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Objectives

- After this presentation you will be able to:

» Explain the function of an automatic control system.
> ldentify a block diagram representation of a physical system

> Explain the difference between an open loop and closed loop control
system

» Understand the components of control systems



What is CONTROL?

2 Make some object (called system, or plant) behave as we desire.
2 Imagine “control” around you!

» Room temperature control

« Car driving

» Voice volume control

« Balance of bank account

« “Control” (move) the position of the pointer

= efc.



What is control system??

* A system Controlling the operation of another system.
* A system that can regulate itself and another system.

* A control System is a device, or set of devices to manage, command,
direct or regulate the behaviour of other device(s) or system(s).



Why AUTOMATIC CONTROL?

2 Not manuall!

0 Why do we need automatic control?
» Convenient (room temperature, laundry machine)
» Dangerous (hot/cold places, space, bomb removal)

» Impossible for human (nanometer scale precision positioning, work

inside the small space that human cannot enter, huge antennas
control, elevator)

» |t exists in nature. (human body temperature control)



The Control Problem

Fundamental Control Concepts

Maintain a variable of process at a
desired value while rejecting the effects

Gin of outside disturbances by manipulating
_ﬂ another system variable.
1
| Q,,: depends on h
H h If Q. = Q;,, h constant
Q.. > Q,,, tank empties
i _|_£°"* Q. < Q,, tank overflows




Basic Subsystems of Control
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Basic Subsystems of Control

Feedback Control Subsystems

Gin Measurement
—— D Control decision
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Automatic Control Systems

Use sensors and analog or digital electronics to monitor and adjust system

Level
Measuremen
Elements of Automatic Control
Process — single or multiple
variables

Measurement — sensors
A ____a\rvgl Contlroner Error Detection —compare Hto h
: Controller — generate corrections

= Final Control Element — modify
H " inal control
element Process

QOut

— Valve
Maintain Position
level




Block Diagrams

Automatic control systems use mathematical descriptions of
subsystems to reduce complex components to inputs and
outputs

Input signal Output signal

Control System

Component

Signals flow between components in system based on arrow direction

10



Manual Liquid-level control system

A manual Control Systems for regulating the level of fluid in a tank by adjusting the
output valve. The operator views the level of fluid through a port in the side of the tank.



Automatic Liquid-level control system

Controller
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Example: laundry machine

2 Alaundry machine washes clothes, by setting a program.

2 Alaundry machine does not measure how clean the clothes become.

2 Control without measuring devices (sensors) are called open-loop

control.
Program setting Laundry | Washed clothes
(Input) Machine (Output)




Open-loop control systems

1 Open-loop control systems. Those systems in which the output has no
effect on the control action are called open-loop control systems.

2 In other words, in an open-loop control system the output is neither
measured nor fed back for comparison with the input.

Q In the presence of disturbances, an open-loop control system will not
perform the desired task.

0 Open-loop control can be used, in practice, only if the relationship
between the input and output is known and if there are neither internal

nor external disturbances.



Open-loop control systems

input or
reference

Controller

Disturbance

l Plant

Control Signal|

output or
controlled
variable

= Actuator —| Process

_________________________________________________________

Fig. 1.2 An open-loop system



Open-loop control systems

Advantages:

QO Simple construction, ease of maintenance, and less expensive.

1 There is no stability concern.

Q Convenient when output is hard to measure or measuring the output
precisely is economically not feasible. (For example, in the washer
system, it would be quite expensive to provide a device to measure the
quality of the washer’s output, cleanliness of the clothes).

Disadvantages:

a Disturbances and changes in calibration cause errors, and the output
may be different from what is desired.

1 Recalibration is necessary from time to time.



Closed-loop control systems

1 Closed-loop control systems. Feedback control systems are often
referred to as closed-loop control systems.

2 In practice, the terms feedback control and closed-loop control are
used interchangeably.

2 In a closed-loop control system the actuating error signal, which is the
difference between the input signal and the feedback signal , is fed to
the controller so as to reduce the error and bring the output of the
system to a desired value.



Closed-loop (feedback) control

error or
actuating signal
Disturbance
summing junction Plant

: or comparator I | outputor
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sensor or
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Closed-loop control systems

Advantages:

Q High accuracy
2 Not sensitive to disturbance
2 Controllable transient response

2 Controllable steady state error

Disadvantages:

2 More Complex, and More Expensive.
2 Possibility of instability.
2 Need for output measurement.

2 Recalibration is necessary from time to time.



Definitions.

a Systems - A system is a combination of components that act together
and perform a certain objective.

2 Control System - An interconnection of components forming a system
configuration that will provide a desired response.

2 Plants - A plant may be a piece of equipment, perhaps just a set of
machine parts functioning together, the purpose of which is to perform a
particular operation.

a Process - The device, plant, or system under control. The input and
output relationship represents the cause-and-effect relationship of the

pProcess.

Input Output
- Process >




Definitions.

a Disturbances - A disturbance is a signal that tends to adversely affect
the value of the output of a system. If a disturbance is generated within
the system, it is called internal, while an external disturbance is
generated outside the system and is an input.

a Controlled Variable - 1s the quantity or condition that is measured and
controlled. the controlled variable is the output of the system.

a The Manipulated Variable - 1s the quantity or condition that is varied by
the controller so as to affect the value of the controlled variable.
Normally,

a Control - means measuring the value of the controlled variable of the
system and applying the manipulated variable to the system to correct or
limit deviation of the measured value from a desired value.



Definitions.

d Feedback Control - Feedback control refers to an operation that, in the
presence of disturbances, tends to reduce the difference between the
output of a system and some reference input and that does so on the
basis of this difference.



CD player speed control: Open-Loop
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CD player speed control: Closed-Loop

Battery

fr
Il

DC
amplifier

Controller Actuator Process

Error b, Rotating
»  Amplifier .
motor disk

Measured speed

Sensor
(voltage)

Tachometer

(b)




Example: Disk Drive

Desired
T Error Control Actuator motor
head P ) EEEE—
¥ device and read arm
position -
Sensor =
Rotation

Spindle
of arm

Track a

Track b
Head slider

>

Actual
head

position



Example: Feedback in everyday life

Desired } Biror . Stoeiing | Aclua
course > Driver =P : —_ Automobile course
: mechanism 3
of travel 2 of travel
Measurement,

visual and tactle

(a)
_ Desired
" direction
Actual ol travel
direction

of travel



Types

of Control System

Multivariable Control System

Temp
Humidity

Pressure

1
N

|

—

Outputs
“ /

N
~
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Control Systems Objectives

Desired output

responsc

Error Actual

»| Controller | Actuator ¥ Process . B

output

Sensor |4 -
Measurement output Feedback

e Stabilizing closed loop system

e Accuracy

e Achieving proper transient and steady-state response
e Reduction of sensitivity to process parameters

e Disturbance rejection

e Performance and robustness



The control system design process

1. Establishment of goals, variables to be
controlled, and specifications.

2. System definition and modeling.

3. Control system design, simulation, and
analysis.

1. |f the performance meets the specifications,
then finalize the design.

5. Otherwise iterate.
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Before starting

* Mathematical models of physical systems are key elements in the
design and analysis of control systems.

* We will consider electrical and mechanical systems

e Obtain the input-output relationship for components and subsystems
of the system in the form of transfer functions using Laplace
transforms.

* Forming Different graphical representations of the system model
(Block diagram and signal flow).



Modeling of electrical and
mechanical systems




Basic Elements of Electrical Systems

-dLLD- Symbol &  —AAAN—

* The time domain expression relating voltage and current for the
resistor is given by Ohm’s law

Ve(t) =iz (DR



Basic Elements of Electrical Systems

-

Capacitor

* The time domain expression relating voltage and current for the
Capacitor is given as:

=k
"'//L/O% .
--"s( N =
\I\V\; " “_—77/ ‘;

v (1) = Ji, (t)dt
C



Basic Elements of Electrical Systems

Inductor

Y Y Y

* The time domain expression relating voltage and current for the
inductor is given as:

di, (t)

v, (1) = L
. dt




V-l and |-V relations

Symbol V-l Relation I-V Relation

Resistor —/WW— Vg (t) — |R(t)R |R(t) _ Vi (t)

dv, (t)

Capacitor ] |— v ()= éjic(t)dt i.(t)=C

Inductor YYY L v (t)=L dlét(t)

i (1) = % v, (bt



Important laws:

KVL KCL

Currents
A R B Mode I4 In
The sum of all the Voltage \ y
Drops around the loop Currents Entering the Node Ic 1
I5 equal to Zero a EC|LIE||5 - ;
Currents Leaving the Mode

Currents
Chut

D C

Vg + Ve + Vep + Vpa =0 e [,_.+|I_]'_,+_I,::|=[]



Basic Elements of Translational Mechanical Systems

Translational Spring

Y'Y

Translational Mass

oM |—=

SN LR TLLLELELL

Translational Damper
iii)

ST B



Translational Spring

* A translational spring is a mechanical element that
can be deformed by an external force such that the
deformation is directly proportional to the force
applied to it.

Translational Spring

Circuit Symbol
IrcuIt Symbols Translational Spring



Translational Spring

* If Fis the applied force
k

X

Xy oYY YN oy
* Then Xjisthe deformationif X, = O I'\W F
* Or (X, —X,) isthe deformation. (- F

* The equation of motion is given as

* Where K is stiffness of spring expressed in N/m
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Translational Mass

* Translational Mass is an inertia

element.

e A mechanical

system without

mass does not exist.

* If a force F is applied to a mass
and it is displaced to x meters
then the relation b/w force and

displacements
Newton’s law.

iIs  given

F = MX

by

F(t)

Translational Mass

o—f M |

x(t)




Translational Damper

* When the viscosity or drag is not
negligible in a system, we often
model them with the damping

force.
* All the materials exhibit the —— e e ECT
property of damping to some ) =
W i
extent. LN

* If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.



Common Uses of Dashpots

Door Stoppers

Vehicle Suspension

Flyover Suspension




Translational Damper

—1-..‘ %'1'2 _FL‘J
= »> [ _{.I_I » [
c

* Where Cis damping coefficient (N/ms).






Rotational motion

G IRE alty
e




Rotational systems

Analogous to linear mechanical systems

Torsional spring (resilient shaft) T = k 9
Torsional viscous dampin do
e r=B—=Bw
dt
Rotating Inertia d’6 dw
T=J =J —

dt’ dt

14



Mechanical Components: Rotational motion

Components Time relation
Inertia | ~ A~ . die)
J { J (l T(t)—J dt

6i) T(t)
A [ ro=s10
B é(r) T(t) t
damper
WA | TO=K00)
e T
6(t) T(t)

Spring




EXAMPLES
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Spring-Mass system
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Friction
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* The minus sign indicates that at a positive angle of rotation a (counterclockwise), the torque of
the forces causes rotation in the opposite direction.



Laplace Transform

Of linear Systems



A linear system satisfies the principle
superposition

In general, a necessary condition for a linear system can be
determined in terms of an excitation X(t) and a response Yy(t)

== \\Vhen the system at rest is subjected to an excitation
X1i(t), it provides a response Y:(t) and when the
system is subjected to an excitation X(t) , It provides
a corresponding response Yz(t);

) 4

For a linear system, it is necessary that the excitation
Xi(t) + Xz(t) resultin a response Yi(t) + Ya(®)
This is usually called the principle of superposition

If the system is nonlinear a linear one can be obtained using
Taylor series expansion around a known operating conditions



Taylor Series Expansion

Consider a system whose input variable is x(t) and output
variable is y(t) where the relationship between them is
nonlinear given by y=g(x); If the operation conditions
corresponds to (X, y) , then a linear relationship around this
point can be found using the Taylor series as follows:

dg (x — xg) dzg (x — )cg)2
-— — -I- —_— + s—— + - .
y = 8(x) = glxo) + T i | 2 (2.7)




Pendulum Example

—
T = Mgl sin 6, O
T — Ty = Mgl‘asm() (6 — 6,).
J() 9=o"

where 7; = 0. Then, we have |
v
I' = MgL(cos 0°)(68 — 0°) mg

= MgLO Figure 1.



