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 A control system is an interconnection of 
components forming a system configuration 
that will provide a desired system response. 
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Input Output 

linear system theory assumes a cause–effect 

relationship for the components of a system 

and is the basis of system analysis 

The variable which may be 

adjusted  to bring about the 

required control  action 

(also know on the actuating 

Signal). 

The physical 

system which is to 

be controlled. 

The variable to 

be controlled. 
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Open Loop System 

An open-loop control system utilizes an 

actuating device to control the process 

directly without using feedback 

Actuating signal 

Disadvantages: 

Open-loop control system cannot compensate for disturbance 

Inputs to the process or for process parameter variations. 
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Closed Loop System 

A closed-loop control system uses a 

measurement of the output and feedback of this 

signal to compare it with the desired output 

(reference or command) 

The error can be compensated for by the 

controller which generates a correcting 

signal u(t) 
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1. System/Plant       to be controlled 

2. Actuators       Converts u(t) to power signal 

3. Sensors       gives measurement of system 
output 

4. Reference input       desired output 

5. Error detector    

6. Controller       operates on the error signal 
to form the required control signal u(t)    
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Control system components…!! 
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• Stabilizing closed loop system 
• Accuracy  
• Achieving proper transient and steady-state response 
• Reduction of sensitivity to process parameters 
• Disturbance rejection 
• Performance and robustness 
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1. Establishment of goals, variables to be   
controlled, and specifications. 

2. System definition and modeling. 

3. Control system design, simulation, and 
analysis. 

4. If the performance meets the specifications, 
then finalize the design. 

5. Otherwise iterate.  
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 Mathematical models of physical systems are key 
elements in the design and analysis of control 
systems. 

 We will consider electrical and mechanical systems 

 Obtain the input-output relationship for 
components and subsystems of the system in the 
form of transfer functions using Laplace 
transforms. 

 Forming Different graphical representations of the 
system model (Block diagram and signal flow). 
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  Recognize that differential equations can 
describe the dynamic  behavior of  physical 
systems. 

  Be able to utilize linearization approximations 
through the use of Taylor series expansions. 

 Understand the application of Laplace transforms 
and their role in obtaining transfer functions. 

 Be aware of block diagrams (and signal-flow 
graphs) and their role in analyzing control 
systems. 

 Understand the important role of modeling in 
the control system design process 
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Electrical Components 

The differential 

equations describing 

the dynamic 

performance of a 

physical system 

are obtained by 

utilizing the physical 

laws of the process 

like Kirchhoff's laws 

(KCL, KVL) and 

Newton's second law 
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Mechanical  Components: Translational motion 

s 
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Mechanical  Components: Rotational motion 
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Element Type Physical Element Describing Equation 

Inductive storage Electrical Inductance v = L di/dt 

Translational spring F= kx 

Rotational spring T=kθ 

Capacitive storage Electrical capacitance i = C dv/dt 

Translational mass F = M d 2x/dt 2 

Rotational mass T = J dω /dt 

Energy dissipators Electrical resistance v = iR 

Translational damper F = b dx/dt 

Rotational damper T = bω 
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Examples 
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 The Laplace transform is a mathematical tool for solving 

linear time invariant differential equation.  

 It allows a time domain differential equation model of a 

system to be transformed in to algebraic model  

   

   

 Definition  

 

Therefore simplifying the 

analysis and design of a control 

system 

 0),(for     )()}({)(
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 x(t) can be found by applying the  

inverse Laplace transform of X(s) 
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 In general, a necessary condition for a linear system can be 

determined in terms of an excitation x(t) and a response y(t)                 

     When the system at rest is subjected to an excitation         

  , it provides a response          and when the  

      system is subjected to an excitation         , it provides 

      a corresponding response        ; 

 

      For a linear system, it is necessary that the excitation 

                                   result in a response       

         This is usually called the principle of superposition 

 If the system is nonlinear a linear one can be obtained using 

Taylor series expansion around a known operating conditions 
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( , )x y

