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Some Physical Constants
Quantity Symbol Valuea

Atomic mass unit	 u	 1.660 538 782 (83) 3 10227 kg
931.494 028 (23) MeV/c 2

Avogadro’s number	 NA	 6.022 141 79 (30) 3 1023 particles/mol

Bohr magneton	 mB 5
e U

2me
9.274 009 15 (23) 3 10224 J/T

Bohr radius	 a0 5
U2

mee
2ke

5.291 772 085 9 (36) 3 10211 m

Boltzmann’s constant	 kB 5
R
NA

1.380 650 4 (24) 3 10223 J/K

Compton wavelength	 lC 5
h

mec
	 2.426 310 217 5 (33) 3 10212 m

Coulomb constant	 ke 5
1

4pP0
8.987 551 788 . . . 3 109 N ? m2/C2 (exact)

Deuteron mass	 md	 3.343 583 20 (17) 3 10227 kg
2.013 553 212 724 (78) u

Electron mass	 me	 9.109 382 15 (45) 3 10231 kg
5.485 799 094 3 (23) 3 1024 u
0.510 998 910 (13) MeV/c 2

Electron volt	 eV	 1.602 176 487 (40) 3 10219 J

Elementary charge	 e	 1.602 176 487 (40) 3 10219 C

Gas constant	 R	 8.314 472 (15) J/mol ? K

Gravitational constant	 G	 6.674 28 (67) 3 10211 N ? m2/kg2

Neutron mass	 mn	 1.674 927 211 (84) 3 10227 kg
1.008 664 915 97 (43) u
939.565 346 (23) MeV/c 2

Nuclear magneton	 mn 5
e U

2mp
5.050 783 24 (13) 3 10227 J/T

Permeability of free space	 m0 4p 3 1027 T ? m/A (exact)

Permittivity of free space	 P0 5
1

m0c
2 8.854 187 817 . . . 3 10212 C2/N ? m2 (exact)

Planck’s constant	 h	 6.626 068 96 (33) 3 10234 J ? s

U 5
h

2p
1.054 571 628 (53) 3 10234 J ? s

Proton mass	 mp	 1.672 621 637 (83) 3 10227 kg
1.007 276 466 77 (10) u
938.272 013 (23) MeV/c 2

Rydberg constant	 RH	 1.097 373 156 852 7 (73) 3 107 m21

Speed of light in vacuum	 c	 2.997 924 58 3 108 m/s (exact)

Note: These constants are the values recommended in 2006 by CODATA, based on a least-squares adjustment of data from different measurements. For a more 
complete list, see P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006.” Rev. Mod. Phys. 80:2, 
633–730, 2008.

aThe numbers in parentheses for the values represent the uncertainties of the last two digits.



Solar System Data
Mean Radius		 Mean Distance from

Body	 Mass (kg)	 (m)	 Period (s)	 the Sun (m)

Mercury 3.30 3 1023 2.44 3 106 7.60 3 106 5.79 3 1010

Venus 4.87 3 1024 6.05 3 106 1.94 3 107 1.08 3 1011

Earth 5.97 3 1024 6.37 3 106 3.156 3 107 1.496 3 1011

Mars 6.42 3 1023 3.39 3 106 5.94 3 107 2.28 3 1011

Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011

Saturn 5.68 3 1026 5.82 3 107 9.29 3 108 1.43 3 1012

Uranus 8.68 3 1025 2.54 3 107 2.65 3 109 2.87 3 1012

Neptune 1.02 3 1026 2.46 3 107 5.18 3 109 4.50 3 1012

Plutoa 1.25 3 1022 1.20 3 106 7.82 3 109 5.91 3 1012

Moon 7.35 3 1022 1.74 3 106 — —
Sun 1.989 3 1030 6.96 3 108 — —

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is 
now defined as a “dwarf planet” (like the asteroid Ceres).

Physical Data Often Used
Average Earth–Moon distance	 3.84 3 108 m

Average Earth–Sun distance	 1.496 3 1011 m

Average radius of the Earth	 6.37 3 106 m

Density of air (208C and 1 atm)	 1.20 kg/m3

Density of air (0°C and 1 atm)	 1.29 kg/m3

Density of water (208C and 1 atm)	 1.00 3 103 kg/m3

Free-fall acceleration	 9.80 m/s2

Mass of the Earth	 5.97 3 1024 kg

Mass of the Moon	 7.35 3 1022 kg

Mass of the Sun	 1.99 3 1030 kg

Standard atmospheric pressure	 1.013 3 105 Pa

Note: These values are the ones used in the text.

Some Prefixes for Powers of Ten
Power	 Prefix Abbreviation Power Prefix Abbreviation

	10224 yocto y 101 deka da

	10221 zepto z 102 hecto h

	10218 atto a 103 kilo k

	10215 femto f 106 mega M

	10212 pico p 109 giga G

	1029 nano n 1012 tera T

	1026 micro m 1015 peta P

	1023 milli m 1018 exa E

	1022 centi c 1021 zetta Z

	1021 deci d 1024 yotta Y
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In this chapter, we begin the study of electromagnetism. The first link that we will 
make to our previous study is through the concept of force. The electromagnetic force 
between charged particles is one of the fundamental forces of nature. We begin by describ-
ing some basic properties of one manifestation of the electromagnetic force, the electric 
force. We then discuss Coulomb’s law, which is the fundamental law governing the electric 
force between any two charged particles. Next, we introduce the concept of an electric 
field associated with a charge distribution and describe its effect on other charged particles. 
We then show how to use Coulomb’s law to calculate the electric field for a given charge 
distribution. The chapter concludes with a discussion of the motion of a charged particle in 
a uniform electric field.
	 The second link between electromagnetism and our previous study is through the con-
cept of energy. We will discuss that connection in Chapter 25.

23.1	 Properties of Electric Charges
A number of simple experiments demonstrate the existence of electric forces. For 
example, after rubbing a balloon on your hair on a dry day, you will find that the 
balloon attracts bits of paper. The attractive force is often strong enough to sus-
pend the paper from the balloon.

23.1	 Properties of Electric 
Charges

23.2	 Charging Objects by 
Induction

23.3	 Coulomb’s Law

23.4	 Analysis Model: Particle in 
a Field (Electric)

23.5	 Electric Field of a 
Continuous Charge 
Distribution

23.6	 Electric Field Lines

23.7	 Motion of a Charged 
Particle in a Uniform 
Electric Field

c h a p t e r 

23 Electric Fields

This young woman is enjoying the 
effects of electrically charging her 
body. Each individual hair on her 
head becomes charged and exerts 
a repulsive force on the other 
hairs, resulting in the “stand-up” 
hairdo seen here. (Ted Kinsman / Photo 

Researchers, Inc.)
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	 When materials behave in this way, they are said to be electrified or to have become 
electrically charged. You can easily electrify your body by vigorously rubbing your 
shoes on a wool rug. Evidence of the electric charge on your body can be detected 
by lightly touching (and startling) a friend. Under the right conditions, you will see 
a spark when you touch and both of you will feel a slight tingle. (Experiments such 
as these work best on a dry day because an excessive amount of moisture in the air 
can cause any charge you build up to “leak” from your body to the Earth.)
	 In a series of simple experiments, it was found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin Frank-
lin (1706–1790). Electrons are identified as having negative charge, and protons 
are positively charged. To verify that there are two types of charge, suppose a hard 
rubber rod that has been rubbed on fur is suspended by a string as shown in Figure 
23.1. When a glass rod that has been rubbed on silk is brought near the rubber rod, 
the two attract each other (Fig. 23.1a). On the other hand, if two charged rubber 
rods (or two charged glass rods) are brought near each other as shown in Figure 
23.1b, the two repel each other. This observation shows that the rubber and glass 
have two different types of charge on them. On the basis of these observations, we 
conclude that charges of the same sign repel one another and charges with oppo-
site signs attract one another.
	 Using the convention suggested by Franklin, the electric charge on the glass 
rod is called positive and that on the rubber rod is called negative. Therefore, any 
charged object attracted to a charged rubber rod (or repelled by a charged glass 
rod) must have a positive charge, and any charged object repelled by a charged rub-
ber rod (or attracted to a charged glass rod) must have a negative charge.
	 Another important aspect of electricity that arises from experimental observations 
is that electric charge is always conserved in an isolated system. That is, when one 
object is rubbed against another, charge is not created in the process. The electrified 
state is due to a transfer of charge from one object to the other. One object gains some 
amount of negative charge while the other gains an equal amount of positive charge. 
For example, when a glass rod is rubbed on silk as in Figure 23.2, the silk obtains a 
negative charge equal in magnitude to the positive charge on the glass rod. We now 
know from our understanding of atomic structure that electrons are transferred in 
the rubbing process from the glass to the silk. Similarly, when rubber is rubbed on 
fur, electrons are transferred from the fur to the rubber, giving the rubber a net neg-
ative charge and the fur a net positive charge. This process works because neutral, 
uncharged matter contains as many positive charges (protons within atomic nuclei) 

WW Electric charge is conserved
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A negatively charged rubber 
rod suspended by a string is 
attracted to a positively 
charged glass rod.

A negatively charged rubber 
rod is repelled by another 
negatively charged
rubber rod.
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Figure 23.1  ​The electric force 
between (a) oppositely charged 
objects and (b) like-charged 
objects.

Because of conservation of charge, 
each electron adds negative charge 
to the silk and an equal positive 
charge is left on the glass rod.
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Figure 23.2  ​When a glass rod  
is rubbed with silk, electrons  
are transferred from the glass  
to the silk.
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as negative charges (electrons). Conservation of electric charge for an isolated system 
is like conservation of energy, momentum, and angular momentum, but we don’t 
identify an analysis model for this conservation principle because it is not used often 
enough in the mathematical solution to problems.
	 In 1909, Robert Millikan (1868–1953) discovered that electric charge always 
occurs as integral multiples of a fundamental amount of charge e (see Section 
25.7). In modern terms, the electric charge q is said to be quantized, where q is the 
standard symbol used for charge as a variable. That is, electric charge exists as dis-
crete “packets,” and we can write q 5 6Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge 2e and the proton 
has a charge of equal magnitude but opposite sign 1e. Some particles, such as the 
neutron, have no charge.

Q	 uick Quiz 23.1 ​ Three objects are brought close to each other, two at a time. 
When objects A and B are brought together, they repel. When objects B and C 
are brought together, they also repel. Which of the following are true? (a) Objects 
A and C possess charges of the same sign. (b) Objects A and C possess charges 
of opposite sign. (c) All three objects possess charges of the same sign. (d) One 
object is neutral. (e) Additional experiments must be performed to determine 
the signs of the charges.

23.2	 Charging Objects by Induction
It is convenient to classify materials in terms of the ability of electrons to move 
through the material:

Electrical conductors are materials in which some of the electrons are free 
electrons1 that are not bound to atoms and can move relatively freely through 
the material; electrical insulators are materials in which all electrons are 
bound to atoms and cannot move freely through the material.

Materials such as glass, rubber, and dry wood fall into the category of electrical 
insulators. When such materials are charged by rubbing, only the area rubbed 
becomes charged and the charged particles are unable to move to other regions of 
the material.
	 In contrast, materials such as copper, aluminum, and silver are good electrical 
conductors. When such materials are charged in some small region, the charge 
readily distributes itself over the entire surface of the material.
	 Semiconductors are a third class of materials, and their electrical properties are 
somewhere between those of insulators and those of conductors. Silicon and ger-
manium are well-known examples of semiconductors commonly used in the fabri-
cation of a variety of electronic chips used in computers, cellular telephones, and 
home theater systems. The electrical properties of semiconductors can be changed 
over many orders of magnitude by the addition of controlled amounts of certain 
atoms to the materials.
	 To understand how to charge a conductor by a process known as induction, con-
sider a neutral (uncharged) conducting sphere insulated from the ground as shown 
in Figure 23.3a. There are an equal number of electrons and protons in the sphere 
if the charge on the sphere is exactly zero. When a negatively charged rubber rod 
is brought near the sphere, electrons in the region nearest the rod experience a 
repulsive force and migrate to the opposite side of the sphere. This migration leaves 

1A metal atom contains one or more outer electrons, which are weakly bound to the nucleus. When many atoms 
combine to form a metal, the free electrons are these outer electrons, which are not bound to any one atom. These 
electrons move about the metal in a manner similar to that of gas molecules moving in a container.

Electrons redistribute when a 
charged rod is brought close.

The excess positive charge is 
nonuniformly distributed. 

Some electrons leave the 
grounded sphere through 
the ground wire.

The neutral sphere has 
equal numbers of positive 
and negative charges. 

The remaining electrons 
redistribute uniformly, and there 
is a net uniform distribution of 
positive charge on the sphere.
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Figure 23.3  ​Charging a metallic 
object by induction. (a) A neutral 
metallic sphere. (b) A charged rub-
ber rod is placed near the sphere. 
(c) The sphere is grounded. (d) The 
ground connection is removed. 
(e) The rod is removed.
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the side of the sphere near the rod with an effective positive charge because of the 
diminished number of electrons as in Figure 23.3b. (The left side of the sphere in 
Figure 23.3b is positively charged as if positive charges moved into this region, but 
remember that only electrons are free to move.) This process occurs even if the 
rod never actually touches the sphere. If the same experiment is performed with a 
conducting wire connected from the sphere to the Earth (Fig. 23.3c), some of the 
electrons in the conductor are so strongly repelled by the presence of the negative 
charge in the rod that they move out of the sphere through the wire and into the 
Earth. The symbol  at the end of the wire in Figure 23.3c indicates that the wire 
is connected to ground, which means a reservoir, such as the Earth, that can accept 
or provide electrons freely with negligible effect on its electrical characteristics. If 
the wire to ground is then removed (Fig. 23.3d), the conducting sphere contains an 
excess of induced positive charge because it has fewer electrons than it needs to can-
cel out the positive charge of the protons. When the rubber rod is removed from 
the vicinity of the sphere (Fig. 23.3e), this induced positive charge remains on the 
ungrounded sphere. Notice that the rubber rod loses none of its negative charge 
during this process.
	 Charging an object by induction requires no contact with the object inducing 
the charge. That is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.
	 A process similar to induction in conductors takes place in insulators. In most 
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. In the presence of a charged object, however, these centers inside each 
molecule in an insulator may shift slightly, resulting in more positive charge on one 
side of the molecule than on the other. This realignment of charge within individ-
ual molecules produces a layer of charge on the surface of the insulator as shown in 
Figure 23.4a. The proximity of the positive charges on the surface of the object and 
the negative charges on the surface of the insulator results in an attractive force 
between the object and the insulator. Your knowledge of induction in insulators 
should help you explain why a charged rod attracts bits of electrically neutral paper 
as shown in Figure 23.4b.

Q	 uick Quiz 23.2 ​ Three objects are brought close to one another, two at a time. 
When objects A and B are brought together, they attract. When objects B and 
C are brought together, they repel. Which of the following are necessarily true? 
(a) Objects A and C possess charges of the same sign. (b) Objects A and C pos-
sess charges of opposite sign. (c) All three objects possess charges of the same 
sign. (d) One object is neutral. (e) Additional experiments must be performed 
to determine information about the charges on the objects.

Figure 23.4  ​ (a) A charged bal-
loon is brought near an insulating 
wall. (b) A charged rod is brought 
close to bits of paper.
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23.3	 Coulomb’s Law
Charles Coulomb measured the magnitudes of the electric forces between charged 
objects using the torsion balance, which he invented (Fig. 23.5). The operating prin-
ciple of the torsion balance is the same as that of the apparatus used by Cavendish 
to measure the density of the Earth (see Section 13.1), with the electrically neutral 
spheres replaced by charged ones. The electric force between charged spheres A 
and B in Figure 23.5 causes the spheres to either attract or repel each other, and the 
resulting motion causes the suspended fiber to twist. Because the restoring torque 
of the twisted fiber is proportional to the angle through which the fiber rotates, a 
measurement of this angle provides a quantitative measure of the electric force of 
attraction or repulsion. Once the spheres are charged by rubbing, the electric force 
between them is very large compared with the gravitational attraction, and so the 
gravitational force can be neglected.
	 From Coulomb’s experiments, we can generalize the properties of the electric 
force (sometimes called the electrostatic force) between two stationary charged par-
ticles. We use the term point charge to refer to a charged particle of zero size. 
The electrical behavior of electrons and protons is very well described by modeling 
them as point charges. From experimental observations, we find that the magni-
tude of the electric force (sometimes called the Coulomb force) between two point 
charges is given by Coulomb’s law.

	 Fe 5 ke 
0 q1 0 0 q2 0

r 2 	 (23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb 
was able to show that the value of the exponent of r was 2 to within an uncertainty 
of a few percent. Modern experiments have shown that the exponent is 2 to within 
an uncertainty of a few parts in 1016. Experiments also show that the electric force, 
like the gravitational force, is conservative.
	 The value of the Coulomb constant depends on the choice of units. The SI unit 
of charge is the coulomb (C). The Coulomb constant ke in SI units has the value

	 ke 5 8.987 6 3 109 N ? m2/C2	 (23.2)

This constant is also written in the form

	 ke 5
1

4pP0
	 (23.3)

where the constant P0 (Greek letter epsilon) is known as the permittivity of free 
space and has the value

	 P0 5 8.854 2 3 10212 C2/N ? m2	 (23.4)

	 The smallest unit of free charge e known in nature,2 the charge on an electron 
(2e) or a proton (1e), has a magnitude

	 e 5 1.602 18 3 10219 C	 (23.5)

Therefore, 1 C of charge is approximately equal to the charge of 6.24 3 1018 elec-
trons or protons. This number is very small when compared with the number of 
free electrons in 1 cm3 of copper, which is on the order of 1023. Nevertheless, 1 C  
is a substantial amount of charge. In typical experiments in which a rubber or glass 
rod is charged by friction, a net charge on the order of 1026 C is obtained. In other 

Coulomb’s law 

Coulomb constant 

2No unit of charge smaller than e has been detected on a free particle; current theories, however, propose the exis-
tence of particles called quarks having charges 2e/3 and 2e/3. Although there is considerable experimental evidence 
for such particles inside nuclear matter, free quarks have never been detected. We discuss other properties of quarks 
in Chapter 46.

Charles Coulomb
French physicist (1736–1806)
Coulomb’s major contributions to sci-
ence were in the areas of electrostatics 
and magnetism. During his lifetime, 
he also investigated the strengths 
of materials, thereby contributing to 
the field of structural mechanics. In 
ergonomics, his research provided an 
understanding of the ways in which 
people and animals can best do work.
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Figure 23.5  ​Coulomb’s balance, 
used to establish the inverse-
square law for the electric force.
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Table 23.1 Charge and Mass of the Electron, Proton, and Neutron
Particle	 Charge (C)	 Mass (kg)

Electron (e)	 21.602 176 5 3 10219	 9.109 4 3 10231

Proton (p)	 11.602 176 5 3 10219	 1.672 62 3 10227

Neutron (n)	 0	 1.674 93 3 10227

Example 23.1	     The Hydrogen Atom

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately  
5.3 3 10211 m. Find the magnitudes of the electric force and the gravitational force between the two particles.

Conceptualize  ​Think about the two particles separated by the very small distance given in the problem statement. In 
Chapter 13, we mentioned that the gravitational force between an electron and a proton is very small compared to the 
electric force between them, so we expect this to be the case with the results of this example.

Categorize  ​The electric and gravitational forces will be evaluated from universal force laws, so we categorize this 
example as a substitution problem.

S o l u ti  o n

Use Coulomb’s law to find the magnitude of 
the electric force:

Fe 5 k e 
0 e 0 02e 0

r 2 5 18.988 3 109 N # m2/C2 2  11.60 3 10219 C 22

15.3 3 10211 m 22

5   8.2 3 1028 N

Use Newton’s law of universal gravitation  
and Table 23.1 (for the particle masses) to 
find the magnitude of the gravitational force:

Fg 5 G 
memp

r 2  

 5 16.674 3 10211 N # m2/kg2 2  19.11 3 10231 kg 2 11.67 3 10227 kg 2
15.3 3 10211 m 22

5   3.6 3 10247 N

The ratio Fe /Fg < 2 3 1039. Therefore, the gravitational force between charged atomic particles is negligible when com-
pared with the electric force. Notice the similar forms of Newton’s law of universal gravitation and Coulomb’s law of 
electric forces. Other than the magnitude of the forces between elementary particles, what is a fundamental difference 
between the two forces?

	 When dealing with Coulomb’s law, remember that force is a vector quantity and 
must be treated accordingly. Coulomb’s law expressed in vector form for the elec-
tric force exerted by a charge q1 on a second charge q2, written F

S

12, is

	 F
S

12 5 ke 
q1q2

r 2  r̂12 	 (23.6)

where  r̂12 is a unit vector directed from q1 toward q2 as shown in Figure 23.6a (page 
696). Because the electric force obeys Newton’s third law, the electric force exerted 
by q2 on q1 is equal in magnitude to the force exerted by q1 on q2 and in the opposite 
direction; that is, F

S

21 5 2 F
S

12.  Finally, Equation 23.6 shows that if q1 and q2 have the 

WW Vector form of Coulomb’s law

words, only a very small fraction of the total available charge is transferred between 
the rod and the rubbing material.
	 The charges and masses of the electron, proton, and neutron are given in Table 
23.1. Notice that the electron and proton are identical in the magnitude of their 
charge but vastly different in mass. On the other hand, the proton and neutron are 
similar in mass but vastly different in charge. Chapter 46 will help us understand 
these interesting properties.
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same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S

12  
points in the positive x direction and F

S

21  points in the negative x direction.
	 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q	 uick Quiz 23.3 ​ Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S

AB 5 23 F
S

BA  (b) F
S

AB 5 2 F
S

BA  (c) 3 F
S

AB 5 2 F
S

BA  (d) F
S

AB 5 3 F
S

BA  
(e)  F

S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2	     Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  ​Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  ​Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  ​The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S

23  exerted by q2 on q3 is attractive because q2  
and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S

23  is to the left (in the negative x direction).
	 The force F

S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S o l u ti  o n

Figure 23.6  Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S

21 
exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S

12 exerted by q1 on q2.
r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
S

�

�
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When the charges are of opposite 
signs, the force is attractive.
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Figure 23.7  ​(Example 23.2) The 
force exerted by q1 on q3 is F

S

13. The 
force exerted by q2 on q3 is F

S

23.  
The resultant force F

S

3 exerted on q3 
is the vector sum F

S

13 1 F
S

23.
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Finalize  ​The net force on q3 is upward and toward the left in Figure 23.7. If q3 moves in response to the net force, the 
distances between q3 and the other charges change, so the net force changes. Therefore, if q3 is free to move, it can 
be modeled as a particle under a net force as long as it is recognized that the force exerted on q3 is not constant. As a 
reminder, we display most numerical values to three significant figures, which leads to operations such as 7.94 N 1  
(28.99 N) 5 21.04 N above. If you carry all intermediate results to more significant figures, you will see that this 
operation is correct.

What if the signs of all three charges were changed to the opposite signs? How would that affect the result 

for F
S

3 ?

Answer  ​The charge q3 would still be attracted toward q2 and repelled from q1 with forces of the same magnitude. 
Therefore, the final result for F

S

3  would be the same.

What If ?

Use Equation 23.1 to find the magni-

tude of F
S

23 :

F23 5 ke 
0 q2 0 0 q3 0

a 2   

 5 18.988 3 109 N # m2/C2 2  12.00 3 1026 C 2 15.00 3 1026 C 2
10.100 m 22 5 8.99 N

Find the magnitude of the force F
S

13 : F13 5 ke 
0 q1 0 0 q3 0
1"2 a 22

 

 5 18.988 3 109 N # m2/C2 2  15.00 3 1026 C 2 15.00 3 1026 C 2
2 10.100 m 22 5 11.2 N

Find the x and y components of the force F
S

13 : F13x 5 (11.2 N) cos 45.08 5 7.94 N

F13y 5 (11.2 N) sin 45.08 5 7.94 N

Find the components of the resultant force acting on q3: F3x 5 F13x 1 F23x 5 7.94 N 1 (28.99 N) 5 21.04 N

F3y 5 F13y 1 F23y 5 7.94 N 1 0 5 7.94 N
Express the resultant force acting on q3 in unit-vector 
form:

F
S

3 5 121.04 î 1 7.94 ĵ 2  N

Example 23.3	     Where Is the Net Force Zero? 

Three point charges lie along the x axis as shown in Figure 23.8. The positive 
charge q1 5 15.0 mC is at x 5 2.00 m, the positive charge q2 5 6.00 mC is at the ori-
gin, and the net force acting on q3 is zero. What is the x coordinate of q3?

Conceptualize  ​Because q3 is near two other charges, it experiences two electric 
forces. Unlike the preceding example, however, the forces lie along the same line 
in this problem as indicated in Figure 23.8. Because q3 is negative and q1 and q2 
are positive, the forces F

S

13  and F
S

23  are both attractive. Because q2 is the smaller 
charge, the position of q3 at which the force is zero should be closer to q2 than to q1.

Categorize  ​Because the net force on q3 is zero, we model the point charge as a 
particle in equilibrium.

AM

S o l u ti  o n

2.00 m

x

q1

x

y

q3q2

2.00 � x 

�� �

F13
S

F23
S

Figure 23.8  ​(Example 23.3) Three 
point charges are placed along the x 
axis. If the resultant force acting on 
q3 is zero, the force F

S

13  exerted by 
q1 on q3 must be equal in magnitude 
and opposite in direction to the force  
F
S

23  exerted by q2 on q3.

Analyze  ​Write an expression for the net force on 
charge q3 when it is in equilibrium:

F
S

3 5 F
S

23 1 F
S

13 5 2ke 
0 q 2 0 0 q 3 0

x2  î 1 ke 
0 q1 0 0 q3 0

12.00 2 x 22  î 5 0

▸ 23.2 c o n t i n u e d

	

continued
Move the second term to the right side of the equation 
and set the coefficients of the unit vector  î  equal:

ke 
0 q 2 0 0 q3 0

x 2 5 ke 
0 q1 0 0 q3 0

12.00 2 x 22
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Example 23.4	     Find the Charge on the Spheres 

Two identical small charged spheres, each having a mass 
of 3.00 3 1022 kg, hang in equilibrium as shown in Figure 
23.9a. The length L of each string is 0.150 m, and the angle 
u is 5.008. Find the magnitude of the charge on each sphere.

Conceptualize  ​Figure 23.9a helps us conceptualize this 
example. The two spheres exert repulsive forces on each 
other. If they are held close to each other and released, they 
move outward from the center and settle into the configura-
tion in Figure 23.9a after the oscillations have vanished due 
to air resistance.

Categorize  ​The key phrase “in equilibrium” helps us model 
each sphere as a particle in equilibrium. This example is sim-
ilar to the particle in equilibrium problems in Chapter 5 
with the added feature that one of the forces on a sphere is 
an electric force.

Analyze  ​The force diagram for the left-hand sphere is shown in Figure 23.9b. The sphere is in equilibrium under the 
application of the force T

S
 from the string, the electric force F

S

e  from the other sphere, and the gravitational force m gS.

AM

S o l u ti  o n

mg

T cos 

T sin u 

u

�
Fe
S

T
S

a b

u

u

LL

q
a

q��

u
u

Figure 23.9  (Example 23.4) (a) Two identical spheres, 
each carrying the same charge q, suspended in equilibrium. 
(b) Diagram of the forces acting on the sphere on the left 
part of (a).

From the particle in equilibrium model, set the net force 
on the left-hand sphere equal to zero for each component:

(1)   o Fx 5 T sin u 2 Fe 5 0   S   T sin u 5 Fe

(2)   o Fy 5 T cos u 2 mg 5 0   S   T cos u 5 mg

Divide Equation (1) by Equation (2) to find Fe : (3)   tan u 5
Fe

mg
   S   Fe 5 mg tan u

Eliminate ke and uq3u and rearrange the equation: (2.00 2 x)2uq2u 5 x 2uq1u

Solve for x : x 5
2.00 " 0 q2 0

" 0 q2 0 6 " 0 q 1 0

Substitute numerical values, choosing the plus sign: x 5
2.00 "6.00 3 1026 C

"6.00 3 1026 C 1 "15.0 3 1026 C
 5 0.775 m

Finalize  ​Notice that the movable charge is indeed closer to q2 as we predicted in the Conceptualize step. The second 
solution to the equation (if we choose the negative sign) is x 5 23.44 m. That is another location where the magnitudes 
of the forces on q3 are equal, but both forces are in the same direction, so they do not cancel.

Suppose q3 is constrained to move only along the x axis. From its initial position at x 5 0.775 m, it is pulled 
a small distance along the x axis. When released, does it return to equilibrium, or is it pulled farther from equilib-
rium? That is, is the equilibrium stable or unstable?

Answer  ​If q3 is moved to the right, F
S

13  becomes larger and F
S

23  becomes smaller. The result is a net force to the right, 
in the same direction as the displacement. Therefore, the charge q3 would continue to move to the right and the equi-
librium is unstable. (See Section 7.9 for a review of stable and unstable equilibria.)
	 If q3 is constrained to stay at a fixed x coordinate but allowed to move up and down in Figure 23.8, the equilibrium is 
stable. In this case, if the charge is pulled upward (or downward) and released, it moves back toward the equilibrium 
position and oscillates about this point.

What If ?

	

▸ 23.3 c o n t i n u e d

Take the square root of both sides of the equation: (2.00 2 x)" 0 q2 0  5 6x" 0 q 1 0
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Finalize If the sign of the charges were not given in Figure 23.9, we could not determine them. In fact, the sign of the 
charge is not important. The situation is the same whether both spheres are positively charged or negatively charged.

Suppose your roommate proposes solving this problem without the assumption that the charges are of 
equal magnitude. She claims the symmetry of the problem is destroyed if the charges are not equal, so the strings would 
make two different angles with the vertical and the problem would be much more complicated. How would you respond?

Answer The symmetry is not destroyed and the angles are not different. Newton’s third law requires the magnitudes of 
the electric forces on the two spheres to be the same, regardless of the equality or nonequality of the charges. The solu
tion to the example remains the same with one change: the value of  in the solution is replaced by  in 
the new situation, where  and  are the values of the charges on the two spheres. The symmetry of the problem 
would be destroyed if the masses of the spheres were not the same. In this case, the strings would make different angles 
with the vertical and the problem would be more complicated.

What If ?

Use the geometry of the right triangle in Figure 23.9a to 
find a relationship between , and 

(4)   sin u 5  sin 

Solve Coulomb’s law (Eq. 23.1) for the charge  on each 
sphere and substitute from Equations (3) and (4):

mg tan  sin 

Substitute numerical values:
3.00 10  kg 2 19.80 m  tan 5.00 2 3 0.150 m  sin 5.00 2 4

8.988 10  N

4.42 10  C

23.4 Analysis Model: Particle in a Field (Electric)
In Section 5.1, we discussed the differences between contact forces and field forces. 
Two field forces—the gravitational force in Chapter 13 and the electric force here—
have been introduced into our discussions so far. As pointed out earlier, field forces 
can act through space, producing an effect even when no physical contact occurs 
between interacting objects. Such an interaction can be modeled as a two-step pro
cess: a source particle establishes a field, and then a charged particle interacts with 
the field and experiences a force. The gravitational field  at a point in space due to 
a source particle was defined in Section 13.4 to be equal to the gravitational force 

 acting on a test particle of mass  divided by that mass:  Then the 
force exerted by the field is  (Eq. 5.5). 

The concept of a field was developed by Michael Faraday (1791–1867) in the con
text of electric forces and is of such practical value that we shall devote much atten
tion to it in the next several chapters. In this approach, an electric field is said to exist 
in the region of space around a charged object, the source charge. The presence of 
the electric field can be detected by placing a test charge in the field and noting the 
electric force on it. As an example, consider Figure 23.10, which shows a small positive 
test charge  placed near a second object carrying a much greater positive charge 
We define the electric field due to the source charge at the location of the test charge 
to be the electric force on the test charge per unit charge, or, to be more specific, 
the electric field vector  at a point in space is defined as the electric force  act
ing on a positive test charge  placed at that point divided by the test charge:

(23.7) WW Definition of electric field

When using Equation 23.7, we must assume the test charge  is small enough that it does not disturb the charge distri
bution responsible for the electric field. If the test charge is great enough, the charge on the metallic sphere is redistrib
uted and the electric field it sets up is different from the field it sets up in the presence of the much smaller test charge.

igure 23.10 A small positive 
test charge  placed at point 
near an object carrying a much 
larger positive charge  expe
riences an electric field  at 
point  established by the source 
charge Q. We will always assume 
that the test charge is so small 
that the field of the source charge 
is unaffected by its presence.
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The vector E
S

 has the SI units of newtons per coulomb (N/C). The direction of E
S

 
as shown in Figure 23.10 is the direction of the force a positive test charge experi-
ences when placed in the field. Note that E

S
 is the field produced by some charge or 

charge distribution separate from the test charge; it is not the field produced by the 
test charge itself. Also note that the existence of an electric field is a property of its 
source; the presence of the test charge is not necessary for the field to exist. The 
test charge serves as a detector of the electric field: an electric field exists at a point if 
a test charge at that point experiences an electric force. 
	 If an arbitrary charge q is placed in an electric field E

S
, it experiences an electric 

force given by

	 F
S

e 5 q E
S

	 (23.8)

This equation is the mathematical representation of the electric version of the par-
ticle in a field analysis model. If q is positive, the force is in the same direction as the 
field. If q is negative, the force and the field are in opposite directions. Notice the  
similarity between Equation 23.8 and the corresponding equation from the gravita-
tional version of the particle in a field model, F

S

g 5 m gS  (Section 5.5). Once the 
magnitude and direction of the electric field are known at some point, the electric 
force exerted on any charged particle placed at that point can be calculated from 
Equation 23.8.
	 To determine the direction of an electric field, consider a point charge q as a 
source charge. This charge creates an electric field at all points in space surround-
ing it. A test charge q0 is placed at point P, a distance r from the source charge, as in 
Figure 23.11a. We imagine using the test charge to determine the direction of the 
electric force and therefore that of the electric field. According to Coulomb’s law, 
the force exerted by q on the test charge is

F
S

e 5 ke 
qq0

r 2  r̂

where  r̂ is a unit vector directed from q toward q0. This force in Figure 23.11a is 
directed away from the source charge q. Because the electric field at P, the position  
of the test charge, is defined by E

S
5 F

S

e /q0,  the electric field at P created by q is

	 E
S

5 ke 
q

r 2 r̂ 	 (23.9)

If the source charge q is positive, Figure 23.11b shows the situation with the test charge 
removed: the source charge sets up an electric field at P, directed away from q. If q is 

Pitfall Prevention 23.1
Particles Only  Equation 23.8 is 
valid only for a particle of charge q, 
that is, an object of zero size. For 
a charged object of finite size in an 
electric field, the field may vary 
in magnitude and direction over 
the size of the object, so the cor-
responding force equation may be 
more complicated.

q

P

r̂

q

q0

r
P

r̂

P

q

q0

P

r̂

q

r̂

Fe
S

Fe
S

E
S

 

E
S

 

If q is negative, 
the force on 
the test charge 
q0 is directed 
toward q. 

For a negative 
source charge, 
the electric 
field at P points 
radially inward 
toward q.

�

�

�

�

If q is positive, 
the force on 
the test charge 
q0 is directed 
away from q. 

For a positive 
source charge, 
the electric 
field at P points 
radially outward 
from q. 

a

b

c

d

Figure 23.11  (a), (c) When a test 
charge q0 is placed near a source 
charge q, the test charge experi-
ences a force. (b), (d) At a point P 
near a source charge q, there exists 
an electric field.

This dramatic photograph cap-
tures a lightning bolt striking a 
tree near some rural homes. Light-
ning is associated with very strong 
electric fields in the atmosphere.
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negative as in Figure 23.11c, the force on the test charge is toward the source charge, 
so the electric field at P is directed toward the source charge as in Figure 23.11d.
	 To calculate the electric field at a point P due to a small number of point charges, 
we first calculate the electric field vectors at P individually using Equation 23.9 and 
then add them vectorially. In other words, at any point P, the total electric field due 
to a group of source charges equals the vector sum of the electric fields of all the 
charges. This superposition principle applied to fields follows directly from the vec-
tor addition of electric forces. Therefore, the electric field at point P due to a group 
of source charges can be expressed as the vector sum

	 E
S

5 ke a
i

 
qi

ri
2 r̂i 	 (23.10)

where ri is the distance from the ith source charge qi to the point P and r̂i is a unit 
vector directed from qi toward P.
	 In Example 23.6, we explore the electric field due to two charges using the super-
position principle. Part (B) of the example focuses on an electric dipole, which is 
defined as a positive charge q and a negative charge 2q separated by a distance 2a. 
The electric dipole is a good model of many molecules, such as hydrochloric acid 
(HCl). Neutral atoms and molecules behave as dipoles when placed in an external 
electric field. Furthermore, many molecules, such as HCl, are permanent dipoles. 
The effect of such dipoles on the behavior of materials subjected to electric fields is 
discussed in Chapter 26.

Q	 uick Quiz 23.4 ​ A test charge of 13 mC is at a point P where an external electric 
field is directed to the right and has a magnitude of 4 3 106 N/C. If the test 
charge is replaced with another test charge of 23 mC, what happens to the exter-
nal electric field at P ? (a) It is unaffected. (b) It reverses direction. (c) It changes 
in a way that cannot be determined.

WW �Electric field due to a finite 
number of point charges

Imagine an object with 
charge that we call a 
source charge. The source 
charge establishes an 
electric field E

S
 through-

out space. Now imagine 
a particle with charge q is placed in that 
field. The particle interacts with the elec-
tric field so that the particle experiences 
an electric force given by

	 F
S

e 5 q E
S

	 (23.8)

Analysis Model	    Particle in a Field (Electric)

Examples:

•	 an electron moves between the deflection plates of a cathode ray 
oscilloscope and is deflected from its original path

•	 charged ions experience an electric force from the electric field in a 
velocity selector before entering a mass spectrometer (Chapter 29)

•	 an electron moves around the nucleus in the electric field estab-
lished by the proton in a hydrogen atom as modeled by the Bohr 
theory (Chapter 42)

•	 a hole in a semiconducting material moves in response to the elec-
tric field established by applying a voltage to the material (Chap-
ter 43)

qE
S

 

Fe � qE
S S

Example 23.5	     A Suspended Water Droplet 

A water droplet of mass 3.00 3 10212 kg is located in the air near the ground during a stormy day. An atmospheric 
electric field of magnitude 6.00 3 103 N/C points vertically downward in the vicinity of the water droplet. The droplet 
remains suspended at rest in the air.  What is the electric charge on the droplet?

Conceptualize  Imagine the water droplet hovering at rest in the air. This situation is not what is normally observed, so 
something must be holding the water droplet up.

AM

S o l u ti  o n

continued
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Analyze  ​Find the magnitude of the electric field at 
P due to charge q1:

E 1 5 ke 
0 q1 0
r1 

2 5 ke 
0 q1 0

a 2 1 y 2 

Find the magnitude of the electric field at P due to 
charge q2:

 E 2 5 ke 
0 q2 0
r2 

2 5 ke 
0 q2 0

b 2 1 y 2

Write the electric field vectors for each charge in 
unit-vector form:

 E
S

1 5 ke 
0 q1 0

a 2 1 y 2  cos f î 1 ke 
0 q 1 0

a 2 1 y 2  sin f ĵ

 E
S

2 5 ke 
0 q 2 0

b 2 1 y 2  cos u î 2 ke 
0 q 2 0

b 2 1 y 2  sin u ĵ

Example 23.6	     Electric Field Due to Two Charges

Charges q1 and q2 are located on the x axis, at distances a and b, respectively, from the 
origin as shown in Figure 23.12.

(A)  ​Find the components of the net electric field at the point P, which is at position (0, y).

Conceptualize  ​Compare this example with Exam-
ple 23.2. There, we add vector forces to find the net 
force on a charged particle. Here, we add electric 
field vectors to find the net electric field at a point 
in space. If a charged particle were placed at P, we 
could use the particle in a field model to find the 
electric force on the particle.

Categorize  ​We have two source charges and wish to find the resultant electric field, so we categorize this example as 
one in which we can use the superposition principle represented by Equation 23.10.

S o l u ti  o n

	

▸ 23.5 c o n t i n u e d

Substitute numerical values:

Solve for the charge on the water droplet: q 5 2
mg

E

Using the two particle in a field models mentioned in the Catego-
rize step, substitute for the forces in Equation (1), recognizing 
that the vertical component of the electric field is negative: 

q 12E 2 2 mg 5 0

Write Newton’s second law from the particle in equilibrium model 
in the vertical direction:

(1)   a Fy 5 0   S   Fe 2 Fg 5 0

q 5 2
13.00 3  10212

 kg 2 19.80 m/s2 2
6.00 3  103

 N/C
5 24.90 3  10215

 C

Finalize  Noting the smallest unit of free charge in Equation 23.5, the charge on the water droplet is a large number 
of these units. Notice that the electric force is upward to balance the downward gravitational force. The problem state-
ment claims that the electric field is in the downward direction. Therefore, the charge found above is negative so that 
the electric force is in the direction opposite to the electric field.

Categorize  The droplet can be modeled as a particle and is described by two analysis models associated with fields: 
the particle in a field (gravitational) and the particle in a field (electric). Furthermore, because the droplet is subject to forces 
but remains at rest, it is also described by the particle in equilibrium model.

Analyze

f

f u

u

� �

E
S

 

E1
S

E2
S

P

y

x
ba q

r2
r1

2q1

Figure 23.12  ​(Example 23.6) The total 
electric field E

S
 at P equals the vector sum 

E
S

1 1 E
S

2, where E
S

1 is the field due to the 
positive charge q1 and E

S

2 is the field due 
to the negative charge q2.

q 5 2
mg

E
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(B)  ​Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  ​Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  ​Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.

S o l u ti  o n

P

y

r

a
q

a
–q

x

u

u

u u

� �

E
S

 

E2
S

E1
S

Figure 23.13  ​(Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  ​Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a

1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a
1a 2 1 y 2 21/2 d 5 ke 

2aq

1a 2 1 y 2 23/2

(C)  ​Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S o l u ti  o n

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  ​From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.
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23.5	 �Electric Field of a Continuous  
Charge Distribution

Equation 23.10 is useful for calculating the electric field due to a small number of 
charges. In many cases, we have a continuous distribution of charge rather than a col-
lection of discrete charges. The charge in these situations can be described as contin-
uously distributed along some line, over some surface, or throughout some volume.
	 To set up the process for evaluating the electric field created by a continuous 
charge distribution, let’s use the following procedure. First, divide the charge dis-
tribution into small elements, each of which contains a small charge Dq as shown 
in Figure 23.14. Next, use Equation 23.9 to calculate the electric field due to one of 
these elements at a point P. Finally, evaluate the total electric field at P due to the 
charge distribution by summing the contributions of all the charge elements (that 
is, by applying the superposition principle).
	 The electric field at P due to one charge element carrying charge Dq is

D E
S

5 ke 
Dq

r 2  r̂

where r is the distance from the charge element to point P and r̂ is a unit vector 
directed from the element toward P. The total electric field at P due to all elements 
in the charge distribution is approximately

E
S

< ke a
i

  
Dqi

ri
2  r̂i

where the index i refers to the ith element in the distribution. Because the number 
of elements is very large and the charge distribution is modeled as continuous, the 
total field at P in the limit Dqi S 0 is

	 E
S

5 ke lim
Dqi

S 0

 a
i

  
Dqi

ri
2  r̂i 5 ke 3  

dq

r 2 r̂	 (23.11)

where the integration is over the entire charge distribution. The integration in 
Equation 23.11 is a vector operation and must be treated appropriately.
	 Let’s illustrate this type of calculation with several examples in which the charge 
is distributed on a line, on a surface, or throughout a volume. When performing 
such calculations, it is convenient to use the concept of a charge density along with 
the following notations:

•	 If a charge Q is uniformly distributed throughout a volume V, the volume 
charge density r is defined by

r ;
Q

V

	 where r has units of coulombs per cubic meter (C/m3).

•	 If a charge Q is uniformly distributed on a surface of area A, the surface 
charge density s (Greek letter sigma) is defined by

s ;
Q

A

	 where s has units of coulombs per square meter (C/m2).

•	 If a charge Q is uniformly distributed along a line of length ,, the linear 
charge density l is defined by

l ;
Q

,

	 where l has units of coulombs per meter (C/m).

� Electric field due to 
a continuous charge 

distribution

Volume charge density 

Surface charge density 

Linear charge density 

r1r2 r3

ˆ

P

r1

r̂2

r̂3

�q1

�E1

�E3
�E2

S

S
S

�q2

�q3

Figure 23.14  ​The electric field 
at P due to a continuous charge dis-
tribution is the vector sum of the 
fields D E

S

i due to all the elements 
Dqi of the charge distribution. 
Three sample elements are shown.
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•	 If the charge is nonuniformly distributed over a volume, surface, or line, the 
amounts of charge dq in a small volume, surface, or length element are

dq 5 r dV  ​  dq 5 s dA    dq 5 l d,

Problem-Solving Strategy	    Calculating the Electric Field

The following procedure is recommended for solving problems that involve the 
determination of an electric field due to individual charges or a charge distribution.

1.	 Conceptualize. Establish a mental representation of the problem: think carefully 
about the individual charges or the charge distribution and imagine what type of 
electric field it would create. Appeal to any symmetry in the arrangement of charges 
to help you visualize the electric field.

2.	Categorize. Are you analyzing a group of individual charges or a continuous charge 
distribution? The answer to this question tells you how to proceed in the Analyze step.

3.	Analyze.

(a) If you are analyzing a group of individual charges, use the superposition prin-
ciple: when several point charges are present, the resultant field at a point in space 
is the vector sum of the individual fields due to the individual charges (Eq. 23.10). 
Be very careful in the manipulation of vector quantities. It may be useful to review 
the material on vector addition in Chapter 3. Example 23.6 demonstrated this 
procedure.

(b) If you are analyzing a continuous charge distribution, the superposition principle 
is applied by replacing the vector sums for evaluating the total electric field from 
individual charges by vector integrals. The charge distribution is divided into infini-
tesimal pieces, and the vector sum is carried out by integrating over the entire charge 
distribution (Eq. 23.11). Examples 23.7 through 23.9 demonstrate such procedures.

	 Consider symmetry when dealing with either a distribution of point charges or a 
continuous charge distribution. Take advantage of any symmetry in the system you 
observed in the Conceptualize step to simplify your calculations. The cancellation 
of field components perpendicular to the axis in Example 23.8 is an example of the 
application of symmetry.

4.	Finalize. Check to see if your electric field expression is consistent with the mental 
representation and if it reflects any symmetry that you noted previously. Imagine 
varying parameters such as the distance of the observation point from the charges or 
the radius of any circular objects to see if the mathematical result changes in a rea-
sonable way.

Example 23.7	     The Electric Field Due to a Charged Rod

A rod of length , has a uniform positive charge per unit length l 
and a total charge Q. Calculate the electric field at a point P that 
is located along the long axis of the rod and a distance a from 
one end (Fig. 23.15).

Conceptualize  ​The field d E
S

 at P due to each segment of charge 
on the rod is in the negative x direction because every segment 
carries a positive charge. Figure 23.15 shows the appropriate 
geometry. In our result, we expect the electric field to become 
smaller as the distance a becomes larger because point P  is farther from the charge distribution.

S o l u ti  o n

x

y

�
a

P
x

dx

E
S

 

Figure 23.15  ​(Example 23.7) The electric field at P 
due to a uniformly charged rod lying along the x axis.

continued
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Finalize  ​We see that our prediction is correct; if a becomes larger, the denominator of the fraction grows larger, and E 
becomes smaller. On the other hand, if a → 0, which corresponds to sliding the bar to the left until its left end is at the 
origin, then E → .̀  That represents the condition in which the observation point P is at zero distance from the charge 
at the end of the rod, so the field becomes infinite. We explore large values of a below.

Suppose point P is very far away from the rod. What is the nature of the electric field at such a point?

Answer  ​ If P is far from the rod (a .. ,), then , in the denominator of Equation (1) can be neglected and E < keQ/a2. 
That is exactly the form you would expect for a point charge. Therefore, at large values of a/,, the charge distribution 
appears to be a point charge of magnitude Q ; the point P is so far away from the rod we cannot distinguish that it has 
a size. The use of the limiting technique (a/, S `) is often a good method for checking a mathematical expression.

What If ?

Find the magnitude of the electric field at P due to one 
segment of the rod having a charge dq :

dE 5 ke 
dq

x2 5 ke 
l dx
x2

Find the total field at P using4 Equation 23.11: E 5 3
,1a

a
 ke l 

dx
x2

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral:

E 5 ke l 3
,1a

a
 
dx
x2 5 ke l c2 1

x
d

,1a

a

(1)   E 5 ke 
Q

,
a1

a
2

1
, 1 a

b 5
keQ

a 1, 1 a 2

4To carry out integrations such as this one, first express the charge element dq in terms of the other variables in the 
integral. (In this example, there is one variable, x, so we made the change dq 5 l dx.) The integral must be over sca-
lar quantities; therefore, express the electric field in terms of components, if necessary. (In this example, the field 
has only an x component, so this detail is of no concern.) Then, reduce your expression to an integral over a single 
variable (or to multiple integrals, each over a single variable). In examples that have spherical or cylindrical symme-
try, the single variable is a radial coordinate.

Example 23.8	     The Electric Field of a Uniform Ring of Charge

A ring of radius a carries a uniformly dis-
tributed positive total charge Q. Calcu-
late the electric field due to the ring at a 
point P lying a distance x from its center 
along the central axis perpendicular to 
the plane of the ring (Fig. 23.16a).

Conceptualize  ​Figure 23.16a shows the 
electric field contribution d E

S
 at P due 

to a single segment of charge at the 
top of the ring. This field vector can be 
resolved into components dEx parallel to 

S o l u ti  o n

Categorize  ​Because the rod is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges. Because every segment of the rod produces an electric field in the negative x direc-
tion, the sum of their contributions can be handled without the need to add vectors.

Analyze  ​Let’s assume the rod is lying along the x axis, dx is the length of one small segment, and dq is the charge on 
that segment. Because the rod has a charge per unit length l, the charge dq on the small segment is dq 5 l dx.

▸ 23.7 c o n t i n u e d

a b

u P dEx

dE›

r

dq

a

x
x

x
x u

1

2
dE

S

dE2

dE1

S

S

Figure 23.16  ​(Example 23.8) A uniformly charged ring of radius a. (a) The field 
at P on the x axis due to an element of charge dq. (b) The total electric field at P is 
along the x axis. The perpendicular component of the field at P due to segment 1 is 
canceled by the perpendicular component due to segment 2.
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the axis of the ring and dE� perpendicular to the axis. Figure 23.16b shows the electric field contributions from two 
segments on opposite sides of the ring. Because of the symmetry of the situation, the perpendicular components of the 
field cancel. That is true for all pairs of segments around the ring, so we can ignore the perpendicular component of 
the field and focus solely on the parallel components, which simply add.

Categorize  ​Because the ring is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges.

continued

	

▸ 23.8 c o n t i n u e d

​Suppose a negative charge is placed at the 
center of the ring in Figure 23.16 and displaced slightly 
by a distance x ,, a along the x axis. When the charge is 
released, what type of motion does it exhibit?

Answer  ​In the expression for the field due to a ring of 
charge, let x ,, a, which results in

Ex 5
keQ

a3  x

What If ? Therefore, from Equation 23.8, the force on a charge 2q 
placed near the center of the ring is

Fx 5 2
keqQ

a3  x

Because this force has the form of Hooke’s law (Eq. 15.1), 
the motion of the negative charge is described with the  
particle in simple harmonic motion model!

Analyze  ​Evaluate the parallel component of an electric 
field contribution from a segment of charge dq on the ring:

(1)   dEx 5 ke 
dq

r 2 cos u 5 ke 
dq

a 2 1 x2 cos u

From the geometry in Figure 23.16a, evaluate cos u: (2)   cos u 5
x
r

5
x

1a 2 1 x 2 21/2

Substitute Equation (2) into Equation (1): dEx 5 ke 
dq

a 2 1 x 2  c x
1a 2 1 x 2 21/2 d 5

kex
1a 2 1 x2 23/2 dq

All segments of the ring make the same contribution to 
the field at P because they are all equidistant from this 
point. Integrate over the circumference of the ring to 
obtain the total field at P :

Ex 5 3 
kex

1a 2 1 x2 23/2 dq 5
kex

1a 2 1 x 2 23/2 3 dq

(3)   E 5 
kex

1a 2 1 x2 23/2 Q

Finalize  ​This result shows that the field is zero at x 5 0. Is that consistent with the symmetry in the problem? Further-
more, notice that Equation (3) reduces to keQ /x 2 if x .. a, so the ring acts like a point charge for locations far away 
from the ring. From a faraway point, we cannot distinguish the ring shape of the charge.

Example 23.9	     The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density s. Calculate the electric 
field at a point P that lies along the central perpendicular axis of the disk and a 
distance x from the center of the disk (Fig. 23.17).

Conceptualize  ​If the disk is considered to be 
a set of concentric rings, we can use our result 
from Example 23.8—which gives the field cre-
ated by a single ring of radius a—and sum the 
contributions of all rings making up the disk. By symmetry, the field at an axial point must be along the central axis.

S o l u ti  o n
P

x

r

R

dq

dr

x
Figure 23.17  ​(Example 23.9) A 
uniformly charged disk of radius R. 
The electric field at an axial point P 
is directed along the central axis, per-
pendicular to the plane of the disk.
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Finalize  ​This result is valid for all values of x . 0. For large values of x, the result above can be evaluated by a series 
expansion and shown to be equivalent to the electric field of a point charge Q . We can calculate the field close to the 
disk along the axis by assuming x ,, R ; in this case, the expression in brackets reduces to unity to give us the near-
field approximation

E 5 2pke s 5
s

2P0

where P0 is the permittivity of free space. In Chapter 24, we obtain the same result for the field created by an infinite 
plane of charge with uniform surface charge density.

What if we let the radius of the disk grow so that the disk becomes an infinite plane of charge? 

Answer  The result of letting R S ̀  in the final result of the example is that the magnitude of the electric field becomes

E 5 2pke s 5
s

2P0

This is the same expression that we obtained for x ,, R . If R S ,̀ everywhere is near-field—the result is independent 
of the position at which you measure the electric field. Therefore, the electric field due to an infinite plane of charge 
is uniform throughout space. 
     An infinite plane of charge is impossible in practice. If two planes of charge are placed close to each other, however, 
with one plane positively charged, and the other negatively, the electric field between the plates is very close to uni-
form at points far from the edges. Such a configuration will be investigated in Chapter 26.

What If ?

Categorize  ​Because the disk is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges.

Analyze  ​Find the amount of charge dq on the surface area 
of a ring of radius r and width dr as shown in Figure 23.17:

dq 5 s dA 5 s 12pr dr 2 5 2psr dr

Use this result in the equation given for Ex in Exam-
ple 23.8 (with a replaced by r and Q replaced by dq) 
to find the field due to the ring:

dEx 5
kex

1r 2 1 x 2 23/2
12psr dr 2

To obtain the total field at P, integrate this expres-
sion over the limits r 5 0 to r 5 R, noting that x is a 
constant in this situation:

 Ex 5 kex ps3
R

0
 

2r dr
1r 2 1 x 2 23/2

 5 kex ps3
R

0
1r 2 1 x2 223/2d 1r 2 2

 5 kex ps c 1r
2 1 x2 221/2

21/2
d

R

0
5 2pke s c1 2

x
1R 2 1 x2 21/2 d

	

▸ 23.9 c o n t i n u e d

23.6	 Electric Field Lines
We have defined the electric field in the mathematical representation with Equa-
tion 23.7. Let’s now explore a means of visualizing the electric field in a pictorial 
representation. A convenient way of visualizing electric field patterns is to draw 
lines, called electric field lines and first introduced by Faraday, that are related to 
the electric field in a region of space in the following manner:

•	The electric field vector E
S

 is tangent to the electric field line at each point. 
The line has a direction, indicated by an arrowhead, that is the same as that 
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of the electric field vector. The direction of the line is that of the force on a 
positive charge placed in the field according to the particle in a field model.

•	The number of lines per unit area through a surface perpendicular to the 
lines is proportional to the magnitude of the electric field in that region. 
Therefore, the field lines are close together where the electric field is strong 
and far apart where the field is weak.

	 These properties are illustrated in Figure 23.18. The density of field lines 
through surface A is greater than the density of lines through surface B. Therefore, 
the magnitude of the electric field is larger on surface A than on surface B. Fur-
thermore, because the lines at different locations point in different directions, the 
field is nonuniform.
	 Is this relationship between strength of the electric field and the density of field 
lines consistent with Equation 23.9, the expression we obtained for E using Coulomb’s 
law? To answer this question, consider an imaginary spherical surface of radius r con-
centric with a point charge. From symmetry, we see that the magnitude of the electric 
field is the same everywhere on the surface of the sphere. The number of lines N that 
emerge from the charge is equal to the number that penetrate the spherical surface. 
Hence, the number of lines per unit area on the sphere is N/4pr 2 (where the surface 
area of the sphere is 4pr 2). Because E is proportional to the number of lines per unit 
area, we see that E varies as 1/r 2; this finding is consistent with Equation 23.9.
	 Representative electric field lines for the field due to a single positive point 
charge are shown in Figure 23.19a. This two-dimensional drawing shows only the 
field lines that lie in the plane containing the point charge. The lines are actually 
directed radially outward from the charge in all directions; therefore, instead of 
the flat “wheel” of lines shown, you should picture an entire spherical distribution 
of lines. Because a positive charge placed in this field would be repelled by the 
positive source charge, the lines are directed radially away from the source charge. 
The electric field lines representing the field due to a single negative point charge 
are directed toward the charge (Fig. 23.19b). In either case, the lines are along the 
radial direction and extend all the way to infinity. Notice that the lines become 
closer together as they approach the charge, indicating that the strength of the 
field increases as we move toward the source charge.
	 The rules for drawing electric field lines are as follows:

•	The lines must begin on a positive charge and terminate on a negative 
charge. In the case of an excess of one type of charge, some lines will begin 
or end infinitely far away.

B
A

The magnitude of the 
field is greater on surface 
A than on surface B.

Figure 23.18  ​Electric field lines 
penetrating two surfaces. 

q –q

a b

For a positive point charge, 
the field lines are directed 
radially outward.

For a negative point charge, 
the field lines are directed 
radially inward. 

� �

Figure 23.19  ​The electric field 
lines for a point charge. Notice 
that the figures show only those 
field lines that lie in the plane of 
the page.

Pitfall Prevention 23.2
Electric Field Lines Are Not Paths  
of Particles!  Electric field lines 
represent the field at various loca-
tions. Except in very special cases, 
they do not represent the path of 
a charged particle moving in an 
electric field.
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•	The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

•	No two field lines can cross.

	 We choose the number of field lines starting from any object with a positive 
charge q1 to be Cq1 and the number of lines ending on any object with a nega-
tive charge q2 to be C uq2u, where C is an arbitrary proportionality constant. Once  
C is chosen, the number of lines is fixed. For example, in a two-charge system, if 
object 1 has charge Q 1 and object 2 has charge Q 2, the ratio of number of lines in 
contact with the charges is N2/N1 5 uQ 2/Q 1u. The electric field lines for two point 
charges of equal magnitude but opposite signs (an electric dipole) are shown in 
Figure 23.20. Because the charges are of equal magnitude, the number of lines that 
begin at the positive charge must equal the number that terminate at the negative 
charge. At points very near the charges, the lines are nearly radial, as for a single 
isolated charge. The high density of lines between the charges indicates a region of 
strong electric field.
	 Figure 23.21 shows the electric field lines in the vicinity of two equal positive 
point charges. Again, the lines are nearly radial at points close to either charge, 
and the same number of lines emerges from each charge because the charges are 
equal in magnitude. Because there are no negative charges available, the electric 
field lines end infinitely far away. At great distances from the charges, the field is 
approximately equal to that of a single point charge of magnitude 2q.
	 Finally, in Figure 23.22, we sketch the electric field lines associated with a posi-
tive charge 12q and a negative charge 2q. In this case, the number of lines leaving 
12q is twice the number terminating at 2q. Hence, only half the lines that leave the 
positive charge reach the negative charge. The remaining half terminate on a nega-
tive charge we assume to be at infinity. At distances much greater than the charge 
separation, the electric field lines are equivalent to those of a single charge 1q.

Q	 uick Quiz 23.5 ​ Rank the magnitudes of the electric field at points A, B, and C 
shown in Figure 23.21 (greatest magnitude first).

Pitfall Prevention 23.3
Electric Field Lines Are Not Real   
Electric field lines are not mate-
rial objects. They are used only 
as a pictorial representation to 
provide a qualitative description 
of the electric field. Only a finite 
number of lines from each charge 
can be drawn, which makes it 
appear as if the field were quan-
tized and exists only in certain 
parts of space. The field, in fact, 
is continuous, existing at every 
point. You should avoid obtain-
ing the wrong impression from a 
two-dimensional drawing of field 
lines used to describe a three-
dimensional situation.

The number of field lines leaving 
the positive charge equals the 
number terminating at the 
negative charge.

� �

Figure 23.20  ​The electric field 
lines for two point charges of 
equal magnitude and opposite 
sign (an electric dipole). 

C

A

B

� �

Figure 23.21  ​The electric field 
lines for two positive point charges. 
(The locations A, B, and C are dis-
cussed in Quick Quiz 23.5.)

Figure 23.22  The electric field 
lines for a point charge +2q and a 
second point charge 2q. 

�2q �q

Two field lines leave �2q for every 
one that terminates on �q.

� �

23.7	 �Motion of a Charged Particle in a Uniform 
Electric Field

When a particle of charge q and mass m is placed in an electric field E
S

,  the electric 
force exerted on the charge is q E

S
 according to Equation 23.8 in the particle in a 
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field model. If that is the only force exerted on the particle, it must be the net force, 
and it causes the particle to accelerate according to the particle under a net force 
model. Therefore,

F
S

e 5 q E
S

5 m aS

and the acceleration of the particle is

	 aS 5
q E

S

m
	 (23.12)

If E
S

 is uniform (that is, constant in magnitude and direction), and the particle 
is free to move, the electric force on the particle is constant and we can apply the 
particle under constant acceleration model to the motion of the particle. There-
fore, the particle in this situation is described by three analysis models: particle 
in a field, particle under a net force, and particle under constant acceleration! If 
the particle has a positive charge, its acceleration is in the direction of the elec-
tric field. If the particle has a negative charge, its acceleration is in the direction 
opposite the electric field.

Pitfall Prevention 23.4
Just Another Force  Electric forces 
and fields may seem abstract to 
you. Once F

S

e  is evaluated, how-
ever, it causes a particle to move 
according to our well-established 
models of forces and motion from 
Chapters 2 through 6. Keeping 
this link with the past in mind 
should help you solve problems in 
this chapter.

Example 23.10	     An Accelerating Positive Charge: Two Models 

A uniform electric field E
S

 is directed along the x axis between parallel plates of charge 
separated by a distance d as shown in Figure 23.23. A positive point charge q of mass m is 
released from rest at a point A next to the positive plate and accelerates to a point B next to 
the negative plate.

(A)  ​Find the speed of the particle at B by modeling it as a particle under constant 
acceleration.

Conceptualize  ​When the positive charge is placed at A, 
it experiences an electric force toward the right in Figure 
23.23 due to the electric field directed toward the right. As 
a result, it will accelerate to the right and arrive at B with 
some speed.

Categorize  ​Because the electric field is uniform, a constant 
electric force acts on the charge. Therefore, as suggested in 
the discussion preceding the example and in the problem statement, the point charge can be modeled as a charged 
particle under constant acceleration.

AM

S o l u ti  o n

continued
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Figure 23.23  ​(Example 23.10) 
A positive point charge q in a uni-
form electric field E

S
 undergoes 

constant acceleration in the direc-
tion of the field.

Analyze  ​Use Equation 2.17 to express the velocity of the 
particle as a function of position:

vf
2 5 vi

2 1 2a(xf 2 xi) 5 0 1 2a(d 2 0) 5 2ad

Solve for vf and substitute for the magnitude of the accel-
eration from Equation 23.12:

vf 5 "2ad 5 Å2 aqE

m
bd 5 Å

2qEd

m

(B)  ​Find the speed of the particle at B by modeling it as a nonisolated system in terms of energy.

Categorize  ​The problem statement tells us that the charge is a nonisolated system for energy. The electric force, like any 
force, can do work on a system. Energy is transferred to the system of the charge by work done by the electric force 
exerted on the charge. The initial configuration of the system is when the particle is at rest at A, and the final configu-
ration is when it is moving with some speed at B.

S o l u ti  o n
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Example 23.11	     An Accelerated Electron 

An electron enters the region of a uniform electric field as shown 
in Figure 23.24, with vi 5 3.00 3 106 m/s and E 5 200 N/C. The 
horizontal length of the plates is , 5 0.100 m.

(A)  ​Find the acceleration of the electron while it is in the elec-
tric field.

Conceptualize  ​This example differs from the preceding one 
because the velocity of the charged particle is initially perpen-
dicular to the electric field lines. (In Example 23.10, the veloc-
ity of the charged particle is always parallel to the electric field 
lines.) As a result, the electron in this example follows a curved 
path as shown in Figure  23.24. The motion of the electron is 
the same as that of a massive particle projected horizontally in a 
gravitational field near the surface of the Earth.

Categorize  ​The electron is a particle in a field (electric). Because the electric field is uniform, a constant electric force is 
exerted on the electron. To find the acceleration of the electron, we can model it as a particle under a net force.

Analyze  ​From the particle in a field model, we know that the direction of the electric force on the electron is down-
ward in Figure 23.24, opposite the direction of the electric field lines. From the particle under a net force model, 
therefore, the acceleration of the electron is downward.

AM

S o l u ti  o n

Replace the work and kinetic energies with values appro-
priate for this situation:

Fe Dx 5 K B 2 K A 5 1
2mvf

2 2 0   S   vf 5 Å
2Fe Dx

m

Analyze  ​Write the appropriate reduction of the conser-
vation of energy equation, Equation 8.2, for the system of 
the charged particle:

W 5 DK

Substitute for the magnitude of the electric force Fe from 
the particle in a field model and the displacement Dx:

vf 5 Å
2 1qE 2 1d 2

m
5 Å

2qEd
m

Finalize  ​The answer to part (B) is the same as that for part (A), as we expect. This problem can be solved with different 
approaches. We saw the same possibilities with mechanical problems.

(0, 0)

�

(x, y)

vi î
�

�
vS

x

y

The electron undergoes a downward 
acceleration (opposite E), and its motion 
is parabolic while it is between the plates.

S

E
S
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Figure 23.24  (Example 23.11) An electron is pro-
jected horizontally into a uniform electric field pro-
duced by two charged plates.

Substitute numerical values: ay 5 2
11.60 3 10219 C 2 1200 N/C 2

9.11 3 10231 kg
5  23.51 3 1013 m/s2

The particle under a net force model was used to develop 
Equation 23.12 in the case in which the electric force on 
a particle is the only force. Use this equation to evaluate 
the y component of the acceleration of the electron:

ay 5 2
eE
me

 

(B)  ​Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

Categorize  ​Because the electric force acts only in the vertical direction in Figure 23.24, the motion of the particle in 
the horizontal direction can be analyzed by modeling it as a particle under constant velocity.

S o l u ti  o n

	

▸ 23.10 c o n t i n u e d
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Substitute numerical values: t 5
, 2 0

vx
5

0.100 m
3.00 3 106 m/s

5  3.33 3 1028 s

Analyze  ​Solve Equation 2.7 for the time at which the 
electron arrives at the right edges of the plates:

xf 5 xi 1 vx t   S   t 5
xf 2 xi

vx

(C)  ​Assuming the vertical position of the electron as it enters the field is yi 5 0, what is its vertical position when it 
leaves the field?

Categorize  ​Because the electric force is constant in Figure 23.24, the motion of the particle in the vertical direction 
can be analyzed by modeling it as a particle under constant acceleration.

S o l u ti  o n

Substitute numerical values: yf 5 0 1 0 1 1
2 123.51 3 1013 m/s2 2 13.33 3 1028 s 22 

5 20.019 5 m 5   21.95 cm

Analyze  ​Use Equation 2.16 to describe the position of 
the particle at any time t :

yf 5 yi 1 vyi t 1 1
2ayt

2

Finalize  ​If the electron enters just below the negative plate in Figure 23.24 and the separation between the plates is 
less than the value just calculated, the electron will strike the positive plate.
	 Notice that we have used four analysis models to describe the electron in the various parts of this problem. We 
have neglected the gravitational force acting on the electron, which represents a good approximation when dealing 
with atomic particles. For an electric field of 200 N/C, the ratio of the magnitude of the electric force eE to the mag-
nitude of the gravitational force mg is on the order of 1012 for an electron and on the order of 109 for a proton.

continued

▸ 23.11 c o n t i n u e d

	

Summary

  The electric field E
S

 at some point in space is defined as the electric force F
S

e that acts on a small positive test 
charge placed at that point divided by the magnitude q0 of the test charge:

	 E
S

 ;
F
S

e

q 0
	 (23.7)

  Electric charges have the following important properties:

•	 Charges of opposite sign attract one another, and charges of the 
same sign repel one another.

•	 The total charge in an isolated system is conserved.
•	 Charge is quantized.

  Conductors are materials in which 
electrons move freely. Insulators are 
materials in which electrons do not 
move freely.

Definitions 

Concepts and Principles
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  Coulomb’s law states that the electric force exerted by a 
point charge q1 on a second point charge q2 is

	 F
S

12 5 ke 
q1q2

r 2  r̂12	 (23.6)

where r is the distance between the two charges and r̂12 is 
a unit vector directed from q1 toward q2. The constant ke, 
which is called the Coulomb constant, has the value ke 5 
8.988 3 109 N ? m2/C2.

  At a distance r from a point charge q, the elec-
tric field due to the charge is

	 E
S

5 ke 
q

r 2 r̂ 	 (23.9)

where r̂ is a unit vector directed from the charge 
toward the point in question. The electric field is 
directed radially outward from a positive charge 
and radially inward toward a negative charge.

  The electric field at some point due to a continuous charge 
distribution is

	 E
S

5 ke 3 
dq

r 2  r̂	 (23.11)

where dq is the charge on one element of the charge distribution 
and r is the distance from the element to the point in question.

  The electric field due to a group of point 
charges can be obtained by using the super-
position principle. That is, the total electric 
field at some point equals the vector sum of 
the electric fields of all the charges:

	 E
S

5 kea
i

 
qi

ri 2
 r̂i 	 (23.10)

Analysis Models for Problem Solving

  Particle in a Field (Electric)  A source particle with some electric charge establishes an electric 
field E

S

 throughout space. When a particle with charge q is placed in that field, it experiences an 
electric force given by

	 F
S

e 5 q E
S

	 (23.8)

The field lines are parallel to the electron’s velocity 
and pointing in the same direction as the velocity. How 
far does the electron travel before it is brought to rest?  
(a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 m

	 5.	 A point charge of 24.00 nC is located at (0, 1.00) m. 
What is the x component of the electric field due to 
the point charge at (4.00, 22.00) m? (a) 1.15 N/C  
(b) 20.864 N/C (c) 1.44 N/C (d) 21.15 N/C (e) 0.864 N/C

	 6.	 A circular ring of charge with radius b has total charge 
q uniformly distributed around it. What is the mag-
nitude of the electric field at the center of the ring? 
(a) 0 (b) keq/b2 (c) keq 2/b2 (d) keq2/b (e) none of those 
answers

	 7.	 What happens when a charged insulator is placed near 
an uncharged metallic object? (a) They repel each 
other. (b) They attract each other. (c) They may attract 
or repel each other, depending on whether the charge 
on the insulator is positive or negative. (d) They exert 
no electrostatic force on each other. (e) The charged 
insulator always spontaneously discharges.

	 8.	 Estimate the magnitude of the electric field due to the 
proton in a hydrogen atom at a distance of 5.29 3 10211 m,  
the expected position of the electron in the atom. 
(a)  10211  N/C (b) 108 N/C (c) 1014 N/C (d) 106 N/C  
(e) 1012 N/C

	 1.	 A free electron and a free proton are released in iden-
tical electric fields. (i) How do the magnitudes of the 
electric force exerted on the two particles compare? 
(a) It is millions of times greater for the electron. (b) It 
is thousands of times greater for the electron. (c) They 
are equal. (d) It is thousands of times smaller for the 
electron. (e) It is millions of times smaller for the elec-
tron. (ii) Compare the magnitudes of their accelera-
tions. Choose from the same possibilities as in part (i).

	 2.	 What prevents gravity from pulling you through the 
ground to the center of the Earth? Choose the best 
answer. (a) The density of matter is too great. (b) The 
positive nuclei of your body’s atoms repel the positive 
nuclei of the atoms of the ground. (c) The density of 
the ground is greater than the density of your body. 
(d) Atoms are bound together by chemical bonds.  
(e) Electrons on the ground’s surface and the surface 
of your feet repel one another.

	 3.	 A very small ball has a mass of 5.00 3 1023 kg and 
a charge of 4.00 mC. What magnitude electric field 
directed upward will balance the weight of the ball so 
that the ball is suspended motionless above the ground?  
(a) 8.21 3 102 N/C (b) 1.22 3 104 N/C (c) 2.00 3 1022 N/C  
(d) 5.11 3 106 N/C (e) 3.72 3 103 N/C

	 4.	 An electron with a speed of 3.00 3 106 m/s moves into 
a uniform electric field of magnitude 1.00 3 103 N/C.  

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	12.	Two point charges attract each other with an electric 
force of magnitude F. If the charge on one of the par-
ticles is reduced to one-third its original value and the 
distance between the particles is doubled, what is the  
resulting magnitude of the electric force between 
them? (a) 1

12 F  (b) 13 F  (c) 16 F  (d) 34 F  (e) 32 F

	13.	Assume a uniformly charged ring of radius R and 
charge Q produces an electric field E ring at a point P on 
its axis, at distance x away from the center of the ring as 
in Figure OQ23.13a. Now the same charge Q is spread 
uniformly over the circular area the ring encloses, 
forming a flat disk of charge with the same radius as in 
Figure OQ23.13b. How does the field E disk produced 
by the disk at P compare with the field produced by 
the ring at the same point? (a) E disk , E ring (b) E disk 5 
E ring (c) E disk . E ring (d) impossible to determine

P
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x
x
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E
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ring 
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x
x
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Figure OQ23.13

	14.	An object with negative charge is placed in a region 
of space where the electric field is directed vertically 
upward. What is the direction of the electric force 
exerted on this charge? (a) It is up. (b) It is down. 
(c) There is no force. (d)  The force can be in any 
direction.

	15.	The magnitude of the electric force between two 
protons is 2.30 3 10226 N. How far apart are they?  
(a) 0.100 m (b)  0.022 0 m (c) 3.10 m (d) 0.005 70 m  
(e) 0.480 m

	 9.	 (i) A metallic coin is given a positive electric charge. 
Does its mass (a) increase measurably, (b) increase by 
an amount too small to measure directly, (c) remain 
unchanged, (d)  decrease by an amount too small to 
measure directly, or (e) decrease measurably? (ii) Now 
the coin is given a negative electric charge. What hap-
pens to its mass? Choose from the same possibilities as 
in part (i).

	10.	Assume the charged objects in Figure OQ23.10 are 
fixed. Notice that there is no sight line from the loca-
tion of q2 to the location of q1. If you were at q1, you 
would be unable to see q2 because it is behind q3. How 
would you calculate the electric force exerted on the 
object with charge q1? (a) Find only the force exerted 
by q2 on charge q1. (b) Find only the force exerted by q3 
on charge q1. (c) Add the force that q2 would exert by 
itself on charge q1 to the force that q3 would exert by 
itself on charge q1. (d) Add the force that q3 would 
exert by itself to a certain fraction of the force that q2 
would exert by itself. (e) There is no definite way to 
find the force on charge q1.

x
q1 q2q3

� ��

Figure OQ23.10

	11.	 Three charged particles 
are arranged on corners of 
a square as shown in Fig-
ure OQ23.11, with charge 
2Q on both the particle at 
the upper left corner and 
the particle at the lower 
right corner and with 
charge 12Q on the particle 
at the lower left corner.  
(i) What is the direction of the electric field at the 
upper right corner, which is a point in empty space?  
(a) It is upward and to the right. (b) It is straight to the 
right. (c) It is straight downward. (d) It is downward 
and to the left. (e) It is perpendicular to the plane  
of the picture and outward. (ii) Suppose the 12Q 
charge at the lower left corner is removed. Then does 
the magnitude of the field at the upper right corner 
(a)  become larger, (b) become smaller, (c) stay the 
same, or (d) change unpredictably?

�2Q �Q

�Q

(a)
(e)

(b)

(c)(d)

Figure OQ23.11

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 (a) Would life be different if the electron were posi-
tively charged and the proton were negatively charged? 
(b) Does the choice of signs have any bearing on physi-
cal and chemical interactions? Explain your answers.

	 2.	 A charged comb often attracts small bits of dry paper 
that then fly away when they touch the comb. Explain 
why that occurs.

	 3.	 A person is placed in a large, hollow, metallic sphere 
that is insulated from ground. If a large charge is placed 

on the sphere, will the person be harmed upon touch-
ing the inside of the sphere?

	 4.	 A student who grew up in a tropical country and is 
studying in the United States may have no experience 
with static electricity sparks and shocks until his or her 
first American winter. Explain.

	 5.	 If a suspended object A is attracted to a charged object 
B, can we conclude that A is charged? Explain.
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	 4.	 A charged particle A exerts a force of 2.62 mN to the 
right on charged particle B when the particles are  
13.7 mm apart. Particle B moves straight away from A 
to make the distance between them 17.7 mm. What vec-
tor force does it then exert on A?

	 5.	 In a thundercloud, there may be electric charges of 
140.0 C near the top of the cloud and 240.0 C near the 
bottom of the cloud. These charges are separated by 
2.00 km. What is the electric force on the top charge?

	 6.	 (a) Find the magnitude of the electric force between a 
Na1 ion and a Cl2 ion separated by 0.50 nm. (b) Would 
the answer change if the sodium ion were replaced by 
Li1 and the chloride ion by Br2? Explain.

	 7.	 Review. A molecule of DNA (deoxyribonucleic acid) is 
2.17 mm long. The ends of the molecule become sin-
gly ionized: negative on one end, positive on the other. 
The helical molecule acts like a spring and compresses 
1.00% upon becoming charged. Determine the effec-
tive spring constant of the molecule.

	 8.	 Nobel laureate Richard Feynman (1918–1988) once 
said that if two persons stood at arm’s length from each 
other and each person had 1% more electrons than 
protons, the force of repulsion between them would 
be enough to lift a “weight” equal to that of the entire 
Earth. Carry out an order-of-magnitude calculation to 
substantiate this assertion.

	 9.	 A 7.50-nC point charge is located 1.80 m from a  
4.20-nC point charge. (a) Find the magnitude of the 

Q/C

BIO

Q/C

Section 23.1 ​ Properties of Electric Charges
	 1.	 Find to three significant digits the charge and the mass 

of the following particles. Suggestion: Begin by looking 
up the mass of a neutral atom on the periodic table of 
the elements in Appendix C. (a) an ionized hydrogen 
atom, represented as H1 (b) a singly ionized sodium 
atom, Na1 (c) a chloride ion Cl2 (d) a doubly ionized 
calcium atom, Ca11 5 Ca21 (e) the center of an ammo-
nia molecule, modeled as an N32 ion (f) quadruply 
ionized nitrogen atoms, N41, found in plasma in a hot 
star (g) the nucleus of a nitrogen atom (h) the molecu-
lar ion H2O2

	 2.	 (a) Calculate the number of electrons in a small, elec-
trically neutral silver pin that has a mass of 10.0 g. 
Silver has 47 electrons per atom, and its molar mass 
is 107.87 g/mol. (b) Imagine adding electrons to the 
pin until the negative charge has the very large value  
1.00 mC. How many electrons are added for every 109 
electrons already present?

Section 23.2 ​ Charging Objects by Induction
Section 23.3 ​ Coulomb’s Law
	 3.	 Two protons in an atomic nucleus are typically sepa-

rated by a distance of 2 3 10215 m. The electric repul-
sive force between the protons is huge, but the attractive 
nuclear force is even stronger and keeps the nucleus 
from bursting apart. What is the magnitude of the 
electric force between two protons separated by 2.00 3 
10215 m?

W

	 8.	 Why must hospital personnel wear special conducting 
shoes while working around oxygen in an operating 
room? What might happen if the personnel wore shoes 
with rubber soles?

	 9.	 A balloon clings to a wall after it is negatively charged 
by rubbing. (a) Does that occur because the wall is posi-
tively charged? (b) Why does the balloon eventually fall?

	10.	Consider two electric dipoles in empty space. Each 
dipole has zero net charge. (a) Does an electric force 
exist between the dipoles; that is, can two objects with 
zero net charge exert electric forces on each other?  
(b) If so, is the force one of attraction or of repulsion?

	11.	 A glass object receives a positive charge by rubbing 
it with a silk cloth. In the rubbing process, have pro-
tons been added to the object or have electrons been 
removed from it?

	 6.	 Consider point A in 
Figure CQ23.6 located 
an arbitrary distance 
from two positive point 
charges in otherwise 
empty space. (a) Is it 
possible for an electric 
field to exist at point A 
in empty space? Explain. 
(b) Does charge exist 
at this point? Explain.  
(c) Does a force exist at 
this point? Explain.

	 7.	 In fair weather, there is an electric field at the surface 
of the Earth, pointing down into the ground. What is 
the sign of the electric charge on the ground in this 
situation?

A

� �

Figure CQ23.6

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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	15.	Three charged particles are located at the corners of 
an equilateral triangle as shown in Figure P23.15. Cal-
culate the total electric force on the 7.00-mC charge.

�

�

�

0.500 m

7.00 mC

2.00 mC �4.00 mC

60.0�
x

y

Figure P23.15  Problems 15 and 30.

	16.	Two small metallic spheres, each of 
mass m 5 0.200 g, are suspended as 
pendulums by light strings of length 
L as shown in Figure P23.16. The 
spheres are given the same electric 
charge of 7.2 nC, and they come to 
equilibrium when each string is at 
an angle of u 5 5.008 with the verti-
cal. How long are the strings?

	17.	 Review. In the Bohr theory of the 
hydrogen atom, an electron moves in a circular orbit 
about a proton, where the radius of the orbit is 5.29 3 
10211 m. (a) Find the magnitude of the electric force 
exerted on each particle. (b) If this force causes the 
centripetal acceleration of the electron, what is the 
speed of the electron?

	18.	Particle A of charge 3.00 3 1024 C is at the origin, par-
ticle B of charge 26.00 3 1024 C is at (4.00 m, 0), and 
particle C of charge 1.00 3 1024 C is at (0, 3.00 m). We 
wish to find the net electric force on C. (a) What is the 
x component of the electric force exerted by A on C? 
(b) What is the y component of the force exerted by A 
on C? (c) Find the magnitude of the force exerted by B 
on C. (d)  Calculate the x component of the force 
exerted by B on C. (e) Calculate the y component of 
the force exerted by B on C. (f) Sum the two x compo-
nents from parts (a) and (d) to obtain the resultant x 
component of the electric force acting on C. (g) Simi-
larly, find the y component of the resultant force vector 
acting on C. (h) Find the magnitude and direction of 
the resultant electric force acting on C.

	19.	 A point charge 12Q is at 
the origin and a point 
charge 2Q is located 
along the x axis at x  5 d 
as in Figure P23.19. Find 
a symbolic expression for 
the net force on a third 
point charge 1Q located 
along the y axis at y 5 d.

	20.	Review. Two identical 
particles, each having charge 1q, are fixed in space 
and separated by a distance d. A third particle with 
charge 2Q  is free to move and lies initially at rest on the  

M

L

m m

θ

Figure P23.16
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Figure P23.19
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electric force that one particle exerts on the other.  
(b) Is the force attractive or repulsive?

	10.	(a) Two protons in a molecule are 3.80 3 10210 m 
apart. Find the magnitude of the electric force exerted 
by one proton on the other. (b) State how the mag-
nitude of this force compares with the magnitude of 
the gravitational force exerted by one proton on the 
other. (c) What If? What must be a particle’s charge-to-
mass ratio if the magnitude of the gravitational force 
between two of these particles is equal to the magni-
tude of electric force between them?

	11.	 Three point charges are arranged as shown in Figure 
P23.11. Find (a) the magnitude and (b) the direction 
of the electric force on the particle at the origin.

0.100 m
x

–3.00 nC

5.00 nC 0.300 m 6.00 nC

y

��

�

Figure P23.11  Problems 11 and 35.

	12.	Three point charges lie along a straight line as shown 
in Figure P23.12, where q1 5 6.00 mC, q2 5 1.50 mC, 
and q3 5 22.00 mC. The separation distances are d1 5 
3.00 cm and d2 5 2.00 cm. Calculate the magnitude 
and direction of the net electric force on (a) q1, (b) q2, 
and (c) q3.

�� �

q1

d1

q2

d2

q3

Figure P23.12

	13.	Two small beads having positive charges q1 5 3q and  
q2 5 q are fixed at the opposite ends of a horizontal 
insulating rod of length d 5 1.50 m. The bead with 
charge q1 is at the origin. As shown in Figure P23.13, 
a third small, charged bead is free to slide on the rod. 
(a) At what position x is the third bead in equilibrium? 
(b) Can the equilibrium be stable?

d

��

q1 q2

x

x

Figure P23.13  Problems 13 and 14.

	14.	Two small beads having charges q1 and q2 of the same 
sign are fixed at the opposite ends of a horizontal insu-
lating rod of length d. The bead with charge q1 is at 
the origin. As shown in Figure P23.13, a third small, 
charged bead is free to slide on the rod. (a) At what 
position x is the third bead in equilibrium? (b) Can the 
equilibrium be stable?
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	27.	Two equal positively 
charged particles are at 
opposite corners of a trap-
ezoid as shown in Figure 
P23.27. Find symbolic 
expressions for the total 
electric field at (a) the 
point P and (b) the point P 9.

	28.	Consider n equal positively charged particles each of 
magnitude Q /n placed symmetrically around a circle 
of radius a. (a) Calculate the magnitude of the elec-
tric field at a point a distance x from the center of the 
circle and on the line passing through the center and 
perpendicular to the plane of the circle. (b) Explain 
why this result is identical to the result of the calcula-
tion done in Example 23.8.

	29.	In Figure P23.29, determine the point (other than 
infinity) at which the electric field is zero.

1.00 m

�2.50 mC 6.00 mC
��

Figure P23.29

	30.	Three charged particles are at the corners of an equi-
lateral triangle as shown in Figure P23.15. (a) Calcu-
late the electric field at the position of the 2.00-mC 
charge due to the 7.00-mC and 24.00-mC charges.  
(b) Use your answer to part (a) to determine the force 
on the 2.00-mC charge.

	31.	 Three point charges are located on a circular arc as 
shown in Figure P23.31. (a) What is the total electric 
field at P, the center of the arc? (b) Find the elec-
tric force that would be exerted on a 25.00-nC point 
charge placed at P.

S
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perpendicular bisector of the 
two fixed charges a distance x 
from the midpoint between those 
charges (Fig. P23.20). (a) Show 
that if x is small compared with 
d, the motion of 2Q is simple 
harmonic along the perpendicu-
lar bisector. (b) Determine the 
period of that motion. (c) How 
fast will the charge 2Q be mov-
ing when it is at the midpoint 
between the two fixed charges if 
initially it is released at a distance 
a ,, d from the midpoint?

	21.	 Two identical conducting small spheres are placed with 
their centers 0.300 m apart. One is given a charge of 
12.0 nC and the other a charge of 218.0 nC. (a) Find 
the electric force exerted by one sphere on the other. 
(b) What If? The spheres are connected by a conduct-
ing wire. Find the electric force each exerts on the 
other after they have come to equilibrium.

	22.	Why is the following situation impossible? Two identical 
dust particles of mass 1.00 mg are floating in empty 
space, far from any external sources of large gravi-
tational or electric fields, and at rest with respect to 
each other. Both particles carry electric charges that 
are identical in magnitude and sign. The gravitational 
and electric forces between the particles happen to 
have the same magnitude, so each particle experiences 
zero net force and the distance between the particles 
remains constant.

Section 23.4  Analysis Model: Particle in a Field (Electric)

	23.	What are the magnitude and direction of the electric 
field that will balance the weight of (a) an electron and 
(b) a proton? (You may use the data in Table 23.1.)

	24.	A small object of mass 3.80 g and charge 218.0 mC 
is suspended motionless above the ground when 
immersed in a uniform electric field perpendicular to 
the ground. What are the magnitude and direction of 
the electric field?

	25.	Four charged particles are at the corners of a square 
of side a as shown in Figure P23.25. Determine (a) the 
electric field at the location of charge q and (b) the 
total electric force exerted on q.

� �
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3q 4q

2q

Figure P23.25

	26.	Three point charges lie along a circle of radius r at 
angles of 308, 1508, and 2708 as shown in Figure P23.26. 
Find a symbolic expression for the resultant electric 
field at the center of the circle.
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the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and 
(d) 100 cm from the center of the ring.

	40.	The electric field along the axis of a uniformly charged 
disk of radius R and total charge Q was calculated in 
Example 23.9. Show that the electric field at distances 
x that are large compared with R approaches that of  
a particle with charge Q 5 spR 2. Suggestion: First show 
that x/(x 2 1 R 2)1/2 5 (1 1 R 2/x2)21/2 and use the bino-
mial expansion (1 1 d)n < 1 1 nd, when d ,, 1.

	41.	Example 23.9 derives the exact expression for the 
electric field at a point on the axis of a uniformly 
charged disk. Consider a disk of radius R 5 3.00 cm 
having a uniformly distributed charge of 15.20 mC. 
(a) Using the result of Example 23.9, compute the 
electric field at a point on the axis and 3.00 mm from 
the center. (b) What If? Explain how the answer to 
part (a) compares with the field computed from the 
near-field approximation E 5 s/2P0. (We derived this 
expression in Example 23.9.) (c) Using the result of 
Example 23.9, compute the electric field at a point on 
the axis and 30.0 cm from the center of the disk. 
(d) What If? Explain how the answer to part (c) com-
pares with the electric field obtained by treating the 
disk as a 15.20-mC charged particle at a distance of 
30.0 cm.

	42.	A uniformly charged 
rod of length L and total 
charge Q lies along the x 
axis as shown in Figure 
P23.42. (a) Find the com-
ponents of the electric 
field at the point P on the 
y axis a distance d from 
the origin. (b) What are 
the approximate values 
of the field components when d .. L? Explain why you 
would expect these results.

	43.	A continuous line of charge lies along the x axis, 
extending from x 5 1x0 to positive infinity. The line 
carries positive charge with a uniform linear charge 
density l0. What are (a) the magnitude and (b) the 
direction of the electric field at the origin?

	44.	A thin rod of length , and uniform charge per unit 
length l lies along the x axis as shown in Figure P23.44. 
(a) Show that the electric field at P, a distance d from 
the rod along its perpendicular bisector, has no x  
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	32.	Two charged particles are located on the x axis. The first 
is a charge 1Q at x 5 2a. The second is an unknown 
charge located at x 5 13a. The net electric field these 
charges produce at the origin has a magnitude of  
2keQ /a2. Explain how many values are possible for the 
unknown charge and find the possible values.

	33.	A small, 2.00-g plastic ball is suspended by a 20.0-cm-
long string in a uniform electric field as shown in Fig-
ure P23.33. If the ball is in equilibrium when the string 
makes a 15.0° angle with the vertical, what is the net 
charge on the ball? 

L

m = 2.00 g

E = 1.00 � 103  N/C

15.0°

x

y

Figure P23.33

	34.	Two 2.00-mC point charges are located on the x axis. 
One is at x 5 1.00 m, and the other is at x 5 21.00 m.  
(a) Determine the electric field on the y axis at y 5 
0.500 m. (b) Calculate the electric force on a 23.00-mC 
charge placed on the y axis at y 5 0.500 m. 

	35.	Three point charges are arranged as shown in Fig-
ure P23.11. (a) Find the vector electric field that the  
6.00-nC and 23.00-nC charges together create at the 
origin. (b) Find the vector force on the 5.00-nC charge.

	36.	Consider the electric dipole shown in Figure P23.36. 
Show that the electric field at a distant point on the  
1x axis is Ex < 4keqa/x 3.

2a

x
–q q

y

��

Figure P23.36

Section 23.5 ​ Electric Field of a Continuous Charge Distribution

	37.	 A rod 14.0 cm long is uniformly charged and has a total 
charge of 222.0 mC. Determine (a) the magnitude and 
(b) the direction of the electric field along the axis of 
the rod at a point 36.0 cm from its center.

	38.	A uniformly charged disk of radius 35.0 cm carries 
charge with a density of 7.90 3 1023 C/m2. Calculate 
the electric field on the axis of the disk at (a) 5.00 cm, 
(b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the cen-
ter of the disk.

	39.	A uniformly charged ring of radius 10.0 cm has a total 
charge of 75.0 mC. Find the electric field on the axis of 
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Section 23.7 ​ Motion of a Charged Particle  
in a Uniform Electric Field

	51.	 A proton accelerates from rest in a uniform electric 
field of 640 N/C. At one later moment, its speed is 
1.20 Mm/s (nonrelativistic because v is much less than 
the speed of light). (a) Find the acceleration of the pro-
ton. (b) Over what time interval does the proton reach 
this speed? (c) How far does it move in this time inter-
val? (d)  What is its kinetic energy at the end of this 
interval?

	52.	A proton is projected in the positive x direction  
into a region of a uniform electric field E

S
5

126.00 3 105 2  î N/C at t 5 0. The proton travels  
7.00 cm as it comes to rest. Determine (a) the accelera-
tion of the proton, (b) its initial speed, and (c) the time 
interval over which the proton comes to rest.

	53.	An electron and a proton are each placed at rest in 
a uniform electric field of magnitude 520 N/C. Cal-
culate the speed of each particle 48.0 ns after being 
released.