Laplace Transforms

» The Laplace transform is a mathematical tool for solving
linear time invariant differential equation.

» It allows a time domain differential equation model of a
system to be transformed in to algebraic model

‘ Therefore simplifying the
analysis and design of a control

system

o _

f(t) =L {F(s)}

X(t) can be found by applying the
Inverse Laplace transform of X(s)




Laplace transform of B < e 1, B
the unit step (u(t)=1) =) Llu(t)]= jle dt= Te ‘o - g

Laplace transformof | == [df (t)] sF(s)— f(0)

time Differentiation

We can extend the time df (1) ] |
differentiation to be: = L dt2 =$"F(s) —sf (0) - 1°(0)
- -
L dfdi? _ $%F (s) = s> F (0) — sF(0) — £"(0)

general case

L[dfditn)n } =sF (s) —s" ' f(0)-s"*f'(0)

—  — f-1) (0)



f(t) £(f) f(t) £(f)
Unit-impulse 1 7 CcoS ot >
S (1) $°+ @
Unit-step 1 1/s 8 sin ot 2
$° +
Unit-ramp t 1/s2 9 cosh at S
s?—a’
t2 21/s3 10 t eat 1
(s —a)°
" (nis n! n eat cos ot s-—a
+ve integer) gnl (s—a) + w’
eat 1 12 eat sin ot @
S —a (s—a)? + w?

For most engineering purposes the
Inverse Laplace transformation can be
accomplished simply by referring to

Laplace transform tables




The Laplace Transform....cont
d

@ The Laplace variable s can be considered =) S =
to be the differential operator so that

dt
And we also have the integral operator == £ = Tdt
S 0

@ S-operator Is a complex quantity has a real and imaginary parts

@ Initial Value Theorem s=a+]b
f(0) =limsF(s)=Ilim f (t)
t—0 -
& Final Value Theorem % ~ FOff?(f;)CtIOH

f (00) =limsF(s)=lim f (t)

s—0 t >0

The final value theorem is very useful for
analysis and design of control systems,
since it gives the final value of a time
function f(t)



Examples
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The Transfer Function (T.F) of Linear Systems

E®» The transfer function of a linear system is defined as the
ratio of the Laplace transform of the output variable to the
Laplace transform of the input variable, with all initial = e
. . ——— ———— V‘f"*"‘
conditions assumed to be zero.

ED The transfer function of a system (or element) represents the
relationship describing the dynamics of the system under

consideration outou
e = Qe _ G(s) s>
= InpUt

!

Input ————p| Process |y QOutput
Variable G(s)=TF Variable

\ J
|

Represents system dynamics in s-domain




output—
T.F = 2R G(s) @ Where p(s) and q(s ) are polynomials

input— Tt S

_ p(s)— @ The roots of p(s) are called the zeros of the
==y system where the roots of q(s ) are called the

T poles of the system

q(s) is also known as the characteristic equation of the systems

e —

—_——
===

m=) [ he location of the roots of q(s) in s-plane givesa
character to the system performance

< - ~ -
o 4 Im-axis
~pole
S ——
G(S) :_p( ) — >Zero s-plane
q(s) — -
_ (S+2)(S+2.)) —
(S+ pl)(s+ pz)(S+ p3)z/ﬂ X 0 X X » Re-axis
Z2 P3 21 P2 PI
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QperationaIémplifieLTransfer Function (Op-Amp)

* The ideal op amp L= o
V\ ~ \Iz
. \/GV\J" .
i L = 0
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1. Integrating circuit, filter
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DC Motor Transter Function
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How does DC motor work??

T T Actwadur

_—
* Important concepts: — &

1. Current in a conductor will produce electromagnetic flux (¢).
¢al
2. A moving conductor ina flux will produce induced voltage(E)

—‘ﬁ v Eaw

Sy current holding conductor exists in a flux will be affected by force or

torque.
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Mathematical model

' 0_% » ‘W O +
fy
| %5 & ;
-0 o
Field Circuit Armature Circut
AL —_—
@) A2

€

\/ﬁ (s = TelddHRe + )-3,3—.\:9(3) Vo (5) = EolS) -«-1',\(5)[12,\4- SLaj

@\le{s‘): Lelsd \_Qe_-t- S \_a



T — RS () = S Sze(s)
T = BT B D



Transfer function of DC motor

1. Whatisthe input? Ve T¢ Nou Lo
2. Whatis the output? o (5 .
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Armature control motor
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Block Diagram
fundamentals &
reduction techniques

CH2-12 AND 13




Introduction

Block diagram is a shorthand, graphical representation of a physical
system, illustrating the functional relationships among its components.

OR

A Block Diagram is a shorthand pictorial representation of the cause-
and-effect relationship of a system.
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Introduction

The simplest form of the block diagram is the single block, with one
input and one output.

The interior of the rectangle representing the block usually contains
a description of or the name of the element, or the symbol for the
mathematical operation to be performed on the input to yield the
output.

The arrows represent the direction of information or signal flow.
Y =G X

G’ %:M

M-
- B




Introduction

The operations of addition and subtraction have a special
representation.

The block becomes a small circle, called a summing point, with the
appropriate plus or minus sign associated with the arrows entering
the circle.

Any number of inputs may enter a summing point.
The output is the algebraic sum of the inputs.
Some books put a cross in the circle

x ;"'( ) r+y oz 1 x}
# ?_
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Components of a Block Diagram for a
Linear Time Invariant System

System components are alternatively called elements of the system.

Block diagram has four components:
o Signals \~—"
o System/ block~,~—

° Summing junction\~~
o Pick-off/ Take-off point




' N

R 0 R(s <D Cls) o -
B
Input Output
Signals System

la) (b)

COP= R(s) + Ry(s) ~ Ras) R(s)

R(s) Ris)

— -

R5(s) R(s)

Summing junction Pickoff point
(c) (d)



In order to have the same signal or variable be an input to more than
one block or summing point, a takeoff point is used.

Distributes the input signal, undiminished, to several output points.

This permits the signal to proceed unaltered along several different
paths to several destinations.

= x Takeoft Point
— x -
: _/&,- g
Takeoff Point R —




Example-1

Consider the following equations in which x;, x,, X5, are variables,
and a,, a, are general coefficients or mathematical operators.

0, &0y

a9y




Example-1

Consider the following equations in which x;, x,, X3, are variables,

and a,, a, are general coefficients or mathematical operators.




We will now examine some common topologies for interconnecting

subsystems and derive the single transfer function representation for
each of them.

These common topologies will form the basis for reducing more
complicated systems to a single block.




CASCADE

* Any finite number of blocks in series may be algebraically combined
by multiplication of transfer functions.

e Thatis, n components or blocks with transfer functions G,, G,, . . .,
G,, connected in cascade are equivalent to a single element G with a
transfer function given by




Example

&G, Fac, =< €S\ Ga

E_| g sl 6 |—< ELE-_C_.-

Multiplication of transfer functions is commutative; that is,

GiGj = GjGi

foranyiorj.



Cascade:

XE(S} = X|{5} = C(S} =
R(s) G1(5)R(s) GH(5)G(5)R(5) G3(5)GH(5)G(5)R(s)
— G(s) = G,(s) = Gi(s) -

()

R(s) C(s)
—» GGG (s) ==

(b)

Figure:
a) Cascaded Subsystems.
b) Equivalent Transfer Function.

The equivalent transfer function | Ge(s) = Gs(s)Ga(s)Gi(s)




Parallel Form:

Parallel subsystems have a common input and an output formed by the
algebraic sum of the outputs from all of the subsystems.

fc.,

R
Gi(s) 3 RS\ +&@=C
R(s)

C(s)

Gas)

RGea 5—’157' *GF—)C

Figure: Parallel Subsystems.




Parallel Form:

X,(s) = R(5)G(s)

—=| Gi(s)

)

R(s) Go(s) Xo(5) = R(5)Gy(s) £ . Cls) [iG,(s)iGz(s)iGE(s)]R(s)_J
+
X5(s5) = R(s)G
G.(5) 3(5) = R(5)G3(5)
Figure:
(a) a) Parallel Subsystems.
b) Equivalent Transfer Function.
R(s) C(s)

=
T Wl 4G () £ Go(s) £ Ga()

—

(b)

The eiuivalent transfer function is Ge(s) = £G1(s) £ Ga(s) £ Gs(s)




Reduction techniques

1. Combining blocks in cascade

—’Gl =GZ—> ﬁ > GlGZ—>

2. Combining blocks in parallel




Reduction techniques

3. Moving a summing point behind a block

- (€N
)(\ X\ — X2 XB 3(“\ XD X + Xs
@i&f T G —— G [
X




Reduction techniques

3. Moving a summing point ahead of a block

T e T s

\(\—» G >

g X\ _|_= G

4. Moving a pickoff point behind a block

*\Q"‘*‘Z

v 0

v

X\ X" Y‘G‘
G m <>

X\ X\

X X2: X'G

A 4
v

G)|._\

5. Moving a pickoff point ahead of a block




Reduction techniques

6. Eliminating a feedback loop
Coxwnr per

L~ + > & < <
- G — = R
\eoo] 2™ 1¥GH
/T H < L %fw)amy =
- = _ .
) 5 1cap a322in
_ R G
J G > <> > —
il 1¥G
H =1

7. Swap with two neighboring summing points




Feedback Form:

The third topology is the feedback form. Let us derive the transfer
functi its | | he

typical feedback system, shown in figure:

R(s) C(s)
——

Ga(s)

Figure: Feedback (Closed Loop) Control System.

The system is said to have negative feedback if the sign at the



Feedback Form:

Plant and
controller
R(s) + ZONN P Ces)_ R(s) Gs) D | ¢
- -
Input " Actuating | —> Output Input 1+ G(s)H(s) | Output
signal ‘

(error) (c)

L

Feedback

(b)
The equivalent or closed-loop | G, (5) = G(s)
transfer function is 1+ G(s)H(s)




Example-4: Reduce the Block Diagram to

|

Step 1: Combine all cascade blocks using Transformation 1.

Step 2: Combine all parallel blocks using Transformation 2.

L

——




Example-4: Continue.

Step 3: Eliminate all minor feedback loops using Transformation 4.

V66— = o -
L A4 . = = 1—G|G4H‘

\
‘ +—1)

_—

Step 4: Shift summing points to the left and takeoff points to the right of the major loop, using
Transformations 7, 10, and 12. However in this example step-4 does not apply.

Step 5: Repeat Steps-l to 4 until the canonical form has been achieved for a particular input.

v v

R + GG, Ga + G C R + GGG +Gy) C,
1 - G,GH, o< “l " % | 1= 6,68,
H, , H,
f

.Step 6: Repeat Steps 1 to 5 for each input, as required._




C:
B -
a(a,+a.)|

5 ‘Gxacax |

B

+

R

H, |~




Example-5: Simplify the Block Diagram.

By moving the summing point of the negative feedback loop containing /1, outside the posi-

tive feedback loop containing f1,, we obtain Figure

G\G\‘L

H,

il

H
G
-

G

Yo




Example-5: Continue.

Eliminating the positive feedback loop, we have

H
G\G\QG‘Q ??
\ — G G2 WY l -
G —Rh- @ N P L S I P E-
Vo FeT2 W, I - GGy H, ’

The elimination of the loop containing /1, /G gives

R G1G,G3 C
| G1G3H| + GQG],HE

Finally, eliminating the feedback loop results in

R GGG -
—— |———

1 - G|G2H| + GEGgHE + G1G2G3




Example-6: Reduce the Block Diagram.

