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Objectives

• After this presentation you will be able to:

➢ Explain the function of an automatic control system.

➢ Identify a block diagram representation of a physical system

➢ Explain the difference between an open loop and closed loop control 
system

➢ Understand the components of control systems



What is CONTROL?



What is control system??

• A system Controlling the operation of another system.

• A system that can regulate itself and another system.

• A control System is a device, or set of devices to manage, command,
direct or regulate the behaviour of other device(s) or system(s).



Why AUTOMATIC CONTROL?



The Control Problem

6

Fundamental Control Concepts

h

Maintain a variable of process at a 
desired value while rejecting the effects 
of outside disturbances by manipulating 
another system variable.

Qout depends on  h
If Qout = Qin, h constant
Qout > Qin, tank empties
Qout < Qin, tank overflows



Basic Subsystems of Control
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Basic Subsystems of Control
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Feedback Control Subsystems
Measurement
Control decision
System modification

Process-
Maintain tank 

level

Measuremen
t- sight glass

Final Control 
Element

Valve

Control Decision
Human adjusts Qout

to maintain h =H

Reference 
(setpoint)

Input
h = control 

variable



Automatic Control Systems

9

Sensor

Controller

Final control 
element

Use sensors and analog or digital electronics to monitor and adjust system

Elements of Automatic Control
Process – single or multiple 
variables
Measurement – sensors
Error  Detection – compare H to h
Controller – generate corrections
Final Control Element – modify 
process

Maintain 
level

Level 
Measuremen

t

Valve 
Position



Block Diagrams
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Automatic control systems use mathematical descriptions of 
subsystems to reduce complex components to inputs and 
outputs

Control System
Component

Input signal Output signal

Signals flow between components in system based on arrow direction







Actuator































Multivariable Control System

Types of Control System 

Controller

Outputs

Temp

ProcessComparator

Measurements

Humidity

Pressure

28
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Mathematical Modling



Before starting

• Mathematical models of physical systems are key elements in the 
design and analysis of control systems. 

• We will consider electrical and mechanical systems

• Obtain the input-output relationship for components and subsystems 
of the system in the form of transfer functions using Laplace 
transforms. 

• Forming Different graphical representations of the system model 
(Block diagram and signal flow). 



Modeling of electrical and 
mechanical systems



Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
resistor is given by Ohm’s law

Rtitv RR )()( =



Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
Capacitor is given as:

dtti
C

tv cc = )()(
1



Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the 
inductor is given as:

dt

tdi
Ltv L

L

)(
)( =



V-I and I-V relations
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Component Symbol V-I  Relation I-V Relation

Resistor

Capacitor

Inductor
dt

tdi
Ltv L

L

)(
)( =

dtti
C

tv cc = )()(
1
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R
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R
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L
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Important laws:

KVL KCL



Basic Elements of Translational Mechanical Systems

Translational Spring

i)

Translational Mass

ii)

Translational Damper

iii)



Translational Spring

i)

Circuit Symbols

Translational Spring
• A translational spring is a mechanical element that

can be deformed by an external force such that the
deformation is directly proportional to the force
applied to it.

Translational Spring



Translational Spring
• If F is the applied force

• Then is the deformation if

• Or is the deformation.

• The equation of motion is given as

• Where is stiffness of spring expressed in N/m

2x
1x

02 =x1x

)( 21 xx −

)( 21 xxkF −=

k

F

F







Translational Mass

Translational Mass

ii)

• Translational Mass is an inertia
element.

• A mechanical system without
mass does not exist.

• If a force F is applied to a mass
and it is displaced to x meters
then the relation b/w force and
displacements is given by
Newton’s law.

M
)(tF

)(tx

xMF =



Translational Damper

Translational Damper

iii)

• When the viscosity or drag is not
negligible in a system, we often
model them with the damping
force.

• All the materials exhibit the
property of damping to some
extent.

• If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.



Common  Uses of Dashpots

Door Stoppers
Vehicle Suspension

Bridge Suspension
Flyover Suspension



Translational Damper

xCF =

• Where C is damping coefficient (N/ms-1).

)( 21 xxCF  −=





Rotational motion







EXAMPLES
In a separate video



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

• The minus sign indicates that at a positive angle of rotation α (counterclockwise), the torque of 

the forces causes rotation in the opposite direction. 

 

 



Laplace Transform
Of linear Systems



 In general, a necessary condition for a linear system can be  

determined in terms of an excitation x(t) and a response y(t)

When the system at rest is subjected to an excitation
x1(t ), it provides a response y1(t ) and when the  

system is subjected to an excitation x2 (t ) , it provides 
a corresponding response y 2 (t ) ;

For a linear system, it is necessary that the excitation

result in a response

This is usually called the principle of superposition

 If the system is nonlinear a linear one can be obtained using 

Taylor series expansion around a known operating conditions

x1 (t ) + x2(t ) y1 (t ) + y 2(t )



Consider a system whose input variable is x(t) and output

variable is y(t) where the relationship between them is

nonlinear given by y=g(x); If the operation conditions

corresponds to (x, y) , then a linear relationship around this

point can be found using the Taylor series as follows:



Pendulum Example



 Definition

 The Laplace transform is a mathematical tool for solving  

linear time invariant differential equation.