Consider a system whose input variable is x(t) and output 

variable is y(t) where the relationship between them is 

nonlinear given by y=f(x); If the operation conditions 

corresponds to      , then a linear relationship around this 

point can be found using the Taylor series as follows: 

y f x

y f x
df

dx
x x

d f

dx
x x
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 Eliminating higher order terms from Taylor series gives:  ( ) ( )y y k x x
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Linear relationship 
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Time domain Differential

equation

Laplace domain Algebraic

equation

Solution of Differential

Equation

Solution of Algebraic

Equation

Laplace Transform

Inverse Laplace

Transform

F(s)
F(t)
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Laplace transform of 

time Differentiation 
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differentiation to be: 
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f(t) L(f) f(t) L(f) 

1 Unit-impulse 1 7 cos t 

2 Unit-step   1 1/s 8 sin t 

3 Unit-ramp   t 1/s2 9 cosh at 

4 t2 2!/s3 10 t eat 

5 tn    (n  is 
+ve integer) 

11 eat cos t 

6 eat 12 eat sin t 

1
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For most engineering purposes the 

inverse Laplace transformation can be 

accomplished simply by referring to 

Laplace transform tables  
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The Laplace Transform….cont 

Initial Value Theorem 

0

)(lim)(lim)0(





ts

tfssFf

Final Value Theorem 





ts

tfssFf

0

)(lim)(lim)(

For function 

 f(t) 

The final value theorem is very useful for 

analysis and design of control systems, 

since it gives the final value of a time 

function  f(t) 

The Laplace variable  s can be considered 

to be the differential operator so that dt

d
s 

And we also have the integral operator 
 




0

1
dt

s

s-operator is a complex quantity has a real and imaginary parts 

jbas 
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Examples 
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The Transfer Function (T.F) of Linear Systems 

The transfer function of a linear system is defined as the 

ratio of the Laplace transform of the output variable to the 

Laplace transform of the input variable, with all initial 

conditions assumed to be zero. 

The transfer function of a system (or element) represents the 

relationship describing the dynamics of the system under 

consideration 

Represents system dynamics in s-domain 

)(. sG
input

output
FT 
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 Where p(s) and q(s ) are polynomials 

The roots of  p(s) are called the zeros of the 

system where the roots of  q(s ) are called the 

poles of the system 
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 q(s ) is also known as the characteristic equation of the systems 

The location of the roots of q(s ) in s-plane gives a 

character to the system performance 
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Example:   TF’s of Operational Amplifier circuits 

The operational amplifier (op-amp) belongs to an important class of analog 

integrated circuits commonly used as building blocks in the implementation 

of control systems and in many other important applications. 

• Compensators 

• Control laws 

• Filters 

• Comparator/summing elements 
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DC motors are widely 

used in numerous control 

applications such as 

robotic  manipulators, tape 

transport mechanisms, 

disk drives, and machine 

tools 

The DC motor converts direct 

current (DC) electrical energy into 

rotational mechanical energy 

DC motors features: 

• High output torque  

• Speed controllability over a wide range 

• Portability 

• Adaptability to various types of controllers 

   

 

TF’s of DC motors Examples:   
A DC motor is used to move loads and is 

called an actuator. 
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This relationship is typically represented by the TF of 

the subsystem relating the input and output variables 

  

Block Diagram (BD) Models  

Again: 

Control systems consists of elements that are represented  

mathematically by a set of simultaneous differential equations 

Laplace transformation reduces the problem of differential 

equations to the solution of a set of linear algebraic equations. 