H, |
+ + X +
R(s) >(:, » G, > G, » G, J—» G, ¥is)
- +
Hl ol
Hy |

First, to eliminate the loop G3G4H,, we move H; behind block G,

|,

Gy
+ + X +
+

H:;'i

Eliminating the loop G3G4H; we obtain




Example-6: Continue.

Hy
Gy
+ + Y
R » G, »(Jj » G, » GG » ¥is)

l = dqu,H 1

Then, eliminating the inner loop containing H,/G,, we obtain

+ G,G4Gy
2 ¥i
R—tQ—b G, > = GG, 1 GGl —t=> Fis)

H; e

Finally, by reducing the loop containing H;, we obtain

R(s) G1G,G;Gy Y(s)




Example-7: Reduce the Block Diagram. (from Nise: page-242)

ROt 6y Gy(s) || Gs) @
H(s) |=
Hy(s) |-
Hiy(s) |-

First. the three summing junctions can be collapsed into a single summing junction,

R C
Rs) G(s) |- Go(s) |—=] G(s) ()

H\(5) j+——F

H,(5) j+——




Example-7: Continue.

Second.recognize that the three feedback functions, /(s), Ha(s).and H;(s).are
connectedin parallel. They are fed froma commonsignal source, and theiroutputs are summed.
Alsorecognize that (G2(s) and Gi(s) are connected in cascade.

R(s)

EEE—.

Gy(s) _i®_. G1(5)G(s) W),

L H|(5} — HE[.S') + H3{S}

Finally, the feedback system is reduced and multiplied by Gy(s) to yield the
equivalent transfer function shown in Figure

Ris)

GA(5)Go(5)G(s)

Cis)
-

-

1 + Gy(5)Gois)[H (5) — Hal5) + Hyls5)]




Example-8: For the system represented by the following block diagram determine:
Open loop transfer function

Feed Forward Transfer function

control ratio

feedback ratio

error ratio

closed loop transfer function

characteristic equation
closed loop poles and zeros if K=10.

O N U A WwDNhE




Example-8: Continue

o First we will reduce the given block diagram to canonical form

o | 1 I
<] T

, 8 I.ﬁ }

R + + K Y
;_ s S+1 ]




Example-8: Continue




Example-8: Continue

1. Open loop transfer functior& =G(s)H(s)

E(s)
2. Feed Forward Transfer functh& — G(s)
E(s)
3. control ratio Cls) _ G(s) G(s)
R(s) 1+G(s)H(s) R+ SETEY .
4. feedback ratio B(S) _ _G(sIH(s) T
R(s) 1+ G(s)H(s) 01 |-
5. errorratio £ _ 1 H(s)
R(s) 1+G(s)H(s)
C(s) G(s)

6. closed loop transfer functior

R(s) 1+G(s)H(s)

7. characteristic equatiol] + G(s)H(s) =0



Example-9: For the system represented by the following block
diagram determine:

1. Open loop transfer function
Feed Forward Transfer function

control ratio

feedback ratio

error ratio

closed loop transfer function
characteristic equation

0O N O Uk WwWwN

closed loop poles and zeros if K=100.

s+ 1

s+ 1




Example-10: Reduce the system to a single transfer
function. (from Nise:page-243).

Ris) + Eg Vi(s) Gi(s) Va(s) + §§ Vi(s) | Gy Ga(s) Cis) .
iy _ T
1) | ) Hi(s) |-
Ve(s) H(5) |=

First, move G,(s) to the left past the pickoff point to create parallel subsystems,
and reduce the feedback system consisting of G(s) and H;(s).

1
Gr(s)

Va(s) + con Va(s) Vi(s) . Gis) | €
G(s) ——={ g 1 G1(s) - % Ga i) -

1 Va(s)




Example-10: Continue.

Second, reduce the parallel pair consisting of 1/G5(s) and unity, and push
(71(s) to the right past the summing junction, creating parallel subsystems in the feedback.

R(s) + Vi(s) + Viy(s) Lo Ga(s) C(s)
Gi(5)Ga(s) = quﬁ T T+ Ga(s)Hs(s) -
Hy(s)
|l
Gyls)

H)(s) |-—-

Third, collapse the summing junctions, add the two feedback elements
together, and combine the last two cascaded blocks.

R(s) + ® G1(5)Ga(s) "‘11{51._ If 1 N 1\”;’ G;l(s) \ Cls) _
. \Gals) A1+ Gs(s)H3(s))




Example-10: Continue.

Fourth, use the feedback formula to obtain Figure

R(s) G (5)GH(s) Va) |7 1 { G;(5) ) Cs)
1+ Go(s)Hy(s) + Gy(s)Go(s)H, (s) (Gg(s) )(1 + G3(5)H5(s)

Finally, multiply the two cascaded blocks and obtain the final result,

R(s) q Gi(5)G3(s)[ 1+ Gafs)] C(s)
[1+ Ga(s)Hs(s) + Gy(8)Gals)H (s)][1 + G3(5)H5(5)]




Example-11: Simplify the block diagram then obtain the close-loop
transfer function C(S)/R(S). (from Ogata: Page-47)

LR ey B R

|

GI f—

Hy

()

G

|

Gy

Ci(s)

First move the branch point between G; and G, to the right-hand side of the loop con taining G;, G,, and H,.
Then move the summing point between G, and G, to the left-hand side of the first summing point.

| H,
el a
R(s)
*%@- G] p—- GE —% G_-{ e {14

C(s)




Example-11: Continue.

By simplifying each loop, the block diagram can be modified as

Ris)

Further simplification results in

R(s)

l+ GG H+ GGy Hao— G Gy Hay+ Gy G G Ga Hy H:

the closed-loop transfer function C(s)/R(s) is obtained as

G,G,G,G,

R(s) 1+ G,GyH, + G:G:H, —

G,GsH; + G,G,G5G, H, H,

Hy
G1Gs
G, G G, G, Cls)
iv6,6H [ 7| 1T+6:.6.0 -
G, G,G, G Cls)
| M2y -



Example-12: Reduce the Block Diagram.




Example-12:




Example-12:




Example-12:




Example-12:

O | T

R GG,
@ QZ | 1-GGH, | %




Example-12:

O | T

R ' 9 G,G,G;
QA‘ 0‘ | 1-GG,H,




Example-12:

R G,G,G, C
1-G,G,H, +G,G,H,




Example-12:

R G,G,G, C
1-G,G,H,; +G,G,H, + G,G,G,




Example 13: Find the transfer function of the following block
diagrams.

R(S) +_% - 1) - Y (s)

Qi — ‘ LA

_|_




Solution;

1. Eliminate loop |

R(S) : G, g Y(s)
. 1+G,H,
H, |
2. Moving pickoff point A behind block G,
1+G,H,
RO)_+ey  1g 1 ® G, RO
- L 1+G,H,
¥ 14G,H, | ——|
+ L G,




3. Eliminate loop Il

R(s) + ‘ G,G, YSS)

- | 1+G,H,

Y(s) G,G,




Superposition of Multiple
Inputs

Step I:  Set all inputs except one equal to zero.

Step 2: Transform the block diagram to canonical form, using the transformations of Section 7.5.
Step 3: Calculate the response due to the chosen input acting alone.

Step 4: Repeat Steps 1 to 3 for each of the remaining inputs.

Step 5: Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the
total output of the system with all inputs acting simultaneously.



Example-14: Multiple Input System. Determine the
output C due to inputs R and U using the
Superposition Method.

U
.
B + G, + Gs ]C .
Step 1: Put U=0.
Step 2: The system reduces to
R + 7\ Cr
- — GG,

Step 3: the output Cy due to input R is|Cr = [G,G,/(1 + G,G,)]R




Example-14: Continue. !‘i
- G, s G, 1 .

-1 |
Stepda: Put R=0.
Stepdb:  Put —1 into a block, representing the negative feedback effect:
Rearrange the block diagram: U o+ z G
= 2 -
+
"'l GI

Let the — 1 block be absorbed into the summing point:

U + el G,j Cy :

R

Step de:ggthe output Cy; due to input U is|C, =[G, /(1 + G,G,)]U.




Example-14: Continue.

Step 5:  The total output is C=Cy + C,

GIGZ

GR+ U



Example-15: Multiple-Input System. Determine the output C due
to inputs R, U, and U, using the Superposition Method.

+| U
R - G, + G, | c_
L
TR
H‘ r\:+ H’
—_— +
U,
LEIU|=IJE=0. R +_/-\ CR

[ Cr=16,6,/(1 - GG, H, H,)]R ]

where Cj 1S the output due to R acting alone.




Example-15: Continue.

Now let R= U, =0 _;LU;
o. | - G, C,

1

Rearranging the blocks, we get

U, +

[ C: = [Gz {1 - GIGEHI HZ}]UI J

where C, is the response due to U, acting alone.




Example-15: Continue.

: | C
Finally, let R=U, =0. . Gﬁ,l -
[ & | i
Hl ”‘
LS g
Uy
Rearranging the blocks, we get
Us + M\ | | Cy
- G,G,H —e -
J 10242,
ke A St
K
G =16\G, H, /(1 ~ GG, H H))U, ]

\

where C, is the response due to U, acting alone.

By superposition, the total output is

Gle R + GIUI + G]Gz Hl£)'2

C=C+C+C=



Example-16: Multi-Input Multi-Output System. Determine C; and
C, due to R, and R,.

R, + e i
N A
G,

First ignoring the output G,.

) .

4

R,




Example-16: Continue.

Letting R, =0 and combining the summing points,

R, +vf\ G, I Cyy

B

G2G3G,

Hence C,,, the output at C; due to R, alone, is|C}; = G, R, /(1 — 61626364}.]

\

T Gg

Hence[(?u = —G,G\G,R,/(1 - GIGEG:,G,ﬂis the output at C, due to R, alone.

Thus|C, = Gy + G = (G R, — GIG?;G4R2):"((1 - G,6,6,G,)




Example-16: Continue.

Now we reduce the original block diagram, ignoring output C;.

B + 1) G | Ca
Nl s |
FEaag Ve et
G,G G,
——
R,
WhenR1=0, %2_* - @, || Caa,
+ | ’ ence [Cz: =GR, /(1 — GG, GG, J]
G1G2G,
When R2=0, #1__+ —~G1GsG, I Cau,
- ) ] HEHCE [Czl = = 616264 le(]. - 61626364}]
Ga M

Finally, G, = Gy, + G = (G4 R, — G,G,G4R,) /(1 — G,G,G,Gy)




Skill Assessment Exercise:

PROBLEM: Find the equivalent transfer function, 7(s) = C(s)/R(s). for the system

R(s) + }

+ 1 CE.S')
—-@7—-* § - 5 SR T -
- +

| =t




Answer of Skill Assessment
Exercise:

s+ 1
ANSWER:  7'(s) =5~




Final and initial values

theorems

Examples
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Signal Flow Graph

CH2-14

Eng. Fadwa Momani



What is Signal Flow Graph——

SFG is a diagram which represents a set of simultaneous
equations.
This method was developed by S.J.Mason. This method
does n’t require any reduction technique.
It consists of nodes and these nodes are connected by a
directed line called branches.
Every branch has an arrow which represents the flow of
signal.
For complicated systems, when Block Diagram (BD) reduction
method becomes tedious and time consuming then SFG
is a good choice.




BD Vs SFG

block diagram:

R(s) C4%)

—pl (G(S)

/\/\/\/\/

In this case at each step block diagram is to
be redrawn. That’s why it is tedious method.
So wastage of time and space.

signal flow graph:

R(s) === C(s)

Only one time SFG is to be drawn and
then Mason’s gain formula is to be
evaluated.