 It allows a time domain differential equation model of a  

system to be transformed in to algebraic model

Therefore simplifying the  

analysis and design of a control  

system



F (s) = L{ f (t)} =  e−st f (t)dt for f (t),t  0
0

f ( t ) = L − 1 { F ( s ) }

x(t) can be found by applying the  

inverse Laplace transform of X(s)



Laplace transform of

time Differentiation dt

0

L[
df (t)

]= sF(s)− f (0)

We can extend the time  

differentiation to be:

−...− f (n−1) (0)

f '(0)

3 2

2



n−2n n−1

 dt3

df (t)3 
L  = s F (s) − s f (0) − sf '(0) − f ''(0)

 dt 2

df (t)2 
L  = s F (s) − sf (0) − f '(0)

dtn

df (t)n 
L  = s F (s) − s f (0)− s

general case

Laplace transform of

the unit step (u(t)=1)

1

s
e

s

− 1 − s t |
0
=




−L [ u ( t ) ]= 1 e s t  d t =



f(t) L(f) f(t) L(f)

1 Unit-impulse

 ( t )
1 7 cos t

s

s2 + 2

2 Unit-step 1 1/s 8 sin t 

s2 + 2

3 Unit-ramp t 1/s2 9 cosh at
s

s2 −a2

4 t2 2!/s3 10 t eat 1

(s − a)2

5 tn (n is
+ve integer)

n !   

s n+1

11 eat cos t s −a

(s − a)2 + 2

6 eat 1

s  − a

12 eat sin t 

(s − a)2 + 2

For most engineering purposes the  

inverse Laplace transformation can be  

accomplished simply by referring to  

Laplace transform tables



The Laplace Transform….cont

Initial Value Theorem

f (0) = lim sF(s)= lim f (t)

s→ t→0
Final Value Theorem

f () = lim sF(s)= lim f (t)

s→0 t→

For function  

f(t)

The final value theorem is very useful for  

analysis and design of control systems,  

since it gives the final value of a time  

function f(t)

The Laplace variable s can be considered  

to be the differential operator so that d t
s =

d

And we also have the integral operator


1 =  d t
s 0

s-operator is a complex quantity has a real and imaginary parts

s = a + jb



Examples



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



Transfer Function of linear 
systems

CH2

Eng. Fadwa Momani



The Transfer Function (T.F) of Linear Systems

The transfer function of a linear system is defined as the  

ratio of the Laplace transform of the output variable to the  

Laplace transform of the input variable, with all initial  

conditions assumed to be zero.

The transfer function of a system (or element) represents the

relationship describing the dynamics of the system under

consideration

Represents system dynamics in s-domain

T.F =
output 

= G(s)  
input



T.F =
output 

= G(s)  
input

=
p(s)

q(s)

Where p(s) and q(s ) are polynomials

The roots of p(s) are called the zeros of the  

system where the roots of q(s ) are called the  

poles of the system

G(s) =
p(s)

q(s)

=
(s + z1)(s + z 2)

(s + p1)(s + p 2)(s + p3)

q(s ) is also known as the characteristic equation of the systems

The location of the roots of q(s ) in s-plane gives a

character to the system performance



Examples







Operational Amplifier Transfer Function (Op-Amp)

• The ideal op amp



Inverting amplifier











DC Motor Transfer Function
CH2- part 10
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How does DC motor work??

• Important concepts:

1. Current in a conductor will produce electromagnetic flux (ɸ).

ɸαI

2. A moving conductor in a flux will produce induced voltage(E)

Eαω

3. current holding conductor exists in a flux will be affected by force or 
torque.

TαɸI







Electrical Part



Electromechanical circuit



Mathematical model





Transfer function of DC motor

1. What is the input?

2. What is the output?



Field control motor



Armature control motor



Armature control motor



DC Motor Transfer Function
CH2- part 10
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Armature control motor



Armature control motor



Block Diagram 
fundamentals & 
reduction techniques

CH2-12 AND 13



Introduction
Block diagram is a shorthand, graphical representation of a physical 
system, illustrating the functional relationships among its components.

OR

A Block Diagram is a shorthand pictorial representation of the cause-
and-effect relationship of a system.



Introduction
The simplest form of the block diagram is the single block, with one 
input and one output.

The interior of the rectangle representing the block usually contains
a description of or the name of the element, or the symbol for the
mathematical operation to be performed on the input to yield the
output.

The arrows represent the direction of information or signal flow.

dt

d
x y



Introduction
The operations of addition and subtraction have a special
representation.

The block becomes a small circle, called a summing point, with the
appropriate plus or minus sign associated with the arrows entering
the circle.

Any number of inputs may enter a summing point.

The output is the algebraic sum of the inputs.

Some books put a cross in the circle.



Components of a Block Diagram for a 
Linear Time Invariant System

System components are alternatively called elements of the system.

