Introduction to Artificial
Intelligence and its applications

Dr. Mohammed Abu Mallouh
Mechatronics Eng.
Hashemite University
Zarqa, Jordan

*Boston Dog
*Use machine learning.

L R [\ ! . t
y

Dr. Mohammed Abu mallouh- Al 2

What is Artificial Intelligence (Al)

e Intelligence is related with human ability
to store and recall fact, solve a given
problem based on known fact and
relevant theorem.

* Artificial Intelligence (Al) is the ability of
an electronic device (computer) to
accomplish any tasks that ordinary would
have been handled by human.

Another definition for Al

-Intelligence is the ability to understand and learn
things.

-Intelligence is the ability to think and

understand instead of doing things by instinct

or automatically.

(Essential English Dictionary,Collins,London,2008,

Intelligence as the ability to learn and
understand, to solve problems and to make
decisions.

Another definition for Al

* Intelligence:

“the capacity to learn and solve
problems” (VWebster’s dictionary)

* |n particular, the ability to solve
novel problems the ability to act
rationally the ability to act like
humans.

Another definition for Al

e The

term artificial intelligence was first coined

by John McCarthy in 1956 when he held the

first

academic conference on the subject. * Isn't

there a solid definition of intelligence that
doesn't depend on relating it to human
intelligence! Not yet. The problem is that we
cannot yet characterize in general what kinds of

com
intel
mec

butational procedures we want to call
igent.We understand some of the

hanisms of intelligence and not others.

-One of the most significant papers on machine
intelligence,“Computing Machinery and
Intelligence”, was written by the British
mathematician Alan Turing over fifty years ago .
However, it still stands up well under the test of
time, and the Turing’s approach remains universal.

-Turing did not provide definitions of
machines and thinking, he just avoided
semantic arguments by inventing agama ,
the Turing Imitation Game.

= Turing Imitation Game: Phase 1

-The imitation game originally included two phases.

In the first phase, the interrogator, a man and a woman are
each placed in separate rooms. The interrogator’s objective
is to work out who is the man and who is the woman by
questioning them.

The man should attempt to deceive the interrogator that he
is the woman, while the woman has to convince the
interrogator that she is the woman.

Turing Imitation Game: Phase 2

-In the second phase of the game, the man is replaced by
a computer programmed to deceive the interrogator as
the man did. It would even be programmed to make
mistakes and provide fuzzy answers in the way a human
would . If the computer can fool the interrogator as
often as the man did, we may say this computer has
passed the intelligent behavior test.

-The history of artificial intelligence

-The birth of artificial intelligence(1943-1956)

-The rise of artificial intelligence, or the era of great expectations
(1956-late 1960s)

-In the sixties, Al researchers attempted to simulate the thinking
process by inventing general methods for solving broad classes of
problems.They used the general-purpose search mechanism to find a
solution to the problem. Such approaches, now referred to as weak
methods, applied weak information about the

problem domain.

Unfulfilled promises, or the impact of reality

(late 1960s-early 1970s)

The main difficulties for Al in the late 1960s were :

- Because Al researchers were developing general
methods for broad classes of problems, early programs
contained little or even no knowledge about a problem
domain.

-The technology of expert systems, or the key
to success(early 1970s -mid -1980s)

-Probably the most important development in
the seventies was the realization that the
domain for intelligent machines had to be
sufficiently restricted. Previously, Al researchers
had believed that clever search algorithms and
reasoning techniques could be invented to
emulate general, human-like, problem-solving
methods. A general-purpose search mechanism
could rely on elementary reasoning steps to
find complete solutions and could use weak
knowledge about domain.

-When weak methods failed, researchers finally realized that
the only way to deliver practical results was to solve typical
cases in narrow areas of expertise, making large reasoning
steps.

-A 1986 survey reported a remarkable number successful
expert system applications in different areas: chemistry,
electronics, engineering, geology, management, medicine,
process control and military science (VVaterman,1986).
Although Waterman found nearly 200 expert systems , most
of the applications were in the field of medical diagnosis.
Seven years later a similar survey reported over 2500
developed expert systems (Durkin,1994).The new growing
area was business and manufacturing, which accounted for
about 60% of the applications. Expert system technology had
clearly matured.

What is Artificial Intelligence (Al)

* Computational models of human
behavior!?

* Programs that behave (externally) like
humans

* Computational models of human
“thought”

* Programs that operate (internally) the
way humans do

Artificial Intelligence Techniques

Artificial Neus / | Genetic / .
‘ , . Other Tech
(.\'etworks | Rz Log1c> \Algorithms) """ o mqi%

A N

Applications

* Control

* Estimation

* System ldentification
* Optimization

Biological Neural network

* Computational models of human “thought”
* Programs that operate (internally) the way humans do

* The brain consists of a densely interconnected set of nerve
cells, or basic information-processing units, called neurons.

* The human brain incorporates nearly 10 billion neurons and
60 trillion connections, synapses, between them.

Synapse

Synapse Dendrites

>x0 n \

Soma

Soma

Synapse g

Dendrites

Artificial Neural network

Architecture of a typical artificial neural network

o

Input Signals

0&00

OQutput Signals

Middle Layer

Input Layer OQutput Layer

Artificial Neural network

The neuron as a simple computing element
Diagram of a neuron

Input Signals Weights Output Signals

}F

Artificial Neural network

Advantages

* Learning capabilities
 Generalization

* No Mathematical model
e Fault tolerance

* Parallel processing

Drawbacks
* Lack of design techniques
* Computational effort

Applications

* Control

* Estimation

* System Identification
* Optimization

Genetic algorithms

Evolutionary computation, or learning by doing
(early 1970s-onwards)

-Natural intelligence is a product of evolution.

Therefore, by simulating biological evolution, we

might expect to discover how living systems are

propelled towards high-level intelligence.

-Nature learns by doing; biological system are not

told how to adept to a specific environment —

they simply compete for survival

Genetic algorithms

-The evolutionary approach Al is based on the computational models
of natural selection and genetics.

-Evolutionary computation works by simulating a population of
individuals, evaluating their performance, generating a new
population, and repeating this process a number of times.
-Evolutionary computation combines three main techniques: genetic
algorithms, evolutionary strategies and genetic programming.

-Advantages
e Derivative free
e Avoid local minimal

-Application
* Optimization
* Parameter tuning and estimation

Fuzzy logic

* Computational models of human behavior?

* Programs that behave (externally) like humans

The new era of knowledge engineering, or computing with
words(late 1980s-onwards)

-Neural network technology offers more natural interaction with the
real word than do systems based on symbolic reasoning. Neural
network s can learn, adept to changes in problem's environment,
establish patterns in situations where rules are not known, and deal
with fuzzy or incomplete information.

- However, they lack explanation facilities and usually act as a black
box.The process of training neural networks is slow, and frequent
retraining can cause serious difficulties.

Fuzzy logic
-Very important technology dealing with vague,
imprecise and uncertain knowledge and data is fuzzy
logic.
-Human experts do not usually think in probability
values, but in such terms as often, generally,
sometimes, occasionally and rarely. Fuzzy logic is
concerned with capturing the meaning of words,
human reasoning and decision making. Fuzzy logic
provides the way to break through the computational
bottlenecks of traditional expert systems.
-At the heart of fuzzy logic lies the concept of a
linguistic variable. The values of the linguistic variable
are words rather than numbers.

Fuzzy logic

Benefits derived from the application of fuzzy logic
models in knowledge-based and decision-support
systems can be summarized as follow:

-Improved computational power: Fuzzy rule-based
systems perform faster than conventional expert
systems and require fewer rules. A fuzzy expert
systems merges the rules, making them more
powerful. Lotfi Zadeh believes that in a few years
most expert systems will use fuzzy logic to solve
highly nonlinear and computationally difficult
problems.

Fuzzy logic

Computational models of human behavior?
Programs that behave (externally) like humans
Unlike two-valued Boolean logic,, fuzzy logic is multi-valued.. It deals with
degrees of membership and degrees of truth.. Fuzzy logic uses the
continuum of logical values between 0 (completely false) and | (completely
true).

Crisp and fuzzy sets of “ztall men

Degree of
Aembership
10

0.8
0.6
0.4

0.2

00
150

Degree of
Membership

10
0.8

0.6
04

0.2

T T
200 210

Heighz, cm

itsky, Pearson Education, 2011 Dr. Mohammed A

Fuzzy logic

Crisp and fuzzy sets of short, average and tall men
‘a“:frnn;:)‘ji‘w Crisp Sets
1.0 U

0.8

200 210

Height, cm

Fuzzy Sets

©® Negnevitsky, Pearson Education, 2011

Fuzzy logic

“~vYVvy

knowledge base
input output
database | | rule base
fuzzification Hefuzzification
P interface _J. I._ interface press
iy decision-making unit JM’}

Fig. 4. Fuzzy Logic system structure.

L{Z}_' | {*’ |

==

= BB

1 1 1
al (5! C3
IF .. AND _. THEN ... 0.1 021 Olg
0 Z

IF .. AND _. THEN ... Z 0 z 0 z 0

IF ... AND _.THEN ...

Doy of
Lt rhp

— 7

Dr. Mohammed Abu mallouh- Al 26

Applications and examples of Al

-Deep Blue defeated the world chess champion Garry
Kasparov in 1997.

°In 1997, the Deep Blue chess program created by
IBM, beat the current world chess champion, Gary
Kasparowv.

tis Deep Blue?

Deep Blue

Play :-V2 Deep Blue

Autonomous Robotic ground

vehicle

*Defense Advanced Research Projects Agency (DARPA) Grand Challenge
*Cash prizes ($1 to $2 million) offered to first robots to complete a
long course completely unassisted.

Stimulates research in vision, robotics, planning, machine learning.

The DARPA Grand Challenge

Autonomous Robotic Ground Vehicles
Los Angeles - Las Vegas
March 13, 2004

www.darpa.mil/grandchallenge

The Challenge

«Navigate 300 miles of rugged terrain
between Los Angeles and Las Vegas

eWinner of $1 million cash prize is first
to complete course in prescribed time

eNo drivers allowed - unmanned

DARPA

*2004 Grand Challenge:
» 150 mile route in Nevada desert
»Furthest any robot went was about 7 miles

*2005 Grand Challenge:
» 132 mile race

»Narrow tunnels, winding mountain passes, etc
» Stanford Ist, CMU 2nd, both finished in about 6
hours

2007 Urban Grand Challenge

Stanley Autonomous Robotic ground vehicle
winner of DARPA 2005

Stanley Robot

Stanford Racing Team www.stanfordracing.org

e N O TP A e s L R S = AN 3 s FmERSesy
Play :V3 StanleyAutonomous Robotlc ground
Vehl(:le Wlnner’ Of DARPA Dr. Mohammed Abu mallouh-Al 31

Face recognltlon

) \.‘.,’ . =-’w-d. "’ —— ,;'

v ‘47’:\ —\:.‘vf . ‘~ ;

A

Ny

Henrik Andersen

Possible matches

Google =

Webd

Personalization Engine

. Ry

o 4T
=

SO 1 o B 000 0

23 3 220 Nats
12 3w sssacesiy

DOT/FAA/CT-94/41

FAA Technical Center
Atlaritic Ciy Inteenational Airport,

Aviation i

19941129 049

Optimizing the use of airspace.
Reducing the cost of flying.