So time and space is saved.



SFG

Alternative to block diagram;
Consists only branches (systems), and nodes (signals)

G(s) )
> V(s)




Node: It is a point representing a variable.

Xy =115 X +13, X3 Xa = ME 2 + Xséso

® e X
X, L X,
t

32
In this SFG there are 3 nodes.

Branch : A line joining two nodes.
xl X2

.+‘

Input Node : Node which has only outgoing branches.

X, is input node.



. ,.__‘"P\~°—

Output node/ sink node: Only incoming branches. LT

Mixed nodes: Has both incoming and outgoing branches.

Transmittance : It is the gain between two nodes. It is generally
written on the branch near the arrow.




* Path: Itis the traversal of connected branches in the direction
of branch arrows, such that no node is traversed more than once.
—~uForward path : A path which originates from the input node
and terminates at the output node and along which no node
is traversed more than once.

* Forward Path gain : It is the product of branch transmittances
of a forward path.

B, wavraf
2 Paths




Loop : Path that originates and terminates at the same node
and along which no other node is traversed more than once.

~~Self loop: Path that originates and terminates at the same
node.

Loop gain: it is the product of branch transmittances of a loop.

Non-touching loops: Loops that don’t have any common node
p— e Y

or branch. \oR T S2Ha2

L‘ Lz Vlow-—\-L.

2 C L, Lzég 2nT. )




) F— &,
Mason’s Rule S

* Atechnique to reduce a signal-flow graph to a single transfer &= .~ 2 52"

function requires the application of one formula. —
) —

* The transfer function, C(s)/R(s), of a system represented by a
signal-flow graph is

2% vpa
= Gty (Ee
(}(‘S‘): = =
——  R(s) A
AR

k = number of forward path
P, = the kth forward path gain (%, 4,0,

@:1 — (2 loop gains) +(Z non-touching loop gains taken two at a
time) — (2 non-touching loop gains taken tWe)+ SO
on .

%: 1 - (loop-gain which does not touch the forward path)




Example 1:

—wP1=G1.G2.G3.G4
~P2=G5.G6.G7.G8




LOOPS

* L1=G2.H2
°* L2=G3.H3 +—
* L3=G6.H6
* L4=G/.H/




Two None touching Loops




Transfer Function using Mason’s Rule

TD R )
* Cofactors LIS ot -
Al=
1-{L3+L4) __ -
A2=1-(|__1+L_2)
* A= 1-(L1+L2+13+L4)+(L1L31L1L4H 2134 2L 4)
Y(s) (P1xA1)+ (P2x*A2) = Fc Ox

T.F =
Y R(S) A o



N\ =\ Vo D >
Y(s) [G1-GyGyGy(l-Ly-LyJ|+[GsGsGrGy(l-Li-Ly)

R(s) l—Ll—LZ—L3—L4+L]'L3+L1°L4+L2'L3+L2'L4
L[>



Example 2 1‘;

O
V(SO

P1=1.G1.G2.G3.G4.G5.G6
P2=1.G1.G2.G7.G6
P3=1.G1.G2.G3.G4.G8




L1=- G2.G3.G4.G5.H2

() Y(5)












L5= - G4.H4




L6=- G1.G2.G3.G4.G5.G6.H3




L7=-G1.62.G7.G6.H3




\®- - G1.G2.G3.G4.G8.H3




2.n.t.L:




L5=-G4.H4

L/=-G1.62.G/.G6.H3







* A1=1
* A2=1-L5
* A3=1

* A=1-(L1+L2+L3+L4+L5+L6+L7+L8)4(L5.L7EL5.144D3.L4)

o V() _CPDAED (P2 x A2)B (P3 * A3)

"~ R(S) A

—_—



Example 3

e 4 transfer function

~X1(s) X2(s) X1(s) X2(s)
— R1(s)"R1(s) 'R2(s)'R2(s)
—_——







Feedback Control System

Ay

Characteristics ==

< \bs\' M -

CH4



<Open Loop Vs. Closed Loop

* An open-loop system operates without feedback and directly
generates the output in response to an input signal.

* A closed-loop system uses a measurement of the output signal and a
comparison with the desired output to generate an error signal that is
used by the controller to adjust the actuator.




Open Loop Vs. Closed Loop

>Steady state error (Accuracy)

2Sensitivity = sasrew~ senas. |

*Disturbance rejection

e S N,

>Noise Rejection senses«

"

»-Transient Response —s.




Closed Loop System

* The two forms of control systems are shown in both block diagram
and signal-flow graph form. Despite the cost and increased system
complexity, closed-loop feedback control has the following

~~ advantages: e
ecreaseo sensitivity of the system to variations in the parameters of
the process. -
* Improved rejection of the disturbances. Mo = Commn _YIL3
o . . Q —D
Improved measurement noiselattenuation, &> @s €0
* Improved reduction of the steady-state error of the system. S—>.

Y .
Easy control and adjustment of the transient response of the system.




Open Loop System =

~

Controller

G.(5)

w@(—&&

O‘\— -S\os -

é\' R é o N &
N

Ts)

Process

G(s)

S— i (Y




Closed Loop System
D =
R Nl S
§e$\e C
ontroller Process
+
Gty —> G(s)
VA S
B & WD
HesD> =\ D
T L=
N =

\/\v\'\\"g -2




Transfer Function

* Open Loop

Controller

R(s) sl

G.(s)

Controller

e
2\—“9\,&53 > 2

R(s) s—p

G.(5)

\ @ W Yy (D =0
=2Cs)
Process
G(s) » Y(s)
TACsD
Process
Ycsd o G (D G:(s*)}
e D {0 = e
G(s) Yix) R‘Z‘”

Vesd) = Ge GhRLCsD



Transfer Function

* Open Loop

Controller

Ris) 4  G,(5)

T(S) e

Ts)
Process
+
— Gis)
Process
G(s) b Y(s)




Open Loop System ‘%

T As)

Controller Process

R(S) sl GF{3) —— G(.‘i‘) . 3 0

Y(s) = G.GRE +~ GNaC>D ‘\-Q/\:ed o NP

N e

——

e

Q(e) =



Closed Loop TF

VAR, Ub:o
AR PN
R ALY NIDH=S
RAAEN Nt
s
)+ QoM
~NoXed= GG L ResD
)+~ G .G N

3 . ‘T—\ F
Controller Process
+ E (s)
Riy ¥ G G(s) > Y(y)
Sensor
H(s)
Controller Process
+ E (s)
R(s) G.(s) G(s) » Y(s)
Sensor

H(s)




Closed Loop TF

ASY) Bcesd =
—_> NCsD =0

To 69D
pLSD) B & CsD
ToaCsd ) - QG*-H
Vs L < s
TACSD) I+ QG
Y& = - * Ta (s

Controller Process
+
€
G(s) G(s) = 1)

N’ Ry

Sensor ()

~ H(S) 4

Process
G(s) Yix)
Controller Sensor
G.(5) =H(s)




Closed Loop TF

¢
DA = TRCsdD=o

NCOsD T =2
Y 3D _ GG
NCsD -
Y G&N N(s)
~J Yes> = 7 Sen

\ —N—GC-\C\-\

e

Controller Process
Eﬂ(s)
G.(s) T G(s)
Sensor
;———H(S)
Sensor Controller Process
2D — @@

=
-



Closed Loop System

T As)
Controller Process
+ E,(s) P
R(s) G.(s) —: G(s) » Yis)
N +
Sensor + Ms)
s = |\ :
. g ¢
G(s)G(s) G(s) G(s)G(s)

) =TT 6566 " *

1 + G(s)G(s) Td(s)el + G (s)G(s) O]

— ,

@ oo c FrerSY v ia_c/\ .



PR I -
Error Analysis

GBE(s)
E~xror - C}csén-g) = Acrua)

Exvwox Swe Y+ R(S) =

VAl , NS = ©

\-&Qg("

D
i
Snde SYR

€£¢sD = () — %_ RGD
‘oo +~CQ
- RCsH
C T a———~
E } \ ‘\-C.C:B

©oos T Lien S- EGD = L F %

s—>e >

= R(s) ~ Y(s). -

+

TAs)
Controller Process
%
d G‘.{s) _: G(s) » Y(s)
Yes S N(s)
Sensor
=1
H(s)
Controller Process
EH(S)
G.o5) G(s) » Y(s)
Sensor
H(s)
\ = \ - = QSS
- s
=c. | ACS & ‘@
\ + e s\-eoé& Syeye
Dc Sain et o”



N\ Srus<seanc e %Qcy e

» Y(s)

N(s)

TAs)
. Controller Process
Error Analysis e +
R(s) Gl > G(s)
E(S) — R(S) - Y(S) Sensor
. N st AQWwe o Ta(ﬁ) = Hs) ¢
KRLD, NCsD = ©
EcD= RIsD - YD = desired) = Ackve
£ 05> - S — = NS o Process
AS
Vo GG — -+ G
V- QG Controller Sensor
E;} = Lirm 8 -\ . - S G.(5) - H(s) ¥
s—>o I+ G
. - &2 oC 2N
55 ) —+ é(r.)c. )

» Y(y)



N ots= TS TA5)

. Controller Process
Error Analysis O :
R(s) G (s) —: G(s)
E(s) = R(s) — Y(s). Sensor
A i
exta<x Owe Ne NSO = < | H(s) |e
ECSD-RD— Ys)
Sensor Controller Process
- . + =\
Cs = © - @M e ~ (g{.s) B R IR S
) + .G +
I+ .S |
Eso = Livm £ A .S — E;eroc,(c)

8
S—=» o Ve G ) C;.(Q)G‘(°>A

» Y(s)



Error Analysis ( Tere) Cevar)

T

E(s) = R(s) — Y(s).

Controller Process
+
iiy/ - E (s) G.(s) —: G(s) - > ¥(s)
Sensor qk ‘N(s/
' H(s) %

1 G(s) G(s)G(s)
(E ) = 15 6.0066) "1 T 6060 O P 6966 Y




O?M\QQQ <>

Error Analysis

-

E(s) = R(s) — Y(s). Sesna) — AvsaD

Controller

Process
+
G(s)

R(S) sl G.(s) _: Vi)
Controller Process

Jue o €D = —L

TACsD = O

E= Pl = G .G FCsO
E - ’2‘9>C1—G<-G>

= Ly 1L (1 -GC.&D
£es = L:m%/s, ()

S—oS>S o

&s = —C.efcoC\(c)}




Error Analysis
DS ~veps oyen.

E(s) = R(s) — Y(s).

Controller

Ris) =2 G.s)

THS) ey

l Process
+
+ G(s)

> Y(s)

Process

G(s)

> V()

ExY o é\me TACs) = —;—/ 2Cs =

E-(S)-‘ "Z(S)—- )/(g)
Ccs> = ©— G Talso

- & 75 (5D

Ess ‘-"Z-"W\S’s_}l: . —

_G( QQ




Open Loop Vs. Closed Loop

$/\"§o~q)y =¥ ot~ A~NYo X @g)
 Jopenloop |Closedlop

Error Due to R(s) v
Accuracy { C\:( DG (D / ) )) Csa .,_> C,—"SC.L
[+C Cad G (o
Error Due to Td(s) -G Ce) —
Disturbance Rejection ) & (g)j 1 ,+G(°)G(J 6;;,-:/ > Q;;L
A oA
Error Due to N(s) G:t.“’

Noise Rejection



System Sensitivity

» System sensitivity is the ratio of the change in the system transfer
function to the change of a process transfer function (or parameter)
for a small incremental change.

