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Preface 

MODERN CONTROL SYSTEMS—THE BOOK 

The Mars Exploration Rover (MER-A), also known as Spirit, was launched on a 
Delta II rocket, in June 2003 to Mars, the Red Planet. Spirit entered the Martian 
atmosphere seven months later in January, 2004. When the spacecraft entered the 
Martian atmosphere it was traveling 19,300 kilometers per hour. For about four 
minutes in the upper atmosphere, the spacecraft aeroshell decelerated the vehicle to 
a velocity of 1,600 kilometers per hour. Then a parachute was deployed to slow the 
spacecraft to about 300 kilometers per hour. At an altitude of about 100 meters. 
retrorockets slowed the descent and airbags were inflated to cushion the shock of 
landing. The Spirit struck the Martian ground at around 50 km/hr and bounced and 
rolled until it stopped near the target point in the Gusev Crater. The target landing 
site was chosen because it looks like a crater lakebed. The Spirit mobile rover has 
reached interesting places in the Gusev Crater to perform in-situ tests to help scien
tists answer many of the lingering questions about the history of our neighbor planet. 
In fact, Spirit discovered evidence of an ancient volcanic explosion near the landing 
site in Gusev Crater. The successful entry, descent, and landing of Spirit is an aston
ishing illustration of the power of control systems. Given the large distances to Mars, 
it is not possible for a spacecraft to fly through the atmosphere while under ground 
control—the entry, descent, and landing must be controlled autonomously on-board 
the spacecraft. Designing systems capable of performing planetary entry is one of 
the great challenges facing control system engineers. 

The precursor NASA Mars mission, known as the Mars Pathfinder, also jour
neyed to the Red Planet and landed on July 4,1997. The Pathfinder mission, one of 
the first of the NASA Discovery-class missions, was the first mission to land on Mars 
since the successful Viking spacecraft in the 1970s. Pathfinder deployed the first-
ever autonomous rover vehicle, known as the Sojourner, to explore the landing site 
area. The mobile Sojourner had a mass of 10.5 kilograms and traveled a total of 100 
meters (never straying more than 12 meters or so from the lander) in its 30-day mis
sion. By comparison, the Spirit rover has a mass of 180 kilograms and is designed to 
roam about 40 meters per day. Spirit has spent four years exploring Mars and has 
driven over 7 kilometers. The fast pace of development of more capable planetary 
rovers is evident. Plans for the Mars Science Laboratory planetary rover (scheduled 
for launch in 2009) call for a 1000-kilogram rover with a mission duration of 500 
days and the capability to traverse 30 kilometers over the mission lifetime. 

Control engineers play a critical role in the success of the planetary exploration 
program.The role of autonomous vehicle spacecraft control systems will continue to 
increase as flight computer hardware and operating systems improve. Pathfinder 
used a commercially produced, multitasking computer operating system hosted in a 
32-bit radiation-hardened workstation with 1-gigabyte storage, programmable in C. 

xiii 
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This was quite an advancement over the Apollo computers, which had a fixed (read
only) memory of 36,864 words (one word was 16 bits) together with an erasable 
memory of 2,048 words. The Apollo "programming language" was a pseudocode no
tation encoded and stored as a list of data words "interpreted" and translated into a 
sequence of subroutine links^The MER computer in the Spirit rover utilizes a 32-
bit Rad 6000 microprocessor operating at a speed of 20 million instructions per sec
ond. This is a radiation-hardened version of the PowerPC chip used in many 
Macintosh computers. The on-board memory includes 128 megabytes of random ac
cess memory, 256 megabytes of flash memory, and smaller amounts of other non
volatile memory t o protect against power-off cycles so that data will not be 
unintentionally erased. The total memory and power of the MER computers is ap
proximately the equivalent memory of a typical powerful laptop. As with all space 
mission computers, the Spirit computer contains special memory to tolerate the 
extreme radiation environment from space. Interesting real-world problems, such as 
planetary mobile rovers like Spirit and Sojourner, are used as illustrative examples 
throughout the book. For example, a mobile rover design problem is discussed in 
the Design Example in Section 4.8. 

Control engineering is an exciting and a challenging field. By its very nature, 
control engineering is a multidisciphnary subject, and it has taken its place as a 
core course in the engineering curriculum. It is reasonable to expect different 
approaches to mastering and practicing the art of control engineering. Since the 
subject has a strong mathematical foundation, we might approach it from a strictly 
theoretical point of view, emphasizing theorems and proofs. On the other hand, 
since the ultimate objective is to implement controllers in real systems, we might 
take an ad hoc approach relying only on intuition and hands-on experience when 
designing feedback control systems. Our approach is to present a control engi
neering methodology that, while based on mathematical fundamentals, stresses 
physical system modeling and practical control system designs with realistic system 
specifications. 

We believe that the most important and productive approach to learning is for 
each of us to rediscover and re-create anew the answers and methods of the past. 
Thus, the ideal is to present the student with a series of problems and questions and 
point to some of the answers that have been obtained over the past decades.The tra
ditional method—to confront the student not with the problem but with the finished 
solution—is to deprive the student of all excitement, to shut off the creative 
impulse, to reduce t h e adventure of humankind to a dusty heap of theorems. The 
issue, then, is to present some of the unanswered and important problems that we 
continue to confront, for it may be asserted that what we have truly learned and 
understood, we discovered ourselves. 

The purpose of this book is to present the structure of feedback control theory 
and to provide a sequence of exciting discoveries as we proceed through the text 
and problems. If this book is able to assist the student in discovering feedback con
trol system theory and practice, it will have succeeded. 

!For further reading on the Apollo guidance, navigation, and control system, see R. H. Battin, An Introduc
tion to the Mathematics and Methods of Astrodynamics, AIAA Education Series, J. S. Pzemieniecki/Series 
Editor-in-Chief, 1987. 



Preface xv 

THE AUDIENCE 

This text is designed for an introductory undergraduate course in control systems for 
engineering students. There is very little demarcation between aerospace, chemical, 
electrical, industrial, and mechanical engineering in control system practice; there
fore, this text is written without any conscious bias toward one discipline. Thus, it is 
hoped that this book will be equally useful for all engineering disciplines and, per
haps, will assist in illustrating the utility of control engineering. The numerous prob
lems and examples represent all fields, and the examples of the sociological, 
biological, ecological, and economic control systems are intended to provide the 
reader with an awareness of the general applicability of control theory to many 
facets of life. We believe that exposing students of one discipline to examples and 
problems from other disciplines will provide them with the ability to see beyond 
their own field of study. Many students pursue careers in engineering fields other 
than their own. For example, many electrical and mechanical engineers find them
selves in the aerospace industry working alongside aerospace engineers. We hope this 
introduction to control engineering will give students a broader understanding of 
control system design and analysis. 

In its first ten editions, Modern Control. Systems has been used in senior-level 
courses for engineering students at more than 400 colleges and universities. It also 
has been used in courses for engineering graduate students with no previous back
ground in control engineering. 

THE ELEVENTH EDITION 

A companion website is available to students and faculty using the eleventh edition. 
The website contains practice exercises, all the m-files in the book, Laplace and 
z-transform tables, written materials on matrix algebra, complex numbers, and sym
bols, units, and conversion factors. An icon will appear in the book margin whenever 
there is additional related material on the website. Also, since the website provides 
a mechanism for continuously updating and adding control-related materials of 
interest to students and professors, it is advisable to visit the website regularly dur
ing the semester or quarter when taking the course. The MCS website address is 
http://www.prenhall.com/dorf. 

With the eleventh edition, we continue to evolve the design emphasis that histori
cally has characterized Modem Control Systems. Using the real-world engineering 
problems associated with designing a controller for a disk drive read system, we pre
sent the Sequential Design Example (identified by an arrow icon in the text), which is 
considered sequentially in each chapter using the methods and concepts in that chap
ter. Disk drives are used in computers of all sizes and they represent an important ap
plication of control engineering. Various aspects of the design of controllers for the disk 
drive read system are considered in each chapter. For example, in Chapter 1 we identify 
the control goals, identify the variables to be controlled, write the control specifications, 
and establish the preliminary system configuration for the disk drive.Then, in Chapter 2, 
we obtain models of the process, sensors, and actuators. In the remaining chapters, we 
continue the design process, stressing the main points of the chapters. 

http://www.prenhall.com/dorf
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In the same spirit as the Sequential Design Example, we present a design prob
lem that we call the Continuous Design Problem (identified by a triple arrow icon in 
the text) to give students the opportunity to build upon a design problem from 
chapter to chapter. High-precision machinery places stringent demands on table 
slide systems. In the Continuous Design Problem, students apply the techniques and 
tools presented in each chapter to the development of a design solution that meets 
the specified requirements. 

Table 

PEDAGOGY 

The computer-aided design and analysis component of the book continues to 
evolve and improve. The end-of-chapter computer problem set is identified by the 
graphical icon in the text. Also, many of the solutions to various components of 
the Sequential Design Example utilize m-files with corresponding scripts included 
in the figures. 

The book is organized around the concepts of control system theory as they have 
been developed in the frequency and time domains. An attempt has been made to 
make the selection of topics, as well as the systems discussed in the examples and 
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problems, modern in the best sense. Therefore, this book includes discussions on 
robust control systems and system sensitivity, state variable models, controllability 
and observability, computer control systems, internal model control, robust PID con
trollers, and computer-aided design and analysis, to name a few. However, the classi
cal topics of control theory that have proved to be so very useful in practice have 
been retained and expanded. 

Building Basic Principles: From Classical to Modern. Our goal is to present a clear 
exposition of the basic principles of frequency- and time-domain design techniques. 
The classical methods of control engineering are thoroughly covered: Laplace trans
forms and transfer functions; root locus design; Routh-Hurwitz stability analysis; 
frequency response methods, including Bode, Nyquist, and Nichols; steady-state 
error for standard test signals; second-order system approximations; and phase and 
gain margin and bandwidth. In addition, coverage of the state variable method is 
significant. Fundamental notions of controllability and observability for state vari
able models are discussed. Full state feedback design with Ackermann's formula for 
pole placement is presented, along with a discussion on the limitations of state vari
able feedback. Observers are introduced as a means to provide state estimates when 
the complete state is not measured. 

Upon this strong foundation of basic principles, the book provides many oppor
tunities to explore topics beyond the traditional. Advances in robust control theory 
are introduced in Chapter 12. The implementation of digital computer control sys
tems is discussed in Chapter 13. Each chapter (but the first) introduces the student 
to the notion of computer-aided design and analysis. The book concludes with an 
extensive references section, divided by chapter, to guide the student to further 
sources of information on control engineering. 

Progressive Development of Problem-Solving Skills. Reading the chapters, attending 
lectures and taking notes, and working through the illustrated examples are all part of 
the learning process. But the real test comes at the end of the chapter with the prob
lems. The book takes the issue of problem solving seriously. In each chapter, there are 
five problem types: 

U Exercises 

_1 Problems 

G Advanced Problems 

G Design Problems 

• Computer Problems 

For example, the problem set for The Root Locus Method, Chapter 7 (see page 
407) includes 27 exercises, 39 problems, 13 advanced problems, 13 design problems, 
and 9 computer-based problems. The exercises permit the students to readily utilize 
the concepts and methods introduced in each chapter by solving relatively straight
forward exercises before attempting the more complex problems. Answers to one-
third of the exercises are provided. The problems require an extension of the 
concepts of the chapter to new situations. The advanced problems represent prob
lems of increasing complexity. The design problems emphasize the design task; the 
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computer-based problems give the student practice with problem solving using 
computers. In total, the book contains more than 800 problems. Also, the MCS web
site contains practice exercises that are instantly graded, so they provide quick feed
back for students. The abundance of problems of increasing complexity gives 
students confidence in their problem-solving ability as they work their way from the 
exercises to the design and computer-based problems. A complete instructor manual, 
available for all adopters of the text for course use, contains complete solutions to 
all end-of-chapter problems. 

A set of m-files, the Modern Control Systems Toolbox, has been developed by 
the authors to supplement the text. The m-files contain the scripts from each com
puter-based example in the text. You may retrieve the m-files from Prentice Hall at 
http://www.prenhall.com/dorf. 

Design Emphasis without Compromising Basic Principles. The all-important topic 
of design of real-world, complex control systems is a major theme throughout the 
text. Emphasis on design for real-world applications addresses interest in design by 
ABET and industry. 

The design process consists of seven main building blocks which we arrange 
into three groups: 

1. Establishment of goals and variables to be controlled, and definition of 
specifications (metrics) against which to measure performance 

2. System definition and modeling 
3. Control system design and integrated system simulation and analysis 

In each chapter of this book, we highlight the connection between the design 
process and the main topics of that chapter. The objective is to demonstrate differ
ent aspects of the design process through illustrative examples. Various aspects of 
the control system design process are illustrated in detail in the following examples: 

J insulin delivery control system (Section 1.8, page 27) 

• fluid flow modeling (Section 2.8, page 83) 

• space station orientation modeling (Section 3.8, page 176) 

J blood pressure control during anesthesia (Section 4.8, page 237) 

D attitude control o f an airplane (Section 5.9,page 319) 

3 robot-controlled motorcycle (Section 6.5, page 375) 

3 automobile velocity control (Section 7.7, page 452) 

_1 control of one l eg of a six-legged robot (Section 8.6, page 526) 

• hot ingot robot control (Section 9.8,page 610) 

U milling machine control system (Section 10.12, page 714) 

_1 diesel electric locomotive control (Section 11.9, page 798) 

U digital audio t a p e controller (Section 12.8, page 861) 

i_l fly-by-wire aircraft control surface (Section 13.10, page 928) 

http://www.prenhall.com/dorf
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Topics emphasized in this example 

Shading indicates the -"""^ 
topics that are emphasized 
in each chapter. Some chapters 
will have many shaded blocks, 
and other chapters will emphasize 
just one or two topics. 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

h 
i W 

1 
Establish (he system configuration 

i 
Obtain a model of the process, the 

actuator, and the sensor 

• • 

Describe a controller and select key 
parameters to be adjusted 

* r 
Optimize the parameters and 

analyze the performance 

1 

In this column remarks 
relate the design topics on 
the left to specific sections, 
figures, equations, and tables 
in the example. 

(1) Establishment of goals, 
variables to be controlled, 
and specifications. 

(2) System definition 
and modeling. 

(3) Control system design, 
simulation, and analysis. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

Each chapter includes a section to assist students in utilizing computer-aided 
design and analysis concepts and rework many of the design examples. In Chapter 5, 
the Sequential Design Example: Disk Drive Read System is analyzed using computer-
based methods. An m-fjle script that can be used to analyze the design is presented in 
Figure 5.47, p. 335. In general, each script is annotated with comment boxes that 
highlight important aspects of the script. The accompanying output of the script 
(generally a graph) also contains comment boxes pointing out significant elements. 
The scripts can also be utilized with modifications as the foundation for solving 
other related problems. 
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Ka=30; •* 
H0:0.01:1]; 
nc=[Ka*5];dc=[1 ]; sysc=tf(nc,dc); 
ng=[1];dg=[1 20 0]; sysg=tf(r,g,dg); 
sysl =series(sysc,sysg); 
sys=feedback(sys1, [1 ]); 
y=step(sys,t); 
plot(t,y), grid 
xlabel(Time (s)') 
ylabel('y(t)') 

Select K„. 

Compute the 
closed-loop 

transfer function. 
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(b) 

Learning Enhancement. Each chapter begins with a chapter preview describing 
the topics the student can expect to encounter. The chapters conclude with an 
end-of-chapter summary, as well as terms and concepts. These sections reinforce 
the important concepts introduced in the chapter and serve as a reference for 
later use. 

A second color is used to add emphasis when needed and to make the graphs 
and figures easier to interpret. Design Problem 4.4, page 217, asks the student to de
termine the value of K of the controller so that the response, denoted by Y(.v), to a 
step change in the position, denoted by R(s), is satisfactory and the effect of the dis
turbance, denoted by Td(s), is minimized.The associated Figure DP4.4, p. 272, assists 
the student with (a) visualizing the problem and (b) taking the next step to develop 
the transfer function model and to complete the design. 
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Controller < 

Ophthalmologist 

Argon laser » 

position 

(b) 

THE ORGANIZATION 

Chapter 1 Introduction to Control Systems. Chapter 1 provides an introduction to 
the basic history of control theory and practice. The purpose of this chapter is to 
describe the general approach to designing and building a control system. 

Chapter 2 Mathematical Models of Systems. Mathematical models of physical sys
tems in input-output or transfer function form are developed in Chapter 2. A wide 
range of systems (including mechanical, electrical, and fluid) are considered. 

Chapter 3 State Variable Models. Mathematical models of systems in state vari
able form are developed in Chapter 3. Using matrix methods, the transient response 
of control systems and the performance of these systems are examined. 

Chapter 4 Feedback Control System Characteristics. The characteristics of feed
back control systems are described in Chapter 4. The advantages of feedback are 
discussed, and the concept of the system error signal is introduced. 
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Chapter 5 The Performance of Feedback Control Systems. In Chapter 5, the per
formance of control systems is examined. The performance of a control system is 
correlated with the s-plane location of the poles and zeros of the transfer function of 
the system. 

Chapter 6 The Stability of Linear Feedback Systems. The stability of feedback sys
tems is investigated in Chapter 6. The relationship of system stability to the charac
teristic equation of the system transfer function is studied. The Routh-Hurwitz 
stability criterion is introduced. 

Chapter 7 The Root Locus Method. Chapter 7 deals with the motion of the 
roots of the characteristic equation in the s-plane as one or two parameters are var
ied. The locus of roots in the s-plane is determined by a graphical method. We also 
introduce the popular PTD controller. 

Chapter 8 Frequency Response Methods. In Chapter 8, a steady-state sinusoid 
input signal is utilized to examine the steady-state response of the system as the fre
quency of the sinusoid is varied. The development of the frequency response plot, 
called the Bode plot, is considered. 

Chapter 9 Stability in the Frequency Domain. System stability utilizing frequency 
response methods is investigated in Chapter 9. Relative stability and the Nyquist 
criterion are discussed. 

Chapter 10 The Design of Feedback Control Systems. Several approaches to de
signing and compensating a control system are described and developed in Chapter 
10. Various candidates for service as compensators are presented and it is shown 
how they help to achieve improved performance. 

Chapter 11 The Design of State Variable Feedback Systems. The main topic of 
Chapter 11 is the design of control systems using state variable models. Full-state 
feedback design and observer design methods based on pole placement are dis
cussed. Tests for controllability and observability are presented, and the concept of 
an internal model design is discussed. 

Chapter 12 Robust Control Systems. Chapter 12 deals with the design of highly 
accurate control systems in the presence of significant uncertainty. Five methods for 
robust design are discussed, including root locus, frequency response, ITAE meth
ods for robust PID controllers, internal models, and pseudo-quantitative feedback. 

Chapter 13 Digital Control Systems. Methods for describing and analyzing the 
performance of computer control systems are described in Chapter 13. The stability 
and performance of sampled-data systems are discussed. 

Appendixes. The appendixes are as follows: 

A MATLAB Basics 
B MathScript Basics 
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PREVIEW 

In this chapter, we discuss open- and closed-loop feedback control systems. A con
trol system consists of interconnected components to achieve a desired purpose. We 
examine examples of control systems through the course of history. These early sys
tems incorporated many of the same ideas of feedback that are employed in modern 
manufacturing processes, alternative energy, complex hybrid automobiles, and so
phisticated robots. A design process is presented that encompasses the establish
ment of goals and variables to be controlled, definition of specifications, system 
definition, modeling, and analysis. The iterative nature of design allows us to handle 
the design gap effectively while accomplishing necessary trade-offs in complexity, 
performance, and cost. Finally, we introduce the Sequential Design Example: Disk 
Drive Read System. This example will be considered sequentially in each chapter of 
this book. It represents a very important and practical control system design problem 
while simultaneously serving as a useful learning tool. 

DESIRED OUTCOMES 

Upon completion of Chapter 1, students should: 

• Possess a basic understanding of control system engineering and be able to offer 
some illustrative examples and their relationship to key contemporary issues. 

3 Be able to recount a brief history of control systems and tiieir role in society. 

U Be capable of discussing the future of controls in the context of their evolution
ary pathways. 

3 Recognize the elements of control system design and possess an appreciation of 
controls in the context of engineering design. 

1 



2 Chapter 1 Introduction to Control Systems 

1.1 INTRODUCTION 

Engineering is concerned with understanding and controlling the materials and 
forces of nature for the benefit of humankind. Control system engineers are con
cerned with understanding and controlling segments of their environment, often 
called systems, to provide useful economic products for society. The twin goals of 
understanding and controlling are complementary because effective systems con
trol requires that the systems be understood and modeled. Furthermore, control en
gineering must often consider the control of poorly understood systems such as 
chemical process systems. The present challenge to control engineers is the model
ing and control of modern, complex, interrelated systems such as traffic control sys
tems, chemical processes, and robotic systems. Simultaneously, the fortunate 
engineer has the opportunity to control many useful and interesting industrial au
tomation systems. Perhaps the most characteristic quality of control engineering is 
the opportunity to control machines and industrial and economic processes for the 
benefit of society. 

Control engineering is based on the foundations of feedback theory and linear 
system analysis, and it integrates the concepts of network theory and communica
tion theory. Therefore control engineering is not limited to any engineering disci
pline but is equally applicable to aeronautical, chemical, mechanical, environmental, 
civil, and electrical engineering. For example, a control system often includes elec
trical, mechanical, and chemical components. Furthermore, as the understanding of 
the dynamics of business, social, and political systems increases, the ability to control 
these systems will also increase. 

A control system is an interconnection of components forming a system configu
ration that will provide a desired system response. The basis for analysis of a system 
is the foundation provided by linear system theory, which assumes a cause-effect re
lationship for the components of a system. Therefore a component or process to be 
controlled can be represented by a block, as shown in Figure 1.1. The input-output 
relationship represents the cause-and-effect relationship of the process, which in turn 
represents a processing of the input signal to provide an output signal variable, often 
with a power amplification. An open-loop control system uses a controller and an ac
tuator to obtain the desired response, as shown in Figure 1.2. An open loop system is 
a system without feedback. 

An open-loop control system utilizes an actuating device to control the process 
directly without using feedback. 

FIGURE 1.1 
Process to be 
controlled. 

Input Process Outpui 

FIGURE 1.2 
Open-loop control 
system (without 
feedback). 

Desired output 
response 

CJontroller Actuator Process Output 
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outpu; 

Feedback 

In contrast to an open-loop control system, a closed-loop control system utilizes 
an additional measure of the actual output to compare the actual output with the 
desired output response. The measure of the output is called the feedback signal. A 
simple closed-loop feedback control .system is shown in Figure 1.3. A feedback con
trol system is a control system that tends to maintain a prescribed relationship of 
one system variable to another by comparing functions of these variables and using 
the difference as a means of control. With an accurate sensor, the measured output 
is a good approximation of the actual output of the system. 

A feedback control system often uses a function of a prescribed relationship be
tween the output and reference input to control the process. Often the difference 
between the output of the process under control and the reference input is amplified 
and used to control the process so that the difference is continually reduced. In gen
eral, the difference between the desired output and the actual output is equal to the 
error, which is then adjusted by the controller. The output of the controller causes the 
actuator to modulate the process in order to reduce the error. The sequence is such, 
for instance, that if a ship is heading incorrectly to the right, the rudder is actuated to 
direct the ship to the left. The system shown in Figure 1.3 is a negative feedback con
trol system, because the output is subtracted from the input and the difference is 
used as the input signal to the controller. The feedback concept has been the founda
tion for control system analysis and design. 

A closed-loop control system uses a measurement of the output and feedback of 
this signal to compare it with the desired output (reference or command). 

Due to the increasing complexity of the system under control and the interest in 
achieving optimum performance, the importance of control system engineering has 
grown in the past decade. Furthermore, as the systems become more complex, the in
terrelationship of many controlled variables must be considered in the control 
scheme. A block diagram depicting a multivariable control system is shown in 
Figure 1.4. 

A common example of an open-loop control system is a microwave oven set to 
operate for a fixed time. An example of a closed-loop control system is a person 
steering an automobile (assuming his or her eyes are open) by looking at the auto's 
location on the road and making the appropriate adjustments. 

The introduction of feedback enables us to control a desired output and can im
prove accuracy, but it requires attention to the issue of stability of response. 

FIGURE 1.3 
Closed-loop 
feedback control 
system (with 
feedback). 

Desired output 
response 

Controller Actuator 

Measurement output 
Sensor 
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Desired " * 

response , , ^ 
Comparison 

. i 

Error 

Con trailer 

Measurement output 

Actuator 

Sensor 

Process 

Feedback 

Actual 
output 

FIGURE 1,4 Multivariate control system. 

1.2 BRIEF HISTORY OF AUTOMATIC CONTROL 

The use of feedback to control a system has a fascinating history. The first applications of 
feedback control appeared in the development of float regulator mechanisms in Greece 
in the period 300 t o I R.C. [1,2,3]. The water clock of Ktesibios used a float regulator 
(refer to Problem 1.11). An oil lamp devised by Philon in approximately 250 B.C. used a 
float regulator in a n oil lamp for maintaining a constant level of fuel oil. Heron of 
Alexandria, who lived in the first century A.D., published a book entitled Pneumatica, 
which outlined several forms of water-level mechanisms using float regulators [1]. 

The first feedback system to be invented in modern Europe was the tempera
ture regulator of Cornells Drebbel (1572-1633) of Holland [1]. Dennis Papin 
(1647-1712) invented the first pressure regulator for steam boilers in 1681. Papin's 
pressure regulator "was a form of safety regulator similar to a pressure-cooker valve. 

The first automatic feedback controller used in an industrial process is gener
ally agreed to be Tames Watt's flyball governor, developed in 1769 for controlling 
the speed of a steam engine [1,2]. The all-mechanical device, shown in Figure 1.5, 

FIGURE 1.5 
Watt's flyball 
governor. 

Shaft axis 

Metal 
ball 

"Measured Boiler 

Output 
shaft 

Engine 



Section 1.2 Brief History of Automatic Control 

Water 

FIGURE 1.6 
Water-level float 
regulator. 

Float 

Valve 

measured the speed of the output shaft and utilized the movement of the flyball to 
control the steam valve and therefore the amount of steam entering the engine. As 
depicted in Figure 1.5, the governor shaft axis is connected via mechanical link
ages and beveled gears to the output shaft of the steam engine. As the steam en
gine output shaft speed increases, the ball weights rise and move away from the 
shaft axis and through mechanical linkages the steam valve closes and the engine 
slows down. 

The first historical feedback system, claimed by Russia, is the water-level float 
regulator said to have been invented by I. Polzunov in 1765 [4). The level regulator 
system is shown in Figure 1.6. The float detects the water level and controls the valve 
that covers the water inlet in the boiler. 

The next century was characterized by the development of automatic control 
systems through intuition and invention. Efforts to increase the accuracy of the 
control system led to slower attenuation of the transient oscillations and even to 
unstable systems. It then became imperative to develop a theory of automatic con
trol. In 1868, J.C. Maxwell formulated a mathematical theory related to control the
ory using a differential equation model of a governor [5]. Maxwell's study was 
concerned with the effect various system parameters had on the system perfor
mance. During the same period, I. A. Vyshnegradskii formulated a mathematical 
theory of regulators [6]. 

Prior to World War II, control theory and practice developed differently in the 
United States and western Europe than in Russia and eastern Europe. The main im
petus for the use of feedback in the United States was the development of the tele
phone system and electronic feedback amplifiers by Bode, Nyquist, and Black at 
Bell Telephone Laboratories [7-10,12]. 

Harold S. Black graduated from Worcester Polytechnic Institute in 1921 and 
joined Bell Laboratories of American Telegraph and Telephone (AT&T). In 1921, 
the major task confronting Bell Laboratories was the improvement of the telephone 
system and the design of improved signal amplifiers. Black was assigned the task of 
linearizing, stabilizing, and improving the amplifiers that were used hi tandem to 
carry conversations over distances of several thousand miles. 
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Black reports [8]: 

Then came the morning of Tuesday, August 2,1927, when the concept of the negative 
feedback amplifier came to me in a flash while I was crossing the Hudson River on the 
Lackawanna Ferry, on my way to work. For more than 50 years I have pondered how 
and why the idea came, and I can"t say any more today than I could that morning. All 1 
know is that after several years of hard work on the problem, I suddenly realized that if 
1 fed the amplifier output back to the input, in reverse phase, and kept the device from 
oscillating (singing, as we called it then), I would have exactly what I wanted: a means 
of canceling out the distortion in the output. I opened my morning newspaper and on a 
page of The New York Times 1 sketched a simple canonical diagram of a negative feed
back amplifier plus the equations for the amplification with feedback. I signed the 
sketch, and 20 minutes later, when I reached the laboratory at 463 West Street, it was 
witnessed, understood, and signed by the late Earl C. Blessing. 

i envisioned this circuit as leading to extremely linear amplifiers (40 to 50 dB of 
negative feedback), but an important question is: How did I know I could avoid self-
oscillations over very wide frequency bands when many people doubted such circuits 
would be stable? My confidence stemmed from work that I had done two years earlier 
on certain novel oscillator circuits and three years earlier in designing the terminal cir
cuits, including the filters, and developing the mathematics for a carrier telephone system 
for short toll circuits. 

The frequency domain was used primarily to describe the operation of the feed
back amplifiers in t e rms of bandwidth and other frequency variables. In contrast, 
the eminent mathematicians and applied mechanicians in the former Soviet Union 
inspired and dominated the field of control theory. Tlierefore, the Russian theory 
tended to utilize a time-domain formulation using differential equations. 

The control of an industrial process (manufacturing, production, and so on) by 
automatic rather than manual means is often called automation. Automation is 
prevalent in the chemical, electric power, paper, automobile, and steel industries, 
among others. The concept of automation is central to our industrial society. Auto
matic machines are used to increase the production of a plant per worker in order to 
offset rising wages and inflationary costs. Thus industries are concerned with the 
productivity per worker of their plants. Productivity is defined as the ratio of physi
cal output to physical input [26]. In this case, we are referring to labor productivity, 
which is real output per hour of work. 

The transformation of the U.S. labor force in the country's brief history follows 
the progressive mechanization of work that attended the evolution of the agrarian 
republic into an industrial world power. In 1820, more than 70 percent of the labor 
force worked on the farm. By 1900, less than 40 percent were engaged in agriculture. 
Today, less than 5 percent works in agriculture [15]. 

In 1925, some 588.000 people—about 1.3 percent of the nation's labor force— 
were needed to mine 520 million tons of bituminous coal and lignite, almost all of it 
from underground. By 1980, production was up to 774 million tons, but the work 
force had been reduced to 208,000. Furthermore, only 136,000 of that number were 
employed in underground mining operations. The highly mechanized and highly 
productive surface mines, with just 72,000 workers, produced 482 million tons, or 62 
percent of the total [27]. 

A large impetus to the theory and practice of automatic control occurred during 
World War II when it became necessary to design and construct automatic airplane 
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piloting, gun-positioning systems, radar antenna control systems, and other military 
systems based on the feedback control approach. The complexity and expected per
formance of these military systems necessitated an extension of the available con
trol techniques and fostered interest in control systems and the development of new 
insights and methods. Prior to 1940, for most cases, the design of control systems was 
an art involving a trial-and-error approach. During the 1940s, mathematical and an
alytical methods increased in number and utility, and control engineering became an 
engineering discipline in its own right [10-12]. 

Another example of the discovery of an engineering solution to a control system 
problem was the creation of a gun director by David B. Parkinson of Bell Telephone 
Laboratories. In the spring of 1940, Parkinson was a 29-year-old engineer intent on 
improving the automatic level recorder, an instrument that used strip-chart paper to 
plot the record of a voltage. A critical component was a small potentiometer used to 
control the pen of the recorder through an actuator. 

Parkinson had a dream about an antiaircraft gun that was successfully felling 
airplanes. Parkinson described the situation [13]: 

After three or four shots one of the men in the crew smiled at me and beckoned me to 
come closer to the gun. When I drew near he pointed to the exposed end of the left 
trunnion. Mounted there was the control potentiometer of my level recorder! 

The next morning Parkinson realized the significance of his dream: 

If my potentiometer could control the pen on the recorder, something similar could, 
with suitable engineering, control an antiaircraft gun. 

After considerable effort, an engineering model was delivered for testing to the 
U.S. Army on December 1,1941. Production models were available by early 1943, 
and eventually 3000 gun controllers were delivered. Input to the controller was pro
vided by radar, and the gun was aimed by taking the data of the airplane's present 
position and calculating the target's future position. 

Frequency-domain techniques continued to dominate the field of control follow
ing World War II with the increased use of the Laplace transform and the complex fre
quency plane. During the 1950s, the emphasis in control engineering theory was on the 
development and use of the i'-plane methods and, particularly, the root locus ap
proach. Furthermore, during the 1980s, the use of digital computers for control com
ponents became routine. The technology of these new control elements to perform 
accurate and rapid calculations was formerly unavailable to control engineers. There 
are now over 400,000 digital process control computers installed in the United States 
[14, 27]. These computers are employed especially for process control systems in 
which many variables are measured and controlled simultaneously by the computer. 

With the advent of Sputnik and the space age, another new impetus was impart
ed to control engineering. It became necessary to design complex, highly accurate 
control systems for missiles and space probes. Furthermore, the necessity to mini
mize the weight of satellites and to control them very accurately has spawned the 
important field of optimal control. Due to these requirements, the time-domain 
methods developed by Liapunov, Minorsky, and others have been met with great in
terest in the last two decades. Recent theories of optimal control developed by L. S. 
Pontryagin in the former Soviet Union and R. Bellman in the United States, as well 
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Table 1.1 Selected Historical Developments of Control Systems 

1769 James Watt's steam engine and governor developed. The Watt steam engine 
is often used to mark the beginning of the Industrial Revolution in Great 
Britain. During the Industrial Revolution, great strides were made in Lhe 
development of mechanization, a technology preceding automation. 

1800 Eli Whitney's concept of interchangeable parts manufacturing demonstrated 
in t h e production of muskets. Whitney's development is often considered 
to b e the beginning of mass production. 

1868 J. C. Maxwell formulates a mathematical model for a governor control of a 
s t eam engine. 

1913 Henry Ford's mechanized assembly machine introduced for automobile 
production. 

1927 H. S. Black conceives of the negative feedback amplifier and H. W. Bode 
analyzes feedback amplifiers. 

1932 H. Ny-quist develops a method for analyzing the stability of systems. 
1941 Creation of first antiaircraft gun with active control. 
1952 Numerical control (NC) developed at Massachusetts Institute of Technology 

for control of machine-tool axes. 
1954 George Devol develops "programmed article transfer." considered to be the 

first industrial robot design. 
1957 Sputnik launches the space age leading, in time, to miniaturization of 

computers and advances in automatic control theory. 
1960 First Unimate robot introduced, based on Devol's designs. Unimate 

insta lied in 1961 for tending die-casting machines. 
1970 State-variable models and optimal control developed. 
1980 Robus t control system design widely studied. 
1983 Introduction of the personal computer (and control design software soon 

thereafter) brought the tools of design to the engineer's desktop. 
1990 Expojt t-orienled manufacturing companies emphasize automation. 
1994 Feedback control widely used in automobiles. Reliable, robust systems 

demanded in manufacturing. 
1997 First e v e r autonomous rover vehicle, known as Sojourner, explores the 

Mar t ian surface. 
1998-2003 Advances in micro- and nanotechnology. First intelligent micromachincs 

are developed and functioning nanomachines are created. 

as recent studies of robust systems, have contributed to the interest in time-domain 
methods. It now is clear that control engineering must consider both the time-do
main and the frequency-domain approaches simultaneously in the analysis and de
sign of control systems. 

A selected history of control system development is summarized in Table 1.1. 

1.3 EXAMPLES OF CONTROL SVSTEMS 

Control engineering is concerned with the analysis and design of goal-oriented sys
tems. Therefore the mechanization of goal-oriented policies has grown into a hierarchy 
of goal-oriented control systems. Modern control theory is concerned with systems 
that have self-organizing, adaptive, robust, learning, and optimum qualities. 
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Feedback control is a fundamental fact of modern industry and society. Driving 
an automobile is a pleasant task when the auto responds rapidly to the driver's com
mands. Many cars have power steering and brakes, which utilize hydraulic ampli
fiers for amplification of the force to the brakes or the steering wheel. A simple 
block diagram of an automobile steering control system is shown in Figure 1.7(a). 
The desired course is compared with a measurement of the actual course in order to 
generate a measure of the error, as shown in Figure 1.7(b). This measurement is ob
tained by visual and tactile (body movement) feedback, as provided by the feel of 
the steering wheel by the hand (sensor). This feedback system is a familiar version 
of the steering control system in an ocean liner or the flight controls in a large air
plane. A typical direction-of-travel response is shown in Figure 1.7(c). 

Desired 
course 

of travel 

~v Error 

, 
Driver 

Steering 
mechanism 

Measurement. 
V isual and tactile 

Automobile 
Actual 
course 

of travel 

(a) 

Actual 
direction 
of travel 

Desired 
direction 
of travel 

(b) 

FIGURE 1.7 
(a) Automobile 
steering control 
system, (b) The 
driver uses the 
difference between 
the actual and the 
desired direction of 
travel to generate a 
controlled 
adjustment of the 
steering wheel. 
(c) Typical direction-
of-travel response. 

I 

Desired direction of travel 
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A basic, manually controlled closed-loop system for regulating the level of fluid 
in a tank is shown in Figure 1.8.The input is a reference level of fluid that the oper
ator is instructed t o maintain. (This reference is memorized by the operator.) The 
power amplifier is the operator, and the sensor is visual. The operator compares the 
actual level with the desired level and opens or closes the valve (actuator), adjusting 
the fluid flow out, t o maintain the desired level. 

Other familiar control systems have the same basic elements as the system 
shown in Figure 1.3. A refrigerator has a temperature setting or desired temperature, 
a thermostat to measure the actual temperature and the error, and a compressor 
motor for power amplification. Other examples in the home are the oven, furnace, 
and water heater. In industry, there are many examples, including speed controls; 
process temperature and pressure controls; and position, thickness, composition, and 
quality controls [14,17,18]. 

In its modern usage, automation can be defined as a technology that uses pro
grammed commands to operate a given process, combined with feedback of infor
mation to determine that the commands have been properly executed. Automation 
is often used for processes that were previously operated by humans. When auto
mated, the process can operate without human assistance or interference. In fact, 
most automated systems are capable of performing their functions with greater ac
curacy and precision, and in less time, than humans are able to do. A semiautomatcd 
process is one that incorporates both humans and robots. For instance, many auto
mobile assembly line operations require cooperation between a human operator 
and an intelligent robot. 

Feedback control systems are used extensively in industrial applications. Thou
sands of industrial and laboratory robots are currently in use. Manipulators can pick 
up objects weighing hundreds of pounds and position them with an accuracy of one-
tenth of an inch or better [28]. Automatic handling equipment for home, school, and 
industry is particularly useful for hazardous, repetitious, dull, or simple tasks. Ma
chines that automatically load and unload, cut, weld, or cast are used by industry to 
obtain accuracy, safety, economy, and productivity [14, 27, 28, 41]. 'Ihe use of com
puters integrated with machines that perform tasks like a human worker has been 
foreseen by several authors. In his famous 1923 play, entitled R.U.R. [48], Karel 
Capek called artificial workers robots, deriving the word from the Czech noun 
robota, meaning "work." 

Fluid input 

FIGURE 1.8 
A manual control 
system for 
regulating the level 
of fluid in a tank by 
adjusting the output 
valve. The operator 
views the level of 
fluid through a port 
in the side of the 
tank. 
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FIGURE 1.9 
The Honda P3 
humanoid robot. P3 
walks, climbs stairs, 
and turns corners. 
Photo courtesy of 
American Honda 
Motor, Inc. 

A robot is a computer-controlled machine and involves technology closely asso
ciated with automation. Industrial robotics can be defined as a particular field of au
tomation in which the automated machine (that is, the robot) is designed to substitute 
for human labor [18, 27, 33]. Thus robots possess certain humanlike characteristics. 
Today, the most common humanlike characteristic is a mechanical manipulator that is 
patterned somewhat after the human arm and wrist. Some devices even have anthro
pomorphic mechanisms, including what we might recognize as mechanical arms, 
wrists, and hands [14, 27,28]. An example of an anthropomorphic robot is shown in 
Figure 1.9. We recognize that the automatic machine is well suited to some tasks, as 
noted in Table 1.2, and that other tasks are best carried out by humans. 

Another very important application of control technology is in the control of the 
modern automobile [19, 20]. Control systems for suspension, steering, and engine 

Table 1.2 Task Difficulty: Human Versus Automatic Machine 

Tasks Difficult for a Machine Tasks Difficult for a Human 

Inspect seedlings in a nursery. 
Drive a vehicle through rugged terrain. 
Identify the most expensive jewels on 

a tray of jewels. 

Inspect a system in a hot, toxic 
environment. 

Repetitively assemble a clock. 
Land an airliner at night, in bad weather. 
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control have been introduced. Many new autos have a four-wheel-steering system, as 
well as an antiskid control system. 

A three-axis control system for inspecting individual semiconductor wafers is 
shown in Figure 1.10. This system uses a specific motor to drive each axis to the de
sired position in the x-y-z-axis, respectively. The goal is to achieve smooth, accurate 
movement in each axis. This control system is an important one for the semiconductor 
manufacturing industry. 

There has been considerable discussion recently concerning the gap between 
practice and theory in control engineering. However, it is natural that theory pre
cedes the applications in many fields of control engineering. Nonetheless, it is in
teresting to note that in the electric power industry, the largest industry in the 
United States, the gap is relatively insignificant. The electric power industry is pri
marily interested in energy conversion, control, and distribution. It is critical that 
computer control be increasingly applied to the power industry in order to improve 
the efficient use of energy resources. Also, the control of power plants for minimum 
waste emission has become increasingly important. The modern, large-capacity 
plants, which exceed several hundred megawatts, require automatic control sys
tems that account for the interrelationship of the process variables and optimum 
power production. It is common to have 90 or more manipulated variables under 

y-axis motor 

FIGURE 1.10 A three-axis control system for inspecting individual semiconductor wafers with a 
highly sensitive camera. 
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coordinated control. A simplified model showing several of the important control 
variables of a large boiler generator system is shown in Figure 1.11. This is an ex
ample of the importance of measuring many variables, such as pressure and oxy
gen, to provide information to the computer for control calculations. 

The electric power industry has used the modern aspects of control engineering 
for significant and interesting applications. It appears that in the process industry, 
the factor that maintains the applications gap is the lack of instrumentation to mea
sure all the important process variables, including the quality and composition of 
the product. As these instruments become available, the applications of modern 
control theory to industrial systems should increase measurably. 

Another important industry, the metallurgical industry, has had considerable 
success in automatically controlling its processes. In fact, in many cases, the control 
theory is being fully implemented. For example, a hot-strip steel mill, which involves 
a SlOO-million investment, is controlled for temperature, strip width, thickness, and 
quality. 

Rapidly rising energy costs coupled with threats of energy curtailment are re
sulting in new efforts for efficient automatic energy management. Computer con
trols are used to control energy use in industry and to stabilize and connect loads 
evenly to gain fuel economy. 

There has been considerable interest recently in applying the feedback control 
concepts to automatic warehousing and inventory control. Furthermore, automatic 
control of agricultural systems (farms) is receiving increased interest. Automatically 
controlled silos and tractors have been developed and tested. Automatic control of 

FIGURE 1.11 
Coordinated control 
system for a 
boiler-generator. 
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wind turbine generators, solar heating and cooling, and automobile engine perfor
mance are important modern examples [20,21]. 

Also, there have been many applications of control system theory to biomedical 
experimentation, diagnosis, prosthetics, and biological control systems [22, 23, 51]. 
The control systems under consideration range from the cellular level to the central 
nervous system and include temperature regulation and neurological, respiratory, 
and cardiovascular control. Most physiological control systems are closed-loop sys
tems. However, we find not one controller but rather control loop within control 
loop, forming a hierarchy of systems. The modeling of the structure of biological 
processes confronts the analyst with a high-order model and a complex structure. 
Prosthetic devices that aid the 46 million handicapped individuals in the United 
States are designed to provide automatically controlled aids to the disabled [22,27,42]. 
The robotic hand shown in Figure 1.12 belongs to Obrero, a humanoid robot devel
oped at MIT that is capable of sensitive manipulation. The Obrero robot is respon
sive to the properties of the object it holds and does not rely on vision as the main 
sensor. The hand has position and force control of the fingers employing very sensi
tive tactile sensors and series elastic actuators in its joints. 

Finally, it has become interesting and valuable to attempt to model the feedback 
processes prevalent in the social, economic, and political spheres. This approach is 
undeveloped at present but appears to have a reasonable future. Society, of course, 
is composed of many feedback systems and regulatory bodies, such as the Federal 
Reserve Board, which are controllers exerting the forces on society necessary to 
maintain a desired output. A simple lumped model of the national income feedback 
control system is shown in Figure 1.13. This type of model helps the analyst to under
stand the effects of government control—granted its existence—and the dynamic ef
fects of government spending. Of course, many other loops not shown also exist, since, 
theoretically, government spending cannot exceed the tax collected without generat
ing a deficit, which is itself a control loop containing the Internal Revenue Service and 
the Congress. In a socialist country, the loop due to consumers is de-emphasized and 

(a) Computer-aided drawing (Courtesy of Eduardo Torres-Jara). (b) The Obrero robotic hand (Photo by luliu Vasilescu). 

FIGURE 1.12 The Obrero robot is responsive to the properties of the object it holds and does not 
rely on vision as the main sensor but as a complement. Obrero is part of the Humanoid Robotics 
Group at the MIT Computer Science and Artificial Intelligence Laboratory. 
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FIGURE 1.13 
A feedback control 
system model of 
the national income. 

Private business 
investment 

National 

government control is emphasized. In that case, the measurement block must be 
accurate and must respond rapidly; both are very difficult characteristics to realize 
from a bureaucratic system. This type of political or social feedback model, while 
usually nonrigorous, does impart information and understanding. 

The ongoing area of research and development of unmanned aerial vehicles 
(UAVs) is full of potential for the application of control systems. An example of a 
UAV is shown in Figure 1.14. UAVs are unmanned but are usually controlled by 
ground operators. Typically they do not operate autonomously and their inability to 
provide the level of safety of a manned plane keeps them from flying freely in the 
commercial airspace. One significant challenge is to develop control systems that 
will avoid in-air collisions. Ultimately, the goal is to employ the UAV autonomously 
in such applications as aerial photography to assist in disaster mitigation, survey-
work to assist in construction projects, crop monitoring, and continuous weather 
monitoring. In a military setting, UAVs can perform intelligence, surveillance, and 
reconnaissance missions [83]. Smart unmanned aircraft will require significant de
ployment of advanced control systems throughout the airframe. 

FIGURE 1.14 
An unmanned aerial 
vehicle. (Used with 
permission. Credit: 
DARPA.) 
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1.4 ENGINEERING DESIGN 

Engineering design is the central task of the engineer. It is a complex process in 
which both creativity and analysis play major roles. 

Design is the process of conceiving or inventing the forms, parts, and details of a 
system to achieve a specified purpose. 

Design activity can be thought of as planning for the emergence of a particu
lar product or system. Design is an innovative act whereby the engineer creatively 
uses knowledge and materials to specify the shape, function, and material content 
of a system. The design steps are (1) to determine a need arising from the values 
of various groups, covering the spectrum from public policy makers to the con
sumer; (2) to specify in detail what the solution to that need must be and to em
body these values; (3) to develop and evaluate various alternative solutions to 
meet these specifications; and (4) to decide which one is to be designed in detail 
and fabricated. 

An important factor in realistic design is the limitation of time. Design takes 
place under imposed schedules, and we eventually settle for a design that may be less 
than ideal but considered "good enough." In many cases, time is the only competitive 
advantage. 

A major challenge for the designer is writing the specifications for the technical 
product. Specifications are statements that explicitly state what the device or prod
uct is to be and do. The design of technical systems aims to provide appropriate de
sign specifications and rests on four characteristics: complexity, trade-offs, design 
gaps, and risk. 

Complexity of design results from the wide range of tools, issues, and knowledge 
to be used in the process. The large number of factors to be considered illustrates the 
complexity of the design specification activity, not only in assigning these factors 
their relative importance in a particular design, but also in giving them substance ei
ther in numerical o r written form, or both. 

The concept off trade-off involves the need to resolve conflicting design goals, all 
of which are desirable. The design process requires an efficient compromise between 
desirable but conflicting criteria. 

In making a technical device, we generally find that the final product does not 
appear as originally visualized. For example, our image of the problem we are solv
ing docs not appear in written description and ultimately in the specifications. Such 
design gaps are intrinsic in the progression from an abstract idea to its realization. 

This inability t o be absolutely sure about predictions of the performance of a 
technological object leads to major uncertainties about the actual effects of the de
signed devices and products. These uncertainties are embodied in the idea of unin
tended consequences or risk. The result is that designing a system is a risk-taking 
activity. 

Complexity, trade-off, gaps, and risk are inherent in designing new systems and 
devices. Although tliey can be minimized by considering all the effects of a given de
sign, they are always present in the design process. 
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Within engineering design, there is a fundamental difference between the two 
major types of thinking that must take place: engineering analysis and synthesis. 
Attention is focused on models of the physical systems that are analyzed to provide 
insight and that indicate directions for improvement. On the other hand, synthesis is 
the process by which these new physical configurations are created. 

Design is a process that may proceed in many directions before the desired 
one is found. It is a deliberate process by which a designer creates something new 
in response to a recognized need while recognizing realistic constraints. The de
sign process is inherently iterative—we must start somewhere! Successful engi
neers learn to simplify complex systems appropriately for design and analysis 
purposes. A gap between the complex physical system and the design model is in
evitable. Design gaps are intrinsic in the progression from the initial concept to 
the final product. We know intuitively that it is easier to improve an initial con
cept incrementally than to try to create a final design at the start. In other words, 
engineering design is not a linear process. It is an iterative, nonlinear, creative 
process. 

The main approach to the most effective engineering design is parameter analy
sis and optimization. Parameter analysis is based on (1) identification of the key pa
rameters, (2) generation of the system configuration, and (3) evaluation of how well 
the configuration meets the needs. These three steps form an iterative loop. Once 
the key parameters are identified and the configuration synthesized, the designer 
can optimize the parameters. Typically, the designer strives to identify a limited set 
of parameters to be adjusted. 

1.5 CONTROL SYSTEM DESIGN 

The design of control systems is a specific example of engineering design. The goal 
of control engineering design is to obtain the configuration, specifications, and iden
tification of the key parameters of a proposed system to meet an actual need. 

The control system design process is illustrated in Figure 1.15. The design 
process consists of seven main building blocks, which we arrange into three groups: 

1. Establishment of goals and variables to be controlled, and definition of specifications 
(metrics) against which to measure performance 

2. System definition and modeling 

3. Control system design and integrated system simulation and analysis 

In each chapter of this book, we will highlight the connection between the de
sign process illustrated in Figure 1.15 and the main topics of that chapter. The objec
tive is to demonstrate different aspects of the design process through illustrative 
examples. We have established the following connections between the chapters in 
this book and the design process block diagram: 

1. Establishment of goals, control variables, and specifications: Chapters 1,3,4, and 13. 

2. System definition and modeling: Chapters 2-4, and 11 13. 

3. Control system design, simulation, and analysis: Chapters 4 13. 
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EJ Topics emphasized in this example 

Shading indicates the •"""" 
topics that are emphasized 
in each chapter. Some chapters 
will have many shaded blocks, 
and other chapters will emphasize 
just one or two topics. 

Establish the control goals 

Identify the variables to he controlled 

Write the specifications 

Establish the system configuration 

Obtain a model of the process, the 
actuator, and the sensor 

Describe a controller and select ksy 
parameters to be adjusted 

Optimize the parameters ami 
analyze the performance 

In this column remarks 
relate the design topics on 
the left to specific sections, 
figures, equations, and tables 
in the example. 

(I) Establishment of goals, 
variables to be controlled, 
and specifications. 

(2) System definition 
and modeling. 

(3) Control system design. 
simulation, and analysis. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 1.15 The control system design process. 

The first step i n the design process consists of establishing the system goals. For 
example, we may state that our goal is to control the velocity of a motor accurately. 
The second step is to identify the variables that we desire to control (for example, the 
velocity of the motor). The third step is to write the specifications in terms of the ac
curacy we must attain. This required accuracy of control will then lead to the identifi
cation of a sensor t o measure the controlled variable. The performance specifications 
will describe how the closed-loop system should perform and will include (l) good 
regulation against disturbances, (2) desirable responses to commands, (3) realistic ac
tuator signals, (4) low sensitivities, and (5) robustness. 

As designers, w e proceed to the first attempt to configure a system that will re
sult in the desired control performance. This system configuration will normally 
consist of a sensor, the process under control, an actuator, and a controller, as shown 
in Figure 1.3. The next step consists of identifying a candidate for the actuator.This 
will, of course, depend on the process, but the actuation chosen must be capable of 
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effectively adjusting the performance of the process. For example, if we wish to con
trol the speed of a rotating flywheel, we will select a motor as the actuator. The sen
sor, in this case, must be capable of accurately measuring the speed. We then obtain 
a model for each of these elements. 

Students studying controls are often given the models, frequently represented 
in transfer function or state variable form, with the understanding that they repre
sent the underlying physical systems, but without further explanation. An obvious 
question is, where did the transfer function or state variable model come from? 
Within the context of a course in control systems, there is a need to address key 
questions surrounding modeling. To that end, in the early chapters, we will provide 
insight into key modeling concerns and answer fundamental questions: How is the 
transfer function obtained? What basic assumptions are implied in the model devel
opment? How general are the transfer functions? However, mathematical modeling 
of physical systems is a subject in and of itself. We cannot hope to cover the mathe
matical modeling in its entirety, but interested students are encouraged to seek out
side references (see for example [85-89]). 

The next step is the selection of a controller, which often consists of a summing 
amplifier that will compare the desired response and the actual response and then 
forward this error-measurement signal to an amplifier. 

The final step in the design process is the adjustment of the parameters of the 
system to achieve the desired performance. If we can achieve the desired perfor
mance by adjusting the parameters, we will finalize the design and proceed to docu
ment the results. If not, we will need to establish an improved system configuration 
and perhaps select an enhanced actuator and sensor. Then we will repeat the design 
steps until we are able to meet the specifications, or until we decide the specifica
tions are too demanding and should be relaxed. 

The design process has been dramatically affected by the advent of powerful 
and inexpensive computers and effective control design and analysis software. For 
example, the Boeing 777, which incorporates the most advanced flight avionics of 
any U.S. commercial aircraft, was almost entirely computer-designed [62.63]. Verifi
cation of final designs in high-fidelity computer simulations is essential. In many ap
plications, the certification of the control system in realistic simulations represents a 
significant cost in terms of money and time. The Boeing 777 test pilots flew about 
2400 flights in high-fidelity simulations before the first aircraft was even built. 

Another notable example of computer-aided design and analysis is the McDon
nell Douglas Delta Clipper experimental vehicle DC-X, which was designed, built. 
and flown in 24 months. Computer-aided design tools and automated code-generation 
contributed to an estimated 80 percent cost savings and 30 percent time savings [64]. 

In summary, the controller design problem is as follows: Given a model of the 
system to be controlled (including its sensors and actuators) and a set of design 
goals, find a suitable controller, or determine that none exists. As with most of engi
neering design, the design of a feedback control system is an iterative and nonlinear 
process. A successful designer must consider the underlying physics of the plant under 
control, the control design strategy, the controller design architecture (that is, what 
type of controller will be employed), and effective controller tuning strategies. In ad
dition, once the design is completed, the controller is often implemented in hardware, 
and hence issues of interfacing with hardware can appear. When taken together, these 
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different phases of control system design make the task of designing and imple
menting a control system quite challenging [82]. 

1.6 MECHATRONIC SYSTEMS 

FIGURE 1.16 
The key elements of 
mechatronics [70]. 

A natural stage in the evolutionary process of modern engineering design is en
compassed in the area known as mechatronics [70]. The term mechatronics was 
coined in Japan in the 1970s [71-73]. Mechatronics is the synergistic integration of 
mechanical, electrical, and computer systems and has evolved over the past 30 
years, leading to a new breed of intelligent products. Feedback control is an integral 
aspect of modern mechatronic systems. One can understand the extent that mecha
tronics reaches into various disciplines by considering the components that make 
up mechatronics [74—77]. The key elements of mechatronics are (1) physical sys
tems modeling, (2) sensors and actuators, (3) signals and systems, (4) computers 
and logic systems, and (5) software and data acquisition. Feedback control encom
passes aspects of all five key elements of mechatronics, but is associated primarily 
with the element of signals and systems, as illustrated in Figure 1.16. 

Advances in computer hardware and software technology coupled with the de
sire to increase the performance-to cost ratio has revolutionized engineering 
design. New products are being developed at the intersection of traditional disci
plines of engineering, computer science, and the natural sciences. Advancements in 
traditional disciplines are fueling the growth of mechatronics systems by providing 
"enabling technologies." A critical enabling technology was the microprocessor 
which has had a profound effect on the design of consumer products. We should 

Control Systems 
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expect continued advancements in cost-effective microprocessors and microcon 
trailers, novel sensors and actuators enabled by advancements in applications of 
microelectromechanical systems (MEMS), advanced control methodologies and 
real-time programming methods, networking and wireless technologies, and mature 
computer-aided engineering (CAE) technologies for advanced system modeling, 
virtual prototyping, and testing. The continued rapid development in these areas will 
only accelerate the pace of smart (that is, actively controlled) products. 

An exciting area of future mechatronic system development in which control 
systems will play a significant role is the area of alternative energy production and 
consumption. Hybrid fuel automobiles and efficient wind power generation are two 
examples of systems that can benefit from mechatronic design methods. In fact, the 
mechatronic design philosophy can be effectively illustrated by the example of the 
evolution of the modern automobile [70J. Before the 1960s, the radio was the only 
significant electronic device in an automobile. Today, many automobiles have 30-60 
microcontrollers, up to 100 electric motors, about 200 pounds of wiring, a multitude 
of sensors, and thousands of lines of software code. A modern automobile can no 
longer be classified as a strictly mechanical machine—it has been transformed into a 
comprehensive mechatronic system. 

EXAMPLE 1.1 Hybrid fuel vehicles 

Recent research and development has led to the next-generation hybrid fuel auto
mobile, depicted in Figure 1.17. The hybrid fuel vehicle utilizes a conventional inter
nal combustion engine in combination with a battery (or other energy storage device 
such as a fuel cell or flywheel) and an electric motor to provide a propulsion system 
capable of doubling the fuel economy over conventional automobiles. Although 
these hybrid vehicles will never be zero-emission vehicles (since they have internal 
combustion engines), they can reduce the level of harmful emissions by one-third to 
one-half, and with future improvements, these emissions may reduce even further. As 
stated earlier, the modern automobile requires many advanced control systems to 
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operate. The control systems must regulate the performance of the engine, including 
fuel-air mixtures, valve timing, transmissions, wheel traction control, antilock brakes, 
and electronically controlled suspensions, among many other functions. On the hy
brid fuel vehicle, there are additional control functions that must be satisfied. Espe
cially necessary is the control of power between the internal combustion engine and 
the electric motor, determining power storage needs and implementing the battery 
charging, and preparing the vehicle for low-emission start-ups. The overall effective
ness of the hybrid fuel vehicle depends on the combination of power units that are 
selected (e.g., battery versus fuel cell for power storage). Ultimately, however, the 
control strategy that integrates the various electrical and mechanical components 
into a viable transportation system strongly influences the acceptability of the hybrid 
fuel vehicle concept in the marketplace. • 

The second example of a mechatronic system is the advanced wind power gen
eration system. 

EXAMPLE 1.2 W i n d power 

Many nations in the world today are faced with unstable energy supplies, often lead
ing to rising fuel prices and energy shortages. Additionally, the negative effects of 
fossil fuel utilization on the quality of our air are well documented. Many nations 
have an imbalance in the supply and demand of energy, consuming more than they 
produce. To address this imbalance, many engineers are considering developing ad
vanced systems to access other sources of energy, such as wind energy. In fact, wind 
energy is one of the fastest-growing forms of energy generation in the United States 
and in other locations around the world. A wind farm now in use in western Texas is 
illustrated in Figure 1.18. 

In 2006, the installed global wind energy capacity was over 59,000 MW. In the 
United States, there was enough energy derived from wind to power over 2.5 million 
homes, according t o the American Wind Energy Association. For the past 35 years, 
researchers have concentrated on developing technologies that work well in high 
wind areas (defined to be areas with a wind speed of at least 6.7 m/s at a height of 10 m). 

FIGURE 1.18 
Efficient wind 
power generation in 
west Texas. (Used 
with permission of 
DOE/NREL Credit: 
Lower Colorado 
River Authority.) 
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Most of the easily accessible high wind sites in the United States are now utilized. 
and improved technology must be developed to make lower wind areas more cost 
effective. New developments are required in materials and aerodynamics so that 
longer turbine rotors can operate efficiently in the lower winds, and in a related 
problem, the towers that support the turbine must be made taller without increasing 
the overall costs. In addition, advanced controls will be required to achieve the level 
of efficiency required in the wind generation drive train. • 

EXAMPLE 1.3 Embedded computers 

Many contemporary control systems are embedded control systems [90]. Embedded 
control systems employ on-board special-purpose digital computers as integral 
components of the feedback loop. Fig. 1.19 illustrates a student-built rover con
structed around the Compact RIO by National Instruments, Inc. that serves as the 
on-board embedded computer. In the rover design, the sensors include an optical 
encoder for measuring engine speed, a rate gyro and accelerometer to measure 
turns, and a Global Positioning System (GPS) unit to obtain position and velocity 
estimates of the vehicle. The actuators include two linear actuators to turn the front 
wheels and to brake and accelerate. The communications device permits the rover 
to stay in contact with the ground station. 

Advances in sensors, actuators, and communication devices are leading to a new 
class of embedded control systems that are networked using wireless technology, 
thereby enabling spatially-distributed control. Embedded control system designers 
must be able to understand and work with various network protocols, diverse oper
ating systems and programming languages. While the theory of systems and controls 
serves as the foundation for the modern control system design, the design process is 

Actuator 

Embedded 1 
computer servo Battery Communications 

Housing for accelerometer 
rate gyro, and radio " Sensors 

FIGURE 1.19 A rover using an embedded computer in Ihe feedback loop. (Photo by R.H. Bishop.) 
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rapidly expanding into a multi-disciplinary enterprise encompassing multiple engi
neering areas, as well as information technology and computer science. • 

Advances in alternate energy products, such as the hybrid automobile and the 
generation of efficient wind power generators, provide vivid examples of mecha-
tronics development. There are numerous other examples of intelligent systems 
poised to enter our everyday life, including autonomous rovers, smart home appli
ances (e.g., dishwashers, vacuum cleaners, and microwave ovens), wireless network-
enabled devices, "human-friendly machines" [81] that perform robot-assisted 
surgery, and implantable sensors and actuators. 

1.7 THE FUTURE EVOLUTION OF CONTROL SYSTEMS 

The continuing goal of control systems is to provide extensive flexibility and a high 
level of autonomy. Two system concepts are approaching this goal by different 
evolutionary pathways, as illustrated in Figure 1.20. Today's industrial robot is per
ceived as quite autonomous—once it is programmed, further intervention is not 
normally required. Because of sensory limitations, these robotic systems have lim
ited flexibility in adapting to work environment changes; improving perception is 
the motivation of computer vision research. The control system is very adaptable, 
but it relies on human supervision. Advanced robotic systems are striving for task 
adaptability through enhanced sensory feedback. Research areas concentrating 
on artificial intelligence, sensor integration, computer vision, and off-line 
CAD/CAM programming will make systems more universal and economical. 
Control systems a re moving toward autonomous operation as an enhancement to 
human control. Research in supervisory control, human-machine interface meth
ods, and computer database management are intended to reduce operator burden 
and improve operator efficiency. Many research activities are common to robotics 

FIGURE 1.20 
Future evolution of 
control systems 
and robotics. 
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and control systems and are aimed at reducing implementation cost and expanding 
the realm of application. These include improved communication methods and ad
vanced programming languages. 

The easing of human labor by technology, a process that began in prehistory, is 
entering a new stage. The acceleration in the pace of technological innovation inau
gurated by the Industrial Revolution has until recently resulted mainly in the dis
placement of human muscle power from the tasks of production. The current 
revolution in computer technology is causing an equally momentous social change, 
the expansion of information gathering and information processing as computers 
extend the reach of the human brain [16]. 

Control systems are used to achieve (1) increased productivity and (2) improved 
performance of a device or system. Automation is used to improve productivity and 
obtain high-quality products. Automation is the automatic operation or control of a 
process, device, or system. We use automatic control of machines and processes to 
produce a product reliably and with high precision [28]. With the demand for flexible, 
custom production, a need for flexible automation and robotics is growing [17, 25]. 

The theory, practice, and application of automatic control is a large, exciting, 
and extremely useful engineering discipline. One can readily understand the moti
vation for a study of modern control systems. 

1.8 DESIGN EXAMPLES 

In this section we present illustrative design examples. This is a pattern that wc will 
follow in all subsequent chapters. Each chapter will contain a number of interesting 
examples in a special section entitled Design Examples meant to highlight the main 
topics of the chapter. At least one example among those presented in the Design 
Example section will be a more detailed problem and solution that demonstrates 
one of more of the steps in the design process shown in Figure 1.15. In the first 
example presented here, a rotating disk speed control illustrates the concept of 
open-loop and closed-loop feedback control. The second example is an insulin 
delivery control system in which we determine the design goals, the variables to con
trol, and a preliminary closed-loop system configuration. 

EXAMPLE 1.4 Rotating disk speed control 

Many modern devices employ a rotating disk held at a constant speed. For example, 
a CD player requires a constant speed of rotation in spite of motor wear and varia
tion and other component changes. Our goal is to design a system for rotating disk 
speed control that will ensure that the actual speed of rotation is within a specified 
percentage of the desired speed [43,46]. We will consider a system without feedback 
and a system with feedback. 

To obtain disk rotation, we will select a DC motor as the actuator because it 
provides a speed proportional to the applied motor voltage. For the input voltage to 
the motor, we will select an amplifier that can provide the required power. 

The open-loop system (without feedback) is shown in Figure 1.21 (a). This system 
uses a battery source to provide a voltage that is proportional to the desired speed. This 
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FIGURE 1.21 
(a) Open-loop 
(without feedback) 
control of the speed 
of a rotating disk. 
(b) Block diagram 
model. 
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voltage is amplified and applied to the motor. The block diagram of the open-loop sys
tem identifying the controller, actuator, and process is shown in Figure 1.21 (b). 

To obtain a feedback system, we need to select a sensor. One useful sensor is a 
tachometer that provides an output voltage proportional to the speed of its shaft. 
Thus the closed-loop feedback system takes the form shown in Fig. 1.22(a).The block 
diagram model of the feedback system is shown in Fig. 1.22(b). The error voltage is 
generated by the difference between the input voltage and the tachometer voltage. 

We expect the feedback system of Figure 1.22 to be superior to the open-loop 
system of Figure 1.21 because the feedback system will respond to errors and act to 
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reduce them. With precision components, we could expect to reduce the error of the 
feedback system to one-hundredth of the error of the open-loop system. • 

EXAMPLE 1.5 Insulin delivery control system 

Control systems have been utilized in the biomedical field to create implanted auto
matic drug-delivery systems to patients [29-31]. Automatic systems can be used to reg
ulate blood pressure, blood sugar level, and heart rate. A common application of control 
engineering is in the field of open-loop system drug delivery, in which mathematical 
models of the dose-effect relationship of the drugs are used. A drug-delivery system im
planted in the body uses an open-loop system, since miniaturized glucose sensors are 
not yet available.The best solutions rely on individually programmable, pocket-sized in
sulin pumps that can deliver insulin according to a preset time history. More compli
cated systems will use closed-loop control for the measured blood glucose levels. 

The blood glucose and insulin concentrations for a healthy person are shown in 
Figure 1.23. The system must provide the insulin from a reservoir implanted within 
the diabetic person. Therefore, the control goal is: 

Control Goal 
Design a system to regulate the blood sugar concentration of a diabetic by con
trolled dispensing of insulin. 

Referring to Figure 1.23, the next step in the design process is to define the variable 
to be controlled. Associated with the control goal we can define the variable to be 
controlled to be: 

Variable to Be Controlled 
Blood glucose concentration 

In subsequent chapters, we will have the tools to quantitatively describe the control 
design specifications using a variety of steady-state performance specifications and 
transient response specifications, both in the time-domain and in the frequency domain. 
At this point, the control design specifications will be qualitative and imprecise. In that 
regard, for the problem at hand, we can state the design specification as: 

FIGURE 1.23 
The blood glucose 
and insulin levels 
for a healthy 
person. 

Breakfast Dinner 
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Control Design Specifications 
Provide a blood glucose level for the diabetic that closely approximates 
(tracks) the glucose level of a healthy person. 

Given the design goals, variables to be controlled, and control design specifications, 
we can now propose a preliminary system configuration. An open-loop system 
would use a preprogrammed signal generator and miniature motor pump to regu
late the insulin delivery rate as shown in Figure 1.24(a). The feedback control sys
tem would use a sensor to measure the actual glucose level and compare that level 
with the desired level, thus turning the motor pump on when it is required, as shown 
in Figure 1.24(b). • 

1.9 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

This design example, identified by the arrow icon, will be considered sequentially in 
each chapter. We will use the design process of Figure 1.15 in each chapter to identi
fy the steps that we are accomplishing. For example, in Chapter 1 we (1) identify the 
control goal, (2) identify the variables to control, (3) write the initial specifications 
for the variables, and (4) establish the preliminary system configuration. 

Information c a n be readily and efficiently stored on magnetic disks. Disk drives 
are used in notebook computers and larger computers of all sizes and are essentially 
all standardized as defined by ANSI standards [54,69]. Worldwide sales of disk drives 
are greater than 250 million units [55, 68]. In the past, disk drive designers have con
centrated on increasing data density and data access times. Beginning in the early 
1990s, disk drive densities increased at rates of over 60 percent per year and very 
recently, these rates exceed 100 percent per year. Figure 1.25 shows the disk drive den
sity trends. Designers are now considering employing disk drives to perform tasks his
torically delegated to central processing units (CPUs), thereby leading to improvements 
in the computing environment [69]. Three areas of''intelligence" under investigation 
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FIGURE 1.25 
Disk drive data 
density trends 
(Source: IBM). 

1980 1985 1990 1995 
Production (Year; 
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include off-line error recovery, disk drive failure warnings, and storing data across 
multiple disk drives. Consider the basic diagram of a disk drive shown in Fig. 1.26. The 
goal of the disk drive reader device is to position the reader head to read the data 
stored on a track on the disk. The variable to accurately control is the position of the 
reader head (mounted on a slider device). The disk rotates at a speed between 1800 
and 7200 rpm, and the head "flies" above the disk at a distance of less than 100 nm. 
The initial specification for the position accuracy is 1 /xm. Furthermore, we plan to be 
able to move the head from track a to track b within 50 ms, if possible. Thus, we 
establish an initial system configuration as shown in Figure 1.27. This proposed closed-
loop system uses a motor to actuate (move) the arm to the desired location on the 
disk. We will consider the design of the disk drive further in Chapter 2. 

FIGURE 1.26 
(a) A disk drive 
© 1999 Quantum 
Corporation. All 
rights reserved. 
(b) Diagram of a 
disk drive. 
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FIGURE 1.27 
Closed-loop control 
system for disk 
drive. 
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1.10 SUMMARY 

In this chapter, we discussed open- and closed-loop feedback control systems. Exam
ples of control systems through the course of history were presented to motivate and 
connect the subject to the past. In terms of contemporary issues, key areas of appli
cation were discussed, including humanoid robots, unmanned aerial vehicles, wind 
energy, hybrid automobiles, and embedded control. The central role of controls in 
mechatronics was discussed. Mechatronics is the synergistic integration of mechani
cal, electrical, and computer systems. Finally, the design process was presented in a 
structured form and included the following steps: the establishment of goals and 
variables to be controlled, definition of specifications, system definition, modeling, 
and analysis. The iterative nature of design allows us to handle the design gap effec
tively while accomplishing necessary trade-offs in complexity, performance, and cost. 

EXERCISES 

Exercises are straightforward applications of the concepts 
of the chapter. 

The following systems can be described by a block diagram 
showing the cause-effect relationship and the feedback (if 
present). Identify the function of each block and the de
sired input variable, output variable, and measured vari
able. Use Figure 1.3 as a model where appropriate. 

E1.1 A precise optical signal source can control the out
put power level to within 1 percent [32]. A laser is 
controlled by an input current to yield the power 
output. A microprocessor controls the input current 
to the laser. The microprocessor compares the de
sired power ievel with a measured signal proportional 
to the laser power output obtained from a sensor. 
Complete the block diagram representing this closed 
loop control system shown in Figure E l . l , identifying 

the output, input, and measured variables and the 
control device. 

El.2 Draw the block diagram of a general feedback con
trol system and identify the plant, controller, desired 
output, actual output and measurement device. 

E1-3 All of us know that an automatic iron box set at 
"silk" will get heated upto a particular value, and if it 
is set at "wool"' iron box will get heated upto a higher 
value. Draw a block diagram representing the control 
system. Identify the measuring device and controller. 

El.4 Consider a semi-automatic washing machine. 

(a) Is it an open loop system or closed loop system? 

(b) Give reasons. 

(c) What is the desired output of a washing machine? 

Input 
+ /—\ Error 

- W ) — — • Device 

Measured 
variable 

Sensor 

m 
Current Laser - • Output 

FIGURE E1.1 Partial block diagram of an optical source. 
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E1.5 Because a sailboat can't sail directly into the wind. 
and traveling straight downwind is usually slow, the 
shortest sailing distance is rarely a straight line. Thus 
sailboats tack upwind—the familiar zigzag course—and 
jibe downwind. A tactician's decision of when to tack 
and where to go can determine the outcome of a race. 

Describe the process of tacking a sailboat as the 
wind shifts direction. Sketch a block diagram depicting 
this process. 

E1.6 Modern automated highways are being implemented 
around the world. Consider two highway lanes merg
ing into a single lane. Describe a feedback control system 
carried on the automobile trailing the lead automobile 
that ensures that the vehicles merge with a prescribed 
gap between the two vehicles. 

E1.7 You might have studied series regulator in your 
electronic circuits laboratory. Draw a block diagram 
and identify the desired output, actual output and the 
feedback element. 

E1.8 A samovar is a common sight in village tea shops. It 
is a metal urn used for heating water for making tea. 
Whenever boiling water is taken out, cold water may 
be poured into the samovar. This will decrease the 
temperature of the outlet value. To compensate this 
more charcoal may be added. The teamaker, some 
how, "usually" gets boiling water whenever he wants. 
Discuss the working of samovar in the perspective of 
control systems. 

E1.9 Future advanced commercial aircraft will be H-en-
abled. This will allow the aircraft to take advantage of 
continuing improvements in computer power and 
network growth. Aircraft can continuously communi
cate their location, speed, and critical health parame
ters to ground controllers, and gather and transmit 
local meteorological data. Sketch a block diagram 
showing how the meteorological data from multiple 
aircraft can be transmitted to the ground, combined 
using ground-based powerful networked computers to 

PROBLEMS 

Problems require extending the concepts of this chapter to 
new situations. 

The following systems may be described by a block di
agram showing the cause-effect relationship and the 
feedback (if present). Each block should describe its 
function. Use Figure 1.3 as a model where appropriate. 

Pl.l Many luxury automobiles have thermostatically 
controlled air-conditioning systems for the comfort 
of the passengers. Sketch a block diagram of an air-
conditioning system where the driver sets the desired 
interior temperature on a dashboard panel. Identify 
the function of each element of the thermostatically 
controlled cooling system. 

FIGURE E1.11 Inverted pendulum control. 

create an accurate weather situational awareness, 
and then transmitted back to the aircraft for optimal 
routing. 

El. 10 Unmanned aerial vehicles (UAVs) are being de
veloped to operate in the air autonomously for long 
periods of time (see Section 1.3). By autonomous, we 
mean that there is no interaction with human ground 
controllers. Sketch a block diagram of an autonomous 
UAV that is tasked for crop monitoring using aerial 
photography.The UAV must photograph and transmit 
the entire land area by flying a pre-specified trajectory 
as accurately as possible. 

El . l l Consider the inverted pendulum shown in Figure 
E 1.11. Sketch the block diagram of a feedback control 
system using Figure 1.3 as the model. Identify the 
process, sensor, actuator, and controller. The objective 
is keep the pendulum in the upright position, that is to 
keep 8 - 0, in the presence of disturbances. 

E1.12 Describe the block diagram of a person playing a 
video game. Suppose that the input device is a joystick 
and the game is being played on a desktop computer. 
Use Figure 1.3 as a model of the block diagram. 

P1.2 Consider a steel vessel filled 10% of its capacity 
with water placed on a gas stove. The gas stove 
is switched on and a mercury thermometer is used 
to measure the temperature of the water in the 
vessel. 

(a) If the gas stove is switched off when the temper
ature reached 75°C, will the temperature of the 
water increase further? 

(b) If no why? 

(c) If yes, explain the difficulty of heating the water 
to a specified value. 
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P1.3 In a chemical process control system, it is valuable 
to control the chemical composition of the product. 
To do so, a measurement of the composition can be 
obtained by using an infrared stream analyzer, as 
shown in Figure PI.3. The valve on the additive 
stream may be controlled. Complete the control feed
back loop, and sketch a block diagram describing the 
operation of the control loop. 

P1.4 The overflow of water from overhead tanks is a 
common sight in houses in towns and villages. If you 

know the current level of water in the tank, volume of 
water in the tank and flow of water into the tank, sug
gest an open loop control system to control the motor 
which drives the pump used to fill the tank. 

P1.5 A light-seeking control system, used to track the 
sun, is shown in Figure PI .5. The output shaft, driven 
by the motor through a worm reduction gear, has a 
bracket attached on which are mounted two photocells. 
Complete the closed-loop system so that the system 
follows the light source. 
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FIGURE P1.5 A photocell is mounted in each tube. The light reaching 
each cell is the same in both only when the light source is exactly in the 
middle as shown. 

P1.6 Feedback systems do not always involve negative 
feedback. Economic inflation, which is evidenced by 
continually rising prices, is a positive feedback sys
tem. A positive feedback control system, as shown in 
Figure PI.6. adds the feedback signal to the input sig
nal, and the resulting signal is used as t h e input to the 
process. A simple model of the price-wage inflation
ary spiral is shown in Figure P1.6. A d d additional 
feedback loops, such as legislative control or control 
of the tax rate, to stabilize the system. I t is assumed 
that an increase in workers' salaries, af ter some time 
delay, results in an increase in prices. Under what 
conditions could prices be stabilized by falsifying or 
delaying the availability of cost-of-living data? How 
would a national wage and price economic guideline 
program affect the feedback system? 
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7 The story is told about the sergeant who stopped at 
the jewelry store every morning at nine o'clock and 
compared and reset his watch with the chronometer in 
the window. Finally, one day the sergeant went into 
the store and complimented the owner on the accuracy 
of the chronometer. 

"Is it set according to time signals from Arlington?" 
asked the sergeant. 

"No," said the owner,"! set it by the five o'clock can
non fired from the fort each afternoon.Tell me, Sergeant, 
why do you stop every day and check your watch?" 

The sergeant replied, "I'm the gunner at the fort!" 
Is the feedback prevalent in this case positive or 

negative? The jeweler's chronometer loses two minutes 
each 24-hour period and the sergeant's watch loses 
three minutes during each eight hours. What is the net 
time error of the cannon at the fort after 12 days? 

8 The student-teacher learning process is inherently a 
feedback process intended to reduce the system error 

P1.JL0 The role of air traffic control systems is increasing as 
airplane traffic increases at busy airports. Engineers are 
developing air traffic control systems and collision 
avoidance systems using the Global Positioning System 
(GPS) navigation satellites [34, 61]. GPS allows each 
aircraft to know its position in the airspace landing cor
ridor very precisely. Sketch a block diagram depicting 
how an air traffic controller might use GPS for aircraft 
collision avoidance. 

P l . l l Automatic control of water level using a float level 
was used in the Middle East for a water clock [1, 11]. 
The water clock (Figure P l . l l ) was used from some
time before Christ until the 17th century. Discuss the 
operation of the water clock, and establish how the 
float provides a feedback control that maintains the ac
curacy of the clock. Sketch a block diagram of the feed
back svstem. 
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FIGURE P1.9 Heart-rate control. 

to a minimum. With the aid of Figure 1.3, construct a 
feedback model of the learning process and identify 
each block of the system. 

9 Models of physiological control systems are valu
able aids to the medical profession. A model of the 
heart-rate control system is shown in Figure PI.9 
[23.24,51 ]. This model includes the processing of the 
nerve signals by the brain. The heart-rate control 
system is, in fact, a multivariable system, and the 
variables x, y, w, v, z, and u are vector variables. In 
other words, the variable x represents many heart 
variables x\, x%,..., xn. Examine the model of the 
heart-rate control system and add or delete blocks, if 
necessary. Determine a control system model of one 
of the following physiological control systems: 

1. Respiratory control system 
2. Adrenaline control system 
3. Human arm control system 
4. Eye control system 
5. Pancreas and the blood-sugar-level control 

system 
6. Circulatory .system 

FIGURE P1.11 Water clock. (From Newton, Gould, and 
Kaiser, Analytical Design of Linear Feedback Controls. Wiley, 
New York, 1957, with permission.) 
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P1.12 An automatic turning gear for windmills was in
vented by Meikle in about 1750 [1, 11].The fantail 
gear shown in Figure PI. 12 automatically turns the 
windmill into the wind. The fantail windmill at right 
angle to the mainsail is used to turn the turret. The 
gear ratio is of the order of 3000 to 1. Discuss the 
operation of the windmill, and establish the feed
back operation that maintains the main sails into 
the wind. 

FIGURE P1.12 Automatic turning gear for windmills. 
(From Newton, Gould, and Kaiser, Analytical Design of 
Linear Feedback Controls. Wiley, New York, 1957, with 
permission.) 

P1.15 

(a) In the context of the solution of problem PI.4, 
what are the draw back of open loop system? 

(b) Suggest a manual closed loop system for the same 
problem. 

P1.16 All humans have experienced a fever associated 
with an illness. A fever is related to the changing 
of the control input in the body's thermostat. This 
thermostat, within the brain, normally regulates 
temperature near 98°F in spite of external tempera
tures ranging from 0° to 100°F or more. For a fever, 
the input, or desired, temperature is increased. Even 
to many scientists, it often comes as a surprise to 
learn that fever does not indicate something wrong 
with body temperature control but rather well-con
trived regulation at an elevated level of desired 
input. Sketch a block diagram of the temperature 
control system and explain how aspirin will lower a 
fever. 

PI.17 Consider an electric furnace whose temperature 
can increase from 30°C to 630°C in one hour. If 
the thermometer used in the control system takes 
one minute to reach the steady vaiue, will the closed 
loop system work satisfactorily. Explain your 
answer. 

P1.18 A cutaway view of a commonly used pressure 
regulator is shown in Figure PI. 18. The desired 
pressure is set by turning a calibrated screw. This 
compresses the spring and sets up a force that 

PI.13 A common example of a two-input control system 
is a home shower with separate valves for hot and cold 
water. The objective is to obtain (1) a desired temper
ature of the shower water and (2) a desired flow of 
water. Sketch a block diagram of the closed-loop control 
system. 

P1.14 Adam Smith (1723- 1790) discussed the issue of 
free competition between the participants of an econ
omy in his book Wealth of Nations. It may be said that 
Smith employed social feedback mechanisms to ex
plain his theories [44]. Smith suggests that (1) the 
available workers as a whole compare the various 
possible employments and enter that one offering the 
greatest rewards, and (2) in any employment the re
wards diminish as the number of competing workers 
rises. Let r = total of rewards averaged over all 
trades, c — total of rewards in a particular trade, and 
q — influx of workers into the specific trade. Sketch a 
feedback system to represent this system. 

(area A) 

Spring 

Output 
flow 

Valve 

FIGURE P1.18 Pressure regulator. 
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opposes the upward motion of the diaphragm. The 
bottom side of the diaphragm is exposed to the 
water pressure that is to be controlled. Thus the mo
tion of the diaphragm is an indication of the pres
sure difference between the desired and the actual 
pressures. It acts like a comparator. The valve is con
nected to the diaphragm and moves according to the 
pressure difference until it reaches a position in 
which the difference is zero. Sketch a block diagram 
showing the control system with the output pressure 
as the regulated variable. 

P1.19 In a car, to control speed, there is accelerator and 
break. Suppose break is not there, will you be able to 
decrease the speed when desired. Explain the need for 
two control signals (accelerator and break). 

P1.20 A high-performance race car with an adjustable 
wing (airfoil) is shown in Figure P1.20. Develop a 
block diagram describing the ability of the airfoil to 
keep a constant road adhesion between the car's tires 
and the race track surface. Why is it important to 
maintain good road adhesion? 

FIGURE P1.20 A high-performance race car with an 
adjustable wing. 

P1.21 The potential of employing two or more heli
copters for transporting payloads that are too heavy 
for a single helicopter is a well-addressed issue in 
the civil and military rotorcraft design arenas [38]. 
Overall requirements can be satisfied more effi
ciently with a smaller aircraft by using multilift for 
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Load 

FIGURE P1.21 Two helicopters used to lift and move a 
large load. 

infrequent peak demands. Hence the principal moti
vation for using multilift can be attributed to the 
promise of obtaining increased productivity without 
having to manufacture larger and more expensive 
helicopters. A specific case of a multilift arrange
ment where two helicopters jointly transport pay-
loads has been named twin lift. Figure PI .21 shows a 
typical "two-point pendant" twin lift configuration in 
the lateral/vertical plane. 

Develop the block diagram describing the pilots' 
action, the position of each helicopter, and the position 
of the load. 

P1.22. Engineers want to design a control system that will 
allow a building or other structure to react to the force 
of an earthquake much as a human would. The struc
ture would yield to the force, but only so much, before 
developing strength to push back [50]. Develop a 
block diagram of a control system to reduce the effect 
of an earthquake force. 

P1.23 Engineers at the Science University of lokyo are 
developing a robot with a humanlike face [56]. The 
robot can display facial expressions, so that it can 
work cooperatively with human workers. Sketch a 
block diagram for a facial expression control system 
of your own design. 

P1.24 An innovation for an intermittent automobile 
windshield wiper is the concept of adjusting its wiping 
cycle according to the intensity of the rain [60]. Sketch 
a block diagram of the wiper control system. 

Pl.25 In the past 40 years, over 20,000 metric tons of 
hardware have been placed in Earth's orbit. During 
the same time span, over 15,000 metric tons of hard
ware returned to Earth. The objects remaining in 
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Earth's orbit range in size from large operational 
spacecraft to tiny flecks of paint. There are about 
150,000 objects in Earth's orbit 1 cm or larger in size. 
About 10,000 of the space objects are currently 
tracked from groundstations on the Earth. Space 
traffic control [67] is becoming an important issue, 
especially for commercial satellite companies that 
plan to "fly" their satellites through orbit altitudes 
where other satellites are operating, and through 
areas where high concentrations of space debris may 
exist. Sketch a block diagram of a space traffic con
trol system that commercial companies might use to 
keep their satellites safe from collisions while oper
ating in space. 

P1.26 NASA is developing a compact rover designed to 
transmit data from the surface of an asteroid back to 
Earth, as illustrated in Figure PI.26.The rover will use 
a camera to take panoramic shots of the asteroid sur
face. The rover can position itself so that the camera 
can be pointed straight down at the surface or straight 
up at the sky. Sketch a block diagram illustrating how 
the microrover can be positioned to point the camera 
in the desired direction. Assume that the pointing 
commands are relayed from the Earth to the micro-
rover and that the position of the camera is measured 
and relayed back to Earth. 

P1.27 A direct methanol fuel cell is an electrochemical 
device that converts a methanol water solution to 
electricity [84J. Like rechargeable batteries, fuel cells 
directly convert chemicals to energy, they are very 

ADVANCED PROBLEMS 

Advanced problems represent problems of increasing com
plexity. 

APl. l The development of robotic microsurgery devices 
will have major implications on delicate eye and 
brain surgical procedures. The microsurgery devices 
employ feedback control to reduce the effects of the 
surgeon's muscle tremors. Precision movements by an 
articulated robotic arm can greatly help a surgeon by 
providing a carefully controlled hand. One such de
vice is shown in Figure APl.l . The microsurgical de
vices have been evaluated in clinical procedures and 
are now being commercialized. Sketch a block dia
gram of the surgical process with a microsurgical de
vice in the loop being operated by a surgeon. Assume 
that the position of the end-effector on the microsur
gical device can be measured and is available for 
feedback. 

FIGURE P1.26 Microrover designed to explore an 
asteroid. (Photo courtesy of NASA.) 

often compared to batteries, specifically rechargeable 
batteries. However, one significant difference between 
rechargeable batteries and direct methanol fuel cells 
is that, by adding more methanol water solution, the 
fuel cells recharge instantly. Sketch a block diagram of 
the direct methanol fuel cell recharging system that 
uses feedback (refer to Figure 1.3) to continuously 
monitor and recharge the fuel cell. 

AP1.2 Advanced wind energy systems are being installed 
in many locations throughout the world as a way for 
nations to deal with rising fuel prices and energy short
ages. and to reduce the negative effects of fossil fuel 
utilization on the quality of the air (refer to Example 
1.2 in Section 1.6).The modern windmill can be viewed 
as a mechatronic system. Consider Figure 1.16, which 
illustrates the key elements of mechatronic systems. 
Using Figure 1.16 as a guide, think about how an ad
vanced wind energy system would be designed as a 
mechatronic system. List the various components of 
the wind energy system and associate each component 
with one of the five elements of a mechatronic system: 
physical system modeling, signals and systems, comput
ers and logic systems, software and data acquisition. 
and sensors and actuators. 
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wavefront sensor to measure distortions in the incoming 
light and to actively control and compensate to the er
rors induced by the distortions. Consider the case of an 
extremely large ground-based optical telescope, possi
bly an optical telescope up to 100 meters in diameter. 
The telescope components include deformable mirrors 
actuated by micro-electro-mechanical (MEMS) devices 
and sensors to measure the distortion of the incoming 
light as it passes through the turbulent and uncertain at
mosphere of Earth. 

There is at least one major technological barrier to 
constructing a 100-m optical telescope. The numerical 
computations associated with the control and com
pensation of the extremely large optical telescope can 
be on the order of 1010 calculations each 1.5 ms. To 
date, this computational power is unachievable. If wc 
assume that the computational capability will ulti
mately be available, then one can consider the design 
of a feedback control system that uses the available 
computational power. We can consider many control 
issues associated with the large-scale optical tele
scope. Some of the controls problems that might be 
considered include controlling the pointing of the 
main dish, controlling the individual deformable mir
rors, and attenuating the deformation of the dish due 
to changes in outside temperature. 

Employing Figure 1.3 as a model for the block dia
gram. describe a closed-loop feedback control system 
to control one of the deformable mirrors to compen
sate for the distortions in the incoming light. Figure 
API.4 shows a diagram of the telescope with a single 
deformable mirror. Suppose that the mirror has an 
associated MEMS actuator that can be used to vary 
the orientation. Also, assume that the wavefront sen
sor and associated algorithms provide the desired 
configuration of the deformable mirror to the feed
back control system. 

FIGURE AP1.1 Microsurgery robotic manipulator. (Photo 
courtesy of NASA.) 

AP1.3 Many modern luxury automobiles have an au-
topark option. This feature will parallel park an auto
mobile without driver intervention. Figure API.3 
illustrates the parallel parking scenario. Using Figure 
1.3 as a model, sketch a block diagram of the automat
ed parallel parking feedback control system. In your 
own words, describe the control problem and the chal
lenges facing the designers of the control system. 

AP1.4 Adaptive optics has applications to a wide variety of 
key control problems, including imaging of the human 
retina and large-scale, ground-based astronomical ob
servations [91). In both cases, the approach is to use a 

FIGURE AP1.3 Automated parallel parking of an automobile. 
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FIGURE AP1.4 Extremely large optical telescope with deformable mirrors 
for atmosphere compensation. 

DESIGN PROBLEMS 

Design problems emphasize the design task. Continuous 
design problems (CDP) build upon a design problem from 
chapter to chapter. 

CDPl.l Increasingly stringent requirements of modern, 
rjy high-precision machinery are placing increasing dc-
k""pj mands on slide systems [57]. The typical goal is to 

accurately control the desired path of the table shown 
in Figure CDPl.l . Sketch a block diagram model of a 

Table 

FIGURE CDP1.1 Machine tool with table. 

feedback system to achieve the desired goal. The table 
can move in the .Y direction as shown. 

DPI.I The road and vehicle noise that invade an auto
mobile's cabin hastens occupant fatigue [66]. Design 
the block diagram of an "antinoise" feedback system 
that will reduce the effect of unwanted noises. Indicate 
the device within each block. 

DP 1.2 Many cars are fitted with cruise control that, at the 
press of a button, automatically maintains a set speed. 
Jn this way, the driver can cruise at a speed limit or 
economic speed without continually checking the 
speedometer. Design a feedback-control in block dia
gram form for a cruise control system. 

DP1.3 As part of the automation of a dairy farm, the au
tomation of cow milking is under study [37]. Design a 
milking machine that can milk cows four or five times 
a day at the cow's demand. Sketch a block diagram 
and indicate the devices in each block. 

DP1.4 A large, braced robot arm for welding large struc
tures is shown in Figure DPI .4. Sketch the block dia
gram of a closed-loop feedback control system for 
accurately controlling the location of the weld tip. 

DP1.5 Vehicle traction control, which includes antiskid 
braking and antispin acceleration, can enhance vehi
cle performance and handling. The objective of this 
control is to maximize tire traction by preventing locked 
brakes as well as tire spinning during acceleration. 
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FIGURE DP1.4 Robot welder. 

Wheel slip, the difference between the vehicle speed 
and the wheel speed, is chosen as the controlled vari
able because of its strong influence on the tractive 
force between the tire and the road [19]. The adhesion 
coefficient between the wheel and the road reaches a 
maximum at a low slip. Develop a block diagram 
model of one wheel of a traction control system. 

DP1.6 The Hubble space telescope was repaired and 
modified in space on several occasions [47, 49, 52]. 
One challenging problem with controlling the Hub
ble is damping the jitter that vibrates the spacecraft 
each time it passes into or out of the Earth's shadow. 
The worst vibration has a period of about 20 seconds, 
or a frequency of 0.05 hertz. Design a feedback sys
tem that will reduce the vibrations of the Hubble 
space telescope. 

TERMS AND CONCEPTS 

Automation The control of a process by automatic means. 
Closed-loop feedback control system A system that uses 

a measurement of the output and compares it with the 
desired output to control the process. 

Complexity of design The intricate pattern of interwoven 
parts and knowledge required. 
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DP1.7 A challenging application of control design is the 
use of nanorobots in medicine. Nanorobots will re
quire onboard computing capability, and very tiny 
sensors and actuators. Fortunately, advances in bio-
molecular computing, bio-sensors, and actuators are 
promising to enable medical nanorobots to emerge 
within the next decade [92]. Many interesting medical 
applications will benefit from nanorobotics. For exam
ple, one use might be to use the robotic devices to pre
cisely deliver anti-HIV drugs or to combat cancer by 
targeted delivering of chemotherapy. 

At the present time, we cannot construct practical 
nanorobots, but we can consider the control design 
process that would enable the eventual development 
and installation of these tiny devices in the medical 
field. Consider the problem of designing a nanorobot 
to deliver a cancer drug to a specific location within 
the human body. The target site might be the location 
of a tumor, for example. Using the control design 
process illustrated in Figure 1.15, suggest one or more 
control goals that might guide the design process. Rec
ommend the variables that should be controlled and 
provide a list of reasonable specifications for those 
variables. 

FIGURE DP1.7 An artist illustration of a 
nanorobot interacting with human blood cells. 

Control system An interconnection of components form
ing a system configuration that will provide a desired 
response. 

Design The process of conceiving or inventing the forms, 
parts, and details of a system to achieve a specified 
purpose. 
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Design gap A gap between the complex physical system 
and the design model intrinsic to the progression from 
the initial concept to the final product. 

Engineering design The process of designing a technical 
system. 

Feedback signal A measure of the output of the system 
used for feedback to control the system. 

Flyball governor A mechanical device for controlling the 
speed of a steam engine. 

Hybrid fuel automobile An automobile that uses a con
ventional internal combustion engine in combination 
with an energy storage device to provide a propulsion 
system. 

Mechatronics The synergistic integration of mechanical. 
electrical, and computer systems. 

Multivariable control system A system with more than 
one input variable or more than one output variable. 

Negative feedback An output signal fed back so that it 
subtracts from the input signal. 

Open-loop control system A system that uses a device to 
control the process without using feedback. Thus the 
output has no effect upon the signal to the process. 

Optimization The adjustment of the parameters to achieve 
the most favorable or advantageous design. 

Plant See Process. 

Positive feedback An output signal fed back so that it 
adds to the input signal. 

Process The device, plant, or system under control. 

Productivity The ratio of physical output to physical input 
of an industrial process. 

Risk Uncertainties embodied in the unintended conse
quences of a design. 

Robot Programmable computers integrated with a ma
nipulator. A reprogrammable, multifunctional manip
ulator used for a variety of tasks. 

Specifications Statements that explicitly state what the 
device or product is to be and to do. A set of prescribed 
performance criteria. 

Synthesis The process by which new physical configura
tions are created. The combining of separate elements 
or devices to form a coherent whole. 

System An interconnection of elements and devices for a 
desired purpose. 

Trade-off The result of making a judgment about how to 
compromise between conflicting criteria. 
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PREVIEW 

Mathematical models of physical systems are key elements in the design and analysis 
of control systems. The dynamic behavior is generally described by ordinary differen
tial equations. We will consider a wide range of systems, including mechanical, 
hydraulic, and electrical. Since most physical systems are nonlinear, we will discuss lin
earization approximations, which allow us to use Laplace transform methods. We will 
then proceed to obtain the input-output relationship for components and subsystems 
in the form of transfer functions. The transfer function blocks can be organized into 
block diagrams or signal-flow graphs to graphically depict the interconnections. Block 
diagrams (and signal-flow graphs) are very convenient and natural tools for designing 
and analyzing complicated control systems. We conclude the chapter by developing 
transfer function models for the various components of the Sequential Design 
Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 2, students should: 

CJ Recognize that differential equations can describe the dynamic behavior of physical 
systems. 

Q Be able to utilize linearization approximations through the use of Taylor series expansions. 

Q Understand the application of Laplace transforms and their role in obtaining transfer 
functions. 

J Be aware of block diagrams (and signal-flow graphs) and their role in analyzing control 
systems. 

• Understand the important role of modeling in the control system design process. 
41 
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2.1 INTRODUCTION 

To understand and control complex systems, one must obtain quantitative 
mathematical models of these systems. It is necessary therefore to analyze the rela
tionships between the system variables and to obtain a mathematical model. 
Because the systems under consideration are dynamic in nature, the descriptive 
equations are usually differential equations. Furthermore, if these equations can be 
linearized, then the Laplace transform can be used to simplify the method of solu
tion. In practice, the complexity of systems and our ignorance of all the relevant 
factors necessitate the introduction of assumptions concerning the system opera
tion. Therefore we will often find it useful to consider the physical system, express 
any necessary assumptions, and linearize the system. Then, by using the physical 
laws describing the linear equivalent system, we can obtain a set of linear differen
tial equations. Finally, using mathematical tools, such as the Laplace transform, we 
obtain a solution describing the operation of the system. In summary, the approach 
to dynamic system modeling can be listed as follows: 

1. Define the system and its components. 

2. Formulate the mathematical model and fundamental necessary assumptions based on 
basic principles. 

3 . Obtain the differential equations representing the mathematical model. 

4. Solve the equations for the desired output variables. 

5. Examine the solutions and the assumptions. 

6. If necessary, reanalyze or redesign the system. 

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS 

The differential equations describing the dynamic performance of a physical system 
are obtained by utilizing the physical laws of the process [1-3]. This approach applies 
equally well to mechanical [1], electrical [3], fluid, and thermodynamic systems [4]. 
Consider the torsional spring-mass system in Figure 2.1 with applied torque Ta(t). 
Assume the torsional spring element is massless. Suppose we want to measure the 
torque Ts(t) transmitted to the mass m. Since the spring is massless, the sum of the 
torques acting on the spring itself must be zero, or 

Ta{t) - Ts(t) = 0, 

which implies that Ts{t) = Ta(t). We see immediately that the external torque Ta{t) 
applied at the end of the spring is transmitted through the torsional spring. Because 
of this, we refer to the torque as a through-variable. In a similar manner, the angular 
rate difference associated with the torsional spring element is 

co(t) = (os(t) - a>a(t). 
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FIGURE 2.1 
(a) Torsional 
spring-mass 
system, (b) Spring 
element. 

(a) 

<OJ. 

Thus, the angular rate difference is measured across the torsional spring element and is 
referred to as an across-variable. These same types of arguments can be made for most 
common physical variables (such as force, current, volume, flow rate, etc.). A more 
complete discussion on through- and across-variables can be found in [30,33]. A sum
mary of the through- and across-variables of dynamic systems is given in Table 2.1 [5). 
Information concerning the International System (SI) of units associated with the var
ious variables discussed in this section can be found at the MCS website.' For example, 
variables that measure temperature are degrees Kelvin in SI units, and variables that 
measure length are meters. Important conversions between SI and English units arc 
also given at the MCS website. A summary of the describing equations for lumped, 

Table 2.1 Summary of Through- and Across-Variables for Physical Systems 

System 
Electrical 

Mechanical 
translational 

Mechanical 
rotational 

Fluid 

Thermal 

Variable 
Through 
Element 

Current, i 

Force, F 

Torque, T 

Fluid 
volumetric rate 
of flow, Q 

Heat flow 
rate,q 

Integrated 
Through-
Variable 

Charge, q 

Translational 
momentum, P 

Angular 
momentum, h 

Volume, V 

Heat energy, 
H 

Variable 
Across 
Element 

Voltage 
difference, v2i 

Velocity 
difference, v2i 

Angular velocity 
difference, w21 

Pressure 
difference, P2\ 

Temperature 
difference, %i 

Integrated 
Across-
Variable 

Flux linkage, A2i 

Displacement 
difference, y21 

Angular 
displacement 
difference, 021 

Pressure 
momentum, y21 

'The companion website is found at wvvvv.prenhall.com/dorf. 

http://wvvvv.prenhall.com/dorf
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linear, dynamic elements is given in Table 2.2 [5].The equations in Table 2.2 are ideal
ized descriptions and only approximate the actual conditions (for example, when a 
linear, lumped approximation is used for a distributed element). 

Table 2.2 Summary of Governing Differential Equations for Ideal Elements 

Type of 
Element 

Physical 
Element 

Governing 
Equation 

Energy E or 
Pov/er 9> Symbol 

Inductive storage < 

f Electrical inductance 

Translational spring 

Rotational spring 

I Fluid inertia 

Electrical capacitance 

Translational mass 

Capacitive storage \ Rotational mass 

Fluid capacitance 

Thermal capacitance 

( Electrical resistance 

Energy dissipators < Rotational damper 

Fluid resistance 

• Thermal resistance 

di 
"21 = LJt 

V2i = 

i = C 

F = M 

\_ (IF 
k dt 

k dt 

dQ 
dt 

dv?A 

dt 

dv-} 

T = J 

Q = Cf 

dt 

d(i>2 

~dt 

dPu 
dt 

d% 

l = ^ 2 , 

Translational damper F = bv2] 

T = bco 21 

2 - * ' • 

21 

1 = ^ 

E = \LC-

2 k 

_ 1 7 * 
E = 2~T 

E = \lQ2 

E = -Cvlx-

E = -Mv2
2 

E = -jJo>i2 

E = TCfP2i
2 

E = 0¾ 

» - fa 
°J> = bvzi2 

y> = ba)2l
2 

9 - T/»2 

9 - 5*» 
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constant 
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constant 

Pi 
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constant 
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T—>o 1 I owi 
(07 ^ b 

v Q 

R, 
sr, 
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Nomenclature 

• Through-variable: F = force, T = torque, i - current, Q - fluid volumetric flow 
rate, c/ = heat flow rate. 

• Across-variable: v = translational velocity, to = angular velocity,?; - voltage, 
P = pressure, 3" — temperature. 

• Inductive storage: L - inductance, \/k = reciprocal translational or rotational 
stiffness, I = fluid inertance. 

D Capacitive storage: C = capacitance, M = mass, J = moment of inertia, Cf - fluid 
capacitance, C, _ thermal capacitance. 

D Energy dissipators: R = resistance, b = viscous friction, Rf = fluid resistance, 
R, = thermal resistance. 

The symbol v is used for both voltage in electrical circuits and velocity in trans
lational mechanical systems and is distinguished within the context of each differen
tial equation. For mechanical systems, one uses Newton's laws; for electrical systems, 
Kirchhoff s voltage laws. For example, the simple spring-mass-damper mechanical 
system shown in Figure 2.2(a) is described by Newton's second law of motion. (This 
system could represent, for example, an automobile shock absorber.) The free-body 
diagram of the mass M is shown in Figure 2.2(b). In this spring-mass-damper exam
ple, we model the wall friction as a viscous damper, that is, the friction force is 
linearly proportional to the velocity of the mass. In reality the friction force may be
have in a more complicated fashion. For example, the wall friction may behave as a 
Coulomb damper. Coulomb friction, also known as dry friction, is a nonlinear func
tion of the mass velocity and possesses a discontinuity around zero velocity. For a 
well-lubricated, sliding surface, the viscous friction is appropriate and will be used 
here and in subsequent spring-mass-damper examples. Summing the forces acting 
on M and utilizing Newton's second law yields 

d-y{t) dy(t) 
M — + b-

dt2 dt 
ky{t) = r(0, (2.F 

where k is the spring constant of the ideal spring and b is the friction constant. Equa
tion (2.1) is a second-order linear constant-coefficient differential equation. 