Artificial Intelligence With
Applications for Aircraft

"" :; " A).
B & B ® gy
P T b
August 1894 . R R S ¢
& 1324 ®
Final Report NG A (F
ax (:

This document is available to the public
through the:National Technical Information
Service, Springfield, Virginia 22161.

Meeting Air Traffic Control(ATC) requirements.
Aiding the decision making process of the flight

crew.
Aiding maintenance activity.
Assisting data management.

Fuzzy Logic in Automotive Engineering

*Antilock Braking System (ABS) -Nissan and Mitsubishi.
*Engine Control-Nok and Nissan.

*Automatic transmission systems- Nissan, Honda, GM.
*Cruise control — Peugeot, Citroen.

Throttle

Position Determination of

Injection Amount

(Temperature of)
Coolant

Fuel Injection

(Fuzzy Logic)

Vacum in
Air Intake

<
02 Concentration
in Exhaust

Fuel Cutoff
(Fuzzy Logic)

Tachometer

Determination of - \ Electronic
Ignition Timing +—>» Igmtnon Tlmmg/_ Ignition
Knock Sensor ‘ (Rez2yogic) \

—

—

.
=
Angle of T Pt
Crankshaft | e '9“'"0_\.\

\/ 1
P
o

Figure 2—As you can see, the engine controller of NOK Corporation contains three fuzzy-iogic modules.

Al In Medicine

*MYCIN: early expert system that used artificial intelligence to
identify bacteria causing severe infections.

Step 2. Patient test

results are loaded
, into intelligent symm.\
Step 1. Patient is tested Step 3. Data are compared
using device.

, :E to medical information stored

in knowledge base.
Step 7. Caregiver makes

}

treatment decisions based on Step 4. Intelligent engine
recommendations of intelligent evaluates patient data using
systems and other inpul. the knowledge base.
Intelligent system J
Step 6. Intelligent system responds to
user queries or alerls Step 5. Intelligent engine may
caregiver offering W W query caregiver or hospital
explanations and data e E information system for
interpretation. —

Dl additional input.

Al In Robotics

-Tennis playing robot.

Al In IBM Watson

«|BM Watson is a technology platform that uses natural language
processing and machine learning to reveal insights from large
amounts of unstructured data.

$4 000

27l WATSON
\(

Maxwell's silver hammer
FRANK SINATRA
Brown

Al In IBM Watson

*Question Answering.
*Jeopardy! game player.

Play : V4 IBM Watson

Contemporary Issue In Al

Summary you should be

o enther shocked ar be assured that

Theré’s no maglc |n AI
It’s a]l about aptlmlzatlon

pranblllty and stat|$t|cs

logic, algohthms

°. have a rough idea of the state-of-the-art of. Al

2.

References

Introduction to Artificial Intelligence, CS 271, Instructor: Professor
Padhraic Smyth
http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-
watson.html

https://www.youtube.com/watch?v=qO1i7-Qx00k

Introduction to Artificial Intelligence, CS540-2, Bryan R. Gibson

DR.A. EFADEKOYA, Department of Computer Science, University of
Agriculture,Abeokuta, Nigeria. www.unaab.edu.ng

https://courses.csail.mit.edu/6.825/

Negnevitsky, Pearson Education, 201 |
http://www.ncl.ac.uk/eece/staff/profile/shady.gadoue

Lecture 4

Fuzzy expert systems:

Fuzzy logic

mIntroduction, or what is fuzzy thinking?
mFuzzy sets

mLinguistic variables and hedges
mOperations of fuzzy sets

mFuzzy rules

mSummary

Introduction, or what is fuzzy thinking?

mExperts rely on common sense when they solve

problems.
mHow can we represent expert knowledge that uses
vague and ambiguous terms in a computer?

mFuzzy logic is based on the idea that all things admit

of degrees. Temperature, height, speed, distance- all
come on a sliding scale.

* Negnevitsky, Pearson Education, 201 |

* Boolean logic uses sharp distinctions. It forces
us to draw lines between members of a class
and non- members. For instance, we may say,
Tom is tall because his height is 18] cm.If we
drew a line at 180 cm, we would find that
David, who is |79 cm, is small. Is David really a
small man or we have just drawn an arbitrary
line in the sand?

* Fuzzy logic reflects how people think. It
attempts to model our sense of words, our
decision making and our common sense. As
a result, it is leading to new, more human,
intelligent systems.

« In 1965 Lotfi Zadeh, published his
famous paper “Fuzzy set Zadeh extended
the work on possibility theory into a
formal system of mathematical logic, and
introduced a new concept for applying
natural language terms.

This new logic for representing and
manipulating fuzzy terms was called fuzzy
logic,and Zadeh became the Master of
fuzzy logic.

m Why fuzzy?

As Zadeh said, the term is concrete,
immediate and descriptive; we all know
what it means. However, many people in
the West were repelled by the word
fuzzy, because it is usually used in a
negative sense.

m Why logic?
Fuzziness rests on fuzzy set theory, and

fuzzy logic is just a small part of that
theory.

L/

*

* Fuzzy logic is a set of mathematical
orinciples for knowledge representation
based on degrees of membership.

“* Unlike two-valued Boolean logic, fuzzy
logic is multi-valued. It deals with degrees
of membership and degrees of truth.

“* Fuzzy logic uses the continuum of logical
values between 0 (completely false) and |
(completely true).Instead of just black and
white, it employs the spectrum of colors,
accepting that things can be partly true
and partly false at the same time.

Range of logical values in Boolean and fuzzy logic

\ | T

0 031 1 | 0 0 02 04 06 0.8 I 1
(a) Boolean Logic. (b) Multi-valued Logic.

Negnevitsky, Pearson Education, 201 |

Fuzzy sets
» The classical example in fuzzy sets is tall men.The
elements of the fuzzy set “tall men” are all men,
but their degrees of membership depend on their
height.

Degree of Membership
Name [Height, cm Crisp Fuzzy
Chris 208 1 1.00
Mark 205 1 1.00
John 198 1 0.98
Tom 181 1 0.82
David 179 0 0.78
Mike 172 0 0.24
Bob 167 0 0.15
Steven 158 0 0.06
Bill 155 0 0.01
Peter 152 0 0.00

Degree of
Membership

Crisp Sets

1.0
0.8 7
0.6
0.4 7
0.2

0.0 |
150 160

Degree of
Membership

1.0

170

|
180

Fuzzy Sets

190

Height, cm

0.8
0.6 7
0.4 7
0.2

0.0 |
150 160

170

|
180

|
190

Height, cm

Crisp and fuzzy sets of “tall men”

m [he x-axis represents the universe of
discourse - the range of all possible values
applicable to a chosen variable. In our case, the
variable is the man height. According to this
representation, the universe of men’s heights
consists of all tall men.

m [he y-axis represents the membership value
of the fuzzy set. In our case, the fuzzy set of “tall
men” maps height values into corresponding
membership values.

A fuzzy set is a set with fuzzy boundaries.

m Let X be the universe of discourse and its elements be
denoted as x. In the classical set theory, crisp set A of X is
defined as function F p(X) called the characteristic function of A

if x e A
FA(): X —{0,1}, where Fy(x) :{%), xcA

This set maps universe X to a set of two elements.
For any element x of universe X, characteristic
function F po(X) is equal to | if x is an element of set
A, and is equal to O if x is not an element of A.

In the fuzzy theory, fuzzy set A of universe X is defined by
function pa(x): called the membership function of set A .

pa(x) @ X— [0, 1], where pa(x) = | if x is totally in A;
pA(¢)= 0 if x is not in A;
0 < pa(x) < I if x is partly in A.

This set allows a continuum of possible choices. For any
element x of universe X, membership function pA(x) equals
the degree to which x is an element of fuzzy set A. This
degree, a value between 0 and |, represents the degree of
membership, also called membership value, of element x in
set A.

How to represent a fuzzy set in a computer !

m First, we determine the membership functions. In
our “tall men” example, we can obtain fuzzy sets of
tall, short and average men.

m The universe of discourse - the men’s heights -
consists of three sets: short, average and tall men.As
you will see,a man who is 184 cm tall is a member of
the average men set with a degree of membership of
0.1, and at the same time, he is also a member of the
tall men set with a degree of 0.4.

Crisp and fuzzy sets of short, average and tall men
Degree of
Membership
1.0

Crisp Sets

08— Short Average

L]

0.6
0.4

0.2 7

0.0 T .
150 160 170 180 190 200 210

Height, cm

Degree of
g ! Fuzzy Sets

Membership

1.0

A
0.6 Short Average

150 160 170 180 190 200 210

Linguistic variables and hedges

m At the root of fuzzy set theory lies the idea
of linguistic variables.

m A linguistic variable is a fuzzy variable. For
example, the statement “John is tall” implies
that the linguistic variable John takes the

linguistic value tall.

In fuzzy expert systems, linguistic variables
are used in fuzzy rules. For example:

IF
THEN

IF
THEN

IF
THEN

wind is strong
sailing is good

project duration is long
completion risk is high

speed is slow
stopping distance is short

» The range of possible values of a linguistic variable
represents the universe of discourse of that
variable. For example, the universe of discourse of
the linguistic variable speed might have the range
between 0 and 220 km/h and may include such
fuzzy subsets as very slow, slow, medium, fast, and
very fast.

m A linguistic variable carries with it the concept of
fuzzy set qualifiers, called hedges.

m Hedges are terms that modify the shape of fuzzy
sets. They include adverbs such as very, somewhat,
quite, more or less and slightly.

Fuzzy rules

» In 1973, Lotfi Zadeh published his
second most influential paper.
This paper outlined a new
approach to analysis of complex
systems, in which Zadeh suggested
capturing human knowledge in
fuzzy rules.

What is a fuzzy rule!?

» A fuzzy rule can be defined as a conditional
statement in the form:

IF X is A
THEN yisB

» where x and y are linguistic variables; and A and B
are linguistic values determined by fuzzy sets on
the universe of discourses X and Y, respectively.

What is the difference between
classical and fuzzy rules!?

A classical IF-THEN rule uses binary logic,
for example,

Rule: |
IF speed is > 100
THEN stopping distance is long

Rule: 2
IF speed is < 40
THEN stopping distance is short

The variable speed can have any numerical value between 0
and 220 km/h, but the linguistic variable stopping_distance can
take either value long or short. In other words, classical rules
are expressed in the black-and-white language of Boolean
logic.

We can also represent the stopping distance rules in a fuzzy
form:

Rule: |
IF speed is fast

THEN stopping distance is long

Rule: 2
IF speed is slow

THEN stopping distance is short

> In fuzzy rules, the linguistic variable speed also has the range
(the universe of discourse) between 0 and 220 km/h, but this
range includes fuzzy sets, such as slow, medium and fast. The
universe of discourse of the linguistic variable
stopping_distance can be between 0 and 300 m and may
include such fuzzy sets as short, medium and long.