 AT(s)/T(s)
— AG(5)/G(s)

STzé‘I.Q
CT G T



Feedback control system
Characteristics

CH4
Part 2



Steady state error example

Y(s)

10 . . . . .
If G(s) = 500015+ D) find Ess if R(s) is a unit step input
R
TC) = Ko G . Yes> (s) ;Q Ka > G(s)
) &+ Koo R(sO ‘

Ecs> = Res> - y(g) = RS — TOHRCS)

= Rc¢ —<¢cH\ = RGH) ) — 2[5‘)
= ’>(_ \ 3—5 ): e «AG—X Ll . Ke.G.
as‘ Liva S« 22— -[\— Ka& = Lim% —[ : j

S—e ) o ln S .o +K°\§§(o ooIS' YY)




A - FPed Css W Mae sys s oPem \oopP




System Sensitivity (©—==v.

D Vs
* System sensitivity is the ratio of the change in the system transfer

function to the change of a process transfer function (or parameter)

for a small incremental change. & G
< =?@T(S)/ T(s)
AG(s)/G(s)

r Lo \G
3G @T




Open Loop Sensitivity

Actuating

Input Se Signal &S Output
——| Controller » Plant |
. T G
SG' == ——

oG T
TCsD = G\<G'\
T
= &
Se, =G ¥ rI- |
e ——



Closed Loop System Sensitivity .

ESES)
Error

Actuati
Detector Gie ‘;;; ; T el
— G“(S)G(S) Controller Plant >
T(s) =

1 + G.(s)G(s)’

M = |
Therefore, the sensitivity of the feedback system is feodbeck  e——
Feedback
ol G G, G Signal

°736'T T (1+ GGy GG/(1+ GG)

or S L \/

- 1
~ %= e [T

If we seek to determine S(j , Where o is a parameter within G(s), using the

chain rule gives
T _ ofT G



EXAMPLE 4.1 Feedback amplifier ——

An amplifier used in many applications has a gain —K|,, as shown in Figure 4.4(a).
The oufput voltage is

BES Yy = _Kn'vm (4-17)
We often add feedback using a Qot\éﬁaomete\;m as shown in Figure 4.4(b). The
transfer function of the amplifier without feedback is — e

7T = -K,, S-Sz @) =
and the sensitivity to changes in the amplifier gain is
Sk, = 1. (4.19)

The block diagram model of the amplifier with feedback is shown in Figure 4.5,
where

R,

i Voo = R, (4.20)
 — Ya —_— !
- — J—
+ O————— ——————O0+ Vi O o Vg < v
., Gain % Gain
In — K -
o Kﬂ —*@_4 -l
_— | —_
T 1 —1— T




R, =R, + R, (4.21)

The closed-loop transfer function of the feedback amplifier is

- Ko\
S (4.22)
S ( 1@&33

The sensitivity of the closed-loop feedback amplifier is

o | 1 1
AN o iy £
SK‘,_ SGSK,, 1+E T ,60\7\ SE'ZS) b:‘%\i"-f S S

If K, is large, the sensitivity is low. For example, if

IR
_Ig_ﬂ =10
and
B =01, (4.24)
we have
r 1
Sk, (4.25)



Note:

Uncertainties in the system model might come from : Aging ,
changing environment, and ignorance of exact values of
the system parameters which all affect the control process.

B - In open-loop : iWesult from
these effects. ‘

= In closed-loop: the system attempts to

compensate and correct for these effects

by use of the controller

Sensitivity is reduced in closed-loop by increasing G, (s) G(s)

of the compared to the open-loop case where S=7in the
Case S
'\:t:&"

Dr. Ahmad Al-Jarrah



&
CONTROL OF THE TRANSIENT RESPONSE

— \ iS¢ S SYs.
T =< — \fSY order s9Y , y/
> R(s) || Y()
"M — = Hwme Contsrawh. —y P

< < ‘325 ss

.........................




Closed loop

\
Ts— \

T(s) =

\
T’s ~« \

[+

s+ ]

£




(Lo
0.9
0.8
0.7
0.6

e

Closed-loop

05
0.4

0.3
0.2

0.1

0 ¥n L
1 2 3 4 5 6 7-48 9 10 11 12 13 14 15

Op¢n-loop
ifhout feedback)

(w

Time (s)




1. Steady State Error
2. Stability



Steady-state Error Analysis

For the feedback system shown in block
diagram below, the transfer function is given by:  R(s) < E(s)

e _ _ GO
R(s) 1+G(5)H(s)

The system error is given by:

E(s) = R(s5)-C(s5)H(s)

_ [ __G)H() } RGS)
1+ G(5)H(s)
= : R(s)
1+ G(5)H(s)

G(s)

C(s) .

. H(s)

This last expression shows that the loop gain G(s)H(s) determine the amount

and nature of the steady state error of a system.

Dr. Ahmad Al-Jarrah



The loop gain G(s)H(s) can be expressed in the general form;

K(s+ )+ )5+ 23) (S +2,)

e s (5+ P+ PS5+ p3)(5+ Py)

Tem

K[[G+2)

lel
=N

o H(5+Pj)

j=l

The error in this case would be given by:

1
) = 1+ G(s)H(s) k()

Teil

“ [IG+pp)

j=l
l=nt Tt

ol H(S+pi)+K]._.[(S+:i)

J=2 =l

R(s)

Dr. Ahmad Al-Jarrah
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The steady state error is calculated as follows:

_ e )
st [IG+pj)
. =1
e, = Iﬁ})l s—— — R(s)
g H(s+pj)+KH (s+2;)
L i1 )

= \When the standard test signals of a step (A/s), a ramp (A/s2), and an acceleration
(A/s3) are used, the Laplace operator “s” in the input test signal denominator will
cancel or reduce from the power of “s” in the numerator of the expression above.

B The power of “s” (the poles of the G(s)H(s) located on the origin of s-plane), i.e. N,
determines the steady state error response of the system when subjected to standard
test signals, and is called the “type number” of the system.

B For N =0, the system is a type zero, for N = 1, the system is a type one, and so on.

Dr. Ahmad Al-Jarrah 28



Type Zero System:

The steady state error for a step input; A/s /s given by

et

H(5+Pj)

. . il
e; = Lim|s—

s—0

=

Jem

[[G+p)+KJ(s+2) 4

| j=1 i=l 1
NER
[z
rea— . A
Tl Tt
I_ij + KH Zi
Jj=1 =l
=
4 K H-ﬁ Position error constant
— 4 = -l 1
= K, for K, = —=— K, = hmG(s)H(s)
H Pj s—>0
Jj=1

Dr Ahhmad Al-Jarrah 29



The steady state error for a ramp input; A/s2 /s given by

a

Type One System:

s—0

5—

(s+p;)
H ’ A_
H(HP,)...AH(H_,) .
J-l I-l 3

The steady state error for a step input; A/s /s given by

-

N

5 H(S-i-pj)

J=1

Tel

J=1

T

Tl

s n(s+pj)+kn(5+_,)

A

MNe Ablbsvaemnd Al 1 areraby

aTal



STEP INPUT RAMP INPUT ACCELERATION
R(s)=A/s R(s)=A/s’ INPUT
R(s)=Als




The steady state error for a ramp input; A/s2 /s given by

s [[G+p))
e.'.' . I:‘lnol off Twnl J-l T ;i
s [[G+p)+K[[(s+2)
L J=1 j=l _
[
. "
KH Z;
fel
X T Velocity error constant
¥ f for K, = —i-l = limsG(s) H(s)
H P, s—>0
J=1
The steady state error for an acceleration input; A/s3 is given by
s (s+p;)
M

-

s H(S+pj)+kH(s+ )

J=1

T=l

Dr. Ahmad Al-Jarrah




STEP INPUT RAMP INPUT ACCELERATION
R(s)=A/s R(s)=A/s’ INPUT
R(s)=A/s"




Type Two System:

The steady state error for a step input;
A/s is given by

_ - -
s H(s+pj)
€; = Ei%l F = = [ ?
g [[G+p)+K[[G+2z)
| j=1 iml
= ()

A/S72 = ess=0

The steady state error for an
acceleration input; A/s3 is given by

s 2 .
s H(s+ p;)
e ™ I,‘l%l ' Lt = T ;’i
'S H(5+pj)+KH(s+:,)
i j=1 i=l |
Tl
[12
=d1__ 4
Jwirt
4 E
=l
Ll
K Z;
i for K, =——i=L
Aa Twmrl

Acceleration error constant
K. = lims®G(s)H(s)
s—0

Dr. Ahmad Al-Jarrah 32



In summary;

L

K1]=
For K, =K =K, = —I=1
[12
J=1
STEP INPUT RAMP INPUT ACCELERATION
TYPE R(s)=Als R(s)=A/s? INPUT
R(s)=A/s’
A
0 1+ K, = ot
4
1 0 7 "
A
2 0 0 3

Dr. Ahmad Al-Jarrah




Effect of Pole Locations

Time function of impulse response assosiated with
the pole location in s-plane

Jjw

A

A A

=% —\ /\
l}j I|\ ]i_/
0 0

LHP : left half-plane

RHP : right half-plane

President Universi Erwin Sitom FCS 2/16



Stability

* A BIBO (bounded-input bounded-output) stable system is a system for
which the outputs will remain bounded for all time, for any finite
initial condition and input. A continuous-time linear time-

invariant system is BIBO stable if and only if all the poles of the system
have real parts less than O.



7 X N(s
v X 0 > ; §)
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. ) X it
X

< stable region - - unstable region —>»




Find if the systems stable or not

S+3

(s+5)(s+2)
S+3

(s+5)(s—2)

G(s)=

G(s)=
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Second Order Response

Eng. Fadwa Momani
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Review of First Order Response (Step Response)

Te—
-C&Ir K*(1 4
BwIN-AKO —e ) 1 Eoopn)
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W6 Io() - e ) PeeTeressscssss o nin
9t Step Response
T ol * -
s 7 #T- T *+15 gl _ steady state output 10 7
DC Giiln =K ™ -
£ secc - " 7+ Input QD
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Sf I
- ' -
o /o
L I
S |
2t ' :
/ : Unit Step Input
1 e
/ |
0 e L 1 3 .l s 1 . il |
0 116 2 3 4 5 6 7 8 10

Time
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First order system response for different input signals:
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Impulse —

RAPHICAL INPUT \ OUTPUT
REPRESENTATION
A€
‘*"““\’sr**'& ) (1) <) ot)=t-T+Te"’
ey, - )
(N2
(t)=1 ar) =1-€"*
e ——
v
1 fort=0 ol ot
o) = 0 fort=0 o r°




Second Order System (§*2>..)

&
W~

2

w"l ;(5' —‘2{‘\/&)
/4~ ‘( >
S-‘ztﬁm>

wg O n et ural e\rvz
G — n < :i ) :Q)Oun i 6
@ s+ 20wy, s + wﬁz & TR e

ofgcr $SYS .

3%«-:.9‘\_.



Second Order System (572 ...)
N

e Second-order systems exhibit a wide range of responses which must
be analyzed and described.

-
* For a first-order system, varying a single parameter changes the speed

of response, Changes in the parameters of a second order system can
change the form of the response not only the speed of the response.