	54.	Protons are projected with an initial speed vi 5 
9.55  km/s from a field-free region through a plane 
and into a region where a uniform electric field  
E
S

5 2720 ĵ N/C is present above the plane as shown 
in Figure P23.54. The initial velocity vector of the  
protons makes an angle u with the plane. The protons 
are to hit a target that lies at a horizontal distance of  
R 5 1.27 mm from the point where the protons cross 
the plane and enter the electric field. We wish to find 
the angle u at which the protons must pass through the  
plane to strike the target. (a) What analysis model 
describes the horizontal motion of the protons above 
the plane? (b) What analysis model describes the verti-
cal motion of the protons above the plane? (c) Argue 
that Equation 4.13 would be applicable to the protons 
in this situation. (d) Use Equation 4.13 to write an 
expression for R in terms of vi , E, the charge and mass 
of the proton, and the angle u. (e) Find the two pos-
sible values of the angle u. (f) Find the time interval 
during which the proton is above the plane in Figure 
P23.54 for each of the two possible values of u.

R
Target�

Proton
beam

u
vi
S

ˆE � �720 j  N/C
S

E � 0 below the plane
S

Figure P23.54

	55.	The electrons in a particle beam each have a kinetic 
energy K. What are (a) the magnitude and (b) the 
direction of the electric field that will stop these elec-
trons in a distance d?

M
AMT
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component and is given by E 5 2ke l sin u0/d. (b) What 
If? Using your result to part (a), show that the field of a 
rod of infinite length is E 5 2ke l/d.

	45.	A uniformly charged insulating rod 
of length 14.0 cm is bent into the 
shape of a semicircle as shown in Fig-
ure P23.45. The rod has a total charge 
of 27.50 mC. Find (a) the magnitude 
and (b) the direction of the electric 
field at O, the center of the semicircle.

	46.	(a) Consider a uniformly charged, 
thin-walled, right circular cylindri-
cal shell having total charge Q , radius R, and length 
,. Determine the electric field at a point a distance 
d from the right side of the cylinder as shown in Fig-
ure P23.46. Suggestion: Use the result of Example 23.8 
and treat the cylinder as a collection of ring charges. 
(b) What If? Consider now a solid cylinder with the 
same dimensions and carrying the same charge, uni-
formly distributed through its volume. Use the result 
of Example 23.9 to find the field it creates at the same 
point.

R
d

Q

,

Figure P23.46

Section 23.6 ​ Electric Field Lines

	47.	 A negatively charged rod of finite length carries charge 
with a uniform charge per unit length. Sketch the elec-
tric field lines in a plane containing the rod.

	48.	A positively charged disk has a uniform charge per 
unit area s as described in Example 23.9. Sketch the 
electric field lines in a plane per-
pendicular to the plane of the 
disk passing through its center.

	49.	Figure P23.49 shows the electric 
field lines for two charged parti-
cles separated by a small distance. 
(a)  Determine the ratio q1/q2.  
(b) What are the signs of q1 and q2?

	50.	Three equal positive charges q 
are at the corners of an equilat-
eral triangle of side a as shown 
in Figure P23.50. Assume the 
three charges together create an 
electric field. (a) Sketch the field 
lines in the plane of the charges. 
(b) Find the location of one point 
(other than `) where the electric 
field is zero. What are (c)  the 
magnitude and (d) the direction 
of the electric field at P due to 
the two charges at the base?

O

Figure P23.45
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Figure P23.49
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the first sphere as in Figure P23.62b, the spring 
stretches by d 5 3.50 cm from its original length and 
reaches a new equilibrium position with a separation 
between the charges of r 5 5.00 cm. What is the force 
constant of the spring?

d

r

k k

�

�

�

a b

q1
q1

q2

Figure P23.62

	63.	A line of charge starts at x 5 1x0 and extends to posi-
tive infinity. The linear charge density is l 5 l0x0/x, 
where l0 is a constant. Determine the electric field at 
the origin.

	64.	A small sphere of mass m 5 7.50 g and charge q1  5  
32.0 nC is attached to the end of a string and hangs 
vertically as in Figure P23.64. A second charge of equal 
mass and charge q2 5 258.0 nC is located below the first 
charge a distance d 5 2.00 cm below the first charge 
as in Figure P23.64. (a) Find the tension in the string.  
(b) If the string can withstand a maximum tension of 
0.180 N, what is the smallest value d can have before the 
string breaks?

�q1

d

�q2

Figure P23.64

	65.	A uniform electric field of magnitude 640 N/C exists 
between two parallel plates that are 4.00 cm apart.  
A proton is released from rest at the positive plate at 
the same instant an electron is released from rest at the 
negative plate. (a)  Determine the distance from the 
positive plate at which the two pass each other. Ignore 
the electrical attraction between the proton and elec-
tron. (b) What If? Repeat part (a) for a sodium ion 
(Na1) and a chloride ion (Cl2).

	66.	Two small silver spheres, each with a mass of 10.0 g, 
are separated by 1.00 m. Calculate the fraction of the 
electrons in one sphere that must be transferred to the 
other to produce an attractive force of 1.00 3 104 N  
(about 1 ton) between the spheres. The number of 
electrons per atom of silver is 47.

S

AMT

	56.	Two horizontal metal plates, each 10.0 cm square, are 
aligned 1.00 cm apart with one above the other. They 
are given equal-magnitude charges of opposite sign 
so that a uniform downward electric field of 2.00 3 
103 N/C exists in the region between them. A particle 
of mass 2.00 3 10216 kg and with a positive charge of  
1.00 3 1026 C leaves the center of the bottom negative 
plate with an initial speed of 1.00 3 105 m/s at an angle 
of 37.08 above the horizontal. (a) Describe the trajec-
tory of the particle. (b) Which plate does it strike?  
(c) Where does it strike, relative to its starting point?

	57.	 A proton moves at 4.50 3 105 m/s in the horizontal 
direction. It enters a uniform vertical electric field with 
a magnitude of 9.60 3 103 N/C. Ignoring any gravita-
tional effects, find (a) the time interval required for 
the proton to travel 5.00 cm horizontally, (b) its verti-
cal displacement during the time interval in which it 
travels 5.00 cm horizontally, and (c) the horizontal and 
vertical components of its velocity after it has traveled 
5.00 cm horizontally.

Additional Problems
	58.	Three solid plastic cylinders all have radius 2.50 cm 

and length 6.00 cm. Find the charge of each cylinder 
given the following additional information about each 
one. Cylinder (a) carries charge with uniform den-
sity 15.0 nC/m2 everywhere on its surface. Cylinder 
(b) carries charge with uniform density 15.0 nC/m2 
on its curved lateral surface only. Cylinder (c) carries 
charge with uniform density 500 nC/m3 throughout 
the plastic.

	59.	Consider an infinite number of identical particles, 
each with charge q, placed along the x axis at distances 
a, 2a, 3a, 4a, . . . from the origin. What is the electric 
field at the origin due to this distribution? Suggestion: 
Use

1 1
1
22 1

1
32 1

1
42 1 . . . 5

p2

6

	60.	A particle with charge 23.00 nC is at the origin, and a 
particle with negative charge of magnitude Q is at  
x 5 50.0 cm. A third particle with a positive charge is in 
equilibrium at x 5 20.9 cm. What is Q?

	61.	 A small block of mass m  
and charge Q is placed on  
an insulated, frictionless, 
inclined plane of angle u as 
in Figure P23.61. An electric 
field is applied parallel to 
the incline. (a) Find an 
expression for the magni-
tude of the electric field that 
enables the block to remain at rest. (b) If m 5 5.40 g,  
Q 5 27.00 mC, and u 5 25.08, determine the magnitude 
and the direction of the electric field that enables the 
block to remain at rest on the incline.

	62.	A small sphere of charge q1 5 0.800 mC hangs from the 
end of a spring as in Figure P23.62a. When another 
small sphere of charge q2 5 20.600 mC is held beneath 

Q/C

M

S

u

m

Q

Figure P23.61
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	73.	Two small spheres hang in equilibrium at the bottom 
ends of threads, 40.0 cm long, that have their top ends 
tied to the same fixed point. One sphere has mass  
2.40 g and charge 1300 nC. The other sphere has the 
same mass and charge 1200 nC. Find the distance 
between the centers of the spheres.

	74.	Why is the following situation impossible? An electron 
enters a region of uniform electric field between two 
parallel plates. The plates are used in a cathode-ray 
tube to adjust the position of an electron beam on a 
distant fluorescent screen. The magnitude of the elec-
tric field between the plates is 200 N/C. The plates are 
0.200 m in length and are separated by 1.50 cm. The 
electron enters the region at a speed of 3.00 3 106 m/s, 
traveling parallel to the plane of the plates in the direc-
tion of their length. It leaves the plates heading toward 
its correct location on the fluorescent screen.

	75.	Review. Two identical blocks resting on a frictionless, 
horizontal surface are connected by a light spring hav-
ing a spring constant k 5 100 N/m and an unstretched 
length Li  5 0.400 m as shown in Figure P23.75a.  
A charge Q is slowly placed on each block, causing the 
spring to stretch to an equilibrium length L 5 0.500 m 
as shown in Figure P23.75b. Determine the value of Q , 
modeling the blocks as charged particles.

k QQ

k

a

b

Li

L

Figure P23.75  Problems 75 and 76.

	76.	Review. Two identical blocks resting on a frictionless, 
horizontal surface are connected by a light spring 
having a spring constant k and an unstretched length 
Li as shown in Figure P23.75a. A charge Q is slowly 
placed on each block, causing the spring to stretch to 
an equilibrium length L as shown in Figure P23.75b. 
Determine the value of Q , modeling the blocks as 
charged particles.

	77.	 Three identical point charges, each of mass m 5  
0.100 kg, hang from three strings as shown in Figure 

S

	67.	 A charged cork ball of 
mass 1.00  g is suspended 
on a light string in the 
presence of a uniform 
electric field as shown in 
Figure P23.67. When E

S
5

13.00 î 1 5.00 ĵ 2 3 105 N/C,
the ball is in equilibrium at  
u 5 37.08. Find (a) the charge 
on the ball and (b) the  
tension in the string.

	68.	A charged cork ball of mass 
m is suspended on a light string in the presence of a 
uniform electric field as shown in Figure P23.67. When 
E
S

5 A î 1 B ĵ,  where A and B are positive quantities, 
the ball is in equilibrium at the angle u. Find (a) the 
charge on the ball and (b) the tension in the string.

	69.	Three charged particles are aligned along the x axis as 
shown in Figure P23.69. Find the electric field at (a) the 
position (2.00 m, 0) and (b) the position (0, 2.00 m).

0.800 m

y

3.00 nC5.00 nC

0.500 m

�4.00 nC
x���

Figure P23.69

	70.	Two point charges qA 5 212.0 mC and qB 5 45.0 mC 
and a third particle with unknown charge qC are 
located on the x axis. The particle qA is at the origin, 
and qB is at x 5 15.0 cm. The third particle is to be 
placed so that each particle is in equilibrium under the 
action of the electric forces exerted by the other two 
particles. (a) Is this situation possible? If so, is it possi-
ble in more than one way? Explain. Find (b) the 
required location and (c) the magnitude and the sign 
of the charge of the third particle.

	71.	 A line of positive charge is 
formed into a semicircle 
of radius R 5 60.0 cm  
as shown in Figure P23.71. 
The charge per unit 
length along the semi-
circle is described by the 
expression l 5 l 0 cos u.  
The total charge on the 
semicircle is 12.0 mC. Cal-
culate the total force on a 
charge of 3.00 mC placed at the center of curvature P.

	72.	Four identical charged particles (q 5 110.0 mC) are 
located on the corners of a rectangle as shown in Fig-
ure P23.72. The dimensions of the rectangle are L 5 
60.0 cm and W 5 15.0 cm. Calculate (a) the magnitude 
and (b) the direction of the total electric force exerted 
on the charge at the lower left corner by the other 
three charges.
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Problems 67 and 68.
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(a) Explain how u1 and u2 are related. (b) Assume u1 and 
u2 are small. Show that the distance r between the 
spheres is approximately

r < a4keQ
2,

mg
b

1/3

	82.	Review. A negatively charged particle 2q is placed at 
the center of a uniformly charged ring, where the ring 
has a total positive charge Q as shown in Figure P23.82. 
The particle, confined to move along the x axis, is 
moved a small distance x along the axis (where x ,, a)  
and released. Show that the particle oscillates in sim-
ple harmonic motion with a frequency given by

f 5
1

2p
ake qQ

ma3 b
1/2

Q

a

x
�q

Figure P23.82

	83.	Review. A 1.00-g cork ball with charge 2.00 mC is sus-
pended vertically on a 0.500-m-long light string in the 
presence of a uniform, downward-directed electric 
field of magnitude E 5 1.00 3 105 N/C. If the ball is 
displaced slightly from the vertical, it oscillates like a 
simple pendulum. (a)  Determine the period of this 
oscillation. (b)  Should the effect of gravitation be 
included in the calculation for part (a)? Explain.

Challenge Problems

	84.	Identical thin rods of length 2a carry equal charges 
1Q uniformly distributed along their lengths. The 
rods lie along the x axis with their centers separated 
by a distance b . 2a (Fig. P23.84). Show that the mag-
nitude of the force exerted by the left rod on the right 
one is

F 5 akeQ
2

4a 2 b ln a b 2

b 2 2 4a 2 b

b

y

a�a b � a b � a
x

Figure P23.84

	85.	Eight charged particles, each of magnitude q, are 
located on the corners of a cube of edge s as shown in 
Figure P23.85 (page 724). (a) Determine the x, y, and 
z components of the total force exerted by the other 
charges on the charge located at point A. What are 

S

Q/C

S

S

P23.77. If the lengths of the left and right strings are 
each L 5 30.0 cm and the angle u is 45.08, determine 
the value of q.

L L

�q �q

mmm

�q

θ θ

� ��

Figure P23.77

	78.	Show that the maximum magnitude E max of the elec-
tric field along the axis of a uniformly charged ring 
occurs at x 5 a/!2 (see Fig. 23.16) and has the value 
Q / 16!3pP0a

2 2 .
	79.	Two hard rubber spheres, each of mass m 5 15.0 g, are 

rubbed with fur on a dry day and are then suspended 
with two insulating strings of length L 5 5.00 cm whose 
support points are a distance d 5 3.00 cm from each 
other as shown in Figure P23.79. During the rubbing 
process, one sphere receives exactly twice the charge 
of the other. They are observed to hang at equilibrium, 
each at an angle of u 5 10.08 with the vertical. Find the 
amount of charge on each sphere.

L

d

u u

m m

Figure P23.79

	80.	Two identical beads each have a mass m and charge q. 
When placed in a hemispherical bowl of radius R with 
frictionless, nonconducting walls, the beads move, 
and at equilibrium, they are a distance d apart (Fig. 
P23.80). (a)  Determine the charge q on each bead.  
(b) Determine the charge required for d to become 
equal to 2R.

d

R R

��
mm

Figure P23.80

	81.	 Two small spheres of mass m are suspended from strings 
of length , that are connected at a common point. One 
sphere has charge Q and the other charge 2Q. The 
strings make angles u1 and u2 with the vertical. 

S
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	88.	Inez is putting up decorations for her sister’s quince-
añera (fifteenth birthday party). She ties three light 
silk ribbons together to the top of a gateway and hangs 
a rubber balloon from each ribbon (Fig. P23.88). To 
include the effects of the gravitational and buoyant 
forces on it, each balloon can be modeled as a particle 
of mass 2.00 g, with its center 50.0 cm from the point 
of support. Inez rubs the whole surface of each bal-
loon with her woolen scarf, making the balloons hang 
separately with gaps between them. Looking directly 
upward from below the balloons, Inez notices that 
the centers of the hanging balloons form a horizontal 
equilateral triangle with sides 30.0 cm long. What is 
the common charge each balloon carries?

Figure P23.88

	89.	A line of charge with uniform density 35.0 nC/m lies 
along the line y 5 215.0 cm between the points with 
coordinates x 5 0 and x 5 40.0 cm. Find the electric 
field it creates at the origin.

	90.	A particle of mass m and charge q moves at high speed 
along the x axis. It is initially near x 5 2 ,̀ and it ends 
up near x 5 1 .̀ A second charge Q is fixed at the 
point x 5 0, y 5 2d. As the moving charge passes the 
stationary charge, its x component of velocity does not 
change appreciably, but it acquires a small velocity in 
the y direction. Determine the angle through which 
the moving charge is deflected from the direction of 
its initial velocity.

	91.	 Two particles, each with charge 52.0 nC, are located on 
the y axis at y 5 25.0 cm and y 5 225.0 cm. (a) Find the 
vector electric field at a point on the x axis as a function 
of x. (b) Find the field at x 5 36.0 cm. (c) At what loca-
tion is the field 1.00 î kN/C? You may need a computer 
to solve this equation. (d) At what location is the field  
16.0 î kN/C?

S

Q/C

(b) the magnitude and (c) the direction of this total 
force?
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Figure P23.85  Problems 85 and 86.

	86.	Consider the charge distribution shown in Figure 
P23.85. (a) Show that the magnitude of the electric 
field at the center of any face of the cube has a value 
of 2.18keq /s2. (b) What is the direction of the electric 
field at the center of the top face of the cube?

	87.	 Review. An electric dipole in a uniform horizontal 
electric field is displaced slightly from its equilibrium 
position as shown in Figure P23.87, where u is small. 
The separation of the charges is 2a, and each of the 
two particles has mass m. (a) Assuming the dipole is 
released from this position, show that its angular ori-
entation exhibits simple harmonic motion with a 
frequency

f 5
1

2p Å
qE

ma

		  What If? (b) Suppose the masses of the two charged 
particles in the dipole are not the same even though 
each particle continues to have charge q. Let the 
masses of the particles be m1 and m2. Show that the fre-
quency of the oscillation in this case is

f 5
1

2p Å
qE 1m1 1 m2 2

2am1m2
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S
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Figure P23.87



In a tabletop plasma ball, the colorful 
lines emanating from the sphere 
give evidence of strong electric 
fields. Using Gauss’s law, we show 
in this chapter that the electric field 
surrounding a uniformly charged 
sphere is identical to that of a point 
charge. (Steve Cole/Getty Images)

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s 
Law to Various Charge 
Distributions

24.4 Conductors in Electrostatic 
Equilibrium
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In Chapter 23, we showed how to calculate the electric field due to a given charge 
distribution by integrating over the distribution. In this chapter, we describe Gauss’s law and 
an alternative procedure for calculating electric fields. Gauss’s law is based on the inverse-
square behavior of the electric force between point charges. Although Gauss’s law is a 
direct consequence of Coulomb’s law, it is more convenient for calculating the electric fields 
of highly symmetric charge distributions and makes it possible to deal with complicated 
problems using qualitative reasoning. As we show in this chapter, Gauss’s law is important in 
understanding and verifying the properties of conductors in electrostatic equilibrium.

4.1 Electric Flux
The concept of electric field lines was described qualitatively in Chapter 23. We 
now treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction as 
shown in Figure 24.1. The field lines penetrate a rectangular surface of area 
whose plane is oriented perpendicular to the field. Recall from Section 23.6 that 
the number of lines per unit area (in other words, the line density) is proportional to 
the magnitude of the electric field. Therefore, the total number of lines penetrat
ing the surface is proportional to the product EA. This product of the magnitude 
of the electric field  and surface area  perpendicular to the field is called the 
electric flux  (uppercase Greek letter phi):

(24.1)

Figure 24.1 Field lines repre-
senting a uniform electric field 
penetrating a plane of area  per-
pendicular to the field. 
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From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
	 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A�, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w� 5 w cos u. The area A� is given by A� 5 ,w� 5 ,w cos u and we see that the two 
areas are related by A� 5 A cos u. Because the flux through A equals the flux through 
A�, the flux through A is

	 FE 5 EA� 5 EA cos u	 (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
	 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
	 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S

i whose magnitude represents the area of the i th element of the large 
surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S

i  at the location of this element makes an 
angle ui with the vector D A

S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

	 FE ; 3
surface

E
S

? d A
S

	 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
	 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux 

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  ​Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector �Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

�Ai  
S

Figure 24.3  ​A small element of 
surface area DAi  in an electric field.
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tion 24.3 is part of a closed surface, the direction of the area vector is chosen so 
that the vector points outward from the surface. If the area element is not part of a 
closed surface, the direction of the area vector is chosen so that the angle between 
the area vector and the electric field vector is less than or equal to 90°.
	 Consider the closed surface in Figure 24.4. The vectors D A

S

i point in different 
directions for the various surface elements, but for each element they are normal to 
the surface and point outward. At the element labeled , the field lines are cross-
ing the surface from the inside to the outside and u , 908; hence, the flux FE,1 5
E
S

? D A
S

1 through this element is positive. For element , the field lines graze the 
surface (perpendicular to D A

S

2); therefore, u 5 908 and the flux is zero. For ele-
ments such as , where the field lines are crossing the surface from outside to 
inside, 1808 . u . 908 and the flux is negative because cos u is negative. The net 
flux through the surface is proportional to the net number of lines leaving the sur-
face, where the net number means the number of lines leaving the surface minus the num-
ber of lines entering the surface. If more lines are leaving than entering, the net flux is 
positive. If more lines are entering than leaving, the net flux is negative. Using the 
symbol r to represent an integral over a closed surface, we can write the net flux FE 
through a closed surface as

	 FE 5 C E
S

? d A
S

5 C En dA	 (24.4)

where En represents the component of the electric field normal to the surface.

Q	 uick Quiz 24.1 ​ Suppose a point charge is located at the center of a spheri-
cal surface. The electric field at the surface of the sphere and the total flux 
through the sphere are determined. Now the radius of the sphere is halved. 

En

En

u
u

E
SE

SE
S

�A3
S

�A2
S

�A1
S

The electric
flux through
this area
element is
negative.  

The electric
flux through
this area
element is
zero. 

The electric
flux through
this area
element is
positive.  













Figure 24.4  A closed surface in 
an electric field. The area vectors 
are, by convention, normal to the 
surface and point outward. 
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24.2	 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.
	 Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the vector D A

S

i repre-
senting a local element of area DAi surrounding the surface point. Therefore,

	 E
S

? D A
S

i 5 E DAi 	

and, from Equation 24.4, we find that the net flux through the gaussian surface is

	 FE 5 C E
S

? d A
S

5 C E dA 5 E C dA 	

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces   
and :

FE 5 3
1
  E
S

? d A
S

1 3
2
  E
S

? d A
S

For face , E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:

3
1
  E
S

? d A
S

5 3
1
 E 1cos 1808 2  dA 5 2E 3

1
 dA 5 2EA 5 2E,2

For face , E
S

 is constant and outward and in the same 
direction as d A

S

2 (u 5 08). Find the flux through this face:
3

2
  E
S

? d A
S

5 3
2
 E 1cos 08 2  dA 5 E 3

2
 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

�A i
S

r

q
�

Figure 24.6  ​A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

	

Example 24.1	     Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  ​Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  ​We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
	 The flux through four of the faces (, , and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.

S o l u t i o n

y

z �

�

�

x

d

d

d

d

A3
S

A1
S

A4
S

A2
S

E
S

 









Figure 24.5  ​(Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side  is the bottom of 
the cube, and side  is opposite side .
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where we have moved E outside of the integral because, by symmetry, E is constant 
over the surface. The value of E is given by E 5 keq/r 2. Furthermore, because the 
surface is spherical, rdA 5 A 5 4pr 2. Hence, the net flux through the gaussian 
surface is

	 FE 5 ke

q

r 2
14pr 2 2 5 4pkeq 	

Recalling from Equation 23.3 that ke 5 1/4pP0, we can write this equation in the form

	 FE 5
q
P0

	 (24.5)

	 Equation 24.5 shows that the net flux through the spherical surface is propor-
tional to the charge inside the surface. The flux is independent of the radius r 
because the area of the spherical surface is proportional to r 2, whereas the electric 
field is proportional to 1/r 2. Therefore, in the product of area and electric field, 
the dependence on r cancels.
	 Now consider several closed surfaces surrounding a charge q as shown in Figure 
24.7. Surface S 1 is spherical, but surfaces S2 and S3 are not. From Equation 24.5, the 
flux that passes through S 1 has the value q/P0. As discussed in the preceding section, 
flux is proportional to the number of electric field lines passing through a surface. 
The construction shown in Figure 24.7 shows that the number of lines through S 1 is 
equal to the number of lines through the nonspherical surfaces S 2 and S 3. Therefore,

the net flux through any closed surface surrounding a point charge q is given 
by q/P0 and is independent of the shape of that surface.

	 Now consider a point charge located outside a closed surface of arbitrary shape as 
shown in Figure 24.8. As can be seen from this construction, any electric field line 
entering the surface leaves the surface at another point. The number of electric 
field lines entering the surface equals the number leaving the surface. Therefore, 
the net electric flux through a closed surface that surrounds no charge is zero. 
Applying this result to Example 24.1, we see that the net flux through the cube is 
zero because there is no charge inside the cube.
	 Let’s extend these arguments to two generalized cases: (1) that of many point 
charges and (2) that of a continuous distribution of charge. We once again use the 
superposition principle, which states that the electric field due to many charges is 

The net electric flux is the 
same through all surfaces.  

�

S 3

S 2

S 1

Figure 24.7  ​Closed surfaces of 
various shapes surrounding a posi-
tive charge.

The number of field lines 
entering the surface equals the 
number leaving the surface.  

q
�

Figure 24.8  ​A point charge 
located outside a closed surface. 

Karl Friedrich Gauss
German mathematician and astrono- 
mer (1777–1855)
Gauss received a doctoral degree in 
mathematics from the University of 
Helmstedt in 1799. In addition to his 
work in electromagnetism, he made 
contributions to mathematics and 
science in number theory, statistics, 
non-Euclidean geometry, and cometary 
orbital mechanics. He was a founder 
of the German Magnetic Union, which 
studies the Earth’s magnetic field on a 
continual basis.
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the vector sum of the electric fields produced by the individual charges. Therefore, 
the flux through any closed surface can be expressed as

	 C E
S

? d A
S

5 C 1 E
S

1 1 E
S

2 1 c2 ? d A
S

	  

where E
S

 is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges. Con-
sider the system of charges shown in Figure 24.9. The surface S surrounds only 
one charge, q1; hence, the net flux through S is q 1/P0. The flux through S due 
to charges q2, q3, and q4 outside it is zero because each electric field line from  
these charges that enters S at one point leaves it at another. The surface S 9 sur-
rounds charges q2 and q3; hence, the net flux through it is (q2 1 q3)/P0. Finally, the 
net flux through surface S0 is zero because there is no charge inside this surface. 
That is, all the electric field lines that enter S0 at one point leave at another. Charge 
q4 does not contribute to the net flux through any of the surfaces.
	 The mathematical form of Gauss’s law is a generalization of what we have just 
described and states that the net flux through any closed surface is

	 FE 5 C E
S

? d A
S

5
qin

P0
	 (24.6)

where E
S

 represents the electric field at any point on the surface and qin represents 
the net charge inside the surface.
	 When using Equation 24.6, you should note that although the charge qin is the 
net charge inside the gaussian surface, E

S
 represents the total electric field, which 

includes contributions from charges both inside and outside the surface.
	 In principle, Gauss’s law can be solved for E

S
 to determine the electric field due 

to a system of charges or a continuous distribution of charge. In practice, however, 
this type of solution is applicable only in a limited number of highly symmetric 
situations. In the next section, we use Gauss’s law to evaluate the electric field for 
charge distributions that have spherical, cylindrical, or planar symmetry. If one 
chooses the gaussian surface surrounding the charge distribution carefully, the 
integral in Equation 24.6 can be simplified and the electric field determined.

Q	 uick Quiz 24.2 ​ If the net flux through a gaussian surface is zero, the following 
four statements could be true. Which of the statements must be true? (a) There are 
no charges inside the surface. (b) The net charge inside the surface is zero.  
(c) The electric field is zero everywhere on the surface. (d) The number of elec-
tric field lines entering the surface equals the number leaving the surface.

Charge q4 does not contribute to 
the flux through any surface 
because it is outside all surfaces.  

S

S �

S�

q1

� q4

� q2

q3

�

�

Figure 24.9  The net electric 
flux through any closed surface 
depends only on the charge inside 
that surface. The net flux through 
surface S is q 1/P0, the net flux 
through surface S 9 is (q 2 1 q 3)/P0, 
and the net flux through surface 
S 0 is zero. 

Pitfall Prevention 24.1
Zero Flux Is Not Zero Field   
In two situations, there is 
zero flux through a closed 
surface: either (1) there are 
no charged particles enclosed 
by the surface or (2) there are 
charged particles enclosed, 
but the net charge inside the 
surface is zero. For either situ-
ation, it is incorrect to conclude 
that the electric field on the 
surface is zero. Gauss’s law 
states that the electric flux is 
proportional to the enclosed 
charge, not the electric field.

Conceptual Example 24.2	     Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface 
if (A) the charge is tripled, (B) the radius of the sphere is doubled, (C) the surface is changed to a cube, and (D) the 
charge is moved to another location inside the surface.

(A)  The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(B)  The flux does not change because all electric field lines from the charge pass through the sphere, regardless of 
its radius.

(C)  The flux does not change when the shape of the gaussian surface changes because all electric field lines from 
the charge pass through the surface, regardless of its shape.

(D)  The flux does not change when the charge is moved to another location inside that surface because Gauss’s law 
refers to the total charge enclosed, regardless of where the charge is located inside the surface.

S o l u t i o n
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Example 24.3	     A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  ​Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  ​Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  ​Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze  To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
? d A

S
5 E dA.

S o l u t i o n

24.3	 �Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

	 1.	 The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

	 2.	 The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

	 3.	 The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

	 4.	 The electric field is zero over the portion of the surface.

	 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 24.10  ​(Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real   
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued
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Replace E
S

? d A
S

 in Gauss’s law with E dA: FE 5 C E
S

? d A
S

5 C E dA 5
Q
P0

By symmetry, E has the same value everywhere on the 
surface, which satisfies condition (1), so we can remove  
E from the integral:

C E dA 5 E C dA 5 E 14pr 2 2 5
Q
P0

Solve for E : (1)   E 5
Q

4pP0r
2 5 ke 

Q

r 2    1 for r .  a 2

Finalize  ​This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged 
sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  ​Find the magnitude of the electric field at a point inside the sphere.

Analyze  ​In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating 
sphere (Fig. 24.10b). Let V 9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that 
the charge q in within the gaussian surface of volume V 9 is less than Q.

S o l u t i o n

Notice that conditions (1) and (2) are satisfied every-
where on the gaussian surface in Figure 24.10b. Apply 
Gauss’s law in the region r , a :

C E dA 5 E C dA 5 E 14pr 2 2 5
q in

P0

Calculate q in by using q in5 rV 9: q in 5 rV r 5 r 1 4
3pr 3 2

Solve for E and substitute for q in: E 5
q in

4pP0r
2 5

r 1 4
3pr 3 2

4pP0r
2 5

r

3P0
 r

Substitute r 5 Q /4
3pa3 and P0 5 1/4pke : (2)   E 5

Q /4
3 pa 3

3 11/4pke 2
 r 5 ke 

Q

a 3 r 1 for r ,  a 2  

Finalize  ​This result for E differs from the one obtained in part (A). It shows that 
E  S 0 as r S 0. Therefore, the result eliminates the problem that would exist at  
r 5 0 if E varied as 1/r 2 inside the sphere as it does outside the sphere. That is, if  
E ~ 1/r 2 for r , a, the field would be infinite at r 5 0, which is physically impossible.

Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from 
both directions?

Answer  ​Equation (1) shows that the electric field approaches a value from the out-
side given by

E 5 lim
r S a

ake 
Q

r 2 b 5 ke 
Q

a 2

From the inside, Equation (2) gives

E 5 lim
r S a

ake 
Q

a 3 rb 5 ke 
Q

a 3 a 5 ke 
Q

a 2

Therefore, the value of the field is the same as the surface is approached from 
both directions. A plot of E versus r is shown in Figure 24.11. Notice that the mag-
nitude of the field is continuous.

What If ?

a

E

a r

E 
keQ
r2

E �

�

keQ
a3 r

Figure 24.11  ​(Example 24.3)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere  
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

▸ 24.3 c o n t i n u e d
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Example 24.4	     A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of posi-
tive charge of infinite length and constant charge per 
unit length l (Fig. 24.12a).

Conceptualize  ​The line of charge is infinitely long. 
Therefore, the field is the same at all points equidis-
tant from the line, regardless of the vertical position 
of the point in Figure 24.12a. We expect the field to 
become weaker as we move farther away from the line 
of charge.

Categorize  ​Because the charge is distributed uni-
formly along the line, the charge distribution has cylin-
drical symmetry and we can apply Gauss’s law to find 
the electric field.

Analyze  ​The symmetry of the charge distribution 
requires that E

S
 be perpendicular to the line charge and  

directed outward as shown in Figure 24.12b. To reflect the symmetry of the charge distribution, let’s choose a cylindri-
cal gaussian surface of radius r and length , that is coaxial with the line charge. For the curved part of this surface, E

S
 is 

constant in magnitude and perpendicular to the surface at each point, satisfying conditions (1) and (2). Furthermore, 
the flux through the ends of the gaussian cylinder is zero because E

S
 is parallel to these surfaces. That is the first appli-

cation we have seen of condition (3).
	 We must take the surface integral in Gauss’s law over the entire gaussian surface. Because E

S
? d A

S
 is zero for the flat 

ends of the cylinder, however, we restrict our attention to only the curved surface of the cylinder.

S o l u t i o n

�
�
�

Gaussian
surface

�

r

E
S

 
E
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dA
S

�

�
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Figure 24.12  ​(Example 24.4) (a) An infinite line of charge sur-
rounded by a cylindrical gaussian surface concentric with the line. 
(b) An end view shows that the electric field at the cylindrical sur-
face is constant in magnitude and perpendicular to the surface.

Apply Gauss’s law and conditions (1) and (2) for the 
curved surface, noting that the total charge inside our 
gaussian surface is l,:

FE 5 C E
S

? d A
S

5 E C dA 5 EA 5
q in

P0
5

l,

P0

Substitute the area A 5 2pr , of the curved surface: E 12pr , 2 5
l,

P0

Solve for the magnitude of the electric field: E 5
l

2pP0r
5  2ke 

l

r
	 (24.7)

What if the line segment in this example were not infinitely long?

Answer  ​If the line charge in this example were of finite length, the electric field would not be given by Equation 
24.7. A finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of 
the electric field is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line 
would be different from that far from the ends. Therefore, condition (1) would not be satisfied in this situation. 
Furthermore, E

S
 is not perpendicular to the cylindrical surface at all points: the field vectors near the ends would 

have a component parallel to the line. Therefore, condition (2) would not be satisfied. For points close to a finite line 
charge and far from the ends, Equation 24.7 gives a good approximation of the value of the field.
	 It is left for you to show (see Problem 33) that the electric field inside a uniformly charged rod of finite radius and 
infinite length is proportional to r.

What If ?

Finalize  ​This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, 
whereas the field external to a spherically symmetric charge distribution varies as 1/r 2. Equation 24.7 can also be 
derived by direct integration over the charge distribution. (See Problem 44 in Chapter 23.)
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Example 24.5	     A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform 
surface charge density s.

Conceptualize  ​Notice that the plane of charge is infinitely large. Therefore, the 
electric field should be the same at all points equidistant from the plane. How 
would you expect the electric field to depend on the distance from the plane?

Categorize  ​Because the charge is distributed uniformly on the plane, the charge 
distribution is symmetric; hence, we can use Gauss’s law to find the electric field.

Analyze  ​By symmetry, E
S

 must be perpendicular to the plane at all points. The 
direction of E

S
 is away from positive charges, indicating that the direction of E

S
 

on one side of the plane must be opposite its direction on the other side as shown 
in Figure 24.13. A gaussian surface that reflects the symmetry is a small cylinder 
whose axis is perpendicular to the plane and whose ends each have an area A 
and are equidistant from the plane. Because E

S
 is parallel to the curved surface of 

the cylinder—and therefore perpendicular to d A
S

 at all points on this surface—
condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the 
cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux 
through the entire gaussian surface is just that through the ends, FE 5 2EA.

S o l u t i o n A
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Figure 24.13  ​(Example 24.5) A 
cylindrical gaussian surface pen-
etrating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.

Write Gauss’s law for this surface, noting that the 
enclosed charge is q in 5 sA:

FE 5 2EA 5
q in

P0
5

sA
P0

Solve for E : E 5 
s

2P0
	 (24.8)

Finalize  ​Because the distance from each flat end of 
the cylinder to the plane does not appear in Equation 
24.8, we conclude that E 5 s/2P0 at any distance from 
the plane. That is, the field is uniform everywhere. Fig-
ure 24.14 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

Suppose two infinite planes of charge are 
parallel to each other, one positively charged and the 
other negatively charged. The surface charge densities 
of both planes are of the same magnitude. What does 
the electric field look like in this situation?

Answer  ​We first addressed this configuration in the 
What If? section of Example 23.9. The electric fields 
due to the two planes add in the region between the 
planes, resulting in a uniform field of magnitude s/P0, 
and cancel elsewhere to give a field of zero. Figure 24.15 
shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric 
fields with finite-sized planes placed close to each other.

What If ?
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Figure 24.14  ​(Example 24.5) 
The electric field lines due to an 
infinite plane of positive charge.
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Figure 24.15  (Example 24.5) 
The electric field lines between 
two infinite planes of charge, 
one positive and one negative. 
In practice, the field lines near 
the edges of finite-sized sheets 
of charge will curve outward.

	

Conceptual Example 24.6	     Don’t Use Gauss’s Law Here! 

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a tri-
angle with a point charge at each corner.
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24.4	 Conductors in Electrostatic Equilibrium
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

	 1.	 The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

	 2.	 If the conductor is isolated and carries a charge, the charge resides on its 
surface.

	 3.	 The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/P0, where s is 
the surface charge density at that point.

	 4.	 On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

	 We verify the first three properties in the discussion that follows. The fourth 
property is presented here (but not verified until we have studied the appropriate 
material in Chapter 25) to provide a complete list of properties for conductors in 
electrostatic equilibrium.
	 We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.16). The electric field inside the conductor must be 

zero, assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force ( F

S
5 q E

S
) and would 

accelerate due to this force. This motion of electrons, however, would mean that 
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.
	 Let’s investigate how this zero field is accomplished. Before the external field is 
applied, free electrons are uniformly distributed throughout the conductor. When 
the external field is applied, the free electrons accelerate to the left in Figure 
24.16, causing a plane of negative charge to accumulate on the left surface. The 
movement of electrons to the left results in a plane of positive charge on the right 
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge 
densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside 
the conductor. The time it takes a good conductor to reach equilibrium is on the 
order of 10216 s, which for most purposes can be considered instantaneous.
	 If the conductor is hollow, the electric field inside the conductor is also zero, 
whether we consider points in the conductor or in the cavity within the conductor. 
The zero value of the electric field in the cavity is easiest to argue with the concept 
of electric potential, so we will address this issue in Section 25.6.
	 Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian  

WW �Properties of a conductor in 
electrostatic equilibrium

Gaussian
surface

Figure 24.17  ​A conductor of 
arbitrary shape. The broken line 
represents a gaussian surface  
that can be just inside the conduc-
tor’s surface.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical. We cannot find a closed surface surrounding any of these distributions for which all portions of the surface 
satisfy one or more of conditions (1) through (4) listed at the beginning of this section.

S o l u t i o n

	

▸ 24.6 c o n t i n u e d
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Figure 24.16  ​A conducting 
slab in an external electric field 
E
S

. The charges induced on the 
two surfaces of the slab produce 
an electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.
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Example 24.7	     A Sphere Inside a Spherical Shell

A solid insulating sphere of radius a carries a net positive charge Q uniformly distributed throughout its volume. A con-
ducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge 
22Q . Using Gauss’s law, find the electric field in the regions labeled y, x, , and  in Figure 24.19 and the charge 
distribution on the shell when the entire system is in electrostatic equilibrium.

surface is drawn inside the conductor and can be very close to the conductor’s 
surface. As we have just shown, the electric field everywhere inside the conduc-
tor is zero when it is in electrostatic equilibrium. Therefore, the electric field 
must be zero at every point on the gaussian surface, in accordance with condition  
(4) in Section 24.3, and the net flux through this gaussian surface is zero. From this 
result and Gauss’s law, we conclude that the net charge inside the gaussian surface 
is zero. Because there can be no net charge inside the gaussian surface (which is 
arbitrarily close to the conductor’s surface), any net charge on the conductor must 
reside on its surface. Gauss’s law does not indicate how this excess charge is distrib-
uted on the conductor’s surface, only that it resides exclusively on the surface.
	 To verify the third property, let’s begin with the perpendicularity of the field to 
the surface. If the field vector E

S
 had a component parallel to the conductor’s sur-

face, free electrons would experience an electric force and move along the surface; 
in such a case, the conductor would not be in equilibrium. Therefore, the field vec-
tor must be perpendicular to the surface.
	 To determine the magnitude of the electric field, we use Gauss’s law and draw 
a gaussian surface in the shape of a small cylinder whose end faces are parallel 
to the conductor’s surface (Fig. 24.18). Part of the cylinder is just outside the con-
ductor, and part is inside. The field is perpendicular to the conductor’s surface 
from the condition of electrostatic equilibrium. Therefore, condition (3) in Section 
24.3 is satisfied for the curved part of the cylindrical gaussian surface: there is no  
flux through this part of the gaussian surface because E

S
 is parallel to the surface. 

There is no flux through the flat face of the cylinder inside the conductor because 
here E

S
5 0 , which satisfies condition (4). Hence, the net flux through the gaussian 

surface is equal to that through only the flat face outside the conductor, where the 
field is perpendicular to the gaussian surface. Using conditions (1) and (2) for this 
face, the flux is EA, where E is the electric field just outside the conductor and A is 
the area of the cylinder’s face. Applying Gauss’s law to this surface gives

	 FE 5 C E dA 5 EA 5
q in

P0
5

sA
P0

	

where we have used q in 5 sA. Solving for E gives for the electric field immediately 
outside a charged conductor:

	 E 5
s

P0
	 (24.9)

Q	 uick Quiz 24.3 ​ Your younger brother likes to rub his feet on the carpet and then 
touch you to give you a shock. While you are trying to escape the shock treat-
ment, you discover a hollow metal cylinder in your basement, large enough to 
climb inside. In which of the following cases will you not be shocked? (a) You climb 
inside the cylinder, making contact with the inner surface, and your charged 
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface. 
(c) Both of you are outside the cylinder, touching its outer metal surface but not 
touching each other directly.

The flux through the
gaussian surface is EA.  
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Figure 24.18  ​A gaussian surface 
in the shape of a small cylinder is 
used to calculate the electric field 
immediately outside a charged 
conductor. 
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The charge on the conducting shell creates zero electric 
field in the region r , b, so the shell has no effect on the 
field in region  due to the sphere. Therefore, write an 
expression for the field in region  as that due to the 
sphere from part (A) of Example 24.3:

E 2 5 ke 
Q

r 2 1 for a , r , b 2

Because the conducting shell creates zero field inside itself, 
it also has no effect on the field inside the sphere. There-
fore, write an expression for the field in region  as that 
due to the sphere from part (B) of Example 24.3:

E 1 5 ke 
Q

a 3  r    1 for r , a 2

In region , where r . c, construct a spherical gaussian 
surface; this surface surrounds a total charge q in 5 Q 1 
(22Q ) 5 2Q . Therefore, model the charge distribution as 
a sphere with charge 2Q and write an expression for the 
field in region  from part (A) of Example 24.3:

E 4 5 2ke 
Q

r 2    1 for r . c 2

In region , the electric field must be zero because the 
spherical shell is a conductor in equilibrium:

E 3 5 0    1 for b , r , c 2

Construct a gaussian surface of radius r in region ,  
where b , r , c, and note that q in must be zero because  
E3 5 0. Find the amount of charge q inner on the inner  
surface of the shell:

qin 5 qsphere 1 q inner

q inner 5 q in 2 qsphere 5 0 2 Q 5 2Q

Finalize  ​The charge on the inner surface of the spherical shell must be 2Q to cancel the charge 1Q on the solid 
sphere and give zero electric field in the material of the shell. Because the net charge on the shell is 22Q , its outer 
surface must carry a charge 2Q .

How would the results of this problem differ if the sphere were conducting instead of insulating?

Answer  ​The only change would be in region , where r , a. Because there can be no charge inside a conductor in 
electrostatic equilibrium, q in 5 0 for a gaussian surface of radius r , a; therefore, on the basis of Gauss’s law and sym-
metry, E1 5 0. In regions , , and , there would be no way to determine from observations of the electric field 
whether the sphere is conducting or insulating.

What If ?

	

▸ 24.7 c o n t i n u e d

Conceptualize  ​Notice how this problem differs from Example 24.3. The charged 
sphere in Figure 24.10 appears in Figure 24.19, but it is now surrounded by a shell car-
rying a charge 22Q . Think about how the presence of the shell will affect the electric 
field of the sphere.

Categorize  ​The charge is distributed uniformly throughout the sphere, and we know 
that the charge on the conducting shell distributes itself uniformly on the surfaces. 
Therefore, the system has spherical symmetry and we can apply Gauss’s law to find the 
electric field in the various regions.

Analyze  ​In region —between the surface of the solid sphere and the inner surface 
of the shell—we construct a spherical gaussian surface of radius r, where a , r , b, not-
ing that the charge inside this surface is 1Q (the charge on the solid sphere). Because 
of the spherical symmetry, the electric field lines must be directed radially outward 
and be constant in magnitude on the gaussian surface.

S o l u t i o n

r
a

b

c

Q

�2Q





 

Figure 24.19  (Example 
24.7) An insulating sphere of 
radius a and carrying a charge 
Q surrounded by a conduct-
ing spherical shell carrying a 
charge 22Q.
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Summary

  Electric flux is proportional to the number of electric field lines that penetrate a surface. If the electric field is 
uniform and makes an angle u with the normal to a surface of area A, the electric flux through the surface is

	 FE 5 EA cos u 	 (24.2)

In general, the electric flux through a surface is

	 FE ; 3
surface

 E
S

? d A
S

	 (24.3)

Definition

Concepts and Principles

  Gauss’s law says that the net 
electric flux FE through any closed 
gaussian surface is equal to the net 
charge qin inside the surface divided 
by P0:

	 FE 5 C E
S

? d A
S

5
q in

P0
	 (24.6)

Using Gauss’s law, you can calculate 
the electric field due to various sym-
metric charge distributions.

  A conductor in electrostatic equilibrium has the following properties:

	 1. � The electric field is zero everywhere inside the conductor, whether 
the conductor is solid or hollow.

	 2. � If the conductor is isolated and carries a charge, the charge 
resides on its surface.

	 3. � The electric field at a point just outside a charged conductor is 
perpendicular to the surface of the conductor and has a magni-
tude s/P0, where s is the surface charge density at that point.

	 4. � On an irregularly shaped conductor, the surface charge density is 
greatest at locations where the radius of curvature of the surface  
is smallest.

	 4.	 A particle with charge q is located inside a cubical 
gaussian surface. No other charges are nearby. (i) If 
the particle is at the center of the cube, what is the 
flux through each one of the faces of the cube? (a) 0 
(b) q/2P0 (c) q/6P0 (d) q/8P0 (e) depends on the size of 
the cube (ii) If the particle can be moved to any point 
within the cube, what maximum value can the flux 
through one face approach? Choose from the same 
possibilities as in part (i).

	 5.	 Charges of 3.00 nC, 22.00 nC, 27.00 nC, and 1.00 nC 
are contained inside a rectangular box with length 
1.00 m, width 2.00 m, and height 2.50 m. Outside the 
box are charges of 1.00 nC and 4.00 nC. What is the 
electric flux through the surface of the box? (a) 0  
(b) 25.64  3 102  N ? m2/C (c)  21.47 3 103 N ? m2/C  
(d) 1.47 3 103 N ? m2/C (e) 5.64 3 102 N ? m2/C

	 6.	 A large, metallic, spherical shell has no net charge. It 
is supported on an insulating stand and has a small 
hole at the top. A small tack with charge Q is lowered 
on a silk thread through the hole into the interior of 
the shell. (i) What is the charge on the inner surface 
of the shell, (a) Q (b) Q/2 (c) 0 (d) 2Q/2 or (e) 2Q?  
Choose your answers to the following questions from 

	 1.	 A cubical gaussian surface surrounds a long, straight, 
charged filament that passes perpendicularly through 
two opposite faces. No other charges are nearby.  
(i) Over how many of the cube’s faces is the electric 
field zero? (a) 0 (b) 2 (c) 4 (d) 6 (ii) Through how many 
of the cube’s faces is  the electric flux zero? Choose 
from the same possibilities as in part (i).

	 2.	 A coaxial cable consists of a long, straight filament 
surrounded by a long, coaxial, cylindrical conducting 
shell. Assume charge Q is on the filament, zero net 
charge is on the shell, and the electric field is E1 î at 
a particular point P midway between the filament and 
the inner surface of the shell. Next, you place the cable 
into a uniform external field 2E î. What is the x com-
ponent of the electric field at P then? (a) 0 (b) between 
0 and E1 (c) E1 (d) between 0 and 2E1 (e) 2E1

	 3.	 In which of the following contexts can Gauss’s law not 
be readily applied to find the electric field? (a) near a 
long, uniformly charged wire (b) above a large, uni-
formly charged plane (c) inside a uniformly charged 
ball (d) outside a uniformly charged sphere (e) Gauss’s 
law can be readily applied to find the electric field in 
all these contexts.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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the magnitude of the elec-
tric field at points A (at radius 
4  cm), B (radius 8  cm), C 
(radius 12 cm), and D (radius 
16 cm) from largest to smallest. 
Display any cases of equality 
in your ranking. (b) Similarly 
rank the electric flux through 
concentric spherical surfaces 
through points A, B, C, and D.

	10.	A cubical gaussian surface is bisected by a large sheet 
of charge, parallel to its top and bottom faces. No other 
charges are nearby. (i) Over how many of the cube’s 
faces is the electric field zero? (a) 0 (b) 2 (c) 4 (d) 6  
(ii) Through how many of the cube’s faces is the elec-
tric flux zero? Choose from the same possibilities as in 
part (i).

	11.	 Rank the electric fluxes through each gaussian surface 
shown in Figure OQ24.11 from largest to smallest. Dis-
play any cases of equality in your ranking.

the same possibilities. (ii) What is the charge on the 
outer surface of the shell? (iii) The tack is now allowed 
to touch the interior surface of the shell. After this 
contact, what is the charge on the tack? (iv) What  
is the charge on the inner surface of the shell now? 
(v)  What is the charge on the outer surface of the 
shell now?

	 7.	 Two solid spheres, both of radius 5 cm, carry identical 
total charges of 2 mC. Sphere A is a good conductor. 
Sphere B is an insulator, and its charge is distributed 
uniformly throughout its volume. (i) How do the mag-
nitudes of the electric fields they separately create at 
a radial distance of 6 cm compare? (a) EA . EB 5 0  
(b) EA . EB . 0 (c) EA 5 EB . 0 (d) 0 , EA , EB (e) 0 5  
EA , EB (ii) How do the magnitudes of the electric 
fields they separately create at radius 4 cm compare? 
Choose from the same possibilities as in part (i).

	 8.	 A uniform electric field of 1.00 N/C is set up by a uni-
form distribution of charge in the xy plane. What is 
the electric field inside a metal ball placed 0.500 m 
above the xy plane? (a) 1.00 N/C (b) 21.00 N/C (c) 0  
(d) 0.250 N/C (e) varies depending on the position 
inside the ball

	 9.	 A solid insulating sphere of radius 5 cm carries electric 
charge uniformly distributed throughout its volume. 
Concentric with the sphere is a conducting spherical 
shell with no net charge as shown in Figure OQ24.9. 
The inner radius of the shell is 10 cm, and the outer 
radius is 15 cm. No other charges are nearby. (a) Rank 

Q

b

3Q 4Q
Q

a b c d

Figure OQ24.11

A B C D

Figure OQ24.9

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Consider an electric field that is uniform in direction 
throughout a certain volume. Can it be uniform in 
magnitude? Must it be uniform in magnitude? Answer 
these questions (a) assuming the volume is filled with 
an insulating material carrying charge described by a 
volume charge density and (b) assuming the volume is 
empty space. State reasoning to prove your answers.

	 2.	 A cubical surface surrounds a point charge q. 
Describe what happens to the total flux through the 
surface if (a)  the charge is doubled, (b) the volume 
of the cube is doubled, (c) the surface is changed to 
a sphere, (d) the charge is moved to another location 
inside the surface, and (e) the charge is moved out-
side the surface.

	 3.	 A uniform electric field exists in a region of space con-
taining no charges. What can you conclude about the 
net electric flux through a gaussian surface placed in 
this region of space?

	 4.	 If the total charge inside a closed surface is known but 
the distribution of the charge is unspecified, can you 
use Gauss’s law to find the electric field? Explain.

	 5.	 Explain why the electric flux through a closed surface 
with a given enclosed charge is independent of the size 
or shape of the surface.

	 6.	 If more electric field lines leave a gaussian surface than 
enter it, what can you conclude about the net charge 
enclosed by that surface?

	 7.	 A person is placed in a large, hollow, metallic sphere 
that is insulated from ground. (a) If a large charge 
is placed on the sphere, will the person be harmed 
upon touching the inside of the sphere? (b) Explain 
what will happen if the person also has an initial 
charge whose sign is opposite that of the charge on 
the sphere.

	 8.	 Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is 
given a large net positive charge, and the other is given 
a small net positive charge. It is found that the force 
between the spheres is attractive even though they 
both have net charges of the same sign. Explain how 
this attraction is possible.

	 9.	 A common demonstration involves charging a rubber 
balloon, which is an insulator, by rubbing it on your 
hair and then touching the balloon to a ceiling or wall, 
which is also an insulator. Because of the electrical 
attraction between the charged balloon and the neutral 
wall, the balloon sticks to the wall. Imagine now that 
we have two infinitely large, flat sheets of insulating  
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material. One is charged, and the other is neutral. If 
these sheets are brought into contact, does an attrac-
tive force exist between them as there was for the bal-
loon and the wall?

	10.	On the basis of the repulsive nature of the force 
between like charges and the freedom of motion of 

charge within a conductor, explain why excess charge 
on an isolated conductor must reside on its surface.

	11.	 The Sun is lower in the sky during the winter than it is 
during the summer. (a) How does this change affect the 
flux of sunlight hitting a given area on the surface of 
the Earth? (b) How does this change affect the weather?

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Section 24.1 ​ Electric Flux

	 1.	 A flat surface of area 3.20 m2 is rotated in a uniform 
electric field of magnitude E 5 6.20 3 105 N/C. Deter-
mine the electric flux through this area (a) when 
the electric field is perpendicular to the surface and  
(b) when the electric field is parallel to the surface.

	 2.	 A vertical electric field of magnitude 2.00 3 104 N/C 
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of 
6.00 m by 3.00 m is traveling along a dry gravel road-
way sloping downward at 10.08. Determine the electric 
flux through the bottom of the car.

	 3.	 A 40.0-cm-diameter circular loop is rotated in a uni-
form electric field until the position of maximum elec-
tric flux is found. The flux in this position is measured 
to be 5.20 3 105 N ? m2/C. What is the magnitude of 
the electric field?

	 4.	 Consider a closed triangular box resting within a hori-
zontal electric field of magnitude E 5 7.80 3 104 N/C 
as shown in Figure P24.4. Calculate the electric flux 
through (a) the vertical rectangular surface, (b) the 
slanted surface, and (c) the entire surface of the box.

30.0 cm

60.0�10.0 cm

E
S

 

Figure P24.4

	 5.	 An electric field of magnitude 3.50 kN/C is applied 
along the x axis. Calculate the electric flux through 
a rectangular plane 0.350 m wide and 0.700 m long  
(a) if the plane is parallel to the yz plane, (b) if the 
plane is parallel to the xy plane, and (c) if the plane 
contains the y axis and its normal makes an angle of 
40.08 with the x axis.

W

M

W

M

	 6.	 A nonuniform electric field is given by the expression

E
S

5 ay î 1 bz ĵ 1 cx k̂

		  where a, b, and c are constants. Determine the electric 
flux through a rectangular surface in the xy plane, 
extending from x 5 0 to x 5 w and from y 5 0 to  
y 5 h.

Section 24.2 ​ Gauss’s Law

	 7.	 An uncharged, nonconducting, hollow sphere of 
radius 10.0 cm surrounds a 10.0-mC charge located 
at the origin of a Cartesian coordinate system. A drill 
with a radius of 1.00 mm is aligned along the z axis, 
and a hole is drilled in the sphere. Calculate the elec-
tric flux through the hole.

	 8.	 Find the net electric flux through the spherical closed 
surface shown in Figure P24.8. The two charges on the 
right are inside the spherical surface.

�2.00 nC
�1.00 nC

�3.00 nC

Figure P24.8

	 9.	 The following charges are located inside a submarine: 
5.00  mC, 29.00 mC, 27.0 mC, and 284.0 mC. (a) Cal-
culate the net electric flux through the hull of the  
submarine. (b)  Is the number of electric field lines 
leaving the submarine greater than, equal to, or less 
than the number entering it?

	10.	The electric field everywhere on the surface of a 
thin, spherical shell of radius 0.750 m is of magnitude  
890 N/C and points radially toward the center of the 
sphere. (a) What is the net charge within the sphere’s 
surface? (b)  What is the distribution of the charge 
inside the spherical shell?

S

M

W
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tered at O resulting from this line charge. Consider 
both cases, where (a) R , d and (b) R . d.

	18.	 Find the net electric flux through (a) the closed spheri-
cal surface in a uniform electric field shown in Figure 
P24.18a and (b) the closed cylindrical surface shown in 
Figure P24.18b. (c) What can you conclude about the 
charges, if any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P24.18

	19.	 A particle with charge 
Q 5 5.00 mC is located 
at the center of a cube 
of edge L 5 0.100 m. In 
addition, six other iden-
tical charged particles 
having q 5 21.00  mC 
are positioned sym-
metrically around Q as 
shown in Figure P24.19. 
Determine the electric 
flux through one face 
of the cube.

	20.	A particle with charge 
Q is located at the center of a cube of edge L. In addi-
tion, six other identical charged particles q are posi-
tioned symmetrically around Q as shown in Figure 
P24.19. For each of these particles, q is a negative num-
ber. Determine the electric flux through one face of 
the cube.

	21.	 A particle with charge 
Q is located a small dis-
tance d immediately 
above the center of 
the flat face of a hemi-
sphere of radius R as 
shown in Figure P24.21. 
What is the electric flux 
(a) through the curved 
surface and (b) through 
the flat face as d S 0?

	22.	Figure P24.22 (page 742) represents the top view of a 
cubic gaussian surface in a uniform electric field E

S
 ori-

ented parallel to the top and bottom faces of the cube. 
The field makes an angle u with side , and the area of 
each face is A. In symbolic form, find the electric flux 
through (a) face , (b) face , (c) face , (d) face , 
and (e) the top and bottom faces of the cube. (f) What 

S
Q/C

L

L

q

q

q

q

Qq

q

L

Figure P24.19   
Problems 19 and 20.

S

Q

R

d
�

Figure P24.21

S
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	11.	 Four closed surfaces, S1 
through S4, together with 
the charges 22Q , Q , and 
2Q are sketched in Figure 
P24.11. (The colored lines 
are the intersections of the 
surfaces with the page.) 
Find the electric flux 
through each surface.

	12.	A charge of 170 mC is at the 
center of a cube of edge 
80.0 cm. No other charges 
are nearby. (a) Find the 
flux through each face of the cube. (b) Find the flux 
through the whole surface of the cube. (c) What If? 
Would your answers to either part (a) or part (b) change 
if the charge were not at the center? Explain.

	13.	In the air over a particular region at an altitude of 
500 m above the ground, the electric field is 120 N/C 
directed downward. At 600 m above the ground, the 
electric field is 100 N/C downward. What is the average 
volume charge density in the layer of air between these 
two elevations? Is it positive or negative?

	14.	A particle with charge of 12.0 mC is placed at the cen-
ter of a spherical shell of radius 22.0 cm. What is the 
total electric flux through (a) the surface of the shell 
and (b) any hemispherical surface of the shell? (c) Do 
the results depend on the radius? Explain.

	15.	(a) Find the net electric 
flux through the cube 
shown in Figure P24.15. 
(b)  Can you use Gauss’s 
law to find the electric 
field on the surface of 
this cube? Explain.

	16.	(a) A particle with charge 
q is located a distance 
d from an infinite plane. Determine the electric flux 
through the plane due to the charged particle. (b) What 
If? A particle with charge q is located a very small dis-
tance from the center of a very large square on the line 
perpendicular to the square and going through its cen-
ter. Determine the approximate electric flux through 
the square due to the charged particle. (c) How do the 
answers to parts (a) and (b) compare? Explain.

	17.	 An infinitely long line charge having a uniform charge 
per unit length l lies a distance d from point O as 
shown in Figure P24.17. Determine the total electric 
flux through the surface of a sphere of radius R cen-

S
W

Q/C

Q/C

�8.00 nC
�3.00 nC

Figure P24.15

Q/C

S
Q/C

S

S1

S3

S2

S4
�2Q

�Q

�Q

Figure P24.11

d

R
O

l

Figure P24.17
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with the dimensions of the wall? (b) Does your result 
change as the distance from the wall varies? Explain.

	31.	 A uniformly charged, straight filament 7.00 m in 
length has a total positive charge of 2.00 mC. An 
uncharged cardboard cylinder 2.00 cm in length and 
10.0 cm in radius surrounds the filament at its center, 
with the filament as the axis of the cylinder. Using rea-
sonable approximations, find (a) the electric field at 
the surface of the cylinder and (b) the total electric 
flux through the cylinder.

	32.	Assume the magnitude of the electric field on each 
face of the cube of edge L 5 1.00 m in Figure P24.32 
is uniform and the directions of the fields on each face 
are as indicated. Find (a) the net electric flux through 
the cube and (b) the net charge inside the cube.  
(c) Could the net charge be a single point charge?

L

20.0 N/C

20.0 N/C

25.0 N/C

20.0 N/C 35.0 N/C

15.0 N/C

Figure P24.32

	33.	Consider a long, cylindrical charge distribution of 
radius R with a uniform charge density r. Find the 
electric field at distance r from the axis, where r , R.

	34.	A cylindrical shell of radius 7.00 cm and length 2.40 m  
has its charge uniformly distributed on its curved sur-
face. The magnitude of the electric field at a point  
19.0 cm radially outward from its axis (measured from 
the midpoint of the shell) is 36.0 kN/C. Find (a) the 
net charge on the shell and (b) the electric field at a 
point 4.00 cm from the axis, measured radially out-
ward from the midpoint of the shell.

	35.	A solid sphere of radius 40.0 cm has a total positive 
charge of 26.0 mC uniformly distributed throughout its 
volume. Calculate the magnitude of the electric field 
(a) 0 cm, (b)  10.0 cm, (c) 40.0 cm, and (d) 60.0 cm 
from the center of the sphere.

	36.	Review. A particle with a charge of 260.0 nC is placed 
at the center of a nonconducting spherical shell of 
inner radius 20.0 cm and outer radius 25.0 cm. The 
spherical shell carries charge with a uniform density 
of 21.33 mC/m3. A proton moves in a circular orbit 
just outside the spherical shell. Calculate the speed of 
the proton.

Section 24.4 ​ Conductors in Electrostatic Equilibrium

	37.	 A long, straight metal rod has a radius of 5.00 cm and a 
charge per unit length of 30.0 nC/m. Find the electric 
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the 
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is the net electric flux through the cube? (g) How 
much charge is enclosed within the gaussian surface?
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Figure P24.22

Section 24.3 ​ Application of Gauss’s Law  
to Various Charge Distributions
	23.	In nuclear fission, a nucleus of uranium-238, which 

contains 92 protons, can divide into two smaller 
spheres, each having 46 protons and a radius of 5.90 3 
10215 m. What is the magnitude of the repulsive elec-
tric force pushing the two spheres apart?

	24.	The charge per unit length on a long, straight filament 
is 290.0 mC/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where 
distances are measured perpendicular to the length of 
the filament.

	25.	A 10.0-g piece of Styrofoam carries a net charge of 
20.700 mC and is suspended in equilibrium above the 
center of a large, horizontal sheet of plastic that has 
a uniform charge density on its surface. What is the 
charge per unit area on the plastic sheet?

	26.	Determine the magnitude of the electric field at the 
surface of a lead-208 nucleus, which contains 82 pro-
tons and 126 neutrons. Assume the lead nucleus has 
a volume 208 times that of one proton and consider a 
proton to be a sphere of radius 1.20 3 10215 m.

	27.	A large, flat, horizontal sheet of charge has a charge 
per unit area of 9.00 mC/m2. Find the electric field just 
above the middle of the sheet.

	28.	Suppose you fill two rubber balloons with air, suspend 
both of them from the same point, and let them hang 
down on strings of equal length. You then rub each 
with wool or on your hair so that the balloons hang 
apart with a noticeable separation between them. 
Make order-of-magnitude estimates of (a) the force on 
each, (b) the charge on each, (c)  the field each cre-
ates at the center of the other, and (d) the total flux of 
electric field created by each balloon. In your solution, 
state the quantities you take as data and the values you 
measure or estimate for them.

	29.	Consider a thin, spherical shell of radius 14.0 cm with a 
total charge of 32.0 mC distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm 
from the center of the charge distribution.

	30.	A nonconducting wall carries charge with a uniform 
density of 8.60 mC/cm2. (a) What is the electric field 
7.00 cm in front of the wall if 7.00 cm is small compared 
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on the plate. Find (a) the charge density on each face of 
the plate, (b) the electric field just above the plate, and  
(c)  the electric field just below the plate. You may 
assume the charge density is uniform.

	47.	 A solid conducting sphere of radius 2.00 cm has a 
charge of 8.00 mC. A conducting spherical shell of 
inner radius 4.00 cm and outer radius 5.00 cm is 
concentric with the solid sphere and has a charge of  
24.00 mC. Find the electric field at (a) r 5 1.00 cm,  
(b) r 5 3.00 cm, (c) r 5 4.50 cm, and (d) r 5 7.00 cm 
from the center of this charge configuration.

Additional Problems

	48.	Consider a plane surface in 
a uniform electric field as 
in Figure P24.48, where d 5 
15.0 cm and u 5 70.08. If the 
net flux through the surface is  
6.00 N ? m2/C, find the mag-
nitude of the electric field.

	49.	Find the electric flux through 
the plane surface shown 
in Figure P24.48 if u 5 60.08, E 5 350 N/C, and d 5 
5.00 cm. The electric field is uniform over the entire 
area of the surface.

	50.	A hollow, metallic, spherical shell has exterior radius 
0.750 m, carries no net charge, and is supported on an 
insulating stand. The electric field everywhere just out-
side its surface is 890 N/C radially toward the center  
of the sphere. Explain what you can conclude about  
(a) the amount of charge on the exterior surface of the 
sphere and the distribution of this charge, (b) the 
amount of charge on the interior surface of the sphere 
and its distribution, and (c)  the amount of charge 
inside the shell and its distribution.

	51.	 A sphere of radius R 5 1.00 m  
surrounds a particle with charge 
Q 5 50.0 mC located at its center 
as shown in Figure P24.51. Find 
the electric flux through a cir-
cular cap of half-angle u 5 45.08.

	52.	A sphere of radius R surrounds 
a particle with charge Q located 
at its center as shown in Figure 
P24.51. Find the electric flux 
through a circular cap of half-
angle u.

	53.	A very large conducting plate lying in the xy plane car-
ries a charge per unit area of s. A second such plate 
located above the first plate at z 5 z 0 and oriented par-
allel to the xy plane carries a charge per unit area of 
22s. Find the electric field for (a) z , 0, (b) 0 , z , z 0, 
and (c) z . z 0.

	54.	A solid, insulating sphere of radius a has a uniform 
charge density throughout its volume and a total charge 
Q. Concentric with this sphere is an uncharged, con-
ducting, hollow sphere whose inner and outer radii are 
b and c as shown in Figure P24.54 (page 744). We wish to  
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Figure P24.48   
Problems 48 and 49.
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Problems 51 and 52.
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axis of the rod, where distances are measured perpen-
dicular to the rod’s axis.

	38.	Why is the following 
situation impossible? A 
solid copper sphere 
of radius 15.0 cm is 
in electrostatic equi-
librium and carries 
a charge of 40.0 nC. 
Figure P24.38 shows 
the magnitude of the 
electric field as a func-
tion of radial position 
r measured from the center of the sphere.

	39.	A solid metallic sphere of radius a carries total charge 
Q. No other charges are nearby. The electric field 
just outside its surface is keQ /a2 radially outward. At 
this close point, the uniformly charged surface of the 
sphere looks exactly like a uniform flat sheet of charge. 
Is the electric field here given by s/P0 or by s/2P0?

	40.	A positively charged particle is at a distance R/2 from 
the center of an uncharged thin, conducting, spherical 
shell of radius R. Sketch the electric field lines set up 
by this arrangement both inside and outside the shell.

	41.	A very large, thin, flat plate of aluminum of area A has 
a total charge Q uniformly distributed over its surfaces. 
Assuming the same charge is spread uniformly over 
the upper surface of an otherwise identical glass plate, 
compare the electric fields just above the center of the 
upper surface of each plate.

	42.	In a certain region of space, the electric field is E
S

 5
6.00 3 103 x 2

 î, where E
S

 is in newtons per coulomb and 
x is in meters. Electric charges in this region are at rest 
and remain at rest. (a) Find the volume density of elec-
tric charge at x 5 0.300 m. Suggestion: Apply Gauss’s law 
to a box between x 5 0.300 m and x 5 0.300 m 1 dx. 
(b) Could this region of space be inside a conductor?

	43.	Two identical conducting spheres each having a radius 
of 0.500 cm are connected by a light, 2.00-m-long con-
ducting wire. A charge of 60.0 mC is placed on one of 
the conductors. Assume the surface distribution of 
charge on each sphere is uniform. Determine the ten-
sion in the wire.

	44.	A square plate of copper with 50.0-cm sides has no net 
charge and is placed in a region of uniform electric 
field of 80.0 kN/C directed perpendicularly to the 
plate. Find (a) the charge density of each face of the 
plate and (b) the total charge on each face.

	45.	A long, straight wire is surrounded by a hollow metal 
cylinder whose axis coincides with that of the wire. 
The wire has a charge per unit length of l, and the 
cylinder has a net charge per unit length of 2l. From 
this information, use Gauss’s law to find (a) the charge 
per unit length on the inner surface of the cylinder,  
(b) the charge per unit length on the outer surface of 
the cylinder, and (c) the electric field outside the cylin-
der a distance r from the axis.

	46.	A thin, square, conducting plate 50.0 cm on a side lies 
in the xy plane. A total charge of 4.00 3 1028 C is placed 
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	59.	A uniformly charged spherical shell with positive sur-
face charge density s contains a circular hole in its sur-
face. The radius r of the hole is small compared with 
the radius R of the sphere. What is the electric field at 
the center of the hole? Suggestion: This problem can be 
solved by using the principle of superposition.

	60.	An infinitely long, cylindrical, insulating shell of 
inner radius a and outer radius b has a uniform vol-
ume charge density r. A line of uniform linear charge 
density l is placed along the axis of the shell. Deter-
mine the electric field for (a) r , a, (b) a , r , b, and 
(c) r . b.

Challenge Problems

	61.	 A slab of insulating material has 
a nonuniform positive charge 
density r  5 Cx 2, where x is mea-
sured from the center of the slab 
as shown in Figure P24.61 and C 
is a constant. The slab is infinite 
in the y and z directions. Derive 
expressions for the electric field 
in (a) the exterior regions (ux u  . 
d/2) and (b) the interior region of 
the slab (2d/2 , x , d/2).

	62.	Review. An early (incorrect) 
model of the hydrogen atom, 
suggested by J. J. Thomson, proposed that a posi-
tive cloud of charge 1e was uniformly distributed 
throughout the volume of a sphere of radius R, with 
the electron (an equal-magnitude negatively charged 
particle 2e) at the center. (a) Using Gauss’s law, show 
that the electron would be in equilibrium at the cen-
ter and, if displaced from the center a distance r , R,  
would experience a restoring force of the form  
F 5 2Kr, where K is a constant. (b) Show that K 5 
kee 2/R3. (c) Find an expression for the frequency f of 
simple harmonic oscillations that an electron of mass 
me would undergo if displaced a small distance (, R) 
from the center and released. (d) Calculate a numeri-
cal value for R that would result in a frequency of  
2.47 3 1015 Hz, the frequency of the light radiated in 
the most intense line in the hydrogen spectrum.

	63.	A closed surface with dimensions a 5 b 5 0.400 m and 
c 5 0.600 m is located as shown in Figure P24.63. The 
left edge of the closed surface is located at position  
x 5 a. The electric field throughout the region is non-
uniform and is given by E

S
5 13.00 1 2.00x 2 2 î N/C,  

where x is in meters. (a) Calculate the net electric flux 
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Figure P24.61   
Problems 61 and 69.
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understand completely the charges and electric fields 
at all locations. (a) Find the charge contained within a 
sphere of radius r , a. (b) From this value, find the mag-
nitude of the electric field for r , a. (c) What charge is 
contained within a sphere of radius r when a , r , b?  
(d)  From this value, find the magnitude of the elec-
tric field for r when a , r , b. (e) Now consider r when  
b , r , c. What is the magnitude of the electric field for 
this range of values of r ? (f) From this value, what must 
be the charge on the inner surface of the hollow sphere? 
(g) From part (f), what 
must be the charge on 
the outer surface of the 
hollow sphere? (h) Con-
sider the three spheri-
cal surfaces of radii a, 
b, and c. Which of these 
surfaces has the largest 
magnitude of surface 
charge density?

	55.	A solid insulating sphere of radius a 5 5.00 cm carries 
a net positive charge of Q 5 3.00 mC uniformly distrib-
uted throughout its volume. Concentric with this 
sphere is a conducting spherical shell with inner radius 
b 5 10.0 cm and outer radius c 5 15.0 cm as shown in 
Figure P24.54, having net charge q 5 21.00 mC. Pre-
pare a graph of the magnitude of the electric field due 
to this configuration versus r for 0 , r , 25.0 cm.

	56.	Two infinite, nonconducting sheets 
of charge are parallel to each other 
as shown in Figure P24.56. The 
sheet on the left has a uniform sur-
face charge density s, and the one 
on the right has a uniform charge 
density 2s. Calculate the electric 
field at points (a) to the left of, (b) in  
between, and (c) to the right of the 
two sheets. (d) What If? Find the 
electric fields in all three regions if both sheets have 
positive uniform surface charge densities of value s.

	57.	 For the configuration shown in Figure P24.54, sup-
pose a 5 5.00 cm, b 5 20.0 cm, and c 5 25.0 cm. Fur-
thermore, suppose the electric field at a point 10.0 cm  
from the center is measured to be 3.60 3 103 N/C radi-
ally inward and the electric field at a point 50.0 cm 
from the center is of magnitude 200 N/C and points 
radially outward. From this information, find (a)  the 
charge on the insulating sphere, (b) the net charge on 
the hollow conducting sphere, (c)  the charge on the 
inner surface of the hollow conducting sphere, and 
(d) the charge on the outer surface of the hollow con-
ducting sphere.

	58.	An insulating solid sphere of radius a has a uniform vol-
ume charge density and carries a total positive charge 
Q. A spherical gaussian surface of radius r, which shares 
a common center with the insulating sphere, is inflated 
starting from r 5 0. (a) Find an expression for the elec-
tric flux passing through the surface of the gaussian 
sphere as a function of r for r , a. (b) Find an expression 
for the electric flux for r . a. (c) Plot the flux versus r.

�s
s

Figure P24.56

S

W

S

E
S

y

x

a

c

z

x � a 

b

Figure P24.63

a

Insulator

Conductor

b
c

Figure P24.54   
Problems 54, 55, and 57.
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	67.	 An infinitely long insulating cylinder of radius R has a 
volume charge density that varies with the radius as

r 5 r0aa 2
r
b
b

		  where r0, a, and b are positive constants and r is the 
distance from the axis of the cylinder. Use Gauss’s law 
to determine the magnitude of the electric field at 
radial distances (a) r , R and (b) r . R.

	68.	A particle with charge Q is located 
on the axis of a circle of radius R at 
a distance b from the plane of the 
circle (Fig. P24.68). Show that if 
one-fourth of the electric flux from 
the charge passes through the cir-
cle, then R 5 !3b.

	69.	Review. A slab of insulating mate-
rial (infinite in the y and z direc-
tions) has a thickness d and a uni-
form positive charge density r. An edge view of the 
slab is shown in Figure P24.61. (a) Show that the mag-
nitude of the electric field a distance x from its center 
and inside the slab is E 5 rx/P0. (b) What If? Suppose 
an electron of charge 2e and mass me can move freely 
within the slab. It is released from rest at a distance x 
from the center. Show that the electron exhibits simple 
harmonic motion with a frequency

f 5
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2p Å
re

me P0
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Figure P24.68
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leaving the closed surface. (b)  What net charge is 
enclosed by the surface?

	64.	A sphere of radius 2a is made of 
a nonconducting material that 
has a uniform volume charge 
density r. Assume the mate-
rial does not affect the elec-
tric field. A spherical cavity of 
radius a is now removed from 
the sphere as shown in Figure 
P24.64. Show that the electric 
field within the cavity is uni-
form and is given by Ex 5 0 and Ey 5 ra/3P0.

	65.	A spherically symmetric charge distribution has a 
charge density given by r 5 a/r, where a is constant. 
Find the electric field within the charge distribution 
as a function of r. Note: The volume element dV for a 
spherical shell of radius r and thickness dr is equal to 
4pr 2dr.

	66.	A solid insulating sphere of radius R has a nonuni-
form charge density that varies with r according to 
the expression r 5 Ar 2, where A is a constant and  
r , R is measured from the center of the sphere.  
(a) Show that the magnitude of the electric field out-
side (r . R) the sphere is E  5 AR 5/5P0r 2. (b) Show 
that the magnitude of the electric field inside (r , R) 
the sphere is E 5 Ar 3/5P0. Note: The volume element 
dV for a spherical shell of radius r and thickness dr is 
equal to 4pr 2dr.
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In Chapter 23, we linked our new study of electromagnetism to our earlier studies of 
force. Now we make a new link to our earlier investigations into energy. The concept of 
potential energy was introduced in Chapter 7 in connection with such conservative forces as 
the gravitational force and the elastic force exerted by a spring. By using the law of conser-
vation of energy, we could solve various problems in mechanics that were not solvable with 
an approach using forces. The concept of potential energy is also of great value in the study 
of electricity. Because the electrostatic force is conservative, electrostatic phenomena can 
be conveniently described in terms of an electric potential energy. This idea enables us to 
define a quantity known as electric potential. Because the electric potential at any point in 
an electric field is a scalar quantity, we can use it to describe electrostatic phenomena more 
simply than if we were to rely only on the electric field and electric forces. The concept of 
electric potential is of great practical value in the operation of electric circuits and devices 
that we will study in later chapters.

25.1	 Electric Potential and Potential Difference
When a charge q is placed in an electric field E

S
 created by some source charge dis- 

tribution, the particle in a field model tells us that there is an electric force q E
S

 

25.1	 Electric Potential and 
Potential Difference

25.2	 Potential Difference in a 
Uniform Electric Field

25.3	 Electric Potential and 
Potential Energy Due  
to Point Charges

25.4	 Obtaining the Value of 
the Electric Field from the 
Electric Potential

25.5	 Electric Potential Due 
to Continuous Charge 
Distributions

25.6	 Electric Potential Due to a 
Charged Conductor

25.7	 The Millikan Oil-Drop 
Experiment

25.8	 Applications of 
Electrostatics

c h a p t e r 

25 Electric Potential

Processes occurring during 
thunderstorms cause large 
differences in electric potential 
between a thundercloud and the 
ground. The result of this potential 
difference is an electrical discharge 
that we call lightning, such as  
this display. Notice at the left that 
a downward channel of lightning 
(a stepped leader) is about to make 
contact with a channel coming up 
from the ground (a return stroke).  
(Costazzurra/Shutterstock.com)
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acting on the charge. This force is conservative because the force between charges 
described by Coulomb’s law is conservative. Let us identify the charge and the field 
as a system. If the charge is free to move, it will do so in response to the electric 
force. Therefore, the electric field will be doing work on the charge. This work 
is internal to the system. This situation is similar to that in a gravitational system: 
When an object is released near the surface of the Earth, the gravitational force 
does work on the object. This work is internal to the object–Earth system as dis-
cussed in Sections 7.7 and 7.8.
	 When analyzing electric and magnetic fields, it is common practice to use the 
notation d sS to represent an infinitesimal displacement vector that is oriented tan-
gent to a path through space. This path may be straight or curved, and an integral 
performed along this path is called either a path integral or a line integral (the two 
terms are synonymous).
	 For an infinitesimal displacement d sS of a point charge q immersed in an electric 
field, the work done within the charge–field system by the electric field on the charge 
is Wint 5 F

S

e ? d sS 5 q E
S

? d sS. Recall from Equation 7.26 that internal work done in a 
system is equal to the negative of the change in the potential energy of the system: 
Wint 5 2DU. Therefore, as the charge q is displaced, the electric potential energy 
of the charge–field system is changed by an amount dU 5 2Wint 5 2q E

S
? d sS. For a 

finite displacement of the charge from some point A in space to some other point 
B, the change in electric potential energy of the system is

	 DU 5 2q 3
B

A
  E

S
? d sS	 (25.1)

The integration is performed along the path that q follows as it moves from A to 
B. Because the force q E

S
 is conservative, this line integral does not depend on the 

path taken from A to B.
	 For a given position of the charge in the field, the charge–field system has a 
potential energy U relative to the configuration of the system that is defined as U 5 
0. Dividing the potential energy by the charge gives a physical quantity that depends 
only on the source charge distribution and has a value at every point in an electric 
field. This quantity is called the electric potential (or simply the potential) V :

	 V 5
U
q

	 (25.2)

Because potential energy is a scalar quantity, electric potential also is a scalar 
quantity.
	 The potential difference DV 5 VB 2 VA between two points A and B in an elec-
tric field is defined as the change in electric potential energy of the system when a 
charge q is moved between the points (Eq. 25.1) divided by the charge:

	 DV ;
DU
q

5 23
B

A

 E
S

? d sS	 (25.3)

In this definition, the infinitesimal displacement d sS is interpreted as the displace-
ment between two points in space rather than the displacement of a point charge 
as in Equation 25.1.
	 Just as with potential energy, only differences in electric potential are meaningful. 
We often take the value of the electric potential to be zero at some convenient point 
in an electric field.
	 Potential difference should not be confused with difference in potential 
energy. The potential difference between A and B exists solely because of a source 
charge and depends on the source charge distribution (consider points A and 
B in the discussion above without the presence of the charge q).  For a poten-
tial energy to exist, we must have a system of two or more charges. The potential 

WW �Change in electric potential 
energy of a system

WW �Potential difference between 
two points

Pitfall Prevention 25.1
Potential and Potential Energy   
The potential is characteristic of 
the field only, independent of a 
charged particle that may be 
placed in the field. Potential energy 
is characteristic of the charge-field sys-
tem due to an interaction between 
the field and a charged particle 
placed in the field.
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energy belongs to the system and changes only if a charge is moved relative to 
the rest of the system. This situation is similar to that for the electric field. An 
electric field exists solely because of a source charge. An electric force requires two 
charges: the source charge to set up the field and another charge placed within 
that field.
	 Let’s now consider the situation in which an external agent moves the charge in 
the field. If the agent moves the charge from A to B without changing the kinetic 
energy of the charge, the agent performs work that changes the potential energy 
of the system: W 5 DU. From Equation 25.3, the work done by an external agent in 
moving a charge q through an electric field at constant velocity is

	 W 5 q DV	 (25.4)

	 Because electric potential is a measure of potential energy per unit charge, the 
SI unit of both electric potential and potential difference is joules per coulomb, 
which is defined as a volt (V):

	 1 V ; 1 J/C	

That is, as we can see from Equation 25.4, 1 J of work must be done to move a 1-C 
charge through a potential difference of 1 V.
	 Equation 25.3 shows that potential difference also has units of electric field times 
distance. It follows that the SI unit of electric field (N/C) can also be expressed in 
volts per meter:

	 1 N/C 5 1 V/m	

Therefore, we can state a new interpretation of the electric field:

The electric field is a measure of the rate of change of the electric potential 
with respect to position.

	 A unit of energy commonly used in atomic and nuclear physics is the electron 
volt (eV), which is defined as the energy a charge–field system gains or loses when a 
charge of magnitude e (that is, an electron or a proton) is moved through a poten-
tial difference of 1 V. Because 1 V 5 1 J/C and the fundamental charge is equal to 
1.60 3 10219 C, the electron volt is related to the joule as follows:

	 1 eV 5 1.60 3 10219 C ? V 5 1.60 3 10219 J	 (25.5)

For instance, an electron in the beam of a typical dental x-ray machine may have 
a speed of 1.4 3 108 m/s. This speed corresponds to a kinetic energy 1.1 3 10214 J 
(using relativistic calculations as discussed in Chapter 39), which is equivalent to 
6.7 3 104 eV. Such an electron has to be accelerated from rest through a potential 
difference of 67 kV to reach this speed.

Q	 uick Quiz 25.1 ​ In Figure 25.1, two points A and B are located within a region 
in which there is an electric field. (i) How would you describe the potential dif-
ference DV 5 VB 2 VA? (a) It is positive. (b) It is negative. (c) It is zero. (ii) A 
negative charge is placed at A and then moved to B. How would you describe 
the change in potential energy of the charge–field system for this process? 
Choose from the same possibilities.

25.2	 Potential Difference in a Uniform Electric Field
Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but 
they can be simplified for the special case of a uniform field. First, consider a uni-
form electric field directed along the negative y axis as shown in Figure 25.2a. Let’s 
calculate the potential difference between two points A and B separated by a dis-

B
A

E
S

 

Figure 25.1  ​(Quick Quiz 25.1) 
Two points in an electric field.

Pitfall Prevention 25.2
Voltage  A variety of phrases are 
used to describe the potential dif-
ference between two points, the 
most common being voltage, aris-
ing from the unit for potential. A 
voltage applied to a device, such as 
a television, or across a device is the 
same as the potential difference 
across the device. Despite popular 
language, voltage is not something 
that moves through a device.

Pitfall Prevention 25.3
The Electron Volt  The electron 
volt is a unit of energy, NOT of 
potential. The energy of any system 
may be expressed in eV, but this 
unit is most convenient for describ-
ing the emission and absorption 
of visible light from atoms. Ener-
gies of nuclear processes are often 
expressed in MeV.



	 25.2  Potential Difference in a Uniform Electric Field	 749

tance d, where the displacement sS points from A toward B and is parallel to the 
field lines. Equation 25.3 gives

	 VB 2 VA 5 DV 5 23
B

A

E
S

? d sS 5 23
B

A

E ds 1cos 08 2 5 23
B

A

E ds	

Because E is constant, it can be removed from the integral sign, which gives

	 DV 5 2E 3
B

A

ds	

	 DV 5 2Ed	 (25.6)

The negative sign indicates that the electric potential at point B is lower than 
at point A; that is, VB , VA. Electric field lines always point in the direction of 
decreasing electric potential as shown in Figure 25.2a.
	 Now suppose a charge q moves from A to B. We can calculate the change in the 
potential energy of the charge–field system from Equations 25.3 and 25.6:

	 DU 5 q DV 5 2qEd	 (25.7)

This result shows that if q is positive, then DU is negative. Therefore, in a system 
consisting of a positive charge and an electric field, the electric potential energy 
of the system decreases when the charge moves in the direction of the field. If a 
positive charge is released from rest in this electric field, it experiences an electric 
force q E

S
 in the direction of E

S
 (downward in Fig. 25.2a). Therefore, it accelerates 

downward, gaining kinetic energy. As the charged particle gains kinetic energy, the 
electric potential energy of the charge–field system decreases by an equal amount. 
This equivalence should not be surprising; it is simply conservation of mechanical 
energy in an isolated system as introduced in Chapter 8.
	 Figure 25.2b shows an analogous situation with a gravitational field. When a 
particle with mass m is released in a gravitational field, it accelerates downward, 
gaining kinetic energy. At the same time, the gravitational potential energy of the 
object–field system decreases.
	 The comparison between a system of a positive charge residing in an electrical 
field and an object with mass residing in a gravitational field in Figure 25.2 is use-
ful for conceptualizing electrical behavior. The electrical situation, however, has 
one feature that the gravitational situation does not: the charge can be negative. 
If q is negative, then DU in Equation 25.7 is positive and the situation is reversed.  

WW �Potential difference between 
two points in a uniform 
electric field

When a positive charge moves 
from point A to point B, the 
electric potential energy of the 
charge–field system decreases.

When an object with mass moves 
from point A to point B, the 
gravitational potential energy of 
the object–field system decreases.

E
S

 

�

d

q

B

A

a

gS 

d

m
B

A

b

Figure 25.2  (a) When the elec-
tric field E

S
 is directed downward, 

point B is at a lower electric 
potential than point A. (b) A 
gravitational analog to the situa-
tion in (a).

Pitfall Prevention 25.4
The Sign of DV  The negative sign 
in Equation 25.6 is due to the 
fact that we started at point A 
and moved to a new point in the 
same direction as the electric field 
lines. If we started from B and 
moved to A, the potential differ-
ence would be 1Ed. In a uniform 
electric field, the magnitude of 
the potential difference is Ed and 
the sign can be determined by the 
direction of travel.
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Example 25.1	     The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference DV between its terminals and establishes that potential difference between 
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5. 
The separation between the plates is d 5 0.30 cm, and we assume the electric field between the plates to be uniform. 
(This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider 
locations near the plate edges.) Find the magnitude of the electric field between the plates.

A system consisting of a negative charge and an electric field gains electric potential 
energy when the charge moves in the direction of the field. If a negative charge is 
released from rest in an electric field, it accelerates in a direction opposite the direc-
tion of the field. For the negative charge to move in the direction of the field, an 
external agent must apply a force and do positive work on the charge.
	 Now consider the more general case of a charged particle that moves between A 
and B in a uniform electric field such that the vector sS is not parallel to the field 
lines as shown in Figure 25.3. In this case, Equation 25.3 gives

	 DV 5 23
B

A

E
S

? d sS 5 2 E
S

?3
B

A

d sS 5 2 E
S

? sS	 (25.8)

where again E
S

 was removed from the integral because it is constant. The change in 
potential energy of the charge–field system is

	 DU 5 q DV 5 2q E
S

? sS 	 (25.9)

	 Finally, we conclude from Equation 25.8 that all points in a plane perpendicular 
to a uniform electric field are at the same electric potential. We can see that in 
Figure 25.3, where the potential difference VB 2 VA is equal to the potential dif-
ference VC 2 VA. (Prove this fact to yourself by working out two dot products for 
E
S

? sS: one for sSASB, where the angle u between E
S

 and sS is arbitrary as shown in 
Figure 25.3, and one for sSASC, where u 5 0.) Therefore, VB 5 VC. The name equi-
potential surface is given to any surface consisting of a continuous distribution of 
points having the same electric potential.
	 The equipotential surfaces associated with a uniform electric field consist of a 
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Q	 uick Quiz 25.2 ​ The labeled points in Figure 25.4 are on a series of equipoten-
tial surfaces associated with an electric field. Rank (from greatest to least) the 
work done by the electric field on a positively charged particle that moves from 
A to B, from B to C, from C to D, and from D to E.

�� Change in potential between 
two points in a uniform 

electric field

9 V 

8 V 

7 V 

6 V 

E

D

B

A

C

Figure 25.4  ​(Quick Quiz 25.2) 
Four equipotential surfaces.

dA

B

C
u

E
S

 

sS 

Point B is at a lower electric 
potential than point A.

Points B and C are at the 
same  electric potential.

Figure 25.3  ​A uniform 
electric field directed along 
the positive x axis. Three 
points in the electric field 
are labeled.
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Use Equation 25.6 to evaluate the magnitude of the elec-
tric field between the plates:

E 5
0 VB 2 VA 0

d
5

12 V
0.30 3 1022 m

5  4.0 3 103 V/m

The configuration of plates in Figure 25.5 is called a parallel-plate capacitor and is examined in greater detail in Chapter 26.

Example 25.2	     Motion of a Proton in a Uniform Electric Field 

A proton is released from rest at point A in a uniform electric field that has a 
magnitude of 8.0 3 104 V/m (Fig. 25.6). The proton undergoes a displacement 
of magnitude d 5 0.50 m to point B in the direction of E

S
. Find the speed of the 

proton after completing the displacement.

Conceptualize  ​Visualize the proton in Figure 25.6 moving downward through 
the potential difference. The situation is analogous to an object falling through 
a gravitational field. Also compare this example to Example 23.10 where a posi-
tive charge was moving in a uniform electric field. In that example, we applied 
the particle under constant acceleration and nonisolated system models. Now 
that we have investigated electric potential energy, what model can we use here?

Categorize  ​The system of the proton and the two plates in Figure 25.6 does not 
interact with the environment, so we model it as an isolated system for energy.

Analyze

AM

S o l u ti  o n

Solve for the final speed of the proton and substitute for 
DV  from Equation 25.6:

v 5 Å
22e DV

m
5 Å

22e 1 2Ed 2
m

5 Å
2e Ed

m

Substitute the changes in energy for both terms: 11
2mv2 2 0 2 1 e DV 5 0

Write the appropriate reduction of Equation 8.2, the 
conservation of energy equation, for the isolated system 
of the charge and the electric field:

DK 1 DU 5 0

Substitute numerical values: v 5 Å
2 11.6 3 10219 C 2 18.0 3 104 V 2 10.50 m 2

1.67 3 10227 kg

5   2.8 3 106 m/s

d

A

B

E
S

 

vB
S

vA� 0S

�

�

�  �  �  �  �  �  �

�  �  �  �  �  �  �

Figure 25.6  ​(Example 25.2) A 
proton accelerates from A to B in 
the direction of the electric field.

� �

V = 12 V

A
B

d

�

Figure 25.5  ​(Example 25.1) A 
12-V battery connected to two paral-
lel plates. The electric field between 
the plates has a magnitude given by 
the potential difference DV divided 
by the plate separation d.