" Fuzzy rules relate fuzzy sets.

" |[n a fuzzy system, all rules fire to some
extent, or in other words they fire
partially. If the antecedent is true to
some degree of membership, then the
consequent is also true to that same
degree.

Fuzzy sets of tall and heavy men

Degree of Degree of
Membership Membership
1.0 1.0
Tall men Heavy men /
0.8 0.8
0.6 0.6
0.4 0.4
0.2 / 0.2
0.0 i | | | 0.0+ | | |
160 180 190 200 70 80 100 120
Height, cm Weight, kg

These fuzzy sets provide the basis for a weight estimation
model. The model is based on a relationship between a man’s
height and his weight:

IF height is tall
THEN weight is heavy

» The value of the output or a truth membership grade of
the rule consequent can be estimated directly from a
corresponding truth membership grade in the antecedent.
This form of fuzzy inference uses a method called
monotonic selection.

Degree of Degree of
Membership Membership
1.0 1.0
Tall men /,_'* > -

0.8 0.87] Heavymen

> >
0.6 - A 0.6 v
0.4 A 0.4 Y

>
0.2 % 0.2
0.0 | | | | 0.0 | |

160 180 190 200 70 80 100 120

Height, cm Weight, kg

A fuzzy rule can have multiple antecedents, for
- example:

IF project_duration is long
AND project_staffing is large

AND project_funding is inadequate
THEN risk is high

|F service is excellent
OR food is delicious
THEN tip is generous

The consequent of a fuzzy rule can also
include multiple parts, for instance:

IF temperature is hot

THEN hot water is reduced;
cold-water is increased

Lecture 5

Fuzzy expert systems:
Fuzzy inference

m Mamdani fuzzy inference
m Sugeno fuzzy inference
m Case study

m Summary

Fuzzy inference

The most commonly used fuzzy inference

In technique is the so-called Mamdani method.
1975, Professor of London
University built one of the first fuzzy systems to
control a steam engine and boiler combination.
He applied a set of fuzzy rules supplied by
experienced human operators.

Mamdani fuzzy Inference

» The Mamdani-style fuzzy inference
process is performed in four steps:

e fuzzification of the input variables,

® rule evaluation;

® aggregation of the rule outputs, and

finally

e defuzzification.

We examine a simple two-input one-output problem that
includes three rules:

IF
OR
THEN

IF
AND
THEN

IF
THEN

xis A3
y is Bl
zis Cl

x is A2
y is B2
zis C2

xis Al
zis C3

IF project_funding is adequate
OR project_staffing is small
THEN risk is low

IF project_funding is marginal
AND project_stdffing is large
THEN risk is normal

IF project_funding is inadequate
THEN risk is high

Step |: Fuzzification

The first step is to take the crisp inputs, x| and y|
(project funding and project staffing), and determine

the degree to which these inputs belong to each of the
appropriate fuzzy sets.

Crisp Input Crisp Input
x1 vl
1 A
A4l A2 A3

0.5 <
0.2 <

0 xl X _

Rix=a41)= 0 M =51~ 0.1

M =42)=02 My =p2) =07

Step 2: Rule Evaluation

The second step is to take the fuzzified inputs,
u(x=A1) =0.5 u(x=A2) =0.2, u(y=Bl) = 0.1 and
u(y=B2) =0.7,and apply them to the antecedents of
the fuzzy rules. If a given fuzzy rule has multiple
antecedents, the fuzzy operator (AND or OR) is used
to obtain a single number that represents the result of
the antecedent evaluation. This number (the truth
value) is then applied to the consequent membership
function.

» To evaluate the disjunction of the rule antecedents, we use
the OR fuzzy operation.Typically, fuzzy expert systems
make use of the classical fuzzy operation union:

L\ g (X)=max] g4 (X), 12 (X)]

» Similarly, in order to evaluate the conjunction of the rule
antecedents, we apply the AND fuzzy operation
Intersection:

U, M (X)=min[gg (X), 1 (X)]

Mamdani-style rule evaluation

1 |
A3 Bl
0.0
0 4 x O V1
Rule 1: TF x1s 43 (0.0) OR yi1s Bl (0.1) THEN z1s C1 (0.1)
1 1 0.7 1
7 o . E —
A2 \ Or;z /82 AND 0.2 cl (2 C5
\ - | (min)
0 xl X 0 vl Y 0 Z
Rule 2: TF x1s A2 (0.2) AND y1s B2 (0.7) THEN z1s C2(0.2)
1 1
0.5 0.5
— —P

0

m\\“

xl

X

Cl X C2

Rule 3: TF x 1s A1 (0.5)

THEN

z1s C3 (0.5)

Now the result of the antecedent evaluation can be
applied to the membership function of the consequent.

m The most common method of correlating the rule
consequent with the truth value of the rule antecedent
is to cut the consequent membership function at the
level of the antecedent truth. This method is called
clipping. Since the top of the membership function is
sliced, the clipped fuzzy set loses some information.
However, clipping is still often preferred because it
involves less complex and faster mathematics, and
generates an aggregated output surface that is easier to
defuzzify.

While clipping is a frequently used
method, scaling offers a better approach
for preserving the original shape of the
fuzzy set. The original membership
function of the rule consequent is adjusted
by multiplying all its membership degrees
by the truth value of the rule antecedent.
This method, which generally loses less
information, can be very useful in fuzzy
expert systems.

Clipped and scaled membership
functions

’ Degree of Degree of
Membership Membership
1.0 1.0
2 2
0.2 0.2
L —5 : -
0.0 0.0

Step 3:Aggregation of the rule
outputs

Aggregation is the process of unification of the
outputs of all rules.We take the membership
functions of all rule consequents previously clipped
or scaled and combine them into a single fuzzy set.
The input of the aggregation process is the list of
clipped or scaled consequent membership
functions, and the output is one fuzzy set for each
output variable.

0

Aggregation of the rule outputs

I I
Cl (2
01 0.2

7 0

0.3

i

z1s C1(0.1)

#‘215(*2 (0.2) \#‘215(“3 \ »

Step 4: Defuzzification

The last step in the fuzzy inference process is
defuzzification. Fuzziness helps us to evaluate
the rules, but the final output of a fuzzy
system has to be a crisp number. The input
for the defuzzification process is the aggregate
output fuzzy set and the output is a single
number.

¢ There are several defuzzification methods, but probably the
most popular one is the centroid technique. It finds the
point where a vertical line would slice the aggregate set
into two equal masses. Mathematically this centre of gravity
(COG) can be expressed as:

b

.[le(X)XdX
COG =2

L, (X)dX

* Centroid defuzzification method finds a point
representing the centre of gravity of the fuzzy set, A,
on the interval, ab.

= A reasonable estimate can be obtained by calculating

 itovera sample of points.

p(x)
1.0

0.8

0.6

0.4

0.2

0.0
150

Centre of gravity (COG):

[(5+15+25)x0.1+(35+45+55+65)x0.2+(75+85+95)x0.5] (ll]]__f1
[0,140.140.140.24+0.24+0.24+0.24+0.54+0.5+0.5] (10)

CoG = T

Degree of
Membership

1.0

Sugeno fuzzy inference

m Mamdani-style inference, as we have just seen,
requires us to find the centroid of a two-dimensional
shape by integrating across a continuously varying
function. In general, this process is not computationally
efficient.

m Michio Sugeno suggested to use a single spike, a
singleton, as the membership function of the rule
consequent.A singleton, or more precisely a fuzzy
singleton, is a fuzzy set with a membership function
that is unity at a single particular point on the universe
of discourse and zero everywhere else.

Sugeno-style fuzzy inference is very similar to the
Mamdani method. Sugeno changed only a rule
consequent. Instead of a fuzzy set, he used a
mathematical function of the input variable. The format
of the Sugeno-style fuzzy rule is :

IF X is A

AND y is B

THEN zisf (x,y)

where %,y and z are linguistic variables; A and B are
fuzzy sets on universe of discourses X and Y,
respectively; and f (X, y) is a mathematical function.

» The most commonly used zero-order
Sugeno fuzzy model applies fuzzy rules in
the following form:

|F X is A
AND yisB
THEN zis k

where k is a constant.

> In this case, the output of each fuzzy rule is
constant.All consequent membership
functions are represented by singleton
spikes.

Sugeno-style rule evaluation

1 1 1
/-43 Bl
0.1 OrR \ 0.1
0.0
. > ' i (max) i
0 ¥l X 0 v ’ 0 K Z
Rule 1:TF x is 43 (0.0) OR yis B1 (0.1) THEN zis k1 (0.1)
1 1 1 I
A 7],
A2 0.2 ‘ B2 AND \ 0.2
| A\ - | (min) | |
0 x1 X 0 vl ’ 0 k2 Z
Rule2: TF x1s 42 (0.2) AND y1s B2 (0.7) THEN z1s k2 (0.2)
1
Al\ 0.5 0.5
S] [:;\. S _—_[:;.._ |
. 1 | I
0 vl X 0 B Z

Rule3: TF x 1s A1 (0.5)

TH

EN

z1s k3 (0.5)

Sugeno-style aggregation of the rule
outputs

1 1 1 1
54—
0 0.3 0.5153
0.1— = | _ 0.1 |
0 x Z 0 r» Z 0 i3 Z 0 n R’ B

zis k1 (0.1) |=»| zisk2(0.2) |=»| zis k3 (0.5) = | >

4 = RO KL+ pu(k2) x k2 +(k3)x k3 _ 0.1x20+0.2x50+0.5x80 _

Weighted average (WA):

65

(kD) +pu(k2)+p(k3) 0.1+0.2+0.5

Sugeno-style defuzzification

N
z

1 Z

Crisp Qutput
zl

How to make a decision on which
method to apply - Mamdani or
Sugeno!

m Mamdani method is widely accepted for
capturing expert knowledge. It allows us to
describe the expertise in more intuitive, more
human-like manner. However, Mamdani-type fuzzy
inference entails a substantial computational
burden.

m On the other hand, Sugeno method is
computationally effective and works well with
optimization and adaptive techniques, which makes
it very attractive in control problems, particularly
for dynamic nonlinear systems.

Process of developing a fuzzy expert
system

|. Specify the problem and define linguistic
variables.

2. Determine fuzzy sets.
3. Elicit and construct fuzzy rules.
4. Encode the fuzzy sets, fuzzy rules and

procedures to perform fuzzy inference into the
expert system.

5. Evaluate and tune the system.

Artificial neural networks:
Supervised learning

* Introduction, or how the brain works

* The neuron as a simple computing element

* The perceptron

* Multilayer neural networks

* Accelerated learning in multilayer neural
networks

* Summary

Introduction, or how the brain
works

" Machine learning involves adaptive
mechanisms that enable computers to learn
from experience, learn by example and learn
by analogy.

" | earning capabilities can improve the
performance of an intelligent system over
time. The most popular approaches to
machine learning are artificial neural
networks and genetic algorithms.