Block diagram has four components:
◦ Signals

◦ System/ block

◦ Summing junction

◦ Pick-off/ Take-off point





In order to have the same signal or variable be an input to more than
one block or summing point, a takeoff point is used.

Distributes the input signal, undiminished, to several output points.

This permits the signal to proceed unaltered along several different
paths to several destinations.



Example-1
Consider the following equations in which x1, x2, x3, are variables,
and a1, a2 are general coefficients or mathematical operators.

522113 −+= xaxax



Example-1

Consider the following equations in which x1, x2, x3, are variables,
and a1, a2 are general coefficients or mathematical operators.

522113 −+= xaxax



Topologies
We will now examine some common topologies for interconnecting 
subsystems and derive the single transfer function representation for 
each of them. 

These common topologies will form the basis for reducing more 
complicated systems to a single block.



CASCADE
• Any finite number of blocks in series may be algebraically combined 

by multiplication of transfer functions. 

• That is, n components or blocks with transfer functions G1 , G2, . . . , 
Gn, connected in cascade are equivalent to a single element G with a 
transfer function given by



Example

Multiplication of transfer functions is commutative; that is,

GiGj = GjGi

for any i or j .



Cascade:

Figure: 

a) Cascaded Subsystems. 

b) Equivalent Transfer Function.

The equivalent transfer function 

is



Parallel Form:
Parallel subsystems have a common input and an output formed by the 
algebraic sum of the outputs from all of the subsystems.

Figure: Parallel Subsystems. 



Parallel Form:

Figure: 

a) Parallel Subsystems. 

b) Equivalent Transfer Function.

The equivalent transfer function is



Reduction techniques

2G1G
21GG

1. Combining blocks in cascade

1G

2G
21 GG +

2. Combining blocks in parallel



Reduction techniques

3. Moving a summing point behind a block

G G

G



5. Moving a pickoff point ahead of a block

G G

G G

G

1

G

3. Moving a summing point ahead of a block

G G

G

1

4. Moving a pickoff point behind a block

Reduction techniques



6. Eliminating a feedback loop

G

H
GH

G

1

7. Swap with two neighboring summing points

A B AB

G

1=H

G

G

1

Reduction techniques



Feedback Form:
The third topology is the feedback form. Let us derive the transfer 
function that represents the system from its input to its output. The 
typical feedback system, shown in figure:

Figure:  Feedback (Closed Loop) Control System.

The system is said to have negative feedback if the sign at the 

summing junction is negative and positive feedback if the sign 

is positive.



Feedback Form:

The equivalent or closed-loop 

transfer function is



Example-4: Reduce the Block Diagram to



Example-4: Continue.

However in this example step-4 does not apply.

However in this example step-6 does not apply.





Example-5: Simplify the Block Diagram. 



Example-5: Continue.



Example-6: Reduce the Block Diagram.



Example-6: Continue.



Example-7: Reduce the Block Diagram. (from Nise: page-242)



Example-7: Continue.



Example-8: For the system represented by the following block diagram determine:

1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. closed loop poles and zeros if K=10.



Example-8: Continue

◦ First we will reduce the given block diagram to canonical form

1+s

K



Example-8: Continue

1+s

K

s
s

K
s

K

GH

G

1
1

1

1

+
+

+=
+



Example-8: Continue

1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. closed loop poles and zeros if K=10.

)()(
)(

)(
sHsG

sE

sB
=

)(
)(

)(
sG

sE

sC
=

)()(

)(

)(

)(

sHsG

sG

sR

sC

+
=
1

)()(

)()(

)(

)(

sHsG

sHsG

sR

sB

+
=
1

)()()(

)(

sHsGsR

sE

+
=
1

1

)()(

)(

)(

)(

sHsG

sG

sR

sC

+
=
1

01 =+ )()( sHsG

)(sG

)(sH



Example-9: For the system represented by the following block
diagram determine:

1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. closed loop poles and zeros if K=100.



Example-10: Reduce the system to a single transfer 
function. (from Nise:page-243).



Example-10: Continue.



Example-10: Continue.



Example-11: Simplify the block diagram then obtain the close-loop 
transfer function C(S)/R(S). (from Ogata: Page-47)



Example-11: Continue.



Example-12: Reduce the Block Diagram.

R

_+

_

+
1G

2G 3G

1H

2H

+
+

C



Example-12:

R

_+

_

+
1G

2G 3G

1H

1

2

G

H

+
+

C



Example-12:

R

_+

_

+
21GG 3G

1H

1

2

G

H

+
+

C



Example-12:

R

_+

_

+
21GG 3G

1H

1

2

G

H

+
+

C



Example-12:

R

_+

_

+
121

21

1 HGG

GG

− 3G

1

2

G

H

C



Example-12:

R

_+

_

+
121

321

1 HGG

GGG

−

1

2

G

H

C



Example-12:

R

_+
232121

321

1 HGGHGG

GGG

+−

C



Example-12:

R

321232121

321

1 GGGHGGHGG

GGG

++−

C



2G1G

1H 2H

)(sR )(sY

3H

Example 13: Find the transfer function of the following block 
diagrams.