Since control systems are concerned with the control of specific 

variables, the controlled variables must relate to the controlling 

variables 

The importance of the TF is evidenced by the ability 

to represent the relationship of system variables by 

diagrammatic means called  BD 

Hence, the control system with all its elements can be 

represented by one BD showing all variables relations 
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Armature controlled DC motor BD 
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In order to find the cause-effect relationship of a system 

BD, we simplify the BD (reduction) by applying the rules 

of BD algebra.  
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Block Diagram (BD) Algebra  

Original Diagram  Equivalent Diagram 

(1) 

(2) 

(3) 
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(5) 

(4) 

(6) 
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Example 

For the following control system, find the input-output relationship 

(i.e. TF) relation the output variable Y(s) to the input variable R(s). 
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Signal-Flow (SF) Graph Models  

Block diagrams are adequate for the representation of the system  

interrelationships. However, for a system with reasonably complex 

interrelationships, the block diagram reduction procedure is often  

quite difficult to complete.  
                                          

                An alternative method for determining the relationship    

   between system variables has been developed by Mason 

   which is called the signal-flow graph method 

                             
A signal-flow graph is a diagram consisting of nodes that are 

connected by several directed branches and is a graphical 

representation of a set of linear relations. 

The reduction procedure (used in the BD method) is not 

necessary to determine TF (input-output relationship) of a system 

represented by SF graph.  

We apply Mason`s Gain Formula to find the TF 
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General SF Graph 

Node: acts like a summing point and also represents a system variable. 

 

Transmittance: real or complex gain between two nodes. 

 

Branch: directed line segment joining two nodes. 

 

Input node (source): only outgoing branches. 

 

Output node (sink): only incoming branches. 
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Mixed node: both incoming and outgoing branches  

 

Path: traversal of connected branches in the direction of arrows. 

 

Loop: closed path. 

 

Loop gain: product of branch transmittance at a loop. 

 

Non touching loops: they do not posses any common nodes. 

  

Forward path: path from an input to an output node that does 

                          not cross any node more than once.

     

 Forward path gain: product of transmittances of a      

                                      forward path 
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SF Graph Algebra  
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Examples 

(1) 

(2) (3) 
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Mason`s Gain Formula  

The formula is often used to relate the output variable 

Y(s) to the input variable R(s) (i.e. finding the TF) and is 

given by 





K KKP

TF

KP

 where, 

 

               is the gain of path K  from input node to output node in the 

 direction of the arrows and without passing node than once.  

Δ : determinant of the graph  

K KP : Cofactor o the path 

  

Δ = 1 – ( sum of all different loop gains ) + ( sum of the gain 

products of all combinations of  two non touching loops ) – 

( sum of the gain products of all combinations of three non 

touching loops ) 
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Example 

For the following control system, find the input-output relationship 

(i.e. TF) relation the output variable Y(s) to the input variable R(s). 
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Example 

For the following control system, find the input-output relationship 

(i.e. TF) relation the output variable Y(s) to the input variable R(s). 
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Example: Armature Controlled DC Motor (page 94) 
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Example: Disk Drive Read System (Page 118) 
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 This chapter will emphasize on the advantages of the feedback 

closed-loop control system compared to the open-loop.  

 Introducing a feedback in a control system is often necessary 

to improve the control system. 

 Generally speaking, the areas of interest in a control system 

response are: 

Minimizing the error signal. 

Reducing the effect of system parameter uncertainties or changes 

(i.e. reducing the system sensitivity to parameter 

uncertainties/variations). 

Reducing the effect of unwanted signals like disturbance or noise. 

 Improving the transient and steady-state performance of a system. 

 

 

 



6/22/2012 Dr. Ahmad Al-Jarrah 2 

An open-loop system operates without feedback and directly 

generates the output in response to an input signal. 

The disturbance            directly influence the output; without 

feedback, the control system is highly sensitive to disturbance.     

T sd ( )

Open-loop control system 
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A closed-loop system uses a measurement of the output signal 

and a comparison with the desired output to generate an error 

signal [E(s)=desired response-actual response] that is used by 

the controller to adjust the actuator be generating a control signal 

u(t). 

Closed-loop control system 

Error 

Advantages of closed-loop system:  

   Reducing the error. 

   Reducing the sensitivity to parameter variations. 