A neural network can be defined as a model of reasoning
based on the human brain.
The brain consists of a densely interconnected set of
nerve cells, or basic information-processing units, called
neurons.
The human brain incorporates nearly 10 billion neurons
and 60 trillion connections, synapses, between them.
By using multiple neurons simultaneously, the brain can
perform its functions much faster than the fastest
computers in existence.
Each neuron has a very simple structure, but an army of
such elements constitutes a tremendous processing power.
A neuron consists of a cell body, soma, a number of fibers
called dendrites, and a single long fiber called the axon.

Biological neural network

Synapse
S Dendrites
) Axon yhapse A
\ e Xon
Soma] '
Soma a
Dendrites

7

Synapse

* Our brain can be considered as a highly complex, non-linear and parallel

information-processing system.

 Information is stored and processed in a neural network simultaneously
throughout the whole network, rather than at specific locations. In
other words, in neural networks, both data and its processing are global
rather than local.

 Learning is a fundamental and essential characteristic of biological neural
networks.The ease with which they can learn led to attempts to
emulate a biological neural network in a computer.

L An artificial neural network consists of a number of very simple
processors, also called neurons, which are analogous to the biological
neurons in the brain.

(d The neurons are connected by weighted links passing signals from one
neuron to another.

d The output signal is transmitted through the neuron’s outgoing
connection. The outgoing connection splits into a number of branches
that transmit the same signal. The outgoing branches terminate at the
incoming connections of other neurons in the network.

Architecture of a typical artificial
neural network

- o
< <
- =
on _'Q- hiss
% i — > @
o Q.
. -

—Cr O

Middle Layer
Output Layer

Input Layer

Analogy between biological and
artificial neural networks

Biological Neural Network

Artificial Neural Network

e Soma

Neuron

Dendrite * Input
e AXON * OQOutput
« Synapse « Weight

The neuron as a simple computing
element

Diagram of a neuron

Input Signals Weights Output Signals

X1 Y

- e

(I The neuron computes the weighted sum of the input
sighals and compares the result with a threshold value, 0.

If the net input is less than the threshold, the neuron output
is 0, But if the net input is greater than or equal to the
threshold, the neuron becomes activated and its output

attains a value +1.
The neuron uses the following transfer or activation

function:

C +1 ifX >0
X = iWi — ¢ —
;”’ Y {0, if X < 6

This type of activation function is called a step function.

Activation functions of a neuron

Step function

Y
+1

Yﬂw:]JfXZO
0,1f X <0

Sign function

Y,
+1

Ysign_{ﬂ,ifXZO

~1if X <0

Sigmoid function

L

y sigmoid _ 1
1+e

X

Linear function

YIinear _ X

Can a single neuron learn a task!?

* In 1958, Frank Rosenblatt introduced a
training algorithm that provided the first
procedure for training a simple ANN: a
perceptron.

* The perceptron is the simplest form of a
neural network. It consists of a single neuron

with adjustable synaptic weights and a hard
limiter.

Single-layer two-input perceptron

Hard
Limiter

Linear
Combiner

The Perceptron

* The weighted sum of the inputs is applied to the hard limiter, which
produces an output equal to +1 if its input is positive and -1 if it is
negative.

* The aim of the perceptron is to classify inputs, x|, x2,...,xn, into one
of two classes, say Al and A2.

* In the case of an elementary perceptron, the n- dimensional space is
divided by a hyper plane into two decision regions.The hyper plane is
defined by the linearly separable function:

n

inwi—9=0

=1

Linear Separability

Consider a perceptron processor that only has 2
input . So (6 = wy)

a = —Wp + W1x1 + W2X2

Which is just

Now let’s look at the locus of points for which

Wo(—l) + W1 X4 + WyrX, = 0

When plotted in the space of the values of * and x
this is just the equation of a straight line .

(x =ax,+b,where a=w,/w, and b =wg/w,)

v —Wp + W1X41 + WrX, = 0

For inputs x that fall on one side line , the activation (a)will be
>0,and thus the output (y)will be |. On the other side (and
right on the line)the output will be -1.

So each set of values for w defines a straight line decision
boundary and any possible line can be represented by some
value of w .

So obviously , if we had a problem for which the examples did not separate
nicely, we could not solve the problem completely using a perceptron
processor.

If the set of input/output pairs can be separated with a straight line , then it
has the property of being linearly separable.

(For input vectors of higher dimension, the boundary is a higher dimension
hyper plane.Eg.,a plane in a 3D input space)

Linear separability in the perceptron's

X1W1 + XoWo + XgW3 —0 =0

X3

(a) Two-input perceptron. (b) Three-input perceptron.

» It is important to distinguish between the ability to perform
perfectly on the set of examples, and having a perceptron that is
able to continue to perform for examples that were not used
during the training of the perceptron’s weights. That is an issue
of how well the examples predict the subsequent inputs.

*Consider the XOR Problem :To form a decision boundary for the
XOR function.

*This task is not linearly separable. It would require 2 decision boundaries to
separate the two classes.

» This task can be solved with 2 perceptron
processors (one for each decision
boundary), and a third that resolves their

outputs. There are many possible solutions ‘

in terms of the values of the weights and L
thresholds. ”\‘.,{: -
In general, networks of perceptron-like o
processors can solve most non-linearly “0.4 fp} ;- 0-
separable tasks by using more than one o < | 0
layer of processors. Rosenblatt(and o
others)realized this in the 1960’s, but did . ’

not have a learning rule that would work
effectively with more than one level(it
wasn’t invented until the mid 1970’).

“*What if we have more a single output ?

“*Then it is really like each processor operating on its own with the
same inputs.

“*Can perceptrons be used for tasks that are
not linearly separable !

With modifications, yes.

*If the task is not linearly separable, we accept
that the result will not be perfect, but we wish
to minimize the number of errors.

*The number of errors is defined by the values
of the weights.

How does the perceptron learn its
classification tasks!?

This is done by making small adjustments in the weights to reduce the
difference between the actual and desired outputs of the perceptron. The
initial weights are randomly assigned, usually in the range [-0.5, 0.5], and then
updated to obtain the output consistent with the training examples.

* If at iteration p, the actual output is Y(p) and the desired output is Yd (p),
then the error is given by:

e(p) =Ya(p) —Y(p) where p=1,2,3,...

 lteration p here refers to the pth training example presented to the
perceptron.

* If the error, e(p), is positive, we need to increase perceptron outputY(p),
but if it is negative, we need to decrease Y(p).

The perceptron learning rule

wi(p+1)=w;(p) +a-xi(p)e(p)

wherep=1,2,3, ...
a Is the learning rate, a positive
constant less than unity.

* A learning rule is a strategy by which example input/output pairs
can be used to incrementally change the weights in away that
gradually improves the performance of the network.

The perceptron learning rule involves the example input x, the
computed output Y, and the desired output d .

Ify=1andd =0:w; «w; —ax;(w; =1,....,n)
Ify=0,andd = 1:w; «w; —ax;(w; =1,....,n)

Where «a is a small learning parameter
* Whenever the (y=I, and d=0)error occurs, it is because the
activation a was too large, and decrementing the weights will
reduce the activation for the same input. Similarly, the (y=0,and

d=1)will result in appropriate increasing of activation for the same
input .

Perceptron’s training algorithm

Step 1: Initialisation

Set initial weights w, w,,...,w, and threshold
0 to random numbers In the range

[-0.5, 0.5].

Perceptron’s training algorithm

(continued)
Step 2: Activation
Activate the perceptron by applying inputs
x1(p), x2(p),..., Xn(p) and desired output Yd
(p). Calculate the actual output at iteration
p=1
Y(p) = step [Z xi(p) wi(p) - e]

where n is the number of the perceptron
inputs, and step is a step activation function.

Perceptron’s training algorithm

If the error, e(p), is positive, we need to increase
perceptron output Y(p), but if it is negative, we
need to decrease Y(p).

Step 3:Weight training
Update the weights of the perceptron
wi(p +1) = wi(p) + Aw;(p)

where Aw(p) is the weight correction at
iteration p.

Aw;(p) = a - x;(p) - e(p)
The weight correction is computed by the delta

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and
repeat the process until convergence.

Example of perceptron learning: the logical operation AND

Inputs | Desired Initial Actual | Error Final
Epoch output weights output weights
X1 | X Yd W1 Wo Y e W1 W»
1 010 0 03 [-0.1
0|1 0
110 0
1|1 1
2 010 0
0|1 0
110 0
111 1
3 0|0 0
0|1 0
110 0
111 1
4 0|0 0
0|1 0
110 0
1|1 1
5 0|0 0
0|1 0
110 0
1|1 1
Threshold: 6 = 0.2; learning rate: «=0.1

Example of perceptron learning: the
logical operation AND

Inputs | Desired Initial Actual | Error Final
Epoch output weights output weights
X1 | X2 Yd W1 Wo Y e W1 Wo
1 01O 0 0.3 |-0.1 0 0 0.3 [-0.1
01 0 0.3 |-0.1 0 0 0.3 [-0.1
110 0 03 |-0.1 1 -1 0.2 |-0.1
1|1 1 02 |[-0.1 0 1 0.3 0.0
2 0O 0 03| 00 0 0 0.3 0.0
0 1 0 03| 00 0 0 0.3 0.0
110 0 03| 00 1 -1 0.2 0.0
1|1 1 0.2 0.0 1 0 0.2 0.0
3 01O 0 02| 0.0 0 0 0.2 0.0
0 1 0 02| 0.0 0 0 0.2 0.0
1 0 0 0.2 | 0.0 1 -1 0.1 0.0
1 1 1 01| 0.0 0 1 0.2 0.1
4 0[O 0 0.2 0.1 0 0 0.2 0.1
0 |1 0 0.2 0.1 0 0 0.2 0.1
110 0 0.2 0.1 1 -1 0.1 0.1
1|1 1 0.1 0.1 1 0 0.1 0.1
5 0[O 0 0.1 0.1 0 0 0.1 0.1
0 1 0 0.1 0.1 0 0 0.1 0.1
110 0 0.1 0.1 0 0 0.1 0.1
111 1 0.1 0.1 1 0 0.1 0.1

Threshold: 6 = 0.2; learning rate: «=0.1

Multilayer neural networks

* A multilayer perceptron is a feed forward
neural network with one or more hidden
layers.

e The network consists of an input layer of
source neurons, at least one middle or
hidden layer of computational neurons, and
an output layer of computational neurons.

e The input signals are propagated in a
forward direction on a layer-by-layer basis.

Input Signals

Multilayer perceptron with two
hidden layers

Output Signals

Input hidden hidden Output
layer layer layer layer

What does the middle layer
hide?

> A hidden layer “hides” its desired output.
Neurons in the hidden layer cannot be observed
through the input/output behaviour of the
network. There is no obvious way to know what
the desired output of the hidden layer should be.

o Commercial ANNs incorporate three and
sometimes four layers, including one or two
hidden layers. Each layer can contain from 10 to
1000 neurons. Experimental neural networks may
have five or even six layers, including three or
four hidden layers, and utilise millions of neurons.

BACKPROPAGATION
NETWORKS

To overcome the limitations of perceptrons, networks require more than one
processing layer . If we try to extend the error-correction learning (as used in
Adeline) to more layers, we encounter the credit-assignment problem: How to
determine which nodes are responsible for an outcome.