FIGURE 2.2 
(a) Spring-mass-
damper system. 
(b) Free-body 
diagram. 

Wall 
friction, b 

bv kv 

fa) 
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FIGURE 2.3 
RLC circuit. 

Alternatively, one may describe the electrical RLC circuit of Figure 2.3 by utiliz
ing Kirchhoffs current law. Then we obtain the following integrodifferential equation: 

V(t) dv(t) l r , . . 
(2.2) 

The solution of the differential equation describing the process may be ob
tained by classical methods such as the use of integrating factors and the method of 
undetermined coefficients [1]. For example, when the mass is initially displaced a 
distance y(0) = y0 and released, the dynamic response of an underdamped system 
is represented by an equation of the form 

>'(/) = Kxe-a< sin(j3i/ + 6{). (2.3) 

A similar solution is obtained for the voltage of the RLC circuit when the circuit 
is subjected to a constant current r(t) = I. Then the voltage is 

v(t) = K2e~a2' cos((32t + S2). (2.4) 

A voltage curve typical of an underdamped RLC circuit is shown in Figure 2.4. 
To reveal further the close similarity between the differential equations for the 

mechanical and electrical systems, we shall rewrite Equation (2.1) in terms of velocity: 

v(t) 
dyjt) 

dt ' 
Then we have 

M—p- + bv{t) + k I v(t) dt = r{t). 
at Jo 

(2.5) 

FIGURE 2.4 
Typical vol tage 
response for 
underdamped RLC 
circuit. 

Voltage 
V(i) 

• Time 
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One immediately notes the equivalence of Equations (2.5) and (2.2) where veloc
ity v{i) and voltage v(t) are equivalent variables, usually called analogous variables. 
and the systems are analogous systems. Therefore the solution for velocity is similar to 
Equation (2.4), and the response for an underdamped system is shown in Figure 2.4. 
The concept of analogous systems is a very useful and powerful technique for system 
modeling. The voltage-velocity analogy, often called the force-current analogy, is a 
natural one because it relates the analogous through- and across-variables of the elec
trical and mechanical systems. Another analogy that relates the velocity and current 
variables is often used and is called the force-voltage analogy [22,24]. 

Analogous systems with similar solutions exist for electrical, mechanical, ther
mal, and fluid systems. The existence of analogous systems and solutions provides 
the analyst with the ability to extend the solution of one system to all analogous sys
tems with the same describing differential equations. Therefore what one learns 
about the analysis and design of electrical systems is immediately extended to an 
understanding of fluid, thermal, and mechanical systems. 

2.3 LINEAR APPROXIMATIONS OF PHYSICAL SYSTEMS 

A great majority of physical systems are linear within some range of the variables. 
In general, systems ultimately become nonlinear as the variables are increased with
out limit. For example, the spring-mass-damper system of Figure 2.2 is linear and 
described by Equation (2.1) as long as the mass is subjected to small deflections y{i). 
However, if v(r) were continually increased, eventually the spring would be overex
tended and break. Therefore the question of linearity and the range of applicability 
must be considered for each system. 

A system is defined as linear in terms of the system excitation and response. 
In the case of the electrical network, the excitation is the input current r{t) and the 
response is the voltage v{i). In general, a necessary condition for a linear system 
can be determined in terms of an excitation x(t) and a response y{t). When the 
system at rest is subjected to an excitation X\{t\ it provides a response y\{t). Fur
thermore, when the system is subjected to an excitation x2(t), it provides a corre
sponding response y2(0- F°r a linear system, it is necessary that the excitation 
X[(t) + xi(t) result in a response y\(t) + ĵ CO' This is usually called the principle 
of superposition. 

Furthermore, the magnitude scale factor must be preserved in a linear system. 
Again, consider a system with an input x(t) that results in an output y(t). Then the 
response of a linear system to a constant multiple /3 of an input x must be equal to 
the response to the input multiplied by the same constant so that the output is equal 
to /3y. This is called the property of homogeneity 

A linear system satisfies the properties of superposition and homogeneity. 

A system characterized by the relation y = x2 is not linear, because the super
position property is not satisfied. A system represented by the relation y = mx + b 
is not linear, because it does not satisfy the homogeneity property. However, this 
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second system may be considered linear about an operating point XQ, yo for small 
changes Ax and Ay. When x =- x() + Ax and y = y{) + Ay, we have 

y = mx + b 

or 

_y0 + Ay = mxo + m Ax + b. 

Therefore, Ay = m Ax, which satisfies the necessary conditions. 
The linearity of many mechanical and electrical elements can be assumed over a 

reasonably large range of the variables [7]. This is not usually the case for thermal and 
fluid elements, which arc more frequently nonlinear in character. Fortunately, however, 
one can often linearize nonlinear elements assuming small-signal conditions. This is the 
normal approach used to obtain a linear equivalent circuit for electronic circuits and 
transistors. Consider a general element with an excitation (through-) variable x(t) and 
a response (across-) variable y(t). Several examples of dynamic system variables arc 
given in Table 2.1. The relationship of the two variables is written as 

y(j) = sW*)). (2.6) 
where g(x(t)) indicates y(0 is a function of *(f).TTie normal operating point is desig
nated by XQ. Because the curve (function) is continuous over the range of interest, a 
Taylor series expansion about the operating point may be utilized [7]. Then we have 

y = g(x) = g(xQ) + — 
X{)K^\ ^ + . . - . (2.7) 

1! dx2 ™ 2! * = . Y „ * • " • * • \X = X{) 

The slope at the operating point, 

dx .v=.tll 

is a good approximation to the curve over a small range of (x — XQ), the deviation from 
the operating point. Then, as a reasonable approximation, Equation (2.7) becomes 

dg 
v = g(x0) + - (x - x{)) = y() + m(x - x0), (2.8) 

-v=.r„ 

where m is the slope at the operating point. Finally, Equation (2.8) can be rewritten 
as the linear equation 

(y - Vo) = m(x XQ) 

or 

Ay = m Ax. (2.9) 

Consider the case of a mass, M, sitting on a nonlinear spring, as shown in Figure 2.5(a). 
The nonnal operating point is the equilibrium position that occurs when the spring force 
balances the gravitational force Mg, where g is the gravitational constant. Thus, we obtain 
/ 0 = Mg, as shown. For the nonlinear spring with / = y1, the equilibrium position is 
yo = (Mg) I . The linear model for small deviation is 

A/ = m Ay, 



FIGURE 2.5 
(a) A mass sitting 
on a nonlinear 
spring, (b) The 
spring force 
versus y. 

Section 2.3 Linear Approximations of Physical Systems 

/ 

49 

Mass 
M 

1 
Nonlinear ^ -

spring •> 

i 

fo
rc

e 

Oil 

• 

/.) 

// $ 

/ 

/ \ 

1 = ¾ 

^ f Equilibrium 
>y 1 (operating point) 

~ ^ ' • v 

(a) (b) 

where 

m = dy 
y<* 

as shown in Figure 2.5(b). Thus, m = 2y((. A linear approximation is as accurate as 
the assumption of small signals is applicable to the specific problem. 

If the dependent variable y depends upon several excitation variables, 
Xj, x2, • • •, xn, then the functional relationship is written as 

y = g([xhx2,...,xn). (2.10) 

The Taylor series expansion about the operating point .r1(), x^, • • •, x,h) is useful for a 
linear approximation To the nonlinear function. When the higher-order terms are 
neglected, the linear approximation is written as 

y = g(xit),x2i),...,xlk) + — 

+ ••• + dx 

x-x0 

(xn - x„X 

dg 
(x2-x2t) (2.11) 

II .X = .XQ 

where XQ is the operating point. Example 2.1 will clearly illustrate the utility of this 
method. 

EXAMPLE 2.1 Pendulum oscillator model 

Consider the pendulum oscillator shown in Figure 2.6(a). The torque on the mass is 

T = MgL sin 0, (2.12) 

where g is the gravity constant. The equilibrium condition for the mass is ${) = 0°. 
The nonlinear relation between T and 6 is shown graphically in Figure 2.6(b). The 
first derivative evaluated at equilibrium provides the linear approximation, 
which is 

„ „ , , T a sin 0 
T-T*m MgL-

W 
(e - e0)t 
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FIGURE 2.6 
Pendulum 
oscillator. 

Length I. 

Mass M 

(a) (b) 

where 7̂  = 0. Then, we have 

T - MgL(cos O°)(0 - 0°) 

= MgLB. (2.13) 

This approximation is reasonably accurate for -IT/4 <•(?=£ TT/4. For example, the 
response of the linear model for the swing through ±30° is within 5% of the actual 
nonlinear pendulum response. • 

2.4 THE LAPLACE TRANSFORM 

The ability to obtain linear approximations of physical systems allows the analyst to 
consider the use of the Laplace transformation. The Laplace transform method sub
stitutes relatively easily solved algebraic equations for the more difficult differential 
equations [1., 3].The time-response solution is obtained by the following operations: 

1. Obtain the linearized differential equations. 
2. Obtain the Laplace transformation of the differential equations. 
3. Solve the resulting algebraic equation for the transform of the variable of interest. 

The Laplace transform exists for linear differential equations for which the trans
formation integral converges. Therefore, for f(t) to be transformable, it is sufficient that 

' \f(t)\e"^'dt < co, 

for some real, positive o-j flj.The 0~ indicates that the integral should include any 
discontinuity, such as a delta function at t = 0. If the magnitude of f(t) is 
1/(01 < Me0" for all positive t, the integral will converge for a{ > a. The region of 
convergence is therefore given by oo > a{ > a, and cr, is known as the abscissa of 
absolute convergence. Signals that are physically realizable always have a Laplace 
transform. The Laplace transformation for a function of time,/(f), is 

(2.14) 

The inverse Laplace transform is written as 

1 »o*+Jbo 

/(0 = ^-. I F{sW* ds. 
Z 7 7 7 , /0-/00 

(2.15) 
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C 

The transformation integrals have been employed to derive tables of Laplace trans
forms that are used for the great majority of problems. A table of important Laplace 
transform pairs is given in Table 2.3, and a more complete list of Laplace transform 
pairs can be found at the MCS website. 

Table 2.3 Important Laplace Transform Pairs 

W F(s) 

Step function, u(t) 

sin cot 

s + a 
CO 

? I co2 

cos cot 

f ( 0 = d ^ 

/ /(0 * 
Impulse function 8(t] 

e~'" sin cot 

-[(a - a)2 + co2]l/2e-af sin(cot + <f>), 
CO 

— inn ' 0 = tan 

.v2 + co2 

nl 
s"+ 1 

skF(s) - / " ' / ( C r ) - sk-2f'(0-) 

-...-fk-lHo-) 

F{s) 1 f° 
5 5 

1 

(5 + «)2 + ll>2 

s + a 

(s + a)2 + co2 

s + a 

(s + a)2 + «? 

a — a 

, " g~fV sin a»„Vl - fa, t < 1 

Vi -£ 2 

a1 + co" + >\V -I co' 
•e~'" s\r\{cot - ¢), 

= tan 1-

,2 , «)] 

1 

y(.s + a)2 + to2] 

1 - J _ e - * V s i n ( o > M V l -ft + <f>\ 
V 1 - C 

«-i = cos-1 £, £ < 1 
a 1 

" 1 2 + _ 

(a — a)2 4- a)2 

2 i 2 

1/2 
e~al sm(cot + ¢). 

s(s2 + 2t,cons + co2
n) 

s + a 

s[(s + a)2 + o>2] 

tan" 
a - a —a 
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Alternatively, the Laplace variable .v can be considered to be the differential 
operator so that 

Then we also have the integral operator 

/ dt. (2.17) 
1 

s Mr 

The inverse Laplace transformation is usually obtained by using the Heaviside 
partial fraction expansion. This approach is particularly useful for systems analysis 
and design because the effect of each characteristic root or eigenvalue can be clear
ly observed. 

To illustrate the usefulness of the Laplace transformation and the steps involved 
in the system analysis, reconsider the spring-mass-damper system described by 
Equation (2.1), which is 

d^y dy 
M-4 + £-r + ky = Kt). (2.18) 

dt2 dt y w y ' 
We wish to obtain the response,)', as a function of time.The Laplace transform of 
Equation (2.18) is 

M[ slY(s) - sy(0~) - -j(()") ) + b(sY(s) - y(0~)) + kY(s) = R(s). (2.19) 

When 

we have 

tfy 
/-(r) = 0, and y(0 ) = y{), and — 

= 0, 
/=(r 

Ms2Y{s) - Msy0 + bsY(s) - by^ + kY(s) = 0. (2.20) 

Solving for Y(s), we obtain 

(Ms + b)yQ /;(.?) 
Y(s) = - ^ ^ - = ^-7-7. (2.21) 

Ms2 + bs + k q{s) v 

The denominator polynomial q(s), when set equal to zero, is called the characteristic 
equation because the roots of this equation determine the character of the time 
response.The roots of this characteristic equation are also called the poles of the sys
tem. The roots of the numerator polynomial p(s) are called the zeros of the system; 
for example, s = -b/M is a zero of Equation (2.21). Poles and zeros are critical fre
quencies. At the poles, the function Y{s) becomes infinite, whereas at the zeros, the 
function becomes zero. The complex frequency .v-plane plot of the poles and zeros 
graphically portrays the character of the natural transient response of the system. 

For a specific case, consider the system when k/M = 2 and b/M = 3. Then 
Equation (2.21) becomes 

(S f 3)Vn 
Y(s) = \ . " ° • (2.22) 

(S -r 1)(5 + 2) 
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FIGURE 2.7 
An s-plane pole and 
zero plot. 

- O 
-3 

X = pole 
O == zero 

J CO 

-x-
-2 

-X-

The poles and zeros of Y(s) are shown on the s-plane in Figure 2.7. 
Expanding Equation (2.22) in a partial fraction expansion, we obtain 

k\ k2 
Y(s)-

1 + 2' 
(2.23) 

where k] and k2 are the coefficients of the expansion. The coefficients k, are called 
residues and are evaluated by multiplying through by the denominator factor of 
Equation (2.22) corresponding to kt and setting s equal to the root. Evaluating k{ 

when y0 = 1, we have 

* i = 
(s - Si)p(s) 

* ( * ) 
(2.24) 

(s + 1)(5 f 3) 

(s + 1)(.. + 2) 
; 2 

1 = - 1 

and k2 = —1- Alternatively, the residues of F(s) at the respective poles may be eval
uated graphically on the .s-plane plot, since Equation (2.24) may be written as 

fct = 
s \ 3 

(2.25) 
s=.v,=-l 

si + 3 

.9, + 2 
2. 

* i — 1 

The graphical representation of Equation (2.25) is shown in Figure 2.8. The graphi
cal method of evaluating the residues is particularly valuable when the order of the 
characteristic equation is high and several poles are complex conjugate pairs. 

FIGURE 2.8 
Graphical 
evaluation of the 
residues. 

- O 
-3 

J<» 

l- 3 

- X 
-2 
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(A I + 2) 
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FIGURE 2.9 
An s-plane plot of 
the poles and zeros 
of Y(s). 

The inverse Laplace transform of Equation (2.22) is then 

2 1 A -1 ] 
y{t) = 5T1 

Using Table 2.3, we find that 

s + 1 
.¾ - i . 

s + 2 
(2.26) 

y(t) = 2e~' - le (2.27) 

Finally, it is usually desired to determine the steady-state or final value of the re
sponse of y(t). For example, the final or steady-state rest position of the spring-mass-
damper system may be calculated. The final value theorem states that 

lim y(t) = limsY(s), 
/ - » 0 0 ,9—»0 

(2.28) 

where a simple pole of Y(s) at the origin is permitted, but poles on the imaginary 
axis and in the right half-plane and repeated poles at the origin are excluded. There
fore, for the specific case of the spring-mass-damper, we find that 

lim y(t) = lim sY(s) = 0. (2.29) 

Hence the final position for the mass is the normal equilibrium position v = 0. 
To illustrate clearly the salient points of the Laplace transform method, let us 

reconsider the spring-mass-damper system for the underdamped case. The equation 
for Y(s) may be written as 

(s + b/M)y0 (s + 2£a>„)y0 
Y(s) = -= = -r T, (2.30) w s2 + (b/M)s + k/M s2 + 2l<ans + <a2

n 

where £ is the dimensionless damping ratio, and w„ is the natural frequency of the 
system. The roots of the characteristic equation are 

j l f s2 = -Coin ± (onV{2 - 1, (2.31) 

where, in this case, ojn = Vk/M and t, = bf{2VkM). When £ > 1, the roots are 
real; when I < 1, the roots are complex and conjugates. When t, = 1, the roots are 
repeated and real, and the condition is called critical damping. 

When £ < 1, the response is underdamped, and 

•?u = - f o , ± M , V l - l1. (2.32) 

The .s-plane plot of the poles and zeros of Y(s) is shown in Figure 2.9, where 
6 = cos-1 £. As t, varies with a>„ constant, the complex conjugate roots follow a circular 

j o 

f '>f$: 

- -« t . -1 = cos '^"-o 

—o-
-2frh> i 

i 
i 
i 

S 2 X -

Kvi J°J, 

''*>„Vi - 1 1 
-ju, 
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FIGURE 2.10 
The locus of roots 
as I varies with wn 
constant. 

locus, as shown in Figure 2.10. The transient response is increasingly oscillatory as the 
roots approach the imaginary axis when £ approaches zero. 

The inverse Laplace transform can be evaluated using the graphical residue 
evaluation. The partial fraction expansion of Equation (2.30) is 

Y(s) = — + - 2 - . 
S — Si S - S2 

(2.33) 

Since s2 is the complex conjugate of s b the residue k2 is the complex conjugate of k{ 

so that we obtain 

Y(s) = * i k\ 

s — St s - si 

where the asterisk indicates the conjugate relation. The residue kx is evaluated from 
Figure 2.11 as 

ki = 
y0(sx + 2£<o„) yoMie P 

s\ ~ *1 M2e
)7T/r 

(2.34) 

where M\ is the magnitude of .̂  + 2£a)„, and M2 is the magnitude of S\ - **. (A re
view of complex numbers can be found on the MCS website.) In this case, we obtain 

*1 = 
yfahtP) yo 

IwnVT^ei-"'2 2Vl - CWW 
(2.35) 

FIGURE 2.11 
Evaluation of the 

S, + 2£a>„ 

= ?T - ' 
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FIGURE 2.12 
Response of the 
spring-mass-
damper system. 

• Time 

Underdamped case 

where 0 = cos £. Therefore, 

k7 = yo JW2-0) 

2 V l - C2 

Finally, letting jS = V l - £2, we find that 

(2.36) 

y(f) = kxe* - * 2 e* 

yo 

2V1 - C 
(e /(0- ir/2)v W e/«„# 4. ei(Trl2-e)e-Co>,Je-m3f} 

e -w "' sin(w„Vl - ft + B). (2.37) 

The solution. Equation (2.37), car, also be obtained using item 11 of Table 2.3. The tran
sient responses of the overdamped (£ > 1) and underdamped (£ < 1) cases are 
shown in Figure 2.12. The transient response that occurs when t, < 1 exhibits an oscil
lation in which the amplitude decreases with time, and it is called a damped oscillation. 

The relationship between the .y-plane location of the poles and zeros and the 
form of the transient response can be interpreted from the 5-plane pole-zero 
plots. For example, as seen in Equation (2.37), adjusting the value of £w„ varies 
the e~^nt envelope, hence the response y(t) shown in Figure 2.12. The larger the 
value of £<w„, the faster the damping of the response, y(t). In Figure 2.9 we see 
that the location of the complex pole S] is given by s-\ - -£co„ + ju)nV1 - £2. 
So, making £VwB larger moves the pole further to the left in the .y-plane. Thus, the 
connection between the location of the pole in the .y-plane and the step response 
is apparent—moving the pole s\ farther in the left half-plane leads to a faster 
damping of the transient step response. Of course, most control systems will 
have more than one complex pair of poles, so the transient response will be the 
result of the contributions of all the poles, in fact, the magnitude of the response 
of each pole, represented by the residue, can be visualized by examining the 
graphical residues on the .y-plane. We will discuss the connection between the 
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pole and zero locations and the transient and steady-state response more in sub
sequent chapters. We will find that the Laplace transformation and the .v-plane 
approach are very useful techniques for system analysis and design where em
phasis is placed on the transient and steady-s:ate performance. In fact, because 
the study of control systems is concerned primarily with the transient and 
steady-state performance of dynamic systems, we have real cause to appreciate 
the value of the Laplace transform techniques. 

2.5 THE TRANSFER FUNCTION OF LINEAR SYSTEMS 

The transfer function of a linear system is defined as the ratio of the Laplace transform 
of the output variable to the Laplace transform of the input variable, with all initial 
conditions assumed to be zero. The transfer function of a system (or element) repre
sents the relationship describing the dynamics of the system under consideration. 

A transfer function may be defined only for a linear, stationary (constant para
meter) system. A nonstationary system, often called a time-varying system, has one 
or more time-varying parameters, and the Laplace transformation may not be uti
lized. Furthermore, a transfer function is an input-output description of the behav
ior of a system. Thus, the transfer function description does not include any 
information concerning the internal structure of the system and its behavior. 

The transfer function of the spring-mass-damper system is obtained from the 
original Equation (2.19), rewritten with zero initial conditions as follows: 

Ms2Y(s) + bsY(s) + kY(s) = R(s). (2.38) 

Then the transfer function is 

Output Y(s) 1 
T

 F = G(s) = - 7 T = = . (2.39) 
Input v ' R(s) Ms2 + bs + k 

The transfer function of the RC network shown in Figure 2.13 is obtained by 
writing the Kirehhoff voltage equation, yielding 

Vi(s) = [R + — \I(s), (2.40) 

expressed in terms of transform variables. We shall frequently refer to variables and 
their transforms interchangeably. The transform variable will be distinguishable by 
the use of an uppercase letter or the argument (s). 

The output voltage is 

V?(s) = m(jr\ (2.41) 

R 
+ o — - — \ A / V 

FIGURE 2.13 
An RC network. - o-
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Therefore, solving Equation (2.40) for I(s) and substituting in Equation (2.41), we have 

(VCv)MCO 
VM = R + I / O • 

Then the transfer function is obtained as the ratio V>(s)/Vi(s), which is 

G(j) =
 MCO

 = *c7TT = ̂ TT =
 T T I A '

 (Z42) 

where T = RC, the time constant of the network. The single pole of G(s) is 
s = — 1/r. Equation (2.42) could be immediately obtained if one observes that the 
circuit is a voltage divider, where 

V2(s) Z2(s) 

MOO " zx(s) + z2(sy 
(2.43) 

andZi(s) = R, Z2 = l/Cs, 
A multiloop electrical circuit or an analogous multiple-mass mechanical sys

tem results in a set of simultaneous equations in the Laplace variable. It is usually 
more convenient to solve the simultaneous equations by using matrices and deter
minants [1, 3,16]. An introduction to matrices and determinants can be found on 
the MCS website. 

Let us consider the long-term behavior of a system and determine the response 
to certain inputs that remain after the transients fade away. Consider the dynamic 
system represented by the differential equation 

d"y <f~V dn'lr d"-2r 
-^ + iH-i-jpr + • • • + w = P»-^-X

 + P"-2'd~^ + ' • • + ^ {2M) 

where y{t) is the response, and r{t) is the input or forcing function. If the initial con
ditions are all zero, then the transfer function is the coefficient of R{s) in 

Pi*) _, , Pn-\S" l + P„-2S" 2 - • • • + A) ~^~R(S) = : 
ffW s" + qn-ls"-1+ ••• + qQ 

Y(s) = G(s)R(s) =- 9 f / ? ( 5 ) = ̂ - ~^5r. -^R(s). (2.45) 

The output response consists of a natural response (determined by the initial 
conditions) plus a forced response determined by the input. We now have 

m(s) p(s) 
q(s) q(s) 

where q(s) - 0 is the characteristic equation. If the input has the rational form 

n(s) 

then 

mis) p(s) n(s) 

q(s) q(s) d(s) 



Section 2.5 The Transfer Function of Linear Systems 59 

where Y^s) is the partial fraction expansion of the natural response, Y2(s) is the par
tial fraction expansion of the terms involving factors of q(s), and Y^(s) is the partial 
fraction expansion of terms involving factors of d(s). 

Taking the inverse Laplace transform yields 

yit) = yi(t) - y2(t) + y3(0-

The transient response consists of y\(t) + y2(0> anc l m e steady-state response is y3(/). 

EXAMPLE 2.2 Solution of a differential equation 

Consider a system represented by the differential equation 

"7? + 4 f + 3y = 2r(f), 
dt dt 

dy 
where the initial conditions are y(0) = 1, — (0) = 0, and /•(/) = 1, / > 0. 

dt 

The Laplace transform yields 

[s2Y(s) - sy(0)} + 4[sY(s) - y(0)] + W(s) = 2R(s). 

Since R(s) = \(s and y(0) = 1, we obtain 
s + 4 

Y(s) = — 
2 

.92 t- 45 + 3 s(s2 + 4s + 3)' 

where #(51) = s2 + 4s + 3 — (s + 1)(.5 + 3) = 0 is the characteristic equation, and 
d(s) = s. Then the partial fraction expansion yields 

Y(s) = 
3/2 -1/2 

s + 1 s + 3 
+ 

Hence, the response is 

rtO- [1- -
and the steady-state response is 

- 1 
s + 1 

+ — 
5 

1/3 

+ 3_ 

2/3 
+ — - = ) 

s 

-H + -le~l + | e " 3 ' 

iim y( 
{—»00 

0 = 
2 

: 3 - ' 

2 

EXAMPLE 2.3 Transfer function of an op-amp circuit 

The operational amplifier (op-amp) belongs to an important class of analog inte
grated circuits commonly used as building blocks in the implementation of control 
systems and in many other important applications. Op-amps are active elements 
(that is, they have external power sources) with a high gain when operating in their 
linear regions. A model of an ideal op-amp is shown in Figure 2.14. 



60 Chapter 2 Mathematical Models of Systems 

FIGURE 2.14 
The ideal op-amp. 
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i n P u t n o d e + Noninvertini 

"I input node 

h ~ 0 

/ , - 0 

-o Output node 

The operating conditions for the ideal op-amp are (1) ij = 0 and i2 = 0, thus 
implying that the input impedance is infinite, and (2) v2 - V] = 0 (or vx = u2).The 
input-output relationship for an ideal op-amp is 

v(] = K(v2 - Vi) = -K(vt - i?2), 

where the gain K approaches infinity. In our analysis, we will assume that the linear 
op-amps are operating with high gain and under idealized conditions. 

Consider the inverting amplifier shown in Figure 2.15. Under ideal conditions, 
we have i\ = 0, so that writing the node equation at V\ yields 

v-i 

ft -V=0-
Since ?;2 = V\ (under ideal conditions) and i>2 = 0 (see Figure 2.15 and compare it 
with Figure 2.14), it follows that vl = 0. Therefore, 

and rearranging terms, we obtain 

Ri 

Hi 

Hi = 0, 

Ri' 

We see that when R2 = R\, the ideal op-amp circuit inverts the sign of the input, 
that is, VQ = -v i nwhen R2 - R\. • 

EXAMPLE 2.4 Transfer function of a system 

Consider the mechanical system shown in Figure 2.16 and its electrical circuit analog 
shown in Figure 2.17. The electrical circuit analog is a force-current analog as out
lined in Tabic 2.1. The velocities V\(t) and v2(t) of the mechanical system are directly 

FIGURE 2.15 
An inverting amplifier 
operating with ideal 
conditions. 
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FIGURE 2.16 
Two-mass 
mechanical system. 
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FIGURE 2.17 
Two-node electric 
circuit analog 
C, = Mf, C2 = Mz, 
L=-\/k,R, = 1/b1( 

R2 = 1/b2. 

Current 
r(t) 

1/,(/) R) V2{t) 

t-AA/Vr-

©c, /?,. cv 

analogous to the node voltages V\{t) and v2(t) of the electrical circuit. The simultane
ous equations, assuming that the initial conditions are zero, are 

and 

MtsVfa) + (h + hms) - b,V2{s) = R(s), 

V2(s) 
M2sV2{s) + bx(V2(s) - V^s)) + k-^- = 0. 

(2.47) 

(2.48) 

These equations are obtained using the force equations for the mechanical system 
of Figure 2.16. Rearranging Equations (2.47) and (2.48), we obtain 

{Mxs + (A + bzWiis) + i-hWzis) = R(s), 

(-6l)HW + M2s + *! + " Ms) = 0, 

or, in matrix form, 

Mhs + bv + b2 -b{ 

- 6 , M2s + 6 , + 
s 

rnw 
V2(s) 

= 

r*(5)-

0 

(2.49) 
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Assuming that the velocity of M, is the output variable, we solve for V^s) by matrix 
inversion or Cramer's rule to obtain [1,3] 

V\(s) = .̂ (2.50) 
(M]S + bx + b2)(M2s + bx + k/s) - bx

2 

Then the transfer function of the mechanical (or electrical) system is 

V{(s) (M2s + bx + k/s) 
G(s) = 

R(s) (Mhs + bx + b2)(M2s + bx + k/s) - b{ 

(M2s
2 + bxs + k) 

(Mji- + b] + b2)(M2s
2 + hs + k) - bx

2s' 

If the transfer function in terms of the position X](t) is desired, then we have 

X,(s) V{(s) G(s) 

(2.51) 

R{s) sR(s) s 
(2.52) 

As an example, let us obtain the transfer function of an important electrical 
control component, the DC motor [8]. A DC motor is used to move loads and is 
called an actuator. 

An actuator is a device that provides the motive power to the process. 

EXAMPLE 2.5 Transfer function of the DC motor 

The DC motor is a power actuator device that delivers energy to a load, as shown in 
Figure 2.18(a); a sketch of a DC motor is shown in Figure 2.18(b). The DC motor 
converts direct current (DC) electrical energy into rotational mechanical energy. A 
major fraction of the torque generated in the rotor (armature) of the motor is 
available to drive an external load. Because of features such as high torque, speed 
controllability over a wide range, portability, well-behaved speed-torque charac
teristics, and adaptability to various types of control methods, DC motors are widely 
used in numerous control applications, including robotic manipulators, tape trans
port mechanisms, disk drives, machine tools, and servovalve actuators. 

The transfer function of the DC motor will be developed for a linear approxi
mation to an actual motor, and second-order effects, such as hysteresis and the volt
age drop across the brushes, will be neglected. The input voltage may be applied to 
the field or armature terminals. The air-gap flux </> of the motor is proportional to 
the field current, provided the field is unsaturated, so that 

(j> = Kfif. (2.53) 

The torque developed by the motor is assumed to be related linearly to c/> and the 
armature current as follows: 

Tm = K{4na(t) = K.KfijiDUt). (2.54) 
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Armature 

FIGURE 2.18 
A DC motor 
(a) electrical 
diagram and 
(b) sketch. 
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It is clear from Equation (2.54) that, to have a linear system, one current must be 
maintained constant while the other current becomes the input current. First, we 
shall consider the field current controlled motor, which provides a substantial power 
amplification. Then we have, in Laplace transform notation, 

Tm(s) = (K,KfIa)If(s) = KmIf(s), (2.55) 

where ia — Ia is a constant armature current, and K,„ is defined as the motor con
stant. The field current is related to the field voltage as 

Vf(s) = (Rf + Lfs)lf(s). (2.56) 

The motor torque Tm(s) is equal to the torque delivered to the load. This relation 
may be expressed as 

Tm(s) = TL(s) + Td(s)> (2.57) 

where TL(s) is the load torque and Td(s) is the disturbance torque, which is often 
negligible. However, the disturbance torque often must be considered in systems 
subjected to external forces such as antenna wind-gust forces. The load torque for 
rotating inertia, as shown in Figure 2.18, is written as 

71(.9) = Js26(s) + bs$(s). 

Rearranging Equations (2.55)-(2.57), we have 

TL(s) = T„,(s) - Td(s)> 

Us) = KmIf(s), 

Vf(s) 
If(s) = Rf + Lfs 

(2.58) 

(2.59) 

(2.60) 

(2.61) 
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FIGURE 2.19 
Block diagram 
model of field-
controlled DC 
motor. 
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Therefore, the transfer function of the motor-load combination, with TJs) = 0, is 

0(s) Km KJ(JLf) 

VJs) s(Js + b)(Lfs + Rf) s(s + b/J)(s + Rf/Lf)' 
(2.62) 

The block diagram model of the field-controlled DC motor is shown in Figure 2.19. 
Alternatively, the transfer function may be written in terms of the time constants of the 
motor as 

0(s) 
Vf(s) 

= G{s) = 
KnJ(bRf) 

s(rfs + \)(T,S + 1Y 
(2.63; 

whore ry = Lf/Rf and TL = J/b. Typically, one finds that TL > rF and often the 
field time constant may be neglected. 

The armature-controlled DC motor uses the armature current ia as the control 
variable. The stator field can be established by a field coil and current or a permanent 
magnet. When a constant field current is established in a field coil, the motor torque is 

TJs) = {KxKfJf)la{s) = KJa(s). (2.64) 

When a permanent magnet is used, we have 

Us) = KMs), 

where Km is a function of the permeahility of the magnetic material. 
The armature current is related to the input voltage applied to the armature by 

Va{s) = (Rn + Las)Ia(s) + Vb(sl (2.65) 

where Vh(s) is the back electromotive-force voltage proportional to the motor 
speed. Therefore, we have 

Vh(s) = KtMs), (2.66) 

where OJ(S) = s6(s) is the transform of the angular speed and the armature current is 

J/(-v) ^ K^s) 
W) = 

R„ + Lai-

Equations (2.58) and (2.59) represent the load torque, so that 

TL(s) = Js2B(s) + bsB(s) = TJs) - TJs), 

(2.67) 

(2.68) 
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FIGURE 2.20 
Armature-controlled 
DC motor. 
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The relations for the armature-controlled DC motor are shown schematically in 
Figure 2.20. Using Equations (2.64), (2.67), and (2.68) or the block diagram, and let
ting Td(s) = 0, we solve to obtain the transfer function 

GO) = 
K, m = 

Va(s) s[(Rtl + Las)(Js + *) + KbKm] 

_ Kin 

s(s2 + 2£a>ns + a>2
n) 

(2.69) 

However, for many DC motors, the time constant of the armature, r„ = L„/R„, is 
negligible; therefore. 

G(s) = 
K, 0(s) = 

Va(s) s[Ra(Js + b) + KbKm] 

Km/{Rab + KhKw) 

sins + l) 
(2.70) 

where the equivalent time constant T] = RaJ/(R„b + KbKin). 
Note that Km is equal to Kh. This equality may be shown by considering the 

steady-state motor operation and the power balance when the rotor resistance is 
neglected. The power input to the rotor is {Ky<x>)ia, and the power delivered to the 
shaft is Tea, In the steady-state condition, the power input is equal to the power de
livered to the shaft so that {Khu))ia = Tco; since T = Kmia (Equation 2.64), we find 
that Kb = Km. 

Electric motors are used for moving loads when a rapid response is not re
quired and for relatively low power requirements. Typical constants for a fractional 
horsepower motor are provided in Table 2.4. Actuators that operate as a result of 
hydraulic pressure are used for large loads. Figure 2.21 shows the usual ranges of 
use for electromechanical drives as contrasted to electrohydraulic drives. Typical 
applications are also shown on the figure. • 

Table 2.4 Typical Constants for a Fractional Horsepower DC Motor 

50 x l ( r 3 N-m/A 
1 x l ( r 3N-nvs2 / rad 
1 ms 

Motor constant K 
Rotor inertia ./„, 
Field time constant T* 
Rotor time constant r 
Maximum output power 

100 ms 
1

4 hp. 187 W 
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FIGURE 2.21 
Range of control 
response time and 
power to load for 
electromechanical 
and electrohy-
draulic devices. 
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EXAMPLE 2.6 Transfer function of a hydraulic actuator 

A useful actuator for the linear positioning of a mass is the hydraulic actuator 
shown in Table 2.5, item 9 [9,10]. The hydraulic actuator is capable of providing a 
large power amplification. It will be assumed that the hydraulic fluid is available 
from a constant pressure source and that the compressibility of the fluid is negligi
ble. A downward input displacement x moves the control valve; thus, fluid passes 
into the upper part of the cylinder, and the piston is forced downward. A small, low-
power displacement of x(t) causes a larger, high-power displacement, y(t). The volu
metric fluid flow rate Q is related to the input displacement x(t) and the differential 
pressure across the piston as Q = g(x, P). Using the Taylor series linearization as in 
Equation (2.11), we have 

Q = dx 
X + 

-v«. P« dP 
P - kxx - kPP, (2.71) 

A,,. Pa 

where g = g(x, P) and (x0, PQ) is the operating point. The force developed by the 
actuator piston is equal to the area of the piston, A, multiplied by the pressure, P. 
This force is applied to the mass, so we have 

d y dy 

dt2 dt 
(2.72) 
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Thus, substituting Equation (2.71) into Equation (2.72), we obtain 

A d2v dy 
— {kxx - Q) = M - V + b-f (2.73) 
kP dr at 

Furthermore, the volumetric fluid flow is related to the piston movement as 

dy 
Q = A-£. (2.74) 

Then, substituting Equation (2.74) into Equation (2.73) and rearranging, we have 

Ak* Md2y + (,, #\dy nn^ 
-—x = M—r + \b + -r- \-r. (2.75) 
kP dt2 \ kpjdt 

Therefore, using the Laplace transformation, we have the transfer function 

Y{s) K 

X(s) s(Ms + B)' 
(2.76) 

where 

AkK A2 

K = —— and B = b + — . 
kp kp 

Note that the transfer function of the hydraulic actuator is similar to that of the elec
tric motor. For an actuator operating at high pressure levels and requiring a rapid 
response of the load, we must account for the effect of the compressibility of the 
fluid [4,5J. 

Symbols, units, and conversion factors associated with many of the variables in 
Table 2.5 are located at the MCS website. The symbols and units for each variable can be 
found in tables with corresponding conversions between SI and English units. • 

The transfer function concept and approach is very important because it pro
vides the analyst and designer with a useful mathematical model of the system ele
ments. We shall find the transfer function to be a continually valuable aid in the 
attempt to model dynamic systems. The approach is particularly useful because the 
s-plane poles and zeros of the transfer function represent the transient response of 
the system. The transfer functions of several dynamic elements are given in Table 2.5. 

In many situations in engineering, the transmission of rotary motion from one 
shaft to another is a fundamental requirement. For example, the output power of an 
automobile engine is transferred to the driving wheels by means of the gearbox and 
differential. The gearbox allows the driver to select different gear ratios depending 
on the traffic situation, whereas the differential has a fixed ratio. The speed of the 
engine in this case is not constant, since it is under the control of the driver. Anoth
er example is a set of gears that transfer the power at the shaft of an electric motor 
to the shaft of a rotating antenna. Examples of mechanical converters are gears, 
chain drives, and belt drives. A commonly used electric converter is the electric 
transformer. An example of a device that converts rotational motion to linear mo
tion is the rack-and-pinion gear shown in Table 2.5, item 17. 
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Table 2.5 Transfer Functions of Dynamic Elements and Networks 

Element or System G(s) 

1. Integrating circuit, filter 

C 

Vfo) 1 
RCs 

2. Differentiating circuit 

+ 
Vifs) 

) \ -o + 

V2(s) 

—o — 

Vi{s) 
= -RCs 

3. Differentiating circuit 

ft, R2 

V,(s) V2(s) 

—o 

Vi{s) ' R, 

4. Integrating filter 

V2(s) (RiQs + l)(R2C2s + 1) 

Vi(s) RiC2s 

(continued) 
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Table 2.5 Continued 

Element or System G(s) 

69 

5. DC motor, field-controlled, rotational actuator 

6. DC motor, armature-controlled, rotational actuator 

0,o) J,b 

- o < 

7. AC motor, two-phase control field, rotational actuator 
+ °-

J,b 

Vc(s) 0¾^ 
Reference 

field 

Vf(s) s(Js + b){Lfs + Rr) 

g(f) _ Km 
Va(s) s[(Ra + Las)(Js + £) + KbKK 

d(s) Kn 

Vc(s) S(TS + 1) 

r = J/(b - m) 

m = slope of linearized torque-speed 
curve (normally negative) 

VJs) K/iRcR* 
VC(S) (STC + l)(STq + 1) 

rc = Lc/Rc, rq = LqjRq 

for the unloaded case, id ~ 0, TC 
0.05 s < TC < 0.5 s 

vq,vM^vd 

iV 

9. Hydraulic actuator 

I .r(f), Control valve 
• displacement 

Return 

Pressure 
source 

Return 

Load v(r) 

X 
X(s) 5(MJ + B) 

K = 

kY = 
dx H) 

B = \b + 
4' 

g = #(*, P) = flow 

/1 = area of piston (continued) 
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Table 2.5 Continued 

Element or System G(s) 

10. Gear train, rotational transformer 

Gear 1 

Gear 2 

11. Potentiometer, voltage control 

R2 

+ o-

W /?<"—° + 

*2 V,(j) 

12. Potentiometer, error detector bridge 

Baiter) 

+ 

Error 
voltage 

13. Tachometer, velocity sensor 

o + 

Gear ratio = n = — 

Hs) _ R2 _ 1*2 
Vx(s) =" ~R " /?, + /¾ 

J* "mnY 

K2(j) = Mertor(-S) 

fe« = 
^Battery 

"max 

K2(.v) = A > ( » = tfts0(,s) 

/C, = constant 

Vt(s) ST + 1 

RQ = output resistance 

C0 - output capacitance 

T = RQCn,T « Is 

and is often negligible for 
controller amplifier 

(continued) 
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Table 2.5 Continued 

Element or System G(s) 

15. Accelerometer, acceleration sensor 

Frame 

x-Jt) 

y(t) 

*o(0 = y(t) - *in(0> 

—s 

Xin(s) s2 + {b/M)s + k/M 

For low-frequency oscillations, where 

Xo{}<*>) co2 

4 ( » k/M 

16. Thermal heating system 

or _ 1 _ _ i _ i 

Fluid in 

I 
STn 

9"-

Fluid 
out 

6 Heater 6 

17. Rack and pinion 

-, where 
gr(s) l 
¢(5) " Cts + (QS + \/Rt) 

2T = % - % = temperature difference 
due to thermal process 

C, = thermal capacitance 

Q = fluid flow rate = constant 

S = specific heat of water 

R, = thermal resistance of insulation 

q(s) = transform of rate of heat flow of 
heating element 

x = rd 

converts radial motion 

to linear motion 

2.6 BLOCK DIAGRAM MODELS 

The dynamic systems that comprise automatic control systems are represented math
ematically by a set of simultaneous differential equations. As we have noted in the 
previous sections, the Laplace transformation reduces the problem to the solution of a 
set of linear algebraic equations. Since control systems are concerned with the control of 
specific variables, the controlled variables must relate to the controlling variables. This 
relationship is typically represented by the transfer function of the subsystem relating 



72 Chapter 2 Mathematical Models of Systems 

FIGURE 2.22 
Block diagram of a 
DC motor. 
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FIGURE 2.23 
General block 
representation of 
two-input, two-
output system. 
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FIGURE 2.24 
Block diagram of 
interconnected 
system. 

the input and output variables. Therefore, one can correctly assume that the transfer 
function is an important relation for control engineering. 

The importance of this cause-and-effect relationship is evidenced by the facility 
to represent the relationship of system variables by diagrammatic means. The block 
diagram representation of the system relationships is prevalent in control system en
gineering. Block diagrams consist of unidirectional, operational blocks that represent 
the transfer function of the variables of interest. A block diagram of a field-con
trolled DC motor and load is shown in Figure 2.22.The relationship between the dis
placement 6(s) and the input voltage Vf(s) is clearly portrayed by the block diagram. 

To represent a system with several variables under control, an interconnection 
of blocks is utilized. For example, the system shown in Figure 2.23 has two input 
variables and two output variables [6]. Using transfer function relations, we can 
write the simultaneous equations for the output variables as 

l iW = Gn(*)*i(*) + Gl2(s)R2(s), (2.77) 

and 
Y2{s) = G21(s)R1(s) + G22(s)R2(sl (2.78) 

where Gtj(s) is the transfer function relating the /th output variable to the/th input vari
able. The block diagram representing this set of equations is shown in Figure 2.24. In 
general, for/inputs and /outputs, we write the simultaneous equation in matrix form as 

(2.79) 

or simply 

RAs) 

~Yi(s)~ 

Y2(s) 

Jfah 

CZ„M 

= 

Gn(s) ••• Gu(s) 

G2[(s) ••• G2J(s) 

Gn(s) ••• GfJ(s)_ 

Y - GR. 

— K j — * * Ki(5) 

*iM 
R2(s) 

_*/(*)_ 

(2.80) 

n&i w 
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Here the Y and R matrices are column matrices containing the I output and the J input 
variables, respectively, and G is an / by./ transfer function matrix. The matrix representa
tion of the interrelationship of many variables is particularly valuable for complex multi-
variable control systems. An introduction to matrix algebra is provided on the MCS 
website for those unfamiliar with matrix algebra or who would find a review helpful [22], 

The block diagram representation of a given system often can be reduced to a 
simplified block diagram with fewer blocks than the original diagram. Since the 
transfer functions represent linear systems, the multiplication is commutative. Thus, 
in Table 2.6, item 1, we have 

X3(s) = G2(s)X2(s) = G1(s)G2{s)X1(s). 

Table 2.6 Block Diagram Transformations 

Transformation Original Diagram Equivalent Diagram 
1. Combining blocks in cascade •V, 

GAs) 
Xo 

G2(s) 
X, 

G,G, 
A\ 

or 

G2Gt 

*s 

2. Moving a summing point 
behind a block 

3. Moving a pickoff point 
ahead of a block 

4. Moving a pickoff point 
behind a block 

5. Moving a summing point 
ahead of a block 

X-, 

X-, 

x, 

* i 

x2 G 

G 
X-, 

*1 

* l 

G 

\ 
G 

X2 

6. Eliminating a feedback loop 
\C\ t. V 
* ! 

i 

G 

H 

X, 

\TGH 

X, 
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FIGURE 2.25 
Negative feedback 
control system. 
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When two blocks are connected in cascade, as in Table 2.6, item 1, we assume that 

X3(s) = G2(s)G1(s)X,(s) 

holds true. This assumes that when the first block is connected to the second block, 
the effect of loading of the first block is negligible. Loading and interaction between 
interconnected components or systems may occur. If the loading of interconnected 
devices does occur, the engineer must account for this change in the transfer func
tion and use the corrected transfer function in subsequent calculations. 

Block diagram transformations and reduction techniques are derived by consid
ering the algebra of the diagram variables. For example, consider the block diagram 
shown in Figure 2.25. This negative feedback control system is described by the 
equation for the actuating signal, which is 

Ea(s) = R(s) - B(s) = R(s) - H(s)Y(s). (2.81) 

Because the output is related to the actuating signal by G(s), wc have 

Y(s) - G(s)U(s) = G(s)G(l(s)Z(s) = G(s)Ga(s)Ge(s)Ea(s)', (2.82) 

thus, 

Y(s) = G(S)Ga(s)Gc(s)[R(s) - H(s)Y(s)]. (2.83) 

Combining the Y(s^) terms, we obtain 

Y(s)[l + G(s)Gn(s)Gc(s)H(s)] = G(s)Ga(s)Gc(s)R(s). (2.84) 

Therefore, the transfer function relating the output Y(s) to the input R(s) is 

G(s)Ga(s)Ge(s) Y{s) = 

R(s) " 1 + G{s)Ga(s)Gc(s)H(s) 
(2.85) 

This closed-loop transfer function is particularly important because it represents 
many of the existing practical control systems. 

The reduction of the block diagram shown in Figure 2.25 to a single block rep
resentation is one example of several useful techniques. These diagram transforma
tions are given in Table 2.6. All the transformations in Table 2.6 can be derived by 
simple algebraic manipulation of the equations representing the blocks. System 
analysis by the method of block diagram reduction affords a better understanding of 
the contribution of each component element than possible by the manipulation of 
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FIGURE 2.26 
Multiple-loop 
feedback control 
system. 

R(s) *• Vis) 

equations. The utility of the block diagram transformations will be illustrated by an 
example using block diagram reduction. 

EXAMPLE 2.7 Block diagram reduction 

The block diagram of a multiple-loop feedback control system is shown in Figure 2.26. 
It is interesting to note that the feedback signal Hi(s)Y(s) is a positive feedback sig
nal, and the loop G3(s)G4(s)H-[(s) is a positive feedback loop. The block diagram 
reduction procedure is based on the use of Table 2.6, transformation 6, which elim
inates feedback loops. Therefore the other transformations are used to transform 
the diagram to a form ready for eliminating feedback loops. First, to eliminate the 
loop G3G4H1, we move H2 behind block G4 by using transformation 4, and obtain 
Figure 2.27(a). Eliminating the loop G3G4Hl by using transformation 6, we obtain 
Figure 2.27(b). Then, eliminating the inner loop containing H2/G4, we obtain Figure 
2.27(c). Finally, by reducing the loop containing H$, we obtain the closed-loop sys
tem transfer function as shown in Figure 2.27(d). It is worthwhile to examine the 
form of the numerator and denominator of this closed-loop transfer function. We 
note that the numerator is composed of the cascade transfer function of the feed
forward elements connecting the input R(s) and the output Y(s). The denominator is 
composed of 1 minus the sum of each loop transfer function. The loop G^G4H1 has a 
plus sign in the sum to be subtracted because it is a positive feedback loop, whereas 
the loops G1G2G3G4//3 and G2Gj,H2 are negative feedback loops. To illustrate this 
point, the denominator can be rewritten as 

q(s) = 1 - (+G3G4H1 - G2G3H2 - CT]G2G2G4H3). (2.86) 

This form of the numerator and denominator is quite close to the general form for 
multiple-loop feedback systems, as we shall find in the following section. • 

The block diagram representation of feedback control systems is a valuable 
and widely used approach. The block diagram provides the analyst with a graphi
cal representation of the interrelationships of controlled and input variables. Fur
thermore, the designer can readily visualize the possibilities for adding blocks to 
the existing system block diagram to alter and improve the system performance. 
The transition from the block diagram method to a method utilizing a line path 
representation instead of a block representation is readily accomplished and is 
presented in the following section. 
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FIGURE 2.27 
Block diagram 
reduction of the 
system of Figure 
2.26. 
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2.7 SIGNAL-FLOW GRAPH MODELS 

Block diagrams are adequate for the representation of the interrelationships of con
trolled and input variables. However, for a system with reasonably complex interre
lationships, the block diagram reduction procedure is cumbersome and often quite 
difficult to complete. An alternative method for determining the relationship be
tween system variables has been developed by Mason and is based on a representa
tion of the system by line segments [4,25]. The advantage of the line path method, 
called the signal-flow graph method, is the availability of a flow graph gain formula, 
which provides the relation between system variables without requiring any reduc
tion procedure or manipulation of the flow graph. 

The transition from a block diagram representation to a directed line segment 
representation is easy to accomplish by reconsidering the systems of the previous 
section. A signal-flo'w graph is a diagram consisting of nodes that are connected by 
several directed branches and is a graphical representation of a set of linear rela
tions. Signal-flow graphs are particularly useful for feedback control systems be
cause feedback theory is primarily concerned with the flow and processing of signals 
in systems. The basic element of a signal-flow graph is a unidirectional path segment 
called a branch, which relates the dependency of an input and an output variable in 
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FIGURE 2.28 
Signal-flow graph 
of the DC motor. 

FIGURE 2.29 
Signal-flow graph 
of interconnected 
system. 
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a manner equivalent to a block of a block diagram. Therefore, the branch relating 
the output 6(s) of a DC motor to the field voltage \j(s) is similar to the block dia
gram of Figure 2.22 and is shown in Figure 2.28. The input and output points or junc
tions are called nodes. Similarly, the signal-flow graph representing Equations (2.77) 
and (2.78), as well as Figure 2.24, is shown in Figure 2.29. The relation between each 
variable is written next to the directional arrow. All branches leaving a node will 
pass the nodal signal to the output node of each branch (unidirectionally). The sum
mation of all signals entering a node is equal to the node variable. A path is a branch 
or a continuous sequence of branches that can be traversed from one signal (node) 
to another signal (node). A loop is a closed path that originates and terminates on 
the same node, with no node being met twice along the path. Two loops are said to 
be nontouching if they do not have a common node. Two touching loops share one 
or more common nodes. Therefore, considering Figure 2.29 again, we obtain 

Y&) = Guises) + Gl2(s)R2(s), (2.87) 
and 

Y2(s) = GfeiMHtM + G22(s)R2(s). (2.88) 

The flow graph is simply a pictorial method of writing a system of algebraic 
equations that indicates the interdependencies of the variables. As another example. 
consider the following set of simultaneous algebraic equations: 

anx1 + fli2*2 + f"i — X\ (2.89) 

021*1 + fl22*2 + r2 ~ x2- (2.90) 

The two input variables are rj and r2, and the output variables are X\ and x2. A sig
nal-flow graph representing Equations (2.89) and (2.90) is shown in Figure 2.30. 
Equations (2.89) and (2.90) may be rewritten as 

*l0 - «ll) + *2(~«12) = rh (2.91) 
and 

*i(-«2i) + x2{l ~ a22) = r2. (2.92) 

The simultaneous solution of Equations (2.91) and (2.92) using Cramer's rule re
sults in the solutions 

x, 
(1 - a22)rx + anr2 

(1 - an)( l - a22) - al2a21 
- ^ - r , + ~r2, (2.93) 
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FIGURE 2.30 
Signal-flow graph 
of two algebraic 
equations. 

* i O 

« 2 o *• 

and 

*2 
(1 - an)r2 + a2ir1 

(1 - « n ) ( l - a22) - anan 
- ^ - r 2 + T r , (2.94) 

The denominator of the solution is the determinant A of the set of equations 
and is rewritten as 

A = (1 - an ) ( l - «22) _ «i2«2i = 1 ~ au - a22 + ana22 - aua21. (2.95) 

In this case, the denominator is equal to 1 minus each self-loop an, a22, and ai2a2l, 
plus the product of the two nontouching loops an and a22. The loops a22 and fl2i

fli2 
are touching, as are a\\ and «21̂ 12-

The numerator for xx with the input r{ is 1 times 1 - a22> which is the value of A 
excluding terms that touch the path 1 from V\ to X\, Therefore the numerator from r2 

to Xi is simply a12 because the path through a12 touches all the loops. The numerator 
for x2 is symmetrical to that of x\. 

In general, the linear dependence % between the independent variable xt 

(often called the input variable) and a dependent variable Xj is given by Mason's 
signal-flow gain formula [11,12], 

l'ij = (2.96) 

Pyk = gain of kth path from variable x, to variable Xj, 

A = determinant of the graph, 

A p = cofactor of the path P^, 

and the summation is taken over all possible k paths from xt to Xj. The path gain or 
transmittance P,jk is defined as the product of the gains of the branches of the path, 
traversed in the direction of the arrows with no node encountered more than once. 
The cofactor A^ is the determinant with the loops touching the k\h path removed. 
The determinant A is 

N 

A = 1 - 2 L „ 2 t-'n'-'m 2 >--n'-1m'-lp (2.97) 
n, m 

nontouching 
n, m, p 

nontouching 

where Lq equals the value of the qth loop transmittance. Therefore the rule for eval
uating A in terms of loops Lh L2, L3,..., LN is 
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A = 1 — (sum of all different loop gains) 
+ (sum of the gain products of all combinations of two nontouching loops) 
— (sum of the gain products of all combinations of three nontouching loops) 
+ • • • . 

The gain formula is often used to relate the output variable Y(s) to the input 
variable R(s) and is given in somewhat simplified form as 

T = 
S*P*A* 

(2.98) 

where T(s) = Y(s)/R(s). 
Several examples will illustrate the utility and ease of this method. Although the 

gain Equation (2.96) appears to be formidable, one must remember that it repre
sents a summation process, not a complicated solution process. 

EXAMPLE 2.8 Transfer function of an interacting system 

A two-path signal-flow graph is shown in Figure 231(a) and the corresponding block di
agram is shown in Figure 2.31(b). An example of a control system with multiple signal 
paths is a multilegged robot. The paths connecting the input R(s) and output Y(s) are 

P1 = GXG2G2GA (path 1) and P2 = G5G6G7G8 (path 2). 

(a) 

FIGURE 2.31 
Two-path 
interacting system. 
(a) Signal-flow 
graph, (b) Block 
diagram. 
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There are four self-loops: 

Lx = G2H2, L2 = H3G3, L3 = G6tf6, and L4 = G-,H-,. 

Loops L, and L2 do not touch L3 and L4. Therefore, the determinant is 

A = 1 - (Li + L2 + L3 + L4) + (LtL3 + I4L4 + L2L3 + L2L4). (2.99) 

The cofactor of the determinant along path 1 is evaluated by removing the loops 
that touch path 1 from A. Hence, we have 

Lx = L2 = 0 and At - 1 - (L3 f L4). 

Similarly, the cofactor for path 2 is 

A2 = 1 - (L, + L2). 

Therefore, the transfer function of the system is 

Y(s) PjAt + />?A2 _ _ = 7 ( 5 ) = _ (2.100) 

GjG2G3G4(l ~ ^ ~ ^ ) + G5G6G7G8(1 - Lx - L2) 

1 - Li ~ L2~ 1^ - L4 + LiL3 + LXLA + L2L3 + L2L4* 

A similar analysis can be accomplished using block diagram reduction techniques. 
The block diagram shown in Figure 2.31 (b) has four inner feedback loops within the 
overall block diagram. The block diagram reduction is simplified by first reducing 
the four inner feedback loops and then placing the resulting systems in series. Along 
the top path, the transfer function is 

Yl(s) = Gi(s) 
G2(s) 

1 - G2(s)H2(s) 

G3(s) 

1 - G3(s)H3(s) 
G4(s)R(s) 

G1(s)G2(X)Ch(s)G4(S) 

(1 - G2(s)H2(s))(l - G3(s)H3(s))_ 

Similarly across the bottom path, the transfer function is 

R(s). 

Y2(s) = G5(s) 
G6(s) 

1 - G6(s)J%(5) 

G7(.9) 

1 - G7(s)H7(s) 
G8(s)R(s) 

G5(s)G6(s)G1(s)Gfi(S) 

(1 - G6(.v)%v))(l - GfaHffl) 

The total transfer function is then given by 

Gi(s)G2(s)G3(s)G4(s) 

R(s). 

Y(s) = Yi(s) + Y2(s) = 
(1 - G2(s)H2(s))(l - G3(s)H3(s)) 

+• 
G5(S)G6(S)G7(S)G&(s) 

(1 - G6(s)H6(s))(l G7(s)H7(s)) 
R(s). 
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EXAMPLE 2.9 Armature-controlled motor 

The block diagram of the armature-controlled DC motor is shown in Figure 2.20. 
This diagram was obtained from Equations (2.64)-(2.68). The signal-flow diagram 
can be obtained either from Equations (2.64)-(2.68) or from the block diagram and 
is shown in Figure 2.32. Using Mason's signal-flow gain formula, let us obtain the 
transfer function for 0(s)/Va(<>) with Td(s) = 0. The forward path is P\(s), which 
touches the one loop, Li(s), where 

?!(*) = fasfflis) and Li(*) = -K^s^s). 

Therefore, the transfer function is 

Pl{s) (l/s)G1(s)G2(s) 
T(s) = 

KI: 

1 - U{s) 1 -r KhG,{s)G2(s) s[(Ra + Las)(Js + b) + KbKmY 

which is exactly the same as that derived earlier (Equation 2.69). • 

The signal-flow graph gain formula provides a reasonably straightforward ap
proach for the evaluation of complicated systems. To compare the method with 
block diagram reduction, which is really not much more difficult, let us reconsider 
the complex system of Example 2.7. 

EXAMPLE 2.10 Transfer function of a multiple-loop system 

A multiple-loop feedback system is shown in Figure 2.26 in block diagram form. 
There is no need to redraw the diagram in signal-flow graph form, and so we shall 
proceed as usual by using Mason's signal-flow gain formula, Equation (2.98). There 
is one forward path Px = GiG2G3G4. The feedback loops are 

Lx = -G2G3H2, L2 = G3G4Hh and L3 = -G^G^G^y (2.101) 

All the loops have common nodes and therefore are all touching. Furthermore, the 
path Pj touches all the loops, so Ai = 1. Thus, the closed-loop transfer function is 

Y{s) PtA, 
T(s) = 

R(s) \ - L x - L 2 - L 3 

G\G2GT£J$ 

1 + G2G3H2 - GiGiHi + GXGTGIGIHI 
(2.102) 

FIGURE 2.32 
The signal-flow 
graph of the 
armature-controlled 
DC motor. 
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FIGURE 2.33 
Multiple-loop 
system. 

R(s)Q 

-H, 

EXAMPLE 2.11 Transfer function of a complex system 

Finally, we shall consider a reasonably complex system that would be difficult to re
duce by block diagram techniques. A system with several feedback loops and feed
forward paths is shown in Figure 2.33. The forward paths are 

P, = G&GsG&Gt, P2 = GiGtfhG* and P3 = G&G&Gs. 

The feedback loops are 

L\ = -G2G3G4G5B2, L2 = -G5GbHh L3 = ~G8HX, L4 = -G7H2G2 

L$ = —G4H4 Lfr = —GiG2G3G4G^Gf,H3, Lj = —GiG^jG^H^, and 
L8 = -GiG-fi^G^G^Hj,. 

Loop L5 does not touch loop L4 or loop L7, and loop L3 does not touch loop L4\ but 
all other loops touch. Therefore, the determinant is 

A = 1 - (Li + L 2 + L3 + L4 + Ls + L6 + L7 + L8) + (L5L7 + L5L4 + L3L4). 

(2.103) 

The cofactors are 

A! = A3 = 1 and A2 = 1 - L5 = 1 + G4H4. 
Finally, the transfer function is 

Y(s) P{ + P2A2 + P3 
T(s) = R{s) 

(2.104) 

Signal-flow graphs and Mason's signal-flow gain formula may be used prof
itably for the analysis of feedback control systems, electronic amplifier circuits, sta
tistical systems, and mechanical systems, among many other examples. 

2.8 DESIGN EXAMPLES 

In this section we present five illustrative design examples. In the first example, we present 
a detailed look at modeling of the fluid level in a reservoir. The modeling is presented in a 
very detailed manner to emphasize the effort required to obtain a linear model in the form 
of a transfer function. The design process depicted in Figure 1.15 is highlighted in this 
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example. The remaining four examples include an electric traction motor model develop
ment, a look at a mechanical accelerometer aboard a rocket sled, an overview of a labora
tory robot and the associated hardware specifications, and the design of a low-pass filter. 

EXAMPLE 2.12 Fluid flow modeling 

A fluid flow system is shown in Figure 2.34. The reservoir (or tank) contains water 
that evacuates through an output port. Water is fed to the reservoir through a pipe 
controlled by an input valve. The variables of interest are the fluid velocity V (m/s), 
fluid height in the reservoir H (m), and pressure p (N/m2). The pressure is defined 
as the force per unit area exerted by the fluid on a surface immersed (and at rest 
with respect to) the fluid. Fluid pressure acts normal to the surface. For further read
ing on fluid flow modeling, see [34-36]. 

The elements of the control system design process emphasized in this example 
are shown in Figure 2.35. The strategy is to establish the system configuration and 
then obtain the appropriate mathematical models describing the fluid flow reservoir 
from an input-output perspective. 

The general equations of motion and energy describing fluid flow are quite 
complicated. The governing equations are coupled nonlinear partial differential 
equations. Wc must make some selective assumptions that reduce the complexity of 
the mathematical model. Although the control engineer is not required to be a fluid 
dynamicist, and a deep understanding of fluid dynamics is not necessarily acquired 
during the control system design process, it makes good engineering sense to gain at 
least a rudimentary understanding of the important simplifying assumptions. For a 
more complete discussion of fluid motion, see [37-39]. 

To obtain a realistic, yet tractable, mathematical model for the fluid flow reser
voir, we first make several key assumptions. We assume that the water in the tank is in
compressible and that the flow is inviscid, irrotational and steady. An incompressible 
fluid has a constant density p (kg/m3). In fact, all fluids are compressible to some ex
tent. The compressibility factor, k, is a measure of the compressibility of a fluid. A 
smaller value of k indicates less compressibility. Air (which is a compressible fluid) has 
a compressibility factor of kaiT = 0.98 m2/N, while water has a compressibility factor 
of &H,O = 4.9 X 10"10m2/N = 50 X 10-6 atnT1. In other words, a given volume of 

FIGURE 2.34 
The fluid flow 
reservoir 
configuration. 

Z^fZ Input 
valve 

02 + A02 
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Topics emphasized in this example 

Establish the control goals 

I 
Identify the variables to be controlled 

Write the specifications 

See Figure 2.34 for 
4 water tank with input and 

output ports. 

See Eqs.(2.108) and (2.109) for 
the nonlinear model. 

See Eqs.(2.114) and (2.116) for 
the linear models. 

Describe a controller and select key 
parameters to be adjusted 

Optimize the parameters and 
analyze the performance 

\ ^ ^ 
If the performance does not meet the Tf the performance meets the specifications, 
specifications, then iterate the configuration. (hen finalize the design. 

FIGURE 2.35 Elements of the control system design process emphasized in the fluid flow 
reservoir example. 

water decreases by 50 one-millionths of the original volume for each atmosphere 
(ami) increase in pressure. Thus the assumption that the water is incompressible is 
valid for our application. 

Consider a Quid in motion. Suppose that initially the flow velocities are differ
ent for adjacent layers of fluid. Then an exchange of molecules between the two lay
ers tends to equalize the velocities in the layers. This is internal friction, and the 
exchange of momentum is known as viscosity. Solids are more viscous than fluids, 
and fluids are more viscous than gases. A measure of viscosity is the coefficient of 
viscosity /x (N s/m2). A larger coefficient of viscosity implies higher viscosity. The co
efficient of viscosity (under standard conditions, 20°C) for air is 

/xair = 0.178 X 10 4 N s/m2, 

and for water we have 

pH2Q = t.054 x 10"3 N s/m2. 

So water is about 60 times more viscous than air. Viscosity depends primarily on tem
perature, not pressure. For comparison, water at 0°C is about 2 times more viscous 

Establish the system cuunguiauun 

i ' 
Obtain a model of the process, the 

actuator, and the sensor 

J . 
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than water at 20°G With fluids of low viscosity, such as air and water, the effects of 
friction are important only in the boundary layer, a thin layer adjacent to the wall of 
the reservoir and output pipe. We can neglect viscosity in our model development. 
We say our fluid is inviscid. 

If each fluid element at each point in the flow has no net angular velocity about 
that point, the flow is termed irrotational. Imagine a small paddle wheel immersed 
in the fluid (say in the output port). If the paddle wheel translates without rotating, 
the flow is irrotational. We will assume the water in the tank is irrotational. For an 
inviscid fluid, an initially irrotational flow remains irrotational. 

The water flow in the tank and output port can be either steady or unsteady. The 
flow is steady if the velocity at each point is constant in time. This does not neces
sarily imply that the velocity is the same at every point but rather that at any given 
point the velocity does not change with time. Steady-state conditions can be 
achieved at low fluid speeds. We will assume steady flow conditions. If the output 
port area is too large, then the flow through the reservoir may not be slow enough to 
establish the steady-state condition that we are assuming exists and our model will 
not accurately predict the fluid flow motion. 

To obtain a mathematical model of the flow within the reservoir, we employ 
basic principles of science and engineering, such as the principle of conservation of 
mass. The mass of water in the tank at any given time is 

m = pAtH, (2.105) 

where A\ is the area of the tank, p is the water density, and H is the height of the 
water in the reservoir. The constants for the reservoir system are given in Table 2.7. 

In the following formulas, a subscript 1 denotes quantities at the input, and a 
subscript 2 refers to quantities at the output. Taking the time derivative of m in 
Equation (2.105) yields 

m = pAiH, 

where we have used the fact that our fluid is incompressible (that is, p = 0) and that 
the area of the tank, A\, docs not change with time. The change in mass in the reser
voir is equal to the mass that enters the tank minus the mass that leaves the tank, or 

m = pAxH = 0 , - pA2v2, (2.106) 

where Qx is the steady-state input mass flow rate, v2 is the exit velocity, and A2 is the 
output port area. The exit velocity, v2, is a function of the water height. From 
Bernoulli's equation [39] we have 

~pv? + Px + pgH = -pv2
2+ P2, 

Table 2.7 Water Tank Physical Constants 

p 9 A1 A2 H* Q* 
(kg/m3) (m/s2) (m*) (mf) (m) (kg/s) 

1000 9.8 7r/4 TT/400 1 34.77 
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where V\ is the water velocity at the mouth of the reservoir, and P1 and P2 are the at
mospheric pressures at the input and output, respectively. But Pj and P2 are equal to 
atmospheric pressure, and A2 is sufficiently small (A2 = AJIOO), so the water flows 
out slowly and the velocity vx is negligible. Thus Bernoulli's equation reduces to 

v2 = V2gH. (2.107) 

Substituting Equation (2.107) into Equation (2.106) and solving for H yields 

A2 
H = - VH + \QX. (2.108) 

pAl 

Using Equation (2.107), we obtain the exit mass flow rate 

Q2 = PA2v2 = (PV2gA2)VH. (2.109) 

To keep the equations manageable, define 

A2 V2g 
^ - ^ -

1 

M i ' 
ky.= PV2gA2. 

Then, it follows that 

H = kxVH + k2Qh 

Q2 = k2VH. (2.110) 
Equation (2.110) represents our model of the water tank system, where the input is 
Qi and the output is Q2. Equation (2.110) is a nonlinear, first-order, ordinary differ
ential equation model. The nonlinearity comes from the H112 term. The model in 
Equation (2.110) has the functional form 

H =f{H,Qx), 

Q2 = h(H,Ql), 

where 

f(H, 0i) = hVH + k2QA and h(H, QA = k3VJl. 

A set of linearized equations describing the height of the water in the reservoir 
is obtained using Taylor series expansions about an equilibrium flow condition. 
When the tank system is in equilibrium, we have H = 0. We can define Q* and / /* 
as the equilibrium input mass flow rate and water level, respectively. The relation
ship between Q* and H* is given by 

Q* = -J-VH* - pV2gA2VH*. (2.111) 
k2 

This condition occurs when just enough water enters the tank in A^ to make up for the 
amount leaving through A2. We can write the water level and input mass flow rate as 

H = H* + A//, (2.112) 

Qx = Q* + AQi, 
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where AH and AQY are small deviations from the equilibrium (steady-state) values. 
The Taylor series expansion about the equilibrium conditions is given by 

H = f{H,Ql)=f{H\Q*)+^j 
II-H 

(H - //*) (2.113) 

where 

and 

+ 

dH 

H mJQ\ -Q*)+ •••, 

a// Q.-0-
rH* 

d{kxVH + k2Qt) 
H=H* 
Qi-0* dfii 

- f o . 

Using Equation (2.111), we have 

'/7* = 
<2* 

so that 

dl-I H = H-
Pt-ff* 

P V2g/ i 2 

^ 2 2 gP 

It follows from Equation (2.112) that 

H = AH, 

since H* is constant. Also, the term f(H*, Q*) is identically zero, by definition of 
the equilibrium condition. Neglecting the higher order terms in the Taylor series ex
pansion yields 

AH = - ^ 2 gP 
AH + 

1 
•AQi. (2.114) 

Ai e * pAi 

Equation (2.114) is a linear model describing the deviation in water level AH from 
the steady-state due to a deviation from the nominal input mass flow rate A<2i-

Similarly, for the output variable Q2 we have 

Q2 = QZ + *Q2 = KH>Q{) (2.115) 

«-.*)*£ A rr d h 

AH + -
dQl 

II - / / 
Afii, 

where A<22 is a small deviation in the output mass flow rate and 

dh 

dH 

gP2A: 
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and 
dh 

= 0. 
H'H* 

Therefore, the linearized equation for the output variable Q2 is 

A<22 = ^^AH- ( 2 1 1 6 ) 

For control system design and analysis, it is convenient to obtain the input-output 
relationship in the form of a transfer function. The tool to accomplish this is the 
Laplace transform, discussed in Section 2.4. Taking the time-derivative of Equation 
(2.116) and substituting into Equation (2.114) yields the input-output relationship 

A0? H—— —r-kQ7 = ——— AOi. 
^2 Ay Q* ^2 AXQ* ^ 1 

If we define 

then we have 
"==£§• ^ 

AQ2 + a&Q2 = ilkQi- (2.118) 

Taking the Laplace transform (with zero initial conditions) yields the transfer 
function 

AQ2(s)/AQ](s) = j - 5 j j - . (2.119) 

Equation (2.119) describes the relationship between the change in the output mass 
flow rate A.Q2(s) due to a change in the input mass flow rate AQJ(J ) . We can also 
obtain a transfer function relationship between the change in the input mass flow 
rate and the change in the water level in the tank, A//(s). Taking the Laplace trans
form (with zero initial conditions) of Eq. (2.114) yields 

AH(s)/AQi(*) = J ^ J . (2.120) 

Given the linear time-invariant model of the water tank system in Equation (2.118), 
we can obtain solutions for step and sinusoidal inputs. Remember that our input 
A0i (s) is actually a change in the input mass flow rate from the steady-state value Q*. 

Consider the step input 

where q0 is the magnitude of the step input, and the initial condition is A02(0) = 0. 
Then we can use the transfer function form given in Eq. (2.119) to obtain 

s(s + il) 
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The partial fraction expansion yields 

AQM = TTfT + T 
Taking the inverse Laplace transform yields 

Afi2(0 = -q*"* + Qo-

Note that fi > 0 (see Equation (2.117), so the term e~Qt approaches zero as t ap
proaches oo. Therefore, the steady-state output due to the step input of magnitude q0 is 

A<22ss = Qo-

We see that in the steady state, the deviation of the output mass flow rate from the 
equilibrium value is equal to the deviation of the input mass flow rate from the equi
librium value. By examining the variable fi in Equation (2.117). we find that the 
larger the output port opening A2, the faster the system reaches steady state. In 
other words, as H gets larger, the exponential term e~n' vanishes more quickly, and 
steady state is reached faster. 

Similarly for the water level we have 

KIMS ZSsbl l X\ 

Taking the inverse Laplace transform yields 

Atf(r) = ^ ( e * - 1). 

The steady-state change in water level due to the step input of magnitude q0 is 

0o&2 

Consider the sinusoidal input 

which has Laplace transform 

A " » = Q 

AQi(0 = q„ sin cot, 

AQi(s) = "J-—j-
S + CO* 

Suppose the system has zero initial conditions, that is, A<22(0) = 0. Then from Equa
tion (2.119) we have 

qnto£l 

^2V' (s + a)(s2 + a?) 

Expanding in a partial fraction expansion and taking the inverse Laplace trans
form yields 

sTfi' sin(cot - <f>) \ 
&Q2(t) = qoaco\ 

a2 + co2 toitf + a?)1'2)' 
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where (j> = tan (co/Q,). So, as t —» oo. we have 

VI I 2 + w2 

The maximum change in output flow rate is 

|AJ22(0U = - 7 = = = . (2-121) 
v n 2 + to2 

The above analytic analysis of the linear system model to step and sinusoidal 
inputs is a valuable way to gain insight into the system response to test signals. An
alytic analysis is limited, however, in the sense that a more complete representa
tion can be obtained with carefully constructed numerical investigations using 
computer simulations of both the linear and nonlinear mathematical models. A 
computer simulation uses a model and the actual conditions of the system being 
modeled, as well as actual input commands to which the system will be subjected. 

Various levels of simulation fidelity (that is, accuracy) are available to the con
trol engineer. In the early stages of the design process, highly interactive design soft
ware packages are effective. At this stage, computer speed is not as important as the 
time it takes to obtain an initial valid solution and to iterate and fine tune that solu
tion. Good graphics output capability is crucial. The analysis simulations are gener
ally low fidelity in the sense that many of the simplifications (such as linearization) 
made in the design process are retained in the simulation. 

As the design matures usually it is necessary to conduct numerical experiments 
in a more realistic simulation environment. At this point in the design process, the 
computer processing speed becomes more important, since long simulation times 
necessarily reduce the number of computer experiments that can be obtained and 
correspondingly raise costs. Usually these high-fidelity simulations are programmed 
in FORTRAN, C, C++, Matlab, LabVIEW or similar languages. 

Assuming that a model and the simulation are reliably accurate, computer sim
ulation has the following advantages [14]: 

1. System performance can be observed under all conceivable conditions. 

2. Results of field-system performance can be extrapolated with a simulation model for 
prediction purposes. 

3. Decisions concerning future systems presently in a conceptual stage can be examined. 

4. Trials of systems under test can be accomplished in a much-reduced period of time. 

5. Simulation results can be obtained at lower cost than real experimentation. 

6. Study of hypothetical situations can be achieved even when the hypothetical situation 
would be unrealizable at present. 

7. Computer modeling and simulation is often the only feasible or safe technique to ana
lyze and evaluate a system. 

The nonlinear model describing the water level flow rate is as follows (using the 
constants given in Table 2.7): 

H = -0.0443 VH + 1.2732 X 10"3 Qh (2.122) 

Q2 = 34.77V/7. 
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FIGURE 2.36 
The tank water level 
time history ob
tained by integrat
ing the nonlinear 
equations of motion 
in Equation (2.122) 
with H(0) = 0.5 m 
and Qj(f) -
Q* = 34.77 kg/s. 
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With //(0) = 0.5 m and Q\{i) = 34.77 kg/s, we can numerically integrate the non
linear model given by Equation (2.122) to obtain the time history of H(t) and 02(0-
The response of the system is shown in Figure 2,36. As expected from Equation 
(2.111), the system steady-state water level is H* = 1 m when 0* = 34.77 kg/m3. 

It takes about 250 seconds to reach steady-state. Suppose that the system is at 
steady state and we want to evaluate the response to a step change in the input mass 
flow rate. Consider 

AftC) = 1 kg/s. 

Then we can use the transfer function model to obtain the unit step response. The 
step response is shown in Figure 2.37 for both the linear and nonlinear models. 
Using the linear model, we find that the steady-state change in water level is 
AH = 5.75 cm. Using the nonlinear model, we find that the steady-state change in 
water level is AH = 5.835 cm. So we see a small difference in the results obtained 
from the linear model and the more accurate nonlinear model. 

As the final step, we consider the system response to a sinusoidal change in the 
input flow rate. Let 

AQi(*) = 
q0«> 

s2 + u>v 

where a> = 0.05 rad/s and q0 = 1. The total water input flow rate is 

Q{(t) = Q* + Afii(0, 

where Q* = 34.77 kg/s. The output flow rate is shown in Figure 2.38. 
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FIGURE 2.37 
The response 
showing the linear 
versus nonlinear 
response to a step 
input. 
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FIGURE 2.38 
The output flow rate 
response to a 
sinusoidal variation 
in the input flow. 
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The response of the water level is shown in Figure 2.39. The water level is sinu
soidal, with an average value of Hav = H* = 1 meter. As shown in Equation 
(2.121), the output flow rate is sinusoidal in the steady-state, with 

|AG2(0Lx = 
q0a 

v& = 0.4 kg/s. 
O)" 
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FIGURE 2.39 
The water level 
response to a 
sinusoidal variation 
in the input tlow. 
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Thus in the steady-state (see Figure 2.38) we expect that the output flow rate will os
cillate at a frequency of w = 0.05 rad/s, with a maximum value of 

^ ' - m ^ Y -*~ 
|AG2(0lm.x = 35.18 kg/s. 

EXAMPLE 2.13 Electric traction motor control 

A majority of modern trains and local transit vehicles utilize electric traction mo
tors. The electric motor drive for a railway vehicle is shown in block diagram form in 
Figure 2.40(a), incorporating the necessary control of the velocity of the vehicle.The 
goal of the design is to obtain a system model and the closed-loop transfer function 
of the system, a)(s)/<od(s), select appropriate resistors Rh R2, R^, and R4, and then 
predict the system response. 

The first step is to describe the transfer function of each block. We propose the 
use of a tachometer to generate a voltage proportional to velocity and to connect 
that voltage, vt, to one input of a difference amplifier, as shown in Figure 2.40(b). 
The power amplifier is nonlinear and can be approximately represented by 
v2 = 2e3v' = g(v{), an exponential function with a normal operating point, 
V{Q = 1.5 V. Using the technique in Section 2.3, we then obtain a linear model: 

Av2 = 
dg(vi) 

dv\ 
Avj = 2[3 exp(3t>io)] A?;, = 2(270) Avt = 540 &vh (2.123) 

"10 

Then, discarding the delta notation and using the Laplace transform, we find that 

V2(s) = 540^00-
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V,,. = w,,(.v) 

(b) 

Speed 

• «(.v) 

(c) 

FIGURE 2.40 
Speed control of an 
electric traction 
motor. 
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(d) 

co(s) 

Also, for the differential amplifier, we have 

1 + R2/Ri R2 B< = r n f c > - ̂  (2124) 

We wish to obtain an input control that sets (od{t) = v-m, where the units of cod 

are rad/s and the units of v-m are volts. Then, when Vjn = 10 V, the steady-state speed 
is a) = 10 rad/s. We note that vt = .K,ft̂  in steady state, and we expect, in balance, 
the steady-state output to be 

1 + R2/Ri R2 v 
(2.125) 
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Table 2.8 Parameters of a Large DC Motor 

Kn a 10 J = 2 
/?fl = 1 6 = 0.5 
La = 1 tf6 = 0.1 

When the system is in balance, v\ — 0, and when K, = 0.1, we have 

I + R2/R1 = R2 .. 
1 + R3/R4 Ri ' 

This relation can be achieved when 

R2/RY = 10 and R3/R4 = 10. 

The parameters of the motor and load are given in Table 2.8. The overall system is 
shown in Figure 2.40(b). Reducing the block diagram in Figure 2.40(c) or the signal -
flow graph in Figure 2.40(d) yields the transfer function 

a>(s) 540Gt(s)Gz(s) 540G,G2 

<od(s) 1 + O.IG1G2 + 540G!G2 1 + 540.10,02 

5400 5400 
(s + 1)(25 + 0.5) + 5401 Is1 + 2.5.? + 5401.5 

2700 

52 + 1.25 J + 2700.75' 
(2.126) 

Since the characteristic equation is second order, we note that w„ = 52 and 
£ = 0.012, and we expect the response of the system to be highly oscillatory (under-
damped). • 

EXAMPLE 2.14 Mechanical accelerometer 

A mechanical accelerometer is used to measure the acceleration of a levitated test 
sled, as shown in Figure 2.41. The test sled is magnetically levitated above a 
guide rail a small distance 5. The accelerometer provides a measurement of the 
acceleration a(t) of the sled, since the position y of the mass M, with respect to 
the accelerometer case, is proportional to the acceleration of the case (and the 
sled). The goal is to design an accelerometer with an appropriate dynamic respon
siveness. We wish to design an accelerometer with an acceptable time for the desired 
measurement characteristic, y(() = qa((), to be attained {q is a constant). 

The sum of the forces acting on the mass is 

or 
/2, , ^ , , A! 

-^ + b-j- + ky = -M — 
dt1 dt 7 dV 

Af-77 +• b-~+ ky = - M — (2.127) 



96 

FIGURE 2.41 
An accelerometer 
mounted on a jet-
engine test sled. 
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• x = Case position 

Jet engine |\. 

vVWWW 
Spring 

M ir 

Levitated test sled A/c 

Guide rail 

Accelerometer 

Case 

-> x 

^L 
Gap 5 

Since 

is the engine force, we have 

M, 
d2x 

sdt2 = F{t\ 

or 

M 
My + by+ky = - ^ ( 0 . 

.. b_. k_ m 
y My My ' M ' 

(2.128) 

We select the coefficients where b/M = 3, k/M = 2, F(t)/M5 = Q{t), and we 
consider the initial conditions y(0) = - 1 and y(0) = 2. We then obtain the Laplace 
transform equation, when the force, and thus Q(t), is a step function, as follows: 

(s2Y(s) - sy(0) - y(0)) + 3(sY(s) - v(0)) + 2Y(s) = -Q(s). (2.129) 

Since Q(s) = P/s, where P is the magnitude of the step function, we obtain 

(s2Y(s) + s - 2) + 3(sY(s) + 1) + 2Y(s) = - - , 

or 

(52 + 3s + 2)y(5) = 
-(52 + 5 + P) 

Thus the output transform is 

Y(s) = 
-(s2 + s + P) -(s2 + s + P) 

s(s2 + 3s + 2) ~ S(J + l)(s + 2)" 

(2.130) 

(2.131) 
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FIGURE 2.42 
Accelerometer 
response. 

Expanding in partial fraction form yields 

s s + 1 
k2 k3 

+ 5 + 2 

We then have 

* i = 
(s2 + s + P) 

(s + 1)(5 + 2) s=0 

p 
2' 

-P — 2 
Similarly, k2 = +P and k3 = . Tlius, 

(2.132) 

(2.133) 

-P P -P -2 
{S) " 25 + 5 + 1 + 2(5 + 2)' 

Therefore, the output measurement is 

1 

(2.134) 

y(0 =; ^[~P + 2Pe_t - (P + 2)e"2'], t > 0. 

A plot of y(t) is shown in Figure 2.42 for P = 3. We can see that y(t) is propor
tional to the magnitude of the force after 5 seconds. Thus in steady state, after 5 sec
onds, the response y{t) is proportional to the acceleration, as desired. If this period is 
excessively long, we must increase the spring constant, k, and the friction, b, while 
reducing the mass, M. If we are able to select the components so that b/M ~ 12 and 
k/M = 32, the accelerometer will attain the proportional response in 1 second. (It is 
left to the reader to show this.) • 
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EXAMPLE 2.15 D e s i g n of a laboratory robot 

In this example, we endeavor to show the physical design of a laboratory device and 
demonstrate its complex design. We will also exhibit the many components com
monly used in a control system. 

A robot for laboratory use is shown in Figure 2.43. A laboratory robot's work 
volume must allow the robot to reach the entire bench area and access existing ana
lytical instruments. There must also be sufficient area for a stockroom of supplies for 
unattended operation. 

The laboratory robot can be involved in three types of tasks during an ana
lytical experiment. The first is sample introduction, wherein the robot is trained 
to accept a number of different sample trays, racks, and containers and to intro
duce them into the system. 'ITie second set of tasks involves the robot transport
ing the samples between individual dedicated automated stations for chemical 
preparation and instrumental analysis. Samples must be scheduled and moved 
between these stations as necessary to complete the analysis. In the third set of 
tasks for the robot, flexible automation provides new capability to the analytical 
laboratory. The robot must be programmed to emulate the human operator or 
work with various devices. All of these types of operations are required for an 
effective laboratory robot. 

FIGURE 2.43 
Laboratory robot 
used for sample 
preparation. The 
robot manipulates 
small objects, such 
as test tubes, and 
probes in and out 
of tight places at 
relatively high 
speeds [15]. (Photo 
courtesy of 
Beckman Coulter, 
Inc.) 
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Table 2.9 ORCA Robot Arm Hardware Specifications 

Arm 

Degrees of 
freedom 

Reach 
Height 

Rail 

Weight 
Precision 

Finger travel 
(gripper) 

Gripper rotation 

Articulated, 
Rail-Mounted 

6 

±54 cm 
78 cm 

1 and 2 m 

8.0 kg 
±0.25 mm 

40 mm 

±77 revolutions 

Teach Pendant 

Cycle time 

Maximum speed 
Dwell time 

Payload 

Vertical deflection 
Cross-sectional 
work envelope 

Joy Stick with 
Emergency Stop 

4 s (move 1 inch up, 12 inch 
across, 1 inch down, and back) 

75 cm/s 
50 ms typical (for moves 
within a motion) 

0.5 kg continuous, 2.5 kg 
transient (with restrictions) 

<1.5 mm at continuous payload 
lm 2 

The ORCA laboratory robot is an anthropomorphic arm, mounted on a rail, de
signed as the optimum configuration for the analytical laboratory [15]. The rail can 
be located at the front or back of a workbench, or placed in the middle of a table 
when access to both sides of the rail is required. Simple software commands permit 
moving the arm from one side of the rail to the other while maintaining the wrist po
sition (to transfer open containers) or locking the wrist angle (to transfer objects in 
virtually any orientation). The rectilinear geometry, in contrast to the cylindrical 
geometry used by many robots, permits more accessories to be placed within the 
robot workspace and provides an excellent match to the laboratory bench. Move
ment of all joints is coordinated through software, which simplifies the use of the 
robot by representing the robot positions and movements in the more familiar 
Cartesian coordinate space. 

The physical and performance specifications of the ORCA system are shown in 
Table 2.9. The design for the ORCA laboratory robot progressed to the selection of 
the component parts required to obtain the total system. The exploded view of the 
robot is shown in Figure 2.44. This device uses six DC motors, gears, belt drives, and 
a rail and carriage. The specifications are challenging and require the designer to 
model the system components and their interconnections accurately. • 

EXAMPLE 2.16 Design of a low-pass filter 

Our goal is to design a first-order low-pass filter that passes signals at a frequency 
below 106.1 Hz and attenuates signals with a frequency above 106.1 Hz. In addition, 
the DC gain should be !/2. 

A ladder network with one energy storage element, as shown in Figure 2.45(a), 
will act as a first-order low-pass network. Note that the DC gain will be equal to y2 

(open-circuit the capacitor). The current and voltage equations are 

/ i - W - VL)G, 
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FIGURE 2.44 Exploded view of the ORCA robot showing the components [15]. (Courtesy of 
Beckman Coulter, Inc.) 

h = (Vi - V3)G, 

V2 = (I, - I2)R, 

V3 = l2Z, 

where G = l/R, Z(s) = \/Cs, and /1(5) = /1 (we omit the (5)). The signal-flow 
graph constructed for the four equations is shown in Figure 2.45(b), and the corre
sponding block diagram is shown in Figure 2.45(c). The three loops are 
Lx = -GR = - 1 , L2 = -GR = - 1 , and L3 = -GZ. All loops touch the forward 
path. Loops L\ and L3 are nontouching. Therefore, the transfer function is 

T(s) = 
V, R GZ 
V, 1 - (L, + L2 + L3) + UU 

1 l/(3RC) 

' 3RCs + 2 s + 2/(3RC)' 

3 + 2GZ 
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i ' ,0 

(a) 

L, = -GR= - 1 

(b) 

FIGURE 2.45 
(a) Ladder network, 
(b) its signal-flow 
graph, and (c) its 
block diagram. 

V.(i-) • VJx) 

(c) 

If one prefers to utilize block diagram reduction techniques, one can start at the out
put with 

V3(s) = ZI2(s). 

But the block diagram shows that 

I2(s) = G(V2(s) - V3(s)). 

Therefore, 

V3(s) = ZGV2(s) - ZGV3(s) 

so 

We will use this relationship between V3(s) and V2(s) in the subsequent develop
ment. Continuing with the block diagram reduction, we have 

V3(s) = -ZGV3(s) + ZGR{h{s) - I2{s)), 

but from the block diagram, we see that 

Y&s) 
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Therefore, 

V3(s) - -ZGV3(s) + ZG2R{V[{s) - V2(s)) - GRV3(s). 

Substituting for V2(s) yields 

(GR)(GZ) 
V(s) = — V(s) 

3 W 1 + 2GR + GZ + (GR)(GZ) 1V ;* 
But we know that GR = 1; hence, we obtain 

Note that the DC gain is V2, as expected. The pole is desired at p = 27r(106.]) = 
666.7 = 2000/3. Therefore, we require RC = 0.001. Select R - 1 kH and 
C = t /iF. Hence, we achieve the filter 

333.3 
T(s) = 

(s + 666.7)' 

2.9 THE SIMULATION OF SYSTEMS USING CONTROL DESIGN SOFTWARE 

Application of the many classical and modern control system design and analysis 
tools is based on mathematical models. Most popular control design software 
packages can be used with systems given in the form of transfer function descrip
tions. In this book, we will focus on m-file scripts containing commands and func
tions to analyze and design control systems. Various commercial control system 
packages are available for student use. The m-files described here are compatible 
with the MATLAB+ Control System Toolbox and the LabVIEW MathScript.* 

We begin this section by analyzing a typical spring-mass-damper mathematical 
model of a mechanical system. Using an m-file script, we will develop an interac
tive analysis capability to analyze the effects of natural frequency and damping 
on the unforced response of the mass displacement. This analysis will use the fact 
that we have an analytic solution that describes the unforced time response of the 
mass displacement. 

Later, we will discuss transfer functions and block diagrams. In particular, we 
are interested in manipulating polynomials, computing poles and zeros of transfer 
functions, computing closed-loop transfer functions, computing block diagram re
ductions, and computing the response of a system to a unit step input. The section 
concludes with the electric traction motor control design of Example 2.13. 

See Appendix A for an introduction to MATLAB. 
'See Appendix R for an introduction to LabVIEW MathScipt. 
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The functions covered in this section are roots, poly, conv, polyval, tf, pzmap, 
pole, zero, series, parallel, feedback, minreal, and step. 

Spring-Mass-Damper System. A spring-mass-damper mechanical system is 
shown in Figure 2.2. The motion of the mass, denoted by y(t), is described by the dif
ferential equation 

My\t) + by(t) + ky(t) = r{t). 

The unforced dynamic response y{t) of the spring-mass-damper mechanical 
system is 

y{t) = pJ—e-^Sm(conVl-izt + o) 

where con = vk/M, £ = b/(2vkM), and 6 = cos-1 £. The initial displacement is 
y(0).The transient system response is underdaniped when £ < 1, overdamped when 
£ > 1, and critically damped when £ = 1. We can visualize the unforced time re
sponse of the mass displacement following an initial displacement of y(0). Consider 
the underdamped case: 

p ,(0) =o.i5m, ^ - ^ ¾ i-~r2 ( 1 = 2-^ = 1) 

The commands to generate the plot of the unforced response are shown in Figure 2.46. 
In the setup, the variables y(0), o)ny t, and £ are input at the command level. Then the 
script unforced.m is executed to generate the desired plots. This creates an interac
tive analysis capability to analyze the effects of natural frequency and damping on 
the unforced response of the mass displacement. One can investigate the effects of 
the natural frequency and the damping on the time response by simply entering new 

»yO=0.15; 

»zeta=1/(2*sqrt(2)); ^ 
»t=[0:0.1:10]; ' " 
»unforced 

<on 

t 

unforced.m 

FIGURE 2.46 
Script to analyze 
the spring-mass-
damper. 

%Compute Unforced Response to an initial Condition 
% ———-
c=(yO/sqrt(1-zetaA2)); < > y(0)/Vl - p 
y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1 -zetaA2)*t+acos(zeta)); 
% | 
bu=c*exp(-zeta*wn*t);bl=-bu; •« e~

ea,J envelope 
% ' 
plot(t(y,t,bu,,--',t,bl,,--'),grid 
xlabel(Time (s)'), ylabel('y(t) (m)') 
legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 
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FIGURE 2.47 
Spring-mass-
damper unforced 
response. 
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values of w„ and t, at the command prompt and running the script unforced.m again. 
The time-response plot is shown in Figure 2.47. Notice that the script automatically 
labels the plot with the values of the damping coefficient and natural frequency. This 
avoids confusion when making many interactive simulations. Using scripts is an im
portant aspect of developing an effective interactive design and analysis capability. 

For the spring-mass-damper problem, the unforced solution to the differential 
equation was readily available. In general, when simulating closed-loop feedback 
control systems subject to a variety of inputs and initial conditions, it is difficult to 
obtain the solution analytically. In these cases, we can compute the solutions numer
ically and to display the solution graphically. 

Most systems considered in this book can be described by transfer functions. 
Since the transfer function is a ratio of polynomials, we begin by investigating how to 
manipulate polynomials, remembering that working with transfer functions means 
that both a numerator polynomial and a denominator polynomial must be specified. 

Polynomials are represented by row vectors containing the polynomial coeffi
cients in order of descending degree. For example, the polynomial 

p{s) = s3 + 3s2 + 4 

is entered as shown in Figure 2.48. Notice that even though the coefficient of the s 
term is zero, it is included in the input definition of p(s). 

If p is a row vector containing the coefficients of p(s) in descending degree, then 
roots(p) is a column vector containing the roots of the polynomial. Conversely, if r is 
a column vector containing the roots of the polynomial, then poly(r) is a row vector 
with the polynomial coefficients in descending degree. We can compute the roots of 
the polynomial p(s) = s3 + 3s2 + 4 with the roots function as shown in Figure 2.48. 
In this figure, we show how to reassemble the polynomial with the poly function. 
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FIGURE 2.48 
Entering the 
polynomial 
p(s) = s3 + 3s2 + 4 
and calculating its 
roots. 

»p=[1 3 0 4 ; ^-

»r=roots(p) 

r = 
-3.3553 
0.1777+1.0773i 
0.1777- 1.0773i 

»p=poly(r) 4 — 
P = 

p(s) = .53 + 3 r + 4 

Calculate roots of p(s) = 0. 

Reassemble polynomial from roots. 

1.0000 3.0000 0.0000 4.0000 

FIGURE 2.49 
Using conv and 
polyval to multiply 
and evaluate the 
polynomials 
(3s* + 2s + 1) 
(s + 4). 

»p=[3 2 1];q=[14]; 
»n=conv(p,q) 
n= 

»value=polyval(n,-5) 

-66 

Multiply/? and q. 

n(s) = 3s3, + 14.?2 + 9s + 4 

Evaluate n(s) at s = - 5 . 

Multiplication of polynomials is accomplished with the conv function. Suppose 
we want to expand the polynomial 

n(s) - (3s2 + 2s + l)($ + 4). 

The associated commands using the conv function are shown in Figure 2.49. Thus, 
the expanded polynomial is 

n(s) = 3.?3 + 14s2 + 9s + 4. 

The function polyval is used to evaluate the value of a polynomial at the given 
value of the variable. The polynomial n(s) has the value «(—5) = -66, as shown in 
Figure 2.49. 

Linear, time-invariant system models can be treated as objects, allowing one to 
manipulate the system models as single entities. In the case of transfer functions, one 
creates the system models using the tf function; for state variable models one em
ploys the ss function (see Chapter 3). The use of tf is illustrated in Figure 2.50(a). 
For example, if one has the two system models 

Giis) -
10 

s2 + 2s -*- 5 
and G2(s) = 1 

s + V 
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FIGURE 2.50 
(a) The tf function. 
(b) Using the tf 
function to create 
transfer function 
objects and adding 
them using the " + " 
operator. 

Transfer function 
object 

G(s) num 
den 

i r 
sys = tf(num,den) 

(a) 

»num1=[10];den1=[1 2 5]; 
» sys1=tf(num1,den1) 

Transfer function: 

10 

sA2 + 2 s + 5 

» num2=[1];den2-[1 1]; 
» sys2=tf(num2,den2) 

Transfer function: 

1 

GiCO 

s + 1 

» sys=sys1+sys2 

Transfer function: 

sA2 + 12 s + 15 

sA3 + 3 sA2 + 7 s + 5 

(b) 

G2(s) 

(3,(5-) + G2(s) 

one can add them using the "+" operator to obtain 

s2 + 12s + 15 
G(s) = Gx(s) + G2(s) 

3sz + 7s + 5 

The corresponding commands are shown in Figure 2.50(b) where sysl represents 
Gi(s) and sys2 represents G2(s). Computing the poles and zeros associated with a 
transfer function is accomplished by operating on the system model object with the 
pole and zero functions, respectively, as illustrated in Figure 2.51. 

In the next example, we will obtain a plot of the pole-zero locations in the com
plex plane.This will be accomplished using the pzmap function, shown in Figure 2.52. 
On the pole-zero map, zeros are denoted by an "'o" and poles are denoted by an "x". 
If the pzmap function is invoked without left-hand arguments, the plot is generated 
automatically. 

EXAMPLE 2.17 Transfer functions 

Consider the transfer functions 

G(s) m 6'2 + l 

s3 + 3.v2 + 3s + 1 
and H (s) = 

(s + l)(s + 2) 

(s + 2i)(s - 2i)(s + 3)' 

Using an m-file script, we can compute the poles and zeros of G(s), the characteris
tic equation of H(s), and divide G(s) by H(s). We can also obtain a plot of the 
pole-zero map of G(s)/H(s) in the complex plane. 
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FIGURE 2.51 
(a) The pole and 
zero functions. 
(b) Using the pole 
and zero functions 
to compute the 
pole and zero 
locations of a linear 
system. 

Poles 

p=pole(sys) 

z=zero(sys) 

Transfer 
function 
object 

Zeros 

(a) 

»sys=t f ( [1 10],[1 2 1]) 

Transfer function: 

s + 10 

^ — 
SA2 + 2 S + 1 

p= 

"1 « 
-1 

The 

sys 

SVStf**^ r*r*^'*c 

» z=zero(sys) 

z= 

-10 
The system zeros 

(b) 

FIGURE 2.52 
The pzmap 
function. 

P: pole locations in column vector 
Z: zero locations in column vector 

n \ - n u m 

[P,Z]=pzmap(sys) 

The pole-zero map of the transfer function G(s)IH{s) is shown in Figure 2.53, 
and the associated commands are shown in Figure 2.54. The pole-zero map shows 
clearly the five zero locations, but it appears that there are only two poles. This can
not be the case, since we know that for physical systems the number of poles must 
be greater than or equal to the number of zeros. Using the roots function, we can as
certain that there are in fact four poles at $ = — 1. Hence, multiple poles or multiple 
zeros at the same location cannot be discerned on the pole-zero map. • 

Block Diagram Models. Suppose we have developed mathematical models in 
the form of transfer functions for a process, represented by G(s), and a controller, 
represented by Gc(s), and possibly many other system components such as sensors 
and actuators. Our objective is to interconnect these components to form a control 
system. 
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Pole-Zero Map 

FIGURE 2.53 
Pole-zero map for 
G{S)/H{S). 

x 
< 
C 
a 
c 

'Su 

FIGURE 2.54 
Transfer function 
example for G(s) 
and H(s). 

»numg=[6 0 1]; deng=[1 3 3 1];sysg=tf(numg,deng); 
»z=zero(sysg) 

z = ^-
0 + 0.4082i 
0 - 0.4082i 

»p=pole(sysg) 

Compute poles and 
zeros of G(s) 

P= * 
-1.0000 
-1.0000 + O.OOOOi 
-1.0000- O.OOOOi 

»n1= [1 1]; n2=[1 2]; d1=[1 2*1]; d2=[l -21]; d3=[1 3]; 
»numh=conv(n1 ,n2); denh=conv(d1 ,conv(d2,d3)); 
»sysh=tf(numh,denh) 

Transfer function: 

sA2 + 3 s + 2 

1 

Expand H(s) 

sA3 + 3 sA2 + 4 s + 12 

»sys=sysg/sysh •«— 

Transfer function: 

H(s) 

G(s) 
H(s) sys 

6 sA5 + 18 sM + 25 sA3 + 75 sA2 + 4 s +12 
sA5 + 6 s M + 14 sA3 + 16 sA2 + 9 s - 2 

»pzmap(sys) •*• Pole-zero map 
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FIGURE 2.55 
Open-loop control 
system (without 
feedback). 

/?(.v) • Vis) 

A simple open-loop control system can be obtained by interconnecting a 
process and a controller in series as illustrated in Figure 2.55. We can compute the 
transfer function from R(s) to Y(s), as follows. 

EXAMPLE 2.18 Series connection 

Let the process represented by the transfer function G(s) be 

1 
G(s) = 

500.V2 

and let the controller represented by the transfer function Gc(s) be 

s + 1 
Gc(s) = 

s + 2' 

We can use the series function to cascade two transfer functions G\(s) and G2(s), as 
shown in Figure 2.56. 

The transfer function Gc(s)G(s) is computed using the series function as shown 
in Figure 2.57. The resulting transfer function is 

Gc(s)G(s) = 
s + 1 

= sys, 
50053 + 1000^2 

where sys is the transfer function name in the m-file script. • 

Ulx) 

(a) 

• Y(s) 

FIGURE 2.56 
(a) Block diagram. 
(b) The series 
function. 

™=11=-
1 k 

[Si ,s}= 

G,(*) = sysl 

series(sy 

G2(s) = sys2 

\ i 
s1 ,sys2) 

(b) 
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R(s) Gc(s) - s+ l 
5 + 2 

MM 
G ( s ) = 5 0 0 ? 

Ms] 

(a) 

FIGURE 2.57 
Application of the 
series function. 

»numg=[1]; deng=[500 0 0]; sysg=tf(numg,deng); 
»numh=[1 1];denh=[1 2]; sysh=tf(numh,denh); 
»sys=series(sysg,sysh); 
» s y s 

Transfer function: 

s+1 
500sA3 + 100OsA2 

Gc(s)G{s) 

(bi 

Ms) 

System 1 
Gi(s) 

System 2 
G2(s) 

(a) 

- • Y(s) 

FIGURE 2.58 
(a) Block diagram. 
(b) The parallel 
function. 

77 ^ « * ) 

t 

= sys 

1 
[sys >]«P 

C,(5) = sysl 

| 

G2{s) = sys2 

1 1 
arallel(sys1,sys2) 

(b) 

#(.5) 

FIGURE 2.59 / 
basic control 
system with unity 
feedback. 

O EM Controller 
GJs) 

U{5) Process 
G(s) 

•*• Y(x) 

Block diagrams quite often have transfer functions in parallel. In such cases, the 
function parallel can be quite useful. The parallel function is described in Figure 2.58. 

We can introduce a feedback signal into the control system by closing the loop 
with unity feedback, as shown in Figure 2.59. The signal Ea(s) is an error signal; the 
signal R(s) is a reference input. In this control system, the controller is in the for
ward path, and the closed-loop transfer function is 

Ge(s)G(s) 
{S) 1 =F Gc(s)G(s)' 
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His) 
System l 
Gc(s)G(s) - • Y(s) 

(a) 

FIGURE 2.60 
(a) Block diagram. 
(b) The feedback 
function with unity 
feedback. 

T(s) = liM=sys Gc(s)G(s) = sysl 

t 
[sys]=f eed back(sys 1 

+1 - positive feedback 
- 1 - negative feedback (default) 

,[1],sign) 

(b) 

R(s) System 1 
G(s) 

System 2 

- • Yis) 

(a) 

FIGURE 2.61 
(a) Block diagram. 
(b) The feedback 
function. 