	

▸ 25.1 c o n t i n u e d

Conceptualize  ​In Example 24.5, we illustrated the uniform electric field between parallel plates. The new feature to 
this problem is that the electric field is related to the new concept of electric potential.

Categorize  ​The electric field is evaluated from a relationship between field and potential given in this section, so we 
categorize this example as a substitution problem.

S o l u ti  o n

continued
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25.3	 �Electric Potential and Potential Energy Due  
to Point Charges

As discussed in Section 23.4, an isolated positive point charge q produces an electric 
field directed radially outward from the charge. To find the electric potential at a 
point located a distance r from the charge, let’s begin with the general expression 
for potential difference, Equation 25.3,

	 VB 2 VA 5 23
B

A

E
S

? d sS	

where A and B are the two arbitrary points shown in Figure 25.7. At any point in 
space, the electric field due to the point charge is E

S
5 1keq/r 2 2 r̂  (Eq. 23.9), where 

r̂ is a unit vector directed radially outward from the charge. Therefore, the quantity 
E
S

? d sS can be expressed as

E
S

? d sS 5 ke 
q

r 2 r̂ ? d sS

Because the magnitude of r̂ is 1, the dot product r̂ ? d sS 5 ds cos u, where u is the 
angle between r̂ and d sS. Furthermore, ds cos u is the projection of d sS onto r̂; there-
fore, ds cos u 5 dr. That is, any displacement d sS along the path from point A to 
point B produces a change dr in the magnitude of rS, the position vector of the point 
relative to the charge creating the field. Making these substitutions, we find that 
E
S

? d sS 5 1keq/r 2 2dr ; hence, the expression for the potential difference becomes

	 VB 2 VA 5 2keq 3
r B

r A

 
dr
r 2 5 ke 

q
r
`
r B

r A

	

	 VB 2 VA 5 keq c 1
rB

2
1
rA

d 	 (25.10)

	 Equation 25.10 shows us that the integral of E
S

? d sS is independent of the path 
between points A and B. Multiplying by a charge q0 that moves between points A 
and B, we see that the integral of q0 E

S
? d sS is also independent of path. This latter 

integral, which is the work done by the electric force on the charge q0, shows that 
the electric force is conservative (see Section 7.7). We define a field that is related 
to a conservative force as a conservative field. Therefore, Equation 25.10 tells us 
that the electric field of a fixed point charge q is conservative. Furthermore, Equa-
tion 25.10 expresses the important result that the potential difference between any 
two points A and B in a field created by a point charge depends only on the radial 
coordinates rA and rB. It is customary to choose the reference of electric potential 
for a point charge to be V 5 0 at rA 5 .̀ With this reference choice, the electric 
potential due to a point charge at any distance r  from the charge is

	 V 5 ke 
q
r
	 (25.11)

Pitfall Prevention 25.5
Similar Equation Warning  Do not 
confuse Equation 25.11 for the 
electric potential of a point charge 
with Equation 23.9 for the electric 
field of a point charge. Potential 
is proportional to 1/r, whereas 
the magnitude of the field is pro-
portional to 1/r 2. The effect of a 
charge on the space surrounding 
it can be described in two ways. 
The charge sets up a vector elec-
tric field E

S
, which is related to 

the force experienced by a charge 
placed in the field. It also sets up a 
scalar potential V, which is related 
to the potential energy of the two-
charge system when a charge is 
placed in the field.

The two dashed circles represent 
intersections of spherical equi- 
potential surfaces with the page.

dr d

q

A

B

B

A

u

rS 

rS 
rS

sS

�

r̂

Figure 25.7  The potential dif-
ference between points A and B 
due to a point charge q depends 
only on the initial and final radial 
coordinates rA and rB.

Finalize  ​Because DV is negative for the field, DU is also negative for the proton–field system. The negative value of DU 
means the potential energy of the system decreases as the proton moves in the direction of the electric field. As the 
proton accelerates in the direction of the field, it gains kinetic energy while the electric potential energy of the system 
decreases at the same time.
	 Figure 25.6 is oriented so that the proton moves downward. The proton’s motion is analogous to that of an object 
falling in a gravitational field. Although the gravitational field is always downward at the surface of the Earth, an elec-
tric field can be in any direction, depending on the orientation of the plates creating the field. Therefore, Figure 25.6 
could be rotated 908 or 1808 and the proton could move horizontally or upward in the electric field!

	

▸ 25.2 c o n t i n u e d
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	 We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

	 V 5 ke a
i

 
qi

ri
	 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

	 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b	

	 U 5 ke 
q1q2

r12
	 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
an external agent on the system to bring the two charges near each other (because 
charges of the same sign repel). If the charges are of opposite sign, as in Figure 25.8b, 
then U is negative. Negative work is done by an external agent against the attractive 
force between the charges of opposite sign as they are brought near each other; a force 
must be applied opposite the displacement to prevent q2 from accelerating toward q1.
	 If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating U for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 25.9 is

	 U 5 ke a
q1q2

r12
1

q1q3

r13
1

q2q3

r23
b 	 (25.14)

Physically, this result can be interpreted as follows. Imagine q1 is fixed at the posi-
tion shown in Figure 25.9 but q2 and q3 are at infinity. The work an external agent 
must do to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first 
term in Equation 25.14. The last two terms represent the work required to bring q3 
from infinity to its position near q1 and q2. (The result is independent of the order 
in which the charges are transported.)

WW �Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 25.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.

q 1r12

V1 � ke
q 1
r12

P

�

q2

q 1r12

�

�

The potential energy of 
the pair of charges is
given by keq1q2/r12.

A potential keq1/r12 
exists at point P due to 
charge q1.

a b

Figure 25.8  (a) Charge q1  

establishes an electric potential 
V1 at point P. (b) Charge q2 is 
brought from infinity to point P.

q 2

q1

q3

r13

r12

r23

�

�

�

The potential energy of this 
system of charges is given by 
Equation 25.14.

Figure 25.9  ​Three point 
charges are fixed at the positions 
shown.
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Example 25.3	     The Electric Potential Due to Two Point Charges

As shown in Figure 25.10a, a charge q1 5 2.00 mC is 
located at the origin and a charge q2  5 26.00 mC is 
located at (0, 3.00) m.

(A)  ​Find the total electric potential due to these charges 
at the point P, whose coordinates are (4.00, 0) m.

Conceptualize  ​Recognize first that the 2.00-mC and  
26.00-mC charges are source charges and set up an 
electric field as well as a potential at all points in space, 
including point P.

Categorize  ​The potential is evaluated using an equa-
tion developed in this chapter, so we categorize this 
example as a substitution problem.

S o l u ti  o n

Q	 uick Quiz 25.3 ​ In Figure 25.8b, take q2 to be a negative source charge and q1 
to be a second charge whose sign can be changed. (i) If q1 is initially positive 
and is changed to a charge of the same magnitude but negative, what happens 
to the potential at the position of q1 due to q2? (a) It increases. (b) It decreases. 
(c) It remains the same. (ii) When q1 is changed from positive to negative, what 
happens to the potential energy of the two-charge system? Choose from the 
same possibilities.

 4.00 m  4.00 m

x

y

x

�6.00 mC

y

2.00 mC 3.00 mCP

3.00 m

�6.00 mC

2.00 mC

3.00 m

a b

�

�

� �

�

Figure 25.10  ​(Example 25.3) (a) The electric potential at P due 
to the two charges q1 and q2 is the algebraic sum of the potentials 
due to the individual charges. (b) A third charge q3 5 3.00 mC is 
brought from infinity to point P.

Substitute numerical values: VP 5 18.988 3 109 N # m2/C2 2 a2.00 3 1026 C
4.00 m

1
26.00 3 1026 C

5.00 m
b

5   26.29 3 103 V

Use Equation 25.12 for the system of two 
source charges:

VP 5 ke a
q1

r1
1

q2

r2
b

(B)  ​Find the change in potential energy of the system of two charges plus a third charge q3 5 3.00 mC as the latter 
charge moves from infinity to point P (Fig. 25.10b).

S o l u ti  o n

Substitute numerical values to evaluate DU : DU 5 Uf  2 Ui 5 q3VP 2 0 5 (3.00 3 1026 C)(26.29 3 103 V)

5   21.89 3 1022 J

Assign Ui 5 0 for the system to the initial configura-
tion in which the charge q3 is at infinity. Use Equa-
tion 25.2 to evaluate the potential energy for the 
configuration in which the charge is at P :

Uf 5 q3VP

Therefore, because the potential energy of the system has decreased, an external agent has to do positive work to 
remove the charge q3 from point P back to infinity.

You are working through this example with a classmate and she says, “Wait a minute! In part (B), we 
ignored the potential energy associated with the pair of charges q1 and q2!” How would you respond?

Answer  ​Given the statement of the problem, it is not necessary to include this potential energy because part (B) asks 
for the change in potential energy of the system as q3 is brought in from infinity. Because the configuration of charges 
q1 and q2 does not change in the process, there is no DU associated with these charges. Had part (B) asked to find the 
change in potential energy when all three charges start out infinitely far apart and are then brought to the positions in 
Figure 25.10b, however, you would have to calculate the change using Equation 25.14.

What If ?
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25.4	 �Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
	 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

	 dV 5 2 E
S

? d sS 	 (25.15)

If the electric field has only one component Ex, then E
S

? d sS 5 Ex dx . Therefore, 
Equation 25.15 becomes dV 5 2Ex dx, or

	 Ex 5 2
dV
dx

	 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
	 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
	 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
? d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
	 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

Figure 25.11  Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.

q

�

A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c

E
S
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	 If the charge distribution creating an electric field has spherical symmetry such 
that the volume charge density depends only on the radial distance r, the electric 
field is radial. In this case, E

S
? d sS 5 Er dr,  and we can express dV as dV 5 2Er dr. 

Therefore,

	 Er 5 2
dV
dr

	 (25.17)

For example, the electric potential of a point charge is V 5 keq/r. Because V is a 
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 25.17, we find that the magnitude of the electric field due to the point charge 
is E r 5 keq/r 2, a familiar result. Notice that the potential changes only in the radial 
direction, not in any direction perpendicular to r. Therefore, V (like Er) is a func-
tion only of r, which is again consistent with the idea that equipotential surfaces are 
perpendicular to field lines. In this case, the equipotential surfaces are a family of 
spheres concentric with the spherically symmetric charge distribution (Fig. 25.11b). 
The equipotential surfaces for an electric dipole are sketched in Figure 25.11c.
	 In general, the electric potential is a function of all three spatial coordinates. If 
V(r) is given in terms of the Cartesian coordinates, the electric field components 
Ex , Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives2

	 Ex 5 2
'V
'x
  Ey 5 2

'V
'y
  Ez 5 2

'V
'z

	 (25.18)

Q	 uick Quiz 25.4 ​ In a certain region of space, the electric potential is zero every-
where along the x axis. (i) From this information, you can conclude that the x 
component of the electric field in this region is (a) zero, (b) in the positive x 
direction, or (c) in the negative x direction. (ii) Suppose the electric potential 
is 12 V everywhere along the x axis. From the same choices, what can you con-
clude about the x component of the electric field now?

25.5	 �Electric Potential Due to Continuous  
Charge Distributions

In Section 25.3, we found how to determine the electric potential due to a small 
number of charges. What if we wish to find the potential due to a continuous dis-
tribution of charge? The electric potential in this situation can be calculated using 
two different methods. The first method is as follows. If the charge distribution is 
known, we consider the potential due to a small charge element dq, treating this 
element as a point charge (Fig. 25.12). From Equation 25.11, the electric potential 
dV at some point P due to the charge element dq is

	 dV 5 ke 
dq
r

	 (25.19)

where r is the distance from the charge element to point P. To obtain the total 
potential at point P, we integrate Equation 25.19 to include contributions from all 
elements of the charge distribution. Because each element is, in general, a different 
distance from point P and ke is constant, we can express V as

	 V 5 ke 3  
dq
r

	 (25.20)

Finding the electric field  
from the potential

Electric potential due to  
a continuous charge 

distribution
2In vector notation, E

S
 is often written in Cartesian coordinate systems as

E
S

5 2=V 5 2a î 
'

'x
1 ĵ 

'

'y
1 k̂ 

'

'z
bV

where = is called the gradient operator.

P

dq1

r1

r2

r3

dq2

dq3

Figure 25.12  ​The electric 
potential at point P due to a 
continuous charge distribution 
can be calculated by dividing the 
charge distribution into elements 
of charge dq and summing the 
electric potential contributions 
over all elements. Three sample 
elements of charge are shown.
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In effect, we have replaced the sum in Equation 25.12 with an integral. In this 
expression for V, the electric potential is taken to be zero when point P is infinitely 
far from the charge distribution.
	 The second method for calculating the electric potential is used if the electric 
field is already known from other considerations such as Gauss’s law. If the charge 
distribution has sufficient symmetry, we first evaluate E

S
 using Gauss’s law and then 

substitute the value obtained into Equation 25.3 to determine the potential differ-
ence DV between any two points. We then choose the electric potential V to be zero 
at some convenient point.

Problem-Solving Strategy    Calculating Electric Potential

The following procedure is recommended for solving problems that involve the 
determination of an electric potential due to a charge distribution.

1.	 Conceptualize. Think carefully about the individual charges or the charge distri-
bution you have in the problem and imagine what type of potential would be created. 
Appeal to any symmetry in the arrangement of charges to help you visualize the 
potential.

2.	Categorize. Are you analyzing a group of individual charges or a continuous 
charge distribution? The answer to this question will tell you how to proceed in the 
Analyze step.

3. Analyze. When working problems involving electric potential, remember that it is 
a scalar quantity, so there are no components to consider. Therefore, when using the 
superposition principle to evaluate the electric potential at a point, simply take the 
algebraic sum of the potentials due to each charge. You must keep track of signs, 
however.
	 As with potential energy in mechanics, only changes in electric potential are sig-
nificant; hence, the point where the potential is set at zero is arbitrary. When dealing 
with point charges or a finite-sized charge distribution, we usually define V 5 0 to be 
at a point infinitely far from the charges. If the charge distribution itself extends to 
infinity, however, some other nearby point must be selected as the reference point.

(a) If you are analyzing a group of individual charges: Use the superposition principle, 
which states that when several point charges are present, the resultant potential 
at a point P in space is the algebraic sum of the individual potentials at P due to the 
individual charges (Eq. 25.12). Example 25.4 below demonstrates this procedure.

(b) If you are analyzing a continuous charge distribution: Replace the sums for evaluat-
ing the total potential at some point P from individual charges by integrals (Eq. 
25.20). The total potential at P is obtained by integrating over the entire charge 
distribution. For many problems, it is possible in performing the integration to 
express dq and r in terms of a single variable. To simplify the integration, give 
careful consideration to the geometry involved in the problem. Examples 25.5 
through 25.7 demonstrate such a procedure.

	 To obtain the potential from the electric field: Another method used to obtain the 
potential is to start with the definition of the potential difference given by Equation 
25.3. If E

S
 is known or can be obtained easily (such as from Gauss’s law), the line inte-

gral of E
S

? d sS  can be evaluated.

4.	Finalize. Check to see if your expression for the potential is consistent with your 
mental representation and reflects any symmetry you noted previously. Imagine 
varying parameters such as the distance of the observation point from the charges 
or the radius of any circular objects to see if the mathematical result changes in a 
reasonable way.
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Example 25.4	     The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign 
separated by a distance 2a as shown in Figure 25.13. The dipole is along the x axis 
and is centered at the origin.

(A)  ​Calculate the electric potential at point P on the y axis.

Conceptualize  ​Compare this situation to that in part (B) of Example 23.6. It is the 
same situation, but here we are seeking the electric potential rather than the electric 
field.

Categorize  ​We categorize the problem as one in which we have a small number of 
particles rather than a continuous distribution of charge. The electric potential can be evaluated by summing the 
potentials due to the individual charges.

S o l u ti  o n
aa

q

R

P

x

x

y

�q
� �

y

Figure 25.13  ​(Example 25.4) 
An electric dipole located on the 
x axis.

Analyze  ​Use Equation 25.12 to find the electric potential 
at P due to the two charges:

VP 5 ke a
i

 
qi

ri
5 ke a

q

"a 2 1 y 2
1

2q

"a 2 1 y 2
b 5 0

(B)  ​Calculate the electric potential at point R on the positive x axis.

S o l u ti  o n

Use Equation 25.12 to find the electric potential at R due 
to the two charges:

VR 5 ke a
i

 
qi

ri
5 ke a

2q

x 2 a
1

q

x 1 a
b 5 2

2keqa

x 2 2 a 2

(C)  ​Calculate V and Ex at a point on the x axis far from the dipole.

S o l u ti  o n

Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:

Ex 5 2
dV
dx

5 2
d
dx

a2 2keqa

x 2 b

5 2ke qa 
d
dx

a 1
x 2b 5 2

4ke qa

x 3  1x .. a 2

For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  ​The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

​Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  ​No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

What If ?
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Example 25.5	     Electric Potential Due to a Uniformly Charged Ring

(A)  ​Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  ​Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  ​Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  ​We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.

S o l u ti  o n
a2�x2

dq

a

P
xx

Figure 25.14  ​(Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke

"a 2 1 x 2
 3 dq 5

keQ

"a 2 1 x 2
	 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq

r
5 ke 3 

dq

"a 2 1 x 2

(B)  ​Find an expression for the magnitude of the electric field at point P.

S o l u ti  o n

From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx

5 2k eQ 
d
dx

 1a 2 1 x 2 221/2

5 2keQ 121
2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x

1a 2 1 x 2 23/2 Q 	 (25.22)

Finalize  ​The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6	     Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  ​Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  ​If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S o l u ti  o n

continued
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25.15 shows one such ring. Because point P is on 
the central axis of the disk, symmetry again tells 
us that all points in a given ring are the same dis-
tance from P.

Categorize  ​Because the disk is continuous, we 
evaluate the potential due to a continuous charge 
distribution rather than a group of individual 
charges.

As in Example 25.5, use Equation 25.16 to find the elec-
tric field at any axial point:

Ex 5 2
dV
dx

5 2pke s c1 2
x

1R 2 1 x2 21/2 d 	 (25.24)

Finalize  ​Compare Equation 25.24 with the result of Example 23.9. They are the same. The calculation of V and E
S

 for 
an arbitrary point off the x axis is more difficult to perform because of the absence of symmetry and we do not treat 
that situation in this book.

This integral is of the common form e  un du, where 
n 5 21

2 and u 5 r 2 1 x 2, and has the value un11/(n 1 1). 
Use this result to evaluate the integral:

V 5 2pke s 3 1R 2 1 x2 21/2 2 x 4 	 (25.23)

To obtain the total potential at P, integrate this expression 
over the limits r 5 0 to r 5 R, noting that x is a constant:

V 5 pke s 3
R

0
  

2r dr

"r 2 1 x 2
5 pke s 3

R

0
 1r 2 1 x 2 221/2 2r dr

Use this result in Equation 25.21 in Example 25.5 (with a 
replaced by the variable r and Q replaced by the differen-
tial dq) to find the potential due to the ring:

dV 5
ke dq

"r 2 1 x 2
5

ke 2psr dr

"r 2 1 x 2

Analyze  ​Find the amount of charge dq on a ring of radius 
r and width dr as shown in Figure 25.15:

dq 5 s dA 5 s 12pr dr 2 5 2psr dr

(B)  ​Find the x component of the electric field at a point P along the perpendicular central axis of the disk.

S o l u ti  o n

Example 25.7	     Electric Potential Due to a Finite Line of Charge

A rod of length , located along the x axis has a total charge Q and a 
uniform linear charge density l. Find the electric potential at a point P 
located on the y axis a distance a from the origin (Fig. 25.16).

Conceptualize  ​The potential at P due to every segment of charge on the 
rod is positive because every segment carries a positive charge. Notice that 
we have no symmetry to appeal to here, but the simple geometry should 
make the problem solvable.

Categorize  ​Because the rod is continuous, we evaluate the potential due to 
a continuous charge distribution rather than a group of individual charges.

Analyze  ​In Figure 25.16, the rod lies along the x axis, dx is the length of one 
small segment, and dq is the charge on that segment. Because the rod has a 
charge per unit length l, the charge dq on the small segment is dq 5 l dx.

S o l u ti  o n
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dr
dA � 2pr dr 

x
P

r
R

r 2�x2

x

Figure 25.15  ​(Example 25.6) A 
uniformly charged disk of radius 
R lies in a plane perpendicular to 
the x axis. The calculation of the 
electric potential at any point P on 
the x axis is simplified by dividing 
the disk into many rings of radius r 
and width dr, with area 2pr dr.

dx

�

x
x

O

dq

ra

P

y

Figure 25.16  ​(Example 25.7) A uniform line 
charge of length , located along the x axis. To 
calculate the electric potential at P, the line 
charge is divided into segments each of length 
dx and each carrying a charge dq 5 l dx.
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25.6	 Electric Potential Due to a Charged Conductor
In Section 24.4, we found that when a solid conductor in equilibrium carries a net 
charge, the charge resides on the conductor’s outer surface. Furthermore, the elec-
tric field just outside the conductor is perpendicular to the surface and the field 
inside is zero.
	 We now generate another property of a charged conductor, related to electric 
potential. Consider two points A and B on the surface of a charged conductor as 
shown in Figure 25.17. Along a surface path connecting these points, E

S
 is always 

What if you were asked to find the electric 
field at point P ? Would that be a simple calculation?

Answer  ​Calculating the electric field by means of Equa-
tion 23.11 would be a little messy. There is no symmetry 
to appeal to, and the integration over the line of charge 
would represent a vector addition of electric fields at point 
P. Using Equation 25.18, you could find Ey by replacing a 
with y in Equation 25.25 and performing the differentia-
tion with respect to y. Because the charged rod in Figure 

What If ? 25.16 lies entirely to the right of x 5 0, the electric field at 
point P would have an x component to the left if the rod is 
charged positively. You cannot use Equation 25.18 to find 
the x component of the field, however, because the poten-
tial due to the rod was evaluated at a specific value of  
x (x 5 0) rather than a general value of x. You would have 
to find the potential as a function of both x and y to be 
able to find the x and y components of the electric field 
using Equation 25.18.

Evaluate the result between the limits: V 5 ke 
Q

,
 3ln 1, 1 "a 2 1 ,2 2 2 ln a 4 5 ke 

Q

,
  ln a, 1 "a 2 1 ,2

a
b 	 (25.25)

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral with 
the help of Appendix B:

V 5 ke l 3
,

0
  

dx

"a 2 1 x 2
5 ke 

Q

,
  ln 1x 1 "a 2 1 x 2 2 `

,

0

Find the total potential at P by integrating this expres-
sion over the limits x 5 0 to x 5 ,:

V 5 3
,

0
 ke 

l dx

"a 2 1 x 2

Find the potential at P due to one segment of the rod  
at an arbitrary position x :

dV 5 ke 
dq

r
5 ke 

l dx

"a 2 1 x 2

Pitfall Prevention 25.6
Potential May Not Be Zero   
The electric potential inside the 
conductor is not necessarily zero 
in Figure 25.17, even though the 
electric field is zero. Equation 
25.15 shows that a zero value of 
the field results in no change in 
the potential from one point 
to another inside the conduc-
tor. Therefore, the potential 
everywhere inside the conductor, 
including the surface, has the 
same value, which may or may not 
be zero, depending on where the 
zero of potential is defined.

Notice from the spacing of the 
positive signs that the surface 
charge density is nonuniform.

A

B

E
S
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�
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Figure 25.17  ​An arbitrarily shaped conductor carrying a 
positive charge. When the conductor is in electrostatic equi-
librium, all the charge resides at the surface, E

S
5 0 inside 

the conductor, and the direction of E
S

 immediately outside 
the conductor is perpendicular to the surface. The electric 
potential is constant inside the conductor and is equal to the 
potential at the surface. 

Finalize    If , ,, a, the potential at P should approach that of a point charge because the rod is very short compared 
to the distance from the rod to P.  By using a series expansion for the natural logarithm from Appendix B.5, it is easy 
to show that Equation 25.25 becomes V = keQ /a.

	

▸ 25.7 c o n t i n u e d
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between A and B is nec-
essarily zero:

	 VB 2 VA 5 2 3
B

A

E
S

? d sS 5 0	

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
	 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
	 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.

b

c

a R

V

keQ
R

keQ
r

r

E
keQ

r 2

r
R

�

�

�

� �

� �

�

Figure 25.18  ​(a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8	     Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  ​Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  ​Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S o l u ti  o n

r1

q1

r2
q2

Figure 25.19  ​(Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  ​Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2
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A Cavity Within a Conductor
Suppose a conductor of arbitrary shape contains a cavity as shown in Figure 25.20. 
Let’s assume no charges are inside the cavity. In this case, the electric field inside 
the cavity must be zero regardless of the charge distribution on the outside surface 
of the conductor as we mentioned in Section 24.4. Furthermore, the field in the 
cavity is zero even if an electric field exists outside the conductor.
	 To prove this point, remember that every point on the conductor is at the same 
electric potential; therefore, any two points A and B on the cavity’s surface must 
be at the same potential. Now imagine a field E

S
 exists in the cavity and evaluate the 

potential difference VB 2 VA defined by Equation 25.3:

	 VB 2 VA 5 23
B

A

E
S

? d sS	

Because VB 2 VA 5 0, the integral of E
S

? d sS  must be zero for all paths between  
any two points A and B on the conductor. The only way that can be true for all 
paths is if E

S
 is zero everywhere in the cavity. Therefore, a cavity surrounded by con-

ducting walls is a field-free region as long as no charges are inside the cavity.

Corona Discharge
A phenomenon known as corona discharge is often observed near a conductor 
such as a high-voltage power line. When the electric field in the vicinity of the con-
ductor is sufficiently strong, electrons resulting from random ionizations of air  
molecules near the conductor accelerate away from their parent molecules. These 
rapidly moving electrons can ionize additional molecules near the conductor, creat-
ing more free electrons. The observed glow (or corona discharge) results from the 
recombination of these free electrons with the ionized air molecules. If a conduc-
tor has an irregular shape, the electric field can be very high near sharp points or 
edges of the conductor; consequently, the ionization process and corona discharge 
are most likely to occur around such points.
	 Corona discharge is used in the electrical transmission industry to locate bro-
ken or faulty components. For example, a broken insulator on a transmission 
tower has sharp edges where corona discharge is likely to occur. Similarly, corona 
discharge will occur at the sharp end of a broken conductor strand. Observation 
of these discharges is difficult because the visible radiation emitted is weak and 
most of the radiation is in the ultraviolet. (We will discuss ultraviolet radiation and 
other portions of the electromagnetic spectrum in Section 34.7.) Even use of tra-
ditional ultraviolet cameras is of little help because the radiation from the corona 

Solve for the ratio of charges on the spheres: (1)   
q1

q2
5

r1

r2

Write expressions for the magnitudes of the electric 
fields at the surfaces of the spheres:

E1 5 ke 
q1

r1
2 and E2 5 ke 

q2

r2
2

Evaluate the ratio of these two fields:
E 1

E 2
5

q1

q2
 

r2
2

r1
2

Substitute for the ratio of charges from Equation (1): (2)   
E 1

E 2
5

r1

r2
 

r2
2

r1
2 5

r2

r1

Finalize  ​The field is stronger in the vicinity of the smaller sphere even though the electric potentials at the surfaces of 
both spheres are the same. If r 2 S 0, then E 2 S ,̀ verifying the statement above that the electric field is very large at 
sharp points.

A

B

The electric field in the cavity is 
zero regardless of the charge on 
the conductor.

Figure 25.20  ​A conductor in 
electrostatic equilibrium contain-
ing a cavity.
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discharge is overwhelmed by ultraviolet radiation from the Sun. Newly developed 
dual-spectrum devices combine a narrow-band ultraviolet camera with a visible-
light camera to show a daylight view of the corona discharge in the actual location 
on the transmission tower or cable. The ultraviolet part of the camera is designed 
to operate in a wavelength range in which radiation from the Sun is very weak.

25.7	 The Millikan Oil-Drop Experiment
Robert Millikan performed a brilliant set of experiments from 1909 to 1913 in 
which he measured e, the magnitude of the elementary charge on an electron, and 
demonstrated the quantized nature of this charge. His apparatus, diagrammed in 
Figure 25.21, contains two parallel metallic plates. Oil droplets from an atomizer 
are allowed to pass through a small hole in the upper plate. Millikan used x-rays 
to ionize the air in the chamber so that freed electrons would adhere to the oil 
drops, giving them a negative charge. A horizontally directed light beam is used to 
illuminate the oil droplets, which are viewed through a telescope whose long axis is 
perpendicular to the light beam. When viewed in this manner, the droplets appear 
as shining stars against a dark background and the rate at which individual drops 
fall can be determined.
	 Let’s assume a single drop having a mass m and carrying a charge q is being 
viewed and its charge is negative. If no electric field is present between the plates, 
the two forces acting on the charge are the gravitational force mgS acting down-
ward3 and a viscous drag force F

S

D  acting upward as indicated in Figure 25.22a. The 
drag force is proportional to the drop’s speed as discussed in Section 6.4. When the 
drop reaches its terminal speed vT the two forces balance each other (mg 5 FD).
	 Now suppose a battery connected to the plates sets up an electric field between 
the plates such that the upper plate is at the higher electric potential. In this case, a 
third force q E

S
 acts on the charged drop. The particle in a field model applies twice 

to the particle: it is in a gravitational field and an electric field. Because q is negative 
and E

S
 is directed downward, this electric force is directed upward as shown in Fig-

ure 25.22b. If this upward force is strong enough, the drop moves upward and the 
drag force F

S
rD  acts downward. When the upward electric force q E

S
 balances the sum 

of the gravitational force and the downward drag force F
S
rD , the drop reaches a new 

terminal speed v9T in the upward direction.
	 With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is 
comparable. Hence, one can follow a single droplet for hours, alternately rising and 
falling, by simply turning the electric field on and off.

vS

Telescope with
scale in eyepiece

Oil droplets

Pinhole

d
q

� �

Figure 25.21  Schematic draw-
ing of the Millikan oil-drop 
apparatus.

3There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorporated as a correc-
tion in the gravitational force mgS on the drop, so we will not consider it in our analysis.

q
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vT
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vT�
S
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mgS 

FD
S

FD�
S

E
S

 

E
S

 

a

b

With the electric field off, the 
droplet falls at terminal velocity 
vT under the influence of the 
gravitational and drag forces.

S

When the electric field is turned 
on, the droplet moves upward at 
terminal velocity vT�  under the 
influence of the electric, 
gravitational, and drag forces.

S

Figure 25.22  ​The forces acting 
on a negatively charged oil drop-
let in the Millikan experiment.
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	 After recording measurements on thousands of droplets, Millikan and his 
coworkers found that all droplets, to within about 1% precision, had a charge equal 
to some integer multiple of the elementary charge e :

	 q 5 ne ​ ​  n 5 0, 21, 22, 23, . . .	

where e 5 1.60 3 10219 C. Millikan’s experiment yields conclusive evidence that 
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in 1923.

25.8	 Applications of Electrostatics
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and 
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive 
rocket engines. Details of two devices are given below.

The Van de Graaff Generator
Experimental results show that when a charged conductor is placed in contact with 
the inside of a hollow conductor, all the charge on the charged conductor is trans-
ferred to the hollow conductor. In principle, the charge on the hollow conductor 
and its electric potential can be increased without limit by repetition of the process.
	 In 1929, Robert J. Van de Graaff (1901–1967) used this principle to design and 
build an electrostatic generator, and a schematic representation of it is given in 
Figure 25.23. This type of generator was once used extensively in nuclear physics 
research. Charge is delivered continuously to a high-potential electrode by means 
of a moving belt of insulating material. The high-voltage electrode is a hollow metal 
dome mounted on an insulating column. The belt is charged at point A by means of 
a corona discharge between comb-like metallic needles and a grounded grid. The 
needles are maintained at a positive electric potential of typically 104 V. The positive 
charge on the moving belt is transferred to the dome by a second comb of needles at 
point B. Because the electric field inside the dome is negligible, the positive charge 
on the belt is easily transferred to the conductor regardless of its potential. In prac-
tice, it is possible to increase the electric potential of the dome until electrical dis-
charge occurs through the air. Because the “breakdown” electric field in air is about 
3 3 106 V/m, a sphere 1.00 m in radius can be raised to a maximum potential of  
3 3 106 V. The potential can be increased further by increasing the dome’s radius 
and placing the entire system in a container filled with high-pressure gas.
	 Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive 
enough energy to initiate nuclear reactions between themselves and various target 
nuclei. Smaller generators are often seen in science classrooms and museums. If a 
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The person’s hair 
acquires a net positive charge, and each strand is repelled by all the others as in the 
opening photograph of Chapter 23.

The Electrostatic Precipitator
One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby reduc-
ing air pollution. Precipitators are especially useful in coal-burning power plants 
and industrial operations that generate large quantities of smoke. Current systems 
are able to eliminate more than 99% of the ash from smoke.
	 Figure 25.24a (page 766) shows a schematic diagram of an electrostatic precipi-
tator. A high potential difference (typically 40 to 100 kV) is maintained between 

The charge is deposited 
on the belt at point A and 
transferred to the hollow 
conductor at point B.
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Figure 25.23  ​Schematic dia-
gram of a Van de Graaff generator. 
Charge is transferred to the metal 
dome at the top by means of a 
moving belt. 
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a wire running down the center of a duct and the walls of the duct, which are 
grounded. The wire is maintained at a negative electric potential with respect to 
the walls, so the electric field is directed toward the wire. The values of the field 
near the wire become high enough to cause a corona discharge around the wire; 
the air near the wire contains positive ions, electrons, and such negative ions as 
O2

2. The air to be cleaned enters the duct and moves near the wire. As the electrons 
and negative ions created by the discharge are accelerated toward the outer wall by 
the electric field, the dirt particles in the air become charged by collisions and 
ion capture. Because most of the charged dirt particles are negative, they too are 
drawn to the duct walls by the electric field. When the duct is periodically shaken, 
the particles break loose and are collected at the bottom.
	 In addition to reducing the level of particulate matter in the atmosphere (com-
pare Figs. 25.24b and c), the electrostatic precipitator recovers valuable materials in 
the form of metal oxides.

Figure 25.24  ​(a) Schematic diagram of an electrostatic precipitator. Compare the air pollution when the electrostatic precipi-
tator is (b) operating and (c) turned off.

The high negative electric 
potential maintained on the 
central wire creates a corona 
discharge in the vicinity
of the wire.
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Summary

  The potential difference DV between points A and B in an electric field E
S

 is 
defined as

	 DV ;
DU
q

5 23
B

A

E
S

? d sS	 (25.3)

where DU is given by Equation 25.1 on page 767. The electric potential V 5 U/q 
is a scalar quantity and has the units of joules per coulomb, where 1 J/C ; 1 V.

  An equipotential surface 
is one on which all points are 
at the same electric potential. 
Equipotential surfaces are 
perpendicular to electric 
field lines.

Definitions
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Concepts and Principles

  When a positive charge q is moved between 
points A and B in an electric field E

S
, the change in 

the potential energy of the charge–field system is

	 DU 5 2q 3
B

A

E
S

? d sS	 (25.1)

  If we define V 5 0 at r 5 ,̀ the electric potential due 
to a point charge at any distance r from the charge is

	 V 5 ke 
q

r
	 (25.11)

The electric potential associated with a group of point 
charges is obtained by summing the potentials due to 
the individual charges.

  If the electric potential is known as a function 
of coordinates x, y, and z, we can obtain the com-
ponents of the electric field by taking the negative 
derivative of the electric potential with respect to 
the coordinates. For example, the x component of 
the electric field is

	 Ex 5 2
dV
dx

	 (25.16)

  The electric potential energy associated with a pair 
of point charges separated by a distance r12 is

	 U 5 ke 
q 1q 2

r 12
	 (25.13)

We obtain the potential energy of a distribution of 
point charges by summing terms like Equation 25.13 
over all pairs of particles.

  The electric potential due to a continuous charge distri-
bution is

	 V 5 ke 3 
dq

r
	 (25.20)

Every point on the surface of a charged conductor in elec-
trostatic equilibrium is at the same electric potential. The 
potential is constant everywhere inside the conductor and 
equal to its value at the surface.

  The potential difference between two points separated 
by a distance d in a uniform electric field E

S
 is

	 DV 5 2Ed	 (25.6)
if the direction of travel between the points is in the same 
direction as the electric field.

them? Choose from the same possibilities. Arnold 
Arons, the only physics teacher yet to have his picture 
on the cover of Time magazine, suggested the idea for 
this question.

	 4.	 The electric potential at x 5 3.00 m is 120 V, and the 
electric potential at x 5 5.00 m is 190 V. What is the x 
component of the electric field in this region, assum-
ing the field is uniform? (a) 140 N/C (b) 2140 N/C 
(c) 35.0 N/C (d) 235.0 N/C (e) 75.0 N/C

	 5.	 Rank the potential energies of the four systems of par-
ticles shown in Figure OQ25.5 from largest to smallest. 
Include equalities if appropriate.
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2Q

a

Figure OQ25.5

	 6.	 In a certain region of space, a uniform electric field 
is in the x direction. A particle with negative charge 
is carried from x 5 20.0 cm to x 5 60.0 cm. (i) Does 

	 1.	 In a certain region of space, the electric field is zero. 
From this fact, what can you conclude about the elec-
tric potential in this region? (a) It is zero. (b) It does 
not vary with position. (c) It is positive. (d) It is nega-
tive. (e) None of those answers is necessarily true.

	 2.	 Consider the equipotential surfaces shown in Figure 
25.4. In this region of space, what is the approximate 
direction of the electric field? (a) It is out of the page. 
(b) It is into the page. (c) It is toward the top of the 
page. (d) It is toward the bottom of the page. (e) The 
field is zero.

	 3.	 (i) A metallic sphere A of radius 1.00 cm is several 
centimeters away from a metallic spherical shell B of 
radius 2.00 cm. Charge 450 nC is placed on A, with no 
charge on B or anywhere nearby. Next, the two objects 
are joined by a long, thin, metallic wire (as shown in 
Fig. 25.19), and finally the wire is removed. How is the 
charge shared between A and B? (a) 0 on A, 450 nC 
on B (b) 90.0 nC on A and 360 nC on B, with equal 
surface charge densities (c) 150 nC on A and 300 nC 
on B (d) 225 nC on A and 225 nC on B (e) 450 nC on A 
and 0 on B (ii) A metallic sphere A of radius 1 cm with 
charge 450 nC hangs on an insulating thread inside 
an uncharged thin metallic spherical shell B of radius 
2 cm. Next, A is made temporarily to touch the inner 
surface of B. How is the charge then shared between 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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at the center due to the four charges? (a) 18.0 3 104 V 
(b) 4.50 3 104 V (c) 0 (d) 24.50 3 104 V (e) 9.00 3 104 V

	11.	 A proton is released from rest at the origin in a uni-
form electric field in the positive x direction with 
magnitude 850 N/C. What is the change in the elec-
tric potential energy of the proton–field system when 
the proton travels to x 5 2.50 m? (a) 3.40 3 10216 J  
(b) 23.40 3 10216 J (c) 2.50 3 10216 J (d) 22.50 3 10216 J  
(e) 21.60 3 10219 J

	12.	A particle with charge 240.0 nC is on the x axis at the 
point with coordinate x 5 0. A second particle, with 
charge 220.0 nC, is on the x axis at x 5 0.500 m. (i) Is the 
point at a finite distance where the electric field is zero 
(a) to the left of x 5 0, (b) between x 5 0 and x 5 0.500 m,  
or (c) to the right of x 5 0.500 m? (ii) Is the electric 
potential zero at this point? (a) No; it is positive. (b) Yes.  
(c) No; it is negative. (iii) Is there a point at a finite dis-
tance where the electric potential is zero? (a) Yes; it is to 
the left of x 5 0. (b) Yes; it is between x 5 0 and x 5  
0.500 m. (c) Yes; it is to the right of x 5 0.500 m. (d) No.

	13.	A filament running along the x axis from the origin 
to x  5 80.0 cm carries electric charge with uniform 
density. At the point P with coordinates (x 5 80.0 cm,  
y 5 80.0 cm), this filament creates electric potential 
100 V. Now we add another filament along the y axis, 
running from the origin to y 5 80.0 cm, carrying the 
same amount of charge with the same uniform density. 
At the same point P, is the electric potential created by 
the pair of filaments (a) greater than 200 V, (b) 200 V, 
(c) 100 V, (d) between 0 and 200 V, or (e) 0?

	14.	 In different experimental trials, an electron, a proton, 
or a doubly charged oxygen atom (O22), is fired within a 
vacuum tube. The particle’s trajectory carries it through 
a point where the electric potential is 40.0 V and then 
through a point at a different potential. Rank each of 
the following cases according to the change in kinetic 
energy of the particle over this part of its flight from 
the largest increase to the largest decrease in kinetic 
energy. In your ranking, display any cases of equality. 
(a) An electron moves from 40.0 V to 60.0 V. (b) An elec-
tron moves from 40.0 V to 20.0 V. (c) A proton moves 
from 40.0 V to 20.0 V. (d) A proton moves from 40.0 V to 
10.0 V. (e) An O22 ion moves from 40.0 V to 60.0 V.

	15.	A helium nucleus (charge 5 2e, mass 5 6.63 3 10227 kg)  
traveling at 6.20 3 105 m/s enters an electric field, trav-
eling from point A, at a potential of 1.50 3 103 V, to 
point B, at 4.00 3 103 V. What is its speed at point B? 
(a) 7.91 3 105 m/s (b) 3.78 3 105 m/s (c) 2.13 3 105 m/s  
(d) 2.52 3 106 m/s (e) 3.01 3 108 m/s

the electric potential energy of the charge–field system  
(a) increase, (b) remain constant, (c) decrease, or  
(d) change unpredictably? (ii) Has the particle moved 
to a position where the electric potential is (a) higher 
than before, (b) unchanged, (c) lower than before, or 
(d) unpredictable?

	 7.	 Rank the electric poten-
tials at the four points 
shown in Figure OQ25.7 
from largest to smallest.

	 8.	 An electron in an x-ray 
machine is accelerated 
through a potential dif-
ference of 1.00 3 104 V  
before it hits the tar-
get. What is the kinetic 
energy of the electron in 
electron volts? (a) 1.00 3 
104 eV (b) 1.60 3 10215 eV (c) 1.60 3 10222 eV (d) 6.25 3 
1022 eV (e) 1.60 3 10219 eV

	 9.	 Rank the electric potential energies of the systems of 
charges shown in Figure OQ25.9 from largest to small-
est. Indicate equalities if appropriate.
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Figure OQ25.9

	10.	Four particles are positioned on the rim of a circle. 
The charges on the particles are 10.500 mC, 11.50 mC, 
21.00  mC, and 20.500 mC. If the electric potential at 
the center of the circle due to the 10.500 mC charge 
alone is 4.50 3 104 V, what is the total electric potential 

Q 2Q
� �

A B

C
d

d

D

Figure OQ25.7

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 What determines the maximum electric potential to 
which the dome of a Van de Graaff generator can be 
raised?

	 2.	 Describe the motion of a proton (a) after it is released 
from rest in a uniform electric field. Describe the 

changes (if any) in (b) its kinetic energy and (c) the 
electric potential energy of the proton–field system.

	 3.	 When charged particles are separated by an infinite 
distance, the electric potential energy of the pair is 
zero. When the particles are brought close, the elec-
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grounding wire is touched to the leftmost point on the 
sphere instead. (a) Will electrons still drain away, mov-
ing closer to the negatively charged rod as they do so? 
(b) What kind of charge, if any, remains on the sphere?

	 5.	 Distinguish between electric potential and electric 
potential energy.

	 6.	 Describe the equipotential surfaces for (a) an infinite 
line of charge and (b) a uniformly charged sphere.

tric potential energy of a pair with the same sign is 
positive, whereas the electric potential energy of a pair 
with opposite signs is negative. Give a physical explana-
tion of this statement.

	 4.	 Study Figure 23.3 and the accompanying text discussion 
of charging by induction. When the grounding wire is 
touched to the rightmost point on the sphere in Fig-
ure 23.3c, electrons are drained away from the sphere 
to leave the sphere positively charged. Suppose the 

A are (20.200, 20.300) m, and those of point B are 
(0.400, 0.500) m. Calculate the electric potential differ-
ence VB 2 VA using the dashed-line path.

	 6.	 Starting with the definition of work, prove that at every 
point on an equipotential surface, the surface must be 
perpendicular to the electric field there.

	 7.	 An electron moving parallel to the x axis has an ini-
tial speed of 3.70 3 106 m/s at the origin. Its speed is 
reduced to 1.40 3 105 m/s at the point x 5 2.00 cm.  
(a) Calculate the electric potential difference between 
the origin and that point. (b) Which point is at the 
higher potential?

	 8.	 (a) Find the electric potential difference DVe required 
to stop an electron (called a “stopping potential”) mov-
ing with an initial speed of 2.85 3 107 m/s. (b) Would 
a proton traveling at the same speed require a greater 
or lesser magnitude of electric potential difference? 
Explain. (c) Find a symbolic expression for the ratio 
of the proton stopping potential and the electron stop-
ping potential, DVp /DVe .

	 9.	 A particle having charge q 5 12.00 mC and mass m 5 
0.010 0 kg is connected to a string that is L 5 1.50 m 
long and tied to the pivot point P in Figure P25.9. The 
particle, string, and pivot point all lie on a frictionless, 
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The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide
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Enhanced WebAssign
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WebAssign
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Enhanced WebAssign
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Section 25.1 ​ Electric Potential and Potential Difference

Section 25.2 ​ Potential Difference in a Uniform Electric Field

	 1.	 Oppositely charged parallel plates are separated 
by 5.33 mm. A potential difference of 600 V exists 
between the plates. (a) What is the magnitude of the 
electric field between the plates? (b) What is the mag-
nitude of the force on an electron between the plates? 
(c) How much work must be done on the electron to 
move it to the negative plate if it is initially positioned 
2.90 mm from the positive plate?

	 2.	 A uniform electric field of magnitude 250 V/m is 
directed in the positive x direction. A 112.0-mC charge 
moves from the origin to the point (x, y) 5 (20.0 cm,  
50.0 cm). (a) What is the change in the potential 
energy of the charge–field system? (b) Through what 
potential difference does the charge move?

	 3.	 (a) Calculate the speed of a proton that is accelerated 
from rest through an electric potential difference of 
120 V. (b) Calculate the speed of an electron that is accel-
erated through the same electric potential difference.

	 4.	 How much work is done (by a battery, generator, or 
some other source of potential difference) in moving 
Avogadro’s number of electrons from an initial point 
where the electric potential 
is 9.00 V to a point where the 
electric potential is 25.00 V? 
(The potential in each case is 
measured relative to a com-
mon reference point.)

	 5.	 A uniform electric field 
of magnitude 325 V/m is 
directed in the negative y 
direction in Figure P25.5. 
The coordinates of point 
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horizontal table. The particle is released from rest 
when the string makes an angle u 5 60.08 with a uni-
form electric field of magnitude E 5 300 V/m. Deter-
mine the speed of the particle when the string is paral-
lel to the electric field.

	10.	 Review. A block having 
mass m and charge 1Q 
is connected to an insu-
lating spring having a 
force constant k. The 
block lies on a friction-
less, insulating, hori-
zontal track, and the 
system is immersed in a 
uniform electric field of magnitude E directed as shown 
in Figure P25.10. The block is released from rest when 
the spring is unstretched (at x 5 0). We wish to show that 
the ensuing motion of the block is simple harmonic. 
(a) Consider the system of the block, the spring, and the 
electric field. Is this system isolated or nonisolated?  
(b) What kinds of potential energy exist within this sys-
tem? (c) Call the initial configuration of the system that 
existing just as the block is released from rest. The final 
configuration is when the block momentarily comes to 
rest again. What is the value of x when the block comes 
to rest momentarily? (d) At some value of x  we will call  
x 5 x0, the block has zero net force on it. What analysis 
model describes the particle in this situation? (e) What 
is the value of x0? (f) Define a new coordinate system x9 
such that x9 5 x 2 x0. Show that x9 satisfies a differential 
equation for simple harmonic motion. (g) Find the 
period of the simple harmonic motion. (h) How does 
the period depend on the electric field magnitude?

	11.	 An insulating rod having linear 
charge density l  5 40.0 mC/m and 
linear mass density m 5 0.100 kg/m 
is released from rest in a uniform 
electric field E 5 100 V/m directed 
perpendicular to the rod (Fig. 
P25.11). (a) Determine the speed of 
the rod after it has traveled 2.00 m. 
(b) What If? How does your answer 
to part (a) change if the electric field is not perpen-
dicular to the rod? Explain.

Section 25.3 ​ Electric Potential and Potential Energy  
Due to Point Charges

Note: Unless stated otherwise, assume the reference level 
of potential is V 5 0 at r 5 .̀

	12.	(a) Calculate the electric potential 0.250 cm from an 
electron. (b) What is the electric potential difference 
between two points that are 0.250 cm and 0.750 cm 
from an electron? (c) How would the answers change if 
the electron were replaced with a proton?

	13.	Two point charges are on the y axis. A 4.50-mC charge 
is located at y 5 1.25 cm, and a 22.24-mC charge is 
located at y 5 21.80 cm. Find the total electric poten-
tial at (a) the origin and (b) the point whose coordi-
nates are (1.50 cm, 0).
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	14.	The two charges in Figure 
P25.14 are separated by d 5 
2.00  cm. Find the electric 
potential at (a) point A and 
(b)  point B, which is half-
way between the charges.

	15.	Three positive charges are 
located at the corners of an 
equilateral triangle as in 
Figure P25.15. Find an expression 
for the electric potential at the cen-
ter of the triangle.

	16.	Two point charges Q 1 5 15.00 nC 
and Q 2 5 23.00 nC are separated 
by 35.0 cm. (a) What is the elec-
tric potential at a point midway 
between the charges? (b) What is 
the potential energy of the pair of 
charges? What is the significance of the algebraic sign 
of your answer?

	17.	 Two particles, with 
charges of 20.0 nC and 
220.0 nC, are placed at 
the points with coordi-
nates (0, 4.00 cm) and 
(0, 24.00 cm) as shown 
in Figure P25.17. A par-
ticle with charge 10.0 nC  
is located at the origin. 
(a) Find the electric 
potential energy of the 
configuration of the 
three fixed charges.  
(b) A fourth particle, 
with a mass of 2.00 3 
10213 kg and a charge of  
40.0 nC, is released from 
rest at the point (3.00 cm,  
0). Find its speed after it has moved freely to a very 
large distance away.

	18.	The two charges in Figure P25.18 are separated by a dis-
tance d 5 2.00 cm, and Q 5 15.00 nC. Find (a) the elec-
tric potential at A, (b)  the electric potential at B, and  
(c) the electric potential difference between B and A.
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	19.	Given two particles with 2.00-mC charges as shown in 

Figure P25.19 and a particle with charge q 5 1.28 3 
10218 C at the origin, (a) what is the net force exerted 
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electric potential energy of 
the system as the particle 
at the lower left corner in 
Figure P25.27 is brought 
to this position from infi-
nitely far away. Assume the 
other three particles in Fig-
ure P25.27 remain fixed in 
position.

	28.	Three particles with equal posi-
tive charges q are at the corners 
of an equilateral triangle of side a 
as shown in Figure P25.28. (a) At 
what point, if any, in the plane of 
the particles is the electric poten-
tial zero? (b) What is the electric 
potential at the position of one of 
the particles due to the other two 
particles in the triangle?

	29.	Five particles with equal negative charges 2q are 
placed symmetrically around a circle of radius R. Cal-
culate the electric potential at the center of the circle.

	30.	Review. A light, unstressed spring has length d. Two 
identical particles, each with charge q, are connected 
to the opposite ends of the spring. The particles are 
held stationary a distance d apart and then released at 
the same moment. The system then oscillates on a fric-
tionless, horizontal table. The spring has a bit of inter-
nal kinetic friction, so the oscillation is damped. The 
particles eventually stop vibrating when the distance 
between them is 3d. Assume the system of the spring 
and two charged particles is isolated. Find the increase 
in internal energy that appears in the spring during 
the oscillations.

	31.	 Review. Two insulating spheres have radii 0.300 cm 
and 0.500 cm, masses 0.100 kg and 0.700 kg, and uni-
formly distributed charges 22.00 mC and 3.00 mC. 
They are released from rest when their centers are 
separated by 1.00 m. (a) How fast will each be moving 
when they collide? (b) What If? If the spheres were 
conductors, would the speeds be greater or less than 
those calculated in part (a)? Explain.

	32.	Review. Two insulating spheres have radii r1 and r2, 
masses m 1 and m 2, and uniformly distributed charges 
2q1 and q2. They are released from rest when their cen-
ters are separated by a distance d. (a) How fast is each 
moving when they collide? (b) What If? If the spheres 
were conductors, would their speeds be greater or less 
than those calculated in part (a)? Explain.

	33.	How much work is required to assemble eight identical 
charged particles, each of magnitude q, at the corners 
of a cube of side s?

	34.	Four identical particles, each having charge q and mass 
m, are released from rest at the vertices of a square of 
side L. How fast is each particle moving when their dis-
tance from the center of the square doubles?

	35.	In 1911, Ernest Rutherford and his assistants Geiger 
and Marsden conducted an experiment in which they 
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by the two 2.00-mC charges on the charge q? (b) What 
is the electric field at the origin due to the two 2.00-mC 
particles? (c) What is the electric potential at the ori-
gin due to the two 2.00-mC particles?
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	20.	At a certain distance from a charged particle, the mag-
nitude of the electric field is 500 V/m and the electric 
potential is 23.00 kV. (a) What is the distance to the 
particle? (b) What is the magnitude of the charge?

	21.	 Four point charges each having charge Q are located at 
the corners of a square having sides of length a. Find 
expressions for (a) the total electric potential at the 
center of the square due to the four charges and  
(b) the work required to bring a fifth charge q from 
infinity to the center of the square.

	22.	The three charged particles in 
Figure P25.22 are at the vertices 
of an isosceles triangle (where d 5  
2.00  cm). Taking q  5 7.00 mC, 
calculate the electric potential at 
point A, the midpoint of the base.

	23.	A particle with charge 1q is at 
the origin. A particle with charge 
22q is at x 5 2.00 m on the x axis.  
(a) For what finite value(s) of x 
is the electric field zero? (b) For 
what finite value(s) of x is the electric potential zero?

	24.	Show that the amount of work required to assemble 
four identical charged particles of magnitude Q at the 
corners of a square of side s is 5.41keQ 2/s.

	25.	Two particles each with charge 12.00 mC are located 
on the x axis. One is at x 5 1.00 m, and the other is at  
x 5 21.00 m. (a) Determine the electric potential on 
the y axis at y 5 0.500 m. (b) Calculate the change in 
electric potential energy of the system as a third 
charged particle of 23.00 mC is brought from infinitely 
far away to a position on the y axis at y 5 0.500 m.

	26.	Two charged particles of equal mag-
nitude are located along the y axis 
equal distances above and below the 
x axis as shown in Figure P25.26. 
(a)  Plot a graph of the electric 
potential at points along the x axis 
over the interval 23a , x , 3a. You 
should plot the potential in units 
of keQ /a. (b) Let the charge of the 
particle located at y 5 2a be nega-
tive. Plot the potential along the y 
axis over the interval 24a , y , 4a.

	27.	Four identical charged particles (q 5 110.0 mC) are 
located on the corners of a rectangle as shown in Fig-
ure P25.27. The dimensions of the rectangle are L 5 
60.0 cm and W 5 15.0 cm. Calculate the change in 
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about E
S

 at B. (c) Represent what the electric field looks 
like by drawing at least eight field lines.

	41.	The electric potential inside a charged spherical con-
ductor of radius R is given by V 5 keQ /R , and the 
potential outside is given by V 5 keQ /r. Using Er 5 
2dV/dr, derive the electric field (a) inside and (b) out-
side this charge distribution.

	42.	It is shown in Example 25.7 that the potential at a point 
P a distance a above one end of a uniformly charged 
rod of length , lying along the x axis is

V 5 ke 
Q

,
  ln a, 1 "a 2 1 ,2

a
b

		  Use this result to derive an expression for the y compo-
nent of the electric field at P.

Section 25.5 ​ Electric Potential Due  
to Continuous Charge Distributions

	43.	Consider a ring of radius R with the total charge Q 
spread uniformly over its perimeter. What is the poten-
tial difference between the point at the center of the ring 
and a point on its axis a distance 2R from the center?

	44.	A uniformly charged insulating rod of 
length 14.0 cm is bent into the shape 
of a semicircle as shown in Figure 
P25.44. The rod has a total charge of 
27.50 mC. Find the electric potential 
at O, the center of the semicircle.

	45.	A rod of length L (Fig. P25.45) lies 
along the x axis with its left end at the 
origin. It has a nonuniform charge 
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scattered alpha particles (nuclei of helium atoms) from 
thin sheets of gold. An alpha particle, having charge 
12e and mass 6.64 3 10227 kg, is a product of certain 
radioactive decays. The results of the experiment led 
Rutherford to the idea that most of an atom’s mass is 
in a very small nucleus, with electrons in orbit around 
it. (This is the planetary model of the atom, which we’ll 
study in Chapter 42.) Assume an alpha particle, ini-
tially very far from a stationary gold nucleus, is fired 
with a velocity of 2.00 3 107 m/s directly toward the 
nucleus (charge 179e). What is the smallest distance 
between the alpha particle and the nucleus before the 
alpha particle reverses direction? Assume the gold 
nucleus remains stationary.

Section 25.4 ​ Obtaining the Value of the Electric Field  
from the Electric Potential

	36.	Figure P25.36 repre-
sents a graph of the 
electric potential in a 
region of space versus 
position x, where the 
electric field is paral-
lel to the x  axis. Draw 
a graph of the x  compo-
nent of the electric field 
versus x in this region.

	37.	 The potential in a region between x 5 0 and x 5 6.00 m  
is V 5 a 1 bx, where a 5 10.0 V and b 5 27.00 V/m. 
Determine (a) the potential at x 5 0, 3.00 m, and 6.00 m  
and (b)  the magnitude and direction of the electric 
field at x 5 0, 3.00 m, and 6.00 m.

	38.	An electric field in a region of space is parallel to the 
x axis. The electric potential varies with position as 
shown in Figure P25.38. Graph the x  component of the 
electric field versus position in this region of space.
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	39.	Over a certain region of space, the electric potential is 
V 5 5x 2 3x 2y 1 2yz2. (a) Find the expressions for the 
x, y, and z components of the electric field over this 
region. (b) What is the magnitude of the field at the 
point P that has coordinates (1.00, 0, 22.00) m?

	40.	Figure P25.40 shows several equipotential lines, each 
labeled by its potential in volts. The distance between 
the lines of the square grid represents 1.00 cm. (a) Is 
the magnitude of the field larger at A or at B ? Explain 
how you can tell. (b) Explain what you can determine 
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dielectric strength of air. Any more charge leaks off in 
sparks as shown in Figure P25.52. Assume the dome has 
a diameter of 30.0 cm and is surrounded by dry air with 
a “breakdown” electric field of 3.00 3 106 V/m. (a) What 
is the maximum potential of the dome? (b) What is the 
maximum charge on the dome?

Additional Problems

	53.	Why is the following situation impossible? In the Bohr model 
of the hydrogen atom, an electron moves in a circular 
orbit about a proton. The model states that the electron 
can exist only in certain allowed orbits around the pro-
ton: those whose radius r satisfies r 5 n2(0.052 9 nm), 
where n 5 1, 2, 3, . . . . For one of the possible allowed 
states of the atom, the electric potential energy of the 
system is 213.6 eV.

	54.	Review. In fair weather, the electric field in the air at 
a particular location immediately above the Earth’s 
surface is 120 N/C directed downward. (a) What is the 
surface charge density on the ground? Is it positive or 
negative? (b) Imagine the surface charge density is 
uniform over the planet. What then is the charge of 
the whole surface of the Earth? (c) What is the Earth’s 
electric potential due to this charge? (d) What is the 
difference in potential between the head and the feet 
of a person 1.75 m tall? (Ignore any charges in the 
atmosphere.) (e) Imagine the Moon, with 27.3% of the 
radius of the Earth, had a charge 27.3% as large, with 
the same sign. Find the electric force the Earth would 
then exert on the Moon. (f) State how the answer to 
part (e) compares with the gravitational force the 
Earth exerts on the Moon.

	55.	Review. From a large distance away, a particle of mass 
2.00 g and charge 15.0 mC is fired at 21.0 î  m/s straight 
toward a second particle, originally stationary but free 
to move, with mass 5.00 g and charge 8.50 mC. Both 
particles are constrained to move only along the x axis. 
(a) At the instant of closest approach, both particles 
will be moving at the same velocity. Find this velocity. 
(b) Find the distance of closest approach. After the 
interaction, the particles will move far apart again. At 
this time, find the velocity of (c)  the 2.00-g particle 
and (d) the 5.00-g particle.

	56.	Review. From a large distance away, a particle of mass m1 
and positive charge q1 is fired at speed v in the positive 
x direction straight toward a second particle, originally 
stationary but free to move, with mass m2 and positive 
charge q2. Both particles are constrained to move only 
along the x axis. (a) At the instant of closest approach, 
both particles will be moving at the same velocity. Find 
this velocity. (b) Find the distance of closest approach. 
After the interaction, the particles will move far apart 
again. At this time, find the velocity of (c) the particle of 
mass m1 and (d) the particle of mass m2.

	57.	 The liquid-drop model of the atomic nucleus suggests 
high-energy oscillations of certain nuclei can split  
the nucleus into two unequal fragments plus a few  
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density l 5 ax, where a is a positive constant. (a) What 
are the units of a? (b) Calculate the electric potential 
at A.

	46.	For the arrangement described in Problem 45, calcu-
late the electric potential at point B, which lies on the 
perpendicular bisector of the rod a distance b above 
the x axis.

	47.	 A wire having a uniform linear charge density l is bent 
into the shape shown in Figure P25.47. Find the elec-
tric potential at point O.

2R 2R
O

R

Figure P25.47

Section 25.6 ​ Electric Potential Due to a Charged Conductor

	48.	The electric field magnitude on the surface of an 
irregularly shaped conductor varies from 56.0 kN/C to 
28.0 kN/C. Can you evaluate the electric potential on the 
conductor? If so, find its value. If not, explain why not.

	49.	How many electrons should be removed from an ini-
tially uncharged spherical conductor of radius 0.300 m 
to produce a potential of 7.50 kV at the surface?

	50.	A spherical conductor has a radius of 14.0 cm and a 
charge of 26.0 mC. Calculate the electric field and the 
electric potential at (a) r 5 10.0 cm, (b) r 5 20.0 cm, 
and (c) r 5 14.0 cm from the center.

	51.	 Electric charge can accumulate on an airplane in flight. 
You may have observed needle-shaped metal extensions 
on the wing tips and tail of an airplane. Their purpose 
is to allow charge to leak off before much of it accu-
mulates. The electric field around the needle is much 
larger than the field around the body of the airplane 
and can become large enough to produce dielectric 
breakdown of the air, discharging the airplane. To 
model this process, assume two charged spherical con-
ductors are connected by a long conducting wire and 
a 1.20-mC charge is placed on the combination. One 
sphere, representing the body of the airplane, has a 
radius of 6.00 cm; the other, representing the tip of the 
needle, has a radius of 2.00 cm. (a) What is the electric 
potential of each sphere? (b) What is the electric field 
at the surface of each sphere?

Section 25.8 ​ Applications of Electrostatics

	52.	Lightning can be studied 
with a Van de Graaff gen-
erator, which consists of a 
spherical dome on which 
charge is continuously 
deposited by a moving 
belt. Charge can be added 
until the electric field at 
the surface of the dome 
becomes equal to the 
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neutrons. The fission products acquire kinetic energy 
from their mutual Coulomb repulsion. Assume the 
charge is distributed uniformly throughout the volume 
of each spherical fragment and, immediately before sep-
arating, each fragment is at rest and their surfaces are 
in contact. The electrons surrounding the nucleus can 
be ignored. Calculate the electric potential energy (in 
electron volts) of two spherical fragments from a ura-
nium nucleus having the following charges and radii: 
38e  and 5.50 3 10215 m, and 54e  and 6.20 3 10215 m.

	58.	On a dry winter day, you scuff your leather-soled shoes 
across a carpet and get a shock when you extend the 
tip of one finger toward a metal doorknob. In a dark 
room, you see a spark perhaps 5 mm long. Make order-
of-magnitude estimates of (a) your electric potential 
and (b) the charge on your body before you touch the 
doorknob. Explain your reasoning.

	59.	The electric potential immediately outside a charged 
conducting sphere is 200 V, and 10.0 cm farther 
from the center of the sphere the potential is 150 V. 
Determine (a) the radius of the sphere and (b) the 
charge on it. The electric potential immediately out-
side another charged conducting sphere is 210 V, and  
10.0 cm farther from the center the magnitude of the 
electric field is 400 V/m. Determine (c)  the radius of 
the sphere and (d) its charge on it. (e) Are the answers 
to parts (c) and (d) unique?

	60.	(a) Use the exact result from Example 25.4 to find the 
electric potential created by the dipole described in 
the example at the point (3a, 0). (b) Explain how this 
answer compares with the result of the approximate 
expression that is valid when x is much greater than a.

	61.	 Calculate the work that must be done on charges 
brought from infinity to charge a spherical shell of 
radius R 5 0.100 m to a total charge Q 5 125 mC.

	62.	Calculate the work that must be done on charges 
brought from infinity to charge a spherical shell of 
radius R to a total charge Q.

	63.	The electric potential everywhere on the xy plane is

V 5
36

"1x 1 1 22 1 y 2
2

45

"x 2 1 1 y 2 2 22

		  where V is in volts and x and y are in meters. Determine 
the position and charge on each of the particles that 
create this potential.

	64.	Why is the following situ-
ation impossible? You set 
up an apparatus in your 
laboratory as follows. 
The x axis is the symme-
try axis of a stationary, 
uniformly charged ring 
of radius R 5 0.500 m 
and charge Q 5 50.0 mC 
(Fig. P25.64). You place 
a particle with charge 
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Figure P25.64

Q 5 50.0 mC and mass m 5 0.100 kg at the center of the 
ring and arrange for it to be constrained to move only 
along the x axis. When it is displaced slightly, the par-
ticle is repelled by the ring and accelerates along the x 
axis. The particle moves faster than you expected and 
strikes the opposite wall of your laboratory at 40.0 m/s.

	65.	From Gauss’s law, the electric field set up by a uniform 
line of charge is

E
S

5 a l

2pP0r
b r̂

		  where r̂ is a unit vector pointing radially away from 
the line and l is the linear charge density along the 
line. Derive an expression for the potential difference 
between r 5 r1 and r 5 r2.

	66.	A uniformly charged filament lies along the x axis 
between x 5 a 5 1.00 m and x 5 a 1 , 5 3.00 m as 
shown in Figure P25.66. The total charge on the fila-
ment is 1.60 nC. Calculate successive approximations 
for the electric potential at the origin by modeling the 
filament as (a) a single charged particle at x 5 2.00 m, 
(b) two 0.800-nC charged particles at x 5 1.5 m and  
x 5 2.5 m, and (c) four 0.400-nC charged particles at  
x 5 1.25 m, x 5 1.75 m, x 5 2.25 m, and x 5 2.75 m.  
(d) Explain how the results compare with the potential 
given by the exact expression

V 5
ke Q
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	67.	 The thin, uniformly charged rod 
shown in Figure P25.67 has a lin-
ear charge density l. Find an 
expression for the electric poten-
tial at P.

	68.	A Geiger–Mueller tube is a radia-
tion detector that consists of a 
closed, hollow, metal cylinder 
(the cathode) of inner radius ra 
and a coaxial cylindrical wire (the 
anode) of radius rb (Fig. P25.68a). 
The charge per unit length on the anode is l, and the 
charge per unit length on the cathode is 2l. A gas fills 
the space between the electrodes. When the tube is in 
use (Fig. P25.68b) and a high-energy elementary par-
ticle passes through this space, it can ionize an atom 
of the gas. The strong electric field makes the result-
ing ion and electron accelerate in opposite directions. 
They strike other molecules of the gas to ionize them, 
producing an avalanche of electrical discharge. The 
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is far from the dipole (r .. a), show that the electric 
potential is

V 5
ke p cos u

r 2

		  (b) Calculate the radial compo-
nent Er and the perpendicular 
component E u of the associated 
electric field. Note that E u 5 
2(1/r)('V/'u). Do these results 
seem reasonable for (c) u 5 908 
and 08? (d) For r 5 0? (e) For 
the dipole arrangement shown 
in Figure P25.71, express V in 
terms of Cartesian coordinates 
using r 5 (x 2 1 y 2)1/2 and

    cos u 5
y

1x 2 1 y 2 2 1/2

		  (f) Using these results and again taking r .. a, calcu-
late the field components Ex and Ey.

	72.	A solid sphere of radius R has a uniform charge density 
r and total charge Q. Derive an expression for its total 
electric potential energy. Suggestion: Imagine the 
sphere is constructed by adding successive layers of 
concentric shells of charge dq 5 (4pr 2 dr)r and use  
dU 5 V dq.

	73.	A disk of radius R (Fig. 
P25.73) has a nonuniform 
surface charge density s 5 
Cr, where C is a constant 
and r is measured from the 
center of the disk to a point 
on the surface of the disk. 
Find (by direct integration) 
the electric potential at P.

	74.	Four balls, each with mass m, are 
connected by four nonconducting 
strings to form a square with side 
a as shown in Figure P25.74. The 
assembly is placed on a noncon-
ducting, frictionless, horizontal sur-
face. Balls 1 and 2 each have charge 
q, and balls 3 and 4 are uncharged. 
After the string connecting balls 1 and 2 is cut, what is 
the maximum speed of balls 3 and 4?

	75.	(a) A uniformly charged cylindrical shell with no end 
caps has total charge Q , radius R , and length h. Deter-
mine the electric potential at a point a distance d from 
the right end of the cylinder as shown in Figure P25.75. 
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pulse of electric current between the wire and the cyl-
inder is counted by an external circuit. (a) Show that 
the magnitude of the electric potential difference 
between the wire and the cylinder is

DV 5 2ke l ln ara

rb
b

		  (b) Show that the magnitude of the electric field in the 
space between cathode and anode is

E 5
DV

ln 1ra /rb 2
a1

r
b

		  where r is the distance from the axis of the anode to 
the point where the field is to be calculated.

Figure P25.68
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	69.	Review. Two parallel plates having charges of equal 
magnitude but opposite sign are separated by 12.0 cm.  
Each plate has a surface charge density of 36.0 nC/m2.  
A proton is released from rest at the positive plate. Deter-
mine (a)  the magnitude of the electric field between 
the plates from the charge density, (b) the potential dif-
ference between the plates, (c) the kinetic energy of the 
proton when it reaches the negative plate, (d) the speed 
of the proton just before it strikes the negative plate,  
(e) the acceleration of the proton, and (f) the force on 
the proton. (g) From the force, find the magnitude of 
the electric field. (h) How does your value of the elec-
tric field compare with that found in part (a)?

	70.	When an uncharged conducting sphere of radius a is 
placed at the origin of an xyz coordinate system that 
lies in an initially uniform electric field E

S
5 E 0 k̂ , the 

resulting electric potential is V(x, y, z) 5 V0 for points 
inside the sphere and

V 1x, y, z 2 5 V0 2 E 0 z 1
E 0a3z

1x 2 1 y 2 1 z 2 23/2

		  for points outside the sphere, where V0 is the (constant) 
electric potential on the conductor. Use this equation 
to determine the x, y, and z components of the result-
ing electric field (a) inside the sphere and (b) outside 
the sphere.

Challenge Problems

	71.	An electric dipole is located along the y axis as shown 
in Figure P25.71. The magnitude of its electric dipole 
moment is defined as p 5 2aq. (a) At a point P, which 
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the equilibrium of the ball is 
unstable if V0 exceeds the criti-
cal value 3ked

2 mg/ 14RL 2 4 1/2. 
Suggestion: Consider the forces 
on the ball when it is displaced 
a distance x ,, L.

	77.	 A particle with charge q is 
located at x 5 2R , and a par-
ticle with charge 22q is located 
at the origin. Prove that the 
equipotential surface that has 
zero potential is a sphere centered at (24R/3, 0, 0) and 
having a radius r 5 2

3R.

S

Suggestion: Use the result of Example 25.5 by treating 
the cylinder as a collection of ring charges. (b) What 
If? Use the result of Example 25.6 to solve the same 
problem for a solid cylinder.

	76.	As shown in Figure P25.76, two large, parallel, verti-
cal conducting plates separated by distance d are 
charged so that their potentials are 1V0 and 2V0. A 
small conducting ball of mass m and radius R (where  
R ,, d) hangs midway between the plates. The thread 
of length L supporting the ball is a conducting wire 
connected to ground, so the potential of the ball is 
fixed at V 5 0. The ball hangs straight down in stable 
equilibrium when V0 is sufficiently small. Show that 
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When a patient receives a shock 
from a defibrillator, the energy 
delivered to the patient is initially 
stored in a capacitor.  We will study 
capacitors and capacitance in this 
chapter. (Andrew Olney/Getty Images)

26.1	 Definition of Capacitance

26.2	 Calculating Capacitance

26.3	 Combinations of 
Capacitors

26.4	 Energy Stored in a Charged 
Capacitor

26.5	 Capacitors with Dielectrics

26.6	 Electric Dipole in an 
Electric Field

26.7	 An Atomic Description of 
Dielectrics

c h a p t e r 

26

In this chapter, we introduce the first of three simple circuit elements that can be 
connected with wires to form an electric circuit. Electric circuits are the basis for the vast 
majority of the devices used in our society. Here we shall discuss capacitors, devices that 
store electric charge. This discussion is followed by the study of resistors in Chapter 27 and 
inductors in Chapter 32. In later chapters, we will study more sophisticated circuit elements 
such as diodes and transistors.
	 Capacitors are commonly used in a variety of electric circuits. For instance, they are used 
to tune the frequency of radio receivers, as filters in power supplies, to eliminate sparking in 
automobile ignition systems, and as energy-storing devices in electronic flash units.

26.1	 Definition of Capacitance
Consider two conductors as shown in Figure 26.1 (page 778). Such a combination 
of two conductors is called a capacitor. The conductors are called plates. If the con-
ductors carry charges of equal magnitude and opposite sign, a potential difference 
DV exists between them.

Capacitance and 
Dielectrics
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	 What determines how much charge is on the plates of a capacitor for a given volt-
age? Experiments show that the quantity of charge Q on a capacitor1 is linearly pro-
portional to the potential difference between the conductors; that is, Q ~ DV. The 
proportionality constant depends on the shape and separation of the conductors.2 
This relationship can be written as Q 5 C DV if we define capacitance as follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of 
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

	 C ;
Q

DV
	 (26.1)

By definition capacitance is always a positive quantity. Furthermore, the charge Q and the 
potential difference DV are always expressed in Equation 26.1 as positive quantities.
	 From Equation 26.1, we see that capacitance has SI units of coulombs per volt. 
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

	 1 F 5 1 C/V 	

The farad is a very large unit of capacitance. In practice, typical devices have capac-
itances ranging from microfarads (1026 F) to picofarads (10212 F). We shall use the 
symbol mF to represent microfarads. In practice, to avoid the use of Greek letters, 
physical capacitors are often labeled “mF” for microfarads and “mmF” for micromi-
crofarads or, equivalently, “pF” for picofarads.
	 Let’s consider a capacitor formed from a pair of parallel plates as shown in Figure 
26.2. Each plate is connected to one terminal of a battery, which acts as a source of 
potential difference. If the capacitor is initially uncharged, the battery establishes 
an electric field in the connecting wires when the connections are made. Let’s focus 
on the plate connected to the negative terminal of the battery. The electric field in 
the wire applies a force on electrons in the wire immediately outside this plate; this 
force causes the electrons to move onto the plate. The movement continues until 
the plate, the wire, and the terminal are all at the same electric potential. Once this 
equilibrium situation is attained, a potential difference no longer exists between 
the terminal and the plate; as a result, no electric field is present in the wire and 

Definition of capacitance 

Pitfall Prevention 26.1
Capacitance Is a Capacity  To 
understand capacitance, think of 
similar notions that use a similar 
word. The capacity of a milk carton 
is the volume of milk it can store. 
The heat capacity of an object is 
the amount of energy an object 
can store per unit of temperature 
difference. The capacitance of a 
capacitor is the amount of charge 
the capacitor can store per unit of 
potential difference.

Pitfall Prevention 26.2
Potential Difference Is DV, Not V   
We use the symbol DV for the 
potential difference across a cir-
cuit element or a device because 
this notation is consistent with our 
definition of potential difference 
and with the meaning of the delta 
sign. It is a common but confus-
ing practice to use the symbol V 
without the delta sign for both a 
potential and a potential differ-
ence! Keep that in mind if you 
consult other texts.

1Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conduc-
tor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on 

either conductor as “the charge on the capacitor.” 
2The proportionality between Q and DV can be proven from Coulomb’s law or by experiment.

�Q

�Q

When the capacitor is charged, the 
conductors carry charges of equal 
magnitude and opposite sign.

Figure 26.1  ​A capacitor 
consists of two conductors. 

d

�Q
�Q

Area � A

� �

When the capacitor is connected 
to the terminals of a battery, 
electrons transfer between the 
plates and the wires so that the 
plates become charged.

Figure 26.2  ​A parallel-plate 
capacitor consists of two parallel 
conducting plates, each of area A, 
separated by a distance d. 
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the electrons stop moving. The plate now carries a negative charge. A similar pro-
cess occurs at the other capacitor plate, where electrons move from the plate to the 
wire, leaving the plate positively charged. In this final configuration, the potential 
difference across the capacitor plates is the same as that between the terminals of 
the battery.

Q	 uick Quiz 26.1 ​ A capacitor stores charge Q at a potential difference DV. What 
happens if the voltage applied to the capacitor by a battery is doubled to 2 DV ? 
(a) The capacitance falls to half its initial value, and the charge remains the 
same. (b) The capacitance and the charge both fall to half their initial values. 
(c) The capacitance and the charge both double. (d) The capacitance remains 
the same, and the charge doubles.

26.2	 Calculating Capacitance
We can derive an expression for the capacitance of a pair of oppositely charged 
conductors having a charge of magnitude Q in the following manner. First we cal-
culate the potential difference using the techniques described in Chapter 25. We 
then use the expression C 5 Q /DV to evaluate the capacitance. The calculation is 
relatively easy if the geometry of the capacitor is simple.
	 Although the most common situation is that of two conductors, a single con-
ductor also has a capacitance. For example, imagine a single spherical, charged 
conductor. The electric field lines around this conductor are exactly the same as 
if there were a conducting, spherical shell of infinite radius, concentric with the 
sphere and carrying a charge of the same magnitude but opposite sign. Therefore, 
we can identify the imaginary shell as the second conductor of a two-conductor 
capacitor. The electric potential of the sphere of radius a is simply keQ /a (see Sec-
tion 25.6), and setting V 5 0 for the infinitely large shell gives

	 C 5
Q

DV
5

Q

keQ /a
5

a
ke

5 4pP0a 	 (26.2)

This expression shows that the capacitance of an isolated, charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and its 
potential, as is the case with all capacitors. Equation 26.1 is the general definition 
of capacitance in terms of electrical parameters, but the capacitance of a given 
capacitor will depend only on the geometry of the plates.
	 The capacitance of a pair of conductors is illustrated below with three familiar 
geometries, namely, parallel plates, concentric cylinders, and concentric spheres. In 
these calculations, we assume the charged conductors are separated by a vacuum.

Parallel-Plate Capacitors
Two parallel, metallic plates of equal area A are separated by a distance d as shown 
in Figure 26.2. One plate carries a charge 1Q , and the other carries a charge 2Q . 
The surface charge density on each plate is s 5 Q /A. If the plates are very close 
together (in comparison with their length and width), we can assume the electric 
field is uniform between the plates and zero elsewhere. According to the What If? 
feature of Example 24.5, the value of the electric field between the plates is

	 E 5
s

P0
5

Q

P0A
	

Because the field between the plates is uniform, the magnitude of the potential dif-
ference between the plates equals Ed (see Eq. 25.6); therefore,

	 DV 5 Ed 5
Qd

P0A
	

WW �Capacitance of an isolated 
charged sphere

Pitfall Prevention 26.3
Too Many Cs  Do not confuse an 
italic C for capacitance with a non-
italic C for the unit coulomb.
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Example 26.1	     The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge 
Q is coaxial with a cylindrical shell of negligible thick-
ness, radius b . a, and charge 2Q (Fig. 26.4a). Find the 
capacitance of this cylindrical capacitor if its length 
is ,.

Conceptualize  ​Recall that any pair of conductors 
qualifies as a capacitor, so the system described in this 
example therefore qualifies. Figure 26.4b helps visual-
ize the electric field between the conductors. We expect 
the capacitance to depend only on geometric factors, 
which, in this case, are a, b, and ,.

Categorize  ​Because of the cylindrical symmetry of the 
system, we can use results from previous studies of cylin-
drical systems to find the capacitance.

S o l u ti  o n

Substituting this result into Equation 26.1, we find that the capacitance is

	 C 5
Q

DV
5

Q

Qd/P0A
	

	 C 5
P0A
d

	 (26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.
	 Let’s consider how the geometry of these conductors influences the capacity of 
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor 
plates are large, the accumulated charges are able to distribute themselves over a 
substantial area and the amount of charge that can be stored on a plate for a given 
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.
	 Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric field 
between the plates has the same value but extends over a shorter distance. There-
fore, the magnitude of the potential difference between the plates DV 5 Ed (Eq. 
25.6) is smaller. The difference between this new capacitor voltage and the terminal 
voltage of the battery appears as a potential difference across the wires connecting 
the battery to the capacitor, resulting in an electric field in the wires that drives 
more charge onto the plates and increases the potential difference between the 
plates. When the potential difference between the plates again matches that of the 
battery, the flow of charge stops. Therefore, moving the plates closer together causes 
the charge on the capacitor to increase. If d is increased, the charge decreases. As a 
result, the inverse relationship between C and d in Equation 26.3 is reasonable.

Q	 uick Quiz 26.2 ​ Many computer keyboard buttons are constructed of capacitors 
as shown in Figure 26.3. When a key is pushed down, the soft insulator between 
the movable plate and the fixed plate is compressed. When the key is pressed, 
what happens to the capacitance? (a) It increases. (b) It decreases. (c) It changes 
in a way you cannot determine because the electric circuit connected to the key-
board button may cause a change in DV.

Capacitance of parallel plates 

Key
B

Movable plate

Insulator
Fixed plate

Figure 26.3  ​(Quick Quiz 26.2) 
One type of computer keyboard 
button.

b
a

�

Gaussian
surface

�Q

�Q

a
Q

Q

b

r

a b

Figure 26.4  ​(Example 26.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view. 
The electric field lines are radial. The dashed line represents the 
end of a cylindrical gaussian surface of radius r and length ,.
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Apply Equation 24.7 for the electric field outside a cylin-
drically symmetric charge distribution and notice from 
Figure 26.4b that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Erdr 5 22ke l 3

b

a
 
dr
r

5 22ke l ln a b
a
b

Substitute the absolute value of DV into Equation 26.1 
and use l 5 Q /,:

C 5
Q

DV
5

Q

12keQ /, 2  ln 1b/a 2 5
,

2ke ln 1b/a 2 	 (26.4)

Finalize  ​The capacitance depends on the radii a and b and is proportional to the length of the cylinders. Equation 
26.4 shows that the capacitance per unit length of a combination of concentric cylindrical conductors is

C
,

5
1

2ke ln 1b/a 2     (26.5)

An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric cylindrical conduc-
tors separated by an insulator. You probably have a coaxial cable attached to your television set if you are a subscriber 
to cable television. The coaxial cable is especially useful for shielding electrical signals from any possible external 
influences.

​Suppose b 5 2.00a for the cylindrical capacitor. You would like to increase the capacitance, and you can 
do so by choosing to increase either , by 10% or a by 10%. Which choice is more effective at increasing the capacitance?

Answer  ​According to Equation 26.4, C is proportional to ,, so increasing , by 10% results in a 10% increase in C. For 
the result of the change in a, let’s use Equation 26.4 to set up a ratio of the capacitance C9 for the enlarged cylinder 
radius a9 to the original capacitance:

C r
C

5
,/2ke ln 1b/a r 2
,/2ke ln 1b/a 2 5

ln 1b/a 2
ln 1b/a r 2

We now substitute b 5 2.00a and a9 5 1.10a, representing a 10% increase in a:

C r
C

5
ln 12.00a/a 2

ln 12.00a/1.10a 2 5
ln 2.00
ln 1.82

5 1.16

which corresponds to a 16% increase in capacitance. Therefore, it is more effective to increase a than to increase ,.
	 Note two more extensions of this problem. First, it is advantageous to increase a only for a range of relationships 
between a and b. If b . 2.85a, increasing , by 10% is more effective than increasing a (see Problem 70). Second, if b 
decreases, the capacitance increases. Increasing a or decreasing b has the effect of bringing the plates closer together, 
which increases the capacitance.

What If ?

Write an expression for the potential difference between 
the two cylinders from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Analyze  ​Assuming , is much greater than a and b, we can neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the region between them (Fig. 26.4b).

	

▸ 26.1 c o n t i n u e d

continued

Example 26.2	     The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q concentric with a smaller con-
ducting sphere of radius a and charge Q (Fig. 26.5, page 782). Find the capacitance of this device.

Conceptualize  ​As with Example 26.1, this system involves a pair of conductors and qualifies as a capacitor. We expect 
the capacitance to depend on the spherical radii a and b.

S o l u ti  o n
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26.3	 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
	 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q

0 Vb 2 Va 0
5

ab
ke 1b 2 a 2 	 (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1

r
d

b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
a
b 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  ​The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

​If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  ​In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2

5
a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

What If ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

�

�

Figure 26.6  ​Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

	

▸ 26.2 c o n t i n u e d

Categorize  ​Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  ​As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

�Q

�Q

Figure 26.5  ​(Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.
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as the positive terminal. Likewise, the right plates are connected to the negative ter-
minal and so are both at the same potential as the negative terminal. Therefore, the 
individual potential differences across capacitors connected in parallel are the same 
and are equal to the potential difference applied across the combination. That is,

	 DV1 5 DV2 5 DV 	

where DV is the battery terminal voltage.
	 After the battery is attached to the circuit, the capacitors quickly reach their 
maximum charge. Let’s call the maximum charges on the two capacitors Q 1 and 
Q 2, where Q 1 5 C 1DV1 and Q 2 5 C 2DV2. The total charge Q tot stored by the two 
capacitors is the sum of the charges on the individual capacitors:

	 Q tot 5 Q 1 1 Q 2  5 C 1DV1 1 C 2DV2	 (26.7)

	 Suppose you wish to replace these two capacitors by one equivalent capacitor hav-
ing a capacitance Ceq as in Figure 26.7c. The effect this equivalent capacitor has 
on the circuit must be exactly the same as the effect of the combination of the two 
individual capacitors. That is, the equivalent capacitor must store charge Q tot when 
connected to the battery. Figure 26.7c shows that the voltage across the equivalent 
capacitor is DV because the equivalent capacitor is connected directly across the 
battery terminals. Therefore, for the equivalent capacitor,

	 Q tot 5 C eq DV 	

Substituting this result into Equation 26.7 gives

	 C eq DV 5 C1 DV1 1 C2 DV2 	

	  C eq 5 C1 1 C2 1parallel combination 2 	

where we have canceled the voltages because they are all the same. If this treat-
ment is extended to three or more capacitors connected in parallel, the equivalent 
capacitance is found to be

	 C eq 5 C1 1 C2 1 C3 1 c  1parallel combination 2 	 (26.8)

Therefore, the equivalent capacitance of a parallel combination of capacitors is 
(1)  the algebraic sum of the individual capacitances and (2) greater than any of 

WW �Equivalent capacitance for 
capacitors in parallel 

C2

C1

V

Q2

C2

Q1

C1

VV� �

V1�

�

� �� �

�Q 1 �Q 1

V2�

�Q 2 �Q 2

� �

� �

� �

Ceq C1 C2 �  �

A pictorial 
representation of two 
capacitors connected in 
parallel to a battery

A circuit diagram 
showing the two 
capacitors connected 
in parallel to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in parallel

a b c

Figure 26.7  Two capacitors 
connected in parallel. All three 
diagrams are equivalent.
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the individual capacitances. Statement (2) makes sense because we are essentially 
combining the areas of all the capacitor plates when they are connected with con-
ducting wire, and capacitance of parallel plates is proportional to area (Eq. 26.3).

Series Combination
Two capacitors connected as shown in Figure 26.8a and the equivalent circuit dia-
gram in Figure 26.8b are known as a series combination of capacitors. The left 
plate of capacitor 1 and the right plate of capacitor 2 are connected to the termi-
nals of a battery. The other two plates are connected to each other and to nothing 
else; hence, they form an isolated system that is initially uncharged and must con-
tinue to have zero net charge. To analyze this combination, let’s first consider the 
uncharged capacitors and then follow what happens immediately after a battery is 
connected to the circuit. When the battery is connected, electrons are transferred 
out of the left plate of C1 and into the right plate of C 2. As this negative charge 
accumulates on the right plate of C 2, an equivalent amount of negative charge is 
forced off the left plate of C 2, and this left plate therefore has an excess positive 
charge. The negative charge leaving the left plate of C 2 causes negative charges 
to accumulate on the right plate of C1. As a result, both right plates end up with a 
charge 2Q  and both left plates end up with a charge 1Q . Therefore, the charges 
on capacitors connected in series are the same:

	 Q 1 5 Q 2 5 Q 	

where Q  is the charge that moved between a wire and the connected outside plate 
of one of the capacitors.
	 Figure 26.8a shows the individual voltages DV 1 and DV 2 across the capacitors. 
These voltages add to give the total voltage DVtot across the combination:

	 DVtot 5 DV1 1 DV2 5
Q 1

C1
1

Q 2

C 2
	 (26.9)

In general, the total potential difference across any number of capacitors connected 
in series is the sum of the potential differences across the individual capacitors.
	 Suppose the equivalent single capacitor in Figure 26.8c has the same effect on 
the circuit as the series combination when it is connected to the battery. After it is 
fully charged, the equivalent capacitor must have a charge of 2Q  on its right plate 
and a charge of 1Q  on its left plate. Applying the definition of capacitance to the 
circuit in Figure 26.8c gives

	 DVtot 5
Q

C eq
	

� �

C2

�V

C1
�V1 �V2

�V

C1 C2

�V1 �V2
�Q �Q �Q �Q

� �
�V

C2Ceq     C1     
11 1

� �

� �

A pictorial 
representation of two 
capacitors connected in 
series to a battery

A circuit diagram 
showing the two 
capacitors connected 
in series to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in series

a b c

Figure 26.8  Two capacitors 
connected in series. All three dia-
grams are equivalent.
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Substituting this result into Equation 26.9, we have

	
Q

C eq
5

Q 1

C 1
1

Q 2

C 2
	

Canceling the charges because they are all the same gives

	
1

C eq
5

1
C1

1
1

C 2
 1series combination 2 	

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

	
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2 	 (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q	 uick Quiz 26.3 ​ Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

WW �Equivalent capacitance for 
capacitors in series

Example 26.3	     Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  ​Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  ​Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  ​Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S o l u ti  o n

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 26.9  ​(Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:

 
1

C eq
5

1
C 1

1
1

C 2
5

1
4.0 mF

1
1

4.0 mF
5

1
2.0 mF

 C eq 5 2.0 mF

continued
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26.4	 Energy Stored in a Charged Capacitor
Because positive and negative charges are separated in the system of two conduc-
tors in a capacitor, electric potential energy is stored in the system. Many of those 
who work with electronic equipment have at some time verified that a capacitor can 
store energy. If the plates of a charged capacitor are connected by a conductor such 
as a wire, charge moves between each plate and its connecting wire until the capaci-
tor is uncharged. The discharge can often be observed as a visible spark. If you 
accidentally touch the opposite plates of a charged capacitor, your fingers act as a 
pathway for discharge and the result is an electric shock. The degree of shock you 
receive depends on the capacitance and the voltage applied to the capacitor. Such 
a shock could be dangerous if high voltages are present as in the power supply of a 
home theater system. Because the charges can be stored in a capacitor even when 
the system is turned off, unplugging the system does not make it safe to open the 
case and touch the components inside.
	 Figure 26.10a shows a battery connected to a single parallel-plate capacitor with 
a switch in the circuit. Let us identify the circuit as a system. When the switch is 
closed (Fig. 26.10b), the battery establishes an electric field in the wires and charges 

Finalize  ​This final value is that of the single equivalent capacitor shown in Figure 26.9d. For further practice in treat-
ing circuits with combinations of capacitors, imagine a battery is connected between points a and b in Figure 26.9a so 
that a potential difference DV is established across the combination. Can you find the voltage across and the charge on 
each capacitor?

�V �V

+
+
+
+
+
+

–
–
–
–
–
–

Electric
field in
wire

Electric field 
between plates

Chemical potential
energy in the
battery is reduced.

Electrons move 
from the wire to 
the plate.

Electrons move 
from the plate 
to the wire, 
leaving the 
plate positively 
charged.

Separation 
of charges 
represents 
potential 
energy.

� �� �

E
S

a b

Electric
field in
wire

With the switch 
open, the capacitor 
remains uncharged.

Figure 26.10  (a) A circuit con-
sisting of a capacitor, a battery, 
and a switch. (b) When the switch 
is closed, the battery establishes 
an electric field in the wire and 
the capacitor becomes charged.