We consider a back propagation network with 2 processing layers, though they
could have more.The layers are output, hidden, and input (which is just fan-in).

Each processing node uses

ij

-

1=0

* The activation of node j is the sum of each of its inputs x,, x,,...,
X, times each of its weights or the corresponding input Wij

* Sometimes we refer to the inputs as y, y,,..., y, because they are
often outputs of the nodes I,...,n.
* Each processing node has a bias (for threshold) input x,=-1.

* Each processing node creates an output signal,
Which is the sigmoidal function.

The training data consists of examples of inputs and
desired outputs :{(x, d),...(x,,d)}

In general , we define a measure of error for any
particular trial:

m
error = Z e?(Vi, di)

=1

Where y, are the outputs of each of the m output

nodes, and d, are the components of the desired
result.

Usually the error function is the sum of square errors
, OF mean error.

Consider the projection of a
single weight ij in the error
surface.

oE/owij 1S the direction of
steepest ascent,and so —9dE/dWij
is the direction of steepest
descent.

We are interested in changing
the weight to a value that
decreases the error,so —9E/dWij

tells us in what direction to
move the weight value.

n

we use gradient descant to determine the direction of

change of the weights w
—oE /oW

We consider the adjustment to be made to individual
weights W;; ,which is the weight to node j from its i th
input. Regardless of what layer it is in, we want to

make the adjustment:

)
JAN Wij= —a aWU

We have:(l)E :(l/ 2)Ze 2 Total net work error
(2)€j = dj —V ; Individual node error

- O is f . f ..
(3))}} _f (aj) utput is function of activation

(4)aj — ZW ijfyf Value of node’s activation is sum of

weight inputs

(1)E:%Zez, (e=d;-y,. @Yy =f@) Da; =2 W, Y.

We calculate the change that we wish to make to each weight in the output
layer.

Ay, =- (04 aEfan
Aw.. —

Wg =) 4 ﬁEfﬁej_ﬁejf@y}_.@y}f@ajﬁaﬁﬁWjj
Aw, =— & e, D.f(q)y,

, S0 ~ r
&Wg = A éj yi- where fbﬁ :ej-f(aj-)

This is a lots the rule that was used for the Perceptron. Constant x error x input .

The difference is that 5]-0, the error at output node j, is the usual error (d;-y)

,scaled by a factor of f '(aj)

f(x)=1/L+@)

f'(x)=@ /(l+g)3
=1/(1+ e_x)—ll(l—l— e_x)2
= f(X)A - f(X)

SO 519 :(dj _yj)yj(l_ yj)

*But bear in mind that this is only true if f(x) is the sigmoidal
function. Other output functions can also be used , so f'(apis
the more general form.

**Note that the output function for Back propagation must be
differentiable.

(DE =3Xe* Qe=d;-y;, (=), @a=Xwi;

Now, let'’s consider how to calculate A w; for the

hidden nodes.
AWL']' - - O(aE/aWU

- = (')E/(')y] . 6y]/ (?a] . an/ aWU then using(3) and (4) as before

— /

— -0 55/53/] . f (Cl]) -yi Later we will see why these
Outlined expressions are
equal

LT 0‘2(512 Wik) - f’(aj) Vi

= 0 5]h Vi where 5jh= 2(6](() W]k) y f,(a])

The missing step in the dervation:

| (}Ei’a}rj = = ?liwkj

E=1%)e?* so
k
JE/dy, = Ye,de /oy, (j #k, as it does for output nodes)
I |
= %ek&ek!ak_ da, /oy, e, =d. -y, =d.-f(a),s0 !
1 | -
v defa, = -1'(ay)
= -Yef'(a). {E?akr'ﬂyj R - ﬁ
k
I . a, =]Zwkjy} , SO
= - gekf (a,) . Wy JayfOY; = Wy
I S— —
=- %ﬁiwkj but &; = ¢; f'(a)) '

1. Provide an example input X,
allow the network to compute in
feedforward mode, and produce
output y.

2. Calculate the error at the
output nodes by copmparing the
desired output d to the actual
outputy. 8/ = ¢, £'(a)

3. Calculate the error at the hidden nodes based on the output node
errors. 6']-‘ =Y 8 wj. f '(a;) (error is propagated back to hidden layer)

4. Adjust all weights (from i to j) at output and hidden nodes on the

basis of their calculated error. aw;; =09, y,

Back-propagation neural
network

* Learning in a multilayer network proceeds the same way as for a
perceptron.

* A training set of input patterns is presented to the network.

* The network computes its output pattern, and if there is an
error - or in other words a difference between actual and

desired output patterns - the weights are adjusted to reduce this
error.

* In a back-propagation neural network,thelearning algorithm has
two phases.

* First, a training input pattern is presented to the network input
layer. The network propagates the input pattern from layer to
layer until the output pattern is generated by the output layer.

* If this pattern is different from the desired output, an error is
calculated and then propagated backwards through the network
from the output layer to the input layer. The weights are
modified as the error is propagated.

Three-layer back-propagation
neural network

Input signals >

Input Hidden Output
layer layer layer

< Error signals

The back-propagation training

algorithm

Step |: Initialisation

Set all the weights and threshold levels of the
network to random numbers uniformly
distributed inside a small range:

where Fi is the total number of inputs of neuron
i in the network. The weight initialisation is done
on a neuron-by-neuron basis.

Step 2:Activation

Activate the back-propagation neural network by applying inputs

X (P), X2(P)s---» X,(P) and desired outputs y, ,(p), y4,(P),- - -»
yd,n(P)'

(A)Calculate the actual outputs of the neurons in the hidden
layer:

yj(p) = sigmoid [Z xi(p) - Wi (p) - e,-]
i=1

where n is the number of inputs of neuron j in the hidden layer,
and sigmoid is the sigmoid activation function.

Step 2:Activation (continued)

(B)Calculate the actual outputs of the
neurons in the output layer:

m

PEORTIORTS

j=1

Yk (p) = sigmoid

where m is the number of inputs of neuron
k in the output layer.

Step 3:Weight training

Update the weights in the back-propagation network propagating
backward the errors associated with output neurons.

(a) Calculate the error gradient for the neurons in the output layer:

5 (@) = yr(P) - [1 =y (P)] - ex(p)

Where ex(P) = Yarx®) — yr(p)

Calculate the weight corrections:
Awji(p) = a - y;(p) - 6k (p)

Update the weights at the output neurons.

Wi (P+1) =wj, (p) +Awj (P)

Step 3:Weight training
(continued)

(b) Calculate the error gradient for the neurons in the hidden layer:

l
6i(p) =y;j(p) - [1 —y;j(P)]- Z Ok (P) wWjk(p)
k=1

Calculate the weight corrections:

Aw;i(p) = a - y;(p) - 6;(p)

Update the weights at the hidden neurons:

Wi (P+1) = wi; (p) + Aw;; (P)

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and
repeat the process until the selected error

criterion is satisfied.

As an example, we may consider the three-layer
back-propagation network. Suppose that the
network is required to perform logical
operation Exclusive-OR. Recall that a single-layer
perceptron could not do this operation. Now
we will apply the three-layer net.

Three-layer network for solving the Exclusive-
OR operation

-1
W13 —01
X1 ™ 1 > 3 Was
W23 O
5 Y5
W24
Xg ———» 2 > 4 W45
W24
Input 04 Output
layer layer
-1

Hidden layer

* The effect of the threshold applied to a
neuron inthe hidden or output layer Is
represented by its weight, 6, connected to a

fixed input equal to —1.
* The initial weights and threshold levels are

set randomly as follows:

wi13= 0.5 w14=0.9, w23=0.4, w2a4= 1.0, w35
=-1.2,
was=1.1,03=0.8, 02=-0.1 and 65= 0.3.

»\We consider a training set where inputs xi
and x2 are equal to 1 and desired output ya,5
IS 0. The actual outputs of neurons 3 and 4
In the hidden layer are calculated as

y3 = sigmoid (x1w13 + x2w23 — 063) = 1/[1+ e—(1x0.5+1x%0.4-1%0.8)] = 0.5250
y4 = sigmoid (x1w14 + x2w24 — 64) = 1/[1+ e—(1x0.9+1%1.0+1x0.1)] = 0.8808

»Now the actual output of neuron 5 in the output
layer is determined as:

y5 = sigmoid(y3w35 +y4w45 — 05) = 1/[1+ e—(—0.5250x1.2+0.8808x1.1-1x0.3)]= 0.5097

Thus, the following error is obtained:

e=yd,5—-y5=0-0.5097 =-0.5097

e The next stepisweighttraining. To update the
weights and threshold levels in our network, we

propagate the error, e, from the output layer
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in
the output layer:

§s =ys (1—ys)e =0.5097 - (1 —0.5097) - (—0.5097) = —0.1274

e Then we determine the weight corrections assuming
that the learning rate parameter, a, is equal to 0.1:

Awss = a -y - 85 = 0.1-0.5250 - (—=0.1274) = —0.0067
Aw,s = a -y, - 65 = 0.1-0.8808 - (—0.1274) = —0.0112

ABc =a-(=1) -8 =0.1- (=1) - (=0.1274) = —0.0127

Next we calculate the error gradients for neurons 3 and 4 in the
hidden layer:

83 = y3(1 — y3) - 85 - wag = 0.5250 - (1 — 0.5250) - (—0.1274) - (—1.2) = 0.0381

8o =ya(1—y,) 85 wys = 0.8808 - (1 —0.8808) - (—0.127 4) - 1.1 = —0.0147

We then determine the weight corrections:

Awys =a-x; - 83 =0.1-1-0.0381 = 0.0038

Awys = - x5 -85 = 0.1-1-0.0381 = 0.0038

AB; =a-(—1)-8;=0.1-(—1)-0.0381 = —0.0038
Awy, =a-x;-6,=01-1-(=0.0147) = —0.0015
Awy, = xy-8,=0.1-1-(—0.0147) = —0.0015

A8, =a-(-1)-8,=01-(-=1)-(=0.0147) = 0.0015

At last, we update all weights and threshold:

Wy3 = wy3 + Awy, = 0.5+0.0038 = 0.5038

Wys = Wos + Aw,s = 0.4+0.0038 = 0.4038
Wos = Woy + Aw,, =1.0—0.0015 = 0.9985
Was = Was + Awse = —1.2—0.0067 = —1.2067
Wyg = Wyg + Awyeg =1.1-0.0112 =1.0888
0,=0,+A0, =0.8-0.0038 = 0.7962
0,=0,+A0, =-0.1+0.0015 = —0.0985

0, =05 +A0; =0.3+0.0127 =0.3127

The training process is repeated until the sum of squared errors is
less than 0.001.