   Improving rejection of  disturbances 

   Improving the transient response. 
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Define 

Where,  

 L(s) is loop gain  

 S(s) is the sensitivity function 

Error signal analysis:  
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Where C(s) is the complementary sensitivity function  

Note that sensitivity can be reduced by increasing the 

controller gain and the error can be reduced by reducing 

the sensitivity S(s) and C(s), but  

   E s S s R s S s G s T s C s N sd( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

C s
L s

L s
( )

( )

( )


1

S s C s( ) ( )  1

i.e. S(s) and C(s) can not reduced simultaneously; so, 

design compromises must be made.  
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1

System sensitivity S(s) is the ratio of the percentage change in the 

system transfer function to the percentage change of a process 

transfer function (or parameter). 

Sensitivity of Control Systems to Parameter Variations 

Assume the system TF to be 

Where T(s) is the system TF,             is the controller, and G(s) is the 

process TF. 

G sC ( )

 S s
T s T s

G s G s
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For small incremental changes, given the previous T(s), the sensitivity of the 

 closed-loop system T(s) with respect to a small changes in the process G(s)  

 becomes 

If we seek to determine        , where       is a parameter within G(s), using the  

chain rule gives 
S T

 

S S ST

G

T G
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Note: 
Uncertainties in the system model might come from : Aging ,  

changing environment, and ignorance of exact values of  

the system parameters which all affect the control process. 

 

                               In open-loop : inaccurate output result from  

                               these effects. 

                                

                               In closed-loop: the system attempts to  

                               compensate and correct for these effects  

                               by use of the controller 
 

Sensitivity is reduced in closed-loop by increasing  

system compared to the open-loop case where S=1 in the case  

of T(s)=G(s) 

G s G sC ( ) ( )
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Example: Feedback Amplifier 

Study the sensitivity changes for the two cases: open-loop 

and closed-loop.   
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Open-loop speed control system (without tachometer feedback) 

Disturbance Signals in a Feedback Control System  

Disturbance signal is unwanted undesired  signal that  

affects the output  signal   

( )

( )

/ ( )

.

s

T s

Js b

K K

R Js b
d m b

a


 




1

1
1

Assuming very small 

inductance and only  

disturbance input 

L Va a 0 0
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Closed-loop speed tachometer control system 
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Control of the Transient Response 

Voltage  

divider  
DC motor  
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1 is known as the time constant 
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And the input is : 

The system TF is  

{Open-Loop} 
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If the speed           is too  

slow, we reduce the time  

Constant of the motor  
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with different time constant 
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{Closed-Loop} 
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 1  c
i.e. the Closed-loop system has a  

faster response compared to the  

Open-loop system  

 c
Also,        can be reduced by increasing the controller gain Ka
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The response is For High 

amplifier gain 

 

Noting different steady-

state values for the  open-

loop and closed-loop 
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Steady-State Error 

The steady-state error is the error after the transient 

response has decayed, leaving only the continuous 

steady response. 
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{Open-Loop} 
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{Closed-Loop} 
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1 3/27/2013 Dr. Ahmad Al-Jarrah 

 One of the first steps in the design process is to specify the 

measures of performance (performance specifications). In this 

chapter we introduce the common time-domain specifications 

such as percent overshoot, settling time, peak time, rise time and 

steady-state error. 

 

 Time domain performance specifications can be found from the 

response of the system to a given input.   

           ??                                     ?? 

 The time response of a control system is usually divided into two 

parts. The transient response and the steady-state response.  
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In control systems transient response is defined as the part 

of the time response that goes to zero as time becomes 

very large  0)(lim 


tyt
t

The steady state response is simply the part of the total 

response  that remains after the transient has died out.          

response statesteady          responsetransient 

Where

                                   

system data continuous a of response  time thedenote  )(Let  





sst

tss

YY

(t)Y(t)YY(t)

tY

Y t e tt( ) cos  5 5 2



3/27/2013 Dr. Ahmad Al-Jarrah 3 

Transient Steady-state 
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For  the purposes of analysis and design it is necessary to 

assume some basic types of test input signals so that the 

performance of a system can be evaluated 

Test Input Signals for the Time Response of        

Control Systems 

These input signals are close to a real life input signals 

Step input , ramp input, parabolic input, and unit-impulse input  










0     0

0    
)(

t

tA
tr

I. Step input  r(t) : 

s

A
sR )(

Where A is the amplitude of the step input 
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II. Ramp input  r(t) : 