* For example: a second-order system can display characteristics much
like a first-order system or, depending on the system’s parameters
values, pure oscillations or damped behavior might result for its
transient response.
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* General Transfer Function of 2" Order System:

. &S
G (s) = - K i
2_|_@ + 2 2
S s+e. 5% 4+ 2Cwns + wy

Where:

wn = 1/€, the natural (or resonant) frequency (rad/sec),

(= the damping ration (unitless), and



Second Order System

* Characteristic Equation 2 PAes

s=+200m. s +a@ =0

©

—2cm, * \/ (2cm, ) —4o, -
(585 = :E—@on T+ o, \/g‘ —1

&
E =

A




Second Order System

The value of { determines 4 cases of interest that are given special names (whose origin will soon be

apparent): GO
Name Value of ¢ Roots of s Characteristics of "s"
~rOverdamped | 1V | s = —Cwog L wpr/¢2 —1 Two real and negative roots
Critically _ _ : :
N~ Damped )C—‘I v S wWo A single (repeated) negative root
: Complex conjugate
~ Underdamped gO<C<K‘I\/ s = —(wo £ jwor/1 — (2 p(j= \/'1)J; 9

— Undamped K§=0)\/ s = 1wy Pure imaginary (no real part)




Case | Over damped case (Stable) &)1
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Case |l. Underdamped case (Stable) 0 (< (1) unitstepinput
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L, @ L@ N\1=&
where [=tan” — = tan 1 \/ z
cw, s, X e
w, =o, ,/1 — g"l . Is the damped natural frequency
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2"d order , Step input, Different damping ratio
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Pole Locations with different damping ratio (¢)
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Poles path (location) in
s-plane as E changes
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Underdamped Second Order:

c(t) A

Allowable tolerance

0.5

0




All performance specifications are derived from:

1

N

—;‘a),,t

)= 1=
I

Rise time(7,) : rise time is the time required for the response to change
from a lower prescribed value to a higher one.

72'—,8: T— [

@, @ 1—¢

n

sin(@, 1 + [3)

§ =

7

Peak time(7, ): the peak time is the time required for the response
to reach the first peak

T T

r — —
TN

Settling time (7, ): the settling time is the time required for the
amplitude of the sinusoid to decay to 2% or 5% of the steady-state
value.

Dr. Ahmad Al-Jarrah 20




[, =—— 2% criterion
g(on
3
by —=— 5% criterion
g(UI)

Maximum overshoot percentage: the percent overshoot is defined as the
amount that the waveform at the peak time overshoots the steady-state

value.
| y(t,)— y(0)

Maximum Peak Percentage MP% MP% = ) x100%

)7 o0
OR
Overshoot Percentage OS% 0S5% = y _max—y_final x 100%
y_ final
_57[

MP% = 100eV"%

Dr. Ahmad Al-Jarrah 21



For given OS%, the damping ratio can
be solved from the OS% equation;

M,,, —————————————
Overshoot Eys
1.0+ 6 | |
10F——————-— ————{- ————— \( ——————— 7/— le_\_ ————— | e———
e | ! L. I
1) 1.0—8 N | |
I I I
il I I
|1 I I
1Ll I I
|1 I I
i) I I
o I I
il | I
|1 I I
0.1 I I I
0 L L1 1 L » Time
[ 2
Tr. Peak Settling
time time
D Tr
Rise time
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Sof .
0.S% is a function of
A Effects of damping

200

(Under damped)

Response < %
o
o
I

Steady-state

¢ =1.0 (Critically damped) NOTE that wn is
{ =1.5 (Over damped) constant for all

Time



Examples will be discussed on a Video files

* |f you have any questions you can contact me



Steady-state Error Analysis

For the feedback system shown in block
diagram below, the transfer function is given by:  R(s) < E(s)

e _ _ GO
R(s) 1+G(5)H(s)

The system error is given by:

E(s) = R(s5)-C(s5)H(s)

_ [ __G)H() } RGS)
1+ G(5)H(s)
= : R(s)
1+ G(5)H(s)

G(s)

C(s) .

. H(s)

This last expression shows that the loop gain G(s)H(s) determine the amount

and nature of the steady state error of a system.

Dr. Ahmad Al-Jarrah



The loop gain G(s)H(s) can be expressed in the general form;

K(s+ )+ )5+ 23) (S +2,)

e s (5+ P+ PS5+ p3)(5+ Py)

Tem

K[[G+2)

lel
=N

o H(5+Pj)

j=l

The error in this case would be given by:

1
) = 1+ G(s)H(s) k()

Teil

“ [IG+pp)

j=l
l=nt Tt

ol H(S+pi)+K]._.[(S+:i)

J=2 =l

R(s)

Dr. Ahmad Al-Jarrah
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The steady state error is calculated as follows:

_ e )
st [IG+pj)
. =1
e, = Iﬁ})l s—— — R(s)
g H(s+pj)+KH (s+2;)
L i1 )

= \When the standard test signals of a step (A/s), a ramp (A/s2), and an acceleration
(A/s3) are used, the Laplace operator “s” in the input test signal denominator will
cancel or reduce from the power of “s” in the numerator of the expression above.

B The power of “s” (the poles of the G(s)H(s) located on the origin of s-plane), i.e. N,
determines the steady state error response of the system when subjected to standard
test signals, and is called the “type number” of the system.

B For N =0, the system is a type zero, for N = 1, the system is a type one, and so on.

Dr. Ahmad Al-Jarrah 28



Type Zero System:

The steady state error for a step input; A/s /s given by

et

H(5+Pj)

. . il
e; = Lim|s—

s—0

=

Jem

[[G+p)+KJ(s+2) 4

| j=1 i=l 1
NER
[z
rea— . A
Tl Tt
I_ij + KH Zi
Jj=1 =l
=
4 K H-ﬁ Position error constant
— 4 = -l 1
= K, for K, = —=— K, = hmG(s)H(s)
H Pj s—>0
Jj=1

Dr Ahhmad Al-Jarrah 29



The steady state error for a ramp input; A/s2 /s given by

a

Type One System:

s—0

5—

(s+p;)
H ’ A_
H(HP,)...AH(H_,) .
J-l I-l 3

The steady state error for a step input; A/s /s given by

-

N

5 H(S-i-pj)

J=1

Tel

J=1

T

Tl

s n(s+pj)+kn(5+_,)

A

MNe Ablbsvaemnd Al 1 areraby

aTal



STEP INPUT RAMP INPUT ACCELERATION
R(s)=A/s R(s)=A/s’ INPUT
R(s)=Als




The steady state error for a ramp input; A/s2 /s given by

s [[G+p))
e.'.' . I:‘lnol off Twnl J-l T ;i
s [[G+p)+K[[(s+2)
L J=1 j=l _
[
. "
KH Z;
fel
X T Velocity error constant
¥ f for K, = —i-l = limsG(s) H(s)
H P, s—>0
J=1
The steady state error for an acceleration input; A/s3 is given by
s (s+p;)
M

-

s H(S+pj)+kH(s+ )

J=1

T=l

Dr. Ahmad Al-Jarrah




STEP INPUT RAMP INPUT ACCELERATION
R(s)=A/s R(s)=A/s’ INPUT
R(s)=A/s"




Type Two System:

The steady state error for a step input;
A/s is given by

_ - -
s H(s+pj)
€; = Ei%l F = = [ ?
g [[G+p)+K[[G+2z)
| j=1 iml
= ()

A/S72 = ess=0

The steady state error for an
acceleration input; A/s3 is given by

s 2 .
s H(s+ p;)
e ™ I,‘l%l ' Lt = T ;’i
'S H(5+pj)+KH(s+:,)
i j=1 i=l |
Tl
[12
=d1__ 4
Jwirt
4 E
=l
Ll
K Z;
i for K, =——i=L
Aa Twmrl

Acceleration error constant
K. = lims®G(s)H(s)
s—0

Dr. Ahmad Al-Jarrah 32



In summary;

L

K1]=
For K, =K =K, = —I=1
[12
J=1
STEP INPUT RAMP INPUT ACCELERATION
TYPE R(s)=Als R(s)=A/s? INPUT
R(s)=A/s’
A
0 1+ K, = ot
4
1 0 7 "
A
2 0 0 3

Dr. Ahmad Al-Jarrah




Effect of Pole Locations

Time function of impulse response assosiated with
the pole location in s-plane

Jjw

A

A A

=% —\ /\
l}j I|\ ]i_/
0 0

LHP : left half-plane

RHP : right half-plane

President Universi Erwin Sitom FCS 2/16



Stability

* A BIBO (bounded-input bounded-output) stable system is a system for
which the outputs will remain bounded for all time, for any finite
initial condition and input. A continuous-time linear time-

invariant system is BIBO stable if and only if all the poles of the system
have real parts less than O.
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Find if the systems stable or not

S+3

(s+5)(s+2)
S+3
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Routh-Herwitz Stability
Criterion

Eng. Fadwa Momani

Note 1 do not clalm any orlgmallty in these lectures The contents of this presentatlon are
“mostly taken from the book of Ogatta, Norman N|se Bishop and B C Kuo and vanous other
‘internet sources. i e e Sl




Routh-Hurwitz Stability Criterion

It 1S a method for determining continuous system
stability.

* The Routh-Hurwitz criterion states that “the number of
roots of the characteristic equation with positive real
parts Is equal to the number of changes in sign of the
first column of the Routh array”.



Routh-Hurwitz Stability Criterion

This method yields stability information without the need to
solve for the closed-loop system poles.

Using this method, we can tell how many closed-loop system
poles are in the left half-plane, in the right half-plane, and on
the jw-axis. (Notice that we say how many, not where.)

The method requires two steps:
Generate a data table called a Routh table.

Interpret the Routh table to tell how many closed-loop system
poles are in the LHP, the RHP, and on the jw-axis.



Example: Generating a basic Routh Table.

Only the first 2 rows of the array are obtained from the characteristic eq. the remaining

R(s)

—b.

N(s)

C(s)

a454 + a3S3 + a2S2 tastag

are calculated as follows;

s ay >y ag
53 as ai 0
|44 a3 144 Ao |44 O'
32 asy  aj _ bl as 0 _ b2 as 0 -0
as as as
|43 dr as 0' as 0
by b by 0 by O
1 = =
Ky bl C1 bl 0 bl 0
by 0' by 0'
SO €1 0 =0 C1 0 =0
1 C1




Four Special Cases or Configurations in the First
Column Array of the Routh’s Table:

. Case-l: No element in the first column is zero.
. Case-ll: A zero in the first column but some other elements of the row
containing the zero in the first column are nonzero.

. Case-lll: Entire Row is zero



Case-l: No element in the first column is zero.



Example-1: Find the stability of the continues system having the characteristic
equation of

74+ 652 4125+8=0

The Routh table of the given system is computed as;

_ (6+12)-(1+8) 64
12 0 p1 = £12-0:0) o

e Since there are no sign changes in the first column of the Routh table, it means
that all the roots of the characteristic equation have negative real parts and hence
this system is stable.



Example-2: Find the stability of the continues system having the characteristic
polynomial of a third order system is given below

S+ 52+ 25+ 24
 The Routh array is

53 1 P b1 = (1*2)—1(1*24)2_22
5 1 24
5! -22 0
s 24 0

* Because TWO changes in sign appear in the first column, we find that two roots
of the characteristic equation lie in the right hand side of the s-plane. Hence the
system is unstable.



Example-3: Determine a rang of values of a system parameter K for which the
system is stable.

s9+3524354+14+K=0

* The Routh table of the given system is computed and shown is the table below;

s’ 1 3 0
52 3 1+K0
5! u 0

3
s | 1+K

* For system stability, it is necessary that the conditions 8 —k >0, and 1 + k> 0,
Mmust be satisfied. Hence the rang of values of a system parameter k must be lies
between -1 and 8 (i.e., -1 < k < 8).



Example-4: Find the stability of the system shown below using Routh criterion.

| D00

Rix) +§:;: E(x)
o } o

C(5)
-

(s+2)s+ 35+ 5)

|

Ris)
The close loop transfer function is shown in the figure -

1000

Ci5)

The Routh table of the system is shown in the table

57+ 1052 + 315+ 1030

5 | 31
g o1 1830 103
1 31 1 0

] 1 103 00
g 1 -7 =

| |

1 103 1 0
P 2 0| 03 72 0 o
. 72 72

———1=0

0

Because TWO changes in sign appear in the first column, we find that two roots of the

characteristic equation lie in the right hand side of the s-plane. Hence the system is

unstable.