I 7(,) = - ^ = ays 
• W R(s) y 

i . 

G(s) - sysl 

I \ 
[sys]=feedback(sy 

H(s) = sys2 

- 1 
s1,sys2 

+1 - pos. feedback 
— 1 - neg. feedback 

(default) 

1 
,sign) 

(b) 

We can utilize the feedback function to aid in the block diagram reduction 
process to compute closed-loop transfer functions for single- and multiple-loop 
control systems. 

It is often the case that the closed-loop control system has unity feedback, as il
lustrated in Figure 2.59. We can use the feedback function to compute the closed-
loop transfer function by setting H(s) = 1. The use of the feedback function for 
unity feedback is depicted in Figure 2.60. 

The feedback function is shown in Figure 2.61 with the associated system con
figuration, which includes H(s) in the feedback path. If the input "sign" is omitted. 
then negative feedback is assumed. 
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A W 
Rts) GJs) = 

•s f- 1 

.v +- 2 

L/(y) 
G(s) = 

500 s2 

(a) 

FIGURE 2.62 
(a) Block diagram. 
(b) Application of 
the feedback 
function. 

»numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); 
»numc=[1 1];denc=[1 2]; sys2=tf(numc,denc); 
»sys3=series(sys1 ,sys2); 
»sys=feedback(sys3,[1 ]) 

Transfer function: 

s + 1 
500sA3+ 1000s*2 + s + 1 

Y(s) G,.(s)G{s) 
R(s) 1 + Gc(s)G(s) 

(b) 

FIGURE 2.63 
A basic control 
system with the 
controller in the 
feedback loop. 

KU) o £„(?) Process 
G(s) 

Coniroller 

His) 

+> Yls) 

EXAMPLE 2.19 The feedback function with unity feedback 

Let the process, G(s), and the controller, Gc(s), be as in Figure 2.62(a). To apply the 
feedback function, we first use the series function to compute Gc(s)G(s), followed 
by the feedback function to close the loop. The command sequence is shown in 
Figure 2.62(b). The closed-loop transfer function, as shown in Figure 2.62(b), is 

T(s) = 
s + 1 Gc(s)G(s) 

1 + Gc(s)G(s) 500s3 + 1000s2 + s + 1 = sys. 

Another basic feedback control configuration is shown in Figure 2.63. In this case, 
the controller is located in the feedback path. The closed-loop transfer function is 

T(s) = 
G(s) 

1 T G(s)H(s) 

EXAMPLE 2.20 The feedback function 

Let the process, G(s), and the controller, H(s), be as in Figure 2.64(a). To compute 
the closed-loop transfer function with the controller in the feedback loop, we use 
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+Y(s) 

113 

R(s) 
Ea(s) 

G{s) = 
I 

500 s2 

/ / (5)= 
.V + 1 

s + 2 

(a) 

FIGURE 2.64 
Application of the 
feedback function: 
(a) block diagram, 
(b) m-file script. 

»numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); 
»numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh); 
»sys=feedback(sys1 ,sys2); 
» s y s 

Transfer function: 

S + 2 
500sA3 + 1000sA2 + s + 1 

Y(s) Q(s) 
R(s) 1 + G(s)H(s) 

(b) 

the feedback function. The command sequence is shown in Figure 2.64(b). The 
closed-loop transfer function is 

T(s) = 
s + 2 

500s3 + \000s2 + s + 1 
= sys. 

The functions series, parallel, and feedback can be used as aids in block dia
gram manipulations for multiple-loop block diagrams. 

EXAMPLE 2.21 Multiloop reduction 

A multiloop feedback system is shown in Figure 2.26. Our objective is to compute 
the closed-loop transfer function 

when 

and 

T(s) = m 
R(s) 

GJ(J) = 

G3(s) = 

1 

s + 10' 

s2 + 1 

s2 + 4s + 4' 

G2(s) = 
s + V 

s + 1 
G4(s) = 

5 + 6 ' 

Hi{s) = 
s + 1 
s + r 

H2(s) = 2, and H3(s) = 1. 

file:///000s2
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FIGURE 2.65 
Multiple-loop block 
reduction. 

»ng1=[1]; dg1=[1 10]; sysg1-tf(ng1,dg1); 
»ng2=[1] ; dg2=[1 1]; sysg2=rf(ng2,dg2); 
»ng3=[1 0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3); 
»ng4=[1 1];dg4=[1 6]; sysg4=tf(ng4,dg4); 
»nh1=[1 1J; dh1=[1 2]; sysh1=tf(nh1,dh1); 
»nh2=[2] ; dh2=[1]; sysh2=rf(nh2,dh2); 
»nh3=[1] ; dh3=[1]; sysh3=tf(nh3,dh3); 
» s y s 1 =sysh2/sysg4; 
»sys2=series(sysg3,sysg4); 
»sys3=feedback(sys2,sysh1 ,+1); 
»sys4=series(sysg2,sys3); 
»sys5=feedback(sys4,sys1); 
»sys6=series(sysg1 ,sys5); 
»sys=feedback(sys6,sysh3); 

Transfer function: 

Step 1 

Step 2 
i 1 

Step 3 

Step 4 

Step 5 

sA5 + 4 s M + 6 sA3 + 6 sA2 + 5 s + 2 
12 sA6 + 205 sA5 + 1066 s M + 2517 sA3 + 3128 sA2 + 2196 s + 712 

For this example, a five-step procedure is followed: 

• Step 1. Input the system transfer functions. 

• Step 2. Move H2 behind GA. 

Q Step 3. Eliminate the GT,G4HX loop. 

• Step 4. Eliminate the loop containing H2-

• Step 5. Eliminate the remaining loop and calculate T(s). 

The five steps are utilized in Figure 2.65, and the corresponding block diagram 
reduction is shown in Figure 2.27. The result of executing the commands is 

sys 
s5 + 4s4 + 6s3 + 6s2 + 5s + 2 

12s6 + 205s5 + 1066/ + 2511s3 + 3128s2 + 2196s + 712' 

We must be careful in calling this the closed-loop transfer function. The transfer 
function is defined as the input-output relationship after pole-zero cancellations. 
If we compute the poles and zeros of T(s), we find that the numerator and denom
inator polynomials have (s + 1.) as a common factor. This must be canceled before 
we can claim we have the closed-loop transfer function. To assist us in the 
pole-zero cancellation, we will use the minreal function. The minreal function, 
shown in Figure 2.66, removes common pole-zero factors of a transfer function. 
The final step in the block reduction process is to cancel out the common factors, as 
shown in Figure 2.67. After the application of the minreal function, we find that the 
order of the denominator polynomial has been reduced from six to five, implying 
one pole-zero cancellation. • 
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FIGURE 2.66 
The minreal 
function. 

No common factors 

T{s) = sys 

sys=minre 

Possible common factors 

G(s) = sysl 

r-1 
jal(sysl) 

FIGURE 2.67 
Application of the 
minreal function. 

»num=[1 4 6 6 5 2]; den=[12 205 1066 2517 3128 2196 712]; 
»sys1=tf(num,den); 
»sys=minreal(sys1); -4 I Cancel common factors. 

Transfer function: 

0.08333 sM + 0.25 sA3 + 0.25 sA2 + 0.25 s + 0.1667 
sA5 + 16.08 sM + 72.75 sA3 + 137 sA2 + 123.7 s + 59.33 

EXAMPLE 2.22 Electric traction motor control 

Finally, let us reconsider the electric traction motor system from Example 2.13. The 
block diagram is shown in Figure 2.40(c).The objective is to compute the closed-loop 
transfer function and investigate the response of co(s) to a commanded CJ^S). The 
first step, as shown in Figure 2.68, is to compute the closed-loop transfer function 
a)(s)/(a^(s) = T(s). The closed-loop characteristic equation is second order with 
o)n = 52 and £ = 0.012. Since the damping is low, we expect the response to be high
ly oscillatory. We can investigate the response co(t) to a reference input, (od(t), by uti
lizing the step function. The step function, shown in Figure 2.69, calculates the unit 
step response of a linear system. The step function is very important, since control 
system performance specifications are often given in terms of the unit step response. 

FIGURE 2.68 
Electric traction 
motor block 
reduction. 

»num1=[10]; den1=[1 1]; sys1=tf(num1,den1); 
»num2=[1]; den2=[2 0.5]; sys2=tf(num2,den2); 
»num3=[540]; den3=[1]; sys3=tf(num3(den3); 
»num4=[0.1]; den4=[1]; sys4=tf(num4,den4); 
»svs5=series(svs1.svs2); ^ 
»sys6=feedback(sys5,sys4); 

»sys7=series(sys3,sys6); 
»sys=feedback(sys7,[1]) -< 1 

Transfer function: 

Eliminate 

inner loop 

Compute closed-loop 
transfer function 

5400 
2 sA2 + 2.5 s + 5402 cod(s) 
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u(t) A 
Step 
input 

System 
y(D 

-*• r 

(a) 

Output 

FIGURE 2.69 
The step function. 

y(i) = output response at t 
T = simulation time 

G(s) = sys 

][ 

t = T: user-supplied time vector 
or 
t = Tr,na|: simulation final time 

(optional) 

[y,T]=step(sys,t) 

(b) 

1.0 1.5 2.0 

Time (s) 

(a) 

% This script computes the step 
% response of the traction motor 
% wheel velocity 
% 
num=[5400]; den=[2 2.5 5402]; sys=tf(num,den); 
t=[0:0.005:3]; 
[y,t]=step(sys,t); 
plot(t,y),grid 
xlabel(Time (s)') 
ylabel('Wheel velocity') 

(b) 

FIGURE 2.70 (a) Traction motor wheel velocity step response, (b) m-file script. 

If the only objective is to plot the output,y(t), we can use the step function with
out left-hand arguments and obtain the plot automatically with axis labels. If we 
need y(t) for any purpose other than plotting, we must use the step function with 
left-hand arguments, followed by the plot function to plot y(t). We define t as a row 
vector containing the times at which we wish the value of the output variable y(t). 
We can also select t = £final, which results in a step response from t = 0 to t = tfim\ 
and the number of intermediate points are selected automatically. 

The step response of the electric traction motor is shown in Figure 2.70. As 
expected, the wheel velocity response, given by y(t), is highly oscillatory. Note 
that the output is y(t) = a>(t). u 
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2.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

^ 
In Section 1.9, we developed an initial goal for the disk drive system: to position the 

reader head accurately at the desired track and to move from one track to another 
within 10 ms, if possible. We need to identify the plant, the sensor, and the controller. 
We will obtain a model of the plant G(s) and the sensor. The disk drive reader uses 
a permanent magnet DC motor to rotate the reader arm (see Figure 1.26). The DC 
motor is called a voice coil motor in the disk drive industry. The read head is mount
ed on a slider device, which is connected to the arm as shown in Figure 2.71. A flex
ure (spring metal) is used to enable the head to float above the disk at a gap of less 
than 100 nm. The thin-film head reads the magnetic flux and provides a signal to an 
amplifier. The error signal of Figure 2.72(a) is provided by reading the error from a 
prerecorded index track. Assuming an accurate read head, the sensor has a transfer 
function H(s) = 1, as shown in Figure 2.72(b). The model of the permanent magnet 
DC motor and a linear amplifier is shown in Figure 2.72(b). As a good approxima
tion, we use the model of the armature-controlled DC motor as shown earlier in 

FIGURE 2.71 
Head mount for 
reader, showing 
flexure. 

Motor 

Flexure 

Head 

FIGURE 2.72 
Block diagram 
model of disk drive 
read system. 

Desired + ,-
head i ^ 

position -~A 

-^ error 

J * , 

+ P(r\ 
R(s) i f 

—. 

~ w 
J * . 

Control device 

Amplifier 

Input 
voltage 

Actuator and read arm 

DC motor and arm 

Sensor 

Read head and index track on disk 

(a) 

Amplifier 

K* 
V(s) 

Sensor 

H(s) = 1 

Actual 
>- i -i 

Motor and arm G(s) 

(7(--I -
" v " s(Js+b)(Ls+R) 

position 

(b) 
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Table 2.10 Typical Parameters for Disk Drive Reader 

Parameter 
Inertia of arm and 
read head 

Friction 
Amplifier 
Armature resistance 
Motor constant 
Armature inductance 

Si 

J 
b 
K 
R 
K 
L 

Symbol Typical Value 

1 N m s2/rad 
20 N m s/rad 
10-1000 
i n 
5Nm/A 
ImH 

Figure 2.20 with Kh = 0. The model shown in Figure 2.72(b) assumes that the flex
ure is entirely rigid and does not significantly flex. In Chapter 4, we will consider the 
model when the flexure cannot be assumed to be completely rigid. 

Typical parameters for the disk drive system are given in Table 2.10. Thus, we have 

G(s) 
K, 

We can also write 

G(s) = 

s(Js + b)(Ls + R) 

5000 

s(s + 20) Or + 1000)' 

KJ(bR) 

S(TLS + l)(rs + 1)' 

where T^ = J/b = 50 ms and T = L/R = 1 ms. Since T 
Then, we would have 

(2.135) 

(2.136) 

Ti, we often neglect T. 

G(s) 
0.25 Km/(bR) _ 

S(TLS + 1) " 5(0.05^ + 1) ' 

or 

G(s) = 
s(s + 20)" 

The block diagram of the closed-loop system is shown in Figure 2.73. Using the 
block diagram transformation of Tabic 2.6, we have 

Y(s) KaG(s) 

R(s) 1 + KaG(s)' 
(2.137) 

FIGURE 2.73 
Block diagram of 
closed-loop 
system. 

R(s) • Q ~> t 

• 
*a G(s) • n.v) 
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FIGURE 2.74 
The system 
response of the 
system shown in 
Figure 2.73 for 

^ = °4 

0.12 

0.1 

0.08 -

0.06 

0.04 

0.02 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Time (s) 

Using the approximate second-order model for G(s), we obtain 

When Ka = 40, we have 

5K„ rfr) = 
R(s) s2 + 20s + 5Ka' 

Y(s) = 
200 

52 + 20s + 200 
R(s). 

0.1 
We obtain the step response for R(s) = — rad, as shown in Figure 2.74. 

2.11 SUMMARY 

In this chapter, we have been concerned with quantitative mathematical models of con
trol components and systems. The differential equations describing the dynamic perfor
mance of physical systems were utilized to construct a mathematical model. The 
physical systems under consideration included mechanical, electrical, fluid, and thermo
dynamic systems. A linear approximation using a Taylor series expansion about the op
erating point was utilized to obtain a small-signal linear approximation for nonlinear 
control components. Then, with the approximation of a linear system, one may utilize 
the Laplace transformation and its related input-output relationship given by the trans
fer function. The transfer function approach to linear systems allows the analyst to 
determine the response of the system to various input signals in terms of the location 
of the poles and zeros of the transfer function. Using transfer function notations, block dia
gram models of systems of interconnected components were developed. The block 
relationships were obtained. Additionally, an alternative use of transfer function models 
in signal-flow graph form was investigated. Mason's signal-flow gain formula was inves
tigated and was found to be useful for obtaining the relationship between system variables 
in a complex feedback system. The advantage of the signal-flow graph method was the 
availability of Mason's signal-flow gain formula, which provides the relationship 
between system variables without requiring any reduction or manipulation of the flow 
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graph. Thus, in Chapter 2, we have obtained a useful mathematical model for feedback 
control systems by developing the concept of a transfer function of a linear system and 
the relationship among system variables using block diagram and signal-flow graph 
models. We considered the utility of the computer simulation of linear and nonlinear 
systems to determine the response of a system for several conditions of the system pa
rameters and the environment. Finally, we continued the development of the Disk Drive 
Read System by obtaining a model in transfer function form of the motor and arm. 

EXERCISES 

Exercises are straightforward applications of the concepts 
of the chapter. 

E2.1 A unity, negative feedback system has a nonlinear 
function y = /(e) = e2, as shown in Figure E2.1. For an 
input r in the range of 0 to 4. calculate and plot the open-
loop and closed-loop output versus input and show that 
the feedback system results in a more linear relationship. 

Close switch for closed loop 

FIGURE E2.1 Open and closed loop. 

E2.2 A thermistor has a response to temperature repre
sented by 

R - R„e' „-o.i r 

where R0 = 10,000 ft,/? = resistance, and T 
= temperature in degrees Celsius. Find the linear 

model for the thermistor operating at T = 20°Candfor 
a small range of variation of temperature. 
Answer: AR = -135 AT 

E2.3 The force versus displacement for a spring is shown 
in Figure E2.3 for the spring-mass-damper system of 
Figure 2.1. Graphically find the spring constant for the 
equilibrium point of y = 0.5 cm and a range of opera
tion of ±1.5 cm. 

FIGURE E2.3 Spring behavior. 

E2.4 The transfer function of the RC network given in 
Figure E2.4 is 

1 Y(s) _ 

R(s) 1 + RCS 

\ -wv 
- r - rU) v(/ ) 

FIGURE E2.4 A first order system. 

Given R = 1 kft, C = 1/x.F, If switch 5, is closed at t = 0. 

(a) Obtain an expression for y(t) 
(b) Plot r(t) vs t and y(t) vs t for t = 0 to i = 10 ms 
(c) What is the final value of y(t)l 

E2.5 A noninverting amplifier uses an op-amp as shown 
in Figure E2.5. Assume an ideal op-amp model and 
determine v0/vin. 

Answer: — = 1 + — 
Vm " 1 

WW-

+ o 

FIGURE E2.5 A noninverting amplifier using an op-amp. 

E2.6 A nonlinear device is represented by the function 

v = fa) = .,1/2, 

where the operating point for the input x is x0 = 1/2. 
Determine the linear approximation in the form of 
Equation (2.9). 

Answer: Ay = Ax/ V 2 

E2.7 A lamp's intensity stays constant when monitored by 
an optotransistor-controlled feedback loop. When the 
voltage drops, the lamp's output also drops, and opto-
transistor Qx draws less current. As a result, a power 
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transistor conducts more heavily and charges a capaci
tor more rapidly [25]. The capacitor voltage controls 
the lamp voltage directly. A block diagram of the sys
tem is shown in Figure E2.7. Find the closed-loop trans
fer function, F(s)/R(s) where I(s) is the lamp intensity, 
and R(s) is the command or desired level of light. 

R{s) Gt(s) G2(s) 

H(s) 

-+-/(4) 

(a) 

A 
Iris 

Filler 

•i 

\ 
Opaque tube 

(b) 

FIGURE E2.7 Lamp controller. 

E2.8 A control engineer, N. Minorsky, designed an innov
ative ship steering system in the 1930s for the U.S. 
Navy. The system is represented by the block diagram 
shown in Figure E2.8 , where Y(s) is the ship's course, 
R(s) is the desired course, and A(s) is the rudder angle 
[17]. Find the transfer function Y(s)/R(s). 

Y(s) 
Answer: m 

KGi(s)G2(s)/s 

1 +^( .9) / /3(^) +G,($)G2($)[#,(.¥) + H2(s)] + KGt(s)G2(sys 

E2.9 A four-wheel antilock automobile braking system 
uses electronic feedback to control automatically the 
b rake force on each wheel [16]. A block diagram 
model of a brake control system is shown in Figure E2.9. 
where Ff(s) and FR(s) are the braking force of the 
front and rear wheels, respectively, and R(s) is the de
sired automobi le response on an icy road . Find 
Ff(s)/R(s). 

Ris) 

H2(s) 

' 

k 

Gi(s) 

H2(s) 

G2(s) 

G3(s) 

•" ' / ( W 

- rR^, 

FIGURE E2.9 Brake control system. 

E2.10 O n e of the most potentially beneficial applica
tions of an automot ive control system is the active 
control of the suspension system. O n e feedback con
trol system uses a shock absorber consisting of a 
cylinder filled with a compressible fluid that provides 
both spring and damping forces [18]. The cylinder has 
a plunger activated by a gear motor , a displacement-
measur ing sensor, and a piston. Spring force is gener
ated by piston displacement , which compresses the 
fluid. During piston displacement, the pressure imbal
ance across the piston is used to control damping. The 
plunger varies the internal volume of the cylinder. 
This feedback system is shown in Figure E2.10. 
Deve lop a linear model for this device using a block 
diagram model. 

/?(.v) K 
~\ +/ ' ~ 

H2{s) 

Ox(s) 

H%(s) 

Hi(s) 

A(s) 
G2(s) 

+ 

1 
5 

Y[s) 

FIGURE E2.8 Ship steering system. 
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Plunger 

Damping 
orifice 

Piston rod Piston travel 

FIGURE E2.10 Shock absorber. 

E2.ll A spring exhibits a force-versus-displacement 
characteristic as shown in Figure E2.ll . For small de
viations from the operating point x0, find the spring 
constant when x0 is (a) -1.4; (b) 0; (c) 3.5. 

E2.12 Off-road vehicles experience many disturbance in
puts as they traverse over rough roads. An active sus
pension system can be controlled by a sensor that looks 
"ahead" at the road conditions. An example of a simple 
suspension system that can accommodate the bumps is 
shown in Figure E2.12. Find the appropriate gain Kx so 
that the vehicle does not bounce when the desired 
deflection is R(s) = 0 and the disturbance is T^(s). 

Answer: K\Ki — 1 
Wis) 

E2.13 Find the transfer function -^rrr for the system 

shown in Figure E2.13. 

E2.14 Obtain the transfer functions 

w 

(a) 

(b) 

(c) 

Uz(s) 

Y2(s) 

and 

for the system given in Figure E2.14. 

E2.15 The position control system for a spacecraft plat
form is governed by the following equations: 

d2p dp 

dt2 dt 

FIGURE E2.11 Spring characteristic. 

4p = 9 

vt = r - p 

The variables involved are as follows: 

r(t) = desired platform position 

p(t) = actual platform position 

Vi(t) = amplifier input voltage 

Bump disturbance 

Preview of disturbance 

Desired 
deflection 

Bounce of 
auto or 

- • deflection 
from 

horizontal 

FIGURE E2.12 Active suspension system. 

http://E2.ll
http://E2.ll
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*i« = Vf/(5) 

FIGURE E2.13 Electric traction motor control. 

",(') 

FIGURE E2.14 Multi-input-multi-output system. 

n~\ u2(t) 

t — • vis) 

v2(t) = amplifier output voltage 

0{t) ~ motor shaft position 

Sketch a signal-flow diagram or a block diagram of 
the system, identifying the component parts and their 
transmittances; then determine the system transfer 
function P(s)/R(s). 

E2.16 A spring used in an auto shock absorber develops a 
force /represented by the relation 

/ = kx\ 

where x is the displacement of the spring. Determine a 
linear model for the spring when x0 = 1. 

E2.17 The output y and input x of a device are related by 

y = x + J.4.x3. 

(a) Find the values of the output for steady-state op
eration at the two operating points x0 = 1 and x0 = 2. 
(b) Obtain a linearized model for both operating 
points and compare them. 

E2.18 The transfer function of a system is 

Y(s) 10(> + 2) 

R(s) ~ s2 \-Ss + 15 

Determine y(t) when r(t) is a unit step input. 

Answer: y(t) = 1.33 + L67e~a 3e~5', t > 0 

E2.19 Determine the transfer function V()(s)/V(s) of the op
erational amplifier circuit shown in Figure E2.19. Assume 
an ideal operational amplifier. Determine the transfer 
function when /?, = R2 = 100 kfl, Cx = 10 fiF, and 
C2 = 5 /xF. 

FIGURE E2.19 Op-amp circuit. 

E2.20 A high-precision positioning slide is shown in Figure 
E2.20. Determine the transfer function Xp(s)/Xin(s) 

f • 

' • ' . . ' 

(7 
Li 

— A A ^ — ' 
u 

Probe 
\ 

i 

Carriage 

FIGURI E E2.20 Prec sic n slide. 

I >xp 

Sliding 
friction, bs 
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when the drive shaft friction is bj — 0.7, the drive shaft 
spring constant is k(i - 2,mc = 1, and the sliding 
friction is bs = 0.8. 

E2.21 The rotational velocity w of the satellite shown in 
Figure E2.21 is adjusted by changing the length of the 
beam L. The transfer function between co(s) and the 
incremental change in beam length AL(s-) is 

fi{X) 

co[s) 2.5(5 + 2) 

&L(s) (s + 5)(5 + 1)2 

The beam length change is AL(.s) = 1/(4$). Deter
mine the response of the velocity a>{t). 

• Y(s) 

FIGURE E2.23 Multiloop feedback system. 

35 
Answer: »»(/) = — + rrr-e • — r r r e -

128 128 32 te 

Beam adjustment 

-1.2 
i 
l 

-0.8 

2.0 

1.6-

1.2-

0.8-

0.4-

1 1 A 

/ - 0 . 8 -

-1.2-j 

-1 .6 -

-2 .0-

V 1 
r l 

0.4 

i 
1 

0.8 1.2 
> X 

FIGURE E2.21 Satellite with adjustable rotational velocity. 

E2.22 Determine the closed-loop transfer function T(s) = 
Y(s)/R(s) for the system of Figure E2.22. 

FIGURE E2.24 An amplifier with a deadband region. 

E2.25 Determine the transfer function X2(s)/F(s) for the 
system shown in Figure E2.25. Both masses slide on a 
frictionless surface, and k = 1 N/m. 

X2(s) l 
Answer: 

*(.Y)0 

FIGURE E2.22 Control system with three feedback loops. 

E2.23 The block diagram of a system is shown in 
Figure E2.23. Determine the transfer function 
T(s) = Y(s)/R(s). 

E2.24 An amplifier may have a region of deadband as 
shown in Figure E2.24. Use an approximation that uses 
a cubic equation y = ax3 in the approximately linear 
region. Select a and determine a linear approximation 
for the amplifier when the operating point is x = 0.6. 

FIGURE E2.25 
surface. 

Two connected masses on a frictionless 

E2.26 Find the transfer function Y(s)/Td(s) for the sys
tem shown in Figure E2.26. 

Answer: 
Gz(s) 

Us) 1 + G1{s)G2(s)H(s) 
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TAsi 

R<. LS) - * Q - * 

FIGURE E2.26 System with disturbance. 

E2.29 A system is shown in Figure E2.29. 

(a) Find the closed-loop transfer function Y(s)/R(s) 

when G'.s) = -= . 
A-2 + 2s 4- 10 

(b) Determine Y(s) when the input R(s) is a unit step. 
(c) Compute y(t). 

E2.30 Determine the partial fraction expansion for V(s) 
and compute the inverse Laplace transform. The 
transfer function V(s) is given by: 

1/(.9) = 
400 

sz + 8s + 400 

E2.27 Determine the transfer function V0(s)/V(s) for the 
op-amp circuit shown in Figure E2.27 [1J. Let R\ = 
167 kft, R2 = 240 k n , R2 = 1 kft, i?4 = 100 k n , and 
C = 1 yxF. Assume an ideal op-amp. 

FIGURE E2.27 
Op-amp circuit. 

E2.28 A system is shown in Fig. E2.28(a). 

(a) Determine G(s) and H(s) of the block diagram 
shown in Figure E2.28(b) that are equivalent to 
those of the block diagram of Figure E2.28(a). 

(b) Determine Y(s)/R(s) for Figure E2.28(b). 

/?(*) • >'(v) 

1 + . A " . r̂-̂ * s + 5 
—In--? 

i 

s+ 10 VU) 

(a) 

FIGURE E2.29 Unity feedback control system. 

R(s) • K(.v) 

(b) 

FIGURE E2.28 Block diagram equivalence. 
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PROBLEMS 

Problems require an extension of the concepts of the chap
ter to new situations. 

P2.1 An electric circuit is shown in Figure P2.1. Obtain a 
set of simultaneous integrodifferer.tial equations rep
resenting the network. 

P2.4 A nonlinear amplifier can be described by the fol
lowing characteristic: 

«o(0 = 
«fii 

-vl 
s 0 
< 0' 

R 
C, 

R3 

AAAr-

•W0 
/?o J 

FIGURE P2.1 Electric circuit. 

P2.2 A dynamic vibration absorber is shown in Figure 
P2.2. This system is representative of many situations 
involving the vibration of machines containing unbal
anced components. The parameters M2 and ki2 may 
be chosen so that the main mass M{ does not vibrate 
in the steady srate when F(t) = a s'm(co0t). Obtain the 
differential equations describing the system. 

The amplifier will be operated over a range of ±0.5 
volts around the operating point for v-m. Describe 
the amplifier by a linear approximation (a) when 
the operating point is vin = 0 and (b) when the oper
ating point is Vjn - 1 volt. Obtain a sketch of the 
nonlinear function and the approximation for each 
case. 

P2.5 Fluid flowing through an orifice can be represented 
by the nonlinear equation 

Q = K{PX - p2y\ 
where the variables are shown in Figure P2.5 and K is 
a constant [2], (a) Determine a linear approximation 
for the fluid-flow equation, (b) What happens to the 
approximation obtained in part (a) if the operating 
point is P, - P2 = 0? 

Force 

Fin ^ 

j 

i*. 
• " > 

Lz Zlb 

M, j v 

M2 Y y2(r) 

i('J 

FIGURE P2.5 Flew through an orifice. 

P2.6 Obtain the transfer function 

for the two-mass system given in Figure P2.6. 

FIGURE P2.2 Vibration absorber. 

P2.3 A coupled spring-mass system is shown in Figure 
P2.3. The masses and springs are assumed to be equal. 
Obtain the differential equations describing the system. 

Force 

Fit) 

• 

-WWW- M 

k TTTT 

—•t ' l fn 

^ A | { 0 

WWW 
k 

v2U) 

M 1} 

Fit) 

www-
k, H 3 2 

- • .r,(i) 

k2 

VvVvW-

- i h -

v->(/) 

M2 

by 

- D -

FIGURE P2.6 Two-mass system. 

FIGURE P2.3 Two-mass system. 
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P2.7 Obtain the transfer function of the differentiating 
circuit shown in Figure P2.7. 

"M 
/f, 

+ 
+ 

Vn(s) = 1 + 2R,Cs + R{R2C
2s2 

K(s) 1 + (2Ri + R2)Cs + RiR2C
2sr 

Sketch the pole-zero diagram when Rx = 0.5, R2 - 1, 
and C = 0.5. 

P2.9 Determine the transfer function A'i(s)/F(s) for the 
coupled spring-mass system of Problem 2.3. Sketch 
the 5-plane pole-zero diagram for low damping when 
M = l,b/k = l ,and 

FIGURE P2.7 A differentiating circuit. 

P2.8 A bridged-T network is often used in AC control 
systems as a filter network [8]. The circuit of one 
bridged-T network is shown in Figure P2.8. Show that 
the transfer function of the network is 

« 1 

l. 
= O.l. 

+ 

P2.10 Determine the transfer function Yx{s)/F(s) for the 
vibration absorber system of Problem 2.2. Determine 
the necessary parameters M2 and kn so that the mass 
Mi does not vibrate in the steady state when 
Fit) = flsin(w0f). 

P2.ll For electromechanical systems that require large 
power amplification, rotary amplifiers are often used 
[8,19]. An amplidyne is a power amplifying rotary am
plifier. An amplidyne and a servomotor are shown in 
Figure P2.ll. Obtain the transfer function 6(s)/Vc(s), 
and draw the block diagram of the system. Assume 
vd = k2iq and vQ = kxic. 

FIGURE P2.8 Bridged-T network. 

Control 
field 

Load./, /; 

FIGURE P2.11 Amplidyne and armature-controlled motor. 

P2.12 For the open-loop control system described by the 
block diagram shown in Figure P2.12, determine the 
value of K such that y(t) —* 10 as f —> co when r(i) is a 
unit step input. Assume zero initial conditions. 

Controller 

K 

Process 

1 
s+W 

FIGURE P2.12 Open-loop control system. 

P2.13 An electromechanical open-loop control system is 
shown in Figure P2.13. The generator, driven at a con
stant speed, provides the field voltage for the motor.The 
motor has an inertia J„, and bearing friction bm. Obtain 
the transfer function 0j(s)/Vf(s) and draw a block dia
gram of the system. The generator voltage vg can be as
sumed to be proportional to the field current if. 

P2.14 A rotating load is connected to a field-controlled 
DC electric motor through a gear system. The motor is 
assumed to be linear. A test results in the output load 
reaching a speed of 1 rad/s within 0.5 s when a constant 

http://P2.ll
http://P2.ll
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Generator 

FIGURE P2.13 Motor and generator. 

Motor 

Ni Gear ratio n = — 

T 

i 
/:, spring constant 

in, mass 

FIGURE P2.15 Suspended spring-mass system. 

80 V is applied to the motor terminals. The output 
steady-state speed is 2.4 rad/s. Determine the transfer 
function d(s)/Vf{s) of the motor, in rad/V. The induc
tance of the field may be assumed to be negligible (see 
Figure 2.18). Also, note that the application of 80 V to 
the motor terminals is a step input of 80 V in magnitude. 

P2.15 Consider the spring-mass system depicted in Figure 
P2.15. Determine a differential equation to describe 
the motion of the mass m. Obtain the system response 
x{t) with the initial conditions x(0) = x0 and x(Q) = 0. 

P2.16 Obtain a signal-flow graph to represent the follow
ing set of algebraic equations where xt and x2 are to 
be considered the dependent variables and 6 and 11 
are the inputs: 

x, + 1.5¾ = 6, 2.*i + 4x2 = 11. 

Determine the value of each dependent variable by 
using the gain formula. After solving for xy by Mason's 
signal-flow gain formula, verify the solution by using 
Cramer's rule. 

P2.17 A mechanical system is shown in Figure P2.17, 
which is subjected to a known displacement.%(/) with 
respect to the reference, (a) Determine the two inde
pendent equations of motion, (b) Obtain the equations 
of motion in terms of the Laplace transform, assuming 
that the initial conditions are zero, (c) Sketch a signal-
flow graph representing the system of equations. 

(d) Obtain the relationship Tu(s) between X\(s) and 
X^(s) by using Mason's signal-flow gain formula. Com
pare the work necessary to obtain 7"13(,v) by matrix 
methods to that using Mason's signal-flow gain formula. 

,1 

4' 

,r 

¥ 
\u r̂ 

K-, 

Friction 

h 

1 
^ 

i___i_; 
FIGURE P2.17 Mechanical system. 

P2.18 An LC ladder network is shown in Figure P2.18. 
One may write the equations describing the network 
as follows: 

/1 = (V, - Va)Yu Va = {h ~ QZ2, 

h = (¾ ~ ^)¾. V2 = IaZA. 
Construct a flow graph from the equations and deter
mine the transfer function V2(s)/Vi(s). 

V,ls) 
C 

VM.v) 

FIGURE P2.18 LC ladder network. 
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P2.19 A voltage follower (buffer amplifier) is shown in 
Figure P2.19. Show that T = VQ/V;„ = 1. Assume an 
ideal op-amp. 

+ o 

FIGURE P2.19 A buffer amplifier. 

P2.20 The source follower amplifier provides lower out
put impedance and essentially unity gain. The circuit 
diagram is shown in Figure P2.20(a), and the small-sig
nal model is shown in Figure P2.20(b).This circuit uses 
an FET and provides a gain of approximately unity. 
Assume that R2 » Ri for biasing purposes and that 

Rf, » R2. (a) Solve for the amplifier gain, (b) Solve 
for the gain when g,„ = 2000 fj.Cl and Rs = 10 kl l 
where Rs = R^ + R2. (c) Sketch a block diagram that 
represents the circuit equations. 

P2.21 A hydraulic servomechanism with mechanical 
feedback is shown in Figure P2.21 [19]. The power pis
ton has an area equal to /l.When the valve is moved a 
small amount Az, the oil will flow through to the cylin
der at a rate p * Az, where p is the port coefficient. The 
input oil pressure is assumed to be constant. From the 

l\ - l2 l2 
geometry, we find that Az = k—-—(x — y) — j-y. 

/1 '1 
(a) Determine the closed-loop signal-flow graph or 
block diagram for this mechanical system, (b) Obtain 
the closed-loop transfer function Y(s)/X(s). 

Power 
cylinder 

DD 
0 

Input 
pressure 

fc < 

'11, Q 

R-, 

Input, x 

Output, v 

(a) 

(b) 

FIGURE P2.20 The source follower or common drain 
amplifier using an FET. 

FIGURE P2.21 Hydraulic servomechanism. 

P2.22 Figure P2.22 shows two pendulums suspended 
from frictionless pivots and connected at their mid
points by a spring [1]. Assume that each pendulum can 
be represented by a mass M at the end of a massless 
bar of length L. Also assume that the displacement is 
small and linear approximations can be used for sin 6 
and cos 8. The spring located in the middle of the bars 
is unstretched when 0j = 62. The input force is repre
sented by/(/), which influences the left-hand bar only. 
(a) Obtain the equations of motion, and sketch a 
block diagram for them, (b) Determine the transfer 
function T(s) = 0^5)/^(5). (c) Sketch the location of 
the poles and zeros of T(s) on the s-plane. 
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FIGURE P2.22 The bars are each of length L and the 
spring is located atL/2. 

P2.23 The small-signal circuit equivalent to a common-
emitter transistor amplifier is shown in Figure P2.23. 

R, 

Rf 
AA/y -

lb hi. 

r A A / V - ^ - M A / v — i 
+ 

+ 

'- 0 'be 

-4—6 

©A. A 

The transistor amplifier includes a feedback resistor 
Rf. Determine the input-output ratio vce/vm. 

P2.24 A two-transistor series voltage feedback amplifier 
is shown in Figure P2.24(a).This AC equivalent circuit 
neglects the bias resistors and the shunt capacitors. A 
block diagram representing the circuit is shown in 
Figure P2.24(b).This block diagram neglects the effect 
of hre, which is usually an accurate approximation, and 
assumes that R2 + /?/. » R\. (a) Determine the volt
age gain vjvm. (b) Determine the current gain i&/iti. 
(c) Determine the input impedance V\Jlby. 

P2.25 H. S. Black is noted for developing a negative feed
back amplifier in 1927. Often overlooked is the fact 
that three years earlier he had invented a circuit de
sign technique known as feedforward correction [20]. 
Recent experiments have shown that this technique 
offers the potential for yielding excellent amplifier 
stabilization. Black's amplifier is shown in Figure 
P2.25(a) in the form recorded in 1924. The block dia
gram is shown in Figure P2.25(b). Determine the 
transfer function between the output Y(s) and the 
input R(s) and between the output and the distur
bance Td(s). G(s) is used to denote the amplifier rep
resented by /x in Figure P2.25(a). 

FIGURE P2.23 CE amplifier. 

i'„(.v) 

(a) (b) 

FIGURE P2.24 Feedback amplifier. 
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FIGURE P2.25 H. S. 
Black's amplifier. (a) 
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P2.26 A robot includes significant flexibility in the arm 
members with a heavy load in the gripper [6, 21]. A 
two-mass model of the robot is shown in Figure. P2.26. 
Find the transfer function Y(s)/F(s). 

WWWWA 

FIGURE P2.26 The spring-mass-damper model of a 
robot arm. 

P2.27 Magnetic levitation trains provide a high-speed, very 
low friction alternative to steel wheels on steel rails. The 
train floats on an air gap as shown in Figure P2.27 [27]. 
The levitation force FL is controlled by the coil current i 
in the levitation coils and may be approximated by 

•2 

FL = k-v 

tr 
where z is the air gap. This force is opposed by the 
downward force F — mg. Determine the linearized 
relationship between the air gap z and the controlling 
current near the equilibrium condition. 

Levitation 
coil 

Levitation 
coil 

FIGURE P2.27 Cutaway view of train. 

P2.28 A multiple-loop model of an urban ecological system 
might include the following variables: number of people 
in the city (P), modernization (M), migration into the 
city (C), sanitation facilities (5), number of diseases (£)), 
bacteria/area (B), and amount of garbage/area (G), 
where the symbol for the variable is given in parenthe
ses. The following causal loops are hypothesized: 

1. P^G^B^D^P 
2. P^M^C->P 

P 

Sketch a signal-flow graph for these causal relation
ships, using appropriate gain symbols. Indicate whether 
you believe each gain transmission is positive or nega
tive. For example, the causal link S to B is negative be
cause improved sanitation facilities lead to reduced 
bacteria/area. Which of the four loops are positive feed
back loops and which are negative feedback loops? 

P2.29 We desire to balance a rolling ball on a tilting beam 
as shown in Figure P2.29. We will assume the motor 
input current i controls the torque with negligible fric
tion. Assume the beam may be balanced near the hor
izontal (</> = 0); therefore, we have a small deviation 
of (p. Find the transfer function X(s)/I(s), and draw a 
block diagram illustrating the transfer function show
ing 0(.9), X(s), and /(*). 

Torque motor 

FIGURE P2.29 Tilting beam and ball. 

P2.30 The measurement or sensor element in a feedback 
system is important to the accuracy of the system [6J. 
The dynamic response of the sensor is important. 
Most sensor elements possess a transfer function 

/ / (5 ) = 
TS 1 

Suppose that a position-sensing photo detector has 
T = 4 ^ s and 0.999 < k < 1.001. Obtain the step re
sponse of the system, and find the k resulting in the 
fastest response—that is, the fastest time to reach 98% 
of the final value. 

P2.31 Consider the cable reel control system given in Figure 
P2.31.Find the value of K such that for a desired velocity 
of 50 m/s, the percent overshoot is less than 9%. 

P2.32 Obtain the overall transfer function of the system 
given in Figure P2.32. 

3. P^M-
4. P^M-

*$-
+ s -

*D^>P 
^B^D 

a&i —p0— 

FIGURE P2.32 
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Desired 
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x+ 1 
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Actual cable 
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V(.v) 

FIGURE P2.31 Cable reel control system. 

R,(s) 

R7(s) 

FIGURE P2.32 Interacting System. 

P2.33 A system consists of two electric motors that are 
coupled by a continuous flexible belt. The belt also 
passes over a swinging arm that is instrumented to 
allow measurement of the belt speed and tension.The 
basic control problem is to regulate the belt speed and 
tension by varying the motor torques. 

An example of a practical system similar to that 
shown occurs in textile fiber manufacturing processes 
when yarn is wound from one spool to another at high 
speed. Between the two spools, the yarn is processed 
in a way that may require the yarn speed and tension 
to be controlled within defined limits. A model of the 
system is shown in Figure P2.33. Find J%(s)/R\(s). De
termine a relationship for the system that will make Y> 
independent of /?,. 

P2.34 Find the transfer function for Y(s)/R(s) for the idle-
speed control system for a fuel-injected engine as 
shown in Figure P2.34. 

-//,(.«) 

FIGURE P2.33 
A model of the 
coupled motor 
drives. 
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Y2(s) 
Tension 



Problems 133 
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FIGURE P2.34 Idle speed control system. 

P2.35 The suspension system for one wheel of an old-
fashioned pickup truck is illustrated in Figure P2.35. 
The mass of the vehicle is mx and the mass of the wheel 
is m2.The suspension spring has a spring constant k\ and 
the tire has a spring constant k2. The damping con
stant of the shock absorber is b. Obtain the transfer 
function Yi(s)/X(s), which represents the vehicle re
sponse to bumps in the road. 

• Profile 
of road 

FIGURE P2.35 Pickup truck suspension. 

P2.36 A feedback control system has the structure shown 
in Figure P2.36. Determine the closed-loop transfer 
function Y(s)/R(s) (a) by block diagram manipulation 
and (b) by using a signal-flow graph and Mason's sig
nal-flow gain formula, (c) Select the gains Kx and K2 

so that the closed-loop response to a step input is crit
ically damped with two equal roots at s - —10. (d) 
Plot the critically damped response for a unit step 
input. What is the lime required for the step response 
to reach 90% of its final value? 

FIGURE P2.36 Multiloop feedback system. 

P2.37 

«(.<) W ^ •*\ K 
0.1 

(5+1) (5+2) 

Amplifier Plant 

-+-MM 

FIGURE P2.37 A simple feedback control system. 

Y(s) 
(a) Obtain the overall transfer function of the 

l\\S) 
system given in Figure P2.37. 

(b) Obtain the closed-loop poles, open-loop poles and 
expression for step response when K = l. 

(c) Repeat (b) for K= 10. 

P2.38 
(a) Draw the signal flow graph corresponding to the 

system shown in Figure P2.38. 
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(b) Find the overall transfer function 

VA(S) 

V,(.v) 

using Masons Gain Formula. 

: 

« i 

VUs) 

«2 
A / V V 

Ci 

«3 
- V V V 

c2 C 3 V2(.vj 

FIGURE P2.38 A Ladder Network. 

P2.39 A winding oscillator consists of two steel spheres 
on each end of a long slender rod, as shown in 
Figure P2.39. The rod is hung on a thin wire that 
can be twisted many revolutions without breaking. 
The device will be wound up 4000 degrees. How 
long will it take until the motion decays to a swing 
of only 10 degrees? Assume that the thin wire has a 
rotational spring constant of 2 X 10~4 N m/rad and 
that the viscous friction coefficient for the sphere 
in air is 2 X 10-4 N ms/rad. The sphere has a mass of 
lkg . 

P2.40 For the circuit of Figure P2.40, determine the trans
form of the output voltage Vf)(s). Assume that the 
circuit is in steady state when t < 0. Assume that 
the switch moves instantaneously from contact 1 to 
contact 2 at t = 0. 

P2.41 A damping device is used to reduce the undesired 
vibrations of machines. A viscous fluid, such as a 
heavy oil, is placed between the wheels, as shown in 
Figure P2.41. When vibration becomes excessive, the 
relative motion of the two wheels creates damping. 
When the device is rotating without vibration, there is 
no relative motion and no damping occurs. Find B\(s) 
and 62(s). Assume that the shaft has a spring constant 
K and that b is the damping constant of the fluid. The 
load torque is T. 

o 
•0.5 m-

O 
FIGURE P2.39 Winding oscillator. 

Shaft 

C 
A 
K 

si 

Outer wheel 
J],61 

Inner wheel 
./,,03 

Fluid, b 

FIGURE P2.41 Cutaway view of damping device. 

P2.42 The lateral control of a rocket with a gimbaled en
gine is shown in Figure P2.42. The lateral deviation 
from the desired trajectory is h and the forward rock
et speed is V. The control torque of the engine is Tc 

and the disturbance torque is Td. Derive the describ
ing equations of a linear model of the system, and 
draw the block diagram with the appropriate transfer 
functions. 

^ C 7 
2H 

6V 

FIGURE P2.40 
Model of an 
electronic circuit. 

© @10,"2'V 
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va > 2 0 < ± > 0.5j 

ion 
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Desired 
trajectory 

Actual 
trajectory 

Engine 

of the other. Derive the relationships given in item 10 
of Table 2.5. Also, determine the relationship between 
the torques T,„ and TL. 

P2.45 An ideal set of gears is connected to a solid cylin
der load as shown in Figure P2.45. The inertia of the 
motor shaft and gear G2 is Jm. Determine (a) the iner
tia of the load JL and (b) the torque T at the motor 
shaft. Assume the friction at the load is bL and the fric
tion at the motor shaft is b,„. Also assume the density 
of the load disk is p and the gear ratio is n. Hint: The 
torque at the motorshaft is given by T = T"i + Tm. 

-Uk-
FIGURE P2.42 Rocket with gimbaled engine. FIGURE P2.45 Motor, gears, and load. 

P2.43 In many applications, such as reading product 
codes in supermarkets and in printing and manufac
turing, an optical scanner is utilized to read codes, as 
shown in Figure P2.43. As the mirror rotates, a friction 
force is developed that is proportional to its angular 
speed. The friction constant is equal to 0.06 N s/rad, 
and the moment of inertia is equal to 0.1 kg irr. The 
output variable is the velocity (o(t). (a) Obtain the dif
ferential equation for the motor, (b) Find the response 
of the system when the input motor torque is a unit 
step and the initial velocity at t = 0 is equal to 0.7. 

Mirror 

Bar code 

Reflected light 

Microcomputer 

FIGURE P2.43 Optical scanner. 

P2.44 An ideal set of gears is shown in Table 2.5, item 10. 
Neglect the inertia and friction of the gears and as
sume that the work done by one gear is equal to that 

P2.46 To exploit the strength advantage of robot manipu
lators and the intellectual advantage of humans, a class 
of manipulators called extenders has been examined 
[23]. The extender is defined as an active manipulator 
worn by a human to augment the human's strength. 
The human provides an input U(s), as shown in Figure 
P2.46.The endpoint of the extender is P(s). Determine 
the output P(s) for both U(s) and F(s) in the form 

P (s) = Us)U(S) + T2(s)F(s). 

P2.47 A load added to a truck results in a force F on the 
support spring, and the tire flexes as shown in Figure 

FIGURE P2.46 Model of extender. 
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r 

FIGURE P2.47 
Truck support 
model. 

b, du > *, 

Force of material 
placed in truck bed 

Truck vehicle mass 

?- Shock absorber 

> 
^ U ^ ^ Tire 

(a) (b) 

P2.47(a).The model for the tire movement is shown in 
Figure P2.47(b). Determine the transfer function 
X,(s)/F(s). 

P2.48 The water level h{t) in a tank is controlled by an 
open-loop system, as shown in Figure P2.48. A DC 
motor controlled by an armature current ia turns a 
shaft, opening a valve. The inductance of the DC 
motor is negligible, that is, La = 0. Also, the rota
tional friction of the motor shaft and valve is negli
gible, that is, b = 0. The height of the water in the 

tank is 

/2(0= J[\.6d(t)-Ht)]dt, 

the motor constant is K,„ = 10, and the inertia of the 

motor shaft and valve is / = 6 X 10-3 kg nr . Deter
mine (a) the differential equation for h(t) and v(t) and 
(b) the transfer function H(s)/V(s). 

Amplifier 

FIGURE P2.48 
Open-loop control 
system for the 
water level of a 
tank. 
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P2.49 The circuit shown in Figure P2.49 is called a lead- P2.51 Obtain the transfer function of the RLC network 
lag filter. 

(a) Find the transfer function Vi($)fV\{s). Assume an 
ideal op-amp. 
Determine K(.?)/K(s) when # , = 100 HI , 
R2 = 200 fcfl, Cj = 1 /J.F, and C2 = 0.1 tiF. 
Determine the partial fraction expansion for 
V2(s)/V(s). 

(b) 

(c) 

VAs) 

shown in Figure P2.51. Given L = 1H, C = 0.01 /xF. Find 
the closed loop poles, damping ratio, natural frequen
cy of oscillation when 

(a) /? = 10k 
(b) R = 2k 

R 
A A / V 

Z.= 1H 

C = 
= O.OIjuF 

y(l) 

FIGURE P2.51 A second-order system. 

FIGURE P2.49 Lead-lag filter. 

P2.50 A closed-loop control system is shown in Figure 
P2.50. 

(a) Determine the transfer function 

T(s) = Y(s)/R(s). 

(b) Determine the poles and zeros of T(s). 
(c) Use a unit step input, R(s) = 1/s, and obtain the 

partial fraction expansion for Y(s) and the value 
of the residues. 

(d) Plot y(t) and discuss the effect of the real and 
complex poles of T(s). Do the complex poles or 
the real poles dominate the response? 

• /(5) 

FIGURE P2.50 Unity feedback control system. 

ADVANCED PROBLEMS 

AP2.T An armature-controlled DC motor is driving a load. 
The input voltage is 5 V. The speed at t = 2 seconds is 30 
rad/s, and the steady speed is 70 rad/s when t —* oo. De
termine the transfer function a>(s)fV(s). 

AP2.2 A system has a block diagram as shown in Figure 
AP2.2. Determine the transfer function 

It is desired to decouple Y2(s) from Rfa) by obtaining 
T(s) = 0. Select G5(s) in terms of the other Gfa) to 
achieve decoupling. 

AP2.3 Consider the feedback control system in Figure 
AP2.3. Define the tracking error as 

E(s) = R(s) - Y(s). 

(a) Determine a suitable H(s) such that the tracking 
error is zero for any input R(s) in the absence of a 
disturbance input (that is, when Td(s) = 0). (b) Using 
H(s) determined in part (a), determine the response 
Y(s) for a disturbance Td(s) when the input R(s) = 0. 
(c) Is it possible to obtain Y(s) = 0 for an arbitrary 
disturbance 7^(^) when Ga(s) # 0? Explain your 
answer, 
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Ri(s) 

/?2(.v) 

• Y,(s) 

FIGURE AP2.2 
Interacting control 
system. 

C3(5) - • O " * ' C4(S) 

H2(s) 

•*• W 

M 

FIGURE AP2.3 Feedback system with a disturbance 
input. 

AP2.4 Consider a thermal heating system given by 

V(s) = 1 
q(s) C,s + (QS + 1/R.Y 

where the output £T(s) is the temperature difference 
due to the thermal process, the input q(s) is the rate of 
heat flow of the heating element. The system parame
ters are Ct, Q, S, and Rt. The thermal heating system is 
illustrated in Table 2.5. (a) Determine the response of 
the system to a unit step q{s) = l/s. (b) As i—*oo, 
what value does the step response determined in part 
(a) approach? This is known as the steady-state re
sponse. (c) Describe how you would select the system 

~ parameters C,, Q, S, and Rr to increase the speed of re
sponse of the system to a step input. 

AP2.5 For the three-cart system illustrated in Figure 
AP2.5, obtain the equations of motion. The system has 
three inputs uu u2, and «3 and three outputs Xj, x2, 
and x3. Obtain three second-order ordinary differen
tial equations with constant coefficients. If possible, 
write the equations of motion in matrix form. 

FIGURE AP2.5 Three-cart system with Three inputs and 
three outputs. 
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DESIGN PROBLEMS 

<7J 

CDP2.1 We want to accurately position a table for a ma
chine as shown in Figure CDP2.1. A traction-drive 
motor with a capstan roller possesses several desirable 
characteristics compared to the more popular ball 
screw. The traction drive exhibits low friction and no 
backlash. However, it is susceptible to disturbances. De
velop a model of the traction drive shown in Figure 
CDP2.1(a) for the parameters given in Table CDP2.1. 
The drive uses a DC armature-controlled motor with a 
capstan roller attached to the shaft.The drive bar moves 
the linear slide-table. The slide uses an air bearing, so its 
friction is negligible. We are considering the open-loop 
model, Figure CDP2.1(b), and its transfer function in 
this problem. Feedback will be introduced later. 

Traction drive motor 
and capstan roller 

Linear slide 

(a) 

KM G(s) •+• X(s) 

(b) 

FIGURE CDP2.1 (a) Traction drive, capstan roller, and 
linear slide, (b) The block diagram mocel. 

DP2.1 A control system is shown in Figure DP2.1.The 
transfer functions G2(s) and H2(s) are fixed. Deter
mine the transfer functions G\(s) and //]($) so that 

Table CDP2.1 Typical Parameters for the 
Armature-Controlled DC 
Capstan and Slide 
Ms 

M„ 
Jm 

r 

bm 

Km 
Kh 

Ki 
Lm 

Mass of slide 
Mass of drive bar 
Inertia of 
roller, shaft, motor 
and tachometer 

Roller radius 
Motor damping 
Torque constant 
Back emf constant 
Motor resistance 
Motor inductance 

Motor and the 

5.693 kg 
6.96 kg 
10.91 -irr3 kg m2 

31.75- NT3 m 
0.268 N ms/rad 
0.8379 N m/amp 
0.838 V s/rad 
1.36 H 
3.6 inH 

the closed-loop transfer function Y(s)/R(s) is exactly 
equal to 1. 

DP2.2 The television beam circuit of a television is repre
sented by the model in Figure DP2.2. Select the un
known conductance G so that the voltage v is 24 V. 
Each conductance is given in Siemens (S). 

DP2.3 An input r(t) = f, f s 0, is applied to a black box 
with a transfer function G(i').The resulting output re
sponse, when the initial conditions are zero, is 

y{t) = e->-\e-* ~\ + \u SO. 

Determine G{s) for this system. 

DP2.4 An operational amplifier circuit that can serve as a 
filter circuit is shown in Figure DP2.4. (a) Determine 
the transfer function of the circuit, assuming an ideal 
op-amp. Find va(t) when the input is v^(t) = At, 
t > 0. 

R(s) 

FIGURE DP2.1 
Selection of transfer 
functions. 

+ r G\ 

Hi 

H-, 

•*• Y(s) 
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FIGURE DP2.2 
Television beam 
circuit. 

Reference 

t>2r2 Is ©20A | 

FIGURE DP2.4 
Operational 
amplifier circuit. 

o + 

COMPUTER PROBLEMS 

CP2.1 Using MATLAB obtain the step responses of the 
first order system with transfer function 

1 Y(s) _ 

R(s) 1 + ST 

for T = 2s, 5s, and 10s. 

CP2.2 Consider the feedback system depicted in Figure 
CP2.2. 

(a) Compute the closed-loop transfer function using 
the series and feedback functions. 

(b) Obtain the closed-loop system unit step response 
with the step function, and verify that final value 
of the output is 2/5. 

CP2.3 Consider the differential equation 

y 4- 4y + Ay = u, 

where y(0) = y(0) = 0 and u(t) is a unit step. Deter
mine the solution y{t) analytically and verify by co-
plotting the analytic solution and the step response 
obtained with the step function. 

CP2.4 Consider the RLC network given in Figure CP2.4. 
Using MATLAB 

(a) Find step response when R = 2K, 10K, 20K. 
(b) Obtain the poles corresponding to R — 2K, 10 K, 

20K. 
(c) What is the effect of increasing value of R on damp

ing ratio and natural frequency of oscillation? 

K(.v) 

Controller 

1 
s+ 1 

— • 

Plant 

s + 2 
s + 3 t 

>it) 

1 

R 
A A A -

L= \H 

- yit) 
C = 0.01/uF 

FIGURE CP2.2 A negative feedback control system. FIGURE CP2.4 A second order system. 
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CP2.5 A satellite single-axis attitude control system can 
be represented by the block diagram in Figure CP2.5. 
The variables k, a, and b are controller parameters, 
and J is the spacecraft moment of inertia. Suppose the 
nominal moment of inertia is J = 10.8E8 (slug ft2), 
and the controller parameters are k = 10.8E8, a = 1, 
and 6 = 8. 

(a) Develop an m-file script to compute the closed-
loop transfer function T(s) = 0(s)/0rf(s). 

(b) Compute and plot the step response to a 10° step 
input. 

(c) The exact moment of inertia is generally unknown 
and may change slowly with time. Compare the 
step response performance of the spacecraft when 
J is reduced by 20% and 50%. Use the controller 
parameters k = 10.8E8, a = 1, and b = 8 and a 
10° step input. Discuss your results. 

CP2.6 Consider the block diagram in Figure CP2.6. 

(a) Use an m-file to reduce the block diagram in 
Figure CP2.6, and compute the closed-loop trans
fer function. 

(b) Generate a pole-zero map of the closed-loop 
transfer function in graphical form using the 
pzmap function. 

(c) Determine explicitly the poles and zeros of the 
closed loop transfer function using the pole and 

zero functions and correlate the results with the 
pole-zero map in part (b). 

CP2.7 For the simple pendulum shown in Figure CP2.7, 
the nonlinear equation of motion is given by 

0(r) + y-sin 0 = 0, 

where L = 0.5 m, m = 1 kg, and g = 9.8 m/s2. When 
the nonlinear equation is linearized about the equi
librium point 6 = 0, we obtain the linear time-invariant 
model, 

8 + j6 = 0. 

Create an m-file to plot both the nonlinear and the lin
ear response of the simple pendulum when the initial 
angle of the pendulum is 0(0) = 30° and explain any 
differences. 

CP2.8 A system has a transfer function 

X(s) _ (15/z)(s + z) 

R(s) s2 + 3A- + 15* 

Plot the response of the system when R(s) is a unit 
step for the parameter z = 3, 6, and 12. 

u» 
attitude 

-irw 

1 
Controller 

k(s + a) 
s + b 

— • 

Spacecraft 

1 
Js2 

eu) 
attitude 

FIGURE CP2.5 A spacecraft single-axis attitude control block diagram. 

R(s) 
L ^ k 

1 
s+ 1 

s 

s2 + 2 

As + 2 

s2 + 2s + 1 

s2 + 2 

s3 + 14 

tf 
+ ' 

1 

50 *— 

•*> Y(s) 

FIGURE CP2.6 A multiple-loop feedback control system block diagram. 
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FIGURE CP2.7 
Simple pendulum. 

CP2.9 Consider the feedback control system in Figure 
CP2.9, where 

,? + 1 1 
G(s) =•- and H(s) = s + 2 

R(s) 

His) * 

s + 1' 

• Y{s) 

m, mass 

(a) Using an m-file, determine the closed-loop trans
fer function. 

(b) Obtain the pole-zero map using the pzmap func
tion. Where are the closed-loop system poles and 
zeros? 

(c) Are there any pole-zero cancellations? If so, use 
the minreai function to cancel common poles and 
zeros in the closed-loop transfer function. 

(d) Why is it important to cancel common poles and 
zeros in the transfer function? 

FIGURE CP2.9 Control system with nonunity feedback. 

TERMS AND CONCEPTS 

Actuator The device that causes the process to provide 
the output. The device that provides the motive power 
to the process. 

Assumptions Statements that reflect situations and con
ditions that are taken for granted and without proof. 
In control systems, assumptions are often employed to 
simplify the physical dynamical models of systems 
under consideration to make the control design prob
lem more tractable. 

Block diagrams Unidirectional, operational blocks that 
represent the transfer functions of the elements of 
the system. 

Characteristic equation The relation formed by equating 
to zero the denominator of a transfer function. 

Closed-loop transfer function A ratio of the output signal 
to the input signal for an interconnection of systems 
when all the feedback or feedfoward loops have been 
closed or otherwise accounted for. Generally obtained 
by block diagram or signal-flow graph reduction. 

Critical damping The case where damping is on the 
boundary between underdamped and overdamped. 

Damped oscillation An oscillation in which the ampli
tude decreases with time. 

Damping ratio A measure of damping. A dimensionlcss 
number for the second-order characteristic equation. 

DC motor An electric actuator that uses an input voltage 
as a control variable. 

Differential equation An equation including differentials 
of a function. 

Error signal The difference between the desired out
put R(s) and the actual output Y(s); therefore 
E(s) = R(s) - Y(s). 

Final value The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the steady-state value. 

Final value theorem The theorem that states that 
lim y(t) = lim sY(s), where Y(s) is the Laplace 

transform of y(i). 

Homogeneity The property of a linear system in which 
the system response, y(t), to an input w(f) leads to the 
response fiy{t) when the input is (3u(t). 
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Laplace transform A transformation of a function f(t) 
from the time domain into the complex frequency 
domain yielding F(s). 

Linear approximation An approximate model that re
sults in a linear relationship between the output and 
the input of the device. 

Linear system A system that satisfies the properties of 
superposition and homogeneity. 

Linearized Made linear or placed in a linear form. Taylor 
series approximations are commonly employed to 
obtain linear models of physical systems. 

Mason loop rule A rule that enables the user to obtain a 
transfer function by tracing paths and loops within 
a system. 

Mathematical models Descriptions of the behavior of a 
system using mathematics. 

Natural frequency The frequency of natural oscillation 
that would occur for two complex poles if the damp
ing were equal to zero. 

Necessary condition A condition or statement that must 
be satisfied to achieve a desired effect or result. For ex
ample, for a linear system it is necessary that the input 
ui(t) + u2(t) results in the response yi(/) + >'2(/), 
where the input Ui(f) results in the response yt(t) and 
the input «2(0 results in the response y^it). 

Overdamped The case where the damping ratio is £ > 1. 

Poles The roots of the denominator polynomial (i.e., 
the roots of the characteristic equation) of the trans
fer function. 

Principle of superposition The law that states that if two 
inputs are scaled and summed and routed through a 
linear, time-invariant system, then the output will be 
identical to the sum of outputs due to the individual 
scaled inputs when routed through the same system. 

Reference input The input to a control system often 
representing the desired output,denoted by R(s). 

Residues The constants k\ associated with the partial 
fraction expansion of the output Y{s), when the out
put is written in a residue-pole format. 

Signal-flow graph A diagram that consists of nodes 
connected by several directed branches and that 
is a graphical representation of a set of linear 
relations. 

Simulation A model of a system that is used to investigate 
the behavior of a system by utilizing actual input 
signals. 

Steady state The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the final value. 

5-plane The complex plane where, given the complex 
number s = s + jw, the x-axis (or horizontal axis) is 
the 5-axis, and the y-axis (or vertical axis) is the/w-axis. 

Taylor series A power series defined by g{x) = 

- °(>"\x0) 
(x - XQ)'". For m < no,the series is an 

approximation which is used to linearize functions 
and system models. 

Time constant The time interval necessary for a system to 
change from one state to another by a specified per
centage. For a first order system, the time constant is 
the time it takes the output to manifest a 63.2% 
change due to a step input. 

Transfer function The ratio of the Laplace transform of 
the output variable to the Laplace transform of the 
input variable. 

Underdamped The case where the damping ratio is £ < 1. 

Unity feedback A feedback control system wherein the 
gain of the feedback loop is one. 

Zeros The roots of the numerator polynomial of the 
transfer function. 
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PREVIEW 

In this chapter, we consider system modeling using time-domain methods. As before, 
we will consider physical systems described by an nth-order ordinary differential equa
tion. Utilizing a (nonunique) set of variables, known as state variables, wc can obtain a 
set of first-order differential equations. We group these first-order equations using a 
compact matrix notation in a model known as the state variable model.The time-domain 
state variable model lends itself readily to computer solution and analysis. The rela
tionship between signal-flow graph models and state variable models will be investi
gated. Several interesting physical systems, including a space station and a printer belt 
drive, are presented and analyzed. The chapter concludes with the development of a 
state variable model for the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 3, students should: 

J Understand the concept of state variables, state differential equations, and output 
equations. 

• Recognize that state variable models can describe the dynamic behavior of physical 
systems and can be represented by block diagrams and signal flow graphs. 

G Know how to obtain the transfer function model from a state variable model, and vice 
versa. 

U Be aware of solution methods for state variable models and the role of the state transition 
matrix in obtaining the time responses. 

D Understand the important role of state variable modeling in control system design. 
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3.1 INTRODUCTION 

In the preceding chapter, we developed and studied several useful approaches to 
the analysis and design of feedback systems. The Laplace transform was used to 
transform the differential equations representing the system to an algebraic 
equation expressed in terms of the complex variable s. Using this algebraic equa
tion, we were able to obtain a transfer function representation of the input-output 
relationship. 

The ready availability of digital computers makes it practical to consider the time-
domain formulation of the equations representing control systems. The time-domain 
techniques can be used for nonlinear, time-varying, and multivariable systems. 

A time-varying control system is a system in which one or more of the 
parameters of the system may vary as a function of time. 

For example, the mass of a missile varies as a function of time as the fuel is ex
pended during flight. A multivariable system, as discussed in Section 2.6, is a system 
with several input and output signals. 

The solution of a time-domain formulation of a control system problem is facili
tated by the availability and ease of use of digital computers. Therefore we are in
terested in reconsidering the time-domain description of dynamic systems as they 
are represented by the system differential equation. The time domain is the mathe
matical domain that incorporates the response and description of a system in terms 
of time, t. 

The time-domain representation of control systems is an essential basis for modern 
control theory and system optimization. In Chapter 11, we will have an opportunity 
to design an optimum control system by utilizing time-domain methods. In this 
chapter, we develop the time-domain representation of control systems and illus
trate several methods for the solution of the system time response. 

3.2 THE STATE VARIABLES OF A DYNAMIC SYSTEM 

The time-domain analysis and design of control systems uses the concept of the 
state of a system [1-3,5]. 

The state of a system is a set of variables whose values, together with the input 
signals and the equations describing the dynamics, will provide the future state 

and output of the system. 

For a dynamic system, the state of a system is described in terms of a set of state 
variables [x\{t), x2{t), • •., x„(t)]. The state variables are those variables that deter
mine the future behavior of a system when the present state of the system and the 
excitation signals are known. Consider the system shown in Figure 3.1, where yj(r) 
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FIGURE 3.1 
System block 
diagram. 
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and y2(t) are the output signals and u^t) and u2(t) are the input signals. A set of 
state variables (xh x2,.. -, x„) for the system shown in the figure is a set such that 
knowledge of the initial values of the state variables [xi(t0), x2(t0),..., xn(t0)\ at the 
initial time t0, and of the input signals ui(t) and u2(t) for t > t0, suffices to determine 
the future values of the outputs and state variables [2]. 

The state variables describe the present configuration of a system and can be 
used to determine the future response, given the excitation inputs and the 

equations describing the dynamics. 

The general form of a dynamic system is shown in Figure 3.2. A simple example 
of a slate variable is the state of an on-off light switch. The switch can be in either 
the on or the off position, and thus the state of the switch can assume one of two 
possible values. Thus, if we know the present state (position) of the switch at to 
and if an input is applied, we are able to determine the future value of the state of 
the element. 

The concept of a set of state variables that represent a dynamic system can be 
illustrated in terms of the spring-mass-damper system shown in Figure 3.3. The num
ber of state variables chosen to represent this system should be as small as possible 
in order to avoid redundant state variables. A set of state variables sufficient to de
scribe this system includes the position and the velocity of the mass. Therefore, we 
will define a set of state variables as (x\, x2), where 

x\{t) = y(t) and x2(t) = dm 
dt • 

The differential equation describes the behavior of the system and is usually written as 

M 
d2y dy 

+ b-j- + ky = u(t). 
dt2 " dt 

(3-1) 

FIGURE 3.2 
Dynamic system. 
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conditions 

Input =0 
Dynamic system 

state x(t) ¥ 
yd) 

Output 
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FIGURE 3.3 
A spring-mass-
damper system. 

To write Equation (3.1) in terms of the state variables, we substitute the state variables 
as already defined and obtain 

dx 
M~— + bx2 + kxx = u(t). (3.2) 

Therefore, we can write the equations that describe the behavior of the spring-mass-
damper system as the set of two first-order differential equations 

dx] 

~dt = x2 

and 

dx2 -b 
di M 

* 2 
M 

*l 
M 

(3.3) 

(3.4) 

This set of differential equations describes the behavior of the state of the system in 
terms of the rate of change of each state variable. 

As another example of the state variable characterization of a system, consider 
the RLC circuit shown in Figure 3.4. The state of this system can be described by a set 
of state variables (xlt x2), where x% is the capacitor voltage vc(t) and x2 is the induc
tor current ij_[t). This choice of state variables is intuitively satisfactory because the 
stored energy of the network can be described in terms of these variables as 

« = -LiL
2 + -Cvc

2. (3.5) 

Therefore Xi(to) and x2(t0) provide the total initial energy of the network and the 
state of the system at t = CQ. For a passive RLC network, the number of state vari
ables required is equal to the number of independent energy-storage elements. Uti
lizing Kirchhoffs current law at the junction, we obtain a first-order differential 
equation by describing the rate of change of capacitor voltage as 

_ dvc ic = C— = +u(t) - iL. (3.6) 

Kirchhoffs voltage law for the right-hand loop provides the equation describing the 
rate of change of inductor current as 

di, 

L - = - m L - Vc. 
The output of this system is represented by the linear algebraic equation 

v0 = RiL(t). 

(3.7) 

FIGURE 3.4 
An RLC circuit. 
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We can rewrite Equations (3.6) and (3.7) as a set of two first-order differential 
equations in terms of the state variables x-\ and x2 as follows: 

dx 

and 

The output signal is then 

I = --U + !„(,), (3.8) 

dx2 1 R , „ _ ~i = v - r>- (3-9) 

yi(0 = vo(0 = ^¾. (3-10) 

Utilizing Equations (3.8) and (3.9) and the initial conditions of the network represented 
by [xi(tQ), x2(to)], w e c a n determine the system's future behavior and its output. 

The state variables that describe a system are not a unique set, and several alter
native sets of state variables can be chosen. For example, for a second-order system, 
such as the spring-mass-damper or RLC circuit, the state variables may be any two 
independent linear combinations of x\(t) and x2(t). For the RLC circuit, we might 
choose the set of state variables as the two voltages, vc(t) and Vi(t), where vL is the 
voltage drop across the inductor. Then the new state variables, x* and x2, are related 
to the old state variables, xi and x2, as 

x\ = vc = xh (3.11) 

and 

x2 = VL ~ vc ~ Ri-L = xl ~ Rx2- (3-12) 

Equation (3.12) represents the relation between the inductor voltage and the former 
state variables vc and iL. In a typical system, there are several choices of a set of state 
variables that specify the energy stored in a system and therefore adequately de
scribe the dynamics of the system. It is usual to choose a set of state variables that can 
be readily measured. 

An alternative approach to developing a model of a device is the use of the bond 
graph. Bond graphs can be used for electrical, mechanical, hydraulic, and thermal de
vices or systems as well as for combinations of various types of elements. Bond 
graphs produce a set of equations in the state variable form [7]. 

The state variables of a system characterize the dynamic behavior of a sys
tem. The engineer's interest is primarily in physical systems, where the variables 
are voltages, currents, velocities, positions, pressures, temperatures, and similar 
physical variables. However, the concept of system state is not limited to the 
analysis of physical systems and is particularly useful in analyzing biological, so
cial, and economic systems. For these systems, the concept of state is extended be
yond the concept of the current configuration of a physical system to the broader 
viewpoint of variables that will be capable of describing the future behavior of 
the system. 
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The response of a system is described by the set of first-order differential equations 
written in terms of the state variables (x\, x%..., x„) and the inputs (wl5 u2,..., u,„). 
These first-order differential equations can be written in general form as 

xi = fln'i + «12*2 + ••• + uinx„ + buiii + ••• + blmum, 

x2 = a21x1 + a22x2 + • • • + a2nxn + b2lux + ••• + b2mu„„ 

xn = an\X] + cin2x2 + • • • f cinnxn 

+ iMl"i + ••• + bmnum, (3.13) 
where x = dx/dt. Thus, this set. of simultaneous differential equations can be written 
in matrix form as follows [2,5]: 

d 
dt 

*1 

x2 = 

« n a12- •• ay, 

a2\ a12' " ' a2n 

anl an2' ' ' ann 

X-i 

+ 
bw--bXm Mi 

(3.14) 

The column matrix consisting of the state variables is called the state vector and is 
written as 

x = 

Xy 

*2 (3.15) 

where the boldface indicates a vector. The vector of input signals is defined as u. 
Then the system can be represented by the compact notation of the state differential 
equation as 

x = Ax + Bu. (3.16) 

The differential equation (3.16) is also commonly called the state equation. 
The matrix A is an n X n square matrix, and B is an n X m matrix/ The state 

differential equation relates the rate of change of the state of the system to the state 
of the system and the input signals. Tn general, the outputs of a linear system can be 
related to the state variables and the input signals by the output equation 

y = Cx + Du, (3.17) 

Boldfaced lowercase letters denote vector quantities and boldfaced uppercase letters denote matri
ces. For an introduction to matrices and elementary matrix operations, refer to the MCS website and 
references [1] and [2]. 
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where y is the set of output signals expressed in column vector form. The state-space 
representation (or state-variable representation) comprises the state differential 
equation and the output equation. 

We use Equations (3.8) and (3.9) to obtain the state variable differential equation 
for the RLC of Figure 3.4 as 

x = 

0 

1 
L 

-1 

c 
-R 
L 

x + 
1 
C 
0 

ii(0 

and the output as 

y = [0 R]x. 

When R = 3, L = 1, and C - 1/2, we have 

(3.18) 

(3.19) 

x = 
0 - 2 

1 - 3 
x + 

and 

y = [0 3]x. 

The solution of the state differential equation (Equation 3.16) can be obtained 
in a manner similar to the method for solving a first-order differential equation. 
Consider the first-order differential equation 

x = ax + bu, (3.20) 

where x{t) and u(t) are scalar functions of time. We expect an exponential solution of 
the form eat. Taking the Laplace transform of Equation (3.20), we have 

therefore, 

sX(s) - x(0) = aX{s) + bU(s); 

x(0) b 
X(s) = y-^4 + U(S). 

s — a s — a 

The inverse Laplace transform of Equation (3.21) can be shown to be 

x(t) = eacx(0) + / e+ai'-T)bu(r) dr. 
Jo 

(3.21) 

(3.22) 

We expect the solution of the general state differential equation to be similar to 
Equation (3.22) and to be of exponential form. The matrix exponential function is 
defined as 

(3.23) 
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which converges for all finite t and any A [2].Then the solution of the state differential 
equation is found to be 

x(f) = exp(Ar)x(0) + / expf\(t - T)]BU(T) dr. (3.24) 

Equation (3.24) may be verified by taking the Laplace transform of Equation (3.16) 
and rearranging to obtain 

- l i X(s) = [si - A]_,x(0) + [si - ApBU(s) , (3.25) 

where we note that [si - A] - 1 = O(s) is the Laplace transform of ¢(/) = exp(Af). 
Taking the inverse Laplace transform of Equation (3.25) and noting that the second 
term on the right-hand side involves the product <D(.v)BU(.?), we obtain Equation 
(3.24). The matrix exponential function describes the unforced response of the sys
tem and is called the fundamental or state transition matrix ¢(/). Thus, Equation 
(3.24) can be written as 

x(0 = *(r)x(0) + / ¢ ( / - T)BU(T) dr. (3.26) 

The solution to the unforced system (that is, when u = 0) is simply 

xi(t) 
x2(t.) 

xn(t) <M0 

01«(O 

02«(O 

4>»n(t) 

Xl(0) 

x2(0) 

x»(0) 

(3.27) 

We note therefore that to determine the state transition matrix, all initial conditions 
are set to 0 except for one state variable, and the output of each state variable is eval
uated. That is, the term 4>iffi is the response of the /th state variable due to an initial 
condition on the /th state variable when there are zero initial conditions on all the 
other variables. We shall use this relationship between the initial conditions and the 
state variables to evaluate the coefficients of the transition matrix in a later section. 
However, first we shall develop several suitable signal-flow state models of systems 
and investigate the stability of the systems by utilizing these flow graphs. 

EXAMPLE 3.7 Two rolling carts 

Consider the system shown in Figure 3.5. The variables of interest are noted on the 
figure and defined as: Mu M2 ~ mass of carts,/?, q = position of carts, u = external 
force acting on system, kh k2 = spring constants, and b\* b2 = damping coefficients. 
The free-body diagram of mass Mj is shown in Figure 3.6(b), where p,q = velocity 
of Mi and M2, respectively. We assume that the cars have negligible rolling friction. 
We consider any existing rolling friction to be lumped into the damping coefficients, 
bx and b2. 
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FIGURE 3.5 
Two rolling carts 
attached with 
springs and 
dampers. 

• a 

Now, given the free-body diagram with forces and directions appropriately 
applied, we use Newton's second law (sum of the forces equals mass of the object 
multiplied by its acceleration) to obtain the equations of motion—one equation for 
each mass. For mass Mj we have 

or 

M{p = u + fs + fd = u - kx{p - q) - bx{p - q), 

M\'p + b}p + kip = u + k\q + biq, (3.28) 

where 

p,q = acceleration of Mj and A/2, respectively. 

Similarly, for mass M2 we have 

M2q - *,(/> - q) + bi(p - q) - k2q ~ b2q, 

or 

M2q + (ki + k2)q + fa + b2)q = k^p + blP. (3.29) 

We now have a model given by the two second-order ordinary differential equations in 
Equations (3.28) and (3.29). We can start developing a state-space model by defining 

X] = p, 

x2 = q. 

We could have alternatively defined x\ = q and x2 — P- Tlie state-space model is 
not unique. Denoting the derivatives of X] and x2 as x$ and x4, respectively, it 
follows that 

*3 = Xl = p, 

x4 = x2 = Q-

Taking the derivative of x3 and x4 yields, respectively, 

bt . ki 1 kj, 
X> = p = -^p-^p + wt

u + Wi 
b: . 

Ml* 

ki + k2 b\ + b2 k\ b\ . 

*4 = q = - ^Tq " "̂ T* + ^T2
P + W2

P' 

(3.30) 

(3.31) 

(3.32) 

(3.33) 
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where we use the relationship for p given in Equation (3.28) and the relationship 
for a given in Equation (3.29). But p = x3 and q = x4, so Equation (3.32) can be 
written as 

kx k{ b! bx 1 
Mi Mi ~ My Mi Mi 

and Equation (3.33) as 

k{ ki + k2 b\ b\ + b2 
x4 = 77~xi i7 x2 + 77" x3 7Z x4-

M2 M2 M2 M2 

In matrix form, Equations (3.30), (3.31), (3.34), and (3.35) can be written as 

x = Ax + Bu 

where 

A -

0 
0 
*1 

A/, 
*i 
M2 

X = 

0 
0 
*• 
Af, 

k, + k, 

Ui 

Xi -

x2 

x3 
= 

P 

P 
\x4/ \q/ 

1 0 
0 1 

/>, ih 

Mx Mx 

b, 6 , + / ¾ 
M2 M2 _ 

, and B 

0 

0 

x 
Mi 
0 

(3.34) 

(3.35) 

and u is the external force acting on the system (see Figure 3.6). If we choose p as the 
output, then 

y = [1 0 0 0]x - Cx. 

Suppose that the two rolling carts have the following parameter values: ky — 150 N/m; 
k2 = 700 N/m; bx = 15 N s/m; Z>2 = 30 N s/m; Mt = 5 kg; and M2 = 20 kg. The 

- • < 7 • • / ' 

Af, 
ifcj(?-p) k\(p~q) +• 

b{(q-p) bx{p-q) «-
Af, 

(a) (b) 

FIGURE 3.6 Free-body diagrams of the two rolling carts, (a) Cart 2; (b) Cart 1. 

• • a 
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FIGURE 3.7 
Initial condition 
response of the two 
cart system. 
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response of the two rolling cart system is shown in Figure 3.7 when the initial condi
tions are p(0) = 10 cm, q(0) = 0, and p(0) = q(0) = 0 and there is no input driving 
force, that is, u(t) = 0. • 

3.4 SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS 

The state of a system describes that system's dynamic behavior where the dynamics 
of the system are represented by a set of first-order differential equations. Alterna
tively, the dynamics of the system can be represented by a state differential equation 
as in Equation (3.16). In either case, it is useful to develop a graphical model of the 
system and use this model to relate the state variable concept to the familiar transfer 
function representation. The graphical model can be represented via signal-flow 
graphs or block diagrams. 

As we have learned in previous chapters, a system can be meaningfully de
scribed by an input-output relationship, the transfer function G{s). For example, if 
we are interested in the relation between the output voltage and the input voltage of 
the network of Figure 3.4, we can obtain the transfer function 

G(s) 
VQ(S) 

U(s) • 

The transfer function for the RLC network of Figure 3.4 is of the form 

V0(s) a 
G(s) = 

U(s) s2 + ps + y 
(3.36) 
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where a, /3, and y are functions of the circuit parameters R, L, and C, respectively. 
The values of a, (3, and y can be determined from the differential equations that 
describe the circuit. For the RLC circuit (see Equations 3.8 and 3.9), we have 

1 1 , 

R 
L x2, 

(3.37) 

(3.38) 

(3.39) 

The flow graph representing these simultaneous equations is shown in Figure 3.8(a), 
where lis indicates an integration. The corresponding block diagram model is shown 
in Figure 3.8(b). The transfer function is found to be 

and 

1 
x2 = Zxx 

v0 = Rx2. 

+R/(LCs2) +R/(LC) 

U(s) 1 + R/(Ls) + l/(LCs2) s2 + (R/L)s + 1/(LC)' 
(3.40) 

Unfortunately many electric circuits, electromechanical systems, and other control 
systems are not as simple as the RLC circuit of Figure 3.4, and it is often a difficult task 
to determine a set of first-order differential equations describing the system. There
fore, it is often simpler to derive the transfer function of the system by the techniques 
of Chapter 2 and then derive the state model from the transfer function. 

The signal-flow graph state model and the block diagram model can be readily 
derived from the transfer function of a system. However, as we noted in Section 3.3, 

U(s)Q O W 

(a) 

FIGURE 3.8 
RLC network. 
(a) Signal-flow 
graph, (b) Block 
diagram. 
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there is more than one alternative set of state variables, and therefore there is more 
than one possible form for the signal-flow graph and block diagram models. There 
are several key canonical forms of the state-variable representation, such as the 
phase variable canonical form, that we will investigate in this chapter. In general, we 
can represent a transfer function as 

Y{s) = bmsm + b^sr1-1 + ••• + b,s + b, 
U(s) s

n + a„_is"-1 + • • • + axs + a0 

G(s) = 77777 = — ,,-i . (3-41) 

where n & ra, and all the a and b coefficients are real numbers. If we multiply the 
numerator and denominator by s", we obtain 

bms~^ + bm..lS-^-m+^ + ••• + blS-<»-» + v * . . . . . 
G(s) = :—77 . (3.42) 

1 + an^s~l + ••• + a^-V + OQS-" 
Our familiarity with Mason's signal-flow gain formula allows us to recognize the famil
iar feedback factors in the denominator and the forward-path factors in the numerator. 
Mason's signal-flow gain formula was discussed in Section 2.7 and is written as 

G(s) = — = — j — . (3.43) 

When all the feedback loops are touching and all the forward paths touch the 
feedback loops, Equation (3.43) reduces to 

^jkPk Sum of the forward-path factors 

I - VA'_ L 1 _ sum of the feedback loop factors" 

There are several flow graphs that could represent the transfer function. Two flow 
graph configurations based on Mason's signal-flow gain formula are of particular in
terest, and we will consider these in greater detail. In the next section, we will consider 
two additional configurations: the physical state variable model and the diagonal (or 
Jordan canonical) form model. 

To illustrate the derivation of the signal-flow graph state model, let us initially 
consider the fourth-order transfer function 

G(s) = 
r(s) bo 

U(s) s4 + A353 + a2s
2 + ais + a0 

b0s-* — 17- (3.45) 
1 + a3s + a2s + ii\S + a0s 

First we note that the system is fourth order, and hence we identify four state vari
ables (x|, x2, *3, x4). Recalling Mason's signal-flow gain formula, we note that the 
denominator can be considered to be 1 minus the sum of the loop gains. Further
more, the numerator of the transfer function is equal to the forward-path factor of 
the flow graph. The flow graph must include a minimum number of integrators 
equal to the order of the system. Therefore, we use four integrators to represent this 
system. The necessary flow graph nodes and the four integrators are shown in 
Figure 3.9. Considering the simplest series interconnection of integrators, we can 
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FIGURE 3.9 
Flow graph nodes 
and integrators for 
fourth-order 
system. 
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represent the transfer function by the flow graph of Figure 3.10. Examining this figure, 
we note that all the loops are touching and that the transfer function of this flow 
graph is indeed Equation (3.45). The reader can readily verify this by noting that the 
forward-path factor of the flow graph is b0/s

4 and the denominator is equal to 1 
minus the sum of the loop gains. 

We can also consider the block diagram model of Equation (3.45). Rearranging 
the terms in Equation (3.45) and taking the inverse Laplace transform yields the 
differential equation model 

d\y/b0) d\y/b0) d2(y/b0) d(y/b0) 
~~A + a 3 ^ 3 + a 2 ^ 2 + fll ^- + WA)) = «' df J dt" "* dt 

Define the four state variables as follows: 

*i = y/h 

x2 = Xi = y/bQ 

x3 = x2 = y/bQ 

x4 = x3 = "y/bQ. 

dt 

U(s) O 

(a) 

On.) 

FIGURE 3.10 
Model for G(s) of 
Equation (3.45). 
(a) Signal-flow 
graph, (b) Block 
diagram. (b) 
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Then it follows that the fourth-order differential equation can be written equivalently 
as four first-order differential equations, namely, 

x2 = * 3 ' 

X-%, = X4, 

and 

X4 = -«o*l — a\x2 ~ a2x3 ~ a2,xA + u\ 

and the corresponding output equation is 

y = M i -

The block diagram model can be readily obtained from the four first-order differential 
equations as illustrated in Figure 3.10(b). 

Now consider the fourth-order transfer function when the numerator is a poly
nomial in s, so that we have 

b3s
3 + b2s

2 + V + 60 
G{s) = -T 5 9 

s + a3s + a2s + a-iS + % 

b3s~} + b2s~2 + bjS-3 + bps'4 

= ~j --, ~i ZZ- (3.46) 
1 + a3s ' + a2s + ciyS + a^s H 

The numerator terms represent forward-path factors in Mason's signal-flow gain for
mula. The forward paths will touch all the loops, and a suitable signal-flow graph real
ization of Equation (3.46) is shown in Figure 3.11(a). The forward-path factors are 
b3/s, b2/s

2, by/s3, and bQ/s4 as required to provide the numerator of the transfer func
tion. Recall that Mason's signal-flow gain formula indicates that the numerator of the 
transfer function is simply the sum of the forward-path factors. This general form of a 
signal-flow graph can represent the general transfer function of Equation (3.46) by 
utilizing n feedback loops involving the a„ coefficients and m forward-path factors in
volving the bm coefficients. The general form of the flow graph state model and the 
block diagram model shown in Figure 3.11 is called the phase variable canonical form. 

The state variables are identified in Figure 3.11 as the output of each energy stor
age element, that is, the output of each integrator. To obtain the set of first-order differ
ential equations representing the state model of Equation (3.46), we will introduce a 
new set of flow graph nodes immediately preceding each integrator of Figure 3.11(a) 
[5, 6]. The nodes are placed before each integrator, and therefore they represent the 
derivative of the output of each integrator. The signal-flow graph, including the added 
nodes, is shown in Figure 3.12. Using the flow graph of this figure, we are able to obtain 
the following set of first-order differential equations describing the state of the model: 

X\ = X?' x2 = x3t x3 = X4> 

x4 = — OQX[ — a.\x2 — a2x3 — fl3-\'4 + u. (3-47) 

In this equation, x{, x2,... xn are the n phase variables. 
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U(s) O *• n.v> 

(a) 

FIGURE 3.11 
Model for G(s) 
of Equation (3.46) 
in the phase 
variable format. 
(a) Signal-flow 
graph, (b) Block 
diagram. 

U(s) 

(b) 

L J = New nodes 

FIGURE 3.12 
Flow graph of 
Figure 3.11 with 
nodes inserted. 
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The block diagram model can also be constructed directly from Equation (3.46). 
Define the intermediate variable Z(s) and rewrite Equation (3.46) as 

; Y(s) = b3s
3 -r b2s

2 + blS - b0 Z(s) 

U(s) s4 + a3s
3 f CI2S2 + ats + aQ Z(s)' 

Notice that, by multiplying by Z(s)IZ(s), we do not change the transfer function, 
G(s). Equating the numerator and denominator polynomials yields 

Y(s) = [b3s
3 + b2s

2 + bts + b0]Z(s) 

and 

U(s) — [sA - citf3 + a2s
2 + a:s + ao]Z(s). 

Taking the inverse Laplace transform of both equations yields the differential 
equations 

, d3z , d2z , dz , 

and 

dAz , d3z , d2z , dz , 
u = ^ + a^ + a2-d7

 + a^ + a°z-
Define the four state variables as follows: 

X\ = Z 
X2 = Xi = Z 

* 3 = X2 = Z 

x4 = x3 - "z. 

Then the differential equation can be written equivalently as 

xl = x2, 

x2 = x3, 

X3 = X4, 

and 

x4 = -a0X\ - ayx2 - a2x3 - a3x4 + u, 

and the corresponding output equation is 

v - bQX] + bxx2 + b2x3 + b3x4. 

The block diagram model can be readily obtained from the four first-order differential 
equations and the output equation as illustrated in Figure 3.11(b). 

Furthermore, the output is simply 

y(t) = box i + b^x2 + b2x3 + b3x4. (3.48) 
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In matrix form, we can represent the system in Equation (3.46) as 

x = Ax + BM, 

or 

d 
dt 

*\ 

*2 

X3 

_x4_ 

0 
0 
0 

•flfl 

1 
0 
0 

- 0 , 

0 
1 
0 

~ « 2 

0 " 
0 
1 

•03„ 

r^ii 
x2 

x3 

x^ 

+ 
r°i 

0 
0 
1 

u(t). 

(3.49) 

(3.50) 

The output is then 

y(t) = Cx = [60 h b2 b3) 

x1 

X4 

(3.51) 

The graphical structures of Figure 3.11 are not unique representations of Equa
tion (3.46); another equally useful structure can be obtained. A flow graph that rep
resents Equation (3.46) equally well is shown in Figure 3.13(a). In this case, the 
forward-path factors are obtained by feeding forward the signal U(s). We will call this 
model the input feedforward canonical form. 

Then the output signal y(t) is equal to the first state variable Xi(i). This flow graph 
structure has the forward-path factors b0/s

4, bjs3, b2/s
2, b3/s, and all the forward 

paths touch the feedback loops. Therefore, the resulting transfer function is indeed 
equal to Equation (3.46). 

Associated with the input feedforward format, we have the set of first-order 
differential equations 

x\ = ~fl3^i + x2 + b3u, x2 = —&%X\ + x3 -r b2u, 

k-2 ~ —a\X\ + X4 + b\U, and i 4 = — #o*i + &oM- (3.52) 

Thus, in matrix form, we have 

dx 
It 

«3 

«2 

«1 

«0 

1 
0 

0 
0 

0 
1 

0 
0 

ol 
0 

1 
0_ 

x + 

[VI 
b2 

A. 

u(t) (3.53) 

and 

y(r) = [1 0 0 0]x I [0]M(0-

Although the input feedforward canonical form of Figure 3.13 represents the same 
transfer function as the phase variable canonical form of Figure 3.11, the state vari
ables of each graph are not equal. Furthermore we recognize that the initial condi
tions of the system can be represented by the initial conditions of the integrators, 
Jfi(0), x2(0),.. . , x„(0). Let us consider a control system and determine the state dif
ferential equation by utilizing the two forms of flow graph state models. 
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Vis) 

Ms) -*—O ns) 

(a) 

• Y(s) 

(b) 

FIGURE 3.13 (a) Alternative flow graph state model for Equation (3.46). This model is called the 
input feedforward canonical form, (h) Block diagram of the input feedforward canonical form. 

EXAMPLE 3.2 Two state variable models 

A single-loop control system is shown in Figure 3.14. The closed-loop transfer 
function of the system is 

W U(s) s2 + $s2 + 16s + 6 

FIGURE 3.14 V(s) 
Single-loop control 
system. 

C(.9) -
2Qy + 1)(J + 3) 
s(s + 2){s t 4) +-Y(s) 
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..-3 Multiplying the numerator and denominator by s , we have 

Y(s) 2s'x + Ss~2 + 6s~3 

T(s) = 
U(s) 1 + &T1 + 16s'2 + 6s~y (3.54) 

The first model is the phase variable state model using the feedforward of the 
state variables to provide the output signal. The signal-flow graph and block diagram 
are shown in Figures 3.15(a) and (b), respectively.The state differential equation is 

and the output is 

x = 

0 
0 
6 

1 
0 

-16 

0 
1 

- 8 
x + 

0 
0 
1 

"M, 

y(t) = [6 8 2] 

L*3. 

(3.55) 

(3.56) 

U(s) O—•-

(a) 

FIGURE 3.15 
(a) Phase variable 
flow graph state 
model for T{s). 
(b) Block diagram 
for the phase 
variable canonical 
form. (b) 
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(a) 

FIGURE 3.16 
(a) Alternative flow 
graph state model 
for T(s) using the 
input feedforward 
canonical form. 
(b) Block diagram 
model. 

Ud) w 6 
_ . i . 

2 

[± 
1 
s 

; , 

s ; . 
) * 

(b) 

1 
s 

16 

6 

1 

.? 

8 

* i 
- • Y(.s) 

The second model uses the feedforward of the input variable, as shown in 
Figure 3.16. The vector differential equation for the input feedforward model is 

- 8 
-16 
- 6 

1 
0 
0 

0 
1 
0_ 

x + 
2 
8 

_6_ 
u(t), (3.57) 

and the output is y(t) = X\(t), 

We note that it was not necessary to factor the numerator or denominator polyno
mial to obtain the state differential equations for the phase variable model or the input 
feedforward model. Avoiding the factoring of polynomials permits us to avoid the 
tedious effort involved. Roth models require three integrators because the system is 
third order. However, it is important to emphasize that the state variables of the state 
model of Figure 3.15 are not identical to the state variables of the state model of Figure 
3.16. Of course, one set of state variables is related to the other set of state variables by 
an appropriate linear transformation of variables. A linear matrix transformation is 
represented by z = Mx, which transforms the x-vector into the z-vector by means of 
the M matrix (see Appendix E on the MCS website). Finally, we note that the transfer 
function of Equation (3.41) represents a single-output linear constant coefficient 
system; thus, the transfer function can represent an nth-order differential equation 
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in-l 
y 

dtn an~l dtn~x a0y(t) = 
dtm + bm-

d m - l , 

- - 1 dtm-l + b0u(t). (3.58) 

Accordingly, we can obtain the n first-order equations for the nth-order differential 
equation by utilizing the phase variable model or the input feedforward model of this 
section. 

3.5 ALTERNATIVE SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS 

Often the control system designer studies an actual control system block diagram that 
represents physical devices and variables. An example of a model of a DC motor with 
shaft velocity as the output is shown in Figure 3.17 [9]. We wish to select the physical 
variables as the state variables.Thus, we select: X\ = y(c), the velocity output;.«2 = i(i). 
the field current; and the third state variable, *3, is selected to be x3 = ^r(t) - 20u(t), 
where u{t) is the field voltage. We may draw the models for these physical variables, as 
shown in Figure 3.18. Note that the state variables xh x2, and JC3 are identified on the 
models. We will denote this format as the physical state variable model. This model is 
particularly useful when we can measure the physical state variables. Note that the 
model of each block is separately determined. For example, note that the transfer 

FIGURE 3.17 
A block diagram 
model of an open-
loop DC motor 
control with velocity 
as the output. 

R(s) 

Controller 

G ' ( 5 ) " , + 5 

Field 
voltage 

V{s) 

1 
s + 2 

Motor and load 

bieta 
current 

lis) 

6 
s f 3 

Velocity 

W ) ( . ( ) 

fUs) O *" 

(a) 

O Yts) 

R(s) ^ O - J 
1 1 

1 

2 

J(s) 

xl 
6 • Y(s) 

(b) 

FIGURE 3.18 (a) The physical state variable signal-flow graph for the block diagram of Figure 3.17. 
(b) Physical state block diagram. 
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function for the controller is 

R(s) 
= Gc(s) = 

5(5 + 1) _ 5 + 5s'1 

s + 5 ~ 1 + Ss~v 

and the flow graph between R(s) and U(s) represents Gc(s). 
The state variable differential equation is directly obtained from Figure 3.18 as 

x = 

3 
0 
0 

6 
- 2 

0 

0 
-20 
- 5 

x + 
0 
5 

_ 1 _ 
r(t) 

y = [l 0 0]x. 

(3.59) 

(3.60) 

A second form of the model we need to consider is the decoupled response 
modes. The overall input-output transfer function of the block diagram system 
shown in Figure 3.17 is 

Y(s) 
R(s) 

= T(s) = 
30(5 + 1) q(s) 

(S + 5)(5 + 2)(5 + 3) (5 - St)(s - 52)(5 - 53)' 

and the transient response has three modes dictated by Si, 52, and 53. These modes 
are indicated by the partial fraction expansion as 

Y(s) 
R(s) = Hs) = 

5 + 5 + 
k*. 

+ 5 + 3' 
(3.61) 

Using the procedure described in Chapter 2, we find that A:x = -20, k2 = —10, 
and k3 = 30. The decoupled state variable model representing Equation (3.61) is 
shown in Figure 3.19. The state variable matrix differential equation is 

x = 

5 

0 
0 

0 
- 2 

0 

0" 
0 

- 3 _ 
x + 

1 
1 

_ 1 _ 
r(t) 

and 

y(t) = [-20 -10 30]x. (3.62) 

Note that we chose xj as the state variable associated with Si = —5, x2 associated 
with52 = - 2 , and x3 associated with 53 = —3, as indicated in Figure 3.19. This choice 
of state variables is arbitrary; for example, Xi could be chosen as associated with the 
factor 5 + 2. 

The decoupled form of the state differential matrix equation displays the dis
tinct model poles —sh —s2,..., -sn, and this format is often called the diagonal 
canonical form. A system can always be written in diagonal form if it possesses 
distinct poles; otherwise, it can only be written in a block diagonal form, known as 
the Jordan canonical form [29]. 
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/?(5) Y(s) RU) ~\ k 

J * s 

2 

* 
JO 

(a) (b) 

FIGURE 3.19 (a) The decoupled state variable flow graph model for the system shown in block 
diagram form in Figure 3.17. (b) The decoupled state variable block diagram model. 

EXAMPLE 3.3 Spread of an epidemic disease 

The spread of an epidemic disease can be described by a set of differential equa
tions. The population under study is made up of three groups, xh x2, and x3, such 
that the group xx is susceptible to the epidemic disease, group x2 is infected with the 
disease, and group x3 has been removed from the initial population. The removal of 
#3 will be due to immunization, death, or isolation from x$. The feedback system can 
be represented by the following equations: 

dxi 
~dt 
dx2 

~dt 
dx3 

~dt 

= -axi - fix2 + U\(t), 

= /3*1 - yx2 + u7(t), 

= ax i + yx2. 

The rate at which new susceptibles are added to the population is equal to u\(i), 
and the rate at which new infectives are added to the population is equal to u2{t). For a 
closed population, we have u-[{t) = u2(t) = 0. It is interesting to note that these equa
tions could equally well represent the spread of information or a new idea through a 
population. 

The physical state variables for this system are x b x2, and x3. The model that 
represents this set of differential equations is shown in Figure 3.20. The vector 
differential equation is equal to 

d 
dt 

[~*i 
x2 

_ * 3 _ 

a 

/3 
a 

-J3 
-y 

y 

0 
0 
0 

X-i 

x2 

_ * 3 _ 

+ 
1 
0 
0 

0 
1 
0 

«i(0 
"2(0 

(3.63) 
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UzO 

(a) 

FIGURE 3.20 
Model for the 
spread of an 
epidemic disease. 
(a) Signal-flow 
graph, (b) Block 
diagram model. 

o— 

(b) 

By examining Equation (3.63) and the models depicted in Figure 3.20, we find that the 
state variable x3 is dependent on jq and x2 and does not affect the variables X\ and x2-

Let us consider a closed population, so that U\{t) = u2{t) = 0. The equilibri
um point in the state space for this system is obtained by setting dxfdt = 0. The 
equilibrium point in the state space is the point at which the system settles in the 
equilibrium, or rest, condition. Examining Equation (3.63), we find that the equi
librium point for this system is xx = x2 = 0. Thus, to determine whether the epidemic 
disease is eliminated from the population, we must obtain the characteristic equation 
of the system. From the signal-flow graph shown in Figure 3.20, we obtain the flow 
graph determinant 

A(s) = 1 - (-CM- 1 - ys'1 - /3V2) + (ays'2), (3.64) 

where there are three loops, two of which are nontouching. Thus, the characteristic 
equation is 

q(s) = rA(s) = s2 + (a + y)s + (ay + /32) = 0. (3.65) 

The roots of this characteristic equation will lie in the left-hand s-plane when 
a + y > 0 and ay + /32 > 0. When roots are in the left-hand plane, we expect the 
unforced response to decay to zero as t —> 00. • 
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EXAMPLE 3.4 Inverted pendulum control 

The problem of balancing a broomstick on a person's hand is illustrated in Figure 3.21. 
The only equilibrium condition is 0(t) = 0 and dd/dt = 0. The problem of balancing a 
broomstick on one's hand is not unlike the problem of controlling the attitude of a mis
sile during the initial stages of launch. This problem is the classic and intriguing problem 
of the inverted pendulum mounted on a cart, as shown in Figure 3.22. The cart must be 
moved so that mass m is always in an upright position. The state variables must be ex
pressed in terms of the angular rotation 6(f) and the position of the cart y{t). The differ
ential equations describing the motion of the system can be obtained by writing the sum 
of the forces in the horizontal direction and the sum of the moments about the pivot 
point [2,3,10,28]. We will assume that M ^> m and the angle of rotation 6 is small so 
that the equations are linear. The sum of the forces in the horizontal direction is 

My + mid - u(t) = 0, (3.66) 

where u(t) equals the force on the cart, and I is the distance from the mass m to the 
pivot point.The sum of the torques about the pivot point is 

ml'y + ml2e - mlgB = 0. (3.67) 

The state variables for the two second-order equations are chosen as (xh x2, x3, *4) -
(y,y,d,9). Then Equations (3.66) and (3.67) are written in terms of the state 
variables as 

Mx2 + mlx4 - u(t) = 0 (3.68) 

FIGURE 3.21 
An inverted 
pendulum balanced 
on a person's hand 
by moving the hand 
to reduce 9(t). 
Assume, for ease, 
that the pendulum 
rotates in the x-y 
plane. 

>n{t) 
Hand movement 

FIGURE 3.22 
A cart and an 
inverted pendulum. 
The pendulum is 
constrained to pivot 
in the vertical plane. 

Mass m 

DZD Frictionless 
surface 
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and 

x2 + IX4 — gx$ = 0. (3.69) 

To obtain the necessary first-order differential equations, we solve for lx4 in Equa
tion (3.69) and substitute into Equation (3.68) to obtain 

Mx2 + mgxz = u(t), (3.70) 

since M » m. Substituting x2 from Equation (3.68) into Equation (3.69), we have 

Mix* - Mgx3 + u{t) = 0. 

Therefore, the four first-order differential equations can be written as 

mg 1 
r-, -I 

M 
1 

/ Ml 
Thus, the system matrices are 

Xl - X2, X2 - - — A 

, . g 
x3 ~ x4i a r , d *4 ~ T ^ 3 — :u{t). 

0 1 0 0 
0 0 -mg/M 0 
0 0 0 1 
0 0 g/l 0 

, B = 

0 
\/M 

0 
_-l/(M/)_ 

(3.71) 

(3.72) 

(3.73) 

3.6 THE TRANSFER FUNCTION FROM THE STATE EQUATION 

Given a transfer function G(s), we can obtain the state variable equations using the 
signal-flow graph model. Now we turn to the matter of determining the transfer 
function G(s) of a single-input, single-output (SISO) system. Recalling Equations 
(3.16) and (3.17), we have 

and 

x — Ax + BM 

y = Cx + D« 

(3.74) 

(3.75) 

where y is the single output and u is the single input, 'ine Laplace transforms of 
Equations (3.74) and (3.75) are 

and 

sX(s) ~ A X ( J ) + BU(s) 

Y(s) = CX(s) + DU(s) 

(3.76) 

(3.77) 

where B is an n X 1 matrix, since u is a single input. Note that we do not include ini
tial conditions, since we seek the transfer function. Rearranging Equation (3.76), we 
obtain 

(si - A)X(j) = BU(s). 
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Since [si - A] * = ¢(5-), we have 

X(s) = $(s)BU(s). 