Solution:

1. Eliminate loop I

2. Moving pickoff point A behind block
22

2

1 HG

G

+

1G

1H

)(sR )(sY

3H

BA

22

2

1 HG

G

+

2

221

G

HG+

1G

1H

)(sR )(sY

3H

2G

2H

BA

II

I

22

2

1 HG

G

+

Not a feedback loop

)
1

(
2

22
13

G

HG
HH

+
+



3. Eliminate loop II

)(sR )(sY

22

21

1 HG

GG

+

2

221
3

)1(

G

HGH
H

+
+

21211132122

21

1 HHGGHGHGGHG

GG

sR

sY

++++
=
)(

)(



Superposition of Multiple 
Inputs



Example-14: Multiple Input System. Determine the 
output C due to inputs R and U using the 
Superposition Method. 



Example-14: Continue.



Example-14: Continue.



Example-15: Multiple-Input System. Determine the output C due 
to inputs R, U1 and U2 using the Superposition Method. 



Example-15: Continue.



Example-15: Continue.



Example-16: Multi-Input Multi-Output System. Determine  C1 and 
C2 due to R1 and R2.



Example-16: Continue.



Example-16: Continue.

When R1 = 0,

When R2 = 0,



Skill Assessment Exercise:



Answer of Skill Assessment 
Exercise:



Final and initial values 
theorems 

Examples









Signal Flow Graph
CH2-14
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What is Signal Flow Graph



BD Vs SFG



SFG











Mason’s Rule



Example 1:

• P1=G1.G2.G3.G4

• P2=G5.G6.G7.G8



LOOPS

• L1=G2.H2

• L2=G3.H3

• L3=G6.H6

• L4=G7.H7



Two None touching Loops 

• L1L3

• L1L4

• L2L3

• L2L4



Transfer Function using Mason’s Rule

• Cofactors

Δ1=1-(L3+L4)

Δ2=1-(L1+L2)

• Δ= 1- (L1+L2+L3+L4)+ (L1L3.L1L4.L2L3.L2L4)

𝑇. 𝐹 =
𝑌(𝑠)

𝑅(𝑆)
=

𝑃1 ∗ Δ1 + (𝑃2 ∗ Δ2)

Δ





Example 2

P1=1.G1.G2.G3.G4.G5.G6
P2=1.G1.G2.G7.G6
P3=1.G1.G2.G3.G4.G8



L1= - G2.G3.G4.G5.H2



L2= - G5.G6.H1



L3= - G8.H1



L4= - G2.G7.H2



L5= - G4.H4



L6= - G1.G2.G3.G4.G5.G6.H3



L7= - G1.G2.G7.G6.H3



L1= - G1.G2.G3.G4.G8.H3



2.n.t.L:

L5= - G4.H4

L4= - G2.G7.H2



L5= - G4.H4

L7= - G1.G2.G7.G6.H3



L3= - G8.H1

L4= - G2.G7.H2



• Δ1=1

• Δ2=1-L5

• Δ3=1

• Δ=1-(L1+L2+L3+L4+L5+L6+L7+L8)+(L5.L7+L5.L4+L3.L4)

𝑇. 𝐹 =
𝑌(𝑠)

𝑅(𝑆)
=

𝑃1 ∗ Δ1 + (𝑃2 ∗ Δ2) + (𝑃3 ∗ Δ3)

Δ



Example 3

• 4 transfer function

𝑋1(𝑠)

𝑅1(𝑠)
,
𝑋2(𝑠)

𝑅1(𝑠)
,
𝑋1(𝑠)

𝑅2(𝑠)
,
𝑋2(𝑠)

𝑅2(𝑠)



a b

c
d

e

f

g1 1

h−

i−

j−

1y
2y 5y

3y

Example 4

3

5

y

y
find



Feedback Control System 
Characteristics 

CH4



Open Loop Vs. Closed Loop

• An open-loop system operates without feedback and directly 
generates the output in response to an input signal. 

• A closed-loop system uses a measurement of the output signal and a 
comparison with the desired output to generate an error signal that is 
used by the controller to adjust the actuator. 



Open Loop Vs. Closed Loop

• Steady state error (Accuracy) 

• Sensitivity

• Disturbance rejection

• Noise Rejection

• Transient Response



Closed Loop System

• The two forms of control systems are shown in both block diagram 
and signal-flow graph form. Despite the cost and increased system 
complexity, closed-loop feedback control has the following 
advantages: 

• Decreased sensitivity of the system to variations in the parameters of 
the process. 

• Improved rejection of the disturbances. 

• Improved measurement noise attenuation, 

• Improved reduction of the steady-state error of the system. 

• Easy control and adjustment of the transient response of the system. 



