selection
The most commonly used chromosome selection
techniques is the roulette wheel selection.

Crossover operator

▪ In our example, we have an initial

population of 6 chromosomes. Thus, to

establish the same population in the next

generation, the roulette wheel would be

spun six times.

▪ Once a pair of parent chromosomes is

selected, the crossover operator is applied.

▪ First, the crossover operator randomly chooses a

crossover point where two parent chromosomes

“break”, and then exchanges the chromosome parts

after that point. As a result, two new offspring are

created.

▪ If a pair of chromosomes does not cross over, then

the chromosome cloning takes place, and the

offspring are created as exact copies of each parent.

Crossover operator

Crossover

• generate Random Number (RN1) [0-1]. if RN is less than Pc (0.7)

then do crossover, otherwise no crossover

• crossover point is randomly selected (RN2) [1-3]

Mutation operator

▪ Mutation represents a change in the gene.

▪ Mutation is a background operator. Its role is to

provide a guarantee that the search algorithm is not

trapped on a local optimum.

▪ The mutation operator flips a randomly selected

gene in a chromosome.

▪ The mutation probability is quite small in nature,

and is kept low for GAs, typically in the range

between 0.001 and 0.01.

Mutation

• generate Random Number (RN1) [0-1]. if RN1 is less than Pm (0.001)
then do mutation, otherwise no mutation.

• mutation point is randomly selected (RN2) [1-4]

The genetic algorithm cycle

Steps in the GA development

1. Specify the problem, define constraints and optimum

criteria;

2. Represent the problem domain as a chromosome;

3. Define a fitness function to evaluate the chromosome

performance;

4. Construct the genetic operators;

5. Run the GA and tune its parameters.

Case study: maintenance scheduling

▪ Maintenance scheduling problems are usually

solved using a combination of search techniques

and heuristics.

▪ These problems are complex and difficult to solve.

Case study

Scheduling of 7 units in 4 equal intervals

The problem constraints:

▪ The maximum loads expected during four intervals

are 80, 90, 65 and 70 MW;

▪ Maintenance of any unit starts at the beginning of an

interval and finishes at the end of the same or

adjacent interval.

Case study

Scheduling of 7 units in 4 equal intervals

The problem constraints:

▪ The maintenance cannot be aborted or finished

earlier than scheduled;

▪ The net reserve of the power system must be greater

or equal to zero at any interval.

▪ 𝑁𝑒𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = σ𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − σ 𝑙𝑜𝑎𝑑

The optimum criterion is the maximum of the net

reserve at any maintenance period.

Case study
Unit data and maintenance requirements

Max capacity=150 MW

Case study
Unit gene pools

Chromosome for the scheduling problem

Case study
The crossover operator

Case study
The mutation operator

Performance graphs and the best maintenance
schedules created in a population of 20 chromosomes

(a) 50 generations

• The maximum loads during four intervals are 80, 90, 65 and 70 MW

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑁𝑒𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 =𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −𝑙𝑜𝑎𝑑

Performance graphs and the best maintenance
schedules created in a population of 20 chromosomes

(b) 100 generations

Performance graphs and the best maintenance
schedules created in a population of 100 chromosomes

(a) Mutation rate is 0.001

Performance graphs and the best maintenance
schedules created in a population of 100 chromosomes

(b) Mutation rate is 0.01

Performance graphs for 100 generations of 6
chromosomes: local maximum

.

1

.

2

.

3

Comparison of Expert Systems, Fuzzy

Systems, Neural Networks

.

4

Neuro-fuzzy systems

o Fuzzy logic and neural networks are important tools in

building intelligent systems.

o However, fuzzy systems lack the ability to learn and

cannot adjust themselves to a new environment

o On the other hand, although neural networks can learn,

they are opaque to the user.

o The merger of a neural network with a fuzzy system into

one integrated system therefore offers a promising

approach to building intelligent systems.

.

5

Neuro-fuzzy systems

o Integrated neuro-fuzzy systems can combine the

parallel computation and learning abilities of neural

networks with the humanlike knowledge representation

and explanation abilities of fuzzy systems.

o As a result, neural networks become more transparent,

while fuzzy systems become capable of learning.

.

6

Neuro-fuzzy systems

o A neuro-fuzzy system is, in fact, a neural network that is

functionally equivalent to a fuzzy inference model.

o It can be trained to develop IF-THEN fuzzy rules and

determine membership functions for input and output

variables of the system.

o Expert knowledge can be easily incorporated into the

structure of the neuro-fuzzy system.

.

7

How does a neuro-fuzzy system look?

o The structure of a neuro-fuzzy system is similar to a

multi-layer neural network.

o In general, a neuro-fuzzy system has input and output

layers, and three hidden layers that represent

membership functions and fuzzy rules.

.

8

ANFIS: Adaptive Neuro-Fuzzy Inference System

• The Sugeno fuzzy model was proposed for a systematic approach to generating

fuzzy rules from a given input-output data set. A typical Sugeno fuzzy rule can be

expressed in the following form:

.

9

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Jang’s ANFIS is normally represented by a six-layer feedforward neural network.

o ANFIS architecture that corresponds to the first order Sugeno fuzzy model.

o For simplicity, we assume that the ANFIS has two inputs: x1 and x2 , and one

output: y. Each input is represented by two fuzzy

.

10

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Each input is represented by two fuzzy sets, and the output by a first-order

polynomial. The ANFIS implements four rules:

.

11

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Let us now discuss the purpose of each layer in Jang’s ANFIS.

o Layer 1 is the input layer. Neurons in this layer simply pass external crisp signals

to Layer 2.

.

12

ANFIS: Adaptive Neuro-Fuzzy Inference System

.

13

ANFIS: Adaptive Neuro-Fuzzy Inference System

.

14

ANFIS: Adaptive Neuro-Fuzzy Inference System

.

15

ANFIS: Adaptive Neuro-Fuzzy Inference System

.

16

How does an ANFIS learn?

o An ANFIS uses a hybrid learning algorithm that combines

the least-squares estimator and the gradient descent

method

o First, initial activation functions are assigned to each

membership neuron.

o In the ANFIS training algorithm, each epoch is composed

from a forward pass and a backward pass.

o In the forward pass, a training set of input patterns (an input

vector) is presented to the ANFIS, neuron outputs are

calculated on the layer-by-layer basis, and rule consequent

parameters are identified by the least squares estimator.

.

17

How does an ANFIS learn?

o In the Sugeno-style fuzzy inference, an output, y, is a linear function.

Thus, given the values of the membership parameters and a training

set of P input-output patterns, we can form P linear equations in

terms of the consequent parameters as:

.

18

How does an ANFIS learn?

.

19

How does an ANFIS learn?

Yd=AK

K=A^-1Yd

.

20

How does an ANFIS learn?

o Usually the number of input-output patterns P used in

training is greater than the number of consequent

parameters.

o It means that we are dealing here with an over determined

problem, and thus exact solution may not even exist.

o Instead, we solve for K numerically.

.

21

How does an ANFIS learn?

o In the ANFIS training algorithm suggested by Jang, both

antecedent parameters and consequent parameters are

optimised.

o In the forward pass, the consequent parameters are

adjusted while the antecedent parameters remain fixed.

o In the backward pass, the antecedent parameters are tuned

while the consequent parameters are kept fixed.

.

22

Example (matlab command line)

.

23

Example (matlab command line)

.

24

Example (matlab command line)

.

25

Example (matlab command line)

.

26

Example (matlab command line)

.

27

Example (matlab command line)

.

28

Example (matlab command line)