Substituting X(s) into Equation (3.77), we obtain 

Y(s) = [C<t>(s)B + D]U(s). 

Therefore, the transfer function G(s) = Y(s)/U(s) is 

171 

G(s) = C$(s)B + D 

(3.78) 

(3.79) 

EXAMPLE 3.5 Transfer function of an RLC circuit 

Let us determine the transfer function G(s) = Y(s)/U(s) for the RLC circuit of 
Figure 3.4 as described by the differential equations (see Equations 3.18 and 3.19): 

L L 

v = [0 R]x. 

x + C 
0 

Then we have 

[d - A] 
s 

-1 
L 

1 
C 

R s + z_ 
Therefore, we obtain 

- l _ ¢(5-) = [si - A]"' = 

where 

Then the transfer function is 

AO) 

R 

s + 

L 

A(s) = sz + jS + 
LC 

^ 1 
C 

G(s) --[0 R] 

R 
S + L 
A(5') 

1 
LA (s) 

- 1 
CA(5-) 

s 
A(s) 

" 1 " 
C 
0 
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= R/(LC) _ R/(LC) 

A(s) 7 R 1 ' 

which agrees with the result Equation (3.40) obtained from the flow graph model 
using Mason's signal-flow gain formula. • 

3.7 THE TIME RESPONSE AND THE STATE TRANSITION MATRIX 

It is often desirable to obtain the time response of the state variables of a control sys
tem and thus examine the performance of the system. The transient response of a 
system can be readily obtained by evaluating the solution to the state vector differ
ential equation. In Section 3.3, we found that the solution for the state differential 
equation (3.26) was 

x(r) = $(f)x(0) l / ¢ ( / - T)BU(T) dr. (3.80) 

Clearly, if the initial conditions x(0), the input u(r), and the state transition ma
trix ¢(/) are known, the time response of x(/) can be numerically evaluated. Thus 
the problem focuses on the evaluation of ¢(/) , the state transition matrix that 
represents the response of the system. Fortunately, the state transition matrix can 
be readily evaluated by using the signal-flow graph techniques with which we are 
already familiar. 

Before proceeding to the evaluation of the state transition matrix using signal-
flow graphs, we should note that several other methods exist for evaluating the 
transition matrix, such as the evaluation of the exponential series 

¢(/) = exp(A/) = S ^ T <3-81> 
k=0 K' 

in a truncated form [2, 8J. Several efficient methods exist for the evaluation of ¢(/) 
by means of a computer algorithm [21]. 

In Equation (3.25), we found that ¢(5) = [si - A]"1. Therefore, if ¢(^) is ob
tained by completing the matrix inversion, we can obtain ¢(/) by noting that 
¢(/) = 5£-1{$(j)}. The matrix inversion process is generally unwieldy for higher-
order systems. 

The usefulness of the signal-flow graph state model for obtaining the state tran
sition matrix becomes clear upon consideration of the Laplace transformation 
version of Equation (3.80) when the input is zero. Taking the Laplace transforma
tion of Equation (3.80) when U(T) = 0, we have 

X(s) = 4>(s)x(0). (3.82) 

Therefore, we can evaluate the Laplace transform of the transition matrix from the 
signal-flow graph by determining the relation between a state variable Xj(s) and the 
state initial conditions [^(0),^2(0),.. . ,^(0)]. Then the state transition matrix is 
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simply the inverse transform of ^(s); that is, 

¢(0 = .2^( <&(*)}. (3.83) 

The relationship between a state variable Xfot) and the initial conditions x(0) is 
obtained by using Mason's signal-flow gain formula. Thus, for a second-order system, 
we would have 

Xiis) = *ii(*)*i(0) + <t>n(s)x2(0), 

X2(s) = cf>2l(s)Xl(0) + <P22(s)x2(0), (3.84) 

and the relation between Xi{s) as an output and *i(0) as an input can be evaluated 
by Mason's signal-flow gain formula. All the elements of the state transition matrix, 
<f)jj(s), can be obtained by evaluating the individual relationships between Xj(s) and 
Xj(0) from (he state model flow graph. An example will illustrate this approach to de
termining the transition matrix. 

EXAMPLE 3.6 Evaluation of the state transition matrix 

We will consider the RLC network of Figure 3.4. We seek to evaluate ¢(5-) by (1) 
determining the matrix inversion ¢(5) = [si - A]"1 and (2) using the signal-flow 
diagram and Mason's signal-flow gain formula. 

First, we determine ¢(5) by evaluating ¢(.9) = [si - A]-1. We note from Equa
tion (3.18) that 

A = 
0 - 2 
1 - 3 

Then 

The inverse matrix is 

[si - A] = s 
- 1 

2 
s + 3 

(3.85) 

-1 _ ¢(5) = [si - A]"1 = 
A(») 

s + 3 - 2 
1 s 

(3.86) 

where A(s) = s(s + 3) + 2 = s2 + 3s + 2 - (s + l)(s + 2). 
The signal-flow graph state model of the RLC network of Figure 3.4 is shown in 

Figure 3.8. This RLC network, which was discussed in Sections 3.3 and 3.4, can be 
represented by the state variables X\ = vc and x2 = iL. The initial conditions, *i(0) 
and .i'2(0), represent the initial capacitor voltage and inductor current, respectively. 
The flow graph, including the initial conditions of each state variable, is shown in 
Figure 3.23. The initial conditions appear as the initial value of the state variable at 
the output of each integrator. 

To obtain ¢(5), we set U(s) = 0. When R = 3, L = 1, and C = 1/2, we obtain 
the signal-flow graph shown in Figure 3.24, where the output and input nodes are 
deleted because they are not involved in the evaluation of ¢(^). Then, using Mason's 
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FIGURE 3.23 
How graph of the 
RLC network. 

U(s) 

.v,(0) ^, Initial *>(0) 

*—O w 

FIGURE 3.24 
Flow graph of the 
RLC network with 
U(s) = 0. 

X2{s) 

signal-flow gain formula, we obtain Xi(s) in terms of *i(0) as 

l-A,(s)-[Xl(0)/s] 
Xi(s) = A(5) 

(3.87) 

where A(s) is the graph determinant, and &i(s) is the path cofactor. The graph 
determinant is 

A(s) = l + 3.r' + 2s"2. 

The path cofactor is A] = 1 + 3s'l because the path between Jti(0) and X\(s) docs 
not touch the loop with the factor —3s"1. Therefore, the first element of the transition 
matrix is 

(1 + 3^)(1/5) 
Ms) = 

.9 + 3 
„-1 1 + 3s'1 + 2s - s* + 3s + 2 

(3.88) 

The element <f>u(s) is obtained by evaluating the relationship between X\(s) and 
x2(0) as 

XM = 

Therefore, we obtain 

0120) = 

(-2s-')(x2(0)/s) 

1 + 3s"1 + 2s~2' 

- 2 

s2 + 3s + 2 
Similarly, for (foiO) w e h a v e 

</>2lC0 = (0(V») 
1 + 35 1 2s~z s* + 3s + 2 

(3.89) 

(3.90) 

Finally, for $22(5), we obtain 
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M?) = 
1(1/*) 

1 + 3s~l + 2s~2 s2 + 3.9 + 2 

Therefore, the state transition matrix in Laplace transformation form is 

¢(5) = 
\s + 3)/(s2 + 3s + 2) -2/(52 + 35 + 2) 

1/(52 + 35 + 2) s/(s2 + 35 + 2) 

(3.91) 

(3.92) 

The factors of the characteristic equation are (5 + 1) and (5 + 2), so that 

(5 + 1)(5 + 2) = 52 + 35 + 2. 

Then the state transition matrix is 

¢(0 = ££^{¢(5)} = 
'(2e-' - e~21) (-2e-< + 2<T2')" 

(e~l - e'2') {-e'' I 2<T2') 
(3.93) 

The evaluation of the time response of the RLC network to various initial condi
tions and input signals can now be evaluated by using Equation (3.80). For example, 
when xx(0) = x2(0) = 1 and u(t) = 0, we have 

(3.94) 

The response of the system for these initial conditions is shown in Figure 3.25. The tra
jectory of the state vector [xi(t), x2(t)] on the (jq, Jt2)-plane is shown in Figure 3.26. 

The evaluation of the time response is facilitated by the determination of the state 
transition matrix. Although this approach is limited to linear systems, it is a powerful 
method and utilizes the familiar signal-flow graph to evaluate the transition matrix. • 
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FIGURE 3.25 
Time response 
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FIGURE 3.26 
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state vector in the 
(*i 1 *2)-plane. 
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3.8 DESIGN EXAMPLES 

In this section we present two illustrative design examples. In the first example, we pre
sent a detailed look at modeling a large space vehicle (such as a space station) using a 
state variable model. The state variable model is then used to take a look at the stability 
of the orientation of the spacecraft in a low earth orbit. The design process depicted in 
Figure 1.15 is highlighted in this example. The second example is a printer belt drive 
modeling exercise. The relationship between the state variable model and the block dia
gram discussed in Chapter 2 is illustrated and, using block diagram reduction methods, 
the transfer function equivalent of the state variable model is obtained. 

EXAMPLE 3.7 Modeling the orientation of a space station 

The International Space Station, shown in Figure 3.27, is a good example of a multi
purpose spacecraft that can operate in many different configurations. An important 
step in the control system design process is to develop a mathematical model of the 
spacecraft motion. In general, this model describes the translation and attitude motion 
of the spacecraft under the influence of external forces and torques, and controller and 
actuator forces and torques. The resulting spacecraft dynamic model is a set of highly 
coupled, nonlinear ordinary differential equations. Our objective is to simplify the 
model while retaining important system characteristics. This is not a trivial task, but an 
important, and often neglected component of control engineering. In this example, the 
rotational motion is considered. The translational motion, while critically important to 
orbit maintenance, can be decoupled from the rotational motion. 

Many spacecraft (such as the International Space Station) will maintain an 
earth-pointing attitude. This means that cameras and other scientific instruments 
pointing down will be able to sense the earth, as depicted in Figure 3.27. Conversely, 
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scientific instruments pointing up will see deep space, as desired. To achieve earth-
pointing attitude, the spacecraft needs an attitude hold control system capable of 
applying the necessary torques.The torques are the inputs to the system, in this case, 
the space station. The attitude is the output of the system. The International Space 
Station employs control moment gyros and reaction control jets as actuators to con
trol the attitude. The control moment gyros are momentum exchangers and are 
preferable to reaction control jets because they do not expend fuel. They are actua
tors that consist of a constant-rate flywheel mounted on a set of gimbals. The fly
wheel orientation is varied by rotating the gimbals, resulting in a change in direction 
of the flywheel angular momentum. Tn accord with the basic principle of conserva
tion of angular momentum, changes in control moment gyro momentum must be 
transferred to the space station, thereby producing a reaction torque. The reaction 
torque can be employed to control the space station attitude. However, there is a 
maximum limit of control that can be provided by the control moment gyro. When 
that maximum is attained, the device is said to have reached saturation. So, while 
control moment gyros do not expend fuel, they can provide only a limited amount 
of control. In practice, it is possible to control the attitude of the space station while 
simultaneously desaturating the control moment gyros. 

Several methods for desaturating the control moment gyros are available, but 
using existing natural environmental torques is the preferred method because it mini
mizes the use of the reaction control jets. A clever idea is to use gravity gradient 
torques (which occur naturally and come free of charge) to continuously desaturate 
the momentum exchange devices. Due to the variation of the earth's gravitational 
field over the International Space Station, the total moment generated by the gravita
tional forces about the spacecraft's center of mass is nonzero. This nonzero moment is 
called the gravity gradient torque. A change in attitude changes the gravity gradient 
torque acting on the vehicle. Thus, combining attitude control and momentum man
agement becomes a matter of compromise. 

The elements of the design process emphasized in this example are illustrated in 
Figure 3.28. We can begin the modeling process by defining the attitude of the space 
station using the three angles, 02 (the pitch angle), 03 (the yaw angle), and 9] (the roll 
angle). These three angles represent the attitude of the space station relative to the 
desired earth-pointing attitude. When 03 = 02 = 03 = 0, the space station is oriented 
in the desired direction. The goal is to keep the space station oriented in the desired 
attitude while minimizing the amount of momentum exchange required by the con
trol momentum gyros (keeping in mind that we want to avoid saturation). The con
trol goal can be stated as 

Control Goal 
Minimize the roll, yaw, and pitch angles in the presence of persistent external dis
turbances while simultaneously minimizing the control moment gyro momentum. 

The time rate of change of the angular momentum of a body about its center of 
mass is equal to the sum of the external torques acting on that body. Thus the atti
tude dynamics of a spacecraft are driven by externally acting torques. The main 
external torque acting on the space station is due to gravity. Since we treat the 
earth as a point mass, the gravity gradient torque [30] acting on the spacecraft is 
given by 



Chapter 3 State Variable Models 

FIGURE 3.28 
Elements of the 
control system 
design process 
emphasized in the 
spacecraft control 
example. 

Topics emphasized in this example. 

Establish the control goals 
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1 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

I 
Optimize the parameters and 

analyze the performance 

I 

Maintain space station attitude 
in earth pointing orientation while 
minimizing control moment gyro 
momentum. 

Space station orientation and 
control moment gyro momentum. 

See Eqs. (3.96 - 3.98) for 
the nonlinear model. 

See Eqs. (3.99 -3.100) for 
the linear model. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications. 
then finalize the design. 

Tg = 3n2c X Ic, (3.95) 

where n is the orbital angular velocity (n = 0.0011 rad/s for the space station), and c is 

-sin 02
 cos 6$ 

sin B\ cos $2 + cos 6[ sin 92 sin 03 

cos Q\ cos 62 - sin 6\ sin B2 sin 03 

c = 

The notation 'X' denotes vector cross-product. Matrix I is the spacecraft inertia ma
trix and is a function of the space station configuration. It also follows from Equa
tion (3.95) that the gravity gradient torques are a function of the attitude Bh 62, and 03. 
We want to maintain a prescribed attitude (that is earth-pointing Bx = B2 = B3 — 0), 
but sometimes we must deviate from that attitude so that we can generate gravity gra
dient torques to assist in the control moment gyro momentum management. Therein 
lies the conflict; as engineers we often are required to develop control systems to 
manage conflicting goals. 

Now we examine the effect of the aerodynamic torque acting on the space station. 
Even at the high altitude of the space station, the aerodynamic torque does affect the 
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attitude motion. The aerodynamic torque acting on the space station is generated by 
the atmospheric drag force that acts through the center of pressure. In general, the cen
ter of pressure and the center of mass do not coincide, so aerodynamic torques develop. 
In low earth orbit, the aerodynamic torque is a sinusoidal function that tends to oscil
late around a small bias. The oscillation in the torque is primarily a result of the earth's 
diurnal atmospheric bulge. Due to heating, the atmosphere closest to the sun extends 
further into space than the atmosphere on the side of the earth away from the sun. As 
the space station travels around the earth (once every 90 minutes or so), it moves 
through varying air densities, thus causing a cyclic aerodynamic torque. Also, the space 
station solar panels rotate as they track the sun. This results in another cyclic compo
nent of aerodynamic torque. The aerodynamic torque is generally much smaller than 
the gravity gradient torque. Therefore, for design purposes we can ignore the atmos
pheric drag torque and view it as a disturbance torque. We would like the controller to 
minimize the effects of the aerodynamic disturbance on the spacecraft attitude. 

Torques caused by the gravitation of other planetary bodies, magnetic fields, 
solar radiation and wind, and other less significant phenomena are much smaller 
than the earth's gravity-induced torque and aerodynamic torque. We ignore these 
torques in the dynamic model and view them as disturbances. 

Finally, we need to discuss the control moment gyros themselves. First, we will 
lump all the control moment gyros together and view them as a single source of torque. 
We represent the total control moment gyro momentum with the variable h. We need 
to know and understand the dynamics in the design phase to manage the angular mo
mentum. But since the time constants associated with these dynamics are much shorter 
than for attitude dynamics, we can ignore the dynamics and assume that the control 
moment gyros can produce precisely and without a time delay the torque demanded by 
the control system. 

Based on the above discussion, a simplified nonlinear model that we can use as 
the basis for the control design is 

© = Rf l + n, 

Ifl = - f t X Ifl + 3n2c X Ic - u, 

h = - f t X h + u, 

(3.96) 

(3.97) 

(3.98) 

where 

R ( 0 ) 
l 

COS 03 

cos 03 

0 

0 

cos 9\ sin 03 sin 6^ sin 03 

cos 91 

sin 91 cos 03 

—sin i 
COS 0! COS 0 3 

n 
r° 

n 
_0_ 

, ft = 
r«i 

U>i 

_ ^ 3 _ 

, © = 
*\ 

02 

_03_ 

, u = 
\Ui~\ 

u2 

_u3_ 

where u is the control moment gyro input torque, n in the angular velocity, I is the 
moment of inertia matrix, and n is the orbital angular velocity. Two good references 
that describe the fundamentals of spacecraft, dynamic modeling are [31] and [32]. 
There have been many papers dealing with space station control and momentum 
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management. One of the first to present the nonlinear model in Equations 
(3.96-3.98) is Wie et al. [33]. Other related information about the model and the 
control problem in general appears in [34-38]. Articles related to advanced control 
topics on the space station can be found in [39-45]. Researchers are developing non
linear control laws based on the nonlinear model in Equations (3.96)-(3.98). Sever
al good articles on this topic appear in [46-55]. 

Equation (3.96) represents the kinematics—the relationship between the Euler 
angles, denoted by ©, and the angular velocity vector, Q. Equation (3.97) represents 
the space station attitude dynamics.The terms on the right side represent the sum of 
the external torques acting on the spacecraft. The first torque is due to inertia cross-
coupling. The second term represents the gravity gradient torque, and the last term is 
the torque applied to the spacecraft from the actuators. The disturbance torques (due 
to such factors as the atmosphere) are not included in the model used in the design. 
Equation (3.98) represents the control moment gyro total momentum. 

The conventional approach to spacecraft momentum management design is to de
velop a linear model, representing the spacecraft attitude and control moment gyro 
momentum by linearizing the nonlinear model. This linearization is accomplished by a 
standard Taylor series approximation. Linear control design methods can then be readily 
applied. For linearization purposes we assume that the spacecraft has zero products of 
inertia (that is, the inertia matrix is diagonal) and the aerodynamic disturbances are 
negligible. The equilibrium state that we linearize about is 

9 = 0, 

a = 
0 

—n 
0 

h = 0, 

and where we assume that 

II 
0 
0 

0 

I2 

0 

°1 
0 

I3_ 

In reality, the inertia matrix, I, is not a diagonal matrix. Neglecting the off-diagonal 
terms is consistent with the linearization approximations and is a common assumption. 
Applying the Taylor series approximations yields the linear model, which as it turns 
out decouples the pitch axis from the roll/yaw axis. 

The linearized equations for the pitch axis are 

h 
0)2 

> 2 J 

where 

0 
3n2A2 

C 

1 0~| 
0 0 
0 0_ 

r î 
(x>2 

l h 2 _ 
+ 

°1 l 
h 
1^ 

"2. (3.99) 

A, := 
U- /, 
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The subscript 2 refers to the pitch axis terms, the subscript 1 is for the roll axis terms, 
and 3 is for the yaw axis terms.The linearized equations for the roll/yaw axes are 

01 
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<U3 

k 
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—n 

-3« 2 A X 
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r o 
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0 

n 
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0 

1 

1 

0 

0 

—«A3 

0 

0 

" 1 

_ " 3 _ 
> 

0 

1 

-nAi 

0 

0 

0 

0 

0 

0 

0 

0 

-n 
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0_ 

(h 
0* 
(*>\ 

ft>3 
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(3.100) 

where 

A i : = 
h ~ /3 

h 
and AT := 

/, - U 

Consider the analysis of the pitch axis. Define the state-vector as 

(e2(t)\ 
x(t) := o)2(t) , 

Wo/ 
and the output as 

y(t) = 02(t) = [1 0 Ojx(r). 

Here we are considering the spacecraft attitude, 62{t), as the output of interest. We 
can just as easily consider both the angular velocity, co2, and the control moment gyro 
momentum, h2, as outputs. The state variable model is 

x = Ax + Ba, (3.101) 

y = Cx + DM, 

where 

0 
3n2 A2 

0 

1 

0 

0 

°1 
0 

0_ 

, B = 

0 " 
1 
h 

. 1 

C = [1 0 0], D = [Oj, 

and where u is the control moment gyro torque in the pitch axis. The solution to the 
state differential equation, given in Equation (3.101), is 

x(0 = <&(/)x(0) + / <b{t - T)BM(T) dr, 
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where 

\ - i -¢ ( 0 = exp(Af) = C-'Hsl - A)"1} 

i/eWA2r + e-V3i?A7t\ * „./g\/3/i2A2/ _ e-V3/i2A2/) 0 
2 2 \ /3« 2 A7 

V3«27 1 2^V3rt2A2/ _ e-V3a*Aaij i(gV3«2A2r + g - V ^ F i ^ g 

0 o l 

We can see that if A2 > 0, then some elements of the state transition matrix will have 
terms of the form eal, where a > 0. As we shall see (in Chapter 6) this indicates that 
our system is unstable. Also, if we are interested in the output, y(t) = d2(t), we have 

With x(t) given by 

it follows that 

y(t) = Cx(t). 

x(t) = $(f)x(0) + ®(t - T)hu(r)dr, 

y(t) = C#(f)x(0) + / C*(f -- r)Bu(T)dT. 
Jo 

The transfer function relating the output Y(s) to the input U(s) is 

Y(s) _ . _ _ 1 
G(s) = 

U(s) 
C(sl - A)-1B = -

I2(s
2 - 3n2A2) 

The characteristic equation is 

.v2 - 3n2A2 = (s + V3n2A2)(j - V3n2A2) = 0. 

If A2 > 0 (that is, if /3 > /j), then we have two real poles—one in the left half-plane 
and the other in the right half-plane. For spacecraft with /3 > Iu we can say that an 
earth-pointing attitude is an unstable orientation. This means that active control is 
necessary. 

Conversely, when A2 < 0 (that is, when Ix > /3), the characteristic equation has 
two imaginary roots at 

s = ±;V3«2|A2|. 

This type of spacecraft is marginally stable. In the absence of any control moment 
gyro torques, the spacecraft will oscillate around the earth-pointing orientation for 
any small initial deviation from the desired attitude. • 
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EXAMPLE 3.8 Printer belt drive modeling 

A commonly used low-cost printer for a computer uses a belt drive to move the print
ing device laterally across the printed page [11]. The printing device may be a laser 
printer, a print ball, or thermal printhead. An example of a belt drive printer with a DC 
motor actuator is shown in Figure 3.29. In this model, a light sensor is used to measure 
the position of the printing device, and the belt tension adjusts the spring flexibility of 
the belt. The goal of the design is to determine the effect of the belt spring constant k 
and select appropriate parameters for the motor, the belt pulley, and the controller. To 
achieve the analysis, we will determine a model of the belt-drive system and select 
many of its parameters. Using this model, we will obtain the signal-flow graph model 
and select the state variables. We then will determine an appropriate transfer function 
for the system and select its other parameters, except for the spring constant. Finally, we 
will examine the effect of varying the spring constant within a realistic range. 

We propose the model of the belt-drive system shown in Figure 3.30. This model 
assumes that the spring constant of the belt is k, the radius of the pulley is r, the angular 
rotation of the motor shaft is 0, and the angular rotation of the right-hand pulley is 6p. 
The mass of the printing device is m, and its position is y(t). A light sensor is used to 
measure y, and the output of the sensor is a voltage Vj, where v^ = k |V. The controller 

FIGURE 3.29 
Printer belt-drive 
system. 
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FIGURE 3.30 
Printer belt-drive 
model. 
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provides an output voltage v2, where v2 is a function of v-\. The voltage v2 is connected 
to the field of the motor. Let us assume that we can use the linear relationship 

v2 
k2— + k3v, 

and elect to use k2 = 0.1 and k3 = 0 (velocity feedback). 
The inertia of the motor and pulley i s / = /motor + /puiiey We plan to use a moderate-

DC motor. Selecting a typical 1/8-hp DC motor, we find that J = 0.01 kg m2, the field 
inductance is negligible, the field resistance is R = 2 CI, the motor constant is 
Km = 2 Nm/A, and the motor and pulley friction is b = 0.25 Nms/rad. The radius of 
the pulley is r = 0.15 m. The system parameters are summarized in Table 3.1. 

We now proceed to write the equations of the motion for the system; note that 
y = r0p. Then the tension from equilibrium 7j is 

71 = k(r0 - r0p) = k(rd - y). 

The tension from equilibrium T2 is 

T2 ~- k(y - rd). 

The net tension at the mass m is 

£y 
dt1 T{-T2 = m - £ (3.102) 

and 

7J - T2 = k(rd - v) - k(y - rO) = 2k(rd - y) = 2kxh (3.103) 

where the first state variable is Jtj = rd - y. Let the second state variable be 
x2 = dy/dt, and use Equations (3.102) and (3.103) to obtain 

^ = £ * , . (3.104) 
dt m 

The first derivative of x-[ is 

t-f-f — -« &"> 
Table 3.1 Parameters of Printing Device 

Mass 
Light sensor 
Radius 
Motor 
Inductance 
Friction 
Resistance 
Constant 

Inertia 

m = 0.2 kg 
kx = 1 V/m 
r = 0.15 m 

L % 0 
b = 0.25 Nms/rad 
R = 20, 
Km = 2 Nm/A 
•' — ' motor + J pulley •* = 0.01 kg m2 
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when we select the third state variable as x$ = dd/dt. We now require a differential 
equation describing the motor rotation. When L = 0, we have the field current 
I = v2/R and the motor torque Tm = Kmi. Therefore, 

Tm = - ^ - ¾ 

and the motor torque provides the torque to drive the belts plus the disturbance or 
undesired load torque, so that 

Tm = T + Td. 

The torque T drives the shaft to the pulley, so that 

„ ,d2e , do ,„ ^ 

Therefore, 

dx3 _ d26 

dt " dt2' 

Hence, 

dx3 

~dt 

Tm Td t 2kr 

where 

K„ dy 
Tfn = —v2, and v2 = ~k\k2-^t = -k\k2x2. 

Thus, we obtain 

dx?, -Kmkik2 b 2kr <., 
-x2 - -x2 —xl -dt JR J J 

5 (3.106) 

Equations (3.104)-(3.106) are the three first-order differential equations required to 
describe this system. The matrix differential equation is 

x = 

0 
2k 
m 

-2kr 

J 

- 1 

0 

-Kmkik2 

JR 

r 

0 

-b 
J 

x + 

[ 0 1 
0 

- 1 
J 

(3.107) 

T, 
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The signal-flow graph and block diagram models representing the matrix differential 
equation are shown in Figure 3.31, where we include the identification of the node for 
the torque disturbance torque Td. 

We can use the flow graph to determine the transfer function Xi(s)/Td(s). The 
goal is to reduce the effect of the disturbance Td, and the transfer function will show 
us how to accomplish this goal. Using Mason's signal-flow gain formula, we obtain 

7s -2 

W = 
Us) " 1 - (L, + L2 + L3 + L4) + LXL{ 

where 

-b _t -2k _2 -2kr2s~2 -IkKJtfars-* 
L\ = —r$ s ^2 = * i £^ = : , and L4 = — . 

-*,A 2*1 

(a) 

FIGURE 3.31 
Printer belt drive. 
(a) Signal-flow 
graph, (b) Block 
diagram model. 
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We therefore have 

187 

Us) 

1 7 ,s 

/2A:6 2kK,Jc!k2r 
S + — h 

\Jm JmR 

We can also determine the closed-loop transfer function using block diagram reduction 
methods, as illustrated in Figure 3.32. Remember, there is no unique path to follow in re
ducing the block diagram; however, there is only one correct solution in the end. The 
original block diagram is shown in Figure 3.31(b). The result of the first step is shown in 
3.32(a), where the upper feedback loop has been reduced to a single transfer function. 
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FIGURE 3.32 
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reduction. 
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The second step illustrated in Figure 3.32(b) then reduces the two lower feedback loops 
to a single transfer function. In the third step shown in Figure 3.32(c), the lower feed
back loop is closed and then the remaining transfer functions in series in the lower loop 
are combined.The final step closed-loop transfer function is shown in Figure 3.32(d). 

Substituting the parameter values summarized in Table 3.1, we obtain 

® q zi^ (3108) 
Td(s) s3 + 25s2 + 14.5ks + 1000A:(0.25 + 0.l5k2)' 

We wish to select the spring constant k and the gain k2 so that the state variable X\ will 
quickly decline to a low value when a disturbance occurs. For test purposes, consider a 
step disturbance Td(s) = a/s. Recalling that xi = rd — y, we thus seek a small magni
tude for xi so that y is nearly equal to the desired rO. If wc have a perfectly stiff belt 
with k —* co, then y = rd exactly. With a step disturbance, Td(s) = a/s, wc have 

* M = 3 ^ . 2 • „ . . , — , , — • *„.,- (3-1 0 9) 
-15a 

s* + 25sz I4.5ks + 1000A (0.-^ D.15A-) 

The final value theorem gives 

ltmxi(0 = limsX^s) = 0, (3.110) 

and thus the steady-state value of X\(t) is zero. We need to use a realistic value for k 
in the range 1 < k < 40. For an average value of k — 20 and k2 = 0.1, we have 

^(-)--3 f^5d 

s3 + 25s2 + 290s + 5300 
= f** . (3.111) 

(s + 22.56)(57 + 2.44.9 + 234.93) 

The characteristic equation has one real root and two complex roots. The partial frac
tion expansion yields 

g W . A
 + ^ ^ nil2) 

a s + 22.56 (s + 1.22)2 + (15.28)2 ' 

where we find A = -0.0218,5 = 0.0218, and C = -0.4381. Clearly with these 
small residues, the response to the unit disturbance is relatively small. Because A and 
B are small compared to C, wc may approximate Xi(s) as 

Xi(s) -0.4381 

(s + 1.22)2 + (15.28)' 

Using Table 2.3, we obtain 

-"•> = -0.0287e-l-22fsinl5.28f. (3.113) 
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The actual response of %\ is shown in Figure 3.33.This system will reduce the ef
fect of the unwanted disturbance to a relatively small magnitude. Thus we have 
achieved our design objective. • 

3.9 ANALYSIS OF STATE VARIABLE MODELS USING CONTROL DESIGN SOFTWARE 

The time-domain method utilizes a state-space representation of the system model, 
given by 

x = Ax V Bu and y = Cx + Dw. (3.114) 

The vector x is the state of the system, A is the constant n X n system matrix, B is the 
constant n X m input matrix, C is the constant p X n output matrix, and D is a constant 
p x m matrix.The number of inputs, m, and the number of outputs,/?, are taken to be 
one, since we are considering only single-input, single-output (SISO) problems. 
Therefore y and u are not bold (matrix) variables. 

The main elements of the state-space representation in Equation (3.114) are 
the state vector x and the constant matrices (A, B, C, D). Two new functions cov
ered in this section are ss and Isim. We also consider the use of the expm function 
to calculate the state transition matrix. 

Given a transfer function, we can obtain an equivalent state-space representation 
and vice versa. The function tf can be used to convert a state-space representation to a 
transfer function representation; the function ss can be used to convert a transfer 
function representation to a state-space representation. These functions are shown in 
Figure 3.34, where sys_tf represents a transfer function model and sys_ss is a state-
space representation. 

For instance, consider the third-order system 

T(s) = 
Y(s) 2s2 + 8.9 + 6 

R(s) ~ s3 \ Ss2 + 16s + 6' 
(3.115) 

FIGURE 3.33 
Response of x-|(f) 
to a step 
disturbance: peak 
value = -0.0325. 
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We can obtain a state-space representation using the ss function, as shown in 
Figure 3.35. A state-space representation of Equation (3.115) is given by Equation 
(3.114), where 

C = [l 

- 8 
4 
0 

1 

- 4 
0 
1 

0.75 

-1.5 
0 
0_ 

, B = 

1, and D = [01 

2 
0 
0 

FIGURE 3.34 
(a) The ss function. 
(b) Linear system 
model conversion. 

State-space object 

S) fS=SS A, 

i = Ax + Bw 
y = Cx + DH 

B, C,D) 

x = Ax + Bw 
y = Cx + DM 

I i 

Y(s) = G(s)U(s) 

' • 

sys_ss=ss(sys_tf) 

sys_tf=tf(sys_ss) 

' • 

Y(s) = G(s)U(s) 

i . 

i = Ax + B« 
y = Cx + Da 

(a) (b) 

convert.m 

% Convert G(s) = (2sA2+8s+6)/(sA3+8sA2+16s+6) 
% to a state-space representation 
% 
num=[2 8 6]; den=[1 8 16 6]; sys_tf=tf(num,den); 
sys_ss=ss(sys_tf); 

»convert 
a = 

X1 
x2 
x3 

b = 

x1 
x2 
x3 

c = 

y i 

d = 

y i 

x1 
-8 
4 
0 

u1 
2 
0 
0 

x1 
1 

U1 
0 

x2 
-4 
0 
1 

X2 
1 

X3 
-1.5 
0 
0 

x3 
0.75 

(a) (b) 

FIGURE 3.35 Conversion of Equation (3.115) to a state-space representation, (a) m-fiie script. 
(b) Output printout. 
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The state-space representation of the transfer function in Equation (3.115) is depicted 
in Figure 3.36. 

The state variable representation is not unique. For example, another equally 
valid state variable representation is given by 

A = 
- 8 
8 
0 

- 2 
0 
1 

-0.75 
0 
0 

,B = 
0.125 

0 
0 

, C = [16 8 6], D = [0]. 

It is possible that when using the ss function, the state variable representation pro
vided by your control design software will be different from the above two examples 
depending on the specific software and version. 

The time response of the system in Equation (3.114) is given by the solution to 
the vector integral equation 

x(f) = exp(Ar)x(0) + exp[A(t - T)]BU{T) dr. (3.116) 
70 

The matrix exponential function in Equation (3.116) is the state transition matrix, 
<&(?), where (Equation 3.23) 

¢ ( 0 - exp(Af). 

We can use the function expm to compute the transition matrix for a given time, as 
illustrated in Figure 3.37.The expm(A) function computes the matrix exponential. In 
contrast, the exp(A) function calculates e°ij for each of the elements a^ £ A. 

For example, let us consider the RLC network of Figure 3.4 described by the 
state-space representation of Equation (3.18) with 

r° 
L1 

-2 

-3 J 
B = 

2 

LuJ 
C = [1 0], and D = 0. 

R(s) 
2 -*o -

^ \ 

If 
1 

s 

- 8 

H 

x\ 

-*— 

4 
1 
S 

x2 

4 
* 

C 
. J 

I • 

l 

l 

l 

l 

s 

A 3 
0.75 

1 Y(s) 

FIGURE 3.36 Block diagram with x, defined as the leftmost state variable. 
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FIGURE 3.37 
Computing the 
state transition 
matrix for a given 
time, At = dt. 

»A=[0 -2; 1 -3]; dt=0.2; Phi=expm(A*dt) 

Phi = 

0.1484 0.5219 

State transition matrix 
for a A? of 0.2 second 

The initial conditions are xi(0) = x2(0) = 1 and the input u(t) = 0. At t = 0.2, the 
state transition matrix is as given in Figure 3.37. The state at t = 0.2 is predicted by 
the state transition methods to be 

x2 /=0.2 

0.9671 
0.1484 

0.2968 
0.5219 x2 f=0 

0.6703 
0.6703 

The time response of the system of Equation (3.115) can also be obtained by 
using the Isim function. The Isim function can accept as input nonzero initial condi
tions as well as an input function, as shown in Figure 3.38. Using the Isim function, we 
can calculate the response for the RLC network as shown in Figure 3.39. 

The state at t = 0.2 is predicted with the Isim function to be x^O.2) = *2(0.2) = 
0.6703. If we can compare the results obtained by the Isim function and by multiplying 
the initial condition state vector by the state transition matrix, we find identical results. 

3.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

Advanced disks have as many as 5000 tracks per cm. These tracks are typically 
1 fim wide. Thus, there are stringent requirements on the accuracy of the reader 
head position and of the movement from one track to another. In this chapter, we 

«(0 

Arbitrary 
input 

> l 

X 

y 

System 

= Ax + BH 

= CX + DM 

y(t) 

Output 

* • / 

(a) 

FIGURE 3.38 
The Isim function 
for calculating the 
output and state 
response. 

y(t) = output response at i 
T: time vector 
x(t) = state response at t 

t = times at which 
response is 
computed 

u = input 

[y,T,x]=lsim(sys,u,t,xO) 

(b) 

Initial 
conditions 
(optional) 
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0.8 

0.6 

0.4 

0.2 

n 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Time (s) 

i.U 

0.8 

0.6 

0.4 

0.2 

n 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Time (s) 

FIGURE 3.39 
Computing the time 
response for 
nonzero initial 
conditions and zero 
input using Isim. 

A=[0 -2;1 -3]; B=[2;0]; C=[1 0]; D=[0]; 
sys=ss(A,B,C,D); -«— 
X0=[1 1]; < 
t=[0:0.01:1]; 
u=0*t; •* 

Initial conditions 
State-space model 

Zero input 
ly,T,x]=lsim(sys,u,t,xO); 
subplot(121), plot(T,x(:,1)) 
xlabel('Time (s)'), ylabel('x_1') 
subplot(122), plot(T,x(:,2)) 
xlabel(Time (s)'), ylabel('x_2') 

will develop a state variable model of the disk drive system that will include the 
effect of the flexure mount. 

Consider again the head mount shown in Figure 2.71. Since we want a light
weight arm and flexure for rapid movement, we must consider the effect of the flex
ure, which is a very thin mount made of spring steel. Again, we wish to accurately 
control the position of the head v(r) as shown in Figure 3.40(a). We will attempt to 
derive a model for the system shown in Figure 3.40(a). Here we identify the motor 
mass as M\ and the head mount mass as Mj. The flexure spring is represented by the 
spring constant k.The force u(t) to drive the mass M\ is generated by the DC motor. If 
the spring is absolutely rigid (nonspringy), then we obtain the simplified model shown 
in Figure 3.40(b). Typical parameters for the two-mass system are given in Table 3.2. 

Let us obtain the transfer function model of the simplified system of Figure 3.40(b). 
Note that M = Mx + M2 = 20.5 g = 0.0205 kg. Then we have 

d2y dy 
M^r + b ^ = u(t). 

dt2 dt w (3.117) 

Therefore, the transfer function model is 

Y(s) 1 

U(s) s(Ms + bt)' 
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FIGURE 3.40 
(a) Model of the 
two-mass system 
with a spring 
flexure. 
(b) Simplified model 
with a rigid spring. 

Table 3.2 Typical Parameters of the Two-Mass Model 

Parameter Symbol Value 

Motor mass 
Flexure spring 
Head mounting mass 
Head position 
Friction at mass 1 
Field resistance 
Field inductance 
Motor constant 
Friction at mass 2 

Motor !—>•<?( 

Mx 

k 
M2 

x2(t) 
bi 
R 
L 

Km 

b2 

20 g = 0.02 kg 
10 <, k < oo 
0.5 g = 0.0005 kg 
variable in mm 
410 X 10"3N/(m/s) 
1 fl 
1 mH 
0.1025 N m / A 
4.1 x 10"3N/(m/s) 

Head 
position 

I) Head •—»it) 
I 

mass | 
K(f) 

Force 
M, 

Flexure spring 

hWVWVH ' 
k 

(a) 

u{l) 

• yit) 

M = Mj + M2 

(b) 

For the parameters of Table 3.2, we obtain 

Y(s) 1 48.78 
U(s) 5(0.02055 + 0.410) s(s + 20)' 

The transfer function model of the head reader, including the effect of the motor coil, 
is shown in Figure 3.41. When R = 1 n , L = 1 mH, and Km = 0.1025, we obtain 

G{s) = 
5000 Y(s) 

V(s) s(s + 20)(.9 + 1000)' 
(3.118) 

which is exactly the same model we obtained in Chapter 2. 
Now let us obtain the state variable model of the two-mass system shown in 

Figure 3.40(a). Write the differential equations as 

d2q 
Mass Mx: Mj— -

dt 

da 
f>i-^ +k(q-y) =u(t) 

FIGURE 3.41 
Transfer function 
model of head 
reader device with 
a rigid spring. 

Vis) 

Motor 
coil 

Km 

Ls + R 

U(s) 

Force 

Mass 

1 
,v(Mv + hi) Y(.i) 
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Mass M2: M2-^r + b2^~ + k(y - q) = 0. 
dt2 dt 

To develop the state variable model, we choose the state variables as X\ — q and 
x2 = y. Then we have 

dq dy 
x3 = - and x ^ ~ . 

Then, in matrix form, 

and we have 

x = 

x = Ax + Bw, 

q 
y 
q 

y, 

o 
o 

l/M, 
0 

B 

and 

0 
0 

-k/Mx 

k/M2 

0 
0 

k/Mx 

~k/M2 

1 
0 

0 

0 
1 
0 

-b2/M2 

(3.119) 

Note that the output is y(t) = x$. Also, for L = 0 or negligible inductance, then 
u{t) = Kmv{t). For the typical parameters and for k = 10, we have 

and 

0 
0 

-500 
+20000 

B 

= 

0 
0 
50 

_ 0 _ 

0 
0 

+500 
-20 ooo 

1 
0 

-20.5 
0 

0 
1 
0 

-8.2 

The response of y for u(t) = 1, t > 0 is shown in Figure 3.42. This response is quite 
oscillatory, and it is clear that we want a very rigid flexure with k > 100. 
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% Model Parameters 
k=10; 
M1=0.02; M2=0.00O5; 

t=[0:0.001:1.5]; 

Units 
k: kg/m 
b: kg/m/s 
m:kg 

% State Space Model 
A=[0 0 1 0;0 0 0 1;-k/M1 k/M1 -b1/M1 0; k/M2 k/M2 0 b2/M2]; 
B=[0;0;1/M1;0]; C=[0 0 0 1]; D=[0]; sys=ss(A,B,C,D); 
% Simulated Step Response 
y=step(sys,t); plot(t,y); grid 
xlabel('Time (s)'), ylabel{'y dot (m/s)') 

FIGURE 3.42 
Response of y for a 
step input for the 
two-mass model 
with/c= 10. 
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3.11 SUMMARY 

In this chapter, we have considered the description and analysis of systems in the time 
domain. The concept of the state of a system and the definition of the state variables of 
a system were discussed. The selection of a set of state variables of a system was exam
ined, and the nonuniqueness of the state variables was noted. The state differential 
equation and the solution for \(t) were discussed. Alternative signal-flow graph and 
block diagram model structures were considered for representing the transfer function 
(or differential equation) of a system. Using Mason's signal-flow gain formula, we 
noted the ease of obtaining the flow graph model. The state differential equation rep
resenting the flow graph and block diagram models was also examined. The time re
sponse of a linear system and its associated transition matrix was discussed, and the 
utility of Mason's signal-flow gain formula for obtaining the transition matrix was illus
trated. A detailed analysis of a space station model development was presented for a 
realistic scenario where the attitude control is accomplished in conjunction with mini
mizing the actuator control. The relationship between modeling with state variable 
forms and control system design was established. The use of control design software to 
convert a transfer function to state variable form and calculate the state transition ma
trix was discussed and illustrated. The chapter concluded with the development of a 
state variable model for the Sequential Design Example: Disk Drive Read System. 
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EXERCISES 

E3.1 For the circuit shown in Figure E3.1 identify a set of 
state variables. 

v\ 

FIGURE E3.1 RLC circuit. 

E3.2 A robot-arm drive system for one joint can be repre
sented by the differential equation [8] 

dvit) 

dt = -kMt) - MO H' MO. 

where v{t) = velocity, y(t) = position, and i(t) is the 
control-motor current. Put the equations in state vari
able form and set up the matrix form for kx = k2 = 1. 

E3.3 A system can be represented by the state vector dif
ferential equation of Equation (3.16), where 

A = 
0 1 

-1 - 1 

Find the characteristic roots of the system. 

Answer: s = -1 /2 ± / V 3 / 2 

E3.4 Obtain a state variable matrix for a system with a 
differential equation 

d3y d2y dy 
— - + 4—7 + 6— + 8y = 20u(t). 
dt dt dt 

E3.5 A system is represented by a block diagram as 
shown in Figure E3.5. Write the state equations in the 
form of Equations (3.16) and (3.17). 

E3.6 A system is represented by Equation (3.16), where 

0 1 

0 0 

(a) Find the matrix ¢ ( 0 . (b) For the initial conditions 
*i(0) = *2(0) = 1, find x(t). 

Answer: (b) X| = 1 i t,xz = 1,/ S 0 

E3.7 Consider the spring and mass shown in Figure 3.3 
where M = lkg,k = 100 N/m, and b = 20 Ns/m. 
(a) Find the state vector differential equation, (b) Find 
the roots of the characteristic equation for this system. 

Answer: (a) i = 
0 
100 

1 

-20 
x + r°i 

i 

( b ) s = - 1 0 , - 1 0 

E3.8 The manual, low-altitude hovering task above a 
moving landing deck of a small ship is very demand
ing, particularly in adverse weather and sea condi
tions. The hovering condition is represented by the 
matrix 

0 
0 
0 

1 
0 

~5 

0 
1 

- 2 _ 

Find the roots of the characteristic equation. 
E3.9 A multi-loop block diagram is shown in Figure E3.9. 

The state variables are denoted by X\ and x2. (a) De
termine a state variable representation of the closed-
loop system where the output is denoted by y(t) and 
the input is r(t). (b) Determine the characteristic 
equation. 

W(.v) 

t 
J 

1 ^ 
a * 

d 

s AT, b 

R(s) — * 0 

k <-

Y(s) 

*. 

s 
J 
> + 

1 
s 

1 
2 

Lt 
*' 

X, 

- • Y(s) 

FIGURE E3.5 Block diagram. FIGURE E3.9 Multi-loop feedback control system. 
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E3.10 A hovering vehicle control system is represented 
by two state variables, and [15] 

A = 
0 6 

- 1 - 5 

(a) Find the roots of the characteristic equation. 
(b) Find the state transition matrix ¢ (0 -

Answer: (a) s - - 3 , - 2 

*-Q 

Sliding friction constant b 

FIGURE E3.15 TWo-mass system. 

(b) ¢( / ) = 2e -31 

. -2( 

- 6 e * + 6e 
3e~3' - 2e 

-it 

E3.ll Obtain two different state-space model for the sys
tem with transfer function 

Y(s) 
U(s) s* + 6sz + l i s + 6 

E3.16 Two cars with negligible rolling friction are con
nected as shown in Figure E3.16. An input force is 
u(f). The output is the position of cart 2, that is, 
y(t) - q{t). Determine a state space representation 
of the system. 

E3.12 Obtain a stale-space model in the Jordan-
canonical form for a system with transfer function. 

Y(s) 4 

U(s) (s + 1)2(5 + 2) 

E3.13 A system is described by the two differential 
equations 

dy 
— + y — 2M + aw =• 0, 
dt 

and 

dw 
~dt~ 

- by + Au = 0, 

where w and y axe functions of time, and u is an 
input u{t). (a) Select a set of state variables, (b) Write 
the matrix differential equation and specify the 
elements of the matrices, (c) Find the characteristic 
roots of the system in terms of the parameters a 
and b. 

Answer: (c) s = - 1 /2 ± V l - Aab/2 

E3.14 Develop the state-space representation of 
a radioactive material of mass M to which addi
tional radioactive material is added at the rate 
r{t) = Ku(t), where K is a constant. Identify the state 
variables. 

E3.15 Consider the case of the two masses connected as 
shown in Figure E3.15. The sliding friction of each 
mass has the constant b. Determine a state variable 
matrix differential equation. 

utt) 
Input 
force 

DZQ fl m2 i> 

FIGURE E3.16 Two cars with negligible rolling friction. 

E3.17 Obtain the transfer function corresponding to a 
system with state-space model: 

-1 0 

0 - 3 x + 

v = [2 -3]x 

E3.18 Consider a system represented by the following 
differentia] equations: 

dh 
dt 

di2 

dt 

i\ + h = C 

v = vh 

dv 

It 

where R, Ll5 L2 and C are given constants, and va 

and Vy, are inputs. T.et the state variables be defined 
as x: = i\,x2 = i%, and Xy = v. Obtain a state variable 
representation of the system where the output 
is x-x 

http://E3.ll
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E3.19 A single-input, single-output system has the matrix 
equations 

0 
- 3 

^<ZZK': --
l l 

~4J 
\ + 0 

1 
and 

y = {10 0]x. 

Determine the transfer function G(.v) = Y(s)/U(s). 

Answer: Gis) = -r-
s2 + As + 3 

E3.20 For the simple pendulum shown in Figure E3.20, 
the nonlinear equations of motion are given by 

a L , 
9 + -f sin0 + - 0 = 0, 

L in 

Massless rod 

Di, mass 

FIGURE E3.20 Simple pendulum. 

where g is gravity, L is the length of the pendulum, in E 3 - 2 1 A single-input, single-output system is described by 
is the mass attached at the end of the pendulum (we 
assume the rod is massless), and k is the coefficient of 
friction at the pivot point. 
(a) Linearize the equations of motion about the equi

librium condition 0 — 0°. 
(b) Obtain a state variable representation of the 

system.The system output is the angle 8. 

kU) = 
0 1 

- 1 - 2 
x(0 + u(t) 

y(!) = [0 l]x(0 

Obtain the transfer function G(s) = Y(s)IU(s) and de
termine the response of the system to a unit step input. 

PROBLEMS 

P3.1 An RLC circuit is shown in Figure P3.1. (a) Identify 
a suitable set of state variables, (b) Obtain the set 
of first-order differential equations in terms of 
the state variables, (c) Write the state differential 
equation. 

AA/V 
R i. 

v(t) 
Voltage (~) 
source 

FIGURE P3.1 RLC circuit. 

P3.2 Obtain a state-space model for the multi-input-
multi-output system given in Figure P3.2. i\{t) and 
r2(t) are the inputs; and ^ ( r ) , v2(f) and y3(t) arc the 
outputs. 

P3.3 Obtain two different state-space models for the 
armature controlled DC motor. 

KV' ( 'H |*->';<'H 

/-,(n © R} 

C,: 

T 
>-,(f) 

L. 

®r& 

FIGURE P3.2 Multi-input-multi-output system. 

P3.4 The transfer function of a system is 

T(s) = 
Y(s) = 

R(s) s* + 2s2 + 3s + 10' 

Sketch the block diagram and determine the state 
variable matrix differential equation for the following 
formats: (a) phase variables; (b) input feedforward. 

P3.5 A closed-loop control system is shown in Figure 
P3.5. (a) Determine the closed-loop transfer function 
T(s) = Y(s)/R(s). (b) Sketch a block diagram model 
for the system, and determine the matrix differential 
equation. 
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FIGURE P3.5 
Closed-loop 
system. 

R(S) — i o 
Position 

P3.6 Determine the state variable matrix equation for the 
circuit shown in Figure P3.6. Let X\• = V\, .¾ = ^ , and 
x3 = i. 

4kU 
-A/W 

Module 

Thrust - k dm/dt 

FIGURE P3.6 RLC circuit. 

Lunar surface 

FIGURE P3.8 Lunar module landing control. 

P3.7 An automatic depth-control system for a robot 
submarine is shown in Figure P3.7. The depth is mea
sured by a pressure transducer. The gain of the stern 
plane actuator is K m 1 when the vertical velocity is 
25 m/s. The submarine has the approximate transfer 
function 

(s + 1)2 

s- + 1 
and the feedback transducer is H(s) = 2s + 1. (a) De
termine a state-space representation for the system. 
(b) Determine whether the system is stable. 

k 

Actuator 

K s G(s) 

Pressure 
measurement 

B\a 

1 
s 

Yis) 
Depth 

FIGURE P3.7 Submarine depth control. 

P3.8 The soft landing of a lunar module descending on the 
moon can be modeled as shown in Figure P3.8.-Define 

the state variables as x\ = y, x7 — dy/dt, x^ = m and 
the control as u = dmldt. Assume that g is the gravity 
constant on the moon. Find the state-space equations 
for this system. Is this a linear model? 

P3.9 A speed control system using fluid flow compo
nents is to be designed. The system is a pure fluid con
trol system because it does not have any moving 
mechanical parts.The fluid may be a gas or a liquid. A 
system is desired that maintains the speed within 
0.5% of the desired speed by using a tuning fork ref
erence and a valve actuator. Fluid control systems are 
insensitive and reliable over a wide range of tempera
ture, electromagnetic and nuclear radiation, accelera
tion, and vibration. The amplification within the 
system is achieved by using a fluid jet deflection am
plifier. The system can be designed for a 500-kW 
steam turbine with a speed of 12,000 rpm. The block 
diagram of the system is shown in Figure P3.9. In di-
mensionless units, we have b = 0.1,7 = 1, and 
K\ = 0.5. (a) Determine the closed-loop transfer 
function 

T(s) = 
R(sY 

(b) Determine a state space representation, (c) Deter
mine the characteristic equation obtained from the A 
matrix. 
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W 

R(s) 
Speed 

reference 

FIGURE P3.9 
Steam turbine 
control. 

Filter 

10 
s+ 10 

Tuning fork 

Valve 
actuatoi 

1 
s 

and error detector 
«1 

Disturbance 
Turbine 

1 
Js + b 

. tots) 
Speed 

P3.10 Many control systems must operate in two dimen
sions, for example, the x- and the v-axes. A two-axis 
control system is shown in Figure P3.10, where a set of 
state variables is identified. The gain of each axis is Kt 

and K2, respectively, (a) Obtain the state differential 
equation, (b) Find the characteristic equation from the 
A matrix, (c) Determine the state transition matrix for 
Kx = 1 and K2 = 2. 

P3.ll (a) Obtain a state-space model in the phase vari
able form for a system with transfer function 

Y(s) _ / ' + 7s2 + 5s + 2 

U(s) ~ s(s + 1)(5 + 3) 

(b) For the same system obtain a state-space model in 
the canonical form. 

(c) Show that the eigen values of A matrix in (a) and 
(b) are 0, - L a n d - 3 . 

P3.12 A system is described by its transfer function 

Y(s) m = jj(f + 5) 
R(s) s3 + lZs2 + 44s + 48* 

(a) Determine the phase variable canonical form. 
(b) Determine the diagonal canonical form of the state 

variable matrix equation. 
(c) Determine ¢ ( 0 . t n e state transition matrix. 

K.O—* 

« : 0 — • * O: 

(a) 

FIGURE P3.10 
Two-axis system. 
(a) Signal-flow 
graph, (b) Block 
diagram model. 
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P3.13 Consider again the RLC circuit of Problem 
P3.1 when R = 2.5. L = 1/4, and C - 1/6. (a) De
termine whether the system is stable by finding the 
characteristic equation with the aid of the A ma
trix. (b) Determine the transition matrix of the 
network, (c) When the initial inductor current is 0.1 
amp, yr(0) = 0. and v(t) = 0. determine the re
sponse of the system, (d) Repeat part (c) when the 
initial conditions are zero and v(t) = E, for t > 0, 
where £ is a constant. 

P3.1.4 Determine a state space representation for a sys
tem with the transfer function 

Y(s) 

R(s) 
= T(s) = 

A" + 10 

.v4 + 12T + 23s2 + 34A + 40 

P3.15 Obtain a block diagram and a state variable repre
sentation of this system. 

Y(s) 

R(s) 
= T(s) = 

5(5 + 4) 

1052 + 31s + 20' 

P3.16 A system for dispensing radioactive fluid into cap
sules is shown in Figure P3.16(a). The horizontal axis 
moving the tray of capsules is actuated by a linear 
motor. The .x-axis control is shown in Figure P3.16(b). 
Assume K = 500. Obtain (a) a state variable repre
sentation and (b) the unit step-response of the sys
tem. (c) Determine the characteristic roots of the 
system. 

P3.17 The dynamics of a controlled submarine are signif
icantly different from those of an aircraft, missile, or 
surface ship. This difference results primarily from the 
moment in the vertical plane due to the buoyancy ef
fect. Therefore, it is interesting to consider the control 
of the depth of a submarine. The equations describing 
the dynamics of a submarine can be obtained by using 
Newton's laws and the angles defined in Figure P3.17. 
To simplify the equations, we will assume that 6 is a 
small angle and the velocity v is constant and equal to 
25 ft/s.The state variables of the submarine, considering 
only vertical control, are xx = 9. x2 = dQIdt, and 
A"3 = a, where a is the angle of attack. Thus the state 
vector differential equation for this system, when the 
submarine has an Albacore type hull, is 
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Filling Full 
heads capsules 

Hose 

A-axis 
•4 • 

Platen Linear motor 

Side View 

S 

Motor 
with lead screw 

R(s) 

(b) 

FIGURE P3.16 Automatic fluid dispenser. 

*a\ Q ^Velocity 

Control 
surface 

FIGURE P3.17 Submarine depth control. 

x = 

0 1 0 
-0.0071 - 0.111 0.12 

0 0.07 -0.3 
x + 

0 

-0.095 

+0.072 
"(0-

where u(t) = 8,(0- the deflection of the stern plane, (a) 
Determine whether the system is stable, (b) Determine 
the response of the system to a stern plane step 
command of 0.285° with the initial conditions equal to 
zero. 

P3.18 Transfer function of a system is 

Y(s) 4 

U(s) s2 + 2s + 4 

(a) Obtain step response. 
(b) Obtain a state space model and hence obtain the 

step response. 
(c) Compare the answers obtained in (a) and (b). 
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P3.19 Consider the control of the robot shown in Figure 
P3.19.The motor turning at the elbow moves the wrist 
through the forearm, which has some flexibility as 
shown [16].The spring has a spring constant k and fric
tion-damping constant b. Let the state variables be 
x\ = <t>\ ~ $2 and x2 - (i)i/(i)(), where 

suddenly shut down. At shutdown, the density X 
of xenon 135 and the density / of iodine 135 are 
7 X 1016 and 3 x 1015 atoms per unit volume, respec
tively. The half-lives of lli5 and Xei.35 nucleides are 6.7 
and 9.2 hours, respectively. The decay equations 
are[17,23] 

a>l = 
* (7 i f / 2 ) 

7,72 * 

Write the state variable equation in matrix form when 
XT. = 0)2/(1)(). 

P3.20 Consider the system described by 

m = 
0 
2 -3 x(0, 

where x(t) = [X\(t) x2(()]
T. (a) Compute the state 

transition matrix ¢ ( / , 0). (b) Using the state transition 
matrix from (a) and for the initial conditions .^(()) = I 
and x2(0) = - 1 , find the solution x(f) for 1 a 0. 

P3.21 A nuclear reactor that has been operating in 
equilibrium at a high thermal-neutron flux level is 

Elbow 0i 

Current 

Motor 4= k, b 

Wrist 
( 

T 3 

/. 

FIGURE P3.19 An industrial robot. (Courtesy of GCA 
Corporation.) 

' = ~°-W'- 9.2 

Determine the concentrations of I135 and Xe135 as 
functions of time following shutdown by determining 
(a) the transition matrix and the system response, (b) 
Verify that the response of the system is that shown in 
Figure P3.21. 

P3.22 Two equivalent block diagram models for a fourth-
order equation (Equation (3.46)) are shown in Figures 
3.11 and 3.13. Another alternative structure is shown in 
Figure P3.22. In this case, the system is second order 
and the input-output transfer function is 

G(s) = 
IhS Y(s) 

U(s) s2 + ars + a0 

(a) Verify that the block diagram model of Figure P3.22 
is in fact a model of G(s). (b) Show that the vector 
differential equation representing the block diagram 
model cf Figure P3.22 is 

0 1 
X + 

hi 

ho 
u(t), 

where h{ = b\, and h^ = b{) - b\a\. 

X.I 7 

FIGURE P3.21 
Nuclear reactor 
response. 
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FIGURE P3.22 Model of second-order system. 
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P3.23 Determine the state variable matrix differential 
equation for the circuit shown in Figure P3.23. The 
state variables are xt = i, x2 ~ v-\, and x3 = v2. The 
output variable is v0(t). 

o + 

Output 
Ri "o voltage 

FIGURE P3.23 RLC circuit. 

P3.24 The two-tank system shown in Figure P3.24(a) is 
controlled by a motor adjusting the input valve and ul
timately varying the output flow rate. The system has 
the transfer function 

n?) = T( m i 
R(s) s3 + 10s2 + Ms + 30 

for the block diagram shown in Figure P3.24(b). Obtain 
a block diagram model and the matrix differential 
equation for the following models: (a) phase variables, 
(b) input feedforward, (c) physical state variables, and 
(d) decoupled state variables. 

P3.25 It is desirable to use well-designed controllers to 
maintain building temperature with solar collector 
space-heating systems. One solar heating system can 
be described by [10] 

It = 3xj + «! + u%, 

and 

dx2 

IF = 2x' + "2 + d, 

/(0 
Input 
signal 1 

v r S 

Qi(s) l 
5 + 2 

Q*s) 1 

y + 3 

QJs) 
Output 

now 

(b) 

FIGURE P3.24 A two-tank system with the motor 
current controlling the output flow rate, (a) Physical diagram. 
(b) Block diagram. 

where X\ = temperature deviation from desired 
equilibrium, and x2 = temperature of the storage 
material (such as a water tank). Also, uA and u2 are 
the respective flow rates of conventional and solar 
heat, where the transport medium is forced air. A 
solar disturbance on the storage temperature (such 
as overcast skies) is represented by d. Write the 
matrix equations and solve for the system response 
when ii\ = 0, u2 = 1, and d = 1, with zero initial 
conditions. 

P3.26 A system has the following differential equation: 

x = 
-1 

2 

0 

-S_ 
x + 

ro~ 
1 

r(t). 

Determine <3>(f) and its transform ¢(5) for the system. 

P3.27 A system has a block diagram as shown in Figure 
P3.27. Determine the state variable differential equa
tion and the state transition matrix ¢(51). 

Y(s) l\\S) W\ 

FIGURE F 

f\-
\ 

'3.27 

25 6 

Feec Ibac 

1 
j + 3 

3 
25 

k sy stem. 
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P3.28 A gyroscope with a single degree of freedom is 
shown in Figure P3.28. Gyroscopes sense the angular 
motion of a system and are used in automatic flight 
control systems. The gimbal moves about the output 
axis OB. The input is measured around the input axis 
OA. The equation of motion about the output axis is 
obtained by equating the rate of change of angular 
momentum to the sum of torques. Obtain a state-
space representation of the gyro system. 

Spinning 
wheel 

Gimbal 

B 
Output axis 

FIGURE P3.28 Gyroscope. 

P3.29 A two-mass system is shown in Figure P3.29. 
The rolling friction constant is b. Determine the 
matrix differential equation when the output variable 
is y2{t). 

>'2 

AAAAAA 
k 

m2 

U 0 
Rolling friction constant = b 

FIGURE 3.29 Two-mass system. 

P3.30 There has been considerable engineering effort 
directed at finding ways to perform manipulative 
operations in space—for example, assembling a 
space station and acquiring target satellites. To per
form such tasks, space shuttles carry a remote man
ipulator system (RMS) in the cargo bay [4, 12, 26]. 
The RMS has proven its effectiveness on recent 
shuttle missions, but now a new design approach is 
being considered—a manipulator with inflatable arm 
segments. Such a design might reduce manipulator 

Space 
structure 

Drive 
motor 

a< 

Manipulator 

Load mass 
/ ^ . I.M 

••••.:• 

01 \ ^ 

J VW " 
<ll 

(b) 

FIGURE P3.30 Remote manipulator system. 

weight by a factor of four while producing a man
ipulator that, prior to inflation, occupies only one-
eighth as much space in the shuttle's cargo bay as the 
present RMS. 

The use of an RMS for constructing a space struc
ture in the shuttle bay is shown in Figure P3.30(a), 
and a model of the flexible RMS arm is shown in 
Figure P3.30(b), where J is the inertia of the drive 
motor and L is the distance to the center of gravity of 
the load component. Derive the state equations for 
this system. 

P3.31 Obtain the state equations for the two-input and 
one-output circuit shown in Figure P3.31, where the 
output is i2. 

FIGURE P3.31 Two-input RLC circuit. 

P3.32 Extenders are robot manipulators that extend 
(that is, increase) the strength of the human arm in 
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Extender 

Gripper 

FIGURE P3.32 Extender for increasing the strength of 
the human arm in load maneuvering tasks. 

load-maneuvering tasks (Figure P3.32) [23, 27J. The 
system is represented by the transfer function 

Y(s) 
U(s) 

= G(s) = 
30 

.i2 + 4s 

where U(s) is the force of the human hand applied to 
the robot manipulator, and Y(s) is the force of the 
robot manipulator applied to the load. Determine a 
state variable model and the state transition matrix 
for the system. 

P3.33 A drug taken orally is ingested at a rate r. The mass 
of the drug in the gastrointestinal tract is denoted by 
mx and in the bloodstream by m2. The rate of change 
of the mass of the drug in the gastrointestinal tract is 
equal to the rate at which the drug is ingested minus 
the rate at which the drug enters the bloodstream, a 
rate that is taken to be proportional to the mass pre
sent. The rate of change of the mass in the blood
stream is proportional to the amount coming from the 
gastrointestinal tract minus the rate at which mass is 
lost by metabolism, which is proportional to the mass 
present in the blood. Develop a state space represen
tation of this system. 

For the special case where the coefficients of A are 
equal to 1 (with the appropriate sign), determine 
the response when mi(0) = 1 and m2(0) = 0. Plot 
the state variables versus time and on the X\ - x2 

state plane. 

P3.34 The dynamics of a rocket are represented by 

Y(s) rr* l 

W) = G{5) = ? 
and state variable feedback is used where x, = y(t), 
x2 = y(0i andtt = -x2 - 0.5rj. Determine the roots 
of the characteristic equation of this system and the re
sponse of the system when the initial conditions are 
A-^O) = 0 and x2(0) = l.The input U(s) is the applied 
torques, and Y(s) is the rocket attitude. 

P3.35 Solve 

x2 =~ Sx2 

i 3 = -4x3 

given, x, (0) = U 2 ( 0 ) = x3(0) = 2. 

P3.36 Determine a state-space representation for the sys
tem shown in Figure P3.36.The motor inductance 
is negligible, the motor constant is Km = 10, the 
back electromagnetic force constant is 
Kh = 0.0706, the motor friction is negligible. The 
motor and valve inertia is J - 0.006, and the area 
of the tank is 50 m2. Note that the motor is con
trolled by the armature current ia. Let 
X\ = h, x2 = 6, and .v3 - dOldt. Assume that 
</i = 800, where 6 is the shaft angle. The output 
flow is q0 = 5()h(t). 

Amplifier 
K„ = 50 

FIGURE P3.36 
One-tank system. 

* 

Reservoir 
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ADVANCED PROBLEMS 

AP3.1 Consider the electromagnetic suspension system 
shown in Figure AP3.1. An electromagnet is located at 
the upper part of the experimental system. Using the 
electromagnetic force / . we want to suspend the iron 
ball. Note that this simple electromagnetic suspension 
system is essentially unworkable. Hence feedback 
control is indispensable. As a gap sensor, a standard 
induction probe of the type of eddy current is placed 
below the ball [25]. 

Assume that the state variables are x{ - .Y, 
A'2 = dx/dt, and x$ = i. The electromagnet has an in
ductance L = 0.508 H and a resistance R = 23.2 £1. 
Use a Taylor series approximation for the electromag
netic force. The current is i\ = /() + /'. where 
/(} = 1.06 A is the operating point and i is the variable. 
The mass m is equal to 1.75 kg. The gap is 
Xg = Xf) +- x, where X0 = 4.36 mm is the operating 
point and x is the variable. The electromagnetic force 
is / = k{iYixR)2, where k = 2.9 X 10-4 N m2/A2. De~ 
termine the matrix differential equation and the 
equivalent transfer function X(s)IV{s). 

hvWV\AA Mass 
m 

u. 12 
II n 

FIGURE AP3.2 Mass on cart. 

/?(.v) 
Input 

Controller 

2i-? + 6s + 5 

s+ 1 
— • 

Vehicle 
dynamics 

1 

(5 + IX* + 2) 

Y(s) 
Position 

FIGURE AP3.3 Position control. 

Gap sensor 

FIGURE AP3.1 Electromagnetic suspension system. 

AP3.2 Consider the mass m mounted on a massless cart, 
as shown in Figure AP3.2. Determine the transfer 
function Y(s)/U(s), and use the transfer function to 
obtain a state-space representation of the system. 

AP3.3 The control of an autonomous vehicle motion 
from one point to another point depends on accurate 
control of the position of the vehicle [18]. The control 
of the autonomous vehicle position Y(s) is obtained 
by the system shown in Figure AP3.3. Obtain a state 
variable representation of the system. 

AP3.4 Front suspensions have become standard equip
ment on mountain bikes. Replacing the rigid fork that 
attaches the bicycle's front tire to its frame, such sus
pensions absorb bump impact energy, shielding both 
frame and rider from jolts. Commonly used forks, 
however, use only one spring constant and treat bump 
impacts at high and low speeds—impacts that vary-
greatly in severity—essentially the same. 
A suspension system with multiple settings that are 
adjustable while the bike is in motion would be attrac
tive. One air and coil spring with an oil damper is 
available that permits an adjustment of the damping 
constant to the terrain as well as to the rider's weight 
[20]. The suspension system model is shown in Figure 
AP3.4, where b is adjustable. Select the appropriate 

Mass 
m 

I 1 
FIGURE AP3.4 Shock absorber. 
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value for b so that the bike accommodates (a) a large 
bump at high speeds and (b) a small bump at low 
speeds. Assume that k2 = 1 and £] = 2. 

AP3.5 Figure AP3.5 shows a mass M suspended from 
another mass in by means of a light rod of length L. 
Obtain the state variable differential matrix equation 
using a linear model assuming a small angle for 6. 

AP3.7 Consider the single-input, single-output system de
scribed bv 

where 

x(/) = Ax(0 

y(t) = Cx(o 

t Bu(t) 

-1 

L u 
i 

°J 
,B = 

0 

1 

FIGURE AP3.5 Mass suspended from cart. 

AP3.6 Consider a crane moving in the x direction while 
the mass m moves in the z direction, as shown in 
Figure AP3.6. The trolley motor and the hoist motor 
are very powerful with respect to the mass of the trol
ley, the hoist wire, and the load in. Consider the input 
control variables as the distances D and R. Also as
sume that 9 < 50°. Determine a linear model, and de
scribe the state variable differential equation. 

,C = [2 1]. 

Assume that the input is a linear combination of the 
states, that is, 

u(t) = -Kx(/) + ,-(0, 

where r(t) is the reference input. The matrix K = 
[Ky K2] is known as the gain matrix. Substituting u(t) 
into the state variable equation gives the closed-loop 
system 

x(0 = [A - BK]x(/) + Br(t) 

>•(/) = Cx(f) 

The design process involves finding K so that the 
eigenvalues of A-BK are at desired locations in the 
left-half plane. Compute the characteristic polynomial 
associated with the closed-loop system and determine 
values of K so that the closed-loop eigenvalues are in 
the left-half plane. 

FIGURE AP3.6 
A crane moving in 
the x-direction while 
the mass moves in 
thez-direction. 

• .» 

Tj DESIGN PROBLEMS 

CDP3.1 The traction drive uses the capstan drive system 
shown in Figure CDP2.1. Neglect the effect of the 
motor inductance and determine a state variable 
model for the system. The parameters are given in 
Table CDP2.1.The friction of the slide is negligible. 

DP3.1 A spring-mass-damper system, as shown in Figure 
3.3, is used as a shock absorber for a large high-perfor
mance motorcycle. The original parameters selected 

are m = 1 kg, b = 9 N s/m, and k = 20 N/m. (a) De
termine the system matrix, the characteristic roots, and 
the transition matrix ¢ (0 - The harsh initial conditions 
are assumed to be j/(0) — 1 and dy/dt\l=o = 2. (b) Plot 
the response of y(t) and dyldt for the first two seconds. 
(c) Redesign the shock absorber by changing the 
spring constant and the damping constant in order to 
reduce the effect of a high rate of acceleration force 
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d2yldt2 on the rider. The mass must remain constant 
at 1 kg. 

DP3.2 A system has the state variable matrix equation in 
phase variable form 

x = 
0 

—a 

l 

-b x + «(0. 

and y = 10rs. It is desired that the canonical diagonal 
form of the differential equation be 

- 3 

0 

0 

- 1 
7 + 

1 

1 z = 

y = [-5 5]z. 

Determine the parameters a, b, and d to yield the re
quired diagonal matrix differential equation. 

DP3.3 An aircraft arresting gear is used on an aircraft 
carrier as shown in Figure DP3.3.The linear model of 
each energy absorber has a drag force fD = KQ'XT,. Il is 
desired to halt the airplane within 30 m after engaging 
the arresting cable [15]. The speed of the aircraft on 
landing is 60 m/s. Select the required constant KD, and 
plot the response of the state variables. 

DP3.4 The Mile-High Bungi Jumping Company wants you 
to design a bungi jumping system (i.e., a cord) so that the 
jumper cannot hit the ground when his or her mass is 
less than 100 kg, but greater than 50 kg. Also, the com
pany wants a hang lime (the time a jumper is moving up 

and down) greater than 25 seconds, but less than 40 sec
onds. Determine the characteristics of the cord. The 
jumper stands on a platform 90 m above the ground, and 
the cord will be attached to a fixed beam secured 10 m 
above the platform. Assume that the jumper is 2 m tall 
and the cord is attached at the waist (1 m high). 

DP3.5 Consider the single-input, single-output system de
scribed by 

%{t) = Ax(0 + B«(r) 

At) = Cx(0 

where 

A -
0 

-2 

1 

3 
, B = 

0 

\_l\ 
, C = [1 0J. 

Assume that the input is a linear combination of the 
states, that is, 

u(t) = -Kx(0 + /-(0, 
where. r(i) is the reference input. Determine K = 
[X] K2] so that the closed-loop system 

x(0 = [A - BK]x(r) + Br(f) 

At) = Cx(0 

possesses closed-loop eigenvalues at /••] and r^. Note that 
if r\ = <r + /<y is a complex number, then r2 = cr - ja> 
is its complex conjugate. 

x3{0) = x2(0) = .v,(0) = 0 

ri r± g 
1=3 E^AMA/^OU^ 

Energy absorber piston 
mass = m» = 5 

1 I 
Moving carriage &i 
mass = w-> = 10 

Aircraft carrier 
runway 

Cable 1 spring constant 
Cable 2 spring constant i. _ <TQQ 

k2= 1000 , ' 

- W W ^ — ' ^ V V V V X ' 
I 

FIGURE DP3.3 
Aircraft arresting 
gear. 

dxxfdt = 60 m/s 
at.* = 0,/ = 0 
h = 30 m 

> 

Aircraft mass = in l 

= 300 
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COMPUTER PROBLEMS 

CP3.1 A unity feedback system is having an open loop 
transfer function 

G(s) = 
l 

(s + 3)(.v + 4) 

Using M A T L A B 
(a) Obtain closed-loop transfer function. 
(b) Obtain a state-space model. 
(c) Using the state-space model obtain the unit step 

response. 

CP3.2 Consider the circuit shown in Figure CP3.2. 
(a) Obta in the state-space model of the system. 
(b) Using MATT.AB, obtain step response when 
i? = 2K,4K,6K,8KandlOK. 

CP3.4 Consider the svstem 

" 0 1 

x = 0 0 

L-3 -2 

o 
l 

- 5 . 

0 

x + 

0]x. 

a. 

(a) Using the tf function, determine the transfer func
tion Y(s)/U(s). 

(b) Plot the response of the system to the initial con
dition x(0) = [0 - 1 I f fort) < t < 10. 

(c) Compute the state transition matrix using the 
expm function, and determine \(t) at t = 10 for the 
initial condition given in part (b). Compare the re
sult with the system response obtained in part (b). 

CP3.5 Consider the two systems 

R 1H 
_TV-Y~Y-\_ 

Ml/) 

I 
t 

0.01 UF I and 

FIGURE CP3.2 An RLC circuit. 

CP3.3 Consider the circuit shown in Figure CP3.3. Deter
mine the transfer function Vf)(i)/Vf„(.y). Assume an ideal 
op-amp. 

(a) Determine the state variable representation 
when /?, - 1 kfl, R7 = lOkft .C, = 0.5 mF, and 
C2 = 0.1 mF. 

(b) Using the state variable representation from 
part (a), plot the unit step response with the step 
function. 

*1 = 

0 1 0 

0 0 1 

_ - 4 - 5 - 8 _ 

x , +• 

0 
0 

_4_ 
u, 

y = [\ 0 0]Xl (1) 

0.5000 0.5000 0.7071' 

-0.5000 -0.5000 0.7071 

_-6.3640 -0.7071 -8.000_ 

y = [0.7071 - 0.7071 0]x2 

x2 + 

"o 
0 

_4 
\-> — 

(2) 

(a) Using the tf function, determine the transfer func
tion Y(s)/U(s) for system (1). 

(b) Repeat part (a) for system (2). 
(c) Compare the results in parts (a) and (b) and com

ment . 

CP3.6 Consider the closed-loop control system in Figure 
CP3.6. 

(a) Determine a state variable representation of the 
controller. 

(b) Repeat part (a) for the process. 
(c) With the controller and process in state variable 

form, use the ser ies and feedback functions to 
compute a closed-loop system representat ion in 
stace variable form and plot the closed-loop system 
impulse response. 

V,„(.v) V()(s) R<s) 

Controller 

s + 2 

Process 

52 + IS + 4 
- • Y(s) 

FIGURE CP3.3 An op-amp circuit. FIGURE CP3.6 A closed-loop feedback control system. 
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CP3.7 Consider the following system: 

0 l l 
- 2 -3_ 

x + 

y=\l OJx 

TERMS AND CONCEPTS 

Canonical form A fundamental or basic forin of the state 
variable model representation, including phase variable 
canonical form, input feedforward canonical form, 
diagonal canonical form, and Jordan canonical form. 

Diagonal canonical form A decoupled canonical form 
displaying the n distinct system poles on the diagonal 
of the state variable representation A matrix. 

Discrete-time approximation An approximation used 
to obtain the time response of a system based on the 
division of the time into small increments At. 

Euler's method A first-order explicit integration method 
utilized to obtain numerical solutions of differential 
equations. 

Fundamental matrix See Transition matrix. 

Input feedforward canonical form A canonical form 
described by n feedback loops involving the a„ coef
ficients of the nXh order denominator polynomial of 
the transfer function and feedforward loops obtained 
by feeding forward the input signal. 

Jordan canonical form A block diagonal canonical form 
for systems that do not possess distinct system poles. 

Matrix exponential function An important matrix func
tion, defined as ex' = I + At + (A/)2/2! + • • • + 
(Al) /k\ + ---, that plays a role in the solution of lin
ear constant coefficient differenrial equations. 

Output equation The algebraic equation that relates the 
state vector x and the inputs u to the outputs y 
through the relationship y = Cx + Du. 

Phase variable canonical form A canonical form described 
by n feedback loops involving the a„ coefficients of the 

with 

Using the Isim function obtain and plot the system 
response (for x\(t) and x2(t)) when u(t) = 0. 

nth order denominator polynomial of the transfer func
tion and m feedforward loops involving the b,„ coeffi
cients of the mth order numerator polynomial of the 
transfer function. 

Phase variables The state variables associated with the 
phase variable canonical form. 

Physical variables The state variables representing the 
physical variables of the system. 

State differential equation The differential equation for 
the state vector: x = Ax + Bu. 

State of a system A set of numbers such that the knowl
edge of these numbers and the input function will. 
with the equations describing the dynamics, provide 
the future state of the system. 

State-space representation A time-domain model com
prising the state differential equation x = Ax + Bu 
and the output equation, y = Cx + Du. 

State variable feedback The use of a control signal formed 
as a direct function of all the state variables. 

State variables The set of variables that describe the system. 

State vector The vector containing all // state variables, 
xh x2,..., x„. 

Time domain The mathematical domain that incorpo
rates the time response and the description of a sys
tem in terms of time t. 

Time-varying system A system for which one or more pa
rameters may vary with time. 

Transition matrix $ ( i ) The matrix exponential function 
that describes the unforced response of the system. 
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PREVIEW 

In this chapter, we explore the role of error signals to characterize feedback control 
system performance. The areas of interest include the reduction of sensitivity to 
model uncertainties, disturbance rejection, measurement noise attenuation, steady-
state errors and transient response characteristics. The error signal is used to control 
the process by negative feedback. Generally speaking, the goal is to minimize the 
error signal. We discuss the sensitivity of a system to parameter changes, since it is 
desirable to minimize the effects of parameter variations and uncertainties. We also 
wish to diminish the effect of unwanted disturbances and measurement noise on the 
ability of the system to track a desired input. We then describe the transient and 
steady-state performance of a feedback system and show how this performance can 
be readily improved with feedback. Of course, the benefits of a control system come 
with an attendant cost. The chapter concludes with a system performance analysis of 
the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 4, students should: 

• Be aware of the central role of error signals in analysis of control systems. 

LI Recognize the improvements afforded by feedback control in reducing system sensitivity 
to parameter changes, disturbance rejection, and measurement, noise attenuation. 

J Understand the differences between controlling the transient response and the steady-
state response of a system. 

• Have a sense of the benefits and costs of feedback in the control design process. 

212 
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4.1 INTRODUCTION 

A control system is defined as an interconnection of components forming a system 
that will provide a desired system response. Because the desired system response 
is known, a signal proportional to the error between the desired and the actual 
response is generated. The use of this signal to control the process results in a 
closed-loop sequence of operations that is called a feedback system. This closed-
loop sequence of operations is shown in Figure 4.1. The introduction of feedback to 
improve the control system is often necessary. It is interesting that this is also the 
case for systems in nature, such as biological and physiological systems; feedback is 
inherent in these systems. For example, the human heartrate control system is a 
feedback control system. 

To illustrate the characteristics and advantages of introducing feedback, we will 
consider a single-loop feedback system. Although many control systems are multi
loop, a single-loop system is illustrative. A thorough comprehension of the benefits 
of feedback can best be obtained from the single-loop system and then extended to 
multiloop systems. 

A system without feedback, often called an open-loop system, is shown in 
Figure 4.2. The disturbance, Td(s), directly influences the output, Y(s). In the ab
sence of feedback, the control system is highly sensitive to disturbances and to 
changes is parameters in G(s). 

Controller Process 

Output 

FIGURE 4.1 
A closed-loop 
system. 

Comparison Measurement 

FIGURE 4.2 
An open-loop 
system with a 
disturbance input, 
Ja(s). (a) Signal-flow 
graph, (b) Block 
diagram. 

R<s) O 

Us 
O 

G{s) 

•O m + Y(s) 

(a) (b) 
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An open-loop (direct) system operates without feedback and directly generates 
the output in response to an input signal. 

By contrast, a closed-loop, negative feedback control system is shown in Figure 4.3. 

A closed-loop system uses a measurement of the output signal and a 
comparison with the desired output to generate an error signal that is used 

by the controller to adjust the actuator. 

The two forms of control systems are shown in both block diagram and signal-flow 
graph form. Despite the cost and increased system complexity, closed-loop feedback 
control has the following advantages: 

• Decreased sensitivity of the system to variations in the parameters of the process. 

• Improved rejection of the disturbances. 

Q Improved measurement noise attenuation. 

Q Improved reduction of the steady-state error of the system. 

• Easy control and adjustment of the transient response of the system. 

FIGURE 4.3 
A closed-loop 
control system. 
(a) Signal-flow 
graph, (b) Block 
diagram. 

R(s) 

R(s) 

o « 0 
' • 

Controller 

G,.(s) 

J 
Sensor 

His) 

(b) 

N{s) 

Process 

G(s) + Y(s) 

H N(s) 
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In this chapter, we examine how the application of feedback can result in the bene
fits listed above. Using the notion of a tracking error signal, it will be readily appar
ent that it is possible to utilize feedback with a controller in the loop to improve 
system performance. 

4.2 ERROR SIGNAL ANALYSIS 

The closed-loop feedback control system shown in Figure 4.3 has three inputs— 
R(s), Td(s), and N(s)—and one output, Y(s). The signals Td(s) and N(s) are the 
disturbance and measurement noise signals, respectively. Define the tracking 
error as 

E(s) = R(s) - Y(s). (4.1) 

For ease of discussion, we will consider a unity feedback system, that is, H(s) = 1, in 
Figure 4.3. In Section 5.5 of the following chapter, the influence of a nonunity feed
back element in the loop is considered. 

After some block diagram manipulation, we find that the output is given by 

Gc(s)G(s) , G(s) Gc(s)G(s) 

1 + Gc(s)G(s) 1 + Gc(s)G(s) 1 + Gc(s)G{s) 

Therefore, with E(s) = R(s) — Y(s), we have 

1 G(s) Gc(s)G(s) 

1 + Gc(s)G(s) 1 + Gc(s)G(s) 1 + Gc(s)G(s) 

Define the function 

L(s) = Gc(s)G(s). 

The function, L(s), is known as the loop gain and plays a fundamental role in control 
system analysis [12]. In terms of L(s) the tracking error is given by 

1 G(s) Lis) 

1 + L(s) 1 + L(s) 1 + L(s) 

We can define the function [41] 

F(s) = 1 + L(s). 
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Then, in terms of F(s), we define the sensitivity function as 

Similarly, in terms of the loop gain, we define the complementary sensitivity function as 

Us) cw =, + k- (4-6) 
In terms of the functions S(s) and C(s), we can write the tracking error as 

E(s) = S(s)R(s) - S(s)G(s)Td(s) + C{s)N(s). (4.7) 

Examining Equation (4.7), we see that (for a given G(s)), if we want to minimize the 
tracking error, we want both S(s) and C(s) to be small. Remember that S(s) and C(s) 
are both functions of the controller, Gc(s), which the control design engineer must 
select. However, the following special relationship between S(s) and C(s) holds 

Sis) + C{s) = 1. (4.8) 

We cannot simultaneously make S(s) and C(s) small. Obviously, design compromis
es must be made. 

To analyze the tracking error equation, we need to understand what it means for 
a transfer function to be "large" or to be "small." The discussion of magnitude of a 
transfer function is the subject of Chapters 8 and 9 on frequency response methods. 
However, for our purposes here, we describe the magnitude of the loop gain L(s) by 
considering the magnitude | L{jw) | over the range of frequencies, w, of interest. 

Considering the tracking error in Equation (4.4), it is evident that, for a given 
G(s), to reduce the influence of the disturbance, Td(s), on the tracking error, E(s), 
we desire L(s) to be large over the range of frequencies that characterize the distur
bances. That way, the transfer function G(s)/(1 + L(s)) will be small, thereby re
ducing the influence of TJji). Since L(s) = Gf:(s)G(s), this implies that we need to 
design the controller Gc(s) to have a large magnitude. Conversely, to attenuate the 
measurement noise, N(s), and reduce the influence on the tracking error, we desire 
L(s) to be small over the range of frequencies that characterize the measurement 
noise. The transfer function L(s)/(1 + L(s)) will be small, thereby reducing the in
fluence of N(s). Again, since L(s) = Gc(s) G(s), that implies that we need to design 
the controller Gc(s) to have a small magnitude. Fortunately, the apparent conflict 
between wanting to make Gc(s) large to reject disturbances and the wanting to 
make Gr(s) small to attenuate measurement noise can be addressed in the design 
phase by making the loop gain, L(s), large at low frequencies (generally associated 
with the frequency range of disturbances), and making L(s) small at high frequen
cies (generally associated with measurement noise), 

More discussion on disturbance rejection and measurement noise attenuation 
follows in the subsequent sections. Next, we discuss how we can use feedback to re
duce the sensitivity of the system to variations and uncertainty in parameters in the 
process, G(s).This is accomplished by analyzing the tracking error in Equation (4.2) 
when Td(s) = N(s) = 0. 
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4.3 SENSITIVITY OF CONTROL SYSTEMS TO PARAMETER VARIATIONS 

A process, represented by the transfer function G(s), whatever its nature, is subject 
to a changing environment, aging, ignorance of the exact values of the process para
meters, and other natural factors that affect a control process. In the open-loop sys
tem, all these errors and changes result in a changing and inaccurate output. 
However, a closed-loop system senses the change in the output due to the process 
changes and attempts to correct the output. The sensitivity of a control system to pa
rameter variations is of prime importance. A primary advantage of a closed-loop 
feedback control system is its ability to reduce the system's sensitivity [1-4,18]. 

For the closed-loop case, if Gc(s)G(s) » 1 for all complex frequencies of inter
est, we can use Equation (4.2) to obtain (letting Td(s) = 0 and N(s) = 0) 

Y(s) m R(s). 

The output is approximately equal to the input. However, the condition Gc(s)G(s) » 1 
may cause the system response to be highly oscillatory and even unstable. But the fact 
that increasing the magnitude of the loop gain reduces the effect of G(s) on the output 
is an exceedingly useful result. Therefore, the first advantage of a feedback system is 
that the effect of the variation of the parameters of the process, G(s), is reduced. 

Suppose the process (or plant) G(s) undergoes a change such that the true plant 
model is G(s) + AG(s). The change in the plant may be due to a changing external 
environment or natural aging, or it may just represent the uncertainty in certain 
plant parameters. We consider the effect on the tracking error E(s) due to AG(s). 
Relying on the principle of superposition, we can let Td(s) = N(s) = 0 and consid
er only the reference input R(s). From Equation (4.3), it follows that 

£ ( s ) + A £ ( s ) = l + GMm + AG(s))m 

Then the change in the tracking error is 

AF(, = -GM AgCO R( v 
U (1 + Gc(s)G(s) + Gc(s) &G(s))(l + Gc(s)G(s)) W ' 

Since we usually find that Gc(s)G(s) » Gc(s) AG(s), we have 

-Gc(s) AG(s) 

(1 + L(s)Y 
AE(s) - ,/K/T/:'R(S). 

We see that the change in the tracking error is reduced by the factor 1 + L(s), 
which is generally greater than 1 over the range of frequencies of interest. 

For large L(s), we have 1 + L(s) ~ L(s), and we can approximate the change 
in the tracking error by 

1 AG(s) 

L(s) G(s) 

Larger magnitude Lis) translates into smaller changes in the tracking error (that is, 
reduced sensitivity to changes in AG(s) in the process). Also, larger L{s) implies 
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smaller sensitivity, *?(.?). The question arises, how do we define sensitivity? Since our 
goal is to reduce system sensitivity, it makes sense to formally define the term. 

The system sensitivity is defined as the ratio of the percentage change in the sys
tem transfer function to the percentage change of the process transfer function. The 
system transfer function is 

7X0 = m 
R(Sy 

and therefore the sensitivity is defined as 

_ AT(s)/T(s) 

AG(s)/G(sy 

Iu the limit, for small incremenlal changes, Equation (4.11) becomes 

(4.10) 

(4.11) 

(4.12) 

System sensitivity is the ratio of the change in the system transfer function 
to the change of a process transfer function (or parameter) for a .small 

incremental change. 

The sensitivity of the open-loop system to changes in the plant G(s) is equal to 1. 
The sensitivity of the closed-loop is readily obtained by using Equation (4.12). The 
system transfer function of the closed-loop system is 

T(s)~-
Gc(s)G(s) 

1 + Gc(s)G(s)' 

Therefore, the sensitivity of the feedback system is 

dT G 
Cif-. — * _ — 

dG T (1 + GcGf GGJ{\ + GCG) 

or 

S l = 
1 

1 + Gc(s)G(s)' 
(4.13) 

We find that the sensitivity of the system may be reduced below that of the open-
loop system by increasing L(s) = Gc(s)G(s) over the frequency range of interest. 
Note that SQ in Equation (4.12) is exactly the same as the sensitive function S(s) 
given in Equation (4.5). In fact, these functions are one and the same. 

Often, we seek to determine Sj , where a is a parameter within the transfer 
function of a block G. Using the chain rule, we find that 

rT = cTcG (4.14) 
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Very often, the transfer function of the system T(s) is a fraction of the form [1] 

N(s,a) 
T(S, a) 

D(s,a)' 
(4.15) 

where a is a parameter that may be subject to variation due to the environment. 
Then we may obtain the sensitivity to a by rewriting Equation (4.11) as 

S i _ 
d In T a In N 

<9 In a d In a 

dlnD 

« 0 
d In a 

— CA' (4.16) 
« 0 

where a0 is the nominal value of the parameter. 
An important advantage of feedback control systems is the ability to reduce the effect 

of the variation of parameters of a control system by adding a feedback loop. To obtain 
highly accurate open-loop systems, the components of the open-loop, G(s), must be 
selected carefully in order to meet the exact specifications. However, a closed-loop 
system allows G(s) to be less accurately specified, because the sensitivity to changes or 
errors in G(s) is reduced by the loop gain L(s). This benefit of closed-loop systems is a 
profound advantage for the electronic amplifiers of the communication industry. A 
simple example will illustrate the value of feedback for reducing sensitivity. 

EXAMPLE 4.1 Feedback amplifier 

An amplifier used in many applications has a gain — Ka, as shown in Figure 4.4(a). 
The output voltage is 

VQ = -Kav-m. (4.17) 

We often add feedback using a potentiometer Rp, as shown in Figure 4.4(b). The 
transfer function of the amplifier without feedback is 

and the sensitivity to changes in the amplifier gain is 

(4.18) 

(4.19) 

The block diagram model of the amplifier with feedback is shown in Figure 4.5, 
where 

R2 
(4.20) 

FIGURE 4.4 
(a) Open-loop 
amplifier. 
(b) Amplifier with 
feedback. 

o + 
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-K„ 

V„(s) Vjs) •( )—11—• 
-A:,. 

i + ^ ( ^ + 1 ) 
• * • v< v;,<5) 

(a) (b) 

FIGURE 4.5 Block diagram model of feedback amplifier assuming Rp » Rn of the amplifier. 

and 

RP = Ri + #2-

The closed-loop transfer function of the feedback amplifier is 

T = 
-K„ 

1 + Ka(3-

The sensitivity of the closed-loop feedback amplifier is 

c7" _ cT cG _ 1 

S*8 - W , - 1 + ^ . 

If ^ is large, the sensitivity is low. For example, if 

Ka - 104 

and 

/3 = 0.1, 

we have 

1 

(4.21) 

(4.22) 

(4.23) 

Si = 
I + 1()-1 3' 

(4.24) 

(4.25) 

or the magnitude is one-thousandth of the magnitude of the open-loop amplifier. 
We shall return to the concept of sensitivity in subsequent chapters. These chap

ters will emphasize the importance of sensitivity in the design and analysis of con
trol systems. • 

4.4 DISTURBANCE SIGNALS IN A FEEDBACK CONTROL SYSTEM 

An important effect of feedback in a control system is the control and partial elimi
nation of the effect of disturbance signals. A disturbance signal is an unwanted input 
signal that affects the output signal. Many control systems are subject to extraneous 
disturbance signals that cause the system to provide an inaccurate output. Electronic 
amplifiers have inherent noise generated within the integrated circuits or transistors; 
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radar antennas are subjected to wind gusts; and many systems generate unwanted 
distortion signals due to nonlinear elements. The benefit of feedback systems is that 
the effect of distortion, noise, and unwanted disturbances can be effectively reduced. 

Disturbance Rejection 

When R(s) = N(s) = 0, it follows from Equation (4.4) that 

E(s) = S(s)G(s)Td(s) = -
G(s) 

1 + L(s) Us). 

For a fixed G(s) and a given Td(s), as the loop gain L(s) increases, the effect of Td(s) 
on the tracking error decreases. In other words, the sensitivity function S(s) is small 
when the loop gain is large. We say that large loop gain leads to good disturbance re
jection. More precisely, for good disturbance rejection, we require a large loop gain 
over the frequencies of interest associated with the expected disturbance signals. 

In practice, the disturbance signals are often low frequency. When that is the 
case, we say that we want the loop gain to be large at low frequencies. This is equiv
alent to stating that we want to design the controller Gc(s) so that the sensitivity 
function S(s) is small at low frequencies. 

As a specific example of a system with an unwanted disturbance, let us consider 
again the speed control system for a steel rolling mill. The rolls, which process steel, 
are subjected to large load changes or disturbances. As a steel bar approaches the 
rolls (see Figure 4.6), the rolls are empty. However, when the bar engages in the rolls, 
the load on the rolls increases immediately to a large value. This loading effect can be 
approximated by a step change of disturbance torque. Alternatively, the response can 
be seen from the speed-torque curves of a typical motor, as shown in Figure 4.8. 

The transfer function model of an armature-controlled DC motor with a load 
torque disturbance was determined in Example 2.3 and is shown in Figure 4.7, 
where it is assumed that La is negligible. Let R{s) = 0 and examine E(s) = —(o(s), 
for a disturbance Td(s). 

FIGURE 4.6 
Steel rolling mill. 

Steel bar 

Conveyor 

Rolls 

FIGURE 4.7 
Open-loop speed 
control system 
(without tachometer 
feedback). 

Disturbance 

V„(s) 
Speed 
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FIGURE 4.8 
Motor 
speed-torque 
curves. 

10 20 30 
Motor torque (N-m) 

The change in speed due to the load disturbance is then 

1 
E(s) = -to(s) = Js + b + KmKb/Ra 

Us). (4.26) 

The steady-state error in speed due to the load torque, Td{s) = D/s, is found by 
using the final-value theorem. Therefore, for the open-loop system, we have 

lim £ ( 0 = lim sE(s) = Urns— ; ,r — , „ — 
r_»oo w * - o w , - 0 Js + b + KmKh/Ra\s 

D 
= -(o0(oo). (4.27) 

b + KmKh/Ra 

The closed-loop speed control system is shown in block diagram form in Figure 4.9. 
The closed-loop system is shown in signal-flow graph and block diagram form in 
Figure 4.10,where G^s) = KaKJRa, G2(s) = 1/(/5 ^ b), and H(s) = K, + Kb/Ka. 
The error, E(s) = — (o(s), of the closed-loop system of Figure 4.10 is: 

E(s) = -<o(s) = r>-r?tr\*\M<\TM- ( 4 l 2 8 ) 

1 + G^{s)G2{s)H(s) 
Then, if GiG2H(s) is much greater than 1 over the range of s, we obtain the approx
imate result 

E(s) 1 
G1(s)H(s) Us). (4.29) 

FIGURE 4.9 
Closed-loop speed 
tachometer control 
system. 
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W 

+ ^ . Ea(s) 
__ <u(i) /?(.v) 

(a) (b) 

FIGURE 4.10 Closed-loop system, (a) Signal-flow graph model, (b) Block diagram model. 

• w(.v) 

Therefore, if Gi(s)H(s) is made sufficiently large, the effect of the disturbance can 
be decreased by closed-loop feedback. Note that 

Gi(s)H(s) 
KaKm K Rb\ R. KaK„,Kt 

Ra \ K-a) R(i 

since Ka >£> K/r Thus, we strive to obtain a large amplifier gain, Ka, and keep 
Ra < 2 fl. The error for the system shown in Figure 4.10 is 

E(s) = R(s) - a>(s), 

and R(s) = <od(s), the desired speed. For calculation ease, we let R(s) = 0 and ex
amine co(s). 

To determine the output for the speed control system of Figure 4.9, we must 
consider the load disturbance when the input R(s) = 0. This is written as 

0)(S) = 
-1 / ( / .5 + b) 

1 + (KtKaKjRa)[l/(Js + b)] + (KIHKb/Ra)[l/(Js + b)} 

- 1 

Us) 

•Us)- (4.30) 
Js + b + {KJRa)(K,Ka + Kb) 

The steady-state output is obtained by utilizing the final-value theorem, and we have 

- 1 
limw(r) = lim(sw(.?)) = , , - „ , , . , 

when the amplifier gain Ka is sufficiently high, we have 

-Rn 

D; 

co(oo) 
KaKmK, 

a—D = o»c(oo). 

(4.31) 

(4.32) 

The ratio of closed-loop to open-loop steady-state speed output due to an undesired 
disturbance is 

o>c(°°) _ Rab + KmKb 

^o(oo) " KaKmKt 

(4.33) 

and is usually less than 0.02. 
This advantage of a feedback speed control system can also be illustrated by 

considering the speed-torque curves for the closed-loop system, which are shown in 
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FIGURE 4.11 
The speed-torque 
curves for the 
closed-loop 
system. 
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Figure 4.11. The improvement of the feedback system is evidenced by the almost 
horizontal curves, which indicate that the speed is almost independent of the load 
torque. 

Measurement Noise Attenuation 

When R(s) = Td(s) = 0, it follows from Equation (4.4) that 

Us) 
E(s) = C(s)N(s) NO). 1 + L(s) 

As the loop gain L(s) decreases,the effect of N(s) on the tracking error decreases. In 
other words, the complementary sensitivity function C(s) is small when the loop gain 
L(s) is small. If we design Gc(s) such that L(s) « 1, then the noise is attenuated 
because 

C(s) » L(s). 

We say that small loop gain leads to good noise attenuation. More precisely, for ef
fective measurement noise attenuation, we need a small loop gain over the frequen
cies associated with the expected noise signals. 

In practice, measurement noise signals are often high frequency. Thus we want 
the loop gain to be low at high frequencies. This is equivalent to a small comple
mentary sensitivity function at high frequencies. The separation of disturbances (at 
low frequencies) and measurement noise (at high frequencies) is very fortunate be
cause it gives the control system designer a way to approach the design process: the 
controller should be high gain at low frequencies and low gain at high frequencies. 
Remember that by low and high we mean that the loop gain magnitude is low/high 
at the various high/low frequencies. It is not always the case that the disturbances 
are low frequency or that the measurement noise is high frequency. For example, an 
astronaut running on a treadmill on a space station may impart disturbances to the 
spacecraft at high frequencies. If the frequency separation does not exist, the design 
process usually becomes more involved (for example, we may have to use notch fil
ters to reject disturbances at known high frequencies). A noise signal that is preva
lent in many systems is the noise generated by the measurement sensor. This noise, 
N(s), can be represented as shown in Figure 4.3. The effect of the noise on the out
put is 

Y(s) = 
-Gc(s)G(s) 

1 + Gc(s)G(s 
N(s), (4.34) 



Section 4.5 Control of the Transient Response 225 

which is approximately 

Y(s) - -N(s), (4.35) 

for large loop gain L(s) = Gc(s)G(.y).This is consistent with the earlier discussion 
that smaller loop gain leads to measurement noise attentuation. Clearly, the design
er must shape the loop gain appropriately. 

The equivalency of sensitivity, S'Q, and the response of the closed-loop system 
tracking error to a reference input can be illustrated by considering Figure 4.3. The 
sensitivity of the system to G(s) is 

1 1 
SG = 1 + Gc(s)G(s) = 1 + L(s)' ( 4 ' 3 6 ) 

The effect of the reference on the tracking error (with Td(s) = 0 and N(s) = 0) is 

E(s) 1 1 

R(s) 1 + Gc(s)G(s) 1 + L(s)' 
(4.37) 

In both cases, we find that the undesired effects can be alleviated by increasing the 
loop gain. Feedback in control systems primarily reduces the sensitivity of the system 
to parameter variations and the effect of disturbance inputs. Note that the measures 
taken to reduce the effects of parameter variations or disturbances are equivalent, 
and fortunately, they reduce simultaneously. As a final illustration, consider the 
effect of the noise on the tracking error: 

E(s) = Gc(s)G(s) _ L(s) 

Td(s) 1 + Gc(s)G(s) 1 + L(s)' 

We find that the undesired effects of measurement noise can be alleviated by de
creasing the loop gain. Keeping in mind the relationship 

S(s) + C(s) = 1, 

the trade-off in the design process is evident. 

4.5 CONTROL OF THE TRANSIENT RESPONSE 

One of the most important characteristics of control systems is their transient re
sponse. The transient response is the response of a system as a function of time. Be
cause the purpose of control systems is to provide a desired response, the transient 
response of control systems often must be adjusted until it is satisfactory. If an open-
loop control system does not provide a satisfactory response, then the process, G(s), 
must be replaced with a more suitable process. By contrast, a closed-loop system can 
often be adjusted to yield the desired response by adjusting the feedback loop para
meters. It is often possible to alter the response of an open-loop system by inserting a 
suitable cascade controller, Gc(s), preceding the process, G(s), as shown in Figure 4.12. 
Then it is necessary to design the cascade transfer function, Gc(s)G(s), so that the re
sulting transfer function provides the desired transient response. 
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FIGURE 4.12 
Cascade controller 
system (without 
feedback). 
(a) Signal-flow graph. 
(b) Block diagram 
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To make this concept more comprehensible, consider a specific control system, 
which may be operated in an open- or closed-loop manner. A speed control system, 
as shown in Figure 4.13, is often used in industrial processes to move materials and 
products. Several important speed control systems are used in steel mills for rolling 
the steel sheets and moving the steel through the mill [19]. The transfer function of 
the open-loop system (without feedback) was obtained in Equation (2.70). For 
io(s)/Va(s), we have 

where 

£ i -

w(s) 

Va(s) 

Km 
Rab + KbK„ 

G(s) -

- and 

* i 

TiS + V 

RJ 
Rab + KbKn, 

(4.39) 

In the case of a steel mill, the inertia of the rolls is quite large, and a large armature-
controlled motor is required. If the steel rolls are subjected to a step command for a 
speed change of 

VJs) -
k,E 

(4.40) 

the output response is 

co(s) = G(s)Va(s). 

The transient speed change is then 

<o(t) = Kt(k2E){\ - e-"r>). 

(4.41) 

(4.42) 

If this transient response is too slow, we must choose another motor with a dif
ferent time constant TJ, if possible. However, because T{ is dominated by the load 
inertia,/, it may not be possible to achieve much alteration of the transient response. 