Open Loop System



Closed Loop System



Transfer Function
• Open Loop



Transfer Function

• Open Loop



Open Loop System



Closed Loop TF 



Closed Loop TF



Closed Loop TF



Closed Loop System



Error Analysis



Error Analysis



Error Analysis



Error Analysis



Error Analysis



Error Analysis



Open Loop Vs. Closed Loop

Open Loop Closed Loop

Error Due to R(s)
Accuracy

Error Due to Td(s)
Disturbance Rejection

Error Due to N(s)
Noise Rejection



System Sensitivity

• System sensitivity is the ratio of the change in the system transfer 
function to the change of a process transfer function (or parameter) 
for a small incremental change. 



Feedback control system 
Characteristics

CH4

Part 2



Steady state error example

• If 𝐺 𝑠 =
10

𝑠(0.001𝑠+1)
find Ess if R(s) is a unit step input

Ka G(s)
R(s) Y(s)

-





System Sensitivity

• System sensitivity is the ratio of the change in the system transfer 
function to the change of a process transfer function (or parameter) 
for a small incremental change. 



Open Loop Sensitivity 



Closed Loop System Sensitivity









CONTROL OF THE TRANSIENT RESPONSE 



Closed loop 





1. Steady State Error 
2. Stability



















A/S^2 → ess=0







Stability

• A BIBO (bounded-input bounded-output) stable system is a system for 
which the outputs will remain bounded for all time, for any finite 
initial condition and input. A continuous-time linear time-
invariant system is BIBO stable if and only if all the poles of the system 
have real parts less than 0.





Find if the systems stable or not

G(s)= 
𝑠+3

(𝑠+5)(𝑠+2)

G(s)= 
𝑠+3

(𝑠+5)(𝑠−2)
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Review Of Transient and Steady state 
Response



Review Of Transient an Steady state Response



Review of First Order Response (Step Response)





Second Order System (S^2 …)



Second Order System (S^2 …)

• Second-order systems exhibit a wide range of responses which must 
be analyzed and described. 

• For a first-order system, varying a single parameter changes the speed 
of response, Changes in the parameters of a second order system can 
change the form of the response not only the speed of the response.

• For example: a second-order system can display characteristics much 
like a first-order system or, depending on the system’s parameters 
values, pure oscillations or damped behavior might result for its 
transient response.



Second Order System

• General Transfer Function of 2nd Order System:

Where:



Second Order System

• Characteristic Equation



Second Order System



Unit step input



Unit step input







Unit step input



Unit step input



2nd order , Step input, Different damping ratio 
(ξ)



Pole Locations with different damping ratio (ξ)







1st order

2nd order 
overdamped



Underdamped Second Order:









O.S% is a function of ξ

NOTE that ωn is 
constant for all



Examples will be discussed on a Video files  

• If you have any questions you can contact me 



















A/S^2 → ess=0







Stability

• A BIBO (bounded-input bounded-output) stable system is a system for 
which the outputs will remain bounded for all time, for any finite 
initial condition and input. A continuous-time linear time-
invariant system is BIBO stable if and only if all the poles of the system 
have real parts less than 0.





Find if the systems stable or not

G(s)= 
𝑠+3

(𝑠+5)(𝑠+2)

G(s)= 
𝑠+3

(𝑠+5)(𝑠−2)
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Note: I do not claim any originality in these lectures. The contents of this presentation are
mostly taken from the book of Ogatta, Norman Nise, Bishop and B C. Kuo and various other
internet sources. 1



Routh-Hurwitz Stability Criterion

• It is a method for determining continuous system

stability.

• The Routh-Hurwitz criterion states that “the number of

roots of the characteristic equation with positive real

parts is equal to the number of changes in sign of the

first column of the Routh array”.



Routh-Hurwitz Stability Criterion

 This method yields stability information without the need to

solve for the closed-loop system poles.

 Using this method, we can tell how many closed-loop system

poles are in the left half-plane, in the right half-plane, and on

the jw-axis. (Notice that we say how many, not where.)

 The method requires two steps:

1. Generate a data table called a Routh table.

2. interpret the Routh table to tell how many closed-loop system

poles are in the LHP, the RHP, and on the jw-axis.



Example: Generating a basic Routh Table.

• Only the first 2 rows of the array are obtained from the characteristic eq. the remaining
are calculated as follows;

a0



Four Special Cases or Configurations in the First 
Column Array of the Routh’s Table:

1. Case-I: No element in the first column is zero.

2. Case-II: A zero in the first column but some other elements of the row

containing the zero in the first column are nonzero.

3. Case-III: Entire Row is zero



Case-I: No element in the first column is zero.



The Routh table of the given system is computed as; 

• Since there are no sign changes in the first column of the Routh table, it means
that all the roots of the characteristic equation have negative real parts and hence
this system is stable.

Example-1: Find the stability of the continues system having the characteristic 
equation of 

𝑏1 =
6∗12 −(1∗8)

6
=
64

6



Example-2: Find the stability of the continues system having the characteristic 
polynomial of a third order system is given below

• The Routh array is 

• Because TWO changes in sign appear in the first column, we find that two roots 
of the characteristic equation lie in the right hand side of the s-plane. Hence the 
system is unstable.