Learning curve for operation
Exclusive-OR

Sum-Squared Network Error for 224 Epochs

10t

= =
(S) o
AN o

Sum-Squared Error
|_\
o

=
S
w

[
S
£

0 50 100 150 200
Epoch

traingd Gradient Descent

Final results of three-layer

network learning

Inputs | Desired | Actual Error Sum of
output output squared
X1 | X2 Yd Vs e errors
1 11 0 0.0155 —0.0155 0.0010
0 |1 1 0.9849 0.0151
110 1 0.9849 0.0151
0 |0 0 0.0175 —0.0175

Network represented by McCulloch-Pitts
model for
solving the Exclusive-OR operation

-1

Accelerated learning in
multilayer neural networks

- We can accelerate training by including a
momentum term in the delta rule:

Awjr(p) = B - Aw(p — 1) + a - y;(p) - Ok (p)

where [3 is a positive number (0 < 3 < |) called the
momentum constant. Typically, the momentum
constant is set to 0.95.

https://youtu.be/6iwvtzXZ4Mo?t=14

Accelerated learning

- We can accelerate training by including a
momentum term in the delta rule:

Awj(p) = b - Aw(p — 1) + a - y;(p) - Ok (P)

Momentum Detail Explanation with Examples

GRADIENT DESCENT

IDEA: MOMENTUM
STEP — AVERAGE OF PREVIOUS STEPS
fa) A : MOMENTUM

(Eﬁ?g%) 7] STEP(n)—+STEP (n) + FSTEP (n-1) + 3%TEP (n-2) + ...
B

_\ .'F
\-
\(1 /\

P Ml) 141/1:46 v B & iF

https://youtu.be/6iwvtzXZ4Mo?t=14

Learning with momentum for
operation Exclusive-OR

Training for 126 Epochs

(BN
o O
] N
T
]

o
' [}

<
N

<
()

Sum-Squared Error
e = = = =
o
|_\

[EEN
<
IN

=
ol

(BN
T
]

o
ol
T
]

Learning Rate
o

o
(6]
T
]

1 1 1

20 40 60 80 100 120 140
Epoch

1
=

o

traingdm Gradient Descent with Momentum

Learning with adaptive learning rate

To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Learning Rate Detail Explanation with Examples d

LEARNING RATE

A ﬁ 4 ﬁ
ERROR ERROR
(height) @ (height) Eﬂ
High Learning Rate > Low Learning Rate =
Play (k) E

> »l o) 0:23/043 v @ o -

Learning with adaptive learning rate

To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Heuristic |
If the change of the sum of squared errors has the same
algebraic sign for several consequent epochs, then the
learning rate parameter, ¢, should be increased.

Heuristic 2
If the algebraic sign of the change of the sum of squared
errors alternates for several consequent epochs, then the
learning rate parameter, ¢, should be decreased.

https://youtu.be/TOtKVUtpz-s

- If the error is less than the previous one, the

learning rate is increased (typically by multiplying
by 1.05).

- If the sum of squared errors at the current epoch

exceeds the previous value by more than a
predefined ratio (typically 1.04), the learning rate
parameter is decreased (typically by multiplying by
0.7) and new weights and thresholds are
calculated.

Learning with adaptive
learning rate

Training for 103 Epochs
102 T))))) 1)))

Sum-Squared Error
|_\
(@)

0o 10 20 30 40 50 60 70 80 90 100

Learning Rate

o 20 40 60 80 100 120
Epoch

traingd A Variable Learning Rate Gradient Descent

Learning with momentum and
adaptive learning rate

Training for 85 Epochs

Sum-Squared Error

Learning Rate

o 10 20 30 40 50 60 70 80 90
Epoch

traingdx Variable Learning Rate Gradient Descent

Divide Data for Optimal Neural
Network Training

* One of the problems that occur during neural network training is called
over fitting (overtraining). The error on the training set is driven to a
very small value, but when new data is presented to the network the
error is large. The network has memorized the training examples, but it
has not learned to generalize to new situations.

» Note that if the number of parameters in the network is much smaller
than the total number of points in the training set, then there is little or
no chance of over fitting. If you can easily collect more data and
increase the size of the training set, then there is no need to worry
about over fitting.

* One of the methods for improving generalization of a neural network is
early stopping.

Divide Data for Optimal Neural
Network Training

When training multilayer networks, the general practice is to first divide

the data into three subsets.

1) The first subset is the training set, which is used for computing the
gradient and updating the network weights and biases.

2) The second subset is the validation set. The error on the validation
set is monitored during the training process. The validation error
normally decreases during the initial phase of training, as does the
training set error. However, when the network begins to overfit the
data, the error on the validation set typically begins to rise. The
network weights and biases are saved at the minimum of the
validation set error.

3) The test set represents a new data that were not used in training
or validation to see how the system behaves for totally new data. It
is also useful to plot the test set error during the training process. If
the error on the test set reaches a minimum at a significantly
different iteration number than the validation set error, this might
indicate a poor division of the data set.

Divide Data for Optimal Neural

Network Training
107
Train]
Yalidation |]
\ ‘ Test
'l|:|2 -
e k]
L]
=
=
]
=
[a i
o
10°
1° '
0 2 4 b o 10 12

12 Epochs

Applications

Industry Business Applications

ARrOSpace High-performance aircraft autopilot, flight path simulation, aircraft cantrol swstems, autopilot enhancements, aircraft component simulation, and aircraft
component fault detection

Automotive Automobile automatic guidance system, and warranty activity analysis

Banking Check and other document reading and credit application evaluation

Defense YWeapon steering, target tracking, object discrimination, facial recognition, new kinds of sensars, sonar, radar and image signal processing including
data compression, feature extraction and noise suppression, and signalfimage identification

Electranics Code sequence prediction, integrated circuit chip layout, process cantral, chip failure analysis, machine vision, voice svnthesis, and nonlinear madeling

Entertainment

Animation, special effects, and market forecasting

Financial Real estate appraisal, loan advising, mongage screening, corparate hond rating, credit-line use analysis, credit card activity tracking, paortfolio trading
pragram, carparate financial anaksis, and currency price prediction

Industrial Prediction of industrial processes, such as the output gases of furnaces, replacing complex and costly equipment used for this purpose inthe past

Insurance Policy application evaluation and product optimization

Manufacturing

Manufacturing process control, product design and analysis, process and machine diagnosis, real-time padicle identification, visual quality inspection
systems, beertesting, welding gquality analysis, paper guality prediction, computer-chip quality analysis, analysis of grinding operations, chemical
product design analysis, machine maintenance analysis, project bidding, planning and management, and dynamic maodeling of chemical process
system

Medical Breast cancer cell analysis, EEG and ECG analysis, prosthesis desian, optimization of transplant times, hospital expense reduction, hospital quality
improvement, and emergency-room test advisement

il and gas Explaoration

Raohotics Trajectory contral, forklift robot, manipulatar contrallers, and vision systems

Speech Speech recognition, speech compression, vowel classification, and text-to-speech synthesis

Securities Market anakrsis, automatic bond rating, and stock trading advisory systems

Telecommunications

Image and data compression, automated information services, real-time translation of spoken languadge, and customer payment processing systems

Transporation

Truck brake diagnosis systems, vehicle scheduling, and routing systems

NN toolbox

As an example, the file housing. Mat contains a predefined set of
input and target vectors. The input vectors define data regarding
real-estate properties and the target values define relative
values of the properties . Load the data using the following
command:

Load house dataset

Loading this file creates two variables. The input matrix house
Inputs consists of 506 column vectors of |3 real estate variables

for 506 different houses .The target matrix house Targets
consists of the corresponding 506 relative valuations.

NN toolbox

Function Algorithm

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale

Restarts

traincgf Fletcher-Powell Conjugate Gradient

traincgp Polak-Ribiére Conjugate Gradient

trainoss One Step Secant o
o traingdx Variable Learning Rate Gradient Descent

traingdm Gradient Descent with Momentum

traingd Gradient Descent

Chapter 5:
Evolutionary Computation and Genetic
algorithms

= Introduction, or can evolution be intelligent?

= Simulation of natural evolution

= Genetic algorithms

= (Case study: maintenance scheduling with
genetic algorithms

= Summary

Can evolution be intelligent ?

Intelligence can be defined as the capability of a system
to adapt its behavior to ever-changing environment.

Evolutionary computation simulates evolution on a
computer.

The result of such a simulation I1s a series of
optimization algorithms, usually based on a simple set of
rules.

Optimization iteratively improves the quality of solutions
until an optimal, or at least feasible, solution is found.

Evolutionary Computation

If, over successive generations, the organism survives, we can say
that this organism is capable of learning to predict changes in its
environment.

The evolutionary approach is based on computational models of
natural selection and genetics. We call them evolutionary
computation, an umbrella term that combines genetic algorithms,
evolution strategies and genetic programming.

Simulation of natural evolution

* Evolution can be seen as a process leading to the
maintenance of a population’s ability to survive and
reproduce in a specific environment. This ability is called
evolutionary fitness.

* Evolutionary fithess can also be viewed as a measure of
the organism’s ability to anticipate changes iIn its
environment.

* The fitness, or the quantitative measure of the ability to
predict environmental changes and respond adequately,
can be considered as the quality that i1s optimized In
natural life.

How is a population with increasing
fitness generated!?

* Let us consider a population of rabbits. Some rabbits
are faster than others, and we may say that these
rabbits possess superior fithess, because they have a
greater chance of avoiding foxes, surviving and then
breeding.

= |f two parents have superior fithess, there i1s a good
chance that a combination of their genes will produce an
offspring with even higher fitness. Over time the entire
population of rabbits becomes faster to meet their
environmental challenges in the face of foxes.

Simulation of natural evolution

All methods of evolutionary computation simulate
natural evolution by creating a population of individuals,
evaluating their fitness, generating a new population

through genetic operations, and repeating this process a
number of times.

We will start with Genetic Algorithms (GAs) as most of
the other evolutionary algorithms can be viewed as
variations of genetic algorithms .

Genetic Algorithms

In the early 1970s, John Holland introduced the
concept of genetic algorithms.

His aim was to make computers do what nature does.

Holland was concerned with algorithms that manipulate
strings of binary digits.

Each artificial “chromosomes” consists of a number of
“‘genes’”, and each gene is represented by O or 1:

1011010000010 10|1

Genetic Algorithms

Nature has an ability to adapt and learn without being told
what to do.

In other words, nature finds good chromosomes blindly. GAs
do the same.

Two mechanisms link a GA to the problem it is solving:
encoding and evaluation.

The GA uses a measure of fithess of individual chromosomes
to carry out reproduction.

As reproduction takes place, the crossover operator
exchanges parts of two single chromosomes, and the

mutation operator changes the gene value in some randomly
chosen location of the chromosome.

Basic genetic algorithms

Step 1. Represent the problem variable domain
as a chromosome of a fixed length, choose the
size of a chromosome population N, the
crossover probability pc and the mutation
probability pm.

Step 2: Define a fithess function to measure the
performance, or fithess, of an Individual
chromosome In the problem domain. The fithess
function establishes the basis for selecting
chromosomes that will be mated during
reproduction

Step 3: Randomly generate an initial population of
chromosomes of size N:

X1y X o yeeey X

Step 4: Calculate the fithess of each individual chromosome:

P (X)), T (X5) (X))

Step 5: Select a pair of chromosomes for mating from the
current population. Parent chromosomes are selected with a
probability related to their fithess

Step 6: Create a pair of offspring chromosomes by
applying the genetic operators — crossover and mutation.