FIGURE 4.13 
Open-loop speed 
control system 
(without feedback). 
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K ( „ = ^ — K > ~N fc 

J * 

V,(s) 

Amplifier 

Tachometer 

Va(s) Motor 
G(s) 

Speed 
a>(.s) 

(a) 

FIGURE 4.14 
(a) Closed-loop 
speed control 
system. 
(b) Transistorized 
closed-loop speed 
control system. (b) 

A closed-loop speed control system is easily obtained by using a tachometer 
to generate a voltage proportional to the speed, as shown in Figure 4.14(a). This 
voltage is subtracted from the potentiometer voltage and amplified as shown in 
Figure 4.14(a). A practical transistor amplifier circuit for accomplishing this feed
back in low-power applications is shown in Figure 4.14(b) [1,5,7]. The closed-loop 
transfer function is 

KaG(s) 

R(s) " 1 + K(!K,G{s) 

KaKx KaKt/r, 

Tis + 1+ K^Ki 5 + (1 + K(lKtK{)/r 
(4.43) 

The amplifier gain, Ka, may be adjusted to meet the required transient response 
specifications. Also, the tachometer gain constant, Kt, may be varied, if necessary. 

The transient response to a step change in the input command is then 

CO (0 = 
KJC\ 

1 + KaK,Kx 
(*2£)(1 - e~% (4.44) 

where p = (1 + KaKtK\)/Tx. Because the load inertia is assumed to be very large, 
we alter the response by increasing Ka. Thus, we have the approximate response 

0 ) ( / ) (k2E) 1 - exp 
-(KgKtKx)t\ 

T i 
(4.45) 

For a typical application, the open-loop pole might be 1/TI = 0.10, whereas the 
closed-loop pole could be at least {KaKtK{)/r\ = 10, a factor of one hundred in 
the improvement of the speed of response. To attain the gain KaKtKy, the ampli
fier gain Ka must be reasonably large, and the armature voltage signal to the 
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FIGURE 4.15 
The response of the 
open-loop and 
closed-loop speed 
control system 
when T = 10 and 
KiWt = 100. The 
time to reach 98% 
of the final value for 
the open-loop and 
closed-loop system 
is 40 seconds and 
0.4 second, 
respectively. 
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motor and its associated torque signal must be larger for the closed-loop than for 
the open-loop operation. Therefore, a higher-power motor will be required to 
avoid saturation of the motor. The responses of the closed-loop system and the 
open-loop system are shown in Figure 4.15. Note the rapid response of the 
closed-loop system. 

While we are considering this speed control system, it will be worthwhile to de
termine the sensitivity of the open- and closed-loop systems. As before, the sensitivity 
of the open-loop system to a variation in the motor constant or the potentiometer 
constant k2 is unity. The sensitivity of the closed-loop system to a variation in Kni is 

aToG „ I5 +
 (VTI) ] sl s + (KaKtKx r l ) / T l 

Using the typical values given in the previous paragraph, we have 

(s + 0.10) 
ST 

K„ s + 10 

We find that the sensitivity is a function ofs and must be evaluated for various values of 
frequency. This type of frequency analysis is straightforward but will be deferred until a 
later chapter. However, it is clearly seen that at a specific low frequency—for example, 
s = ja) =/1—the magnitude of the sensitivity is approximately | ST

K \ = 0.1. 

4.6 STEADY-STATE ERROR 

A feedback control system is valuable because it provides the engineer with the 
ability to adjust the transient response. In addition, as we have seen, the sensitivity 
of the system and the effect of disturbances can be reduced significantly. However, 
as a further requirement, we must examine and compare the final steady-state error 



Section 4.6 Steady-State Error 229 

for an open-loop and a closed-loop system. The steady-state error is the error after 
the transient response has decayed, leaving only the continuous response. 

The error of the open-loop system shown in Figure 4.2 is 

E0(s) = R(s) ~ Y(s) = (1 - G(s))R(s), (4.46) 

when Td(s) = 0. Figure 4.3 shows the closed-loop system. When Td(s) = 0 and 
N(s) = 0, and we let H(s) = 1, the tracking error is given by (Equation 4.3) 

To calculate the steady-state error, we use the final-value theorem 

Ume(f) = lim sE(s). (4.48) 
/-»oo s-»o 

Therefore, using a unit step input as a comparable input, we obtain for the open-
loop system 

e0(oo) = lim *(1 - G{s))[- ) = lim(l - G(s)) = 1 - G(0). (4.49) 
5—»0 V S J s—»0 

For the closed-loop system we have 

e'(0O) = S8'(l + ofeowJw = i + 0^(0)0(0)- (4-50) 

The value of G(s) when s = 0 is often called the DC gain and is normally greater 
than one. Therefore, the open-loop system will usually have a steady-state error of 
significant magnitude. By contrast, the closed-loop system with a reasonably large 
DC loop gain L(0) = Gc(0)G(0) will have a small steady-state error. In Chapter 5, 
we discuss steady-state error in much greater detail. 

Upon examination of Equation (4.49), we note that the open-loop control sys
tem can possess a zero steady-state error by simply adjusting and calibrating the 
system's DC gain, G(0), so that G(0) = 1. Therefore, we may logically ask. What is 
the advantage of the closed-loop system in this case? To answer this question, we 
return to the concept of the sensitivity of the system to parameter changes. In the 
open-loop system, we may calibrate the system so that G(0) = 1, but during the 
operation of the system, it is inevitable that the parameters of G(s) will change 
due to environmental changes and that the DC gain of the system will no longer 
be equal to 1. Because it is an open-loop system, the steady-state error will not 
equal zero until the system is maintained and recalibrated. By contrast, the closed-
loop feedback system continually monitors the steady-state error and provides an 
actuating signal to reduce the steady-state error. Because systems are susceptible 
to parameter drift, environmental effects, and calibration errors, negative feed
back provides benefits. An example of an ingenious feedback control system is 
shown in Figure 4.16. 

The advantage of the closed-loop system is that it reduces the steady-state error 
resulting from parameter changes and calibration errors. This may be illustrated by 

(4.47) 
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FIGURE 4.16 The DLR German Aerospace 
Center is developing an advanced robotic hand. The 
final goal—fully autonomous operation—has not yet 
been acheived. Currently, the control is 
accomplished via a telemanipulation system 
consisting of a lightweight robot with a four-fingered 
articulated hand mounted on a mobile platform. The 
hand operator receives stereo video feedback and 
force feedback. This information is employed in 
conjunction with a data glove equipped with force 
feedback and an input device to control the robot. 
(Used with permission. Credit: DLR Institute of 
Robotics and Mechatronics.) 

an example. Consider a unity feedback system with a process transfer function 

K 
G(s) = (4.51) 

TS + r 
which could represent a thermal control process, a voltage regulator, or a water-
level control process. For a specific setting of the desired input variable, which may 
be represented by the normalized unit step input function, we have R(s) = l/s. 
Then the steady-state error of the open-loop system is, as in Equation (4.49), 

e0(oo) = l - G(0) = \ - K (4.52) 

when a consistent set of dimensional units is utilized for R(s) and K. The error for 
the closed-loop system is 

Ec(s) = R(s) - T(s)R(s) 

where T(s) = Gc(s)G(s)/(l + Gc(s)G(s)). The steady-state error is 

ec(oo) = lims{l - T(s)}- = 1 - T(0). 

s-*0 S 

When Gc(s) = l/fas + 1), we obtain Gc(0) = 1 and G(0) = K. Then we have 

K 1 ec(oo) = 1 -
1 + K 1 + K' 

(4.53) 

For the open-loop system, we would calibrate the system so that K = 1 and the 
steady-state error is zero. For the closed-loop system, we would set a large gain K. If 
K = 100, the closed-loop system steady-state error is ec(oo) = 1/101. 

If the calibration of the gain setting drifts or changes by hK/K = 0.1 (a 10% 
change), the open-loop steady-state error is Ae0(oo) = 0.1. Then the percent 
change from the calibrated setting is 

**(») o.io (4_54) 

Ht)\ l 
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or 10%. By contrast, the steady-state error of the closed-loop system, with 
AK/K = 0.1, is ec(°o) — 1/91 if the gain decreases. Thus, the change is 

Ae<(00> -m~h (455) 

and the relative change is 

keJoo) 
- T 7 T T = 0.0011, (4.56) 

KOI 
or 0.11%. This is a significant improvement, since the closed-loop relative change is 
two orders of magnitude lower than that of the open-loop system. 

4.7 THE COST OF FEEDBACK 

Adding feedback to a control system results in the advantages outlined in the previ
ous sections. Naturally, however, these advantages have an attendant cost. The first 
cost of feedback is an increased number of components and complexity in the sys
tem. To add the feedback, it is necessary to consider several feedback components; 
the measurement component (sensor) is the key one. The sensor is often the most 
expensive component in a control system. Furthermore, the sensor introduces noise 
and inaccuracies into the system. 

The second cost of feedback is the loss of gain. For example, in a single-loop sys
tem, the open-loop gain is Gc(s)G(s) and is reduced to Gc(s)G(s)/(l + Gc(s)G(s)) 
in a unity negative feedback system. The closed-loop gain is smaller by a factor of 
1/(1 + Gc(s)G(s)), which is exactly the factor that reduces the sensitivity of the sys
tem to parameter variations and disturbances. Usually, we have extra open-loop 
gain available, and we are more than willing to trade it for increased control of the 
system response. 

We should note that it is the gain of the input-output transmittance that is 
reduced. The control system does retain the substantial power gain of a power 
amplifier and actuator, which is fully utilized in the closed-loop system. 

The final cost of feedback is the introduction of the possibility of instability. 
Whereas the open-loop system is stable, the closed-loop system may not be always 
stable. The question of the stability of a closed-loop system is deferred until Chapter 6, 
where it can be treated more completely. 

The addition of feedback to dynamic systems causes more challenges for the 
designer. However, for most cases, the advantages far outweigh the disadvantages, 
and a feedback system is desirable. Therefore, it is necessary to consider the addi
tional complexity and the problem of stability when designing a control system. 

Clearly, we want the output of the system, Y(s), to equal the input, R(s). How
ever, upon reflection, we might ask, Why not simply set the transfer function 
G(s) = Y(s)/R(s) equal to 1? (See Figure 4.2, assuming Td(s) = 0.) The answer to 
this question becomes apparent once we recall that the process (or plant) G(s) 
was necessary to provide the desired output; that is, the transfer function G(s) rep
resents a real process and possesses dynamics that cannot be neglected. If we set 
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G(s) equal to 1, we imply that the output is directly connected to the input. We must 
recall that a specific output (such as temperature, shaft rotation, or engine speed), is 
desired, whereas the input can be a potentiometer setting or a voltage. The process 
G(s) is necessary to provide the physical process between R(s) and Y(s). Therefore, 
a transfer function G(s) = 1 is unrealizable, and we must settle for a practical trans
fer function. 

4.8 DESIGN EXAMPLES 

In this section we present three illustrative examples: the English Channel boring 
machine, the Mars rover, and a blood pressure control problem during anesthesia. 
The English Channel boring machine example focuses on the closed-loop system 
response to disturbances. The Mars rover example highlights the advantages of 
closed-loop feedback control in decreasing system sensitivity to plant changes. The 
final example on blood pressure control is a more in-depth look at the control 
design problem. Since patient models in the form of transfer functions are diffi
cult to obtain from basic biological and physical principles, a different approach 
using measured data is discussed.The positive impact of closed-loop feedback control 
is illustrated in the context of design. 

EXAMPLE 4.2 English Channel boring machines 

The construction of the tunnel under the English Channel from France to Great 
Britain began in December 1987. The first connection of the boring tunnels from 
each country was achieved in November 1990. The tunnel is 23.5 miles long and is 
bored 200 feet below sea level. The tunnel, completed in 1992 at a total cost of $14 
billion, accommodates 50 train trips daily. This construction is a critical link between 
Europe and Great Britain, making it possible for a train to travel from London to 
Paris in three hours. 

The machines, operating from both ends of the channel, bored toward the mid
dle. To link up accurately in the middle of the channel, a laser guidance system kept 
the machines precisely aligned. A model of the boring machine control is shown in 
Figure 4.17, where Y(s) is the actual angle of direction of travel of the boring machine 
and R(s) is the desired angle. The effect of load on the machine is represented by the 
disturbance, Td(s). 

The design objective is to select the gain K so that the response to input angle 
changes is desirable while we maintain minimal error due to the disturbance. The 

FIGURE 4.17 
A block diagram 
model of a boring 
machine control 
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output due to the two inputs is 

K + lis 
Y(s) = 

s2 + 12s + K 
R(s) + 

1 

r2 + 12s + K TM- (4.57) 

Thus, to reduce the effect of the disturbance, we wish to set the gain greater than 10. 
When we select K = 100 and let the disturbance be zero, we have the step response for 
a unit step input r(r), as shown in Figure 4.18(a). When the input r(t) = 0 and we deter
mine the response to the unit step disturbance, we obtain y(0 as shown in Figure 4.18(b). 
The effect of the disturbance is quite small. If we set the gain K equal to 20, we ob
tain the responses of y(t) due to a unit step input r(t) and disturbance Td(t) displayed 
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FIGURE 4.18 
The response y(t) to 
(a) a unit input step 
r[t) and (b) a unit 
disturbance step 
input with 
Us) ~- 1/s for 
K = 100. 
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FIGURE 4.19 
The response y(f) 
for a unit step input 
(solid line) and for a 
unit step 
disturbance 
(dashed line) for 
K = 20. 
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together in Figure 4.19. Since the overshoot of the response is small (less than 4%) 
and the steady state is attained in 2 seconds, we would prefer that K = 20. The 
results are summarized in Table 4.1. 

The steady-state error of the system to a unit step input R(s) = 1/s is 

lim e(t) = lim s-
r-*oo ' S-*Q 

1 

K + llsfl 
= 0. (4.58) 

1 + 
s(s + l)\s 

The steady-state value of y(t) when the disturbance is a unit step, Td(s) = l/s, 
and the desired value is r(t) = 0 is 

ftmy(t) — lim 
r-*oo 

1 
s(s + 12) + K 

1_ 

K (4.59) 

Thus, the steady-state value is 0.01 and 0.05 for K = 100 and 20, respectively. 
Finally, we examine the sensitivity of the system to a change in the process G(s) 

using Equation (4.12). Then 

s(s + 1) 
Sl = 

s(s + 12) + K' 
(4.60) 

Table 4.1 Response of the Boring System for Two Gains 

Gain 
K 

Overshoot of 
response to 
r(t) = step 

Time for 
response to 
r(f) = step 
to reach 
steady state 

Steady-state 
response 
y(t) for unit 
step disturbance 

(2% criterion) with r{t) = 0 

Steady-state error 
of response to 
r(t) = step with 
zero disturbance 

100 22% 0.7 s 0.01 0 
20 4% 1.05 0.05 0 
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For low frequencies (\s\ < 1), the sensitivity can be approximated by 

s 

235 

(4.61) 

where K > 20. Thus, the sensitivity of the system is reduced by increasing the gain, 
K. In this case, we choose K = 20 for a reasonable design compromise. • 

EXAMPLE 4.3 Mars rover vehicle 

The solar-powered Mars rover named Sojourner landed on Mars on July 4,1997, and 
was deployed on its journey on July 5,1997.The rover was controlled by operators on 
Earth using controls on the rover [21,22]. The Mars rovers, aptly dubbed Spirit and 
Opportunity, are known as the twin Mars Exploration Rovers and landed on the 
planet in 2004. These new rovers differ in size and capability from the Sojourner 
rover. Sojourner was about 65 cm (2 ft) long and weighed 10 kg (22 lb), while Spirit 
and Opportunity are each 1.6 m (5.2 ft) long and weigh 174 kg (384 lbs). Sojourner 
traveled a total distance of about 100 m during its 12 weeks of activity on Mars. Spir
it has traveled over 7 km and Opportunity has traveled over 10 km. Each vehicle 
has lasted many times longer than originally planned. The Mars Exploration 
Rovers are more autonomous; each carries its own telecommunications equipment, 
camera, and computers, whereas the Sojourner housed most of its equipment on the 
lander left at the base site. The solar-powered Mars rover Spirit is shown in Figure 
4.20. The vehicle is controlled from Earth by sending it path commands, r(t). 

A very simplified model of a rover is depicted in Figure 4.21. The system may be 
operated without feedback, as shown in Figure 4.21(a), or with feedback, as shown 
in Figure 4.21(b). The goal is to operate the rover with modest effects from distur
bances such as rocks and with low sensitivity to changes in the gain K. 

The transfer function for the open-loop system is 

Y(s) K 
Us) = - ^ = , . / - (4.62) R(s) 

FIGURE 4.20 
Mars Exploration 
Rovers are 
significantly more 
capable than their 
predecessor, the 
Mars Pathfinder 
Sojourner. 
(Courtesy of NASA.) 



236 Chapter 4 Feedback Control System Characteristics 

Us) 

FIGURE 4.21 
Control system for 
the rover, (a) Open-
loop (without 
feedback). 
(b) Closed-loop 
with feedback. 
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and the transfer function for the closed-loop system is 

Y(s) K 
Tc(s) = 

Then, for K - 2, 

R(s) 

T(s) = T0(s) = Tc(s) = 

s2 + As + 3 + K 
(4.63) 

s2 l- As + 5* 

Hence, we can compare the sensitivity of the open-loop and closed-loop systems for 
the same transfer function. 

The sensitivity for the open-loop system is 

* dK T0 ' 

and the sensitivity for the closed-loop system is 

r r _ rfr;*: _ s2 \ 45 + 3 
*' " dK T<: ~ s2 + 4s + 3 + K 

(4.64) 

(4.65) 

To examine the effect of the sensitivity at low frequencies, we let s = jco to obtain 

(3 + K - a?) + jAoi 

For K = 2, the sensitivity at low frequencies, w < 0.1, is \Sj^c\ — 0.6. 
A frequency plot of the magnitude of the sensitivity is shown in Figure 4.22. 

Note that the sensitivity for low frequencies is 

\Sjf\ < 0.8, for (o < 1. 

The effect of the disturbance can be determined by setting R(s) = 0 and letting 
Td(s) = l/s. Then, for the open-loop system, we have the steady-state value 

y(oo) = limsi - £ \~ = \. (4.67) 
/ v ' 6—0 1 (s + 1)(5 + 3) J s 3 
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FIGURE 4.22 
The magnitude of 
the sensitivity of the 
closed-loop system 
for the Mars rover 
vehicle. 

1.10 

1.05 

1.00 

.^ 0.95 

1 0.90 
u 
en 

0 0.85 o 
-o 
1 0.80 c 
M 

| 0.75 

0.70 

0.65 

0.60 

Magnitude of sensitivity vs. frequency 
1 i 

! 

i 

1 

| 
| 
1 

: 

. 

i 

_.. 

1 U 

y 
L»»^f 

' *-̂  

L / l i f t 
/ 

j 
J 
f 
! 

ll 

| i 
j 

> i 

f 1 

1 
l ! 

i 

--

• 

i 

| \ 

i 
i 

i 

i 

\ j ! 

10 - 1 10° 10' 
Frequency (rad/s) 

102 

As shown in Section 4.4, the output of the closed-loop system with a unit step 
disturbance, Td(s) = 1 /s, is 

y(oo) = lim s{ —: 
*->o )(52 + 4s + 3 + K) 

1 
3 + K' 

(4.68) 

When K = 2, v(oo) = 1/5. Because we seek to minimize the effect of the distur
bance, it is clear that a larger value of K would be desirable. An increased value of 
K, such as K = 50, will further reduce the effect of the disturbance as well as reduce 
the magnitude of the sensitivity (Equation 4.66). However, as we increase K beyond 
K = 50, the transient performance of the system for the ramp input, r(t), begins to 
deteriorate. • 

EXAMPLE 4.4 Blood pressure control during anesthesia 

The objectives of anethesia are to eliminate pain, awareness, and natural reflexes so 
that surgery can be conducted safely. Before about 150 years ago, alcohol, opium 
and cannabis were used to achieve these goals, but they proved inadequate [24]. 
Pain relief was insufficient both in magnitude and duration; too little pain medica
tion and the patient felt great pain, too much medication and the patient died or be
came comatose. In the 1850s ether was used successfully in the United States in 
tooth extractions, and shortly thereafter other means of achieving unconsciousness 
safely were developed, including the use of chloroform and nitrous oxide. 

In a modern operating room, the depth of anesthesia is the responsibility of 
the anesthetist. Many vital parameters, such as blood pressure, heart rate, tem
perature, blood oxygenation, and exhaled carbon dioxide, are controlled within 
acceptable bounds by the anesthetist. Of course, to ensure patient safety, ade
quate anesthesia must be maintained during the entire surgical procedure. Any 
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assistance that the anesthetist can obtain automatically will increase the safety 
margins by freeing the anesthetist to attend to other functions not easily auto
mated. This is an example of human computer interaction for the overall control 
of a process. Clearly, patient safety is the ultimate objective. Our control goal 
then is to develop an automated system to regulate the depth of anesthesia. This 
function is amenable to automatic control and in fact is in routine use in clinical 
applications [25,26]. 

We consider how to measure the depth of anesthesia. Many anesthetists regard 
mean arterial pressure (MAP) as the most reliable measure of the depth of anesthe
sia [27]. The level of the MAP serves as a guide for the delivery of inhaled anesthesia. 
Based on clinical experience and the procedures followed by the anesthetist, we 
determine that the variable to be controlled is the mean arterial pressure. 

The elements of the control system design process emphasized in this example 
are illustrated in Figure 4.23. From the control system design perspective, the con
trol goal can be stated in more concrete terms: 

Topics emphasized in this example 

Establish the control goals 
Regulate the mean arterial 
pressure to any given set point. 

Identify the variables to be controlled 

Write the specifications 

C o 
CS ainiMi uic system vA/uuguimiuii 

i 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

1 
Optimize the parameters and 

analyze the performance 

1 

Mean arterial pressure. 

Five specifications: 
DSI: settling time 
DS2: percent overshoot 
DS3: tracking error 
DS4: disturbance rejection 
DS5: system sensitivity 

See Figure 4.24. 
Controller, pump, patient, 
and sensor. 

See Equations: (4.69)-(4.71). 

Three PID controllers given. 
See Equation (4.72) and Table 4.2. 

If the performance does not meet the 
specifications, then iterate the configuration. 

This chapter deals 
with analysis only. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 4.23 Elements of the control system design process emphasized in the blood pressure 
control example. 
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Control Goal 
Regulate the mean arterial pressure to any desired set-point and maintain the 
prescribed set-point in the presence of unwanted disturbances. 

Associated with the stated control goal, we identify the variable to be controlled: 

Variable to Be Controlled 
Mean arterial pressure (MAP). 

Because it is our desire to develop a system that will be used in clinical appli
cations, it is essential to establish realistic design specifications. In general terms 
the control system should have minimal complexity while satisfying the control 
specifications. Minimal complexity translates into increased system reliability and 
decreased cost. 

The closed-loop system should respond rapidly and smoothly to changes in the 
MAP set-point (made by the anesthetist) without excessive overshoot. The closed-
loop system should minimize the effects of unwanted disturbances. There are two 
important categories of disturbances: surgical disturbances, such as skin incisions 
and measurement errors, such as calibration errors and random stochastic noise. For 
example, a skin incision can increase the MAP rapidly by 10 mmHg [27]. Finally, 
since we want to apply the same control system to many different patients and we 
cannot (for practical reasons) have a separate model for each patient, we must have 
a closed-loop system that is insensitive to changes in the process parameters (that is, 
it meets the specifications for many different people). 

Based on clinical experience [25], we can explicitly state the control specifica
tions as follows: 

Control Design Specifications 

DS1 Settling time less than 20 minutes for a 10% step change from the MAP set-point. 

DS2 Percent overshoot less than 15% for a 10% step change from the MAP set-point. 

DS3 Zero steady-state tracking error to a step change from the MAP set-point. 

DS4 Zero steady-state error to a step surgical disturbance input (of magnitude 
\d(t)\ < 50) with a maximum response less than ±5% of the MAP set-point. 

DS5 Minimum sensitivity to process parameter changes. 

We cover the notion of percent overshoot (DS1) and settling time (DS2) more thor
oughly in Chapter 5. They fall more naturally in the category of system perfor
mance. The remaining three design specifications, DS3-DS5, covering steady-state 
tracking errors (DS3), disturbance rejection (DS4), and system sensitivity to para
meter changes (DS5) are the main topics of this chapter. The last specification, DS5, 
is somewhat vague; however, this is a characteristic of many real-world specifica
tions. In the system configuration, Figure 4.24, we identify the major system ele
ments as the controller, anesthesia pump/vaporizer, sensor, and patient. 

The system input R(s) is the desired mean arterial pressure change, and the out
put Y(s) is the actual pressure change. The difference between the desired and the 
measured blood pressure change forms a signal used by the controller to determine 
value settings to the pump/vaporizer that delivers anesthesia vapor to the patient. 

The model of the pump/vaporizer depends directly on the mechanical design. 
We will assume a simple pump/vaporizer, where the rate of change of the output 
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FIGURE 4.24 Blood pressure control system configuration. 

vapor is equal to the input valve setting, or 

u(i) = «(0. 

The transfer function of the pump is thus given by 

<W = 7, 
U(s) 
V(s) 

(4.69) 

This is equivalent to saying that, from an input/output perspective, the pump has the 
impulse response 

h(i) = 1 t > 0. 

Developing an accurate model of a patient is much more involved. Because the 
physiological systems in the patient (especially in a sick patient) are not easily mod
eled, a modeling procedure based on knowledge of the underlying physical process
es is not practical. Even if such a model could be developed, it would, in general, be 
a nonlinear, time-varying, multi-input, multi-output model. This type of model is not 
directly applicable here in our linear, time-invariant, single-input, single-output sys
tem setting. 

On the other hand, if we view the patient as a system and take an input/output 
perspective, we can use the familiar concept of an impulse response. Then if we 
restrict ourselves to small changes in blood pressure from a given set-point (such 
as 100 mmHg), we might make the case that in a small region around the set-point 
the patient behaves in a linear time-invariant fashion. This approach fits well into 
our requirement to maintain the blood pressure around a given set-point (or baseline). 
The impulse response approach to modeling the patient response to anesthesia has 
been used successfully in the past [28]. 

Suppose that we take a black-box approach and obtain the impulse response in 
Figure 4.25 for a hypothetical patient. Notice that the impulse response initially has 
a time delay. This reflects the fact that it takes a finite amount of time for the patient 
MAP to respond to the infusion of anesthesia vapor. We ignore the time-delay in 



FIGURE 4.25 
Mean arterial 
pressure (MAP) 
impulse response 
for a hypothetical 
patient. 
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our design and analysis, but we do so with caution. In subsequent chapters we will 
learn to handle time delays. We keep in mind that the delay does exist and should be 
considered in the analysis at some point. 

A reasonable fit of the data shown in Figure 4.25 is given by 

y(t) = te~P' t > 0, 

where p = 2 and time (t) is measured in minutes. Different patients are associated 
with different values of the parameter p. The corresponding transfer function is 

1 

(s + pf 

For the sensor we assume a perfect noise-free measurement and 

H(s) = 1. 

(4.70) 

(4.71) 

Therefore, we have a unity feedback system. 
A good controller for this application is a proportional-integral-derivative 

(PID) controller: 

GM = KP + sKD + ^ = ^ 2 + KPs + fr ( 4 J 2 ) 

where KP, KD, and K: are the controller gains to be determined to satisfy all design 
specifications. The selected key parameters are as follows: 

Select Key Tuning Parameters 
Controller gains KP, Klh and K[. 

We begin the analysis by considering the steady-state errors. The tracking error 
(shown in Figure 4.24 with Tj(s) = 0 and N(s) - 0) is 
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E(s) = R(s) - Y(s) = -—±——R(sl 
1 + Gc{s)Gp(s)G{s) 

or 

p / v / + 2ps3 + g V 
£(s) = —; r ^ : /?m. 

w 54 + 2ps3 + (p2 + KD)s2 + KPs + K, 
Using the final-value theorem, we determine that the steady-state tracking 
error is 

r i r ^ r R ^ + 2 ^ + ffi n 
hm sE(s) = hm —: z ; z = 0, 
5-0 5-o / + 2ps3 + (p2 + KD)s2 + KPs + K[ 

where R(s) = Ro/s is a step input of magnitude i?(,. Therefore, 
\ime(t) = 0. 

i—»oo 

With a PID controller, we expect a zero steady-state tracking error (to a step input) 
for any nonzero values of KP, KD, and Kj. As we will see in Chapter 5, the integral 
term, Kj/s, in the PID controller is the reason that the steady-state error to a unit 
step is zero. Thus design specification DS3 is satisfied. 

When considering the effect of a step disturbance input, we let R(s) = 0 and 
N(s) = 0. We want the steady-state output Y(s) to be zero for a step disturbance. 
The transfer function from the disturbance Td(s) to the output Y(s) is 

-GO) 
1 + Gc{s)GJs)G{s) 

„2 

When 

we find that 

54 + 2ps5 + (pl + KDy + KPs + K[ 

Td(s) = —, 

TM-

lim^F(s) = lim—; ; = * = 0. 
5-0 v ' 5-o5

4 + 2ps3 + (p2 + KD)s2 + KPs + K, 

Therefore, 

limy(0 = 0. 

Thus a step disturbance of magnitude D0 will produce no output in the steady-state, 
as desired. 

The sensitivity of the closed-loop transfer function to changes in p is given by 

oT oT rG 
& p ^G^p-
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We compute Sp as follows: 

u _ dG(s) P ~2P 
dp G(s) s + p' 

and 

T _ SJ
r = 

s2(s + pf 
1 + Gc(s)Gp(s)G(s) s4 + 2ps3 + (p2 + KD)s2 + KPs + K,' 

Therefore, 

T T r 2p(S + p)s2 

ST
P = SlS^ = - 1 - ~ ^ - . . (4.73) 

p G p 54 + 2ps3 + (p2 + KD)s2 + KPs + K, 

We must evaluate the sensitivity function 5», at various values of frequency. For low 

frequencies we can approximate the system sensitivity ST
p by 

"> ~ K, • 

So at low frequencies and for a given p we can reduce the system sensitivity to varia
tions in p by increasing the PID gain, Kt. Suppose that three PID gain sets have been 
proposed, as shown in Table 4.2. With p = 2 and the PID gains given as the cases 1-3 in 
Table 4.2, we can plot the magnitude of the sensitivity ST

p as a function of frequency for 
each PID controller. The result is shown in Figure 4.26. We see that by using the PID 3 
controller with the gains KP = 6, KD = 4, and K{ = 4, we have the smallest system 
sensitivity (at low frequencies) to changes in the process parameter, p. PID 3 is the 
controller with the largest gain K/. As the frequency increases we see in Figure 4.26 
that the sensitivity increases, and that PID 3 has the highest peak sensitivity. 

Now we consider the transient response. Suppose we want to reduce the MAP 
by a 10% step change. The associated input is 

s s 

The step response for each PID controller is shown in Figure 4.27. PID 1 and PID 2 
meet the settling time and overshoot specifications; however PID 3 has excessive 
overshoot. The overshoot is the amount the system output exceeds the desired 
steady-state response. In this case the desired steady-state response is a 10% decrease 
in the baseline MAP. When a 15% overshoot is realized, the MAP is decreased by 

Table 4.2 PID Controller Gains and System Performance Results 

Input response Settling Disturbance response 
PID KP KD K, overshoot (%) time (min) overshoot (%) 

1 6 4 1 14.0 10.9 5.25 
2 5 7 2 14.2 8.7 4.39 
3 6 4 4 39.7 11.1 5.16 
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FIGURE 4.26 
System sensitivity 
to variations in the 
parameter p. 
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11.5%, as illustrated in Figure 4.27. The settling time is the time required for the sys
tem output to settle within a certain percentage (for example, 2%) of the desired 
steady-state output amplitude. We cover the notions of overshoot and settling time 
more thoroughly in Chapter 5. The overshoot and settling times are summarized in 
Table 4.2. 

FIGURE 4.27 
Mean arterial 
pressure (MAP) 
step input response 
with R(s) = 10/s. 
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We conclude the analysis by considering the disturbance response. From previous 
analysis we know that the transfer function from the disturbance input Td(s) to the 
output Y(s) is 

Y(s) = 
-G(s) 

1 + Gc(s)Gp(s)G(s) 
- . 5 2 

TM 

ST + 2ps3 + (p2 + KD)s2 + Kps + K, 
Td(s). 

To investigate design specification DS4, we compute the disturbance step response 
with 

This is the maximum magnitude disturbance (|Td{t)| = D0 — 50). Since any step 
disturbance of smaller magnitude (that is, \Td(t)\ = Z)0 < 50) will result in a 
smaller maximum output response, we need only to consider the maximum mag
nitude step disturbance input when determining whether design specification DS4 
is satisfied. 

The unit step disturbance for each PID controller is shown in Figure 4.28. Con
troller PID 2 meets design specification DS4 with a maximum response less than 
±5% of the MAP set-point, while controllers PID 1 and 3 nearly meet the specifica
tion. The peak output values for each controller are summarized in Table 4.2. 

In summary, given the three PID controllers, we would select PID 2 as the con
troller of choice. It meets al) the design specifications while providing a reasonable 
insensitivity to changes in the plant parameter. • 

FIGURE 4.28 
Mean arterial 
pressure (MAP) 
disturbance step 
response. 
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4.9 CONTROL SYSTEM CHARACTERISTICS USING CONTROL DESIGN SOFTWARE 

In this section, the advantages of feedback will be illustrated with two examples. In 
the first example, we will introduce feedback control to a speed tachometer system 
in an effort to reject disturbances. The tachometer speed control system example 
can be found in Section 4.5. The reduction in system sensitivity to process variations, 
adjustment of the transient response, and reduction in steady-state error will be 
demonstrated using the English Channel boring machine example of Section 4.8. 

EXAMPLE 4.5 Speed control system 

The open-loop block diagram description of the armature-controlled DC motor 
with a load torque disturbance Td(s) is shown in Figure 4.7. The values for the vari
ous parameters (taken from Figure 4.7) are given in Tabic 4.3. Wc have two inputs to 
our system, Va(s) and T(i(s). Relying on the principle of superposition, which applies 
to our linear system, we consider each input separately. To investigate the effects of 
disturbances on the system, we let Va(s) = 0 and consider only the disturbance 
Td(s). Conversely, to investigate the response of the system to a reference input, we 
let Td(s) = 0 and consider only the input Va(s). 

The closed-loop speed tachometer control system block diagram is shown in 
Figure 4.9. The values for Ka and Kt are given in Table 4.3. 

If our system displays good disturbance rejection, then wc expect the distur
bance Td(s) to have a small effect on the output co(s). Consider the open-loop sys
tem in Figure 4.11 first. We can compute the transfer function from Td(s) to (o(s) and 
evaluate the output response to a unit step disturbance (that is, Td(s) = l/s). The 
time response to a unit step disturbance is shown in Figure 4.29(a). The script shown 
in Figure 4.29(b) is used to analyze the open-loop speed tachometer system. 

The open-loop transfer function (from Equation (4.26)) is 

co(s) - 1 

where sys_o represents the open-loop transfer function in the script. Since our desired 
value of (o(t) is zero (remember that Va(s) = 0), the steady-state error is just the final 
value of oj(t), which we denote by 0>o(t) to indicate open-loop. The steady-state error, 
shown on the plot in Figure 4.29(a), is approximately the value of the speed when 
t = 7 seconds. We can obtain an approximate value of the steady-state error by look
ing at the last value in the output vector y0, which we computed in the process of gen
erating the plot in Figure 4.29(a). The approximate steady-state value of co0 is 

w0(oo) w G)0(7) = -0 .66rad/s . 

The plot verifies that we have reached steady state. 

Table 4.3 Tachometer Control System Parameters 

fla _ Km J b K> Ka Kt 

111 10 Nm/A 2 kg m2 0.5 Nm s 0.1 Vs 54 1 Vs 
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FIGURE 4.29 
Analysis of the 
open-loop speed 
control system. 
(a) Response. 
(b) m-file script. 

%Speed Tachometer Example 
% 
Ra=1; Km=10; J=2; f=0.5; Kb=0.1; 
num1=[1]; den1=[J,b]; sys1=tf(num1,den1); 
num2=[Km*Kb/Ra]; den2=[1]; sys2=tf(num2,den2); 
sys_o=feedback(sys1 ,sys2); 
% 
sys_o=-sys o -4 
% 

Change sign of transfer function since the 
disturbance has negative sign in the diagram. 

[yo,T]=step(sys_o); -4 
plot(T,yo) 
title('Open-Loop Disturbance Step Response1; 
xlabel('Time (s)'),ylabel('\omega_o'), grid 
% 
yo(length(T)) ^ 

Compute response to 
step disturbance. 

Steady-state error —• last value of output yo. 

(b) 

In a similar fashion, we begin the closed-loop system analysis by computing the 
closed-loop transfer function from Td(s) to <o(s) and then generating the time-
response of co(t) to a unit step disturbance input. The output response and the 
script cltach.m are shown in Figure 4.30.The closed-loop transfer function from the 
disturbance input (from Equation (4.30)) is 

- 1 io(s) _ 

Td{s) ~ 2s + 541.5 = sys_c. 

As before, the steady-state error is just the final value of a)(t), which we denote by 
(oc{t) to indicate that it is a closed-loop. The steady-state error is shown on the plot in 
Figure 4.30(a). We can obtain an approximate value of the steady-state error by look
ing at the last value in the output vector yc, which we computed in the process of gen
erating the plot in Figure 4.30(a). The approximate steady-state value of co is 

MC(CO) « wc(0.02) = -0.002 rad/s. 

We generally expect that o>c(oo)/a)0(oo) < 0.02. In this example, the ratio of closed-
loop to open-loop steady-state speed output due to a unit step disturbance input is 

<oc(co) 

w0(oo) 
= 0.003. 
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FIGURE 4.30 
Analysis of the 
closed-loop speed 
control system. 
(a) Response. 
(b) m-file script. 

%Speed Tachometer Example 
% 
Ra=1; Km=10; J=2; b=0.5; Kb=0.1; Ka=54; Kt=1; 
num1=[1]; den1=[J,b]; sys1=tf(num1,den1); 
num2=[Ka*Kt]; den2=[1]; sys2=tf(num2,den2); 
num3=[Kb]; den3=[1]; sys3=tf(num3,den3); 
num4=[Km/Ra]; den4=[1]; sys4=tf(num4,dcn4); 
sysa=parallel(sys2,sys3); 
sysb=series(sysa,sys4); 
sys_c-feedback(sys1 ,sysb); 
% 
sys_c=-sys_c •«-
% 
[yc,T]=step(sys_c); < 
plot(T.yc) 
title('Closed-Loop Disturbance Step Response') 
xlabel(Time (s)'), ylabel('\omega_c (rad/s)'), grid 
% 
yc(length(T)) •+—. 

Block diagram reduction 

Change sign of transfer function since the 
disturbance has negative sign in the diagram. 

Compute response to 
step disturbance. 

Steady-state error —• last value of output yc. 

(b) 

We have achieved a remarkable improvement in disturbance rejection. It is clear 
that the addition of the negative feedback loop reduced the effect of the disturbance 
on the output. This demonstrates the disturbance rejection property of closed-loop 
feedback systems. • 

EXAMPLE 4.6 English Channel boring machines 

The block diagram description of the English Channel boring machines is shown 
in Figure 4.17. The transfer function of the output due to the two inputs is 
(Equation (4.57)) 

Y(s) = 
K + Us 

?2 + 125 + K 
R(s) + 

1 

s2 + 12s + K 
Us). 
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FIGURE 4.31 
The response to a 
step input when 
(a)K = 100 and 
(b) K = 20. 
(c) m-file script. 

% Response to a Unit Step Input R(s)=1/s for K=20 and K=100 
% 
numg=[1]; deng=[1 1 0]; sysg=tf(numg,deng); 
K1=100;K2=20; 
num1=[11 K1]; num2=[11 K2]; den=[0 1]; 
sys1=tf(num1,den); 
sys2=tf(num2,den); 
% 
sysa=series(sys1 ,sysg); sysb=series(sys2,sysg); 
sysc=feedback(sysa,[1]); sysd=feedback(sysb,[1]); 
% 
t=[0:0.01:2.0]; < 

Closed-loop 
transfer functions. 

Choose time interval. 
[y1 ,t]=step(sysc,t); [y2,t]=step(sysd,t); 
subplot(211),plot(t,y1), title('Step Response for K=100') 
xlabel('Time (s)'),ylabel('y(t)'), grid -«— 
subplot(212),plot(t,y2), title('Step Response for K=20') 
xlabel(Time (s)'),ylabel('y{t)'), grid 

Create subplots 
with x and y 
axis labels. 

(c) 

The effect of the control gain, K, on the transient response is shown in Figure 4.31 
along with the script used to generate the plots. Comparing the two plots in parts (a) 
and (b), it is apparent that decreasing K decreases the overshoot. Although it is not 
as obvious from the plots in Figure 4.31, it is also true that decreasing K increases 
the settling time. This can be verified by taking a closer look at the data used 
to generate the plots. This example demonstrates how the transient response 
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can be altered by feedback control gain, K. Based on our analysis thus far, we would 
prefer to use K — 20. Other considerations must be taken into account before we 
can establish the final design. 

Before making the final choice of K, it is important to consider the system response 
to a unit step disturbance, as shown in Figure 4.32. We see that increasing K reduces the 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

0 
0 

Disturbance Response for K= 100 

^ ^ " - — • 

0.5 1.0 1.5 

Time (s) 

(a) 

2.0 2.5 

0.05 

0.04 

0.03 

0.02 

0.01 

0 
0 

Disturbance Response for #=20 

0.5 1.0 1.5 
Time (s) 

(b) 

2.0 2.5 

FIGURE 4.32 
The response to a 
step disturbance 
when (a) K = 100 
and (b) K = 20. 
(c) m-file script. 

% Response to a Disturbance Td{s)=Ms for K=20 and K=100 
% 
numg=[1]; deng=[1 1 0]; 
sysg=tf(numg,deng); 
K1=100;K2=20; 
num1=[11 K1J; num2=[11 K2]; den=[0 1]; 
sys1=tf(num1 ,den); sys2=tf(num2,den); 
/a 

sysa=feedback(sysg,sys1); sysa=minreal(sysa); 
sysb=feedback(sysg,sys2); sysb=minreal(sysb); 
% 
H0:0.01:2.5]; 
[y1 ,t]=step(sysa,t); [y2,t]=step(sysb,t); 
subplol(211),plot(t,y1), title('Disturbance Response for K=100' 
xlabel(Time (s)'),ylabel('y(t)')> grid 
subplot(212),plot(t,y2), titlej'Disturbance Response for K=20')_ 
xlabel(Time (s)'),ylabel('y(t)'), grid -« -

Closed-loop 
transfer functions. 

Create subplots with 
x and y labels. 

(c) 
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Table 4.4 Response of the Boring Machine Control System 
for/C = 20 and K = 100 

K = 20 K = 100 

22% 
0.7 s 

Step Response 
Overshoot 
Ts 

Disturbance Response 

4% 
1.0 s 

5% 1% 

steady-state response of y(t) to the step disturbance. The steady-state value of y(t) 
is 0.05 and 0.01 for K = 20 and 100, respectively. The steady-state errors, percent 
overshoot, and settling times (2% criteria) are summarized in Table 4.4. The 
steady-state values are predicted from the final-value theorem for a unit distur
bance input as follows: 

lim y(r) = lim s{ — —— — } = —• 
, _>« / w

 s^o \s(s + 12) + K)s K 

If our only design consideration is disturbance rejection, we would prefer to use 
K = 100. 

We have just experienced a very common trade-off situation in control system 
design. In this particular example,increasing Pleads to better disturbance rejection, 
whereas decreasing K leads to better performance (that is, less overshoot). The final 
decision on how to choose K rests with the designer. Although control design soft
ware can certainly assist in the control system design, it cannot replace the engi
neer's decision-making capability and intuition. 

The final step in the analysis is to look at the system sensitivity to changes in the 
process. The system sensitivity is given by (Equation 4.60), 

s{s + 1) 

s(s + 12) + K 

We can compute the values of Sc(s) for different values of s and generate a plot of the 
system sensitivity. For low frequencies, we can approximate the system sensitivity by 

Increasing the gain K reduces the system sensitivity. The system sensitivity plots 
when s = jco are shown in Figure 4.33 for K = 20. • 

4.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

The design of a disk drive system is an exercise in compromise and optimization. The 
disk drive must accurately position the head reader while being able to reduce the 
effects of parameter changes and external shocks and vibrations. The mechanical arm 
and flexure will resonate at frequencies that may be caused by excitations such as a 
shock to a notebook computer. Disturbances to the operation of the disk drive include 
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System Sensitivity to Plant Vaiiations 

u.o 

g 0.4 
on 
a 

S 0.2 

0 
- 0 

102 

s 10° t/3 
*A 

< 10"2 

in - 4 

/ 

( 
2 ( 

- t ^ * * 

/ 

... 
) 0.2 

0.4 

Real (S) 

5(5) - Y 

1 

^•^tf** 

I 

0.6 

- • — — 

\. ^ 

0.8 1.0 

. - - " " " • * 

\ 5(s) = 
5(5 + 1) 

52 + 125 + K 

10 -1 10° 101 

0) (rad/s) 

(a) 

102 103 

FIGURE 4.33 
(a) System 
sensitivity to plant 
variations (s — jo>). 
(b) m-file script. 

% System Sensitivity Plot 
% 
K=20; num=[1 1 0]; den=[1 12 K]; 
w=logspace(-1,3,200); s=w*i; •*— 

Set up vector of 5 = jto 
to evaluate the sensitivity. 

n=s.A2 + s; d= s.A2 + 12*s+K; S=n./d; 
n2= s; d2=K; S2=n2./d2; 
o/ (a 

System sensitivity. 

subplot(211), plot(real(S),imag(S)) 
title('System Sensitivity to Plant Variations') 
xlabel('Real(S)'), ylabel('lmag(S)'), grid 
subplot(212), loglog(w,abs(S),w,abs(S2)) 
xlabel('\omega(rad/s)'), ylabel('Abs(S)'), grid 

Approximate sensitivity. 

(b) 

physical shocks, wear or wobble in the spindle bearings, and parameter changes due to 
component changes. In this section, we will examine the performance of the disk drive 
system in response to disturbances and changes in system parameters. In addition, we 
examine the steady-state error of the system for a step command and the transient 
response as the amplifier gain Ka is adjusted.Thus, in this section, we are carrying out 
the last two steps of the design process shown in Figure 1.15. 

Let us consider the system shown in Figure 4.34. This closed-loop system uses an 
amplifier with a variable gain as the controller. Using the parameters specified in 
Table 2.10, we obtain the transfer functions as shown in Figure 4.35. First, we will 
determine the steady states for a unit step input, R(s) = 1/s, when Td(s) = 0. 
When H(s) = 1, we obtain 

E(s) = R(s) - Y(s) = 
1 

1 + KaGi(s)G2(s) 
-R(s). 
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FIGURE 4.34 
Control system for 
disk drive head 
reader. 

Disturbance 

Ms) 
Desired 

head 
position 

^ O ^ fc 

Amplifier 

Ka 

V(s) 
Coil 

R + Ls 

Sensor 

H(s) = 1 

- ^ -

Load 
1 

s(Js + b) 

Y(s) 
Actual 

position 

FIGURE 4.35 
Disk drive head 
control system with 
the typical 
parameters of 
Table 2.10. 

R(s) O^ K- G^s) 

Coil 

5000 
s+ 1000 

Disturbance 
TAs) 

Load 

G2(s) = 
1 

s(s + 20) • I t s ) 

Therefore, 

lim e(t) = lim s 
t-*oo s^0 

1 

1 + K&tfGzis) 
(4.74) 

Then the steady-state error is e(oo) = 0 for a step input. This performance is 
obtained in spite of changes in the system parameters. 

Now let us determine the transient performance of the system as Ka is adjusted. 
The closed-loop transfer function (with T^{s) = 0) is 

Y(s) KaGl{s)G2{s) 
T(s) = 

R(s) 1 + KaG1(s)G2(s) 

5000 Ka 

s3 + 102052 + 200005 + 5000ft, 
(4.75) 

Using the script shown in Figure 4.36(a), we obtain the response of the system 
for Ka = 10 and Ka = 80, shown in Figure 4.36(b). Clearly, the system is faster in 
responding to the command input when Ka = 80, but the response is unacceptably 
oscillatory. 

Now let us determine the effect of the disturbance Ta(s) = 1/s when R(s) — 0. 
We wish to decrease the effect of the disturbance to an insignificant level. Using 
the system of Figure 4.35, we obtain the response Y(s) for the input 7^(5) when 
Ka = 80 as 

Y(s) = 
(his) 

1 + KaGi(s)G2(s) Us)- (4.76) 

Using the script shown in Figure 4.37(a), we obtain the response of the system when 
Ka = 80 and Td{s) = 1/s, as shown in Figure 4.37(b). In order to further reduce the 
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Ka=10; -* 1 
nf=(5000]; df=[1 1000]; sysf=tf(nf,df)r 
ng=[1]; dg=[1 20 Oj; sysg=tf(ng,dg); 
sysa=series(Ka*sysf,sysg); 
sys=feedback(sysa,[1]); 
t=[0:0.01:2]; 
y=step(sys,t); plot(t,y) 
ylabel('y(t)'), xlabel('Time (s)'), grid 

Select Ka. 

(a) 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

X 
/ 

/ 
— V-

I 

/ 

1 
1 1 

. K 
\ 

S = I 0 . 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Time (s) 

FIGURE 4.36 
Closed-loop 
response, (a) m-file 
script, (b) Step 
response for 
Ka = 10 and 
Ka = 80. 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

/ 

' 

*ra = 8o. 

i 

0 0.2 0.4 0.6 0.8 1.0 .1.2 
Time (s) 

(b) 

1.4 1.6 1.8 2.0 
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Ka=80; + 
nf=[5000]; df=[1 1000]; sysf=tf(nf,df); 
ng=[1]; dg=[1 20 0]; sysg=tf(ng,dg); 
sys=feedback(sysg,Ka*sysf); 
sys=-sys; •< 
t=[0:0.01:2]; 

y=step(sys,t); 
plol(t.y), grid 
ylabel('y(t)'), xiabel(Time (s)'), grid 

Select K„ 

Disturbance enters 
summer with a 
negative sign. 

(a) 

x I0~3 

FIGURE 4.37 
Disturbance step 
response, (a) m-file 
script. 
(b) Disturbance 
response for 
Ka = 80. 

0 

-0.5 

-1.5 

- 2 

-2.5 

- 3 

Ka= 80. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Time (s) 

effect of the disturbance, we would need to raise Ka above 80. However, the response 
to a step command r(t) = 1, t > 0 is unacceptably oscillatory. In the next chapter, 
we attempt to determine the best value for Ka, given our requirement for a quick, 
yet nonoscillatory response. 

4.11 SUMMARY 

The fundamental reasons for using feedback, despite its cost and additional com
plexity, are as follows: 

1. Decrease in the sensitivity of the system to variations in the parameters of the process. 

2. Improvement in the rejection of the disturbances. 

3 . Improvement in the attenuation of measurement noise. 

4. Improvement in the reduction of the steady-state error of the system. 

5. Ease of control and adjustment of the transient response of the system. 
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The loop gain L(s) = Gc(s)G(s) plays a fundamental role in control system 
analysis. Associated with the loop gain we can define the sensitivity and comple
mentary sensitivity functions as 

s<*> = rrWa n d c^ = i <%• 
respectively. The tracking error is given by 

E(s) = S(s)R(s) - S(s)G(s)Td(s) + C(s)N(s). 

In order to minimize the tracking error, E(s), we desire to make S(s) and C(s) small. 
Because the sensitivity and complementary sensitivity functions satisfy the con
straint 

S(s) + C(s) = 1, 

we are faced with the fundamental trade-off in control system design between 
rejecting disturbances and reducing sensitivity to plant changes on the one hand, 
and attenuating measurement noise on the other hand. 

The benefits of feedback can be illustrated by considering the system shown in 
Figure 4.38(a). This system can be considered for several values of gain K. Table 4.5 
summarizes the results of the system operated as an open-loop system (with the 
feedback path disconnected) and for several values of gain, K, with the feedback 
connected. It is clear that the rise time and sensitivity of the system are reduced as 

R(s) K 

+ 
I 

(.s + 1)2 
• * Y{s) 

(a) 

FIGURE 4.38 
(a) A single-loop 
feedback control 
system, (b) The 
error response for a 
unit step 
disturbance when 
R(s) = 0. 

e(t) 

1.40 

1.00 

0.70 
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A ' 
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! 
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K =- 10 

Time 
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Table 4.5 System Response of the System Shown in Figure 4.38(a) 

Rise time (s) (10% to 90% of final value) 
Percent overshoot (%) 
Final value of y(t) due to a disturbance, 7^{s) ~ 1/s 
Percent steady-state error for unit step input 
Percent change in steady-state error due to 10% 
decrease in K 

Open Loop* 

K = 1 

3.35 
0 
1.0 
0 
10% 

K = 1 

1.52 
4.31 
0.50 
50% 
5.3% 

Closed Loop 

K = 8 

0.45 
33 
0.11 
11% 
1.2% 

K = 10 

0.38 
40 
0.09 
9% 
0.9% 

"Response only when K = 1 exactly. 

the gain is increased. Also, the feedback system demonstrates excellent reduction of 
the steady-state error as the gain is increased. Finally, Figure 4.38(b) shows the re
sponse for a unit step disturbance (when R(s) — 0) and shows how a larger gain will 
reduce the effect of the disturbance. 

Feedback control systems possess many beneficial characteristics. Thus, it is not 
surprising that there is a multitude of feedback control systems in industry, govern
ment, and nature. 

EXERCISES 

E4.1 A closed-loop system is used to track the sun to obtain 
maximum power from a photovoltaic array. The track
ing system may be represented by Figure 4.3 with 
H(s) = 1 and 

100 
TS + 1 

where T = 3 seconds nominally, (a) Calculate the sen
sitivity of this system for a small change in T. (b) Cal
culate the time constant of the closed-loop system 
response. 

Answers: S = -3s / (3$ + 101); rc = 3/101 seconds 
E4.2 A digital audio system is designed to minimize the 

effect of disturbances and noise as shown in Figure 
E4.2. As an approximation, we may represent 
G(s) = Ki- (a) Calculate the sensitivity of the system 
due to K2- (b) Calculate the effect of the disturbance 

noise Td(s) on V0. (c) What value would you select for 
Ki to minimize the effect of the disturbance? 

E4.3 A robotic arm and camera could be used to pick 
fruit, as shown in Figure E4.3(a). The camera is used 
to close the feedback loop to a microcomputer, which 
controls the arm [8, 9]. The transfer function for the 
process is 

G(s) = 
K 

(s + 4)' 

(a) Calculate the expected steady-state error of the grip-
per for a step command A as a function of K. (b) Name 
a possible disturbance signal for this system. 

Answers: (a) ess = 
A 

1 + K/16 

FIGURE E4.2 
Digital audio 
system. 

VJs) i Q -

Amplifier 

K, 

Noise 

6 G(s) •+ VQ(s) 



258 Chapter 4 Feedback Control System Characteristics 

Gripper 

Camera 

(a) 

R(s 
Desired 
gripper 

position 

Gripper 
position 

(b) 

FIGURE E4.3 Robot fruit picker. 

E4.4 A magnetic disk drive requires a motor to position a 
read/write head over tracks of data on a spinning disk, 
as shown in Figure E4.4. The motor and head may be 
represented by the transfer function 

G(s) = 
10 

S(TS + 1)' 

where T = 0.001 second. The controller takes the dif
ference of the actual and desired positions and gener
ates an error. This error is multiplied by an amplifier 
K. (a) What is the steady-state position error for a 
step change in the desired input? (b) Calculate the 
required K in order to yield a steady-state error of 
0.1 mm for a ramp input of 10 cm/s. 

Answers: ess = 0; K = 100 

E4.5 Most people have experienced an out-of-focus slide 
projector. A projector with an automatic focus adjusts 
for variations in slide position and temperature distur
bances [11]. Draw the block diagram of an autofocus 
system, and describe how the system works. An unfo
cused slide projection is a visual example of steady-
state error. 

E4.6 Four-wheel drive automobiles are popular in re
gions where winter road conditions are often slip
pery due to snow and ice. A four-wheel drive vehicle 

mk 

BC ° 
k^Jg 

Magnetic disk 

)¾ 
^pp^*c 

Read/write 
head 

Desired 
position u Controller 

/J ^^Sensor signal 

f^\ 
Ugi3?2^?r\l[ input 

Motor^L^— 

FIGURE E4.4 Disk drive control. 

with antilock brakes uses a sensor to keep each 
wheel rotating to maintain traction. One system is 
shown in Figure E4.6. Find the closed-loop response 
of this system as it attempts to maintain a constant 
speed of the wheel. Determine the response when 
R(s) = A/s. 

R(s) 5(5 + 2) 
s(s + 10) 

F-(.v) 
Wheel speed 

FIGURE E4.6 Four-wheel drive auto. 

E4.7 Submersible? with clear plastic hulls have the poten
tial to revolutionize underwater leisure. One small 
submersible vehicle has a depth-control system as 
illustrated in Figure F.4.7. 

(a) Determine the closed-loop transfer function 
T(s) = Y(s)/R(s). 

(b) Determine the sensitivity 5^, and S£. 

(c) Determine the steady-state error due to a distur
bance Td(s) = l/s. 

(d) Calculate the response y(t) for a step input 
R(s) = l/.ywhenA: = K2 = l and l < Kx < 10. 
Select K\ for the fastest response. 

E4.8 Consider the simple closed-loop system shown in 
Figure E4.8. Obtain the time constant and steady-state 
error for a step input for K = 2,5,10. Hence, explain the 
effect of gain on time constant and steady-state error 
on a type 0 first order system. 
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FIGURE E4.7 
Depth control 
system. 

R(s) 
Desired 
depth 

K 
+ r^ E(s) + ^ 

_ , . _ i 1 

Disturbance 
T/s) 

Sensor 

K 

s 

K2 

m 
depth 

FIGURE E4.8 
A simple I order 
system. 

Rm — K g ) 

Controller 

K 
1 

1 +2s 
Y(s) 

«^®-
D(s) 

7\ l 
(•v+2) 

*t\?\ 
'vy • 

l 
(1+25) 

Y(s) 
—w — < g > 

£)(.0 

(5+2) 
-+• Y[s) 

FIGURE E4.9 A system with disturbance. FIGURE E4.10 AI order system with disturbance. 

E4.9 Consider the system given in Figure E4.9. 

(a) Obtain the transfer function 

(b) Obtain the transfer function 

Y(s) 

R(s) 

Y(s) 

D(s) 

E4.10 Consider the system in Figure E4.10, 
(a) Find an expression for Y(s) when R(s) and D(s) is 

present. 
(b) Plot y(t) when r(t)=u(t) 

d(t) = 0 
K = \ 

(c) Plot y{t) when /-(0 = 0 
d(t) = u(t) 

K=l 

(d) Plot y(t) when r(/) = u{t) 
d(t) = Q.5u(t) 

K=\ 
(e) Repeat (d) with K increased to 10. 
(f) What is the effect of steady-state gain on disturbance 

rejection? 

E4.l l A closed loop system is used in a high-speed steel 
rolling mill to control the accuracy of the steel strip 
thickness. The transfer function for the process shown 
in Figure E4.ll can be represented as 

G^ = ( l ^ Y s(s + 25) 

Calculate the sensitivity of the closed-loop transfer 
function to changes in the controller gain K. 

http://E4.ll
http://E4.ll
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W 

K G(s) 

«(s)(J—*~ 
Desired ' 

thickness 

•i) » C. J • — • -Uro) 
/ Actual 

/ thickness 

(a) 

w 

Desired 
thickness 

+»o -
V 

Controller 

K i. +W 

Process 

G(5) 
Actual 
thickness 

FIGURE E4.11 
Control system for 
a steel rolling mill. 
(a) Signal flow 
graph, (b) Block 
diagram. 

E4.12 Consider the unity feedback system shown in 
Figure E4.12. The system has two parameters, the 
controller gain K and the constant K\ in the 
process. 

a. Calculate the sensitivity of the closed-loop trans
fer function to changes in Kv. 

b. How would you select a value for K to minimize 
the effects of external disturbances, Td{s)l 

(b) 

E4.13 Reconsider the unity feedback system discussed in 
E4.12. This time select K = 120 and # , = 10. The 
closed-loop system is depicted in Figure E4.13. 

a. Calculate the steady-state error of the closed-
loop system due to a unit step input, R{s) = ]/.?, 
with Td(s) = 0. Recall that the tracking error is 
defined as E(s) = R(s) - Y(s). 

b. Calculate dhe steady-state response, yss = limy(f), 
when Td(s) = \/s and R(s) = 0. 

FIGURE E4.12 
Closed-loop 
feedback system 
with two 
parameters, K and 
* 1 -

R(s) • Q • 

7--/(-0 

• Yis) 

W 

FIGURE E4.13 
Closed-loop 
feedback system 
withK = 120 and 
K-, - 10. 

Controller 

/:=120 
+ 

l { • Y(s) 
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PROBLEMS 

P4.1 The open-loop transfer function of a fluid-flow sys
tem can be written as 

G(s) = 
AQ2(S) 

TS + r AQj(s) 

where T = RC, Risa constant equivalent to the resis
tance offered by the orifice so that 1/i? = 1/2A://o1/'2. 
and C = the cross-sectional area of the tank. .Since 
AH = R A<22, we have the following for the transfer 
function relating the head to the input change: 

rn(s) = 
R AH(s) _ 

A £),(5) ~ RCs + 1" 

For a closed-loop feedback system, a float-level sen
sor and valve may be used as shown in Figure P4.1. 
Assuming the float is a negligible mass, the valve is 
controlled so that a reduction in the flow rate, A£?It is 
proportional to an increase in head, AH, or 
AQl = -KAH. Draw a closed-loop flow graph or 
block diagram. Determine and compare the open-
loop and closed-loop systems for (a) sensitivity to 
changes in the equivalent coefficient R and the feed
back coefficient K, (b) the ability to reduce the effects 
of a disturbance in the level AH(s), and (c) the 
steady-state error of the level (head) for a step change 
of the input AQr(s). 

Oi + A 2 , l ) 
3 

H 

• 

P4.2 It is important to ensure passenger comfort on ships 
by stabilizing the ship's oscillations due to waves [131. 
Most ship stabilization systems use fins or hydrofoils 
projecting into the water to generate a stabilization 
torque on the ship. A simple diagram of a ship stabi
lization system is shown in Figure P4.2. The rolling 
motion of a ship can be regarded as an oscillating pen
dulum with a deviation from the vertical of 9 degrees 
and a typical period of 3 seconds. The transfer function 
of a typical ship is 

,.,2 

G(s) = 
s2 + 2£co„S + ofc 

where con = 3 rad/s and £ = 0.20. With this low 
damping factor £, the oscillations continue for sever
al cycles, and the rolling amplitude can reach 18° for 
the expected amplitude of waves in a normal sea. 
Determine and compare the open-loop and closed-
loop system for (a) sensitivity to changes in the actu
ator constant Ku and the roll sensor K%, and (b) the 
ability to reduce the effects of step disturbances of 
the waves. Note that the desired roll B^s) is zero 
degrees. 

P4.3 One of the most important variables that must be 
controlled in industrial and chemical systems is temper
ature. A simple representation of a thermal control sys
tem is shown in Figure P4.3 [14]. The temperature ST of 
the process is controlled by the heater with a resistance 
R. An approximate representation of the dynamic lin
early relates the heat loss from the process to the 
temperature difference ST - 9"e. This relation holds if 
the temperature difference is relatively small and 
the energy storage of the heater and the vessel walls 
is negligible. Also, it is assumed that the voltage e.h 

applied to the heater is proportional to eti<:sjl<.t[ or 
eh - kEb = kaEhe(t), where ka is the constant of the 

FIGURE P4.1 Tank level control. 

FIGURE P4.2 
Ship stabilization 
system. The effect 
of the waves is a 
torque Td(s) on the 
ship (a) 

0,,IX) 

Wave effect 

Roll 
sensor 

(b) 

As) 
Roll 
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Environment 

FIGURE P4.3 
Temperature control 
system. 

actuator. Then the linearized open-loop response of 
the system is 

k,kaEb &e(s) 
y(s) = ; - E(s) + TS + 1 TJ + 1 ' 

where 

T = MC/(pA), 
M - mass in tank, 
A — surface area of tank, 
p = heat transfer constant, 
C = specific heat constant, 
ki = a dimensionality constant, and 
elh = output voltage of thermocouple. 

Determine and compare the open-loop and closed-
loop systems for (a) sensitivity to changes in the con
stant K — k]kaEb; (b) the ability to reduce the 
effects of a step disturbance in the environmental 
temperature &ZFe(s); and (c) the steady-state error of 
the temperature controller for a step change in the 
input, desired-

P4.4 Consider the feedback amplifier given in Figure P4.4. 

(a) Find the overall gain if K„ = 1000. 

(b) Find the sensitivity of the amplifier to changes in K„. 

(c) Find the overall gain if Ka decreases to 900. 

(d) Find the overall gain if K„ is increased to 2000. 

(e) Compare answers obtained in (a), (e) and (d). 

P4.5 Large microwave antennas have become increas
ingly important for radio astronomy and satellite 
tracking. A large antenna with a diameter of 60 ft, for 
example, is subject to large wind-gust torques. A pro
posed antenna is required to have an error of less 
than 0.10° in a 35 mph wind. Experiments show that 
this vvind force exerts a maximum disturbance at the 
antenna of 200,000 ft lb at 35 mph. or the equivalent 
to 10 volts at :he input Td{s) to the amplidyne. One 
problem of driving large antennas is the form of the 
system transfer function that possesses a structural 
resonance. The antenna servosystern is shown in 
Figure P4.5. The transfer function of the antenna, 
drive motor, and amplidyne is approximated by 

FIGURE P4.4 A 
Feedback amplifier. 

0.2 

R(s) O^ 
FIGURE P4.5 
Antenna control 
system. 

Power 
amplifier 

G^s) 

7-.,(.0 

Antenna, drive motor, 
and amplidyne G(s) 

Sensor 

Bis) 
- • Position 

(radians) 
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G(s) = 
s(s2 + 2£a)„s + o>l)' 

where t, ~ 0.707 and oin = 15. The transfer function 
of the power amplifier is approximately 

Gds) = 
A", 

V 

where T = 0.15 second, (a) Determine the sensitivity 
of the system to a change of the parameter ka. (b) The 
system is subjected to a disturbance Td(s) = 10/s. 
Determine the required magnitude of ka in order to 
maintain the steady-state error of the system less than 
0.10° when the input R{s) is zero, (c) Determine the 
error of the system when subjected to a disturbance 
Td(s) - 10/5 when it is operating as an open-loop sys
tem (ks = 0) with R(x) = 0. 

P4.6 An automatic speed control system will be neces
sary for passenger cars traveling on the automatic 
highways of the future. A model of a feedback speed 
control system for a standard vehicle is shown in 
Figure P4.6. The load disturbance due to a percent 
grade &Td(s) is also shown. The engine gain Ke 

varies within the range of 10 to 1000 for various mod
els of automobiles. The engine time constant re is 20 
seconds, (a) Determine the sensitivity of the system 
to changes in the engine gain Ke. (b) Determine the 
effect of the load torque on the speed, (c) Determine 
the constant percent grade A7"rf(.v) = Arf/j for which 

the vehicle stalls (velocity V(s) = 0) in terms of the 
gain factors. Note that since the grade is constant, the 
steady-state solution is sufficient. Assume that 
R(s) = 30/s km/hr and that KeKi » 1. When 
Kg/K1 - 2, what percent grade Arf would cause the 
automobile to stall? 

P4.7 A robot uses feedback to control the orientation 
of each joint axis. The load effect varies due to vary
ing load objects and the extended position of the 
arm. The system will be deflected by the load carried 
in the gripper. Thus, the system may be represented 
by Figure P4.7, where the load torque is 
Td(s) = D/s. Assume R(s) = 0 at the index posi
tion. (a) What is the effect of Td(s) on Y{s)? (b) De
termine the sensitivity of the closed loop to &2. (c) 
What is the steady-state error when R(s) = l/s and 
Td(s) = 0? 

P4.8 Consider the feedback control system given in Figure 
P4.8. Find the value of gain K such that the step res
ponse reaches 99% of the final value in 1.9. Also find 
steady-state error to a unit step input. 

P4.9 A useful unidirectional sensing device is the pho-
toemitter sensor [15]. A light source is sensitive to the 
emitter current flowing and alters the resistance of the 
photosensor. Both the light source and the photocon-
ductor are packaged in a single four-terminal device. 
This device provides a large gain and total isolation. 
A feedback circuit utilizing this device is shown in 
Figure P4.9(a), and the nonlinear resistance-current 

Load torque 

K, 
Speed—•Q—^ G^ = 7JV\ 
setting 

FIGURE P4.6 
Automobile speed 
control. 

Throttle controller Throttle 
0(s) . 

Tachometer 
K= 1 

Engine and vehicle 

G{s) = 
*# 

TeS + 1 
V(s) 

Speed 

Load disturbance 
Td(s) 

FIGURE P4.7 
Robot control 
system. 
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R(S) •{g) • 

FIGURE P4.8 
A feedback control 
system. 

Controller 

K 

Plant 

1 
1 +2s 

characteristic is shown in Figure P4.9(b) for the 
Raytheon CK1116.The resistance curve can be repre
sented by the equation 

login R = 
0.175 

(/ - 0.005)1/2' 

where i is the lamp current. The normal operating 
point is obtained when vQ = 35 V, and vin = 2.0 V. 
(a) Determine the closed-loop transfer function of the 
system, (b) Determine the sensitivity of the system to 
changes in the gain, K. 

P4.10 For a paper processing plant, it is important to 
maintain a constant tension on the continuous sheet 
of paper between the wind-off and wind-up rolls. The 
tension varies as the widths of the rolls change, and an 

adjustment in the take-up motor speed is necessary, as 
shown in Figure P4.10. If the wind-up motor speed is 
uncontrolled, as the paper transfers from the wind-off 
roll to the wind-up roll, the velocity v0 decreases and 
the tension of the paper drops [10, 14]. The three-
roller and spring combination provides a measure of 
the tension of the paper. The spring force is equal to 
kxy, and the linear differential transformer, rectifier, 
and amplifier may be represented by <?0 = -k2y. 
Therefore, the measure of the tension is described by 
the relation 2T(s) = kxy, where y is the deviation 
from the equilibrium condition, and T(s) is the vertical 
component of the deviation in tension from the equi
librium condition. The time constant of the motor is 
T = LJRa, and the linear velocity of the wind-up roll 

FIGURE P4.9 
Photosensor 
system. 

st\ Constant current 
Vj-' source = I 

(a) 
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Qi 
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(b) 

Wind-off 
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FIGURE P4.10 
Paper tension 
control. 
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Water 

J 

Pu'.p 

Desired consistency — R(s) 

Valve 
t/lv) 

Controller 
/V/(v) 

(a) 

Consistency 
measurement 

To paper 
making 

R(s) o 
FIGURE P4.11 
Paper-making 
control. 

Gc(s) 
U(s) 

M(s) 

(b) 

G(.v) 

H(s) 

-*• Y[.s) 

is twice the angular velocity of the motor, that is, 
i>o(r) = 2o>o(/). The equation of the motor is then 

ft™ 
Ms)] - k3AT(s), 

where AT = a tension disturbance, (a) Draw the 
closed-loop block diagram for the system, including 
the disturbance AT(j-). (b) Add the effect of a distur
bance in the wind-off roll velocity AVi(s) to the block 
diagram, (c) Determine the sensitivity of the system to 
the motor constant K,„. (d) Determine the steady-
state error in the tension when a step disturbance in 
the input velocity, AV^s) = A/s, occurs. 

P4.ll One important objective of the paper-making 
process is to maintain uniform consistency of the 
stock output as it progresses to drying and rolling. A 
diagram of the thick stock consistency dilution con
trol system is shown in Figure P4.11(a). The amount 
of water added determines the consistency. The block 
diagram of the system is shown in Figure P4.11(b). 
Let H(s) - 1 and 

Gc(s) = 
K 

105 + r 
G(s) = 

l 
2s + 1 

Determine (a) the closed-loop transfer function 
T(s) = Y(s)/R(s), (b) the sensitivity ST

K, and (c) the 
steady-state error for a step change in the desired 
consistency R(s) = A/s. (d) Calculate the value of K 
required for an allowable steady-state error of 2%. 

P4.12 

Y(s) 
(a) Compute the overall transfer function — ^ -

the system given in Figure P4.12. •"(*) 
for 

Y(s) 
(b) Compute the transfer function —— 

system. 
D(s) 

for the same 

(c) Obtain an expression for Y(s) when there is both 
reference input and disturbance. 

P4.13 One form of a closed-loop transfer function is 

_ G,(f) + kG2(s) 

Gi(s) + kG4(s)M 

(a) Use Equation (4.16) to show that [1] 

fc(G2G2 - GXGA) 
Sl = 

(G3 + £Oi)(Gi + kG2) 

i)i\-i 

R(s 
2) 
9 

(.5+1) 
(s+2) 

- 1 
fcM 

+ *yy 

i 
<*+4) 

1 
(s+3) 

Yt.s) 

FIGURE P4.12 A feedback control system with 
disturbance input. 

http://P4.ll
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FIGURE P4.13 
Closed-loop 
system. 

FIGURE P4.14 
Hypersonic airplane 
speed control. 

• Y(s) 

(b) Determine the sensitivity of the system shown 
in Figure P4.13, using the equation verified in 
part (a). 

P4.14 A proposed hypersonic plane would climb to 
100,000 feet, fly 3800 miles per hour, and cross the Pa
cific in 2 hours. Control of the aircraft speed could be 
represented by the model in Figure P4.14. Find the 
sensitivity of the closed-loop transfer function T(s) to 
a small change in the parameter a. 

P4.15 The steering control of a modern ship may be rep
resented by the system shown in Figure P4.15 [1.6,20]. 
Find the steady-state effect of a constant wind force 
represented by Td(s) = 1/s for K - 5 and K = 25. 
(a) Assume that the rudder input R(s) is zero, without 
any disturbance, and has not been adjusted, (b) Show 
that the rudder can then be used to bring the ship devi
ation back to zero. 

P4.16 Figure P4.16 shows the model of a two-tank sys
tem containing a heated liquid, where TQ is the tem
perature of the fluid flowing into the first tank and T2 

is the temperature of the liquid flowing out of the sec
ond tank. The system of two tanks has a heater in the 
first tank with a controllable heat input Q. The t ime 
constants are rx = 10 s and T2 = 50 s. (a) Determine 
T2(s) in terms of T0(s) and T2d(s). (b) If T2d(s), the 
desired output temperature, is changed instanta
neously from T2d(s) = A/s to TZd(s) = 2A/s, where 
T0(s) = A/s, determine the transient response of 
T2(t) when Gc(s) = K = 500. (c) Find the steady-
state error ess for the system of part (b), where 
£(*) = T2d(s) - T2{s). 

P4.17 A robot gripper, shown in part (a) of Figure P4.17, 
is to be controlled so that it closes to an angle 9 by 
using a DC motor control system, as shown in part (b). 

Wind disturbance 
'lj(s) 

FIGURE P4.15 
Ship steering 
control. 

Y(s) 
Ship 

• deviation 
from 

prescribed 
course 

FIGURE P4.16 
Two-tank 
temperature 
control. 

W 
1 

( T , J + l)(T2S + l) 

Gc(s) 
Q(s) 1/100 

( T , 5 + \)ir2s + 1) 
• T2(x) 

T2dis) 
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The model of the control system is shown in part (c), 
where Kn = 30, Rf -- 1 Q, Kf = K,•= 1, J - 0.1, 
and b = 1. (a) Determine the response 0(/) of the sys
tem to a step change in 8d(t) when K = 20. (b) As

suming 8d(t) = 0, find the effect of a load disturbance 
Td(s) = Ajs. (c) Determine the steady-state error ess 

when the input is r{t) = t, t > 0. (Assume that 
7 ^ ) = 0.) 

Potentiometer 

Difference 
amplifier 

Power 
amplifier 

Control 

knob 

Potentiometer 

Feedback signal 

(a) (b) 

w 

Power 
amplifier 

K 
Km 
Rf 

K, 

(c) 

FIGURE P4.17 Robot gripper control. 

ADVANCED PROBLEMS 

• Bis) 

AP4.1 A tank level regulator control is shown in Figure 
Al'4.1(a). It is desired to regulate the level h in re
sponse to a disturbance change <?3. The block diagram 
shows small variable changes about the equilibrium 
conditions so that the desired hd(t) = 0. Determine 
the equation for the error E(.s), and determine the 
steady state error for a unit step disturbance when 
(a) G(s) = K and (b) G(s) - K/s. 

AP4.2 The shoulder joint of a robotic arm uses a DC 
motor with armature control and a set of gears on the 
output shaft. The model of the system is shown in 
Figure AP4.2 with a disturbance torque Td(s) which 
represents the effect of the load. Determine the 
steady-state error when the desired angle input is a 
step so that 0rf(.#) = A/s, G,.(s) = K, and the distur
bance input is zero. When 9d(s) = 0 and the load 
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Controller 
Mt) 

Capacitance C 

i^i' 

(a) 

Orifice 

Constant = R 

FIGURE AP4.1 
A tank level 
regulator. 

Hd(s) = 0 
Desired 
height 

variation 

Error ^ 

' E(s) 

Controller 

G(s) 
R 

RCs+ 1 
*( 

l { 

(b) 

His) 
• • Height 

variation 

FIGURE AP4.2 
Robot joint control. 

w +n . 
r* • A ^ Desired _ i 

angle of 
rotation 

Controller 

GM r^ K,n 
Las + Ra 

1 

Load 
disturbance 

TJs) 

TJs) IT 

h 

1 
siJx + h) 

n 
6(s) 

Actual 
angle 

effect is Td(s) = M/s, determine the steady-state 
error when (a) Gc(s) = K and (b) Gc(s) = K/s. 

AP4.3 A machine tool is designed to follow a desired 
path so that 

KO = ( l - t)u(t).. 

where u(t) is the unit step function. The machine tool 
control system is shown in Figure AP4.3. 

(a) Determine the steady-state error when r(t) is the 
desired path as given and Td(s) = 0. 

(b) Plot the error e(t) for the desired path for part (a) 
for 0 < t & 10 seconds. 

(c) If the desired input is r(t) = 0, find the steady-
state error when Td(s) = 1/5. 

(d) Plot the error e(c) for part (c) for 0 < t < 10 sec
onds. 

FIGURE AP4.3 
Machine tool 
feedback. 

R(s) 
Tool 
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Load effect 
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FIGURE AP4.4 
DC motor with 
feedback. 

Vis) 
Control 
voltage 

+ —, Error 

Integrator 
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Amplifier 

K 
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FIGURE AP4.5 
Blood pressure 
control. 
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AP4.4 An armature-controlled DC motor with tachome
ter feedback is shown in Figure AP4.4. Assume that 
Km = 10 , / = l . andf l = 1. 

(a) Determine the required gain, K, to restrict the 
steady-state error to a ramp input (v(t) — t for 
t > 0) to 0.1 (assume that Td(s) = 0). 

(b) For the gain selected in part (a), determine and 
plot the error, e(r), due to a ramp disturbance for 
0 < t •& 5 seconds. 

AP4.5 A system that controls the mean arterial pressure 
during anesthesia has been designed and tested [12J. 
The level of arterial pressure is postulated to be a 
proxy for depth of anesthesia during surgery. A block 
diagram of the system is shown in Figure AP4.5, where 
the impact of surgery is represented by the distur
bance T,i(s). 

(a) Determine the steady-state error due to a distur
bance Td(s) = 1A (let R(s) = 0). 

(b) Determine the steady-state error for a ramp input 
r(() = t,t > 0 ( l e t r r f ( s ) = 0). 

(c) Select a suitable value of K less than or equal to 
10, and plot the response yit) for a unit step dis
turbance input (assume r(t) = 0). 

AP4.6 A useful circuit, called a lead network, which we 
discuss in Chapter 10, is shown in Figure AP4.6. 
(a) Determine the transfer function G{s) =V0(s)f 

V(s). 
(b) Determine the sensitivity of G(s) with respect to 

the capacitance C. 

fc 
A A A ^ ' 

R 

FIGURE AP4.6 A lead network. 

(c) Determine, and plot the transient response. v0(t) 
for a step input V(s) = \/s. 

AP4.7 A feedback control system with sensor noise and a 
disturbance input is shown in Figure AP4.7.The goal is 
to reduce the effects of the noise and the disturbance. 
Let R(s) = 0. 

(a) Determine the effect of the disturbance on Y(s). 
(b) Determine the effect of the noise on Y(s). 
(c) Select the best value for K when 1 £ K s 100 so 

that the effect of steady-state error due to the dis
turbance and the noise is minimized. Assume 
T,,(s) = A/s, and N{s) = B/s. 

AP4.8 The block diagram of a machine-tool control sys
tem is shown in Figure AP4.8. 

(a) Determine the transfer function T(s) =Y(s)/R(s). 

(b) Determine the sensitivity S£. 

(c) Select K when 1 £ K S 50 so that the effects of 
the disturbance and S\ are minimized 
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Disturbance 

R(s) 

FIGURE AP4.7 
Feedback system 
with noise. 

* n.v) 

Ms) 
Sensor noise 

R(s) Mf) • 

FIGURE AP4.8 
Machine-tool 
control. 
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DESIGN PROBLEMS 

CDP4.1 A capstan drive for a table slide is described in 
f"^ CDP2.1. The position of the slide x is measured with a 
\^J capacitance gauge, as shown in Figure CDP4.1, which 

is very linear and accurate. Sketch the model of the 
feedback system and determine the response of the 
system when the controller is an amplifier and 
H(s) - 1. Determine the step response for several 
selected values of the amplifier gain Gc(s) = Ka. 

DP4.1 A closed-loop speed control system is subjected to 
a disturbance due to a load, as shown in Figure DP4.1. 
The desired speed is (od(t) = 100 rad/s, and the load 
disturbance is a unit step input Td(s) = l/s. Assume 
that the speed has attained the no-load speed of 100 
rad/s and is in steady state, (a) Determine the steady-
state effect of the load disturbance, and (b) plot a>(t) 
for the step disturbance for selected values of gain so 

Us) 

FIGURE CDP4.1 
The model of the 
feedback system 
with a capacitance 
measurement 
sensor. The 
tachometer may be 
mounted on the 
motor (optional), 
and the switch will 
normally be open. 
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FIGURE DP4.1 
Speed control 
system. 

Desired • T J • 
speed - 4 

T 

Controller 

K 

Load 
disturbance 

Tjs) 

G(s) 

1 
s + 4 

arts) 

speed 

that 10 s K :£ 25. Determine a suitable value for 
the gain K. 

DP4.2 The control of the roll angle of an airplane is 
achieved by using the torque developed by the ailerons. 
A linear model of the roll control system for a small 
experimental aircraft is shown in Figure DP4.2, where 
q(i) is the flow of fluid into a hydraulic cylinder and 

G{s) = -= . 

The goa! is to maintain a small roll angle 9 due to dis
turbances. Select an appropria:e gain KKi that will 
reduce the effect of the disturbance while attaining a 
desirable transient response to a step disturbance, with 
0</(O - 0- To obtain a desirable transient response, let 
KKi < 35. 

DP4.3 The speed control system of Figure DP4.1 is altered 
so that G(s) = 1/(s + 5) and the feedback is K\, as 
shown in Figure DP4.3. 

(a) Determine the range of K\ allowable so that the 
steady state is ess < 1 %. 

(b) Determine a suitable value for K\ and K so that 
the magnitude of the steady-state error to a wind 
disturbance Td(t) - 2( mrad/s, 0 < t < 5 s, is 
less than 0.1 mrad. 

DP4.4 Lasers have been used in eye surgery for more 
than 25 years. They can cut tissue or aid in coagulation 

[17]. The laser allows the ophthalmologist to apply 
heat to a location in the eye in a controlled manner. 
Many procedures use the retina as a laser target. The 
retina is the thin sensory tissue lhat rests on the inner 
surface of the back of the eye and is the actual trans
ducer of the eye, converting light energy into electrical 
pulses. On occasion, this layer will detach from the 
wall, resulting in death of the detached area from lack 
of blood and leading to partial or total blindness in 
that eye. A laser can be used to "weld'* the retina into 
its proper place on the inner wall. 

Automated control of position enables the oph
thalmologist to indicate to the controller where lesions 
should be inserted. The controller then monitors the 
retina and controls the laser's position so that each 
lesion is placed at the proper location. A wide-angle 
video-camera system is required to monitor the 
movement of the retina, as shown in Figure DP4.4(a). 
If the eye moves during the irradiation, the laser 
must be either redirected or turned off. The position-
control system is shown in Figure DP4.4(b). Select an 
appropriate gain for the controller so that the tran
sient response to a step change in /'(f) is satisfactory 
and the effect of the disturbance due to noise in the 
system is minimized. Also, ensure that the steady-state 
error for a step input command is zero. To ensure 
acceptable transient response, require that K < 10. 

FIGURE DP4.2 
Control of the roll 
angle of an 
airplane. 

Ois) 
Roll angle 

«,/(.*) 

FIGURE DP4.3 
Speed control 
system. 

Speed 

Tachometer 
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Controller < 

Ophthalmologist 

Argon laser » 

(a) 

Tjs) 

position 

Controller 

FIGURE DP4.4 
Laser eye surgery 
system. 

Camera and 
laser 

s(s +1)(^ + 4) •*- Y(s) 

DP4.5 An op-amp circuit can be used to generate a short 
pulse. The circuit shown in Figure DP4.5 can generate 
the pulse v0(t) = 5e~ , t > 0, when the input v(t) is 
a unit step [6]. Select appropriate values for the resis
tors and capacitors. Assume an ideal op-amp. 

FIGURE DP4.5 Op-map circuit. 

DP4.6 A hydrobot is under consideration for remote explo
ration under the ice of Europa, a moon of the giant 
planet Jupiter. Figure DP4.6(a) shows one artistic ver
sion of the mission. The hydrobot is a self-propelled 
underwater vehicle that would analyze the chemical 
composition of the water in a search for signs of life. An 
important aspect of the vehicle is a controlled vertical 
descent to depth in the presence of underwater cur
rents. A simplified control feedback system is shown in 
Figure DP4.6(b). Ihe parameter / > 0 is the pitching 
moment of inertia, (a) Suppose that Gc(s) = K. For 
what range of K is the system stable? (b) What is the 
steady-state error to a unit step disturbance when 
G,(s) = JC?-(c) Suppose that Gc(s) = Kp + KDs. For 
what range of Kp and Ku is the system stable? (d) What 
is the steady state error to a unit step disturbance when 
Ge(s) = KP+ KDsl 
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FIGURE DP4.6 
(a) Euro pa 
exploration under 
the ice. (Used with 
permission. Crecit: 
NASA.) 
(b) Feedback 
system. (b) 

WAnn immm uaaa 
COMPUTER PROBLEMS 

CP4.1 Consider the feedback control system given in CP4.2 Consider the I order and II order system given in 
Figure CP4.1. 

(a) Obtain the steady-state error for a step input 
when n = Q and n = \. 

(b) Verify your answer using MATLAB. 
(c) Using MATLAB obtain step response when n = 0 

and re-1. 
(d) Compare the steady-state performance of type 1 

system with type 0 system based on the response 
obtained in (c). 

- ^ < g > 7\ t. 
^ 
L 

10 
^1 

i 
S" (10-rj) 

FIGURE CP4.1 A type 1/type 0 system. 

Figure CP4.2(a) and (b) respectively. 
(a) Using SIMULINK obtain the step response of 

both the systems when K = 0.1. 
(b) Repeat (a) when K= 10. 
(c) Compare the effect of increase in gain on the two 

svstems. 

FIGURE MC4.2 Comparison of effect of gain on I and 
order systems. 
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CP4.3 Using SIMULINK, simulate the system given in 
Figure CP4.3. Obtain the response when, 

(a) r(0 = "('); <*(') = 0; ^ = 1-
(b) r(t) = 0;d{t)=u(();K=\. 
(c) r(t) = u(t);d(t) =u(t);K=\. 
(d) r(t) = u(t)\d(0 = u(t):K=lO. 

dU) 

' < ' ) — • & 
i 

(5+1)(5+2) 
?(/) 

FIGURE CP4.3 

CP4.4 Write a MATLAB program to obtain the step re
sponse of a typical second order system with transfer 
function. 

s + 2£(ons + co* 

for C = 0,0.1,0.2,... , 1; given co„ - 2. 

CP4.5 Consider the closed-loop control system shown in 
Figure CP4.5.The controller gain is K = 2. The nomi
nal value of the plant parameter is a = 1. The nomi
nal value is used for design purposes only, since in 
reality the value is not precisely known. The objective 
of our analysis is to investigate the sensitivity of the 
closed-loop system to the parameter a. 

(a) When « = 1, show analytically that the steady-
state value of y(t) is equal to 2 when r{t) is a unit 
step. Verify that the unit step response is within 
2% of the final value after 4 seconds. 

(b) The sensitivity of the system to changes in the para
meter a can be investigated by studying the effects 
of parameter changes on the transient response. 
Plot the unit step response for a = 0.5, 2, and 5. 
Discuss the results. 

CP4.6 Consider the torsional mechanical system in 
Figure CP4.6(a). The torque due to the twisting of 
the shaft is —kd; the damping torque due to the brak
ing device is -b8; the disturbance torque is tlt(t); the 
input torque is r(/); and the moment of inertia of the 
mechanical system is J. The transfer function of the 
torsional mechanical system is 

1/-/ 
G(s) = -, — —. 

s2 + (b/J)s + k/J 

A closed-loop control system for the system is shown 
in Figure CP4.6(b). Suppose the desired angle 
$d = 0°,k = 5,b = 0.9, and / = 1. 
(a) Determine the open-loop response 6{t) of the 

system for a unit step disturbance (set r{t) = 0). 
(b) With the controller gain K0 = 50, determine the 

closed-loop response, 0(/) to a unit step distur
bance. 

(c) Plot the open-loop versus the closed-loop response 
to the disturbance input. Discuss your results and 
make an argument for using closed-loop feedback 
control to improve the disturbance rejection prop
erties of the system. 

FIGURE CP4.5 
A closed-loop 
control system with 
uncertain parameter 
a. 

. 

Controller 

K 

Process 

1 
s — a • Y(s) 

FIGURE CP4.6 
(a) A torsional 
mechanical system. 
(b) The torsional 
mechanical system 
feedback control 
system. 
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CP4.7 A negative feedback control system is depicted in 
Figure CP4.7. Suppose that our design objective is to 
find a controller Gc(s) of minimal complexity such 
that our closed-loop system can track a unit step input 
with a steady-state error of zero. 

(a) As a first try, consider a simple proportional 
controller 

Gc(s) = K, 
where K is a fixed gain. Let K = 2. Plot the unit 
step response and determine the steady-state 
error from the plot. 

(b) Now consider a more complex controller 

GM = K0 + —, s 

where K0 = 2 and Kx = 20. This controller is 
known as a proportional, integral (PI) controller. 
Plot the unit step response, and determine the 
steady-state error from the plot. 

(c) Compare the results from parts (a) and (b), and 
discuss the trade-off between controller complex
ity and steady-state tracking error performance. 

C.P4.8 Consider the closed-loop system in Figure CP4.8, 
whose transfer function is 

G(s) = 
10s 

s + 100 
and / /0) = 

(a) Obtain the closed-loop transfer function T(s) = 
Y(s)/R(s) and the unit step response; that is, let 
R(s) = i/s and assume that N(s) = 0. 

(b) Obtain the disturbance response when 

N(s) = 
10 

A-2 + 100 

(c) 

R(s) 

is a sinusoidal input of frequency to = 10 rad/s. 
Assume that R(s) = 0. 
In the steady-state, what is the frequency and 
peak magnitude of the disturbance response from 
part (b)? 

s + 50' 

Ms) 

FIGURE CP4.8 Closed-loop system with nonunity 
feedback and measurement noise. 

CP4.9 Consider the closed-loop system is depicted in 
Figure CP4.9. The controller gain K can be modified 
to meet the design specifications. 

(a) Determine the closed-loop transfer function 
T{s) = Y(s)/R{s). 

FIGURE CP4.7 
A simple single-
loop feedback 
control system. 

R(s) 
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Process 

10 
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• Y(s) 

FIGURE CP4.9 
Closed-loop 
feedback system 
with external 
disturbances. 
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FIGURE CP4.10 
Closed-loop system 
with a sensor in the 
feedback loop. 
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(b) Plot the response of the closed-loop system for 
K = 5,10, and 50. 

(c) When the controller gain is K = 10, determine 
the steady-state value of y{t) when the distur
bance is a unit step, that is, when Td(s) = 1/*' and 
R(s) = 0. 

CP4.10 Consider the non-unity feedback system is depicted 
in Figure CP4.10. 

TERMS AND CONCEPTS 

Closed-loop system A system with a measurement of the 
output signal and a comparison with the desired out
put to generate an error signal that is applied to the 
actuator. 

Complexity A measure of the structure, intricateness, 
or behavior of a system that characterizes the 
relationships and interactions between various 
components. 

Components The parts, subsystems, or subassemblies 
that comprise a total system. 

Direct system See Open-loop system. 

Disturbance signal An unwanted input signal that affects 
the system's output signal. 

Error signal The difference between the desired output 
R{s) and the actual output Y(s). Therefore, 
E(s) = R(s) - Y(s). 

(a) Determine the closed-loop transfer function 
T(s) = Y(s)/R(s). 

(b) For K = 10,12, and 15. plot the unit step responses. 
Determine the steady-state error errors and the set
tling times from the plots. 

For parts (a) and (b), develop an m-file that computes 
the closed-loop transfer function and generates the 
plots for varying K. 

Instability An attribute of a system that describes a ten
dency of the system to depart from the equilibrium 
condition when initially displaced. 

Loss of gain A reduction in the amplitude of the ratio of 
the output signal to the input signal through a system, 
usually measured in decibels. 

Open-loop system A system without feedback that directly 
generates the output in response to an input signal. 

Steady-state error The error when the time period is 
large and the transient response has decayed, leaving 
the continuous response. 

System sensitivity The ratio of the change in the system 
transfer function to the change of a process transfer 
function (or parameter) for a small incremental change. 

Transient response The response of a system as a func
tion of time. 
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PREVIEW 

The ability to adjust the transient and steady-state response of a control system is a 
beneficial outcome of the design of control systems. In this chapter, we introduce 
the time-domain performance specifications and we use key input signals to test the 
response of the control system. The correlation between the system performance 
and the location of the transfer function poles and zeros is discussed. We will develop 
relationships between the performance specifications and the natural frequency and 
damping ratio for second-order systems. Relying on the notion of dominant poles, 
we can extrapolate the ideas associated with second-order systems to those of higher 
order. The concept of a performance index will be considered. We. will present a set 
of popular quantitative performance indices that adequately represent the perfor
mance of the control system. The chapter concludes with a performance analysis of 
the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 5, students should: 

U Be aware of key test signals used in controls and of the resulting transient response 
characteristics of second-order systems to test signal inputs. 

D Recognize the direct relationship between the pole locations of second-order systems 
and the transient response. 

_l Be familiar with the design formulas that relate the second-order pole locations to per
cent overshoot, settling time, rise time, and time to peak. 

-I Be awars of the impact of a zero and a third pole on the second-order system response. 
3 Gain a sense of optimal control as measured with performance indices. 
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5.1 INTRODUCTION 

The ability to adjust the transient and steady-state performance is a distinct advan
tage of feedback control systems. To analyze and design a control system, we must 
define and measure its performance. Based on the desired performance of the con
trol system, the system parameters may be adjusted to provide the desired response. 
Because control systems are inherently dynamic, their performance is usually speci
fied in terms of both the transient response and the steady-state response. The 
transient response is the response that disappears with time.The steady-state response 
is the response that exists for a long time following an input signal initiation. 

The design specifications for control systems normally include several time-
response indices for a specified input command, as well as a desired steady-state 
accuracy. In the course of any design, the specifications are often revised to effect a 
compromise. Therefore, specifications are seldom a rigid set of requirements, but 
rather a first attempt at listing a desired performance. The effective compromise and 
adjustment of specifications are graphically illustrated in Figure 5.1. The parameter 
p may minimize the performance measure M2 if we select p a s a very small value. 
However, this results in large measure M b an undesirable situation. If the perfor
mance measures are equally important, the crossover point at pmia provides the best 
compromise. This type of compromise is normally encountered in control system 
design. It is clear that if the original specifications called for both M\ and M2 to be 
zero, the specifications could not be simultaneously met; they would then have to be 
altered to allow for the compromise resulting with pmin [1,12,17,23]. 

The specifications, which are stated in terms of the measures of performance, 
indicate the quality of the system to the designer. In other words, the performance 
measures help to answer the question, How well does the system perform the task 
for which it was designed? 

5.2 TEST INPUT SIGNALS 

The time-domain performance specifications are important indices because control 
systems are inherently time-domain systems. That is, the system transient or time 
performance is the response of prime interest for control systems. It is necessary to 

FIGURE 5.1 
Two performance 
measures versus 
parameter p. 
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determine initially whether the system is stable; we can achieve this goal by using 
the techniques of ensuing chapters. If the system is stable, the response to a specific 
input signal will provide several measures of the performance. However, because 
the actual input signal of the system is usually unknown, a standard test input signal 
is normally chosen. This approach is quite useful because there is a reasonable cor
relation between the response of a system to a standard test input and the system's 
ability to perform under normal operating conditions. Furthermore, using a stan
dard input allows the designer to compare several competing designs. Many control 
systems experience input signals that are very similar to the standard test signals. 

Trie standard test input signals commonly used are the step input, the ramp input, 
and the parabolic input. These inputs are shown in Figure 5.2. The equations repre
senting these test signals are given in Table 5.1, where the Laplace transform can be 
obtained by using Table 2.3 and a more complete list of Laplace transform pairs can 
be found at the MCS website. The ramp signal is the integral of the step input, and the 
parabola is simply the integral of the ramp input. A unit impulse function is also use
ful for test signal purposes. The unit impulse is based on a rectangular function 

/.(0 
0, otherwise, 

where e > 0. As e approaches zero, the function fe(t) approaches the unit impulse 
function 8{t), which has the following properties: 

8(/) dt --= 1 and 8(t - a)g(t) dt = g(a). (5.r 

FIGURE 5.2 
Test input signals: 
(a) step, (b) ramp, 
and (c) parabolic. 

/-(/) 

(a) (b) (c) 

Table 5.1 Test Signal Inputs 

Test Signal r(f) R(s) 

Step 

Ramp 

Parabolic 

/-(0 = A, t > 0 
= 0,t < 0 

/-(0 = At, t > 0 
= 0, f < 0 

/-(0 = At2, t > 0 
= 0, t < 0 

R(s) = A/s 

R{s) = A/s2 

R(s) - 2A/53 
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FIGURE 5.3 
Open-loop control 
system. 

G(s) 

A-(.S) O - H D — • • — O «-' /?(.o GCs) •*• n.v) 

(a) (b) 

The impulse input is useful when we consider the convolution integral for the out
put y(t) in terms of an input r(t), which is written as 

v ( 0 = / g(t - T)KT) dr = Sr'{G{s)R{s)}. (5.2) 

This relationship is shown in block diagram form in Figure 5.3. If the input is a unit 
impulse function, we have 

K 0 = / g(t - T)8(T) dr. (5.3) 

The integral has a value only at r = 0; therefore, 

y(t) - g(0, 

the impulse response of the system G^ .The impulse response test signal can often 
be used for a dynamic system by subjecting the system to a large-amplitude, narrow-
width pulse of area A. 

The standard test signals are of the general form 

r(t) = t'\ 

and the Laplace transform is 

R(s) = n\ 
j i + r 

(5.4) 

(5.5) 

Hence, the response to one test signal may be related to the response of another test 
signal of the form of Equation (5.4). The step input signal is the easiest to generate 
and evaluate and is usually chosen for performance tests. 

Consider the response of the system shown in Figure 5.3 for a unit step input when 

Then the output is 

G{s) = 

Y(s) = 

s + 10* 

9 
s(s + 10)' 

the response during the transient period is 

y{t) = 0.9(1 - e~m), 
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and the steady-state response is 

y(oo) = 0.9. 

If the error is E(s) = R(s) - Y(s), then the steady-state error is 

ess = lim sE(s) — 0.1. 
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5.3 PERFORMANCE OF SECOND-ORDER SYSTEMS 

Let us consider a single-loop second-order system and determine its response to a 
unit step input. A closed-loop feedback control system is shown in Figure 5.4. The 
closed-loop system is 

GO) 
1 + G(s) 

(5.6) 

We may rewrite Equation (5.6) as 

s + 2{o»„5 + oi„ 
(5.7) 

With a unit step input, we obtain 

Y(s) = w. 
s(s2 + 2£a)ns + colY 

(5.8) 

for which the transient output, as obtained from the Laplace transform table in 
Table 2.3, is 

y(0 = l -^e -^" ' s inK/3f+ 0), (5.9) 

where /3 = V I - £2, 6 = cos l £, and 0 < £ < 1. The transient response of this 
second-order system for various values of the damping ratio t, is shown in Figure 5.5. 

G(.v) = 
s{s + Ifa) 

/?(.*) 

FIGURE 5.4 
Second-order 
closed-loop control 
system. 

Kb) /f(v) 

2nd-order system 

C ( J ) = 
sis + lfan) 

•*• tt.v) 

(a) (b) 
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F IGURE 5.5 
(a) Transient 
response of a 
second-order 
system (Equation 
5.9) for a step input. 
(b) The transient 
response of a 
second-order 
system (Equation 
5.9) for a step input 
as a function of \ 
and wnt. (Courtesy 
of Professor R. 
Jacquot, University 
of Wyoming.) (½ 
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FIGURE 5.6 
Response of a 
second-order 
system for an 
impulse function 
input. 
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As £ decreases, the closed-loop roots approach the imaginary axis, and the response 
becomes increasingly oscillatory. The response as a function of £ and time is also 
shown in Figure 5.5(b) for a step input. 

The Laplace transform of the unit impulse is R(s) = 1, and therefore the output 
for an impulse is 

Y(s) = 
(OZ 

s + 2£cons + (o„ 
(5.10) 

which is T(s) = Y(s)/R(s), the transfer function of the closed-loop system. The 
transient response for an impulse function input is then 

v(0 = je-£°>»'sm(con(3t), (5.11) 

which is the derivative of the response to a step input. The impulse response of the 
second-order system is shown in Figure 5.6 for several values of the damping ratio £. 
The designer is able to select several alternative performance measures from the 
transient response of the system for either a step or impulse input. 

Standard performance measures are usually defined in terms of the step response 
of a system as shown in Figure 5.7. The swiftness of the response is measured by the 
rise time Tt and the peak time Tp. For underdamped systems with an overshoot, the 
0-100% rise time is a useful index. If the system is overdamped, then the peak time 
is not defined, and the 10-90% rise time Tr] is normally used. The similarity with 
which the actual response matches the step input is measured by the percent over
shoot and settling time 7,. The percent overshoot is defined as 

MPl - fv 
P.O. = —p X 100% (5.12) 
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FIGURE 5.7 
Step response of a 
control system 
(Equation 5.9). 
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for a unit step input, where Mp[ is the peak value of the time response, and fv is the 
final value of the response. Normally, fv is the magnitude of the input, but many sys
tems have a final value significantly different from the desired input magnitude. For 
the system with a unit step represented by Equation (5.8), we have fv = 1. 

The settling time, 7̂ , is defined as the time required for the system to settle with
in a certain percentage 8 of the input amplitude. This band of ±8 is shown in Figure 
5.7. For the second-order system with closed-loop damping constant £co„ and a re
sponse described by Equation (5.9), we seek to determine the time Ts for which the 
response remains within 2% of the final value. This occurs approximately when 

e~&»T' < 0.02, 

or 

£<o„Ts m 4. 

Therefore , we have 

(5.13) 

Hence, we will define the settling time as four time constants (that is, r = l/£a)„) of 
the dominant roots of the characteristic equation. The steady-state error of the sys
tem may be measured on the step response of the system as shown in Figure 5.7. 

The transient response of the system may be described in terms of two factors: 

1. The swiftness of response, as represented hy the rise time and the peak time. 

2. The closeness of the response to the desired response, as represented by the overshoot 
and settling time. 
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As nature would have it, these are contradictory requirements; thus, a compro
mise must be obtained.To obtain an explicit relation for Mp[ and Tp as a function of 
£, one can differentiate Equation (5.9) and set it equal to zero. Alternatively, one 
can utilize the differentiation property of the Laplace transform, which may be writ
ten as 

X W\-sY(s) 

when the initial value of y(t) is zero. Therefore, we may acquire the derivative of y(t) 
by multiplying Equation (5.8) by s and thus obtaining the right side of Equation 
(5.10). Taking the inverse transform of the right side of Equation (5.10), we obtain 
Equation (5.11), which is equal to zero when co„fit = IT. Thus, we find that the peak 
time relationship for this second-order system is 

(5.14) 

and the peak response is 

Therefore, the percent overshoot is 

Mp( = 1 + e~^/V\-(\ 

P.O. = 100<T^/ V w 2. 

(5.15) 

(5.16) 

The percent overshoot versus the damping ratio, £, is shown in Figure 5.8. Also, the 
normalized peak time, a>nTp, is shown versus the damping ratio, £, in Figure 5.8. The 
percent overshoot versus the damping ratio is listed in Table 5.2 for selected values of 

FIGURE 5.8 
Percent overshoot 
and normalized 
peak time versus 
damping ratio £ 
for a second-order 
system (Equation 
5.8). 
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Table 5.2 Percent Peak Overshoot Versus Damping Ratio for a 
Second-Order System 

Damping ratio 0.9 0.8 0.7 0.6 0.5 0.4 0.3 
Percent overshoot 0.2 1.5 4.6 9.5 16.3 25.4 37.2 

the damping ratio. Again, we are confronted with a necessary compromise between 
the swiftness of response and the allowable overshoot. 