2
)(

s

A
sR 
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III. Parabolic input  r(t) : 
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IV. Unit impulse input          : ( )t

Unit impulse is a special case from rectangular function f(t) 
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As      approaches to zero, the function 

f(t) approaches the unit-impulse function 
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Performance of Control Systems 

I.   Zero order system (static TF) 

II.  First order system  

III. Second order system  

IV. Higher order system  

We will study the performance specification of the following  

control systems: 

Static TF 



3/27/2013 Dr. Ahmad Al-Jarrah 7 

II.  First order system:  

s

1E(s) 
R(s) C(s) 

Test signal is a unit-step function, R(s)=1/s 

A first-order system without 

 zeros can be represented by  

the following TF: 

1

1

)(

)(




ssR

sC
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sss

sR
s

sC

To find the response  



t

etc


1)(

If t=   , , so the step response is  

C (  ) = (1− 0.37) = 0.63 
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Settling time (   ) is defined to be the time taken for the step 

response to come to within 2% of the final value of the step 

response (i.e. entering the steady-state region). 

4st

st

If t=   , , so the step response is  

C (  ) = (1− 0.018) = 0.982 

4

4
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a

1
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First order system response for different input signals:  
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10

9

s
R(s) Y(s) 

Example: 
The following system, find the unit-step response of the system and 

the steady-state error. 
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s s
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( )






9

10 Again, what is the time constant?? 

 

 









 



 

y t L Y s

L
s s

e t

( ) { ( )}

. .
. ( )

1

1 100 9 0 9

10
0 9 1

y y y t

t

e

ss

ss

   

 

   

( ) lim ( ) .

. .

0 9

1 0 9 01

And  



3/27/2013 Dr. Ahmad Al-Jarrah 12 

Example: 
The following figure gives the measurements of the step response 

of a first-order system, find the transfer function of the system. 
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III.  Second order system:  

 Second-order systems exhibit a wide range of responses which 

 must be analyzed and described.  

 

 For a first-order system, varying a single parameter changes the   

 speed of response,  

 

 Changes in the parameters of a second order system can 

 change the form of the response not only the speed of the  

 response. 

  

For example: a second-order system can display characteristics 

much like a first-order system or, depending on the system’s 

parameters values, pure oscillations  or damped behavior might 

result for its transient response. 
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Assume the following transfer function of a general closed-loop 

second-order system: 

We can re-write the above transfer function in the following form of 

a standard second order system closed-loop transfer function: 

is referred to as the un-damped natural frequency     

of the system, which is the frequency of oscillation of 

the system without damping. 

T s
s s

n

n n

( ) 
 



 

2

2 2
2

T s
b

s as b
( ) 

 2
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is referred to as the damping ratio of the second 

order system, which is a measure of the degree of 

resistance to change in the system output. 

And the poles of the closed loop system 

(roots of the characteristic equation)are:  

According the value of ζ, a second-order system can be set into 

one of the following four cases: 

1. Overdamped - when the system has two real distinct poles (ζ >1). 

2. Underdamped - when the system has two complex conjugate poles (0 <ζ <1) 

3. Undamped - when the system has two imaginary poles (ζ = 0).  

4. Critically damped - when the system has two real but equal poles (ζ = 1). 
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Case I: 

 1s   polesdifferent  Real 

  
 1    (Stable) case dampedOver  

2

1,2 







nn

  

jw 

Over-damped 


n

2s1s

Case II: 

 1s polesComplex 

 
  1    0   (Stable) case  dUnderdampe

2

1,2 







nn j jw 

n

21  nj

21   nj



Under damped 

y t
e

s

e

s

n

s t s t

( )  