	

▸ 26.3 c o n t i n u e d

The two 8.0-mF capacitors (lower green circle in Fig. 
26.9b) are also in series. Find the equivalent capacitance 
from Equation 26.10:

1
C eq

5
1

C 1
1

1
C 2

5
1

8.0 mF
1

1
8.0 mF

5
1

4.0 mF

C eq 5 4.0 mF

The circuit now looks like Figure 26.9c. The 2.0-mF and 
4.0-mF capacitors are in parallel:

Ceq 5 C1 1 C 2 5   6.0 mF 
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flow between the wires and the capacitor. As that occurs, there is a transformation 
of energy within the system. Before the switch is closed, energy is stored as chemi-
cal potential energy in the battery. This energy is transformed during the chemical 
reaction that occurs within the battery when it is operating in an electric circuit. 
When the switch is closed, some of the chemical potential energy in the battery is 
transformed to electric potential energy associated with the separation of positive 
and negative charges on the plates.
	 To calculate the energy stored in the capacitor, we shall assume a charging pro-
cess that is different from the actual process described in Section 26.1 but that gives 
the same final result. This assumption is justified because the energy in the final 
configuration does not depend on the actual charge-transfer process.3 Imagine the 
plates are disconnected from the battery and you transfer the charge mechanically 
through the space between the plates as follows. You grab a small amount of posi-
tive charge on one plate and apply a force that causes this positive charge to move 
over to the other plate. Therefore, you do work on the charge as it is transferred 
from one plate to the other. At first, no work is required to transfer a small amount 
of charge dq from one plate to the other,4 but once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work must 
be done to move additional charge through this potential difference. As more and 
more charge is transferred from one plate to the other, the potential difference 
increases in proportion and more work is required. The overall process is described 
by the nonisolated system model for energy. Equation 8.2 reduces to W 5 DUE ; the 
work done on the system by the external agent appears as an increase in electric 
potential energy in the system.
	 Suppose q is the charge on the capacitor at some instant during the charging pro-
cess. At the same instant, the potential difference across the capacitor is DV 5 q/C. 
This relationship is graphed in Figure 26.11. From Section 25.1, we know that the 
work necessary to transfer an increment of charge dq from the plate carrying charge 
2q to the plate carrying charge q (which is at the higher electric potential) is

	 dW 5 DV dq 5
q

C
 dq 	

The work required to transfer the charge dq is the area of the tan rectangle in Fig-
ure 26.11. Because 1 V 5 1 J/C, the unit for the area is the joule. The total work 
required to charge the capacitor from q 5 0 to some final charge q 5 Q  is

	 W 5  3
Q

0
 
q

C
 dq 5

1
C

 3
Q

0
q dq 5

Q 2

2C
	

The work done in charging the capacitor appears as electric potential energy UE 
stored in the capacitor. Using Equation 26.1, we can express the potential energy 
stored in a charged capacitor as

	 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22 	 (26.11)

Because the curve in Figure 26.11 is a straight line, the total area under the curve is 
that of a triangle of base Q and height DV.
	 Equation 26.11 applies to any capacitor, regardless of its geometry. For a given 
capacitance, the stored energy increases as the charge and the potential difference 
increase. In practice, there is a limit to the maximum energy (or charge) that can 
be stored because, at a sufficiently large value of DV, discharge ultimately occurs 

WW �Energy stored in a charged 
capacitor

3This discussion is similar to that of state variables in thermodynamics. The change in a state variable such as tem-
perature is independent of the path followed between the initial and final states. The potential energy of a capacitor 
(or any system) is also a state variable, so its change does not depend on the process followed to charge the capacitor.
4We shall use lowercase q for the time-varying charge on the capacitor while it is charging to distinguish it from 
uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q
Q

�

The work required to move charge 
dq through the potential 
difference �V across the capacitor 
plates is given approximately by 
the area of the shaded rectangle.

Figure 26.11  ​A plot of potential 
difference versus charge for a 
capacitor is a straight line having 
slope 1/C.
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Example 26.4	     Rewiring Two Charged Capacitors

Two capacitors C1 and C 2 (where C1 . C 2) are charged to the 
same initial potential difference DVi . The charged capacitors 
are removed from the battery, and their plates are connected 
with opposite polarity as in Figure 26.12a. The switches S1 
and S2 are then closed as in Figure 26.12b.

(A)  ​Find the final potential difference DVf between a and b 
after the switches are closed.

Conceptualize  ​Figure 26.12 helps us understand the initial 
and final configurations of the system. When the switches 
are closed, the charge on the system will redistribute 
between the capacitors until both capacitors have the same 
potential difference. Because C 1 . C 2, more charge exists 
on C 1 than on C 2, so the final configuration will have positive charge on the left plates as shown in Figure 26.12b.

Categorize  ​In Figure 26.12b, it might appear as if the capacitors are connected in parallel, but there is no battery in 
this circuit to apply a voltage across the combination. Therefore, we cannot categorize this problem as one in which 
capacitors are connected in parallel. We can categorize it as a problem involving an isolated system for electric charge. 
The left-hand plates of the capacitors form an isolated system because they are not connected to the right-hand plates 
by conductors.

S o l u ti  o n

between the plates. For this reason, capacitors are usually labeled with a maximum 
operating voltage.
	 We can consider the energy in a capacitor to be stored in the electric field cre-
ated between the plates as the capacitor is charged. This description is reason-
able because the electric field is proportional to the charge on the capacitor. For 
a parallel-plate capacitor, the potential difference is related to the electric field 
through the relationship DV 5 Ed. Furthermore, its capacitance is C 5 P0A/d (Eq. 
26.3). Substituting these expressions into Equation 26.11 gives

	 UE 5 1
2 a

P0 A
d

b 1Ed 2 2 5 1
2 1P0Ad 2E 2 	 (26.12)

Because the volume occupied by the electric field is Ad, the energy per unit volume  
uE 5 UE/Ad, known as the energy density, is

	 uE 5 1
2 P0 E 2	 (26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression 
is generally valid regardless of the source of the electric field. That is, the energy 
density in any electric field is proportional to the square of the magnitude of the 
electric field at a given point.

Q	 uick Quiz 26.4 ​ You have three capacitors and a battery. In which of the follow-
ing combinations of the three capacitors is the maximum possible energy stored 
when the combination is attached to the battery? (a) series (b) parallel (c) no 
difference because both combinations store the same amount of energy

� Energy density in 
an electric field

� �

Q1i
�

ba

�

C1

Q 2i
� �

C2

S1 S2

�

ba

�

S1 S2

Q1f
C1

Q 2f C2

a b

Figure 26.12  ​(Example 26.4) (a) Two capacitors are 
charged to the same initial potential difference and con-
nected together with plates of opposite sign to be in contact 
when the switches are closed. (b) When the switches are 
closed, the charges redistribute.

Analyze  ​Write an expression for the total charge on the 
left-hand plates of the system before the switches are 
closed, noting that a negative sign for Q 2i is necessary 
because the charge on the left plate of capacitor C 2 is 
negative:

(1)   Q i 5 Q 1i 1 Q 2i 5 C1 DVi 2 C 2 DVi 5 (C1 2 C 2)DVi

Pitfall Prevention 26.4
Not a New Kind of Energy   
The energy given by Equation 
26.12 is not a new kind of energy. 
The equation describes familiar 
electric potential energy associ-
ated with a system of separated 
source charges. Equation 26.12 
provides a new interpretation, or a 
new way of modeling the energy. 
Furthermore, Equation 26.13 cor-
rectly describes the energy density 
associated with any electric field, 
regardless of the source.
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	 One device in which capacitors have an important role is the portable defibrillator 
(see the chapter-opening photo on page 777). When cardiac fibrillation (random 
contractions) occurs, the heart produces a rapid, irregular pattern of beats. A fast dis-
charge of energy through the heart can return the organ to its normal beat pattern. 
Emergency medical teams use portable defibrillators that contain batteries capable 
of charging a capacitor to a high voltage. (The circuitry actually permits the capacitor 
to be charged to a much higher voltage than that of the battery.) Up to 360 J is stored 

Because the system is isolated, the initial and 
final charges on the system must be the same. 
Use this condition and Equations (1) and (2) to 
solve for DVf :

Q f 5 Q i   S   1C 1 1 C 2 2  DVf 5 1C 1 2 C 2 2  DVi

(3)   DVf 5 aC 1 2 C 2

C 1 1 C 2
b DVi

(B)  ​Find the total energy stored in the capacitors before and after the switches are closed and determine the ratio of 
the final energy to the initial energy.

S o l u ti  o n

Divide Equation (5) by Equation (4) to obtain the 
ratio of the energies stored in the system:

Uf

Ui
5

1
2 1C 1 2 C 2 22 1DVi 22/ 1C 1 1 C 2 2

1
2 1C 1 1 C 2 2 1DVi 22

(6)   
Uf

Ui
5 aC 1 2 C 2

C 1 1 C 2
b

2

Use the results of part (A) to rewrite this expres-
sion in terms of DVi :

(5)   Uf 5 1
2 1C 1 1 C 2 2 c a

C 1 2 C 2

C 1 1 C 2
b DVi d

2

5 1
2 
1C 1 2 C 2 22 1DVi 22

C 1 1 C 2

Write an expression for the total energy stored in 
the capacitors after the switches are closed:

Uf 5 1
2C 1 1DVf 22 1 1

2C 2 1DVf 22 5 1
2 1C 1 1 C 2 2 1DVf 22

Use Equation 26.11 to find an expression for the 
total energy stored in the capacitors before the 
switches are closed:

(4)   Ui 5 1
2C 1 1DVi 22 1 1

2C 2 1DVi 22 5 1
2 1C 1 1 C 2 2 1DVi 22

Finalize  ​The ratio of energies is less than unity, indicating that the final energy is less than the initial energy. At first, 
you might think the law of energy conservation has been violated, but that is not the case. The “missing” energy is 
transferred out of the system by the mechanism of electromagnetic waves (TER in Eq. 8.2), as we shall see in Chapter 34. 
Therefore, this system is isolated for electric charge, but nonisolated for energy.

What if the two capacitors have the same capacitance? What would you expect to happen when the 
switches are closed?

Answer  ​Because both capacitors have the same initial potential difference applied to them, the charges on the identical 
capacitors have the same magnitude. When the capacitors with opposite polarities are connected together, the equal-
magnitude charges should cancel each other, leaving the capacitors uncharged.
	 Let’s test our results to see if that is the case mathematically. In Equation (1), because the capacitances are equal, 
the initial charge Q i on the system of left-hand plates is zero. Equation (3) shows that DVf 5 0, which is consistent with 
uncharged capacitors. Finally, Equation (5) shows that Uf 5 0, which is also consistent with uncharged capacitors.

What If ?

After the switches are closed, the charges on 
the individual capacitors change to new values 
Q 1f   and Q 2f   such that the potential difference 
is again the same across both capacitors, with 
a value of DVf . Write an expression for the total 
charge on the left-hand plates of the system  
after the switches are closed:

(2)   Q f 5 Q 1f 1 Q 2f 5 C1 DVf 1 C 2 DVf 5 (C1 1 C 2)DVf

	

▸ 26.4 c o n t i n u e d
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in the electric field of a large capacitor in a defibrillator when it is fully charged. The 
stored energy is released through the heart by conducting electrodes, called paddles, 
which are placed on both sides of the victim’s chest. The defibrillator can deliver 
the energy to a patient in about 2 ms (roughly equivalent to 3 000 times the power 
delivered to a 60-W lightbulb!). The paramedics must wait between applications of 
the energy because of the time interval necessary for the capacitors to become fully 
charged. In this application and others (e.g., camera flash units and lasers used for 
fusion experiments), capacitors serve as energy reservoirs that can be slowly charged 
and then quickly discharged to provide large amounts of energy in a short pulse.

26.5	 Capacitors with Dielectrics
A dielectric is a nonconducting material such as rubber, glass, or waxed paper. We 
can perform the following experiment to illustrate the effect of a dielectric in a 
capacitor. Consider a parallel-plate capacitor that without a dielectric has a charge 
Q 0 and a capacitance C 0. The potential difference across the capacitor is DV0 5 
Q 0/C0. Figure 26.13a illustrates this situation. The potential difference is measured 
by a device called a voltmeter. Notice that no battery is shown in the figure; also, we 
must assume no charge can flow through an ideal voltmeter. Hence, there is no 
path by which charge can flow and alter the charge on the capacitor. If a dielectric 
is now inserted between the plates as in Figure 26.13b, the voltmeter indicates that 
the voltage between the plates decreases to a value DV. The voltages with and with-
out the dielectric are related by a factor k as follows:

	 DV 5
DV0

k
	

Because DV , DV0, we see that k . 1. The dimensionless factor k is called the dielec-
tric constant of the material. The dielectric constant varies from one material to 
another. In this section, we analyze this change in capacitance in terms of electrical 
parameters such as electric charge, electric field, and potential difference; Section 
26.7 describes the microscopic origin of these changes.
	 Because the charge Q 0 on the capacitor does not change, the capacitance must 
change to the value

	 C 5
Q 0

DV
5

Q 0

DV0/k
5 k 

Q 0

DV0
	

	 C 5 kC 0 	 (26.14)� Capacitance of a capacitor 
filled with a material of 

dielectric constant k

Pitfall Prevention 26.5
Is the Capacitor Connected  
to a Battery?  For problems in 
which a capacitor is modified 
(by insertion of a dielectric, for 
example), you must note whether 
modifications to the capacitor are 
being made while the capacitor is 
connected to a battery or after it 
is disconnected. If the capacitor 
remains connected to the battery, 
the voltage across the capacitor 
necessarily remains the same. If 
you disconnect the capacitor from 
the battery before making any 
modifications to the capacitor, 
the capacitor is an isolated system 
for electric charge and its charge 
remains the same.

C0 Q 0

�
�

C Q 0

Dielectric

VV0

�
�

� �

The potential 
difference across the 
charged capacitor is 
initially �V0.

After the dielectric is inserted between 
the plates, the charge remains the same, 
but the potential difference decreases 
and the capacitance increases.

a b

Figure 26.13  A charged capaci-
tor (a) before and (b) after  
insertion of a dielectric between 
the plates.
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That is, the capacitance increases by the factor k when the dielectric completely fills 
the region between the plates.5 Because C0 5 P0A/d (Eq. 26.3) for a parallel-plate 
capacitor, we can express the capacitance of a parallel-plate capacitor filled with a 
dielectric as

	 C 5 k 
P0A
d

	 (26.15)

	 From Equation 26.15, it would appear that the capacitance could be made very 
large by inserting a dielectric between the plates and decreasing d . In practice, the 
lowest value of d is limited by the electric discharge that could occur through the 
dielectric medium separating the plates. For any given separation d, the maximum 
voltage that can be applied to a capacitor without causing a discharge depends on 
the dielectric strength (maximum electric field) of the dielectric. If the magnitude 
of the electric field in the dielectric exceeds the dielectric strength, the insulating 
properties break down and the dielectric begins to conduct.
	 Physical capacitors have a specification called by a variety of names, including 
working voltage, breakdown voltage, and rated voltage. This parameter represents the 
largest voltage that can be applied to the capacitor without exceeding the dielectric 
strength of the dielectric material in the capacitor. Consequently, when selecting 
a capacitor for a given application, you must consider its capacitance as well as the 
expected voltage across the capacitor in the circuit, making sure the expected volt-
age is smaller than the rated voltage of the capacitor.
	 Insulating materials have values of k greater than unity and dielectric strengths 
greater than that of air as Table 26.1 indicates. Therefore, a dielectric provides the 
following advantages:

•	An increase in capacitance
•	An increase in maximum operating voltage
•	 Possible mechanical support between the plates, which allows the plates to be 

close together without touching, thereby decreasing d and increasing C

Table 26.1 Approximate Dielectric Constants and Dielectric Strengths  
of Various Materials at Room Temperature
Material	 Dielectric Constant k	 Dielectric Strengtha (106 V/m)

Air (dry)	 1.000 59	   3
Bakelite	 4.9	 24
Fused quartz	 3.78	   8
Mylar	 3.2	   7
Neoprene rubber	 6.7	 12
Nylon	 3.4	 14
Paper	 3.7	 16
Paraffin-impregnated paper	 3.5	 11
Polystyrene	 2.56	 24
Polyvinyl chloride	 3.4	 40
Porcelain	 6	 12
Pyrex glass	 5.6	 14
Silicone oil	 2.5	 15
Strontium titanate	 233	   8
Teflon	 2.1	 60
Vacuum	 1.000 00	 —
Water	 80	 —

aThe dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. 
These values depend strongly on the presence of impurities and flaws in the materials.

5 If the dielectric is introduced while the potential difference is held constant by a battery, the charge increases to 
a value Q 5 kQ 0. The additional charge comes from the wires attached to the capacitor, and the capacitance again 
increases by the factor k.
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Types of Capacitors
Many capacitors are built into integrated circuit chips, but some electrical devices 
still use stand-alone capacitors. Commercial capacitors are often made from metal-
lic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar 
as the dielectric material. These alternate layers of metallic foil and dielectric are 
rolled into a cylinder to form a small package (Fig. 26.14a). High-voltage capacitors 
commonly consist of a number of interwoven metallic plates immersed in silicone 
oil (Fig. 26.14b). Small capacitors are often constructed from ceramic materials.
	 Often, an electrolytic capacitor is used to store large amounts of charge at relatively 
low voltages. This device, shown in Figure 26.14c, consists of a metallic foil in con-
tact with an electrolyte, a solution that conducts electricity by virtue of the motion of 
ions contained in the solution. When a voltage is applied between the foil and the 
electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this 
layer serves as the dielectric. Very large values of capacitance can be obtained in 
an electrolytic capacitor because the dielectric layer is very thin and therefore the 
plate separation is very small.
	 Electrolytic capacitors are not reversible as are many other capacitors. They 
have a polarity, which is indicated by positive and negative signs marked on the 
device. When electrolytic capacitors are used in circuits, the polarity must be cor-
rect. If the polarity of the applied voltage is the opposite of what is intended, the 
oxide layer is removed and the capacitor conducts electricity instead of storing 
charge.
	 Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets 
of metallic plates, one fixed and the other movable, and contain air as the dielec-
tric (Fig. 26.15). These types of capacitors are often used in radio tuning circuits.

Q	 uick Quiz 26.5 ​ If you have ever tried to hang a picture or a mirror, you know it 
can be difficult to locate a wooden stud in which to anchor your nail or screw. A 
carpenter’s stud finder is a capacitor with its plates arranged side by side instead 
of facing each other as shown in Figure 26.16. When the device is moved over a 
stud, does the capacitance (a) increase or (b) decrease?

Plates

Electrolyte
Case

Metallic foil � oxide layer

Contacts

Metal foil

Paper

An electrolytic 
capacitor

Oil

a b c

A tubular capacitor 
whose plates are 
separated by paper 
and then rolled into 
a cylinder

A high-voltage 
capacitor consisting 
of many parallel 
plates separated by 
insulating oil

Figure 26.14  ​Three commercial capacitor designs.

When one set of metal plates is 
rotated so as to lie between a fixed 
set of plates, the capacitance of the 
device changes.

Figure 26.15  ​A variable capacitor. 
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The materials between the 
plates of the capacitor are 
the wallboard and air.

When the capacitor moves across 
a stud in the wall, the materials 
between the plates are the 
wallboard and the wood stud. 
The change in the dielectric 
constant causes a signal light to 
illuminate.

Figure 26.16  ​(Quick Quiz 26.5)  
A stud finder.

Example 26.5	     Energy Stored Before and After 

A parallel-plate capacitor is charged with a battery to a charge Q 0. The battery is then removed, and a slab of material 
that has a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. 
Find the energy stored in the system before and after the dielectric is inserted.

AM
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Conceptualize  ​Think about what happens when the dielectric is inserted between the plates. Because the battery has 
been removed, the charge on the capacitor must remain the same. We know from our earlier discussion, however, that 
the capacitance must change. Therefore, we expect a change in the energy of the system.

Categorize  ​Because we expect the energy of the system to change, we model it as a nonisolated system for energy involv-
ing a capacitor and a dielectric. 

S o l u ti  o n

Use Equation 26.14 to replace the capacitance C : U 5
Q 0

2

2kC 0
5

U0

k

Find the energy stored in the capacitor after the dielec-
tric is inserted between the plates:

U 5
Q 0

2

2C

Analyze  ​From Equation 26.11, find the energy stored in 
the absence of the dielectric:

U0 5
Q 0

2

2C 0

Finalize  ​Because k . 1, the final energy is less than the initial energy. We can account for the decrease in energy 
of the system by performing an experiment and noting that the dielectric, when inserted, is pulled into the device. 
To keep the dielectric from accelerating, an external agent must do negative work on the dielectric. Equation 8.2 
becomes DU 5 W, where both sides of the equation are negative.

26.6	 Electric Dipole in an Electric Field
We have discussed the effect on the capacitance of placing a dielectric between the 
plates of a capacitor. In Section 26.7, we shall describe the microscopic origin of 
this effect. Before we can do so, however, let’s expand the discussion of the electric 
dipole introduced in Section 23.4 (see Example 23.6). The electric dipole consists 
of two charges of equal magnitude and opposite sign separated by a distance 2a as 
shown in Figure 26.17. The electric dipole moment of this configuration is defined 
as the vector pS directed from 2q toward 1q along the line joining the charges and 
having magnitude
	 p ; 2aq	 (26.16)

	 Now suppose an electric dipole is placed in a uniform electric field E
S

 and makes 
an angle u with the field as shown in Figure 26.18. We identify E

S
 as the field external 

to the dipole, established by some other charge distribution, to distinguish it from 
the field due to the dipole, which we discussed in Section 23.4.
	 Each of the charges is modeled as a particle in an electric field. The electric 
forces acting on the two charges are equal in magnitude (F 5 qE) and opposite in 
direction as shown in Figure 26.18. Therefore, the net force on the dipole is zero. 
The two forces produce a net torque on the dipole, however; the dipole is there-
fore described by the rigid object under a net torque model. As a result, the dipole 
rotates in the direction that brings the dipole moment vector into greater alignment 
with the field. The torque due to the force on the positive charge about an axis 
through O in Figure 26.18 has magnitude Fa sin u, where a sin u is the moment arm 
of F about O. This force tends to produce a clockwise rotation. The torque about O 
on the negative charge is also of magnitude Fa sin u; here again, the force tends to 
produce a clockwise rotation. Therefore, the magnitude of the net torque about O is

	 t 5 2Fa sin u	

Because F 5 qE and p 5 2aq, we can express t as

	 t 5 2aqE sin u 5 pE sin u	 (26.17)

�q

�q

2a

pS �

�

The electric dipole moment p 
is directed from �q toward �q.

S

Figure 26.17  ​An electric dipole 
consists of two charges of equal 
magnitude and opposite sign 
separated by a distance of 2a.

� q

�q

O

�

�

u

E
S

 �F
S

F
S

pS

The dipole moment p is at an 
angle u to the field, causing the 
dipole to experience a torque.

S

Figure 26.18  ​An electric dipole 
in a uniform external electric field.

	

▸ 26.5 c o n t i n u e d
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Based on this expression, it is convenient to express the torque in vector form as the 
cross product of the vectors pS and E

S
:

	 t
S

5 pS 3 E
S

	 (26.18)

	 We can also model the system of the dipole and the external electric field as an 
isolated system for energy. Let’s determine the potential energy of the system as a 
function of the dipole’s orientation with respect to the field. To do so, recognize 
that work must be done by an external agent to rotate the dipole through an angle 
so as to cause the dipole moment vector to become less aligned with the field. The 
work done is then stored as electric potential energy in the system. Notice that this 
potential energy is associated with a rotational configuration of the system. Previ-
ously, we have seen potential energies associated with translational configurations: 
an object with mass was moved in a gravitational field, a charge was moved in an 
electric field, or a spring was extended. The work dW required to rotate the dipole 
through an angle du is dW 5 t du (see Eq. 10.25). Because t 5 pE sin u and the work 
results in an increase in the electric potential energy U, we find that for a rotation 
from ui to uf , the change in potential energy of the system is

	  Uf 2 Ui 5 3
uf

ui

t du 5 3
uf

ui

pE sin u du 5 pE 3
uf

ui

sin u du	

	  5 pE 32cos u 4 uf
ui

5 pE 1cos ui 2 cos uf 2 	

The term that contains cos ui is a constant that depends on the initial orientation of 
the dipole. It is convenient to choose a reference angle of ui 5 908 so that cos ui 5 
cos 908 5 0. Furthermore, let’s choose Ui 5 0 at ui 5 908 as our reference value of 
potential energy. Hence, we can express a general value of UE 5 Uf   as

	 UE 5 2pE cos u 	 (26.19)

We can write this expression for the potential energy of a dipole in an electric field 
as the dot product of the vectors pS and E

S
:

	 UE 5 2pS ? E
S

	 (26.20)

	 To develop a conceptual understanding of Equation 26.19, compare it with the 
expression for the potential energy of the system of an object in the Earth’s gravi-
tational field, Ug 5 mgy (Eq. 7.19). First, both expressions contain a parameter of 
the entity placed in the field: mass for the object, dipole moment for the dipole. 
Second, both expressions contain the field, g for the object, E for the dipole. Finally, 
both expressions contain a configuration description: translational position y for 
the object, rotational position u for the dipole. In both cases, once the configura-
tion is changed, the system tends to return to the original configuration when the 
object is released: the object of mass m falls toward the ground, and the dipole 
begins to rotate back toward the configuration in which it is aligned with the field.
	 Molecules are said to be polarized when a separation exists between the average 
position of the negative charges and the average position of the positive charges 
in the molecule. In some molecules such as water, this condition is always present; 
such molecules are called polar molecules. Molecules that do not possess a perma-
nent polarization are called nonpolar molecules.
	 We can understand the permanent polarization of water by inspecting the geom-
etry of the water molecule. The oxygen atom in the water molecule is bonded to the 
hydrogen atoms such that an angle of 1058 is formed between the two bonds (Fig. 
26.19). The center of the negative charge distribution is near the oxygen atom, and 
the center of the positive charge distribution lies at a point midway along the line 
joining the hydrogen atoms (the point labeled 3 in Fig. 26.19). We can model the 
water molecule and other polar molecules as dipoles because the average positions 
of the positive and negative charges act as point charges. As a result, we can apply 
our discussion of dipoles to the behavior of polar molecules.

Torque on an electric dipole 
in an external electric field

� Potential energy of the 
system of an electric dipole 
in an external electric field

O

HH 105�

�

� �

The center of the positive charge 
distribution is at the point    .

Figure 26.19  ​The water mol-
ecule, H2O, has a permanent 
polarization resulting from its 
nonlinear geometry. 
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	 Washing with soap and water is a household scenario in which the dipole struc-
ture of water is exploited. Grease and oil are made up of nonpolar molecules, which 
are generally not attracted to water. Plain water is not very useful for removing this 
type of grime. Soap contains long molecules called surfactants. In a long molecule, 
the polarity characteristics of one end of the molecule can be different from those 
at the other end. In a surfactant molecule, one end acts like a nonpolar molecule 
and the other acts like a polar molecule. The nonpolar end can attach to a grease 
or oil molecule, and the polar end can attach to a water molecule. Therefore, the 
soap serves as a chain, linking the dirt and water molecules together. When the 
water is rinsed away, the grease and oil go with it.
	 A symmetric molecule (Fig. 26.20a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed 
to the left as in Figure 26.20b causes the center of the negative charge distribution 
to shift to the right relative to the positive charges. This induced polarization is the 
effect that predominates in most materials used as dielectrics in capacitors.

��

� �

�

�

E
S

 

a

b

Figure 26.20  ​(a) A linear sym-
metric molecule has no perma-
nent polarization. (b) An external 
electric field induces a polariza-
tion in the molecule.

Example 26.6	     The H2O Molecule 

The water (H2O) molecule has an electric dipole moment of 6.3 3 10230 C ? m. A sample contains 1021 water molecules, 
with the dipole moments all oriented in the direction of an electric field of magnitude 2.5 3 105 N/C. How much work 
is required to rotate the dipoles from this orientation (u 5 08) to one in which all the moments are perpendicular to 
the field (u 5 908)?

Conceptualize  ​When all the dipoles are aligned with the electric field, the dipoles–electric field system has the mini-
mum potential energy. This energy has a negative value given by the product of the right side of Equation 26.19, evalu-
ated at 08, and the number N of dipoles.

Categorize  ​The combination of the dipoles and the electric field is identified as a system. We use the nonisolated system 
model because an external agent performs work on the system to change its potential energy.

AM

S o l u ti  o n

Analyze  Write the appropriate reduction of the conserva-
tion of energy equation, Equation 8.2, for this situation:

(1)   DUE 5 W

Use Equation 26.19 to evaluate the initial and final 
potential energies of the system and Equation (1) to cal-
culate the work required to rotate the dipoles:

W 5 U908 2 U08 5 (2NpE cos 908) 2 (2NpE cos 08)

5 NpE 5 (1021)(6.3 3 10230 C ? m)(2.5 3 105 N/C)

5   1.6 3 1023 J

26.7	 An Atomic Description of Dielectrics
In Section 26.5, we found that the potential difference DV0 between the plates of a 
capacitor is reduced to DV0/k when a dielectric is introduced. The potential differ-
ence is reduced because the magnitude of the electric field decreases between the 
plates. In particular, if E

S

0 is the electric field without the dielectric, the field in the 
presence of a dielectric is

	 E
S

5
E
S

0

k
	 (26.21)

	 First consider a dielectric made up of polar molecules placed in the electric field 
between the plates of a capacitor. The dipoles (that is, the polar molecules making 

Finalize  Notice that the work done on the system is positive because the potential energy of the system has been raised 
from a negative value to a value of zero.
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up the dielectric) are randomly oriented in the absence of an electric field as shown 
in Figure 26.21a. When an external field E

S

0 due to charges on the capacitor plates 
is applied, a torque is exerted on the dipoles, causing them to partially align with 
the field as shown in Figure 26.21b. The dielectric is now polarized. The degree of 
alignment of the molecules with the electric field depends on temperature and the 
magnitude of the field. In general, the alignment increases with decreasing tem-
perature and with increasing electric field.
	 If the molecules of the dielectric are nonpolar, the electric field due to the plates 
produces an induced polarization in the molecule. These induced dipole moments 
tend to align with the external field, and the dielectric is polarized. Therefore, a 
dielectric can be polarized by an external field regardless of whether the molecules 
in the dielectric are polar or nonpolar.
	 With these ideas in mind, consider a slab of dielectric material placed between 
the plates of a capacitor so that it is in a uniform electric field E

S

0 as shown in Fig-
ure 26.21b. The electric field due to the plates is directed to the right and polarizes 
the dielectric. The net effect on the dielectric is the formation of an induced positive 
surface charge density sind on the right face and an equal-magnitude negative sur-
face charge density 2sind on the left face as shown in Figure 26.21c. Because we can 
model these surface charge distributions as being due to charged parallel plates, 
the induced surface charges on the dielectric give rise to an induced electric field 
E
S

ind  in the direction opposite the external field E
S

0. Therefore, the net electric field 
E
S

 in the dielectric has a magnitude

	 E 5 E 0 2 E ind 	 (26.22)

	 In the parallel-plate capacitor shown in Figure 26.22, the external field E 0 is 
related to the charge density s on the plates through the relationship E 0 5 s/P0. 
The induced electric field in the dielectric is related to the induced charge density 
sind through the relationship E ind 5 sind/P0. Because E 5 E 0/k 5 s/kP0, substitu-
tion into Equation 26.22 gives

	  
s

kP0
5

s

P0
2

sind

P0
	

	  sind 5 ak 2 1
k

bs 	 (26.23)

Because k . 1, this expression shows that the charge density sind induced on the 
dielectric is less than the charge density s on the plates. For instance, if k 5 3, the 
induced charge density is two-thirds the charge density on the plates. If no dielec-
tric is present, then k 5 1 and sind 5 0 as expected. If the dielectric is replaced by 
an electrical conductor for which E 5 0, however, Equation 26.22 indicates that 
E 0 5 E ind, which corresponds to sind 5 s. That is, the surface charge induced on 
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Polar molecules are 
randomly oriented in 
the absence of an 
external electric field.

When an external 
electric field is applied, 
the molecules partially 
align with the field.

The charged edges of the dielectric 
can be modeled as an additional 
pair of parallel plates establishing 
an electric field Eind in the 
direction opposite that of E0.

S

S

Figure 26.21  ​(a) Polar mol-
ecules in a dielectric. (b) An elec-
tric field is applied to the dielec-
tric. (c) Details of the electric field 
inside the dielectric.
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The induced charge density sind 
on the dielectric is less than the 
charge density s on the plates.

Figure 26.22  Induced charge 
on a dielectric placed between the 
plates of a charged capacitor.
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Example 26.7	     Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate 
area A. An uncharged metallic slab of thickness a is inserted 
midway between the plates.

(A)  ​Find the capacitance of the device.

Conceptualize  ​Figure 26.23a shows the metallic slab between 
the plates of the capacitor. Any charge that appears on one 
plate of the capacitor must induce a charge of equal magni-
tude and opposite sign on the near side of the slab as shown 
in Figure 26.23a. Consequently, the net charge on the slab 
remains zero and the electric field inside the slab is zero.

Categorize  ​The planes of charge on the metallic slab’s upper 
and lower edges are identical to the distribution of charges 
on the plates of a capacitor. The metal between the slab’s 
edges serves only to make an electrical connection between 
the edges. Therefore, we can model the edges of the slab as 
conducting planes and the bulk of the slab as a wire. As a result, the capacitor in Figure 26.23a is equivalent to two 
capacitors in series, each having a plate separation (d 2 a)/2 as shown in Figure 26.23b.

S o l u ti  o n

d a

(d � a)/2

s

s �  �  �  �  ��  �  �  �  �

�  �  �  �  �

�  �  �  �  �

�  �  �  �  �

�  �  �  �  �

�  �  �  �  ��  �  �  �  �

�s

�s

a b

(d � a)/2

(d � a)/2

(d � a)/2

Figure 26.23  ​(Example 26.7) (a) A parallel-plate capaci-
tor of plate separation d partially filled with a metallic slab 
of thickness a. (b) The equivalent circuit of the device in 
(a) consists of two capacitors in series, each having a plate 
separation (d 2 a)/2.

Analyze  ​Use Equation 26.3 and the rule for adding two 
capacitors in series (Eq. 26.10) to find the equivalent 
capacitance in Figure 26.23b:

1
C

5
1

C 1
 1

1
C 2

5
1

P0A
1d 2 a 2/2

1
1

P0A
1d 2 a 2/2

C 5 
P0A

d 2 a

(B)  ​Show that the capacitance of the original capacitor is unaffected by the insertion of the metallic slab if the slab is 
infinitesimally thin.

S o l u ti  o n

In the result for part (A), let a S 0: C 5 lim
a S 0

a P0A
d 2 a

b 5
P0A
d

Finalize  ​The result of part (B) is the original capacitance before the slab is inserted, which tells us that we can insert 
an infinitesimally thin metallic sheet between the plates of a capacitor without affecting the capacitance. We use this 
fact in the next example.

What if the metallic slab in part (A) is not midway between the plates? How would that affect the capacitance?

Answer  ​Let’s imagine moving the slab in Figure 26.23a upward so that the distance between the upper edge of the 
slab and the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d 2 b 2 a. As 
in part (A), we find the total capacitance of the series combination:

 
1
C

5
1

C 1
1

1
C 2

5
1

P0A/b
1

1
P0A/ 1d 2 b 2 a 2

 5
b

P0A
1

d 2 b 2 a
P0A

5
d 2 a

P0A
   S   C 5

P0A
d 2 a

which is the same result as found in part (A). The capacitance is independent of the value of b, so it does not matter 
where the slab is located. In Figure 26.23b, when the central structure is moved up or down, the decrease in plate sepa-
ration of one capacitor is compensated by the increase in plate separation for the other.

What If ?

the conductor is equal in magnitude but opposite in sign to that on the plates, 
resulting in a net electric field of zero in the conductor (see Fig. 24.16).
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Example 26.8	     A Partially Filled Capacitor

A parallel-plate capacitor with a plate separation d has a 
capacitance C0 in the absence of a dielectric. What is the 
capacitance when a slab of dielectric material of dielectric 
constant k and thickness fd is inserted between the plates 
(Fig. 26.24a), where f is a fraction between 0 and 1?

Conceptualize  ​In our previous discussions of dielectrics 
between the plates of a capacitor, the dielectric filled the 
volume between the plates. In this example, only part of the 
volume between the plates contains the dielectric material.

Categorize  ​In Example 26.7, we found that an infinitesi-
mally thin metallic sheet inserted between the plates of a 
capacitor does not affect the capacitance. Imagine sliding 
an infinitesimally thin metallic slab along the bottom face 
of the dielectric shown in Figure 26.24a. We can model this 
system as a series combination of two capacitors as shown 
in Figure 26.24b. One capacitor has a plate separation fd and is filled with a dielectric; the other has a plate separation 
(1 2 f )d and has air between its plates.

S o l u ti  o n

fd

(1 � f )d
d

C 1

C 2(1 � f )d

k

k

a b

fd

Figure 26.24  (Example 26.8) (a) A parallel-plate capacitor 
of plate separation d partially filled with a dielectric of thick-
ness fd. (b) The equivalent circuit of the capacitor consists of 
two capacitors connected in series.

Invert and substitute for the capacitance without the 
dielectric, C 0 5 P0A/d :

C 5
k

f 1 k 11 2 f 2  
P0A

d
5

k

f 1 k 11 2 f 2  C 0

Find the equivalent capacitance C from Equation 26.10 
for two capacitors combined in series:

 
1
C

5
1

C 1
1

1
C 2

5
fd

kP0A
1

11 2 f 2d
P0 A

 
1
C

5
fd

kP0A
1

k 11 2 f 2d
kP0A

5
f 1 k 11 2 f 2

k
 

d
P0A

Analyze  ​Evaluate the two capacitances in Figure 26.24b 
from Equation 26.15:

C 1 5
kP0A

fd
 and C 2 5

P0A
11 2 f 2d

Finalize  ​Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, 
which is consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the 
plates. In this limit, C S kC 0, which is consistent with Equation 26.14.

	

Summary

  A capacitor consists of two conductors carrying charges of equal 
magnitude and opposite sign. The capacitance C of any capacitor is the 
ratio of the charge Q on either conductor to the potential difference DV 
between them:

	 C ;
Q

DV
	 (26.1)

The capacitance depends only on the geometry of the conductors and 
not on an external source of charge or potential difference. The SI unit 
of capacitance is coulombs per volt, or the farad (F): 1 F 5 1 C/V.

  The electric dipole moment pS of 
an electric dipole has a magnitude

	 p ; 2aq	 (26.16)

where 2a is the distance between the 
charges q and 2q. The direction of the 
electric dipole moment vector is from 
the negative charge toward the posi-
tive charge.

Definitions
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Concepts and Principles

  If two or more capacitors are connected in parallel, the poten-
tial difference is the same across all capacitors. The equivalent 
capacitance of a parallel combination of capacitors is

	 C eq 5 C 1 1 C 2 1 C 3 1 . . . 	 (26.8)

If two or more capacitors are connected in series, the charge is 
the same on all capacitors, and the equivalent capacitance of the 
series combination is given by

	
1

C eq
5

1
C 1

1
1

C 2
1

1
C 3

1 c 	 (26.10)

These two equations enable you to simplify many electric circuits by 
replacing multiple capacitors with a single equivalent capacitance.

  When a dielectric material is inserted between the 
plates of a capacitor, the capacitance increases by a 
dimensionless factor k, called the dielectric constant:

	 C 5 kC 0 	 (26.14)

where C 0 is the capacitance in the absence of the 
dielectric.

  The torque acting on an electric dipole in a uniform 
electric field E

S
 is

	 t
S

5 pS 3 E
S

	 (26.18)

The potential energy of the system of an electric dipole 
in a uniform external electric field E

S
 is

	 UE 5 2pS ? E
S

	 (26.20)

  Energy is stored in a charged capacitor 
because the charging process is equivalent 
to the transfer of charges from one conduc-
tor at a lower electric potential to another 
conductor at a higher potential. The energy 
stored in a capacitor of capacitance C with 
charge Q and potential difference DV is

	 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22 	 (26.11)

	 6.	 Assume a device is designed to obtain a large potential 
difference by first charging a bank of capacitors con-
nected in parallel and then activating a switch arrange-
ment that in effect disconnects the capacitors from 
the charging source and from each other and recon-
nects them all in a series arrangement. The group of 
charged capacitors is then discharged in series. What 
is the maximum potential difference that can be 
obtained in this manner by using ten 500-mF capacitors 
and an 800-V charging source? (a) 500 V (b) 8.00 kV  
(c) 400 kV (d) 800 V (e) 0

	 7.	 (i) What happens to the magnitude of the charge on 
each plate of a capacitor if the potential difference 
between the conductors is doubled? (a) It becomes 
four times larger. (b) It becomes two times larger.  
(c) It is unchanged. (d)  It becomes one-half as large. 
(e) It becomes one-fourth as large. (ii) If the potential 
difference across a capacitor is doubled, what happens 
to the energy stored? Choose from the same possibili-
ties as in part (i).

	 8.	 A capacitor with very large capacitance is in series 
with another capacitor with very small capacitance. 
What is the equivalent capacitance of the combina-
tion? (a)  slightly greater than the capacitance of the 
large capacitor (b) slightly less than the capacitance of 
the large capacitor (c) slightly greater than the capaci-
tance of the small capacitor (d) slightly less than the 
capacitance of the small capacitor

	 1.	 A fully charged parallel-plate capacitor remains con-
nected to a battery while you slide a dielectric between 
the plates. Do the following quantities (a) increase, 
(b) decrease, or (c) stay the same? (i) C (ii) Q (iii) DV 
(iv) the energy stored in the capacitor

	 2.	 By what factor is the capacitance of a metal sphere mul-
tiplied if its volume is tripled? (a) 3 (b) 31/3 (c) 1 (d) 321/3  
(e) 13

	 3.	 An electronics technician wishes to construct a 
parallel-plate capacitor using rutile (k 5 100) as the 
dielectric. The area of the plates is 1.00 cm2. What is 
the capacitance if the rutile thickness is 1.00 mm?  
(a) 88.5 pF (b) 177 pF (c) 8.85 mF (d) 100 mF (e) 35.4 mF

	 4.	 A parallel-plate capacitor is connected to a battery. 
What happens to the stored energy if the plate separa-
tion is doubled while the capacitor remains connected 
to the battery? (a) It remains the same. (b) It is dou-
bled. (c) It decreases by a factor of 2. (d) It decreases by 
a factor of 4. (e) It increases by a factor of 4.

	 5.	 If three unequal capacitors, initially uncharged, are 
connected in series across a battery, which of the follow-
ing statements is true? (a) The equivalent capacitance is 
greater than any of the individual capacitances. (b) The  
largest voltage appears across the smallest capacitance. 
(c) The largest voltage appears across the largest capaci-
tance. (d)  The capacitor with the largest capacitance 
has the greatest charge. (e) The capacitor with the 
smallest capacitance has the smallest charge.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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becomes two times larger. (c) It stays the same. (d) It 
becomes one-half as large. (e) It becomes one-fourth 
as large.

	12.	(i) Rank the following five capacitors from greatest to 
smallest capacitance, noting any cases of equality. (a) a 
20-mF capacitor with a 4-V potential difference between 
its plates (b) a 30-mF capacitor with charges of magni-
tude 90 mC on each plate (c) a capacitor with charges 
of magnitude 80 mC on its plates, differing by 2 V in 
potential, (d) a 10-mF capacitor storing energy 125 mJ 
(e) a capacitor storing energy 250 mJ with a 10-V poten-
tial difference (ii) Rank the same capacitors in part  
(i) from largest to smallest according to the potential 
difference between the plates. (iii) Rank the capaci-
tors in part (i) in the order of the magnitudes of the 
charges on their plates. (iv) Rank the capacitors in part 
(i) in the order of the energy they store.

	13.	True or False? (a) From the definition of capacitance  
C 5 Q /DV, it follows that an uncharged capacitor has a 
capacitance of zero. (b) As described by the definition 
of capacitance, the potential difference across an 
uncharged capacitor is zero.

	14.	 You charge a parallel-plate capacitor, remove it from the 
battery, and prevent the wires connected to the plates 
from touching each other. When you increase the plate 
separation, do the following quantities (a) increase, 
(b)  decrease, or (c) stay the same? (i) C (ii) Q (iii) E 
between the plates (iv) DV

	 9.	 A parallel-plate capacitor filled with air carries a 
charge Q . The battery is disconnected, and a slab 
of material with dielectric constant k 5 2 is inserted 
between the plates. Which of the following statements 
is true? (a) The voltage across the capacitor decreases 
by a factor of 2. (b) The voltage across the capacitor 
is doubled. (c) The charge on the plates is doubled.  
(d) The charge on the plates decreases by a factor of 2. 
(e) The electric field is doubled.

	10.	 (i) A battery is attached to several different capacitors 
connected in parallel. Which of the following statements 
is true? (a) All capacitors have the same charge, and the 
equivalent capacitance is greater than the capacitance 
of any of the capacitors in the group. (b) The capacitor 
with the largest capacitance carries the smallest charge. 
(c) The potential difference across each capacitor is the 
same, and the equivalent capacitance is greater than 
any of the capacitors in the group. (d) The capacitor 
with the smallest capacitance carries the largest charge.  
(e) The potential differences across the capacitors are 
the same only if the capacitances are the same. (ii) The 
capacitors are reconnected in series, and the combina-
tion is again connected to the battery. From the same 
choices, choose the one that is true.

	11.	 A parallel-plate capacitor is charged and then is dis-
connected from the battery. By what factor does the 
stored energy change when the plate separation is 
then doubled? (a) It becomes four times larger. (b) It 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 (a) Why is it dangerous to touch the terminals of a 
high-voltage capacitor even after the voltage source 
that charged the capacitor is disconnected from the 
capacitor? (b) What can be done to make the capaci-
tor safe to handle after the voltage source has been 
removed?

	 2.	 Assume you want to increase the maximum operating 
voltage of a parallel-plate capacitor. Describe how you 
can do that with a fixed plate separation.

	 3.	 If you were asked to design a capacitor in which small 
size and large capacitance were required, what would 
be the two most important factors in your design?

	 4.	 Explain why a dielectric increases the maximum oper-
ating voltage of a capacitor even though the physical 
size of the capacitor doesn’t change.

	 5.	 Explain why the work needed to move a particle with 
charge Q through a potential difference DV is W 5  
Q DV, whereas the energy stored in a charged capacitor 
is UE 5 1

2Q DV. Where does the factor 12 come from?

	 6.	 An air-filled capacitor is charged, then disconnected 
from the power supply, and finally connected to a 
voltmeter. Explain how and why the potential differ-
ence changes when a dielectric is inserted between the 
plates of the capacitor.

	 7.	 The sum of the charges on both plates of a capacitor is 
zero. What does a capacitor store?

	 8.	 Because the charges on the plates of a parallel-plate 
capacitor are opposite in sign, they attract each other. 
Hence, it would take positive work to increase the plate 
separation. What type of energy in the system changes 
due to the external work done in this process?

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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	10.	 A variable air capacitor 
used in a radio tuning cir-
cuit is made of N semicircu-
lar plates, each of radius R 
and positioned a distance 
d from its neighbors, to 
which it is electrically con-
nected. As shown in Figure 
P26.10, a second identical 
set of plates is enmeshed 
with the first set. Each plate 
in the second set is halfway 
between two plates of the 
first set. The second set can rotate as a unit. Determine 
the capacitance as a function of the angle of rotation u, 
where u 5 0 corresponds to the maximum capacitance.

	11.	 An isolated, charged conducting sphere of radius  
12.0 cm creates an electric field of 4.90 3 104 N/C at a 
distance 21.0 cm from its center. (a) What is its surface 
charge density? (b) What is its capacitance?

	12.	Review. A small object of mass m carries a charge q and 
is suspended by a thread between the vertical plates of 
a parallel-plate capacitor. The plate separation is d. If 
the thread makes an angle u with the vertical, what is 
the potential difference between the plates?

Section 26.3 ​ Combinations of Capacitors

	13.	Two capacitors, C1 5 5.00 mF and C2 5 12.0 mF, are 
connected in parallel, and the resulting combination 
is connected to a 9.00-V battery. Find (a) the equiva-
lent capacitance of the combination, (b) the potential 
difference across each capacitor, and (c) the charge 
stored on each capacitor.

	14.	What If? The two capacitors of Problem 13 (C1 5 5.00 mF  
and C2 5 12.0 mF) are now connected in series and to 
a 9.00-V battery. Find (a) the equivalent capacitance of 
the combination, (b) the potential difference across 
each capacitor, and (c) the charge on each capacitor.

	15.	Find the equivalent capacitance of a 4.20-mF capaci-
tor and an 8.50-mF capacitor when they are connected  
(a) in series and (b) in parallel.

	16.	Given a 2.50-mF capacitor, a 6.25-mF capacitor, and a 
6.00-V battery, find the charge on each capacitor if you 
connect them (a) in series across the battery and (b) in 
parallel across the battery.

	17.	 According to its design specification, the timer cir-
cuit delaying the closing of an elevator door is to have 
a capacitance of 32.0 mF between two points A and B. 
When one circuit is being constructed, the inexpen-
sive but durable capacitor installed between these 
two points is found to have capacitance 34.8 mF. To 
meet the specification, one additional capacitor can 
be placed between the two points. (a) Should it be 
in series or in parallel with the 34.8-mF capacitor?  
(b) What should be its capacitance? (c) What If? The 
next circuit comes down the assembly line with capaci-
tance 29.8 mF between A and B. To meet the specifica-
tion, what additional capacitor should be installed in 
series or in parallel in that circuit?

S

S

W

W

Section 26.1 ​ Definition of Capacitance

	 1.	 (a) When a battery is connected to the plates of a  
3.00-mF capacitor, it stores a charge of 27.0 mC. What is  
the voltage of the battery? (b) If the same capacitor is 
connected to another battery and 36.0 mC of charge  
is stored on the capacitor, what is the voltage of the 
battery?

	 2.	 Two conductors having net charges of 110.0 mC and 
210.0 mC have a potential difference of 10.0 V between 
them. (a) Determine the capacitance of the system. 
(b) What is the potential difference between the two 
conductors if the charges on each are increased to 
1100 mC and 2100 mC?

	 3.	 (a) How much charge is on each plate of a 4.00-mF 
capacitor when it is connected to a 12.0-V battery?  
(b) If this same capacitor is connected to a 1.50-V bat-
tery, what charge is stored?

Section 26.2 ​ Calculating Capacitance

	 4.	 An air-filled spherical capacitor is constructed with 
inner- and outer-shell radii of 7.00 cm and 14.0 cm, 
respectively. (a) Calculate the capacitance of the device. 
(b)  What potential difference between the spheres 
results in a 4.00-mC charge on the capacitor?

	 5.	 A 50.0-m length of coaxial cable has an inner con-
ductor that has a diameter of 2.58 mm and carries a 
charge of 8.10 mC. The surrounding conductor has an 
inner diameter of 7.27 mm and a charge of 28.10 mC.  
Assume the region between the conductors is air.  
(a) What is the capacitance of this cable? (b) What is 
the potential difference between the two conductors?

	 6.	 (a) Regarding the Earth and a cloud layer 800 m 
above the Earth as the “plates” of a capacitor, calcu-
late the capacitance of the Earth–cloud layer system. 
Assume the cloud layer has an area of 1.00 km2 and 
the air between the cloud and the ground is pure 
and dry. Assume charge builds up on the cloud and  
on the ground until a uniform electric field of 3.00 3 
106 N/C throughout the space between them makes 
the air break down and conduct electricity as a light-
ning bolt. (b) What is the maximum charge the cloud 
can hold?

	 7.	 When a potential difference of 150 V is applied to the 
plates of a parallel-plate capacitor, the plates carry a 
surface charge density of 30.0 nC/cm2. What is the 
spacing between the plates?

	 8.	 An air-filled parallel-plate capacitor has plates of area 
2.30 cm2 separated by 1.50 mm. (a) Find the value of its 
capacitance. The capacitor is connected to a 12.0-V bat-
tery. (b) What is the charge on the capacitor? (c) What 
is the magnitude of the uniform electric field between 
the plates?

	 9.	 An air-filled capacitor consists of two parallel plates, 
each with an area of 7.60 cm2, separated by a dis-
tance of 1.80  mm. A 20.0-V potential difference is 
applied to these plates. Calculate (a) the electric field 
between the plates, (b) the surface charge density,  
(c) the capacitance, and (d) the charge on each plate.
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is first charged by clos-
ing switch S1. Switch S1 
is then opened, and the 
charged capacitor is con-
nected to the uncharged 
capacitor by closing S2. 
Calculate (a) the initial 
charge acquired by C1 
and (b) the final charge 
on each capacitor.

	25.	Find the equivalent capaci-
tance between points a and b 
in the combination of capaci-
tors shown in Figure P26.25.

	26.	Find (a) the equivalent capac-
itance of the capacitors in 
Figure P26.26, (b) the charge on each capacitor, and 
(c) the potential difference across each capacitor.

9.00 V

8.00   Fµ8.00   Fµ 2.00   Fµ

6.00   Fµ

� �

Figure P26.26

	27.	Two capacitors give an equivalent capacitance of  
9.00 pF when connected in parallel and an equivalent 
capacitance of 2.00 pF when connected in series. What 
is the capacitance of each capacitor?

	28.	Two capacitors give an equivalent capacitance of Cp 
when connected in parallel and an equivalent capaci-
tance of Cs when connected in series. What is the 
capacitance of each capacitor?

	29.	Consider three capacitors C1, C2, and C3 and a battery. 
If only C1 is connected to the battery, the charge on C1 
is 30.8  mC. Now C1 is disconnected, discharged, and 
connected in series with C2. When the series combina-
tion of C2 and C1 is connected across the battery, the 
charge on C1 is 23.1 mC. The circuit is disconnected, 
and both capacitors are discharged. Next, C3, C1, 
and the battery are connected in series, resulting in a 
charge on C1 of 25.2 mC. If, after being disconnected 
and discharged, C1, C2, and C3 are connected in series 
with one another and with the battery, what is the 
charge on C1?

Section 26.4 ​ Energy Stored in a Charged Capacitor

	30.	The immediate cause of many deaths is ventricular 
fibrillation, which is an uncoordinated quivering of 
the heart. An electric shock to the chest can cause 
momentary paralysis of the heart muscle, after which 
the heart sometimes resumes its proper beating. One 
type of defibrillator (chapter-opening photo, page 777) 
applies a strong electric shock to the chest over a time 
interval of a few milliseconds. This device contains a 
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	18.	Why is the following situation impossible? A technician is 
testing a circuit that contains a capacitance C. He real-
izes that a better design for the circuit would include a 
capacitance 7

3C  rather than C. He has three additional 
capacitors, each with capacitance C. By combining 
these additional capacitors in a certain combination 
that is then placed in parallel with the original capaci-
tor, he achieves the desired capacitance.

	19.	For the system of four capaci-
tors shown in Figure P26.19, 
find (a) the equivalent capac-
itance of the system, (b) the 
charge on each capacitor, 
and (c) the potential differ-
ence across each capacitor.

	20.	Three capacitors are con-
nected to a battery as shown 
in Figure P26.20. Their 
capacitances are C1 5 3C, 
C 2 5 C, and C3 5 5C. (a) What  
is the equivalent capacitance 
of this set of capacitors?  
(b) State the ranking of the 
capacitors according to the 
charge they store from larg-
est to smallest. (c) Rank the 
capacitors according to the 
potential differences across 
them from largest to smallest. (d)  What If? Assume 
C3 is increased. Explain what happens to the charge 
stored by each capacitor.

	21.	 A group of identical capacitors is connected first in 
series and then in parallel. The combined capacitance 
in parallel is 100 times larger than for the series con-
nection. How many capacitors are in the group?

	22.	(a) Find the equivalent capacitance 
between points a and b for the 
group of capacitors connected as 
shown in Figure P26.22. Take C1 5  
5.00 mF, C2  5 10.0 mF, and C3 5 
2.00 mF. (b) What charge is stored 
on C3 if the potential difference 
between points a and b is 60.0 V?

	23.	Four capacitors are connected as 
shown in Figure P26.23. (a)  Find 
the equivalent capacitance between 
points a and b. (b) Calculate the 
charge on each capacitor, taking DVab 5 15.0 V.

6.00 mF

20.0 mF

3.00 mF15.0 

a 

mF

b 

Figure P26.23

	24.	Consider the circuit shown in Figure P26.24, where C1 5  
6.00 mF, C2 5 3.00 mF, and DV 5 20.0 V. Capacitor C1 

90.0 V

4.00   Fµ

6.00   Fµ

2.00   Fµ

3.00   Fµ

� �

Figure P26.19   
Problems 19 and 56.
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doubled. (b) Find the potential difference across each 
capacitor after the plate separation is doubled. (c) Find 
the total energy of the system after the plate separation is 
doubled. (d) Reconcile the difference in the answers to 
parts (a) and (c) with the law of conservation of energy.

	37.	 Two capacitors, C1 5 25.0 mF and C2 5 5.00 mF, are 
connected in parallel and charged with a 100-V power 
supply. (a) Draw a circuit diagram and (b) calculate 
the total energy stored in the two capacitors. (c) What 
If? What potential difference would be required across 
the same two capacitors connected in series for the 
combination to store the same amount of energy as 
in part (b)? (d) Draw a circuit diagram of the circuit 
described in part (c).

	38.	A parallel-plate capacitor has a charge Q and plates of 
area A. What force acts on one plate to attract it toward 
the other plate? Because the electric field between the 
plates is E 5 Q /AP0, you might think the force is F 5  
QE 5 Q 2/AP0. This conclusion is wrong because the 
field E includes contributions from both plates, and 
the field created by the positive plate cannot exert any 
force on the positive plate. Show that the force exerted 
on each plate is actually F 5 Q 2/2AP0. Suggestion: Let 
C 5 P0A/x for an arbitrary plate separation x and note 
that the work done in separating the two charged 
plates is W 5 e F dx.

	39.	Review. A storm cloud and the ground represent the 
plates of a capacitor. During a storm, the capacitor has 
a potential difference of 1.00 3 108 V between its plates 
and a charge of 50.0 C. A lightning strike delivers 1.00% 
of the energy of the capacitor to a tree on the ground. 
How much sap in the tree can be boiled away? Model 
the sap as water initially at 30.08C. Water has a specific 
heat of 4 186 J/kg ? 8C, a boiling point of 1008C, and a 
latent heat of vaporization of 2.26 3 106 J/kg.

	40.	Consider two conducting spheres with radii R1 and 
R 2 separated by a distance much greater than either 
radius. A total charge Q is shared between the spheres. 
We wish to show that when the electric potential 
energy of the system has a minimum value, the poten-
tial difference between the spheres is zero. The total 
charge Q is equal to q1 1 q2, where q1 represents the 
charge on the first sphere and q2 the charge on the sec-
ond. Because the spheres are very far apart, you can 
assume the charge of each is uniformly distributed 
over its surface. (a) Show that the energy associated 
with a single conducting sphere of radius R and charge 
q surrounded by a vacuum is U 5 keq 2/2R. (b) Find the 
total energy of the system of two spheres in terms of 
q1, the total charge Q , and the radii R 1 and R 2. (c) To 
minimize the energy, differentiate the result to part 
(b) with respect to q1 and set the derivative equal to 
zero. Solve for q1 in terms of Q and the radii. (d) From 
the result to part (c), find the charge q2. (e) Find the 
potential of each sphere. (f) What is the potential dif-
ference between the spheres?

	41.	Review. The circuit in Figure P26.41 (page 804) con-
sists of two identical, parallel metal plates connected to 
identical metal springs, a switch, and a 100-V battery.  
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capacitor of several microfarads, charged to several 
thousand volts. Electrodes called paddles are held 
against the chest on both sides of the heart, and the 
capacitor is discharged through the patient’s chest. 
Assume an energy of 300 J is to be delivered from a 
30.0-mF capacitor. To what potential difference must it 
be charged?

	31.	 A 12.0-V battery is connected to a capacitor, result-
ing in 54.0 mC of charge stored on the capacitor. How 
much energy is stored in the capacitor?

	32.	(a) A 3.00-mF capacitor is connected to a 12.0-V battery.  
How much energy is stored in the capacitor? (b) Had 
the capacitor been connected to a 6.00-V battery, how 
much energy would have been stored?

	33.	As a person moves about in a dry environment, elec-
tric charge accumulates on the person’s body. Once 
it is at high voltage, either positive or negative, the 
body can discharge via sparks and shocks. Consider 
a human body isolated from ground, with the typical 
capacitance 150 pF. (a) What charge on the body will 
produce a potential of 10.0 kV? (b) Sensitive electronic 
devices can be destroyed by electrostatic discharge 
from a person. A particular device can be destroyed by 
a discharge releasing an energy of 250 mJ. To what volt-
age on the body does this situation correspond?

	34.	Two capacitors, C1 5 18.0 mF and C2 5 36.0 mF, are con-
nected in series, and a 12.0-V battery is connected across 
the two capacitors. Find (a) the equivalent capacitance 
and (b) the energy stored in this equivalent capaci-
tance. (c) Find the energy stored in each individual  
capacitor. (d) Show that the sum of these two energies 
is the same as the energy found in part (b). (e) Will 
this equality always be true, or does it depend on the 
number of capacitors and their capacitances? (f) If 
the same capacitors were connected in parallel, what 
potential difference would be required across them so 
that the combination stores the same energy as in part 
(a)? (g) Which capacitor stores more energy in this sit-
uation, C1 or C2?

	35.	Two identical parallel-plate capacitors, each with 
capacitance 10.0 mF, are charged to potential differ-
ence 50.0 V and then disconnected from the battery. 
They are then connected to each other in parallel with 
plates of like sign connected. Finally, the plate separa-
tion in one of the capacitors is doubled. (a) Find the 
total energy of the system of two capacitors before the 
plate separation is doubled. (b) Find the potential dif-
ference across each capacitor after the plate separation 
is doubled. (c) Find the total energy of the system after 
the plate separation is doubled. (d) Reconcile the dif-
ference in the answers to parts (a) and (c) with the law 
of conservation of energy.

	36.	Two identical parallel-plate capacitors, each with capaci-
tance C, are charged to potential difference DV and 
then disconnected from the battery. They are then 
connected to each other in parallel with plates of like 
sign connected. Finally, the plate separation in one of 
the capacitors is doubled. (a) Find the total energy of 
the system of two capacitors before the plate separation is 
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With the switch open, the 
plates are uncharged, are 
separated by a distance d 5  
8.00 mm, and have a capaci-
tance C 5 2.00 mF. When the 
switch is closed, the distance 
between the plates decreases 
by a factor of 0.500. (a) How 
much charge collects on each 
plate? (b) What is the spring 
constant for each spring?

Section 26.5 ​ Capacitors with Dielectrics

	42.	A supermarket sells rolls of aluminum foil, plastic wrap, 
and waxed paper. (a) Describe a capacitor made from 
such materials. Compute order-of-magnitude estimates 
for (b) its capacitance and (c) its breakdown voltage.

	43.	(a) How much charge can be placed on a capacitor with 
air between the plates before it breaks down if the area 
of each plate is 5.00 cm2? (b) What If? Find the maxi-
mum charge if polystyrene is used between the plates 
instead of air.

	44.	The voltage across an air-filled parallel-plate capacitor 
is measured to be 85.0 V. When a dielectric is inserted 
and completely fills the space between the plates as in 
Figure P26.44, the voltage drops to 25.0 V. (a) What 
is the dielectric constant of the inserted material? 
(b) Can you identify the dielectric? If so, what is it? 
(c) If the dielectric does not completely fill the space 
between the plates, what could you conclude about the 
voltage across the plates?

C0 C

Dielectric

VV0� �

a b

Figure P26.44

	45.	Determine (a) the capacitance and (b) the maximum 
potential difference that can be applied to a Teflon-
filled parallel-plate capacitor having a plate area of 
1.75 cm2 and a plate separation of 0.040 0 mm.

	46.	A commercial capacitor is to be constructed as shown 
in Figure P26.46. This particular capacitor is made 
from two strips of aluminum foil separated by a strip 
of paraffin-coated paper. Each strip of foil and paper 
is 7.00 cm wide. The foil is 0.004 00 mm thick, and the 
paper is 0.025 0 mm thick and has a dielectric constant 
of 3.70. What length should the strips have if a capaci-

W

Q/C

W

tance of 9.50 3 1028 F is desired before the capacitor is 
rolled up? (Adding a second strip of paper and rolling 
the capacitor would effectively double its capacitance 
by allowing charge storage on both sides of each strip 
of foil.)

Aluminum

Paper
7.00 cm

Figure P26.46

	47.	 A parallel-plate capacitor in air has a plate separation 
of 1.50 cm and a plate area of 25.0 cm2. The plates are 
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then immersed 
in distilled water. Assume the liquid is an insulator. 
Determine (a) the charge on the plates before and 
after immersion, (b) the capacitance and potential dif-
ference after immersion, and (c) the change in energy 
of the capacitor.

	48.	Each capacitor in the combination shown in Figure 
P26.48 has a breakdown voltage of 15.0 V. What is the 
breakdown voltage of the combination?

20.0 mF

10.0 mF

20.0 mF

20.0 mF

20.0 mF

Figure P26.48

	49.	A 2.00-nF parallel-plate capacitor is charged to an ini-
tial potential difference DVi 5 100 V and is then iso-
lated. The dielectric material between the plates is 
mica, with a dielectric constant of 5.00. (a) How much 
work is required to withdraw the mica sheet? (b) What 
is the potential difference across the capacitor after 
the mica is withdrawn?

Section 26.6 ​ Electric Dipole in an Electric Field

	50.	A small, rigid object carries positive and negative  
3.50-nC charges. It is oriented so that the positive 
charge has coordinates (21.20 mm, 1.10 mm) and the 
negative charge is at the point (1.40 mm, 21.30 mm). 
(a) Find the electric dipole moment of the object. The 
object is placed in an electric field E

S
5 17.80 3 103 î 2

4.90 3 103 ĵ 2  N/C. (b)  Find the torque acting on the 
object. (c) Find the potential energy of the object–field 
system when the object is in this orientation. (d) Assum-
ing the orientation of the object can change, find 
the difference between the maximum and minimum 
potential energies of the system.

	51.	 An infinite line of positive charge lies along the y axis, 
with charge density l 5 2.00 mC/m. A dipole is placed 
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with its center along the x axis at x 5 25.0 cm. The 
dipole consists of two charges 610.0 mC separated by 
2.00 cm. The axis of the dipole makes an angle of 35.08 
with the x axis, and the positive charge is farther from 
the line of charge than the negative charge. Find the 
net force exerted on the dipole.

	52.	A small object with electric dipole moment pS is placed 
in a nonuniform electric field E

S
5 E 1x 2 î. That is, the 

field is in the x direction, and its magnitude depends 
only on the coordinate x. Let u represent the angle 
between the dipole moment and the x direction. Prove 
that the net force on the dipole is

F 5 p adE
dx

b cos u

		  acting in the direction of increasing field.

Section 26.7 ​ An Atomic Description of Dielectrics

	53.	The general form of Gauss’s law describes how a 
charge creates an electric field in a material, as well as 
in vacuum:

3 E
S

? d A
S

5
qin

P

		  where P 5 kP0 is the permittivity of the material. (a) A 
sheet with charge Q uniformly distributed over its area 
A is surrounded by a dielectric. Show that the sheet 
creates a uniform electric field at nearby points with 
magnitude E 5 Q /2AP. (b) Two large sheets of area A, 
carrying opposite charges of equal magnitude Q , are a 
small distance d apart. Show that they create uniform 
electric field in the space between them with magni-
tude E 5 Q /AP. (c) Assume the negative plate is at zero 
potential. Show that the positive plate is at potential 
Qd/AP. (d) Show that the capacitance of the pair of 
plates is given by C 5 AP/d 5 kAP0/d.

Additional Problems

	54.	Find the equivalent capacitance of the group of capaci-
tors shown in Figure P26.54.

5.00 Fµ

4.00 Fµ

6.00 Fµ

3.00 Fµ

3.00 Fµ

7.00 Fµ

2.00 Fµ

� �

Figure P26.54

	55.	Four parallel metal plates P1, P2, P3, and P4, each of 
area 7.50  cm2, are separated successively by a dis-
tance d 5 1.19  mm as shown in Figure P26.55. Plate 
P1 is connected to the negative terminal of a battery, 
and P2 is connected to the positive terminal. The 
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battery maintains a potential difference of 12.0 V. 
(a) If P3 is connected to the negative terminal, what 
is the capacitance of the three-plate system P1P2P3?  
(b) What is the charge on P2? (c) If P4 is now connected 
to the positive terminal, what is the capacitance of 
the four-plate system P1P2P3P4? (d) What is the charge  
on P4?

12.0 V

P2 P3 P4P1

d d d

�

�

Figure P26.55

	56.	For the system of four capacitors shown in Figure 
P26.19, find (a) the total energy stored in the system 
and (b) the energy stored by each capacitor. (c) Com-
pare the sum of the answers in part (b) with your result 
to part (a) and explain your observation.

	57.	 A uniform electric field E 5 3 000 V/m exists within 
a certain region. What volume of space contains an 
energy equal to 1.00 3 1027 J? Express your answer in 
cubic meters and in liters.

	58.	Two large, parallel metal plates, each of area A, are 
oriented horizontally and separated by a distance 3d. 
A grounded conducting wire joins them, and initially 
each plate carries no charge. Now a third identical 
plate carrying charge Q is inserted between the two 
plates, parallel to them and located a distance d from 
the upper plate as shown in Figure P26.58. (a) What 
induced charge appears on each of the two original 
plates? (b) What potential difference appears between 
the middle plate and each of the other plates?

2d

d

Figure P26.58

	59.	A parallel-plate capacitor is constructed using a 
dielectric material whose dielectric constant is 3.00 
and whose dielectric strength is 2.00 3 108 V/m. The 
desired capacitance is 0.250 mF, and the capacitor must 
withstand a maximum potential difference of 4.00 kV. 
Find the minimum area of the capacitor plates.

	60.	Why is the following situation impossible? A 10.0-mF capaci-
tor has plates with vacuum between them. The capaci-
tor is charged so that it stores 0.050 0 J of energy. A  
particle with charge 23.00 mC is fired from the positive 
plate toward the negative plate with an initial kinetic 
energy equal to 1.00 3 1024  J. The particle arrives at 
the negative plate with a reduced kinetic energy.
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	61.	 A model of a red blood cell portrays the cell as a capac-
itor with two spherical plates. It is a positively charged 
conducting liquid sphere of area A, separated by 
an insulating membrane of thickness t from the sur-
rounding negatively charged conducting fluid. Tiny 
electrodes introduced into the cell show a potential 
difference of 100 mV across the membrane. Take the 
membrane’s thickness as 100 nm and its dielectric con-
stant as 5.00. (a) Assume that a typical red blood cell 
has a mass of 1.00 3 10212 kg and density 1 100 kg/m3.  
Calculate its volume and its surface area. (b) Find the 
capacitance of the cell. (c) Calculate the charge on 
the surfaces of the membrane. How many electronic 
charges does this charge represent?

	62.	A parallel-plate capacitor with vacuum between its  
horizontal plates has a capacitance of 25.0 mF. A non-
conducting liquid with dielectric constant 6.50 is 
poured into the space between the plates, filling up a 
fraction f of its volume. (a) Find the new capacitance 
as a function of f. (b)  What should you expect the 
capacitance to be when f 5 0? Does your expression 
from part (a) agree with your answer? (c) What capaci-
tance should you expect when f 5 1? Does the expres-
sion from part (a) agree with your answer?

	63.	A 10.0-mF capacitor is charged 
to 15.0 V. It is next connected in 
series with an uncharged 5.00-mF 
capacitor. The series combina-
tion is finally connected across 
a 50.0-V battery as diagrammed 
in Figure P26.63. Find the new 
potential differences across the 
5.00-mF and 10.0-mF capacitors 
after the switch is thrown closed.

	64.	Assume that the internal diameter of the Geiger– 
Mueller tube described in Problem 68 in Chapter 25 is 
2.50 cm and that the wire along the axis has a diameter 
of 0.200 mm. The dielectric strength of the gas between 
the central wire and the cylinder is 1.20 3 106 V/m.  
Use the result of that problem to calculate the maxi-
mum potential difference that can be applied between 
the wire and the cylinder before breakdown occurs in 
the gas.

	65.	Two square plates of sides , are placed parallel to 
each other with separation d as suggested in Figure 
P26.65. You may assume d is much less than ,. The 
plates carry uniformly distributed static charges 1Q 0 
and 2Q 0. A block of metal has width ,, length ,, and 
thickness slightly less than d. It is inserted a distance 
x into the space between the plates. The charges on 
the plates remain uniformly distributed as the block 
slides in. In a static situation, a metal prevents an 
electric field from penetrating inside it. The metal 
can be thought of as a perfect dielectric, with k S .̀  
(a) Calculate the stored energy in the system as a 
function of x. (b) Find the direction and magnitude 
of the force that acts on the metallic block. (c) The 
area of the advancing front face of the block is essen-
tially equal to ,d. Considering the force on the block 
as acting on this face, find the stress (force per area) 
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Figure P26.63

Q/C
S

on it. (d) Express the energy density in the electric 
field between the charged plates in terms of Q 0, ,, d, 
and P0. (e) Explain how the answers to parts (c) and 
(d) compare with each other.

x
d

�

�  �  �  �  �

�  �  �  �  �

�Q 0

�Q 0

Figure P26.65

	66.	(a) Two spheres have radii a and b, and their centers  
are a distance d apart. Show that the capacitance of 
this system is

C 5
4pP0

1
a

1
1
b

2
2
d

		  provided d is large compared with a and b. Suggestion: 
Because the spheres are far apart, assume the poten-
tial of each equals the sum of the potentials due to 
each sphere. (b) Show that as d approaches infinity, 
the above result reduces to that of two spherical capaci-
tors in series.

	67.	 A capacitor of unknown capacitance has been charged 
to a potential difference of 100 V and then discon-
nected from the battery. When the charged capacitor 
is then connected in parallel to an uncharged 10.0-mF 
capacitor, the potential difference across the combina-
tion is 30.0 V. Calculate the unknown capacitance.

	68.	A parallel-plate capacitor of plate separation d is 
charged to a potential difference DV0. A dielectric slab 
of thickness d and dielectric constant k is introduced 
between the plates while the battery remains con-
nected to the plates. (a) Show that the ratio of energy 
stored after the dielectric is introduced to the energy 
stored in the empty capacitor is U/U0 5 k. (b) Give a 
physical explanation for this increase in stored energy. 
(c) What happens to the charge on the capacitor? Note: 
This situation is not the same as in Example 26.5, in 
which the battery was removed from the circuit before 
the dielectric was introduced.

	69.	Capacitors C1 5 6.00 mF and C2 5 2.00 mF are charged 
as a parallel combination across a 250-V battery. The 
capacitors are disconnected from the battery and from 
each other. They are then connected positive plate to 
negative plate and negative plate to positive plate. Cal-
culate the resulting charge on each capacitor.

	70.	Example 26.1 explored a cylindrical capacitor of 
length , with radii a and b for the two conductors. In 
the What If? section of that example, it was claimed 
that increasing , by 10% is more effective in terms of 
increasing the capacitance than increasing a by 10% if 
b . 2.85a. Verify this claim mathematically.

	71.	To repair a power supply for a stereo amplifier, an elec-
tronics technician needs a 100-mF capacitor capable of 
withstanding a potential difference of 90 V between the 
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	76.	A parallel-plate capacitor with plates of area LW and 
plate separation t has the region between its plates 
filled with wedges of two dielectric materials as shown 
in Figure P26.76. Assume t is much less than both L 
and W. (a) Determine its capacitance. (b) Should the 
capacitance be the same if the labels k1 and k2 are 
interchanged? Demonstrate that your expression does 
or does not have this property. (c) Show that if k1 and 
k2 approach equality to a common value k, your result 
becomes the same as the capacitance of a capacitor 
containing a single dielectric: C 5 kP0LW/t.

k2
k1t

L
W

Figure P26.76

	77.	Calculate the equivalent capacitance between points 
a and b in Figure P26.77. Notice that this system is 
not a simple series or parallel combination. Sug-
gestion: Assume a potential difference DV  between 
points a and b. Write expressions for DVab in terms 
of the charges and capacitances for the various pos-
sible pathways from a to b and require conservation of 
charge for those capacitor plates that are connected 
to each other.

a

b2.00 mF

4.00 mF

2.00 mF 4.00 mF8.00 mF

Figure P26.77

	78.	A capacitor is constructed from two square, metal-
lic plates of sides , and separation d. Charges 1Q 
and 2Q are placed on the plates, and the power sup-
ply is then removed. A material of dielectric constant 
k is inserted a distance x into the capacitor as shown 
in Figure P26.78. Assume d is much smaller than x.  
(a) Find the equivalent capacitance of the device.  
(b) Calculate the energy stored in the capacitor. (c) Find 
the direction and magnitude of the force exerted by the 
plates on the dielectric. (d) Obtain a numerical value 
for the force when x 5 ,/2, assuming , 5 5.00 cm, d 5  
2.00 mm, the dielectric is glass (k 5 4.50), and the 
capacitor was charged to 2.00 3 103 V before the 
dielectric was inserted. Suggestion: The system can be 
considered as two capacitors connected in parallel.

Q/C
S

plates. The immediately available supply is a box of five  
100-mF capacitors, each having a maximum voltage 
capability of 50 V. (a) What combination of these 
capacitors has the proper electrical characteristics? 
Will the technician use all the capacitors in the box? 
Explain your answers. (b) In the combination of capac-
itors obtained in part (a), what will be the maximum 
voltage across each of the capacitors used?

Challenge Problems

	72.	The inner conductor of a coaxial cable has a radius of 
0.800 mm, and the outer conductor’s inside radius is 
3.00 mm. The space between the conductors is filled 
with polyethylene, which has a dielectric constant of 
2.30 and a dielectric strength of 18.0 3 106 V/m. What 
is the maximum potential difference this cable can 
withstand?

	73.	Some physical systems possessing capacitance continu-
ously distributed over space can be modeled as an infi-
nite array of discrete circuit elements. Examples are 
a microwave waveguide and the axon of a nerve cell. 
To practice analysis of an infinite array, determine the 
equivalent capacitance C  between terminals X and Y 
of the infinite set of capacitors represented in Figure 
P26.73. Each capacitor has capacitance C0. Suggestions: 
Imagine that the ladder is cut at the line AB and note 
that the equivalent capacitance of the infinite section 
to the right of AB is also C.

C0

C0

C0

X

Y

A

B

Figure P26.73

	74.	Consider two long, parallel, and oppositely charged 
wires of radius r with their centers separated by a 
distance D that is much larger than r. Assuming the 
charge is distributed uniformly on the surface of each 
wire, show that the capacitance per unit length of this 
pair of wires is

C
,

5
pP0

ln 1D/r 2
	75.	Determine the equivalent capacitance of the combina-

tion shown in Figure P26.75. Suggestion: Consider the 
symmetry involved.
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We now consider situations involving electric charges that are in motion through some 
region of space. We use the term electric current, or simply current, to describe the rate of 
flow of charge. Most practical applications of electricity deal with electric currents, including 
a variety of home appliances. For example, the voltage from a wall plug produces a current 
in the coils of a toaster when it is turned on. In these common situations, current exists in a 
conductor such as a copper wire. Currents can also exist outside a conductor. For instance, a 
beam of electrons in a particle accelerator constitutes a current.
	 This chapter begins with the definition of current. A microscopic description of current is 
given, and some factors that contribute to the opposition to the flow of charge in conduc-
tors are discussed. A classical model is used to describe electrical conduction in metals, and 
some limitations of this model are cited. We also define electrical resistance and introduce 
a new circuit element, the resistor. We conclude by discussing the rate at which energy is 
transferred to a device in an electric circuit. The energy transfer mechanism in Equation 8.2 
that corresponds to this process is electrical transmission T ET.

27.1	 Electric Current
In this section, we study the flow of electric charges through a piece of material. 
The amount of flow depends on both the material through which the charges are 

27.1	 Electric Current

27.2	 Resistance

27.3	 A Model for Electrical 
Conduction

27.4	 Resistance and Temperature

27.5	 Superconductors

27.6	 Electrical Power

c h a p t e r 

27 Current and Resistance

These two lightbulbs provide 
similar power output by visible 
light (electromagnetic radiation).  
The compact fluorescent bulb on 
the left, however, produces this 
light output with far less input by 
electrical transmission than the 
incandescent bulb on the right. The 
fluorescent bulb, therefore, is less 
costly to operate and saves valuable 
resources needed to generate 
electricity. (Christina Richards/

Shutterstock.com)
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passing and the potential difference across the material. Whenever there is a net 
flow of charge through some region, an electric current is said to exist.
	 It is instructive to draw an analogy between water flow and current. The flow 
of water in a plumbing pipe can be quantified by specifying the amount of water 
that emerges from a faucet during a given time interval, often measured in liters 
per minute. A river current can be characterized by describing the rate at which 
the water flows past a particular location. For example, the flow over the brink at 
Niagara Falls is maintained at rates between 1 400 m3/s and 2 800 m3/s.
	 There is also an analogy between thermal conduction and current. In Section 
20.7, we discussed the flow of energy by heat through a sample of material. The rate 
of energy flow is determined by the material as well as the temperature difference 
across the material as described by Equation 20.15.
	 To define current quantitatively, suppose charges are moving perpendicular to 
a surface of area A as shown in Figure 27.1. (This area could be the cross-sectional 
area of a wire, for example.) The current is defined as the rate at which charge 
flows through this surface. If DQ is the amount of charge that passes through this 
surface in a time interval Dt, the average current Iavg is equal to the charge that 
passes through A per unit time:

	 I avg 5
DQ

Dt
	 (27.1)

If the rate at which charge flows varies in time, the current varies in time; we define 
the instantaneous current I as the limit of the average current as Dt S 0:

	 I ;
dQ

dt
	 (27.2)

The SI unit of current is the ampere (A):

	 1 A 5 1 C/s	 (27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through a surface in 1 s.
	 The charged particles passing through the surface in Figure 27.1 can be positive, 
negative, or both. It is conventional to assign to the current the same direction as 
the flow of positive charge. In electrical conductors such as copper or aluminum, 
the current results from the motion of negatively charged electrons. Therefore, in 
an ordinary conductor, the direction of the current is opposite the direction of 
flow of electrons. For a beam of positively charged protons in an accelerator, how-
ever, the current is in the direction of motion of the protons. In some cases—such 
as those involving gases and electrolytes, for instance—the current is the result of 
the flow of both positive and negative charges. It is common to refer to a moving 
charge (positive or negative) as a mobile charge carrier.
	 If the ends of a conducting wire are connected to form a loop, all points on the 
loop are at the same electric potential; hence, the electric field is zero within and 
at the surface of the conductor. Because the electric field is zero, there is no net 
transport of charge through the wire; therefore, there is no current. If the ends of 
the conducting wire are connected to a battery, however, all points on the loop are 
not at the same potential. The battery sets up a potential difference between the 
ends of the loop, creating an electric field within the wire. The electric field exerts 
forces on the electrons in the wire, causing them to move in the wire and therefore 
creating a current.

Microscopic Model of Current
We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a cylindrical  

WW Electric current

A

I

�

�

�
�

�

The direction of the current is 
the direction in which positive 
charges flow when free to do so.

Figure 27.1  ​Charges in motion 
through an area A. The time rate 
at which charge flows through the 
area is defined as the current I.

Pitfall Prevention 27.1
“Current Flow” Is Redundant   
The phrase current flow is com-
monly used, although it is techni-
cally incorrect because current is 
a flow (of charge). This wording is 
similar to the phrase heat transfer, 
which is also redundant because 
heat is a transfer (of energy). We 
will avoid this phrase and speak of 
flow of charge or charge flow.

Pitfall Prevention 27.2
Batteries Do Not Supply Electrons  
A battery does not supply elec-
trons to the circuit. It establishes 
the electric field that exerts a 
force on electrons already in the 
wires and elements of the circuit.
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

	 DQ 5 (nA Dx)q	

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

	 DQ 5 (nAvd Dt)q	

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

	 I avg 5
DQ

Dt
5 nqvdA 	 (27.4)

	 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

	 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q	 uick Quiz 27.1 ​ Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.2  ​A segment of a uni-
form conductor of cross-sectional 
area A.
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The random motion of the 
charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3  (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  ​(Quick Quiz 27.1) Charges move through four regions.
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Example 27.1	     Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building has a cross-sectional area of 3.31 3 1026 m2. It carries a con-
stant current of 10.0 A. What is the drift speed of the electrons in the wire? Assume each copper atom contributes one 
free electron to the current. The density of copper is 8.92 g/cm3.

Conceptualize  ​Imagine electrons following a zigzag motion such as that in Figure 27.3a, with a drift velocity parallel 
to the wire superimposed on the motion as in Figure 27.3b. As mentioned earlier, the drift speed is small, and this 
example helps us quantify the speed.

Categorize  ​We evaluate the drift speed using Equation 27.4. Because the current is constant, the average current dur-
ing any time interval is the same as the constant current: Iavg 5 I.

Analyze  ​The periodic table of the elements in Appendix C shows that the molar mass of copper is M 5 63.5 g/mol. 
Recall that 1 mol of any substance contains Avogadro’s number of atoms (NA 5 6.02 3 1023 mol21).

S o l u t i o n

Use the molar mass and the density of copper to find the 
volume of 1 mole of copper:

V 5
M
r

From the assumption that each copper atom contributes 
one free electron to the current, find the electron den-
sity in copper:

n 5
NA

V
5

NA r

M

Solve Equation 27.4 for the drift speed and substitute for 
the electron density:

vd 5
I avg

nqA
5

I
nqA

5
IM

qANA r

Substitute numerical values: vd 5
110.0 A 2 10.063 5 kg/mol 2

11.60 3 10219 C 2 13.31 3 1026 m2 2 16.02 3 1023 mol21 2 18 920 kg/m3 2
5 2.23 3 1024 m/s

Finalize  ​This result shows that typical drift speeds are very small. For instance, electrons traveling with a speed of 2.23 3  
1024 m/s would take about 75 min to travel 1 m! You might therefore wonder why a light turns on almost instanta-
neously when its switch is thrown. In a conductor, changes in the electric field that drives the free electrons according 
to the particle in a field model travel through the conductor with a speed close to that of light. So, when you flip on a 
light switch, electrons already in the filament of the lightbulb experience electric forces and begin moving after a time 
interval on the order of nanoseconds.

27.2	 Resistance
In Section 24.4, we argued that the electric field inside a conductor is zero. This 
statement is true, however, only if the conductor is in static equilibrium as stated in 
that discussion. The purpose of this section is to describe what happens when there 
is a nonzero electric field in the conductor. As we saw in Section 27.1, a current 
exists in the wire in this case.
	 Consider a conductor of cross-sectional area A carrying a current I. The current 
density J in the conductor is defined as the current per unit area. Because the cur-
rent I 5 nqvdA, the current density is

	 J ;
I
A

5 nqvd 	 (27.5) WW Current density
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where J has SI units of amperes per meter squared. This expression is valid only if 
the current density is uniform and only if the surface of cross-sectional area A is 
perpendicular to the direction of the current.
	 A current density and an electric field are established in a conductor whenever a 
potential difference is maintained across the conductor. In some materials, the cur-
rent density is proportional to the electric field:

	 J 5 sE	 (27.6)

where the constant of proportionality s is called the conductivity of the conduc-
tor.1 Materials that obey Equation 27.6 are said to follow Ohm’s law, named after 
Georg Simon Ohm. More specifically, Ohm’s law states the following:

For many materials (including most metals), the ratio of the current density 
to the electric field is a constant s that is independent of the electric field 
producing the current.

Materials and devices that obey Ohm’s law and hence demonstrate this simple rela-
tionship between E and J are said to be ohmic. Experimentally, however, it is found 
that not all materials and devices have this property. Those that do not obey Ohm’s 
law are said to be nonohmic. Ohm’s law is not a fundamental law of nature; rather, it 
is an empirical relationship valid only for certain situations.
	 We can obtain an equation useful in practical applications by considering a seg-
ment of straight wire of uniform cross-sectional area A and length , as shown in 
Figure 27.5. A potential difference DV 5 Vb 2 Va is maintained across the wire, 
creating in the wire an electric field and a current. If the field is assumed to be 
uniform, the magnitude of the potential difference across the wire is related to the 
field within the wire through Equation 25.6,

	 DV 5 E,	

Therefore, we can express the current density (Eq. 27.6) in the wire as

J 5 s 
DV
,

Because J 5 I/A, the potential difference across the wire is

	 DV 5
,

s
 J 5 a ,

sA
b I 5 R I 	

The quantity R 5 ,/sA is called the resistance of the conductor. We define the 
resistance as the ratio of the potential difference across a conductor to the current 
in the conductor:

	 R ;
DV
I

	 (27.7)

We will use this equation again and again when studying electric circuits. This 
result shows that resistance has SI units of volts per ampere. One volt per ampere is 
defined to be one ohm (V):

	 1 V ; 1 V/A	 (27.8)

Equation 27.7 shows that if a potential difference of 1 V across a conductor causes a 
current of 1 A, the resistance of the conductor is 1 V. For example, if an electrical 
appliance connected to a 120-V source of potential difference carries a current of 
6 A, its resistance is 20 V.
	 Most electric circuits use circuit elements called resistors to control the current 
in the various parts of the circuit. As with capacitors in Chapter 26, many resistors 
are built into integrated circuit chips, but stand-alone resistors are still available and 

Georg Simon Ohm
German physicist (1789–1854)
Ohm, a high school teacher and later a 
professor at the University of Munich, 
formulated the concept of resistance 
and discovered the proportionalities 
expressed in Equations 27.6 and 27.7.
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1Do not confuse conductivity s with surface charge density, for which the same symbol is used.

�

Vb Va

IA

E
S

 

A potential difference �V � 
Vb � Va maintained across the 
conductor sets up an electric 
field E, and this field produces 
a current I  that is proportional 
to the potential difference.

S

Figure 27.5  ​A uniform conduc-
tor of length , and cross-sectional 
area A.

Pitfall Prevention 27.3
Equation 27.7 Is Not Ohm’s Law   
Many individuals call Equation 
27.7 Ohm’s law, but that is incor-
rect. This equation is simply the 
definition of resistance, and it 
provides an important relation-
ship between voltage, current, and 
resistance. Ohm’s law is related 
to a proportionality of J to E (Eq. 
27.6) or, equivalently, of I to DV, 
which, from Equation 27.7, indi-
cates that the resistance is con-
stant, independent of the applied 
voltage. We will see some devices 
for which Equation 27.7 correctly 
describes their resistance, but that 
do not obey Ohm’s law.
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widely used. Two common types are the composition resistor, which contains carbon, 
and the wire-wound resistor, which consists of a coil of wire. Values of resistors in ohms 
are normally indicated by color coding as shown in Figure 27.6 and Table 27.1. The 
first two colors on a resistor give the first two digits in the resistance value, with the 
decimal place to the right of the second digit. The third color represents the power 
of 10 for the multiplier of the resistance value. The last color is the tolerance of the 
resistance value. As an example, the four colors on the resistor at the bottom of 
Figure 27.6 are yellow (5 4), violet (5 7), black (5 100), and gold (5 5%), and so the 
resistance value is 47 3 100 5 47 V with a tolerance value of 5% 5 2 V.
	 The inverse of conductivity is resistivity2 r:

	 r 5
1
s

	 (27.9)

where r has the units ohm ? meters (V ? m). Because R 5 ,/sA, we can express the 
resistance of a uniform block of material along the length , as

	 R 5 r 
,

A
	 (27.10)

Every ohmic material has a characteristic resistivity that depends on the proper-
ties of the material and on temperature. In addition, as you can see from Equation 
27.10, the resistance of a sample of the material depends on the geometry of the 
sample as well as on the resistivity of the material. Table 27.2 (page 814) gives the 
resistivities of a variety of materials at 20°C. Notice the enormous range, from very 
low values for good conductors such as copper and silver to very high values for 
good insulators such as glass and rubber. An ideal conductor would have zero resis-
tivity, and an ideal insulator would have infinite resistivity.
	 Equation 27.10 shows that the resistance of a given cylindrical conductor such as a 
wire is proportional to its length and inversely proportional to its cross-sectional area. 
If the length of a wire is doubled, its resistance doubles. If its cross-sectional area is 
doubled, its resistance decreases by one half. The situation is analogous to the flow 
of a liquid through a pipe. As the pipe’s length is increased, the resistance to flow 
increases. As the pipe’s cross-sectional area is increased, more liquid crosses a given 
cross section of the pipe per unit time interval. Therefore, more liquid flows for the 
same pressure differential applied to the pipe, and the resistance to flow decreases.
	 Ohmic materials and devices have a linear current–potential difference relation-
ship over a broad range of applied potential differences (Fig. 27.7a, page 814). The 
slope of the I-versus-DV curve in the linear region yields a value for 1/R. Nonohmic 

WW �Resistivity is the inverse of 
conductivity

WW �Resistance of a uniform 
material along the length <

Table 27.1 Color Coding for Resistors
Color	 Number	 Multiplier	 Tolerance

Black	 0	   1	
Brown	 1	 101

Red	 2	 102

Orange	 3	 103

Yellow	 4	 104

Green	 5	 105

Blue	 6	 106

Violet	 7	 107

Gray	 8	 108

White	 9	 109

Gold		  1021	   5%
Silver		  1022	 10%
Colorless			   20%

2Do not confuse resistivity r with mass density or charge density, for which the same symbol is used.

Pitfall Prevention 27.4
Resistance and Resistivity  Resis-
tivity is a property of a substance, 
whereas resistance is a property 
of an object. We have seen similar 
pairs of variables before. For exam-
ple, density is a property of a sub-
stance, whereas mass is a property 
of an object. Equation 27.10 relates 
resistance to resistivity, and Equa-
tion 1.1 relates mass to density.

The colored bands on 
this resistor are yellow, 
violet, black, and gold.

Figure 27.6  ​A close-up view of a 
circuit board shows the color cod-
ing on a resistor. The gold band 
on the left tells us that the resistor 
is oriented “backward” in this view 
and we need to read the colors 
from right to left.
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materials have a nonlinear current–potential difference relationship. One common 
semiconducting device with nonlinear I-versus-DV characteristics is the junction diode 
(Fig. 27.7b). The resistance of this device is low for currents in one direction (posi-
tive DV) and high for currents in the reverse direction (negative DV). In fact, most 
modern electronic devices, such as transistors, have nonlinear current–potential 
difference relationships; their proper operation depends on the particular way they 
violate Ohm’s law.

Q	 uick Quiz 27.2  ​A cylindrical wire has a radius r and length ,. If both r and , are 
doubled, does the resistance of the wire (a) increase, (b) decrease, or (c) remain 
the same?