The swiftness of step response can be measured as the time it takes to rise from 
10% to 90% of the magnitude of the step input. This is the definition of the rise time, 
Tru shown in Figure 5.7. The normalized rise time, o>„Tr\, versus £(0.05 < £ =s 0.95) 
is shown in Figure 5.9. Although it is difficult to obtain exact analytic expressions for 
r r l , we can utilize the linear approximation 

Trl = 
2.16£ + 0.60 

a), 
(5.17) 

which is accurate for 0.3 < I s 0.8. This linear approximation is shown in 
Figure 5.9. 

The swiftness of a response to a step input as described by Equation (5.17) is 
dependent on £ and con. For a given £, the response is faster for larger o>„, as shown 
in Figure 5.10. Note that the overshoot is independent of con. 

For a given con, the response is faster for lower £", as shown in Figure 5.11. The 
swiftness of the response, however, will be limited by the overshoot that can be 
accepted. 

FIGURE 5.9 
Normalized rise 
time, Tr1, versus t, 
for a second-order 
system. 
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FIGURE 5.10 
The step response 
for i = 0.2 for 
o)n = 1 and 
a>„ = 10. 
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FIGURE 5.11 
The step response 
for o)n = 5 with 
f = 0.7 and f = 1. 
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5.4 EFFECTS OF A THIRD POLE AND A ZERO ON THE SECOND-ORDER 
SYSTEM RESPONSE 

The curves presented in Figure 5.8 are exact only for the second-order system of 
Equation (5.8). However, they provide a remarkably good source of data because 
many systems possess a dominant pair of roots, and the step response can be esti
mated by utilizing Figure 5.8. This approach, although an approximation, avoids the 
evaluation of the inverse Laplace transformation in order to determine the percent 
overshoot and other performance measures. For example, for a third-order system 
with a closed-loop transfer function 

T(s) = 
1 

(s2 + 2^ + l)(y5 + 1)' 
(5.18) 
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FIGURE 5.12 
An s-plane diagram 
of a third-order 
system. 

A = roots of the 
closed-loop 
system 

i 
i 
l 

-A L_ 

Jb) 

\ 1 

A 

the .s-plane diagram is shown in Figure 5.12. This third-order system is normalized 
with ct>„ — 1. It was ascertained experimentally that the performance (as indicated 
by the percent overshoot, P.O., and the settling time, Ts), was adequately represent
ed by the second-order system curves when [4] 

|l/y| > 10|£a>J. 

In other words, the response of a third-order system can be approximated by the 
dominant roots of the second-order system as long as the real part of the dominant 
roots is less than one tenth of the real part of the third root [17,23]. 

Using a computer simulation, we can determine the response of a system to a 
unit step input when £ — 0.45. When y — 2.25, we find that the response is over-
damped because the real part of the complex poles is -0.45, whereas the real pole is 
equal to -0.444. The settling time (to within 2% of the final value) is found via the 
simulation to be 9.6 seconds. If y = 0.90 or 1/y = 1.11 is compared with £&>„ = 0.45 
of the complex poles, the overshoot is 12% and the settling time is 8.8 seconds. If the 
complex roots were dominant, we would expect the overshoot to be 20% and the 
settling time to be 4/£co„ = 8.9 seconds. The results are summarized in Table 5.3. 

The performance measures of Figure 5.8 are correct only for a transfer function 
without finite zeros. If the transfer function of a system possesses finite zeros and 
they are located relatively near the dominant complex poles, then the zeros will 
materially affect the transient response of the system [5]. 

Table 5.3 Effect of a Third Pole (Equation 5.18) for £ = 0.45 

— Percent 
7 7 Overshoot 

Settling 
Time* 

2.25 
1.5 
0.9 
0.4 
0.05 
0oo 

0.444 
0.666 
1.111 
2.50 

20.0 
20.5 

0 
3.9 

12.3 
18.6 
20.5 
8.24 

9.63 
6.3 
8.81 
8.67 
8.37 

Note: Settling time is normalized time,a>n7^ and uses a 2% criterion. 
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FIGURE 5.13 (a) Percent overshoot as a function of £ and w„ when a second-order transfer 
function contains a zero. Redrawn with permission from R. N. Clark, Introduction to Automatic 
Control Systems (New York: Wiley, 1962). (b) The response for the second-order transfer function 
with a zero for four values of the ratio a/£con: A = b,B = 2,C='\, and D = 0.5 when f = 0.45. 
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Table 5.4 The Response of a Second-Order 
System with a Zero and £ = 0.45 

Percent Settling Peak 
a/£°>n Overshoot Time Time 

5 
2 
1 
0.5 

23.1 
39.7 
89.9 

210.0 

8.0 
7.6 

10.1 
10.3 

3.0 
2.2 
1.8 
1.5 

Note: Time is normalized as <ont, and settling time is based on £ 2% 
criterion. 

The transient response of a system with one zero and two poles may be affected 
by the location of the zero [5J. The percent overshoot for a step input as a function 
of a/£(0,,, when £ < 1, is given in Figure 5.13(a) for the system transfer function 

T(s) 
((o2

n/a)(s + a) 
2' 

s + 2£coHs + (on 

The actual transient response for a step input is shown in Figure 5.13(b) for selected 
values of a/£con. The actual response for these selected values is summarized in 
Table 5.4 when £ = 0.45. 

The correlation of the time-domain response of a system with the s-plane loca
tion of the poles of the closed-loop transfer function is very useful for selecting the 
specifications of a system. To illustrate clearly the utility of the s-plane, let us consid
er a simple example. 

EXAMPLE 5.1 Parameter selection 

A single-loop feedback control system is shown in Figure 5.14. We select the gain K 
and the parameter p so that the time-domain specifications will be satisfied. The 
transient response to a step should be as fast as is attainable while retaining an over
shoot of less than 5 %. Furthermore, the settling time to within 2% of the final value 
should be less than 4 seconds. The damping ratio, £, for an overshoot of 4.3% is 
0.707. This damping ratio is shown graphically as a line in Figure 5.15. Because the 
settling time is 

4 
7; = - — < 4 s , 

£<>>» 

FIGURE 5.14 
Single-loop 
feedback control 
system. 

/?(v) Y(s) 
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FIGURE 5.15 
Specifications and 
root locations on 
the s-plane. 

we require that the real part of the complex poles of T{$) be 

fan & I-

This region is also shown in Figure 5.15. The region that will satisfy both time-
domain requirements is shown cross-hatched on the .s-plane of Figure 5.15. 

When the closed-loop roots are /^ = - 1 + /1 and r\ = - 1 - / 1 , we have 
Ts = 4 s and an overshoot of 4.3%. Therefore, £ = 1/ V 2 and con = l/£ = V2. The 
closed-loop transfer function is 

T(s) = - (j{-} K cot 

1 + G(s) s2 + ps + K s2 + 2£cons + o)2' 

Hence, we require that K = a>2„ = 2 and p = 2£(on = 2. A full comprehension of the 
correlation between the closed-loop root location and the system transient response 
is important to the system analyst and designer. Therefore, we shall consider the mat
ter more completely in the following sections. • 

EXAMPLE 5.2 Dominant poles of T(s) 

Consider a system with a closed-loop transfer function 

Y(s) 
Hs + a) 

R(s) = T(s) = (s2 + 2£cons + o>2)(l + TS) 

Both the zero and the real pole may affect the transient response. If a » £<w„ and 
T « l/£a>n, then the pole and zero will have little effect on the step response. 

Assume that we have 

T(s) = 
62.50 + 2.5) 

(s2 + 6s + 25)(5 + 6.25) 
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FIGURE 5.16 
The poles and 
zeros on the 
s-plane for a 
third-order system. 
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Note that the DC gain is equal to 1 (7~(0) = 1), and we expect a zero steady-state 
error for a step input. We have £eo„ = 3, T — 0.16, and a = 2.5. The poles and the 
zero are shown on the s-plane in Figure 5.16. As a first approximation, we neglect 
the real pole and obtain 

10(5 + 2.5) 
T(s) 

s2 + 6s + 25' 

We now have I = 0.6 and w„ = 5 for dominant poles with one accompanying zero 
for which a/(£&>n) = 0.833. Using Figure 5.13(a), we find that the percent overshoot 
is 55%. We expect the settling time to within 2% of the final value to be 

Ts = 
taH 0.6(5) 

= 1.33 s. 

Using a computer simulation for the actual third-order system, we find that the per
cent overshoot is equal to 38% and the settling time is 1.6 seconds. Thus, the effect 
of the third pole of T(s) is to dampen the overshoot and increase the settling time 
(hence the real pole cannot be neglected). • 

The damping ratio plays a fundamental role in closed-loop system performance. 
As seen in the design formulas for settling time, percent overshoot, peak time, and 
rise time, the damping ratio is a key factor in determining the overall performance. 
In fact, for second-order systems, the damping ratio is the only factor determining 
the value of the percent overshoot to a step input. As it turns out, the damping ratio 
can be estimated from the response of a system to a step input [14]. The step re
sponse of a second-order system for a unit step input is given in Equation (5.9), 
which is 

yit) = : 
- _ —„-(<•>„' 

/3 
sin((oK(St + 0), 

where /3 = V1 — £2, and 8 = cos 1 £. Hence, the frequency of the damped sinu
soidal term for £ < 1 is 

a) = 6>n(l - <T2)1/2 = a J, 

and the number of cycles in 1 second is co/(2ir). 
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The t ime constant for the exponent ia l decay is T = l/(£(o„) in seconds. The 
n u m b e r of cycles of the d a m p e d sinusoid dur ing o n e t ime constant is 

a) con{3 (3 
(cycles/ t ime) X r = 2irt,<x)n 2TT£CO„ 2-TTC 

Assuming that the response decays in n visible time constants, we have 

cycles visible = r—~- (5.19) 
2TT£ 

For the second-order system, the response remains within 2% of the steady-state 
value after four time constants (4r), Hence, n = 4, and 

. . . . . 4/3 4(1 - a l / 2 . . 0.55 
cycles visible = —— = —— ~ —— (5.20) 

2*7r£ 2TTC, £ 

for 0.2 < C ^ 0.6. 
As an example, examine the response shown in Figure 5.5(a) for '(, = 0.4. Use 

y(t) = 0 as the first minimum point and count 1.4 cycles visible (until the response 
settles with 2% of the final value). Then we estimate 

cycles 1.4 

We can use this approximation for systems with dominant complex poles so that 

TW 2 . n, T~^-
r + 2£a)„s + co„ 

'Inen we are able to estimate the damping ratio £ from the actual system response of 
a physical system. 

An alternative method of estimating £ is to determine the percent overshoot for 
the step response and use Figure 5.8 to estimate £. For example, we determine an 
overshoot of 25% for t, = 0.4 from the response of Figure 5.5(a). Using Figure 5.8. 
we estimate that t, = 0.4, as expected. 

5.5 THE s-PLANE ROOT LOCATION AND THE TRANSIENT RESPONSE 

The transient response of a closed-loop feedback control system can be described in 
terms of the location of the poles of the transfer function. The closed-loop transfer 
function is written in general as 

1{S) R(s)~ Ms) ' 

where A(s) = 0 is the characteristic equation of the system. For the single-loop sys
tem of Figure 5.4, the characteristic equation reduces to 1 + G(s) = 0. It is the 
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poles and zeros of T(s) that determine the transient response. However, for a 
closed-loop system, the poles of T(s) are the roots of the characteristic equation 
A(s) = 0 and the poles of 2JP,-(S) A,-(JT). The output of a system (with gain = 1) 
without repeated roots and a unit step input can be formulated as a partial fraction 
expansion as 

1 M A, | » Bks + Q 
£ f J + cr, (ft s2 + 2akS + (a2

k + (off 
(5.21) 

where the Ah Bk, and Q are constants. The roots of the system must be either 
s = -o-, or complex conjugate pairs such as s = —ak ± jojk. Then the inverse trans
form results in the transient response as the sum of terms 

M N 

y(t) = 1 + ^Afi-^ + ^D^k'sm(a>kt + 0k)% (5.22) 
/ = i fc=i 

where Z)fc is a constant and depends on Bk, Q , ak, and o>k. The transient response is 
composed of the steady-state output, exponential terms, and damped sinusoidal 
terms. For the response to be stable—that is, bounded for a step input—the real part 
of the roots, -cr, and -ak> must be in the left-hand portion of the s-plane. The im
pulse response for various root locations is shown in Figure 5.17. The information 
imparted by the location of the roots is graphic indeed, and usually well worth the 
effort of determining the location of the roots in the .y-plane. 

It is important for the control system analyst to understand the complete rela
tionship of the complex-frequency representation of a linear system, the poles and 
zeros of its transfer function, and its time-domain response to step and other inputs. 
In such areas as signal processing and control, many of the analysis and design 
calculations are done in the complex-frequency plane, where a system model is 

FIGURE 5.17 
Impulse response 
for various root 
locations in the 
s-plane. (The 
conjugate root is 
not shown.) 

^ ^ ^ ^ 

-£r -Cr 
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represented in terms of the poles and zeros of its transfer function T(s). On the other 
hand, system performance is often analyzed by examining time-domain responses. 
particularly when dealing with control systems. 

The capable system designer will envision the effects on the step and impulse 
responses of adding, deleting, or moving poles and zeros of T(s) in the s-plane. Like
wise, the designer should visualize the necessary changes for the poles and zeros of 
T(s), in order to effect desired changes in the model's step and impulse responses. 

An experienced designer is aware of the effects of zero locations on system 
response. The poles of T(s) determine the particular response modes that will be 
present, and the zeros of T(s) establish the relative weightings of the individual 
mode functions. For example, moving a zero closer to a specific pole will reduce 
the relative contribution of the mode function corresponding to the pole. 

A computer program can be developed to allow a user to specify arbitrary sets 
of poles and zeros for the transfer function of a linear system. Then the computer 
will evaluate and plot the system's impulse and step responses individually. It will 
also display them in reduced form along with the pole-zero plot. 

Once the program has been run for a set of poles and zeros, the user can modify the 
locations of one or more of them. Plots may then be presented showing the old and new 
poles and zeros in the complex plane and the old and new impulse and step responses. 

5.6 THE STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEMS 

One of the fundamental reasons for using feedback, despite its cost and increased 
complexity, is the attendant improvement in the reduction of the steady-state error 
of the system. As illustrated in Section 4.6, the steady-state error of a stable closed-
loop system is usually several orders of magnitude smaller than the error of an 
open-loop system. The system actuating signal, which is a measure of the system 
error, is denoted as Ea(s), Consider the closed-loop feedback system shown in 
Figure 5.18. According to the discussions in Chapter 4, we know from Equation (4.3) 
that with N(s) ~ 0, Td(s) = 0, the tracking error is 

£W -1+aim)** 
Using the final value theorem and computing the steady-state tracking error yields 

\ime(t) = ess= Urns- ^ / T ^ T T ^ ) - (5-23) 

It is useful to determine the steady-state error of the system for the three standard 
test inputs for the unity feedback system. Later in this section we will consider 
steady-state tracking errors for non-unity feedback systems. 

Step Input. The steady-state error for a step input of magnitude A is therefore 

s(A/s) = A 
6ss /-¾ 1 + Gc(s)G(s) " 1 + lim Gc(s)G(s)' 
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Gc(s) G(s) 

(a) 

FIGURE 5.18 
Closed-loop control 
system with unity 
feedback. 

"N W 

£ 

Controller 

Gc(s) 
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G(s) 

(b) 

It is the form of the loop transfer function Gc(s)G(s) that determines the steady-
state error. The loop transfer function is written in general form as 

M 

KU(s ~ zd 
;=i Gc(s)G(s) = —-g (5.24) 

where J J denotes the product of the factors and z, =£ 0, pk & 0 for any ] < i < M 
and / < /z < £?. Therefore, the loop transfer function as 5 approaches zero depends 
on the number of integrations, N. If N is greater than zero, then lim Gc(s)G(s) 
approaches infinity, and the steady-state error approaches zero. The number of inte
grations is often indicated by labeling a system with a type number that simply is 
equal to N. 

Consequently, for a type-zero system, N = 0, the steady-state error is 

A A 
<?« 

1 + GC(0)G(0) " JL ' 
1 + KlWliPft 

/ - 1 A- = l 

(5.25) 

The constant G~(0)G(0) is denoted by K„, the position error constant, and is given by 

Kp = \miGc(s)G(s). 
s—0 
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The steady-state tracking error for a step input of magnitude A is thus given by 

(5.26) 

Hence, the steady-state error for a unit step input with one integration or more, 
N S: 1, is zero because 

,. A. 

lim 
As1 

s^oS
N + KjXzJYLPk 

= 0. (5.27) 

Ramp Input. The steady-state error for a ramp (velocity) input with a slope A is 

ess = lim 
s(A/s2) 

= lim 
A 

= lim 
A 

5-o 1 + Gc(s)G(s) s->os +sGc(s)G(s) s-+o sGt(s)G(s) 
, (5.28) 

Again, the steady-state error depends upon the number of integrations, N. For a 
type-zero system, N = 0, the steady-state error is infinite. For a type-one system, 
N = 1, the error is 

e« = lim 
A 

osKjlis + Zi)/[sU(s - Pk)Y 

or 

<?cc = 

A A_ 

*IL*fILpk K* 
(5.29) 

where Kv is designated the velocity error constant. The velocity error constant is 
computed as 

Kv = lim sGJs)G(s). 
j—»0 

When the transfer function possesses two or more integrations, A' s= 2, we obtain a 
steady-state error of zero. When N = 1, a steady-state error exists. However, the 
steady-state velocity of the output is equal to the velocity of input, as we shall see 
shortly. 

Acceleration Input. When the system input is r{i) = At2/2, the steady-state error is 

e* J2ol +Gc(s)G(s) 
= lim 

A 

>0slGc(s)G(s) 
(5.30) 
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Table 5.5 Summary of Steady-State Errors 

Number of 
Integrations 
in Gc(s)G(s), Type 
Number 

0 

1 

2 

Step, r(t) = A, 
R(s) = A/s 

A 
&" 1 + K, 

Input 
Ramp, At, 
A/s2 

Infinite 

A 

Kv 

0 

Parabola, 
At2/2, A/s3 

Infinite 

Infinite 

A 

~Ka 

The steady-state error is infinite for one integration. For two integrations, N = 2, 
and we obtain 

A A 
e« = KTlZi/TlPk Ka 

(5.31) 

where Ka is designated the acceleration error constant. The acceleration error con
stant is 

Ka = lim s2Gc(s)G(s). 
s—»0 

When the number of integrations equals or exceeds three, then the steady-state 
error of the system is zero. 

Control systems are often described in terms of their type number and the error 
constants, Kp, Kv, and Ka. Definitions for the error constants and the steady-state 
error for the three inputs are summarized in Table 5.5. The usefulness of the error 
constants can be illustrated by considering a simple example. 

EXAMPLE 5.3 Mobile robot steering control 

A mobile robot may be designed as an assisting device or servant for a severely dis
abled person [8]. The steering control system for such a robot can be represented by 
the block diagram shown in Figure 5.19. The steering controller is 

Gc(s) =KX + K2/s. (5.32) 

FIGURE 5.19 
Block diagram of 
steering control 
system for a mobile 
robot. 

R(s) 

heading angle 
In 

-? 
Controller 

Gc(s) 

Vehicle dynamics 

TS + 1 

n.v> 

heading angle 



Section 5.6 The Steady-State Error of Feedback Control Systems 299 

Therefore, the steady-state error of the system for a step input when K2 = 0 and 
Gc(s) = # ! is 

A 
e« = 1 + Kp' 

(5.33) 

where Kp = KK{. When K2 is greater than zero, we have a type-1 system, 

Gc(s) = 
KiS + K2 

and the steady-state error is zero for a step input. 
If the steering command is a ramp input, the steady-state error is 

e« = -
A 
Kv 

(5.34) 

where 

Kv = lim sGc(s)G(s) -- K2K. 
s—»0 

The transient response of the vehicle to a triangular wave input when 
Gc(s) = {Kis + Ki)/S is shown in Figure 5.20. The transient response clearly shows 
the effect of the steady-state error, which may not be objectionable if Kv is suffi
ciently large. Note that the output attains the desired velocity as required by the 
input, but it exhibits a steady-state error. • 

The control system's error constants, Kp, Kv, and K(l, describe the ability of a 
system to reduce or eliminate the steady-state error. Therefore, they are utilized as 
numerical measures of the steady-state performance. The designer determines the 
error constants for a given system and attempts to determine methods of increasing 
the error constants while maintaining an acceptable transient response. In the case 
of the steering control system, we want to increase the gain factor KK2 in order to 
increase Kv and reduce the steady-state error. However, an increase in KK2 results 

FIGURE 5.20 
Triangular wave 
response. 

y(0 
Input 

Output 

- • / 
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FIGURE 5.21 
A nonunity 
feedback system. 

M M K, 
-v E&) 

. 

Controller 

GJs) 

Sensor 

H(s) 

Process 

G(s) 

in an attendant decrease in the system's damping ratio £ and therefore a more oscil
latory response to a step input. Thus, we want a compromise that provides the 
largest Kv based on the smallest f allowable. 

In the preceding discussions, we assumed that we had a unity feedback system 
where H(s) = 1. Now we consider nonunity feedback systems. A general feedback 
system with nonunity feedback is shown in Figure 5.21. For a system in which the 
feedback is not unity, the units of the output Y(s) are usually different from the 
output of the sensor. For example, a speed control system is shown in Figure 5.22, 
where H(s) = K2. The constants Ki and K2 account for the conversion of one set 
of units to another set of units (here we convert rad/s to volts). We can select Kh 

and thus we set K1 = K2 and move the block for KL and K2 past the summing 
node. Then we obtain the equivalent block diagram shown in Figure 5.23. Thus, we 
obtain a unity feedback system as desired. 

Let us return to the system of Figure 5.21 with H(s). In this case, suppose 

K2 

H(s) = 
rs 1 

which has a DC gain of 
lim H(s) = K2. 
.*—0 

The factor K2 is a conversion-of-units factor. If we set K2 = Kh then the system is 
transformed to that of Figure 5.23 for the steady-state calculation. To see this, con
sider error of the system E(s), where 

E(s) = R(s) - Y(s) = [1 - T(s)]R(s), (5.35) 

FIGURE 5.22 
A speed control 
system. 

/?(s) 
Desired 

speed 
(rad/s) 

K, 
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•^ Volts 

Controller 

Gc(s) 

Volts 
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K2 

Process 

G(s) • Speed 
rad/s) 

FIGURE 5.23 
The speed control 
system of 
Figure 5.22 with 



Section 5.6 The Steady-State Error of Feedback Control Systems 301 

since Y(s) = T(s)R(s). Note that 

= KjGMGjs) = (rs + l)K,Gc(s)G{s) 
yS) " 1 + H(s)Gc(s)G(s) 75 + l f KtGc(s)G(Sy 

and therefore, 

E ^ = ^ + I + KlGc(s)G(s) R(S)-

Then the steady-state error for a unit step input is 

ess = lim s E(s) = ———— . . _, -. (5.36) ss
 5 -o w 1 + K, lim Gc(s)G(s) 

$-*0 

We assume here that 

lim JG C (S)G(J) = 0. 

EXAMPLE 5.4 Steady-state error 

Let us determine the appropriate value of Kx and calculate the steady-state error 
for a unit step input for the system shown in Figure 5.21 when 

Gc(s) - 40 and G(s) = ——--
S T 5 

and 

We can rewrite H(s) as 

* W - 2° 5 + 10 

H(S) = 
0.1s + 1 

Selecting K^ = K2 = 2, we can use Equation (5.36) to determine 

1 1 _ 1 
1 + £ , \im Gc(s)G(s) 1 + 2(40)(1/5) = 17' 

s—»0 

<?« = 

or 5.9% of the magnitude of the step input. • 

EXAMPLE 5.5 Feedback system 

Let us consider the system of Figure 5.24, where we assume we cannot insert a gain 
Ki following R(s) as we did for the system of Figure 5.21. Then the actual error is 
given by Equation (5.35), which is 
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FIGURE 5.24 
A system with a 
feedback H(s). 
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E{s) = [1 - T{s)]R{s). 

Let us determine an appropriate gain K so that the steady-state error to a step input 
is minimized. The steady-state error is 

1 

where 

Then we have 

ess = limsfl - 7(^)1-, 

Gc(s)G(s) = K(s + 4) 

" 1 + Gc(s)G(s)H(s) ~ {s + 2){s + 4) + 2 ^ ' 

T(0) = AK 
8 + IK 

The steady-state error for a unit step input is 

ess - 1 - 7X0). 

Tlius, to achieve a zero steady-state error, we require that 

AK 
T(0) = - 1 , 

8 + 2K 

or 8 + 2K — AK. Thus, K = A will yield a zero steady-state error. • 

The determination of the steady-state error is simpler for unity feedback systems. 
However, it is possible to extend the notion of error constants to nonunity feedback sys
tems by first appropriately rearranging the block diagram to obtain an equivalent unity 
feedback system. Remember that the underlying system must be stable, otherwise our 
use of the final value theorem will be compromised. Consider the nonunity feedback 
system in Figure 5.21 and assume that K^ = 1. The closed-loop transfer function is 

R(s) 
= T(s) -

Gc(s)G(s) 

1 + H(s)Gc(s)G(s)' 

By manipulating the block diagram appropriately we can obtain the equivalent 
unity feedback system with 

R(s) 
= T(s) = 

Z(s) 
1 + Z(s) 

where Z{s) = 
Gc{s)G{S) 

1 + Gc(s)G(s)(H{s) - 1)' 
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The loop transfer function of the equivalent unity feedback system is Z(s). It follows 
that the error constants for nonunity feedback systems are given as: 

K„ = limZ(s), Kv = lim sZ(s), and K(l = lim s Z(s). 
s—»0 s-*0 s->0 

Note that when H(s) = 1, then Z(s) = Gc(s)G(s) and we maintain the unity feedback 
error constants. For example, when H(s) = 1, then Kp = lim Z(s) = lim Gc(s)G{s), 
as expected. 

5.7 PERFORMANCE INDICES 

Increasing emphasis on the mathematical formulation and measurement of control 
system performance can be found in the recent literature on automatic control. 
Modern control theory assumes that the systems engineer can specify quantitatively 
the required system performance. Then a performance index can be calculated or 
measured and used to evaluate the system's performance. A quantitative measure of 
the performance of a system is necessary for the operation of modern adaptive con
trol systems, for automatic parameter optimization of a control system, and for the 
design of optimum systems. 

Whether the aim is to improve the design of a system or to design a control sys
tem, a performance index must be chosen and measured. 

A performance index is a quantitative measure of the performance 
of a system and is chosen so that emphasis is given 

to the important system specifications. 

A system is considered an optimum control system when the system parameters 
are adjusted so that the index reaches an extremum, commonly a minimum value. 
To be useful, a performance index must be a number that is always positive or zero. 
Then the best system is defined as the system that minimizes this index. 

A suitable performance index is the integral of the square of the error, ISE, 
which is defined as 

ISE = [ e2(t) dt. (5.37) 
Jo 

The upper limit T is a finite time chosen somewhat arbitrarily so that the integral 
approaches a steady-state value. It is usually convenient to choose T as the settling 
time 7̂ . The step response for a specific feedback control system is shown in Figure 
5.25(b), and the error in Figure 5.25(c). The error squared is shown in Figure 5.25(d), 
and the integral of the error squared in Figure 5.25(e). This criterion will discriminate 
between excessively overdamped and excessively underdamped systems. The mini
mum value of the integral occurs for a compromise value of the damping. The perfor
mance index of Equation (5.37) is easily adapted for practical measurements because a 
squaring circuit is readily obtained. Furthermore, the squared error is mathematically 
convenient for analytical and computational purposes. 
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FIGURE 5.25 (e) fe2(T)dr 
The calculation of 
the integral squared 
error. 0 

e\t) 

Another readily instrumented performance criterion is the integral of the 
absolute magnitude of the error, IAE, which is written as 

IAE = >.(t)\dt. (5.38) 

This index is particularly useful for computer simulation studies. 
To reduce the contribution of the large initial error to the value of the perfor

mance integral, as well as to emphasize errors occurring later in the response, the 
following index has been proposed [6]: 

ITAE t\e(t)\ dt. (5.39) 
to 

This performance index is designated the integral of time multiplied by absolute error, 
ITAE. Another similar index is the integral of time multiplied by the squared error, or 

ITSE = / te\t) dt. (5.40) 



Section 5.7 Performance Indices 305 

The performance index ITAE provides the best selectivity of the performance 
indices; that is, the minimum value of the integral is readily discernible as the system 
parameters are varied. The general form of the performance integral is 

I = f{e{t),r{t),y(t),t)du (5.41) 

where / i s a function of the error, input, output, and time. We can obtain numerous 
indices based on various combinations of the system variables and time. Note that 
the minimization of IAE or ISE is often of practical significance. For example, the 
minimization of a performance index can be directly related to the minimization of 
fuel consumption for aircraft and space vehicles. 

Performance indices are useful for the analysis and design of control systems. 
Two examples will illustrate the utility of this approach. 

EXAMPLE 5.6 Performance criteria 

A single-loop feedback control system is shown in Figure 5.26, where the natural 
frequency is the normalized value, co,, = 1. The closed-loop transfer function is then 

r(*) = 
l 

s2 + 2£s + 1 
(5.42) 

Three performance indices—ISE, ITAE, and ITSE—calculated for various values 
of the damping ratio £ and for a step input are shown in Figure 5.27. These curves 
show the selectivity of the ITAE index in comparison with the ISE index. The value 
of the damping ratio £ selected on the basis of ITAE is 0.7. For a second-order sys
tem, this results in a swift response to a step with a 4.6% overshoot. • 

« I M O *• 

fa) 

FIGURE 5.26 
Single-loop 
feedback control 
system, (a) Signal-
flow graph. 
(b) Block diagram 
model. 

• Yi\) 

(b) 
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FIGURE 5.27 
Three performance 
criteria for a 
second-order 
system. 
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EXAMPLE 5.7 Space telescope control system 

The signal-flow graph and block diagram of a space telescope pointing control 
system are shown in Figure 5.28 [11]. We desire to select the magnitude of the 
gain, K3, to minimize the effect of the disturbance, Td(s). In this case, the distur
bance is equivalent to an initial attitude error. The closed-loop transfer function 

Disturbance 

R(s) 
s 

Damping 

IT. 
" • 3 

s 

Xis) + 

+ C 

Position feedback 

K„ 

mi 
Attitude 

(a) 

FIGURE 5.28 
A space telescope 
pointing control 
system, (a) Block 
diagram, (b) Signal-
flow graph. 
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Disturbance 
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for the disturbance is obtained by using Mason's signal-flow gain formula as 
follows: 

Y(s) Pfa) At(5) 

Td(s) A(5) 

1-(1 + K&s'1) 

1 + KiKjs'1 -h KiK2KpS' 

s(s + KiK3) 

s2 + K}K3s + KxK2Kp 

(5.43) 

Typical values for the constants are K} = 0.5 and K]K2Kp = 2.5. Then the natural 

frequency of the vehicle is fn = W2.5/{2TT) = 0.25 cycles/s. For a unit step distur

bance, the minimum ISE can be analytically calculated. The attitude is 

/ 1 0 

m - -j-
e - 0 . 2 5 ^ s i n ( | r I </, (5.44) 

where p = VlO - K2/4. Squaring y(t) and integrating the result, we have 

, ' X J 

M - W l \ cos(/3< + 2ift) dt (5.45) 
h P2 V2 2 

= i - + O.I/C3. 

Differentiating I and equating the result to zero, we obtain 

-Jpr = -K~3
2 + 0.1 = 0. (5.46) 

Therefore, the minimum ISE is obtained when /¾ = V10 = 3.2. This value of 2^ 
corresponds to a damping ratio £ of 0.50. The values of ISE and IAE for this system 
are plotted in Figure 5.29. The minimum for the IAE performance index is obtained 
when K3 = 4.2 and £ = 0.665. While the ISE criterion is not as selective as the IAF. 
criterion, it is clear that it is possible to solve analytically for the minimum value of 
ISE. The minimum of IAE is obtained by measuring the actual value of IAE for sev
eral values of the parameter of interest. • 

A control system is optimum when the selected performance index is mini
mized. However, the optimum value of the parameters depends directly on the 
definition of optimum, that is, the performance index. Therefore, in Examples 5.6 
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FIGURE 5.29 
The performance 
indices of the 
telescope control 
system versus K3. 
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and 5.7, we found that the optimum setting varied for different performance 
indices. 

The coefficients that will minimize the ITAE performance criterion for a step 
input have been determined for the general closed-loop transfer function [6] 

T(s) = 
Y(s) fro 

R(s) sn + bn-xs"-1 + ••• + b]S + b0 

(5.47) 

This transfer function has a steady-state error equal to zero for a step input. Note 
that the transfer function has n poles and no zeros. The optimum coefficients for the 
ITAE criterion are given in Table 5.6. The responses using optimum coefficients for 
a step input are given in Figure 5.30 for ISE, IAE, and ITAE. The responses are pro
vided for normalized time cont. Other standard forms based on different perfor
mance indices are available and can be useful in aiding the designer to determine 
the range of coefficients for a specific problem. A final example will illustrate the 
utility of the standard forms for ITAE. 

EXAMPLE 5.8 Two-camera control 

A very accurate and rapidly responding control system is required for a system that 
allows live actors to appear as if they are performing inside of complex miniature 
sets.The two-camera system is shown in Figure 5.31(a), where one camera is trained 
on the actor and the other on the miniature set. The challenge is to obtain rapid and 
accurate coordination of the two cameras by using sensor information from the 

Table 5.6 The Optimum Coefficients of T{s) Based on the 
ITAE Criterion for a Step Input 

S - CD,, 

52 + 1.4&v + o?n 

s3 + 1.750V2 + 2.15<D2S + col 

s4 + l.lco,/ + 3.4cols2 + 2.1 cols + co4, 

ss + 2.8cons
4 + 5.0OJ2,53 + 5.5<o^2 + 3AOJ4,S f a* 

s6 + 3.25cons
5 + 6.60w2/ + 8.60to^ + lA5co4/ + 3.95^,5 
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8 0.8 

Normalized time 

FIGURE 5.30 
Step responses of a 
normalized transfer 
function using 
optimum 
coefficients for 
(a) ISE, (b) IAE, and 
(c) ITAE. The 
response is for 
normalized time, 
Oint 

Normalized time 

(b) 

foreground camera to control the movement of the background camera. The block 
diagram of the background camera system is shown in Figure 5.31(b) for one axis of 
movement of the background camera. The closed-loop transfer function is 

T(s) 
K„K. ,<4 

s + 2£(o0s + COQS + KaKmo)Q 2' 
(5.48) 
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FIGURE 5.30 
(Continued) 
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1.2 

10 

Normalized time 

(c) 

20 

The standard form for a third-order system given in Table 5.6 requires that 

2£(o0 = 1.75(0,,, ft»o = 2.15(0n , and KaKm(o2 = <on . 

Examining Figure 5.30(c) for n - 3, we estimate that the settling time is approxi
mately 8 seconds (normalized time). Therefore, we estimate that 

co„Ts = 

Because a rapid response is required, a large OJ„ will be selected so that the settling 
time will be less than 1 second. Thus, <an will be set equal to 10 rad/s. Then, for an 
ITAE system, it is necessary that the parameters of the camera dynamics be 

and 
(OQ = 14.67 rad/s 

C = 0.597. 

The amplifier and motor gain are required to be 

(O,, (0„ 0),, 
V- J>' — '± _ " _ " 

O)Q 2A5(of, 2.15 
= 4.65. 

'n 

Then the closed-loop transfer function is 

1000 
T(s) = 

s3 + 17.5s2 + 215s + 1000 
1000 

(s + 7.08)(5 + 5.21 + /10.68)(5 + 5.21 - y 10.68)' 
(5.49) 
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FIGURE 5.31 
The foreground 
camera, which may 
be either a film or 
video camera, is 
trained on the blue 
cyclorama stage. 
The electronic 
servocontrol 
installation permits 
the slaving, by 
means of electronic 
servodevices, of the 
two cameras. The 
background camera 
reaches into the 
miniature set with a 
periscope lens and 
instantaneously 
reproduces all 
movements of the 
foreground camera 
in the scale of the 
miniature. The video 
control installation 
allows the 
composite image to 
be monitored and 
recorded live. (Part 
(a) reprinted with 
permission from 
Electronic Design 
24,11, May 24, 
1976. Copyright© 
Hayden Publishing 
Co., Inc., 1976.) 

Foreground 
camera 

Sensors 

(a) 

Foreground 

position 

In 
-T T 

Amplifier 

Ka 

Motor 

s 

Background 
camera 

2 

S~ + 2£(OQS + (OQ 

Background 
camera 
position 

(b) 

. / < " 

FIGURE 5.32 
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Table 5.7 The Optimum Coefficients of T[s) Based 
on the ITAE Criterion for a Ramp Input 

s2 + 3.2cons + co2, 

s? + 1.75 w„.s2 + 325a%s + o?n 

s4 + 2Al(o„s3 + 4.93co2
ns

2 + 5.14o£s + co4
n 

s5 + 2.19cons
4 + 6.50a>ls3 + 6.30w^2 + 5.24afc + a>5

n 

The locations of the closed-loop roots dictated by the ITAE system are shown 
in Figure 5.32. The damping ratio of the complex roots is £ = 0.44. However, the 
complex roots do not dominate. The actual response to a step input using a comput
er simulation showed the overshoot to be only 2% and the settling time (to within 
2% of the final value) to be equal to 0.75 second. 

For a ramp input, the coefficients have been determined that minimize the 
ITAE criterion for the general closed-loop transfer function [6] 

b^s + bo 
T(s) = „ , , "?. "° • (5.50) 

This transfer function has a steady-state error equal to zero for a ramp input. The 
optimum coefficients for this transfer function are given in Table 5.7. The transfer 
function, Equation (5.50), implies that the process G(s) has two or more pure inte
grations, as required to provide zero steady-state error. • 

5.8 THE SIMPLIFICATION OF LINEAR SYSTEMS 

It is quite useful to study complex systems with high-order transfer functions by 
using lower-order approximate models. For example, a fourth-order system could be 
approximated by a second-order system leading to a use of the performance indices 
in Figure 5.8. Several methods are available for reducing the order of a systems 
transfer function. 

One relatively simple way to delete a certain insignificant pole of a transfer 
function is to note a pole that has a negative real part that is much more negative 
than the other poles. Thus, that pole is expected to affect the transient response 
insignificantly. 

For example, if we have a system with transfer function 

G(s) = K 

s(s + 2)(5 + 30)' 

we can safely neglect the impact of the pole at s = -30. However, we must retain 
the steady-state response of the system, so we reduce the system to 

(K/30) 
G(s) = 

s(s + 2)' 
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A more sophisticated approach attempts to match the frequency response of 
the reduced-order transfer function with the original transfer function frequency 
response as closely as possible. Although frequency response methods are covered 
in Chapter 8, the associated approximation method strictly relies on algebraic ma
nipulation and is presented here. We will let the high-order system be described by 
the transfer function 

amsm + am-ism~x + ••• + ais + I 

bns
n + 6,,-is"-1 + • • • + bxs + 1 

GH(S) = K- , , , — — r ~ - —,—rr~< (5-51) 

in which the poles are in the left-hand .v-plane and m < n. The lower-order approx
imate transfer function is 

cns
p + • • • + C\S + 1 

<W«> = ^ + . . . W l t + 1 . (5.52) 

where p < g < n. Notice that the gain constant, K, is the same for the original 
and approximate system; this ensures the same steady-state response. The method 
outlined in Example 5.9 is based on selecting ct and d-, in such a way that GL(s) has 
a frequency response (see Chapter 8) very close to that of GH{s). This is equiva
lent to stating that GH(JOJ)/GL(JO)) is required to deviate the least amount from 
unity for various frequencies. The c and d coefficients are obtained by using the 
equations 

M^is) = ^M(s) (5.53) 
dsr 

and 

A < * \ i ) « ^ A W , (5.54) 
dsK 

where M(s) and A(s) are the numerator and denominator polynomials of 
GH(s)/GL(s), respectively. We also define 

2? (-l)*-W(*)(Q)M^-*)(0) 

^ = S kH2^k)l ' * = 0A>2- (5-55) 

and an analogous equation for A2q- The solutions for the c and d coefficients are 
obtained by equating 

M2q = A 2 q (5.56) 

for q = 1,2,... up to the number required to solve for the unknown coefficients. 
Let us consider an example to clarify the use of these equations. 
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EXAMPLE 5.9 A simplified model 

Consider the third-order system 

- , , 6 1 
" H W - , 3 + 6,2 + 11, + 6 ~ , 11 

Using the second-order model 

GL(s) = 

we determine that 

M(s) = 1 + dts + d2s
2, 

Then we know that 

M<-%) 

and M(°)(0) = 1. Similarly, we have 

1 + 

and 

= 1 + 

1 

dis + 

A(s) 

v 
= 1 + 

d\s + d2s
2, 

' + 

11 
6" 

? l V 
s2 + -s3 

6 

f + A'2 + 

(5.57) 

(5.58) 

(5.59) 

M(D = A n + ^ l 5 + rf2^
2) = rfj + 2rf2.y. (5.60) 

as 

Therefore, M^(0) = rfj. Continuing this process, we find that 

M(0)(0) = 1 A(0>(0) = 1, 

M(1>(0) = rf2 A(1)(0) = y , 

M(2)(0) = 2d2 A<2>(0) = 2, (5.61) 

and 

M(3>(0) = 0 A<3>(0) = 1. 

We now equate M2q = A2r/ for § = 1 and 2. We find that, for q = 1, 

M(0)(0)M(2)(0) M^(0)M(1)(0) _ M<2>(0)M<°>(0) 

= -d2 + dx
2 - d2= -2d2 + d-i2. (5.62) 

Since the equation for A2 is similar, we have 

A<°>(0) A(2>(0) A(1)(0) A^>(0) A<2>(0) A<°>(0) 
A2 = (-1) K,

2 + K-L + (-1) W
2 

121 49 
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Equation (5.56) with q = 1 requires that M2 = A2; therefore, 

40 
-2d2 + 4 =-. (5.64) 

Completing the process for M4 = A4, we obtain 

dl = ^ . (5.65) 
Jo 

Solving Equations (5.64) and (5.65) yields dx = 1.615 and d2 = 0.624. (The other 
sets of solutions are rejected because they lead to unstable poles.) The lower-order 
system transfer function is 

CfcM = l , = ~2 — • (5.66) 
w 1 + 1.615^ + 0.624.V* s7 + 2.5905 + 1.60 

It is interesting to see that the poles of H(s) are 5 = - 1 , - 2 , - 3 , whereas the poles 
of GL(S) are s = —1.024 and -1.565. Because the lower-order model has two poles, 
we estimate that we would obtain a slightly overdamped step response with a set
tling time to within 2% of the final value in approximately 3 seconds. • 

It is sometimes desirable to retain the dominant poles of the original system, 
GH(s), in the low-order model. This can be accomplished by specifying the denomi
nator of GL($) to be the dominant poles of GH(s) and allowing the numerator of 
GL(s) to be subject to approximation. 

Another novel and useful method for reducing the order is the Routh approxi
mation method based on the idea of truncating the Routh table used to determine 
stability. The Routh approximants can be computed by a finite recursive algorithm 
that is suited for programming on a digital computer [22]. 

A robot named Domo was developed to investigate robot manipulation in unstruc
tured environments [25-26]. The robot shown in Figure 5.33 has 29 degrees of freedom, 
making it a very complex system. Domo employs two six-degree-of-freedom arms and 
hands with compliant and force-sensitive actuators coupled with a behavior-based sys
tem architecture to achieve robotic manipulation tasks in human environments. Design
ing a controller to control the motion of the arm and hands would require significant 
model reduction and approximation before the methods of design discussed in the sub
sequent chapters (e.g., root locus design methods) could be successfully applied. 

5.9 DESIGN EXAMPLES 

In this section we present two illustrative examples. The first example is a simplified 
view of the Hubble space telescope pointing control problem. The Hubble space tele
scope problem highlights the process of computing controller gains to achieve de
sired percent overshoot specifications, as well as meeting steady-state error 
specifications. The second example considers the control of the bank angle of an air
plane, The airplane attitude motion control example represents a more in-depth look 
at the control design problem. Here we consider a complex fourth-order model of 
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FIGURE 5.33 
An upper-torso 
humanoid robot 
named Domo helps 
researchers 
investigate robot 
manipulation in 
unstructured 
environments. 
(Photo courtesy of 
Aaron Edsinger, MIT 
Humanoid Robotics 
Group.) 

the lateral dynamics of the aircraft motion that is approximated by a second-order 
model using the approximation methods of Section 5.8. The simplified model can be 
used to gain insight into the controller design and the impact of key controller para
meters on the transient performance. 

EXAMPLE 5.10 Hubble space telescope control 

The orbiting Hubble space telescope is the most complex and expensive scientific in
strument that has ever been built. Launched to 380 miles above the earth on April 24, 
1990, the telescope has pushed technology to new limits. The telescope's 2.4 meter 
(94.5-inch) mirror has the smoothest surface of any mirror made, and ils pointing sys
tem can center it on a dime 400 miles away [21]. The telescope had a spherical aber
ration that was largely corrected during space missions in 1993 and 1997 [24]. 
Consider the model of the telescope-pointing system shown in Figure 5.34. 
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The goal of the design is to choose Kx and K so that (1) the percent overshoot 
of the output to a step command, r(t), is less than or equal to 10%, (2) the steady-
state error to a ramp command is minimized, and (3) the effect of a step disturbance 
is reduced. Since the system has an inner loop, block diagram reduction can be used 
to obtain the simplified system of Figure 5.34(b). 

The output due to the two inputs of the system of Figure 5.34(b) is given by 

where 

The error is 

Y(s) = T(s)R(s) + [T(s)/K]Us), (5.67) 

KG(s) L{s) 
T(s) = 1 + KG(s) 1 + L(s)' 

£(*> = TTmR(s) ~ irW)T"(s)- (5'68) 

First, let us select K and Ky to meet the percent overshoot requirement for a step 
input, R(s) = A/s. Setting T^s) = 0, we have 

KG(s) 

K A\ K 

s(s + Ky) + K \ s J s2 + Kis + K 
(5.69) 

To set the overshoot less than 10%, we select t, = 0.6 by examining Figure 5.8 or 
using Equation (5.16) to determine that the overshoot will be 9.5% for t, = 0.6. 
We next examine the steady-state error for a ramp, r(t) = Bt,t 5: 0, using (Equa
tion 5.28): 

The steady-state error due to a unit step disturbance is equal to —1/K. (The 
student should show this.) The transient response of the error due to the step dis
turbance input can be reduced by increasing K (see Equation 5.68). In summary, 
we seek a large K and a large value of KjK\ to obtain a low steady-state error for 
the ramp input (see Equation 5.70). However, we also require t, = 0.6 to limit the 
overshoot. 

For our design, we need to select K. With £ = 0.6, the characteristic equation of 
the system is 

s2 + 2£(ans + col = s2 + 2(Q.6)oons + K. (5.71) 
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Therefore, a).. and the second term of the denominator of Equation (5.69) 

requires KY = 2(0.6)con.Then K\ = 1.2 VK, so the ratio K/K\ becomes 

K_ K 

1.2V K 1.2 

Selecting .K = 25, we have &j - 6 and K/K\ = 4.17. If we select K = 100, we have 
K] = 12 and KjKy = 8.33. Realistically, we must limit K so that the system's opera
tion remains linear. Using K = 100, wc obtain the system shown in Figure 5.34(c). 
The responses of the system to a unit step input command and a unit step distur
bance input are shown in Figure 5.34(d). Note how the effect of the disturbance is 
relatively insignificant. 

Finally, we note that the steady-state error for a ramp input (see Equation 5.70) is 

e« = 
B 

8.33 
= 0.125. 

This design, using K = 100, is an excellent system. • 

EXAMPLE 5.11 Attitude control of an airplane 

Each time we fly on a commercial airliner, we experience first-hand the benefits of 
automatic control systems. These systems assist pilots by improving the handling 
qualities of the aircraft over a wide range of flight conditions and by providing pilot 
relief (for such emergencies as going to the restroom) during extended flights. The 
special relationship between flight and controls began in the early work of the 
Wright brothers. Using wind tunnels, the Wright brothers applied systematic 
design techniques to make their dream of powered flight a reality. This systematic 
approach to design contributed to their success. 

Another significant aspect of their approach was their emphasis on flight 
controls; the brothers insisted that their aircraft be pilot-controlled. Observing 
birds control their rolling motion by twisting their wings, the Wright brothers 
built aircraft with mechanical mechanisms that twisted their airplane wings. 
Today we no longer use wing warping as a mechanism for performing a roll ma
neuver; instead we control rolling motion by using ailerons, as shown in Figure 
5.35. The Wright brothers also used elevators (located forward) for longitudinal 

Bank angle, 4> 

FIGURE 5.35 
Control of the bank 
angle of an airplane 
using differential 
deflections of the 
ailerons. 

Plane of symmetry 

Bank angle, d> 
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control (pitch motion) and rudders for lateral control (yaw motion). Today's air
craft still use both elevators and rudders, although the elevators are generally lo
cated on the tail (rearward). 

The first controlled, powered, unassisted take-off flight occurred in 1903 with 
the Wright Flyer I (a.k.a. Kitty Hawk). The first practical airplane, the Flyer III, 
could fly figure eights and stay aloft for half an hour. Three-axis flight control was a 
major (and often overlooked) contribution of the Wright brothers. A concise his
torical perspective is presented in Stevens and Lewis [27]. The continuing desire to 
fly faster, lighter, and longer fostered further developments in automatic flight con
trol. Today's challenge is to develop a single-stage-to-orbit aircraft/spacecraft that 
can take off and land on a standard runway. 

The main topic of this chapter is control of the automatic rolling motion of an 
airplane. The elements of the design process emphasized in this chapter are illus
trated in Figure 5.36. 

Topics emphasized in this example 

Establish the. control poals 

I 
Identify the variables to be controlled 

I 
Write the specifications 

i • 

Establish the system configuration 

1 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

* 
Optimize the parameters and 

analyze the performance 

I 

Regulate the bank angle 
to zero degrees. 

Airplane bank angle 

Design specifications: 
DSl:P.O- < 20% 
DS2: Fast response time 

See Figure 5.37 
Controller, aileron, 
aircraft and gyro. 

See Eqs. (5.73) - (5.75) 

Proportional controller with 
gain K. 

Use control design 
software 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications. 
then finalize the design. 

FIGURE 5.36 Elements of the control system design process emphasized in the airplane attitude 
control example. 
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We begin by considering the model of the lateral dynamics of an airplane moving 
along a steady, wings-level flight path. By lateral dynamics, we mean the attitude motion 
of the aircraft about the forward velocity. An accurate mathematical model describing 
the motion (translational and rotational) of an aircraft is a complicated set of highly 
nonlinear, time-varying, coupled differential equations. A good description of the 
process of developing such a mathematical model appears in Etkin and Reid [28]. 

For our purposes a simplified dynamic model is required for the autopilot de
sign process. A simplified model might consist of a transfer function describing the 
input/output relationship between the aileron deflection and the aircraft bank 
angle. Obtaining such a transfer function would require many prudent simplifica
tions to the original high-fidelity, nonlinear mathematical model. 

Suppose we have a rigid aircraft with a plane of symmetry. The airplane is as
sumed to be cruising at subsonic or low supersonic (Mach < 3) speeds. This allows 
us to make a flat-earth approximation. We ignore any rotor gyroscopic effects due to 
spinning masses on the aircraft (such as propellors or turbines). These assumptions 
allow us to decouple the longitudinal rotational (pitching) motion from the lateral 
rotational (rolling and yawing) motion. 

Of course, we also need to consider a linearization of the nonlinear equations of 
motion. To accomplish this, we consider only steady-state flight conditions such as 

Zl Steady, wings-level flight 
D Steady, level turning flight 
G Steady, symmetric pull-up 
.J Steady roll. 

For this example we assume that the airplane is flying at low speed in a steady, 
wings-level attitude, and we want to design an autopilot to control the rolling mo
tion. We can state the control goal as follows: 

Control Goal 
Regulate the airplane bank angle to zero degrees (steady, wings level) and 
maintain the wings-level orientation in the presence of unpredictable external 
disturbances. 

We identify the variable to be controlled as 

Variable to Be Controlled 
Airplane bank angle (denoted by </>). 

Defining system specifications for aircraft control is complicated, so we do not 
attempt it here. It is a subject in and of itself, and many engineers have spent signifi
cant efforts developing good, practical design specifications. The goal is to design a 
control system such that the dominant closed-loop system poles have satisfactory 
natural frequency and damping [27]. We must define satisfactory and choose test 
input signals on which to base our analysis. 

The Cooper-Harper pilot opinion ratings provide a way to correlate the feel of 
the airplane with control design specifications [29]. These ratings address the han
dling qualities issues. Many flying qualities requirements are specified by govern
ment agencies, such as the United States Air Force [30]. The USAF MIL-F-8785C is 
a source of time-domain control system design specifications. 
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For example we might design an autopilot control system for an aircraft in 
steady, wings-level flight to achieve a 20% overshoot to a step input with minimal 
oscillatory motion and rapid response time (that is, a short time-to-peak). Subse
quently we implement the controller in the aircraft control system and conduct flight 
tests or high-fidelity computer simulations, after which the pilots tell us whether they 
liked the performance of the aircraft. If the overall performance was not satisfactory, 
we change the time-domain specification (in this case a percent overshoot specifica
tion) and redesign until we achieve a feel and performance that pilots (and ultimately 
passengers) will accept. Despite the simplicity of this approach and many years of 
research, precise-control system design specifications that provide acceptable air
plane flying characteristics in all cases are still not available [27]. 

The control design specifications given in this example may seem somewhat 
contrived. In reality the specifications would be much more involved and, in many 
ways, less precisely known. But recall in Chapter 1 we discussed the fact that we 
must begin the design process somewhere. With that approach in mind, we select 
simple design specifications and begin the iterative design process. The design spec
ifications are 

Control Design Specifications 
DS1 Percent overshoot less than 20% for a unit step input. 
DS2 Fast response time as measured by time-to-peak. 

By making the simplifying assumptions discussed above and linearizing about 
the steady, wings-level flight condition, we can obtain a transfer function model 
describing the bank angle output, cj)(s), to the aileron deflection input, 8a(s). The 
transfer function has the form 

*fr) = *(* ~ C0){52 + bjS + bp) 

8a(s) s(s + d0)(s + e0)(s
2 + fxs + /())" 

The lateral (roll/yaw) motion has three main modes: Dutch roll mode, spiral 
mode, and roll subsidence mode. The Dutch roll mode, which gets its name from its 
similarities to the motion of an ice speed skater, is characterized by a rolling and 
yawing mot ion . T h e a i rp lane center of mass follows near ly a straightl ine pa th , and a 
rudder impulse can excite this mode. The spiral mode is characterized by a mainly 
yawing motion with some roll motion. This is a weak mode, but it can cause an air
plane to enter a steep spiral dive. The roll subsidence motion is almost a pure roll 
motion. This is the motion we are concerned with for our autopilot design. The 
denominator of the transfer function in Equation (5.72) shows two first-order 
modes (spiral and roll subsidence modes) and a second-order mode (Dutch roll mode). 

In general the coefficients CQ, bo, bu CIQ, e^, /o, /j and the gain k are complicated 
functions of stability derivatives. The stability derivatives are functions of the flight 
conditions and the aircraft configuration; they differ for different aircraft types. The 
coupling between the roll and yaw is included in Equation (5.72). 

In the transfer function in Equation (5.72), the pole at s = -(IQ is associated 
with the spiral mode. The pole at s = -eQ is associated with the roll subsidence 
mode. Generally, e.0 » d0. For an F-16 flying at 500 ft/s in steady, wings-level flight, 
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we have e0 = 3.57 and dQ = 0.0128 [27].The complex conjugate poles given by the 
term s2 + fas + /o represent the Dutch roll motion. 

For low angles of attack (such as with steady, wings-level flight), the Dutch roll 
mode generally cancels out of the transfer function with the s2 + b{s + b() term. This 
is an approximation, but it is consistent with our other simplifying assumptions. Also, 
we can ignore the spiral mode since it is essentially a yaw motion only weakly cou
pled to the roll motion. The zero at s = c0 represents a gravity effect that causes the 
aircraft to sideslip as it rolls. We assume that this effect is negligible, since it is most 
pronounced in a slow roll maneuver in which the sideslip is allowed to build up, and 
we assume that the aircraft sideslip is small or zero. Therefore we can simplify the 
transfer function in Eq. (5.72) to obtain a single-degree-of-freedom approximation: 

^ = * . (5.73) 
Sa(.v) s(s + e0) 

For our aircraft we select e0 = 1.4 and k = 11.4. The associated time-constant of the 
roll subsidence is r = 1/(¾ = 0.7 s. These values represent a fairly fast rolling mo
tion response. 

For the aileron actuator model, we typically use a simple first-order system 
model, 

dJs) p 

~ri - - £ - , (5.74) 
e(s) s + p 

where e(s) = <f>ci(s) — (f>(s). In this case we select p = 10. This corresponds to a time 
constant of r = \j p = 0.1 s. This is a typical value consistent with a fast response. We 
need to have an actuator with a fast response so that the dynamics of the actively con
trolled airplane will be the dominant component of the system response. A slow actuator 
is akin to a time delay that can cause performance and stability problems. 

For a high-fidelity simulation, we would need to develop an accurate model of the 
gyro dynamics. The gyro, typically an integrating gyro, is usually characterized by a very 
fast response. To remain consistent with our other simplifying assumptions, we ignore 
the gyro dynamics in the design process. This means we assume that the sensor mea
sures the bank angle precisely. The gyro model is given by a unity transfer function, 

Kg=*l. (5.75) 

Thus our physical system model is given by Equations (5.73), (5.74), and (5.75). 
The controller we select for this design is a proportional controller, 

Gc(s) = K. 

i lie system configuration is shown in Figure 5.37. The select key parameter is as follows: 

Select Key Tuning Parameter 
Controller gain K. 

The closed-loop transfer function is 

T(S) = , . . = —: : . (5.76) 
<bd(s) s3 + 11.452 + Us + 114K 
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FIGURE 5.37 
Bank angle control 
autopilot. 
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We want to determine analytically the values of K that will give us the desired 
response, namely, a percent overshoot less than 20% and a fast time-to-peak. 
The analytic analysis would be simpler if our closed-loop system were a second-
order system (since we have valuable relationships between settling time, percent 
overshoot, natural frequency and damping ratio); however we have a third-order 
system, given by T(s) in Equation (5.76). We could consider approximating the 
third-order transfer function by a second-order transfer function—this is sometimes 
a very good engineering approach to analysis. There are many methods available to 
obtain approximate transfer functions. Here we use the algebraic method described 
in Section 5.8 that attempts to match the frequency response of the approximate 
system as closely as possible to the actual system. 

Our transfer function can be rewritten as 

T(s) = 
1 

1 + - ^ 9 +-^~S2 + - ^ 5 3 , 

[UK' 114K' 1UK 

by factoring the constant term out of the numerator and denominator. Suppose our 
approximate transfer function is given by the second-order system 

GL(s) = 
1 + diS H d2s 2' 

The objective is to find appropriate values of di and d2- As in Section 5.8, we define 
M(s) and A(s) as the numerator and denominator of T(s)/GL(s). We also define 

and 

2* (-lf+iM{k\0)M^-k\0) 

^ = ¾ ^ 3 i ^ • « = 1.2.-. 

2q (_i)*+<? A(*>(0) A(2q-k)(0) 
A2q= Z,- , . , / n . - ^ - . 0 = 1, 2, . . . . & k\(2q ~ k)\ 

Then, forming the set of algebraic equations 

M2q = &2q, q = 1,2,..., 

(5.77) 

(5.78) 

(5.79) 
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we can solve for the unknown parameters of the approximate function. The index q 
is incremented until sufficient equations are obtained to solve for the unknown 
coefficients of the approximate function. In this case, q = 1,2 since we have two 
parameters dx and d2 to compute. 

We have 

M(s) = 1 + dx s + d2s
2 

MV\s) = £1 = dl + 2d2s 
ds 

rfr 

M{3\s) = M\s) = ••• = 0. 

Thus evaluating at s = 0 yields 

M^(0) = dx 

M(2)(0) = 2d2 

M<V(P) = M(4)(0) = • • • = 0. 

Similarly, 

, , s , 14 11.4 7 s3 

A(5) = 1 + TT7175 + 7T7^5 + 
114K 114K 114K 

,1W , tfA 14 22.8 3 2 AC )(5> =Ts = mK + luKs +
 TUKS 

•m/ N rf2A 22.8 6 
AWw = 7̂ = H4K + U S * 5 

A(3 ) ( 5 ) m A = _±_ 
{S) ds3 114JC 

A(4)(^) = A5(s) = ••• = 0 . 

Evaluating at s = 0, it follows that 

14 
A^(0) = 

A<2>(0) = 

A(3,(0) = 1 1 4 j r 

A(4>(0) = A(5)(0) = • • • = 0. 

114X' 
22.8 
114X' 

6 
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Using Equation (5.77) for q = 1 and q — 1 yields 

M(0)M<2)(0) A/W(0)M(1)(0) M®(O)M(0) 
M2 = r + : = -2dz + d{, 

2 1 2 l 

and 

M(0)M(4)(0) M(1)(0)M<3>(0) M(2)(0)M(2)(0) 
MA~ 0!4! 113! 2!2! 

M(3)(0)M(1)(0) M<4>(0)M(0) 2 

3!1! 4!0! ~ 2* 

Similarly using Equation (5.78), we find that 

-22.8 196 . 101.96 A-, = + - and Ad = 2 ~ 114X ~ (114K)2 4 (114#)2' 

Thus forming the set of algebraic equations in Equation (5.79), 

M2 = A 2 and MA = A4, 

we obtain 

, , -22.8 196 , , , 101.96 
•2d2 + d^ = • + * and d2 = U4K (114/C)2 " (114K)2' 

Solving for dv and d2 yields 

_ Vl96 - 296.96^ 

^1 - mic ' (5-80) 

2 1 1 4 # ' *• > 

where we always choose the positive values of d{ and d2 so that GL(s) has poles in the 
left half-plane. Thus (after some manipulation) the approximate transfer function is 

Gds) _ "£* . <5ja) 
s2 + Vl.92 - 2.9lKs + ]].29K 

We require that K < 0.65 so that the coefficient of the s term remains a real num
ber (we do not want to have a transfer function with complex valued parameters). 

Our desired second-order transfer function can be written as 

,r + 2£(o„s + 0),, 
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Comparing coefficients in Equations (5.82) and (5.83) yields 

^} = 11.29*: and £2 = ^ - - 0.065. (5.84) 
K 

'Ihe design specification that the percent overshoot P.O. is to be less than 20% 
implies that we want £ > 0.45. This follows from solving Equation (5.16) 

P.O. = 1 0 0 e " ^ A / ^ 5 

for £. Setting £ = 0.45 in Equation (5.84) and solving for K yields 

K = 0.16. 

With K = 0.16 we compute 

<0n = V11.29K - 1.34. 

Then we can estimate the time-to-peak Tp from Equation (5.14) to be 

Tp = ^ = , = 2.62s. 

We might be tempted at this point to select £ > 0.45 so that we reduce the percent 
overshoot even further than 20%. What happens if we decide to try this approach? 
From Equation (5.84) we see that K decreases as £ increases. Then, since 

«„ = Vll.29£, 

as K decreases, then ojn also decreases. But the time-to-peak, given by 

increases as w„ decreases. Since our goal is to meet the specification of percent over
shoot less than 20% while minimizing the timc-to-pcak, we use the initial selection 
of £ = 0.45 so that we do not increase Tp unnecessarily. 

The second-order system approximation has allowed us to gain insight into the 
relationship between the parameter K and the system response, as measured by per
cent overshoot and time-to-peak. Of course, the gain K = 0.16 is only a starting 
point in the design because we in fact have a third-order system and must consider 
the effect of the third pole (which we have ignored so far). 

A comparison of the third-order aircraft model in Equation (5.76) with the sec
ond-order approximation in Equation (5.82) for a unit step input is shown in 
Figure 5.38. The step response of the second-order system is a good approximation 
of the original system step response, so we would expect that the analytic analysis 
using the simpler second-order system to provide accurate indications of the rela
tionship between K and the percent overshoot and time-to-peak. 

With the second-order approximation, we estimate that with K = 0.16 the per
cent overshoot P.O. = 20% and the time-to-peak Tp = 2.62 seconds. As shown in 
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FIGURE 5.38 
Step response 
comparison of 
third-order aircraft 
model versus 
second-order 
approximation. 
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Figure 5.39 the percent overshoot of the original third-order system is P.O. = 20.5 % 
and the time-to-peak Tp = 2.73 s. Thus, we see that that analytic analysis using the ap
proximate system is an excellent predictor of the actual response. For comparison pur
poses, we select two variations in the gain and observe the response. For K = 0.1, the 
percent overshoot is 9.5% and the time-to-peak Tp = 3.74 s. For K = 0.2, the percent 
overshoot is 26.5% and the time-to-peak Tp = 2.38 s. So as predicted, as K decreases 
the damping ratio increases, leading to a reduction in the percent overshoot. Also as 

FIGURE 5.39 
Step response of 
the 3fd-order aircraft 
model with 
K= 0.10, 0.16, and 
0. 20 showing that, 
as predicted, as K 
decreases percent 
overshoot 
decreases while the 
time-to-peak 
increases. 
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Table 5.8 Performance Comparison for K - 0.10, 
0.16, and 0.20. 

K P.O. (%) 7-p(s) 

0.10 
0.16 
0.20 

9.5 
20.5 
26.5 

3.74 
2.73 
2.38 

predicted, as the percent overshoot decreases the time-to-peak increases. The results 
are summarized in Table 5.8. • 

5.10 SYSTEM PERFORMANCE USING CONTROL DESIGN SOFTWARE 

In this section, we will investigate time-domain performance specifications given in 
terms of transient response to a given input signal and the resulting steady-state track
ing errors. We conclude with a discussion of the simplification of linear systems. The 
function introduced in this section is impulse. We will revisit the Isim function (intro
duced in Chapter 3) and see how these functions are used to simulate a linear system. 

Time-Domain Specifications. Time-domain performance specifications are gen
erally given in terms of the transient response of a system to a given input signal. 
Because the actual input signals are generally unknown, a standard test input signal is 
used. Consider the second-order system shown in Figure 5.4.The closed-loop output is 

2 

Y(s) = 
0)\ 

s2 + 2£m„s + o)l 
R(s). (5.87) 

We have already discussed the use of the step function to compute the step 
response of a system. Now we address another important test signal: the impulse. 
The impulse response is the time derivative of the step response. We compute the 
impulse response with the impulse function shown in Figure 5.40. 

«(0 

Impulse 
input 

- W 

System 
G(s) 

Output 

FIGURE 5.40 
The impulse 
function. 

y(t) = output response at t 
T = simulation time 

G(s) = sys 
t = T: user-supplied 

time vector 
or 
t — 7"(-1Ilal: simulation 

final time (optional) 

[y,T]=impulse(sys,t) 
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FIGURE 5.41 
(a) Response of a 
second-order 
system to a step 
input, (b) m-fiie 
script. 

%Compute step response for a second-order system 
%Duplicate Figure 5.5 (a) 
% 
t=[0:0.1:12];num=[1]; 
zeta1=0.1;den1=[1 2*zeta1 1]; sys1=tf(num,den1); 
zeta2=0.2; den2=[1 2*zeta2 1]; sys2=tf(num,den2); 
zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3); 
zeta4=0.7; den4=[l 2*zeta4 1]; sys4=tf(num,den4); 
zeta5=1.0; den5=[1 2*zeta5 1]; sys5=tf(num,den5); 
zeta6=2.0; den6=[1 2*zeta6 1]; sys6=tf(num,den6); 
% 
[y1 ,T1]=step(sys1 ,t); [y2,T2]=step(sys2,t); 
[y3,T3]=step(sys3,t);[y4,T4]=step(sys4,t); 
[y5,T5]=step(sys5,t);[y6,T6]=step(sys6,t); 
% 
plot(T1 ,y1 ,T2,y2,T3,y3,T4,y4,T5,y5,T6,y6) 
xlabel(' \omega_n f) , ylabel('y(t)') 
title('\zeta = 0.1, 0.2, 0.4, 0.7,1.0,2.0'), grid 

(b) 

We can obtain a plot similar to that of Figure 5.5(a) with the step function, as 
shown in Figure 5.41. Using the impulse function, we can obtain a plot similar to 
that of Figure 5.6. The response of a second-order system for an impulse function 
input is shown in Figure 5.42. In the script, we set <on = 1, which is equivalent to 
computing the step response versus o)nt. This gives us a more general plot valid for 
any co„ > 0. 

In many cases, it may be necessary to simulate the system response to an arbi
trary but known input. In these cases, we use the Isim function. The Isim function is 

file:///omega_n
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FIGURE 5.42 
(a) Response of a 
second-order 
system to an 
impulse function 
input, (b) m-file 
script. 

%Compute impulse response for a second-order system 
%Duplicate Figure 5.6 
% 
t=[0:0.1:10];num=[1]; 
zeta1=0.1;den1=[1 2*zeta1 1]; sys1=tf(num,den1); 
zeta2=0.25; den2=[1 2*zeta2 1]; sys2=tf(num,den2); 
zeta3=0.5; den3=[1 2*zeta3 1]; sys3=tf(num,den3); 
zeta4=1.0; den4=[1 2*zeta4 1]; sys4=tf(num,den4); 
% 
[y1,T1]=impulse(sys1,t); 
[y2,T2]=impulse(sys2,t); 
[y3,T3]=impulse(sys3,t); 
[y4,T4]=impulse(sys4,t); 
% 
plot(t,y1 ,t,y2,t,y3,t,y4) < 

Compute impulse response. 

P Generate plot and labels. 

xlabel(' \omega _nt'), ylabel('y(t)/\omega_n') 
title('\zeta = 0.1, 0.25, 0.5, 1.0'), grid 

(b) 

shown in Figure 5.43. We studied the Isim function in Chapter 3 for use with state-
variable models; however, now we consider the use of Isim with transfer function 
models. An example of the use of Jsim is given in Example 5.12. 

EXAMPLE 5.12 Mobile robot steering control 

The block diagram for a steering control system for a mobile robot is shown in 
Figure 5.19. Suppose the transfer function of the steering controller is 

K2 
Ge(s) = Ki + - p 

»5 

file:///omega
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-*-t 
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FIGURE 5.43 
The lsim function. 

y(t) = output response at t 
T = simulation time 

vector 
i . 

G(s) = sys 1 u = input t = times at which 1 
response to u is 

computed 

1 Hi 
[y,T]=lsim(sys,u,t) 

When the input is a ramp, the steady-state error is 

where 

A_ 
e$s" K: 

Kv — K2K. 

(5.86) 

The effect of the controller constant, K2, on the steady-state error is evident from 
Equation (5.86). Whenever K2 is large, the steady-state error is small. 

We can simulate the closed-loop system response to a ramp input using the 
lsim function. The controller gains, /¾ and K2, and the system gain K can be rep
resented symbolically in the script so that various values can be selected and sim
ulated. The results are shown in Figure 5.44 for Ki = K = 1, K2 = 2, and 
r = 1/10. • 

Simplification of Linear Systems. It may be possible to develop a lower-order 
approximate model that closely matches the input-output response of a high-order 
model. A procedure for approximating transfer functions is given in Section 5.8. We 
can use computer simulation to compare the approximate model to the actual 
model, as illustrated in the following example. 

EXAMPLE 5.13 X simplified model 

Consider the third-order system 

GH(S) = -3 
s> + 6sz + Us 
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FIGURE 5.44 
(a) Transient 
response of the 
mobile robot 
steering control 
system to a ramp 
input, (b) m-file 
script. 

%Compute the response of the Mobile Robot Control 
%System to a triangular wave input 
% 
numg=[10 20]; deng=[1 10 0]; sysg=tf(numg,deng); •*-
[sys]=feedback(sysg, [1]); 
t=[0:0.1:8.2]'; 
v1=[0:0.1:2]';v2=[2:-0.1:-2]';v3=[-2:0.1:0]'; « -
u=[v1 ;v2;v3]; 
[y,T]=lsim(sys,u,t); < 
plot(T,y;t,u,--'), 
xlabel(Time (s)'), ylabel('\lheta (rad)'), grid 

G(s)Gc(s) 

(b) 

Compute triangular 
wave input. 

Linear simulation. 

A second-order approximation (see Example 5.9) is 

1.60 
GL(s) = 

s2 + 2.590s + 1.60 

A comparison of their respective step responses is given in Figure 5.45. 

5.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In Section 4.10, we considered the response of the closed-loop reader head control 
system. Let us further consider the system shown in Figure 4.35. In this section, we 
further consider the design process. We will specify the desired performance for the 
system. Then we will attempt to adjust the amplifier gain Ka in order to obtain the 
best performance possible. 



Chapter 5 The Performance of Feedback Control Systems 

FIGURE 5.45 
(a) Step response 
comparison for an 
approximate 
transfer function 
versus the actual 
transfer function. 
(b) m-file script. 
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(a) 

% Compare step response for second-order approximation 
% 
num1=[6j; den1=[1 6 116]; sys1=tf(num1,den1); <— 
num2=[1.6]; den2=[1 2.594 1.6]; sys2=(tf(num2,den2); 
t=[0:0.1:8]; 
[y1,T1]=step(sys1,t); 
[y2,T2]=step(sys2,t); 
plot(T1,y1,T2,y2,'--,),grid 
xlabel('Time (s)'), ylabel('Step Response') 

C ( v<\ -
Gf\ S* + 652 + 11* + 6 

rn h6 
C t ( j ) " , 2 + 2.59,+ 1.6 

(b) 

Table 5.9 Specifications for the Transient Response 

Performance Measure Desired Value 

Less than 5% 
Less than 250 ms 
Less than 5 x 10-3 

Percent overshoot 
Settling time 
Maximum value of response 

to a unit step disturbance 

Our goal is to achieve the fastest response to a step input r(t) while (1) limiting 
the overshoot and oscillatory nature of the response and (2) reducing the effect of a 
disturbance on the output position of the read head. The specifications are summa
rized in Table 5.9. 

Let us consider the second-order model of the motor and arm, which neglects 
the effect of the coil inductance. We then have the closed-loop system shown in 
Figure 5.46. Then the output when Td(s) = 0 is 
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FIGURE 5.46 
Control system 
model with a 
second-order 
model of the motor 
and load. 

R(s) 
+.n 
-T I 

Motor 
Amplifier 

V Ka 

constan 

5 

Ta(s) 

• i • »u » 
Load 

1 
s(s + 20) 

*• YW 

Y(s) = 
5K„ 

s(s + 20) + 5Ka 
R(s) 

5/C 
s2 + 20s + 5K. 

co~ 

2gions + to,, 

R(s) 

R(s). (5.87) 

Therefore, to2, = 5Ka>
 a n c I 2£w» = 2 0 - W e t n e n determine the response of the system 

as shown in Figure 5.47. Table 5.10 shows the performance measures for selected 
values of K„. 

Ka=30; < 
t=[C:0.01:1]; 
nc=[Ka*5];dc=[1 ]; sysc=tf(nc,dc); 
ng=[1];dg=[1 20 0]; sysg=tf(ng,dg); 
sysl =series(sysc,sysg); 
sys=feedback(sys1. [1]); 
y=step(sys,t); 
plot(t.y), grid 
xlabel('Time (s)') 
ylabel('y(t)') 

Select K„. 

Compute the 
closed-loop 

transfer function. 

(a) 

FIGURE 5.47 
Response of the 
system to a unit 
step input, 
r(t) = 1,f > 0. 
(a) m-file script. 
(b) Response for 
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Table 5.10 Response for the Second-Order Model for a Step Input 

Ka 20 30 40 60 80 

Percent overshoot 
Settling time (s) 
Damping ratio 
Maximum value of the 
response y(i) to a unit 
disturbance 

0 
0.55 
1 
-10 x 10"3 

1.2% 
0.40 
0.82 
-6.6 x 10"3 

4.3% 
0.40 
0.707 
-5.2 x 10"-' 

10.8% 
0.40 
0.58 
-3.7 X 10^3 

16.3% 
0.40 
0.50 
-2.9 X 10~3 

When Ka is increased to 60, the effect of a disturbance is reduced by a factor of 
2. We can show this by plotting the output, y(/), as a result of a unit step disturbance 
input, as shown in Figure 5.48. Clearly, if we wish to meet our goals with this system, 
we need to select a compromise gain. In this case, we select Ka = 40 as the best com
promise. However, this compromise does not meet all the specifications. In the next 
chapter, we consider again the design process and change the configuration of the 
control system. 

Ka=30: * 
t=[0:0.01:1]; 
nc=[Ka*5];dc=[1]; sysc=tf(nc,dc); 
ng=[1];dg=[1 20 0]; sysg=tf(ng,dg); 
sys=feedback(sysg,sysc); 
sys=-sys; -*— 

Select K„. 

y=step(sys,t); plot(t.y) 
xlabel(Time (s)'), ylabel('y(t)'), grid 

Disturbance enters summer 
with a negative sign. 

(a) 

x 10 
0 

FIGURE 5.48 
Response of the 
system to a unit 
step disturbance, 
Ja(s) =- t /s . 
(a) m-file script. 
(b) Response for 
Ka = 30 and 60. 
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FIGURE 5.49 
The response of a 
feedback system to 
a ramp input with 
K= 1,2, and 8 
when G(s) = 
K/[s(s + 1)(s + 3)]. 
The steady-state 
error is reduced as 
K is increased, but 
the response 
becomes oscillatory 
at K = 8. 
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5.12 SUMMARY 

In this chapter, we have considered die definition and measurement of the perfor
mance of a feedback control system. The concept of a performance measure or index 
was discussed, and the usefulness of standard test signals was outlined. Then, several 
performance measures for a standard step input test signal were delineated. For exam
ple, the overshoot, peak time, and settling time of the response of the system under test 
for a step input signal were considered. The fact that the specifications on the desired 
response are often contradictory was noted, and the concept of a design compromise 
was proposed. The relationship between the location of the s-plane root of the system 
transfer function and the system response was discussed. A most important measure 
of system performance is the steady-state error for specific test input signals. Thus, the 
relationship of the steady-state error of a system in terms of the system parameters was 
developed by utilizing the final-value theorem. The capability of a feedback control 
system is demonstrated in Figure 5.49. Finally, the utility of an integral performance 
index was outlined, and several design examples that minimized a system's perfor
mance index were completed. Thus, we have been concerned with the definition and 
usefulness of quantitative measures of the performance of feedback control systems. 

EXERCISES 

E5.1 A motor control system for a computer disk drive 
must reduce the effect of disturbances and parameter 
variations, as well as reduce the steady-state error. We 
want to have no steady-state error for the head-posi
tioning control system, which is of the form shown in 
Figure 5.18. (a) What type number is required? (How 
many integrations?) (b) If the input is a ramp signal, 
and we want to achieve a zero steady-state error, what 
type number is required? 

E5.2 The engine, body, and tires of a racing vehicle affect 
the acceleration and speed attainable [11]. The speed 
control of the car is represented by the model shown 
in Figure E5.2. (a) Calculate the steady-state error of 

the car to a step command in speed, (b) Calculate 
overshoot of the speed to a step command. 

Answer: (a) <?ss = A/11; (b) P.O. = 33% 

R(5) + 

Speed • ( 
command — • 

FIGURE E5.2 F 

. 

facing c 

Engine and tires 

100 
(A- + 2)(s + 5) 

ar speed control. 

_ Yis) 
Speed 
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E5.3 For years, Amtrak has struggled to attract passen
gers on its routes in the Midwest, using technology 
developed decades ago. During the same time, for
eign railroads were developing new passenger rail 
systems that could profitably compete with air travel. 
Two of these systems, the French TGV and the Japan
ese Shinkansen, reach speeds of 160 mph [20]. The 
Transrapid-06, a U.S. experimental magnetic levita-
tion train, is shown in Figure E5.3(a). 

The use of magnetic levitation and electromag
netic propulsion to provide contactless vehicle 
movement makes the Transrapid-06 technology radi
cally different from the existing Metroliner. The un
derside of the TR-06 carriage (where the wheel 
trucks would be on a conventional car) wraps around 
a guideway Magnets on the bottom of the guideway 
attract electromagnets on the "wraparound," pulling 
it up toward the guideway.This suspends the vehicles 
about one centimeter above the guideway. (See 
Problem P2.27.) 

The levitation control is represented by Figure 
E5.3(b). (a) Using Table 5.6 for a step input, select K so 
that the system provides an optimum ITAE response. 
(b) Using Figure 5.8, determine the expected over
shoot to a step input of I(s). 

Answer :K = 100; 4.6% 

current 

Gap dynamics 

K 
sis +14) 

n.s) 
•*• Gap 

spacing 

E5.4 A first order system is characterised by its steady-
state gain and time constant. Find the steady-state 
gain and time constants of the following system with 
transfer function given below. 

2 
(a) 

(b) 

(c) 

(d) 

S f 1 

5 
s + 2 

10 
1 + Is 

1 

2 + 0.1s 

K 
E5.5 Consider the svstem with transfer function 

s + a 
Find the expression for step response y(t) and tabulate 
the values of y(t) for t = 0 ,1 ,2 ,3 , . . , . 10s for 

(a) K=l, a = l 
(b) K-l, a = 0.5 
(c) K=2, fl = l 

E5.6 Effective control of insulin injections can result in 
better lives for diabetic persons. Automatically con
trolled insulin injection by means of a pump and a 
sensor that measures blood sugar can be very effec
tive. A pump and injection system has a feedback con
trol as shown in Figure E5.6. Calculate the suitable 
gain K so that the overshoot of the step response due 
to the drug injection is approximately 7%. R(s) is the 
desired blood-sugar level and Y(s) is the actual blood-
sugar level. (Hint: Use Figure 5.13a.) 
Answer: K - 1.67 

E5.7 Consider a system with transfer function 

H*) = _ 4 
/?(.*) s2 + bs + 4 

Find the damping ratio, percentage overshoot and 
settling time and expression for step response if 

(a) 6 = 2 
(b) b = A 
(c) 6 = 8 

E5.8 Transfer function of a TT order system is given by 

K 

(b) 

Y(s) 

U(s) ~ s2 + Ms + K 

Find K and M such that percentage overshoot is 10% 
and settling time is 2 s. 

FIGURE E5.3 I evirated train control. 
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FIGURE 5.6 
Blood-sugar level 
control. 

Pump 

K 
Insulin 

Sensor 

1 

Human body 

5 + 2 

5(5+ 1) 

Y{s) 

level 

E5.9 A second-order control system has the closed-loop 
transfer function T(s) = Y(s)/R(s). The system spec
ifications for a step input follow: 

(1) Percent overshoot P.O. s 5%. 
(2) Settling time % < 4s. 
(3) Peak time Tp < ts. 

Show the permissible area for the poles of T(s) in 
order to achieve the desired response. Use a 2% set
tling criterion to determine settling time. 

E5.10 Consider the system with integral controller shown 
in Figure E5.10. 

(a) If K/ = 1, find steady-state error to a step input, 
steady-state error to a ramp input and percentage 
overshoot. 

(b) Find Ks such that steady-state error to a ramp 
input is less than or equal to 0.125 with best possi
ble percentage overshoot. 

(c) For the Kj value obtain in (b) find percentage 
overshoot. 

(d) What is the effect of increasing K/ on percentage 
overshoot? 

ES.ll We are all familiar with the Ferris wheel featured at 
state fairs and carnivals. George Ferris was born in 

+ fcfS^ -

Controller 

s 

Plant 

4 
5 + 2 

Galesburg, Illinois, in 1859; he later moved to Nevada 
and then graduated from Rensselaer Polytechnic Insti
tute in 1881. By 1891, Ferris had considerable experi
ence with iron, steel, and bridge construction. He 
conceived and constructed his famous wheel for the 
1893 Columbian Exposition in Chicago [9]. To avoid 
upsetting passengers, set a requirement that the steady-
state speed must be controlled to within 5% of the 
desired speed for the system shown in Figure ES.ll. 

(a) Determine the required gain K to achieve the 
steady-state requirement. 

(b) For the gain of part (a), determine and plot the 
error e(t) for a disturbance Td(s) = 1/s. Does the 
speed change more than 5%? (Set R(s) = 0 and 
recall that E(s) = R(s) - T(s).) 

E5.12 The percentage overshoot and time required for 
the system to settle within 2% of the final value (Ts) of 
three II order system are given below. Find the closed 
loop poles of the three systems. 

(a) P. 0 . = 10% Ts = 4s 
(b) P. 0 .= 10% Ts = 8s 
(c) P.O.= l% Ts = 4s 

E5.13 A feedback system is shown in Figure E5.13. 
(a) Determine the steady-state error for a unit step 

when K = 0.4 and Gp(s) = 1. 
(b) Select an appropriate value for Gp(s) so that the 

steady-state error is equal to zero for the unit step 
input. 

E5.14 A closed-loop control system has a transfer func
tion T(s) as follows: 

FIGURE E5.10 Integral controller. 

Y(s) 

R(s) 
= T{s) = 

500 

(s + 10)(.v2 + 105 + 50) 

FIGURE E5.11 
Speed control of a 
Ferris wheel. 

Desired 
^peed 

Controller 

5 + 9 

Disturbance 

Wheel and 
motor dynamics 

5 + 6 
(s + 2)(5 + 4) 

K(s) 
- • Speed of 

rotation 
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Rix) Gp(s) 
+ r~^ 
_ , . 

K 
s(s + 2) 

.v + 3 

(5 + 0.1) 

YU) 

FIGURE E5.13 Feedback system. 

Plot >>(r) for a step input R(s) when (a) the actual T(s) 
is used, and (b) using the relatively dominant complex 
poles. Compare the results. 

E5.15 A second-order system is 

Y(s) 

R(s) 
= 7-(5) = 

(10A)(J + z) 

(5 + 1)(5 + 8 ) ' 

Consider the case where 1 < z < 8. Obtain the par
tial fraction expansion, and plot y(t) for a step input 
r(t) for z = 2,4, and 6. 

E5.16 A closed-loop control system transfer function T(s) 
has two dominant complex conjugate poles. Sketch the 
region in the left-hand .y-plane where the complex poles 
should be located to meet the given specifications. 

(a) 0.6 £ f £ 0.8. co„ < 10 
(b) 0.5 < £ < 0.707. con > 10 
(c) £ > 0.5, 5 < w„ < 10 
(d) £ < 0.707, 5 < (o„ ^ 10 
(e) f > 0.6. to,, < 6 

E5.17 A system is shown in Figure E5.17(a). The response 
to a unit step, when K = 1, is shown in Figure 
E5.17(b). Determine the value of Kso that the steady-
state error is equal to zero. 

Answer: K = 1.25. 

E5.18 A second-order system has the closed-loop trans
fer function 

T(s) = 
Y(s) <oJ, _ 7 

R(s) s2 + 2Ccons + co2„ s2 + 3.1755 + 7* 

(a) Determine the percent overshoot P.O., the time 
to peak 7̂ ,, and the settling time Ts of the unit step 
response, R(s) = 1/5. To compute the settling 
time, use a 2% criterion. 

(b) Obtain the system response to a unit step and ver
ify the results in part (a). 

Ris) K G(s) •* • Y{\) 

(a) 

+• t 

(b) 

FIGURE 5.17 Feedback system with prefilter. 

E5.19 Consider the closed-loop system in Figure E5.19, 
where 

Gc(s)G(s) = 
s + 1 

s2 + 03s 
and H(s) = K„. 

(a) Determine the closed-loop transfer function 
7-(5) = Y(s)/R(s). 

(b) Determine the steady-state error of the closed-loop 
system response to a unit ramp input, R(s) - 1/s2-

(c) Select a value for K„ so that the steady-state error 
of the system response to a unit step input, 
R(s) = 1/5, is zero. 

/?(.s) • O 5 + 1 
s2 + 3s 

K„ 

+-YIS) 

FIGURE E5.19 Nonunity closed-loop feedback control 
system with parameter Ka. 
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PROBLEMS 

P5.1 An important problem for television systems is 
the jumping or wobbling of the picture due to the 
movement of the camera. This effect occurs when 
the camera is mounted in a moving truck or air
plane. The Dynalens system has been designed to 
reduce the effect of rapid scanning motion; see 

Torque motor 

Camera 

T 

(a) 

Camera 
speed 

Rate gyro 

+ r~\ 
— i . 

Amplifier 

K 

Motor 

&m 
5 T m + l 

Tachometer 

"/ 

vb 
Bellows 

speed 

fb) 

FIGURE P5.1 Camera wobble control. 

Figure P5.1. A maximum scanning motion of 25°/s is 
expected. Let Kg = K, = 1 and assume that rg is 
negligible, (a) Determine the error of the system 
F.(s). (b) Determine the necessary loop gain 
KaKmK, when a l°/s steady-state error is allowable. 
(c) The motor time constant is 0.40 s. Determine the 
necessary loop gain so that the settling time (to 
within 2% of the final value of vh) is less than or 
equal to 0.03 s. 

P5.2 A specific closed-loop control system is to be 
designed for an underdamped response to a step 
input. The specifications for the system are as 
follows: 

10% < percent overshoot < 20%, 
Settling time < 0.6 s. 

(a) Identify the desired area for the dominant roots 
of the system, (b) Determine the smallest value of a 

third root r3 if the complex conjugate roots are to 
represent the dominant response, (c) The closed-
loop system transfer function 7(,T) is third-order, and 
the feedback has a unity gain. Determine the for
ward transfer function G(.v) = Y(s)/E(s) when the 
settling time to within 2% of the final value is 0.6 s 
and the percent overshoot is 20%. 

P5.3 A laser beam can be used to weld, drill, etch, cut, and 
mark metals, as shown in Figure P5.3(a) [16]. Assume 
we have a work requirement for an accurate laser to 
mark a parabolic path with a closed-loop control sys
tem, as shown in Figure P5.3(b). Calculate the neces
sary gain to result in a steady-state error of 5 mm for 
r{t) - t1 cm. 

P5.4 The final value of step response of a II order system 
is unity and percentage overshoot is 9%. If the step 
response settled in 2 s, find the transfer function of 
the system. Also find the poles of the system. 

P5.5 A space telescope is to be launched to carry out 
astronomical experiments [9]. The pointing control 
system is desired to achieve 0.01 minute of arc and 
track solar objects with apparent motion up to 0.21 
arc minute per second. The system is illustrated in 
Figure P5.5(a). The control system is shown in 
Figure P5.5(b). Assume that TX = 1 second and 

Laser 
cavity 

Mirror 

Focusing lens 

Nozzle assembly 

Beam 

Workpiece 

(a) 

R{s) M 
K_ 

S" 
• * • > ' ( v ) 

(b) 

FIGURE P5.3 Laser beam control. 
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Cround 
station 

(a) 

FIGURE P5.5 
(a) The space 
telescope, (b) The 
space telescope 
pointing control 
system. 

Input 

+.n . -V I 

Controller 

K2(T]S + 1) 

T2S + 1 

Process 

s2 

Y(s) 

ansle 

(b) 

T2 = 0 (an approximation), (a) Determine the gain 
K = K\K2 required so that the response to a step 
command is as rapid as reasonable with an over
shoot of less than 5%. (b) Determine the steady-
state error of the system for a step and a ramp 
input, (c) Determine the value of K\K2 for an ITAE 
optimal system for (1) a step input and (2) a ramp 
input. 

P5.6 A robot is programmed to have a tool or welding 
torch follow a prescribed path [8, 13]. Consider a 
robot tool that is to follow a sawtooth path, as 
shown in Figure P5.6(a). The transfer function of 
the plant is 

G(s) = 
75(s + 1) 

s(s + 5)(s + 20) 

0 10 20 30 40 
Time (s) 

(a) 

R(s) 
Y(s) 

> Path 
trajectory 

(b) 

for the closed-loop system shown in Figure 5.6(b). 
Calculate the steady state error. 

FIGURE P5.6 Robot path control. 
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P5.7 Astronaut Bruce McCandless II took the first unteth-
ered walk in space on February 7,1984, using the gas-jet 
propulsion device illustrated in Figure P5.7(a). The 
controller can be represented by a gain K2, as shown in 
Figure P5.7(b).The moment of inertia of the equipment 
and man is 25 kg m . (a) Determine the necessary gain 
/¾ to maintain a steady-state error equal to 1 cm when 
the input is a ramp r(t) = t (meters), (b) With this gain 
K3, determine the necessary gain K[K2 in order to re
strict the percent overshoot to 10%. (c) Determine ana
lytically the gain K.\K% in order to minimize the ISE 
performance index for a step input. 

P5.8 Photovoltaic arrays (solar cells) generate a DC volt
age that can be used to drive DC motors or that can be 
converted to AC power and added to the distribution 
network. It is desirable to maintain the power out of 
the array at its maximum available as the solar inci
dence changes during the day. One such closed-loop 
system is shown in Figure P5.8. The transfer function 
for the process is 

G(s) = 
K 

s + 10' 

where K = 20. Find (a) the time constant of the 
closed-loop system and (b) the settling time to within 
2% of the final value of the system when disturbances 
such as clouds occur. 

P5.9 The antenna that receives and transmits signals to 
the Telstar communication satellite is the largest horn 
antenna ever built. The microwave antenna is 177 ft 
long, weighs 340 tons, and rolls on a circular track. A 
photo of the antenna is shown in Figure P5.9. The 
Telstar satellite is 34 inches in diameter and moves 
about 16,000 mph at an altitude of 2500 miles. The 
antenna must be positioned accurately to 1/10 of a de
gree, because the microwave beam is 0.2° wide and 
highly attenuated by the large distance. If the antenna 
is following the moving satellite, determine the Kt 

necessary for the system. 

P5.10 A speed control system of an aimature-controlled 
DC motor uses the back emf voltage of the motor as a 
feedback signal, (a) Draw the block diagram of this sys
tem (see Equation (2.69)). (b) Calculate the steady-state 
error of this system to a step input command setting the 
speed to a new level. Assume that Ra = La = J = 
b = 1, the motor constant is Km = 1, and Kb = 1. (c) 

FIGURE P5.7 
Astronaut Bruce 
McCandless II is 
shown a few meters 
away from the 
earth-orbiting 
space shuttle. He 
used a nitrogen-
propelled hand-
controlled device 
called the manned 
maneuvering unit. 
(Courtesy of 
National 

Aeronautics and 
Space 
Administration.) 
(b) Block diagram of 
controller. 

(a) 

Astronaut 

Rfa) 
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position pr K\ 
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Gas jet 
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Velocity 1 
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Position 
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FIGURE P5.8 
Solar cell control. 
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FIGURE 5.9 A model of the antenna for the Telstar 
System at Andover, Maine. (Photo coudesy of Bell 
Telephone Laboratories, Inc.) 

Select a feedback gain for the back emf signal to yield a 
step response with an overshoot of 15%. 

P5.ll A simple unity feedback control system has a 
process transfer function 

E(s) > s 

The system input is a step function with an amplitude 
A. The initial condition of the system at time to is 
)'(h) - Q-. where y(t) is the output of the system. The 
performance index is defined as 

P5.12 Train travel between cities will increase as trains are 
developed that travel at high speeds, making the travel 
time from city center to city center equivalent to airline 
travel time. The Japanese National Railway has a train 
called the Bullet Express that travels between Tokyo 
and Osaka on the Tokaido line.This train travels the 320 
miles in 3 hours and 10 minutes, an average speed of 101 
mph [20]. This speed will be increased as new systems 
are used, such as magnetically levitated systems to float 
vehicles above an aluminum guideway. To maintain a 
desired speed, a speed control system is proposed that 
yields a zero steady-state error to a ramp input. A third-
order system is sufficient. Determine the optimum sys
tem transfer function T(s) for an ITAE performance 
criterion. Estimate the settling time (with a 2% criteri
on) and overshoot for a step input when co„ — 10. 

P5.13 We want to approximate a fourth-order system by 
a lower-order model.The transfer function of the orig
inal system is 

= 53 + 752 + 24s + 24 

54 + 1053 + 3552 -\ 50s + 24 
_ 53 4- 7.r + 245 + 24 

" (S +1 ) (5 + 2)(5 + 3)(5 + 4)' 

Show that if we obtain a second-order model by the 
method of Section 5.8, and we do not specify the poles 
and the zero of L(.v), we have 

L(s) = 
0.29175 + 1 

I = e2(t) dt. 

(a) Show that / = ( / 1 - Q)7/(2K). (b) Determine 
the gain K that will minimize the performance index I. 
Is this gain a practical value? (c) Select a practical 
value of gain and determine the resulting value of the 
performance index. 

0.39952 + 1.3755 + 1 

0.731(5 + 3.428) 

" (s + 1.043)(5 -t 2.4)* 

P5.14 For the original system of Problem P5.13, we want 
to find the lower-order model when the poles of the 
second-order model are specified as - 1 and - 2 and 
the model has one unspecified zero. Show that this 
low-order model is 

L(s) = 
0.9865 + 2 0.986(5 + 2.028) 

52 + 35 + 2 (5 + 1)(5 + 2) ' 

http://P5.ll
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P5.15 A magnetic amplifier with a low-output impedance 
is shown in Figure P5.15 in cascade with a low-pass fil
ter and a preamplifier. The amplifier has a high-input 
impedance and a gain of 1 and is used for adding the 
signals as shown. Select a value for the capacitance C 
so that the transfer function V0(s)/V-in(s) has a damp
ing ratio of 1 /V2. The time constant of the magnetic 
amplifier is equal to 1 second, and the gain is K — 10. 
Calculate the settling time (with a 2% criterion) of the 
resulting system. 

P5.16 Electronic pacemakers for human hearts regulate 
the speed of the heart pump. A proposed closed-loop 
system that includes a pacemaker and the measure
ment of the heart rate is shown in Figure P5.16 [2,3]. 
The transfer function of the heart pump and the pace
maker is found to be 

G(s) = 
K 

s(s/n + i)' 

Design the amplifier gain to yield a system with a set
tling time to a step disturbance of less than 1 second. 
The overshoot to a step in desired heart rate should be 
less than 10%. (a) Find a suitable range of K. (b) If the 
nominal value of K is K = 10, find the sensitivity of 
the system to small changes in K. (c) Evaluate the sen
sitivity of part (b) at DC (set s = 0). (d) Evaluate the 
magnitude of the sensitivity at the normal heart rate 
of 60 be ats/min u te. 

P5.17 Consider the original third-order system given in 
Example 5.9. Determine a first-order model with one 
pole unspecified and no zeros that will represent the 
third-order system. 

P5.18 A closed-loop control system with negative unity 
feedback has a plant with a transfer function 

G{s) = 
s(s2 + 6s + 12) 

(a) Determine the closed-loop transfer function T(s). 
(b) Determine a second-order approximation for T(s) 
using the method of Section 5.10. (c) Plot the response 
of T(s) and the second-order approximation to a unit 
step input and compare the results. 

P5.19 A system is shown in Figure P5.19. 

(a) Determine the steady-state error for a unit step 
input in terms of K and Kit where E(s) = 
R(s) - Y(s). 

(b) Select Kx so that the steady-state error is zero. 

P5.20 Consider the closed-loop system in Figure P5.20. 
Determine values of the parameters k and a so that 
the following specifications are satisfied: 

(a) The steady-state error to a unit step input is zero. 
(b) The closed-loop system has a percent overshoot 

of less than 5%. 

W ° 
FIGURE P5.15 
Feedback amplifier. 
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FIGURE P5.16 
Heart pacemaker. 
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R(x) 

FIGURE P5.19 System with pregain, /\v 

*• V(v) 
(a) If T — 2.43, determine the value of K such that 

the steady-state error of the closed-loop system 
response to a unit step input, R(s) = 1/s, is zero. 

(b) Determine the percent overshoot P.O. and the 
time to peak Tp of the unit step response when K 
is as in part (a). 

1 

S + 2k 

1 
s + a 

+ Y{s) 

R(s] 
+>p 

. 
2 

s + 0.2K 

2 
2s + r 

FIGURE P5.20 Closed-loop system with 
parameters k and a. 

P5.21 Consider the closed-loop system in Figure P5.21, 
where 

FIGURE P5.21 Nonunity closed-loop feedback control 
system. 

Gc(s)G{s) = 
s f 0.2K 

and H(s) = 
2s + T 

ADVANCED PROBLEMS 

AP5.1 A closed-loop transfer function is 

T(s) = 
96(s + 3) Y(s) 

R(s) (5 + 8)(s2 + 8s + 36)' 

(a) Determine the steady-state error for a unit step 
input R(s) = 1/s. 

(b) Assume that the complex poles dominate, and 
determine the overshoot and settling time to 
within 2% of the final value. 

(c) Plot the actual system response, and compare it 
with the estimates of part (b). 

AP5.2 A closed-loop system is shown in Figure AP5.2. 
Plot the response to a unit step input for the system 
for T . = 0, 0.05,0.1, and 0.5. Record the percent over
shoot, rise time, and settling time (with a 2% criterion) 
as Tj, varies. Describe the effect of varying TZ. Com
pare the location of the zero - 1 / T , with the location 
of the closed-loop poles. 

R(s) 
5440(7-,5 + 1) 

s(s2 + 28.v + 432) 
•+• Y(s) 

FIGURE AP5.2 System with a variable zero. 

AP5.3 A closed-loop system is shown in Figure AP5.3. 
Plot the response to a unit step input for the system 
with Tp = 0, 0.5, 2, and 5. Record the percent over
shoot, rise time, and settling time (with a 2% criterion) 
as Tp varies. Describe the effect of varying rp. Com
pare the location of the open-loop pole -l/rp with 
the location of the closed-loop poles. 

1 

s(s + 2)(rns + 1) 
• • Y{s) 

FIGURE AP5.3 System with a variable pole in the process. 
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AP5.4 The speed control of a high-speed train is repre
sented by the system shown in Figure AP5.4 [20]. 
Determine the equation for steady-state error for K 
for a unit step input r{t). Consider the three values for 
K equal to 1,10, and 100. 

(a) Determine the steady state error. 

(b) Determine and plot the response y(t) for (i) a unit 
step input R(s) - l/s and (ii) a unit step distur
bance input Td(s) = 1/s. 

(c) Create a table showing overshoot, settling time 
(with a 2% criterion), ess for r(t), and \y/t(/\mm for 
the three values of K. Select the best compromise 
value. 

Disturbance 
'I'M) 

FIGURE AP5.4 
Speed control. 

Speed 

AP5.5 A system with a controller is shown in Figure 
AP5.5. The zero of the controller may be varied. Let 
a ~ 0,10,100. 

(a) Determine the steady-state error for a step input 
r{t) for or = 0 and a * 0. 

(b) Plot the response of the system to a step input dis
turbance for the three values of a. Compare the 
results and select the best value of the three val
ues of a. 

Ris) 

FIGURE AP5.5 
System with control 
parameter a. 

Controller 

s + a 

Disturbance 

O 
Plant 

50(.v + 2) 

(* + 3)(* + 4) 
•*• Y(s) 

AP5.6 The block diagram model of an armature-current-
controlled DC motor is shown in Figure AP5.6. 

(a) Determine the steady-state tracking error to a 
ramp input r(t) = t,t S: 0, in terms of K, Kh, and 
K,„. 

(b) Let Km = 10 and Kh = 0.05, and select K so that 
steady-state tracking error is equal to 1. 

(c) Plot the response to a unit step input and a unit 
ramp input for 20 seconds. Are the responses 
acceptable? 

Ris) 

FIGURE AP5.6 
DC motor control. 

DC motor 

Km 

s + 0.01 

K» 

-*• ns) 
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AP5.7 Consider the closed-loop system in Figure AP5.7 
with transfer functions 

GM -
100 

where 

S + 100 
and G[s) = 

K 
s(s + 50)' 

1000 < K < 5000. 

• >"(s) 

FIGURE AP5.7 Closed-loop system with unity feedback. 

(a) Assume that the complex poles dominate and 
estimate the settling tune and percent overshoot 
to a unit step input for K ~ 1000, 2000, 3000, 
4000, and 5000. 

(b) Determine the actual settling time and percent 
overshoot to a unit step for the values of K in part 
(a). 

(c) Co-plot the results of (a) and (b) and comment. 

AP5.8 A unity negative feedback system (as shown in 
Figure E5.10) has the open-loop transfer function 

<?(*)-
K(s2 + 120s + 110) 

s2 + 5s +• 6 

Determine the gain K that minimizes the damping 
ratio f of the closed-loop system poles. What is the 
minimum damping ratio? 

DESIGN PROBLEMS 

CDP5.1 The capstan drive system of the previous problems 
r \\ (see CDP1.1-CDP4.1) has a disturbance due to changes 
^ fj in the part that is being machined as material is removed. 

The controller is an amplifier Gc(s) = K„. Evaluate the 
effect of a unit step disturbance, and determine the best 
value of the amplifier gain so that the overshoot to a step 
command r{t) — A, t > 0 is less than 5%, while reduc
ing the effect of the disturbance as much as possible. 

DP5.1 The roll control autopilot of a jet fighter is shown in 
Figure DPS.1. The goal is to select a suitable K so that 
the response to a unit step command 4><i(t) = / 1 , / s 0, 

will provide a response <f>(t) that is a fast response and 
has an overshoot of less than 20%. (a) Determine the 
closed-loop transfer function <p(s)/^(s). (b) Deter
mine the roots of the characteristic equation for 
K = 0.7, 3, and 6. (c) Using the concept of dominant 
roots, find the expected overshoot and peak time for 
the approximate second-order system, (d) Plot the 
actual response and compare with the approximate 
results of part (c). (e) Select the gain K so that the per
centage overshoot is equal to 16%. What is the result
ing peak time? 

*(/(.v). 

FIGURE DP5.1 
Roll angle control. 