Step 7: Place the created offspring chromosomes in the
new population

Step 8: Repeat Step 5 until the size of the new
chromosome population becomes equal to the size of the
Initial population, N.

Step 9. Replace the initial (parent) chromosome
population with the new (offspring) population.

Step 10: Go to Step 4, and repeat the process until
the termination criterion is satisfied

Genetic algorithms

= GA represents an iterative process. Each iteration is
called a generation. A typical number of generations for
a simple GA can range from 50 to over 500. The entire
set of generations is called a run.

» Because GAs use a stochastic search method, the
fitness of a population may remain stable for a number
of generations before a superior chromosome appears.

= A common practice Is to terminate a GA after a
specified number of generations and then examine the
best chromosomes in the population. If no satisfactory
solution is found, the GA is restarted

Genetic algorithms: case study

A simple example will help us to understand how a GA works.

Let us find the maximum value of the function (15x —x?)
where parameter x varies between 0 and 15.

For simplicity, we may assume that x takes only integer
values. Thus, chromosomes can be built with only four genes:

Integer | Bmary code | Integer | Bimary code | Integer | Binary code

1 0001 6 0110 l 1011
2 0010 1 0111 2 1100
3 0011 § 1000 3 1101
4 0100 9 1001 4 1110
) 0101 10 1010) [111

Genetic algorithms: case study

Suppose that the size of the chromosome
population N is 6

The crossover probability P, equals 0.7
The mutation probability Pn equals 0.001

The fitness function in our example is defined
by:

f (x)=15x —x°

The fitness function and chromosome locations

Chromosome | Chromosome Decoded Chromosome Fitness
label string integer fitness ratio, %a
X1 1100 12 36 16.5
X2 0100 4 44 202
X3 0001 1 14 6.4
X4 1110 14 14 6.4
X5 0111 7 56 257
X0 1001 9 54 24 .8

Chromozome fitness

Sum of Chromosome fithess

In natural selection, only the fittest species can
survive, breed, and thereby pass their genes on to the
next generation.

GAs use a similar approach, but unlike nature, the
size of the chromosome population remains
unchanged from one generation to the next.

The last column in Table shows the ratio of the
Individual chromosome’s fithess to the population’s
total fithess.

This ratio determines the chromosome’s chance of
being selected for mating. The chromosome’s
average fitness improves from one generation to the
next.

Roulette wheel selection

The most commonly used chromosome selection
techniques is the roulette wheel selection.

100 O

X1:16.5%
B X2:20.2%
X3: 6.4%
B X4: 6.4%
X5:253%
B X6: 24.8%

19 5 43.1

Crossover operator

" In our example, we have an initial

population of 6 chromosomes. Thus, to
establish the same population in the next
generation, the roulette wheel would be
spun six times.

= Once a pair of parent chromosomes is
selected, the crossover operator is applied.

Crossover operator

First, the crossover operator randomly chooses a
crossover point where two parent chromosomes
“break”, and then exchanges the chromosome parts
after that point. As a result, two new offspring are
created.

If a pair of chromosomes does not cross over, then
the chromosome cloning takes place, and the
offspring are created as exact copies of each parent.

Crossover

X2, [of1]0]O of1f1f1]| X5

« generate Random Number (RN1) [O0-1]. if RN is less than Pc (0.7)

then do crossover, otherwise no crossover

e crossover point is randomly selected (RN2) [1-3]

Mutation operator

" Mutation represents a change in the gene.

= Mutation Is a background operator. Its role is to
provide a guarantee that the search algorithm is not
trapped on a local optimum.

* The mutation operator flips a randomly selected
gene in a chromosome.

* The mutation probability is quite small in nature,
and Is kept low for GAs, typically in the range
between 0.001 and 0.01.

Mutation

a1 1‘[/0&11}(1"5
x2. [0 1@ 0 I/QU X2",

xs5; [o[1]1]1

« generate Random Number (RN1) [0-1]. if RN1 is less than Pm (0.001)
then do mutation, otherwise no mutation.

« mutation point is randomly selected (RN2) [1-4]

The genetic algorithm cycle

X6

— Cremeranomn {1+ 1)
Xl ljojojo] r=56
X2 [0 {0 P8 =50
X3 2o JIlN] r=44
X4ofijofo] =44
X5+ 0PN 0] =54
X6 | 0 PEJERE] =56

-
xs, [E[Cfo

Crazzavar

Wy

S
— =

xe, [E[oJo]o]
xy, [ofi]o]t]
Ry [ﬂlllil'ﬂ'l
x2, [CIEIO]C]
X3,

Murarion

(o1 Iy of X2

Steps in the GA development

1. Specify the problem, define constraints and optimum
criteria;

2. Represent the problem domain as a chromosome;

3. Define a fithess function to evaluate the chromosome
performance;

4. Construct the genetic operators;

5. Run the GA and tune its parameters.

Case study: maintenance scheduling

" Maintenance scheduling problems are usually
solved using a combination of search techniques
and heuristics.

» These problems are complex and difficult to solve.

Case study

Scheduling of 7 units in 4 equal intervals
The problem constraints:
* The maximum loads expected during four intervals

are 80, 90, 65 and 70 MW:;

= Maintenance of any unit starts at the beginning of an
iInterval and finishes at the end of the same or
adjacent interval.

Case study

Scheduling of 7 units in 4 equal intervals
The problem constraints:

= The maintenance cannot be aborted or finished
earlier than scheduled:

= The net reserve of the power system must be greater
or equal to zero at any interval.

» Net reserve =), capacity —), load

The optimum criterion is the maximum of the net
reserve at any maintenance period.

Case study

Unit data and maintenance requirements

Unit Unit capacity,
number MW

Number of intervals required
for unit maintenance

20
15
35
40
15
15
10

-1 O h e o D e

Max capacity=150 MW

Case study
Unit gene pools

Unit 1: 1100101100011

Unit 2 110001 10[][0011

Unit 3: 1000/ (0100|0010 (0001
Unit 4 1000/ (01 00[{001O0 (0001
Unit 5: 1000/ (0100|0010 (0001
Unit 6: 1000/ (01 00[[0010 (0001
Unit 7: 1000[{{0100{|0010}]0001

Chromosome for the scheduling problem

Unit] Umt? Unit) Umt4 Umtd Unmt6 Unit7

or1t1o0jootrtjoootjroo0fo100f0010f1000

Case study
The crossover operator

Parent 1
01101001 1J00O0TIYIO0OCD0C0
Parent 2
11000110401 00)0001
Child 1
01101001 1J00O0TIYJ1I 000
Child 2
L11o00jot1oforoofooot

Case study
The mutation operator

X
pt1oojortoforoojoootforoojootrofiooo

p1o00jortofooorjoootfor00joo10fi000

Performance graphs and the best maintenance
schedules created in a population of 20 chromosomes

N=720, p,=0.7. pn, =0.001

£+ 10 15 20 25 e 325 A0 45 50
fremerarions

Nar reserves:

15 3!5 =5 25
150
|) ik = irit 1
e —'J'i]—l Unit 1
— LUknikt =

1 2 3
Fime tmrerval

() 50 generations

Unit Unit capacity,
number MW
1 20
2 15
3 35
4 40
5 15
6 15
7 10

The maximum loads during four intervals are 80, 90, 65 and 70 MW

fitness = Net reserve = Z capacity — z load

Performance graphs and the best maintenance
schedules created in a population of 20 chromosomes

N=2 p, =07, py=0.001
znvr-—p-—;—'—;—v—;—-—.——-
-
={0§ B - 15+ o
"
= Avaerage
= of
_l“]. 1 [1 1 1 1 1 1 1
] 10 20 30 40 50 &0 T BO a0 100
GCenmarafions
Ner reserves:
40 25 20 25
150 -
| Unit 1 Unit 1 Unit 2 ot
120 Linit ¢ Unit 2 Unit 3
i —= it &
g0 nit
&=
=

B 1 2 3 4
Time inferval

(b) 100 generations

Performance graphs and the best maintenance
schedules created in a population of 100 chromosomes

N=100, p=0.7, pm=>0.001

30
= 20
2m
s
=10

0 AvErage -
_1“ L 1 i 1 1 I 1 1 1
i0 10 20 30 40 50 G0 L a0 20 100

remerarions

Ner rezerves:

150 35 25 25 25
. unit 3 Unlit 1 Linmht 1 S
120k Linit 2 it 2
- Emg Unit &
|0}
=
=

Z i |
TFoime inmfrerval

(@) Mutation rate is 0.001

Performance graphs and the best maintenance
schedules created in a population of 100 chromosomes

NN =100, g=0.7, pm= 001
m L] | | L] Ll
I=.“Ell:l
y
= 1
=
E:_'_ L]
-1
—a2CF 1 i 1 1 1 i 1 1
o 10 20 20 <27 50 &0 T a0 S 100
Genasarafrfraoanrs
NeEer resErVEs:
150 =5 25 | uﬂz i
L Limit 1 LiniR 1 i net 3
o L 2

= =
TFame srrervyaif

(b) Mutation rate is 0.01

Performance graphs for 100 generations of 6
chromosomes: local maximum

p.=0.7. p,,=0.001

L] T] T

=2
)

T

= o o
= [} h
| 1 1
i

FIITREs s
o}
[%]
]

=
[
T

=

0.1 1 L 1 i i i | i L
0 10 20 20 40 50 G0 Fi 80 a0 100

renerations

Lecture 11
Hybrid intelligent systems:

Neural expert systems and neuro-fuzzy systems

H Introduction
B Neural expert systems
B Neuro-fuzzy systems

m ANFIS: Adaptive Neuro-Fuzzy Inference
System

B Summary

© Negnevitsky, Pearson Education, 2011

Introduction

H A hybrid intelligent system 1s one that combines
at least two intelligent technologies. For example,
combining a neural network with a fuzzy system
results in a hybrid neuro-fuzzy system.

N

Comparison of Expert Systems, Fuzzy
Systems, Neural Networks

Neuro-fuzzy systems

o Fuzzy logic and neural networks are important tools in
building intelligent systems.

o However, fuzzy systems lack the ability to learn and
cannot adjust themselves to a new environment

o On the other hand, although neural networks can learn,
they are opaque to the user.

o The merger of a neural network with a fuzzy system into
one Integrated system therefore offers a promising
approach to building intelligent systems.

Neuro-fuzzy systems

o Integrated neuro-fuzzy systems can combine the
parallel computation and learning abilities of neural
networks with the humanlike knowledge representation
and explanation abllities of fuzzy systems.

o As a result, neural networks become more transparent,
while fuzzy systems become capable of learning.

Neuro-fuzzy systems

o A neuro-fuzzy system is, in fact, a neural network that is
functionally equivalent to a fuzzy inference model.

o It can be trained to develop IF-THEN fuzzy rules and
determine membership functions for input and output
variables of the system.

o Expert knowledge can be easily incorporated into the
structure of the neuro-fuzzy system.

How does a neuro-fuzzy system look?

o The structure of a neuro-fuzzy system is similar to a
multi-layer neural network.

o In general, a neuro-fuzzy system has input and output
layers, and three hidden layers that represent
membership functions and fuzzy rules.