Q	 uick Quiz 27.3 ​ In Figure 27.7b, as the applied voltage increases, does the resis-
tance of the diode (a) increase, (b) decrease, or (c) remain the same?

Table 27.2 Resistivities and Temperature Coefficients  
of Resistivity for Various Materials
		  Temperature
Material	 Resistivitya (V ? m)	 Coefficientb a [(°C)21]

Silver	 1.59 3 1028	 3.8 3 1023

Copper	 1.7 3 1028	 3.9 3 1023

Gold	 2.44 3 1028	 3.4 3 1023

Aluminum	 2.82 3 1028	 3.9 3 1023

Tungsten	 5.6 3 1028	 4.5 3 1023

Iron	 10 3 1028	 5.0 3 1023

Platinum	 11 3 1028	 3.92 3 1023

Lead	 22 3 1028	 3.9 3 1023

Nichromec	 1.00 3 1026	 0.4 3 1023

Carbon	 3.5 3 1025	 20.5 3 1023

Germanium	 0.46	 248 3 1023

Silicond	 2.3 3 103	 275 3 1023

Glass	 1010 to 1014

Hard rubber	 , 1013

Sulfur	     1015

Quartz (fused)	 75 3 1016

a All values at 20°C. All elements in this table are assumed to be free of impurities.
b See Section 27.4.
c A nickel–chromium alloy commonly used in heating elements. The resistivity of Nichrome 
varies with composition and ranges between 1.00 3 1026 and 1.50 3 1026 V ? m.
d The resistivity of silicon is very sensitive to purity. The value can be changed by several 
orders of magnitude when it is doped with other atoms.

Example 27.2	     The Resistance of Nichrome Wire

The radius of 22-gauge Nichrome wire is 0.32 mm.

(A)  ​Calculate the resistance per unit length of this wire.

Conceptualize  ​Table 27.2 shows that Nichrome has a resistivity two orders of magnitude larger than the best conductors 
in the table. Therefore, we expect it to have some special practical applications that the best conductors may not have.

Categorize  ​We model the wire as a cylinder so that a simple geometric analysis can be applied to find the resistance.

S o l u t i o n

Figure 27.7  ​(a) The current–
potential difference curve for an 
ohmic material. The curve is  
linear, and the slope is equal to 
the inverse of the resistance of  
the conductor. (b) A nonlinear  
current–potential difference 
curve for a junction diode. This 
device does not obey Ohm’s law.

I

Slope = 1
R

V�

a

I

V�

b

Analyze  ​Use Equation 27.10 and the resistivity of Nichrome 
from Table 27.2 to find the resistance per unit length:

R
,

5
r

A
5

r

pr 2 5
1.0 3 1026 V # m

p 10.32 3 1023 m 22 5  3.1 V/m
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continued

(B)  ​If a potential difference of 10 V is maintained across a 1.0-m length of the Nichrome wire, what is the current in 
the wire?

S o l u t i o n

Analyze  ​Use Equation 27.7 to find the current: I 5
DV
R

5
DV

1R/, 2, 5
10 V

13.1 V/m 2 11.0 m 2 5  3.2 A

Finalize  ​Because of its high resistivity and resistance to oxidation, Nichrome is often used for heating elements in 
toasters, irons, and electric heaters.

What if the wire were composed of copper instead of Nichrome?  How would the values of the resistance 
per unit length and the current change?

Answer  Table 27.2 shows us that copper has a resistivity two orders of magnitude smaller than that for Nichrome. 
Therefore, we expect the answer to part (A) to be smaller and the answer to part (B) to be larger. Calculations show 
that a copper wire of the same radius would have a resistance per unit length of only 0.053 V/m. A 1.0-m length of cop-
per wire of the same radius would carry a current of 190 A with an applied potential difference of 10 V.

What If ?

Example 27.3	     The Radial Resistance of a Coaxial Cable

Coaxial cables are used extensively for cable television and other electronic appli-
cations. A coaxial cable consists of two concentric cylindrical conductors. The 
region between the conductors is completely filled with polyethylene plastic as 
shown in Figure 27.8a. Current leakage through the plastic, in the radial direc-
tion, is unwanted. (The cable is designed to conduct current along its length, but 
that is not the current being considered here.) The radius of the inner conductor 
is a 5 0.500 cm, the radius of the outer conductor is b 5 1.75 cm, and the length 
is L 5 15.0 cm. The resistivity of the plastic is 1.0 3 1013 V ? m. Calculate the resis-
tance of the plastic between the two conductors.

Conceptualize  ​Imagine two currents as suggested in the text of the problem. The 
desired current is along the cable, carried within the conductors. The undesired 
current corresponds to leakage through the plastic, and its direction is radial.

Categorize  ​Because the resistivity and the geometry of the plastic are known, we 
categorize this problem as one in which we find the resistance of the plastic from 
these parameters. Equation 27.10, however, represents the resistance of a block 
of material. We have a more complicated geometry in this situation. Because the 
area through which the charges pass depends on the radial position, we must use 
integral calculus to determine the answer.

Analyze  ​We divide the plastic into concentric cylindrical shells of infinitesimal 
thickness dr (Fig. 27.8b). Any charge passing from the inner to the outer conduc-
tor must move radially through this shell. Use a differential form of Equation 
27.10, replacing , with dr for the length variable: dR 5 r dr/A, where dR is the 
resistance of a shell of plastic of thickness dr and surface area A.  

S o l u t i o n

L

Outer
conductor

Inner
conductor

Polyethylene

a

b

Current
direction

End view

dr

r

a

b

Figure 27.8  ​(Example 27.3) A 
coaxial cable. (a) Polyethylene plastic 
fills the gap between the two conduc-
tors. (b) End view, showing current 
leakage.

	

▸ 27.2 c o n t i n u e d

Write an expression for the resistance of our hollow 
cylindrical shell of plastic representing the area as the 
surface area of the shell:

dR 5
r dr
A

5
r

2prL
 dr
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27.3	 A Model for Electrical Conduction
In this section, we describe a structural model of electrical conduction in metals 
that was first proposed by Paul Drude (1863–1906) in 1900. (See Section 21.1 for a 
review of structural models.) This model leads to Ohm’s law and shows that resistiv-
ity can be related to the motion of electrons in metals. Although the Drude model 
described here has limitations, it introduces concepts that are applied in more elab-
orate treatments.
	 Following the outline of structural models from Section 21.1, the Drude model 
for electrical conduction has the following properties:

	 1.	 Physical components: 
		  Consider a conductor as a regular array of atoms plus a collection of free elec-

trons, which are sometimes called conduction electrons. We identify the system 
as the combination of the atoms and the conduction electrons. The conduc-
tion electrons, although bound to their respective atoms when the atoms are 
not part of a solid, become free when the atoms condense into a solid.

	 2.	 Behavior of the components: 
	 (a)	 In the absence of an electric field, the conduction electrons move in 

random directions through the conductor (Fig. 27.3a). The situation is 
similar to the motion of gas molecules confined in a vessel. In fact, some 
scientists refer to conduction electrons in a metal as an electron gas.

	 (b)	 When an electric field is applied to the system, the free electrons drift 
slowly in a direction opposite that of the electric field (Fig. 27.3b), with 
an average drift speed vd that is much smaller (typically 1024 m/s) than 
their average speed vavg between collisions (typically 106 m/s).

	 (c)	 The electron’s motion after a collision is independent of its motion 
before the collision. The excess energy acquired by the electrons due to 

Suppose the coaxial cable is enlarged to 
twice the overall diameter with two possible choices:  
(1) the ratio b/a is held fixed, or (2) the difference b 2 a 
is held fixed. For which choice does the leakage current 
between the inner and outer conductors increase when 
the voltage is applied between them?

Answer  ​For the current to increase, the resistance must 
decrease. For choice (1), in which b/a is held fixed, Equa-

What If ? tion (1) shows that the resistance is unaffected. For choice 
(2), we do not have an equation involving the difference 
b 2 a to inspect. Looking at Figure 27.8b, however, we see 
that increasing b and a while holding the difference con-
stant results in charge flowing through the same thick-
ness of plastic but through a larger area perpendicular to 
the flow. This larger area results in lower resistance and 
a higher current.

Substitute the values given: R 5
1.0 3 1013 V # m

2p 10.150 m 2   ln a 1.75 cm
0.500 cm

b 5  1.33 3 1013 V

Integrate this expression from r 5 a to r 5 b : (1)   R 5 3dR 5
r

2pL
 3

b

a
 
dr
r

5
r

2pL
  ln ab

a
b

Finalize  ​Let’s compare this resistance to that of the inner copper conductor of the cable along the 15.0-cm length.

Use Equation 27.10 to find the resistance of the 
copper cylinder:

R Cu 5 r 
,

A
5 11.7 3 1028 V # m 2 c 0.150 m

p 15.00 3 1023 m 22 d
5 3.2 3 1025 V

This resistance is 18 orders of magnitude smaller than the radial resistance. Therefore, almost all the current corre-
sponds to charge moving along the length of the cable, with a very small fraction leaking in the radial direction.

	

▸ 27.3 c o n t i n u e d
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the work done on them by the electric field is transferred to the atoms 
of the conductor when the electrons and atoms collide.

With regard to property 2(c) above, the energy transferred to the atoms causes the 
internal energy of the system and, therefore, the temperature of the conductor to 
increase.
	 We are now in a position to derive an expression for the drift velocity, using sev-
eral of our analysis models. When a free electron of mass me and charge q (5 2e) is 
subjected to an electric field E

S
, it is described by the particle in a field model and 

experiences a force F
S

5 q E
S

. The electron is a particle under a net force, and its 
acceleration can be found from Newton’s second law, g F

S
5 maS:

	 aS 5
a F

S

m
5

q E
S

me
	 (27.11)

Because the electric field is uniform, the electron’s acceleration is constant, so the 
electron can be modeled as a particle under constant acceleration. If vSi is the elec-
tron’s initial velocity the instant after a collision (which occurs at a time defined as 
t 5 0), the velocity of the electron at a very short time t later (immediately before 
the next collision occurs) is, from Equation 4.8,

	 vSf 5 vSi 1 aSt 5 vSi 1
q E

S

me
 t 	 (27.12)

Let’s now take the average value of vSf  for all the electrons in the wire over all pos-
sible collision times t and all possible values of vSi. Assuming the initial velocities are 
randomly distributed over all possible directions (property 2(a) above), the aver-
age value of vSi is zero. The average value of the second term of Equation 27.12 is 
1q E

S
/me 2t, where t is the average time interval between successive collisions. Because the 

average value of vSf  is equal to the drift velocity,

	 vSf,avg 5 vSd 5
q E

S

me
 t 	 (27.13)

The value of t depends on the size of the metal atoms and the number of electrons 
per unit volume. We can relate this expression for drift velocity in Equation 27.13 
to the current in the conductor. Substituting the magnitude of the velocity from 
Equation 27.13 into Equation 27.4, the average current in the conductor is given by

	 Iavg 5 nq aqE
me

 tbA 5
nq 2E
me

 tA	 (27.14)

Because the current density J is the current divided by the area A,

	 J 5
nq 2E
me

 t	

where n is the number of electrons per unit volume. Comparing this expression 
with Ohm’s law, J 5 sE, we obtain the following relationships for conductivity and 
resistivity of a conductor:

	 s 5
nq 2t

me
	 (27.15)

	 r 5
1
s

5
me

nq 2t
	 (27.16)

According to this classical model, conductivity and resistivity do not depend on the 
strength of the electric field. This feature is characteristic of a conductor obeying 
Ohm’s law.

WW �Drift velocity in terms of 
microscopic quantities

WW �Current density in terms of 
microscopic quantities

WW �Conductivity in terms of 
microscopic quantities

WW �Resistivity in terms of micro-
scopic quantities
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	 The model shows that the resistivity can be calculated from a knowledge of the 
density of the electrons, their charge and mass, and the average time interval t 
between collisions. This time interval is related to the average distance between col-
lisions /avg (the mean free path) and the average speed vavg through the expression3

	 t 5
,avg

vavg
	 (27.17)

	 Although this structural model of conduction is consistent with Ohm’s law, it 
does not correctly predict the values of resistivity or the behavior of the resistivity 
with temperature. For example, the results of classical calculations for vavg using the 
ideal gas model for the electrons are about a factor of ten smaller than the actual 
values, which results in incorrect predictions of values of resistivity from Equation 
27.16. Furthermore, according to Equations 27.16 and 27.17, the resistivity is pre-
dicted to vary with temperature as does vavg, which, according to an ideal-gas model 
(Chapter 21, Eq. 21.43), is proportional to "T . This behavior is in disagreement 
with the experimentally observed linear dependence of resistivity with temperature 
for pure metals. (See Section 27.4.) Because of these incorrect predictions, we must 
modify our structural model. We shall call the model that we have developed so far 
the classical model for electrical conduction. To account for the incorrect predic-
tions of the classical model, we develop it further into a quantum mechanical model, 
which we shall describe briefly.
	 We discussed two important simplification models in earlier chapters, the par-
ticle model and the wave model. Although we discussed these two simplification 
models separately, quantum physics tells us that this separation is not so clear-cut. 
As we shall discuss in detail in Chapter 40, particles have wave-like properties. The 
predictions of some models can only be matched to experimental results if the 
model includes the wave-like behavior of particles. The structural model for electri-
cal conduction in metals is one of these cases.
	 Let us imagine that the electrons moving through the metal have wave-like prop-
erties. If the array of atoms in a conductor is regularly spaced (that is, periodic), 
the wave-like character of the electrons makes it possible for them to move freely 
through the conductor and a collision with an atom is unlikely. For an idealized 
conductor, no collisions would occur, the mean free path would be infinite, and the 
resistivity would be zero. Electrons are scattered only if the atomic arrangement is 
irregular (not periodic), as a result of structural defects or impurities, for example. 
At low temperatures, the resistivity of metals is dominated by scattering caused by 
collisions between the electrons and impurities. At high temperatures, the resistiv-
ity is dominated by scattering caused by collisions between the electrons and the 
atoms of the conductor, which are continuously displaced as a result of thermal agi-
tation, destroying the perfect periodicity. The thermal motion of the atoms makes 
the structure irregular (compared with an atomic array at rest), thereby reducing 
the electron’s mean free path.
	 Although it is beyond the scope of this text to show this modification in detail, 
the classical model modified with the wave-like character of the electrons results 
in predictions of resistivity values that are in agreement with measured values and 
predicts a linear temperature dependence. Quantum notions had to be introduced 
in Chapter 21 to understand the temperature behavior of molar specific heats of 
gases. Here we have another case in which quantum physics is necessary for the 
model to agree with experiment. Although classical physics can explain a tremen-
dous range of phenomena, we continue to see hints that quantum physics must be 
incorporated into our models. We shall study quantum physics in detail in Chapters 
40 through 46.

3Recall that the average speed of a group of particles depends on the temperature of the group (Chapter 21) and is 
not the same as the drift speed vd .
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T0

T0

r

r

As T approaches absolute zero, 
the resistivity approaches a 
nonzero value.

Figure 27.9  ​Resistivity versus 
temperature for a metal such as 
copper. The curve is linear over 
a wide range of temperatures, 
and r increases with increasing 
temperature. 
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The resistance drops 
discontinuously to zero at Tc, 
which is 4.15 K for mercury.

Figure 27.10  ​Resistance versus 
temperature for a sample of mer-
cury (Hg). The graph follows that 
of a normal metal above the criti-
cal temperature Tc.

27.4	 Resistance and Temperature
Over a limited temperature range, the resistivity of a conductor varies approxi-
mately linearly with temperature according to the expression

	 r 5 r0[1 1 a(T 2 T0)]	 (27.18)

where r is the resistivity at some temperature T (in degrees Celsius), r0 is the resis-
tivity at some reference temperature T0 (usually taken to be 20°C), and a is the 
temperature coefficient of resistivity. From Equation 27.18, the temperature coef-
ficient of resistivity can be expressed as

	 a 5
1
r0

  
Dr

DT
	 (27.19)

where Dr 5 r 2 r0 is the change in resistivity in the temperature interval DT 5  
T 2 T0.
	 The temperature coefficients of resistivity for various materials are given in Table 
27.2. Notice that the unit for a is degrees Celsius21 [(°C)21]. Because resistance is 
proportional to resistivity (Eq. 27.10), the variation of resistance of a sample is

	 R 5 R 0[1 1 a(T 2 T0)]	 (27.20)

where R 0 is the resistance at temperature T0. Use of this property enables precise 
temperature measurements through careful monitoring of the resistance of a 
probe made from a particular material.
	 For some metals such as copper, resistivity is nearly proportional to temperature 
as shown in Figure 27.9. A nonlinear region always exists at very low temperatures, 
however, and the resistivity usually reaches some finite value as the temperature 
approaches absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal. 
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.
	 Notice that three of the a values in Table 27.2 are negative, indicating that the 
resistivity of these materials decreases with increasing temperature. This behavior is 
indicative of a class of materials called semiconductors, first introduced in Section 23.2, 
and is due to an increase in the density of charge carriers at higher temperatures.
	 Because the charge carriers in a semiconductor are often associated with impu-
rity atoms (as we discuss in more detail in Chapter 43), the resistivity of these mate-
rials is very sensitive to the type and concentration of such impurities.

Q	 uick Quiz 27.4 ​ When does an incandescent lightbulb carry more current,  
(a) immediately after it is turned on and the glow of the metal filament is increas-
ing or (b) after it has been on for a few milliseconds and the glow is steady?

WW �Variation of r with 
temperature

WW �Temperature coefficient  
of resistivity

27.5	 Superconductors
There is a class of metals and compounds whose resistance decreases to zero when 
they are below a certain temperature Tc , known as the critical temperature. These 
materials are known as superconductors. The resistance–temperature graph for a 
superconductor follows that of a normal metal at temperatures above Tc (Fig. 27.10). 
When the temperature is at or below Tc , the resistivity drops suddenly to zero. This 
phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh-Onnes 
(1853–1926) as he worked with mercury, which is a superconductor below 4.2 K. 
Measurements have shown that the resistivities of superconductors below their Tc 
values are less than 4 3 10225 V ? m, or approximately 1017 times smaller than the 
resistivity of copper. In practice, these resistivities are considered to be zero.
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	 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
	 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
	 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
	 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6	 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
	 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material	 Tc  (K)

HgBa2Ca2Cu3O8	 134
Tl—Ba—Ca—Cu—O	 125
Bi—Sr—Ca—Cu—O	 105
YBa2Cu3O7	 92
Nb3Ge	 23.2
Nb3Sn	 18.05
Nb	 9.46
Pb	 7.18
Hg	 4.15
Sn	 3.72
Al	 1.19
Zn	 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.
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The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11  A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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while the chemical potential energy in the battery decreases by the same amount. 
(Recall from Eq. 25.3 that DU 5 q DV.) As the charge moves from c to d through the 
resistor, however, the electric potential energy of the system decreases due to colli-
sions of electrons with atoms in the resistor. In this process, the electric potential 
energy is transformed to internal energy corresponding to increased vibrational 
motion of the atoms in the resistor. Because the resistance of the interconnect-
ing wires is neglected, no energy transformation occurs for paths bc and da. When 
the charge returns to point a, the net result is that some of the chemical potential 
energy in the battery has been delivered to the resistor and resides in the resistor as 
internal energy E int associated with molecular vibration.
	 The resistor is normally in contact with air, so its increased temperature results 
in a transfer of energy by heat Q into the air. In addition, the resistor emits thermal 
radiation TER, representing another means of escape for the energy. After some 
time interval has passed, the resistor reaches a constant temperature. At this time, 
the input of energy from the battery is balanced by the output of energy from the 
resistor by heat and radiation, and the resistor is a nonisolated system in steady 
state. Some electrical devices include heat sinks 4 connected to parts of the circuit 
to prevent these parts from reaching dangerously high temperatures. Heat sinks 
are pieces of metal with many fins. Because the metal’s high thermal conductivity 
provides a rapid transfer of energy by heat away from the hot component and the 
large number of fins provides a large surface area in contact with the air, energy 
can transfer by radiation and into the air by heat at a high rate.
	 Let’s now investigate the rate at which the electric potential energy of the system 
decreases as the charge Q passes through the resistor:

	
dU
dt

5
d
dt

 1Q DV 2 5
dQ

dt
 DV 5 I DV 	

where I is the current in the circuit. The system regains this potential energy when 
the charge passes through the battery, at the expense of chemical energy in the bat-
tery. The rate at which the potential energy of the system decreases as the charge 
passes through the resistor is equal to the rate at which the system gains inter-
nal energy in the resistor. Therefore, the power P, representing the rate at which 
energy is delivered to the resistor, is

	 P 5 I DV	 (27.21)

We derived this result by considering a battery delivering energy to a resistor. Equa-
tion 27.21, however, can be used to calculate the power delivered by a voltage source 
to any device carrying a current I and having a potential difference DV between its 
terminals.
	 Using Equation 27.21 and DV 5 IR for a resistor, we can express the power deliv-
ered to the resistor in the alternative forms

	 P 5 I 2R 5
1DV 22

R
	 (27.22)

When I is expressed in amperes, DV in volts, and R in ohms, the SI unit of power is 
the watt, as it was in Chapter 8 in our discussion of mechanical power. The process 
by which energy is transformed to internal energy in a conductor of resistance R is 
often called joule heating; 5 this transformation is also often referred to as an I 2R loss.

4This usage is another misuse of the word heat that is ingrained in our common language.
5It is commonly called joule heating even though the process of heat does not occur when energy delivered to a resistor 
appears as internal energy. It is another example of incorrect usage of the word heat that has become entrenched in 
our language.

Pitfall Prevention 27.5
Charges Do Not Move All the Way 
Around a Circuit in a Short Time   
In terms of understanding the 
energy transfer in a circuit, it is 
useful to imagine a charge mov-
ing all the way around the circuit 
even though it would take hours 
to do so.

Pitfall Prevention 27.6
Misconceptions About Current   
Several common misconceptions 
are associated with current in a 
circuit like that in Figure 27.11. 
One is that current comes out 
of one terminal of the battery 
and is then “used up” as it passes 
through the resistor, leaving 
current in only one part of the 
circuit. The current is actually 
the same everywhere in the circuit. 
A related misconception has the 
current coming out of the resis-
tor being smaller than that going 
in because some of the current 
is “used up.” Yet another miscon-
ception has current coming out 
of both terminals of the battery, 
in opposite directions, and then 
“clashing” in the resistor, deliver-
ing the energy in this manner. 
That is not the case; charges flow 
in the same rotational sense at all 
points in the circuit.

Pitfall Prevention 27.7
Energy Is Not “Dissipated”  In 
some books, you may see Equation 
27.22 described as the power “dissi-
pated in” a resistor, suggesting that 
energy disappears. Instead, we say 
energy is “delivered to” a resistor. 
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	 When transporting energy by electricity through power lines (Fig. 27.12), you 
should not assume the lines have zero resistance. Real power lines do indeed have 
resistance, and power is delivered to the resistance of these wires. Utility companies 
seek to minimize the energy transformed to internal energy in the lines and maxi-
mize the energy delivered to the consumer. Because P 5 I DV, the same amount of 
energy can be transported either at high currents and low potential differences or at 
low currents and high potential differences. Utility companies choose to transport 
energy at low currents and high potential differences primarily for economic rea-
sons. Copper wire is very expensive, so it is cheaper to use high-resistance wire (that 
is, wire having a small cross-sectional area; see Eq. 27.10). Therefore, in the expres-
sion for the power delivered to a resistor, P 5 I 2R , the resistance of the wire is fixed 
at a relatively high value for economic considerations. The I 2R loss can be reduced 
by keeping the current I as low as possible, which means transferring the energy 
at a high voltage. In some instances, power is transported at potential differences 
as great as 765 kV. At the destination of the energy, the potential difference is usu-
ally reduced to 4 kV by a device called a transformer. Another transformer drops the 
potential difference to 240 V for use in your home. Of course, each time the poten-
tial difference decreases, the current increases by the same factor and the power 
remains the same. We shall discuss transformers in greater detail in Chapter 33.

Q	 uick Quiz 27.5 ​ For the two lightbulbs shown in Figure 27.13, rank the current 
values at points a through f from greatest to least.

Example 27.4	     Power in an Electric Heater

An electric heater is constructed by applying a potential difference of 120 V across a Nichrome wire that has a total 
resistance of 8.00 V. Find the current carried by the wire and the power rating of the heater.

Conceptualize  ​As discussed in Example 27.2, Nichrome wire has high resistivity and is often used for heating elements 
in toasters, irons, and electric heaters. Therefore, we expect the power delivered to the wire to be relatively high.

Categorize  ​We evaluate the power from Equation 27.22, so we categorize this example as a substitution problem.

S o l u t i o n

Find the power rating using the expression P 5 I 2R 
from Equation 27.22:

P 5 I 2R 5 115.0 A 22 18.00 V 2 5 1.80 3 103 W 5  1.80 kW

Use Equation 27.7 to find the current in the wire: I 5
DV
R

5
120 V
8.00 V

5  15.0 A

What if the heater were accidentally connected to a 240-V supply? (That is difficult to do because the 
shape and orientation of the metal contacts in 240-V plugs are different from those in 120-V plugs.) How would that 
affect the current carried by the heater and the power rating of the heater, assuming the resistance remains constant?

Answer  ​If the applied potential difference were doubled, Equation 27.7 shows that the current would double. Accord-
ing to Equation 27.22, P 5 (DV)2/R , the power would be four times larger.

What If ?

V

30 W

60 W

�
a b

c d

e f

� �

Figure 27.13  ​(Quick Quiz 27.5) 
Two lightbulbs connected across 
the same potential difference.

Figure 27.12  ​These power lines 
transfer energy from the electric 
company to homes and businesses. 
The energy is transferred at a very 
high voltage, possibly hundreds of 
thousands of volts in some cases. 
Even though it makes power lines 
very dangerous, the high voltage 
results in less loss of energy due to 
resistance in the wires. Le
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Example 27.5	     Linking Electricity and Thermodynamics 

An immersion heater must increase the temperature of 1.50 kg of water from 10.0°C to 50.0°C in 10.0 min while oper-
ating at 110 V.

(A)  ​What is the required resistance of the heater?

Conceptualize  ​An immersion heater is a resistor that is inserted into a container of water. As energy is delivered to the 
immersion heater, raising its temperature, energy leaves the surface of the resistor by heat, going into the water. When 
the immersion heater reaches a constant temperature, the rate of energy delivered to the resistance by electrical trans-
mission (TET) is equal to the rate of energy delivered by heat (Q ) to the water.

Categorize  ​This example allows us to link our new understanding of power in electricity with our experience with 
specific heat in thermodynamics (Chapter 20). The water is a nonisolated system. Its internal energy is rising because 
of energy transferred into the water by heat from the resistor, so Equation 8.2 reduces to DE int 5 Q . In our model, we 
assume the energy that enters the water from the heater remains in the water.

Analyze  ​To simplify the analysis, let’s ignore the initial period during which the temperature of the resistor increases 
and also ignore any variation of resistance with temperature. Therefore, we imagine a constant rate of energy transfer 
for the entire 10.0 min.

AM

S o l u t i o n

Substitute the values given in the statement of the 
problem:

R 5
1110 V 22 1600 s 2

11.50 kg 2 14 186 J/kg # 8C 2 150.08C 2 10.08C 2 5  28.9 V

Use Equation 20.4, Q 5 mc DT, to relate the energy 
input by heat to the resulting temperature change  
of the water and solve for the resistance:

1DV 22

R
5

mc DT
Dt

   S   R 5
1DV 22 Dt
mc DT

Set the rate of energy delivered to the resistor equal 
to the rate of energy Q entering the water by heat:

P 5
1DV 22

R
5

Q

Dt

(B)  ​Estimate the cost of heating the water.

S o l u t i o n

Find the cost knowing that energy is purchased at 
an estimated price of 11. per kilowatt-hour:

Cost 5 (0.069 8 kWh)($0.11/kWh) 5 $0.008 5   0.8.

Multiply the power by the time interval to find the 
amount of energy transferred to the resistor:

TET 5 P Dt 5
1DV 22

R
 Dt 5

1110 V 22

28.9 V
110.0 min 2 a 1 h

60.0 min
b

5 69.8 Wh 5 0.069 8 kWh

Finalize  ​The cost to heat the water is very low, less than one cent. In reality, the cost is higher because some energy 
is transferred from the water into the surroundings by heat and electromagnetic radiation while its temperature is 
increasing. If you have electrical devices in your home with power ratings on them, use this power rating and an 
approximate time interval of use to estimate the cost for one use of the device.

Summary

  The electric current I in a conductor is defined as

	 I ;
dQ

dt
	 (27.2)

where dQ is the charge that passes through a cross sec-
tion of the conductor in a time interval dt. The SI unit 
of current is the ampere (A), where 1 A 5 1 C/s.

Definitions

continued
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  The current density J 
in a conductor is the cur-
rent per unit area:

	 J ;
I
A

	 (27.5)

  For a uniform block 
of material of cross-
sectional area A and 
length ,, the resistance 
over the length , is

	 R 5 r 
,

A
	 (27.10)

where r is the resistivity 
of the material.

  The resistance R of a conductor is defined as

	 R ;
DV
I

	 (27.7)

where DV is the potential difference across the conductor and I is the current it car-
ries. The SI unit of resistance is volts per ampere, which is defined to be 1 ohm (V); 
that is, 1 V 5 1 V/A.

  In a classical model of electrical conduction in metals, the electrons are treated as 
molecules of a gas. In the absence of an electric field, the average velocity of the elec-
trons is zero. When an electric field is applied, the electrons move (on average) with 
a drift velocity vSd that is opposite the electric field. The drift velocity is given by

	 vSd 5
q E

S

me
 t 	 (27.13)

where q is the electron’s charge, me is the mass of the electron, and t is the average 
time interval between electron–atom collisions. According to this model, the resistiv-
ity of the metal is

	 r 5
me

nq 2t
	 (27.16)

where n is the number of free electrons per unit volume.

Concepts and Principles

  The average current in a conductor 
is related to the motion of the charge 
carriers through the relationship

	 Iavg 5 nqvdA	 (27.4)

where n is the density of charge carri-
ers, q is the charge on each carrier, vd 
is the drift speed, and A is the cross-
sectional area of the conductor.

  The resistivity of a conductor 
varies approximately linearly with 
temperature according to the 
expression

	 r 5 r0[1 1 a(T 2 T0)]	 (27.18)

where r0 is the resistivity at some 
reference temperature T0 and a 
is the temperature coefficient of 
resistivity.

  The current density in an ohmic conductor is proportional to the 
electric field according to the expression

	 J 5 sE	 (27.6)

The proportionality constant s is called the conductivity of the material 
of which the conductor is made. The inverse of s is known as resistivity 
r (that is, r 5 1/s). Equation 27.6 is known as Ohm’s law, and a mate-
rial is said to obey this law if the ratio of its current density to its applied 
electric field is a constant that is independent of the applied field.

  If a potential difference DV is maintained across a circuit element, the 
power, or rate at which energy is supplied to the element, is

	 P 5 I  DV	 (27.21)

Because the potential difference across a resistor is given by DV 5 IR, we 
can express the power delivered to a resistor as

	 P 5 I 2R 5
1DV 22

R
	 (27.22)

The energy delivered to a resistor by electrical transmission TET appears in 
the form of internal energy E int in the resistor.

	 2.	 Two wires A and B with circular cross sections are 
made of the same metal and have equal lengths, but 
the resistance of wire A is three times greater than that 
of wire B. (i) What is the ratio of the cross-sectional 

	 1.	 Car batteries are often rated in ampere-hours. Does 
this information designate the amount of (a) current, 
(b) power, (c) energy, (d) charge, or (e) potential the 
battery can supply?

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	 8.	 A metal wire has a resistance of 10.0 V at a temperature 
of 20.0°C. If the same wire has a resistance of 10.6 V at 
90.0°C, what is the resistance of this wire when its tem-
perature is 220.0°C? (a) 0.700 V (b) 9.66 V (c) 10.3 V 
(d) 13.8 V (e) 6.59 V

	 9.	 The current-versus-voltage behavior of a certain elec-
trical device is shown in Figure OQ27.9. When the 
potential difference across the device is 2 V, what is its 
resistance? (a) 1 V (b) 34 V (c) 43 V (d) undefined (e) none  
of those answers

1

0

2

3

1
�V (V)

I (A)

2 3 4

Figure OQ27.9

	10.	 Two conductors made of the same material are con-
nected across the same potential difference. Conductor 
A has twice the diameter and twice the length of con-
ductor B. What is the ratio of the power delivered to A 
to the power delivered to B? (a) 8 (b) 4 (c) 2 (d) 1 (e) 12

	11.	 Two conducting wires A and B of the same length and 
radius are connected across the same potential differ-
ence. Conductor A has twice the resistivity of conduc-
tor B. What is the ratio of the power delivered to A to 
the power delivered to B? (a) 2 (b) !2 (c) 1 (d) 1/!2 
(e) 12

	12.	Two lightbulbs both operate on 120 V. One has a power 
of 25 W and the other 100 W. (i) Which lightbulb has 
higher resistance? (a) The dim 25-W lightbulb does. 
(b) The bright 100-W lightbulb does. (c) Both are 
the same. (ii)  Which lightbulb carries more current? 
Choose from the same possibilities as in part (i).

	13.	Wire B has twice the length and twice the radius of 
wire A. Both wires are made from the same material. If 
wire A has a resistance R, what is the resistance of wire 
B? (a) 4R (b) 2R (c) R (d) 12R (e) 14R

area of A to that of B? (a)  3 (b) !3 (c) 1 (d) 1/!3  
(e) 1

3 (ii) What is the ratio of the radius of A to that of 
B? Choose from the same possibilities as in part (i).

	 3.	 A cylindrical metal wire at room temperature is car-
rying electric current between its ends. One end is at 
potential VA 5 50 V, and the other end is at potential 
VB 5 0 V. Rank the following actions in terms of the 
change that each one separately would produce in 
the current from the greatest increase to the greatest 
decrease. In your ranking, note any cases of equality. 
(a) Make VA 5 150 V with VB 5 0 V. (b) Adjust VA to 
triple the power with which the wire converts electri-
cally transmitted energy into internal energy. (c) Dou-
ble the radius of the wire. (d) Double the length of the 
wire. (e) Double the Celsius temperature of the wire.

	 4.	 A current-carrying ohmic metal wire has a cross- 
sectional area that gradually becomes smaller from 
one end of the wire to the other. The current has the 
same value for each section of the wire, so charge does 
not accumulate at any one point. (i) How does the drift 
speed vary along the wire as the area becomes smaller? 
(a) It increases. (b)  It decreases. (c) It remains con-
stant. (ii) How does the resistance per unit length vary 
along the wire as the area becomes smaller? Choose 
from the same possibilities as in part (i).

	 5.	 A potential difference of 1.00 V is maintained across a 
10.0-V resistor for a period of 20.0 s. What total charge 
passes by a point in one of the wires connected to 
the resistor in this time interval? (a) 200 C (b) 20.0 C 
(c) 2.00 C (d) 0.005 00 C (e) 0.050 0 C

	 6.	 Three wires are made of copper having circular cross 
sections. Wire 1 has a length L and radius r. Wire 2 
has a length L and radius 2r. Wire 3 has a length 2L 
and radius 3r. Which wire has the smallest resistance?  
(a) wire 1 (b) wire 2 (c) wire 3 (d) All have the same 
resistance. (e)  Not enough information is given to 
answer the question.

	 7.	 A metal wire of resistance R is cut into three equal 
pieces that are then placed together side by side to 
form a new cable with a length equal to one-third 
the original length. What is the resistance of this new 
cable? (a) 19R (b) 13R (c) R (d) 3R (e) 9R

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 If you were to design an electric heater using Nichrome 
wire as the heating element, what parameters of the 
wire could you vary to meet a specific power output 
such as 1 000 W?

	 2.	 What factors affect the resistance of a conductor?

	 3.	 When the potential difference across a certain conduc-
tor is doubled, the current is observed to increase by a 
factor of 3. What can you conclude about the conductor?

	 4.	 Over the time interval after a difference in potential 
is applied between the ends of a wire, what would hap-
pen to the drift velocity of the electrons in a wire and 
to the current in the wire if the electrons could move 
freely without resistance through the wire?

	 5.	 How does the resistance for copper and for silicon 
change with temperature? Why are the behaviors of 
these two materials different?

	 6.	 Use the atomic theory of matter to explain why the 
resistance of a material should increase as its tempera-
ture increases.

	 7.	 If charges flow very slowly through a metal, why does it 
not require several hours for a light to come on when 
you throw a switch?

	 8.	 Newspaper articles often contain statements such as 
“10 000 volts of electricity surged through the victim’s 
body.’’ What is wrong with this statement?
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(b) Is the current at A2 larger, smaller, or the same?  
(c) Is the current density at A2 larger, smaller, or the 
same? Assume A2 5 4A1. Specify the (d) radius, (e) cur-
rent, and (f) current density at A2.

A1 A2

r1
r2

I

Figure P27.8

	 9.	 The quantity of charge q (in coulombs) that has passed 
through a surface of area 2.00 cm2 varies with time 
according to the equation q 5 4t 3 1 5t 1 6, where t 
is in seconds. (a) What is the instantaneous current 
through the surface at t 5 1.00 s? (b) What is the value 
of the current density?

	10.	A Van de Graaff generator produces a beam of  
2.00-MeV deuterons, which are heavy hydrogen nuclei 
containing a proton and a neutron. (a) If the beam 
current is 10.0 mA, what is the average separation of 
the deuterons? (b) Is the electrical force of repulsion 
among them a significant factor in beam stability? 
Explain.

	11.	 The electron beam emerging from a certain high-
energy electron accelerator has a circular cross section 
of radius 1.00 mm. (a) The beam current is 8.00 mA.  
Find the current density in the beam assuming it is 
uniform throughout. (b)  The speed of the electrons 
is so close to the speed of light that their speed can 
be taken as 300 Mm/s with negligible error. Find the 
electron density in the beam. (c) Over what time inter-
val does Avogadro’s number of electrons emerge from 
the accelerator?

	12.	An electric current in a conductor varies with time 
according to the expression I(t) 5 100 sin (120pt), 
where I  is in amperes and t is in seconds. What is the 
total charge passing a given point in the conductor 
from t 5 0 to t 5 1

240 s?

	13.	A teapot with a surface area of 700 cm2 is to be plated 
with silver. It is attached to the negative electrode of 
an electrolytic cell containing silver nitrate (Ag1NO3

2). 
The cell is powered by a 12.0-V battery and has a  

W
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Section 27.1 ​ Electric Current

	 1.	 A 200-km-long high-voltage transmission line 2.00 cm  
in diameter carries a steady current of 1 000 A. If 
the conductor is copper with a free charge density of  
8.50 3 1028 electrons per cubic meter, how many years 
does it take one electron to travel the full length of the 
cable?

	 2.	 A small sphere that carries a charge q is whirled in a 
circle at the end of an insulating string. The angular 
frequency of revolution is v. What average current 
does this revolving charge represent?

	 3.	 An aluminum wire having a cross-sectional area equal 
to 4.00 3 1026 m2 carries a current of 5.00 A. The den-
sity of aluminum is 2.70 g/cm3. Assume each alumi-
num atom supplies one conduction electron per atom. 
Find the drift speed of the electrons in the wire.

	 4.	 In the Bohr model of the hydrogen atom (which will 
be covered in detail in Chapter 42), an electron in the 
lowest energy state moves at a speed of 2.19 3 106 m/s 
in a circular path of radius 5.29 3 10211 m. What is the 
effective current associated with this orbiting electron?

	 5.	 A proton beam in an accelerator carries a current of 
125 mA. If the beam is incident on a target, how many 
protons strike the target in a period of 23.0 s?

	 6.	 A copper wire has a circular cross section with a radius 
of 1.25 mm. (a) If the wire carries a current of 3.70 A, 
find the drift speed of the electrons in this wire.  
(b) All other things being equal, what happens to the 
drift speed in wires made of metal having a larger 
number of conduction electrons per atom than cop-
per? Explain.

	 7.	 Suppose the current in a conductor decreases expo-
nentially with time according to the equation I(t) 5 
I0e2t/t, where I0 is the initial current (at t 5 0) and t 
is a constant having dimensions of time. Consider a 
fixed observation point within the conductor. (a) How 
much charge passes this point between t 5 0 and t 5 t?  
(b) How much charge passes this point between t 5 0 
and t 5 10t? (c) What If? How much charge passes this 
point between t 5 0 and t 5 `?

	 8.	 Figure P27.8 represents a section of a conductor of 
nonuniform diameter carrying a current of I 5 5.00 A.  
The radius of cross-section A1 is r1 5 0.400 cm. (a) What  
is the magnitude of the current density across A1? 
The radius r2 at A2 is larger than the radius r1 at A1.  
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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iron atoms using Avogadro’s number. (d) Obtain the 
number density of conduction electrons given that 
there are two conduction electrons per iron atom.  
(e) Calculate the drift speed of conduction electrons 
in this wire.

	25.	If the magnitude of the drift velocity of free electrons 
in a copper wire is 7.84 3 1024 m/s, what is the electric 
field in the conductor?

Section 27.4 ​ Resistance and Temperature

	26.	A certain lightbulb has a tungsten filament with a 
resistance of 19.0 V when at 20.0°C and 140 V when 
hot. Assume the resistivity of tungsten varies linearly 
with temperature even over the large temperature 
range involved here. Find the temperature of the hot 
filament.

	27.	What is the fractional change in the resistance of an 
iron filament when its temperature changes from 
25.0°C to 50.0°C?

	28.	While taking photographs in Death Valley on a day 
when the temperature is 58.0°C, Bill Hiker finds that 
a certain voltage applied to a copper wire produces 
a current of 1.00 A. Bill then travels to Antarctica 
and applies the same voltage to the same wire. What 
current does he register there if the temperature is 
288.0°C? Assume that no change occurs in the wire’s 
shape and size.

	29.	If a certain silver wire has a resistance of 6.00 V at 
20.0°C, what resistance will it have at 34.0°C?

	30.	Plethysmographs are devices used for measuring 
changes in the volume of internal organs or limbs. In 
one form of this device, a rubber capillary tube with 
an inside diameter of 1.00 mm is filled with mercury 
at 20.0°C. The resistance of the mercury is measured 
with the aid of electrodes sealed into the ends of the 
tube. If 100 cm of the tube is wound in a helix around 
a patient’s upper arm, the blood flow during a heart-
beat causes the arm to expand, stretching the length 
of the tube by 0.040 0 cm. From this observation and 
assuming cylindrical symmetry, you can find the 
change in volume of the arm, which gives an indica-
tion of blood flow. Taking the resistivity of mercury to 
be 9.58 3 1027 V ? m, calculate (a) the resistance of the 
mercury and (b) the fractional change in resistance 
during the heartbeat. Hint: The fraction by which the 
cross-sectional area of the mercury column decreases 
is the fraction by which the length increases because 
the volume of mercury is constant.

	31.	 (a) A 34.5-m length of copper wire at 20.0°C has a 
radius of 0.25 mm. If a potential difference of 9.00 V 
is applied across the length of the wire, determine the 
current in the wire. (b) If the wire is heated to 30.0°C 
while the 9.00-V potential difference is maintained, 
what is the resulting current in the wire?

	32.	An engineer needs a resistor with a zero overall tem-
perature coefficient of resistance at 20.0°C. She designs 
a pair of circular cylinders, one of carbon and one of 
Nichrome as shown in Figure P27.32 (page 828). The 
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resistance of 1.80 V. If the density of silver is 10.5 3  
103 kg/m3, over what time interval does a 0.133-mm 
layer of silver build up on the teapot?

Section 27.2 ​ Resistance

	14.	A lightbulb has a resistance of 240 V when operating 
with a potential difference of 120 V across it. What is 
the current in the lightbulb?

	15.	A wire 50.0 m long and 2.00 mm in diameter is con-
nected to a source with a potential difference of 9.11 V, 
and the current is found to be 36.0 A. Assume a tem-
perature of 20.0°C and, using Table 27.2, identify the 
metal out of which the wire is made.

	16.	A 0.900-V potential difference is maintained across 
a 1.50-m length of tungsten wire that has a cross- 
sectional area of 0.600 mm2. What is the current in the 
wire?

	17.	 An electric heater carries a current of 13.5 A when 
operating at a voltage of 120 V. What is the resistance 
of the heater?

	18.	Aluminum and copper wires of equal length are found 
to have the same resistance. What is the ratio of their 
radii?

	19.	Suppose you wish to fabricate a uniform wire from 
1.00 g of copper. If the wire is to have a resistance of 
R 5 0.500 V and all the copper is to be used, what must 
be (a) the length and (b) the diameter of this wire?

	20.	Suppose you wish to fabricate a uniform wire from a 
mass m of a metal with density rm and resistivity r. If 
the wire is to have a resistance of R and all the metal 
is to be used, what must be (a) the length and (b) the 
diameter of this wire?

	21.	 A portion of Nichrome wire of radius 2.50 mm is to be 
used in winding a heating coil. If the coil must draw 
a current of 9.25 A when a voltage of 120 V is applied 
across its ends, find (a) the required resistance of the 
coil and (b)  the length of wire you must use to wind 
the coil.

Section 27.3 ​ A Model for Electrical Conduction

	22.	If the current carried by a conductor is doubled, what 
happens to (a) the charge carrier density, (b) the cur-
rent density, (c) the electron drift velocity, and (d) the 
average time interval between collisions?

	23.	A current density of 6.00 3 10213 A/m2 exists in the 
atmosphere at a location where the electric field is 
100 V/m. Calculate the electrical conductivity of the 
Earth’s atmosphere in this region.

	24.	An iron wire has a cross-sectional area equal to 5.00 3 
1026 m2. Carry out the following steps to determine 
the drift speed of the conduction electrons in the wire 
if it carries a current of 30.0 A. (a) How many kilo-
grams are there in 1.00 mole of iron? (b) Starting with 
the density of iron and the result of part (a), compute 
the molar density of iron (the number of moles of iron 
per cubic meter). (c) Calculate the number density of 
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about 0.200 mA. How much power does the neuron 
release?

	41.	Suppose your portable DVD player draws a current 
of 350 mA at 6.00 V. How much power does the player 
require?

	42.	Review. A well-insulated electric water heater warms 
109  kg of water from 20.0°C to 49.0°C in 25.0 min. 
Find the resistance of its heating element, which is con-
nected across a 240-V potential difference.

	43.	A 100-W lightbulb connected to a 120-V source expe-
riences a voltage surge that produces 140 V for a 
moment. By what percentage does its power output 
increase? Assume its resistance does not change.

	44.	The cost of energy delivered to residences by electrical 
transmission varies from $0.070/kWh to $0.258/kWh 
throughout the United States; $0.110/kWh is the aver-
age value. At this average price, calculate the cost of 
(a) leaving a 40.0-W porch light on for two weeks while 
you are on vacation, (b) making a piece of dark toast in 
3.00 min with a 970-W toaster, and (c) drying a load of 
clothes in 40.0 min in a 5.20 3 103-W dryer.

	45.	Batteries are rated in terms of ampere-hours (A ? h). 
For example, a battery that can produce a current of 
2.00 A for 3.00 h is rated at 6.00 A ? h. (a) What is the 
total energy, in kilowatt-hours, stored in a 12.0-V battery 
rated at 55.0 A ? h? (b) At $0.110 per kilowatt-hour, what 
is the value of the electricity produced by this battery?

	46.	Residential building codes typically require the use 
of 12-gauge copper wire (diameter 0.205 cm) for wir-
ing receptacles. Such circuits carry currents as large as  
20.0 A. If a wire of smaller diameter (with a higher gauge 
number) carried that much current, the wire could rise 
to a high temperature and cause a fire. (a) Calculate 
the rate at which internal energy is produced in 1.00 m 
of 12-gauge copper wire carrying 20.0 A. (b) What If? 
Repeat the calculation for a 12-gauge aluminum wire. 
(c) Explain whether a 12-gauge aluminum wire would 
be as safe as a copper wire.

	47.	 Assuming the cost of energy from the electric company 
is $0.110/kWh, compute the cost per day of operating a 
lamp that draws a current of 1.70 A from a 110-V line.

	48.	An 11.0-W energy-efficient fluorescent lightbulb is 
designed to produce the same illumination as a con-
ventional 40.0-W incandescent lightbulb. Assuming a 
cost of $0.110/kWh for energy from the electric com-
pany, how much money does the user of the energy-
efficient bulb save during 100 h of use?

	49.	A coil of Nichrome wire is 25.0 m long. The wire has 
a diameter of 0.400 mm and is at 20.0°C. If it carries a 
current of 0.500 A, what are (a) the magnitude of the 
electric field in the wire and (b) the power delivered 
to it? (c) What If? If the temperature is increased to 
340°C and the potential difference across the wire 
remains constant, what is the power delivered?

	50.	Review. A rechargeable battery of mass 15.0 g deliv-
ers an average current of 18.0 mA to a portable DVD 
player at 1.60 V for 2.40 h before the battery must be 
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device must have an overall resistance of R 1 1 R 2 5 10.0 V  
independent of temperature and a uniform radius of  
r 5 1.50 mm. Ignore thermal expansion of the cylinders 
and assume both are always at the same temperature. 
(a) Can she meet the design goal with this method?  
(b) If so, state what you can determine about the lengths 
,1 and ,2 of each segment. If not, explain.

�1 �2

Figure P27.32

	33.	An aluminum wire with a diameter of 0.100 mm has a 
uniform electric field of 0.200 V/m imposed along its 
entire length. The temperature of the wire is 50.0°C. 
Assume one free electron per atom. (a) Use the infor-
mation in Table 27.2 to determine the resistivity of 
aluminum at this temperature. (b) What is the current 
density in the wire? (c) What is the total current in the 
wire? (d) What is the drift speed of the conduction 
electrons? (e) What potential difference must exist 
between the ends of a 2.00-m length of the wire to pro-
duce the stated electric field?

	34.	Review. An aluminum rod has a resistance of 1.23 V at 
20.0°C. Calculate the resistance of the rod at 120°C by 
accounting for the changes in both the resistivity and 
the dimensions of the rod. The coefficient of linear 
expansion for aluminum is 2.40 3 1026 (°C)21.

	35.	At what temperature will aluminum have a resistivity 
that is three times the resistivity copper has at room 
temperature?

Section 27.6 ​ Electrical Power

	36.	Assume that global lightning on the Earth constitutes 
a constant current of 1.00 kA between the ground and 
an atmospheric layer at potential 300 kV. (a) Find the 
power of terrestrial lightning. (b) For comparison, find 
the power of sunlight falling on the Earth. Sunlight 
has an intensity of 1 370 W/m2 above the atmosphere. 
Sunlight falls perpendicularly on the circular pro-
jected area that the Earth presents to the Sun.

	37.	 In a hydroelectric installation, a turbine delivers  
1 500 hp to a generator, which in turn transfers 80.0% 
of the mechanical energy out by electrical transmis-
sion. Under these conditions, what current does the 
generator deliver at a terminal potential difference of 
2 000 V?

	38.	A Van de Graaff generator (see Fig. 25.23) is operat-
ing so that the potential difference between the high-
potential electrode B and the charging needles at A 
is 15.0 kV. Calculate the power required to drive the 
belt against electrical forces at an instant when the 
effective current delivered to the high-potential elec-
trode is 500 mA.

	39.	A certain waffle iron is rated at 1.00 kW when con-
nected to a 120-V source. (a) What current does the 
waffle iron carry? (b) What is its resistance?

	40.	The potential difference across a resting neuron in the 
human body is about 75.0 mV and carries a current of 
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48 W of power when connected across a 20-V battery. 
What length of wire is required?

	58.	Determine the temperature at which the resistance 
of an aluminum wire will be twice its value at 20.0°C. 
Assume its coefficient of resistivity remains constant.

	59.	A car owner forgets to turn off the headlights of his 
car while it is parked in his garage. If the 12.0-V bat-
tery in his car is rated at 90.0 A ? h and each headlight 
requires 36.0 W of power, how long will it take the bat-
tery to completely discharge?

	60.	Lightbulb A is marked “25 W 120 V,” and lightbulb B 
is marked “100 W 120 V.” These labels mean that each 
lightbulb has its respective power delivered to it when 
it is connected to a constant 120-V source. (a) Find  
the resistance of each lightbulb. (b) During what time 
interval does 1.00 C pass into lightbulb A? (c) Is this 
charge different upon its exit versus its entry into the 
lightbulb? Explain. (d) In what time interval does  
1.00 J pass into lightbulb A? (e) By what mechanisms 
does this energy enter and exit the lightbulb? Explain. 
(f) Find the cost of running lightbulb A continuously 
for 30.0 days, assuming the electric company sells its 
product at $0.110 per kWh.

	61.	 One wire in a high-voltage transmission line carries  
1 000 A starting at 700 kV for a distance of 100 mi. If 
the resistance in the wire is 0.500 V/mi, what is the 
power loss due to the resistance of the wire?

	62.	An experiment is conducted to measure the electri-
cal resistivity of Nichrome in the form of wires with 
different lengths and cross-sectional areas. For one 
set of measurements, a student uses 30-gauge wire, 
which has a cross-sectional area of 7.30 3 1028 m2. 
The student measures the potential difference across 
the wire and the current in the wire with a voltme-
ter and an ammeter, respectively. (a) For each set of 
measurements given in the table taken on wires of 
three different lengths, calculate the resistance of the  
wires and the corresponding values of the resistiv-
ity. (b)  What is the average value of the resistivity? 
(c)  Explain how this value compares with the value 
given in Table 27.2.

L (m)	 DV (V)	 I (A)	 R (V)	 r (V ? m)

0.540	 5.22	 0.72
1.028	 5.82	 0.414
1.543	 5.94	 0.281

	63.	A charge Q is placed on a capacitor of capacitance C. 
The capacitor is connected into the circuit shown in 
Figure P27.63, with an open switch, a resistor, and an 
initially uncharged capacitor of capacitance 3C. The 

Q/C

W

Q/C

S

recharged. The recharger maintains a potential dif-
ference of 2.30 V across the battery and delivers a 
charging current of 13.5 mA for 4.20 h. (a) What is the 
efficiency of the battery as an energy storage device?  
(b) How much internal energy is produced in the bat-
tery during one charge–discharge cycle? (c) If the 
battery is surrounded by ideal thermal insulation and 
has an effective specific heat of 975 J/kg ? °C, by how 
much will its temperature increase during the cycle?

	51.	 A 500-W heating coil designed to operate from 110 V  
is made of Nichrome wire 0.500 mm in diameter.  
(a) Assuming the resistivity of the Nichrome remains 
constant at its 20.0°C value, find the length of wire 
used. (b) What If? Now consider the variation of resis-
tivity with temperature. What power is delivered to the 
coil of part (a) when it is warmed to 1 200°C?

	52.	Why is the following situation impossible? A politician is 
decrying wasteful uses of energy and decides to focus 
on energy used to operate plug-in electric clocks in 
the United States. He estimates there are 270 million 
of these clocks, approximately one clock for each per-
son in the population. The clocks transform energy 
taken in by electrical transmission at the average rate  
2.50 W. The politician gives a speech in which he com-
plains that, at today’s electrical rates, the nation is los-
ing $100 million every year to operate these clocks.

	53.	A certain toaster has a heating element made of 
Nichrome wire. When the toaster is first connected 
to a 120-V source (and the wire is at a temperature 
of 20.0°C), the initial current is 1.80 A. The current 
decreases as the heating element warms up. When the 
toaster reaches its final operating temperature, the cur-
rent is 1.53 A. (a) Find the power delivered to the toaster 
when it is at its operating temperature. (b) What is the 
final temperature of the heating element?

	54.	Make an order-of-magnitude estimate of the cost of 
one person’s routine use of a handheld hair dryer for 1 
year. If you do not use a hair dryer yourself, observe or 
interview someone who does. State the quantities you 
estimate and their values.

	55.	Review. The heating element of an electric coffee 
maker operates at 120 V and carries a current of 2.00 A.  
Assuming the water absorbs all the energy delivered to 
the resistor, calculate the time interval during which 
the temperature of 0.500 kg of water rises from room 
temperature (23.0°C) to the boiling point.

	56.	A 120-V motor has mechanical power output of 2.50 hp. 
It is 90.0% efficient in converting power that it takes in by 
electrical transmission into mechanical power. (a) Find  
the current in the motor. (b) Find the energy delivered 
to the motor by electrical transmission in 3.00 h of oper-
ation. (c) If the electric company charges $0.110/kWh, 
what does it cost to run the motor for 3.00 h?

Additional Problems

	57.	 A particular wire has a resistivity of 3.0 3 1028 V ? m 
and a cross-sectional area of 4.0 3 1026 m2. A length 
of this wire is to be used as a resistor that will receive 
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Figure P27.63
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	70.	The strain in a wire can be monitored and computed 
by measuring the resistance of the wire. Let Li rep-
resent the original length of the wire, Ai its original 
cross-sectional area, R i 5 rLi /Ai the original resis-
tance between its ends, and d 5 DL/Li 5 (L 2 Li)/Li  
the strain resulting from the application of tension. 
Assume the resistivity and the volume of the wire do 
not change as the wire stretches. (a) Show that the 
resistance between the ends of the wire under strain 
is given by R 5 R i(1 1 2d 1 d2). (b) If the assumptions 
are precisely true, is this result exact or approximate? 
Explain your answer.

	71.	An oceanographer is studying how the ion concen-
tration in seawater depends on depth. She makes a 
measurement by lowering into the water a pair of con-
centric metallic cylinders (Fig. P27.71) at the end of 
a cable and taking data to determine the resistance 
between these electrodes as a function of depth. The 
water between the two cylinders forms a cylindrical 
shell of inner radius ra , outer radius rb , and length L 
much larger than rb . The scientist applies a potential 
difference DV between the inner and outer surfaces, 
producing an outward radial current I. Let r represent 
the resistivity of the water. (a)  Find the resistance of 
the water between the cylinders in terms of L , r, ra , 
and rb . (b) Express the resistivity of the water in terms 
of the measured quantities L, ra , rb , DV, and I.

L

ra
rb

Figure P27.71

	72.	Why is the following situation impossible? An inquisitive 
physics student takes a 100-W incandescent lightbulb 
out of its socket and measures its resistance with an 
ohmmeter. He measures a value of 10.5 V. He is able to 
connect an ammeter to the lightbulb socket to cor-
rectly measure the current drawn by the bulb while 
operating. Inserting the bulb back into the socket and 
operating the bulb from a 120-V source, he measures 
the current to be 11.4 A.

	73.	The temperature coefficients of resistivity a in Table 
27.2 are based on a reference temperature T0 of 
20.0°C. Suppose the coefficients were given the symbol 
a9 and were based on a T0 of 0°C. What would the coef-
ficient a9 for silver be? Note: The coefficient a satisfies 
r 5 r0[1 1 a(T 2 T0)], where r0 is the resistivity of the 
material at T0 5 20.0°C. The coefficient a9 must satisfy 
the expression r 5 r90[1 1 a9T], where r90 is the resistiv-
ity of the material at 0°C.

	74.	A close analogy exists between the flow of energy by 
heat because of a temperature difference (see Sec-
tion 20.7) and the flow of electric charge because of a 

S
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S
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switch is then closed, and the circuit comes to equilib-
rium. In terms of Q and C, find (a) the final poten-
tial difference between the plates of each capacitor,  
(b) the charge on each capacitor, and (c) the final 
energy stored in each capacitor. (d) Find the internal 
energy appearing in the resistor.

	64.	Review. An office worker uses an immersion heater 
to warm 250 g of water in a light, covered, insulated 
cup from 20.0°C to 100°C in 4.00 min. The heater 
is a Nichrome resistance wire connected to a 120-V 
power supply. Assume the wire is at 100°C throughout 
the 4.00-min time interval. (a) Specify a relationship 
between a diameter and a length that the wire can 
have. (b) Can it be made from less than 0.500 cm3 of 
Nichrome?

	65.	An x-ray tube used for cancer therapy operates at  
4.00 MV with electrons constituting a beam current of 
25.0 mA striking a metal target. Nearly all the power 
in the beam is transferred to a stream of water flowing 
through holes drilled in the target. What rate of flow, 
in kilograms per second, is needed if the rise in tem-
perature of the water is not to exceed 50.0°C?

	66.	An all-electric car (not a hybrid) is designed to run 
from a bank of 12.0-V batteries with total energy stor-
age of 2.00 3 107 J. If the electric motor draws 8.00 kW 
as the car moves at a steady speed of 20.0 m/s, (a) what 
is the current delivered to the motor? (b) How far can 
the car travel before it is “out of juice”?

	67.	 A straight, cylindrical wire lying along the x axis has 
a length of 0.500 m and a diameter of 0.200 mm. It 
is made of a material described by Ohm’s law with a 
resistivity of r 5 4.00 3 1028 V ? m. Assume a poten-
tial of 4.00 V is maintained at the left end of the wire 
at x 5 0. Also assume V 5 0 at x 5 0.500 m. Find  
(a) the magnitude and direction of the electric field in 
the wire, (b) the resistance of the wire, (c) the magnitude 
and direction of the electric current in the wire, and  
(d) the current density in the wire. (e) Show that E 5 rJ.

	68.	A straight, cylindrical wire lying along the x axis has 
a length L and a diameter d. It is made of a material 
described by Ohm’s law with a resistivity r. Assume 
potential V is maintained at the left end of the wire at  
x 5 0. Also assume the potential is zero at x 5 L. In 
terms of L, d, V, r, and physical constants, derive 
expressions for (a) the magnitude and direction of the 
electric field in the wire, (b) the resistance of the wire, 
(c) the magnitude and direction of the electric current 
in the wire, and (d) the current density in the wire.  
(e) Show that E 5 rJ.

	69.	An electric utility company supplies a customer’s house 
from the main power lines (120 V) with two copper 
wires, each of which is 50.0 m long and has a resistance 
of 0.108 V per 300 m. (a) Find the potential difference 
at the customer’s house for a load current of 110 A. For 
this load current, find (b) the power delivered to the 
customer and (c)  the rate at which internal energy is 
produced in the copper wires.
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the left edge of the dielectric is at a distance x from the 
center of the capacitor. (b) If the dielectric is removed 
at a constant speed v, what is the current in the circuit 
as the dielectric is being withdrawn?

	78.	The dielectric material between the plates of a parallel- 
plate capacitor always has some nonzero conductiv-
ity s. Let A represent the area of each plate and d the 
distance between them. Let k represent the dielectric 
constant of the material. (a) Show that the resistance 
R and the capacitance C of the capacitor are related by

RC 5
kP0

s

		  (b) Find the resistance between the plates of a 14.0-nF 
capacitor with a fused quartz dielectric.

	79.	Gold is the most ductile of all metals. For example, one 
gram of gold can be drawn into a wire 2.40 km long. 
The density of gold is 19.3 3 103 kg/m3, and its resistiv-
ity is 2.44 3 1028 V ? m. What is the resistance of such a 
wire at 20.0°C?

	80.	The current–voltage characteristic curve for a semicon-
ductor diode as a function of temperature T is given by

I 5 I0(e e DV/kBT 2 1)

		  Here the first symbol e represents Euler’s number, 
the base of natural logarithms. The second e is the 
magnitude of the electron charge, the kB stands for 
Boltzmann’s constant, and T is the absolute tempera-
ture. (a) Set up a spreadsheet to calculate I and R 5 
DV/I for DV 5 0.400 V to 0.600 V in increments of  
0.005 V. Assume I0 5 1.00 nA. (b) Plot R versus DV for  
T 5 280 K, 300 K, and 320 K.

	81.	 The potential difference across the filament of a light-
bulb is maintained at a constant value while equilib-
rium temperature is being reached. The steady-state 
current in the bulb is only one-tenth of the current 
drawn by the bulb when it is first turned on. If the tem-
perature coefficient of resistivity for the bulb at 20.0°C 
is 0.004 50 (°C)21 and the resistance increases linearly 
with increasing temperature, what is the final operat-
ing temperature of the filament?

Challenge Problems

	82.	A more general definition of the temperature coeffi-
cient of resistivity is

a 5
1
r

 
dr

dT

		  where r is the resistivity at temperature T. (a) Assum-
ing a is constant, show that

r 5 r0e a(T 2 T0)

		  where r0 is the resistivity at temperature T0. (b) Using 
the series expansion e x < 1 1 x for x ,, 1, show that 
the resistivity is given approximately by the expression

r 5 r0[1 1 a(T 2 T0)]  for a(T 2 T0) ,, 1

	83.	A spherical shell with inner radius ra and outer radius 
rb is formed from a material of resistivity r. It carries 

S

S

potential difference. In a metal, energy dQ and electri-
cal charge dq are both transported by free electrons. 
Consequently, a good electrical conductor is usually a 
good thermal conductor as well. Consider a thin con-
ducting slab of thickness dx, area A, and electrical 
conductivity s, with a potential difference dV between 
opposite faces. (a) Show that the current I 5 dq/dt is 
given by the equation on the left:

	 Charge conduction	 Thermal conduction

	
dq

dt
5 sA `dV

dx
` 	 dQ

dt
5 kA `dT

dx
`

		  In the analogous thermal conduction equation on the 
right (Eq. 20.15), the rate dQ /dt of energy flow by heat 
(in SI units of joules per second) is due to a tempera-
ture gradient dT/dx in a material of thermal conductiv-
ity k. (b) State analogous rules relating the direction 
of the electric current to the change in potential and 
relating the direction of energy flow to the change in 
temperature.

	75.	Review. When a straight wire is warmed, its resistance is 
given by R 5 R0[1 1 a(T 2 T0)] according to Equation 
27.20, where a is the temperature coefficient of resistiv-
ity. This expression needs to be modified if we include 
the change in dimensions of the wire due to thermal 
expansion. For a copper wire of radius 0.100 0 mm and 
length 2.000 m, find its resistance at 100.0°C, includ-
ing the effects of both thermal expansion and tempera-
ture variation of resistivity. Assume the coefficients are 
known to four significant figures.

	76.	Review. When a straight wire is warmed, its resistance 
is given by R 5 R 0[1 1 a(T 2 T0)] according to Equa-
tion 27.20, where a is the temperature coefficient of 
resistivity. This expression needs to be modified if we 
include the change in dimensions of the wire due to 
thermal expansion. Find a more precise expression for 
the resistance, one that includes the effects of changes 
in the dimensions of the wire when it is warmed. Your 
final expression should be in terms of R 0, T, T0, the 
temperature coefficient of resistivity a, and the coef-
ficient of linear expansion a9.

	77.	 Review. A parallel-plate capacitor consists of square 
plates of edge length , that are separated by a dis-
tance d, where d ,, ,. A potential difference DV is 
maintained between the plates. A material of dielec-
tric constant k fills half the space between the plates. 
The dielectric slab is withdrawn from the capacitor as 
shown in Figure P27.77. (a) Find the capacitance when 
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	85.	A material of resistivity r is formed into the shape of a 
truncated cone of height h as shown in Figure P27.85. 
The bottom end has radius b, and the top end has 
radius a. Assume the current is distributed uniformly 
over any circular cross section of the cone so that the 
current density does not depend on radial position. 
(The current density does vary with position along the 
axis of the cone.) Show that the resistance between the 
two ends is

R 5
r

p
a h

ab
b

S
current radially, with uniform density in all directions. 
Show that its resistance is

R 5
r

4p
a 1

ra
2

1
rb
b

	84.	Material with uniform resistivity r is formed into a 
wedge as shown in Figure P27.84. Show that the resis-
tance between face A and face B of this wedge is

R 5 r 
L

w 1 y2 2 y12
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y2

y1
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Figure P27.85
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A technician repairs a connection 
on a circuit board from a computer. 
In our lives today, we use various 
items containing electric circuits, 
including many with circuit boards 
much smaller than the board shown 
in the photograph. These include 
handheld game players, cell phones, 
and digital cameras. In this chapter, 
we study simple types of circuits 
and learn how to analyze them. 
(Trombax/Shutterstock.com)

28.1	 Electromotive Force

28.2	 Resistors in Series  
and Parallel

28.3	 Kirchhoff’s Rules

28.4	 RC Circuits

28.5	 Household Wiring and 
Electrical Safety

c h a p t e r 

28

In this chapter, we analyze simple electric circuits that contain batteries, resistors, and 
capacitors in various combinations. Some circuits contain resistors that can be combined 
using simple rules. The analysis of more complicated circuits is simplified using Kirchhoff’s 
rules, which follow from the laws of conservation of energy and conservation of electric 
charge for isolated systems. Most of the circuits analyzed are assumed to be in steady state, 
which means that currents in the circuit are constant in magnitude and direction. A current 
that is constant in direction is called a direct current (DC). We will study alternating current 
(AC), in which the current changes direction periodically, in Chapter 33. Finally, we discuss 
electrical circuits in the home.

28.1	 Electromotive Force
In Section 27.6, we discussed a circuit in which a battery produces a current. We 
will generally use a battery as a source of energy for circuits in our discussion. 
Because the potential difference at the battery terminals is constant in a particular 
circuit, the current in the circuit is constant in magnitude and direction and is 
called direct current. A battery is called either a source of electromotive force or, more 
commonly, a source of emf. (The phrase electromotive force is an unfortunate historical 
term, describing not a force, but rather a potential difference in volts.) The emf e 
of a battery is the maximum possible voltage the battery can provide between its 
terminals. You can think of a source of emf as a “charge pump.” When an electric 
potential difference exists between two points, the source moves charges “uphill” 
from the lower potential to the higher.
	 We shall generally assume the connecting wires in a circuit have no resistance. 
The positive terminal of a battery is at a higher potential than the negative terminal.  

Direct-Current Circuits
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

	 DV 5 e 2 Ir 	 (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
	 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

	 e 5 IR 1 Ir 	 (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

	 I 5
e

R 1 r
	 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
	 Multiplying Equation 28.2 by the current I in the circuit gives

	 Ie = I 2R 1 I 2r	 (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q	 uick Quiz 28.1 ​ To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1  (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?   
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1	     Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.
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(A)  ​Find the current in the circuit and the terminal voltage of the battery.

Conceptualize  ​Study Figure 28.1a, which shows a circuit consistent with the problem statement. The battery delivers 
energy to the load resistor.

Categorize  ​This example involves simple calculations from this section, so we categorize it as a substitution problem.

S o l u t i o n

Use Equation 28.3 to find the current in the circuit: I 5
e

R 1 r
5

12.0 V
3.00 V 1 0.050 0 V

5 3.93 A

Use Equation 28.1 to find the terminal voltage: DV 5 e 2 Ir 5 12.0 V 2 13.93 A 2 10.050 0 V 2 5 11.8 V

To check this result, calculate the voltage across the load 
resistance R :

DV 5 IR 5 13.93 A 2 13.00 V 2 5 11.8 V

(B)  ​Calculate the power delivered to the load resistor, the power delivered to the internal resistance of the battery, 
and the power delivered by the battery.

S o l u t i o n

Use Equation 27.22 to find the power delivered to the 
load resistor:

PR 5 I 2R 5 (3.93 A)2(3.00 V) 5 46.3 W

Find the power delivered to the internal resistance: Pr 5 I 2r 5 (3.93 A)2(0.050 0 V) 5 0.772 W

Find the power delivered by the battery by adding these 
quantities:

P 5 PR 1 Pr 5 46.3 W 1 0.772 W 5 47.1 W

As a battery ages, its internal resistance increases. Suppose the internal resistance of this battery rises to 
2.00 V toward the end of its useful life. How does that alter the battery’s ability to deliver energy?

Answer  ​Let’s connect the same 3.00-V load resistor to the battery.

What If ?

Find the new current in the battery: I 5
e

R 1 r
5

12.0 V
3.00 V 1 2.00 V

5 2.40 A	

Find the new terminal voltage: DV 5 e 2 Ir 5 12.0 V 2 (2.40 A)(2.00 V) 5 7.2 V

Find the new powers delivered to the load resistor and 
internal resistance:

PR 5 I 2R 5 (2.40 A)2(3.00 V) 5 17.3 W

Pr 5 I 2r 5 (2.40 A)2(2.00 V) 5 11.5 W

In this situation, the terminal voltage is only 60% of the emf. Notice that 40% of the power from the battery is deliv-
ered to the internal resistance when r is 2.00 V. When r is 0.050 0 V as in part (B), this percentage is only 1.6%. Conse-
quently, even though the emf remains fixed, the increasing internal resistance of the battery significantly reduces the 
battery’s ability to deliver energy to an external load.

Example 28.2	     Matching the Load

Find the load resistance R for which the maximum power is delivered to the load resistance in Figure 28.1a.

Conceptualize  ​Think about varying the load resistance in Figure 28.1a and the effect on the power delivered to the 
load resistance. When R is large, there is very little current, so the power I 2R delivered to the load resistor is small. 

S o l u t i o n

continued

▸ 28.1 c o n t i n u e d
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Solve for R : R 5 r

Differentiate the power with respect to the load resis-
tance R and set the derivative equal to zero to maximize 
the power:

dP
dR

5
d

dR
c e2R
1R 1 r 22 d 5

d
dR

3e2R 1R 1 r 222 4 5 0

[e2(R 1 r)22] 1 [e2R(22)(R 1 r)23] 5 0

e2 1R 1 r 2
1R 1 r 23 2

2e2R
1R 1 r 23 5

e2 1r 2 R 2
1R 1 r 23 5 0

Analyze  ​Find the power delivered to the load resistance 
using Equation 27.22, with I given by Equation 28.3:

(1)   P 5 I 2R 5
e2R

1R 1 r 22

Finalize  ​To check this result, let’s plot P versus R as in Figure 28.2. The graph shows that P reaches a maximum value 
at R 5 r. Equation (1) shows that this maximum value is Pmax 5 e2/4r.

28.2	 Resistors in Series and Parallel
When two or more resistors are connected together as are the incandescent light-
bulbs in Figure 28.3a, they are said to be in a series combination. Figure 28.3b is 
the circuit diagram for the lightbulbs, shown as resistors, and the battery. What if 
you wanted to replace the series combination with a single resistor that would draw 
the same current from the battery? What would be its value? In a series connection, 
if an amount of charge Q exits resistor R1, charge Q must also enter the second 
resistor R 2. Otherwise, charge would accumulate on the wire between the resistors. 
Therefore, the same amount of charge passes through both resistors in a given time 
interval and the currents are the same in both resistors:

I 5 I1 5 I2

where I is the current leaving the battery, I1 is the current in resistor R1, and I2 is the 
current in resistor R 2.
	 The potential difference applied across the series combination of resistors divides 
between the resistors. In Figure 28.3b, because the voltage drop1 from a to b equals 
I1R1 and the voltage drop from b to c equals I2R 2, the voltage drop from a to c is

DV 5 DV1 1 DV2 5 I1R1 1 I2R 2

The potential difference across the battery is also applied to the equivalent resis-
tance R eq in Figure 28.3c:

DV 5 IR eq

1The term voltage drop is synonymous with a decrease in electric potential across a resistor. It is often used by individu-
als working with electric circuits.

When R is small, let's say R ,, r, the current is large and 
the power delivered to the internal resistance is I 2r .. 
I 2R. Therefore, the power delivered to the load resistor 
is small compared to that delivered to the internal resis-
tance. For some intermediate value of the resistance R, 
the power must maximize.

Categorize  ​We categorize this example as an analysis 
problem because we must undertake a procedure to maxi-
mize the power. The circuit is the same as that in Exam-
ple 28.1. The load resistance R in this case, however, is a 
variable.

	

▸ 28.2 c o n t i n u e d

r 2r 3r
R

Pmax

P

Figure 28.2  ​(Example 
28.2) Graph of the power 
P delivered by a battery to 
a load resistor of resistance 
R as a function of R.
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where the equivalent resistance has the same effect on the circuit as the series com-
bination because it results in the same current I in the battery. Combining these 
equations for DV gives

	 IR eq 5 I1R1 1 I2R 2    S    R eq 5 R1 1 R 2	 (28.5)

where we have canceled the currents I, I1, and I2 because they are all the same. We 
see that we can replace the two resistors in series with a single equivalent resistance 
whose value is the sum of the individual resistances.
	 The equivalent resistance of three or more resistors connected in series is

	 R eq 5 R1 1 R 2 1 R 3 1  ? ? ?	 (28.6)

This relationship indicates that the equivalent resistance of a series combination 
of resistors is the numerical sum of the individual resistances and is always greater 
than any individual resistance.
	 Looking back at Equation 28.3, we see that the denominator of the right-hand 
side is the simple algebraic sum of the external and internal resistances. That is 
consistent with the internal and external resistances being in series in Figure 28.1a.
	 If the filament of one lightbulb in Figure 28.3 were to fail, the circuit would no 
longer be complete (resulting in an open-circuit condition) and the second light-
bulb would also go out. This fact is a general feature of a series circuit: if one device 
in the series creates an open circuit, all devices are inoperative.

Q	 uick Quiz 28.2 ​ With the switch in the circuit of Figure 28.4a closed, there is no 
current in R2 because the current has an alternate zero-resistance path through 
the switch. There is current in R1, and this current is measured with the amme-
ter (a device for measuring current) at the bottom of the circuit. If the switch is 
opened (Fig. 28.4b), there is current in R2. What happens to the reading on the 
ammeter when the switch is opened? (a) The reading goes up. (b) The reading 
goes down. (c) The reading does not change.

WW �The equivalent resistance of a 
series combination of resistors

� �

�V1

I1 I2

�V2

�V1 �V2

�V

� � � �

a b c

��

R1 R2

V

I
I I

R1 R2

I

a b c ca

Req R1 R2 

V� �

A pictorial representation 
of two resistors connected 
in series to a battery

A circuit diagram showing 
the two resistors connected 
in series to a battery

A circuit diagram showing 
the equivalent resistance of 
the resistors in series

Figure 28.3  Two lightbulbs with resistances R1 and R2 connected in series. All three diagrams are equivalent.

Pitfall Prevention 28.2
Lightbulbs Don’t Burn  We will 
describe the end of the life of an 
incandescent lightbulb by saying 
the filament fails rather than by say-
ing the lightbulb “burns out.” The 
word burn suggests a combustion 
process, which is not what occurs 
in a lightbulb. The failure of a 
lightbulb results from the slow 
sublimation of tungsten from the 
very hot filament over the life of 
the lightbulb. The filament even-
tually becomes very thin because 
of this process. The mechanical 
stress from a sudden temperature 
increase when the lightbulb is 
turned on causes the thin fila-
ment to break.

Pitfall Prevention 28.3
Local and Global Changes  A local 
change in one part of a circuit 
may result in a global change 
throughout the circuit. For exam-
ple, if a single resistor is changed 
in a circuit containing several 
resistors and batteries, the cur-
rents in all resistors and batteries, 
the terminal voltages of all bat-
teries, and the voltages across all 
resistors may change as a result.

a

b

R1

R2

R1

R2

A

A

�

�

�

�

a

b

R1

R2

R1

R2

A

A

�

�

�

�
Figure 28.4  ​(Quick 
Quiz 28.2) What hap-
pens when the switch is 
opened?
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	 Now consider two resistors in a parallel combination as shown in Figure 28.5. 
As with the series combination, what is the value of the single resistor that could 
replace the combination and draw the same current from the battery? Notice that 
both resistors are connected directly across the terminals of the battery. Therefore, 
the potential differences across the resistors are the same:

DV 5 DV1 5 DV2

where DV is the terminal voltage of the battery.
	 When charges reach point a in Figure 28.5b, they split into two parts, with some 
going toward R1 and the rest going toward R 2. A junction is any such point in a 
circuit where a current can split. This split results in less current in each individual 
resistor than the current leaving the battery. Because electric charge is conserved, 
the current I that enters point a must equal the total current leaving that point:

	 I 5 I1 1 I2 5
DV1

R1
1

DV2

R2
	

where I1 is the current in R1 and I2 is the current in R 2.
	 The current in the equivalent resistance Req in Figure 28.5c is

	 I 5
DV
R eq

	

where the equivalent resistance has the same effect on the circuit as the two resis-
tors in parallel; that is, the equivalent resistance draws the same current I from the 
battery. Combining these equations for I , we see that the equivalent resistance of 
two resistors in parallel is given by

	
DV
R eq

5
DV1

R1
1

DV2

R2
   S   

1
R eq

5
1

R1
1

1
R2

	 (28.7)

where we have canceled DV, DV1, and DV2 because they are all the same.
	 An extension of this analysis to three or more resistors in parallel gives

	
1

R eq
5

1
R1

1
1

R2
1

1
R3

1 c 	 (28.8)

This expression shows that the inverse of the equivalent resistance of two or more 
resistors in a parallel combination is equal to the sum of the inverses of the indi-

�T he equivalent resistance 
of a parallel combination  

of resistors

Pitfall Prevention 28.4
Current Does Not Take the Path  
of Least Resistance  You may have 
heard the phrase “current takes the 
path of least resistance” (or similar 
wording) in reference to a parallel 
combination of current paths such 
that there are two or more paths 
for the current to take. Such word-
ing is incorrect. The current takes 
all paths. Those paths with lower 
resistance have larger currents, 
but even very high resistance paths 
carry some of the current. In theory, 
if current has a choice between a 
zero-resistance path and a finite 
resistance path, all the current 
takes the path of zero resistance; a 
path with zero resistance, however, 
is an idealization.

I
b

R1

R2

V

a

I

R1

R2

Req  
    R1    R2

1 1 1

� V�

� �

�V1

�V2

�V

I1

I2

I1

I2 I
I

a b c

A pictorial representation 
of two resistors connected 
in parallel to a battery

� � � �

��

A circuit diagram showing 
the two resistors connected 
in parallel to a battery

A circuit diagram showing 
the equivalent resistance of 
the resistors in parallel

Figure 28.5  Two lightbulbs 
with resistances R1 and R2 con-
nected in parallel. All three 
diagrams are equivalent.
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vidual resistances. Furthermore, the equivalent resistance is always less than the 
smallest resistance in the group.
	 Household circuits are always wired such that the appliances are connected in 
parallel. Each device operates independently of the others so that if one is switched 
off, the others remain on. In addition, in this type of connection, all the devices 
operate on the same voltage.
	 Let’s consider two examples of practical applications of series and parallel cir-
cuits. Figure 28.6 illustrates how a three-way incandescent lightbulb is constructed 
to provide three levels of light intensity.2 The socket of the lamp is equipped with 
a three-way switch for selecting different light intensities. The lightbulb contains 
two filaments. When the lamp is connected to a 120-V source, one filament receives  
100 W of power and the other receives 75 W. The three light intensities are made 
possible by applying the 120 V to one filament alone, to the other filament alone, 
or to the two filaments in parallel. When switch S1 is closed and switch S2 is opened, 
current exists only in the 75-W filament. When switch S1 is open and switch S2 is 
closed, current exists only in the 100-W filament. When both switches are closed, 
current exists in both filaments and the total power is 175 W.
	 If the filaments were connected in series and one of them were to break, no 
charges could pass through the lightbulb and it would not glow, regardless of the 
switch position. If, however, the filaments were connected in parallel and one of 
them (for example, the 75-W filament) were to break, the lightbulb would continue 
to glow in two of the switch positions because current exists in the other (100-W) 
filament.
	 As a second example, consider strings of incandescent lights that are used for 
many ornamental purposes such as decorating Christmas trees. Over the years, 
both parallel and series connections have been used for strings of lights. Because 
series-wired lightbulbs operate with less energy per bulb and at a lower tempera-
ture, they are safer than parallel-wired lightbulbs for indoor Christmas-tree use. 
If, however, the filament of a single lightbulb in a series-wired string were to fail 
(or if the lightbulb were removed from its socket), all the lights on the string would 
go out. The popularity of series-wired light strings diminished because trouble-
shooting a failed lightbulb is a tedious, time-consuming chore that involves trial-
and-error substitution of a good lightbulb in each socket along the string until the 
defective one is found.
	 In a parallel-wired string, each lightbulb operates at 120 V. By design, the light-
bulbs are brighter and hotter than those on a series-wired string. As a result, they 
are inherently more dangerous (more likely to start a fire, for instance), but if one 
lightbulb in a parallel-wired string fails or is removed, the rest of the lightbulbs con-
tinue to glow.
	 To prevent the failure of one lightbulb from causing the entire string to go out, 
a new design was developed for so-called miniature lights wired in series. When 
the filament breaks in one of these miniature lightbulbs, the break in the filament 
represents the largest resistance in the series, much larger than that of the intact 
filaments. As a result, most of the applied 120 V appears across the lightbulb with 
the broken filament. Inside the lightbulb, a small jumper loop covered by an insu-
lating material is wrapped around the filament leads. When the filament fails and 
120 V appears across the lightbulb, an arc burns the insulation on the jumper and 
connects the filament leads. This connection now completes the circuit through 
the lightbulb even though its filament is no longer active (Fig. 28.7, page 840).
	 When a lightbulb fails, the resistance across its terminals is reduced to almost 
zero because of the alternate jumper connection mentioned in the preceding para-
graph. All the other lightbulbs not only stay on, but they glow more brightly because 

2The three-way lightbulb and other household devices actually operate on alternating current (AC), to be intro-
duced in Chapter 33.

120 V

S2

S1

100-W filament

75-W filament

Figure 28.6  ​A three-way incan-
descent lightbulb.
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the total resistance of the string is reduced and consequently the current in each 
remaining lightbulb increases. Each lightbulb operates at a slightly higher tempera-
ture than before. As more lightbulbs fail, the current keeps rising, the filament 
of each remaining lightbulb operates at a higher temperature, and the lifetime of 
the lightbulb is reduced. For this reason, you should check for failed (nonglow-
ing) lightbulbs in such a series-wired string and replace them as soon as possible, 
thereby maximizing the lifetimes of all the lightbulbs.

Q	 uick Quiz 28.3  ​With the switch in the circuit of Figure 28.8a open, there is 
no current in R2. There is current in R1, however, and it is measured with the 
ammeter at the right side of the circuit. If the switch is closed (Fig. 28.8b), there 
is current in R2. What happens to the reading on the ammeter when the switch 
is closed? (a) The reading increases. (b) The reading decreases. (c) The reading 
does not change.

Q	 uick Quiz 28.4 ​ Consider the following choices: (a) increases, (b) decreases,  
(c) remains the same. From these choices, choose the best answer for the fol-
lowing situations. (i) In Figure 28.3, a third resistor is added in series with the 
first two. What happens to the current in the battery? (ii) What happens to the 
terminal voltage of the battery? (iii) In Figure 28.5, a third resistor is added in 
parallel with the first two. What happens to the current in the battery? (iv) What 
happens to the terminal voltage of the battery?
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When the 
filament breaks, 
charges flow in 
the jumper 
connection.
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When the 
filament is 
intact, charges 
flow in the 
filament.
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Figure 28.7  ​(a) Schematic dia-
gram of a modern “miniature” 
incandescent holiday lightbulb, 
with a jumper connection to pro-
vide a current path if the filament 
breaks. (b) A holiday lightbulb 
with a broken filament. (c) A 
Christmas-tree lightbulb.

R1

R2

R1

R2

A

A

��

��

a

b

Figure 28.8  ​(Quick Quiz 28.3) 
What happens when the switch is 
closed?

Conceptual Example 28.3	     Landscape Lights

A homeowner wishes to install low-voltage landscape lighting in his back yard. To save money, he purchases inexpen-
sive 18-gauge cable, which has a relatively high resistance per unit length. This cable consists of two side-by-side wires 
separated by insulation, like the cord on an appliance. He runs a 200-foot length of this cable from the power supply 
to the farthest point at which he plans to position a light fixture. He attaches light fixtures across the two wires on the 
cable at 10-foot intervals so that the light fixtures are in parallel. Because of the cable’s resistance, the brightness of 
the lightbulbs in the fixtures is not as desired. Which of the following problems does the homeowner have? (a) All the 
lightbulbs glow equally less brightly than they would if lower-resistance cable had been used. (b) The brightness of the 
lightbulbs decreases as you move farther from the power supply.
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A circuit diagram for the system appears in Figure 28.9. 
The horizontal resistors with letter subscripts (such as 
RA) represent the resistance of the wires in the cable 
between the light fixtures, and the vertical resistors with 
number subscripts (such as R1) represent the resistance 
of the light fixtures themselves. Part of the terminal 
voltage of the power supply is dropped across resistors 
RA and RB . Therefore, the voltage across light fixture R1 
is less than the terminal voltage. There is a further volt-
age drop across resistors RC and RD. Consequently, the 
voltage across light fixture R 2 is smaller than that across 
R1. This pattern continues down the line of light fixtures, so the correct choice is (b). Each successive light fixture has 
a smaller voltage across it and glows less brightly than the one before.

S o l u t i o n

RA RC

R2R1

RB RD

Power
supply

�

�

Resistance of the 
light fixtures

Resistance in the 
wires of the cable

Figure 28.9  ​(Conceptual Example 28.3) The circuit diagram for 
a set of landscape light fixtures connected in parallel across the 
two wires of a two-wire cable.

Example 28.4	     Find the Equivalent Resistance

Four resistors are connected as shown in Figure 28.10a.

(A)  ​Find the equivalent resistance between points a and c.

Conceptualize  ​Imagine charges flowing into and through 
this combination from the left. All charges must pass from a 
to b through the first two resistors, but the charges split at b 
into two different paths when encountering the combination 
of the 6.0-V and the 3.0-V resistors.

Categorize  ​Because of the simple nature of the combina-
tion of resistors in Figure 28.10, we categorize this example 
as one for which we can use the rules for series and parallel 
combinations of resistors.

Analyze  ​The combination of resistors can be reduced in steps as shown in Figure 28.10.

S o l u t i o n

6.0 �

3.0 �

c
b

I1

I2

4.0 �8.0 �

a

c

2.0 �12.0 �

ba

14.0 �

ca

I

b

c

a

Figure 28.10  (Exam-
ple 28.4) The original 
network of resistors 
is reduced to a single 
equivalent resistance.

The circuit of equivalent resistances now looks like Fig-
ure 28.10b. The 12.0-V and 2.0-V resistors are in series 
(green circles). Find the equivalent resistance from a to c :

Req 5 12.0 V 1 2.0 V 5 14.0 V

Find the equivalent resistance between b and c of the 
6.0-V and 3.0-V resistors, which are in parallel (right-
hand red-brown circles):

1
R eq

5
1

6.0 V
1

1
3.0 V

5
3

6.0 V
 	

 R eq 5
6.0 V

3
5 2.0 V 	

Find the equivalent resistance between a and b of the 
8.0-V and 4.0-V resistors, which are in series (left-hand 
red-brown circles):

R eq 5 8.0 V 1 4.0 V 5 12.0 V

This resistance is that of the single equivalent resistor in Figure 28.10c.

(B)  ​What is the current in each resistor if a potential difference of 42 V is maintained between a and c?

	

▸ 28.3 c o n t i n u e d

continued



842	C hapter 28  Direct-Current Circuits

Find I 2: I2 5 2I1 5 2(1.0 A) 5 2.0 A

Use I1 1 I2 5 3.0 A to find I1: I1 1 I2 5 3.0 A   S   I1 1 2I1 5 3.0 A   S   I1 5 1.0 A

Set the voltages across the resistors in parallel in Figure 
28.10a equal to find a relationship between the currents:

DV1 5 DV2   S   (6.0 V)I1 5 (3.0 V)I2   S   I2 5 2I1

Use Equation 27.7 (R 5 DV/I) and the result from part 
(A) to find the current in the 8.0-V and 4.0-V resistors:

I 5
DVac

R eq
5

42 V
14.0 V

5 3.0 A 	

Finalize  ​As a final check of our results, note that DVbc 5 (6.0 V)I 1 5 (3.0 V)I 2 5 6.0 V and DVab 5 (12.0 V)I 5 36 V; 
therefore, DVac 5 DVab 1 DVbc 5 42 V, as it must.

Example 28.5	     Three Resistors in Parallel

Three resistors are connected in parallel as shown in 
Figure 28.11a. A potential difference of 18.0 V is main-
tained between points a and b.

(A)  ​Calculate the equivalent resistance of the circuit.

Conceptualize  ​Figure 28.11a shows that we are dealing 
with a simple parallel combination of three resistors. 
Notice that the current I splits into three currents I1, I2, 
and I3 in the three resistors.

Categorize  ​This problem can be solved with rules 
developed in this section, so we categorize it as a sub-
stitution problem. Because the three resistors are connected in parallel, we can use the rule for resistors in parallel, 
Equation 28.8, to evaluate the equivalent resistance.

S o l u t i o n

I1 I2 I3

I
a

b

18.0 V 3.00 � 6.00 � 9.00 �

I1 I2 I3

a

b

3.00 � 6.00 � 9.00 �18.0 V

I

a b

Figure 28.11  (Example 28.5) (a) Three resistors connected in 
parallel. The voltage across each resistor is 18.0 V. (b) Another cir-
cuit with three resistors and a battery. Is it equivalent to the circuit 
in (a)?

Use Equation 28.8 to find R eq:
1

R eq
5

1
3.00 V

1
1

6.00 V
1

1
9.00 V

5
11

18.0 V
	

R eq 5
18.0 V

11
5 1.64 V 	

(B)  ​Find the current in each resistor.

S o l u t i o n

The potential difference across each resistor is 18.0 V. 
Apply the relationship DV 5 IR to find the currents:

I1 5
DV
R 1

5
18.0 V
3.00 V

5 6.00 A

I2 5
DV
R 2

5
18.0 V
6.00 V

5 3.00 A

I3 5
DV
R 3

5
18.0 V
9.00 V

5 2.00 A

(C)  ​Calculate the power delivered to each resistor and the total power delivered to the combination of resistors.

	

▸ 28.4 c o n t i n u e d

The currents in the 8.0-V and 4.0-V resistors are the same because they are in series. In addition, they carry the same 
current that would exist in the 14.0-V equivalent resistor subject to the 42-V potential difference.

S o l u t i o n
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28.3	 Kirchhoff’s Rules
As we saw in the preceding section, combinations of resistors can be simplified and 
analyzed using the expression DV 5 IR and the rules for series and parallel com-
binations of resistors. Very often, however, it is not possible to reduce a circuit to a 
single loop using these rules. The procedure for analyzing more complex circuits is 
made possible by using the following two principles, called Kirchhoff’s rules.