𝑏1 =
1∗2 −(1∗24)

1
=-22



• The Routh table of the given system is computed and shown is the table below; 

• For system stability, it is necessary that the conditions  8 – k >0,  and 1 + k > 0, 

must be satisfied. Hence the rang of values of a system parameter k must be lies 
between -1 and 8 (i.e., -1 < k < 8). 

Example-3: Determine a rang of values of a system parameter K for which the 
system is stable.



Example-4: Find the stability of the system shown below using Routh criterion.

The close loop transfer function is shown in the figure

The Routh table of the system is shown in the table  

Because TWO changes in sign appear in the first column, we find that two roots of the 
characteristic equation lie in the right hand side of the s-plane. Hence the system is 
unstable.



Example-5: Find the stability of the system shown below using Routh criterion.

• System is unstable because there are two sign changes in the first column of the

Routh’s table. Hence the equation has two roots on the right half of the s-plane.

• The Routh table of the system is 



Case-II: A Zero Only in the First Column
Stability via Epsilon Method. 



Case-II: Stability via Epsilon Method

• If the first element of a row is zero, division by zero would be required to

form the next row.

• To avoid this phenomenon, an epsilon, ε, (a small positive number) is

assigned to replace the zero in the first column.

• The value ε is then allowed to approach zero from either the positive or

the negative side, after which the signs of the entries in the first column

can be determined.



Case-II: Stability via Epsilon Method
Example-6: Determine the stability of the system having a characteristic equation given below;

The Routh array is shown in the table;

Where

There are TWO sign changes due to the large negative number in the first column, 
Therefore the system is unstable, and two roots of the equation lie in the right half of the s-plane.



Example-7: Determine the range of parameter K for which the system is stable.

The Routh array of the above characteristic equation is shown below; 

Where

• Therefore, for any value of K greater than zero, the system is unstable.
• Also, because the last term in the first column is equal to K, a negative value 

of K will result in an unstable system. 
• Consequently, the system is unstable for all values of gain K.



Example-8: Determine the stability of the closed-loop transfer function;

The complete Routh table is formed by using the denominator of the characteristic equation T(s).

• A zero appears only in the first column (the s3 row). 
• Next replace the zero by a small number, ε, and complete the table. 
• the sign in the first column of Routh table is changes twice. 
• Hence, the system is unstable and has two poles in the right half-plane.



Case-III: Entire Row is Zero.

• Sometimes while making a Routh table, we find that an entire row consists of

zeros.

• This happen because there is an even polynomial that is a factor of the original

polynomial.

• This case must be handled differently from the case of a zero in only the first

column of a row.



Example-9
• Determine the number of right-half-plane poles in the closed-loop

transfer function.

• First we return to the row immediately above the row of zeros and form
an auxiliary polynomial, using the entries in that row as coefficients.

• Next we differentiate the polynomial with respect to s and obtain

• Finally, we use the coefficients of above equation to replace the row of
zeros. Again, for convenience, the third row is multiplied by 1/4 after
replacing the zeros.



Example-9
• The remainder of the table is formed in a straightforward manner

by following the standard form .

• All the entries in the first column are positive. Hence, there are no
right–half-plane poles.



Example-10: Determine the stability of the system.

The characteristic equation q(s) of the system is

Where K is an adjustable loop gain. The Routh array is then;

For a stable system, the value of K must be; 

When K = 8, the two roots exist on the jω axis and the system will be marginally stable. 

• Also, when K = 8, we obtain a row of zeros (case-III).

• The auxiliary polynomial, U(s), is the equation of the row preceding the row of Zeros.

• The U(s) in this case, obtained from the s2 row.

• The order of the auxiliary polynomial is always even and indicates the number of 

symmetrical root pairs.



Example-11

• For the transfer function tell how many poles are in the right
half-plane, in the left half-plane, and on the jw-axis.



Example-11



Chapter 7: Root-Locus Method

Eng. Fadwa Momani



Introduction
- It is well known that the transient response of a feedback

system is closely related to the locations of the closed-
loop poles.



Introduction

- From the design viewpoint, for some systems, simple gain adjustment
may move the closed -loop poles to desired locations. For example,
consider a unity-feedback system with open-loop transfer function

A5
( )

( 34.5)

K
G s

s s




𝐺 𝑠 =
5𝐾𝐴

𝑠2 + 34.5𝑠 + 5𝐾𝐴



For a 2nd order unit step response. Take open-loop 
gains with the values KA=13.5, 200 and 1500, 
respectively, the system exhibits different responses:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ka=200 

Ka=1500

Ka=13.5

t 

 c(  ) t 

0.2 

0.545  2.1

Mp: 0,

13%,

52.7%.

HW1



Therefore, it is important to determine how the roots of the 
characteristic equation move around the s-plane as we change 
the open-loop gain.

Definition: The root locus is the path of the roots of the 
characteristic equation traced out in the s-plane as a system 
parameter varies from 0 to +.