 

1
2 1

1 2

1 2





y t
e

t

where

nt

d

d

n

n

n

d n

( ) sin( )

tan tan

 




 


 



 

1
1

1

1

2

1 1

2

2




 






 



  

Assume a unit-step input for the coming slides,  

: is the damped natural frequency 
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Case III: 

  s polesImaginary  , 0

(Stable) case )( damped Zero

1,2 nj

Undamped
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Case IV: 
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Remark: 
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  0

Poles path (location) in 

s-plane as      changes   

Second order system 

responses for a unit-

step input and different  

values of    
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Transient response specifications of an underdamped second order system for 

 a unit-step input:  



1. Rise time(   ) : rise time is the time required for the response to change 

from a lower prescribed value to a higher one. 

 

 

 

2. Peak time(    ): the peak time is the time required for the response 

to reach the first peak 

 

 

 

3. Settling time (    ): the settling time is the time required for the 

amplitude of the sinusoid to decay to 2% or 5% of the steady-state 

value. 
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2% criterion 

n

st


4


4. Maximum overshoot percentage: the percent overshoot is defined as the 

amount  that the waveform at the peak time overshoots the steady-state 

value. 

n

st
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For given OS%, the damping ratio can 

be solved from the OS% equation; 

 

 100/%ln

100/%ln

22 MP

MP
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Examples: 
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IV.  Higher order system:  

Assume the following TF: 

For step input  and using partial fraction,  
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The response of a higher order system is a combination of  responses of 

first and second order systems.  

Observations:  

The dominant pole is the one nearer to the j-axis. 

Poles and zeros that are several order  (usually five order )of magnitude smaller 

than the dominate, Poles and zeros can be ignored. 

Generally speaking, the order of the denominator is larger than that of 

the numerator.  

For the system to be stable, all the poles of the transfer function must be 

negative, that is to say must lay in the left hand side of the s-plane. 

A pole and a zero that are near to each other tend to cancel each other. 

A pole and a zero that coincide cancel each other. 

The poles far away from the j-axis (Im-axis) can be ignored (fast response). 
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Steady-state Error Analysis 

For the feedback system shown in block 

diagram below, the transfer function is given by: 

The system error is given by: 

This last expression shows that the loop gain G(s)H(s) determine the amount 

and nature of the steady state error of a system. 
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The loop gain G(s)H(s) can be expressed in the general form; 

The error in this case would be given by: 
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The steady state error is calculated as follows: 

When the standard test signals of a step (A/s), a ramp (A/s2), and an acceleration 

(A/s3) are used, the Laplace operator “s” in the input test signal denominator will 

cancel or reduce from the power of “s” in the numerator of the expression above. 

The power of “s” (the poles of the G(s)H(s) located on the origin of s-plane), i.e. N, 

determines the steady state error response of the system when subjected to standard 

test signals, and is called the “type number” of the system. 

For N = 0, the system is a type zero, for N = 1, the system is a type one, and so on. 
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Type Zero System: 

 

The steady state error for a step input; A/s is given by 

Position error constant 

 K G s H s

s

p 



lim ( ) ( )

0
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The steady state error for a ramp input; A/s2 is given by 

Type One System: 

 

The steady state error for a step input; A/s is given by 
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The steady state error for a ramp input; A/s2 is given by 

The steady state error for an acceleration input; A/s3 is given by 

Velocity error constant 

 K sG s H s

s

v 



lim ( ) ( )

0
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Type Two System: 

 

The steady state error for a step input;  

A/s is given by 

The steady state error for an 

acceleration input; A/s3  is given by 

Acceleration error constant 

 K s G s H s

s

a 



lim ( ) ( )2

0
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1 7/8/2012 Dr. Ahmad Al-Jarrah 

 Stability of closed-loop feedback systems is central to control 

system design. 

 A stable system should exhibit a bounded output if the 

corresponding input is bounded. This is known as bounded-input-

bounded-output (BIBO) stability.  