1.	� Junction rule. At any junction, the sum of the currents must equal zero:

	 a
junction

 I 5 0 	 (28.9)

2.	� Loop rule. The sum of the potential differences across all elements around 
any closed circuit loop must be zero:

	 a
closed loop

 DV 5 0 	 (28.10)

	 Kirchhoff’s first rule is a statement of conservation of electric charge. All charges 
that enter a given point in a circuit must leave that point because charge cannot 
build up or disappear at a point. Currents directed into the junction are entered 
into the sum in the junction rule as 1I, whereas currents directed out of a junction 
are entered as 2I. Applying this rule to the junction in Figure 28.12a gives

I1 2 I2 2 I3 5 0

Figure 28.12b represents a mechanical analog of this situation, in which water flows 
through a branched pipe having no leaks. Because water does not build up any-
where in the pipe, the flow rate into the pipe on the left equals the total flow rate 
out of the two branches on the right.
	 Kirchhoff’s second rule follows from the law of conservation of energy for an 
isolated system. Let’s imagine moving a charge around a closed loop of a circuit. 
When the charge returns to the starting point, the charge–circuit system must 
have the same total energy as it had before the charge was moved. The sum of the 
increases in energy as the charge passes through some circuit elements must equal 
the sum of the decreases in energy as it passes through other elements. The poten-
tial energy of the system decreases whenever the charge moves through a potential 
drop 2IR across a resistor or whenever it moves in the reverse direction through a 

Apply the relationship P 5 I 2R to each resistor using the 
currents calculated in part (B):

3.00-V: P1 5 I1
2R1 5 (6.00 A)2(3.00 V) 5 108 W

6.00-V: P2 5 I2
2R 2 5 (3.00 A)2(6.00 V) 5 54 W

9.00-V: P3 5 I3
2R 3 5 (2.00 A)2(9.00 V) 5 36 W

These results show that the smallest resistor receives the most power. Summing the three quantities gives a total power 
of  198 W.  We could have calculated this final result from part (A) by considering the equivalent resistance as follows:  
P 5 (DV )2/Req 5 (18.0 V)2/1.64 V 5 198 W.

​What if the circuit were as shown in Figure 28.11b instead of as in Figure 28.11a? How would that affect 
the calculation?

Answer  ​There would be no effect on the calculation. The physical placement of the battery is not important. Only 
the electrical arrangement is important. In Figure 28.11b, the battery still maintains a potential difference of 18.0 V 
between points a and b, so the two circuits in the figure are electrically identical.

What If ?

S o l u t i o n

I1

I2

I3

Flow in

Flow out

a

b

The amount of charge flowing 
out of the branches on the right 
must equal the amount flowing 
into the single branch on the left.

The amount of water flowing out 
of the branches on the right must 
equal the amount flowing into 
the single branch on the left.

Figure 28.12  (a) Kirchhoff’s 
junction rule. (b) A mechanical 
analog of the junction rule.

	

▸ 28.5 c o n t i n u e d
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source of emf. The potential energy increases whenever the charge passes through 
a battery from the negative terminal to the positive terminal.
	 When applying Kirchhoff’s second rule, imagine traveling around the loop 
and consider changes in electric potential rather than the changes in potential energy 
described in the preceding paragraph. Imagine traveling through the circuit ele-
ments in Figure 28.13 toward the right. The following sign conventions apply when 
using the second rule:

•	Charges move from the high-potential end of a resistor toward the low-
potential end, so if a resistor is traversed in the direction of the current, the 
potential difference DV across the resistor is 2IR (Fig. 28.13a).

•	 If a resistor is traversed in the direction opposite the current, the potential dif-
ference DV across the resistor is 1IR (Fig. 28.13b).

•	 If a source of emf (assumed to have zero internal resistance) is traversed in 
the direction of the emf (from negative to positive), the potential difference 
DV is 1e (Fig. 28.13c).

•	 If a source of emf (assumed to have zero internal resistance) is traversed in 
the direction opposite the emf (from positive to negative), the potential dif-
ference DV is 2e (Fig. 28.13d).

	 There are limits on the number of times you can usefully apply Kirchhoff’s rules 
in analyzing a circuit. You can use the junction rule as often as you need as long 
as you include in it a current that has not been used in a preceding junction-rule 
equation. In general, the number of times you can use the junction rule is one 
fewer than the number of junction points in the circuit. You can apply the loop rule 
as often as needed as long as a new circuit element (resistor or battery) or a new 
current appears in each new equation. In general, to solve a particular circuit prob-
lem, the number of independent equations you need to obtain from the two rules 
equals the number of unknown currents.
	 Complex networks containing many loops and junctions generate a great 
number of independent linear equations and a correspondingly great number of 
unknowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer software can also be used to solve for the unknowns.
	 The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is 
assumed the circuits have reached steady-state conditions; in other words, the cur-
rents in the various branches are constant. Any capacitor acts as an open branch in 
a circuit; that is, the current in the branch containing the capacitor is zero under 
steady-state conditions.

I

I

a b

a b

a b

a b

� �

� �

�V � �IR

�V � �e

�V � �IR

�V � �e

e

e

b

c

d

a

In each diagram, �V � Vb � Va 
and the circuit element is 
traversed from a to b, left to right.

Figure 28.13  ​Rules for determin-
ing the signs of the potential differ-
ences across a resistor and a battery. 
(The battery is assumed to have no 
internal resistance.) 

Gustav Kirchhoff
German Physicist (1824–1887)
Kirchhoff, a professor at Heidelberg, 
and Robert Bunsen invented the spec-
troscope and founded the science  
of spectroscopy, which we shall study 
in Chapter 42. They discovered the 
elements cesium and rubidium and 
invented astronomical spectroscopy.
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Problem-Solving Strategy	    Kirchhoff’s Rules

The following procedure is recommended for solving problems that involve circuits 
that cannot be reduced by the rules for combining resistors in series or parallel.

1.	 Conceptualize. Study the circuit diagram and make sure you recognize all ele-
ments in the circuit. Identify the polarity of each battery and try to imagine the 
directions in which the current would exist in the batteries.

2.	Categorize. Determine whether the circuit can be reduced by means of combin-
ing series and parallel resistors. If so, use the techniques of Section 28.2. If not, apply 
Kirchhoff’s rules according to the Analyze step below.

3.	Analyze. Assign labels to all known quantities and symbols to all unknown quanti-
ties. You must assign directions to the currents in each part of the circuit. Although 
the assignment of current directions is arbitrary, you must adhere rigorously to the 
directions you assign when you apply Kirchhoff’s rules.
	 Apply the junction rule (Kirchhoff’s first rule) to all junctions in the circuit 
except one. Now apply the loop rule (Kirchhoff’s second rule) to as many loops in 
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Example 28.6	     A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries as shown in Figure 28.14. 
(Neglect the internal resistances of the batteries.) Find the current in the circuit.

Conceptualize  ​Figure 28.14 shows the polarities of the batteries and a guess at the 
direction of the current. The 12-V battery is the stronger of the two, so the current 
should be counterclockwise. Therefore, we expect our guess for the direction of the 
current to be wrong, but we will continue and see how this incorrect guess is repre-
sented by our final answer.

Categorize  ​We do not need Kirchhoff’s rules to analyze this simple circuit, but let’s 
use them anyway simply to see how they are applied. There are no junctions in this 
single-loop circuit; therefore, the current is the same in all elements.

Analyze  ​Let’s assume the current is clockwise as shown in Figure 28.14. Traversing the circuit in the clockwise direc-
tion, starting at a, we see that a S b represents a potential difference of 1e1, b S c represents a potential difference of 
2IR1, c S d represents a potential difference of 2e2, and d S a represents a potential difference of 2IR 2.

S o l u t i o n

I

c

a b

d
� �

� �

e1 � 6.0 V

R1 � 8.0 �R2 � 10 �

e2 � 12 V

Figure 28.14  (Example 28.6) 
A series circuit containing two 
batteries and two resistors, 
where the polarities of the bat-
teries are in opposition.

Solve for I and use the values given in Figure 28.14: (1)   I 5
e1 2 e2

R 1 1 R 2
5

6.0 V 2 12 V
8.0 V 1 10 V

5 20.33 A

Apply Kirchhoff’s loop rule to the single loop in the 
circuit:

o DV 5 0   S   e1 2 IR1 2 e2 2 IR 2 5 0

Finalize  ​The negative sign for I indicates that the direction of the current is opposite the assumed direction. The 
emfs in the numerator subtract because the batteries in Figure 28.14 have opposite polarities. The resistances in the 
denominator add because the two resistors are in series.

What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?

Answer  ​Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify it 
accordingly. Because the polarities of the two batteries are now in the same direction, the signs of e1 and e2 are the 
same and Equation (1) becomes

I 5
e1 1 e2

R 1 1 R 2
5

6.0 V 1 12 V
8.0 V 1 10 V

5 1.0 A

What If ?

Example 28.7	     A Multiloop Circuit

Find the currents I 1, I 2, and I 3 in the circuit shown in Figure 28.15 on page 846.

the circuit as are needed to obtain, in combination with the equations from the junc-
tion rule, as many equations as there are unknowns. To apply this rule, you must 
choose a direction in which to travel around the loop (either clockwise or counter-
clockwise) and correctly identify the change in potential as you cross each element. 
Be careful with signs!
	 Solve the equations simultaneously for the unknown quantities.

4.	Finalize. Check your numerical answers for consistency. Do not be alarmed if any 
of the resulting currents have a negative value. That only means you have guessed the 
direction of that current incorrectly, but its magnitude will be correct.

	

continued

▸ Problem-Solving Strategy c o n t i n u e d
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Conceptualize  ​Imagine physically rearranging the circuit 
while keeping it electrically the same. Can you rearrange it 
so that it consists of simple series or parallel combinations 
of resistors? You should find that you cannot. (If the 10.0-V 
battery were removed and replaced by a wire from b to the 
6.0-V resistor, the circuit would consist of only series and 
parallel combinations.)

Categorize  ​We cannot simplify the circuit by the rules 
associated with combining resistances in series and in par-
allel. Therefore, this problem is one in which we must use 
Kirchhoff’s rules.

Analyze  ​We arbitrarily choose the directions of the currents as labeled in Figure 28.15.

S o l u t i o n

Figure 28.15  (Example 
28.7) A circuit containing 
different branches.

14.0 V

e

b

4.0 �

10.0 V
6.0 �

f

I2

c

I3

I1

2.0 �
da

� �

� �

Use Equation (1) to find I3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, 
and I3. There are three loops in the circuit: abcda, befcb, 
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third equation would 
give no new information.) Let’s choose to traverse these 
loops in the clockwise direction. Apply Kirchhoff’s loop 
rule to loops abcda and befcb:

abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0

befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

(4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term 
in Equation (4) by 3:

(5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0

(6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and 
find I2:

266.0 V 2 (22.0 V)I2 5 0

I2 5 23.0 A

Use this value of I2 in Equation (3) to find I1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

I1 5 2.0 A

Finalize  ​Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in 
Figure 28.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue to 
use these negative values in subsequent calculations because our equations were established with our original choice 
of direction. What would have happened had we left the current directions as labeled in Figure 28.15 but traversed the 
loops in the opposite direction?

28.4	 RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

	

▸ 28.7 c o n t i n u e d
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Charging a Capacitor
Figure 28.16 shows a simple series RC circuit. Let’s assume the capacitor in this cir-
cuit is initially uncharged. There is no current while the switch is open (Fig. 28.16a). 
If the switch is thrown to position a at t 5 0 (Fig. 28.16b), however, charge begins to 
flow, setting up a current in the circuit, and the capacitor begins to charge.3 Notice 
that during charging, charges do not jump across the capacitor plates because the 
gap between the plates represents an open circuit. Instead, charge is transferred 
between each plate and its connecting wires due to the electric field established in 
the wires by the battery until the capacitor is fully charged. As the plates are being 
charged, the potential difference across the capacitor increases. The value of the 
maximum charge on the plates depends on the voltage of the battery. Once the 
maximum charge is reached, the current in the circuit is zero because the potential 
difference across the capacitor matches that supplied by the battery.
	 To analyze this circuit quantitatively, let’s apply Kirchhoff’s loop rule to the cir-
cuit after the switch is thrown to position a. Traversing the loop in Figure 28.16b 
clockwise gives

	 e 2
q

C
2 iR 5 0 	 (28.11)

where q/C is the potential difference across the capacitor and iR is the potential 
difference across the resistor. We have used the sign conventions discussed earlier 
for the signs on e and iR. The capacitor is traversed in the direction from the posi-
tive plate to the negative plate, which represents a decrease in potential. Therefore, 
we use a negative sign for this potential difference in Equation 28.11. Note that  
lowercase q and i are instantaneous values that depend on time (as opposed to 
steady-state values) as the capacitor is being charged.
	 We can use Equation 28.11 to find the initial current Ii in the circuit and the 
maximum charge Q max on the capacitor. At the instant the switch is thrown to posi-
tion a (t 5 0), the charge on the capacitor is zero. Equation 28.11 shows that the 
initial current Ii in the circuit is a maximum and is given by

	 Ii 5
e
R
 1current at t 5 0 2 	 (28.12)

At this time, the potential difference from the battery terminals appears entirely 
across the resistor. Later, when the capacitor is charged to its maximum value Q max, 
charges cease to flow, the current in the circuit is zero, and the potential difference 
from the battery terminals appears entirely across the capacitor. Substituting i 5 0 
into Equation 28.11 gives the maximum charge on the capacitor:

	 Q max 5 Ce   (maximum charge)	 (28.13)

	 To determine analytical expressions for the time dependence of the charge and 
current, we must solve Equation 28.11, a single equation containing two variables q 
and i. The current in all parts of the series circuit must be the same. Therefore, the 
current in the resistance R must be the same as the current between each capacitor 
plate and the wire connected to it. This current is equal to the time rate of change 
of the charge on the capacitor plates. Therefore, we substitute i 5 dq/dt into Equa-
tion 28.11 and rearrange the equation:

	
dq

dt
5

e
R

2
q

RC
	

To find an expression for q, we solve this separable differential equation as follows. 
First combine the terms on the right-hand side:

	
dq

dt
5

Ce
RC

2
q

RC
5 2

q 2 Ce
RC

	

3In previous discussions of capacitors, we assumed a steady-state situation, in which no current was present in any 
branch of the circuit containing a capacitor. Now we are considering the case before the steady-state condition is real-
ized; in this situation, charges are moving and a current exists in the wires connected to the capacitor.

R

C

b

a

e

Ri

C

b

a

e

Ri

C

b

a

� �

� �

e
� �

� �

� �

When the switch is thrown 
to position a, the capacitor 
begins to charge up. 

When the switch is thrown 
to position b, the capacitor 
discharges.

a

b

c

Figure 28.16  A capacitor in 
series with a resistor, switch, and 
battery.
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Multiply this equation by dt and divide by q 2 Ce:

	
dq

q 2 Ce 5 2
1

RC
 dt	

Integrate this expression, using q 5 0 at t 5 0:

	 3
q

0
 

dq

q 2 Ce 5 2
1

RC
 3

t

0
 dt	

	 ln a q 2 Ce
2Ce  b 5 2

t
RC

 	

From the definition of the natural logarithm, we can write this expression as

	 q(t) 5 Ce(1 2 e2t/RC) 5 Q max(1 2 e2t/RC)	 (28.14)

where e is the base of the natural logarithm and we have made the substitution 
from Equation 28.13.
	 We can find an expression for the charging current by differentiating Equation 
28.14 with respect to time. Using i 5 dq/dt, we find that

	 i 1 t 2 5
e
R

 e2t/RC 	 (28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure 28.17. 
Notice that the charge is zero at t 5 0 and approaches the maximum value Ce as  
t S .̀ The current has its maximum value Ii 5 e/R at t 5 0 and decays exponen-
tially to zero as t S .̀ The quantity RC, which appears in the exponents of Equa-
tions 28.14 and 28.15, is called the time constant t of the circuit:

	 t 5 RC	 (28.16)

The time constant represents the time interval during which the current decreases 
to 1/e of its initial value; that is, after a time interval t, the current decreases to i 5 
e21Ii 5 0.368Ii. After a time interval 2t, the current decreases to i 5 e22Ii 5 0.135Ii , 
and so forth. Likewise, in a time interval t, the charge increases from zero to  
Ce[1 2 e21] 5 0.632Ce.

�Charge as a function of time 
for a capacitor being 

charged

�Current as a function of time 
for a capacitor being 

charged

q

� t

C

0.632C

=RC�

e

e

i

�
t

0.368Ii

Ii
Ii  =

R
e

The charge approaches 
its maximum value Ce 
as t approaches infinity.

The current has its maximum
value Ii � e/R  at t � 0 and 
decays to zero exponentially 
as t approaches infinity.

After a time interval equal to 
one time constant t has passed, 
the charge is 63.2% of the 
maximum value Ce.

After a time interval equal 
to one time constant t has 
passed, the current is 36.8% 
of its initial value.

a b

Figure 28.17  (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16b. (b) Plot 
of current versus time for the circuit shown in Figure 28.16b.
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	 The following dimensional analysis shows that t has units of time:

	 3t 4 5 3RC 4 5 c aDV
I
b a Q

DV
b d 5 c Q

Q /Dt
d 5 3Dt 4 5 T 	

Because t 5 RC has units of time, the combination t/RC is dimensionless, as it must 
be to be an exponent of e in Equations 28.14 and 28.15.
	 The energy supplied by the battery during the time interval required to fully 
charge the capacitor is Q maxe 5 Ce2. After the capacitor is fully charged, the 
energy stored in the capacitor is 12Q maxe 5 12Ce2, which is only half the energy out-
put of the battery. It is left as a problem (Problem 68) to show that the remaining 
half of the energy supplied by the battery appears as internal energy in the resistor.

Discharging a Capacitor
Imagine that the capacitor in Figure 28.16b is completely charged. An initial poten-
tial difference Q i/C exists across the capacitor, and there is zero potential differ-
ence across the resistor because i 5 0. If the switch is now thrown to position b at  
t 5 0 (Fig. 28.16c), the capacitor begins to discharge through the resistor. At some 
time t during the discharge, the current in the circuit is i and the charge on the 
capacitor is q. The circuit in Figure 28.16c is the same as the circuit in Figure 28.16b 
except for the absence of the battery. Therefore, we eliminate the emf e from Equa-
tion 28.11 to obtain the appropriate loop equation for the circuit in Figure 28.16c:

	 2
q

C
2 iR 5 0 	 (28.17)

When we substitute i 5 dq/dt into this expression, it becomes

	 2R 
dq

dt
5

q

C
	

	
dq
q

5 2
1

RC
 dt 	

Integrating this expression using q 5 Q i  at t 5 0 gives

	 3
q

Q i

 
dq
q

5 2
1

RC
 3

t

0
 dt	

	 ln a q

Q i
b 5 2

t
RC

	

	 q 1t 2 5 Q ie
2t/RC 	 (28.18)

Differentiating Equation 28.18 with respect to time gives the instantaneous current 
as a function of time:

	 i 1t 2 5 2
Q i

RC
 e2t/RC 	 (28.19)

where Q i /RC 5 Ii is the initial current. The negative sign indicates that as the 
capacitor discharges, the current direction is opposite its direction when the capaci-
tor was being charged. (Compare the current directions in Figs. 28.16b and 28.16c.) 
Both the charge on the capacitor and the current decay exponentially at a rate 
characterized by the time constant t 5 RC.

Q	 uick Quiz 28.5 ​ Consider the circuit in Figure 28.18 and assume the battery has 
no internal resistance. (i) Just after the switch is closed, what is the current in the 
battery? (a) 0 (b) e/2R (c) 2e/R (d) e/R (e) impossible to determine (ii) After a 
very long time, what is the current in the battery? Choose from the same choices.

WW �Charge as a function of time 
for a discharging capacitor

WW �Current as a function of time 
for a discharging capacitor

C

RR
e

�

�

Figure 28.18  ​(Quick Quiz 28.5) 
How does the current vary after 
the switch is closed?
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Example 28.9	     Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in series to a battery as shown in Figure 28.16, where e 5 12.0 V, 
C 5 5.00 mF, and R 5 8.00 3 105 V. The switch is thrown to position a. Find the time constant of the circuit, the maxi-
mum charge on the capacitor, the maximum current in the circuit, and the charge and current as functions of time.

Conceptualize  ​Study Figure 28.16 and imagine throwing the switch to position a as shown in Figure 28.16b. Upon 
doing so, the capacitor begins to charge.

Categorize  ​We evaluate our results using equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u t i o n

Evaluate the time constant of the circuit from 
Equation 28.16:

t 5 RC 5 (8.00 3 105 V)(5.00 3 1026 F) 5 4.00 s

Evaluate the maximum charge on the capacitor from 
Equation 28.13:

Q max 5 Ce 5 (5.00 mF)(12.0 V) 5 60.0 mC

Evaluate the maximum current in the circuit from Equa-
tion 28.12:

Ii 5
e
R

5
12.0 V

8.00 3 105 V
5 15.0 mA 	

Use these values in Equations 28.14 and 28.15 to find the 
charge and current as functions of time:

(1)   q 1t 2 5 60.0 11 2 e2t/4.00 2
(2)   i 1t 2 5 15.0e2t/4.00

Example 28.10	     Discharging a Capacitor in an RC Circuit

Consider a capacitor of capacitance C that is being discharged through a resistor of resistance R as shown in Figure 
28.16c.

(A)  ​After how many time constants is the charge on the capacitor one-fourth its initial value?

Conceptualize  ​Study Figure 28.16 and imagine throwing the switch to position b as shown in Figure 28.16c. Upon 
doing so, the capacitor begins to discharge.

Categorize  ​We categorize the example as one involving a discharging capacitor and use the appropriate equations.

S o l u t i o n

In Equations (1) and (2), q is in microcoulombs, i is in microamperes, and t is in seconds.

Conceptual Example 28.8	     Intermittent Windshield Wipers

Many automobiles are equipped with windshield wipers that can operate intermittently during a light rainfall.  
How does the operation of such wipers depend on the charging and discharging of a capacitor?

The wipers are part of an RC circuit whose time constant can be varied by selecting different values of R through a mul-
tiposition switch. As the voltage across the capacitor increases, the capacitor reaches a point at which it discharges and 
triggers the wipers. The circuit then begins another charging cycle. The time interval between the individual sweeps 
of the wipers is determined by the value of the time constant.

S o l u t i o n
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Example 28.11	     Energy Delivered to a Resistor 

A 5.00-mF capacitor is charged to a potential difference of 800 V and then discharged through a resistor. How much 
energy is delivered to the resistor in the time interval required to fully discharge the capacitor?

Conceptualize  ​In Example 28.10, we considered the energy decrease in a discharging capacitor to a value of one-
fourth the initial energy. In this example, the capacitor fully discharges.

Categorize  ​We solve this example using two approaches. The first approach is to model the circuit as an isolated sys-
tem for energy. Because energy in an isolated system is conserved, the initial electric potential energy UE stored in the 

AM

S o l u t i o n

Analyze  ​Substitute q(t) 5 Q i/4 into Equation 28.18:
Q i

4
5 Q ie

2t/RC 

1
4 5 e2t/RC

Take the logarithm of both sides of the equation and 
solve for t :

2ln 4 5 2
t

RC
	

t 5 RC ln 4 5 1.39RC 5 1.39t

Use Equations 26.11 and 28.18 to express the energy 
stored in the capacitor at any time t :

(1)   U 1t 2 5
q 2

2C
5

Q i
2

2C
 e22t/RC

Substitute U 1t 2 5 1
4 1Q i

2/2C 2  into Equation (1): 1
4 

Q i
2

2C
5

Q i
2

2C
 e22t/RC 	

1
4 5 e22t/RC 	

Take the logarithm of both sides of the equation and 
solve for t :

2ln 4 5 2
2t

RC
	

t 5 1
2RC ln 4 5 0.693RC 5 0.693t

(B)  ​The energy stored in the capacitor decreases with time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?

S o l u t i o n

Finalize  ​Notice that because the energy depends on the square of the charge, the energy in the capacitor drops more 
rapidly than the charge on the capacitor.

​What if you want to describe the circuit in terms of the time interval required for the charge to fall to 
one-half its original value rather than by the time constant t? That would give a parameter for the circuit called its half-
life t1/2. How is the half-life related to the time constant?

Answer  ​In one half-life, the charge falls from Q i  to Q i/2. Therefore, from Equation 28.18,

Q i

2
5 Q ie

2t1/2/RC   S   12 5 e2t1/2/RC

which leads to

t1/2 5 0.693t

The concept of half-life will be important to us when we study nuclear decay in Chapter 44. The radioactive decay of 
an unstable sample behaves in a mathematically similar manner to a discharging capacitor in an RC circuit.

What If ?

	

▸ 28.10 c o n t i n u e d

continued
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capacitor is transformed into internal energy E int 5 ER in the resistor. The second approach is to model the resistor 
as a nonisolated system for energy. Energy enters the resistor by electrical transmission from the capacitor, causing an 
increase in the resistor’s internal energy.

Analyze  ​We begin with the isolated system approach.

Substitute numerical values: ER 5 1
2 15.00 3 1026 F 2 1800 V 22 5 1.60 J

Use Equation 26.11 for the electric potential energy in 
the capacitor:

ER 5 1
2Ce2 	

Substitute the initial and final values of the energies: (0 2 UE) 1 (E int 2 0) 5 0   S   ER 5 UE

Write the appropriate reduction of the conservation of 
energy equation, Equation 8.2:

DU 1 DE int 5 0

The second approach, which is more difficult but perhaps more instructive, is to note that as the capacitor discharges 
through the resistor, the rate at which energy is delivered to the resistor by electrical transmission is i 2R, where i is the 
instantaneous current given by Equation 28.19.

Substitute the value of the integral, which is 
RC/2 (see Problem 44):

ER 5
e2

R
aRC

2
b 5 1

2Ce2

Substitute for the current from Equation 28.19: ER 5 3
`

0
a2 Q i

RC
 e2t/RCb

2

 R dt 5
Q i

2

RC 2 3
`

0
 e22t/RC dt 5

e2

R
 3

`

0
 e22t/RC dt 	

Substitute for the power delivered to the 
resistor:

ER 5 3
`

0
i 2R dt 	

Evaluate the energy delivered to the resistor by 
integrating the power over all time because it 
takes an infinite time interval for the capacitor 
to completely discharge:

P 5
dE
dt

   S   ER 5 3
`

0
P dt	

Finalize  ​This result agrees with that obtained using the isolated system approach, as it must. We can use this second 
approach to find the total energy delivered to the resistor at any time after the switch is closed by simply replacing the 
upper limit in the integral with that specific value of t.

28.5	 Household Wiring and Electrical Safety
Many considerations are important in the design of an electrical system of a home 
that will provide adequate electrical service for the occupants while maximizing 
their safety. We discuss some aspects of a home electrical system in this section.

Household Wiring
Household circuits represent a practical application of some of the ideas presented 
in this chapter. In our world of electrical appliances, it is useful to understand the 
power requirements and limitations of conventional electrical systems and the 
safety measures that prevent accidents.
	 In a conventional installation, the utility company distributes electric power to 
individual homes by means of a pair of wires, with each home connected in paral-

	

▸ 28.11 c o n t i n u e d
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lel to these wires. One wire is called the live wire4 as illustrated in Figure 28.19, and 
the other is called the neutral wire. The neutral wire is grounded; that is, its electric 
potential is taken to be zero. The potential difference between the live and neutral 
wires is approximately 120 V. This voltage alternates in time, and the potential of 
the live wire oscillates relative to ground. Much of what we have learned so far for 
the constant-emf situation (direct current) can also be applied to the alternating 
current that power companies supply to businesses and households. (Alternating 
voltage and current are discussed in Chapter 33.)
	 To record a household’s energy consumption, a meter is connected in series with 
the live wire entering the house. After the meter, the wire splits so that there are 
several separate circuits in parallel distributed throughout the house. Each circuit 
contains a circuit breaker (or, in older installations, a fuse). A circuit breaker is a 
special switch that opens if the current exceeds the rated value for the circuit breaker. 
The wire and circuit breaker for each circuit are carefully selected to meet the cur-
rent requirements for that circuit. If a circuit is to carry currents as large as 30 A, a 
heavy wire and an appropriate circuit breaker must be selected to handle this cur-
rent. A circuit used to power only lamps and small appliances often requires only 
20 A. Each circuit has its own circuit breaker to provide protection for that part of 
the entire electrical system of the house.
	 As an example, consider a circuit in which a toaster oven, a microwave oven, 
and a coffee maker are connected (corresponding to R1, R 2, and R3 in Fig. 28.19). 
We can calculate the current in each appliance by using the expression P 5 I DV. 
The toaster oven, rated at 1 000 W, draws a current of 1 000 W/120 V 5 8.33 A. 
The microwave oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated 
at 800 W, draws 6.67 A. When the three appliances are operated simultaneously, 
they draw a total current of 25.8 A. Therefore, the circuit must be wired to handle 
at least this much current. If the rating of the circuit breaker protecting the circuit 
is too small—say, 20 A—the breaker will be tripped when the third appliance is 
turned on, preventing all three appliances from operating. To avoid this situation, 
the toaster oven and coffee maker can be operated on one 20-A circuit and the 
microwave oven on a separate 20-A circuit.
	 Many heavy-duty appliances such as electric ranges and clothes dryers require 
240 V for their operation. The power company supplies this voltage by provid-
ing a third wire that is 120 V below ground potential (Fig. 28.20). The poten-
tial difference between this live wire and the other live wire (which is 120 V 
above ground potential) is 240 V. An appliance that operates from a 240-V line 
requires half as much current compared with operating it at 120 V; therefore, 
smaller wires can be used in the higher-voltage circuit without overheating.

Electrical Safety
When the live wire of an electrical outlet is connected directly to ground, the circuit 
is completed and a short-circuit condition exists. A short circuit occurs when almost 
zero resistance exists between two points at different potentials, and the result is 
a very large current. When that happens accidentally, a properly operating circuit 
breaker opens the circuit and no damage is done. A person in contact with ground, 
however, can be electrocuted by touching the live wire of a frayed cord or other 
exposed conductor. An exceptionally effective (and dangerous!) ground contact is 
made when the person either touches a water pipe (normally at ground potential) or 
stands on the ground with wet feet. The latter situation represents effective ground 
contact because normal, nondistilled water is a conductor due to the large number 
of ions associated with impurities. This situation should be avoided at all cost.

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Electrical
meter

R3

W

The electrical meter measures 
the power in watts.

Figure 28.19  Wiring diagram 
for a household circuit. The 
resistances represent appliances 
or other electrical devices that 
operate with an applied voltage 
of 120 V.

�120 V �120 V 

b

Figure 28.20  (a) An outlet for 
connection to a 240-V supply.  
(b) The connections for each of 
the openings in a 240-V outlet.
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4Live wire is a common expression for a conductor whose electric potential is above or below ground potential.
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	 Electric shock can result in fatal burns or can cause the muscles of vital organs 
such as the heart to malfunction. The degree of damage to the body depends 
on the magnitude of the current, the length of time it acts, the part of the body 
touched by the live wire, and the part of the body in which the current exists. Cur-
rents of 5 mA or less cause a sensation of shock, but ordinarily do little or no dam-
age. If the current is larger than about 10 mA, the muscles contract and the person 
may be unable to release the live wire. If the body carries a current of about 100 
mA for only a few seconds, the result can be fatal. Such a large current paralyzes 
the respiratory muscles and prevents breathing. In some cases, currents of approxi-
mately 1 A can produce serious (and sometimes fatal) burns. In practice, no con-
tact with live wires is regarded as safe whenever the voltage is greater than 24 V.
	 Many 120-V outlets are designed to accept a three-pronged power cord. (This 
feature is required in all new electrical installations.) One of these prongs is the 
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally 
at 0 V, which carries current to ground. Figure 28.21a shows a connection to an 
electric drill with only these two wires. If the live wire accidentally makes contact 
with the casing of the electric drill (which can occur if the wire insulation wears 
off), current can be carried to ground by way of the person, resulting in an electric 
shock. The third wire in a three-pronged power cord, the round prong, is a safety 
ground wire that normally carries no current. It is both grounded and connected 
directly to the casing of the appliance. If the live wire is accidentally shorted to the 
casing in this situation, most of the current takes the low-resistance path through 
the appliance to ground as shown in Figure 28.21b.
	 Special power outlets called ground-fault circuit interrupters, or GFCIs, are used 
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of 
homes. These devices are designed to protect persons from electric shock by sens-
ing small currents (, 5 mA) leaking to ground. (The principle of their operation 

In the situation shown, the live wire has come into contact 
with the drill case. As a result, the person holding the drill acts 
as a current path to ground and receives an electric shock.

In this situation, the drill case remains at ground 
potential and no current exists in the person.

“Ouch!”

Motor

“Hot”

Circuit
breaker 120 V 

“Neutral”

Ground

I

I

Wall
outlet

Motor

“Hot”

Circuit
breaker

120 V 

“Neutral”

Ground

“Ground”

I

I

3-wire
outlet

I

I

I

a

b

Figure 28.21  (a) A diagram 
of the circuit for an electric drill 
with only two connecting wires. 
The normal current path is  
from the live wire through the 
motor connections and back to 
ground through the neutral wire. 
(b) This shock can be avoided 
by connecting the drill case to 
ground through a third ground 
wire. The wire colors represent 
electrical standards in the United 
States: the “hot” wire is black,  
the ground wire is green, and the 
neutral wire is white (shown as 
gray in the figure).
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is described in Chapter 31.) When an excessive leakage current is detected, the cur-
rent is shut off in less than 1 ms.

Summary

  The emf of a battery is equal to the voltage across its terminals when the current is zero. That is, the emf is equiva-
lent to the open-circuit voltage of the battery.

Definition

  The equivalent resistance of 
a set of resistors connected in a 
series combination is

	Req 5 R1 1 R2 1 R3 1 ? ? ?	 (28.6)

The equivalent resistance of a set 
of resistors connected in a paral-
lel combination is found from the 
relationship

	
1

Req
5

1
R1

1
1
R2

1
1
R3

1 c 	 (28.8)

  Circuits involving more than one loop are conveniently analyzed with 
the use of Kirchhoff’s rules:

	 1.	 Junction rule. At any junction, the sum of the currents must 
equal zero:

	 a
junction

I 5 0 	 (28.9)

	 2.	 Loop rule. The sum of the potential differences across all ele-
ments around any circuit loop must be zero:

	 a
closed loop

DV 5 0 	 (28.10)

When a resistor is traversed in the direction of the current, the potential 
difference DV across the resistor is 2IR. When a resistor is traversed in the 
direction opposite the current, DV 5 1IR. When a source of emf is tra-
versed in the direction of the emf (negative terminal to positive terminal), 
the potential difference is 1e. When a source of emf is traversed opposite 
the emf (positive to negative), the potential difference is 2e.

Concepts and Principles

  If a capacitor is charged with a battery through a 
resistor of resistance R , the charge on the capacitor and 
the current in the circuit vary in time according to the 
expressions

	 q(t) 5 Q max(1 2 e2t/RC)	 (28.14)

	 i 1t 2 5
e
R

 e2t/RC 	 (28.15)

where Q max 5 Ce is the maximum charge on the capacitor.  
The product RC is called the time constant t of the circuit.

  If a charged capacitor of capacitance C is dis-
charged through a resistor of resistance R, the 
charge and current decrease exponentially in time 
according to the expressions

	 q(t) 5 Q ie2t/RC	 (28.18)

	 i 1t 2 5 2
Q i

RC
 e2t/RC	 (28.19)

where Q i is the initial charge on the capacitor and  
Q i/RC is the initial current in the circuit.

is absorbing energy by electrical transmission (c) yes, 
if more than one wire is connected to each terminal 
(d) yes, if the current in the battery is zero (e) yes, with 
no special condition required. (ii) Can the terminal 
voltage exceed the emf? Choose your answer from the 
same possibilities as in part (i).

	 1.	 Is a circuit breaker wired (a) in series with the device it 
is protecting, (b) in parallel, or (c) neither in series or 
in parallel, or (d) is it impossible to tell?

	 2.	 A battery has some internal resistance. (i) Can the 
potential difference across the terminals of the bat-
tery be equal to its emf? (a) no (b) yes, if the battery 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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difference (b) current (c) power delivered (d) charge 
entering each resistor in a given time interval (e) none 
of those answers

	10.	The terminals of a battery are connected across two 
resistors in parallel. The resistances of the resistors 
are not the same. Which of the following statements 
is correct? Choose all that are correct. (a) The resis-
tor with the larger resistance carries more current 
than the other resistor. (b) The resistor with the larger 
resistance carries less current than the other resistor. 
(c) The potential difference across each resistor is the 
same. (d) The potential difference across the larger 
resistor is greater than the potential difference across 
the smaller resistor. (e) The potential difference is 
greater across the resistor closer to the battery.

	11.	 Are the two headlights of a car wired (a) in series with 
each other, (b) in parallel, or (c) neither in series nor 
in parallel, or (d) is it impossible to tell?

	12.	 In the circuit shown in Figure OQ28.12, each battery is 
delivering energy to the circuit by electrical transmis-
sion. All the resistors have equal resistance. (i) Rank the 
electric potentials at points a, b, c, d, and e from highest 
to lowest, noting any cases of equality in the ranking.  
(ii) Rank the magnitudes of the currents at the same 
points from greatest to least, noting any cases of equality.

b c
da

e
12 V 9 V

�

�

�

�

Figure OQ28.12

	13.	Several resistors are connected in parallel. Which of 
the following statements are correct? Choose all that 
are correct. (a) The equivalent resistance is greater 
than any of the resistances in the group. (b) The equiv-
alent resistance is less than any of the resistances in the 
group. (c)  The equivalent resistance depends on the 
voltage applied across the group. (d) The equivalent 
resistance is equal to the sum of the resistances in the 
group. (e) None of those statements is correct.

	14.	A circuit consists of three iden-
tical lamps connected to a bat-
tery as in Figure OQ28.14. The 
battery has some internal resis-
tance. The switch S, originally 
open, is closed. (i) What then 
happens to the brightness of 
lamp B? (a) It increases. (b) It 
decreases somewhat. (c) It does 
not change. (d) It drops to zero. For parts (ii) to (vi), 
choose from the same possibilities (a) through (d).   
(ii) What happens to the brightness of lamp C?  
(iii) What happens to the current in the battery?  
(iv) What happens to the potential difference across 
lamp A? (v) What happens to the potential difference 

C A

B
S �

�

Figure OQ28.14

	 3.	 The terminals of a battery are connected across two 
resistors in series. The resistances of the resistors are 
not the same. Which of the following statements are 
correct? Choose all that are correct. (a) The resistor 
with the smaller resistance carries more current than 
the other resistor. (b)  The resistor with the larger 
resistance carries less current than the other resistor. 
(c) The current in each resistor is the same. (d) The 
potential difference across each resistor is the same. 
(e) The potential difference is greatest across the resis-
tor closest to the positive terminal.

	 4.	 When operating on a 120-V circuit, an electric heater 
receives 1.30 3 103 W of power, a toaster receives 1.00 3  
103 W, and an electric oven receives 1.54 3 103 W. If all 
three appliances are connected in parallel on a 120-V 
circuit and turned on, what is the total current drawn 
from an external source? (a) 24.0 A (b) 32.0 A (c) 40.0 A  
(d) 48.0 A (e) none of those answers

	 5.	 If the terminals of a battery with zero internal resis-
tance are connected across two identical resistors in 
series, the total power delivered by the battery is 8.00 W.  
If the same battery is connected across the same resis-
tors in parallel, what is the total power delivered by the 
battery? (a) 16.0 W (b) 32.0 W (c) 2.00 W (d) 4.00 W  
(e) none of those answers

	 6.	 Several resistors are connected in series. Which of the 
following statements is correct? Choose all that are 
correct. (a) The equivalent resistance is greater than 
any of the resistances in the group. (b) The equiva-
lent resistance is less than any of the resistances in the 
group. (c) The equivalent resistance depends on the 
voltage applied across the group. (d) The equivalent 
resistance is equal to the sum of the resistances in the 
group. (e) None of those statements is correct.

	 7.	 What is the time constant of the circuit shown in Fig-
ure OQ28.7? Each of the five resistors has resistance R, 
and each of the five capacitors has capacitance C. The 
internal resistance of the battery is negligible. (a) RC 
(b) 5RC (c) 10RC (d) 25RC (e) none of those answers

C C
C C C

S

∆V
� �

R R R R R

Figure OQ28.7

	 8.	 When resistors with different resistances are connected 
in series, which of the following must be the same for 
each resistor? Choose all correct answers. (a) potential 
difference (b) current (c) power delivered (d) charge 
entering each resistor in a given time interval (e) none 
of those answers

	 9.	 When resistors with different resistances are connected 
in parallel, which of the following must be the same for 
each resistor? Choose all correct answers. (a) potential 
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	 1.	 Suppose a parachutist lands on a high-voltage wire 
and grabs the wire as she prepares to be rescued.  
(a) Will she be electrocuted? (b) If the wire then 
breaks, should she continue to hold onto the wire as 
she falls to the ground? Explain.

	 2.	 A student claims that the second of two lightbulbs 
in series is less bright than the first because the first 
lightbulb uses up some of the current. How would you 
respond to this statement?

	 3.	 Why is it possible for a bird to sit on a high-voltage wire 
without being electrocuted?

	 4.	 Given three lightbulbs and a battery, sketch as many 
different electric circuits as you can.

	 5.	 A ski resort consists of a few chairlifts and several 
interconnected downhill runs on the side of a moun-
tain, with a lodge at the bottom. The chairlifts are 
analogous to batteries, and the runs are analogous 
to resistors. Describe how two runs can be in series. 
Describe how three runs can be in parallel. Sketch 
a junction between one chairlift and two runs. State 
Kirchhoff’s junction rule for ski resorts. One of the 
skiers happens to be carrying a skydiver’s altimeter. 
She never takes the same set of chairlifts and runs 
twice, but keeps passing you at the fixed location 
where you are working. State Kirchhoff’s loop rule for 
ski resorts.

across lamp C? (vi) What happens to the total power 
delivered to the lamps by the battery?

	15.	A series circuit consists of three identical lamps con-
nected to a battery as shown in Figure OQ28.15. 
The switch S, originally open, is closed. (i) What 
then happens to the brightness of lamp B? (a) It 
increases. (b) It decreases somewhat. (c) It does 
not change. (d) It drops to zero. For parts (ii) to 
(vi), choose from the same possibilities (a) through 
(d). (ii) What happens to the brightness of lamp C?  
(iii) What happens to the current in the battery? 
(iv) What happens to the potential difference across 

	 6.	 Referring to Figure CQ28.6, 
describe what happens to the 
lightbulb after the switch is 
closed. Assume the capacitor 
has a large capacitance and 
is initially uncharged. Also 
assume the light illuminates 
when connected directly 
across the battery terminals.

	 7.	 So that your grandmother can listen to A Prairie Home 
Companion, you take her bedside radio to the hospital 
where she is staying. You are required to have a mainte-
nance worker test the radio for electrical safety. Finding 
that it develops 120 V on one of its knobs, he does not 
let you take it to your grandmother’s room. Your grand-
mother complains that she has had the radio for many 
years and nobody has ever gotten a shock from it. You 
end up having to buy a new plastic radio. (a) Why is your 
grandmother’s old radio dangerous in a hospital room? 
(b) Will the old radio be safe back in her bedroom?

	 8.	 (a) What advantage does 120-V operation offer over 
240 V? (b) What disadvantages does it have?

	 9.	 Is the direction of current in a battery always from the 
negative terminal to the positive terminal? Explain.

	10.	Compare series and parallel resistors to the series and 
parallel rods in Figure 20.13 on page 610. How are the 
situations similar?

C

� �

Figure CQ28.6

Section 28.1 ​ Electromotive Force

	 1.	 A battery has an emf of 15.0 V. The terminal voltage 
of the battery is 11.6 V when it is delivering 20.0 W of M

power to an external load resistor R. (a) What is the 
value of R ? (b) What is the internal resistance of the 
battery?

lamp A? (v) What happens to the potential difference 
across lamp C? (vi) What happens to the total power 
delivered to the lamps by the battery?

A

S

B C

e
�

�

Figure OQ28.15

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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	 2.	 Two 1.50-V batteries—with their positive terminals 
in the same direction—are inserted in series into a 
flashlight. One battery has an internal resistance of  
0.255 V, and the other has an internal resistance of 
0.153 V. When the switch is closed, the bulb carries a 
current of 600 mA. (a) What is the bulb’s resistance? 
(b) What fraction of the chemical energy transformed 
appears as internal energy in the batteries?

	 3.	 An automobile battery has an emf of 12.6 V and 
an internal resistance of 0.080 0 V. The headlights 
together have an equivalent resistance of 5.00 V 
(assumed constant). What is the potential difference 
across the headlight bulbs (a) when they are the only 
load on the battery and (b) when the starter motor is 
operated, with 35.0 A of current in the motor?

	 4.	 As in Example 28.2, consider a power supply with 
fixed emf e and internal resistance r causing current 
in a load resistance R. In this problem, R is fixed and 
r is a variable. The efficiency is defined as the energy 
delivered to the load divided by the energy delivered 
by the emf. (a) When the internal resistance is adjusted 
for maximum power transfer, what is the efficiency?  
(b) What should be the internal resistance for maxi-
mum possible efficiency? (c) When the electric com-
pany sells energy to a customer, does it have a goal 
of high efficiency or of maximum power transfer? 
Explain. (d) When a student connects a loudspeaker 
to an amplifier, does she most want high efficiency or 
high power transfer? Explain.

Section 28.2 ​ Resistors in Series and Parallel

	 5.	 Three 100-V resistors are connected as shown in Fig-
ure P28.5. The maximum power that can safely be 
delivered to any one resistor is 25.0 W. (a) What is the 
maximum potential difference that can be applied to 
the terminals a and b? (b) For the voltage determined 
in part (a), what is the power delivered to each resistor? 
(c) What is the total power delivered to the combina-
tion of resistors?

a

100 �

100 �

100 �

b

Figure P28.5

	 6.	 A lightbulb marked “75 W [at] 120 V” is screwed into 
a socket at one end of a long extension cord, in which 
each of the two conductors has resistance 0.800 V. 
The other end of the extension cord is plugged into 
a 120-V outlet. (a) Explain why the actual power deliv-
ered to the lightbulb cannot be 75 W in this situation. 
(b) Draw a circuit diagram. (c) Find the actual power 
delivered to the lightbulb in this circuit.

	 7.	 What is the equivalent resistance of the combination 
of identical resistors between points a and b in Figure 
P28.7?

AMT

W

Q/C

W

Q/C

S

	 8.	 Consider the two circuits shown in Figure P28.8 in 
which the batteries are identical. The resistance of 
each lightbulb is R. Neglect the internal resistances of 
the batteries. (a) Find expressions for the currents in 
each lightbulb. (b) How does the brightness of B com-
pare with that of C? Explain. (c) How does the bright-
ness of A compare with that of B and of C? Explain.

A B C

� � � �
e e

Figure P28.8

	 9.	 Consider the circuit shown in Figure P28.9. Find 
(a)  the current in the 20.0-V resistor and (b) the 
potential difference between points a and b.

20.0 �

a 10.0 �

10.0 �
25.0 V

5.00 �

b

5.00 �

Figure P28.9

	10.	(a) You need a 45-V resistor, but the stockroom has 
only 20-V and 50-V resistors. How can the desired 
resistance be achieved under these circumstances?  
(b) What can you do if you need a 35-V resistor?

	11.	 A battery with e 5 6.00 V and no internal resistance 
supplies current to the circuit shown in Figure P28.11. 
When the double-throw switch S is open as shown in 
the figure, the current in the battery is 1.00 mA. When 
the switch is closed in position a, the current in the 

S
Q/C

M

Q/C

R1 R2

R3

R2

a

b
S

�

�
e

Figure P28.11   
Problems 11 and 12.
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	17.	 Consider the combination of resistors shown in Fig-
ure P28.17. (a) Find the equivalent resistance between 
points a and b. (b) If a voltage of 35.0 V is applied 
between points a and b, find the current in each resistor.

12.0 � 

6.00 � 

5.00 � 

4.00 � 

8.00 � 

a b

Figure P28.17

	18.	For the purpose of measuring the electric resistance 
of shoes through the body of the wearer standing on a 
metal ground plate, the American National Standards 
Institute (ANSI) specifies the circuit shown in Figure 
P28.18. The potential difference DV across the 1.00-MV 
resistor is measured with an ideal voltmeter. (a) Show 
that the resistance of the footwear is

Rshoes 5
50.0 V 2 DV

DV
  

		  (b) In a medical test, a current through the human 
body should not exceed 150 mA. Can the current deliv-
ered by the ANSI-specified circuit exceed 150 mA? To 
decide, consider a person standing barefoot on the 
ground plate.

V

1.00 M�

50.0 V 
�

�

Figure P28.18

	19.	Calculate the power delivered to each resistor in the 
circuit shown in Figure P28.19.

2.00 �

18.0 V 3.00 �

4.00 �

1.00 �
�

�

Figure P28.19

	20.	Why is the following situation impossible? A technician is 
testing a circuit that contains a resistance R. He real-
izes that a better design for the circuit would include 
a resistance 7

3R rather than R. He has three additional 
resistors, each with resistance R. By combining these 
additional resistors in a certain combination that 
is then placed in series with the original resistor, he 
achieves the desired resistance.

	21.	 Consider the circuit shown in Figure P28.21 on page 
860. (a) Find the voltage across the 3.00-V resistor.  
(b) Find the current in the 3.00-V resistor.

BIO
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battery is 1.20 mA. When the switch is closed in posi-
tion b, the current in the battery is 2.00 mA. Find the 
resistances (a) R1, (b) R 2, and (c) R 3.

	12.	A battery with emf e and no internal resistance sup-
plies current to the circuit shown in Figure P28.11. 
When the double-throw switch S is open as shown in 
the figure, the current in the battery is I0. When the 
switch is closed in position a, the current in the bat-
tery is Ia. When the switch is closed in position b, the 
current in the battery is Ib. Find the resistances (a) R1,  
(b) R 2, and (c) R 3.

	13.	(a) Find the equivalent resistance between points a and 
b in Figure P28.13. (b) Calculate the current in each 
resistor if a potential difference of 34.0 V is applied 
between points a and b.

9.00 �4.00 �

10.0 �

7.00 �

ba

Figure P28.13

	14.	(a) When the switch S in the circuit of Figure P28.14 
is closed, will the equivalent resistance between points  
a and b increase or decrease? State your reasoning.  
(b) Assume the equivalent resistance drops by 50.0% 
when the switch is closed. Determine the value of R.

R

90.0 �

10.0 �90.0 �

10.0 �

a
b

S

Figure P28.14

	15.	Two resistors connected in series have an equivalent 
resistance of 690 V. When they are connected in paral-
lel, their equivalent resistance is 150 V. Find the resis-
tance of each resistor.

	16.	Four resistors are connected to a battery as shown in 
Figure P28.16. (a) Determine the potential difference 
across each resistor in terms of e. (b) Determine the 
current in each resistor in terms of I. (c) What If? If R3 
is increased, explain what happens to the current in 
each of the resistors. (d) In the limit that R3 S ,̀ what 
are the new values of the current in each resistor in 
terms of I, the original current in the battery?

S

M

Q/C

S
Q/C

R2 = 2R

R3 = 4R

R1 = R

R4 = 3R

I

e

Figure P28.16
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	26.	The following equations describe an electric circuit:

2I1 (220 V) 1 5.80 V 2 I2 (370 V) 5 0
1I2 (370 V) 1 I3 (150 V) 2 3.10 V 5 0

I1 1 I3 2 I2 5 0

		  (a) Draw a diagram of the circuit. (b) Calculate the 
unknowns and identify the physical meaning of each 
unknown.

	27.	Taking R 5 1.00 kV and e 5 250 V in Figure P28.27, 
determine the direction and magnitude of the current 
in the horizontal wire between a and e.

R

a

b
2R

3R4R

c d

e

2e e
�

�

�

�

Figure P28.27

	28.	Jumper cables are connected from a fresh battery in 
one car to charge a dead battery in another car. Fig-
ure P28.28 shows the circuit diagram for this situation. 
While the cables are connected, the ignition switch of 
the car with the dead battery is closed and the starter is 
activated to start the engine. Determine the current in 
(a) the starter and (b) the dead battery. (c) Is the dead 
battery being charged while the starter is operating?

12 V 

Live
battery

Dead
battery

Ignition
switch

0.06 �
Starter

0.01 � 1.00 �

�

�
12 V 

�

�

Figure P28.28

	29.	The ammeter shown in Figure P28.29 reads 2.00 A. 
Find (a) I1, (b) I2, and (c) e.

15.0 V 7.00 �

2.00 �

5.00 �
I1

I2

e
� �

� �

A

Figure P28.29

	30.	In the circuit of Figure P28.30, determine (a) the cur-
rent in each resistor and (b) the potential difference 
across the 200-V resistor.

Q/C

W

W

Section 28.3 ​ Kirchhoff’s Rules

	22.	In Figure P28.22, show how to add just enough amme-
ters to measure every different current. Show how 
to add just enough voltmeters to measure the poten-
tial difference across each resistor and across each 
battery.

3.00 �
1.00 �

5.00 �

1.00 �

4.00 V

8.00 �
12.0 V

�

�

�

�

Figure P28.22  Problems 22 and 23.

	23.	The circuit shown in Figure P28.22 is connected for  
2.00 min. (a) Determine the current in each branch of 
the circuit. (b) Find the energy delivered by each bat-
tery. (c) Find the energy delivered to each resistor.  
(d) Identify the type of energy storage transformation 
that occurs in the operation of the circuit. (e) Find the 
total amount of energy transformed into internal 
energy in the resistors.

	24.	For the circuit shown in Fig-
ure P28.24, calculate (a) the  
current in the 2.00-V resistor 
and (b) the potential differ-
ence between points a and b.

	25.	What are the expected read-
ings of (a) the ideal ammeter 
and (b) the ideal voltmeter 
in Figure P28.25?

M
Q/C

4.00 �

b

a

2.00 �

6.00 �
8.00 V

12.0 V

� �

� �

Figure P28.24
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Figure P28.21
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Figure P28.25



	 Problems	 861

	31.	 Using Kirchhoff’s rules, (a) find the current in each 
resistor shown in Figure P28.31 and (b) find the poten-
tial difference between points c and f.

Figure P28.31

60.0 V70.0 V 80.0 V

R2

a f e

R3

cb d

R1

4.00 k�

3.00 k�

2.00 k�

1 2 3e e e

	32.	In the circuit of Figure P28.32, the current I1 5 3.00 A  
and the values of e for the ideal battery and R are 
unknown. What are the currents (a) I2 and (b)  I3?  
(c) Can you find the values of e and R? If so, find their 
values. If not, explain.

I1R

b

I2I3

a
24.0 V

3.00 � 6.00 � 

� � � �

e

Figure P28.32

	33.	In Figure P28.33, find (a) the current in each resistor 
and (b) the power delivered to each resistor.

28.0 �
24.0 V

I1

I3

12.0 �
12.0 V

I2

16.0 �

� �

� �

Figure P28.33

	34.	For the circuit shown in Figure P28.34, we wish to 
find the currents I1, I2, and I3. Use Kirchhoff’s rules to 
obtain equations for (a) the upper loop, (b) the lower 

M

Q/C

GP
Q/C

loop, and (c) the junction on the left side. In each case, 
suppress units for clarity and simplify, combining the 
terms. (d) Solve the junction equation for I3. (e) Using 
the equation found in part (d), eliminate I3 from the 
equation found in part (b). (f) Solve the equations 
found in parts (a) and (e) simultaneously for the two 
unknowns I1 and I2. (g) Substitute the answers found 
in part (f) into the junction equation found in part (d), 
solving for I3. (h) What is the significance of the nega-
tive answer for I2?

5.00 �
18.0 V

I2

7.00 �
8.00 �

12.0 V
11.0 �

I3

I1

5.00 � 36.0 V

� �

� �

� �

Figure P28.34

	35.	Find the potential difference across each resistor in 
Figure P28.35.

Figure P28.35

18.0 V3.00 V12.0 V

5.00 � 4.00 � 2.00 �

3.00 �

	36.	(a) Can the circuit shown in Figure P28.36 be reduced 
to a single resistor connected to a battery? Explain. 
Calculate the currents (b) I1, (c) I2, and (d) I3.

24.0 V

12.0 V

I3

I1

I2

2.00 � 

4.00 � 

3.00 � 

1.00 � 

5.00 � 

�

�

�

�

Figure P28.36

Section 28.4 ​ RC Circuits

	37.	 An uncharged capacitor and a resistor are connected 
in series to a source of emf. If e 5 9.00 V, C 5 20.0 mF,  
and R 5 100 V, find (a) the time constant of the cir-
cuit, (b) the maximum charge on the capacitor, and 
(c) the charge on the capacitor at a time equal to one 
time constant after the battery is connected.

M

Q/C

80.0 � 20.0 � 70.0 � 200 �

40.0 V 360 V 80.0 V 
�

�

�

�

�

�

Figure P28.30



862	C hapter 28  Direct-Current Circuits

	44.	Show that the integral e
`

0  e22t/RC dt in Example 28.11 
has the value 1

2 RC.

	45.	A charged capacitor is connected to a resistor and switch 
as in Figure P28.45. The circuit has a time constant of 
1.50 s. Soon after the switch is closed, the charge on the 
capacitor is 75.0% of its initial charge. (a) Find the time 
interval required for the capacitor to reach this charge. 
(b) If R 5 250 kV, what is the value of C?

C R

S

Q+

–Q

Figure P28.45

Section 28.5  Household Wiring and Electrical Safety

	46.	An electric heater is rated at 1.50 3 103 W, a toaster 
at 750 W, and an electric grill at 1.00 3 103 W. The 
three appliances are connected to a common 120-V 
household circuit. (a) How much current does each 
draw? (b) If the circuit is protected with a 25.0-A cir-
cuit breaker, will the circuit breaker be tripped in this 
situation? Explain your answer.

	47.	 A heating element in a stove is designed to receive  
3 000 W when connected to 240 V. (a) Assuming the 
resistance is constant, calculate the current in the heat-
ing element if it is connected to 120 V. (b) Calculate 
the power it receives at that voltage.

	48.	Turn on your desk lamp. Pick up the cord, with your 
thumb and index finger spanning the width of the 
cord. (a) Compute an order-of-magnitude estimate 
for the current in your hand. Assume the conductor 
inside the lamp cord next to your thumb is at poten-
tial , 102 V at a typical instant and the conductor 
next to your index finger is at ground potential (0 V). 
The resistance of your hand depends strongly on the 
thickness and the moisture content of the outer lay-
ers of your skin. Assume the resistance of your hand 
between fingertip and thumb tip is , 104 V. You may 
model the cord as having rubber insulation. State the 
other quantities you measure or estimate and their val-
ues. Explain your reasoning. (b) Suppose your body is 
isolated from any other charges or currents. In order-
of-magnitude terms, estimate the potential difference 
between your thumb where it contacts the cord and 
your finger where it touches the cord.

S

M
Q/C

M

	38.	Consider a series RC circuit as in Figure P28.38 for 
which R  5 1.00 MV, C 5 5.00 mF, and e 5 30.0 V. 
Find (a) the time constant of the circuit and (b) the 
maximum charge on the capacitor after the switch is 
thrown closed. (c) Find the current in the resistor 10.0 s  
after the switch is closed.

C R

S

� �
e

Figure P28.38   
Problems 38, 67, and 68.

	39.	A 2.00-nF capacitor with an initial charge of 5.10 mC 
is discharged through a 1.30-kV resistor. (a) Calcu-
late the current in the resistor 9.00 ms after the resis-
tor is connected across the terminals of the capacitor.  
(b) What charge remains on the capacitor after 8.00 ms?  
(c) What is the maximum current in the resistor?

	40.	A 10.0-mF capacitor is charged by a 10.0-V battery 
through a resistance R. The capacitor reaches a poten-
tial difference of 4.00 V in a time interval of 3.00 s after 
charging begins. Find R.

	41.	 In the circuit of Figure P28.41, the switch S has been 
open for a long time. It is then suddenly closed. Take  
e 5 10.0 V, R1 5 50.0 kV, R2 5 100 kV, and C 5 10.0 mF.  
Determine the time constant (a) before the switch is 
closed and (b)  after the switch is closed. (c) Let the 
switch be closed at t 5 0. Determine the current in the 
switch as a function of time.

R1

R2

C
S�

�
e

Figure P28.41  Problems 41 and 42.

	42.	In the circuit of Figure P28.41, the switch S has been 
open for a long time. It is then suddenly closed. Deter-
mine the time constant (a) before the switch is closed 
and (b) after the switch is closed. (c) Let the switch be 
closed at t 5 0. Determine the current in the switch as 
a function of time.

	43.	The circuit in Figure P28.43 has been connected for a 
long time. (a) What is the potential difference across 
the capacitor? (b) If the battery is disconnected from 
the circuit, over what time interval does the capacitor 
discharge to one-tenth its initial voltage?

W

W

W

S

M

m

10.0 V

1.00 � 8.00 �

2.00 �4.00 �

1.00 F

�

�

Figure P28.43
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Additional Problems

	49.	Assume you have a battery of emf e and three identi-
cal lightbulbs, each having constant resistance R. What 
is the total power delivered by the battery if the light-
bulbs are connected (a) in series and (b) in parallel? 
(c) For which connection will the lightbulbs shine the 
brightest?

	50.	Find the equivalent resistance between points a and b 
in Figure P28.50.

a

b

2.40 � 

3.60 � 

1.80 � 
3.50 � 

5.10 � 

Figure P28.50

	51.	 Four 1.50-V AA batteries in series are used to power 
a small radio. If the batteries can move a charge of 
240 C, how long will they last if the radio has a resis-
tance of 200 V?

	52.	Four resistors are connected in parallel across a 9.20-V 
battery. They carry currents of 150 mA, 45.0 mA,  
14.0 mA, and 4.00 mA. If the resistor with the largest 
resistance is replaced with one having twice the resis-
tance, (a) what is the ratio of the new current in the bat-
tery to the original current? (b) What If? If instead the 
resistor with the smallest resistance is replaced with one 
having twice the resistance, what is the ratio of the new 
total current to the original current? (c) On a February 
night, energy leaves a house by several energy leaks, 
including 1.50 3 103 W by conduction through the ceil-
ing, 450 W by infiltration (airflow) around the windows, 
140 W by conduction through the basement wall above 
the foundation sill, and 40.0 W by conduction through 
the plywood door to the attic. To produce the biggest 
saving in heating bills, which one of these energy trans-
fers should be reduced first? Explain how you decide. 
Clifford Swartz suggested the idea for this problem.

	53.	The circuit in Figure P28.53 has been connected for 
several seconds. Find the current (a) in the 4.00-V bat-

S

Q/C

tery, (b) in the 3.00-V resistor, (c) in the 8.00-V battery, 
and (d) in the 3.00-V battery. (e) Find the charge on 
the capacitor.

	54.	The circuit in Figure P28.54a consists of three resistors  
and one battery with no internal resistance. (a) Find 
the current in the 5.00-V resistor. (b) Find the power 
delivered to the 5.00-V resistor. (c) In each of the cir-
cuits in Figures P28.54b, P28.54c, and P28.54d, an 
additional 15.0-V battery has been inserted into the 
circuit. Which diagram or diagrams represent a circuit 
that requires the use of Kirchhoff’s rules to find the 
currents? Explain why. (d) In which of these three new 
circuits is the smallest amount of power delivered to 
the 10.0-V resistor? (You need not calculate the power 
in each circuit if you explain your answer.)

8.00 �

8.00 �
15.0 V

15.0 V

8.00 �

5.00 � 10.0 �

5.00 � 10.0 �

5.00 � 10.0 �

5.00 � 10.0 �

8.00 �

15.0 V

15.0 V

15.0 V

15.0 V

15.0 V

a b

c d

Figure P28.54

	55.	For the circuit shown in Figure P28.55, the ideal 
voltmeter reads 6.00 V and the ideal ammeter reads 
3.00 mA. Find (a) the value of R, (b) the emf of the 
battery, and (c) the voltage across the 3.00-kV resistor.

3.00 k�

R

� �

V

A

e

Figure P28.55

	56.	The resistance between terminals a and b in Figure 
P28.56 is 75.0 V. If the resistors labeled R have the 
same value, determine R.
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Figure P28.53

R
a

b

R

120 � 40.0 � 

5.00 � 

Figure P28.56



864	C hapter 28  Direct-Current Circuits

capacitor? (b) How much charge remains on the  
2.00-mF capacitor? (c) What is the current in the resis-
tor at this time?

500 �

2.00    Fµ

3.00    Fµ

Figure P28.63

	64.	A power supply has an open-circuit voltage of 40.0 V  
and an internal resistance of 2.00 V. It is used to 
charge two storage batteries connected in series, 
each having an emf of 6.00 V and internal resistance 
of 0.300 V. If the charging current is to be 4.00 A,  
(a) what additional resistance should be added in 
series? At what rate does the internal energy increase 
in (b) the supply, (c) in the batteries, and (d) in the 
added series resistance? (e) At what rate does the 
chemical energy increase in the batteries?

	65.	The circuit in Figure P28.65 contains two resistors, 
R1 5 2.00 kV and R2 5 3.00 kV, and two capacitors, 
C1  5 2.00  mF and C2 5 3.00 mF, connected to a bat-
tery with emf e  5 120  V. If there are no charges on 
the capacitors before switch S is closed, determine the 
charges on capacitors (a) C1 and (b) C2 as functions of 
time, after the switch is closed.

R2

R1
C1

C2

S

� �

e

Figure P28.65

	66.	Two resistors R1 and R 2 are in parallel with each other. 
Together they carry total current I. (a) Determine the 
current in each resistor. (b) Prove that this division of 
the total current I between the two resistors results in 
less power delivered to the combination than any other 
division. It is a general principle that current in a direct 
current circuit distributes itself so that the total power deliv-
ered to the circuit is a minimum.

	67.	 The values of the components in a simple series RC cir-
cuit containing a switch (Fig. P28.38) are C 5 1.00 mF,  
R 5 2.00 3 106 V, and e 5 10.0 V. At the instant 10.0 s  
after the switch is closed, calculate (a) the charge on 
the capacitor, (b) the current in the resistor, (c) the 
rate at which energy is being stored in the capacitor, 
and (d) the rate at which energy is being delivered by 
the battery.

S

M
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	57.	 (a) Calculate the potential difference between points a 
and b in Figure P28.57 and (b) identify which point is 
at the higher potential.

2.00 �

4.00 �

10.0 �

4.00 V

12.0 V 

a

b

� �

�
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Figure P28.57

	58.	Why is the following situation impossible? A battery has an 
emf of e 5 9.20 V and an internal resistance of r 5  
1.20 V. A resistance R is connected across the battery 
and extracts from it a power of P 5 21.2 W.

	59.	A rechargeable battery has an emf of 13.2 V and an 
internal resistance of 0.850 V. It is charged by a 14.7-V 
power supply for a time interval of 1.80 h. After charg-
ing, the battery returns to its original state as it deliv-
ers a constant current to a load resistor over 7.30 h. 
Find the efficiency of the battery as an energy storage 
device. (The efficiency here is defined as the energy 
delivered to the load during discharge divided by the 
energy delivered by the 14.7-V power supply during the 
charging process.)

	60.	Find (a) the equivalent resistance of the circuit in Fig-
ure P28.60, (b) the potential difference across each 
resistor, (c) each current indicated in Figure P28.60, 
and (d) the power delivered to each resistor.

15.0 V
I2 I5

I4

I1 I3

a

b

c

d
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6.00 � 

6.00 � 

6.00 � 
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9.00 � 

2.40 � 
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Figure P28.60

	61.	 When two unknown resistors are connected in series 
with a battery, the battery delivers 225 W and carries 
a total current of 5.00 A. For the same total current, 
50.0 W is delivered when the resistors are connected in 
parallel. Determine the value of each resistor.

	62.	When two unknown resistors are connected in series 
with a battery, the battery delivers total power Ps and 
carries a total current of I. For the same total current, 
a total power Pp is delivered when the resistors are 
connected in parallel. Determine the value of each 
resistor.

	63.	The pair of capacitors in Figure P28.63 are fully 
charged by a 12.0-V battery. The battery is discon-
nected, and the switch is then closed. After 1.00 ms has 
elapsed, (a) how much charge remains on the 3.00-mF  
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	73.	 A regular tetrahedron is a pyramid with a triangular 
base and triangular sides as shown in Figure P28.73. 
Imagine the six straight lines in Figure P28.73 are each 
10.0-V resistors, with junctions at the four vertices. A 
12.0-V battery is connected to any two of the vertices. 
Find (a) the equivalent resistance of the tetrahedron 
between these vertices and (b) the current in the battery.

Figure P28.73

	74.	An ideal voltmeter connected across a certain fresh 
9-V battery reads 9.30 V, and an ideal ammeter briefly 
connected across the same battery reads 3.70 A. We say 
the battery has an open-circuit voltage of 9.30 V and 
a short-circuit current of 3.70 A. Model the battery as 
a source of emf e in series with an internal resistance 
r as in Figure 28.1a. Determine both (a) e and (b) r.  
An experimenter connects two of these identical bat-
teries together as shown in Figure P28.74. Find (c) the 
open-circuit voltage and (d) the short-circuit current of 
the pair of connected batteries. (e) The experimenter 
connects a 12.0-V resistor between the exposed termi-
nals of the connected batteries. Find the current in the 
resistor. (f) Find the power delivered to the resistor.  
(g) The experimenter connects a second identical 
resistor in parallel with the first. Find the power deliv-
ered to each resistor. (h) Because the same pair of 
batteries is connected across both resistors as was con-
nected across the single resistor, why is the power in 
part (g) not the same as that in part (f)?

�

�

Figure P28.74

	75.	In Figure P28.75 on page 866, suppose the switch has 
been closed for a time interval sufficiently long for 
the capacitor to become fully charged. Find (a) the  

Q/C

	68.	A battery is used to charge a capacitor through a 
resistor as shown in Figure P28.38. Show that half 
the energy supplied by the battery appears as inter-
nal energy in the resistor and half is stored in the 
capacitor.

	69.	A young man owns a canister vacuum cleaner marked 
“535  W [at] 120 V” and a Volkswagen Beetle, which 
he wishes to clean. He parks the car in his apartment 
parking lot and uses an inexpensive extension cord 
15.0 m long to plug in the vacuum cleaner. You may 
assume the cleaner has constant resistance. (a) If the 
resistance of each of the two conductors in the exten-
sion cord is 0.900 V, what is the actual power deliv-
ered to the cleaner? (b) If instead the power is to be 
at least 525 W, what must be the diameter of each of 
two identical copper conductors in the cord he buys? 
(c) Repeat part (b) assuming the power is to be at least 
532 W.

	70.	(a) Determine the equilibrium charge on the capaci-
tor in the circuit of Figure P28.70 as a function of R. 
(b) Evaluate the charge when R 5 10.0 V. (c) Can the 
charge on the capacitor be zero? If so, for what value 
of R ? (d) What is the maximum possible magnitude 
of the charge on the capacitor? For what value of R is 
it achieved? (e) Is it experimentally meaningful to take 
R 5 `? Explain your answer. If so, what charge magni-
tude does it imply?

5.00 V

3.00 

3.00 mF 

� 2.00 � 

R80.0 �

�

�

Figure P28.70

	71.	Switch S shown in Figure P28.71 has been closed for 
a long time, and the electric circuit carries a con-
stant current. Take C1 5 3.00 mF, C2 5 6.00 mF, R1 5  
4.00 kV, and R2 5 7.00 kV. The power delivered to R2 
is 2.40 W. (a) Find the charge on C1. (b) Now the switch 
is opened. After many milliseconds, by how much has 
the charge on C2 changed?

C1

R2

R1

C2

S

�

�

Figure P28.71

	72.	Three identical 60.0-W, 120-V lightbulbs are connected 
across a 120-V power source as shown in Figure P28.72. 
Assuming the resistance of each lightbulb is constant 
(even though in reality the resistance might increase 
markedly with current), find (a) the total power sup-
plied by the power source and (b) the potential differ-
ence across each lightbulb.
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120 V R2
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Figure P28.72



866	C hapter 28  Direct-Current Circuits

steady-state current in each resistor and (b) the charge 
Q max on the capacitor. (c) The switch is now opened at  
t 5 0. Write an equation for the current in R 2 as a func-
tion of time and (d) find the time interval required for 
the charge on the capacitor to fall to one-fifth its ini-
tial value.

3.00 k�

S

R2 = 15.0 k�

12.0 k�

10.0 mF

9.00 V
�

�

Figure P28.75

	76.	Figure P28.76 shows a circuit model for the transmis-
sion of an electrical signal such as cable TV to a large 
number of subscribers. Each subscriber connects a load 
resistance RL between the transmission line and the 
ground. The ground is assumed to be at zero potential 
and able to carry any current between any ground con-
nections with negligible resistance. The resistance of 
the transmission line between the connection points of 
different subscribers is modeled as the constant resis-
tance RT . Show that the equivalent resistance across 
the signal source is

R eq 5 1
2 3 14R TR L 1 RT

2 21/2 1 R T 4
		  Suggestion: Because the number of subscribers is large, 

the equivalent resistance would not change noticeably  
if the first subscriber canceled the service. Conse-
quently, the equivalent resistance of the section of the 
circuit to the right of the first load resistor is nearly 
equal to Req.

RT RT RT

RL RL RLSignal
source

Figure P28.76

	77.	 The student engineer of a 
campus radio station wishes 
to verify the effectiveness 
of the lightning rod on the 
antenna mast (Fig. P28.77). 
The unknown resistance 
Rx is between points C 
and E. Point E is a true 
ground, but it is inaccessi-
ble for direct measurement 
because this stratum is several meters below the Earth’s 
surface. Two identical rods are driven into the ground 
at A and B, introducing an unknown resistance R y. The 
procedure is as follows. Measure resistance R1 between 
points A and B, then connect A and B with a heavy con-
ducting wire and measure resistance R 2 between points 
A and C. (a) Derive an equation for Rx in terms of the 

S

RyRy

A C B

E

Rx

Figure P28.77

observable resistances, R1 and R 2. (b) A satisfactory 
ground resistance would be Rx , 2.00 V. Is the ground-
ing of the station adequate if measurements give R1 5 
13.0 V and R 2 5 6.00 V? Explain.

	78.	The circuit shown in Figure P28.78 is set up in the labo-
ratory to measure an unknown capacitance C in series 
with a resistance R 5 10.0 MV powered by a battery 
whose emf is 6.19 V. The data given in the table are the 
measured voltages across the capacitor as a function of 
time, where t 5 0 represents the instant at which the 
switch is thrown to position b. (a) Construct a graph of 
ln (e/Dv) versus t and perform a linear least-squares fit 
to the data. (b) From the slope of your graph, obtain 
a value for the time constant of the circuit and a value 
for the capacitance.

	 Dv (V)	 t (s)	 ln (e/Dv)

	 6.19	 0
	 5.55	 4.87
	 4.93	 11.1
	 4.34	 19.4
	 3.72	 30.8
	 3.09	 46.6
	 2.47	 67.3
	 1.83	 102.2

V
R

C

b

a

e
� �

Figure P28.78

	79.	An electric teakettle has a multiposition switch and 
two heating coils. When only one coil is switched on, 
the well-insulated kettle brings a full pot of water to 
a boil over the time interval Dt. When only the other 
coil is switched on, it takes a time interval of 2 Dt to 
boil the same amount of water. Find the time interval 
required to boil the same amount of water if both coils 
are switched on (a) in a parallel connection and (b) in 
a series connection.

	80.	A voltage DV is applied to a series configuration of n 
resistors, each of resistance R. The circuit components 
are reconnected in a parallel configuration, and volt-
age DV is again applied. Show that the power delivered 
to the series configuration is 1/n2 times the power 
delivered to the parallel configuration.

	81.	 In places such as hospital operating rooms or factories for 
electronic circuit boards, electric sparks must be avoided. 
A person standing on a grounded floor and touching 
nothing else can typically have a body capacitance of 
150 pF, in parallel with a foot capacitance of 80.0 pF  
produced by the dielectric soles of his or her shoes. The 
person acquires static electric charge from interactions 
with his or her surroundings. The static charge flows 
to ground through the equivalent resistance of the two 

S

S

BIO
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a potential difference as plotted in Figure P28.82b. 
What is the period T of the waveform in terms of R1, 
R2, and C ?

	83.	The resistor R in Figure P28.83 receives 20.0 W of 
power. Determine the value of R.

R

75.0 V

40.0 � 

30.0 � 

5.00 �

�

�

Figure P28.83

shoe soles in parallel with each other. A pair of rubber-
soled street shoes can present an equivalent resistance 
of 5.00 3 103 MV. A pair of shoes with special static- 
dissipative soles can have an equivalent resistance of 
1.00 MV. Consider the person’s body and shoes as form-
ing an RC circuit with the ground. (a) How long does it 
take the rubber-soled shoes to reduce a person’s poten-
tial from 3.00 3 103 V to 100 V? (b) How long does it 
take the static-dissipative shoes to do the same thing?

Challenge Problems

	82.	The switch in Figure P28.82a closes when DVc . 2
3 DV  

and opens when DVc , 1
3 DV. The ideal voltmeter reads S

V

�

�

a

b

�V 
3
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�
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�
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a
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�V 
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Figure P28.82
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Many historians of science believe that the compass, which uses a magnetic needle, 
was used in China as early as the 13th century BC, its invention being of Arabic or Indian 
origin. The early Greeks knew about magnetism as early as 800 BC. They discovered that the 
stone magnetite (Fe3O4) attracts pieces of iron. Legend ascribes the name magnetite to the 
shepherd Magnes, the nails of whose shoes and the tip of whose staff stuck fast to chunks 
of magnetite while he pastured his flocks.
	 In 1269, Pierre de Maricourt of France found that the directions of a needle near a spher-
ical natural magnet formed lines that encircled the sphere and passed through two points 
diametrically opposite each other, which he called the poles of the magnet. Subsequent 
experiments showed that every magnet, regardless of its shape, has two poles, called north 
(N) and south (S) poles, that exert forces on other magnetic poles similar to the way electric 
charges exert forces on one another. That is, like poles (N–N or S–S) repel each other, and 
opposite poles (N–S) attract each other.

29.1	 Analysis Model: Particle in 
a Field (Magnetic)

29.2	 Motion of a Charged 
Particle in a Uniform 
Magnetic Field

29.3	 Applications Involving 
Charged Particles Moving 
in a Magnetic Field

29.4	 Magnetic Force Acting 
on a Current-Carrying 
Conductor

29.5	 Torque on a Current Loop in 
a Uniform Magnetic Field

29.6	 The Hall Effect

c h a p t e r 

29 Magnetic Fields

An engineer performs a test on the 
electronics associated with one of 
the superconducting magnets in 
the Large Hadron Collider at the 
European Laboratory for Particle 
Physics, operated by the European 
Organization for Nuclear Research 
(CERN). The magnets are used to 
control the motion of charged 
particles in the accelerator.  We will 
study the effects of magnetic fields 
on moving charged particles in  
this chapter. (CERN)
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	 The poles received their names because of the way a magnet, such as that in a compass, 
behaves in the presence of the Earth’s magnetic field. If a bar magnet is suspended from its 
midpoint and can swing freely in a horizontal plane, it will rotate until its north pole points 
to the Earth’s geographic North Pole and its south pole points to the Earth’s geographic 
South Pole.1

	 In 1600, William Gilbert (1540–1603) extended de Maricourt’s experiments to a variety 
of materials. He knew that a compass needle orients in preferred directions, so he suggested 
that the Earth itself is a large, permanent magnet. In 1750, experimenters used a torsion 
balance to show that magnetic poles exert attractive or repulsive forces on each other 
and that these forces vary as the inverse square of the distance between interacting poles. 
Although the force between two magnetic poles is otherwise similar to the force between 
two electric charges, electric charges can be isolated (witness the electron and proton), 
whereas a single magnetic pole has never been isolated. That is, magnetic poles are always 
found in pairs. All attempts thus far to detect an isolated magnetic pole have been unsuc-
cessful. No matter how many times a permanent magnet is cut in two, each piece always 
has a north and a south pole.2

	 The relationship between magnetism and electricity was discovered in 1819 when, during  
a lecture demonstration, Hans Christian Oersted found that an electric current in a wire 
deflected a nearby compass needle.3 In the 1820s, further connections between electricity 
and magnetism were demonstrated independently by Faraday and Joseph Henry (1797–1878).  
They showed that an electric current can be produced in a circuit either by moving a magnet 
near the circuit or by changing the current in a nearby circuit. These observations demonstrate 
that a changing magnetic field creates an electric field. Years later, theoretical work by Max-
well showed that the reverse is also true: a changing electric field creates a magnetic field.
	 This chapter examines the forces that act on moving charges and on current-carrying 
wires in the presence of a magnetic field. The source of the magnetic field is described in 
Chapter 30.

29.1	 Analysis Model: Particle in a Field (Magnetic)
In our study of electricity, we described the interactions between charged objects in 
terms of electric fields. Recall that an electric field surrounds any electric charge. 
In addition to containing an electric field, the region of space surrounding any 
moving electric charge also contains a magnetic field. A magnetic field also sur-
rounds a magnetic substance making up a permanent magnet.
	 Historically, the symbol B

S
 has been used to represent a magnetic field, and we 

use this notation in this book. The direction of the magnetic field B
S

 at any location 
is the direction in which a compass needle points at that location. As with the elec-
tric field, we can represent the magnetic field by means of drawings with magnetic 
field lines.
	 Figure 29.1 shows how the magnetic field lines of a bar magnet can be traced 
with the aid of a compass. Notice that the magnetic field lines outside the magnet 

1The Earth’s geographic North Pole is magnetically a south pole, whereas the Earth’s geographic South Pole is mag-
netically a north pole. Because opposite magnetic poles attract each other, the pole on a magnet that is attracted to 
the Earth’s geographic North Pole is the magnet’s north pole and the pole attracted to the Earth’s geographic South 
Pole is the magnet’s south pole.
2There is some theoretical basis for speculating that magnetic monopoles—isolated north or south poles—may exist 
in nature, and attempts to detect them are an active experimental field of investigation.
3The same discovery was reported in 1802 by an Italian jurist, Gian Domenico Romagnosi, but was overlooked, prob-
ably because it was published in an obscure journal.

Hans Christian Oersted
Danish Physicist and Chemist 
(1777–1851)
Oersted is best known for observing 
that a compass needle deflects when 
placed near a wire carrying a current. 
This important discovery was the first 
evidence of the connection between 
electric and magnetic phenomena.  
Oersted was also the first to prepare 
pure aluminum.
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Figure 29.1  Compass needles 
can be used to trace the magnetic 
field lines in the region outside a 
bar magnet.
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point away from the north pole and toward the south pole. One can display mag-
netic field patterns of a bar magnet using small iron filings as shown in Figure 29.2.
	 When we speak of a compass magnet having a north pole and a south pole, it is 
more proper to say that it has a “north-seeking” pole and a “south-seeking” pole. 
This wording means that the north-seeking pole points to the north geographic 
pole of the Earth, whereas the south-seeking pole points to the south geographic 
pole. Because the north pole of a magnet is attracted toward the north geo- 
graphic pole of the Earth, the Earth’s south magnetic pole is located near the 
north geographic pole and the Earth’s north magnetic pole is located near the 
south geographic pole. In fact, the configuration of the Earth’s magnetic field, 
pictured in Figure 29.3, is very much like the one that would be achieved by 
burying a gigantic bar magnet deep in the Earth’s interior. If a compass needle 
is supported by bearings that allow it to rotate in the vertical plane as well as in 
the horizontal plane, the needle is horizontal with respect to the Earth’s surface 
only near the equator. As the compass is moved northward, the needle rotates so 
that it points more and more toward the Earth’s surface. Finally, at a point near 
Hudson Bay in Canada, the north pole of the needle points directly downward. 
This site, first found in 1832, is considered to be the location of the south mag-
netic pole of the Earth. It is approximately 1 300 mi from the Earth’s geographic 

Figure 29.2  ​Magnetic field pat-
terns can be displayed with iron 
filings sprinkled on paper near 
magnets.

Magnetic field 
pattern surrounding 
a bar magnet

Magnetic field pattern 
between opposite poles 
(N–S) of two bar magnets

Magnetic field pattern 
between like poles (N–N) 
of two bar magnets
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A north magnetic 
pole is near the 
Earth’s south 
geographic pole.

A south magnetic 
pole is near the 
Earth’s north 
geographic pole.

Figure 29.3  ​The Earth’s mag-
netic field lines.



	 29.1  Analysis Model: Particle in a Field (Magnetic)	 871

North Pole, and its exact position varies slowly with time. Similarly, the north 
magnetic pole of the Earth is about 1 200 mi away from the Earth’s geographic 
South Pole.
	 Although the Earth’s magnetic field pattern is similar to the one that would be 
set up by a bar magnet deep within the Earth, it is easy to understand why the 
source of this magnetic field cannot be large masses of permanently magnetized 
material. The Earth does have large deposits of iron ore deep beneath its surface, 
but the high temperatures in the Earth’s core prevent the iron from retaining any 
permanent magnetization. Scientists consider it more likely that the source of the 
Earth’s magnetic field is convection currents in the Earth’s core. Charged ions or 
electrons circulating in the liquid interior could produce a magnetic field just like 
a current loop does, as we shall see in Chapter 30. There is also strong evidence 
that the magnitude of a planet’s magnetic field is related to the planet’s rate of rota-
tion. For example, Jupiter rotates faster than the Earth, and space probes indicate 
that Jupiter’s magnetic field is stronger than the Earth’s. Venus, on the other hand, 
rotates more slowly than the Earth, and its magnetic field is found to be weaker. 
Investigation into the cause of the Earth’s magnetism is ongoing.
	 The direction of the Earth’s magnetic field has reversed several times during 
the last million years. Evidence for this reversal is provided by basalt, a type of rock 
that contains iron. Basalt forms from material spewed forth by volcanic activity on 
the ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s 
magnetic field direction. The rocks are dated by other means to provide a time line 
for these periodic reversals of the magnetic field.
	 We can quantify the magnetic field B

S
 by using our model of a particle in a field, 

like the model discussed for gravity in Chapter 13 and for electricity in Chapter 
23. The existence of a magnetic field at some point in space can be determined by 
measuring the magnetic force F

S

B  exerted on an appropriate test particle placed at 
that point. This process is the same one we followed in defining the electric field 
in Chapter 23. If we perform such an experiment by placing a particle with charge 
q in the magnetic field, we find the following results that are similar to those for 
experiments on electric forces: 

•	The magnetic force is proportional to the charge q of the particle. 
•	The magnetic force on a negative charge is directed opposite to the force on 

a positive charge moving in the same direction. 
•	The magnetic force is proportional to the magnitude of the magnetic field vec-

tor B
S

. 

We also find the following results, which are totally different from those for experi-
ments on electric forces: 

•	The magnetic force is proportional to the speed v of the particle. 
•	 If the velocity vector makes an angle u with the magnetic field, the magnitude 

of the magnetic force is proportional to sin u. 
•	When a charged particle moves parallel to the magnetic field vector, the mag-

netic force on the charge is zero. 
•	When a charged particle moves in a direction not parallel to the magnetic 

field vector, the magnetic force acts in a direction perpendicular to both vS 
and B

S
; that is, the magnetic force is perpendicular to the plane formed by vS 

and B
S

. 

	 These results show that the magnetic force on a particle is more complicated than 
the electric force. The magnetic force is distinctive because it depends on the veloc-
ity of the particle and because its direction is perpendicular to both vS and B

S
. Figure 

29.4 (page 872) shows the details of the direction of the magnetic force on a charged 
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particle. Despite this complicated behavior, these observations can be summarized 
in a compact way by writing the magnetic force in the form

	 F
S

B 5 qvS 3 B
S

	 (29.1)

which by definition of the cross product (see Section 11.1) is perpendicular to  
both vS and B

S
. We can regard this equation as an operational definition of the mag-

netic field at some point in space. That is, the magnetic field is defined in terms of 
the force acting on a moving charged particle. Equation 29.1 is the mathematical 
representation of the magnetic version of the particle in a field analysis model.
	 Figure 29.5 reviews two right-hand rules for determining the direction of the 
cross product vS 3 B

S
 and determining the direction of F

S

B . The rule in Figure 29.5a 
depends on our right-hand rule for the cross product in Figure 11.2. Point the four 
fingers of your right hand along the direction of vS with the palm facing B

S
 and curl  

them toward B
S

. Your extended thumb, which is at a right angle to your fingers,  
points in the direction of vS 3 B

S
. Because F

S

B 5 q vS 3 B
S

, F
S

B  is in the direction of 
your thumb if q is positive and is opposite the direction of your thumb if q is nega-
tive. (If you need more help understanding the cross product, you should review 
Section 11.1, including Fig. 11.2.)
	 An alternative rule is shown in Figure 29.5b. Here the thumb points in the direc-
tion of vS and the extended fingers in the direction of B

S
. Now, the force F

S

B  on a 
positive charge extends outward from the palm. The advantage of this rule is that 
the force on the charge is in the direction you would push on something with your 

� Vector expression for the 
magnetic force on a 

charged particle moving in a 
magnetic field

u

vS

vS

vS

FB
S

FB
S

FB
S

B
S

B
S

�

�

�

The magnetic forces 
on oppositely charged 
particles moving at the 
same velocity in a 
magnetic field are in 
opposite directions.

a b

The magnetic force is 
perpendicular to both v and B.S S

Figure 29.4  ​(a) The direction 
of the magnetic force F

S

B  acting 
on a charged particle moving with 
a velocity vS in the presence of a 
magnetic field B

S
. (b) Magnetic 

forces on positive and negative 
charges. The dashed lines show 
the paths of the particles, which 
are investigated in Section 29.2.

B
S

FB
S

FB
S

a b

(1) Point your fingers in 
the direction of v and 
then curl them toward 
the direction of B.

S

S

(1) Point your fingers 
in the direction of B, 
with v coming out of 
your thumb.

S

S

B
S

vS

vS

(2) Your upright thumb 
shows the direction of 
the magnetic force on a 
positive particle.

(2) The magnetic 
force on a positive 
particle is in the 
direction you would 
push with your palm.

Figure 29.5  Two right-hand rules 
for determining the direction of 
the magnetic force F

S

B 5 q vS 3 B
S

 
acting on a particle with charge  
q moving with a velocity vS in a  
magnetic field B

S
. (a) In this rule, 

the magnetic force is in the direc-
tion in which your thumb points. 
(b) In this rule, the magnetic force 
is in the direction of your palm, as 
if you are pushing the particle with 
your hand.
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hand: outward from your palm. The force on a negative charge is in the opposite 
direction. You can use either of these two right-hand rules.
	 The magnitude of the magnetic force on a charged particle is

	 FB 5 |q |vB sin u	 (29.2)

where u is the smaller angle between vS and B
S

. From this expression, we see that FB 
is zero when vS is parallel or antiparallel to B

S
 (u 5 0 or 1808) and maximum when  

vS is perpendicular to B
S

 (u 5 908).
	 Let’s compare the important differences between the electric and magnetic ver-
sions of the particle in a field model:

•	The electric force vector is along the direction of the electric field, whereas 
the magnetic force vector is perpendicular to the magnetic field.

•	The electric force acts on a charged particle regardless of whether the par-
ticle is moving, whereas the magnetic force acts on a charged particle only 
when the particle is in motion.

•	The electric force does work in displacing a charged particle, whereas the 
magnetic force associated with a steady magnetic field does no work when a 
particle is displaced because the force is perpendicular to the displacement of 
its point of application.

	 From the last statement and on the basis of the work–kinetic energy theorem, we 
conclude that the kinetic energy of a charged particle moving through a magnetic 
field cannot be altered by the magnetic field alone. The field can alter the direc-
tion of the velocity vector, but it cannot change the speed or kinetic energy of the 
particle.
	 From Equation 29.2, we see that the SI unit of magnetic field is the newton per 
coulomb-meter per second, which is called the tesla (T):

	 1 T 5 1 
N

C # m/s
	

Because a coulomb per second is defined to be an ampere,

	 1 T 5 1 
N

A # m
	

A non-SI magnetic-field unit in common use, called the gauss (G), is related to the 
tesla through the conversion 1 T 5 104 G. Table 29.1 shows some typical values of 
magnetic fields.

Q	 uick Quiz 29.1 ​ An electron moves in the plane of this paper toward the top  
of the page. A magnetic field is also in the plane of the page and directed toward  
the right. What is the direction of the magnetic force on the electron? (a) toward 
the top of the page (b) toward the bottom of the page (c) toward the left edge  
of the page (d) toward the right edge of the page (e) upward out of the page  
(f) downward into the page

WW �Magnitude of the magnetic 
force on a charged particle 
moving in a magnetic field

WW The tesla

Table 29.1 Some Approximate Magnetic Field Magnitudes
Source of Field	 Field Magnitude (T)

Strong superconducting laboratory magnet	 30
Strong conventional laboratory magnet	 2
Medical MRI unit	 1.5
Bar magnet	 1022

Surface of the Sun	 1022

Surface of the Earth	 0.5 3 1024

Inside human brain (due to nerve impulses)	 10213



874	C hapter 29  Magnetic Fields

	

Example 29.1	     An Electron Moving in a Magnetic Field 

An electron in an old-style television picture tube moves 
toward the front of the tube with a speed of 8.0 3 106 m/s 
along the x axis (Fig. 29.6). Surrounding the neck of the tube 
are coils of wire that create a magnetic field of magnitude 
0.025 T, directed at an angle of 608 to the x axis and lying in 
the xy plane. Calculate the magnetic force on the electron.

Conceptualize  ​Recall that the magnetic force on a charged 
particle is perpendicular to the plane formed by the velocity 
and magnetic field vectors. Use one of the right-hand rules 
in Figure 29.5 to convince yourself that the direction of the force on the electron is downward in Figure 29.6.

Categorize  ​We evaluate the magnetic force using the magnetic version of the particle in a field model.

AM

S o l u t i o n

z

x

60�

y
B
S

FB
S

vS

�e

Figure 29.6  ​(Example 29.1) 
The magnetic force F

S

B  acting 
on the electron is in the nega-
tive z direction when vS and B

S
 

lie in the xy plane.