Remark: The root locus analysis aims to investigate the closed-
loop stability and the system controller design through the 
open-loop transfer function with variation of a certain system 
parameter, commonly the open-loop gain.



The closed-loop characteristic equation is:

2

1,22 0 1 1s s K s K       

1 21) 0   0   2K s s   

1 22) 1  1K s s

1,23) 2     1 1K s j

1,24)    1K s j

K
1

( 2)s s 

Example. Determine the closed-loop root loci when K
varies from 0 to +.

𝐺 𝑠 =
𝐾

𝑠2 + 2𝑠 + 𝑘



Ks  112,1

1 21) 0   0   2K s s

1 22) 1  1K s s

1,23) 2     1 1K s j

1,24)    1K s j



Root Locus Plots

)(sG

)(sH

Angle and Magnitude Conditions

( ) ( )

( ) 1 ( ) ( )

C s G s

R s G s H s






*

1 2

1 2

( )( ) ( )
( ) ( ) 1 1

( )( ) ( )

m

n

GH

K s z s z s z
G s H s

s p s p s p

  
    

  

Let us write GH as follows:

So the characteristic equation is equal to:

1 ( ) ( ) 0G s H s 

*

1 2

1 2

( )( ) ( )
( ) ( ) 1 1

( )( ) ( )

m

n

GH

K s z s z s z
G s H s

s p s p s p

  
    

  
1+ =0



The characteristic equation is defined as

1 ( ) ( ) 0G s H s 

or

( ) ( ) 1G s H s  

which can be split into two equations:

Angle Condition:

0( ) ( ) 180 (2 1), ( 0, 1, 2, )G s H s k k

Magnitude Condition:

( ) ( ) 1G s H s 



More precisely, we can write the characteristic equation as

*

1 2

1 2

( )( ) ( )
( ) ( ) 1 1

( )( ) ( )

m

n

GH

K s z s z s z
G s H s

s p s p s p

  
    

  

It is easy to see that the magnitude condition can always be 
satisfied by a suitable K*0. Thus, the key is to find all those 

points that satisfy the angle
condition:

0( ) ( ) 180 (2 1)G s H s k

















Example. Second-order system

zero

poles

4

2

0

j

Example. For a unity FB system The open-loop transfer function is

12 0

j

𝑍𝑒𝑟𝑜𝑠

𝑃𝑜𝑙𝑒𝑠

𝑍𝑒𝑟𝑜𝑠 → 0
Poles →x



Root Loci Construction Rules



Root Loci Construction Rules

The number of root locus branches is equal to the 
order of the characteristic equation  # of poles.

The loci are symmetrical about the real axis.

The root locus is symmetrical about the real axis since the 
roots of 1+G(s)H(s)=0 must either be real or appear as 
complex conjugates. Therefore, we only need to construct 
the upper half of the root loci and draw the mirror image of 
the upper half in the lower-half s-plane.

Note that for root loci, the following facts are true:



s jz

0( ) 180js z  

Let s be a test point on the real axis as shown below. 
Since zero zj of G(s)H(s) lies to the right of s, it 

follows that

Therefore, root locus exists on (, zj]. 



s ip

0( ) 180is p  

Let s be a test point on the real axis as shown below. 
Since the pole pi of G(s)H(s) lies to the right of s, it 

follows that

Therefore, root locus exists on (, pi]. 



sjz

0( ) ( ) 0j is z s p    

Whereas, let s be a test point as shown below. (the pole -pi

and zero zj lies to the left of s, it follows that 

Therefore, no root locus exists on [zj , +). However, 
by the rule, root locus exists on [pi , zj] since for the 

test point s’, angle condition holds. 

ip 's





Example. Second-order system: 

zero

poles

4

2

0

j





Rule 4. Asymptotes of root loci: The loci proceed 
to the zeros at infinity along asymptotes.

These linear asymptotes are centered at a point on the 
real axis given by (Number of Asym. Lines = n-m) 

1 1

( ) ( )
 of  of 

n m

j i
j i

a

p z
GH GH

n m n m
 

  


 
 

 
 poles zeros

The angle of the asymptotes with respect to the real 
axis is 

0 (2 1)
180     ( 0, 1, , 1)a

k
k n m

n m


      





j

( 2)
( )

( 1)( 3)

K s
G s

s s s

 


 

Example: An open-loop transfer function of a unity-
feedback system is 

123 0

( 1 3) ( 2)
1

3 1
a

   
  



0

0

0

90     ( 0)2 1
180

3 1 270   ( 1)
a

kk

k

  
   

 

Sketch the root locus plot. 
Zeros ; -2 m=1
Poles ; 0, -1, -3 n=3

1 + 𝐺 𝑠 = 1 +

•root loci exist on [1, 0] and [3, 2].

for the asymptotes:



( )
( 1)( 2)

K
G s

s s s




 

Example: A unity-feedback system with open-loop transfer 
function as 

Sketch the root locus plot.
Zeros ; no zeros     m=0
Poles ; 0, -1, -2     n=3
• root loci exist on [1,0] and (, 2].
• for the asymptotes:

j

12 0( 1 2) 0
1

3
a

  
  

0

0 0

0

60     ( 0)
2 1

180 180   ( 1)
3

60   ( 1)

a

k
k

k

k

 


   

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Example. Consider the open-loop transfer function 

2
( )

( 4)( 4 20)

K
G s

s s s s




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Sketch its root locus plot.