 The stability of a feedback system is directly related to the location 

of the roots of the characteristic equation of the system transfer 

function.  

 The Routh-Hurwitz method is introduced as a useful tool for 

assessing system stability. 

 The technique allows us to compute the number of roots of the 

characteristic equation in the right half plane without actually 

computing the values of the roots. 
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A stable system is a dynamic system with a bounded 

response to a bounded input. 
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u(t)

N

-N

t

y(t)

M

-M

t

Bounded input signal 

Bounded output signal 

INPUT – OUTPUT STABLE if and only if every 

bounded input produces a bounded output  

A system is said to be unstable if it’s not BIBO stable 
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Input/output stability is characterized by the location of the poles of  

the system closed loop transfer function (i.e. roots of the 

characteristic equation).  

Undammped critically (marginally) stable   

System with poles of ZERO real parts 
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Here we present a method for investigating the stability of high 

order systems without having to obtain a complete time response 

or determining the precise position of the poles in s-plane. 

Assume the following general closed loop transfer function of a 

system : 

The denominator (   ) can always be expressed as a polynomial of 

nth order as follows: 
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Now, the following conditions are necessary (but not 

sufficient) for the system to be stable: 

1- All the coefficients                                                   have the same sign. 

 

2- No coefficient is zero. 

    o n, , , ....,1 2 3

If  the roots of        are positive, that means that the system is 

unstable. In this case the polynomial        will have 

alternating signs 

If all the coefficients of the polynomial are positive, this does not 

mean that the system is stable 

If the roots of       are negative, that means that the system is stable 

and this case the polynomial will have all positive signs. 



Build the Routh-Hurwitz array from  
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Routh-Hurwitz stability criterion states that the number of 

roots of the characteristic equation that have positive real 

roots is equal to the number of changes in sign of the first 

column of the ordered array. 

Now it is sufficient condition for the system to be stable if 

there is no changes in sign of the first column of the Routh-

Hurwitz array.  
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1 7/11/2012 Dr. Ahmad Al-Jarrah 

So far in the studies of control systems the role of the characteristic 

equation polynomial in determining the behavior of the system has 

been highlighted. 

 

The roots of that polynomial are the poles of the control system, and 

their locations in the complex s-plane reveal information about the 

stability and the performance of the system. 

 

Consider the system shown below: 
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The transfer function of the system is given by: 

The loop gain of the system can be expressed as a numerator 

polynomial over a denominator polynomial as follows: 

The characteristic equation is then given by: 
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As an example consider that the system in the previous figure 

have the following loop gain: 

The characteristic equation for the system is given by: 

The numerator is in fact the denominator of the closed loop system TF. 

The roots of this polynomial are the closed loop poles of the system. 
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As K varies between zero and infinity, the closed loop poles of 

the system are changing and can be calculated as follows: 

     s s K2 3 2 0( )
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The plot of  system poles as they move throughout the s-domain 

when K varies between zero and infinity are as shown below: 

The root locus is nothing but the path 

of the system closed loop poles as 

the gain of the system K varies 

between zero and infinity. 

Since the root locus represent the path of the roots of the characteristic 

equation as the gain varies from zero to infinity, it follows that every 

point on the root locus must satisfy the characteristic equation, namely; 

   1 0G s H s( ) ( )
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Rearranging the characteristic equation gives; 

G s H s( ) ( )  1

Both G(s) and H(s) are complex quantities. The above equation 

can hence be cast in polar or vector form as follows: 

This last relationship specifies the conditions that must prevail for 

any point on the root locus.  

I.   Magnitude Condition 

 

II.   Angle Condition 
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I. Magnitude Condition: 

II. Angle  Condition: 

This equation can be rewritten as: 

For a given point on Root locii, 

 

s=a+jb 

s=a+jb 

For a given point on Root locii, 

 s=a+jb 
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For the system analyzed before and shown below at the point given 

by -1.5 ± j 1.3229, the angles of the vectors from that point to the 

two poles are calculated as follows: 

G s H s zeros poles

s s

( ) ( )

. .