Example-5: Find the stability of the system shown below using Routh criterion.

25 + S 43 455+ 10=0

 The Routh table of the system is

5 2 310
P 1 5 0

2 (@) —@)5) _
]

—7 ¢ 0

i (—?](5]_—?{11{1'31]:&43 0 0
s 10 0 0

System is unstable because there are two sign changes in the first column of the
Routh’s table. Hence the equation has two roots on the right half of the s-plane.



Case-ll: A Zero Only in the First Column
Stability via Epsilon Method.



Case-ll: Stability via Epsilon Method

* |f the first element of a row is zero, division by zero would be required to
form the next row.

* To avoid this phenomenon, an epsilon, €, (a small positive number) is
assigned to replace the zero in the first column.

* The value € is then allowed to approach zero from either the positive or

the negative side, after which the signs of the entries in the first column

can be determined.



Case-ll: Stability via Epsilon Method

Example-6: Determine the stability of the system having a characteristic equation given below;

g(s) = s* + 25" + 257 + 45 + 115 + 10

The Routh array is shown in the table;

5 1 2 11
s 2 4 10
5 e 6 0
'S ¢, 10 0
sl d, 00
Where 5‘“ 10 () 0
€ = flE—;l% — _—_EI_Z_ and d, = ud ;ﬁ—hﬁ.
There are TWO sign changes due to the large negative number in the first column, ¢; = —12/e.

Therefore the system is unstable, and two roots of the equation lie in the right half of the s-plane.



Example-7: Determine the range of parameter K for which the system is stable.

gs) ="+ 7+ + 5+ K

The Routh array of the above characteristic equation is shown below;

5? 1 | K
¥ 1 ] 0
5 e K .
."i] l’fl () (0
g K 0 0
Where

e — K —K

f.'] = —_— —
E €

* Therefore, for any value of K greater than zero, the system is unstable.

* Also, because the last term in the first column is equal to K, a negative value
of K will result in an unstable system.

e Consequently, the system is unstable for all values of gain K.



Example-8: Determine the stability of the closed-loop transfer function;

o 10
Is)= P+ 25353 6524+ 55+3

The complete Routh table is formed by using the denominator of the characteristic equation T(s).

5 | 3 5
g 2 6 3
7
g & € E ()
, be — 7
2 c 3 0
&
42e — 49 — fe

1

5 5 14 0 0

* A zero appears only in the first column (the s3 row).

* Next replace the zero by a small number, €, and complete the table.

* the signin the first column of Routh table is changes twice.

* Hence, the system is unstable and has two poles in the right half-plane.



Case-lll: Entire Row Is Zero.

Sometimes while making a Routh table, we find that an entire row consists of
Zeros.

This happen because there is an even polynomial that is a factor of the original
polynomial.

This case must be handled differently from the case of a zero in only the first

column of a row.



Example-9

Determine the number of right-half-plane poles in the closed-loop

transfer function. 10

I'(s) = §5 + 754+ 653 + 4252 + 8 + 56
5 l 6 8
¢ 1 47 6 > 8
RS & 12 3 o 0 0

First we return to the row immediately above the row of zeros and form
an auxiliary polynomial, using the entries in that row as coefficients.

P(s) = s* + 65> + 8
Next we differentiate the polynomial with respect to s and obtain
dP(s)

45> + 125+ 0
s

Finally, we use the coefficients of above equation to replace the row of
zeros. Again, for convenience, the third row is multiplied by 1/4 after
replacing the zeros.



Example-9

* The remainder of the table is formed in a straightforward manner
by following the standard form .

5’ | 6 8
g 7 1 42 6 56 8
5 o 4 1 4 12 3 o 0 0
5 8 0
s l 0 0
" 3 0 0

* All the entries in the first column are positive. Hence, there are no
right—half-plane poles.



Example-10: Determine the stability of the system.
The characteristic equation q(s) of the systemis  g(s) = s* + 25> + 45 + K

Where K is an adjustable loop gain. The Routh array is then;

§3 1 4
5 2 K
i
) 8 — K
> 0
sY K 0

For a stable system, the value of Kmustbe; 0 < K < 8

When K = 8, the two roots exist on the jw axis and the system will be marginally stable.

* Also, when K = 8, we obtain a row of zeros (case-lil).

* The auxiliary polynomial, U(s), is the equation of the row preceding the row of Zeros.
e The U(s) in this case, obtained from the s? row.

* The order of the auxiliary polynomial is always even and indicates the number of

symmetrical root pairs.



Example-11

* For the transfer function tell how many poles are in the right
half-plane, in the left half-plane, and on the jw-axis.

20
8 g7 4+ 1256 4+ 2250 4 305 + 5953 + 4852 + 385 + 20

I'(s) =



Example-11

P(s) =s* +3s*+2
s> | 12 39 48 20
s’ | 22 59 38 0
s° — 11 —20 -2 101 26 2 0
5 26 1 60 3 45 2 0 0
s | 3 2 0 0
5 & 4 2 4 6 3 & 6 0 0 0
5 2 3 2 4 0 0 0
2
|
s 3 0 0 0 0
sV 4 0 0 0 0




Chapter 7: Root-Locus Method

Eng. Fadwa Momani



Introduction

- It is well known that the transient response of a feedback
system is closely related to the locations of the closed-

loop poles.
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Introduction

- From the design viewpoint, for some systems, simple gain adjustment
may move the closed -loop poles to desired locations. For example,
consider a unity-feedback system with open-loop transfer function

G(s) = —Ba
s(s+34.5)
os) = 5K,

s? + 34.5s + 5K,



For a 2" order unit step response. Take open-loop
gains with the values K,=13.5, 200 and 1500,

respectively, the system exhibits different responses:

dc(t) 4
16 n n T T I I I
1.4 ﬁﬂ - — Ka=200
¢ =02 — Ka=1500
1.2] — Ka=135 | - MO

13%,

1

0sl 52.7%.
0.6t
0.4
0.2
’ 1"4 1.-6 "~ 1

HW1



Therefore, it is important to determine how the roots ot the
characteristic equation move around the s-plane as we change
the open-loop gain.

Definition: The root locus is the path of the roots of the
characteristic equation traced out in the s-plane as a system
parameter varies from 0 to 4oc.

Remark: The root locus analysis aims to investigate the closed-
loop stability and the system controller design through the
open-loop transfer function with variation of a certain system
parameter, commonly the open-loop gain.



Example. Determine the closed-loop root loci when K
varies from 0 to +oo.

1
1 s(s+2)

) >
"/ + K

The closed-loop characteristic equation is: G(s) =

425+ K=0=5,=-1+1-K
) K=0 5=0 s,=-2

2) K=1s=s5=-1
3) K =2 81’2:—]::]1

4) K — 00 81’2:—1::j00



=-1+v1-K

Sl,2

DK=0 5=0 s5,=-2

Z)K:]. 81 :SZ :_1
K=2 s,=—1x]1

HK — oo s ,=—1%f joo

system
= poles of the

open-loop

H}-’Hll.l‘l'l'l

\ 2,¢)

AKE Jf.{LJ'
K
Increasing
K,
.f;IA\H
e N
{r_’”; HH{LJ‘”
,f'f H‘x
;; H ﬁkr-.l H H\\_
& 1< o
- -
—2 K —1 = Ly,
Increasing
= |‘1imlh'. 1|JII the 7
closed-loop -
K,

iy



Root Locus Plots

Angle and Magnitude Conditions

Ck)  Gls)
R(s) 1+G(s)H(s)




Let us write GH as follows:

K (s+2)(s+2,)(s+2,)
s+p)s+p,)(5+p,)

GH

G(s)H(s) =

So the characteristic equation is equal to:

1+G(s)H(s) =0

K (s+2)(s+2,)(s+2 ) _
s+p)s+p,)(s4p)

GH

G(s)H(s)= 1+ 0




The characteristic equation is defined as

1+ G(s)H(s) =0
or

G(s)H(s)=-1

which can be split into two equations:

Angle Condition:
/G(s)H(s) =180°(2k+1), (k=0,

Magnitude Condition:

G(s)H (s)| =1

2,...



More precisely, we can write the characteristic equation as

K*(3+zl)(s+z2)---(s+zm) _
s+p)s+p,)(5+p,)

GH

G(s)H(s) = -1=

It is easy to see that the magnitude condition can always be
satisfied by a suitable K*>0. Thus, the key is to find all those

points that satisfy the angle
condition:

/ G(s)H (s) =180°(2k +1)



As an example consider that the system in the previous figure
have the following loop gain:
K
(s+1)s+2)
K

~
S“+3s+2

G(s)H(s) =

The characteristic equation for the system is given by:
A =1+G(s)H(s)

The numerator Is In fact the denominator of the closed loop system TF.
The roots of this polynomial are the closed loop poles of the system.

Dr. Ahmad Al-Jarrah 3



As K varies between zero and infinity, the closed loop poles of

the system are changing and can be calculated as follows:

K S1 52
0 -2 -1
0.25 -1.5 =15
0.5 -1.5-505 -15+50.5
1 -1.5-;70.866 -1.5+;0.866
2 -1.5-51.3229 -15+;1.3229
4 -1.5-5 19365 -1.5+;1.9365
10 -1.5-53.1225 -15+53.1225
100 -1.5-5 99875 -1.5+;9.9875
1000 -15-;731.6188 -1.5+;31.6188

A=s*+3s+2+K)=0

Dr. Ahmad Al-Jarrah




The plot of system poles as they move throughout the s-domain
when K'varies between zero and infinity are as shown below:

A jo
The root locus is nothing but the path
of the system closed loop poles as 3¢ 5¢
the gain of the system K'varies -2 i g
between zero and infinity.
Y

Since the root locus represent the path of the roots of the characteristic
equation as the gain varies from zero to infinity, it follows that every
point on the root locus must satisfy the characteristic equation, namely;

A=1+G(s)H(s)=0

Dr. Ahmad Al-Jarrah



|. Magnitude Condition: |G H)| = 1

For a given point on Root locii,
s=a+jb

ll. Angle Condition: sza+jb

I
|
—

Z G(s)H(s)
= +180° (2k +1) Fork=0.1.2.---

This equation can be rewritten as:

ZG(J)H(S) = A.H-zl + és-f-zz + és-o-z, + oreeees - 4:+z_-és+pl - A.H-pz —--»---és-l-pn
= £180° (2k+1)

For a given point on Root locii,
s=a+jb

Dr. Ahmad Al-Jarrah 7



For the system analyzed before and shown below at the point given
by -1.5 £ / 7.3229, the angles of the vectors from that point to the
two poles are calculated as follows:

Jw
S22
9, = tan™' SAcy
= 110.70446°
4
{ l\
7 !
0, = tan”’ AL sl N\ ®
B _1-5'“2 2 \4—\1
= 6929554 %’@L{ek
-2 -1 =
Angle Condition,
‘G(S)H (s) =| zeros —| poles
= 0= s 5 J=| g5 2
Y

=—6,— 60, =-110.7—69.3

= —180



Magnitude Condition,

G(s)H(s)|_, . s = 0
K(s+z)(s+2)).....|
(5+- P ST P, ) e e |—
0 (CE SV EED) N

= 2

The point -1.5 £ j 7.3229 satisfied the both conditions since it is on root locus

2D Before starting the steps of sketching Root locus, we have to know
1. The Start and End Points of a Root Locus
2. Number of segments (branches) of root locus
3. Location of root locus segments on real axis

The characteristic equation can be rearranged as follows:
(s+pr)s+ p)-=-(s+pn) = K(s+z))(s+22) (5 +2Zm)

Dr. Ahmad Al-Jarrah 9



When K = 0, the last equation becomes;

(54 P)(s+ pa)-r(5+ By) =0

This indicates that the root locii starts at the poles of the system when K= 0.