Aileron actuator 

A' 
s + 7 

Aircraft dynamics 

12.2 
s{s + 2.2) 

Gyro 

k — 1 
•» ' 

<Rv) 
Roll angle 

DP5.2 The design of the control for a welding arm with a 
long reach requires the careful selection of the para
meters [13]. The system is shown in Figure DP5.2, 
where £ = 0.2, and the gain K and the natural fre
quency o)n can be selected, (a) Determine K and co„ so 
that the response to a unit step input achieves a peak 

time for the first overshoot (above the desired level of 
1) that is less than or equal to 1 second and the over
shoot is less than 5%. {Hint: Try 0.1. < Kfa>n < 0.3.) 
(b) Plot the response of the system designed in part 
(a) to a step input. 
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FIGURE DP5.2 
Welding tip position 
control. 

DP5.3 Active suspension systems for modern automo
biles provide a comfortable firm ride. The design of an 
active suspension system adjusts the valves of the 
shock absorber so that the ride fits the conditions. A 
small electric motor, as shown in Figure DP5.3, 
changes the valve settings [15]. Select a design value 

. 

Actuator and 
amplifier 

K 
s 

Arm 
dynamics 

4 
s + 2g(ons + co„ 

Y(s) 

position 

for K and the parameter q in order to satisfy the 1TAE 
performance for a step command R(s) and a settling 
time (with a 2% criterion) for the step response of less 
than or equal to 0.5 second. Upon completion of your 
design, predict the resulting overshoot for a step 
input. 

FIGURE DP5.3 
Active suspension 
system. 

/?(•;) 
Command 

-In—* 

1 
Amplifier 
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s{s + q) position 

DP5.4 The space satellite shown in Figure DP5.4(a) uses 
a control system to readjust its orientation, as shown 
in Figure DP5.4(b). 
(a) Determine a second-order model for the closed-

loop system. 

(b) Using the second-order model, select a gain K so 
that the percent overshoot is less than 15% and 
the steady-state error to a step is less than 12%. 

(c) Verify your design by determining the actual per
formance of the third-order system. 

(a) 

FIGURE DP5.4 
Control of a space 
satellite. 

/?(.vl • 

-y 
K 

^ 

Gc(s) 
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a-+ 70 
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10 
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Y(s) 

orientation 
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DP5.5 A deburring robot can be used to smooth off ma
chined pans by following a preplanned path (input 
command signal). In practice, errors occur due to 
robot inaccuracy, machining errors, large tolerances, 
and tool wear. These errors can be eliminated using 
force feedback to modify the path online [9,13]. 

While force control has been able to address the 
problem ofaccuracy.it has been more difficult to solve 

the contact stability problem. In fact, by closing the 
force loop and introducing a compliant wrist force 
sensor (the most common type of force control), one 
can add to the stability problem. 

A model of a robot deburring system is shown in 
Figure DP5.5. Determine the region of stability for the 
system for /¾ and K2. Assume both adjustable gains 
are greater than zero. 

FIGURE DP5.5 
Deburring robot. 

x"(s) ~k_ 
input 

Desired H^ 
force - > 

"> . 
) * 

K, 
"M 

K2 

+ r~\ 
_ i , 

Force sensor 

m 
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s{s + 1) 

—2 

s + 2 

X{.v) 

position 

/-(s) 

force 

DP5.6 The mode] for a position control system using a 
DC motor is shown in Figure DP5.6. The goal is to 
select Kx and K2 so that the peak time is 0.2 second 
and the overshoot P.O. for a step input is negligible 
(1% < P.O. < 4%). 

• Y\s) 

FIGURE DP5.6 Position control robot. 

COMPUTER PROBLEMS 

CP5.1 In a power system, if the power demand PD 

increases suddenly, the speed of turbine driving the al
ternator will decrease and hence frequency of power 
supply also will decrease. Hence, a speed governor is 
usually employed at the input of the turbine. The 
speed governor will increase the fuel input when the 
frequency decreases and vice-versa. A block diagram 
of a linearised model of an isolated power system is 

shown in Figure CP5.1. Simulate the system using 
SIMULINK and obtain the response for 20^ when, 

(a) ft = 2.5 APc = 0 APD = 0.1u(t). 
(b) R = 1.5 APc = 0 APD = 0.lu(t). 
(c) 8 = 2 . 5 APc = 0.lu(t) APo = 0.1u(r). 

Note: u{t) denotes unit step function. 

http://ofaccuracy.it
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FIGURE CP5.1 
Power System 
Control. 

APc ^ 
?\ i 

GOVERNOR 

1 

1 + 0.85 
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1 

+ 0.5s 

I 
R 
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1 + 20.s 

A/ 

CP5.2 A unity negative feedback system has the open-
loop transfer function 

G(s) 
s + 7 

s2(s + 10) 

Using Isim, obtain the response of the closed-loop 
system to a unit ramp input, 

R(s) = 1/s2. 

Consider the time interval 0 
steady-state error? 

( £ 2 5 . What is the 

CP5.3 (a) Obtain the step response of the system given 
in Figure CP5.3(a) using MATLAB. 
(b) Obtain the step response of the system with an 

additional pole given in Figure CP5.3(b) if p = 2. 
(c) Repeat (b) if p = 20. 
(d) Compare (a) and (b). 
(e) Compare (a) and (c). 

4 

s2 + 2s + 4 

p 

S + p 

4 

s2 + 2s + 4 

(a) 

(b) 

FIGURE CP5.3 
(a) A second-order system. 
(b) A second-order system with additional pole. 

CP5.4 Consider the control system shown in Figure 
CP5.4. 

(a) Show analytically that the expected percent over
shoot of the closed-loop system response to a unit 
step input is about 50%. 

(b) Develop an m-file to plot the unit step response 
of the closed-loop system and estimate the per
cent overshoot from the plot. Compare the result 
with part (a). 

CP5.5 A unity feedback system is having an open-loop 
9 

transfer function — -. Using MATLAB find, 
s(s + 3) & 

(a) Impulse response. 
(b) Step response. 
(c) Ram response. 

CP5.6 An autopilot designed to hold an aircraft in 
straight and level flight is shown in Figure CP5.6. 

(a) Suppose the controller is a constant gain con
troller given by Gc(s) = 2. Using the Isim func
tion, compute and plot the ramp response for 
dd(t) = at, where a = 0.5°/s. Determine the atti
tude error after 10 seconds. 

(b) If we increase the complexity of the controller, we 
can reduce the steady-state tracking error. With 
this objective in mind, suppose we replace the 
constant gain controller with the more sophisti
cated controller 

K2 1 
Gc(s) = K} + — = 2 + - . 

s s 

FIGURE CP5.4 
A negative feedback 
control system. 

/?(.v) O— 
Controller 

21 
s 

Process 
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s + 2 
•*• K(.v) 
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This type of controller is known as a proportional, 
integral (PI) controller. Repeat the simulation of part 
(a) with the PI controller, and compare the steady-
state tracking errors of the constant gain controller 
versus the PI controller. 

CP5.7 The block diagram of a rate loop for a missile autopi
lot is shown in Figure CP5.7. Using the analytic formu 
las for second-order systems, predict Mpl, Tp, and T, 
for the closed-loop system due to a unit step input. 
Compare the predicted results with the actual unit 
step response obtained with the step function. Explain 
any differences. 

CP5.8 Develop an m-file that can be used to analyze 
the closed-loop system in Figure CP5.8. Drive the 
system with a step input and display the output on a 
graph. What is the settling time and the percent 
overshoot? 

CP5.9 Develop an m-file to simulate the response of the 
system in Figure CP5.9 to a ramp input R(s) = l/s2. 
What is the steady-state error? Display the output on 
an x-y graph. 

CP5.10 Consider the closed-loop system in Figure 
CP5.10. Develop an m-file to accomplish the following 
tasks: 
(a) Determine the closed-loop transfer function 

T(s) = Y(s)/R(s), 
(b) Plot the closed-loop system response to an im

pulse input R(s) = 1, a unit step input R(s) = 
l/s, and a unit ramp input R(s) = l/s2. 
Use the subplot function to display the three sys
tem responses. 

FIGURE CP5.6 
An aircraft autopilot 
block diagram. 
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FIGURE CP5.7 
A missile rate IOOD 
autopilot. 
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FIGURE CP5.8 Nonunity feedback system. 
FIGURE CP5.9 Closed-loop system for Simulink 
simulation. 
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Rls) 

(a) 

FIGURE CP5.10 
A single loop unity 
feedback system. 
(a) Signal flow 
graph, (b) Block 
diagram. 
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CP5.11 A closed-loop transfer function is given by 

Y(s) 77(5 + 2) 
T(s) = 

R(s) (s + 7)(52 + 4s + 22)' 

(a) Obtain the response of the closed-loop transfer 
function T(s) = Y(s)/R(s) to a unit step input. 
What is the settling time Ts (use a 2% criterion) 
and percent overshoot P. 0.1 

(b) Neglecting the real pole at s = - 7 , determine the 
settling time 7̂  and percent overshoot £ 0 . . Com
pare the results with the actual system response in 
part (a). What conclusions can be made regarding 
neglecting the pole? 

TERMS AND CONCEPTS 

Acceleration error constant, Ka The constant evaluated 

as )2¾ Is Gc(s)G\s)\. The steady-state error for a para

bolic input, r{t) = At1 jl, is equal to A/Ka. 

Design specifications A set of prescribed performance 
criteria. 

Dominant roots The roots of the characteristic equation 
that cause the dominant transient response of the 
system. 

Optimum control system A system whose parameters 
are adjusted so that the performance index reaches 
an extremum value. 

Peak time The time for a system to respond to a step 
input and rise to a peak response. 

Percent overshoot The amount by which the system out
put response proceeds beyond the desired response. 

Performance index A quantitative measure of the perfor
mance of a system. 
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Position error constant, K„ The constant evaluated as 

]SJ)<JC(S)G(,9). The steady-state error for a step input 

(of magnitude A) is equal to A/{\ + Kp). 

Rise time The time for a system to respond to a step input 
and attain a response equal to a percentage of the 
magnitude of the input. The 0-100% rise time, Tr, 
measures the time to 100% of the magnitude of the 
input. Alternatively, Tr> measures the time from 10% 
to 90% of the response to the step input. 

Settling time The time required for the system output 
to settle within a certain percentage of the input 
amplitude. 

Steady-state response The constituent of the system 
response that exists a long time following any signal 
initiation. 

Test input signal An input signal used as a standard test 
of a system's ability to respond adequately. 

Transient response The constituent of the system response 
that disappears with time. 

Type number The number N of poles of the transfer func
tion, Gc(s)G(s), at the origin. Gr(s)G(s) is the loop 
transfer function. 

Unit impulse A test input consisting of an impulse of infi
nite. amplitude and zero width, and having an area of 
unity.The unit impulse is used to determine the impulse 
response. 

Velocity error constant, Ku The constant evaluated as 

;SO[*C?C(J)C(J)J- The steady-state error for a ramp 

input (of slope ^4) for a system is equal to A/Kv. 
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PREVIEW 

Stability of closed-loop feedback systems is central to control system design. A stable 
system should exhibit a bounded output if the corresponding input is bounded. This 
is known as bounded-input-bounded-output stability and is one of the main topics of 
this chapter. The stability of a feedback system is directly related to the location of 
the roots of the characteristic equation of the system transfer function and to the 
location of the eigenvalues of the system matrix for a system in state variable format. 
The Routh-Hurwitz method is introduced as a useful tool for assessing system stabil
ity. The technique allows us to compute the number of roots of the characteristic 
equation in the right half plane without actually computing the values of the roots. 
This gives us a design method for determining values of certain system parameters 
that will lead to closed-loop stability. For stable systems, we will introduce the notion 
of relative stability, which allows us to characterize the degree of stability. The chap
ter concludes with a stabilizing controller design based on the Routh-Hurwitz 
method for the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 6, students should: 

H Understand the concept of stability of dynamic systems. 
_) Be aware of the key concepts of absolute and relative stability. 
3 Be familiar with the notion of bounded-input, bounded-output stability. 
U Understand the relationship of the s-plane pole locations (for transfer function models) 

and of the eigenvalue locations (for state variable models) to system stability. 
D Know how to construct a Routh array and be able to employ the Routh-Hurwitz 

stability criterion to determine stability. 
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Chapter 6 The Stability of Linear Feedback Systems 

THE CONCEPT OF STABILITY 

When considering the design and analysis of feedback control systems, stability is of 
the utmost importance. From a practical point of view, a closed-loop feedback system 
that is unstable is of little value. As with all such general statements, there are excep
tions; but for our purposes, we will declare that all our control designs must result in 
a closed-loop stable system. Many physical systems are inherently open-loop unsta
ble, and some systems are even designed to be open-loop unstable. Most modern 
fighter aircraft are open-loop unstable by design, and without active feedback control 
assisting the pilot, they cannot fly. Active control is introduced by engineers to stabi
lize the unstable system—that is, the aircraft—so that other considerations, such as 
transient performance, can be addressed. Using feedback, we can stabilize unstable 
systems and then with a judicious selection of controller parameters, we can adjust 
the transient performance. For open-loop stable systems, we still use feedback to 
adjust the closed-loop performance to meet the design specifications. These specifi
cations take the form of steady-state tracking errors, percent overshoot, settling time, 
time to peak, and the other indices discussed in Chapters 4 and 5. 

We can say that a closed-loop feedback system is either stable or it is not stable. 
This type of stable/not stable characterization is referred to as absolute stability. A sys
tem possessing absolute stability is called a stable system—the label of absolute is 
dropped. Given that a closed-loop system is stable, we can further characterize the 
degree of stability. This is referred to as relative stability. The pioneers of aircraft design 
were familiar with the notion of relative stability—the more stable an aircraft was, the 
more difficult it was to maneuver (that is, to turn). One outcome of the relative insta
bility of modern fighter aircraft is high maneuverability. A fighter airc/af t is less stable 
than a commercial transport, hence it can maneuver more quickly. In fact, the motions 
of a fighter aircraft can be quite violent to the "passengers." As we will discuss later in 
this section, we can determine that a system is stable (in the absolute sense) by deter
mining that all transfer function poles lie in the left-half s-plane, or equivalently, that all 
the eigenvalues of the system matrix A lie in the left-half s-plane. Given that all the 
poles (or eigenvalues) are in the left-half s-plane, we investigate relative-stability by 
examining the relative locations of the poles (or eigenvalues). 

A stable system is defined as a system with a bounded (limited) system response. 
That is, if the system is subjected to a bounded input or disturbance and the response 
is bounded in magnitude, the system is said to be stable. 

A stable system is a dynamic system with a bounded response 
to a bounded input. 

The concept of stability can be illustrated by considering a right circular cone 
placed on a plane horizontal surface. If the cone is resting on its base and is tipped 
slightly, it returns to its original equilibrium position. This position and response are 
said to be stable. If the cone rests on its side and is displaced slightly, it rolls with no ten
dency to leave the position on its side. This position is designated as the neutral stabili
ty. On the other hand, if the cone is placed on its tip and released, it falls onto its side. 
This position is said to be unstable. These three positions are illustrated in Figure 6.1. 
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FIGURE 6.1 
The stability of a 
cone. 

FIGURE 6.2 
Stability in the 
s-plane. 

^ I 
(a) Stable (b) Neutral (c) Unstable 

The stability of a dynamic system is defined in a similar manner. The response to a 
displacement, or initial condition, will result in either a decreasing, neutral, or increasing 
response. Specifically, it follows from the definition of stability that a linear system is 
stable if and only if the absolute value of its impulse response g(t), integrated over an 
infinite range, is finite. That is, in terms of the convolution integral Equation (5.2) for a 
bounded input, fQ \g(t) | dt must be finite. 

The location in the s-plane of the poles of a system indicates the resulting tran
sient response. The poles in the left-hand portion of the s-plane result in a decreasing 
response for disturbance inputs. Similarly, poles on the /w-axis and in the right-hand 
plane result in a neutral and an increasing response, respectively, for a disturbance 
input. This division of the s-plane is shown in Figure 6.2. Clearly, the poles of desir
able dynamic systems must lie in the left-hand portion of the s-plane [1-3]. 

A common example of the potential destabilizing effect of feedback is that of 
feedback in audio amplifier and speaker systems used for public address in auditori
ums. In this case, a loudspeaker produces an audio signal that is an amplified version 
of the sounds picked up by a microphone. In addition to other audio inputs, the 
sound coming from the speaker itself may be sensed by the microphone. The strength 
of this particular signal depends upon the distance between the loudspeaker and the 
microphone. Because of the attenuating properties of air, a larger distance will cause 
a weaker signal to reach the microphone. Due to the finite propagation speed of 
sound waves, there will also be a time delay between the signal produced by the loud
speaker and the signal sensed by the microphone. In this case, the output from the 
feedback path is added to the external input. This is an example of positive feedback. 

As the distance between the loudspeaker and the microphone decreases, we 
find that if the microphone is placed too close to the speaker, then the system will be 
unstable. The result of this instability is an excessive amplification and distortion of 
audio signals and an oscillatory squeal. 

Another example of an unstable system is shown in Figure 6.3. The first bridge 
across the Tacoma Narrows at Puget Sound, Washington, was opened to traffic on 
July 1,1940. The bridge was found to oscillate whenever the wind blew. After four 

Stable Neutral Unstable 

-A-
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(a) 

FIGURE 6.3 
Tacoma Narrows 
Bridge (a) as 
oscillation begins 
(b) at catastrophic 
failure. (b) 
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months, on November 7, 1940, a wind produced an oscillation that grew in ampli
tude until the bridge broke apart. Figure 6.3(a) shows the condition at the beginning 
of oscillation; Figure 6.3(b) shows the catastrophic failure [5]. 

In terms of linear systems, wc recognize that the stability requirement may be 
defined in terms of the location of the poles of the closed-loop transfer function. The 
closed-loop system transfer function is written as 

M 

vis) * n ( * + fd 
T(s) = ^ - = — ^ - , (6.1) 

sNtl(s + <rk)f[[s2 + 2ams + (a2
m + «£)] 

k = l m = l 

where q(s) = A(s) = 0 is the characteristic equation whose roots are the poles of 
the closed-loop system. The output response for an impulse function input (when 
N = 0) is then 

y{t) = %Ake~^ + i x f - M ^ s i n ^ + Bm), (6.2) 

where Ak and Bm are constants that depend on o>, Zj, ocm, K, and (om. To obtain a 
bounded response, the poles of the closed-loop system must be in the left-hand por
tion of the 5-plane. Thus, a necessary and sufficient condition for a feedback system 
to be stable is that all the poles of the system transfer function have negative real 
parts. A system is stable if all the poles of the transfer function are in the left-hand 
s-plane. A system is not stable if not all the roots are in the left-hand plane. If the 
characteristic equation has simple roots on the imaginary axis (/w-axis) with all 
other roots in the left half-plane, the steady-state output will be sustained oscillations 
for a bounded input, unless the input is a sinusoid (which is bounded) whose frequency 
is equal to the magnitude of the /w-axis roots. For this case, the output becomes 
unbounded. Such a system is called marginally stable, since only certain bounded inputs 
(sinusoids of the frequency of the poles) will cause the output to become unbounded. 
For an unstable system, the characteristic equation has at least one root in the right half 
of the s-plane or repeated jco roots; for this case, the output will become unbounded 
for any input. 

For example, if the characteristic equation of a closed-loop system is 

(s + 10)(52 + 16) = 0, 

then the system is said to be marginally stable. If this system is excited by a sinusoid 
of frequency w = 4, the output becomes unbounded. 

To ascertain the stability of a feedback control system, we could determine the 
roots of the characteristic polynomial q(s). However, we are first interested in deter
mining the answer to the question, Is the system stable? If we calculate the roots of the 
characteristic equation in order to answer this question, we have determined much 
more information than is necessary. Therefore, several methods have been developed 
that provide the required yes or no answer to the stability question. The three 
approaches to the question of stability are (1) the s-plane approach, (2) the frequency 
plane (jw) approach, and (3) the time-domain approach. The real frequency {jco) 
approach is outlined in Chapter 9, and the discussion of the time-domain approach is 
considered in Section 6.4. 
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FIGURE 6.4 
The M2 robot is 
more energy-
efficient but less 
stable than many 
other designs that 
are well-balanced 
but consume much 
more power. 
(Courtesy of 
Professor Gill Pratt, 
Olin College.) 

There are about one million robots in service throughout the world [10]. As the 
capability of robots increases, it is reasonable to assume that the numbers in service 
will continue to rise. Especially interesting are robots with human characteristics, 
particularly those that can walk upright. A class of robots that utilize series-elastic ac
tuators as mechanical muscles emerged in the late 1990s. The M2 robot depicted in 
Figure 6.4 is more energy-efficient but less stable than many other designs that are 
well-balanced but consume much more power [22], Examining the M2 robot in 
Figure 6.4, one can imagine that it is not inherently stable and that active control is 
required to keep it upright during the walking motion. In the next sections we pre
sent the Routh-Hurwilz stability criterion to investigate system stability by analyzing 
the characteristic equation without direct computation of the roots. 

6.2 THE ROUTH-HURWITZ STABILITY CRITERION 

The discussion and determination of stability has occupied the interest of many 
engineers. Maxwell and Vyshnegradskii first considered the question of stability of 
dynamic systems. In the late 1800s, A. Hurwitz and E. J. Routh independently 
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published a method of investigating the stability of a linear system [6, 7]. The 
Routh-Hurwitz stability method provides an answer to the question of stability by 
considering the characteristic equation of the system. The characteristic equation in 
the Laplace variable is written as 

A(J) = g(s) - ans
n + a„^sn~l + • • • + ats + a0 = 0. (6.3) 

To ascertain the stability of the system, it is necessary to determine whether any one 
of the roots of q(s) lies in the right half of the s-plane. If Equation (6.3) is written in 
factored form, we have 

a„{s -ri)(s -r2)-(s-rn) = 0, (6.4) 

where r,- = ith root of the characteristic equation. Multiplying the factors together. 
we find that 

q(s) = ans
n - fl„Ci + r2+ ••• + rn)s

n~l 

+ &n{r\r2 + r2r3 + rxr3 + ••• )s"~2 

- an{rxr2r^ + rxnrA • • • )s"~3 + • • • 

+ ^ ( - 1 ) ^ / ^ - 3 - - - ^ = 0. (6.5) 

In other words, for an nth-degree equation, we obtain 

q(s) = ans" - a„ (sum of all the roots) J " _ 1 

+ a„ (sum of the products of the roots taken 2 at a time) s"~2 

- a„ (sum of the products of the roots taken 3 at a time) sB"3 

+ ••• + a„(-l)n (product of all n roots) = 0. (6.6) 

Examining Equation (6.5), we note that all the coefficients of the polynomial 
must have the same sign if all the roots are in the left-hand plane. Also, it is neces
sary that all the coefficients for a stable system be nonzero. These requirements are 
necessary but not sufficient. That is, we immediately know the system is unstable if 
they are not satisfied; yet if they are satisfied, we must proceed further to ascertain 
the stability of the system. For example, when the characteristic equation is 

q(s) = (s + 2)(52 - s + 4) = (s3 + s2 + 2s + 8), (6.7) 

the system is unstable, and yet the polynomial possesses all positive coefficients. 
The Routh-Hurwitz criterion is a necessary and sufficient criterion for the sta

bility of linear systems. The method was originally developed in terms of determi
nants, but we shall use the more convenient array formulation. 

The Routh-Hurwitz criterion is based on ordering the coefficients of the char
acteristic equation 

ans
n + an^s" l + an-2s" 2 + ••• + atf + a0 = 0 (6.8) 

into an array or schedule as follows [4]: 

s an fl„_2 an-4 
an-\ an-?> an-5 
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Further rows of the schedule are then completed as 

Jt -3 

an an-2 an-4 
an-\ an-3 an-5 

bn-\ bn-5 bn-5 

cn-\ cn-3 nn-5 

where 

an-\an-2 

an-\ 

1 

an-i 

-1 
t>n-i 

an 

O-n-l 

an-\ 
b n-\ 

anan-3 

an-A 
an~5 

an-3 

bn-3 
i 

A 

an-\ 

an 

a„-i 

-

an-i 
a„-3 bn-\ = 

bn-3 = 

cn-\ ~ 

and so on. The algorithm for calculating the entries in the array can be followed on 
a determinant basis or by using the form of the equation for fr„_i. 

The Routh-Hurwitz criterion states that the number of roots of q(s) with posi
tive real parts is equal to the number of changes in sign of the first column of the 
Routh array. This criterion requires that there be no changes in sign in the first col
umn for a stable system. This requirement is both necessary and sufficient. 

Four distinct cases or configurations of the first column array must be consid
ered, and each must be treated separately and requires suitable modifications of 
the array calculation procedure: (1) No element in the first column is zero; (2) there 
is a zero in the first column, but some other elements of the row containing the zero 
in the first column are nonzero; (3) there is a zero in the first column, and the other 
elements of the row containing the zero are also zero; and (4) as in the third case, 
but with repeated roots on the /w-axis. 

To illustrate this method clearly, several examples will be presented for each case. 

Case 1. No element in the first column is zero. 

EXAMPLE 6.1 Second-order system 

The characteristic polynomial of a second-order system is 

q(s) = a2s
2 + ab$ + aQ. 

The Routh array is written as 

a2 a0 

ax 0 , 
b{ 0 
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where 

bx = 
fliflo - (0)fl2 a2 a0 

ch 0 
%• 

Therefore, the requirement for a stable second-order system is simply that all the 
coefficients be positive or all the coefficients be negative. • 

EXAMPLE 6.2 Third-order system 

The characteristic polynomial of a third-order system is 

q(s) = a^s3 + a2s
2 + a\S + a{). 

The Routh array is 

a3 a{ 

a2 «0 

/>, 0 1 

c, 0 

where 

bi = 
flgflj - flQfl3 

a2 

and Cj «0-

For the third-order system to be stable, it is necessary and sufficient that the coeffi
cients be positive and a2a.\ > a{)a3. The condition when a2a-^ = «f/f3 results in a mar
ginal stability case, and one pair of roots lies on the imaginary axis in the .s-plane. 
This marginal case is recognized as Case 3 because there is a zero in the first column 
when a2ci\ = flo%- It will be discussed under Case 3. 

As a final example of characteristic equations that result in no zero elements in 
the first row, let us consider the polynomial 

q(s) = (s - 1 + jVlMs - 1 - jVl)(s + 3) - s? + s2 + 2s + 24. (6.9) 

The polynomial satisfies all the necessary conditions because all the coefficients 
exist and are positive. Therefore, utilizing the Routh array, we have 

1 2 

1 24 

- 2 2 0' 

24 0 

Because two changes in sign appear in the first column, we find that two roots of 
q(s) lie in the right-hand plane, and our prior knowledge is confirmed. • 

Case 2. There is a zero in the first column, but some other elements of the row 
containing the zero in the first column are nonzero. If only one element in the 
array is zero, it may be replaced with a small positive number, e, that is allowed to 
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approach zero after completing the array. For example, consider the following 
characteristic polynomial: 

q(s) - 55 + 2s4 + 2s3 + As2 + l i s + 10. (6.10) 

The Routh array is then 

11 
10 
0 
0' 
0 
0 

where 

4e - 12 -12 , , 6ci - lOe r 
C\ = = and fli = > 6. 

e e q 
There are two sign changes due to the large negative number in the first column, 
Ci = —12/e. Therefore, the system is unstable, and two roots lie in the right half of 
the plane. 

EXAMPLE 6.3 Unstable system 

As a final example of the type of Case 2, consider the characteristic polynomial 

q(s) = 54 + 53 + s2 + s + K, (6.11) 

where we desire to determine the gain K that results in marginal stability.The Routh 
array is then 

s4 

s3 

s2 

sl 

s° 

1 
1 
6 

C\ 

K 

where 

€ - K -K 

Therefore, for any value of K greater than zero, the system is unstable. Also, because 
the last term in the first column is equal to K, a negative value of K will result in an 
unstable system. Consequently, the system is unstable for all values of gain K. u 

Case 3. There is a zero in the first column, and the other elements of the row con
taining the zero are also zero. Case 3 occurs when all the elements in one row are 
zero or when the row consists of a single element that is zero. This condition occurs 
when the polynomial contains singularities that are symmetrically located about the 
origin of the s-plane. Therefore, Case 3 occurs when factors such as (s + a)(s — a) 

s5 

s4 

s3 

s2 

s1 

/ ' 

1 
2 
€ 

C\ 

di 
10 

2 
4 

6 
10 
0 
0 

1 K 
1 0 

K 0, 
0 0 
0 0 
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or (s + ja))(s — j(o) occur. This problem is circumvented by utilizing the auxiliary 
polynomial, U(s), which immediately precedes the zero entry in the Routh array. 
The order of the auxiliary polynomial is always even and indicates the number of 
symmetrica] root pairs. 

To illustrate this approach, let us consider a third-order system with the charac
teristic polynomial 

q{s) = s2 + 2s2 + As + K, (6.12) 

where K is an adjustable loop gain. The Routh array is then 

4 
K 

0 

0 

For a stable system, we require that 

0 < K < 8. 

When K = 8, we have two roots on the /w-axis and a marginal stability case. Note 
that we obtain a row of zeros (Case 3) when K = 8. The auxiliary polynomial, U(s), 
is the equation of the row preceding the row of zeros. The equation of the row pre
ceding the row of zeros is, in this case, obtained from the s2-row. We recall that this 
row contains the coefficients of the even powers of s, and therefore we have 

U{s) = 2s2 + Ks° = 2s2 + 8 = 2(s2 + 4) = 2(5 + j2)(s - /2). (6.13) 

To show that the auxiliary polynomial, U(s), is indeed a factor of the characteristic 
polynomial, we divide q(s) by U(s) to obtain 

§£ + 1 
2s2 + 8)s3 + 2s2 + 4.9 + 8 

£ ±_4s_ 
2s2 + 8 
2s2 +8 

When K = 8, the factors of the characteristic polynomial are 

q{s) = {s + 2){s + ]2){s - j2). (6.14) 

The marginal case response is an unacceptable oscillation. 

Case 4. Repeated roots of the characteristic equation on the y'w-axis. If the 
/a)-axis roots of the characteristic equation are simple, the system is neither stable 
nor unstable; it is instead called marginally stable, since it has an undamped sinu
soidal mode. Tf the /a>-axis roots arc repeated, the system response will be unstable 
with a form t sm(cot + ¢/)). The Routh-Hurwitz criteria will not reveal this form of 
instability [21]. 

1 
2 
- K 
2 
K 
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Consider the system with a characteristic polynomial 

q(s) = 0 + \){s + j)(s - j)(s + j)(s - ;") - 55 + s4 + 2s3 + 2s2 + $ + 1. 

The Routh array is 

1 
1 
e 

1 

e 
1 

2 
2 
e 
1 
0 

1 
1 
0 

where e —* 0. Note the absence of sign changes, a condition that falsely indicates 
that the system is marginally stable. The impulse response of the system increases 
with time as t sin(r + </>). The auxiliary polynomial at the 52 line is 52 -(- 1, and the 
auxiliary polynomial at the s4 line is s4 + 2s2 + \ = (s2 + l)2, indicating the 
repeated roots on the /w-axis. 

EXAMPLE 6.4 Fifth-order system with roots on the _/'<*>-axis 

Consider the characteristic polynomial 

q(s) = s5 + s4 + 4s3 -\ 24s2 + 3s + 63. 

The Routh array is 

(6.15) 

1 
1 

- 2 0 
21 

0 

4 
24 

- 6 0 

63 
0 

3 
63 

0. 
0 
0 

Therefore, the auxiliary polynomial is 

U(s) = 2\sl + 63 = 21(^ + 3) = 21(s + jV3)(s - /V3 , (6.16) 

which indicates that two roots are on the imaginary axis. To examine the remaining 
roots, we divide by the auxiliary polynomial to obtain 

s2 + 3 
= s2 + s2 + s + 21. 

Establishing a Routh array for this equation, we have 

1 1 
1 21 

-20 0' 
21 0 



Section 6.2 The Routh-Hurwitz Stability Criterion 367 

The two changes in sign in the first column indicate the presence of two roots in the 
right-hand plane, and the system is unstable. The roots in the right-hand plane are 
s = +1 ± /V6. • 

EXAMPLE 6.5 Welding control 

Large welding robots are used in today's auto plants. The welding head is moved to 
different positions on the auto body, and a rapid, accurate response is required. A 
block diagram of a welding head positioning system is shown in Figure 6.5. We 
desire to determine the range of K and a for which the system is stable. The charac
teristic equation is 

1 + G(s) = 1 + 
K(s + a) 

s(s + l)(s + 2)(s + 3) 
= 0. 

Therefore, q(s) = sA + 6s3 + lis2 + (K + 6)s + Ka = 0. Establishing the Routh 
array, we have 

Ka 1 
6 

h 
^3 

Ka 

11 
K + 6 

Ka 

where 

th = 
60 - K and c3 = 

b3(K + 6 ) - 6Ka 

The coefficient c3 sets the acceptable range of K and a, while 63 requires that K be 
less than 60. Requiring c3 ^: 0, we obtain 

(K - 60)(K + 6) + 36Ka < 0. 

The required relationship between K and a is then 

(60 - K)(K + 6) 
a^ 36^ 

when a is positive.Therefore, if K = 40, we require a ^ 0.639. • 

The general form of the characteristic equation of an nth-order system is 

,«-2 sn + « M _ i^ _ 1 + an-7f~ + ••• + a\s + <o»n = 0. 

FIGURE 6.5 
Welding head 
position control. 

Desired 
position . 

Controller 

K(s + a) 
s-i 1 

Head dynamics 

1 
s(s H 2) (a- + 3) 

Y(s) 
• Data head 

position 



368 Chapter 6 The Stability of Linear Feedback Systems 

Table 6.1 The Routh-Hurwitz Stability Criterion 

n Characteristic Equation Criterion 
2 s2 + bs + { = 0 h > 0 
3 ,v3 + bs2 + cs + 1 = 0 be - 1 > 0 
4 s4 + bs3 + cs2 + ds + 1 = 0 bed - d7 - b2 > 0 
5 s5 I bs4 + cs3 + ds2 + es + 1 = 0 bed + b - d2 - b2e > 0 
6 s6 - bs5 -r cs4 + ds3 + es2 + fs + 1 = 0 (bed + bf - d2 b2e)e + b2c - bd - bc2f - f + bfe + cdf > 0 

Note: The equations are normalized by (&>„)". 

gig 

We divide through by co," and use s = s/o)n to obtain the normalized form of the 
characteristic equation: 

.*" + hs11'1 + csn'2 + ••• + 1 = 0. 

For example, we normalize 

s3 + 5s2 + 2s \ 8 = 0 

by dividing through by 8 = con
3, obtaining 

*3 5 s2 2 s , A —7 + r ~ ? + 7 — + 1 = 0 , 
to J 2 a>„2 4 (ott 

or 

! 3 + 2.5p + 0.5s + 1 = 0, 

where s = s/coir In this case, b = 2.5 and c = 0.5. Using this normalized form of the 
characteristic equation, we summarize the stability criterion for up to a sixth-order 
characteristic equation, as provided in Table 6.1. Note that be = 1.25 and the system 
is stable. 

6.3 THE RELATIVE STABILITY OF FEEDBACK CONTROL SYSTEMS 

The verification of stability using the Routh-Hurwitz criterion provides only a par
tial answer to the question of stability. The Routh-Hurwitz criterion ascertains the 
absolute stability of a system by determining whether any of the roots of the char
acteristic equation lie in the right half of the s-planc. However, if the system satis
fies the Routh-Hurwitz criterion and is absolutely stable, it is desirable to 
determine the relative stability; that is, it is necessary to investigate the relative 
damping of each root of the characteristic equation. The relative stability of a sys
tem can be defined as the property that is measured by the relative real part of 
each root or pair of roots. Thus, root r2 is relatively more stable than the roots r j , r1? 

as shown in Figure 6.6. The relative stability of a system can also be defined in 
terms of the relative damping coefficients £ of each complex root pair and, there
fore, in terms of the speed of response and overshoot instead of settling time. 

Hence, the investigation of the relative stability of each root is clearly neces 
sary because, as we found in Chapter 5, the location of the closed-loop poles in the 
.9-plane determines the performance of the system. Thus, it is imperative that we 
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A 

FIGURE 6.6 
Root locations in 
thes-plane. 

-A-

O 

i 

A 

reexamine the characteristic polynomial q(s) and consider several methods for the 
determination of relative stability. 

Because the relative stability of a system is dictated by the location of the roots 
of the characteristic equation, a first approach using an s-plane formulation is to 
extend the Routh-Hurwitz criterion to ascertain relative stability. This can be simply 
accomplished by utilizing a change of variable, which shifts the s-plane axis in order 
to utilize the Routh-Hurwitz criterion. Examining Figure 6.6, we notice that a shift of 
the vertical axis in the j-plane to — a{ will result in the roots ru P, appearing on the 
shifted axis. The correct magnitude to shift the vertical axis must be obtained on a 
trial-and-error basis. Then, without solving the fifth-order polynomial q(s), we may 
determine the real part of the dominant roots /•], ?j. 

EXAMPLE 6.6 Axis shift 

Consider the simple third-order characteristic equation 

q(s) = S3 + As2 + 6s + 4. (6.17) 

As a first try, let sn = s + 2 and note that we obtain a Routh array without a zero 
occurring in the first column. However, upon setting the shifted variable sn equal to 
s + 1, we obtain 

(sn - 1)3 + 4(sn - 1)2 + 6(sn - 1) + 4 = s„3 + s„2 - s„ + 1. (6.18) 

Then the Routh array is established as 

1 1 
1 1 
0 0' 
1 0 

There are roots on the shifted imaginary axis that can be obtained from the aux
iliary polynomial 

U(sn) = sn
l + l = (sn - j){s„ - j) = (s + 1 + j)(s + 1 - / ) . (6.19) 

The shifting of the .v-plane axis to ascertain the relative stability of a system is a 
very useful approach, particularly for higher-order systems with several pairs of 
closed-loop complex conjugate roots. 
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6.4 THE STABILITY OF STATE VARIABLE SYSTEMS 

The stability of a system modeled by a state variable flow graph model can be read
ily ascertained. The stability of a system with an input-output transfer function T(s) 
can be determined by examining the denominator polynomial of T(s). Therefore, if 
the transfer function is written as 

TV > P^ T(s) = - 7 7 , 
q(s) 

where p(s) and q(s) are polynomials in s, then the stability of the system is repre
sented by the roots of q(s). The polynomial q(s), when set equal to zero, is called the 
characteristic equation. The roots of the characteristic equation must lie in the left-
hand s-plane for the system to exhibit a stable time response. Therefore, to ascertain 
the stability of a system represented by a transfer function, we investigate the 
characteristic equation and utilize the Routh-Hurwitz criterion. If the system we 
are investigating is represented by a signal-flow graph state model, we obtain the 
characteristic equation by evaluating the flow graph determinant. If the system is 
represented by a block diagram model we obtain the characteristic equation using 
the block diagram reduction methods. As an illustration of these methods, let us 
investigate the stability of the system of Example 3.2. 

EXAMPLE 6.7 Stability of a system 

The transfer function T(s) examined in Example 3.2 is 

T(s) . , ^ ± * + « _ . (6.20) 
ss + 8s2 + 16s + 6 

The characteristic polynomial for this system is 

q(s) = s3 + 8s2 + 16$ + 6. (6.21) 

This characteristic polynomial is also readily obtained from either the flow graph 
model or block diagram model shown in Figure 3.11 or the ones shown in Figure 3.13. 
Using the Routh-Hurwitz criterion, we find that the system is stable and that all the 
roots of q(s) lie in the left-hand s-plane. • 

We often determine the flow graph or block diagram model directly from a set 
of state differential equations. We can use the flow graph directly to determine the 
stability of the system by obtaining the characteristic equation from the flow graph 
determinant A (5). Similarly, we can use block diagram reduction to define the char
acteristic equation. An illustration of these approaches will aid in comprehending 
these methods. 

EXAMPLE 6.8 Stability of a second-order system 

A second-order system is described by the two first-order differential equations 

k\ = —3x-\ + x2 and x2 = +lx2 — Kxi -\ Ku, 
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U(s) O •• 

(a) 

FIGURE 6.7 
(a) Flow graph 
model for state 
variable equations 
of Example 6.8. 
(b) Block diagram 
model. (b) 

Gt(s) 

1 
s- t 1 

G2(s) 

1 
5 + 3 

• X.(.v) 

where the dot notation implies the first derivative and u(i) is the input. The flow 
graph model of this set of differential equations is shown in Figure 6.7(a) and the 
block diagram model is shown in Figure 6.7(b). 

Using Mason's signal-flow gain formula, we note three loops: 

Lj = s~l, L2 = —3s"1, and L3 = —Ks~2, 

where Lx and L2 do not share a common node. Therefore, the determinant is 

A = 1 - (L, + L2 + L3) + L-iL2 = 1 - (s~l - 3s~l - Ks~2) + (~3s~2). 

We multiply by s2 to obtain the characteristic equation 

s2 + 2s + (K -3) = 0. 

Since all coefficients must be positive, we require K > 3 for stability. A similar 
analysis can be undertaken using the block diagram. Closing the two feedback loops 
yields the two transfer functions 

Gds) = 
1 

and G2(s) = 
1 

s - 1 ~" £V~' s + 3' 

as illustrated in Figure 6.7(b). The closed loop transfer function is thus 

= KG1(s)G2(s) 
{S) " 1 + KGl{s)G2{s)' 

Therefore, the characteristic equation is 

A(s) = 1 + KGi(s)G2(s) = 0, 
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or 

Af» = (s - 1)0 + 3) + K - 52 + 2s + (K - 3) = 0. 

This confirms the results obtained using signal-flow graph techniques. • 

A method of obtaining the characteristic equation directly from the vector dif
ferential equation is based on the fact that the solution to the unforced system is an 
exponential function. The vector differential equation without input signals is 

x = Ax, (6.22) 

where x is the state vector. The solution is of exponential form, and we can define a 
constant A such that the solution of the system for one state can be of the form 
xt{t) = kfiK,t. The A,- are called the characteristic roots or eigenvalues of the system, 
which are simply the roots of the characteristic equation. If we let x = keAl and sub
stitute into Equation (6.22), we have 

AkeAf = AkeA', (6.23) 

or 

Ax - Ax. (6.24) 

Equation (6.24) can be rewritten as 

(AI - A)x = 0, (6.25) 

where I equals the identity matrix and 0 equals the null matrix. This set of simulta
neous equations has a nontrivial solution if and only if the determinant vanishes— 
that is, only if 

det(AI - A) = 0. (6.26) 

The nth-order equation in A resulting from the evaluation of this determinant is the 
characteristic equation, and the stability of the system can be readily ascertained. 
Let us consider again the third-order system described in Example 3.3 to illustrate 
this approach. 

EXAMPLE 6.9 Closed epidemic system 

The vector differential equation of the epidemic system is given in Equation (3.63) 
and repeated here as 

dx 

~dt 

-a - /3 

(B -y 

a y 

The characteristic equation is then 

|TA 
det(AI - A) = det< 0 

0 

0~| 
0 
0_ 

x + 
|~1 

0 
_o 

o l 
l 
o_ 

. - - i 

U\ 

_ " 2 _ 

- det 
A + a 

- /3 
—a 

0 

0 

A 

/3 
A + y 

-y 

—a 
P 
a 

o' 
0 

A 

- / 3 

-y 

7 
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= A[(A + o)(A + y) + /32] 

= A[A2 + (a + y)A + (ay + /32)] = 0. 

Thus, we obtain the characteristic equation of the system, and it is similar to that 
obtained in Equation (3.65) by flow graph methods. The additional root A = 0 
results from the definition of x^ as the integral of ax± + yx2, and A-3 does not affect 
the other state, variables. Thus, the root A = 0 indicates the integration connected 
with x3. The characteristic equation indicates that the system is marginally stable 
when a + y > 0 and ay + ft2 > 0. • 

As another example, consider again the inverted pendulum described in Exam
ple 3.4.The system matrix is 

A = 

The characteristic equation can be obtained from the determinant of (Al - A) as 
follows: 

0 
0 
0 
0 

1 
0 
0 
0 

0 
-mglM 

0 

gll 

0 
0 
1 
0 

det 

A 
0 
0 
0 

- 1 
A 
0 
0 

0 
mglM 

A 

-gll 

0 
0 

- 1 
A 

= A A Az - 2. = A2 A2 - % = 0. 

The characteristic equation indicates that there are two roots at A = 0: a root at 
A = + vg/l and a root at A = - vg/l. Hence, the system is unstable, because there is 
a root in the right-hand plane at A = + vg/l. The two roots at A = 0 will also result in 
an unbounded response. 

6.5 DESIGN EXAMPLES 

In this section we present two illustrative examples. The first example is a tracked 
vehicle control problem. In this first example, stability issues are addressed employ
ing the Routh-Hurwitz stability criterion and the outcome is the selection of two 
key system parameters. The second example illustrates the stability problem robot-
controlled motorcycle and how Routh-Hurwitz can be used in the selection of con
troller gains during the design process. The robot-controlled motorcycle example 
highlights the design process with special attention to the impact of key controller 
parameters on stability. 

EXAMPLE 6.10 Tracked vehicle turning control 

The design of a turning control for a tracked vehicle involves the selection of two 
parameters [8]. In Figure 6.8, the system shown in part (a) has the model shown in 
part (b).The two tracks are operated at different speeds in order to turn the vehicle. 
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FIGURE 6.8 
(a) Turning control 
system for a two-
track vehicle. 
(b) Block diagram. 

Throttle 
Steering 

Power train 
and controller 

Track torque 

Right 

Left 

Difference in track s 

Vehicle 

Deed 

Y{s) 
• Direction 

of travel 

(a) 

R(s) 
Desired 
direction 
of turning 

+ / - N 

. i . 

Controller 
Gc(s) 

s + a 
s + I 

Power train and 
vehicle G(s) 

K 
s{s + 2)(s + 5) 

(b) 

We must select K and a so that the system is stable and the steady-state error for a 
ramp command is less than or equal to 24% of the magnitude of the command. 

The characteristic equation of the feedback system is 

or 

Therefore, we have 

or 

1 + 

1 + GcG(s) = 0, 

K(s + a) 
= 0. 

s(s + 1)(5 + 2)(5 + 5) 

s(s + 1)(5 + 2)(5 + 5) + K(s + a) = 0, 

(6.27) 

54 + 853 + 1752 + (K + 10)5 + Ka = 0. 

To determine the stable region for K and a, we establish the Routh array as 

(6.28) 

1 
8 

^3 

C3 

17 
K + 10 

Ka 

Ka 
0 

where 

b, = -
126 - K 

Ka 

and c3 = 
b3(K + 1 0 ) - 8Ka 

For the elements of the first column to be positive, we require that Ka, b^ and c3 be 
positive. Therefore, we require that 
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FIGURE 6.9 
The stable region. 
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s Selected K and a 

i \ j i — • 
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K 

K < 126, 

Ka > 0, and 

{K + 10)(126 - K) - 64Ka > 0. (6.29) 

The region of stability for K > 0 is shown in Figure 6.9. The steady-state error to a 
ramp input r(i) = At, t > 0 is 

where 

Therefore, we have 

ess = A/Kv, 

Kv = lira sG,G = Ka/IQ. 
V 5 >0 

e« = 
10A 
Ka ' 

(6.30) 

When ess is equal to 23.8% of A, we require that Ka = 42. This can be satisfied by 
the selected point in the stable region when K = 70 and a ~ 0.6, as shown in Figure 
6.9. Another acceptable design would be attained when K = 50 and a = 0.84. We 
can calculate a series of possible combinations of K and a that can satisfy Ka = 42 
and that lie within the stable region, and all will be acceptable design solutions. 
However, not all selected values of K and a will lie within the stable region. Note 
that K cannot exceed 126. • 

EXAMPLE 6.11 Robot-controlled motorcycle 

Consider the robot-controlled motorcycle shown in Figure 6.10. The motorcycle will 
move in a straight line at constant forward speed v. Let <f> denote the angle between 
the plane of symmetry of the motorcycle and the vertical. The desired angle (f>d is 
equal to zero: 

Ms) - o. 
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FIGURE 6.10 
The robot-
controlled 
motorcycle. 

Robot 

e.g. = Center of gravity 

The design elements highlighted in this example are illustrated in Figure 6.11. Using 
the Routh-Hurwitz stability criterion will allow us to get to the heart of the matter, 
that is, to develop a strategy for computing the controller gains while ensuring 
closed-loop stability. 

The control goal is 

Control Goal 
Control the motorcycle in the vertical position, and maintain the prescribed 
position in the presence of disturbances. 

The variable to be controlled is 

Variable to Be Controlled 
The motorcycle position from vertical (4>). 

Since our focus here is on stability rather than transient response characteristics, the 
control specifications will be related to stability only; transient performance is an 
issue that we need to address once we have investigated all the stability issues. The 
control design specification is 

Design Specification 
DS lThe closed-loop system must be stable. 

The main components of the robot-controlled motorcycle are the motorcycle and 
robot, the controller, and the feedback measurements.The main subject of the chap
ter is not modeling, so we do not concentrate on developing the motorcycle 
dynamics model. We rely instead on the work of others (see [25]). The motorcycle 
model is given by 

G(s) = 
1 

(6.31) 
s — a-[ 

where ax = glh, g = 9.806 m/s2, and h is the height of the motorcycle center of 
gravity above the ground (see Figure 6.10). The motorcycle is unstable with poles at 
s = ± Vffi. The controller is given by 

Gc(s) = 
"2 + a3s 

TS + 1 ' 
(6.32) 
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Topics emphasized in this example 

Establish the control goals 

Identify the varjables to be controlled 

I 
Write the specifications 

u c 
Co ciuuoiJ nit- a^aivjij i / u i m g u i a u u i i 

i 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

i 
Optimize the parameters and 

analyze the performance 

1 

Control the motorcycle to the 
vertical position. 

Vertical position (</>). 

Design specification: 
DSI: Closed-loop stability. 

See Figures 6.10 and 6.12 

See Equations (6.31) and (6.32) 
and Table 6.2 

See Figures 6.12: Ky and K;j. 

If the performance does not meet the If the performance meets the specifications, 
specifications, then iterate the configuration. then finalize the design. 

FIGURE 6.11 Elements of the control system design process emphasized in 
this robot-controlled motorcycle example. 

where 

and 

— .,2 a2 = v /(he) 

a3 = vLI(hc). 

The forward speed of the motorcycle is denoted by v, and c denotes the wheel-base 
(the distance between the wheel centers). The length, L, is the horizontal distance 
between the front wheel axle and the motorcycle center of gravity. The time-
constant of the controller is denoted by r. This term represents the speed of re
sponse of the controller; smaller values of r indicate an increased speed of response. 
Many simplifying assumptions are necessary to obtain the simple transfer function 
models in Equations (6.31) and (6.32). 
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Control is accomplished by turning the handlebar. The front wheel rotation 
about the vertical is not evident in the transfer functions. Also, the transfer functions 
assume a constant forward speed v which means that we must have another control 
system at work regulating the forward speed. Nominal motorcycle and robot con
troller parameters are given in Table 6.2. 

Assembling the components of the feedback system gives us the system config
uration shown in Figure 6.12. Examination of the configuration reveals that the 
robot controller block is a function of the physical system (h, c, and L), the operat
ing conditions (v), and the robot time-constant (T). NO parameters need adjustment 
unless we physically change the motorcycle parameters and/or speed. In fact, in this 
example the parameters we want to adjust are in the feedback loop: 

Select Key Tuning Parameters 
Feedback gains KP and KD. 

The key tuning parameters are not always in the forward path; in fact they may exist 
in any subsystem in the block diagram. 

We want to use the Routh-Hurwitz technique to analyze the closed-loop system 
stability. What values of Kp and KD lead to closed-loop stability? A related question 
that we can pose is, given specific values of KP and KD for the nominal system (that 
is, nominal values of a\, a2, «3, and r), how can the parameters themselves vary while 
still retaining closed-loop stability? 

Table 6.2 
T 

«1 

«2 

«3 
h 
V 
L 
c 

Physical Parameters 
0.2 s 
9 1/s2 

2.7 1/s2 

1.35 1/s 
1.09 m 
2.0 m/s 
1.0 m 
1.36 m 

FIGURE 6.12 
The robot-
controlled 
motorcyle feedback 
system block 
diagram. 

Us) O 

Robot 
controller 

rs+ 1 
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Feedback 
controller 
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dynamics 
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-»-</>(s) 
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The closed-loop transfer function from 4>d(s) to j>(s) is 

a2 + a3s 

where 

A(s) - TS3 + (1 + KDa3)s
2 + ( ¾ ¾ + Kp<*3 ~ rai)s + KPa2 - at. 

The characteristic equation is 

A ( J ) = 0. 

Tlie question that we need to answer is for what values of Kp and Kn does the char
acteristic equation A(s) = 0 have all roots in the left half-plane? 

We can set up the following Routh array: 

„3 
S~ 

s2 

s 

1 

r KDa2 + Kpa-i — Tax 

1 + K^aj, Kpa>2 — «1 

a 

Kp(*2 — Oil 

where 

a = 
(1 + KDa2)(KDa2 + KPa3 - rax) T(a2KP - aj) 

1 + KDa3 

By inspecting column 1, we determine that for stability we require 

T > n, KD > - l / a 3 , KP > OL-JCLI, and a > 0. 

Choosing 2¾ > 0 satisfies the second inequality (note that a3 > 0). In the event 
T — 0, we would reformulate the characteristic equation and rework the Routh array. 

The computational difficulty arises in determining the conditions on KP and KD 

such that a > 0. We find that a > 0 implies that the following relationship must be 
satisfied: 

f = a2a3KD
2 + (a2 - n x ^ + a3

2KP)KD + (a, - ra2)KP > 0. (6.33) 

Using the nominal values of the parameters ct\, a2, a3, and r (see Table 6.2), the sta
bility region is shown in Figure 6.13. For all KD > 0 and KP > 3.33, the function 
f > 0, hence a > 0. Taking into account all the inequalities, a valid region for 
selecting the gains is KD > 0 and KP > oti/a2 = 3.33. 

Selecting any point (KPy KD) in the stability region yields a valid (that is, stable) 
set of gains for the feedback loop. For example, selecting 

KP = 10 and KD = 5 

yields a stable closed-loop system. The closed-loop poles are 

^ - - 35 .2477 ,^ = -2.4674, and s3 = -1.0348. 

Since all the poles have negative real parts, we know the system response to any 
bounded input will be bounded. 
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FIGURE 6.13 
Region of valid 
gains (KD, KP) for 
which the inequality 
in Equation. (6.33) 
is satisfied. 

14000 -. 

12000 -

Valid gains for which 
/ > 0. See Equation. (6.33). 

Ki 

For this robot-controlled motorcycle, we do not expect to have to respond to 
nonzero command inputs (that is, 4>d # 0) since we want the motorcyle to remain 
upright, and we certainly want to remain upright in the presence of external 
disturbances.. The transfer function for the disturbance Td(s) to the output <f>(s) 
without feedback is 

<t>(s) = 
i 

Qti 
Us). 

The characteristic equation is 

q(s) = s2 — a\ = 0. 

The system poles are 

S\ = - Va~\ and s2 = + Va[. 

Thus we see that the motorcycle is unstable; it possesses a pole in the right half-
plane. Without feedback control, any external disturbance will result in the motor
cycle falling over. Clearly the need for a control system (usually provided by the 
human rider) is necessary. With the feedback and robot controller in the loop, the 
closed-loop transfer function from the disturbance to the output is 

TS + 1 

T,i(s) T.S3 1-(1 + Kpa-Js2 + (KDa2 + KPa5 - ra{)s + KPa2 -



FIGURE 6.14 
Disturbance 
response with 
KP = 10 and 
Ku = 5. 
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The response to a step disturbance 

Us) = 

is shown in Figure 6.14; the response is stable. The control system manages to keep 
the motorcycle upright, although it is tilted at about <£ = 0.055 rad = 3.18 deg. 

It is important to give the robot the ability to control the motorcycle over a wide 
range of forward speeds. Is it possible for the robot, with the feedback gains as 
selected (Kp = 10 and KD = 5), to control the motorcycle as the velocity varies? 
From experience we know that at slower speeds a bicycle becomes more difficult to 
control. We expect to see the same characteristics in the stability analysis of our sys
tem. Whenever possible, we try to relate the engineering problem at hand to real-life 
experiences. This helps to develop intuition that can be used as a reasonableness 
check on our solution. 

A plot of the roots of the characteristic equation as the forward speed v varies 
is shown in Figure 6.15. The data in the plot were generated using the nominal val
ues of the feedback gains, KP = 10 and KD = 5. We selected these gains for the case 
where v = 2 m/s. Figure 6.15 shows that as v increases, the roots of the characteris
tic equation remain stable (that is, in the left half-plane) with all points negative. But 
as the motorcycle forward speed decreases, the roots move toward zero, with one 
root becoming positive at v = 1.15 m/s. At the point where one root is positive, the 
motorcycle is unstable. • 
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FIGURE 6.15 
Roots of the 
characteristic 
equation as the 
motorcycle velocity 
varies. 

One pole enters the 
right half-plane 
for v= 1.15. 

2 3 
Velocity (in/s) 

6.6 SYSTEM STABILITY USING CONTROL DESIGN SOFTWARE 

This section begins with a discussion of the Routh-Hurwitz stability method. We 
will see how the computer can assist us in the stability analysis by providing an easy 
and accurate method for computing the poles of the characteristic equation. For the 
case of the characteristic equation as a function of a single parameter, it will be pos
sible to generate a plot displaying the movement of the poles as the parameter 
varies. The section concludes with an example. 

The function introduced in this section is the function for, which is used to 
repeat a number of statements a specific number of times. 

Routh-Hurwitz Stability. As stated earlier, the Routh-Hurwitz criterion is a neces
sary and sufficient criterion for stability. Given a characteristic equation with fixed 
coefficients, we can use Routh-Hurwitz to determine the number of roots in the 
right half-plane. For example, consider the characteristic equation 

q{s) = s3 + s2 + 2s + 24 = 0 

associated with the closed-loop control system shown in Figure 6.16. The corre
sponding Routh-Hurwitz array is shown in Figure 6.17. The two sign changes in the 
first column indicate that there are two roots of the characteristic polynomial in 
the right half-plane; hence, the closed-loop system is unstable. We can verify the 
Routh-Hurwitz result by directly computing the roots of the characteristic equa
tion, as shown in Figure 6.18, using the pole function. Recall that the pole function 
computes the system poles. 

Whenever the characteristic equation is a function of a single parameter, the 
Routh-Hurwitz method can be utilized to determine the range of values that the 
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FIGURE 6.16 
Closed-loop control 
system with T(s) ~ 
Y(s)/R(s) = 1/(s3 + 
s2 + 2s + 24). 

rt(.v) G(s) = -j 
l 

sJ + s- + 2s + 23 
- • Yis) 

FIGURE 6.17 
Routh array for the 
closed-loop control 
system with T(s) = 
Y(s)/R(s) = 1/(s3 + 
s2 + 2s + 24). 

2nd sign change 

1 -4-

- • -22 «-

* 24 

24 

1 st sign change 

parameter may take while maintaining stability. Consider the closed-loop feedback 
system in Figure 6.19. The characteristic equation is 

q(s) = s2 + 2s2 + 4s + K = 0. 

Using a Routh-Hurwitz approach, we find that we require 0 < K < 8 for stability 
(see Equation 6.12). We can verify this result graphically. As shown in Figure 
6.20(a), we establish a vector of values for K at which we wish to compute the roots 
of the characteristic equation. Then using the roots function, we calculate and plot 
the roots of the characteristic equation, as shown in Figure 6.20(b). It can be seen 
that as K increases, the roots of the characteristic equation move toward the right 
half-plane as the gain tends toward K = 8, and eventually into the right half-plane 
when K > 8. 

FIGURE 6.18 
Using the pole 
function to 
compute the 
closed-loop control 
system poles of the 
system shown in 
Figure 6.16. 

»numg=[1]; deng=[1 1 2 23]; sysg=tf(numg,deng); 
»sys=feedback(sysg,[1 ]); 
»pole(sys) 

ans = 

-3.0000 
1.0000+ 2.6458i 
1.0000 -2.6458i 

Unstable poles 

FIGURE 6.19 
Closed-loop control 
system with T(s) = 
Y(s)/R(s) = K/(s3 + 
2s2 + 4s + K). 

R(s) 
, 

K 
1 

J 3 + 2s2 + 4s 
• Yis) 
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FIGURE 6.20 
{a) Plot of root 
locations of q(s) = 
s3 + 2s2 + 4s + K 
for 0 < K < 20. 
(b) m-file script. 

% This script computes the roots of the characteristic 
% equation q(s) = sA3 + 2 sA2 + 4 s + K for 0<K<20 
% 
K=[0:0.5:20]; 
for i=1:length(K)1 

q=[1 2 4 K(i)]; I „ 
p(:,i)=roots(q); 

end J 
plot(real(p),imag(p),'x'), grid 
xlabcl('Real axis'), ylabcl('lmaginary axis') 

Loop for roots as 
a function of K 

(b) 

The script in Figure 6.20 contains the for function. This function provides a 
mechanism for repeatedly executing a series of statements a given number of times. 
The for function connected to an end statement sets up a repeating calculation loop. 
Figure 6.21 describes the for function format and provides an illustrative example of 
its usefulness. The example sets up a loop that repeats ten times. During the /th iter
ation, where 1 < z < 10, the ith element of the vector a is set equal to 20, and the 
scalar b is recomputed. 

The Routh-Hurwitz method allows us to make definitive statements regarding 
absolute stability of a linear system. The method does not address the issue of rela
tive stability, which is directly related to the location of the roots of the characteris
tic equation. Routh-Hurwitz tells us how many poles lie in the right half-plane, but 
not the specific location of the poles. With control design software, we can easily cal
culate the poles explicitly, thus allowing us to comment on the relative stability. 

EXAMPLE 6.12 Tracked vehicle control 

The block diagram of the control system for the two-track vehicle is shown in Figure 6.8. 
The design objective is to find a and K such that the system is stable and the steady-state 
error for a ramp input is less than or equal to 24% of the command. 
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General format 

385 

Loop 

> for variable=expression 

statement 

statement 

end 

FIGURE 6.21 
The for function 
and an illustrative 
example. 

The end statement 
must be included to 
indicate the end of 

the loop. 

Example 

fori=1:10-«— 
a(i)=20; « -
b=a(i)+2'i; 

••endf. 

Counter i 

a is a vector 
with 10 elements. 

b is a scalar that 
changes as /' increments. 

We can use the Routh-Hurwitz method to aid in the search for appropriate values 
of a and K. The closed-loop characteristic equation is 

q(s) = s4 + 8? + 17s2 + (K + 10)s + aK = 0. 

Using the Routh array, we find that, for stability, we require that 

126 - A' 
K < 126, 

8 
(K + 10) - 8aK > 0, and aK > 0. 

For positive K, it follows that we can restrict our search to 0 < K < 126 and a > 0. 
Our approach will be to use the computer to help find a parameterized a versus K 
region in which stability is assured. Then we can find a set of (a, K) belonging to the 
stable region such that the steady-state error specification is met. This procedure, 
shown in Figure 6.22, involves selecting a range of values for a and K and computing 
the roots of the characteristic polynomial for specific values of a and K. For each 
value of K, we find the first value of a that results in at least one root of the charac
teristic equation in the right half-plane. The process is repeated until the entire 
selected range of a and K is exhausted. The plot of the (a, K) pairs defines the sepa
ration between the stable and unstable regions. The region to the left of the plot of a 
versus K in Figure 6.22 is the stable region. 

If we assume that r(t) = At,t > 0, then the steady-state error is 

s(s + l)(s - 2)(s + 5) 
= s^0S' s(s + l)(s + 2)(5 + 5) + K(s a) 

A 10A_ 

s2 " aK ' 

where we have used the fact that 

1 
E(s) = 1 + GcG(s) 

R(s) = 
s(s + 1)(5 + 2)(s + 5) 

s(s + 1)(.9 + 2)(s + 5) + K(s + a) 
R(s). 
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1.5 

1.0 
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1 r 

(a « 0.6, K = 70) 

20 40 60 80 

K 

(a) 

100 120 

FIGURE 6.22 
(a) Stability region 
for a and K for two-
track vehicle turning 
control, (b) m-file 
script. 

% The a-K stability region for the two track vehicle 
% control problem . 
% | 
a=[0.1:0.01:3.0]; K-[20:1:120]; 
x=0*K; y=0*K; -«— 

Range of a and K. 

n=length(K); m=length(a); 
for i=1 :n 
forj=1:m 
q=[1, 8,17, K(i)+10, K(i)*a(j)];-« 
p=roots(q); 
if max(real(p)) > 0, x(i)=K(i); y(i)=a(j-1); break; end 

end 4 
end ' 
plot(x.y), grid, xlabel('K'), ylabel('a') 

Initialize plot vectors as zero 
vectors of appropriate lengths. 

Characteristic 
polynomial. 

For a given value, of K, determine 
first value of a for instability. 

(b) 

Given the steady-state specification, ess < 0.24/4, we find that the specification is 
satisfied when 

10A 
aK 

< 0.24A, 

or 
aK > 41.67. (6.34) 

Any values of a and K that lie in the stable region in Figure 6.22 and satisfy Equa
tion (6.34) will lead to an acceptable design. For example, K = 70 and a = 0.6 will 
satisfy all the design requirements. The closed-loop transfer function (with a = 0.6 
and K = 70) is 

T(s) = 
70s + 42 

s4 + 8s3 + 17s2 + 80s + 42' 

The associated closed-loop poles are 

5 = -7.0767, 
s = -0.5781, 
s = -0.1726 f 3.1995/, and 

s = -0.1726 - 3.1995/. 
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Ramp input 

| 
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.>• i ^ 

S#__J 

yS**~ 

' /J 

// 
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s/r 
•" i 

Steady-state error -
1 
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• 
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Time (s) 

(a) 

FIGURE 6.23 
(a) Ramp response 
for a = 0.6 and 
K = 70 for two-
track vehicle 
turning control. 
(b) m-file script. 

% Two-track vehicle turning control ramp response 
% with a=0.6 and K=70. 
% I u = unit ramp input 

t=[0:0.01:16];u=t; -« > 
numgc=[1 0.6]; dengc=[1 1]; sysgc=tf(numgc,dengc);~ 
numg=[70]; deng=[1 7 10 0]; sysg=tf(numg,deng); 
sysa=series(sysgc,sysg); 
sys=feedback(sysa,[1]); 
y=lsim(sys,u,t); -« 
plot(t,y,t,u,'--'), grid 
xlabel('Time (s)1), ylabel('y(t)') 

Linear simulation a = 0.6 and K = 70 

fb) 

The corresponding unit ramp input response is shown in Figure 6.23. The steady-
state error is less than 0.24, as desired. • 

The Stability of State Variable Systems. Now let us turn to determining the stabil
ity of systems described in state variable form. Suppose we have a system in state-
space form as in Equation (6.22). The stability of the system can be evaluated with 
the characteristic equation associated with the system matrix A. The characteristic 
equation is 

det(sl - A) = 0. (6.35) 

The left-hand side of the characteristic equation is a polynomial in s. If all of the 
roots of the characteristic equation have negative real parts (i.e., Re(s,) < 0), then 
the system is stable. 

When the system model is given in state variable form, we must calculate the 
characteristic polynomial associated with the A matrix. In this regard, we have sev
eral options. We can calculate the characteristic equation directly from Equation 
(6.35) by manually computing the determinant of si — A. Then, we can compute 
the roots using the roots function to check for stability, or alternatively, we can use 
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FIGURE 6.24 
Computing the 
characteristic 
polynomial of A 
with the poly 
function. 

Coefficients of characteristic 
polynomial in descending order. 

i . 

n x n matrix 

^ 

p=poly(A) 

»A=[-8-16-6;1 0 0;0 1 0]; 
»p=poly(A) 

P = 

Characteristic polynomial 

1.0000 8.0000 16.0000 6.0000 

»roots(p) 

ans = 
-5.0861 
-2.4280 
-0.4859 

Stable 

8 
1 
0 

-16 
0 
1 

- 6 
0 
0 

the Routh-Hurwitz method to detect any unstable roots. Unfortunately, the manual 
computations can become lengthy, especially if the dimension of A is large. We 
would like to avoid this manual computation if possible. As it turns out, the comput
er can assist in this endeavor. 

The poly function described in Section 2.9 can be used to compute the charac
teristic equation associated with A. Recall that poly is used to form a polynomial 
from a vector of roots. It can also be used to compute the characteristic equation of 
A, as illustrated in Figure 6.24. The input matrix A is 

A = 

and the associated characteristic polynomial is 

s3 + 852 + 165 + 6 = 0. 

If A is an n X n matrix, poly(A) is an n +- 1 element row vector whose ele
ments are the coefficients of the characteristic equation det(A-I — A) = 0. 

EXAMPLE 6.13 Stability region for an unstable process 

A jump-jet aircraft has a control system as shown in Figure 6.25 [17]. Assume that 
z > 0 and p > 0. The system is open-loop unstable (without feedback), since the 
characteristic equation of the process and controller is 

s(s - l)(s + p) = s[s2 + (p - l)s - p] = 0. 

FIGURE 6.25 
Control system for 
jump-jet aircraft. 
Assume that z > 0 
and p > 0. 

Aircraft 
desired 

orientation 
, 

Controller 

K(s + z) 

s + p 

Aircraft 

1 

s(s - 1) 

mi 
Actual 

orientation 
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Note that since one term within the bracket has a negative coefficient, the charac
teristic equation has at least one root in the right-hand s-plane. The characteristic 
equation of the closed-loop system is 

s3 + (p - 1)52 + (K - p)s + Kz = 0. 

The goal is to determine the region of stability for K, p, and z. The Routh 
array is 

1 
p - \ 

b2 

Kz 

K-p 

Kz 

where 

bo = 
(p - 1)(K - p)-Kz 

p-1 

From the Routh-Hurwitz criterion, we find that we require Kz > 0 and p > \. Set
ting fr2 > 0, we have 

[p - \){K - p) - Kz = K[(p - 1) - z) - p(p - 1) > 0. 

Consider two cases: 

1. z a p — 1: there is no 0 < K < oo that leads to stability. 

2. z < p — V. any 0 < K < oo satisfying the stability condition for a given p and z will 
result in stability: 

K > 
P(P ~ 1) 

(P ~ 1) " z 
(6.36) 

The stability conditions can be depicted graphically. The m-file script used to 
generate a three-dimensional stability surface is shown in Figure 6.26. This script 
uses mesh to create the three-dimensional surface and meshgrid to generate arrays 
for use with the mesh surface. 

The three-dimensional plot of the stability region for K, p, and z is shown in 
Figure 6.27. One acceptable stability point is z = 1, p = 10, and K = 15. • 

FIGURE 6.26 
m-file script for 
stability region. 

% Jump-jet control system 3-D stability region. 
% 
[p,z]=meshgrid(1.2:0.2:10,0.1 :.2:10); -4— 
k=p.*(p-1)./(p-1-z); + 
mesh(k) 4 

Transform domains for 
p and z for mesh plot. 

Stability surface 

Generate 3D plot. 



390 Chapter 6 The Stability of Linear Feedback Systems 

• k 

FIGURE 6.27 
The three-
dimensional region 
of stability lies 
above the surface 
shown. 

Stability region exists 
above the stability surface. 

Stability surface 

6.7 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In Section 5.11, we examined the design of the head reader system with an adjustable 
gain Ka. In this section, we will examine the stability of the system as K(l is adjusted 
and then reconfigure the system. 

Let us consider the system as shown in Figure 6.28. This is the same system with 
a model of the motor and load as considered in Chapter 5, except that the velocity 

FIGURE 6.28 
The closed-loop 
disk drive head 
system with an 
optional velocity 
feedback. 

Amplifier 

Ka — • 

Motor coil 

Gy(s) 

Velocity sensor 

T,i(s) 

1 

5 + 20 

Velocity Y(s) 
Position 
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feedback sensor was added, as shown in Figure 6.28. Initially, we consider the case 
where the switch is open. Then the closed-loop transfer function is 

Y(s) SAMftM 
R(s) 1 + KaGx{s)G2(Sy 

where 

r < N 5 0 0 0 

Gl(5) = , + lobo 
and 

1 

(6.37) 

G2(s) = 
s(s + 20) 

The characteristic equation is 

s(s + 20)(5 + 1000) + 5 0 0 0 ^ = 0, (6.38) 

or 

s3 + 1020s2 + 20000s + 5000tffl = 0. 

We use the Routh array 

*3 

s2 

s1 

s° 

1 20000 
1020 5000¾ 

5000JC 
where 

(20000)1020 - 5 0 0 0 ^ 

^1 " " "1020 

The case b\ = 0 results in marginal stability when Ka = 4080. Using the auxiliary 
equation, we have 

102052 + 5000(4080) = 0, 

or the roots of the /&>-axis are s = ±/141.4. In order for the system to be stable, 
Ka < 4080. 

Now let us add the velocity feedback by closing the switch in the system of 
Figure 6.28. The closed-loop transfer function for the system is then 

Y(s) = K&MGjjs) 
R(s) 1 + [^G1(5)G2(5)](1 - K]Sy 

since the feedback factor is equal to 1 + K\S, as shown in Figure 6.29. 
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FIGURE 6.29 
Equivalent system 
with the velocity 
feedback switch 
closed. 

T,,<s) 

Ms) • Yis) 

The characteristic equation is then 

1 + [KaG,(s)G2(s)](l + Kxs) = 0, 

or 

s(s + 20)(5 + 1000) + 5000tf„(l + Kis) = 0. 

Therefore, we have 

s3 + 1020^2 + [20000 + 50O0KMS + 5000^ = 0. 

Then the Routh array is 

1 

1020 

h 
5000/C 

20000 + 5000/¾ 

50002Ca 

where 

6 i -
1020 (20000 + 5<mKaKi) - 5000A; 

1020 

To guarantee stability, it is necessary to select the pair {K,„ K{) such that bx > 0, 
where Ka > 0. When Kx = 0.05 and Ka = 100, we can determine the system 
response using the script shown in Figure 6.30. The settling time (with a 2% criterion) 
is approximately 260 ms, and the percent overshoot is zero. The system performance 
is summarized in Table 6.3. The performance specifications are nearly satisfied, and 
some iteration of K[ is necessary to obtain the desired 250 ms settling time. 

Table 6.3 Performance of the Disk Drive System Compared to the 
Specifications 

Performance Measure Desired Value Actual Response 

Percent overshoot 
Settling time 
Maximum response 
to a unit disturbance 

Less than 5% 
Less than 250 ms 

Less than 5 x 1(T3 

0% 
260 ms 

2 X 10 ,-3 
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Ka=100;K1=0.05; < 
ng1=[5000]; dg1=[1 1000]; sys1=tf(ng1,dg1); 
ng2=[1]; dg2=[1 20 0]; sys2=tf(ng2,dg2); 
nc=[K1 1]; dc=[0 1]; sysc=tf(nc,dc); 
syso=series(Ka*sys1 ,sys2); 
sys=feedback(syso,sysc); sys=minreal(sys); 
t=[0:0.001:0.5J; 
y=step(sys,t); plot(t,y) 
ylabel('y(t)'),xlabel('Time (s)'),grid 

Select the velocity 
feedback gain Kt and 

amplifier gain Ka. 

(a) 

FIGURE 6.30 
Response of the 
system with 
velocity feedback. 
(a) m-file script. 
(b) Response with 
Ka = 100 and 
K, = 0.05. 

JL 

0.9 
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(b) 

6.8 SUMMARY 

In this chapter, we have considered the concept of the stability of a feedback control 
system. A definition of a stable system in terms of a bounded system response was 
outlined and related to the location of the poles of the system transfer function in 
the s-plane. 

The Routh-Hurwitz stability criterion was introduced, and several examples 
were considered. The relative stability of a feedback control system was also consid
ered in terms of the location of the poles and zeros of the system transfer function in 
the 5-plane. The stability of state variable systems was considered. 
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E X E R C I S E S 

E6.1 Mark the poles of the following system on the 
s-plane. Comment on the stability of the system. 

3 
, ? 2 - 4 

1 
(b) 

(a) 

(c) 

(s + l)(sz + 2s + 4) 

10 

s(s + 1)(52 - 2s + 1) 

E6.2 Consider a unity feed system with open loop transfer 
K 

function — Find the range of value of K for 
(s — 1) 

which the system is stable. 
E6.3 Find the roots of the characteristic equation 

sA + 9.553 + 30.552 + 375 + 12 = 0. 
E6.4 Consider the closed loop system given in Figure E6.4. 

(a) Mark the open-loop poles on the s-plane. 
(b) Find the closed-loop poles when K = 1, K = 5, and 

# = 10. 
(c) Find the range of values of K for which the system 

is stable. 
E6.5 A unity feed back system is having an open-loop 

1 
transfer function check whe-

(5 + 3)(5 + 4)(5 \- 5) 
ther the system is stable. 

E6.6 For the feedback system of Exercise E6.5, find the 
value of K when two roots lie on the imaginary axis. 
Determine the value of the three roots. 

Answer; s = —10, ±/5.2 

^ < » — 

Controller 

K 

s 

Plant 

1 
5 + 2 

1 

^̂  

FIGURE E6.4 Open-loop poles and closed-loop poles. 

E6.7 A negative feedback system has a loop transfer 
function 

/ .(5) = 
K(s + 2) 

s(s - 1) • 

(a) Find the value of the gain when the £ of the closed-
loop roots is equal to 0.707. (b) Find the value of the 
gain when the closed-loop system has two roots on the 
imaginary axis. 

E6.8 Designers have developed small, fast, vertical-take-
off fighter aircraft that are invisible to radar (stealth 
aircraft). This aircraft concept uses quickly turning jet 
nozzles to steer the airplane [22]. The control 
system for the heading or direction control is shown 
in Figure E6.8. Determine the maximum gain of the 
system for stable operation. 

E6.9 A system has a characteristic equation 

53 + 252 + (K + 1)5 + 6 = 0. 

Find the range of K for a stable system. 

Answer: K > 2 

E6.10 We all use our eyes and ears to achieve balance. 
Our orientation system allows us to sit or stand in a de
sired position even while in motion. This orientation 
system is primarily run by the information received in 
the inner ear, where the semicircular canals sense 
angular acceleration and the otoliths measure linear 
acceleration. But these acceleration measurements 
need to be supplemented by visual signals. Try the fol
lowing experiment: (a) Stand with one foot in. front of 
another, with your hands resting on your hips and your 
elbows bowed outward, (b) Close your eyes. Did you 
experience a low-frequency oscillation that grew until 
you lost balance? Is this orientation position stable 
with and without the use of your eyes? 

E6.ll A system with a transfer function Y(s)fR(s) is 

no 
R(s) 

24(> - 1) 

+ 653 + 25^ + 5 

R(s) 

Determine the steady-state error to a unit step input. 
Is the system stable? 

E6.12 By using magnetic bearings, a rotor is supported 
contactless. The technique of con tactless support for 

Y[s) 

FIGURE E6.8 
Aircraft heading 
control. 

Controller 

K 

Aircraft dynamics 

(5 + 20) 
s(s + 10)2 Heading 

http://E6.ll
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rotors becomes more important in light and heavy 
industrial applications [14]. The matrix differential 
equation for a magnetic bearing system is 

x = 

0 1 0 
- 3 - 1 0 
- 2 - 1 - 2 

where x r = [y, dyldt, i], y = bearing gap, and i is 
the electromagnetic current. Determine whether the 
system is stable. 

Answer: The system is stable. 

E6.13 A system has a characteristic equation 

q(s) = s6 + 955 + 31.2554 + 61.25s3 

+ 67.7552 + 14.755 + 15 = 0. 

(a) Determine whether the system is stable, using the 
Routh-Hurwitz criterion, (b) Determine the roots of 
the characteristic equation. 

Answer: (a) The system is marginally stable. 
( b ) j -- - 3 , - 4 , - 1 ± 2/, ±0.5/ 

E6.14 Consider the system given in Figure E6.14. Find 
the range of values of Kfor which the system is stable. 

?>—• 
y * 

Controller 

K ^ 

Plant 

Sensor 

1 
s+ 1 

I 
S(j + 2) 

fc. 

FIGURE E6.14 A closed-loop system. 

E6.15 The characteristic equation of a system is given below. 

s6 + 2s5 + 8s4 + 12? + 20.92 + 16^ +16 = 0. 

Check whether the system is stable. 

E6.16 A system has a characteristic equation 

q(s) = 53 + 2052 + 55 + 100 = 0. 

(a) Determine whether the system is stable, using the 
Routh-Hurwitz criterion, (b) Determine the roots of 
the characteristic equation. 

E6.17 Determine whether the systems with the following 
characteristic equations are stable or unstable: 

(a) s3 - 4.v2 + 65 + 100 = 0, 
(b) s4 - 653 - 52 - 175 - 6 = 0, and 
(c) s2 + 6s -t 3 = 0. 

E6.18 Find the roots of the following polynomials: 

(a) 53 + 552 + Hs + 4 = 0 and 
(b) s3 + 952 + 275 + 27 = 0. 

E6.19 A system has the characteristic equation 

q(s) = s3 + 1052 + 295 + K = 0. 

Shift the vertical axis to the right by 2 by using 
s = 5„ - 2, and determine the value of gain K so that 
the complex roots are 5 = - 2 ± /. 

E6.20 A system has a transfer function Y(s)IR(s) = 
T(s) = 1/5. (a) Is this system stable? (b) If r(t) is a unit 
step input, determine the response y(t). 

E6.21 A system is represented by Equation (6.22) where 

0 1 0 
0 0 1 

- 6 ~k - 3 . 

Find the range of k where the system is stable. 

E6.22 Consider the system represented in state variable 
form 

where 

x = Ax -+- B« 
y — Cx + D«, 

0 1 0~ 
0 0 1 

-k -k -k 
, B = 

[o 
0 
1 

C = [1 0 01, D = [0]. 

(a) What is the system transfer function? (b) For what 
values of k is the system stable? 

E6.23 A closed-loop feedback system is shown in 
Figure E6.23. For what range of values of the para
meters K and p is the system stable? 

E6.24 Consider the closed-loop system in Figure E6.24. 
where 

G(5) = 
10 

5 - 1 0 
and Gc(.v) = 

1 

25 + K' 

(a) Determine the characteristic equation associated 
with the closed-loop system. 

(b) Determine the values of K for which the closed-
loop system is stable. 

Ks+ 1 
1 

s\s + p) *• Yis) 

FIGURE E6.23 Closed-loop system with parameters K 
and p. 
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N(s) 

(a) 

W 

R(s) O 
FIGURE E6.24 
Closed-loop 
feedback control 
system with 
parameter K. 

w 
' * 

Controller 

Gc(s) • Y(s) 

N{s) 

PROBLEMS 

P6.1 Consider the system given in Figure P6.1. Find the 
range of value of K for which the closed-loop poles 
are to the left of s = - 1 line. 

P6.2 An antenna control system was analyzed in Problem 
4.5, and it was determined that, to reduce the effect of 
wind disturbances, the gain of the magnetic amplifier, 
ka, should be as large as possible, (a) Determine the 
limiting value of gain for maintaining a stable system. 
(b) We want to have a system settling time equal to 1.5 
seconds. Using a shifted axis and the Routh-Hurwitz 
criterion, determine the value of the gain that satisfies 
this requirement. Assume that the complex roots of the 

^ * g > -?\ 
9 

K m 1̂ 
2 

C?+3)(s-M) 

1 
(s+5) 

"̂"1 

closed-loop system dominate the transient response. (Is 
this a valid approximation in this case?) 

P6.3 Arc welding is one of the most important areas of ap
plication for industrial robots [11]. In most manufac
turing welding situations, uncertainties in dimensions 
of the part, geometry of the joint, and the welding 
process itself require the use of sensors for maintaining 
weld quality. Several systems use a vision system to 
measure the geometry of the puddle of melted metal, 
as shown in Figure P6.3. This system uses a constant 
rate of feeding the wire to be melted, (a) Calculate the 
maximum value for K for the system that will result in 
a stable system, (b) For half of the maximum value of 
K found in part (a), determine the roots of the charac
teristic equation, (c) Estimate the overshoot of the 
system of part (b) when it is subjected to a step input. 

P6.4 A feedback control system is shown in Figure P6.4. 
The controller and process transfer functions are 
given by 

FIGURE P6.1 Relative stability. 
f7c(.v) = K and G(s) = 

5 + 40 
s(s + 10) 
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Desired 
diameter -o Error 

FIGURE P6.3 
Welder control. 

Controller 

5 + 2 

Measured 
diameter 

Arc 
current 

Wire-meliing process 

1 
(0.55+ 1)(5+ 1) 

Vision system 

1 
0.0055 + I 

Puddle 
diameter 

and the feedback transfer function is H(s) = l/(s + 20). 
(a) Determine the limiting value of gain K for a stable 
system, (b) For the gain that results in marginal stability, 
determine the magnitude of the imaginary roots, (c) Re
duce the gain to half the magnitude of the marginal 
value and determine the relative stability of the system 
(1) by shifting the axis and using the Routh-Hurwitz 
criterion and (2) by determining the root locations. 
Show the roots are between - 1 and - 2 . 

P6.5 Determine the relative stability of the systems with 
the following characteristic equations (1) by shifting 
the axis in the s-plane and using the Routh-Hurwitz 
criterion, and (2) by determining the location of the 
complex roots in the s-plane: 

(a) j ' 3 + 3$2 + 45 + 2 = 0. 

(b) s4 + 9s3 + 30s2 + 42s + 20 = 0. 
(c) s3 + 19s2 + 110.9 + 200 = 0. 

P6.6 A unity-feedback control system is shown in 
Figure P6.6. Determine the relative stability of the 
system with the following transfer functions by 
locating the complex roots in the s-plane: 

(a) Gc(s)G(s) = 

(b) Gc(s)G(s) = 

10s + 2 

s2(s + 1) 

24 

(c) Gc(s)G(s) = 
(s + 2)(s + 3) 

s(s + 4)(5 + 6) 

P6.7 The linear model of a phase detector (phase-lock loop) 
can be represented by Figure P6.7 [9]. The phase-lock sys
tems are designed to maintain zero difference in phase 
between the input carrier signal and a local voltage-
controlled oscillator. Phase-lock loops find application in 
color television, missile tracking, and space telemetry.The 
filter for a particular application is chosen as 

F(s) = 
10(s + 10) 

(s + l)(s + 100)' 

s(s3 + 1052 + 35s + 50) 

We want to minimize the steady-state error of the 
system for a ramp change in the phase information 
signal, (a) Determine the limiting value of the gain 
KaK — Kv in order to maintain a stable system, (b) A 
steady-state error equal to 1° is acceptable for a 
ramp signal of 100 rad/s. For that value of gain Kv, 
determine the location of the roots of the system. 

P6.8 A very interesting and useful velocity control system 
has been designed for a wheelchair control system. We 
want to enable people paralyzed from the neck down 
to drive themselves in motorized wheelchairs. A pro
posed system utilizing velocity sensors mounted in a 
headgear is shown in Figure P6.8.The headgear sensor 
provides an output proportional to the magnitude of 

FIGURE P6.4 
Nonunity feedback 
system. 

FIGURE P6.6 
Unity feedback 
system. 
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FIGURE P6.7 
Phase-lock loop 
system. 

i 

Amplifier 

Ka 

Filter 

F(s) 

Voltage-conirolled 
oscillator 

K 
s 

(b) 

(c) 

the head movement. There is a sensor mounted at 90° 
intervals so that forward, left, right, or reverse can be 
commanded. Typical values for the time constants are 
T] = 0.5s, r3 = Is, and r4 = | s . 

(a) Determine the limiting gain K - KxK2Ki for a 
stable system. 
When the gain K is set equal to one-third of the 
limiting value, determine whether the settling 
time (to within 2% of the final value of the sys
tem) is less than 4 s. 
Determine the value of gain that results in a sys
tem with a settling time of 4 s. Also, obtain the 
value of the roots of the characteristic equation 
when the settling time is equal to 4 s. 

P6.9 A cassette tape storage device has been designed for 
mass-storage f 1]. It is necessary to control the velocity of 
the tape accurately. The speed control of the tape drive 
is represented by the system shown in Figure P6.9. 

(a) Determine the limiting gain for a stable system. 
(b) Determine a suitable gain so that the overshoot 

to a step command is approximately 5%. 

P6.10 Robots can be used in manufacturing and assembly 
operations that require accurate, fast, and versatile 
manipulation [10,11].The open-loop transfer function 
of a direct-drive arm may be approximated by 

G(s)H(s) = 
K(s + 10) 

s(s + 3)(s2 f 4s + 8) 

FIGURE P6.8 
Wheelchair control 
system. 

Desired 
velocity o 

Head 
nod 

' * 

Sensor 
in hat 

K\ 
T,5 + 1 

(a) Determine the value of gain K when the system 
oscillates, (b) Calculate the roots of the closed-loop 
system for the K determined in part (a). 

P6 . l l A feedback control system has a characteristic 
equation 

53 + (1 + K)sz + 105 + (5 + 15K) = 0. 

The parameter K must be positive. What is the maxi
mum value K can assume before the system becomes 
unstable? When K is equal to the maximum value, 
the system oscillates. Determine the frequency of os
cillation. 

P6.12 Consider the system described by the following dif
ferential equations. 

Xi = —2x\ + 3« 

x2 = -4x2 + 2M 

i 3 - —.v3 + u 

y — 2xj + 3x2 + x3 

where u is the input and y is the output. Is the system 
stable. 

P6.13 The stability of a motorcycle and rider is an im
portant area for study because many motorcycle de
signs result in vehicles that are difficult to control 
[12,13]. The handling characteristics of a motorcycle 
must include a model of the rider as well as one of 
the vehicle. The dynamics of one motorcycle and 

Amplifier 

K: 

Wheelchair 
dynamics 

K, 
{T^S+ l)(T4S+ 1) 

•+• Velocity 

FIGURE P6.9 
Tape drive control. 
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rider can be represented by an open-loop transfer 
function (Figure P6.4) 

K(s2 + 30s + 1125) 

s(s + 20)(52 + 10* + 125)(52 + 60s + 3400) 

(a) As an approximation, calculate the acceptable 
range of K for a stable system when the numerator 
polynomial (zeros) and the denominator polynomial 
(A-2 + 60s + 3400) are neglected, (b) Calculate the 
actual range of acceptable K, account for all zeros and 
poles. 

P6.14 A system has a transfer function 

T{s) = 
1 

s5 + 5s2 + 20s + 6 

(a) Determine whether the system is stable, (b) Detei-
mine the roots of the characteristic equation, (c) Plot 
the response of the system to a unit step input. 

P6.15 On July 16,1993, the elevator in Yokohama's 70-story 
Landmark Tower, operating at a peak speed of 45 km/hr 
(28 mph), was inaugurated as the fastest super-fast 
elevator. To reach such a speed without inducing discom
fort in passengers, the elevator accelerates for longer 
periods, rather than more precipitously. Going up, it 
reaches full speed only at the 27th floor; it begins decel
erating 15 floors later. The result is a peak acceleration 
similar to that of other skyscraper elevators—a bit less 
than a tenth of the force of gravity. Admirable ingenuity 
has gone into making this safe and comfortable. Spe
cial ceramic brakes had to be developed; iron ones 
would melt. Computer-controlled systems damp out 
vibrations. The lift has been streamlined to reduce the 
wind noise as it speeds up and down [20]. One pro
posed control system for the elevator's vertical posi
tion is shown in Figure P6.15. Determine the range of 
K for a stable system. 

P6.16 Consider the case of rabbits and foxes in Australia. 
The number of rabbits is X\ and, if left alone, it would 

grow indefinitely (until the food supply was exhaust
ed) so that 

X\ — kx\. 

However, with foxes present on the continent, we 
have 

k\ - kxA — ax2, 

where x2 is the number of foxes. Now, if the foxes must 
have rabbits to exist, we have 

^2 = —hx2 + bx\. 

Determine whether this system is stable and thus 
decays to the condition x,(r) = x2(t) = 0 at t = oo. 
What are the requirements on a, b,h, and k for a stable 
system? What is the result when k is greater than hi 

P6.I7 The goal of vertical takeoff and landing (VTOL) 
aircraft is to achieve operation from relatively small 
airports and yet operate as a normal aircraft in level 
flight [17]. An aircraft taking off in a form similar to a 
missile (on end) is inherently unstable (see Example 
3.4 for a discussion of the inverted pendulum). A con
trol system using adjustable jets can control the vehi
cle, as shown in Figure P6.17. (a) Determine the range 
of gain for which the system is stable, (b) Determine 
the gain K for which the system is marginally stable 
and the roots of the characteristic equation for this 
value of K. 

P6.18 A vertical-liftoff vehicle is shown in Figure P6.18(a). 
The four engines swivel for liftoff. The control sys
tem for aircraft altitude is shown in Figure P6.18(b). 
(a) For K = 1, determine whether the system is sta
ble. (b) Determine a range of stability, if any, for 
K > 0. 

P6.19 Consider the system described in state variable 
form by 

x(0 = Ax(f) + Bu(0 

y(t) = Cx(/) 

r -

FIGURE P6.15 
Elevator control 
system. 
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FIGURE P6.17 
Control of a jump-
jet aircraft. 
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(a) 

FIGURE P6.18 
(a) Vertical-takeoff 
aircraft. (Courtesy 
of Moller 
International.) 
(b) Control system. 

R(s) O ^ AT(4ir + 2s 

lb) 

s2(s2 + s + 4) 
• Y(s) 

where 

0 

- * i 

1 

~k2 

,B = 
0 

_ij 
, a n d C = [ l - 1 ] , 

and where k\ & k2 and both k^ and k2 are real 
numbers. 

(a) Compute the state transition matrix #(f, 0). 
(b) Compute the eigenvalues of the system matrix A. 
(c) Compute the roots of the characteristic polyno
mial. (d) Discuss the results of parts (a)-(c) in terms of 
stability of the system. 

ADVANCED PROBLEMS 

AP6.1 A teleoperated control system incorporates both a 
person (operator) and a remote machine. The normal 
teleoperation system is based on a one-way link to the 
machine and limited feedback to the operator. How
ever, two-way coupling using bilateral information 
exchange enables better operation [19]. In the case of 
remote control of a robot, force feedback plus posi
tion feedback is useful. The characteristic equation for 
a teleoperated system, as shown in Figure AP6.1, is 

A-4 + 2053 + Kxs
2 + 4s + K2 = 0, 

where K\ and K2 are feedback gain factors. Determine 
and plot the region of stability for this system for Kx 

and K2. 

AP6.2 Consider the case of a navy pilot landing an air
craft on an aircraft carrier. The pilot has three basic 
tasks. The first task is guiding the aircraft's approach 

to the ship along the extended centerline of the run
way. The second task is maintaining the aircraft on the 
correct glideslope. The third task is maintaining the 
correct speed. A model of a lateral position control 
system is shown in Figure AP6.2. Determine the range 
of stability fori?" a 0. 

Human 
operator 

Operator 
commands 

Feedback 

Remote 
machine 

FIGURE AP6.1 Model of a teleoperated machine. 
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Pilot Aircraft 

FIGURE AP6.2 
Lateral position 
control for landing 
on an aircraft 
carrier. 
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AP6.3 A control system is shown in Figure AP6.3. We 
want the system to be stable and the steady-state error 
for a unit step input to be less than or equal to 0.05 
(5%). (a) Determine the range of a that satisfies the 
error requirement, (b) Determine the range of a that 

satisfies the stability requirement, (c) Select an a that 
meets both requirements. 

AP6.4 A bottle-filling line uses a feeder screw mechanism, 
as shown in Figure AP6.4. The tachometer feedback is 

R(s) + 0-
FIGURE AP6.3 
Third-order unity 
feedback system. 
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s3 + ( 1 + a)s2 + (a - \)s + (1 - a) 
— • 

Controller 

Kix) 

FIGURE AP6.4 
Speed control of a 
bottle-filling line. 
(a) System layout. 
(b) Block diagram. 
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used to maintain accurate speed control. Determine and (b) 
plot the range of K andp that permits stable operation. 

AP6.5 Consider the closed-loop system in Figure AP6.5. 
Suppose that all gains are positive, that is, K{ > 0, (c) 
K2 > 0, K3 >0,K4> 0, and K5 > 0. 

(a) Determine the closed-loop transfer function 
T(s) = Y(s)/R(s). 

Obtain the conditions on selecting the gains 
Kh K2, K3, K4, and K5, so that the closed-loop 
system is guaranteed to be stable. 
Using the results of part (b), select values of the 
five gains so that the closed-loop system is stable, 
and plot the unit step response. 

*(.v>0 

*1 

s 

1 
s + 

K 
i 

j r 
10 

i - 10 
- • Yis) 

(b) 

FIGURE AP6.5 Multiloop feedback control system, (a) Signal flow graph, (b) Block diagram. 

DESIGN PROBLEMS 

CP6.1 The capstan drive system of problem CDP5.1 uses DP6.1 The control of the spark ignition of an automotive 
f£\ t n e amplifier as the controller. Determine the maxi- engine requires constant performance over a wide 
L*TJ mum value of the gain Ka before the system becomes range of parameters [15]. The control system is shown 

unstable. in Figure DP6.1, with a controller gain K to be selected. 

FIGURE DP6.1 
Automobile engine 
control. 

• Y(s) 
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The parameter p is equal to 2 for many autos but can 
equal zero for those with high performance. Select a 
gain K that will result in a stable system for both values 
of p. 

DP6.2 An automatically guided vehicle on Mars is repre
sented by the system in Figure DP6.2.The system has 
a steerable wheel in both the front and back of the ve
hicle, and the design requires that H(s) = Ks + 1. 
Determine (a) the value of K required for stability. 
(b) the value of K when one root of the characteristic 
equation is equal to s = - 5 , and (c) the value of the 
two remaining roots for the gain selected in part 
(b). (d) Find the response of the system to a step 
command for the gain selected in part (b). 

DP6.3 A unity negative feedback, system with 

K(s + 2) 

has two parameters to be selected, (a) Determine and 
plot the regions of stability for this system, (b) Select r 
and K so that the steady-state error to a ramp input is 
less than or equal to 25% of the input magnitude. 
(c) Determine the percent overshoot for a step input 
for the design selected in part (b). 

DP6.4 The attitude control system of a space shuttle 
rocket is shown in Figure DP6.4 [18]. (a) Determine 

the range of gain K and parameter m so that the 
system is stable, and plot the region of stability, (b) 
Select the gain and parameter values so that the 
steady-state error to a ramp input is less than or 
equal to 10% of the input magnitude, (c) Determine 
the percent overshoot for a step input for the design 
selected in part (b). 

DP6.5 A traffic control system is designed to control the 
distance between vehicles, as shown in Figure DP6.5 
[15]. (a) Determine the range of gain K for which the 
system is stable, (b) if Km is the maximum value of K 
so that the characteristic roots are on the /(u-axis, then 
let K = KJN, where 6 < N < 7. We want the peak 
time to be less than 2 seconds and the percent over
shoot to be less than 18%. Determine an appropriate 
value for N. 

DP6.6 Consider the single-input, single-output system as 
described by 

x(r) = Ax(f) + BM(0 

y(t) = Cx(r) 

where 

A = 
0 

2 

1 

-2 
, B = 

0 
1 

, C = [ 1 0]. 
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FIGURE DP6.2 
Mars guided vehicle 
control. 
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FIGURE DP6.4 
Shuttle attitude 
control. 
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FIGURE DP6.5 
Traffic distance 
control. 
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Assume that the input is a linear combination of the 
states, thai is, 

«(0 = - Kx(r) + r(t), 

where r(t) is the reference input. The matrix 
K = [#i K2] is known as the gain matrix. If you 
substitute u(t) into the state variable equation you will 
obtain the closed-loop system 

x(?) = [A - BK]x(.') + Br(/) 
y(t) = Cx(t) 

For what values of K is the closed-loop system stable? 
Determine the region of the left half-plane where the 
desired closed-loop eigenvalues should be placed so 
that the percent overshoot to a unit step input, 
R(s) = lis, is less than P.O. < 5% and the settling 
time is less than Ts < 4s. Select a gain matrix, K, so 
that the system step response meets the specifications 
P.O. < 5% and T, < 4s. 

DP6.7 Consider the feedback control system in Figure 
DP6.7.The system has an inner loop and an outer loop. 

The inner loop must be stable and have a quick speed 
of response, (a) Consider the inner loop first. Deter
mine the range of K-\ resulting in a stable inner loop. 
That is, the transfer function Y(s)/U{$) must be stable. 
(b) Select the value of /¾ in the stable range leading to 
the fastest step response, (c) For the value of K\ select
ed in (b), determine the range of K2 such that the 
closed-loop system T(s) = Y(s)/R{s) is stable. 

DP6.8 Consider the feedback system shown in Figure 
DP6.8.The process transfer function is marginally sta
ble. The controller is the proportional-derivative (PD) 
controller 

Gc(s) = KP + KDs. 

Determine if it is possible to find values of KP and KD 

such that the closed-loop system is stable. If so, obtain 
values of the controller parameters such that the 
steady-state tracking error E{s) = R(s) - Y(s) to 
a unit step input R(s) = Us is eSi *= lim e(t) as 0.1 
and the damping of the closed-
loop system is £ = V2/2. 

FIGURE DP6.7 
Feedback system 
with inner and outer 
loop. 

FIGURE DP6.8 
A marginally stable 
plant with a PD 
controller in the 
loop. 
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COMPUTER PROBLEMS 

CP6.1 Consider a unity feed back system with open-loop 

transfer function It mav be 
(s + 1)(5 + 2)(.v + 3) 

noted that finding closed-loop poles by hand calcula
tion is difficult. 
(a) Using MATLAB find the closed-loop poles cor

responding to K = 1, K — 5, and K = 10. 
(b) Mark the closed-loop poles on the s-plane. 

CP6.2 Consider a unity negative feedback system with 

s2 - s + 2 
GJs) - K and G(.v) = -. W W 52 + 2.v + 1 

Develop an m-file to compute the roots of the closed-
loop transfer function characteristic polynomial for 
K = 1,2, and 5. For which values of K is the closed-
loop system stable? 
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CP6.3 Consider the system. 

x = 
0 1 
0 0 

- 6 -11 

0 

1 
- 6 

x + 
0 

0 
1 

y = [1 0 0]x 

Using MATLAB 
(a) Find the eigen values of the system matrix. 
(b) Find the transfer function model of the system. 
(c) Obtain the closed-loop poles. 
(d) Is the system stable? 

CP6.4 Consider the closed-loop transfer function 

T(s) = 
1 

s5 + 2 / + 2s3 + As2 + s + 2 

(a) Using the Routh-Hurwitz method, determine 
whether the system is stable. If it is not stable, how 
many poles are in the right half-plane? (b) Com
pute the poles of T(s) and verify the result in part (a). 
(c) Plot the unit step response, and discuss the results. 

CP6.5 A "paper-pilot" model is sometimes utilized in air
craft control design and analysis to represent the pilot 
in the loop. A block diagram of an aircraft with a pilot 
"in the loop" is shown in Figure CP6.5. The variable r 
represents the pilot's time delay. We can represent a 
slower pilot with T = 0.5 and a faster pilot with 
T = 0.25. The remaining variables in the pilot model are 

assumed to be K = 1, Tj = 2, and T2 = 0.5. Develop 
an m-file to compute the closed-loop system poles for 
the fast and slow pilots. Comment on the results. What is 
the maximum pilot time delay allowable for stability? 

CP6.6 Consider the feedback control system in Figure 
CP6.6. Using the for function, develop an m-file script 
to compute the closed-loop transfer function poles for 
0 :S K < 5 and plot the results denoting the poles 
with the " X " symbol. Determine the maximum range 
of K for stability with the Routh-Hurwitz method. 
Compute the roots of the characteristic equation 
when K is the minimum value allowed for stability. 

CP6.7 Consider a system in state variable form: 

u, 

(a) Compute the characteristic equation using the poly 
function, (b) Compute the roots of the characteristic 
equation, and determine whether the system is stable. 
(c) Obtain the response plot of yil) when u{t) is a unit 
step and when the system has zero initial conditions. 

CP6.8 Consider the feedback control system in Figure 
CP6.8. (a) Using the Routh-Hurwitz method, deter
mine the range of K{ resulting in closed-loop stability. 
(b) Develop an m-file to plot the pole locations as a 
function of 0 < Kx < 30 and comment on the results. 
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FIGURE CP6.5 
An aircraft with a 
pilot in the loop. 
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R(s) 
s3 + 552 + (K - 3).v - K 

-*• Yis) 

FIGURE CP6.8 
Nonunity feedback 
system with 
parameter /C,. 

Ris) — M T ) 

Process 

s(s + 10) 

Controller 

Ki 2 + T 

•+- Y{s) 



406 Chapter 6 The Stability of Linear Feedback Systems 

CP6.9 Consider a system represented in state variable form 
x = Ax + Bw 
y = Cx + DM, 

where 

A = 
" 0 1 0 ~ 

2 0 1 
_-k - 3 -2_ 

,B = 

C = [1 2 0], D = [0] 

r-r 
0 

_ 1 
• 

(a) For what values of k is the system stable? 
(b) Develop an m-file to plot the pole locations as a 

function of 0 < k < 10 and comment on the 
results. 

TERMS AND CONCEPTS 

Absolute stability A system description that reveals 
whether a system is stable or not stable without con
sideration of other system attributes such as degree of 
stability. 

Auxiliary polynomial The equation that immediately 
precedes the zero entry in the Routh array. 

Marginally stable A system is marginally stable if and 
only if the zero input response remains bounded as 
t —* oo. 

Relative stability The property that is measured by the 
relative real part of each root or pair of roots of the 
characteristic equation. 

Routh-Hurwitz criterion A criterion for determining the 
stability of a system by examining the characteristic 
equation of the transfer function. The criterion states 
that the number of roots of the characteristic equation 
with positive real parts is equal to the number of 
changes of sign of the coefficients in the first column 
of the Routh array. 

Stability A performance measure of a system. A system 
is stable if all the poles of the transfer function have 
negative real parts. 