ANFIS: Adaptive Neuro-Fuzzy Inference System

» The Sugeno fuzzy model was proposed for a systematic approach to generating
fuzzy rules from a given input-output data set. A typical Sugeno fuzzy rule can be
expressed in the following form:

IF X1 15 A4
AND X2 1S A»
THEN y=/f(x1,%X2,...,%n)

where xq.%x2,..., X, are input variables; Ay, Az, ..., Ay are fuzzy sets; and y is
either a constant or a linear function of the input variables. When y is a constant,
we obtain a zero-order Sugeno fuzzy model in which the consequent of a rule is
specified by a singleton. When y is a first-order polynomial, i.e.

V= ki’.‘l + klxl + kzl’z + ...+ kmxm

we obtain a first-order Sugeno fuzzy model.

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Jang’s ANFIS is normally represented by a six-layer feedforward neural network.
o ANFIS architecture that corresponds to the first order Sugeno fuzzy model.

O

output: y. Each input is represented by two fuzzy

x1

X2

Layer1 Layer2

Al

A2

Layer 3

For simplicity, we assume that the ANFIS has two inputs: x1 and x2 , and one

Layer 4 x1 x2 Layer5 Layer6

B1

B2

1

.._?.2\
/

= N4
N

Figure 8.10 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Each input is represented by two fuzzy sets, and the output by a first-order
polynomial. The ANFIS implements four rules:

Rule 1: Rule 2:

IF x1is Al IF x1lis A2

AND x2 is Bl AND x2 is B2

THEN vy =f1 =k + knx1l + kj2x2 THEN vy =1/ = koo + k21x1 + kopx2
Rule 3: Rule 4:

IF x1is A2 IF x1is Al

AND x2is Bl AND x21is B2

THEN vy =f; = k3o + k31x1 + k32x2 THEN vy =1f3 = kg + Kkg1x1 + kg2x2

where x1, x2 are input variables; A1 and A2 are fuzzy sets on the universe of
discourse X1; B1 and B2 are fuzzy sets on the universe of discourse X2; and k;y, ki
and kj, is a set of parameters specified for rule i.

10

ANFIS: Adaptive Neuro-Fuzzy Inference System

o Let us now discuss the purpose of each layer in Jang’s ANFIS.

o Layer 1 is the input layer. Neurons in this layer simply pass external crisp signals
to Layer 2.

1y (1

yi —I!

where xf.-” is the input and yf.-” is the output of input neuron i in Laver 1.

Layer1 Layer2 Layer 3 Layer 4 x1 x2 Layer5 Layer6
— | >
-
x1 \ / »
. 1\) i
A2 = [12 VAV, N2 - 2

.
B1 :- /
2 VAN

N\
®;
&)
Il

N
@
1

h

ANFIS: Adaptive Neuro-Fuzzy Inference System

Layer 2 is the fuzzification layer. Neurons in this layer perform fuzzification.
In Jang’s model, fuzzification neurons have a bell activation function.
A bell activation function, which has a regular bell shape, is specified as:

2) 1

Yi == (2) Zbi’
1+
Ci

where x*' is the input and y|” is the output of neuron i in Layer 2; and a;, b; and
¢; are parameters that control, respectively, the centre, width and slope of the
bell activation function of neuron i.

Layer1l Layer2 Layer 3 Layer 4 x1 x2 Layer5 Layer6
A1 -1
x1
A2 ; 2 \

YYY
W

X2

=
L

12

YYY
I

ANFIS: Adaptive Neuro-Fuzzy Inference System

Layer 3 is the rule layer. Each neuron in this layer corresponds to a single
Sugeno-type fuzzy rule. A rule neuron receives inputs from the respective
fuzzification neurons and calculates the firing strength of the rule it represents.
In an ANFIS, the conjunction of the rule antecedents is evaluated by the operator
product. Thus, the output of neuron i in Layer 3 is obtained as,

y;l!) = . X;;;)~

"_
where x|/ are the inputs and y;* is the output of rule neuron i in Layer 3.

For example,
(3) _ =
Yl = HAl X [4B1 = f1,

where the value of u; represents the firing strength, or the truth value, of Rule 1.

Layer 1 Layer 2 Layer 3 Layer 4 x1 x2 Layer5 Layer6

Al ~(11 N1 > 1

x1

Y
[#4]

B1 3 > N3

X2

<IN
<

13

ANFIS: Adaptive Neuro-Fuzzy Inference System

Layer 4 is the normalisation layer. Each neuron in this layer receives inputs
from all neurons in the rule laver, and calculates the normalised firing strength
of a given rule.

The normalised firing strength is the ratio of the firing strength of a given rule
to the sum of firing strengths of all rules. It represents the contribution of a given

rule to the final result.
Thus, the output of neuron i in Laver 4 is determined as,

(4)
4) X [Li
yi R

. - 1 -
PRI
i—1

j=1

Hi

where x;':;” is the input from neuron j located in Laver 3 to neuron i in Laver 4,

and n is the total number of rule neurons. For example,

Layer1 Layer2 Layer 3 Layer 4 x1 x2 Layer5 Layer6
(4) F1 . ™ <P
Ya1 = = 1
H1 + p2 4 p3 g x1
A2 > 2 \
1| 3]
xz4|j<

B2 z 4

ANFIS: Adaptive Neuro-Fuzzy Inference System
Layer 5 is the defuzzification layer. Each neuron in this layer is connected to

the respective normalisation neuron, and also receives initial inputs, x; and x..

A deftnzzification nenron calcnlates the weichted conseanient value nf a oiven
Layer 4 x1 x2 Layer5 Layer6

Layerl Layer2 Layer 3

A1 - m ~(N1 l [1
X1 —
AE\ /=H2 N2 ! __E .
V% O

W~ R A
B1 @"“‘@ [—> 3

e % L
B2 -(14) ~(N4) T_i 4

15

How does an ANFIS learn?

o An ANFIS uses a hybrid learning algorithm that combines
the least-squares estimator and the gradient descent
method

o First, initial activation functions are assigned to each
membership neuron.

o In the ANFIS training algorithm, each epoch is composed
from a forward pass and a backward pass.

o In the forward pass, a training set of input patterns (an input
vector) is presented to the ANFIS, neuron outputs are
calculated on the layer-by-layer basis, and rule consequent
parameters are identified by the least squares estimator.

16

How does an ANFIS learn?

o In the Sugeno-style fuzzy inference, an output, vy, is a linear function.
Thus, given the values of the membership parameters and a training
set of P input-output patterns, we can form P linear equations in

terms of the consequent parameters as:

va(l) = py(DfA(1) + pp(1)f2(1) +. ..+ p(1)fa(1)
va(2) = p(2)[(2) + 2 (2)2(2) +. .. + pn(2)fn(2)

}’:f{P}:HﬂP}ﬁ {P}_F“E{P}J‘FE{P} _l'f-"*n fi'rlip

17

How does an ANFIS learn?

[va(l) =g, (1) [Ko + kuix1(1) + Kiax2(1) + ...

+ ,-'.1.2{1}[.'(33 + k21 {1} + kggxgl[l} +

Ya(2) =pq (2)[k1o + k11x1(2) +K12x2(2) + ..

—|—#2I{2}[km + kglxl{Z} + kggxgl[Z} +.

Ya(p) =py (P)[K1o + knx1 (p) + Kizx2(p) + ..

+ #2@)[kgﬂ + k21X [ﬁ} + Kk22X> [p) +

N+ ...

<+ #ﬂu’)[k”ﬂ + k,ﬂxl Lrﬁ‘} + knzxz [P) +

)]

where m is the number of input variables, n is the number of neurons in the rule
laver, and y;(p) is the desired overall output of the ANFIS when inputs x;(p),

X2(p), ..., Xm(p) are presented to it.

How does an ANFIS learn?

where y,; is a P x 1 desired output vector,

ya(1)7 Yd=AK
yli'(zj
K=A"M-1Yd
ra = ya(p)
_ya(P) |

AisaP x n(1+m) matrix,

(1) g (1)xa(1) - g (Dxm(1) ooy (1) i, (1)x0 (1) - oy (1)xm (1)
i(2) |m2)x1(2) ..o g (2)xm(2) - iy (2) oy (2)%1(2) -y (2)Xm (2)

A=

ﬁ1{P) ﬁ](P)II(P] ﬁ]fP}-’fm[P) .ﬂ‘n(P} ﬁn(.")xl(f’) ﬁn(p:'xmw}

and k is an n(1 + m) x 1 vector of unknown consequent parameters,

k = [kio ki1 kw2 ... Kim k20 k21 k22. .. kom . .. Koo ki Knz2 . .. kmn]T

How does an ANFIS learn?

o Usually the number of input-output patterns P used in
training is greater than the number of consequent
parameters.

o It means that we are dealing here with an over determined
problem, and thus exact solution may not even exist.

o Instead, we solve for K numerically.

20

How does an ANFIS learn?

o In the ANFIS training algorithm suggested by Jang, both
antecedent parameters and consequent parameters are

optimised.

o In the forward pass, the consequent parameters are
adjusted while the antecedent parameters remain fixed.

o In the backward pass, the antecedent parameters are tuned
while the consequent parameters are kept fixed.

21

Example (matlab command line)

Function approximation using the ANFIS model

m In this example, an ANFIS 1s used to follow a
trajectory of the non-linear function defined by
the equation

cos(2 x1)

m First, we choose an appropriate architecture for
the ANFIS. An ANFIS must have two inputs —

x1 and x2 — and one output — y.

B Thus, in our example, the ANFIS 1s defined by
four rules, and has the structure shown below.

Example (matlab command line)

An ANFIS model with four rules

Layer Layer 2 Layer 3 L Layers Layert

L\

Example (matlab command line)

Learning in an ANFIS with two membership
functions assigned to each input (one epoch)

—— Training Data
+—— ANFIS Output

Example (matlab command line)

Learning in an ANKIS with two membership
functions assigned to each input (100 epochs)

— Training Data
+—e— ANFIS Output

=<

Example (matlab command line)

An ANFIS model with nine rules

‘h

rﬂ‘ J:I'fl..

1'1. ﬁ #.l p't’p

.,,l'l-"" W d,;,

..-.M “1 ; r.ﬂn..

\1 e i
*HJ‘ L:qll-

"'1:* J "‘“1 t“'
"‘f!'h."# 1“ ‘ﬁ'&

5{:5; \‘}v N7
Uil 1.* “’{«
J’iri X

Example (matlab command line)

Learning in an ANFIS with three membership
functions assigned to each input (one epoch)

Training Data
ANFIS Output

Example (matlab command line)

Initial and final membership functions of the ANFIS

—

I —

L L C 1 i
8 9 10 -1 08 406 04 02 0
— 1l

(@) Initial membership functions.

1

02 04 06 08 1

—

0.8t
0.6+
04

e

Y
02 _,_-—"}{J:“-—

Y.

—

L ———

L G i
9 1 -1 D8 06 04 D2 D

— 1l

02 04 06 03 1

— 2

(b) Membership functions after 100 epochs of training.