The characteristic equation can also be arranged as follows:

(s+p)(s+pK) ------ (s +p,) = (S+ XS+ 23)--=- (s+2zZm)

==

Root locii starts at the system poles (when  K=0 ) and ends at the
system zeros (wWhen (K=o ).

Dr. Ahmad Al-Jarrah 10



Example. Second-order system

G(s)H(s) = K (s+2)
s(s+4)
. poles [
Pl / _2 \\\\A
% o X
4 Zero 0

Zeros

Poles

Zeros — 0

Poles —>x

Example. For a unity FB system The open-loop transfer function is

G(s)=

K*

s(s+1)(s+2)




Root Loci Construction Rules

If the number of poles in the loop gain equation is larger than the
number of zeros, this means that a number of root locii segments
equal to the number of poles and zeros will be ending at infinity.



Root Loci Construction Rules

Note that for root loci, the following facts are true:

® The number of root locus branches is equal to the
order of the characteristic equation > # of poles.

® The loci are symmetrical about the real axis.

The root locus is symmetrical about the real axis since the
roots of 1+G(s)H(s)=0 must either be real or appear as
complex conjugates. Therefore, we only need to construct
the upper half of the root loci and draw the mirror image of
the upper half in the lower-half s-plane.



Root locii segments on the real axis can be found by applying the angle
criteria as follows:

Let s be a test point on the real axis as shown below.
Since zero —z; of G(s)H(s) lies to the right of s, it
follows that

Z(s+2)) =180°

Therefore, root locus exists on (—oo, —zj].



Let s be a test point on the real axis as shown below.
Since the pole —p; of G(s)H(s) lies to the right of s, it
follows that

Z(s+p,)=180"

Therefore, root locus exists on (—oo, —p,].



Whereas, let s be a test point as shown below. (the pole -p.
and zero —z; lies to the left of s, it follows that

L(s+z)+L(s+p;)= 0°
L(s+z)+ZL(s+p)=180

—D; s' _Zj S
-3 A= Ar >

Therefore, no root locus exists on [—zj , +00). However,
by the rule, root locus exists on [—p;, —z] since for the

test point s, angle condition holds.



Root locii on the real axis will occur to the left of odd

number of poles and zeros .
Jw




Example. Second-order system:

K'(s+2)
G(s)H(s) =
(8)H(s) s(s+4)
_poles. |1
—2
< % o ¥

_4 Zero 0




Steps of Constructing Root Locus of a System:

1- Write the characteristic equation of the system in the following standard form

(st 1z ) (5 Z
(s+p )s+p,)....(s+p,)

Where K might be a controller gain (or system gain) and is
W the parameter of interest

2- Locate all poles P, - P>, ----. P, andzeros Z,.2Z,,..... Z, Ins-plane.

A=1+K

3- Determine the root locus segments on the real axis



Rule 4. Asymptotes of root loci: The loci proceed
to the zeros at infinity along asymptotes.

These linear asymptotes are centered at a point on the
real axis given by (Number of Asym. Lines = n-m)

Z( P;) - Z(_Z) Zpoles of GH — ZZGI’OS of GH

n—m n—m

o

a

The angle of the asymptotes with respect to the real
axis is (2% +1)

n—m

+180(24 + 1)

I —1in

gpa:1800>< (k=0,£1,---,2n—m-1)

. =

a



Example: An open-loop transfer function of a unity-
feedback system is

* K (s+2
G(s) = B 5+2) 14 G(s) =1+ ——+2)
s(s+1)(s+3) s(s+1)(s+3)
Sketch the root locus plot.
> Zeros ; -2 m=1

—>Poles ; 0, -1,-3 n=3
eroot loci exist on |[—1, 0] and [—3, —2].

for the asymptotes:

(1-9-(2)_,
: 3-1 *—0O

o

©. =180° x

2k+1 [90° (k=0)
3-1 |270° (k=1



Example: A unity-feedback system with open-loop transfer
function as

K*

)= G2 /

Sketch the root locus plot.

—>Zeros ; no zeros  m=0

—->Poles ; 0,-1,-2 n=3

e root loci exist on [—1,0] and (—o0, —2].
e for the asymptotes:

Oa:c4f;)—o:_1
60°  (k=0)
o =180°x 2" _ 11800 (1 =1)
—60° (k=-1)




Example. Consider the open-loop transfer function

(s) = K four open - loop poles are:
s(s+4)(s* +4s+20) 0,—4,—2+4;

Sketch its root locus plot.

e root locus exists on [—4, 0].
e we obtain the asymptotes:

 —4-2+4j-2-4j-0

o, =2
4
45°  (k=0)
135° (k=1
gpa:180°x2k+1:< ( )
4 —45° (k =-1)
—135°(k =-2)




Rule 5. Breakaway (break in) point on the root loci.

Rearrange the characteristic equation then find the
break away/in points that should result from

aK _ 0 Why 2221l

T h— ds



Example. Again, consider the open-loop transfer function
J— K*
s(s+1)(s+2)

G (s)

- Zeros ; no zeros  m=0

- Poles ; 0,-1,-2 n=3

e root loci exist on [—1, 0] and (—o0, —2].
e we obtain the asymptotes.

e By rule 4, Break away point is:

K=—[s(s+1)(s+2)] | V)
K = —[s3 + 3s% + 2s] 5
K _ 352 + 65 + 2

E——[S + 6S + ]

dK

— =0 5=-04226,-1.5773



Rule 5. The angles of arrival and departure. Ao o]
Angle of departure: the
angle by which a branch
of the locus departs
from one pole.

vq

Angle of arrival: the
angle by which a
branch of the locus
arrives at one zero.




1) Angle of departure

Choose a test point s and move it in the very vicinity
of —p,. Then, if s is on the root locus, the angle

condition must be satisfied:

Zé(s+zj) —Zé(s+pk) =180° x (2k +1)
=1 k=1



Example. The open-loop transfer function
K*

GO = e rioy)

Therefore,

—ple, _p2:_1+]1 _p3:_1_]
By using the departure angle formula,

Tan‘l(%) = 45’

@, = 180" — 45 =135 P2 /
6, = 90 gl
f =180° 135" —90° = —45° BN
2 N W19 _pl
Due to the symmetry property of the root < : \X :
locus, I -1 0
|
0 —45° : D,
. m -1




Example. The open-loop transfer function SELF STUDY ANGLE OF ARRIVAL

K*(s* +4.55+5.625)

Glo)H ()= s(s+D(s+2)

2,=-2.25+j0.75, z,=— 2.25-j0.75

e root loci exist on [—1, 0], and (—oo, —2]. By rule 1, the root locus from —2
to —oo can be determined.
e the breakaway point is (Find it ) HW.2




The two points that breakaway at 90°.

By rule 5, the angle of arrival is
¢zl —180" - Zl(_zz + Zj) + Zl(_zi + pj)
7=1 j=1

—180°—90° +6, +6, +0,

v




Rule 6. Intersection of the root loci with the imaginary
axis.

K*

Gls)= s(s+1)(s+2)

The closed-loop characteristic equation is ( Tell me how did we find this equ. H.W. 3)

$+3s°+2s+K =0

Using Routh-Herwitz Criteria

o W =

(6-K)/3

OO RN
x

A

For marginally Stable = Poles on Jw axis
(6-K)/3 =0 > K=6

s'+3s"+2s+6 =0 S>s=-3 +j1.41




Example. An open-loop transfer function of a unity-feedback system is given below:

G(s) =

Sketch the root locus plot.

e root locus exists on [—3,
—1].

e for the asymptotes,

~_—-1+3

K" (s+3)

1 @, =180° x

s°(s+1)

A 4

2k+1 |90 (k=0)
-90° (k=-1)



Example. An open-loop transfer function of a unity-feedback system is given below:

K" (s+1)

Gls)= s°(s+3)

Sketch the root locus plot.

e root locus exists on [—3,
—1].

e for the asymptotes,

2k+1 |90 (k=0)
2 2 -90° (k=-1)

A 4



Table 7.2 Seven Steps for Sketching a Root Locus

Step Related Equation or Rule
1. Prepare the root locus sketch.
(a) Write the characteristic equation so that the 1 + KP(s) = 0.
parameter of interest, K, appears as a multiplier. u
[IG6+2)
(b) Factor P(s) in terms of n poles and M zeros. 1+ KoA—m— =0,

(c) Locate the open-loop poles and zeros of P(s)
in the s-plane with selected symbols.

(d) Determine the number of separate loci, SL.

(e) The root loci are symmetrical with respect to the
horizontal real axis.

2. Locate the segments of the real axis that are root loci.

3. The loci proceed to the zeros at infinity along

asymptotes centered at @4 and with angles ¢ 4.

4. Determine the points at which the locus crosses the
imaginary axis (if it does so).
5. Determine the breakaway point on the real axis (if any).

6. Determine the angle of locus departure from complex
poles and the angle of locus arrival at complex zeros,

using the phase criterion.
T Comnlete the raat locue cketel

TG+ p)
=1

X = poles, O = zeros

Locus begins at a pole and ends at a zero.

SL = nwhen n = M;n = number of finite poles,
M = number of finite zeros.

Locus lies to the left of an odd number of poles and
ZEros.
" S - 3w

A n-M '

2k +1_ _ .
¢A-H_M180,k—0,1,2,...(n M —1).

Use Routh-Hurwitz criterion (see Section 6.2).

a) Set K = p(s).

b) Determine roots of dp(s)/ds = 0or use
graphical method to find maximum of p(s).
/P(s) = 180° + k360° ats = —p, or —z,



K
3 3 2 =0
s+ 125 + 64s5° + 128s
K

1+

1

No Zeros, Poles = 0,-4,-4+j4

-4 -4-4
UA - 4 F— —3.
(2K + 1)
AT T 180°, k=01,23:

b4 = +45° 1357 225° 315°.

Break away point

K = p(s) = —s(s + 4)(s + 4 + ja)(s + 4 — j4)

Intersection with Jw

+s(3+4)(s+4+j4)(5+4—j4)=

0

s = —1.577,

Angle of departure
6, + 90° + 90° + 6; = 180° + k360°.

6, = —135° = +225°,

s(s +4)(s* + 85 +32) + K =5+ 1257 + 645> + 1285 + K = 0.

=5333 and ¢ =

e 1 64 K . 12(64) — 128

$ | 12 128 oo

5> by K |, K =56889, s = +j3.266.
5! ¢

5! K

53.33(128) —

Since ﬁ,{ = 135°,

4j
266j, K=568.89

53.33

a
v

-366j, K=568.8.
---------------------------- 4



For the following R.L answer the following :

Order of the system?

Type of the system?
Breakaway point?

Center of asymp.?
Intersection with Jw?

Value of K at intersection with Jw?
K at S=-47?

Kats=-1.5777

. Kats=-3.266J

10. K at s=-4+4;j

11. The characteristic equation is?

OO NOUEWNRE

H.W.4

4j
.266j, K=568.89

13
v

\&§K=568.8.
N



PID Controller

Error
Detector

Actuating
Signal

Output

Feedback
Elements
Feedback
Signal



PID Controller

b
A T~ %P
e
—I &
R C
ANy \ %I -
E ANy =
B
L "
N

K
Gds) = K, + T" + Kps.

B KDSE + KPS + K!r
A}




Table 7.6 Effect of Increasing the PID Gains K, Kj, and K; on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
[ncreasing Kp Increases Minimal impact Decreases
Increasing K| Increases Increases Zero steady-state error

Increasing Kp Decreases Decreases No impact




4
.266j, K=568.89

)l
v

\3.%#568.89
R W