Analyze  Use Equation 29.2 to find the magnitude of the 
magnetic force:

FB 5 |q |vB sin u

5 (1.6 3 10219 C)(8.0 3 106 m/s)(0.025 T)(sin 608)

5  2.8 3 10214 N

Finalize  For practice using the vector product, evaluate this force in vector notation using Equation 29.1. The magni-
tude of the magnetic force may seem small to you, but remember that it is acting on a very small particle, the electron. 
To convince yourself that this is a substantial force for an electron, calculate the initial acceleration of the electron 
due to this force.

29.2	 �Motion of a Charged Particle in a Uniform 
Magnetic Field

Before we continue our discussion, some explanation of the notation used in this 
book is in order. To indicate the direction of B

S
 in illustrations, we sometimes pre

sent perspective views such as those in Figure 29.6. If B
S

 lies in the plane of the page 
or is present in a perspective drawing, we use green vectors or green field lines with 
arrowheads. In nonperspective illustrations, we depict a magnetic field perpendic-
ular to and directed out of the page with a series of green dots, which represent  
the tips of arrows coming toward you (see Fig. 29.7a). In this case, the field is labeled 

Imagine some source (which we 
will investigate later) establishes 
a magnetic field B

S
 throughout 

space. Now imagine a particle 
with charge q is placed in that 
field. The particle interacts with 
the magnetic field so that the 
particle experiences a magnetic 
force given by

	 F
S

B 5 q vS 3  B
S

	 (29.1)

Analysis Model	    Particle in a Field (Magnetic)

Examples:

•	 an ion moves in a circular path in the magnetic 
field of a mass spectrometer (Section 29.3)

•	 a coil in a motor rotates in response to the mag-
netic field in the motor (Chapter 31)

•	 a magnetic field is used to separate particles emit-
ted by radioactive sources (Chapter 44)

•	 in a bubble chamber, particles created in collisions 
follow curved paths in a magnetic field, allowing 
the particles to be identified (Chapter 46) 

z

x

y
B
S

S

FB � q v � B
S

q

vS

S
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a

b

Magnetic field lines coming 
out of the paper are indicated 
by dots, representing the tips 
of arrows coming outward.

Magnetic field lines going 
into the paper are indicated 
by crosses, representing the 
feathers of arrows going 
inward.

Bout
S

Bin
S

a

b

Magnetic field lines coming 
out of the paper are indicated 
by dots, representing the tips 
of arrows coming outward.

Magnetic field lines going 
into the paper are indicated 
by crosses, representing the 
feathers of arrows going 
inward.

Bout
S

Bin
S

Figure 29.7  Representations of 
magnetic field lines perpendicu-
lar to the page.

B
S

out. If B
S

 is directed perpendicularly into the page, we use green crosses, which 
represent the feathered tails of arrows fired away from you, as in Figure 29.7b. In 
this case, the field is labeled B

S

in, where the subscript “in” indicates “into the page.” 
The same notation with crosses and dots is also used for other quantities that might 
be perpendicular to the page such as forces and current directions.
	 In Section 29.1, we found that the magnetic force acting on a charged particle 
moving in a magnetic field is perpendicular to the particle’s velocity and conse-
quently the work done by the magnetic force on the particle is zero. Now consider 
the special case of a positively charged particle moving in a uniform magnetic field 
with the initial velocity vector of the particle perpendicular to the field. Let’s assume 
the direction of the magnetic field is into the page as in Figure 29.8. The particle 
in a field model tells us that the magnetic force on the particle is perpendicular to 
both the magnetic field lines and the velocity of the particle. The fact that there is 
a force on the particle tells us to apply the particle under a net force model to the 
particle. As the particle changes the direction of its velocity in response to the mag-
netic force, the magnetic force remains perpendicular to the velocity. As we found 
in Section 6.1, if the force is always perpendicular to the velocity, the path of the 
particle is a circle! Figure 29.8 shows the particle moving in a circle in a plane per-
pendicular to the magnetic field. Although magnetism and magnetic forces may be 
new and unfamiliar to you now, we see a magnetic effect that results in something 
with which we are familiar: the particle in uniform circular motion model!
	 The particle moves in a circle because the magnetic force F

S

B is perpendicu-
lar to vS and B

S
 and has a constant magnitude qvB. As Figure 29.8 illustrates, the  

Figure 29.8  When the velocity of 
a charged particle is perpendicular 
to a uniform magnetic field, the 
particle moves in a circular path in 
a plane perpendicular to B

S
.
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vS

FB
S

FB
S

FB
S

Bin
S

�

�

�

The magnetic force FB  acting on 
the charge is always directed 
toward the center of the circle.

S
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Figure 29.9  A charged parti-
cle having a velocity vector that 
has a component parallel to a 
uniform magnetic field moves 
in a helical path.

Helical
path

x

�q

z

y

�
B
S

rotation is counterclockwise for a positive charge in a magnetic field directed into 
the page. If q were negative, the rotation would be clockwise. We use the particle 
under a net force model to write Newton’s second law for the particle:

	 o F 5 FB 5 ma	

Because the particle moves in a circle, we also model it as a particle in uniform cir-
cular motion and we replace the acceleration with centripetal acceleration:

	 FB 5 qvB 5
mv2

r
	

This expression leads to the following equation for the radius of the circular path:

	 r 5
mv
qB

	 (29.3)

That is, the radius of the path is proportional to the linear momentum mv of the 
particle and inversely proportional to the magnitude of the charge on the parti-
cle and to the magnitude of the magnetic field. The angular speed of the particle 
(from Eq. 10.10) is

	 v 5
v
r

5
qB
m

	 (29.4)

The period of the motion (the time interval the particle requires to complete one 
revolution) is equal to the circumference of the circle divided by the speed of the 
particle:

	 T 5
2pr

v
5

2p

v
5

2pm
qB

	 (29.5)

These results show that the angular speed of the particle and the period of the 
circular motion do not depend on the speed of the particle or on the radius of the 
orbit. The angular speed v is often referred to as the cyclotron frequency because 
charged particles circulate at this angular frequency in the type of accelerator 
called a cyclotron, which is discussed in Section 29.3.
	 If a charged particle moves in a uniform magnetic field with its velocity at 
some arbitrary angle with respect to B

S
, its path is a helix. For example, if the 

field is directed in the x direction as shown in Figure 29.9, there is no component 
of force in the x direction. As a result, ax 5 0, and the x component of velocity 
remains constant. The charged particle is a particle in equilibrium in this direc-
tion. The magnetic force qvS 3 B

S
 causes the components vy and vz to change  

in time, however, and the resulting motion is a helix whose axis is parallel to the 
magnetic field. The projection of the path onto the yz plane (viewed along the x 
axis) is a circle. (The projections of the path onto the xy and xz planes are sinu-
soids!) Equations 29.3 to 29.5 still apply provided v is replaced by v' 5 !vy

2 1 vz
2.

v' 5 !vy
2 1 vz

2
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Example 29.2	     A Proton Moving Perpendicular to a Uniform Magnetic Field 

A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35-T magnetic field perpendicular to the velocity 
of the proton. Find the speed of the proton.

Conceptualize  ​From our discussion in this section, we know the proton follows a circular path when moving perpen-
dicular to a uniform magnetic field. In Chapter 39, we will learn that the highest possible speed for a particle is the 
speed of light, 3.00 3 108 m/s, so the speed of the particle in this problem must come out to be smaller than that value.

Categorize  ​The proton is described by both the particle in a field model and the particle in uniform circular motion model.
These models led to Equation 29.3. 

Analyze

AM

S o l u t i o n

Solve Equation 29.3 for the speed of the particle: v 5
qBr

mp
	

Substitute numerical values: v 5
11.60 3 10219 C 2 10.35 T 2 10.14 m 2

1.67 3 10227 kg
 	

5 4.7 3 106 m/s

Example 29.3	     Bending an Electron Beam 

In an experiment designed to measure the magnitude of a uniform magnetic field, 
electrons are accelerated from rest through a potential difference of 350 V and then 
enter a uniform magnetic field that is perpendicular to the velocity vector of the 
electrons. The electrons travel along a curved path because of the magnetic force 
exerted on them, and the radius of the path is measured to be 7.5 cm. (Such a curved 
beam of electrons is shown in Fig. 29.10.)

(A)  ​What is the magnitude of the magnetic field?

AM

Figure 29.10  ​(Example 29.3) 
The bending of an electron beam 
in a magnetic field.
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Finalize  The speed is indeed smaller than the speed of light, as required.

What if an electron, rather than a proton, moves in a direction perpendicular to the same magnetic field 
with this same speed? Will the radius of its orbit be different?

Answer  ​An electron has a much smaller mass than a proton, so the magnetic force should be able to change its velocity 
much more easily than that for the proton. Therefore, we expect the radius to be smaller. Equation 29.3 shows that r is 
proportional to m with q, B, and v the same for the electron as for the proton. Consequently, the radius will be smaller 
by the same factor as the ratio of masses me/mp.

What If ?

	

continued

Q	 uick Quiz 29.2 ​ A charged particle is moving perpendicular to a magnetic field 
in a circle with a radius r. (i) An identical particle enters the field, with vS perpen-
dicular to B

S
, but with a higher speed than the first particle. Compared with the 

radius of the circle for the first particle, is the radius of the circular path for the 
second particle (a) smaller, (b) larger, or (c) equal in size? (ii) The magnitude of 
the magnetic field is increased. From the same choices, compare the radius of 
the new circular path of the first particle with the radius of its initial path.
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(B)  ​What is the angular speed of the electrons?

S o l u t i o n

Finalize  ​The angular speed can be represented as v 5 (1.5 3 108 rad/s)(1 rev/2p rad) 5 2.4 3 107 rev/s. The electrons 
travel around the circle 24 million times per second! This answer is consistent with the very high speed found in part (A).

What if a sudden voltage surge causes the 
accelerating voltage to increase to 400 V? How does that 
affect the angular speed of the electrons, assuming the 
magnetic field remains constant?

Answer  ​The increase in accelerating voltage DV causes the 
electrons to enter the magnetic field with a higher speed 
v. This higher speed causes them to travel in a circle with 
a larger radius r. The angular speed is the ratio of v to r. 
Both v and r increase by the same factor, so the effects can-

What If ? cel and the angular speed remains the same. Equation 29.4 
is an expression for the cyclotron frequency, which is the 
same as the angular speed of the electrons. The cyclotron 
frequency depends only on the charge q, the magnetic 
field B, and the mass me , none of which have changed. 
Therefore, the voltage surge has no effect on the angu-
lar speed. (In reality, however, the voltage surge may also 
increase the magnetic field if the magnetic field is pow-
ered by the same source as the accelerating voltage. In that 
case, the angular speed increases according to Eq. 29.4.)

	

▸ 29.3 c o n t i n u e d

Analyze  ​Write the appropriate reduction of the con-
servation of energy equation, Equation 8.2, for the 
electron–electric field system:

DK 1 DU 5 0

Substitute the appropriate initial and final energies: 11
2mev

2 2 0 2 1 1q DV 2 5 0

Solve for the speed of the electron: v 5 Å
22q DV

me

Substitute numerical values: v 5 Å
22 121.60 3 10219 C 2 1350 V 2

9.11 3 10231 kg
 5 1.11 3 107 m/s 	

Now imagine the electron entering the magnetic 
field with this speed. Solve Equation 29.3 for the 
magnitude of the magnetic field:

B 5
mev
er

Substitute numerical values: B 5
19.11 3 10231 kg 2 11.11 3 107 m/s 2

11.60 3 10219 C 2 10.075 m 2 5 8.4 3 1024 T

Use Equation 10.10: v 5
v
r

5
1.11 3 107 m/s

0.075 m
5 1.5 3 108 rad/s

Conceptualize  ​This example involves electrons accelerating from rest due to an electric force and then moving in a 
circular path due to a magnetic force. With the help of Figures 29.8 and 29.10, visualize the circular motion of the 
electrons.

Categorize  ​Equation 29.3 shows that we need the speed v of the electron to find the magnetic field magnitude, and v 
is not given. Consequently, we must find the speed of the electron based on the potential difference through which it is 
accelerated. To do so, we categorize the first part of the problem by modeling an electron and the electric field as an iso-
lated system in terms of energy. Once the electron enters the magnetic field, we categorize the second part of the problem 
as one involving a particle in a field and a particle in uniform circular motion, as we have done in this section.

S o l u t i o n

	 When charged particles move in a nonuniform magnetic field, the motion is 
complex. For example, in a magnetic field that is strong at the ends and weak in the 
middle such as that shown in Figure 29.11, the particles can oscillate between two 
positions. A charged particle starting at one end spirals along the field lines until 
it reaches the other end, where it reverses its path and spirals back. This configura-
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tion is known as a magnetic bottle because charged particles can be trapped within it. 
The magnetic bottle has been used to confine a plasma, a gas consisting of ions and 
electrons. Such a plasma-confinement scheme could fulfill a crucial role in the con-
trol of nuclear fusion, a process that could supply us in the future with an almost 
endless source of energy. Unfortunately, the magnetic bottle has its problems. If a 
large number of particles are trapped, collisions between them cause the particles 
to eventually leak from the system.
	 The Van Allen radiation belts consist of charged particles (mostly electrons and 
protons) surrounding the Earth in doughnut-shaped regions (Fig. 29.12). The par-
ticles, trapped by the Earth’s nonuniform magnetic field, spiral around the field 
lines from pole to pole, covering the distance in only a few seconds. These par-
ticles originate mainly from the Sun, but some come from stars and other heavenly 
objects. For this reason, the particles are called cosmic rays. Most cosmic rays are 
deflected by the Earth’s magnetic field and never reach the atmosphere. Some of 
the particles become trapped, however, and it is these particles that make up the 
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such 
collisions are the origin of the beautiful aurora borealis, or northern lights, in 
the northern hemisphere and the aurora australis in the southern hemisphere. 
Auroras are usually confined to the polar regions because the Van Allen belts are 
nearest the Earth’s surface there. Occasionally, though, solar activity causes larger 
numbers of charged particles to enter the belts and significantly distort the normal 
magnetic field lines associated with the Earth. In these situations, an aurora can 
sometimes be seen at lower latitudes.

29.3	 �Applications Involving Charged Particles  
Moving in a Magnetic Field

A charge moving with a velocity vS in the presence of both an electric field E
S

 and 
a magnetic field B

S
 is described by two particle in a field models. It experiences 

both an electric force q E
S

 and a magnetic force qvS 3 B
S

. The total force (called the 
Lorentz force) acting on the charge is

	 F
S

5 q E
S

1 qvS 3 B
S

	 (29.6)

Figure 29.12  ​The Van Allen 
belts are made up of charged 
particles trapped by the Earth’s 
nonuniform magnetic field. The 
magnetic field lines are in green, 
and the particle paths are dashed 
black lines.

Path of
particle

The magnetic force exerted on 
the particle near either end of 
the bottle has a component that 
causes the particle to spiral back 
toward the center.

�

Figure 29.11  ​A charged particle 
moving in a nonuniform magnetic 
field (a magnetic bottle) spirals 
about the field and oscillates 
between the endpoints.
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Velocity Selector
In many experiments involving moving charged particles, it is important that all 
particles move with essentially the same velocity, which can be achieved by applying 
a combination of an electric field and a magnetic field oriented as shown in Figure 
29.13. A uniform electric field is directed to the right (in the plane of the page in 
Fig. 29.13), and a uniform magnetic field is applied in the direction perpendicular 
to the electric field (into the page in Fig. 29.13). If q is positive and the velocity  
vS is upward, the magnetic force q vS 3 B

S
 is to the left and the electric force q E

S
 is 

to the right. When the magnitudes of the two fields are chosen so that qE 5 qvB, 
the forces cancel. The charged particle is modeled as a particle in equilibrium and 
moves in a straight vertical line through the region of the fields. From the expres-
sion qE 5 qvB, we find that

	 v 5
E
B

	 (29.7)

Only those particles having this speed pass undeflected through the mutually perpen-
dicular electric and magnetic fields. The magnetic force exerted on particles moving 
at speeds greater than that is stronger than the electric force, and the particles are 
deflected to the left. Those moving at slower speeds are deflected to the right.

The Mass Spectrometer
A mass spectrometer separates ions according to their mass-to-charge ratio. In one 
version of this device, known as the Bainbridge mass spectrometer, a beam of ions first 
passes through a velocity selector and then enters a second uniform magnetic  
field B

S

0 that has the same direction as the magnetic field in the selector (Fig. 29.14). 
Upon entering the second magnetic field, the ions are described by the particle in 
uniform circular motion model. They move in a semicircle of radius r before strik-
ing a detector array at P. If the ions are positively charged, the beam deflects to the 
left as Figure 29.14 shows. If the ions are negatively charged, the beam deflects to 
the right. From Equation 29.3, we can express the ratio m/q as

	
m
q

5
rB 0

v
	

r

P

Velocity selector

q

Detector
array

Bin
S vS

E
S

 

B0, in
S

�

�

�

�

�

�

�

�

�

�

�

�

Figure 29.14  A mass spectrome-
ter. Positively charged particles are 
sent first through a velocity selector 
and then into a region where the 
magnetic field B

S

0  causes the parti-
cles to move in a semicircular path 
and strike a detector array at P.

Source

Slit

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Bin
S

E
S

FB
S

Fe
S

vS

�

Figure 29.13  A velocity selector. 
When a positively charged particle 
is moving with velocity vS in the pres-
ence of a magnetic field directed 
into the page and an electric field 
directed to the right, it experiences 
an electric force q E

S
 to the right and 

a magnetic force qvS 3 B
S

 to the left.
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Using Equation 29.7 gives

	
m
q

5
rB 0B

E
	 (29.8)

Therefore, we can determine m/q by measuring the radius of curvature and know-
ing the field magnitudes B, B0, and E. In practice, one usually measures the masses 
of various isotopes of a given ion, with the ions all carrying the same charge q. In 
this way, the mass ratios can be determined even if q is unknown.
	 A variation of this technique was used by J. J. Thomson (1856–1940) in 1897 
to measure the ratio e/me for electrons. Figure 29.15a shows the basic apparatus 
he used. Electrons are accelerated from the cathode and pass through two slits. 
They then drift into a region of perpendicular electric and magnetic fields. The 
magnitudes of the two fields are first adjusted to produce an undeflected beam. 
When the magnetic field is turned off, the electric field produces a measurable 
beam deflection that is recorded on the fluorescent screen. From the size of the 
deflection and the measured values of E and B, the charge-to-mass ratio can be 
determined. The results of this crucial experiment represent the discovery of the 
electron as a fundamental particle of nature.

The Cyclotron
A cyclotron is a device that can accelerate charged particles to very high speeds. 
The energetic particles produced are used to bombard atomic nuclei and thereby 
produce nuclear reactions of interest to researchers. A number of hospitals use 
cyclotron facilities to produce radioactive substances for diagnosis and treatment.
	 Both electric and magnetic forces play key roles in the operation of a cyclotron, 
a schematic drawing of which is shown in Figure 29.16a (page 882). The charges 
move inside two semicircular containers D1 and D2, referred to as dees because of 
their shape like the letter D. A high-frequency alternating potential difference is 
applied to the dees, and a uniform magnetic field is directed perpendicular to 
them. A positive ion released at P near the center of the magnet in one dee moves in 
a semicircular path (indicated by the dashed black line in the drawing) and arrives 
back at the gap in a time interval T/2, where T is the time interval needed to make 
one complete trip around the two dees, given by Equation 29.5. The frequency  
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Fluorescent
coating

Slits
Cathode

Deflection
plates

Magnetic field coil

Deflected
electron beam

Undeflected
electron beam�
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�

Electrons are accelerated from the cathode, pass through two slits, and 
are deflected by both an electric field (formed by the charged 
deflection plates) and a magnetic field (directed perpendicular to the 
electric field). The beam of electrons then strikes a fluorescent screen.
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Figure 29.15  ​(a) Thomson’s apparatus for measuring e/me. (b) J. J. Thomson (left) in the Cavendish Laboratory, University of Cambridge. 
The man on the right, Frank Baldwin Jewett, is a distant relative of John W. Jewett, Jr., coauthor of this text.

Pitfall Prevention 29.1
The Cyclotron Is Not the Only 
Type of Particle Accelerator  The 
cyclotron is important historically 
because it was the first particle 
accelerator to produce particles 
with very high speeds. Cyclo-
trons still play important roles in 
medical applications and some 
research activities. Many other 
research activities make use of a 
different type of accelerator called 
a synchrotron.
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of the applied potential difference is adjusted so that the polarity of the dees is 
reversed in the same time interval during which the ion travels around one dee. 
If the applied potential difference is adjusted such that D1 is at a lower electric 
potential than D2 by an amount DV, the ion accelerates across the gap to D1 and its 
kinetic energy increases by an amount q DV. It then moves around D1 in a semicir-
cular path of greater radius (because its speed has increased). After a time interval 
T/2, it again arrives at the gap between the dees. By this time, the polarity across 
the dees has again been reversed and the ion is given another “kick” across the 
gap. The motion continues so that for each half-circle trip around one dee, the ion 
gains additional kinetic energy equal to q DV. When the radius of its path is nearly 
that of the dees, the energetic ion leaves the system through the exit slit. The cyclo-
tron’s operation depends on T being independent of the speed of the ion and of 
the radius of the circular path (Eq. 29.5).
	 We can obtain an expression for the kinetic energy of the ion when it exits the 
cyclotron in terms of the radius R of the dees. From Equation 29.3, we know that  
v 5 qBR/m. Hence, the kinetic energy is

	 K 5 1
2mv2 5

q 2B 2R2

2m
	 (29.9)

	 When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic 
effects come into play. (Such effects are discussed in Chapter 39.) Observations show 
that T increases and the moving ions do not remain in phase with the applied poten-
tial difference. Some accelerators overcome this problem by modifying the period of 
the applied potential difference so that it remains in phase with the moving ions.

29.4	 �Magnetic Force Acting on a Current- 
Carrying Conductor

If a magnetic force is exerted on a single charged particle when the particle moves 
through a magnetic field, it should not surprise you that a current-carrying wire 
also experiences a force when placed in a magnetic field. The current is a collection 
of many charged particles in motion; hence, the resultant force exerted by the field 
on the wire is the vector sum of the individual forces exerted on all the charged 
particles making up the current. The force exerted on the particles is transmitted 
to the wire when the particles collide with the atoms making up the wire.
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B
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After being 
accelerated, the 
particles exit here.

The black, dashed, 
curved lines 
represent the path 
of the particles.
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Figure 29.16  ​(a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which an alternating potential differ-
ence is applied, and a uniform magnetic field. (The south pole of the magnet is not shown.) (b) The first cyclotron, invented by 
E. O. Lawrence and M. S. Livingston in 1934.
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When the 
current is 
upward, the 
wire deflects 
to the left.

When the 
current is 
downward, the 
wire deflects 
to the right.

When there is 
no current in 
the wire, the 
wire remains 
vertical.

a b c d

I � 0 
I

Bin
S

Bin
S

Bin
S

N

S

I

Figure 29.17  ​(a) A wire sus-
pended vertically between the 
poles of a magnet. (b)–(d) The 
setup shown in (a) as seen looking 
at the south pole of the magnet 
so that the magnetic field (green 
crosses) is directed into the page.

	 One can demonstrate the magnetic force acting on a current-carrying conduc-
tor by hanging a wire between the poles of a magnet as shown in Figure 29.17a. 
For ease in visualization, part of the horseshoe magnet in part (a) is removed to 
show the end face of the south pole in parts (b) through (d) of Figure 29.17. The 
magnetic field is directed into the page and covers the region within the shaded 
squares. When the current in the wire is zero, the wire remains vertical as in Figure 
29.17b. When the wire carries a current directed upward as in Figure 29.17c, how-
ever, the wire deflects to the left. If the current is reversed as in Figure 29.17d, the 
wire deflects to the right.
	 Let’s quantify this discussion by considering a straight segment of wire of 
length L and cross-sectional area A carrying a current I in a uniform magnetic 
field B

S
 as in Figure 29.18. According to the magnetic version of the particle 

in a field model, the magnetic force exerted on a charge q moving with a drift 
velocity vSd is q vSd 3 B

S
. To find the total force acting on the wire, we multiply  

the force q vSd 3 B
S

 exerted on one charge by the number of charges in the seg-
ment. Because the volume of the segment is AL, the number of charges in the seg-
ment is nAL, where n is the number of mobile charge carriers per unit volume. 
Hence, the total magnetic force on the segment of wire of length L is

	 F
S

B 5 1qvSd 3 B
S 2nAL 	

We can write this expression in a more convenient form by noting that, from Equa-
tion 27.4, the current in the wire is I 5 nqvdA. Therefore,

	 F
S

B 5 I L
S

3 B
S

	 (29.10)

where L
S

 is a vector that points in the direction of the current I and has a magni-
tude equal to the length L of the segment. This expression applies only to a straight 
segment of wire in a uniform magnetic field.
	 Now consider an arbitrarily shaped wire segment of uniform cross section in a 
magnetic field as shown in Figure 29.19 (page 884). It follows from Equation 29.10 
that the magnetic force exerted on a small segment of vector length d sS in the pres-
ence of a field B

S
 is

	 d F
S

B 5 I d sS 3 B
S

	 (29.11)

WW �Force on a segment of 
current-carrying wire in a 
uniform magnetic field

q

A

L

I

FB
S

Bin
S

vd
S

�

The average magnetic force 
exerted on a charge moving 
in the wire is qvd � B.S S

The magnetic force on the wire 
segment of length L is I L � B.

S S

Figure 29.18  ​A segment of a 
current-carrying wire in a mag-
netic field B

S
.
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Example 29.4	     Force on a Semicircular Conductor

A wire bent into a semicircle of radius R forms a closed circuit and carries a cur-
rent I. The wire lies in the xy plane, and a uniform magnetic field is directed along 
the positive y axis as in Figure 29.20. Find the magnitude and direction of the mag-
netic force acting on the straight portion of the wire and on the curved portion.

Conceptualize  ​Using the right-hand rule for cross products, we see that the force  
F
S

1 on the straight portion of the wire is out of the page and the force F
S

2 on the 
curved portion is into the page. Is F

S

2 larger in magnitude than F
S

1 because the 
length of the curved portion is longer than that of the straight portion?

Categorize  ​Because we are dealing with a current-carrying wire in a magnetic 
field rather than a single charged particle, we must use Equation 29.12 to find 
the total force on each portion of the wire.

S o l u t i o n

R

I

x

y

I

d

u

u

u

B
S

Sd s

Figure 29.20  ​(Example 29.4) The 
magnetic force on the straight portion 
of the loop is directed out of the page, 
and the magnetic force on the curved 
portion is directed into the page.

Analyze  Notice that d sS is perpendicular to B
S

 
everywhere on the straight portion of the wire. Use 
Equation 29.12 to find the force on this portion:

F
S

1 5 I 3
b

a
d sS 3 B

S
5 I 3

R

2R
B dx k̂ 5 2IRB k̂

where d F
S

B is directed out of the page for the directions of B
S

 and d sS in Figure 
29.19. Equation 29.11 can be considered as an alternative definition of B

S
. That is, 

we can define the magnetic field B
S

 in terms of a measurable force exerted on a 
current element, where the force is a maximum when B

S
 is perpendicular to the ele-

ment and zero when B
S

 is parallel to the element.
	 To calculate the total force F

S

B acting on the wire shown in Figure 29.19, we inte-
grate Equation 29.11 over the length of the wire:

	 F
S

B 5 I 3
b

a
 d sS 3 B

S
	 (29.12)

where a and b represent the endpoints of the wire. When this integration is carried 
out, the magnitude of the magnetic field and the direction the field makes with the 
vector d sS may differ at different points.

Q	 uick Quiz 29.3 ​ A wire carries current in the plane of this paper toward the top 
of the page. The wire experiences a magnetic force toward the right edge of the 
page. Is the direction of the magnetic field causing this force (a) in the plane of 
the page and toward the left edge, (b) in the plane of the page and toward the 
bottom edge, (c) upward out of the page, or (d) downward into the page?

I
B
S

Sd s

The magnetic force on any 
segment d s is I d s � B and 
is directed out of the page.

SS S

Figure 29.19  ​A wire segment 
of arbitrary shape carrying a 
current I in a magnetic field B

S
 

experiences a magnetic force.
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29.5	 �Torque on a Current Loop in a Uniform 
Magnetic Field

In Section 29.4, we showed how a magnetic force is exerted on a current-carrying 
conductor placed in a magnetic field. With that as a starting point, we now show 
that a torque is exerted on a current loop placed in a magnetic field.
	 Consider a rectangular loop carrying a current I in the presence of a uniform 
magnetic field directed parallel to the plane of the loop as shown in Figure 29.21a. 
No magnetic forces act on sides y and c because these wires are parallel to the 
field; hence, L

S
3 B

S
5 0 for these sides. Magnetic forces do, however, act on sides 

x and v because these sides are oriented perpendicular to the field. The magni-
tude of these forces is, from Equation 29.10,

F2 5 F4 5 IaB

b

a

I

O

b
2

I

I

I

B
S

B
S
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c

F2
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F4
S

Sides x and v are 
perpendicular to the magnetic 
field and experience forces.

a

b

No magnetic forces act on 
sides y and c because 
these sides are parallel to B.

The magnetic forces F2 and F4 
exerted on sides x and v 
create a torque that tends to 
rotate the loop clockwise.
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Sides x and v are 
perpendicular to the magnetic 
field and experience forces.
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b

No magnetic forces act on 
sides y and c because 
these sides are parallel to B.

The magnetic forces F2 and F4 
exerted on sides x and v 
create a torque that tends to 
rotate the loop clockwise.

S S

S

Figure 29.21  ​(a) Overhead view 
of a rectangular current loop in a 
uniform magnetic field. (b) Edge 
view of the loop sighting down 
sides x and v. The purple dot in 
the left circle represents current 
in wire x coming toward you; the 
purple cross in the right circle 
represents current in wire v mov-
ing away from you.

Substitute Equation (2) into Equation (1) and 
integrate over the angle u from 0 to p:

F
S

2 5 23
p

0
IRB sin u du k̂ 5 2IRB 3

p

0
sin u du k̂ 5 2IRB 32cos u 4p0  k̂

 5 IRB 1cos p 2 cos 0 2 k̂ 5 IRB 121 2 1 2 k̂ 5 22IRB k̂

Finalize  ​Two very important general statements follow from this example. First, the force on the curved portion is the 
same in magnitude as the force on a straight wire between the same two points. In general, the magnetic force on a 
curved current-carrying wire in a uniform magnetic field is equal to that on a straight wire connecting the endpoints 
and carrying the same current. Furthermore, F

S

1 1 F
S

2 5 0 is also a general result: the net magnetic force acting on  
any closed current loop in a uniform magnetic field is zero.

From the geometry in Figure 29.20, write an 
expression for ds :

(2)   ds 5 R du

To find the magnetic force on the curved part, 
first write an expression for the magnetic force 
d F

S

2 on the element d sS in Figure 29.20:

(1)   d F
S

2 5 Id sS 3 B
S

5 2IB sin u ds k̂ 	

	

▸ 29.4 c o n t i n u e d
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The direction of F
S

2, the magnetic force exerted on wire x, is out of the page in the 
view shown in Figure 29.20a and that of F

S

4, the magnetic force exerted on wire v, 
is into the page in the same view. If we view the loop from side c and sight along 
sides x and v, we see the view shown in Figure 29.21b, and the two magnetic forces 
F
S

2 and F
S

4 are directed as shown. Notice that the two forces point in opposite direc-
tions but are not directed along the same line of action. If the loop is pivoted so that 
it can rotate about point O, these two forces produce about O a torque that rotates 
the loop clockwise. The magnitude of this torque tmax is

	 tmax 5 F2 
b
2

1 F4 
b
2

5 1IaB 2 b
2

1 1IaB 2  b
2

5 IabB 	

where the moment arm about O is b/2 for each force. Because the area enclosed by 
the loop is A 5 ab, we can express the maximum torque as

	 tmax 5 IAB 	 (29.13)

This maximum-torque result is valid only when the magnetic field is parallel to 
the plane of the loop. The sense of the rotation is clockwise when viewed from 
side c as indicated in Figure 29.21b. If the current direction were reversed, 
the force directions would also reverse and the rotational tendency would be 
counterclockwise.
	 Now suppose the uniform magnetic field makes an angle u , 908 with a line 
perpendicular to the plane of the loop as in Figure 29.22. For convenience, let’s 
assume B

S
 is perpendicular to sides x and v. In this case, the magnetic forces F

S

1 
and F

S

3 exerted on sides y and c cancel each other and produce no torque because 
they act along the same line. The magnetic forces F

S

2 and F
S

4 acting on sides x and 
v, however, produce a torque about any point. Referring to the edge view shown  
in Figure 29.22, we see that the moment arm of F

S

2 about the point O is equal to 
(b/2) sin u. Likewise, the moment arm of F

S

4 about O is also equal to (b/2) sin u. 
Because F2 5 F4 5 IaB, the magnitude of the net torque about O is

t 5 F2 
b
2

 sin u 1 F4 
b
2

 sin u 

 5 IaB a b
2

 sin ub 1 IaB a b
2

 sin ub 5 IabB sin u

5 IAB sin u

where A 5 ab is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the 
loop (u 5 908) as discussed with regard to Figure 29.21 and is zero when the field is 
parallel to the normal to the plane of the loop (u 5 0).

Ob
2
– sin 

b
2
–

x

v

u u

u

F2
S

F4
S

B
S

A
S

When the normal to the loop 
makes an angle u with the 
magnetic field, the moment arm 
for the torque is (b/2) sin u.

Figure 29.22  An edge view 
of the loop in Figure 29.21 
with the normal to the loop 
at an angle u with respect to 
the magnetic field.
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(1) Curl your 
fingers in the 
direction of the 
current around 
the loop.

(2) Your thumb 
points in the 
direction of A  
and m. 

I

m
S

S

S

A
S

Figure 29.23  ​Right-hand rule for determining the direction 
of the vector A

S
 for a current loop. The direction of the mag-

netic moment mS is the same as the direction of A
S

.

	 A convenient vector expression for the torque exerted on a loop placed in a uni-
form magnetic field B

S
 is

	 tS 5 I A
S

3 B
S

	 (29.14)

where A
S

, the vector shown in Figure 29.22, is perpendicular to the plane of the 
loop and has a magnitude equal to the area of the loop. To determine the direc-
tion of A

S
, use the right-hand rule described in Figure 29.23. When you curl the 

fingers of your right hand in the direction of the current in the loop, your thumb 
points in the direction of A

S
. Figure 29.22 shows that the loop tends to rotate in 

the direction of decreasing values of u (that is, such that the area vector A
S

 rotates 
toward the direction of the magnetic field).
	 The product I A

S
 is defined to be the magnetic dipole moment mS (often simply 

called the “magnetic moment”) of the loop:

	 mS ; I A
S

	 (29.15)

The SI unit of magnetic dipole moment is the ampere-meter2 (A ? m2). If a coil of 
wire contains N loops of the same area, the magnetic moment of the coil is

	 mScoil 5 NI A
S

	 (29.16)

Using Equation 29.15, we can express the torque exerted on a current-carrying 
loop in a magnetic field B

S
 as

	 tS 5 mS 3 B
S

	 (29.17)

This result is analogous to Equation 26.18, tS 5 pS 3 E
S

, for the torque exerted on 
an electric dipole in the presence of an electric field E

S
, where pS is the electric 

dipole moment.
	 Although we obtained the torque for a particular orientation of B

S
 with respect 

to the loop, the equation tS 5 mS 3 B
S

 is valid for any orientation. Furthermore, 
although we derived the torque expression for a rectangular loop, the result is valid 
for a loop of any shape. The torque on an N -turn coil is given by Equation 29.17 by 
using Equation 29.16 for the magnetic moment.
	 In Section 26.6, we found that the potential energy of a system of an electric 
dipole in an electric field is given by UE 5 2pS ? E

S
. This energy depends on the 

orientation of the dipole in the electric field. Likewise, the potential energy of a 
system of a magnetic dipole in a magnetic field depends on the orientation of the 
dipole in the magnetic field and is given by

	 UB 5 2mS ? B
S

	 (29.18)

WW �Torque on a current loop in a 
magnetic field

WW �Magnetic dipole moment  
of a current loop

WW �Torque on a magnetic 
moment in a magnetic field

�Potential energy of a system 
of a magnetic moment in 

  a magnetic field
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This expression shows that the system has its lowest energy Umin 5 2mB when  
mS points in the same direction as B

S
. The system has its highest energy Umax 5 1mB 

when mS points in the direction opposite B
S

.
	 Imagine the loop in Figure 29.22 is pivoted at point O on sides  and , so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
ment. We will discuss motors in more detail in Section 31.5.

Q	 uick Quiz 29.4 ​ (i) Rank the magnitudes of the torques acting on the rectangu-
lar loops (a), (b), and (c) shown edge-on in Figure 29.24 from highest to lowest. 
All loops are identical and carry the same current. (ii) Rank the magnitudes of 
the net forces acting on the rectangular loops shown in Figure 29.24 from high-
est to lowest.

ca b

Figure 29.24  ​(Quick Quiz 
29.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
experiences the greatest net 
force?

	

Example 29.5	     The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  ​Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  ​The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  ​We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S o l u t i o n

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  ​What is the magnitude of the torque acting on the loop?

S o l u t i o n

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m
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Figure 29.25 (Example 29.6) (a) The dimensions of a rectangular current loop. 
(b) Edge view of the loop sighting down sides  and . (c) An edge view of the loop  
in (b) rotated through an angle with respect to the horizontal when it is placed in a 
magnetic field.

Analyze Evaluate the magnetic torque on 
the loop about side  from Equation 29.17:

5 2m sin 908 2 u 5 2IAB cos  k 5 2IabB cos  k

Evaluate the gravitational torque on the 
loop, noting that the gravitational force can 
be modeled to act at the center of the loop:

mg  sin  k

From the rigid body in equilibrium model, 
add the torques and set the net torque 
equal to zero:

5 2IabB cos mg  sin  k

Solve for IabB cos u 5 mg  sin tan u 5
IaB
mg

u 5 tan
IaB
mg

Substitute numerical values: u 5 tan
3.50 A 2 10.200 m 2 10.010 0 T

0.050 0 kg 2 19.80 m
1.64

Finalize The angle is relatively small, so the loop still hangs almost vertically. If the current  or the magnetic field  is 
increased, however, the angle increases as the magnetic torque becomes stronger.

Example 29.6     Rotating a Coil

Consider the loop of wire in Figure 29.25a. Imagine it is pivoted along side , which is parallel to the  axis and fas
tened so that side  remains fixed and the rest of the loop hangs vertically in the gravitational field of the Earth but 
can rotate around side  (Fig. 29.25b). The mass of the loop is 50.0 g, and the sides are of lengths  0.200 m and 

 0.100 m. The loop carries a current of 3.50 A and is immersed in a vertical uniform magnetic field of magnitude 
0.010 0 T in the positive  direction (Fig. 29.25c). What angle does the plane of the loop make with the vertical?

Conceptualize In the edge view of 
Figure 29.25b, notice that the mag
netic moment of the loop is to the left. 
Therefore, when the loop is in the 
magnetic field, the magnetic torque 
on the loop causes it to rotate in a 
clockwise direction around side 
which we choose as the rotation axis. 
Imagine the loop making this clock
wise rotation so that the plane of the 
loop is at some angle  to the vertical 
as in Figure 29.25c. The gravitational 
force on the loop exerts a torque that 
would cause a rotation in the counter
clockwise direction if the magnetic 
field were turned off.

Categorize At some angle of the loop, 
the two torques described in the Conceptualize step are equal in magnitude and the loop is at rest. We therefore 
model the loop as a rigid object in equilibrium.

S o l u i o n
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When the charge carriers are 
negative, the upper edge of the 
conductor becomes negatively 
charged and c is at a lower 
electric potential than a.

The charge carriers are no longer 
deflected when the edges become 
sufficiently charged that there is a 
balance between the electric force and 
the magnetic force.

When the charge carriers are 
positive, the upper edge of the 
conductor becomes positively 
charged and c is at a higher 
potential than a.

a b

Figure 29.27  ​The sign of the Hall voltage depends on the sign of the charge carriers.
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When I is in the x direction and 
B in the y direction, both positive 
and negative charge carriers are 
deflected upward in the 
magnetic field.
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Figure 29.26  ​To observe the 
Hall effect, a magnetic field is 
applied to a current-carrying con-
ductor. The Hall voltage is mea-
sured between points a and c.

29.6	 The Hall Effect
When a current-carrying conductor is placed in a magnetic field, a potential dif-
ference is generated in a direction perpendicular to both the current and the 
magnetic field. This phenomenon, first observed by Edwin Hall (1855–1938) in 
1879, is known as the Hall effect. The arrangement for observing the Hall effect 
consists of a f lat conductor carrying a current I in the x direction as shown in Fig-
ure 29.26. A uniform magnetic field B

S
 is applied in the y direction. If the charge 

carriers are electrons moving in the negative x direction with a drift velocity vSd, 
they experience an upward magnetic force F

S

B 5 qvSd 3 B
S

, are deflected upward, 
and accumulate at the upper edge of the flat conductor, leaving an excess of 
positive charge at the lower edge (Fig. 29.27a). This accumulation of charge at 
the edges establishes an electric field in the conductor and increases until the 
electric force on carriers remaining in the bulk of the conductor balances the 
magnetic force acting on the carriers. The electrons can now be described by 
the particle in equilibrium model, and they are no longer deflected upward. A 
sensitive voltmeter connected across the sample as shown in Figure 29.27 can 
measure the potential difference, known as the Hall voltage DVH, generated 
across the conductor.
	 If the charge carriers are positive and hence move in the positive x direction 
(for rightward current) as shown in Figures 29.26 and 29.27b, they also experience  
an upward magnetic force q vSd 3 B

S
, which produces a buildup of positive charge 

on the upper edge and leaves an excess of negative charge on the lower edge. 
Hence, the sign of the Hall voltage generated in the sample is opposite the sign of 
the Hall voltage resulting from the deflection of electrons. The sign of the charge 
carriers can therefore be determined from measuring the polarity of the Hall 
voltage.
	 In deriving an expression for the Hall voltage, first note that the magnetic force 
exerted on the carriers has magnitude qvdB. In equilibrium, this force is balanced 
by the electric force qE H, where E H is the magnitude of the electric field due to the 
charge separation (sometimes referred to as the Hall field). Therefore,

qvdB 5 qEH

EH 5 vdB

If d is the width of the conductor, the Hall voltage is

	 DVH 5 EHd 5 vdBd	 (29.19)
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Therefore, the measured Hall voltage gives a value for the drift speed of the charge 
carriers if d and B are known.
	 We can obtain the charge-carrier density n by measuring the current in the sam-
ple. From Equation 27.4, we can express the drift speed as

	 vd 5
I

nqA
	 (29.20)

where A is the cross-sectional area of the conductor. Substituting Equation 29.20 
into Equation 29.19 gives

	 DVH 5
IBd
nqA

	 (29.21)

Because A 5 td, where t is the thickness of the conductor, we can also express Equa-
tion 29.21 as

	 DVH 5
IB
nqt

5
R HIB

t
	 (29.22)

where RH 5 1/nq is called the Hall coefficient. This relationship shows that a prop-
erly calibrated conductor can be used to measure the magnitude of an unknown 
magnetic field.
	 Because all quantities in Equation 29.22 other than nq can be measured, a 
value for the Hall coefficient is readily obtainable. The sign and magnitude of RH 
give the sign of the charge carriers and their number density. In most metals, the 
charge carriers are electrons and the charge-carrier density determined from Hall-
effect measurements is in good agreement with calculated values for such metals as 
lithium (Li), sodium (Na), copper (Cu), and silver (Ag), whose atoms each give up 
one electron to act as a current carrier. In this case, n is approximately equal to the 
number of conducting electrons per unit volume. This classical model, however, is 
not valid for metals such as iron (Fe), bismuth (Bi), and cadmium (Cd) or for semi-
conductors. These discrepancies can be explained only by using a model based on 
the quantum nature of solids.

WW The Hall voltage

Example 29.7	     The Hall Effect for Copper

A rectangular copper strip 1.5 cm wide and 0.10 cm thick carries a current of 5.0 A. Find the Hall voltage for a 1.2-T 
magnetic field applied in a direction perpendicular to the strip.

Conceptualize  ​Study Figures 29.26 and 29.27 carefully and make sure you understand that a Hall voltage is developed 
between the top and bottom edges of the strip.

Categorize  ​We evaluate the Hall voltage using an equation developed in this section, so we categorize this example as 
a substitution problem.

S o l u t i o n

Assuming one electron per atom is avail-
able for conduction, find the charge-
carrier density in terms of the molar mass 
M and density r of copper:

n 5
NA

V
5

NAr

M
	

Substitute this result into Equation 29.22: DVH 5
IB
nqt

5
MIB

NA rqt

Substitute numerical values: DVH 5
10.063 5 kg/mol 2 15.0 A 2 11.2 T 2

16.02 3 1023 mol21 2 18 920 kg/m3 2 11.60 3 10219 C 2 10.001 0 m 2
5 0.44 mV continued
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Such an extremely small Hall voltage is expected in good conductors. (Notice that the width of the conductor is not 
needed in this calculation.)

What if the strip has the same dimensions but is made of a semiconductor? Will the Hall voltage be 
smaller or larger?

Answer  ​In semiconductors, n is much smaller than it is in metals that contribute one electron per atom to the cur-
rent; hence, the Hall voltage is usually larger because it varies as the inverse of n. Currents on the order of 0.1 mA 
are generally used for such materials. Consider a piece of silicon that has the same dimensions as the copper strip in 
this example and whose value for n is 1.0 3 1020 electrons/m3. Taking B 5 1.2 T and I 5 0.10 mA, we find that DVH 5  
7.5 mV. A potential difference of this magnitude is readily measured.

What If ?

	

▸ 29.7 c o n t i n u e d

Summary

  The magnetic dipole moment mS of a loop carrying a current I is

	 mS ; I A
S

	 (29.15)

where the area vector A
S

 is perpendicular to the plane of the loop and 0 AS 0 is equal to the area of the loop. The SI unit 
of mS is A ? m2.

Definition

Concepts and Principles

  If a charged particle moves in a uniform magnetic field so that its initial velocity is perpendicular to the field, the 
particle moves in a circle, the plane of which is perpendicular to the magnetic field. The radius of the circular path is

	 r 5
mv
qB

	 (29.3)

where m is the mass of the particle and q is its charge. The angular speed of the charged particle is

	 v 5
qB

m
	 (29.4)

  If a straight conductor of length L carries a current 
I, the force exerted on that conductor when it is placed 
in a uniform magnetic field B

S
 is

	 F
S

B 5 I L
S

3 B
S

	 (29.10)

where the direction of L
S

 is in the direction of the cur-
rent and 0 LS 0 5 L.

  The torque tS on a current loop placed in a uniform 
magnetic field B

S
 is

	 tS 5 mS 3 B
S

	 (29.17)

  If an arbitrarily shaped wire carrying a current I is 
placed in a magnetic field, the magnetic force exerted 
on a very small segment d sS is

	 d F
S

B 5 I d sS 3 B
S

	 (29.11)

To determine the total magnetic force on the wire, one 
must integrate Equation 29.11 over the wire, keeping  
in mind that both B

S
 and d sS may vary at each point.

  The potential energy of the system of a magnetic 
dipole in a magnetic field is

	 UB 5 2mS ? B
S

	 (29.18)
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Objective Questions 3, 4, and 6 in Chapter 11 can be 
assigned with this chapter as review for the vector product.

	 1.	 A spatially uniform magnetic field cannot exert a 
magnetic force on a particle in which of the following 
circumstances? There may be more than one correct 
statement. (a) The particle is charged. (b) The particle 
moves perpendicular to the magnetic field. (c) The 
particle moves parallel to the magnetic field. (d) The 
magnitude of the magnetic field changes with time.  
(e) The particle is at rest.

	 2.	 Rank the magnitudes of the forces exerted on the 
following particles from largest to smallest. In your 
ranking, display any cases of equality. (a) an electron 
moving at 1 Mm/s perpendicular to a 1-mT magnetic 
field (b) an electron moving at 1 Mm/s parallel to a 
1-mT magnetic field (c) an electron moving at 2 Mm/s 
perpendicular to a 1-mT magnetic field (d) a proton 
moving at 1 Mm/s perpendicular to a 1-mT magnetic 
field (e) a proton moving at 1 Mm/s at a 458 angle to a 
1-mT magnetic field

	 3.	 A particle with electric charge is fired into a region 
of space where the electric field is zero. It moves in 
a straight line. Can you conclude that the magnetic 
field in that region is zero? (a) Yes, you can. (b) No; 
the field might be perpendicular to the particle’s 
velocity. (c) No; the field might be parallel to the par-
ticle’s velocity. (d) No; the particle might need to have 
charge of the opposite sign to have a force exerted 
on it. (e) No; an observation of an object with electric 
charge gives no information about a magnetic field.

	 4.	 A proton moving horizontally enters a region where a 
uniform magnetic field is directed perpendicular to 
the proton’s velocity as shown in Figure OQ29.4. After 
the proton enters the field, does it (a) deflect down-
ward, with its speed remaining constant; (b) deflect 
upward, moving in a semicircular path with constant 
speed, and exit the field moving to the left; (c) continue 
to move in the horizontal direction with constant veloc-
ity; (d) move in a circular orbit and become trapped by 
the field; or (e) deflect out of the plane of the paper?

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Analysis Models for Problem Solving

  Particle in a Field (Magnetic)  A source (to be discussed in Chapter 30) establishes a 
magnetic field B

S
 throughout space. When a particle with charge q and moving with velocity 

vS is placed in that field, it experiences a magnetic force given by

	 F
S

B 5 q vS 3  B
S

	 (29.1)

The direction of this magnetic force is perpendicular both to the velocity of the particle and 
to the magnetic field. The magnitude of this force is

	 FB 5 0q 0 vB sin u	 (29.2)

where u is the smaller angle between vS and B
S

. The SI unit of B
S

 is the tesla (T), where 1 T 5 1 N/A · m.

z

x

y
B
S

S

FB � q v � B
S

q

vS

S

	 5.	 At a certain instant, a proton is moving in the positive 
x direction through a magnetic field in the negative z 
direction. What is the direction of the magnetic force 
exerted on the proton? (a) positive z direction (b) neg-
ative z direction (c) positive y direction (d) negative y 
direction (e) The force is zero.

	 6.	 A thin copper rod 1.00 m long has a mass of 50.0 g. 
What is the minimum current in the rod that would 
allow it to levitate above the ground in a magnetic field 
of magnitude 0.100 T? (a) 1.20 A (b) 2.40 A (c) 4.90 A 
(d) 9.80 A (e) none of those answers

	 7.	 Electron A is fired horizontally with speed 1.00 Mm/s 
into a region where a vertical magnetic field exists. 
Electron B is fired along the same path with speed  
2.00 Mm/s. (i)  Which electron has a larger magnetic 
force exerted on it? (a) A does. (b) B does. (c) The forces 
have the same nonzero magnitude. (d) The forces are 
both zero. (ii) Which electron has a path that curves 
more sharply? (a) A does. (b) B does. (c) The particles 
follow the same curved path. (d) The particles continue 
to go straight.

	 8.	 Classify each of the following statements as a charac-
teristic (a) of electric forces only, (b) of magnetic forces 
only, (c) of both electric and magnetic forces, or (d) of  
neither electric nor magnetic forces. (i) The force is 
proportional to the magnitude of the field exerting 
it. (ii) The force is proportional to the magnitude of 
the charge of the object on which the force is exerted. 
(iii) The force exerted on a negatively charged object is 
opposite in direction to the force on a positive charge. 
(iv) The force exerted on a stationary charged object 
is nonzero. (v) The force exerted on a moving charged 

�
vS

Figure OQ29.4
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circle (b) a parabola (c) a straight line (d) a more com-
plicated trajectory

	12.	Answer each question yes or no. Assume the motions 
and currents mentioned are along the x axis and fields 
are in the y direction. (a) Does an electric field exert 
a force on a stationary charged object? (b) Does a 
magnetic field do so? (c) Does an electric field exert a 
force on a moving charged object? (d) Does a magnetic 
field do so? (e) Does an electric field exert a force on a 
straight current-carrying wire? (f) Does a magnetic field 
do so? (g) Does an electric field exert a force on a beam 
of moving electrons? (h) Does a magnetic field do so?

	13.	A magnetic field exerts a torque on each of the current-
carrying single loops of wire shown in Figure OQ29.13. 
The loops lie in the xy plane, each carrying the same 
magnitude current, and the uniform magnetic field 
points in the positive x direction. Rank the loops by 
the magnitude of the torque exerted on them by the 
field from largest to smallest.

x (m)

y (m)

A B
C

4

3

2

1

54321 6

B
S

Figure OQ29.13

object is zero. (vi) The force exerted on a charged 
object is proportional to its speed. (vii) The force 
exerted on a charged object cannot alter the object’s 
speed. (viii) The magnitude of the force depends on 
the charged object’s direction of motion.

	 9.	 An electron moves horizontally across the Earth’s 
equator at a speed of 2.50 3 106 m/s and in a direction  
35.08 N of E. At this point, the Earth’s magnetic field 
has a direction due north, is parallel to the surface, and 
has a value of 3.00 3 1025 T. What is the force acting 
on the electron due to its interaction with the Earth’s 
magnetic field? (a) 6.88 3 10218 N due west (b) 6.88 3  
10218 N toward the Earth’s surface (c) 9.83 3 10218 N 
toward the Earth’s surface (d)  9.83  3 10218 N away 
from the Earth’s surface (e) 4.00 3 10218 N away from 
the Earth’s surface

	10.	A charged particle is traveling through a uniform mag-
netic field. Which of the following statements are true 
of the magnetic field? There may be more than one 
correct statement. (a) It exerts a force on the particle 
parallel to the field. (b) It exerts a force on the particle 
along the direction of its motion. (c) It increases the 
kinetic energy of the particle. (d) It exerts a force that 
is perpendicular to the direction of motion. (e) It does 
not change the magnitude of the momentum of the 
particle.

	11.	 In the velocity selector shown in Figure 29.13, electrons 
with speed v 5 E/B follow a straight path. Electrons 
moving significantly faster than this speed through the 
same selector will move along what kind of path? (a) a 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Can a constant magnetic field set into motion an elec-
tron initially at rest? Explain your answer.

	 2.	 Explain why it is not possible to determine the charge 
and the mass of a charged particle separately by mea-
suring accelerations produced by electric and mag-
netic forces on the particle.

	 3.	 Is it possible to orient a current loop in a uniform mag-
netic field such that the loop does not tend to rotate? 
Explain.

	 4.	 How can the motion of a moving charged particle be 
used to distinguish between a magnetic field and an 

electric field? Give a specific example to justify your 
argument.

	 5.	 How can a current loop be used to determine the pres-
ence of a magnetic field in a given region of space?

	 6.	 Charged particles from outer space, called cosmic rays, 
strike the Earth more frequently near the poles than 
near the equator. Why?

	 7.	 Two charged particles are projected in the same direc-
tion into a magnetic field perpendicular to their 
velocities. If the particles are deflected in opposite 
directions, what can you say about them?

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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Section 29.1 ​ Analysis Model: Particle in a Field (Magnetic)

Problems 1–4, 6–7, and 10 in Chapter 11 can be assigned 
with this section as review for the vector product.

	 1.	 At the equator, near the surface of the Earth, the mag-
netic field is approximately 50.0 mT northward, and 
the electric field is about 100 N/C downward in fair 
weather. Find the gravitational, electric, and magnetic 
forces on an electron in this environment, assum-
ing that the electron has an instantaneous velocity of  
6.00 3 106 m/s directed to the east.

	 2.	 Determine the initial direction of the deflection of 
charged particles as they enter the magnetic fields 
shown in Figure P29.2.
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a b
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Figure P29.2

	 3.	 Find the direction of the magnetic field acting on a 
positively charged particle moving in the various situ-
ations shown in Figure P29.3 if the direction of the 
magnetic force acting on it is as indicated.

 (out)

 (in)

FB
S

FB
S

FB
S

vS vS

vS

a b c

Figure P29.3

	 4.	 Consider an electron near the Earth’s equator. In 
which direction does it tend to deflect if its velocity 
is (a) directed downward? (b) Directed northward?  
(c) Directed westward? (d) Directed southeastward?

	 5.	 A proton is projected into a magnetic field that is 
directed along the positive x axis. Find the direction of 
the magnetic force exerted on the proton for each of 
the following directions of the proton’s velocity: (a) the 
positive y direction, (b) the negative y direction, (c) the 
positive x direction.

W

	 6.	 A proton moving at 4.00 3 106 m/s through a mag-
netic field of magnitude 1.70 T experiences a magnetic 
force of magnitude 8.20 3 10213 N. What is the angle 
between the proton’s velocity and the field?

	 7.	 An electron is accelerated through 2.40 3 103 V from 
rest and then enters a uniform 1.70-T magnetic field. 
What are (a) the maximum and (b) the minimum val-
ues of the magnetic force this particle experiences?

	 8.	 A proton moves with a velocity of vS 5
12 î 2 4 ĵ 1  k̂ 2  m/s in a region in which the magnetic 
field is B

S
5 1 î 1 2 ĵ 2 k̂ 2T. What is the magnitude of  

the magnetic force this particle experiences?

	 9.	 A proton travels with a speed of 5.02 3 106 m/s in a 
direction that makes an angle of 60.08 with the direc-
tion of a magnetic field of magnitude 0.180 T in the 
positive x direction. What are the magnitudes of  
(a) the magnetic force on the proton and (b) the pro-
ton’s acceleration?

	10.	A laboratory electromagnet produces a magnetic field 
of magnitude 1.50 T. A proton moves through this field 
with a speed of 6.00 3 106 m/s. (a) Find the magni-
tude of the maximum magnetic force that could be 
exerted on the proton. (b) What is the magnitude of 
the maximum acceleration of the proton? (c) Would 
the field exert the same magnetic force on an elec-
tron moving through the field with the same speed?  
(d) Would the electron experience the same accelera-
tion? Explain.

	11.	 A proton moves perpendicular to a uniform magnetic 
field B

S
 at a speed of 1.00 3 107 m/s and experiences 

an acceleration of 2.00 3 1013 m/s2 in the positive x 
direction when its velocity is in the positive z direction. 
Determine the magnitude and direction of the field.

	12.	Review. A charged particle of mass 1.50 g is moving at a 
speed of 1.50 3 104 m/s. Suddenly, a uniform magnetic 
field of magnitude 0.150 mT in a direction perpen-
dicular to the particle’s velocity is turned on and then 
turned off in a time interval of 1.00 s. During this time 
interval, the magnitude and direction of the velocity 
of the particle undergo a negligible change, but the 
particle moves by a distance of 0.150 m in a direction 
perpendicular to the velocity. Find the charge on the 
particle.

Section 29.2 ​ Motion of a Charged Particle in a Uniform 
Magnetic Field

	13.	An electron moves in a circular path perpendicular to 
a uniform magnetic field with a magnitude of 2.00 mT. 
If the speed of the electron is 1.50 3 107 m/s, deter-
mine (a)  the radius of the circular path and (b) the 
time interval required to complete one revolution.

	14.	An accelerating voltage of 2.50 3 103 V is applied to an 
electron gun, producing a beam of electrons originally 
traveling horizontally north in vacuum toward the cen-
ter of a viewing screen 35.0 cm away. What are (a) the 
magnitude and (b) the direction of the deflection on 
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	22.	Assume the region to the right of a certain plane con-
tains a uniform magnetic field of magnitude 1.00 mT 
and the field is zero in the region to the left of the 
plane as shown in Figure P29.22. An electron, origi-
nally traveling perpendicular to the boundary plane, 
passes into the region of the field. (a) Determine the 
time interval required for the electron to leave the 
“field-filled” region, noting that the electron’s path is a 
semicircle. (b) Assuming the maximum depth of pene-
tration into the field is 2.00 cm, find the kinetic energy 
of the electron.

vS

B � 0 B � 1.00 mT

e�

Figure P29.22

	23.	A singly charged ion of mass m is accelerated from rest 
by a potential difference DV. It is then deflected by a 
uniform magnetic field (perpendicular to the ion’s 
velocity) into a semicircle of radius R. Now a doubly 
charged ion of mass m9 is accelerated through the 
same potential difference and deflected by the same 
magnetic field into a semicircle of radius R 9 5 2R. 
What is the ratio of the masses of the ions?

Section 29.3 ​ Applications Involving Charged Particles 
Moving in a Magnetic Field

	24.	A cyclotron designed to accelerate protons has a mag-
netic field of magnitude 0.450 T over a region of radius 
1.20 m. What are (a) the cyclotron frequency and (b) the  
maximum speed acquired by the protons?

	25.	Consider the mass spectrometer shown schematically 
in Figure 29.14. The magnitude of the electric field 
between the plates of the velocity selector is 2.50 3 
103  V/m, and the magnetic field in both the velocity 
selector and the deflection chamber has a magnitude 
of 0.035 0 T. Calculate the radius of the path for a sin-
gly charged ion having a mass m 5 2.18 3 10226 kg.

	26.	Singly charged uranium-238 ions are accelerated 
through a potential difference of 2.00 kV and enter a 
uniform magnetic field of magnitude 1.20 T directed 
perpendicular to their velocities. (a) Determine the 
radius of their circular path. (b) Repeat this calcula-
tion for uranium-235 ions. (c) What If? How does the 
ratio of these path radii depend on the accelerating 
voltage? (d) On the magnitude of the magnetic field?

	27.	A cyclotron (Fig. 29.16) designed to accelerate pro-
tons has an outer radius of 0.350 m. The protons are 
emitted nearly at rest from a source at the center and 
are accelerated through 600 V each time they cross 
the gap between the dees. The dees are between the 
poles of an electromagnet where the field is 0.800 T. 
(a) Find the cyclotron frequency for the protons in 
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the screen caused by the Earth’s gravitational field? 
What are (c) the magnitude and (d) the direction of 
the deflection on the screen caused by the vertical com-
ponent of the Earth’s magnetic field, taken as 20.0 mT  
down? (e) Does an electron in this vertical magnetic 
field move as a projectile, with constant vector accel-
eration perpendicular to a constant northward com-
ponent of velocity? (f) Is it a good approximation to 
assume it has this projectile motion? Explain.

	15.	A proton (charge 1e, mass mp), a deuteron (charge 1e, 
mass 2mp), and an alpha particle (charge 12e, mass 
4mp) are accelerated from rest through a common 
potential difference DV. Each of the particles enters a 
uniform magnetic field B

S
, with its velocity in a direc-

tion perpendicular to B
S

. The proton moves in a circu-
lar path of radius rp. In terms of rp, determine (a) the  
radius rd of the circular orbit for the deuteron and  
(b) the radius ra for the alpha particle.

	16.	A particle with charge q and kinetic energy K travels in 
a uniform magnetic field of magnitude B. If the par-
ticle moves in a circular path of radius R, find expres-
sions for (a) its speed and (b) its mass.

	17.	 Review. One electron collides elastically with a second 
electron initially at rest. After the collision, the radii of 
their trajectories are 1.00 cm and 2.40 cm. The trajec-
tories are perpendicular to a uniform magnetic field 
of magnitude 0.044 0 T. Determine the energy (in 
keV) of the incident electron.

	18.	Review. One electron collides elastically with a second 
electron initially at rest. After the collision, the radii of 
their trajectories are r1 and r2. The trajectories are per-
pendicular to a uniform magnetic field of magnitude B. 
Determine the energy of the incident electron.

	19.	Review. An electron moves in a circular path perpen-
dicular to a constant magnetic field of magnitude  
1.00 mT. The angular momentum of the electron 
about the center of the circle is 4.00 3 10225 kg ? m2/s. 
Determine (a) the radius of the circular path and  
(b) the speed of the electron.

	20.	Review. A 30.0-g metal ball having net charge Q 5 
5.00 mC is thrown out of a window horizontally north 
at a speed v 5 20.0 m/s. The window is at a height h 5 
20.0 m above the ground. A uniform, horizontal mag-
netic field of magnitude B 5 0.010 0 T is perpendicular 
to the plane of the ball’s trajectory and directed toward 
the west. (a) Assuming the ball follows the same trajec-
tory as it would in the absence of the magnetic field, 
find the magnetic force acting on the ball just before it 
hits the ground. (b) Based on the result of part (a), is it 
justified for three-significant-digit precision to assume 
the trajectory is unaffected by the magnetic field? 
Explain.

	21.	 A cosmic-ray proton in interstellar space has an energy 
of 10.0 MeV and executes a circular orbit having a 
radius equal to that of Mercury’s orbit around the 
Sun (5.80 3 1010 m). What is the magnetic field in that 
region of space?
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deflection plates. Suppose an electron beam is acceler-
ated through a 50.0-kV potential difference and then 
through a region of uniform magnetic field 1.00 cm 
wide. The screen is located 10.0 cm from the center of 
the coils and is 50.0 cm wide. When the field is turned 
off, the electron beam hits the center of the screen. 
Ignoring relativistic corrections, what field magnitude is 
necessary to deflect the beam to the side of the screen?

Section 29.4 ​ Magnetic Force Acting on a Current- 
Carrying Conductor

	32.	A straight wire carrying a 3.00-A current is placed in a 
uniform magnetic field of magnitude 0.280 T directed 
perpendicular to the wire. (a) Find the magnitude of 
the magnetic force on a section of the wire having a 
length of 14.0 cm. (b) Explain why you can’t determine 
the direction of the magnetic force from the informa-
tion given in the problem.

	33.	A conductor carrying a current I 5 15.0 A is directed 
along the positive x axis and perpendicular to a uni-
form magnetic field. A magnetic force per unit length 
of 0.120 N/m acts on the conductor in the negative y 
direction. Determine (a) the magnitude and (b) the 
direction of the magnetic field in the region through 
which the current passes.

	34.	A wire 2.80 m in length carries a current of 5.00 A in 
a region where a uniform magnetic field has a magni-
tude of 0.390 T. Calculate the magnitude of the mag-
netic force on the wire assuming the angle between the 
magnetic field and the current is (a) 60.08, (b) 90.08, 
and (c) 1208.

	35.	A wire carries a steady current of 2.40 A. A straight  
section of the wire is 0.750 m long and lies along the 
x axis within a uniform magnetic field, B

S
5 1.60 k̂ T . 

If the current is in the positive x direction, what is the 
magnetic force on the section of wire?

	36.	Why is the following situation impossible? Imagine a cop-
per wire with radius 1.00 mm encircling the Earth at 
its magnetic equator, where the field direction is hor-
izontal. A power supply delivers 100 MW to the wire 
to maintain a current in it, in a direction such that 
the magnetic force from the Earth’s magnetic field is 
upward. Due to this force, the wire is levitated immedi-
ately above the ground.

	37.	 Review. A rod of mass 0.720 kg and radius 6.00 cm 
rests on two parallel rails (Fig. P29.37) that are d 5 
12.0 cm apart and L 5 45.0 cm long. The rod carries a 
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this cyclotron. Find (b) the speed at which protons exit 
the cyclotron and (c) their maximum kinetic energy. 
(d) How many revolutions does a proton make in the 
cyclotron? (e) For what time interval does the proton 
accelerate?

	28.	A particle in the cyclotron shown in Figure 29.16a 
gains energy q DV from the alternating power supply 
each time it passes from one dee to the other. The time 
interval for each full orbit is

T 5
2p

v
5

2pm
qB

		  so the particle’s average rate of increase in energy is

2q DV

T
5

q 2B DV

pm

		  Notice that this power input is constant in time. On the 
other hand, the rate of increase in the radius r of its 
path is not constant. (a) Show that the rate of increase 
in the radius r of the particle’s path is given by

dr
dt

5
1
r
  

DV
pB

		  (b) Describe how the path of the particles in Figure 
29.16a is consistent with the result of part (a). (c) At 
what rate is the radial position of the protons in a 
cyclotron increasing immediately before the protons 
leave the cyclotron? Assume the cyclotron has an outer 
radius of 0.350  m, an accelerating voltage of DV 5  
600 V, and a magnetic field of magnitude 0.800 T. 
(d) By how much does the radius of the protons’ path 
increase during their last full revolution?

	29.	A velocity selector consists of electric and magnetic 
fields described by the expressions E

S
5 E k̂  and B

S
5

B ĵ, with B 5 15.0 mT. Find the value of E such that a 
750-eV electron moving in the negative x direction is 
undeflected.

	30.	In his experiments on “cathode rays” during which he 
discovered the electron, J. J. Thomson showed that the 
same beam deflections resulted with tubes having cath-
odes made of different materials and containing various 
gases before evacuation. (a) Are these observations 
important? Explain your answer. (b) When he applied 
various potential differences to the deflection plates 
and turned on the magnetic coils, alone or in combina-
tion with the deflection plates, Thomson observed that 
the fluorescent screen continued to show a single small 
glowing patch. Argue whether his observation is impor-
tant. (c) Do calculations to show that the charge-to-
mass ratio Thomson obtained was huge compared with 
that of any macroscopic object or of any ionized atom or 
molecule. How can one make sense of this comparison? 
(d) Could Thomson observe any deflection of the beam 
due to gravitation? Do a calculation to argue for your 
answer. Note: To obtain a visibly glowing patch on the 
fluorescent screen, the potential difference between 
the slits and the cathode must be 100 V or more.

	31.	 The picture tube in an old black-and-white television 
uses magnetic deflection coils rather than electric 
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Figure P29.37  Problems 37 and 38.
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current of I 5 48.0 A in the direction shown and rolls 
along the rails without slipping. A uniform magnetic 
field of magnitude 0.240 T is directed perpendicular 
to the rod and the rails. If it starts from rest, what is the 
speed of the rod as it leaves the rails?

	38.	Review. A rod of mass m and radius R rests on two 
parallel rails (Fig. P29.37) that are a distance d apart 
and have a length L. The rod carries a current I in the 
direction shown and rolls along the rails without slip-
ping. A uniform magnetic field B is directed perpen-
dicular to the rod and the rails. If it starts from rest, 
what is the speed of the rod as it leaves the rails?

	39.	A wire having a mass per unit length of 0.500 g/cm 
carries a 2.00-A current horizontally to the south. 
What are (a) the direction and (b) the magnitude of 
the minimum magnetic field needed to lift this wire 
vertically upward?

	40.	Consider the system pictured in Figure P29.40. A  
15.0-cm horizontal wire of mass 15.0 g is placed 
between two thin, vertical conductors, and a uniform 
magnetic field acts perpendicular to the page. The 
wire is free to move vertically without friction on the 
two vertical conductors. When a 5.00-A current is 
directed as shown in the figure, the horizontal wire 
moves upward at constant velocity in the presence of 
gravity. (a) What forces act on the horizontal wire, 
and (b) under what condition is the wire able to move 
upward at constant velocity? (c) Find the magnitude 
and direction of the minimum magnetic field required 
to move the wire at constant speed. (d) What happens 
if the magnetic field exceeds this minimum value?

5.00 A

15.0 cm

5.00 A
5.00 A

Figure P29.40

	41.	A horizontal power line of length 58.0 m carries a cur-
rent of 2.20 kA northward as shown in Figure P29.41. 
The Earth’s magnetic field at this location has a mag-
nitude of 5.00 3 1025 T. The field at this location is 
directed toward the north at an angle 65.08 below the 
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power line. Find (a) the magnitude and (b) the direc-
tion of the magnetic force on the power line.

	42.	A strong magnet is placed under a horizontal conduct-
ing ring of radius r that carries current I as shown in 
Figure P29.42. If the magnetic field B

S
 makes an angle 

u with the vertical at the ring’s location, what are  
(a) the magnitude and (b) the direction of the resul-
tant magnetic force on the ring?

N

I

r

B
S

u u

Figure P29.42

	43.	Assume the Earth’s magnetic field is 52.0 mT north-
ward at 60.08 below the horizontal in Atlanta, Geor-
gia. A tube in a neon sign stretches between two 
diagonally opposite corners of a shop window—which 
lies in a north–south vertical plane—and carries cur-
rent 35.0 mA. The current enters the tube at the bot-
tom south corner of the shop’s window. It exits at the 
opposite corner, which is 1.40 m farther north and  
0.850 m higher up. Between these two points, the glow-
ing tube spells out DONUTS. Determine the total vec-
tor magnetic force on the tube. Hint: You may use the 
first “important general statement” presented in the 
Finalize section of Example 29.4.

	44.	In Figure P29.44, the cube is 40.0 cm on each edge. 
Four straight segments of wire—ab, bc, cd, and da—
form a closed loop that carries a current I 5 5.00 A 
in the direction shown. A uniform magnetic field of 
magnitude B 5 0.020 0 T is in the positive y direction. 
Determine the magnetic force vector on (a) ab, (b) bc, 
(c) cd, and (d) da. (e) Explain how you could find the 
force exerted on the fourth of these segments from the 
forces on the other three, without further calculation 
involving the magnetic field.

y

x

a

b
cz

d
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I

Figure P29.44

Section 29.5 ​ Torque on a Current Loop in a Uniform 
Magnetic Field

	45.	A typical magnitude of the external magnetic field in 
a cardiac catheter ablation procedure using remote 
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half revolution. This process is repeated to cause the 
rotor to turn steadily at an angular speed of 3.60  3 
103 rev/min. (a) Find the maximum torque acting on 
the rotor. (b) Find the peak power output of the motor. 
(c) Determine the amount of work performed by the 
magnetic field on the rotor in every full revolution. 
(d) What is the average power of the motor?

	51.	 A rectangular coil consists of N 5 100 closely wrapped 
turns and has dimensions a 5 0.400 m and b 5 0.300 m.  
The coil is hinged along the y axis, and its plane 
makes an angle u 5 30.08 with the x axis (Fig. P29.51). 
(a)  What is the magnitude of the torque exerted on 
the coil by a uniform magnetic field B 5 0.800  T 
directed in the positive x direction when the current 
is I 5 1.20 A in the direction shown? (b) What is the 
expected direction of rotation of the coil?
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Figure P29.51

	52.	A rectangular loop of wire has dimensions 0.500 m by 
0.300 m. The loop is pivoted at the x axis and lies in the 
xy plane as shown in Figure P29.52. A uniform mag-
netic field of magnitude 1.50 T is directed at an angle of 
40.08 with respect to the y axis with field lines parallel 
to the yz plane. The loop carries a current of 0.900 A in 
the direction shown. (Ignore gravitation.) We wish to 
evaluate the torque on the current loop. (a) What is the 
direction of the magnetic force exerted on wire seg-
ment ab? (b) What is the direction of the torque associ-
ated with this force about an axis through the origin? 
(c) What is the direction of the magnetic force exerted 
on segment cd ? (d) What is the direction of the torque 
associated with this force about an axis through the ori-
gin? (e) Can the forces examined in parts (a) and (c) 
combine to cause the loop to rotate around the x axis? 
(f) Can they affect the motion of the loop in any way? 
Explain. (g) What is the direction of the magnetic force 
exerted on segment bc? (h) What is the direction of the 
torque associated with this force about an axis through 
the origin? (i) What is the torque on segment ad about 
an axis through the origin? ( j) From the point of view 
of Figure P29.52, once the loop is released from rest at 
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magnetic navigation is B 5 0.080 T. Suppose that the 
permanent magnet in the catheter used in the proce-
dure is inside the left atrium of the heart and subject to 
this external magnetic field. The permanent magnet 
has a magnetic moment of 0.10 A ? m2. The orientation 
of the permanent magnet is 30° from the direction of 
the external magnetic field lines. (a) What is the mag-
nitude of the torque on the tip of the catheter contain-
ing this permanent magnet? (b) What is the potential 
energy of the system consisting of the permanent mag-
net in the catheter and the magnetic field provided by 
the external magnets?

	46.	A 50.0-turn circular coil of radius 5.00 cm can be ori-
ented in any direction in a uniform magnetic field hav-
ing a magnitude of 0.500 T. If the coil carries a current 
of 25.0 mA, find the magnitude of the maximum pos-
sible torque exerted on the coil.

	47.	A magnetized sewing needle has a magnetic moment 
of 9.70 mA ? m2. At its location, the Earth’s magnetic 
field is 55.0 mT northward at 48.08 below the horizon-
tal. Identify the orientations of the needle that rep-
resent (a) the minimum potential energy and (b) the 
maximum potential energy of the needle–field sys-
tem. (c) How much work must be done on the system 
to move the needle from the minimum to the maxi-
mum potential energy orientation?

	48.	A current of 17.0 mA is maintained in a single circu-
lar loop of 2.00 m circumference. A magnetic field of  
0.800 T is directed parallel to the plane of the loop.  
(a) Calculate the magnetic moment of the loop.  
(b) What is the magnitude of the torque exerted by  
the magnetic field on the loop?

	49.	An eight-turn coil encloses an elliptical area having a 
major axis of 40.0 cm and a minor axis of 30.0 cm (Fig. 
P29.49). The coil lies in the plane of the page and has 
a 6.00-A current flowing clockwise around it. If the coil 
is in a uniform magnetic field of 2.00 3 1024 T directed 
toward the left of the page, what is the magnitude of the 
torque on the coil? Hint: The area of an ellipse is A 5  
pab, where a and b are, respectively, the semimajor and 
semiminor axes of the ellipse.

I

B
S 40.0 cm

30.0 cm

Figure P29.49

	50.	The rotor in a certain electric motor is a flat, rectangu-
lar coil with 80 turns of wire and dimensions 2.50 cm 
by 4.00 cm. The rotor rotates in a uniform magnetic 
field of 0.800 T. When the plane of the rotor is per-
pendicular to the direction of the magnetic field, the 
rotor carries a current of 10.0 mA. In this orientation, 
the magnetic moment of the rotor is directed opposite 
the magnetic field. The rotor then turns through one-
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pipe. (b) Show that the section of liquid in the magnetic 
field experiences a pressure increase JLB. (c) After the 
blood leaves the pump, is it charged? (d) Is it carrying 
current? (e) Is it magnetized? (The same electromag-
netic pump can be used for any fluid that conducts elec-
tricity, such as liquid sodium in a nuclear reactor.)
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h

Figure P29.58

	59.	A particle with positive charge q 5 3.20 3 10219 C  
moves with a velocity vS 5 12 î 1 3 ĵ 2 k̂ 2  m/s through  
a region where both a uniform magnetic field and a 
uniform electric field exist. (a) Calculate the total force 
on the moving particle (in unit-vector notation), taking 
B
S

5  12 î 1 4 ĵ 1 k̂ 2  T and E
S

 5 14 î 2 ĵ 2 2k̂ 2  V/m.  
(b) What angle does the force vector make with the 
positive x axis?

	60.	Figure 29.11 shows a charged particle traveling in a 
nonuniform magnetic field forming a magnetic bottle.  
(a) Explain why the positively charged particle in the 
figure must be moving clockwise when viewed from the 
right of the figure. The particle travels along a helix 
whose radius decreases and whose pitch decreases as 
the particle moves into a stronger magnetic field. If the 
particle is moving to the right along the x axis, its veloc-
ity in this direction will be reduced to zero and it will 
be reflected from the right-hand side of the bottle, act-
ing as a “magnetic mirror.” The particle ends up bounc-
ing back and forth between the ends of the bottle.  
(b) Explain qualitatively why the axial velocity is reduced 
to zero as the particle moves into the region of strong 
magnetic field at the end of the bottle. (c) Explain 
why the tangential velocity increases as the particle 
approaches the end of the bottle. (d) Explain why the 
orbiting particle has a magnetic dipole moment.

	61.	 Review. The upper portion of the circuit in Figure 
P29.61 is fixed. The horizontal wire at the bottom has 
a mass of 10.0 g and is 5.00 cm long. This wire hangs in 
the gravitational field of the Earth from identical light 
springs connected to the upper portion of the circuit. 
The springs stretch 0.500 cm under the weight of the 

M

Q/C
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the position shown, will it rotate clockwise or counter-
clockwise around the x axis? (k) Compute the magni-
tude of the magnetic moment of the loop. (l) What is 
the angle between the magnetic moment vector and the 
magnetic field? (m)  Compute the torque on the loop 
using the results to parts (k) and (l).

	53.	A wire is formed into a circle having a diameter of  
10.0 cm and is placed in a uniform magnetic field of 
3.00 mT. The wire carries a current of 5.00 A. Find  
(a) the maximum torque on the wire and (b) the range 
of potential energies of the wire–field system for differ-
ent orientations of the circle.

Section 29.6 ​ The Hall Effect

	54.	A Hall-effect probe operates with a 120-mA current. 
When the probe is placed in a uniform magnetic field 
of magnitude 0.080 0 T, it produces a Hall voltage of 
0.700 mV. (a) When it is used to measure an unknown 
magnetic field, the Hall voltage is 0.330 mV. What is the 
magnitude of the unknown field? (b) The thickness 
of the probe in the direction of B

S
 is 2.00 mm. Find 

the density of the charge carriers, each of which has 
charge of magnitude e.

	55.	In an experiment designed to measure the Earth’s 
magnetic field using the Hall effect, a copper bar  
0.500 cm thick is positioned along an east–west direc-
tion. Assume n 5 8.46 3 1028 electrons/m3 and the 
plane of the bar is rotated to be perpendicular to the 
direction of B

S
. If a current of 8.00 A in the conductor 

results in a Hall voltage of 5.10 3 10212 V, what is the 
magnitude of the Earth’s magnetic field at this location?

Additional Problems

	56.	Carbon-14 and carbon-12 ions (each with charge of 
magnitude e) are accelerated in a cyclotron. If the cyclo-
tron has a magnetic field of magnitude 2.40 T, what is 
the difference in cyclotron frequencies for the two ions?

	57.	 In Niels Bohr’s 1913 model of the hydrogen atom, the 
single electron is in a circular orbit of radius 5.29 3 
10211 m and its speed is 2.19 3 106 m/s. (a) What is the 
magnitude of the magnetic moment due to the elec-
tron’s motion? (b) If the electron moves in a horizontal 
circle, counterclockwise as seen from above, what is the 
direction of this magnetic moment vector?

	58.	Heart–lung machines and artificial kidney machines 
employ electromagnetic blood pumps. The blood is 
confined to an electrically insulating tube, cylindrical in 
practice but represented here for simplicity as a rectan-
gle of interior width w and height h. Figure P29.58 shows 
a rectangular section of blood within the tube. Two 
electrodes fit into the top and the bottom of the tube. 
The potential difference between them establishes an 
electric current through the blood, with current density 
J over the section of length L shown in Figure P29.58.  
A perpendicular magnetic field exists in the same 
region. (a) Explain why this arrangement produces on 
the liquid a force that is directed along the length of the 
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with a direction perpendicular to the proton’s veloc-
ity. It leaves the field-filled region with velocity 
220.0 j

S
 Mm/s. Determine (a) the direction of the 

magnetic field, (b) the radius of curvature of the pro-
ton’s path while in the field, (c) the distance the proton 
traveled in the field, and (d) the time interval during 
which the proton is in the field.

	68.	Model the electric motor in a handheld electric mixer 
as a single flat, compact, circular coil carrying electric 
current in a region where a magnetic field is produced 
by an external permanent magnet. You need consider 
only one instant in the operation of the motor. (We will 
consider motors again in Chapter 31.) Make order-of- 
magnitude estimates of (a) the magnetic field, (b) the 
torque on the coil, (c)  the current in the coil, (d) the 
coil’s area, and (e) the number of turns in the coil.  
The input power to the motor is electric, given by P 5  
I DV, and the useful output power is mechanical, P 5 tv.

	69.	A nonconducting sphere has mass 80.0 g and radius 
20.0 cm. A flat, compact coil of wire with five turns is 
wrapped tightly around it, with each turn concentric 
with the sphere. The sphere is placed on an inclined 
plane that slopes downward to the left (Fig. P29.69), 
making an angle u with the horizontal so that the coil 
is parallel to the inclined plane. A uniform magnetic 
field of 0.350 T vertically upward exists in the region 
of the sphere. (a) What current in the coil will enable 
the sphere to rest in equilibrium on the inclined 
plane? (b) Show that the result does not depend on 
the value of u.

u

B
S

Figure P29.69

	70.	Why is the following situation impossible? Figure P29.70 
shows an experimental technique for altering the 
direction of travel for a charged particle. A particle of 
charge q 5 1.00  mC and mass m 5 2.00 3 10213 kg 
enters the bottom of the region of uniform magnetic 
field at speed v 5 2.00 3 105 m/s, with a velocity vector 

AMT

wire, and the circuit has a total resistance of 12.0 V. 
When a magnetic field is turned on, directed out of 
the page, the springs stretch an additional 0.300 cm. 
Only the horizontal wire at the bottom of the circuit 
is in the magnetic field. What is the magnitude of the 
magnetic field?

	62.	Within a cylindrical region of space of radius 100 Mm, 
a magnetic field is uniform with a magnitude 25.0 mT 
and oriented parallel to the axis of the cylinder. The 
magnetic field is zero outside this cylinder. A cosmic-
ray proton traveling at one-tenth the speed of light is 
heading directly toward the center of the cylinder, mov-
ing perpendicular to the cylinder’s axis. (a) Find the 
radius of curvature of the path the proton follows when 
it enters the region of the field. (b) Explain whether 
the proton will arrive at the center of the cylinder.

	63.	Review. A proton is at rest at the plane boundary of 
a region containing a uniform magnetic field B (Fig. 
P29.63). An alpha particle moving horizontally makes 
a head-on elastic collision with the proton. Immedi-
ately after the collision, both particles enter the mag-
netic field, moving perpendicular to the direction of 
the field. The radius of the proton’s trajectory is R. 
The mass of the alpha particle is four times that of the 
proton, and its charge is twice that of the proton. Find 
the radius of the alpha particle’s trajectory.

vS

B � 0

Alpha
particle

Proton

B

Figure P29.63

	64.	(a) A proton moving with velocity vS 5 vi î experiences a 
magnetic force F

S
5 Fi  ĵ. Explain what you can and can-

not infer about B
S

 from this information. (b) What If? 
In terms of Fi, what would be the force on a proton in 
the same field moving with velocity vS 5 2vi î? (c) What 
would be the force on an electron in the same field 
moving with velocity vS 5 2vi î?

	65.	Review. A 0.200-kg metal rod carrying a current of 
10.0 A glides on two horizontal rails 0.500 m apart. If 
the coefficient of kinetic friction between the rod and 
rails is 0.100, what vertical magnetic field is required to 
keep the rod moving at a constant speed?

	66.	Review. A metal rod of mass m carrying a current I 
glides on two horizontal rails a distance d apart. If the 
coefficient of kinetic friction between the rod and rails 
is m, what vertical magnetic field is required to keep 
the rod moving at a constant speed?

	67.	 A proton having an initial velocity of 20.0 î Mm/s 
enters a uniform magnetic field of magnitude 0.300 T  

Q/C
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Figure P29.70
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	73.	A uniform magnetic field of magnitude 0.150 T is 
directed along the positive x axis. A positron moving at 
a speed of 5.00 3 106 m/s enters the field along a direc-
tion that makes an angle of u 5 85.08 with the x axis 
(Fig. P29.73). The motion of the particle is expected  
to be a helix as described in Section 29.2. Calculate  
(a) the pitch p and (b) the radius r of the trajectory as 
defined in Figure P29.73.

e�

r

x

y

z

p
u

vS

B
S

Figure P29.73

	74.	Review. (a) Show that a magnetic dipole in a uniform 
magnetic field, displaced from its equilibrium orienta-
tion and released, can oscillate as a torsional pendu-
lum (Section 15.5) in simple harmonic motion. (b) Is 
this statement true for all angular displacements, for 
all displacements less than 1808, or only for small angu-
lar displacements? Explain. (c) Assume the dipole is a 
compass needle—a light bar magnet—with a magnetic 
moment of magnitude m. It has moment of inertia 
I about its center, where it is mounted on a friction-
less, vertical axle, and it is placed in a horizontal mag-
netic field of magnitude B. Determine its frequency of 
oscillation. (d) Explain how the compass needle can  
be conveniently used as an indicator of the magnitude 
of the external magnetic field. (e) If its frequency is 
0.680 Hz in the Earth’s local field, with a horizontal 
component of 39.2 mT, what is the magnitude of a field 
parallel to the needle in which its frequency of oscilla-
tion is 4.90 Hz?

	75.	The accompanying table shows measurements of 
the Hall voltage and corresponding magnetic field 
for a probe used to measure magnetic fields. (a) Plot 
these data and deduce a relationship between the two 
variables. (b) If the measurements were taken with a  
current of 0.200 A and the sample is made from a 
material having a charge-carrier density of 1.00 3  
1026 carriers/m3, what is the thickness of the sample?

	 DVH (mV)	 B (T)

	 0	 0.00
	 11	 0.10
	 19	 0.20
	 28	 0.30
	 42	 0.40
	 50	 0.50
	 61	 0.60
	 68	 0.70
	 79	 0.80
	 90	 0.90
	 102	 1.00

Q/C

perpendicular to the field lines. The magnetic force 
on the particle causes its direction of travel to change 
so that it leaves the region of the magnetic field at the 
top traveling at an angle from its original direction. 
The magnetic field has magnitude B 5 0.400 T and is 
directed out of the page. The length h of the magnetic 
field region is 0.110 m. An experimenter performs the 
technique and measures the angle u at which the par-
ticles exit the top of the field. She finds that the angles 
of deviation are exactly as predicted.

	71.	 Figure P29.71 shows a schematic representation of an 
apparatus that can be used to measure magnetic fields. 
A rectangular coil of wire contains N turns and has a 
width w. The coil is attached to one arm of a balance 
and is suspended between the poles of a magnet. The 
magnetic field is uniform and perpendicular to the 
plane of the coil. The system is first balanced when  
the current in the coil is zero. When the switch is closed 
and the coil carries a current I, a mass m must be added 
to the right side to balance the system. (a) Find an 
expression for the magnitude of the magnetic field.  
(b) Why is the result independent of the vertical dimen-
sions of the coil? (c) Suppose the coil has 50 turns and a 
width of 5.00 cm. When the switch is closed, the coil 
carries a current of 0.300 A, and a mass of 20.0 g must 
be added to the right side to balance the system. What 
is the magnitude of the magnetic field?
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Figure P29.71

	72.	A heart surgeon monitors the flow rate of blood 
through an artery using an electromagnetic flowmeter 
(Fig. P29.72). Electrodes A and B make contact with 
the outer surface of the blood vessel, which has a diam-
eter of 3.00 mm. (a) For a magnetic field magnitude of 
0.040 0 T, an emf of 160 mV appears between the elec-
trodes. Calculate the speed of the blood. (b) Explain 
why electrode A has to be positive as shown. (c) Does 
the sign of the emf depend on whether the mobile ions 
in the blood are predominantly positively or negatively 
charged? Explain.
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	79.	Review. A wire having a linear mass density of 1.00 g/cm  
is placed on a horizontal surface that has a coefficient 
of kinetic friction of 0.200. The wire carries a current 
of 1.50 A toward the east and slides horizontally to the 
north at constant velocity. What are (a) the magnitude 
and (b) the direction of the smallest magnetic field that 
enables the wire to move in this fashion?

	80.	A proton moving in the plane of the page has a kinetic 
energy of 6.00 MeV. A magnetic field of magnitude  
B 5 1.00 T is directed into the page. The proton enters 
the magnetic field with its velocity vector at an angle  
u 5 45.08 to the linear boundary of the field as shown 
in Figure P29.80. (a) Find x, the distance from the 
point of entry to where the proton will leave the field. 
(b) Determine u, the angle between the boundary and 
the proton’s velocity vector as it leaves the field.

	76.	A metal rod having a mass per unit length l carries a 
current I. The rod hangs from two wires in a uniform 
vertical magnetic field as shown in Figure P29.76. The 
wires make an angle u with the vertical when in equilib-
rium. Determine the magnitude of the magnetic field.

u

gS 

I

u
B
S

Figure P29.76

Challenge Problems

	77.	 Consider an electron orbiting a proton and maintained 
in a fixed circular path of radius R 5 5.29 3 10211 m 
by the Coulomb force. Treat the orbiting particle as a 
current loop. Calculate the resulting torque when the 
electron–proton system is placed in a magnetic field 
of 0.400  T directed perpendicular to the magnetic 
moment of the loop.

	78.	Protons having a kinetic energy of 5.00 MeV (1 eV 5 
1.60 3 10219 J) are moving in the positive x direction 
and enter a magnetic field B

S
5 0.050 0k̂ T  directed 

out of the plane of the page and extending from x 5 0 
to x 5 1.00 m as shown in Figure P29.78. (a) Ignoring 
relativistic effects, find the angle a between the initial 
velocity vector of the proton beam and the velocity vec-
tor after the beam emerges from the field. (b) Calcu-
late the y component of the protons’ momenta as they 
leave the magnetic field.

S

x

�

u

u

p

Figure P29.80
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In Chapter 29, we discussed the magnetic force exerted on a charged particle moving 
in a magnetic field. To complete the description of the magnetic interaction, this chapter 
explores the origin of the magnetic field, moving charges. We begin by showing how to use 
the law of Biot and Savart to calculate the magnetic field produced at some point in space 
by a small current element. This formalism is then used to calculate the total magnetic field 
due to various current distributions. Next, we show how to determine the force between 
two current-carrying conductors, leading to the definition of the ampere. We also introduce 
Ampère’s law, which is useful in calculating the magnetic field of a highly symmetric con-
figuration carrying a steady current.
	 This chapter is also concerned with the complex processes that occur in magnetic 
materials. All magnetic effects in matter can be explained on the basis of atomic magnetic 
moments, which arise both from the orbital motion of electrons and from an intrinsic prop-
erty of electrons known as spin.

30.1	 The Biot–Savart Law
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a 
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–
1841) performed quantitative experiments on the force exerted by an electric cur-
rent on a nearby magnet. From their experimental results, Biot and Savart arrived 
at a mathematical expression that gives the magnetic field at some point in space 

30.1	 The Biot–Savart Law

30.2	 The Magnetic Force 
Between Two Parallel 
Conductors

30.3	 Ampère’s Law

30.4	 The Magnetic Field of a 
Solenoid

30.5	 Gauss’s Law in Magnetism

30.6	 Magnetism in Matter

c h a p t e r 

30 Sources of the  
Magnetic Field

A cardiac catheterization laboratory 
stands ready to receive a patient 
suffering from atrial fibrillation.  
The large white objects on either 
side of the operating table are 
strong magnets that place the 
patient in a magnetic field.  The 
electrophysiologist performing 
a catheter ablation procedure 
sits at a computer in the room to 
the left. With guidance from the 
magnetic field, he or she uses a 
joystick and other controls to thread 
the magnetically sensitive tip of 
a cardiac catheter through blood 
vessels and into the chambers of the 
heart.  (© Courtesy of Stereotaxis, Inc.)
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in terms of the current that produces the field. That expression is based on the fol-
lowing experimental observations for the magnetic field d B

S
 at a point P associated 

with a length element d sS of a wire carrying a steady current I (Fig. 30.1):

•	The vector d B
S

 is perpendicular both to d sS (which points in the direction of 
the current) and to the unit vector r̂ directed from d sS toward P.