• root locus exists on [4, 0]. 
• we obtain the asymptotes:

4 2 4 2 4 0
2

4
a
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0
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0

0

0

45     ( 0)

135   ( 1)2 1
180
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135 ( 2)

a

k

kk

k

k

 


 
   

  
  

4 2

4j

4, 2 4j  

four open - loop poles are :

0, 



Rule 5. Breakaway (break in) point on the root loci.  



Example. Again, consider the open-loop transfer function 

( )
( 1)( 2)

K
G s

s s s




 

2 1

j

 Zeros ; no zeros     m=0
 Poles ; 0, -1, -2     n=3
• root loci exist on [1, 0] and (, 2].
• we obtain the asymptotes.

• By rule 4, Break away point is:  

𝐾 = −[𝑠(𝑠 + 1)(𝑠 + 2)]

𝐾 = −[𝑠3 + 3𝑠2 + 2𝑠]

𝑑𝐾

𝑑𝑠
= −[3𝑠2 + 6𝑠 + 2]

𝑑𝐾

𝑑𝑠
= 0 s= -0.4226 , -1.5773



j

  

 

s[ ]

 0 

1 p

2 p

1z

2z

1
 z

2
 z

1p

2p

Rule 5. The angles of arrival and departure.

Angle of departure: the 
angle by which a branch 
of the locus departs 
from one pole. 

Angle of arrival: the 
angle by which a 
branch of the locus 
arrives at one zero. 



ip

s

0

1 1

( ) ( ) 180 (2 1)
m n

j k
j k

s z s p k
 

        

( )is p 

1) Angle of departure

Choose a test point s and move it in the very vicinity 
of pi. Then, if s is on the root locus, the angle 

condition must be satisfied:



Example. The open-loop transfer function

( ) ( )
( 1 )( )

K
G s H s

s s j s i j

1 2 30,    1 ,   1p p j p j

1

-1

-1 0

j
2p

3p

1p2

0 0 0 0180 135 90 45p

3

045p

Therefore, 

By using the departure angle formula, 

Due to the symmetry property of the root 
locus,

𝑇𝑎𝑛−1(
1

1
) = 45°

∅1 = 180° − 45° = 135°

∅1

∅2

∅2 = 90°



Example. The open-loop transfer function

2( 4.5 5.625)
( ) ( )

( 1)( 2)

K s s
G s H s

s s s

• root loci exist on [1, 0], and (, 2]. By rule 1, the root locus from 2 
to  can be determined.

• the breakaway point is (Find it ) HW.2

2 1

j

z1=−2.25+j0.75, z2=− 2.25−j0.75 

SELF STUDY ANGLE OF ARRIVAL



2 1

j

The two points that breakaway at 900.

By rule 5, the angle of arrival is 

z1

1

0

1 1

0 0

1 2 3

180 ( ) ( )

180 90

i

m n

z j j
j j
j i

iz zz p

900



Rule 6. Intersection of the root loci with the imaginary 
axis.

( )
( 1)( 2)

K
G s

s s s




 

3 23 2 0s s s K

-2 -1

The closed-loop characteristic equation is ( Tell me how did we find this equ. H.W. 3)

Using Routh-Herwitz Criteria 

S3 1 2

S2 3 K

S1 (6-K)/3 0

S0 K 0
For marginally Stable  Poles on Jw axis 
(6-K)/3 = 0   K=6

 S= -3      ±j1.41

j1.41

-j1.41

K=6

K=6



Example. An open-loop transfer function of a unity-feedback system is given below: 

2

( 3)
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( 1)

K s
G s

s s

 



j

1
3 0

Sketch the root locus plot.
• root locus exists on [3, 
1].

• for the asymptotes,
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Example. An open-loop transfer function of a unity-feedback system is given below: 

2

( 1)
( )

( 3)

K s
G s

s s

 


 j

1
3

0

Sketch the root locus plot.
• root locus exists on [3, 
1].

• for the asymptotes,
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34

4j

-4j

1.577

-3.266j, K=568.89

3.266j, K=568.89

No Zeros, Poles = 0,-4,-4±j4

Break away point

Intersection with Jw

Angle of departure



34

4j

-4j

1.577

-3.266j, K=568.89

3.266j, K=568.89

For the following R.L answer the following :
1. Order of the system?
2. Type of the system?
3. Breakaway point?
4. Center of asymp.?
5. Intersection with Jw?
6. Value of K at intersection with Jw?
7. K at S=-4?
8. K at s=-1.577?
9. K at s= -3.266J
10. K at s= -4+4j
11. The characteristic equation is?

H.W.4



PID Controller



PID Controller





34

4j

-4j

1.577

-3.266j, K=568.89

3.266j, K=568.89