 

    

     

 

0 1 2

110 7 69 3

180

1 2 

Angle Condition, 
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Magnitude Condition, 

G s H s

K s z s z

s p s p

K s s

j

j

( ) ( )

( )( ).......

( )( )........

( )( )

. .

. .

 

 



 

 


   



1 5 1 3229

1 2

1 2

1 5 1 3229

1

1

1 2

2

The point -1.5 ± j 1.3229 satisfied the both conditions since it is on root locus 

Before starting the steps of sketching Root locus, we have to know  

1. The Start and End Points of a Root Locus 

2. Number of segments (branches) of root locus 

3. Location of root locus segments on real axis 

The characteristic equation can be rearranged as follows: 
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When K = 0, the last equation becomes; 

This indicates that the root locii starts at the poles of the system when K = 0. 

The characteristic equation can also be arranged as follows: 

When K is at infinity the above equation becomes; 

This indicates that the root locii ends at the zeros of the system when  K  

Root locii starts at the system poles (when               ) and ends at the 

system zeros (when               ). K  
K  0
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Since root locii must start at poles and end at zeros, then it is fair to 

assume that the number of  segments of root locii is equal to the 

number of poles. 

If the number of poles in the loop gain equation is larger than the 

number of zeros, this means that a number of root locii segments 

equal to the number of poles and zeros will be ending at infinity. 

Since poles and zeros that occur off the real axis must be in complex 

conjugate pairs, it follows that complex portions of the root locii 

always occur as complex conjugate portions. These portions appear 

as mirror images of one another with the parting line being the real 

axis. 

Root locii segments on the real axis can be found by applying the angle 

criteria as follows:  
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Test point 

This indicates that the assumed 

point violates the angle criteria and 

hence cannot be on a segment of 

the root locus. 

Now, let us move the test point as follows: 



7/11/2012 Dr. Ahmad Al-Jarrah 13 

Applying the angle criteria gives: 

This indicates that the assumed 

point conforms to the angle criteria 

and hence is on a segment of the 

root locus. 

Now, let us move the test point as follows: 
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Applying the angle criteria gives: 

This indicates that the assumed 

point violates the angle criteria and 

hence cannot be on a segment of 

the root locus. 

Now, let us move the test point as follows: 
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Applying the angle criteria gives: 

This indicates that the assumed 

point conforms to the angle criteria 

and hence is on a segment of the 

root locus. 



7/11/2012 Dr. Ahmad Al-Jarrah 16 

Root locii on the real axis will occur to the left of odd 

number of poles and zeros . 

Steps of Constructing Root Locus of a System: 
1- Write the characteristic equation of the system in the following standard form 

  
  

  
1 01 2

1 2

K
s z s z s z

s p s p s p

m

n

( )( ).....( )

( )( ).....( )

Where K might be a controller gain (or system gain) and is  

the parameter of interest 
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2- Locate all poles                           and zeros                             in s-plane.  p p pn1 2, , ..... z z zm1 2, , .....

3- Determine the root locus segments on the real axis 

4- Determine the asymptotes of the root locus: 

 

                   number of asymptotes = n-m 

 

 

      intersection of asymptotes with real axis 

 

 

      Angles of asymptotes 

  

a

poles zeros

n m






 

a

k

n m
k n m

 


  

180 2 1
1

( )
,

5- Find the break away / in points if any 

dK

ds
 0

Rearrange the characteristic equation then  find the  

break away/in points that should result from  

Why ???!! 
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6- Find the points of intersection with Im-axis by applying Routh-Hurwitz criteria.          

7- Determine the departure angle (arrival angle) of there is complex poles 

    (complex zeros) by applying the angle condition  

8- Calculate the desired gain K that corresponds to a particular desired closed loop  

    poles by applying the magnitude condition. 



-1 -2 

-1.5 

dK

ds
 0

Back to our example with     
 

1
1 2

k

s s( )(
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