•	The magnitude of d B
S

 is inversely proportional to r 2, where r is the distance 
from d sS to P.

•	The magnitude of d B
S

 is proportional to the current I and to the magnitude  
ds of the length element d sS.

•	The magnitude of d B
S

 is proportional to sin u, where u is the angle between 
the vectors d sS and r̂.

	 These observations are summarized in the mathematical expression known 
today as the Biot–Savart law:

	 d B
S

5
m0

4p
  

I d sS 3 r̂
r 2 	 (30.1)

where m0 is a constant called the permeability of free space:

	 m0 5 4p 3 1027 T # m/A 	 (30.2)

	 Notice that the field d B
S

 in Equation 30.1 is the field created at a point by the 
current in only a small length element d sS of the conductor. To find the total mag-
netic field B

S
 created at some point by a current of finite size, we must sum up 

contributions from all current elements I d sS that make up the current. That is, we 
must evaluate B

S
 by integrating Equation 30.1:

	 B
S

5
m0I
4p

 3  
d sS 3 r̂ 

r 2 	 (30.3)

where the integral is taken over the entire current distribution. This expres-
sion must be handled with special care because the integrand is a cross product 
and therefore a vector quantity. We shall see one case of such an integration in 
Example 30.1.
	 Although the Biot–Savart law was discussed for a current-carrying wire, it is also 
valid for a current consisting of charges flowing through space such as the particle 
beam in an accelerator. In that case, d sS represents the length of a small segment of 
space in which the charges flow.
	 Interesting similarities and differences exist between Equation 30.1 for the 
magnetic field due to a current element and Equation 23.9 for the electric field 
due to a point charge. The magnitude of the magnetic field varies as the inverse 
square of the distance from the source, as does the electric field due to a point 
charge. The directions of the two fields are quite different, however. The electric 
field created by a point charge is radial, but the magnetic field created by a cur-
rent element is perpendicular to both the length element d sS and the unit vector r̂ 
as described by the cross product in Equation 30.1. Hence, if the conductor lies in 
the plane of the page as shown in Figure 30.1, d B

S
 points out of the page at P and 

into the page at P 9.
	 Another difference between electric and magnetic fields is related to the 
source of the field. An electric field is established by an isolated electric charge. 
The Biot–Savart law gives the magnetic field of an isolated current element at 
some point, but such an isolated current element cannot exist the way an iso-
lated electric charge can. A current element must be part of an extended current 
distribution because a complete circuit is needed for charges to flow. Therefore, 

WW Biot–Savart law

WW Permeability of free space

Pitfall Prevention 30.1
The Biot–Savart Law  The mag-
netic field described by the Biot–
Savart law is the field due to a given 
current-carrying conductor. Do 
not confuse this field with any 
external field that may be applied 
to the conductor from some other 
source.
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P �
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r̂

r̂
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sS

I

The direction of the field 
is out of the page at P.

The direction of the field 
is into the page at P �.

Figure 30.1  ​The magnetic  
field d B

S
 at a point due to the cur-

rent I through a length element 
d sS is given by the Biot–Savart law. 
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the Biot–Savart law (Eq. 30.1) is only the first step in a calculation of a magnetic 
field; it must be followed by an integration over the current distribution as in 
Equation 30.3.

Q	 uick Quiz 30.1 ​ Consider the magnetic field due to the current in the wire 
shown in Figure 30.2. Rank the points A, B, and C in terms of magnitude of the 
magnetic field that is due to the current in just the length element d sS shown 
from greatest to least.

A

CB

sSdddd I

Figure 30.2  ​(Quick Quiz 30.1) 
Where is the magnetic field due to 
the current element the greatest?

Example 30.1	     Magnetic Field Surrounding a Thin, Straight Conductor

Consider a thin, straight wire of finite length carrying a constant cur-
rent I and placed along the x axis as shown in Figure 30.3. Determine 
the magnitude and direction of the magnetic field at point P due to 
this current.

Conceptualize  ​From the Biot–Savart law, we expect that the magnitude 
of the field is proportional to the current in the wire and decreases as 
the distance a from the wire to point P increases. We also expect the 
field to depend on the angles u1 and u2 in Figure 30.3b. We place the ori-
gin at O and let point P be along the positive y axis, with k̂ being a unit 
vector pointing out of the page.

Categorize  ​We are asked to find the magnetic field due to a simple 
current distribution, so this example is a typical problem for which 
the Biot–Savart law is appropriate. We must find the field contribution 
from a small element of current and then integrate over the current 
distribution.

Analyze  ​Let’s start by considering a length element d sS located a dis-
tance r from P. The direction of the magnetic field at point P due to  
the current in this element is out of the page because d sS 3 r̂ is out of 
the page. In fact, because all the current elements I d sS lie in the plane 
of the page, they all produce a magnetic field directed out of the page at point P. Therefore, the direction of the mag-
netic field at point P is out of the page and we need only find the magnitude of the field. 

S o l u ti  o n

a

b

O
x

r̂

r a

P
� � � dx

x

P

y

x

y

u

u1 u2

I
sSd

sSd

Figure 30.3  ​(Example 30.1) (a) A thin, 
straight wire carrying a current I. (b) The angles 
u1 and u2 used for determining the net field.

Evaluate the cross product in the Biot–Savart law: d sS 3 r̂ 5 0d sS 3 r̂ 0 k̂ 5 cdx sin ap

2
2 ub d k̂ 5 1dx cos u 2 k̂

Substitute into Equation 30.1: (1)   d B
S

5 1dB 2 k̂ 5
m0I
4p

  
dx cos u

r 2  k̂

From the geometry in Figure 30.3a, express r in 
terms of u:

(2)   r 5
a

cos u

Notice that tan u 5 2x/a from the right triangle in 
Figure 30.3a (the negative sign is necessary because 
d sS is located at a negative value of x) and solve for x :

x 5 2a tan u

Find the differential dx : (3)   dx 5 2a sec2 u du 5 2
a du

cos2 u

Substitute Equations (2) and (3) into the expression 
for the z component of the field from Equation (1):

(4)   dB 5 2
m0I
4p

 a a du

cos2 u
b acos2 u

a 2  b cos u 5 2
m0I
4pa

  cos u du
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Finalize  ​We can use this result to find the magnitude of the magnetic field of any straight current-carrying wire if we 
know the geometry and hence the angles u1 and u2. Consider the special case of an infinitely long, straight wire. If the 
wire in Figure 30.3b becomes infinitely long, we see that u1 5 p/2 and u2 5 2p/2 for length elements ranging between 
positions x 5 2` and x 5 1 .̀ Because (sin u1 2 sin u2) 5 [sin p/2 2 sin (2p/2)] 5 2, Equation 30.4 becomes

	 B 5
m0I
2pa

	 (30.5)

Equations 30.4 and 30.5 both show that the magnitude of the magnetic field is proportional to the current and 
decreases with increasing distance from the wire, as expected. Equation 30.5 has the same mathematical form as the 
expression for the magnitude of the electric field due to a long charged wire (see Eq. 24.7).

Integrate Equation (4) over all length elements on 
the wire, where the subtending angles range from 
u1 to u2 as defined in Figure 30.3b:

B 5 2
m0I
4pa

 3
u2

u1

cos u du 5
m0I
4pa

1sin u1 2 sin u2 2 	 (30.4)

Example 30.2	     Magnetic Field Due to a Curved Wire Segment

Calculate the magnetic field at point O for the current-carrying wire segment 
shown in Figure 30.4. The wire consists of two straight portions and a circular arc 
of radius a, which subtends an angle u.

Conceptualize  ​The magnetic field at O due to the current in the straight seg-
ments AA9 and CC9 is zero because d sS is parallel to r̂ along these paths, which 
means that d sS 3 r̂ 5 0 for these paths. Therefore, we expect the magnetic field 
at O to be due only to the current in the curved portion of the wire.

Categorize  ​Because we can ignore segments AA9 and CC9, this example is catego-
rized as an application of the Biot–Savart law to the curved wire segment AC.

Analyze  ​Each length element d sS along path AC is at the same distance a from O, and the current in each contributes a  
field element d B

S
 directed into the page at O. Furthermore, at every point on AC, d sS is perpendicular to r̂; hence, 

0d sS 3 r̂ 0 5 ds.

S o l u ti  o n sSd
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r̂

C

I
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a

a

u

IIIII
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C �
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Figure 30.4  ​(Example 30.2) The 
length of the curved segment AC is s.

continued

From Equation 30.1, find the magnitude of the field at O 
due to the current in an element of length ds : dB 5

m0

4p
  

I ds
a 2

Integrate this expression over the curved path AC, noting 
that I and a are constants: B 5

m0I

4pa 2 3ds 5
m0I

4pa 2 s

From the geometry, note that s 5 au and substitute:
B 5

m0I

4pa 2 1a u 2 5
m0I
4pa

 u 	 (30.6)

Finalize  ​Equation 30.6 gives the magnitude of the magnetic field at O. The direction of B
S

 is into the page at O 
because d sS 3 r̂ is into the page for every length element.

What if you were asked to find the magnetic field at the center of a circular wire loop of radius R that 
carries a current I? Can this question be answered at this point in our understanding of the source of magnetic 
fields?

What If ?

	

▸ 30.1 c o n t i n u e d
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Answer  Yes, it can. The straight wires in Figure 30.4 do not contribute to the magnetic field. The only contribution is 
from the curved segment. As the angle u increases, the curved segment becomes a full circle when u 5 2p. Therefore, 
you can find the magnetic field at the center of a wire loop by letting u 5 2p in Equation 30.6:

B 5
m0I
4pa

 2p 5
m0I
2a

This result is a limiting case of a more general result discussed in Example 30.3.

Example 30.3	     Magnetic Field on the Axis of a Circular Current Loop

Consider a circular wire loop of radius a located in the yz 
plane and carrying a steady current I as in Figure 30.5. Cal-
culate the magnetic field at an axial point P a distance x 
from the center of the loop.

Conceptualize  ​Compare this problem to Example 23.8 for 
the electric field due to a ring of charge. Figure 30.5 shows 
the magnetic field contribution d B

S
  at P due to a single cur-

rent element at the top of the ring. This field vector can be 
resolved into components dBx parallel to the axis of the ring 
and dB� perpendicular to the axis. Think about the mag-
netic field contributions from a current element at the bot-
tom of the loop. Because of the symmetry of the situation, 
the perpendicular components of the field due to elements 
at the top and bottom of the ring cancel. This cancellation 
occurs for all pairs of segments around the ring, so we can ignore the perpendicular component of the field and focus 
solely on the parallel components, which simply add.

Categorize  ​We are asked to find the magnetic field due to a simple current distribution, so this example is a typical 
problem for which the Biot–Savart law is appropriate.

Analyze  ​In this situation, every length element d sS is perpendicular to the vector r̂ at the location of the element. 
Therefore, for any element, 0d sS 3 r̂ 0 5 1ds 2 11 2  sin 908 5 ds. Furthermore, all length elements around the loop are at 
the same distance r from P, where r 2 5 a2 1 x2.

S o l u ti  o n

O

a

d

y

z

I

r̂

r

x
P

xdBx

dB�
d

u

u

B
S

sS

Figure 30.5  ​(Example 30.3) Geometry for calculating the 
magnetic field at a point P lying on the axis of a current loop. 
By symmetry, the total field B

S
 is along this axis.

Use Equation 30.1 to find the magnitude of d B
S

  
due to the current in any length element d sS:

dB 5
m0I
4p

  
0 d sS 3 r̂ 0

r 2 5
m0I
4p

  
ds

1a 2 1 x2 2

Find the x component of the field element: dBx 5
m0I
4p

  
ds

1a 2 1 x 2 2   cos u

Integrate over the entire loop: Bx 5 C dBx 5
m0I
4p

 C 
ds cos u
a 2 1 x 2

From the geometry, evaluate cos u: cos u 5
a

1a 2 1 x2 21/2

Substitute this expression for cos u into the inte-
gral and note that x and a are both constant:

Bx 5
m0I
4p

 C  
ds

a 2 1 x 2  c a
1a 2 1 x 2 21/2 d 5

m0I
4p

  
a

1a 2 1 x 2 23/2 C ds

Integrate around the loop: Bx 5
m0I
4p

  
a

1a 2 1 x 2 23/2
12pa 2 5

m0Ia 2

2 1a 2 1 x2 23/2 	 (30.7)

	

▸ 30.2 c o n t i n u e d
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Finalize  ​To find the magnetic field at the center of the loop, set x 5 0 in Equation 30.7. At this special point,

	 B 5
m0I
2a
 1at x 5 0 2 	 (30.8)

which is consistent with the result of the What If? feature of Example 30.2.
	 The pattern of magnetic field lines for a circular current loop is shown in Fig-
ure 30.6a. For clarity, the lines are drawn for only the plane that contains the axis 
of the loop. The field-line pattern is axially symmetric and looks like the pattern 
around a bar magnet, which is shown in Figure 30.6b.

What if we consider points on the x axis very far from the loop? How 
does the magnetic field behave at these distant points?

Answer  In this case, in which x .. a, we can neglect the term a 2 in the denomi-
nator of Equation 30.7 and obtain

	 B <
m0Ia 2

2x 3  ​ ​  (for x .. a)	 (30.9)

The magnitude of the magnetic moment m of the loop is defined as the product of current and loop area (see Eq. 
29.15): m 5 I(pa2) for our circular loop. We can express Equation 30.9 as

	 B <
m0

2p
  

m

x3 	 (30.10)

This result is similar in form to the expression for the electric field due to an electric dipole, E 5 ke(p/y3) (see Example 
23.6), where p 5 2aq is the electric dipole moment as defined in Equation 26.16.

What If ? a b

S

N

I
S

N

Figure 30.6  ​(Example 30.3) 
(a) Magnetic field lines surround-
ing a current loop. (b) Magnetic 
field lines surrounding a bar mag-
net. Notice the similarity between 
this line pattern and that of a cur-
rent loop.

30.2	 �The Magnetic Force Between Two  
Parallel Conductors

In Chapter 29, we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets up 
its own magnetic field, it is easy to understand that two current-carrying conductors 
exert magnetic forces on each other. One wire establishes the magnetic field and 
the other wire is modeled as a collection of particles in a magnetic field. Such forces 
between wires can be used as the basis for defining the ampere and the coulomb.
	 Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I 1 and I 2 in the same direction as in Figure 30.7. Let’s determine the 
force exerted on one wire due to the magnetic field set up by the other wire. Wire 
2, which carries a current I2 and is identified arbitrarily as the source wire, creates a 
magnetic field B

S

2 at the location of wire 1, the test wire. The magnitude of this mag-
netic field is the same at all points on wire 1. The direction of B

S

2 is perpendicular to  
wire 1 as shown in Figure 30.7. According to Equation 29.10, the magnetic force  
on a length , of wire 1 is F

S

1 5 I1 <
S

3 B
S

2.  Because <
S

 is perpendicular to B
S

2 in this 
situation, the magnitude of F

S

1 is F1 5 I1,B2. Because the magnitude of B
S

2 is given 
by Equation 30.5,

	 F1 5 I1,B 2 5 I1,a
m0I2

2pa
 b 5

m0I1I2

2pa
, 	 (30.11)

The direction of F
S

1 is toward wire 2 because <
S

3 B
S

2 is in that direction. When the 
field set up at wire 2 by wire 1 is calculated, the force F

S

2 acting on wire 2 is found  
to be equal in magnitude and opposite in direction to F

S

1, which is what we  
expect because Newton’s third law must be obeyed. When the currents are in oppo-
site directions (that is, when one of the currents is reversed in Fig. 30.7), the forces 

B2
S

2

1
�

I1

I2

aF1
S

The field B2 due to the current in 
wire 2 exerts a magnetic force of 
magnitude F1 � I1�B 2 on wire 1.

S

Figure 30.7  Two parallel wires 
that each carry a steady current 
exert a magnetic force on each 
other. The force is attractive if the 
currents are parallel (as shown) 
and repulsive if the currents are 
antiparallel.

	

▸ 30.3 c o n t i n u e d
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are reversed and the wires repel each other. Hence, parallel conductors carrying 
currents in the same direction attract each other, and parallel conductors carrying 
currents in opposite directions repel each other.
	 Because the magnitudes of the forces are the same on both wires, we denote the 
magnitude of the magnetic force between the wires as simply FB . We can rewrite 
this magnitude in terms of the force per unit length:

	
FB

,
5

m0 I1I2

2pa
	 (30.12)

	 The force between two parallel wires is used to define the ampere as follows:

When the magnitude of the force per unit length between two long, parallel 
wires that carry identical currents and are separated by 1 m is 2 3 1027 N/m, 
the current in each wire is defined to be 1 A.

The value 2 3 1027 N/m is obtained from Equation 30.12 with I 1 5 I 2 5 1 A and  
a 5 1 m. Because this definition is based on a force, a mechanical measurement 
can be used to standardize the ampere. For instance, the National Institute of 
Standards and Technology uses an instrument called a current balance for primary 
current measurements. The results are then used to standardize other, more con-
ventional instruments such as ammeters.
	 The SI unit of charge, the coulomb, is defined in terms of the ampere: When a 
conductor carries a steady current of 1 A, the quantity of charge that flows through 
a cross section of the conductor in 1 s is 1 C.
	 In deriving Equations 30.11 and 30.12, we assumed both wires are long com-
pared with their separation distance. In fact, only one wire needs to be long. The 
equations accurately describe the forces exerted on each other by a long wire and a 
straight, parallel wire of limited length ,.

Q	 uick Quiz 30.2 ​ A loose spiral spring carrying no current is hung from a ceiling. 
When a switch is thrown so that a current exists in the spring, do the coils  
(a) move closer together, (b) move farther apart, or (c) not move at all?

Definition of the ampere 

Example 30.4	     Suspending a Wire 

Two infinitely long, parallel wires are lying on the ground 
a distance a 5 1.00 cm apart as shown in Figure 30.8a. A 
third wire, of length L 5 10.0 m and mass 400 g, carries 
a current of I1 5 100 A and is levitated above the first 
two wires, at a horizontal position midway between them. 
The infinitely long wires carry equal currents I2 in the 
same direction, but in the direction opposite that in the 
levitated wire. What current must the infinitely long wires 
carry so that the three wires form an equilateral triangle?

Conceptualize  ​Because the current in the short wire is 
opposite those in the long wires, the short wire is repelled 
from both of the others. Imagine the currents in the long 
wires in Figure 30.8a are increased. The repulsive force 
becomes stronger, and the levitated wire rises to the point at which the wire is once again levitated in equilibrium at a 
higher position. Figure 30.8b shows the desired situation with the three wires forming an equilateral triangle.

Categorize  ​Because the levitated wire is subject to forces but does not accelerate, it is modeled as a particle in equilibrium.

AM

S o l u ti  o n

a b

I1

I1

I2 I2
a

LI2 a

a

a u

Fg
S

FB,R
S

FB,L
S

I2

Figure 30.8  ​(Example 30.4) (a) Two current-carrying wires lie 
on the ground and suspend a third wire in the air by magnetic 
forces. (b) End view. In the situation described in the example, the 
three wires form an equilateral triangle. The two magnetic forces 
on the levitated wire are F

S

B ,L, the force due to the left-hand wire 
on the ground, and F

S

B ,R , the force due to the right-hand wire. The 
gravitational force F

S

g  on the levitated wire is also shown.
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Analyze  ​The horizontal components of the magnetic forces on the levitated wire cancel. The vertical components are 
both positive and add together. Choose the z axis to be upward through the top wire in Figure 30.8b and in the plane 
of the page.

Find the total magnetic force in the upward direction on 
the levitated wire:

F
S

B 5 2 am0I1I2

2pa
 ,b cos u k̂ 5

m0I1I2

pa
, cos u k̂

Find the gravitational force on the levitated wire: F
S

g 5 2mg k̂

Apply the particle in equilibrium model by adding the 
forces and setting the net force equal to zero:

a F
S

5 F
S

B 1 F
S

g 5
m0I1I2

pa
, cos u k̂ 2 mg k̂ 5 0

Solve for the current in the wires on the ground: I 2 5
mg pa

m0I1, cos u

Substitute numerical values: I 2 5
10.400 kg 2 19.80 m/s2 2p 10.010 0 m 2

14p 3 1027 T # m/A 2 1100 A 2 110.0 m 2  cos 30.08

5 113 A

Finalize  ​The currents in all wires are on the order of 102 A. Such large currents would require specialized equip-
ment. Therefore, this situation would be difficult to establish in practice. Is the equilibrium of wire 1 stable or 
unstable?

30.3	 Ampère’s Law
Looking back, we can see that the result of Example 30.1 is important because a 
current in the form of a long, straight wire occurs often. Figure 30.9 is a perspec-
tive view of the magnetic field surrounding a long, straight, current-carrying wire. 
Because of the wire’s symmetry, the magnetic field lines are circles concentric with 
the wire and lie in planes perpendicular to the wire. The magnitude of B

S
 is con-

stant on any circle of radius a and is given by Equation 30.5. A convenient rule for 
determining the direction of B

S
 is to grasp the wire with the right hand, positioning 

the thumb along the direction of the current. The four fingers wrap in the direc-
tion of the magnetic field.
	 Figure 30.9 also shows that the magnetic field line has no beginning and no 
end. Rather, it forms a closed loop. That is a major difference between magnetic 
field lines and electric field lines, which begin on positive charges and end on 
negative charges. We will explore this feature of magnetic field lines further in 
Section 30.5.
	 Oersted’s 1819 discovery about deflected compass needles demonstrates that a 
current-carrying conductor produces a magnetic field. Figure 30.10a (page 912) 
shows how this effect can be demonstrated in the classroom. Several compass nee-
dles are placed in a horizontal plane near a long, vertical wire. When no current is 
present in the wire, all the needles point in the same direction (that of the horizon-
tal component of the Earth’s magnetic field) as expected. When the wire carries a 
strong, steady current, the needles all deflect in a direction tangent to the circle as 
in Figure 30.10b. These observations demonstrate that the direction of the mag-
netic field produced by the current in the wire is consistent with the right-hand 
rule described in Figure 30.9. When the current is reversed, the needles in Figure 
30.10b also reverse.
	 Now let’s evaluate the product B

S
? d sS for a small length element d sS on the cir-

cular path defined by the compass needles and sum the products for all elements 

a

I

B
S

 

Figure 30.9  ​The right-hand rule 
for determining the direction of 
the magnetic field surrounding a 
long, straight wire carrying a cur-
rent. Notice that the magnetic field 
lines form circles around the wire.

	

▸ 30.4 c o n t i n u e d
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over the closed circular path.1 Along this path, the vectors d sS and B
S

 are parallel at 
each point (see Fig. 30.10b), so B

S
? d sS 5 B ds. Furthermore, the magnitude of B

S
 is 

constant on this circle and is given by Equation 30.5. Therefore, the sum of the prod-
ucts B ds over the closed path, which is equivalent to the line integral of B

S
? d sS, is

C B
S

? d sS 5 B C ds 5
m0I
2pr

12pr 2 5 m0I

where r ds 5 2pr is the circumference of the circular path of radius r. Although 
this result was calculated for the special case of a circular path surrounding a wire 
of infinite length, it holds for a closed path of any shape (an amperian loop) sur-
rounding a current that exists in an unbroken circuit. The general case, known as 
Ampère’s law, can be stated as follows:

The line integral of B
S

? d sS  around any closed path equals m0I, where I is the 
total steady current passing through any surface bounded by the closed path:

	 C B
S

? d sS 5 m0I 	 (30.13)

	 Ampère’s law describes the creation of magnetic fields by all continuous current 
configurations, but at our mathematical level it is useful only for calculating the 
magnetic field of current configurations having a high degree of symmetry. Its use 
is similar to that of Gauss’s law in calculating electric fields for highly symmetric 
charge distributions.

Q	 uick Quiz 30.3 ​ Rank the 
magnitudes of r B

S
? d sS for 

the closed paths a through  
d in Figure 30.11 from great-
est to least.

Ampère’s law 

Andre-Marie Ampère
French Physicist (1775–1836)
Ampère is credited with the discovery of 
electromagnetism, which is the relation-
ship between electric currents and mag-
netic fields. Ampère’s genius, particularly 
in mathematics, became evident by the 
time he was 12 years old; his personal 
life, however, was filled with tragedy. His 
father, a wealthy city official, was guillo-
tined during the French Revolution, and 
his wife died young, in 1803. Ampère 
died at the age of 61 of pneumonia.
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1You may wonder why we would choose to evaluate this scalar product. The origin of Ampère’s law is in 19th-century 
science, in which a “magnetic charge” (the supposed analog to an isolated electric charge) was imagined to be moved 
around a circular field line. The work done on the charge was related to B

S
? d sS, just as the work done moving an 

electric charge in an electric field is related to E
S

? d sS. Therefore, Ampère’s law, a valid and useful principle, arose 
from an erroneous and abandoned work calculation!

Pitfall Prevention 30.2
Avoiding Problems with 
Signs  When using Ampère’s law, 
apply the following right-hand 
rule. Point your thumb in the 
direction of the current through 
the amperian loop. Your curled 
fingers then point in the direction 
that you should integrate when tra-
versing the loop to avoid having to 
define the current as negative.

Figure 30.10  (a) and (b) Compasses show the effects of the current in a nearby wire. (c) Circular 
magnetic field lines surrounding a current-carrying conductor, displayed with iron filings.

a b

When no current is present in the 
wire, all compass needles point in 
the same direction (toward the 
Earth’s north pole).

When the wire carries a strong 
current, the compass needles 
deflect in a direction tangent to 
the circle, which is the direction 
of the magnetic field created by 
the current.
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Figure 30.11  ​(Quick 
Quiz 30.3) Four closed 
paths around three 
current-carrying wires.
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Q	 uick Quiz 30.4 ​ Rank the magnitudes of r B
S

? d sS for the closed paths a through 
d in Figure 30.12 from greatest to least.

a

b

c

d

Figure 30.12  ​(Quick Quiz 
30.4) Several closed paths near a 
single current-carrying wire.

Example 30.5	     The Magnetic Field Created by a Long Current-Carrying Wire

A long, straight wire of radius R carries a steady current I that is uniformly dis-
tributed through the cross section of the wire (Fig. 30.13). Calculate the mag-
netic field a distance r from the center of the wire in the regions r $ R and  
r , R.

Conceptualize  ​Study Figure 30.13 to understand the structure of the wire and the 
current in the wire. The current creates magnetic fields everywhere, both inside 
and outside the wire. Based on our discussions about long, straight wires, we expect 
the magnetic field lines to be circles centered on the central axis of the wire.

Categorize  ​Because the wire has a high degree of symmetry, we categorize this 
example as an Ampère’s law problem. For the r $ R case, we should arrive at the 
same result as was obtained in Example 30.1, where we applied the Biot–Savart 
law to the same situation.

Analyze  ​For the magnetic field exterior to the wire, let us choose for our path 
of integration circle 1 in Figure 30.13. From symmetry, B

S
 must be constant in 

magnitude and parallel to d sS at every point on this circle.

S o l u ti  o n 2

R

r

1

d sS 

I

Figure 30.13  ​(Example 30.5) A 
long, straight wire of radius R car-
rying a steady current I uniformly 
distributed across the cross section 
of the wire. The magnetic field at 
any point can be calculated from 
Ampère’s law using a circular path of 
radius r, concentric with the wire.

Note that the total current passing through the plane of 
the circle is I and apply Ampère’s law:

C B
S

? d sS 5 B C ds 5 B 12pr 2 5 m0I

Solve for B : B 5 
m0I
2pr

 ​ ​  (for r $ R)	 (30.14)

continued

Now consider the interior of the wire, where r , R. Here the current I 9 passing through the plane of circle 2 is less 
than the total current I.

Apply Ampère’s law to circle 2: C B
S

? d sS 5 B 12pr 2 5 m0I r 5 m0a r 2

R 2 Ib

Solve for I 9: I r 5
r 2

R 2 I

Set the ratio of the current I 9 enclosed by circle 2 to the 
entire current I equal to the ratio of the area pr 2 enclosed 
by circle 2 to the cross-sectional area pR 2 of the wire:

I r
I

5
pr 2

pR 2

Solve for B: B 5 a m0 I

2pR 2b r  ​ ​  (for r , R)	 (30.15)
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Finalize  ​The magnetic field exterior to the wire is identi-
cal in form to Equation 30.5. As is often the case in highly 
symmetric situations, it is much easier to use Ampère’s law 
than the Biot–Savart law (Example 30.1). The magnetic 
field interior to the wire is similar in form to the expression 
for the electric field inside a uniformly charged sphere (see 
Example 24.3). The magnitude of the magnetic field versus 
r for this configuration is plotted in Figure 30.14. Inside the 
wire, B S 0 as r S 0. Furthermore, Equations 30.14 and 30.15 give the same value of the magnetic field at r 5 R, dem-
onstrating that the magnetic field is continuous at the surface of the wire.

R
r 

B � r 

 

B

B � 1/r 

Figure 30.14  ​(Example 30.5) 
Magnitude of the magnetic field 
versus r for the wire shown in Fig-
ure 30.13. The field is proportional 
to r inside the wire and varies as 1/r 
outside the wire.

Example 30.6	     The Magnetic Field Created by a Toroid

A device called a toroid (Fig. 30.15) is often used to create an almost 
uniform magnetic field in some enclosed area. The device consists of 
a conducting wire wrapped around a ring (a torus) made of a noncon-
ducting material. For a toroid having N closely spaced turns of wire, 
calculate the magnetic field in the region occupied by the torus, a 
distance r from the center.

Conceptualize  ​Study Figure 30.15 carefully to understand how the 
wire is wrapped around the torus. The torus could be a solid mate-
rial or it could be air, with a stiff wire wrapped into the shape shown 
in Figure 30.15 to form an empty toroid. Imagine each turn of the 
wire to be a circular loop as in Example 30.3. The magnetic field 
at the center of the loop is perpendicular to the plane of the loop. 
Therefore, the magnetic field lines of the collection of loops will form 
circles within the toroid such as suggested by loop 1 in Figure 30.15.

Categorize  ​Because the toroid has a high degree of symmetry, we cat-
egorize this example as an Ampère’s law problem.

Analyze  ​Consider the circular amperian loop (loop 1) of radius r in 
the plane of Figure 30.15. By symmetry, the magnitude of the field is 
constant on this circle and tangent to it, so B

S
? d sS 5 B ds.  Furthermore, the wire passes through the loop N times, so 

the total current through the loop is NI.

S o l u ti  o n caI

I

r

b

Loop 1

Loop 2

B
S

 d sS 

Figure 30.15  ​(Example 30.6) A toroid consist-
ing of many turns of wire. If the turns are closely 
spaced, the magnetic field in the interior of the 
toroid is tangent to the dashed circle (loop 1) and 
varies as 1/r. The dimension a is the cross-sectional 
radius of the torus. The field outside the toroid is 
very small and can be described by using the ampe-
rian loop (loop 2) at the right side, perpendicular 
to the page.

Finalize  ​This result shows that B varies as 1/r and hence 
is nonuniform in the region occupied by the torus. If, how-
ever, r is very large compared with the cross-sectional 
radius a of the torus, the field is approximately uniform 
inside the torus.
	 For an ideal toroid, in which the turns are closely 
spaced, the external magnetic field is close to zero, but it 
is not exactly zero. In Figure 30.15, imagine the radius r 

of amperian loop 1 to be either smaller than b or larger 
than c. In either case, the loop encloses zero net current, 
so r B

S
? d sS 5 0. You might think this result proves that 

B
S

5 0,  but it does not. Consider the amperian loop (loop 
2) on the right side of the toroid in Figure 30.15. The 
plane of this loop is perpendicular to the page, and the 
toroid passes through the loop. As charges enter the toroid 
as indicated by the current directions in Figure 30.15, 

Apply Ampère’s law to loop 1: C B
S

? d sS 5 B C ds 5 B 12pr 2 5 m0NI

Solve for B : B 5 
m0NI
2pr

	 (30.16)

	

▸ 30.5 c o n t i n u e d
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30.4	 The Magnetic Field of a Solenoid
A solenoid is a long wire wound in the form of a helix. With this configuration, a 
reasonably uniform magnetic field can be produced in the space surrounded by the 
turns of wire—which we shall call the interior of the solenoid—when the solenoid 
carries a current. When the turns are closely spaced, each can be approximated as 
a circular loop; the net magnetic field is the vector sum of the fields resulting from 
all the turns.
	 Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. The field lines in the interior are nearly parallel to one another, are uni-
formly distributed, and are close together, indicating that the field in this space is 
strong and almost uniform.
	 If the turns are closely spaced and the solenoid is of finite length, the external 
magnetic field lines are as shown in Figure 30.17a. This field line distribution is 
similar to that surrounding a bar magnet (Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet and the opposite end behaves like the 
south pole. As the length of the solenoid increases, the interior field becomes more 
uniform and the exterior field becomes weaker. An ideal solenoid is approached 
when the turns are closely spaced and the length is much greater than the radius of 
the turns. Figure 30.18 (page 916) shows a longitudinal cross section of part of such 
a solenoid carrying a current I. In this case, the external field is close to zero and 
the interior field is uniform over a great volume.
	 Consider the amperian loop (loop 1) perpendicular to the page in Figure 
30.18 (page 916), surrounding the ideal solenoid. This loop encloses a small  

Exterior

Interior

Figure 30.16  ​The magnetic field 
lines for a loosely wound solenoid.

Figure 30.17  ​(a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a steady 
current. The field in the interior space is strong and nearly uniform. (b) The magnetic field pattern of 
a bar magnet, displayed with small iron filings on a sheet of paper.
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The magnetic field lines 
resemble those of a bar 
magnet, meaning that the 
solenoid effectively has 
north and south poles.
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they work their way counterclockwise around the toroid. 
Therefore, there is a counterclockwise current around the 
toroid, so that a current passes through amperian loop 2! 
This current is small, but not zero. As a result, the toroid 

acts as a current loop and produces a weak external field of 
the form shown in Figure 30.6. The reason r B

S
? d sS 5 0 

for amperian loop 1 of radius r , b or r . c is that the field 
lines are perpendicular to d sS, not because B

S
5 0.

▸ 30.6 c o n t i n u e d
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current as the charges in the wire move coil by coil along the length of the sole-
noid. Therefore, there is a nonzero magnetic field outside the solenoid. It is a 
weak field, with circular field lines, like those due to a line of current as in Fig-
ure 30.9. For an ideal solenoid, this weak field is the only field external to the 
solenoid. 
	 We can use Ampère’s law to obtain a quantitative expression for the interior 
magnetic field in an ideal solenoid. Because the solenoid is ideal, B

S
 in the inte-

rior space is uniform and parallel to the axis and the magnetic field lines in the 
exterior space form circles around the solenoid. The planes of these circles are 
perpendicular to the page. Consider the rectangular path (loop 2) of length , 
and width w shown in Figure 30.18. Let’s apply Ampère’s law to this path by evalu-
ating the integral of B

S
? d sS  over each side of the rectangle. The contribution 

along side 3 is zero because the external magnetic field lines are perpendicular 
to the path in this region. The contributions from sides 2 and 4 are both zero, 
again because B

S
 is perpendicular to d sS along these paths, both inside and out-

side the solenoid. Side 1 gives a contribution to the integral because along this 
path B

S
 is uniform and parallel to d sS. The integral over the closed rectangular 

path is therefore

C B
S

? d sS 5 3
path 1

B
S

? d sS 5 B 3
path 1

ds 5 B,

	 The right side of Ampère’s law involves the total current I through the area 
bounded by the path of integration. In this case, the total current through the 
rectangular path equals the current through each turn multiplied by the number 
of turns. If N is the number of turns in the length ,, the total current through the 
rectangle is NI. Therefore, Ampère’s law applied to this path gives

C B
S

? d sS 5 B, 5 m0NI

	 B 5 m0 
N
,

 I 5 m0nI 	 (30.17)

where n 5 N/, is the number of turns per unit length.
	 We also could obtain this result by reconsidering the magnetic field of a toroid 
(see Example 30.6). If the radius r of the torus in Figure 30.15 containing N turns is 
much greater than the toroid’s cross-sectional radius a, a short section of the toroid 
approximates a solenoid for which n 5 N/2pr. In this limit, Equation 30.16 agrees 
with Equation 30.17.
	 Equation 30.17 is valid only for points near the center (that is, far from the ends) of 
a very long solenoid. As you might expect, the field near each end is smaller than the 
value given by Equation 30.17. As the length of a solenoid increases, the magnitude of 
the field at the end approaches half the magnitude at the center (see Problem 69).

Q	 uick Quiz 30.5 ​ Consider a solenoid that is very long compared with its radius. 
Of the following choices, what is the most effective way to increase the magnetic 
field in the interior of the solenoid? (a) double its length, keeping the number 
of turns per unit length constant (b) reduce its radius by half, keeping the num-
ber of turns per unit length constant (c) overwrap the entire solenoid with an 
additional layer of current-carrying wire

30.5	 Gauss’s Law in Magnetism
The flux associated with a magnetic field is defined in a manner similar to that 
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an 

Magnetic field inside  
a solenoid

Ampère’s law applied to the 
circular path whose plane is 
perpendicular to the page can be 
used to show that there is a weak 
field outside the solenoid.

Ampère’s law applied to the 
rectangular dashed path can be 
used to calculate the 
magnitude of the interior field.

3

2

4

1 �

w

Loop 1

Loop 2

B
S

Figure 30.18  ​Cross-sectional view 
of an ideal solenoid, where the inte-
rior magnetic field is uniform and 
the exterior field is close to zero.
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arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

	 FB ; 3  B
S

? d A
S

	 (30.18)

	 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

	 FB 5 BA cos u 	 (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
	 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

WW Definition of magnetic flux

Figure 30.20  Magnetic flux 
through a plane lying in a mag-
netic field.a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7	     Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  ​As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  ​Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S o l u ti  o n

continued

b
r

I

c a

dr

Figure 30.21  ​(Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  ​Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  ​The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.
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	 In Chapter 24, we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the 
number of electric field lines leaving the surface depends only on the net charge 
within it. This behavior exists because electric field lines originate and terminate 
on electric charges.
	 The situation is quite different for magnetic fields, which are continuous and 
form closed loops. In other words, as illustrated by the magnetic field lines of a cur-
rent in Figure 30.9 and of a bar magnet in Figure 30.22, magnetic field lines do not 
begin or end at any point. For any closed surface such as the one outlined by the 
dashed line in Figure 30.22, the number of lines entering the surface equals the 
number leaving the surface; therefore, the net magnetic flux is zero. In contrast, 
for a closed surface surrounding one charge of an electric dipole (Fig. 30.23), the 
net electric flux is not zero.
	 Gauss’s law in magnetism states that

the net magnetic flux through any closed surface is always zero:

	 C B
S

? d A
S

5 0 	 (30.20)Gauss’s law in magnetism 

Integrate from r 5 c to r 5 a 1 c :
FB 5

m0Ib
2p

 3
a1c

c
  

dr
r

5
m0Ib
2p

  ln r `
a1c

c

 5
m0Ib
2p

 ln aa 1 c
c

b 5
m0Ib
2p

  ln a1 1
a
c
b

Express the area element (the tan strip in Fig. 30.21) as 
dA 5 b dr and substitute:

FB 5 3 
m0I
2pr

 b dr 5
m0Ib
2p

 3 
dr
r

Finalize  ​Notice how the flux depends on the size of the loop. Increasing either a or b increases the flux as expected. 
If c becomes large such that the loop is very far from the wire, the flux approaches zero, also as expected. If c goes 
to zero, the flux becomes infinite. In principle, this infinite value occurs because the field becomes infinite at r 5 0 
(assuming an infinitesimally thin wire). That will not happen in reality because the thickness of the wire prevents the 
left edge of the loop from reaching r 5 0.

N

S

The net magnetic flux 
through a closed surface 
surrounding one of the 
poles or any other 
closed surface is zero.

Figure 30.22  ​The magnetic field lines of a bar mag-
net form closed loops. (The dashed line represents 
the intersection of a closed surface with the page.)

�

�

The electric flux 
through a closed 
surface surrounding 
one of the charges 
is not zero.

Figure 30.23  ​The electric field lines surrounding 
an electric dipole begin on the positive charge and 
terminate on the negative charge.

	

▸ 30.7 c o n t i n u e d
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This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

30.6	 Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to 
what causes certain materials to exhibit strong magnetic properties. Earlier we 
found that a solenoid like the one shown in Figure 30.17a has a north pole and a 
south pole. In general, any current loop has a magnetic field and therefore has a 
magnetic dipole moment, including the atomic-level current loops described in 
some models of the atom.

The Magnetic Moments of Atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus. In this model, an 
orbiting electron constitutes a tiny current loop (because it is a moving charge), 
and the magnetic moment of the electron is associated with this orbital motion. 
Although this model has many deficiencies, some of its predictions are in good 
agreement with the correct theory, which is expressed in terms of quantum 
physics.
	 In our classical model, we assume an electron is a particle in uniform circular 
motion: it moves with constant speed v in a circular orbit of radius r about the 
nucleus as in Figure 30.24. The current I associated with this orbiting electron is its 
charge e divided by its period T. Using Equation 4.15 from the particle in uniform 
circular motion model, T 5 2pr/v, gives

I 5
e
T

5
ev

2pr
The magnitude of the magnetic moment associated with this current loop is given 
by m 5 IA, where A 5 pr 2 is the area enclosed by the orbit. Therefore,

	 m 5 IA 5 a ev
2pr

bpr 2 5 1
2evr 	 (30.21)

Because the magnitude of the orbital angular momentum of the electron is given 
by L 5 mevr (Eq. 11.12 with f 5 908), the magnetic moment can be written as

	 m 5 a e
2me

bL 	 (30.22)

This result demonstrates that the magnetic moment of the electron is proportional 
to its orbital angular momentum. Because the electron is negatively charged, the 
vectors mS and L

S
 point in opposite directions. Both vectors are perpendicular to the 

plane of the orbit as indicated in Figure 30.24.
	 A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 40). The smallest nonzero value of the electron’s 
magnetic moment resulting from its orbital motion is

	 m 5 "2 
e

2me
 U 	 (30.23)

We shall see in Chapter 42 how expressions such as Equation 30.23 arise.
	 Because all substances contain electrons, you may wonder why most substances 
are not magnetic. The main reason is that, in most substances, the magnetic 

WW Orbital magnetic moment

The electron has an angular 
momentum     in one direction 
and a magnetic moment     in 
the opposite direction.

r

I
m
S

m
S

L
S

L
S

e�

Figure 30.24  ​An electron mov-
ing in the direction of the gray 
arrow in a circular orbit of radius 
r. Because the electron carries 
a negative charge, the direction 
of the current due to its motion 
about the nucleus is opposite the 
direction of that motion.
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moment of one electron in an atom is canceled by that of another electron orbiting 
in the opposite direction. The net result is that, for most materials, the magnetic 
effect produced by the orbital motion of the electrons is either zero or very small.
	 In addition to its orbital magnetic moment, an electron (as well as protons, neu-
trons, and other particles) has an intrinsic property called spin that also contrib-
utes to its magnetic moment. Classically, the electron might be viewed as spinning 
about its axis as shown in Figure 30.25, but you should be very careful with the clas-
sical interpretation. The magnitude of the angular momentum S

S
 associated with 

spin is on the same order of magnitude as the magnitude of the angular momen-
tum L

S
 due to the orbital motion. The magnitude of the spin angular momentum 

of an electron predicted by quantum theory is

S 5
"3

2
 U

The magnetic moment characteristically associated with the spin of an electron has 
the value

	 mspin 5
e U

2me
	 (30.24)

This combination of constants is called the Bohr magneton mB:

	 mB 5
e U

2me
5 9.27 3 10224 J/T 	 (30.25)

Therefore, atomic magnetic moments can be expressed as multiples of the Bohr 
magneton. (Note that 1 J/T 5 1 A ? m2.)
	 In atoms containing many electrons, the electrons usually pair up with their 
spins opposite each other; therefore, the spin magnetic moments cancel. Atoms 
containing an odd number of electrons, however, must have at least one unpaired 
electron and therefore some spin magnetic moment. The total magnetic moment 
of an atom is the vector sum of the orbital and spin magnetic moments, and a few 
examples are given in Table 30.1. Notice that helium and neon have zero moments 
because their individual spin and orbital moments cancel.
	 The nucleus of an atom also has a magnetic moment associated with its constitu-
ent protons and neutrons. The magnetic moment of a proton or neutron, however, 
is much smaller than that of an electron and can usually be neglected. We can 
understand this smaller value by inspecting Equation 30.25 and replacing the mass 
of the electron with the mass of a proton or a neutron. Because the masses of the 
proton and neutron are much greater than that of the electron, their magnetic 
moments are on the order of 103 times smaller than that of the electron.

Ferromagnetism
A small number of crystalline substances exhibit strong magnetic effects called fer-
romagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel, 
gadolinium, and dysprosium. These substances contain permanent atomic mag-
netic moments that tend to align parallel to each other even in a weak external 
magnetic field. Once the moments are aligned, the substance remains magnetized 
after the external field is removed. This permanent alignment is due to a strong 
coupling between neighboring moments, a coupling that can be understood only 
in quantum-mechanical terms.
	 All ferromagnetic materials are made up of microscopic regions called domains, 
regions within which all magnetic moments are aligned. These domains have vol-
umes of about 10212 to 1028 m3 and contain 1017 to 1021 atoms. The boundaries 
between the various domains having different orientations are called domain walls. 
In an unmagnetized sample, the magnetic moments in the domains are randomly 

Pitfall Prevention 30.3
The Electron Does Not Spin  The 
electron is not physically spinning. 
It has an intrinsic angular momen-
tum as if it were spinning, but the 
notion of rotation for a point 
particle is meaningless. Rotation 
applies only to a rigid object, with 
an extent in space, as in Chapter 
10. Spin angular momentum is 
actually a relativistic effect.

spin

S
S

m
S

Figure 30.25  ​Classical model of 
a spinning electron. We can adopt 
this model to remind ourselves 
that electrons have an intrinsic 
angular momentum. The model 
should not be pushed too far, 
however; it gives an incorrect mag-
nitude for the magnetic moment, 
incorrect quantum numbers, and 
too many degrees of freedom.

Table 30.1 Magnetic 
Moments of Some Atoms 
and Ions
	 Magnetic
	 Moment
Atom or Ion	 (10224 J/T)

H	 9.27
He	 0
Ne	 0
Ce31	 19.8
Yb31	 37.1
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
	 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
	 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.

a

c

b

In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
S

B
S

dA
S

B
S

When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
S

B
S

As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  ​Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance	 TCurie (K)

Iron	 1 043
Cobalt	 1 394
Nickel	 631
Gadolinium	 317
Fe2O3	 893
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	 As you recall from Chapter 27, a superconductor is a substance in which the elec-
trical resistance is zero below some critical temperature. Certain types of supercon-
ductors also exhibit perfect diamagnetism in the superconducting state. As a result, 
an applied magnetic field is expelled by the superconductor so that the field is zero 
in its interior. This phenomenon is known as the Meissner effect. If a permanent 
magnet is brought near a superconductor, the two objects repel each other. This 
repulsion is illustrated in Figure 30.27, which shows a small permanent magnet levi-
tated above a superconductor maintained at 77 K.

Figure 30.27  ​An illustration of 
the Meissner effect, shown by this 
magnet suspended above a cooled 
ceramic superconductor disk, has 
become our most visual image of 
high-temperature superconductivity. 
Superconductivity is the loss of all 
resistance to electrical current and is 
a key to more-efficient energy use. 

In the Meissner effect, the small 
magnet at the top induces currents 
in the superconducting disk below, 
which is cooled to �321�F (77 K). 
The currents create a repulsive 
magnetic force on the magnet 
causing it to levitate above the 
superconducting disk.
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Liquid oxygen, a 
paramagnetic material, 
is attracted to the poles 
of a magnet.
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The levitation force is exerted on 
the diamagnetic water molecules 
in the frog’s body. 
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(Left) Paramagnetism. (Right) Diamagnetism: a frog is levitated in a 16-T magnetic field at the 
Nijmegen High Field Magnet Laboratory in the Netherlands.

Summary

  The magnetic flux FB through a surface is defined by the surface integral

	 FB ; 3 B
S

? d A
S

	 (30.18)

Definition

Concepts and Principles

  The Biot–Savart law says that the magnetic field d B
S

  at  
a point P due to a length element d sS that carries a steady 
current I is

	 d B
S

5
m0

4p
 

I d sS 3 r̂ 
r 2 	 (30.1)

where m0 is the permeability of free space, r is the distance 
from the element to the point P, and r̂ is a unit vector 
pointing from d sS toward point P. We find the total field 
at P by integrating this expression over the entire current 
distribution.

  The magnetic force per unit length between 
two parallel wires separated by a distance a and 
carrying currents I 1 and I 2 has a magnitude

	
FB

,
5

m0I1I2

2pa
	 (30.12)

The force is attractive if the currents are in the 
same direction and repulsive if they are in oppo-
site directions.



	   Objective Questions	 923

	 1.	 (i) What happens to the magnitude of the magnetic 
field inside a long solenoid if the current is doubled? 
(a) It becomes four times larger. (b) It becomes twice 
as large. (c) It is unchanged. (d) It becomes one-half as 
large. (e) It becomes one-fourth as large. (ii) What hap-
pens to the field if instead the length of the solenoid 
is doubled, with the number of turns remaining the 
same? Choose from the same possibilities as in part (i). 
(iii) What happens to the field if the number of turns is 
doubled, with the length remaining the same? Choose 
from the same possibilities as in part (i). (iv) What hap-
pens to the field if the radius is doubled? Choose from 
the same possibilities as in part (i).

	 2.	 In Figure 30.7, assume I 1 5 2.00 A and I 2 5 6.00 A. 
What is the relationship between the magnitude F1 of 
the force exerted on wire 1 and the magnitude F2 of 
the force exerted on wire 2? (a) F1 5 6F2 (b) F1 5 3F2 
(c) F1 5 F2 (d) F1 5 1

3 F2 (e) F1 5 1
6 F2

	 3.	 Answer each question yes or no. (a) Is it possible for 
each of three stationary charged particles to exert a 
force of attraction on the other two? (b) Is it possible 
for each of three stationary charged particles to repel 
both of the other particles? (c) Is it possible for each of 
three current-carrying metal wires to attract the other 
two wires? (d) Is it possible for each of three current- 
carrying metal wires to repel the other two wires? 
André-Marie Ampère’s experiments on electromagne-
tism are models of logical precision and included obser-
vation of the phenomena referred to in this question.

	 4.	 Two long, parallel wires each carry the same current I in 
the same direction (Fig. OQ30.4). Is the total magnetic 

field at the point P midway between the wires (a) zero, 
(b) directed into the page, (c) directed out of the page, 
(d) directed to the left, or (e) directed to the right?

I

I

P

Figure OQ30.4

	 5.	 Two long, straight wires cross each other at a right 
angle, and each carries the same current I (Fig. 
OQ30.5). Which of the following statements is true 
regarding the total magnetic field due to the two wires 
at the various points in the figure? More than one 
statement may be correct. (a) The field is strongest at 
points B and D. (b) The field is strongest at points A 
and C. (c) The field is out of the page at point B and 

  Ampère’s law says that the 
line integral of B

S
? d sS around 

any closed path equals m0I, 
where I is the total steady 
current through any surface 
bounded by the closed path:

	 C B
S

? d sS 5 m0I 	 (30.13)

  Gauss’s law of magnetism 
states that the net magnetic 
flux through any closed sur-
face is zero:

	 C B
S

? d A
S

5 0 	 (30.20)

  The magnitude of the magnetic field at a distance r from a long, straight 
wire carrying an electric current I is

	 B 5
m0I
2pr

	 (30.14)

The field lines are circles concentric with the wire.
	 The magnitudes of the fields inside a toroid and solenoid are

	 B 5
m0NI
2pr
 1 toroid 2 	 (30.16)

	 B 5 m0 
N
,

 I 5 m0nI 1solenoid 2 	 (30.17)

where N is the total number of turns.

  Substances can be classified into one of three categories that describe their 
magnetic behavior. Diamagnetic substances are those in which the magnetic 
moment is weak and opposite the applied magnetic field. Paramagnetic sub-
stances are those in which the magnetic moment is weak and in the same direc-
tion as the applied magnetic field. In ferromagnetic substances, interactions 
between atoms cause magnetic moments to align and create a strong magneti-
zation that remains after the external field is removed.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

I
IB A

C D

Figure OQ30.5
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ment may be correct. (a) In region I, the magnetic 
field is into the page and is never zero. (b) In region II, 
the field is into the page and can be zero. (c) In region 
III, it is possible for the field to be zero. (d) In region I, 
the magnetic field is out of the page and is never zero. 
(e) There are no points where the field is zero.

	10.	 Consider the two parallel wires carrying currents in 
opposite directions in Figure OQ30.9. Due to the mag-
netic interaction between the wires, does the lower 
wire experience a magnetic force that is (a) upward, 
(b) downward, (c)  to the left, (d) to the right, or  
(e) into the paper?

	11.	 What creates a magnetic field? More than one answer 
may be correct. (a) a stationary object with electric 
charge (b) a moving object with electric charge (c) a 
stationary conductor carrying electric current (d) a 
difference in electric potential (e) a charged capacitor 
disconnected from a battery and at rest Note: In Chap-
ter 34, we will see that a changing electric field also 
creates a magnetic field.

	12.	A long solenoid with closely spaced turns carries 
electric current. Does each turn of wire exert (a) an 
attractive force on the next adjacent turn, (b) a repul-
sive force on the next adjacent turn, (c) zero force on 
the next adjacent turn, or (d) either an attractive or 
a repulsive force on the next turn, depending on the 
direction of current in the solenoid?

	13.	A uniform magnetic field is directed along the x axis. 
For what orientation of a flat, rectangular coil is the 
flux through the rectangle a maximum? (a) It is a max-
imum in the xy plane. (b) It is a maximum in the xz 
plane. (c) It is a maximum in the yz plane. (d) The flux 
has the same nonzero value for all these orientations. 
(e) The flux is zero in all cases.

	14.	Rank the magnitudes of the following magnetic fields 
from largest to smallest, noting any cases of equality. 
(a) the field 2 cm away from a long, straight wire carry-
ing a current of 3 A (b) the field at the center of a flat, 
compact, circular coil, 2 cm in radius, with 10 turns, 
carrying a current of 0.3 A (c) the field at the center  
of a solenoid 2 cm in radius and 200 cm long, with  
1 000 turns, carrying a current of 0.3 A (d) the field at 
the center of a long, straight, metal bar, 2 cm in radius, 
carrying a current of 300 A (e) a field of 1 mT

	15.	Solenoid A has length L and N turns, solenoid B has 
length 2L and N turns, and solenoid C has length L/2 
and 2N turns. If each solenoid carries the same cur-
rent, rank the magnitudes of the magnetic fields in the 
centers of the solenoids from largest to smallest.

into the page at point D. (d) The field is out of the page 
at point C and out of the page at point D. (e) The field 
has the same magnitude at all four points.

	 6.	 A long, vertical, metallic wire carries downward elec-
tric current. (i) What is the direction of the magnetic 
field it creates at a point 2 cm horizontally east of the 
center of the wire? (a) north (b) south (c) east (d) west 
(e) up (ii) What would be the direction of the field if 
the current consisted of positive charges moving down-
ward instead of electrons moving upward? Choose 
from the same possibilities as in part (i).

	 7.	 Suppose you are facing a tall makeup mirror on a verti-
cal wall. Fluorescent tubes framing the mirror carry a 
clockwise electric current. (i) What is the direction of 
the magnetic field created by that current at the center 
of the mirror? (a) left (b) right (c) horizontally toward 
you (d)  horizontally away from you (e) no direction 
because the field has zero magnitude (ii) What is the 
direction of the field the current creates at a point on 
the wall outside the frame to the right? Choose from 
the same possibilities as in part (i).

	 8.	 A long, straight wire carries a current I (Fig. OQ30.8). 
Which of the following statements is true regarding 
the magnetic field due to the wire? More than one 
statement may be correct. (a)  The magnitude is pro-
portional to I/r, and the direction is out of the page at 
P. (b) The magnitude is proportional to I/r 2, and the 
direction is out of the page at P. (c) The magnitude is 
proportional to I/r, and the direction is into the page 
at P. (d) The magnitude is proportional to I/r 2, and 
the direction is into the page at P. (e) The magnitude 
is proportional to I, but does not depend on r.

I

P
r

Figure OQ30.8

	 9.	 Two long, parallel wires carry currents of 20.0 A and 
10.0 A in opposite directions (Fig. OQ30.9). Which of 
the following statements is true? More than one state-

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Is the magnetic field created by a current loop uni-
form? Explain.

	 2.	 One pole of a magnet attracts a nail. Will the other 
pole of the magnet attract the nail? Explain. Also 
explain how a magnet sticks to a refrigerator door.

	 3.	 Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B

S
 for a current-

carrying conductor?

	 4.	 A hollow copper tube carries a current along its length. 
Why is B 5 0 inside the tube? Is B nonzero outside the 
tube?

I 20.0 A

10.0 AIII

II

Figure OQ30.9  Objective Questions 9 and 10.
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	 3.	 Calculate the magnitude of the magnetic field at a 
point 25.0 cm from a long, thin conductor carrying a 
current of 2.00 A.

W

Section 30.1 ​ The Biot–Savart Law

	 1.	 Review. In studies of the possibility of migrating 
birds using the Earth’s magnetic field for navigation,  
birds have been fitted with coils as “caps” and “col-
lars” as shown in Figure P30.1. (a) If the identical coils  
have radii of 1.20 cm and are 2.20 cm apart, with 50 
turns of wire apiece, what current should they both 
carry to produce a magnetic field of 4.50 3 1025 T 
halfway between them? (b) If the resistance of each 
coil is 210 V, what voltage should the battery supply-
ing each coil have? (c) What power is delivered to 
each coil?

Figure P30.1

	 2.	 In each of parts (a) through (c) of Figure P30.2, find 
the direction of the current in the wire that would pro-
duce a magnetic field directed as shown.

	 5.	 Imagine you have a compass whose needle can rotate 
vertically as well as horizontally. Which way would the 
compass needle point if you were at the Earth’s north 
magnetic pole?

	 6.	 Is Ampère’s law valid for all closed paths surrounding a 
conductor? Why is it not useful for calculating B

S
 for all 

such paths?

	 7.	 A magnet attracts a piece of iron. The iron can then 
attract another piece of iron. On the basis of domain 
alignment, explain what happens in each piece of iron.

	 8.	 Why does hitting a magnet with a hammer cause the 
magnetism to be reduced?

	 9.	 The quantity e B
S

? d sS in Ampère’s law is called magnetic 
circulation. Figures 30.10 and 30.13 show paths around 
which the magnetic circulation is evaluated. Each of 
these paths encloses an area. What is the magnetic flux 
through each area? Explain your answer.

	10.	 Figure CQ30.10 shows four per-
manent magnets, each having a 
hole through its center. Notice 
that the blue and yellow magnets 
are levitated above the red ones.  
(a) How does this levitation 
occur? (b) What purpose do the 
rods serve? (c) What can you say 
about the poles of the magnets 
from this observation? (d) If the 
blue magnet were inverted, what 
do you suppose would happen?

	11.	 Explain why two parallel wires carrying currents in 
opposite directions repel each other.

	12.	Consider a magnetic field that is uniform in direction 
throughout a certain volume. (a) Can the field be uni-
form in magnitude? (b) Must it be uniform in magni-
tude? Give evidence for your answers.

Figure CQ30.10
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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926	C hapter 30  Sources of the Magnetic Field

direction of the field produced at P if the current is 
3.00 A?

	14.	One long wire carries current 30.0 A to the left along 
the x axis. A second long wire carries current 50.0 A to 
the right along the line (y 5 0.280 m, z 5 0). (a) Where  
in the plane of the two wires is the total magnetic field 
equal to zero? (b) A particle with a charge of 22.00 mC 
is moving with a velocity of 150 î Mm/s along the line  
(y 5 0.100 m, z 5 0). Calculate the vector magnetic 
force acting on the particle. (c) What If? A uni-
form electric field is applied to allow this particle to 
pass through this region undeflected. Calculate the 
required vector electric field.

	15.	Three long, parallel conductors each carry a current of 
I 5 2.00 A. Figure P30.15 is an end view of the conduc-
tors, with each current coming out of the page. Taking 
a 5 1.00 cm, determine the magnitude and direction 
of the magnetic field at (a) point A, (b) point B, and  
(c) point C.

I

I

aa

a

a

a
BA C I

Figure P30.15

	16.	 In a long, straight, vertical lightning stroke, electrons 
move downward and positive ions move upward and 
constitute a current of magnitude 20.0 kA. At a loca-
tion 50.0 m east of the middle of the stroke, a free elec-
tron drifts through the air toward the west with a speed 
of 300 m/s. (a) Make a sketch showing the various vec-
tors involved. Ignore the effect of the Earth’s magnetic 
field. (b) Find the vector force the lightning stroke 
exerts on the electron. (c) Find the radius of the elec-
tron’s path. (d) Is it a good approximation to model the 
electron as moving in a uniform field? Explain your 
answer. (e) If it does not collide with any obstacles, how 
many revolutions will the electron complete during the 
60.0-ms duration of the lightning stroke?

	17.	 Determine the magnetic field (in terms of I, a, and d) 
at the origin due to the current loop in Figure P30.17. 
The loop extends to infinity above the figure.

P

I

I
u

Figure P30.13

AMT
M

Q/C

S

rent I 2. The total magnetic field at the origin due 
to the current-carrying wires has the magnitude  
2m0I1/(2pa). The current I 2 can have either of two pos-
sible values. (a) Find the value of I 2 with the smaller 
magnitude, stating it in terms of I 1 and giving its direc-
tion. (b) Find the other possible value of I 2.

x

I2 I1

2a–2a 0

Figure P30.9

	10.	An infinitely long wire carrying a current I is bent at a 
right angle as shown in Figure P30.10. Determine the 
magnetic field at point P, located a distance x from the 
corner of the wire.

x

P

I

I

Figure P30.10

	11.	 A long, straight wire carries a current I. A right-angle 
bend is made in the middle of the wire. The bend 
forms an arc of a circle of radius r as shown in Figure 
P30.11. Determine the magnetic field at point P, the 
center of the arc.

r

P
I

Figure P30.11

	12.	Consider a flat, circular current loop of radius R car-
rying a current I. Choose the x axis to be along the 
axis of the loop, with the origin at the loop’s center. 
Plot a graph of the ratio of the magnitude of the mag-
netic field at coordinate x to that at the origin for x 5 0  
to x 5 5R. It may be helpful to use a programmable 
calculator or a computer to solve this problem.

	13.	A current path shaped as shown in Figure P30.13 pro-
duces a magnetic field at P, the center of the arc. If 
the arc subtends an angle of u 5 30.08 and the radius 
of the arc is 0.600 m, what are the magnitude and 

S

S

	 4.	 In 1962, measurements of the magnetic field of a large 
tornado were made at the Geophysical Observatory in 
Tulsa, Oklahoma. If the magnitude of the tornado’s 
field was B 5 1.50 3 1028 T pointing north when the 
tornado was 9.00 km east of the observatory, what cur-
rent was carried up or down the funnel of the tornado? 
Model the vortex as a long, straight wire carrying a 
current.

	 5.	 (a) A conducting loop in the shape of a square of 
edge length , 5 0.400 m carries a current I 5 10.0 A 
as shown in Figure P30.5. Calculate the magnitude 
and direction of the magnetic field at the center of 
the square. (b) What If? If this conductor is reshaped 
to form a circular loop and carries the same current, 
what is the value of the magnetic field at the center?

I

�

Figure P30.5

	 6.	 In Niels Bohr’s 1913 model of the hydrogen atom, 
an electron circles the proton at a distance of 5.29 3  
10211 m with a speed of 2.19 3 106 m/s. Compute the 
magnitude of the magnetic field this motion produces 
at the location of the proton.

	 7.	 A conductor consists of a circular loop of radius R 5 
15.0 cm and two long, straight sections as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and 
carries a current I 5 1.00 A. Find the magnetic field at 
the center of the loop.

RI

Figure P30.7  Problems 7 and 8.

	 8.	 A conductor consists of a circular loop of radius R and 
two long, straight sections as shown in Figure P30.7. 
The wire lies in the plane of the paper and carries a 
current I. (a) What is the direction of the magnetic 
field at the center of the loop? (b) Find an expression 
for the magnitude of the magnetic field at the center 
of the loop.

	 9.	 Two long, straight, parallel wires carry currents that 
are directed perpendicular to the page as shown 
in Figure P30.9. Wire 1 carries a current I1 into 
the page (in the negative z direction) and passes 
through the x axis at x 5 1a. Wire 2 passes through 
the x axis at x 5 22a and carries an unknown cur-

M

W

S

S
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direction of the field produced at P if the current is 
3.00 A?

	14.	One long wire carries current 30.0 A to the left along 
the x axis. A second long wire carries current 50.0 A to 
the right along the line (y 5 0.280 m, z 5 0). (a) Where  
in the plane of the two wires is the total magnetic field 
equal to zero? (b) A particle with a charge of 22.00 mC 
is moving with a velocity of 150 î Mm/s along the line  
(y 5 0.100 m, z 5 0). Calculate the vector magnetic 
force acting on the particle. (c) What If? A uni-
form electric field is applied to allow this particle to 
pass through this region undeflected. Calculate the 
required vector electric field.

	15.	Three long, parallel conductors each carry a current of 
I 5 2.00 A. Figure P30.15 is an end view of the conduc-
tors, with each current coming out of the page. Taking 
a 5 1.00 cm, determine the magnitude and direction 
of the magnetic field at (a) point A, (b) point B, and  
(c) point C.

I

I

aa

a

a

a
BA C I

Figure P30.15

	16.	 In a long, straight, vertical lightning stroke, electrons 
move downward and positive ions move upward and 
constitute a current of magnitude 20.0 kA. At a loca-
tion 50.0 m east of the middle of the stroke, a free elec-
tron drifts through the air toward the west with a speed 
of 300 m/s. (a) Make a sketch showing the various vec-
tors involved. Ignore the effect of the Earth’s magnetic 
field. (b) Find the vector force the lightning stroke 
exerts on the electron. (c) Find the radius of the elec-
tron’s path. (d) Is it a good approximation to model the 
electron as moving in a uniform field? Explain your 
answer. (e) If it does not collide with any obstacles, how 
many revolutions will the electron complete during the 
60.0-ms duration of the lightning stroke?

	17.	 Determine the magnetic field (in terms of I, a, and d) 
at the origin due to the current loop in Figure P30.17. 
The loop extends to infinity above the figure.

P

I

I
u

Figure P30.13
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	18.	A wire carrying a current I is bent into the shape of 
an equilateral triangle of side L. (a) Find the magni-
tude of the magnetic field at the center of the triangle.  
(b) At a point halfway between the center and any ver-
tex, is the field stronger or weaker than at the center? 
Give a qualitative argument for your answer.

	19.	The two wires shown in Figure P30.19 are separated by 
d 5 10.0 cm and carry currents of I 5 5.00 A in oppo-
site directions. Find the magnitude and direction of 
the net magnetic field (a) at a point midway between 
the wires; (b) at point P1, 10.0 cm to the right of the 
wire on the right; and (c) at point P2, 2d 5 20.0 cm to 
the left of the wire on the left.

2d d d

P1P2

I I

Figure P30.19

	20.	Two long, parallel wires carry currents of I1 5 3.00 A 
and I2 5 5.00 A in the directions indicated in Figure 
P30.20. (a)  Find the magnitude and direction of the 
magnetic field at a point midway between the wires. 
(b) Find the magnitude and direction of the magnetic 
field at point P, located d 5 20.0 cm above the wire car-
rying the 5.00-A current.

d

d

P

I 1 I 2

Figure P30.20

Section 30.2 ​ The Magnetic Force Between Two  
Parallel Conductors

	21.	 Two long, parallel conductors, separated by 10.0 cm, 
carry currents in the same direction. The first wire car-
ries a current I1 5 5.00 A, and the second carries I2 5 
8.00 A. (a) What is the magnitude of the magnetic field 
created by I1 at the location of I2? (b) What is the force 
per unit length exerted by I1 on I2? (c) What is the 
magnitude of the magnetic field created by I2 at the 
location of I1? (d) What is the force per length exerted 
by I2 on I1?

	22.	Two parallel wires separated by 4.00 cm repel each 
other with a force per unit length of 2.00 3 1024 N/m. 
The current in one wire is 5.00 A. (a) Find the current 
in the other wire. (b) Are the currents in the same 

S
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W
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x
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Figure P30.17
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vidual accomplishments, Weber and Gauss built a tele-
graph in 1833 that consisted of a battery and switch, 
at one end of a transmission line 3 km long, operat-
ing an electromagnet at the other end. Suppose their 
transmission line was as diagrammed in Figure P30.29. 
Two long, parallel wires, each having a mass per unit 
length of 40.0 g/m, are supported in a horizontal plane 
by strings , 5 6.00 cm long. When both wires carry 
the same current I, the wires repel each other so that 
the angle between the supporting strings is u 5 16.08.  
(a) Are the currents in the same direction or in oppo-
site directions? (b) Find the magnitude of the current. 
(c) If this transmission line were taken to Mars, would 
the current required to separate the wires by the same 
angle be larger or smaller than that required on the 
Earth? Why?

u

,

Figure P30.29

Section 30.3 ​ Ampère’s Law

	30.	Niobium metal becomes a superconductor when 
cooled below 9 K. Its superconductivity is destroyed 
when the surface magnetic field exceeds 0.100 T. In 
the absence of any external magnetic field, determine 
the maximum current a 2.00-mm-diameter niobium 
wire can carry and remain superconducting.

	31.	 Figure P30.31 is a cross-sectional view of a coaxial 
cable. The center conductor is surrounded by a rubber 
layer, an outer conductor, and another rubber layer.  
In a particular application, the current in the inner 
conductor is I1 5 1.00 A out of the page and the cur-
rent in the outer conductor is I2 5 3.00 A into the 
page. Assuming the distance d 5 1.00 mm, determine 
the magnitude and direction of the magnetic field at 
(a) point a and (b) point b.

ba

I1

d d d

I2 

Figure P30.31

	32.	The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of  
0.700 m and an outer radius of 1.30 m. The toroid has 
900 turns of large-diameter wire, each of which carries 
a current of 14.0 kA. Find the magnitude of the mag-

W

W

direction or in opposite directions? (c) What would 
happen if the direction of one current were reversed 
and doubled?

	23.	Two parallel wires are separated by 6.00 cm, each car-
rying 3.00 A of current in the same direction. (a) What 
is the magnitude of the force per unit length between 
the wires? (b) Is the force attractive or repulsive?

	24.	Two long wires hang vertically. Wire 1 carries an 
upward current of 1.50 A. Wire 2, 20.0 cm to the right 
of wire 1, carries a downward current of 4.00 A. A third 
wire, wire 3, is to be hung vertically and located such 
that when it carries a certain current, each wire experi-
ences no net force. (a) Is this situation possible? Is it 
possible in more than one way? Describe (b) the posi-
tion of wire 3 and (c) the magnitude and direction of 
the current in wire 3.

	25.	In Figure P30.25, the current in the long, straight wire 
is I1 5 5.00 A and the wire lies in the plane of the rect-
angular loop, which carries a current I2 5 10.0 A. The 
dimensions in the figure are c 5 0.100 m, a 5 0.150 m, 
and , 5 0.450 m. Find the magnitude and direction of 
the net force exerted on the loop by the magnetic field 
created by the wire.

I1

�

c a

I2

Figure P30.25  Problems 25 and 26.

	26.	In Figure P30.25, the current in the long, straight wire 
is I1 and the wire lies in the plane of a rectangular 
loop, which carries a current I2. The loop is of length 
, and width a. Its left end is a distance c from the wire. 
Find the magnitude and direction of the net force 
exerted on the loop by the magnetic field created by 
the wire.

	27.	Two long, parallel wires are attracted to each other by 
a force per unit length of 320 mN/m. One wire carries 
a current of 20.0 A to the right and is located along 
the line y 5 0.500 m. The second wire lies along the  
x axis. Determine the value of y for the line in the 
plane of the two wires along which the total magnetic 
field is zero.

	28.	Why is the following situation impossible? Two parallel 
copper conductors each have length , 5 0.500 m and 
radius r 5 250 mm. They carry currents I 5 10.0 A in 
opposite directions and repel each other with a mag-
netic force FB 5 1.00 N.

	29.	The unit of magnetic flux is named for Wilhelm Weber. 
A practical-size unit of magnetic field is named for 
Johann Karl Friedrich Gauss. Along with their indi-
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	38.	A long, cylindrical conductor of radius R carries a cur-
rent I as shown in Figure P30.38. The current density 
J, however, is not uniform over the cross section of the 
conductor but rather is a function of the radius accord-
ing to J 5 br, where b is a constant. Find an expression 
for the magnetic field magnitude B (a) at a distance  
r1 , R and (b) at a distance r2 . R, measured from the 
center of the conductor.

R
r1

I

r2

Figure P30.38

	39.	Four long, parallel conductors carry equal currents of 
I 5 5.00 A. Figure P30.39 is an end view of the conduc-
tors. The current direction is into the page at points 
A and B and out of the page at points C and D. Cal-
culate (a) the magnitude and (b) the direction of the 
magnetic field at point P, located at the center of the 
square of edge length , 5 0.200 m.

,

,

A

B

C

P

D

Figure P30.39

Section 30.4 ​ The Magnetic Field of a Solenoid

	40.	A certain superconducting magnet in the form of a 
solenoid of length 0.500 m can generate a magnetic 
field of 9.00 T in its core when its coils carry a current 
of 75.0 A. Find the number of turns in the solenoid.

	41.	A long solenoid that has 1 000 turns uniformly dis-
tributed over a length of 0.400 m produces a magnetic 
field of magnitude 1.00 3 1024 T at its center. What 
current is required in the windings for that to occur?

	42.	You are given a certain volume of copper from which 
you can make copper wire. To insulate the wire, you 
can have as much enamel as you like. You will use the 
wire to make a tightly wound solenoid 20 cm long hav-
ing the greatest possible magnetic field at the center 
and using a power supply that can deliver a current 
of 5 A. The solenoid can be wrapped with wire in one 
or more layers. (a) Should you make the wire long 
and thin or shorter and thick? Explain. (b) Should 
you make the radius of the solenoid small or large? 
Explain.

	43.	A single-turn square loop of wire, 2.00 cm on each edge, 
carries a clockwise current of 0.200 A. The loop is inside 
a solenoid, with the plane of the loop perpendicular 
to the magnetic field of the solenoid. The solenoid has 

S
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netic field inside the toroid along (a) the inner radius 
and (b) the outer radius.

	33.	A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 mA. In a vacuum, a proton moves 
parallel to the wire (opposite the current) with a con-
stant speed of 2.30 3 104 m/s at a distance d above the 
wire. Ignoring the magnetic field due to the Earth, 
determine the value of d.

	34.	An infinite sheet of current lying in the yz plane car-
ries a surface current of linear density Js . The current 
is in the positive z direction, and Js represents the cur-
rent per unit length measured along the y axis. Figure 
P30.34 is an edge view of the sheet. Prove that the mag-
netic field near the sheet is parallel to the sheet and 
perpendicular to the current direction, with magni-
tude m0 Js /2.

Js  (out of paper)

x

Figure P30.34

	35.	The magnetic field 40.0 cm away from a long, straight 
wire carrying current 2.00 A is 1.00 mT. (a) At what dis-
tance is it 0.100 mT? (b) What If? At one instant, the 
two conductors in a long household extension cord 
carry equal 2.00-A currents in opposite directions. The 
two wires are 3.00 mm apart. Find the magnetic field 
40.0 cm away from the middle of the straight cord, in 
the plane of the two wires. (c)  At what distance is it 
one-tenth as large? (d) The center wire in a coaxial 
cable carries current 2.00 A in one direction, and the 
sheath around it carries current 2.00 A in the opposite 
direction. What magnetic field does the cable create at 
points outside the cable?

	36.	A packed bundle of 100 long, straight, insulated wires 
forms a cylinder of radius R 5 0.500 cm. If each wire 
carries 2.00 A, what are (a) the magnitude and (b) the 
direction of the magnetic force per unit length acting 
on a wire located 0.200 cm from the center of the bun-
dle? (c) What If? Would a wire on the outer edge of the 
bundle experience a force greater or smaller than the 
value calculated in parts (a) and (b)? Give a qualitative 
argument for your answer.

	37.	 The magnetic field created by a large current passing 
through plasma (ionized gas) can force current-carrying  
particles together. This pinch effect has been used in 
designing fusion reactors. It can be demonstrated by 
making an empty aluminum can carry a large cur-
rent parallel to its axis. Let R represent the radius of 
the can and I the current, uniformly distributed over 
the can’s curved wall. Determine the magnetic field  
(a) just inside the wall and (b) just outside. (c) Deter-
mine the pressure on the wall.
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shown in Figure P30.48a. (b) Figure P30.48b shows an 
enlarged end view of the same solenoid. Calculate the 
flux through the tan area, which is an annulus with 
an inner radius of a 5 0.400 cm and an outer radius 
of b 5 0.800 cm.

rR

a

b

I

I

a b

,

Figure P30.48

Section 30.6 ​ Magnetism in Matter

	49.	The magnetic moment of the Earth is approximately 
8.00  3 1022 A ? m2. Imagine that the planetary mag-
netic field were caused by the complete magnetiza-
tion of a huge iron deposit with density 7 900 kg/m3  
and approximately 8.50 3 1028 iron atoms/m3.  
(a) How many unpaired electrons, each with a mag-
netic moment of 9.27 3 10224 A ? m2, would participate? 
(b) At two unpaired electrons per iron atom, how many 
kilograms of iron would be present in the deposit?

	50.	At saturation, when nearly all the atoms have their 
magnetic moments aligned, the magnetic field is 
equal to the permeability constant m0 multiplied by 
the magnetic moment per unit volume. In a sample of 
iron, where the number density of atoms is approxi-
mately 8.50 3 1028 atoms/m3, the magnetic field can 
reach 2.00 T. If each electron contributes a magnetic 
moment of 9.27 3 10224 A ? m2 (1 Bohr magneton), 
how many electrons per atom contribute to the satu-
rated field of iron?

Additional Problems

	51.	 A 30.0-turn solenoid of length 6.00 cm produces a 
magnetic field of magnitude 2.00 mT at its center. Find 
the current in the solenoid.

	52.	A wire carries a 7.00-A current along the x axis, and 
another wire carries a 6.00-A current along the y axis, 
as shown in Figure P30.52. What is the magnetic field 
at point P, located at x 5 4.00 m, y 5 3.00 m?

M

M

7.00 A

(4.00, 3.00) m

y

x
P

77777 0000000000 A

6.00 A

Figure P30.52

30.0 turns/cm and carries a clockwise current of 15.0 A. 
Find (a) the force on each side of the loop and (b) the 
torque acting on the loop.

	44.	A solenoid 10.0 cm in diameter and 75.0 cm long is 
made from copper wire of diameter 0.100 cm, with very 
thin insulation. The wire is wound onto a cardboard 
tube in a single layer, with adjacent turns touching 
each other. What power must be delivered to the sole-
noid if it is to produce a field of 8.00 mT at its center?

	45.	It is desired to construct a solenoid that will have a 
resistance of 5.00 V (at 20.08C) and produce a mag-
netic field of 4.00 3 1022 T at its center when it carries 
a current of 4.00 A. The solenoid is to be constructed 
from copper wire having a diameter of 0.500 mm. If 
the radius of the solenoid is to be 1.00 cm, determine 
(a) the number of turns of wire needed and (b) the 
required length of the solenoid.

Section 30.5 ​ Gauss’s Law in Magnetism

	46.	Consider the hemispherical closed surface in Figure 
P30.46. The hemisphere is in a uniform magnetic 
field that makes an angle u with the vertical. Calculate 
the magnetic flux through (a) the flat surface S1 and 
(b) the hemispherical surface S2.

S1 R

S2

u

B
S

Figure P30.46

	47.	 A cube of edge length , 5 2.50 cm is positioned as 
shown in Figure P30.47. A uniform magnetic field 
given by B

S
5 15î 1 4 ĵ 1 3k̂ 2  T  exists throughout the 

region. (a)  Calculate the magnetic flux through the 
shaded face. (b) What is the total f lux through the six 
faces?
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Figure P30.47

	48.	A solenoid of radius r 5 1.25 cm and length , 5 30.0 cm  
has 300 turns and carries 12.0 A. (a) Calculate the 
flux through the surface of a disk-shaped area of 
radius R 5 5.00 cm that is positioned perpendicu-
lar to and centered on the axis of the solenoid as 
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needle” is a magnetic compass mounted so that it can 
rotate in a vertical north–south plane. At this location, 
a dip needle makes an angle of 13.08 from the vertical. 
What is the total magnitude of the Earth’s magnetic 
field at this location?

	59.	A very large parallel-plate capacitor has uniform 
charge per unit area 1s on the upper plate and 2s 
on the lower plate. The plates are horizontal, and both 
move horizontally with speed v to the right. (a) What 
is the magnetic field between the plates? (b) What is 
the magnetic field just above or just below the plates?  
(c) What are the magnitude and direction of the mag-
netic force per unit area on the upper plate? (d) At 
what extrapolated speed v will the magnetic force on a 
plate balance the electric force on the plate? Suggestion:  
Use Ampere’s law and choose a path that closes 
between the plates of the capacitor.

	60.	Two circular coils of radius R, each with N turns, are 
perpendicular to a common axis. The coil centers are 
a distance R apart. Each coil carries a steady current 
I in the same direction as shown in Figure P30.60.  
(a) Show that the magnetic field on the axis at a dis-
tance x from the center of one coil is

    B 5
Nm0IR 2

2
c 1
1R 2 1 x 2 23/2 1

1
12R 2 1 x 2 2 2Rx 23/2 d

		  (b) Show that dB/dx and d 2B/dx 2 are both zero at the 
point midway between the coils. We may then conclude 
that the magnetic field in the region midway between 
the coils is uniform. Coils in this configuration are 
called Helmholtz coils.

R

R

I

R

I

Figure P30.60  Problems 60 and 61.

	61.	 Two identical, flat, circular coils of wire each have 100 
turns and radius R 5 0.500 m. The coils are arranged 
as a set of Helmholtz coils so that the separation dis-
tance between the coils is equal to the radius of the 
coils (see Fig. P30.60). Each coil carries current I 5 
10.0 A. Determine the magnitude of the magnetic field 
at a point on the common axis of the coils and halfway 
between them.

	62.	Two circular loops are parallel, coaxial, and almost in 
contact, with their centers 1.00 mm apart (Fig. P30.62, 
page 932). Each loop is 10.0 cm in radius. The top loop 
carries a clockwise current of I 5 140 A. The bottom 
loop carries a counterclockwise current of I 5 140 A. 
(a) Calculate the magnetic force exerted by the bot-
tom loop on the top loop. (b) Suppose a student thinks 
the first step in solving part (a) is to use Equation 30.7 
to find the magnetic field created by one of the loops. 
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	53.	Suppose you install a compass on the center of a car’s 
dashboard. (a) Assuming the dashboard is made 
mostly of plastic, compute an order-of-magnitude esti-
mate for the magnetic field at this location produced 
by the current when you switch on the car’s headlights. 
(b) How does this estimate compare with the Earth’s 
magnetic field?

	54.	Why is the following situation impossible? The magnitude 
of the Earth’s magnetic field at either pole is approxi-
mately 7.00 3 1025 T. Suppose the field fades away to 
zero before its next reversal. Several scientists propose 
plans for artificially generating a replacement mag-
netic field to assist with devices that depend on the 
presence of the field. The plan that is selected is to lay 
a copper wire around the equator and supply it with a 
current that would generate a magnetic field of magni-
tude 7.00 3 1025 T at the poles. (Ignore magnetization 
of any materials inside the Earth.) The plan is imple-
mented and is highly successful.

	55.	A nonconducting ring of radius 10.0 cm is uniformly 
charged with a total positive charge 10.0 mC. The ring 
rotates at a constant angular speed 20.0 rad/s about an 
axis through its center, perpendicular to the plane of 
the ring. What is the magnitude of the magnetic field 
on the axis of the ring 5.00 cm from its center?

	56.	A nonconducting ring of radius R is uniformly charged 
with a total positive charge q. The ring rotates at a con-
stant angular speed v about an axis through its cen-
ter, perpendicular to the plane of the ring. What is the 
magnitude of the magnetic field on the axis of the ring 
a distance 12R from its center?

	57.	 A very long, thin strip of metal of width w carries a 
current I along its length as shown in Figure P30.57. 
The current is distributed uniformly across the width 
of the strip. Find the magnetic field at point P in the 
diagram. Point P is in the plane of the strip at distance 
b away from its edge.
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Figure P30.57

	58.	A circular coil of five turns and a diameter of 30.0 cm 
is oriented in a vertical plane with its axis perpendicu-
lar to the horizontal component of the Earth’s mag-
netic field. A horizontal compass placed at the coil’s 
center is made to deflect 45.08 from magnetic north 
by a current of 0.600  A in the coil. (a) What is the 
horizontal component of the Earth’s magnetic field?  
(b) The current in the coil is switched off. A “dip 
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ates a magnetic field (Section 30.1). (a) To understand 
how a moving charge can also create a magnetic field, 
consider a particle with charge q moving with velocity 
vS. Define the position vector rS 5 r r̂ leading from the 
particle to some location. Show that the magnetic field 
at that location is

B
S

5
m0

4p
  

q vS 3 r̂

r 2

		  (b) Find the magnitude of the magnetic field 1.00 mm  
to the side of a proton moving at 2.00 3 107 m/s.  
(c) Find the magnetic force on a second proton at this 
point, moving with the same speed in the opposite direc-
tion. (d) Find the electric force on the second proton.

	66.	Review. Rail guns have been suggested for launch-
ing projectiles into space without chemical rockets. 
A tabletop model rail gun (Fig. P30.66) consists of 
two long, parallel, horizontal rails , 5 3.50 cm apart, 
bridged by a bar of mass m 5 3.00 g that is free to slide 
without friction. The rails and bar have low electric 
resistance, and the current is limited to a constant  
I 5 24.0 A by a power supply that is far to the left of 
the figure, so it has no magnetic effect on the bar. Fig-
ure P30.66 shows the bar at rest at the midpoint of the 
rails at the moment the current is established. We wish 
to find the speed with which the bar leaves the rails 
after being released from the midpoint of the rails.  
(a) Find the magnitude of the magnetic field at a dis-
tance of 1.75 cm from a single long wire carrying a  
current of 2.40 A. (b) For purposes of evaluating the 
magnetic field, model the rails as infinitely long. Using 
the result of part (a), find the magnitude and direc-
tion of the magnetic field at the midpoint of the bar.  
(c) Argue that this value of the field will be the same 
at all positions of the bar to the right of the midpoint 
of the rails. At other points along the bar, the field is 
in the same direction as at the midpoint, but is larger 
in magnitude. Assume the average effective magnetic 
field along the bar is five times larger than the field 
at the midpoint. With this assumption, find (d) the 
magnitude and (e) the direction of the force on the 
bar. (f) Is the bar properly modeled as a particle under 
constant acceleration? (g) Find the velocity of the bar 
after it has traveled a distance d 5 130 cm to the end 
of the rails.
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Figure P30.66

	67.	 Fifty turns of insulated wire 0.100 cm in diameter are 
tightly wound to form a flat spiral. The spiral fills a 
disk surrounding a circle of radius 5.00 cm and extend-
ing to a radius 10.00 cm at the outer edge. Assume the 
wire carries a current I at the center of its cross section. 
Approximate each turn of wire as a circle. Then a loop 
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How would you argue for or against this idea? (c) The 
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming the only forces acting on it are the 
force in part (a) and the gravitational force.

I

I

Figure P30.62

	63.	Two long, straight wires cross each other perpendicu-
larly as shown in Figure P30.63. The wires are thin so 
that they are effectively in the same plane but do not 
touch. Find the magnetic field at a point 30.0 cm above 
the point of intersection of the wires along the z axis; 
that is, 30.0 cm out of the page, toward you.

3.00 A

y

x
5.00 A

Figure P30.63

	64.	Two coplanar and concentric circular loops of wire 
carry currents of I1 5 5.00 A and I 2 5 3.00 A in oppo-
site directions as in Figure P30.64. If r1 5 12.0 cm and 
r2 5 9.00 cm, what are (a) the magnitude and (b) the 
direction of the net magnetic field at the center of the 
two loops? (c) Let r1 remain fixed at 12.0 cm and let r2 
be a variable. Determine the value of r2 such that the 
net field at the center of the loops is zero.

r1

r2
I1I2

Figure P30.64

	65.	As seen in previous chapters, any object with electric 
charge, stationary or moving, other than the charged 
object that created the field, experiences a force in 
an electric field. Also, any object with electric charge, 
stationary or moving, can create an electric field 
(Chapter 23). Similarly, an electric current or a mov-
ing electric charge, other than the current or charge 
that created the field, experiences a force in a mag-
netic field (Chapter 29), and an electric current cre-
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of current exists at radius 5.05 cm, another at 5.15 cm, 
and so on. Numerically calculate the magnetic field at 
the center of the coil.

	68.	An infinitely long, straight wire carrying a current I1 
is partially surrounded by a loop as shown in Figure 
P30.68. The loop has a length L and radius R, and  
it carries a current I2. The axis of the loop coincides 
with the wire. Calculate the magnetic force exerted on 
the loop.

R

L

I2

I1

Figure P30.68

Challenge Problems

	69.	Consider a solenoid of length , and radius a containing 
N closely spaced turns and carrying a steady current 
I. (a) In terms of these parameters, find the magnetic 
field at a point along the axis as a function of posi-
tion x from the end of the solenoid. (b) Show that as , 
becomes very long, B approaches m0NI/2, at each end 
of the solenoid.

	70.	We have seen that a long solenoid produces a uniform 
magnetic field directed along the axis of a cylindrical 
region. To produce a uniform magnetic field directed 
parallel to a diameter of a cylindrical region, however, 
one can use the saddle coils illustrated in Figure P30.70. 
The loops are wrapped over a long, somewhat flat-
tened tube. Figure P30.70a shows one wrapping of wire 
around the tube. This wrapping is continued in this 
manner until the visible side has many long sections 
of wire carrying current to the left in Figure P30.70a 
and the back side has many lengths carrying current to 
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the right. The end view of the tube in Figure P30.70b 
shows these wires and the currents they carry. By wrap-
ping the wires carefully, the distribution of wires can 
take the shape suggested in the end view such that 
the overall current distribution is approximately the 
superposition of two overlapping, circular cylinders of 
radius R (shown by the dashed lines) with uniformly 
distributed current, one toward you and one away from 
you. The current density J is the same for each cylinder. 
The center of one cylinder is described by a position 
vector d

S
 relative to the center of the other cylinder. 

Prove that the magnetic field inside the hollow tube is 
m0 Jd/2 downward. Suggestion: The use of vector meth-
ods simplifies the calculation.

	71.	A thin copper bar of length , 5 10.0 cm is supported 
horizontally by two (nonmagnetic) contacts at its ends. 
The bar carries a current of I1 5 100 A in the negative 
x direction as shown in Figure P30.71. At a distance  
h 5 0.500 cm below one end of the bar, a long, straight 
wire carries a current of I2 5 200 A in the positive z 
direction. Determine the magnetic force exerted on 
the bar.
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Figure P30.71

	72.	In Figure P30.72, both currents in the infinitely long 
wires are 8.00 A in the negative x direction. The wires 
are separated by the distance 2a 5 6.00 cm. (a) Sketch 
the magnetic field pattern in the yz plane. (b) What 
is the value of the magnetic field at the origin? (c) At 
(y 5 0, z S `)? (d) Find the magnetic field at points 
along the z axis as a function of z. (e) At what distance 
d along the positive z axis is the magnetic field a maxi-
mum? (f) What is this maximum value?
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Figure P30.72

	73.	A wire carrying a current I is bent into the shape of 
an exponential spiral, r 5 e u, from u 5 0 to u 5 2p as 
suggested in Figure P30.73 (page 934). To complete a 
loop, the ends of the spiral are connected by a straight 
wire along the x axis. (a) The angle b between a radial 
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line and its tangent line at any point on a curve r 5 f(u) 
is related to the function by

tan b 5
r

dr/du

		  Use this fact to show that b 5 p/4. (b) Find the mag-
netic field at the origin.
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Figure P30.73

	74.	A sphere of radius R has a uniform 
volume charge density r. When the 
sphere rotates as a rigid object with 
angular speed v about an axis through 
its center (Fig. P30.74), determine  
(a) the magnetic field at the center 
of the sphere and (b)  the magnetic 
moment of the sphere.

	75.	 A long, cylindrical conductor of radius 
a has two cylindrical cavities each of diameter a through 
its entire length as shown in the end view of Figure 
P30.75. A current I is directed out of the page and is uni-
form through a cross section of the conducting material. 
Find the magnitude and direction of the magnetic field 
in terms of m0, I, r, and a at (a) point P1 and (b) point P2.
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Figure P30.74
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	76.	A wire is formed into the shape of a square of edge 
length L (Fig. P30.76). Show that when the current in 
the loop is I, the magnetic field at point P a distance x 
from the center of the square along its axis is
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Figure P30.76

	77.	 The magnitude of the force on a magnetic dipole mS  
aligned with a nonuniform magnetic field in the 
positive x direction is Fx 5 0mS 0 dB/dx. Suppose two flat 
loops of wire each have radius R and carry a current I.  
(a) The loops are parallel to each other and share the 
same axis. They are separated by a variable distance  
x .. R. Show that the magnetic force between them 
varies as 1/x 4. (b) Find the magnitude of this force, 
taking I 5 10.0 A, R 5 0.500 cm, and x 5 5.00 cm.
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