Stable system A dynamic system with a bounded system 
response to a bounded input. 
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PREVIEW 

The performance of a feedback system can be described in terms of the location of the 
roots of the characteristic equation in the s-plane. A graph showing how the roots of 
the characteristic equation move around the s-plane as a single parameter varies is 
known as a root locus plot. The root locus is a powerful tool for designing and analyz
ing feedback control systems. We will discuss practical techniques for obtaining a 
sketch of a root locus plot by hand. We also consider computer-generated root locus 
plots and illustrate their effectiveness in the design process. We will show that it is pos
sible to use root locus methods for controller design when more than one parameter 
varies. This is important because we know that the response of a closed-loop feedback 
system can be adjusted to achieve the desired performance by judicious selection of 
one or more controller parameters. The popular PID controller is introduced as a 
practical controller structure with three adjustable parameters. We will also define 
a measure of sensitivity of a specified root to a small incremental change in a system 
parameter. The chapter concludes with a controller design based on root locus 
methods for the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

U p o n completion of Chapter 7, students should: 

Zi Understand the powerful concept of the root locus and its role in control system design. 
J Know how to sketch a root locus and also how to obtain a computer-generated root 

locus plot. 
J Be familiar with the PID controller as a key element of many feedback systems in use 

today. 
_l Recognize the role of root locus plots in parameter design and system sensitivity analysis. 
3 Be capable of designing a controller to meet desired specifications using root locus 

methods. 
407 

7 
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7.1 INTRODUCTION 

lire relative stability and the transient performance of a closed-loop control system 
are directly related to the location of the closed-loop roots of the characteristic 
equation in the s-plane. It is frequently necessary to adjust one or more system 
parameters in order to obtain suitable root locations. Therefore, it is worthwhile to 
determine how the roots of the characteristic equation of a given system migrate 
about the s-plane as the parameters are varied; that is, it is useful to determine the 
locus of roots in the s-plane as a parameter is varied. The root locus method was 
introduced by Evans in 1948 and has been developed and utilized extensively in con
trol engineering practice [1-3]. The root locus technique is a graphical method for 
sketching the locus of roots in the s-plane as a parameter is varied. In fact, the root 
locus method provides the engineer with a measure of the sensitivity of the roots of 
the system to a variation in the parameter being considered. The root locus technique 
may be used to great advantage in conjunction with the Routh-Hurwitz criterion. 

The root locus method provides graphical information, and therefore an approx
imate sketch can be used to obtain qualitative information concerning the stability 
and performance of the system. Furthermore, the locus of roots of the characteristic 
equation of a multiloop system may be investigated as readily as for a single-loop 
system. If the root locations are not satisfactory, the necessary parameter adjust
ments often can be readily ascertained from the root locus [4]. 

7.2 THE ROOT LOCUS CONCEPT 

The dynamic performance of a closed-loop control system is described by the 
closed-loop transfer function 

Y(s) p(s) 
T(s) 

R(s) q(sY 
(7.1) 

where p(s) and q(s) are polynomials in s. The roots of the characteristic equation 
q(s) determine the modes of response of the system. In the case of the simple single-
loop system shown in Figure 7.1, we have the characteristic equation 

1 + KG(s) = 0, (7.2) 

where K is a variable parameter. The characteristic roots of the system must satisfy 
Equation (7.2), where the roots lie in the .s-plane. Because 5 is a complex variable, 
Equation (7.2) may be rewritten in polar form as 

\KG(s)\/KG(s) = - 1 + /0, (7.3) 

FIGURE 7.1 
Closed-loop 
control system with 
a variable 
parameter K. 

Ri.s) • Y{s> 
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and therefore it is necessary that 

409 

\KG(s)\ = 1 

and 

/KG(s) = 180° + /c360°, (7.4) 

where k ~ 0, ±1 , ±2, ± 3 , . . . . 

The root locus is the path of the roots of the characteristic equation traced out 
in the s -plane as a system parameter is changed. 

The simple second-order system considered in the previous chapters is shown in 
Figure 7.2. The characteristic equation representing this system is 

A(s) = 1 + KG(s) = 1 + 
K 

= 0, 
s(s - 2) 

or, alternatively, 

A(s) = s2 + 2s t K = s2 + 2£o)lts + w?, = 0. 

Trie locus of the roots as the gain K is varied is found by requiring that 

K 
\KG(s)\ -

s(s + 2) 
= 1 

and 

/KG(s) = ±180°, ±540°,.. . . 

(7.5) 

(7.6) 

(7.7) 

The gain K may be varied from zero to an infinitely large positive value. For a 
second-order system, the roots are 

sus2 = ~C(»n ±o>„V£2 - 1, (7.8) 

and for £ < 1, we know that B = cos-1 £. Graphically, for two open-loop poles as 
shown in Figure 7.3, the locus of roots is a vertical line for t, < 1 in order to satisfy 
the angle requirement, Equation (7.7). For example, as shown in Figure 7.4, at a root 
Su the angles are 

K 

s(s + 2) 
= -/sx - /(s1 + 2) = - [(180° - B) + 0] = -180°. (7.9) 

s=$i 

FIGURE 7.2 
Unity feedback 
control system. The 
gain K is a variable 
parameter. 

R(s) "> fc 

J K 
1 

s(s + 2) 



410 Chapter 7 The Root Locus Method 

FIGURE 7.3 
Root locus for a 
second-order 
system when 
Ke< K, < K2. The 
locus is shown as 
heavy lines, with 
arrows indicating 
the direction of 
increasing K. Note 
that roots of the 
characteristic 
equation are 
denoted by " • " on 
the root locus. 

i 

K 
increas 

t 

s 

"1 1 Ae 
/V 

j - 2 

• 

V 

K 

4 * 
L 

rig- . 

r 

[Ke 

i 

! 
s 

N 1 

K T - l = -t<o„ 
increasing 

= roots of the 
closed-lo 
system 

= poles of t 
open-looj 
system 

OP 

he 
J 

- c 
' 

r 

1 
J 

r1 < 

% 

1 

| 

/« 

\ 

This angle requirement is satisfied at any point on the vertical line that is a perpen
dicular bisector of the line 0 to -2 . Furthermore, the gain K at the particular points 
is found by using Equation (7.6) as 

K 
s(s + 2) 

K 
\Si\\Si 

= 1, (7.10) 

and thus 

K = \sx\\Sl + 2|, (7.11) 

where \s\\ is the magnitude of the vector from the origin to S\, and \s\ + 2| is the 
magnitude of the vector from - 2 to j j . 

For a multiloop closed-loop system, we found in Section 2.7 that by using 
Mason's signal-flow gain formula, we had 

N 

A(5) = 1 - 2 L « + 2 LnLim 

«=1 
2 LnLmL.p + (7.12) 

n,m 
nontouching 

rt, m, p 
nontouching 

FIGURE 7.4 
Evaluation of the 
angle and gain at s-i 
for gain K = K-\. 
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where L„ equals the value of the nth self-loop transmittance. Hence, we have a char
acteristic equation, which may be written as 

q(s) = A(5) = 1 + F(s). (7.13) 

To find the roots of the characteristic equation, we set Equation (7.13) equal to zero 
and obtain 

1 + F(s) = 0. 

Equation (7.14) may be rewritten as 

F(s) = - 1 + /0, 

and the roots of the characteristic equation must also satisfy this relation. 
In general, the function F(s) may be written as 

F(s) _ jfo + gjKg + z2)(s + z3)--(s + zM) 

" (5 + Pi)(s + P2)(S + Pz) • • • (S + pn) ' 

Then the magnitude and angle requirement for the root locus are 

K\s + Z[\\s + z2\ 

(7.14) 

(7.15) 

1^)1 = 
Pill* + pal--

= l (7.16) 

and 

mil 's + z\ + /s + z2 + ••• 

- Us + Pi + /S + p2 + ) = 180° + A:360°, (7.17) 

where k is an integer. rlhe magnitude requirement, Equation (7.16), enables us to 
determine the value of K for a given root location $]. A test point in the .s-plane, S\, 
is verified as a root location when Equation (7.17) is satisfied. All angles are mea
sured in a counterclockwise direction from a horizontal line. 

To further illustrate the root locus procedure, let us consider again the 
second-order system of Figure 7.5(a). The effect of varying the parameter a can 

FIGURE 7.5 
(a) Single-loop 
system, (b) Root 
locus as a function 
of the parameter a, 
where a > 0. 

R(s) • Y(s) 

(a) (b) 
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be effectively portrayed by rewriting the characteristic equation for the root 
locus form with a as the multiplying factor in the numerator. Then the character
istic equation is 

1 + KG{s) = 1 + - ^ - = 0, 
s(s + a) 

or, alternatively, 

s2 + as + K = 0. 

Dividing by the factor s2 + K, we obtain 

1 +
 TTK

 = a (718) 

Then the magnitude criterion is satisfied when 

a\sA 

at the root S[. The angle criterion is 

111 ~ ( A t + jVK + / y , - JVK) = ±180°, ±540°,. . . . 

In principle, we could construct the root locus by determining the points in the 
5-plane that satisfy the angle criterion. In the next section, we will develop a multi-
step procedure to sketch the root locus. The root locus for the characteristic equa
tion in Equation (7.18) is shown in Figure 7.5(b). Specifically at the root S\, the 
magnitude of the parameter a is found from Equation (7.19) as 

\si - jVKLsi + jvK\ 
a = — ~ '. (7.20) 

The roots of the system merge on the real axis at the point s2 and provide a critically 
damped response to a step input. The parameter a has a magnitude at the critically 
damped roots, ̂ 2 — o"2> e q u a ' to 

a = -1 J- ^ l- = - <r + K) = 2VK, (7.21) 

where a2 is evaluated from the s-plane vector lengths as v2 = VK. As a increases 
beyond the critical value, the roots are both real and distinct; one root is larger than 
a2, and one is smaller. 

In general, we desire an orderly process for locating the locus of roots as a para
meter varies. In the next section, we will develop such an orderly approach to 
sketching a root locus diagram. 
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7.3 THE ROOT LOCUS PROCEDURE 

The roots of the characteristic equation of a system provide a valuable insight con
cerning the response of the system. To locate the roots of the characteristic equation 
in a graphical manner on the .y-plane, we will develop an orderly procedure of seven 
steps that facilitates the rapid sketching of the locus. 

Step 1: Prepare the root locus sketch. Begin by writing the characteristic equa
tion as 

1 + F(s) = 0. (7.22) 

Rearrange the equation, if necessar}', so that the parameter of interest, K, appears as 
the multiplying factor in the form, 

1 + KP(s) = 0. (7.23) 

We are usually interested in determining the locus of roots as K varies as 

0 < K < oo. 

Factor P(s), and write the polynomial in the form of poles and zeros as follows: 

A/ 

Ift' + * > 
1 + K-^ = 0. (7.24) 

II(* + Pi) 
M 

Locate the poles —pt and zeros —zt on the s-plane with selected symbols. By con
vention, we use 'x' to denote poles and 'o' to denote zeros. 

Rewriting Equation (7.24), we have 

n M 

JJ(* + pj) + KT[(s + zd - 0. (7.25) 
/=i P-i 

Note that Equation (7.25) is another way to write the characteristic equation. When 
K = 0, the roots of the characteristic equation are the poles of P(s).To see this, con
sider Equation (7.25) with K = 0. Then, we have 

n > + p,) = o. 
M 

When solved, this yields the values of s that coincide with the poles of P(s). Con
versely, as K —* oo, the roots of the characteristic equation are the zeros o£P(s).To 
sec this,first divide Equation (7.25) by K.lhen, we have 

i n M 

A /=1 /=1 
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which, as K —* co, reduces to 

M 
U(s + Z]) = 0. 
/-1 

When solved, this yields the values of s that coincide with the zeros of P(s). There
fore, we note that the locus of the roots of the characteristic equation 
1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K 
increases from zero to infinity. For most functions P(s) that we will encounter, sev
eral of the zeros of P(s) lie at infinity in the s-plane. This is because most of our func
tions have more poles than zeros. With n poles and M zeros and n > M, we have 
n - M branches of the root locus approaching the n - M zeros at infinity. 

Step 2: Locate the segments of the real axis that are root loci. The root locus on 
the real axis always lies in a section of the real axis to the left of an odd number of poles 
and zeros. This fact is ascertained by examining the angle criterion of Equation (7.17). 
These two useful steps in plotting a root locus will be illustrated by a suitable example. 

EXAMPLE 7.1 Second-order system 

A single-loop feedback control system possesses the characteristic equation 

1 + GH(s) = 1 + 
ls2 + s 

= 0. (7.26) 

STEP 1: The characteristic equation can be written as 

2(s + 2) 
1 + K 

s1 + 4? 
= 0, 

where 

2(s + 2) 
K) s2 + 4s 

The transfer function, P(s), is rewritten in terms of poles and zeros as 

1 
2(s + 2) 

K— rr = 0, 
s(s + 4) 

(7.27) 

and the multiplicative gain parameter is K.To determine the locus of roots for the gain 
0 ^ K ^ co, we locate the poles and zeros on the real axis as shown in Figure 7.6(a). 

FIGURE 7.6 
(a) The zero and 
poles of a second-
order system, 
(b) the root locus 
segments, and 
(c) the magnitude of 
each vector at Si. 

- 4 * 

Zero 

O 

Poles 

(a) 

^( 

Root locus 
.segments. 

- 4 -o 
- 2 

(b) 

- 4 - 2 ?i 0 

I*- |s, + 4| - J 

(c) 
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STEP 2: The angle criterion is satisfied on the real axis between the points 0 and - 2 , 
because the angle from pole p\ at the origin is 180°, and the angle from the zero and 
pole p2dXs = —4 is zero degrees. The locus begins at the pole and ends at the zeros, 
and therefore the locus of roots appears as shown in Figure 7.6(b), where the direc
tion of the locus as K is increasing {K]) is shown by an arrow. We note that because 
the system has two real poles and one real zero, the second locus segment ends at a 
zero at negative infinity. To evaluate the gain K at a specific root location on the 
locus, we use the magnitude criterion, Equation (7.16). For example, the gain K at 
the root s — s-\ = - 1 is found from (7.16) as 

gjjQlgi + 2| 
\si\\si + 4| 

= 1 

or 

K = 
1-111-1 + 41 

2 | - 1 + 2| 
(7.28) 

This magnitude can also be evaluated graphically, as shown in Figure 7.6(c). For the 
gain of K - | , one other root exists, located on the locus to the left of the pole at 
—4. The location of the second root is found graphically to be located at s = - 6 , as 
shown in Figure 7.6(c). 

Now, wc determine the number of separate loci. SL. Because the loci begin at 
the poles and end at the zeros, the number of separate loci is equal to the number of 
poles since the number of poles is greater than or equal to the number of zeros. 
Therefore, as we found in Figure 7.6, the number of separate loci is equal to two 
because there are two poles and one zero. 

Note that the root loci must be symmetrical with respect to the horizontal real 
axis because the complex roots must appear as pairs of complex conjugate roots. • 

We now return to developing a general list of root locus steps. 
Step 3: The loci proceed to the zeros at infinity along asymptotes centered at aA 

and with angles <j>A. When the number of finite zeros of P(s), M, is less than the num
ber of poles n by the number N = n — M, then N sections of loci must end at zeros 
at infinity. These sections of loci proceed to the zeros at infinity along asymptotes as 
K approaches infinity. These linear asymptotes are centered at a point on the real 
axis given by 

(7.29) "A = 
2 poles of P(s) - 2 zeros of P(s) 

n - M 

n M 

n - M 

The angle of the asymptotes with respect to the real axis is 

k = 0,1,2,. . . ,( /1 - M - 1), 4A = 2*±1180.. 
n - M 

(7.30) 
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where k is an integer index [3]. The usefulness of this rule is obvious for sketching 
the approximate form of a root locus. Equation (7.30) can be readily derived by con
sidering a point on a root locus segment at a remote distance from the finite poles 
and zeros in the s-plane. The net phase angle at this remote point is 180°, because it 
is a point on a root locus segment. The finite poles and zeros of P(s) are a great dis
tance from the remote point, and so the angles from each pole and zero, 0, are 
essentially equal, and therefore the net angle is simply (n - M)<f>, where n and M 
are the number of finite poles and zeros, respectively. Thus, we have 

(n - M)4> = 180°, 

or, alternatively, 

180° 

Accounting for all possible root locus segments at remote locations in the s-plane, 
we obtain Equation (7.30). 

The center of the linear asymptotes, often called the asymptote centroid, is 
determined by considering the characteristic equation in Equation (7.24). For large 
values of s, only the higher-order terms need be considered, so that the characteristic 
equation reduces to 

However, this relation, which is an approximation, indicates that the centroid of 
n - M asymptotes is at the origin, s = 0. A better approximation is obtained if we 
consider a characteristic equation of the form 

K 

with a centroid at crA. 
The centroid is determined by considering the first two terms of Equation 

(7.24), which may be found from the relation 

M 

t
 KWS + Zi)

 l l g » * + w - ' + -+ft, 

From Chapter 6, especially Equation (6.5), we note that 

M n 

i>M-\ = 2 ¾ and fl«-i = Sty 
1=1 7 = 1 

Considering only the first two terms of this expansion, we have 

1 + M TTT = 0. 
.,n-M t (n _ u \ n-M-\ 
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The first two terms of 

are 

1 + ^ 7 = 0 

s"'M - (n - M)aAsn~M~l ~ 

Equating the terra for s"~M~l, we obtain 

an-\ ~ bM .j = - ( n - M)crA, 

or 
n M 

2(-Pi) - 2(-¾) 
j=i j= i 

"*•" ~^M 

which is Equation (7.29). 
For example, reexamine the system shown in Figure 7.2 and discussed in 

Section 7.2. The characteristic equation is written as 

s(s + 2) 

Because n - M = 2, we expect two loci to end at zeros at infinity. The asymptotes 
of the loci are located at a center 

and at angles of 

4>A = 90° (for k = 0) and <f>A = 270° (for k = 1). 

The root locus is readily sketched, and the locus shown in Figure 7.3 is obtained. An 
example will further illustrate the process of using the asymptotes. 

EXAMPLE 7.2 Fourth-order system 

A single-loop feedback control system has a characteristic equation as follows: 

K(s - 1) 
1 + GH{s) = 1 + * - '—-x, (7.31) 

w s(s + 2)(s + 4)2 ( ' 
We wish to sketch the root locus in order to determine the effect of the gain K. The 
poles and zeros are located in the ^-plane, as shown in Figure 7.7(a). The root loci on 
the real axis must be located to the left of an odd number of poles and zeros; they 
are shown as heavy lines in Figure 7.7(a). The intersection of the asymptotes is 

( - 2 ) + 2 ( - 4 ) - ( - 1 ) - 9 _ 
<JA = J — J ~3~ ( ' 
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76 

74 

72 

0 

• - / "2 

—74 

- 7 6 
zero and (b) root 
locus. (a) (h) 

The angles of the asymptotes are 

<1>A = +60° (k - 0), 

<I)A = 180° (k = 1), and 

^ = 300° (k = 2), 

where there are three asymptotes, since n — M = 3. Also, we note that the root loci 
must begin at the poles; therefore, two loci must leave the double pole at 5 = - 4 . 
Then with the asymptotes sketched in Figure 7.7(b), we may sketch the form of the 
root locus as shown in Figure 7.7(b). The actual shape of the locus in the area near 
crA would be graphically evaluated, if necessary. • 

We now proceed to develop more steps for the process of determining the root loci. 
Step 4: Determine where the locus crosses the imaginary axis (if it does so), 

using the Routh-Hurwitz criterion. The actual point at which the root locus crosses 
the imaginary axis is readily evaluated by using the criterion. 

Step 5: Determine the breakaway point on the real axis (if any). The root 
locus in Example 7.2 left the real axis at a breakaway point. The locus breakaway 
from the real axis occurs where the net change in angle caused by a small dis
placement is zero. The locus leaves the real axis where there is a multiplicity of 
roots (typically, two). The breakaway point for a simple second-order system is 
shown in Figure 7.8(a) and, for a special case of a fourth-order system, is shown in 
Figure 7.8(b). In general, due to the phase criterion, the tangents to the loci at the 
breakaway point are equally spaced over 360°. Therefore, in Figure 7.8(a), we find 
that the two loci at the breakaway point are spaced 180° apart, whereas in Figure 
7.8(b), the four loci are spaced 90° apart. 

The breakaway point on the real axis can be evaluated graphically or analyti
cally. The most straightforward method of evaluating the breakaway point involves 

Rool loci sections 

M— )( O ^ ; 
/ - 4 - 2 - 1 0 

Double pole 

FIGURE 7.7 
A fourth-order 
svstem with (a) a 

Asymptote 
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FIGURE 7.8 
Illustration of the 
breakaway point 
(ai for a simple 
second-order 
system and (b) for a 
fourth-order 
system. 

- 4 
X—•-

Breakaway 
point 

3 -2 

(a) 

the rearranging of the characteristic equation to isolate the multiplying factor K. 
Then the characteristic equation is written as 

p(s) = K. (7.33) 

For example, consider a unity feedback closed-loop system with an open-loop trans
fer function 

G{s) = 
K 

(s + 2)(5 + 4)' 

which has the characteristic equation 

1 + G(s) = 1 -\ 
K 

(s + 2)(s + 4) 
= 0. (7.34) 

Alternatively, the equation may be written as 

K = p(s) = -(s + 2)(5 + 4). (7.35) 

The root loci for this system are shown in Figure 7.8(a). We expect the breakaway 
point to be near s = a = - 3 and plot p(s)\x=(r near that point, as shown in Figure 7.9. 
In this case,/7(5) equals zero at the poles s = ~2 and s = 4. The plot of p(s) versus 
s — a is symmetrical, and the maximum point occurs at S ~ <r = - 3 , the breakaway 
point. 

FIGURE 7.9 
A graphical 
evaluation of the 

point. 



420 Chapter 7 The Root Locus Method 

Analytically, the very same result may be obtained by determining the maxi
mum of K = p(s), To find the maximum analytically, we differentiate, set the differ
entiated polynomial equal to zero, and determine the roots of the polynomial. 
Therefore, we may evaluate 

dK dp(s) 

in order to find the breakaway point. Equation (7.36) is an analytical expression of 
the graphical procedure outlined in Figure 7.9 and will result in an equation of only 
one degree less than the total number of poles and zeros n + M 1. 

The proof of Equation (7.36) is obtained from a consideration of the character
istic equation 

KY(s) 

which may be written as 

X(s) + KY(s) = 0. (7.37) 

For a small increment in K, we have 

X(s) + (K + AK)Y(s) - 0. 

Dividing by X(s) + KY(s) yields 

AKY(s) 
1 * IwT^j = °- <738> 

Because the denominator is the original characteristic equation, a multiplicity m of 
roots exists at a breakaway point, and 

Y(s) Q Ct 

X(s) + KY(s) (s ~ Si)
m (As)' 

Then we may write Equation (7.38) as 

(7.39) 

or, alternatively, 

Therefore, as we let As 

\K 

As 

approach zero, we 

dK 

ds 

(As)"'-1 

Ct ' 

obtain 

= 0 

AKCi 
1 + TKsr = °' (7-40) 

(7.41) 

(7.42) 

at the breakaway points. 
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Now, considering again the specific case where 

K 

421 

G{s) = -, 
(s + 2)(5 + 4)' 

we obtain 

p(s) = K = -(s + 2)(s + 4) = -{s2 + 6s + 8). 

Then, when we differentiate, we have 

dp(s) 

ds 
-(2.y + 6) = 0, 

(7.43) 

(7.44) 

or the breakaway point occurs at s = - 3 . A more complicated example will illus
trate the approach and demonstrate the use of the graphical technique to determine 
the breakaway point. 

EXAMPLE 7.3 Third-order system 

A feedback control system is shown in Figure 7.10. The characteristic equation is 

K(s + 1) 
1 + G(s)H(s) = 1 + 

s(s + 2)(s + 3) 
= 0. (7.45) 

The number of poles n minus the number of zeros M is equal to 2, and so we have 
two asymptotes at ±90° with a center at aA = - 2 . The asymptotes and the sec
tions of loci on the real axis are shown in Figure 7.11(a). A breakaway point occurs 
between s = -2 and s = - 3 . To evaluate the breakaway point, we rewrite the 
characteristic equation so that K is separated; thus, 

s(s + 2)(s + 3) + K(s + 1) = 0, 

or 

-s(s + 2)(s + 3) 
p{s) = TTi — =K- (7.46) 

Then, evaluating/7(5) at various values of s between 5 = - 2 and s = - 3 , we obtain 
the results of Table 7.1, as shown in Figure 7.11(b). Alternatively, we differentiate 

K(.s) 
K(s + 1) 
s(s + 2) 

" • Yis) 

FIGURE 7.10 
Closed-loop 
system. 

His) 

5 + 3 
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0.411 

Table 7.1 

p(s) 0 0.419 0.417 + 0.390 

-2.00 -2.40 -2.46 -2.50 -2.60 -3 .0 

Equation (7.46) and set it equal to zero to obtain 

d fs(s + 2)(s + 3) 
ds I (.v + 1) 

_ (53 + 5s2 + 6s) - (s + 1)(3.92 + 10s + 6) 

(s + I)2 

253 + Ss2 + 10s + 6 = 0. 

= 0 

(7.47) 

Now to locate the maximum of p(s), we locate the roots of Equation (7.47) to obtain 
s = —2.46, -0.77 ± 0.79/. The only value of S on the real axis in the interval s = -2 
to s = —3 is s = —2.46; hence this must be the breakaway point. It is evident from 
this one example that the numerical evaluation of p(s) near the expected breakaway 
point provides an effective method of evaluating the breakaway point. • 

Step 6: Determine the angle of departure of the locus from a pole and the angle 
of arrival of the locus at a zero, using the phase angle criterion. The angle of locus 
departure from a pole is the difference between the net angle due to all other poles 
and zeros and the criterion angle of ±180° (2k + 1), and similarly for the locus 
angle of arrival at a zero. The angle of departure (or arrival) is particularly of inter
est for complex poles (and zeros) because the information is helpful in completing 
the root locus. For example, consider the third-order open-loop transfer function 

F(s) = G(s)H(s) = 
K 

(s + /73)(52 + 2£<ons + a%) 
(7.48) 

The pole locations and the vector angles at one complex pole —pi are shown in 
Figure 7.12(a). The angles at a test point sh an infinitesimal distance from -ph must 

Asymptote 

FIGURE 7.11 
Evaluation of the 
(a) asymptotes and 
(b) breakaway 
point. 

-3 -2 - l 

(b) 



Section 7.3 The Root Locus Procedure 423 

FIGURE 7.12 
Illustration of the 
angle of departure. 
(a) Test point 
infinitesimal 
distance from - p , . 
(b) Actual departure 
vector a t -p - . 

A point at small 
distance from — /?i \ i i / Departure 

A vector 
/ Pi 

\ 

~Pi 

i % 

(a) (b.) 

meet the angle criterion. Therefore, since 02
 = 90°, we have 

0i + #2 + #3 = 0i + 90° + 03 = +180°, 

or the angle of departure at pole p{ is 

6{ = 90° - 03, 

as shown in Figure 7.12(b). The departure at pole — p2 is the negative of that at -plt 

because —p\ and — p2 are complex conjugates. Another example of a departure 
angle is shown in Figure 7.13. In this case, the departure angle is found from 

02 " (01 + h + 90°) = 180° + £360°. 

Since 0? — 9$ = y in the diagram, we find that the departure angle is 0( = 90° + y. 

Step 7: The final step in the root locus sketching procedure is to complete the 
sketch. This entails sketching in all sections of the locus not covered in the previous 

FIGURE 7.13 
Evaluation of the 
angle of departure. 

Departure 
vector 



424 Chapter 7 The Root Locus Method 

six steps. If a more detailed root locus is required, we recommend using a computer-
aided tool. (See Section 7.8.) 

In some situation, we may want to determine a root location sx and the value of 
the parameter Kx at that root location. Determine the root locations that satisfy the 
phase criterion at the root sx, x - 1, 2 , . . . , n, using the phase criterion. The phase 
criterion, given in Equation (17.17), is 

/P(s) = 180° + &360°, and k = 0, ± 1 , ± 2 , . . . . 

To determine the parameter value Kx at a specific root sx, we use the magnitude 
requirement (Equation 7.16). The magnitude requirement at sx is 

Kv = 
M 

/=i 

It is worthwhile at this point to summarize the seven steps utilized in the root 
locus method (Table 7.2) and then illustrate their use in a complete example. 

Table 7.2 Seven Steps for Sketching a Root Locus 

Step Related Equation or Rule 

1. Prepare the root locus sketch. 
(a) Write the characteristic equation so that the 

parameter of interest, K, appears as a multiplier. 

(b) Factor P(s) in terms of n poles and M zeros. 

(c) Locate the open-loop poles and zeros of P(s) 
in the s-plane with selected symbols. 

(d) Determine the number of separate loci, SL. 

(e) The root loci are symmetrical with respect to the 
horizontal real axis. 

2. Locate the segments of the real axis that are root loci. 

3. The loci proceed to the zeros at infinity along 

asymptotes centered at &A and with angles cf>A. 

4. Determine the points at which the locus crosses the 
imaginary axis (if it does so). 

5. Determine the breakaway point on the real axis (if any). 

6. Determine the angle of locus departure from complex 
poles and the angle of locus arrival at complex zeros, 
using the phase criterion. 

7. Complete the root locus sketch. 

1 + KP(s) = 0. 

1 + K- = 0. 

IK* Pi) 

x = poles, O = zeros 
Locus begins at a pole and ends at a zero. 
SL = n when n > M; n = number of finite poles, 
M = number of finite zeros. 

Locus lies to the left of an odd number of poles and 
zeros. 

GA~ n-M 

2k + 1 

n-M 
im°,k = (),1,2,...(/1 - M - 1). 

Use Routh-Hurwitz criterion (see Section 6.2). 

a) Set K = p(s). 
b) Determine roots of dp(s)/ds = 0 or use 

graphical method to find maximum of p(s). 
/_P(s) = 180c + A:360° at s = -p} or -¾. 
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EXAMPLE 7.4 Fourth-order system 

1. (a). We desire to plot the root locus for the characteristic equation of a system as K 
varies for K > 0 when 

1 + 
K 

s* + 12s3 + 64s2 + 128s 

(b) Determining the poles, we have 

K 

= 0. 

1 + = 0 (7.49) 
s(s + 4)(s + 4 + j4)(s + 4 - /4) 

as K varies from zero to infinity. This system has no finite zeros. 

(c) The poles are located on the \-plane as shown in Figure 7.14(a). 

(d) Because the number of poles n is equal to 4, we have four separate loci. 

(e) The root loci are symmetrical with respect to the real axis. 

2. A segment of the root locus exists on the real axis between s = 0 and s = 4. 

3. The angles of the asymptotes are 

(2k + 1) 
0/i - 180°, k = 0,1,2,3; 

FIGURE 7.14 
The root locus for 
Example 7.4. 
Locating (a) the 
poles and (b) the 

cpA = +45°, 135°, 225°, 315°. 

The center of the asymptotes is 

- 4 - 4 - 4 
(TA = = - 3. 

Then the asymptotes are drawn as shown in Figure 7.14(a). 

Pi' 

Crossover 
point \ 

\y 

V 

J4 
/ 

>3 

+,/2 

- 4 y-3 \ -2 \ - l 
/ \ Breakaway 

/ \ point 

^ 6 

\
Departure 
• vec.or 

- - - / 2 

\ 

- - - / 4 

(a) (b) 
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4. The characteristic equation is rewritten as 

s(s + 4)(52 + 8s + 32) + K = s4 + 12s3 + 64s2 + 1285 + K = 0. 

Therefore, the Routh array is 

sA 1 64 K 

12 128 

bx K , 

ci 

(7.50) 

where 

12(64) - 128 53.33(128) - YIK 
bi — — = 53.33 and q = -12 53.33 

Hence, the limiting value of gain for stability is K = 568.89, and the roots of the auxil
iary equation are 

53.3352 + 568.89 = 53.33(52 + 10.67) = 53.33(5 + /3.266)(5 - 73.266). (7.51) 

The points where the locus crosses the imaginary axis are shown in Figure 7.14(a). 
Therefore, when K = 568.89, the root locus crosses the /w-axis at s = ±/3.266. 

5. The breakaway point is estimated by evaluating 

K = p(s) = -?(5 + 4)(5 + 4 + /4)(5 + 4 - /4) 

between s ~ —4 and 5 = 0. We expect the breakaway point to lie between 5 = - 3 and 
5 = - 1 , so we search for a maximum value of p(s) in that region. The resulting values 
of p(s) for several values of 5 are given in Table 7.3.The maximum of p(s) is found to lie 
at approximately s = —1.577, as indicated in the table. A more accurate estimate of the 
breakaway point is normally not necessary. The breakaway point is then indicated on 
Figure 7.14(a). 

6. The angle of departure at the complex pole pl can be estimated by utilizing the angle 
criterion as follows: 

0! + 90° + 90° + 03 = 180° - k360n. 

Here, 6? is the angle subtended by the vector from pole p3. The angles from the pole at 
s = - 4 and s — - 4 - /4 are each equal to 90°. Since 03 = 135°, we find that 

0: = -135° s +225°, 

as shown in Figure 7.14(a). 

7. Complete the sketch as shown in Figure 7.14(b). 

Table 7.3 

p(s) 0 

-4.0 

51.0 

-3.0 

68.44 
-2.5 

80.0 
- 2.0 

83.57 

-1.577 

75.0 0 

-1.0 0 
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Using the information derived from the seven steps of the root locus method, 
the complete root locus sketch is obtained by filling in the sketch as well as possible 
by visual inspection.The root locus for this system is shown in Figure 7.14(b). When 
the complex roots near the origin have a damping ratio of £ = 0.707, the gain K can 
be determined graphically as shown in Figure 7.14(b). The vector lengths to the root 
location S\ from the open-loop poles are evaluated and result in a gain at S\ of 

K = k l k + 41k " PiWsi ~ fcl = (1.9)(2.9)(3.8)(6.0) = 126. (7.52) 

The remaining pair of complex roots occurs at s2 and s2, when K = 126. The effect 
of the complex roots at s2 and s2 on the transient response will be negligible com
pared to the roots s\ and Sj. This fact can be ascertained by considering the damping 
of the response due to each pair of roots. The damping due to s^ and Sj is 

and the damping factor due to $2 and s2 is 

where <x2 is approximately five times as large as av Therefore, the transient response 
term due to s2 will decay much more rapidly than the transient response term due to 
s\. Thus, the response to a unit step input may be written as 

y(t) = 1 + Cje"0"!' sw(a>it + 00 + c2e
_<r2rsin(a)2; + 02) 

« 1 + cie^i'smfat + 0,). (7.53) 

The complex conjugate roots near the origin of the .s-plane relative to the other roots 
of the closed-loop system are labeled the dominant roots of the system because they 
represent or dominate the transient response. The relative dominance of the complex 
roots, in a third-order system with a pair of complex conjugate roots, is determined 
by the ratio of the real root to the real part of the complex roots and will result in 
approximate dominance for ratios exceeding 5. 

The dominance of the second term of Equation (7.53) also depends upon the rel
ative magnitudes of the coefficients C\ and c2. These coefficients, which are the 
residues evaluated at the complex roots, in turn depend upon the location of the 
zeros in the s-plane. Therefore, the concept of dominant roots is useful for estimating 
the response of a system, but must be used with caution and with a comprehension of 
the underlying assumptions. • 

EXAMPLE 7.5 Automatic self-balancing scale 

The analysis and design of a control system can be accomplished by using the 
Laplace transform, a signal-flow diagram or block diagram, the s-plane, and the root 
locus method. At this point, it will be worthwhile to examine a control system and 
select suitable parameter values based on the root locus method. 

Figure 7.15 shows an automatic self-balancing scale in which the weighing oper
ation is controlled by the physical balance function through an electrical feedback 
loop [5]. The balance is shown in the equilibrium condition, and x is the travel of the 
counterweight Wc from an unloaded equilibrium condition. The weight W to be 
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Allyn and Bacon, Viscous 
Boston, 1964.) damper 

measured is applied 5 cm from the pivot, and the length /, of the beam to the viscous 
damper is 20 cm. We desire to accomplish the following: 

1. Select the parameters and the specifications of the feedback system. 

2. Obtain a model representing the system. 

3. Select the gain K based on a root locus diagram. 

4. Determine the dominant mode of response. 

An inertia of the beam equal to 0.05 kg m2 will be chosen. We must select a battery 
voltage that is large enough to provide a reasonable position sensor gain, so we will 
choose Eb = 24 volts. We will use a lead screw of 20 turns/cm and a potentiometer 
for x equal to 6 cm in length. Accurate balances are required; therefore, an input 
potentiometer 0.5 cm in length for y will be chosen. A reasonable viscous damper will 
be chosen with a damping constant b = 1 0 V ^ N/(m/s). Finally, a counterweight We 

is chosen so that the expected range of weights W can be balanced. The parameters 
of the system are selected as listed in Table 7.4. 

Specif icat ions. A rapid and accurate response resulting in a small steady-state 
weight measurement error is desired. Therefore, we will require that the system be 
at least a type one so that a zero measurement error is obtained. An underdamped 
response to a step change in the measured weight W is satisfactory, so a dominant 
response with £ = 0.5 will be specified. We want the settling time to be less than 2 

Table 7.4 Self-Balancing Scale Parameters 

Wc = 2 N l e a d screw gain K„ = ———m/rad. 
5 3 4000TT / 

I = 0.05 kg m2 

lw = 5 cm Input potentiometer gain K-, = 4800 V/m. 

lt = 20 cm 

b = 10 v 3 N m/s Feedback potentiometer gain Kf = 400 V/m. 
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Table 7.5 Specifications 

Steady-state error 
Underdamped response 
Settling time (2% criterion) 

Kp - oo, e.s = 0 for a step input 
£ = 0.5 
I-ess than 2 seconds 

seconds in order to provide a rapid weight-measuring device. The settling time must 
be within 2% of the final value of the balance following the introduction of a weight 
to be measured. The specifications are summarized in Table 7.5. 

The derivation of a model of the electromechanical system may be accom
plished by obtaining the equations of motion of the balance. For small deviations 
from balance, the deviation angle is 

(7.54) 

The motion of the beam about the pivot is represented by the torque equation 

I—^=Z torques. 

Therefore, in terms of the deviation angle, the motion is represented by 

7 41=*"w - xw<- - i?b%-
dr at 

The input voltage to the motor is 

v„£t) = Kty - Kfx. 

The lead screw motion and transfer function of the motor are described by 

9m{s) Km 
X(s) = KsOm(s) and 

Vjs) s(rs + 1)' 

(7.55) 

(7.56) 

(7.57) 

where r will be negligible with respect to the time constants of the overall system, 
and 6m is the output shaft rotation. A signal-flow graph and block diagram repre
senting Equations (7.54) through (7.57) is shown in Figure 7.16. Examining the for
ward path from W to X(s), we find that the system is a type one due to the 
integration preceding Y(s). Therefore, the steady-state error of the system is zero. 

The closed-loop transfer function of the system is obtained by utilizing Mason's 
signal-flow gain formula and is found to be 

W(s) 
IJiKiKMV?) 

1 + li2b/(Is) + (KmKsKf/s) + liKiKmKsWjil!?) + li
2bKmKsKf/(Is

2Y 

(7.58) 

where the numerator is the path factor from W to X, the second term in the denom
inator is the loop Lj, the third term is the loop factor 7,2, the fourth term is the loop 
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Wis) lw 

Applied Q — • — 
weight 

-lib 
Input Motor Lead 

sY(s) potentiometer &nJs " screw 

-+—O >• 
I Y(s) K> VJs) 

-Wc 

(a) 

FIGURE 7.16 
Model of the 
automatic self-
balancing scale. 
(a) Signal-flow 
graph, (b) Block 
diagram. 
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L3, and the fifth term is the two nontouching loops L1L2. Therefore, the closed-loop 
transfer function is 

X(s) *w'i"/**w**s 

W(s) s(Is + ifb)(s + KmKsKf) + WcKmKsK^ 

The steady-state gain of the system is then 

,. x{t) t, X(s) L 

(7.59) 

lim = lim 
oo |W H > W ( J ) Wc 

= 2.5 cm/kg (7.60) 

when W(s) = \W\/s. To obtain the root locus as a function of the motor constant 
K,n, we substitute the selected parameters into the characteristic equation, which is 
the denominator of Equation (7.59). Therefore, we obtain the following characteris
tic equation: 

sis + 8 V 3 s + 
107 IOTT 

= 0. (7.61) 

Rewriting the characteristic equation in root locus form, we first isolate Km as 
follows: 

s'is + 8 V 3 + sis + 8 V 3 
K„ 

+ 
%K„ 

IOTT IOTT 
= 0. (7.62) 
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FIGURE 7.17 
Root locus as Km 

varies (only upper 
naif plane shown). 
One locus leaves 
the two poles at the 
origin and goes to 
the two complex 
zeros as K 
increases. The 
other locus is to the 
left of the pole at 
s = -14 . -30 - 1 4 - 1 2 -10 - 8 - 6 - 4 - 2 0 

Then, rewriting Equation (7.62) in root locus form, we have 

Km/(l07r)\s(s + SV3) + 96 
1 + KP(s) = 1 + 

s2(s + 8V3 
= 0 

= 1 
KJ(10TT)(S + 6.93 + /6.93)(^ + 6.93 - /6.93) 

sz s + 
(7.63) 

The root locus as Km varies is shown in Figure 7.17. The dominant roots can be 
placed at £ = 0.5 when K = 25.3 = Km/10ir. To achieve this gain, 

rad/s rpm 
Km = 7 9 5 — : - = 7600-volt volt' 

(7.64) 

an amplifier would be required to provide a portion of the required gain. The real 
part of the dominant roots is less than -4 ; therefore, the settling time, 4/tr, is less than 
1 second, and the settling time requirement is satisfied. The third root of the charac
teristic equation is a real root at s = —30.2, and the underdamped roots clearly dom
inate the response. Therefore, the system has been analyzed by the root locus method 
and a suitable design for the parameter Km has been achieved. The efficiency of the 
5-plane and root locus methods is clearly demonstrated by this example. • 

7.4 PARAMETER DESIGN BY THE ROOT LOCUS METHOD 

Originally, the root locus method was developed to determine the locus of roots of 
the characteristic equation as the system gain, K, is varied from zero to infinity. 
However, as we have seen, the effect of other system parameters may be readily 
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investigated by using the root locus method. Fundamentally, the root locus method 
is concerned with a characteristic equation (Equation 7.22), which may be written as 

1 + F(s) = 0. (7.65) 

Then the standard root locus method we have studied may be applied. The question 
arises: How do we investigate the effect of two parameters, a and /3? It appears that 
the root locus method is a single-parameter method; fortunately, it can be readily 
extended to the investigation of two or more parameters. This method of parameter 
design uses the root locus approach to select the values of the parameters. 

The characteristic equation of a dynamic system may be written as 

ans" + fl„_isn_1 + •• • + a{s + a0 = 0. (7.66) 

Hence, the effect of the coefficient ax may be ascertained from the root locus equation 

ans" + aa-\S
n~l + ••• + a2s

l + % 
1 + H : = 0. (7.67) 

If the parameter of interest, a, does not appear solely as a coefficient, the parameter 
may be isolated as 

ans
n \ a„_i5"_1 + ••• + {an-q - a)sn~ci + asn~q + ••• + axs + aQ = 0. (7.68) 

For example, a third-order equation of interest might be 

53 + (3 + a)s2 + 3s + 6 - 0. (7.69) 

To ascertain the effect of the parameter a, wc isolate the parameter and rewrite the 
equation in root locus form, as shown in the following steps: 

,?3 + 352 + as2 + 3s + 6 - 0; (7.70) 
7 

1 + ^ ; = 0. (7.71) 
s3 + 3 / + 3 ^ + 6 

Then, to determine the effect of two parameters, we must repeat the root locus 
approach twice. Thus, for a characteristic equation with two variable parameters, a 
and /8, we have 

ans
n + a„_!5" A + ••• + {an-q - a)sn~q + as"'" + ••• 

+ (au-r - p)s"~r + (3s"-r + ••• + ais + «o = 0. (7.72) 

The two variable parameters have been isolated, and the effect of a will be deter
mined. Then, the effect of /3 will be determined. For example, for a certain third-
order characteristic equation with a and (3 as parameters, we obtain 

53 + ? + 0s + a = 0. (7.73) 

In this particular case, the parameters appear as the coefficients of the characteristic 
equation. The effect of varying (3 from zero to infinity is determined from the root 
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locus equation 

1 + fis 
s3 + s2 + a 

= 0. (7.74) 

We note that the denominator of Equation (7.74) is the characteristic equation of 
the system with 3 = 0. Therefore, we must first evaluate the effect of varying a from 
zero to infinity by using the equation 

s3 + s2 + a = 0, 

rewritten as 

1 + 
s2(s + 1) 

= 0, (7.75) 

where B has been set equal to zero in Equation (7.73). Then, upon evaluating the 
effect of a, a value of a is selected and used with Equation (7.74) to evaluate the effect 
of 6. This two-step method of evaluating the effect of a and then B may be carried 
out as two root locus procedures. First, we obtain a locus of roots as a varies, and we 
select a suitable value of a; the results are satisfactory root locations. Then, we obtain 
the root locus for B by noting that the poles of Equation (7.74) are the roots evalu
ated by the root locus of Equation (7.75). A limitation of this approach is that we 
will not always be able to obtain a characteristic equation that is linear in the para
meter under consideration (for example, a). 

To illustrate this approach effectively, let us obtain the root locus for a and then 
B for Equation (7.73). A sketch of the root locus as a varies for Equation (7.75) is 
shown in Figure 7.18(a), where the roots for two values of gain a are shown. If the 
gain a is selected as a\, then the resultant roots of Equation (7.75) become the poles 
of Equation (7.74). The root locus of Equation (7.74) as /3 varies is shown in Figure 
7.18(b), and a suitable B can be selected on the basis of the desired root locations. 

Using the root locus method, we will further illustrate this parameter design 
approach by a specific design example. 

FIGURE 7.18 
Root loci as a 
function of a and /3. 
(a) Loci as a varies. 
(b) Loci as /3 varies 
for one value of 
a = off 

a2 
- 1 

Double 
pole 

(a) 

\ 

r̂ *--*"! 
^<-

(b) 
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EXAMPLE 7.6 Welding head control 

A welding head for an auto body requires an accurate control system for positioning 
the welding head [4]. The feedback control system is to be designed to satisfy the 
following specifications: 

1. Steady-state error for a ramp input £35% of input slope 

2. Damping ratio of dominant roots s0.707 

3. Settling time to within 2% of the final value <3 seconds 

The structure of the feedback control system is shown in Figure 7.19, where the 
amplifier gain K\ and the derivative feedback gain K2 are to be selected. The steady-
state error specification can be written as 

s(\R\/s2) 
ess = lim e(t) = lim sE(s) = lim • 

ss ,-*co v .,-»0 W s^Ol + G2(s) 
(7.76) 

where G2(s) = G(s)/(1 + G(s)Hi(s)). Therefore, the steady-state error require
ment is 

\R\ 

2 + KXK2 
< 0.35. (7.77) 

Thus, we will select a small value of K2 to achieve a low value of steady-state 
error. The damping ratio specification requires that the roots of the closed-loop sys
tem be below the line at 45° in the left-hand .9-plane. The settling time specification 
can be rewritten in terms of the real part of the dominant roots as 

4 
(7.78) 

Therefore, it is necessary that a ^- /3; this area in the left-hand i-plane is indicated 
along with the ^-requirement in Figure 7.20. Note that a > 4/3 implies that we want 
the dominant roots to lie to the left of the line defined by a = — 4/3. To satisfy the 
specifications, all the roots must lie within the shaded area of the left-hand plane. 

The parameters to be selected are a = K{ and /3 = K2Ki. The characteristic 
equation is 

1 + GH(s) = s2 + 2s + ps + a = 0. (7.79) 

FIGURE 7.19 
Block diagram of 
welding head 
control system. 

R(s) ~\ + r~\. 
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FIGURE 7.20 
A region in the 
s-plane for desired 
root location. 

The locus of roots as a; = K^ varies (set (3 = 0) is determined from the equation 

s(s + 2) 
(7.80) 

as shown in Figure 7.21(a). For a gain of Kl = a = 20, the roots are indicated on the 
locus. Then the effect of varying /3 = 20K2 is determined from the locus equation 

1 + 
fis 

s2 + 2s + a 
= 0, (7.81) 

where the poles of this root locus are the roots of the locus of Figure 7.21 (a).The root 
locus for F.quation (7.81) is shown in Figure 7.21(b), and roots with t, = 0.707 are 
obtained when /3 = 4.3 = 20K2 or when K2 = 0.215. The real part of these roots is 

FIGURE 7.21 
Root loci as a 
function of (a)« 
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a = —3.15; therefore, the time to settle (to within 2% of the final value) is equal to 
1.27 seconds, which is considerably less than the specification of 3 seconds. • 

We can extend the root locus method to more than two parameters by extend
ing the number of steps in the method outlined in this section. Furthermore, a fami
ly of root loci can be generated for two parameters in order to determine the total 
effect of varying two parameters. For example, let us determine the effect of varying 
a and (3 of the following characteristic equation: 

s2 + 3s2 + 2s + (3s + a = 0. 

The root locus equation as a function of a is (set (3 = 0) 

(7.82) 

1 + 
s(s + l)(s + 2) 

The root locus as a function of (3 is 

1 + 
(3s 

s* + 3sz + 2s + a 

= 0. 

= 0. 

(7.83) 

(7.84) 

The root locus for Equation (7.83) as a function of a is shown in Figure 7.22 (unbro
ken lines). The roots of this locus, indicated by slashes, become the poles for the locus 
of Equation (7.84). Then the locus of Equation (7.84) is continued on Figure 7.22 
(dotted lines), where the locus for /3 is shown for several selected values of a. This 
family of loci, often called root contours, illustrates the effect of a and (3 on the roots 
of the characteristic equation of a system [3]. 

FIGURE 7.22 
Two-parameter root 
locus. The loci for a 
varying are solid; 
the loci for /3 
varying are dashed. 
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7.5 SENSITIVITY AND THE ROOT LOCUS 

One of the prime reasons for the use of negative feedback in control systems is the re
duction of the effect of parameter variations. The effect of parameter variations, as we 
found in Section 4.3, can be described by a measure of the sensitivity of the system 
performance to specific parameter changes. In Section 4.3, we defined the logarithmic 
sensitivity originally suggested by Bode as 

SK~ d\nK~ clK/K- ( 7"8 5 ) 

where the system transfer function is T(s) and the parameter of interest is K. 
In recent years, there has been an increased use of the pole-zero (j-plane) 

approach. Therefore, it has become useful to define a sensitivity measure in terms of 
the positions of the roots of the characteristic equation [7-9]. Because these roots 
represent the dominant modes of transient response, the effect of parameter varia
tions on the position of the roots is an important and useful measure of the sensitiv
ity. The root sensitivity of a system T(s) can be defined as 

(7.86) 

where r, equals the ith root of the system, so that 
A/ 

T(s) = —'~ (7.87) 

II(* + n) 
and K is a parameter affecting the roots. The root sensitivity relates the changes in 
the location of the root in the s-plane to the change in the parameter.The root sen
sitivity is related to the logarithmic sensitivity by the relation 

T d In K{ " drL 1 

d In K fT\ d In K s + rt 

when the zeros of T(s) are independent of the parameter K, so that 

dZj 
= 0. d\nK 

This logarithmic sensitivity can be readily obtained by determining the derivative of 
T(s), Equation (7.87), with respect to K. For this particular case, when the gain of the 
system is independent of the parameter K, wc have 

^ = - | X - - ! - , (7.89) 
/=1 s + r,-

and the two sensitivity measures are directly related. 



438 Chapter 7 The Root Locus Method 

The evaluation of the root sensitivity for a control system can be readily accom
plished by utilizing the root locus methods of the preceding section. The root sensitiv
ity SK may be evaluated at root -/-, by examining the root contours for the parameter 
K. We can change K by a small finite amount A K and determine the modified root 
- ( r , + A/-;) at K + AK. Then,using Equation (7.86), we have 

S£ An 
AK/K' 

(7.90) 

Equation (7.90) is an approximation that approaches the actual value of the sensitivi
ty as AK —* 0. An example will illustrate the process of evaluating the root sensitivity. 

EXAMPLE 7.7 Root sensitivity of a control system 

The characteristic equation of the feedback control system shown in Figure 7.23 is 

K 
1 + s(s + 0) -- o, 

or, alternatively, 

s2 + jS5 + K = 0. (7.91) 

The gain K will be considered to be the parameter a. Then the effect of a change in 
each parameter can be determined by utilizing the relations 

a = a0 ± Aa and (3 = /30 ± A/3, 

where a0 and /3o are the nominal or desired values for the parameters a and /3, 
respectively. We shall consider the case when the nominal pole value is /3Q = 1 and 
the desired gain is a0 = K = 0.5. Then the root locus can be obtained as a function 
of a = K by utilizing the root locus equation 

1 + 
K 

s(s + j30) 
= 1 + 

K 

s{s + 1) 
= 0, (7.92) 

as shown in Figure 7.24.The nominal value of gain K = aQ = 0.5 results in two com
plex roots, —/"i = -0.5 + /0.5 and —r2 — — r\, as shown in Figure 7.24. To evaluate 
the effect of unavoidable changes in the gain, the characteristic equation with 
a = a0 ± A a becomes 

s2 + 5 + a0 ± Aa = s2 + s + 0.5 ± Aa. (7.93) 

Therefore, the effect of changes in the gain can be evaluated from the root locus of 
Figure 7.24. For a 20% change in a, we have Aa = ±0.1. The root locations for a 

FIGURE 7.23 
A feedback control 
system. 

/its) G ( i ) = ^ ^ ) +-Y{s) 



FIGURE 7.24 
The root locus 
forK. 
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gain a = 0.4 and a ~ 0.6 are readily determined by root locus methods, and the 
root locations for Aa = ±0.1 are shown in Figure 7.24. When a = K = 0.6, the root 
in the second quadrant of the s-plane is 

( - n ) + Ari = -0.5 + /0.59, 

and the change in the root is Ar, = +/0.09. When a = K = 0.4, the root in the sec
ond quadrant is 

-(/-,) + A/-J = --0.5 + /0.387, 

and the change in the root is - Ar = - /0 .11. Thus, the root sensitivity for r\ is 

J/C+ 
Arj +/0.09 

= /0.45 = 0.45/+90c 

AK/K +0.2 

for positive changes of gain. For negative increments of gain, the sensitivity is 

Ari -/0.11 

(7.94) 

52- = AK/K +0.2 
= -/0.55 = 0.55/-90°. 

For infinitesimally small changes in the parameter K, the sensitivity will be equal for 
negative or positive increments in K. The angle of the root sensitivity indicates the 
direction the root moves as the parameter varies. The angle of movement for + Aa is 
always 180° from the angle of movement for - Aa at the point a = an. 

The pole /3 varies due to environmental changes, and it may be represented by 
/3 = /30 + A(3, where /30 = 1. Then the effect of variation of the poles is represented 
by the characteristic equation 

1.2 s' + s 

or, in root locus form, 

Aps 

A(3s 

s2 + s + K 

K - 0, 

= 0. (7.95) 
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The denominator of the second term is the unchanged characteristic equation when 
A/3 = 0. The root locus for the unchanged system (A/3 = 0) is shown in Figure 7.24 
as a function of K. For a design specification requiring £ = 0.707, the complex roots 
lie at 

-/-, = - 0.5 + /0.5 and -r2 = *-r, = -0.5 - /0.5. 

Then, because the roots are complex conjugates, the root sensitivity for rx is the con
jugate of the root sensitivity for /\ = r2. Using the parameter root locus techniques 
discussed in the preceding section, we obtain the root locus for A/3 as shown in 
Figure 7.25. We are normally interested in the effect of a variation for the parameter 
so that /3 = /3o ± A/3, for which the locus as A/3 decreases is obtained from the root 
locus equation 

1 + , v = 0. 
r + s + K 

We note that the equation is of the form 

1 - &pP(s) = 0. 

Comparing this equation with Equation (7.23) in Section 7.3, we find that the sign 
preceding the gain A/3 is negative in this case. In a manner similar to the develop
ment of the root locus method in Section 7.3, we require that the root locus satisfy 
the equations 

|A/3P(s)l = 1 and /P{s) = 0° ± A:360°, 

FIGURE 7.25 
The root locus for 
the parameter /3. 
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where k is an integer. The locus of roots follows a zero-degree locus in contrast with 
the 180° locus considered previously. However, the root locus rules of Section 7.3 
may be altered to account for the zero-degree phase angle requirement, and then 
the root locus may be obtained as in the preceding sections. Therefore, to obtain the 
effect of reducing /3, we determine the zero-degree locus in contrast to the 180° 
locus, as shown by a dotted locus in Figure 7.25. To find the effect of a 20% change 
of the parameter /3, we evaluate the new roots for A /3 = ±0.20, as shown in Figure 
7.25. The root sensitivity is readily evaluated graphically and, for a positive change 
in /3, is 

A/1 0.16/-128" 

*=^m=~^o==a80Zz^-
The root sensitivity for a negative change in /3 is 

An 0.125/39° 

As the percentage change A/3//3 decreases, the sensitivity measures S$+ and Sp- will 
approach equality in magnitude and a difference in angle of 180°. Thus, for small 
changes when A/3//3 < 0.10, the sensitivity measures are related as 

I c^i I _ I cri I 
P/3+1 _ 1^/3-1 

and 

/ ^ + = 180° + / 5 g _ . (7.95) 

Often, the desired root sensitivity measure is desired for small changes in the 
parameter. When the relative change in the parameter is of the order A/8//3 = 0.10, 
we can estimate the increment in the root change by approximating the root locus 
with the line at the angle of departure 0,/. This approximation is shown in Figure 7.25 
and is accurate for only relatively small changes in A/3. However, the use of this 
approximation allows the analyst to avoid sketching the complete root locus diagram. 
Therefore, for Figure 7.25, the root sensitivity may be evaluated for A/3//3 = 0.10 
along the departure line, and we obtain 

0.075/-132° 

0.10 
s% = _ f^TT ~ = 0-075/-132°. (7.96) 

The root sensitivity measure for a parameter variation is useful for comparing 
the sensitivity for various design parameters and at different root locations. Com
paring Equation (7.96) for /3 with Equation (7.94) for a, we find (a) that the sensi
tivity for /3 is greater in magnitude by approximately 50% and (b) that the angle 
for Sp indicates that the approach of the root toward the jco-axis is more sensitive for 
changes in /3. Therefore, the tolerance requirements for /3 would be more stringent 
than for a. This information provides the designer with a comparative measure of 
the required tolerances for each parameter. • 
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EXAMPLE 7.8 Root sensitivity to a parameter 

A unity feedback control system has a forward transfer function 

20.7(^ + 3) 
G ( s ) " ^+ 2)(5 + /3)' 

where /3 = /30 - A/3 and /30 = 8. The characteristic equation, as a function of A/3, is 

s(s + 2)(s + 8 + A/3) + 20.7(s + 3) = 0, 

or 

S(J + 2)(J + 8) + Aps(s + 2) + 20.7(.9 + 3) = 0. 

When A/3 = 0, the roots are 

-/"! = -2.36 + /2.48, -r2 =* r b and - r 3 = -5.27. 

The root locus for A/3 is determined by using the root locus equation 

A/3s(s l 2) 
1 + (j + rj)(* + ?!)(* + r3) 

« 0. (7.97) 

The roots and zeros of Equation (7.97) are shown in Figure 7.26. The angle of 
departure at ry is evaluated from the angles as follows: 

180° = -{ed + 90° + ePi) + (¾ + eZ2) 

= -{0d- 90° + 40°) + (133° + 98°). 

Therefore, 6d = —80° and the locus is approximated near —r\ by the line at an angle 
of 9d. For a change of Arj = 0.2/-80° along the departure line, the + A/3 is evalu
ated by determining the vector lengths from the poles and zeros. Then we have 

4.8(3.75)(0.2) 

FIGURE 7.26 
Pole and zero 
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Therefore, the sensitivity at rj is 

An_ _ 0 .2 / -80° 

A/3//3 ~ 0.48/8 

443 

/̂3 ~ = 3.34/ -80°, 

which indicates that the root is quite sensitive to this 6% change in the parameter /3. 
For comparison, it is worthwhile to determine the sensitivity of the root —rj to a 
change in the zero s = —3. Then the characteristic equation is 

s(s + 2)(5 + 8) + 20.7(5 + 3 + Ay) = 0. 

or 

1 + 
20.7 Ay 

(s + ri)(s + h)(s + r3) 
0. (7.98) 

The pole-zero diagram for Equation (7.98) is shown in Figure 7.27. The angle of 
departure at root - r , is 180° = -(6d + 90° + 40°), or 

dd = +50°. 

For a change of r : = 0.2/+50°, the Ay is positive. Obtaining the vector lengths, we 
find that 

5.22(4.18)(0.2) 
n 20.7 

Therefore, the sensitivity at r, for + Ay is 

Ari 0.2/+506 

7 Ay/y 0.21/3 
= 2.84/+50°. 

Thus, we find that the magnitude of the root sensitivity for the pole /3 and the zero y 
is approximately equal. However, the sensitivity of the system to the pole can be con
sidered to be less than the sensitivity to the zero because the angle of the sensitivity, 
Sy1, is equal to +50° and the direction of the root change is toward the /w-axis. 

FIGURE 7.27 
Pole-zero diagram 
for the parameter y. 
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Evaluating the root sensitivity in the manner of the preceding paragraphs, we 
find that the sensitivity for the pole s = -80 = —2 is 

Sr
8L = 2.1/+27°. 

Thus, for the parameter <5, the magnitude of the sensitivity is less than for the other 
parameters, but the direction of the change of the root is more important than for /3 
and y. m 

To utilize the root sensitivity measure for the analysis and design of control sys
tems, a series of calculations must be performed; they will determine the various 
selections of possible root configurations and the zeros and poles of the open-loop 
transfer function. Therefore, the root sensitivity measure as a design technique is 
somewhat limited by two things: the relatively large number of calculations required 
and the lack of an obvious direction for adjusting the parameters in order to provide 
a minimized or reduced sensitivity However, the root sensitivity measure can be uti
lized as an analysis measure, which permits the designer to compare the sensitivity 
for several system designs based on a suitable method of design. The root sensitivity 
measure is a useful index of the system's sensitivity to parameter variations expressed 
in the ,s-plane. The weakness of the sensitivity measure is that it relies on the ability 
of the root locations to represent the performance of the system. As we have seen in 
the preceding chapters, the root locations represent the performance quite adequately 
for many systems, but due consideration must be given to the location of the zeros of 
the closed-loop transfer function and the dominancy of the pertinent roots.The root 
sensitivity measure is a suitable measure of system performance sensitivity and can 
be used reliably for system analysis and design. 

7.6 THREE-TERM (PID) CONTROLLERS 

One form of controller widely used in industrial process control is called a three-
term, or PID controller. This controller has a transfer function 

Gc(s) = Kp + ^+ KDs. 

The controller provides a proportional term, an integration term, and a derivative 
term [4,10]. The equation for the output in the time domain is 

de(i) 
u(t) = Kpe(t) + K, I e{t) dt + KD-

dt 

The three-mode controller is also called a PID controller because it contains a pro
portional, an integral, and a derivative term. The transfer function of the derivative 
term is actually 

r ( \ KDS 

rds + r 
but rd is usually much smaller than the time constants of the process itself, so it may 
be neglected. 
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If we set KD = 0, then we have the proportional plus integral (PI) controller 

Gc(s) = Kp + ^-. 

When K/ = 0, we have 

Gc(s) = Kp + KDs, 

which is called a proportional plus derivative (PD) controller. 
Many industrial processes are controlled using proportional-integral-derivative 

(PID) controllers. The popularity of PID controllers can be attributed partly to their 
good performance in a wide range of operating conditions and partly to their func
tional simplicity, which allows engineers to operate them in a simple, straightforward 
manner. To implement such a controller, three parameters must be determined for 
the given process: proportional gain, integral gain, and derivative gain [10]. 

The PID controller can also be viewed as a cascade of the PI and the PD con
trollers. Consider the PI controller 

GPI(s) = KP + 
K, 

and the PD controller 

GPD{s) = KP + KDs, 

where KP and Kj are the PI controller gains and Kp and KD are the PD controller 
gains. Cascading the two controllers (that is, placing them in series) yields 

Gc(s) = GP[(S)GPD(s) 

KjKD 

[Kp + ^- ){KP + KDs) 

= (KpKp + KjKD) + KPKDs + 
s 

= KP + KDs + -f, 

where we have the following relationships between the PI and PD controller gains 
and the PID controller gains 

A A 

Kp = KpKp + K]KQ 

KD = KPKD 

K, = KfKD. 

Consider the PID controller 

Gc(s) = KP + — + KDs = 
K, KDs2 - Kps + Kf 

KD(s2 + as + b) KD(s + zi)(s + z2) 



446 Chapter 7 The Root Locus Method 

FIGURE 7.28 
Closed-loop system 
with a controller. 

Ms) 

Controller 

Gc(s) 

Process 

-*• Y(s) 

where a = KP/KD and b — K[/KD. Therefore, a PID controller introduces a transfer 
function with one pole at the origin and two zeros that can be located anywhere in 
the left-hand .v-plane. 

Recall that a root locus begir.s at the poles and ends at the zeros. If we have a 
system, as shown in Figure 7.28, with 

G(s) = 
1 

(s + 2)(s + 3)' 

and we use a PID controller with complex zeros ~Z\ and — z2, where —z\ = - 3 + y'l 
and — zj — —z\, we can plot the root locus as shown in Figure 7.29. As the gain, K.£>, of 
the controller is increased, the complex roots approach the zeros. The closed-loop 
transfer function is 

T(s) = 
G(s)Gc(s) 

1 + G(s)Gc(s) 

(s + r2)(s + n)(s f Pi)' 

The response of this system will be attractive. The percent overshoot to a step will be 
less than 2%, and the steady-state error for a step input will be zero. The settling 

FIGURE 7.29 
Root locus for plant 
with a PID 
controller with 
complex zeros. 



Section 7.7 Design Examples 447 

time will be approximately 1 second. If a shorter settling time is desired, then we 
select z\ and z2 to lie further left in the left-hand j-plane and set KD to drive the 
roots near the complex zeros. 

We will use the PD controller later in this chapter to control the hard disk drive 
sequential design problem (see Section 7.9). 

7.7 DESIGN EXAMPLES 

In this section we present three illustrative examples. The first example is a laser ma
nipulator control system. Here the root locus method is used to show how the 
closed-loop system poles move in the s-plane as the proportional controller amplifi
er gain varies. The second example considers a simplified robotic replication facility. 
In the example, the system is represented by a fifth-order transfer function model. 
The feedback control strategy employs a velocity feedback coupled with a con
troller in the forward loop. Root locus design methods are used to select the two 
feedback controller gains. In the final example, the automatic control of the velocity 
of an automobile is considered. In this example, the root locus method is extended 
from one parameter to three parameters as the three gains of a PID controller are 
determined. The design process is emphasized, including considering the control 
goals and associated variables to be controlled, the design specifications, and the 
PID controller design using root locus methods. 

EXAMPLE 7.9 Laser manipulator control system 

Lasers can be used to drill the hip socket for the appropriate insertion of an artificial 
hip joint. The use of lasers for surgery requires high accuracy for position and veloc
ity response. Let us consider the system shown in Figure 7.30, which uses a DC 
motor manipulator for the laser. The amplifier gain K must be adjusted so that the 
steady-state error for a ramp input, r(t) = At (where A = 1 mm/s), is less than or 
equal to 0.1 mm, while a stable response is maintained. 

To obtain the steady-state error required and a good response, we select a 
motor with a field time constant T\ — 0.1 s and a motor-plus-load time constant 
r2 = 0.2 s. We then have 

T(s) = 
KG(s) K 

1 + KG(s) sfas + 1)(T2S + 1) + K 

K 50K 

0.02s3 + 0.3s2 + s + K s3 + 15s2 + 505 + 50K 
(7.99) 

FIGURE 7.30 
Laser manipulator 
control system. 
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The steady-state error for a ramp, R(s) = A/s2, from Equation (5.29), is 

= A A 
6ss Kv K' 

Since we desire ess = 0.1 mm (or less) and A = 1 mm, we require K = 10 (or 
greater). 

To ensure a stable system, we obtain the characteristic equation from Equation 
(7.99) as 

s3 + 15.v2 + 50s + 50K = 0. 

Establishing the Routh array, we have 

sJ 

s2 

s1 

so 

1-, -

1 
15 

h 
50K 

750 -

50 
50K 

0 ' 

50K 

where 

15 

Therefore, the system is stable for 

0 < K < 15. 

The characteristic equation can be written as 

50 
1 + K 

s3 + 15s2 + 505 
= 0. 

The root locus for K > 0 is shown in Figure 7.31. Using K = 10 results in a stable 
system that also satisfies the steady-state tracking error specification. The roots at 
K = 10 are -r2 = -13.98, -rx = -0.51 + /5.96, and - r j . The t, of the complex 
roots is 0.085 and t,oin = 0.51. Thus, assuming that the complex roots are domi
nant, we expect (using Equation 5.16 and 5.13) a step input to have an overshoot of 
76% and a settling time (to within 2% of the final value) of 

L = 
4_ 4 

0.51 
= 7.8 s. 

Plotting the actual system response, we find that the overshoot is 70% and the set
tling time is 7.5 seconds. Thus, the complex roots are essentially dominant. The sys
tem response to a step input is highly oscillatory and cannot be tolerated for laser 
surgery. The command signal must be limited to a low-velocity ramp signal. The 
response to a ramp signal is shown in Figure 7.32. • 

EXAMPLE 7.10 Robot control system 

The concept of robot replication is relatively easy to grasp. The central idea is that 
robots replicate themselves and develop a factory that automatically produces 
robots. An example of a robot replication facility is shown in Figure 7.33. To achieve 
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FIGURE 7.31 
Root locus for a 
laser control 
system. 
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FIGURE 7.32 
The response to a 
ramp input for a 
laser control 
system. 
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the rapid and accurate control of a robot, it is important to keep the robotic arm stiff 
and yet lightweight [6]. 

The specifications for controlling the motion of the arm are (1) a settling time to 
within 2% of the final value of less than 2 seconds, (2) a percent overshoot of Jess 
than 10% for a step input, and (3) a steady-state error of zero for a step input. 

The block diagram of the proposed system with a controller is shown in 
Figure 7.34. The configuration proposes the use of velocity feedback as well as 
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FIGURE 7.33 
A robot replication 
facility. 

FIGURE 7.34 
Proposed 
configuration for 
control of the 
lightweight robotic 
arm. 
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the use of a controller Gc(s). Hie transfer function of the arm is 

W) = 72°(s) 

where 

G(s) = 
(s2 + 4J + 10004)(52 + 12s + 90036) 

(s + 10)(52 + 2s + 2501)(52 + 65 + 22509)' 

The complex zeros are located at 

5 = - 2 ± /100 and s - -6 ± /300. 

The complex poles are located at 

5 = - 1 ± ;50 and s = - 3 ± /150. 

A sketch of the root locus when K2 = 0 and the controller is an adjustable gain, 
Gc(s) = Ki, is shown in Figure 7.35. The system is unstable since two roots of the 
characteristic equation appear in the right-hand 5-plane for K{ > 0. 

It is clear that we need to introduce the use of velocity feedback by setting K% to 
a positive magnitude. Then we have His) — 1 + K2s; therefore, the loop transfer 
function is 

KiKJi s + — )(s2 + 4s + 10004)(52 + 125 + 90036) 

—Gc(s)G(s)H(s) = r 7 1 5 . 
52 v w s2(s + 10)(52 + 2s + 2501)(52 + 65 + 22509) 
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-50 

FIGURE 7.35 
Root locus of the 
system if 
K2 = 0, Ky is varied 
from K-i = 0 to 
K-\ = oo, and 

-1- -./300 

where Kx is the gain of Gc(s). We now have available two parameters, K\ and K2, 
that we may adjust. We select 5 < K2 < 10 in order to place the adjustable zero 
near the origin. 

When K2 = 5 and Kx is varied, we obtain the root locus sketched in Figure 7.36. 
When K\ = 0.8 and K2 = 5, we obtain a step response with a percent overshoot of 
12% and a settling time of 1.8 seconds. This is the optimum achievable response. If 
we try K2 = 7 or K2 = 4, the overshoot will be larger than desired. Therefore, we 
have achieved the best performance with this system. If we desired to continue the 
design process, we would use a controller Gc(s) with a pole and zero in addition to 
retaining the velocity feedback with K2 = 5. 

One possible selection of a controller is 

Gc(s) = 
Kx{s + z) 

FIGURE 7.36 
Root locus for the 
robot controller with 
a zero inserted at 
s = -0.2 with 
Gc(s) = Kv 
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If we select z = 1 and p = 5, then, when K\ = 5, we obtain a step response 
with an overshoot of 8% and a settling time of 1.6 seconds. • 

EXAMPLE 7.11 Automobile velocity control 

The automotive electronics market is expected to reach $52 billion by 2010. It is 
predicted that there will be growth of about 5% up to the year 2010 in electronic 
braking, steering, and driver information in North America alone [32J. Much of 
the additional computing power will be used for new technology for smart cars 
and smart roads, such as IVHS (intelligent vehicle/highway systems) [14,33]. New 
systems on-board the automobile will support semi-autonomous automobiles, 
safety enhancements, emission reduction, and other features including intelligent 
cruise control, and brake by wire systems eliminating the hydraulics [34]. 

The term IVHS refers to a varied assortment of electronics that provides real
time information on accidents, congestion, and roadside services to drivers and traf
fic controllers. IVHS also encompasses devices that make vehicles more 
autonomous: collision-avoidance systems and lane-tracking technology that alert 
drivers to impending disasters and allow a car to drive itself. 

An example of an automated highway system is shown in Figure 7.37. A velocity 
control system for maintaining the velocity between vehicles is shown in Figure 
7.38. The output Y($) is the relative velocity of the two automobiles; the input R(s) 
is the desired relative velocity between the two vehicles. Our design goal is to develop 
a controller that can maintain the prescribed velocity between the vehicles and 
maneuver the active vehicle (in this case the rearward automobile) as commanded. 
The elements of the design process emphasized in this example are depicted in 
Figure 7.39, 

FIGURE 7.37 
Automated 
highway system. 
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FIGURE 7.38 
Vehicle velocity 
control system. 
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Topics emphasized in this example 

Establish the control goals 
Maintain a prescribed relative 
velocity between two automobiles. 

Identify the variables to be controlled 

Write the specifications 

. 

1 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

1 
• 

Optimize the parameters and 
analyze the performance 

1 

Relative velocity y(f). 
Design specifications: 

DS1: Zero steady-state error 
(for a step input). 

DS2: Steady-state error < 25% 
(for a ramp input). 

DS3: Percent overshoot < 5%. 
DS4: Settling time < 1.5 s. 

See Figures 7.37 and 7.38. 

See Equation (7.101 

See. Equation (7.102), Kr and K, 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 7.39 Elements of the control system design process emphasized in the automobile 
velocity control exarnple. 

The control goal is 

Control Goal 
Maintain the prescribed velocity between the two vehicles, and maneuver the ac
tive vehicle as commanded. 
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The variable to be controlled is the relative velocity between the two vehicles: 

Variable to Be Controlled 
The relative velocity between vehicles, denoted by y(t). 

The design specifications are 

Design Specifications 
DS1 Zero steady-state error to a step input. 

DS2 Steady-state error due to a ramp input of less than 25% of the input magnitude. 

DS3 Percent overshoot less than 5% to a step input. 
DS4 Settling time less than 1.5 seconds to a step input (using a 2% criterion to establish 

settling time). 

From the design specifications and knowledge of the open-loop system, we find that 
we need a type 1 system to guarantee a zero steady-state error to a step input. The 
open-loop system transfer function is a type 0 system; therefore, the controller 
needs to increase the system type by at least 1. A type 1 controller (that is, a con
troller with one integrator) satisfies DSl.To meet DS2 we need to have the velocity 
error constant (see Equation (5.29)) 

Kv = \imsGc(s)G(s) > r±- = 4, (7.100) 
s-*0 U.ZJ 

where 

G W = (, + 2)(, + 8)- <7-101> 

and Gc(s) is the controller (yet to be specified). 
The percent overshoot specification DS3 allows us to define a target damping 

ratio (see Figure 5.8): 

P.O. < 5% implies £ > 0.69. 

Similarly from the settling time specification DS4 we have (see Equation (5.13)) 

4 

C">„ 

Solving for £a>„ yields £w„ > 2.6. 
The desired region for the poles of the closed-loop transfer function is shown in 

Figure 7.40. Using a proportional controller Gc(s) = KP, is not reasonable, because 
DS2 cannot be satisfied. We need at least one pole at the origin to track a ramp 
input. Consider the PI controller 

KPs + Kf
 S KP 

GL.(s) ~ P ' - KP-—^. (7.102) 

The question is where to place the zero at s = —Kf/KP. 
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FIGURE 7.40 
Desired region in 
the complex plane 
for locating the 
dominant system 
poles. 

s = -2.6 

Desired region for \ 
placement of v 

dominant poles. \ >=sin_1 0.69 

We ask for what values of Kp and Kf is the system stable. The closed-loop trans
fer function is 

T(s) = 
KPs + Kr 

s3 + lO.?2 + (16 + KP)s + Ki 

The corresponding Routh array is 

1 

10 
10(Kp + 16) - Ki 

~io 

16 + KP 

K, 

The first requirement for stability (from column one, row four) is 

Kr> 0. 

From the first column, third row, we have the inequality 

It follows from DS2 that 

* , > - - ! « . 

Kpl s + -rr 

(7.103) 

(7.104) 

• V KPJ i 
Kv = \im sGJs)G(s) = lims — 

v
 s -o y . -o s (s + 2)(s + 8) 16 

Therefore, the integral gain must satisfy 

Kj > 64. 

= ̂ > 4 . 

(7.105) 
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If we select Kf > 64, then the inequality in Equation (7.103) is satisfied. The valid 
region for KP is then given by Equation (7.104), where Kr > 64. 

We need to consider DS4. Here we want to have the dominant poles to the left 
of the s = -2.6 line. We know from our experience sketching the root locus that 
since we have three poles (at s = 0, —2, and —8) and one zero (at s = —Kj/KP), we 
expect two branches of the loci to go to infinity along two asymptotes at 
<f> = -90°and +90° centered at 

2(-/¾) - 2(-¾) 
np - nz 

where np = 3 and nz = 1. In our case 

We want to have a < —2.6 so that the two branches will bend into the desired regions. 
Therefore, 

1 Kj 

"5 + it< ~2-6-
or 

-r < 4.7. (7.106) 
KP 

So as a first design, we can select KP and Kj such that 

K K 
Kf > 64, Kr > -f- - 16, and - ^ < 4.7. 

1U Kp 

Suppose we choose Kj/Kp = 2.5. Then the closed-loop characteristic equation is 

1 + Kps(s + 2)(s + 8) " a 

The root locus is shown in Figure 7.41. To meet the £ — 0.69 (which evolved 
from DS3), we need to select Kp < 30. We selected the value at the boundary of the 
performance region (see Figure 7.41) as carefully as possible. 

Selecting Kp = 26, we have K[/KP = 2.5 which implies Kj = 65. This satisfies 
the steady-state tracking error specification (DS2) since Kj = 65 > 64. 

The resulting PI controller is 

Gc(s) = 26 + —. (7.107) 

The step response is shown in Figure 7.42. 
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FIGURE 7.41 
Root locus for 
KJKP = 2.5. 

.S 2 

x 

< 
5b 

E 
" - 2 

- 6 

---

**-. 
^|T^N 

Desired region for \ 
placement of ^ 

dominant poles. 

• • " " • • ' ' 

WX*~ 

i X ' 
1 A 

i£hu 

iPl 1 
' U J 

| \ 
1 ^ = 

L = 30 

0=s in H 

*N. 

-2.6 

0.69--. 

^ 
"^\ 

- 7 - 6 - 5 - 4 
Real Axis 

- 3 - 2 - 1 

FIGURE 7.42 
Automobile velocity 
control using the PI 
controller in 
Eq. (7.107). 
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The percent overshoot is P.O. = 8%, and the settling time is Ts = 1.45 s. The per
cent overshoot specification is not precisely satisfied, but the controller in Equation 
(7.107) represents a very good first design. We can iteratively refine it. Even though the 
closed-loop poles lie in the desired region, the response does not exactly meet the 
specifications because the controller zero influences the response. The closed-loop 
system is a third-order system and does not have the performance of a second-order 
system. We might consider moving the zero to s = —2 (by choosing Kf/KP - 2) so 
that the pole at s = —2 is cancelled and the resulting system is a second-order 
system. • 

7.8 THE ROOT LOCUS USING CONTROL DESIGN SOFTWARE 

An approximate root locus sketch can be obtained by applying the orderly proce
dure summarized in Table 7.2. Alternatively, we can use control design software to 
obtain an accurate root locus plot. However, we should not be tempted to rely solely 
on the computer for obtaining root locus plots while neglecting the manual steps in 
developing an approximate root locus. The fundamental concepts behind the root 
locus method are embedded in the manual steps, and it is essential to understand 
their application fully. 

The section begins with a discussion on obtaining a computer-generated root 
locus plot. This is followed by a discussion of the connections between the partial 
fraction expansion, dominant poles, and the closed-loop system response. Root sen
sitivity is covered in the final paragraphs. 

The functions covered in this section are rlocus, rlocfind, and residue. The func
tions rlocus and rlocfind are used to obtain root locus plots, and the residue function 
is utilized for partial fraction expansions of rational functions. 

Obtaining a Root Locus Plot. Consider the closed-loop control system in 
Figure 7.10. The closed-loop transfer function is 

Y(s) K(s + 1)(, + 3) 
T(s) = -, R(s) s(s + 2)(s + 3) + K(s + 1)' 

The characteristic equation can be written as 

1 + K-—^rr—^ = 0- (7-108) 
s(s + 2)(s + 3) v ' 

The form of the characteristic equation in Equation (7.108) is necessary to use the 
rlocus function for generating root locus plots. The general form of the characteris
tic equation necessary for application of the rlocus function is 

P(s) 
1 + KG(s) = 1 + K^-{ = 0. (7.109) 

q(s) 
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FIGURE 7.43 
The rlocus 
function. 

r = complex root locations 
K = sain vector 

s 
1 + KG(s) = 0 

[r,K]=rlocus(sys) 

where K is the parameter of interest to be varied from 0 < K < oo. The rlocus 
function is shown in Figure 7.43, where we define the transfer function object 
sys = G(s). The steps to obtaining the root locus plot associated with Equation (7.108), 
along with the associated root locus plot, are shown in Figure 7.44. Invoking the 
rlocus function without left-hand arguments results in an automatic generation of 
the root locus plot. When invoked with left-hand arguments, the rlocus function 
returns a matrix of root locations and the associated gain vector. 

The steps to obtain a computer-generated root locus plot are as follows: 

1. Obtain the characteristic equation in the form given in Equation (7.109), where K is 
the parameter of interest. 

2. Use the rlocus function to generate the plots. 

Referring to Figure 7.44, we can see that as K increases, two branches of the 
root locus break away from the real axis. This means that, for some values of K, the 
closed-loop system characteristic equation will have two complex roots. Suppose we 

»p=[1 1]; q=[1 5 6 OJ; sys=tf(p,q); rlocus(sys) 

Generating a root locus plot. 

FIGURE 7.44 
The root locus for 
the characteristic 
equation, 
Equation (7.108). 

» p = [ 1 1]; q=[1 5 6 0]; sys=tf(p,q); [r,K]=rlocus(sys); 

Obtaining root locations r associated 
with various values of the gain K. 
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want to find the value of K corresponding to a pair of complex roots. We can use the 
rlocfind function to do this, but only after a root locus has been obtained with the 
rlocus function. Executing the rlocfind function will result in a cross-hair marker ap
pearing on the root locus plot. We move the cross-hair marker to the location on 
the locus of interest and hit the enter key. The value of the parameter K and the 
value of the selected point will then be displayed in the command display. The use of 
the rlocfind function is illustrated in Figure 7.45. 

Control design software packages may respond differently when interacting with 
plots, such as with the rlocfind function on the root locus. The response of rlocfind 
in Figure 7.45 corresponds to MATLAB. Refer to the companion website for more 
information on other control design software applications. 

Continuing our third-order root locus example, we find that when K = 20.5775, 
the closed-loop transfer function has three poles and two zeros, at 

poles: £ = ( -

2.0505 + /4.3227 \ 

2.0505 - /4.3227 ; 

-0.8989 J 
zeros: s = 

- 1 
- 3 

Considering the closed-loop pole locations only, we would expect that the real pole 
at s = —.8989 would be the dominant pole. To verify this, we can study the closed-
loop system response to a step input, R(s) = 1/s. For a step input, we have 

Y(s) = 
20.5715(s + 1)0 + 3) 1 

s(s + 2)(5 + 3) + 20.5775(.v + 1) s' 
(7.110) 

Generally, the first step in computing y(t) is to expand Equation (7.110) in a partial 
fraction expansion.The residue function can be used to expand Equation (7.110), as 
shown in Figure 7.46. The residue function is described in Figure 7.47. 

-2.0509 + 4.3228/ 

4 

2 

0 

- 2 

- 4 

- 6 
- 6 

Cross-hair placement 
at selected gain. 

X - H ^ O - ^ 

Other two-pole locations 
for the same gain. 

- 4 - 2 0 

Real Axis 

FIGURE 7.45 
Using the rlocfind 
function. 

»p=[1 1]; q=[1 5 6 0]; sys=tf(p,q); rlocus(sys) 

' ' rlocfind follows the rlocus function. 

Select a point in the graphics window 

selectecLpoint = 
-2.0509 + 4.3228i 

ans = 
20.5775 < r~ 

Value of K at selected point 
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FIGURE 7.46 
Partial fraction 
expansion of 
Equation (7.110). 

»K=20.5775; num=K*[1 4 3]; den=[1 5 6+K K 0]; 

>>[r,p,k]=residue(num,den) 

-1.3786 + 1.701 Oi 
-1.3786- 1.7010i 
-0.2429 
3.0000 

P= 
s - p(\) s - p(2) s - p(3) s - p(A) K ' 

-2.0505 - 4.3228J 
-2.0505 + 4.3?28i 
-0.8989 

0 

k = 

r ~ residues 
p = poles 
k = direct term 

The partial fraction expansion of Equation (7.110) is 

-1.3786 + /1.7010 -1.3786 - /1.7010 
Y{s) = - - + s + 2.0505 + /4.3228 s + 2.0505 - /4.3228 

-0.2429 3 
s + 0.8989 + s' 

Comparing the residues, we see that the coefficient of the term corresponding to the 
pole at s = —0.8989 is considerably smaller than the coefficient of the terms corre
sponding to the complex-conjugate poles at s = —2.0505 ± /4.3227. From this, we 
expect that the influence of the pole at s = -0.8989 on the output response y(t) is 
not dominant. The settling time (to within 2% of the final value) is then predicted by 
considering the complex-conjugate poles. The poles at s = -2.0505 ± /4.3227 cor
respond to a damping of £ = 0.4286 and a natural frequency of cofl = 4.7844. Thus, 
the settling time is predicted to be 

4 
TS*T = 1.95 s. 

fan 
Using the step function, as shown in Figure 7.48, we find that Ts = 1.6 s. Hence, our 
approximation of settling time Ts - 1.95 is a fairly good approximation. The percent 
overshoot can be predicted using Figure 5.13 since the zero of T(s) at s = —3 will 
impact the system response. Using Figure 5.13, we predict an overshoot of 60%. As 
can be seen in Figure 7.48, the actual overshoot is 50%. 
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FIGURE 7.47 
The residue 
function. 

r = residues 
p — pole locations 
k = direct term 

Y(s) = T(s)U(s) num 
den 

[r,p,k]=residue(num,den) 

m = 
rO) K2) 

s-p(l) s -/7(2), 
'in) 
•P(n) + Us) 

When using the step function, we can right-click on the figure to access the pull
down menu, which allows us to determine the step response settling time and peak 
response, as illustrated in Figure 7.48. On the pull-down menu select ''Characteris
tics" and select "Settling Time." A dot will appear on the figure at the settling point. 
Place the cursor over the dot to determine the settling time. 

In this example, the role of the system zeros on the transient response is illustrated. 
The proximity of the zero at s = - 1 to the pole at s - -0.8989 reduces the impact of 
that pole on the transient response. The main contributors to the transient response 
are the complex-conjugate poles at s = -2.0505 ± /4.3228 and the zero at s = - 3 . 

There is one final point regarding the residue function: We can convert the par
tial fraction expansion back to the polynomials num/den, given the residues r, the 
pole locations/;, and the direct terms /c, with the command shown in Figure 7.49. 

FIGURE 7.48 
Step response for 
the closed-loop 
system in 
Figure 7.10 with 
K = 20.5775. 

• t u n - Inxn lace Vrt:« ifc-j 
JBJxJ 

Fig U V n Insert Tool Wixfc- H * 

n a* a a u > / #.©"•> 

• IDIXl 

Right click on figure to 
open pull-down menu 

Select peak response 
and settling time. 

»K=20.5775;num=k*[1 4 31; den=[1 5 6+K KJ; sys=tf(num,den); 
»step{sys) 
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FIGURE 7.49 
Converting a partial 
fraction expansion 
back to a rational 
function. 

Y(S) = T(s)U(s) = ^ 
r = residues 
p = pole locations 
k = direct term 

[num,den]=residue(r,p,k) 

Sensitivity and the Root Locus. The roots of the characteristic equation play an 
important role in defining the closed-loop system transient response. The effect of 
parameter variations on the roots of the characteristic equation is a useful measure 
of sensitivity. The root sensitivity is defined to be 

art 
dK/K' 

(7.111) 

We can use Equat ion (7.111) to investigate the sensitivity of the roots of the charac
teristic equat ion to variations in the pa ramete r K. If we change K by a small finite 
amount AK, and evaluate the modified root r> + Ari5 it follows that 

S't 
Arr-

AK/K' 
(7.112) 

The quantity SK is a complex number. Referring back to the third-order example of 
Figure 7.10 (Equation 7.108), if we change i t by a factor of 5%, we find that the 
dominant complex-conjugate pole at s = —2.0505 + /4.3228 changes by 

Ar, = -0.0025 - /0.1168 

when K changes from K = 20.5775 to K = 21.6064. From Equation (7.112), it fol
lows that 

^ = 
-0.0025 - /0.1168 

1.0289/20.5775 
-0.0494 - /2.3355. 

The sensitivity Sr£ can also be written in the form 

SK = 2.34/268.79°. 

The magnitude and direction of S'% provides a measure of the root sensitivity The 
script used to perform these sensitivity calculations is shown in Figure 7.50. 

The root sensitivity measure may be useful for comparing the sensitivity for var
ious system parameters at different root locations. 

7.9 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In Chapter 6, we introduced a new configuration for the control system using veloci
ty feedback (see Section 6.7). In this chapter, we will use the PID controller to obtain 
a desirable response. We will proceed with our model and then select a controller. 
Finally, we will optimize the parameters and analyze the performance. In this chap
ter, we will use the root locus method in the selection of the controller parameters. 
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FIGURE 7.50 
Sensitivity 
calculations for the 
root locus for a 5% 
change in 
K = 20.5775. 

% Compute the system sensitivity to a parameter 
% variation 
% 
K=20.5775, den=[1 5 6+K K]; r1=roots(den); 
% 
dK=1.0289; 4-
% 
Km=K+dK; denm=[1 5 6+Km Km]; r2=roots(denm) 
dr=r1-r2; <— —T7~ 

5% change in K 

% 
S=dr/(dK/K);«- Sensitivity formula 

We use the root locus to select the controller gains. The PID controller intro
duced in this chapter is 

Gc{s) = KP + — + KDs. 

Since the process model Gi(s) already possesses an integration, we set K[ = 0. Then 
we have the PD controller 

Gc(s) = KP + KDs, 

and our goal is to select KP and KD in order to meet the specifications. The system is 
shown in Figure 7.51. The closed-loop transfer function of the system is 

Y(s) 
= T(s) = 

Gc(s)Gi(s)G2(s) 

R(s) * w 1 + Gc(s)G1(s)G2(s)H(Sy 

where H(s) = 1. 
In order to obtain the root locus as a function of a parameter, we write 

Gr(s)G,(s)G2(s)H(s) as 

5000(KP + KDs) 500QKD(s + z) 
GJJ&His) = s(s + 20)(s + 1000) s(s + 2Q)(s + 1000)' 

where z = KP/KD. We use Kp to select the location of the zero z and then sketch the 
locus as a function of KD. Based on the insight developed in Section 6.7, we select 
z = 1 so that 

5 0 0 0 ^ 0 + 1) 
GcGtG2H{s) - ^ + 2Q)(s + 100( ) ) . 

FIGURE 7.51 
Disk drive control 
system with a PD 
controller. 
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FIGURE 7.52 
Sketch of the root 
locus. 

Section 7.10 Summary 
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Table 7.6 Disk Drive Control System Specifications and 
Actual Design Performance 

Performance 
Measure Desired Value 

Actual 
Response 

Percent overshoot 
Settling time 
Maximum response 
to a unit disturbance 

Less than 5% 
Less than 250 ms 
Less than 5 x 10"3 

0% 
20 ms 
2 x 10~3 

The number of poles minus the number of zeros is 2, and we expect asymptotes at 
4>A = ±90° with a centroid 

-1020 + 1 
aA = ^ - -509.5, 

as shown in Figure 7.52. We can quickly sketch the root locus, as shown in Figure 7.52. 
We use the computer-generated root locus to determine the root values for various 
values of KD. When KD - 91.3, we obtain the roots shown in Figure 7.52. Then, 
obtaining the system response, we achieve the actual response measures as listed in 
Table 7.6. As designed, the system meets all the specifications. It takes the system a 
settling time of 20 ms to "practically" reach the final value. In reality, the system drifts 
very slowly toward the final value after quickly achieving 97% of the final value. 

7.10 SUMMARY 

The relative stability and the transient response performance of a closed-loop con
trol system are directly related to the location of the closed-loop roots of the charac
teristic equation. Therefore, we have investigated the movement of the characteristic 
roots on the .y-plane as the system parameters are varied by using the root locus 
method. The root locus method, a graphical technique, can be used to obtain an 
approximate sketch in order to analyze the initial design of a system and determine 
suitable alterations of the system structure and the parameter values. A computer is 
commonly used to calculate several accurate roots at important points on the locus. 
A summary of fifteen typical root locus diagrams is shown in Table 7,7. 



Table 7.7 Root Locus Plots for Typical Transfer Functions 
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Table 7.7 (continued) 
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Table 7.7 (continued) 
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Furthermore, we extended the root locus method for the design of several para
meters for a closed-loop control system. Then the sensitivity of the characteristic 
roots was investigated for undesired parameter variations by defining a root sensi
tivity measure. It is clear that the root locus method is a powerful and useful approach 
for the analysis and design of modern control systems and will continue to be one of 
the most important procedures of control engineering. 

EXERCISES 

E7.1 Let us consider a device that consists of a ball rolling 
on the inside rim of a hoop [11]. This model is similar 
to the problem of liquid fuel sloshing in a rocket. The 
hoop is free to rotate about its horizontal principal 
axis as shown in Figure E7.1.The angular position of 
the hoop may be controlled via the torque T applied 
to the hoop from a lorque motor attached to the hoop 
drive shaft. If negative feedback is used, the system 
characteristic equation is 

Ks(s + 4) 

s2 + 2s +2 

(a) Sketch the root locus, (b) Find the gain when the 
roots are both equal, (c) Find these two equal roots. 
(d) Find the settling time of the system when the roots 
are equal. 

Torque 

Hoop 

FIGURE E7.1 Hoop rotated by motor. 

E7.2 The open-loop transfer function of a unity feedback 
K 

system is -. Find the closed-loop poles when K = 
s - 1 

1,2,3,..., 10, and mark it on the s-plane. 

E7.3 A control system for an automobile suspension 
tester has negative unity feedback and a process [12] 

K(s2 + 4s + 8) 
Gc(s)G(s) = \ '. 

s*(s + 4) 

We desire the dominant roots to have a £ equal to 0.5. 
Using the root locus, show that K = 7.35 is required 
and the dominant roots are v = -1.3 ± /2.2. 

E7.4 Consider the closed-loop system in Figure E7.4. Find 
the closed-loop poles when K = 0. 2,4, 6, 8,10. Mark 
the same on the s-plane. 

E7.5 A unity feedback system with open-loop transfer 

function is controlled by an integral controller 
(s + 4) 

of gain Ki. 
(a) Find the closed-loop poles when K = 0,2,4,6,8,10. 

Is the system stable for these values of Kp. 
(b) Find the range of values of Kt for which the sys

tem is stable. 
(c) Find the range of values of K, for which system is 

underdamped. 

E7.6 One version of a space station is shown in Figure E7.6 
[30]. It is critical to keep this station in the proper 
orientation toward the sun and the Earth for generat
ing power and communications. The orientation con
troller may be represented by a unity feedback system 
with an actuator and controller, such as 

Gc(s)G(s) = 
20K 

s(s2 + 20s + 100) 

E7.7 

Sketch the root locus of the system as K increases. 
Find the value of K that results in an unstable system. 

Answers: K = 100 

Consider a unity feedback system with open-loop 
is 

transfer function . 
s(s + 2)(5 + 4) 

Uls) 

-
?\ 

I l 

U+7) 

I 

j + 3 

vis) 

FIGURE E7.4 
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Radar antenna 

Rockets 

Adjuster 
rockets 

Space shuttle 

FIGURE E7.6 Space station. 

(a) Draw the root locus of the system. 
(b) Find the range of value of K for which the system 

is stable. 
(c) Find the range of values of K for which all the 

closed-loop poles are real. 

E7.8 Sketch the root locus for a unity feedback system with 

K(s + 1) 
Gc(s)G(s) = • 

s (s + y) 

(a) Find the gain when all three roots are real and 
equal, (b) Find the roots when all the roots are equal 
as in part (a). 

Answers: K = 27; v = - 3 

E7.9 Consider the closed-loop system given in Figure E7.9. 

(a) Find the characteristic equation. 
(b) Draw the locus of the roots of the characteristic 

equation. 
(c) Find the value of K for which damping ratio is 0.2. 
(d) Find the corresponding dominant closed-loop poles. 

E7.10 A unity feedback system has the loop transfer 
function 

KG(s) = 
K(s + 2) 

s(s + 1 ) ' 

(a) Find the breakaway and entry points on the real 
axis. 

—Mg>-7\ 
V 

K 
S 

1 
[s+l){s 2) 

1 
(0.2s +-D 

(b) Find the gain and the roots when the real part of 
the complex roots is located at - 2 . (c) Sketch the 
locus. 

Answers: (a) -0.59, -3.41; (b) K - 3, s = - 2 ± /V5 

E7.ll A robot force control system with unity feedback 
has a loop transfer function [6] 

KG(s) = 
K(s + 2.5) 

(s2 + 2s H- 2)(5-2 + 4s + 5) 

(a) Find the gain K that results in dominant roots with 
a clamping ratio of 0.707. Sketch the root locus. 

(b) Find the actual percent overshoot and peak time 
for the gain K of part (a). 

E7.12 A unity feedback system has a loop transfer function 

K(s + 1) 
KG(s) = 

s(s2 + 65 + 18)' 

(a) Sketch the root locus for K > 0. (b) Find the 
roots when K = 10 and 20. (c) Compute the 0-100% 
rise time, percent overshoot, and settling time (with a 
2% criterion) of the system for a unit step input when 
K = 10 and 20. 

E7.13 A unity feedback system has a loop transfer function 

4(.v + z) 
Gc(s)G(s) = 

s(s + 1)(5 + 3)" 

(a) Draw the root locus as z varies from 0 to 100. 
(b) Using the root locus, estimate the percent overshoot 
and settling time (with a 2% criterion) of the system at 
z ~ 0.6, 2, and 4 for a step input, (c) Determine the 
actual overshoot and settling time at z ~ 0.6, 2, and 4. 

E7.14 A unity feedback system has the loop transfer 
function 

Gc(s)G(s) = 
K(s + 10) 

5(5 + 5) 

(a) Determine the breakaway and entry points of the 
root locus and sketch the root locus for K > 0. 
(b) Determine the gain K when the two characteristic 
roots have a £ of 1/V 2. (c) Calculate the roots. 

E7.15 (a) Plot the root locus for a unity feedback system 
with loop transfer function 

K(s + 10)(5 + 2) 
Gc(s)G{s) = . 

s 
(b) Calculate the range of K for which the system is 
stable, (c) Predict the steady-state error of the system 
for a ramp input. 

Answers: (a) K > 1.67; (b) ess = 0 

FIGURE E7.9 A fourth-order system. 

http://E7.ll
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E7.16 A negative unity feedback system has a loop trans
fer function 

Gc(s)G(s) -
Ke 
s + 1' 

where T = 0.1 s. Show that an approximation for the 
time delay is 

Using 

r~sT 

-0.1s 

2 
T 
2 
f + 

20 -

A' 

s 

S 

20 + 5' 

obtain the root locus for the system for K > 0. Deter
mine the range of K for which the system is stable. 

E7.17 A control system, as shown in Figure E7.17, has a 
process 

G(s) = 
1 

s(s - I ) ' 

(a) When Gc(s) = K, show that the system is always 
unstable by sketching the root locus, (b) When 

Or(s) = 
K(s + 2) 

s + 20 ' 

sketch the root locus and determine the range of K for 
which the system is stable. Determine the value of K 
and the complex roots when two roots lie on the 
/w-axis. 

+ Y{s) Ris) 

FIGURE E7.17 Feedback system. 

E7.18 A closed-loop negative unity feedback system is 
used to control the yaw of the A-6 Intruder attack jet. 
When the loop transfer function is 

Gc(s)G(s) = 
K 

i(.v + 3)(5-2 + 2s + 7.) 

determine (a) the root locus breakaway point and 
(b) the value of the roots on the /cu-axis and the gain 
required for those roots. Sketch the root locus. 
Answers: (a) Breakaway: 5 = -2.29 (b) y'w-axis: 
s = +/1.09, K = 8 

E7.19 A unity feedback system has a loop transfer function 

K 

s(s + 3)(52 + 6s + 64)' 
Gc(s)G(s) = 

(a) Determine the angle of departure of the root 
locus at the complex poles, (b) Sketch the root locus. 
(c) Determine the gain K when the roots are on the 
/to-axis and determine the location of these roots. 

E7.20 A unity feedback system has a loop transfer func
tion 

Gc(s)G(s) = -
K(s + 1) 

s(s - 1)(5 f 4) 

(a) Determine the range of K for stability, (b) Sketch 
the root locus, (c) Determine the maximum £ of the 
stable complex roots. 
Answers: (a) K > 6; (b) £ = 0.2 

E7.21 A unity feedback system has a loop transfer function 

Ks 
Ge(s)G(s) = 

+ 552 + 10 

Sketch the root locus. Determine the gain K when the 
complex roots of the characteristic equation have a t, 
approximately equal to 0.66. 

E7.22 A high-performance missile-for launching a satel
lite has a unity feedback system with a loop transfer 
function 

K(s2 + 2Q)(s + 1) 
Gc(s)G(s) = — \ -. c W (s2 - 2)(5 + 10) 

Sketch the root locus as K varies from 0 < K < x>. 
E7.23 A unity feedback system has a loop transfer function 

4(52 + 1) 
GC(5)G(5) -

s(s 

Sketch the root locus for 0 < a < 00. 
E7.24 Consider the system represented in state variable 

form 

where 

x = Ax + BH 

y = Cx + Dw, 

A -
0 

- 2 

1 

-k] 
,B = 

ol 

C = [1 0], and D = [0]. 

Determine the characteristic equation and then 
sketch the root locus as 0 < k < 00. 

E7.25 A closed-loop feedback system is shown in 
Figure E7.25. For what range of values of the para
meters K is the system stable? Sketch the root locus 
asO < K < 00. 
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FIGURE 7.25 
Nonunity feedback 
system with 
parameter K. 

R(S) pT ̂
EJfi) 

J * 

Controller 

K 

Sensor 

1 
s 

Process 

10 
s + 25 

- • Y{.s) 

E7.26 Consider the signle-input, single-output system is 
described by 

where 

A = 

*(/) = Ax(r) + B u(t) 
y(t) -- Cx(0 

n l 
3 - K - 2 - K 

,B = 
i 

,C = [1 -1] 

Compute the characteristic polynomial and plot the 
root locus as 0 s K < oo. For what values of/£ is the 
system stable? 

E7.27 Consider the unity feedback system in Figure 
E7.27. Sketch the root locus as 0 s p < oo. 

FIGURE 7.27 
Unity feedback 
system with 
parameter p. 

R(s) 
- v ^ M 

Controller 

5 + 1 0 

X 

Process 

4 

s + p • Yis) 

PROBLEMS 

P7.1 Sketch the root locus for the following loop transfer 
functions of the system shown in Figure P7.1 when 
0 < K < co: 

(a) Gc(s)G(s) = 

(b) Gc(s)G(i) = 

K 
s(s + 10)(.y + 8) 

K 
(s2 + 2s + 2)(s + 1) 

K(s + 5) 
(c) Gc(s)G(s) = ^ + 

(d) Gc(s)G(s) = 
K(s2 + 4s 4 8) 

s2(s + 7) 

P7.2 The linear model of a phase detector was presented in 
Problem 6.7. Sketch the root locus as a function of the 
gain KD = KUK. Determine the value of Kv attained 
if the complex roots have a damping ratio equal to 
0.60 [13]. 

FIGURE P7.1 

Controller 

Gc(s) 

P7.3 Consider a unity feedback system with open-loop 

transfer function 
(s + a)( s + b)' 

When the closed-loop system is subjected to a step 
input, the output has an overshoot of 16.3% but ulti
mately attains the final value of 1. The response to a 
ramp input has a steady-state error of 0.0625. 

(a) Find the value of K, a and b. 
(b) Mark the closed-loop poles. 
(c) Tf the gain is doubled, find the closed-loop poles 

and mark it on the s-plane. 
(d) Find percentage overshoot corresponding to the 

gain obtained in (c). 

P7.4 The analysis of a large antenna was presented in 
Problem 4.5. Sketch the root locus of the system as 
0 < kn < co. Determine the maximum allowable 
gain of the amplifier for a stable system. 

Process 

G(s) - • Y(s) 
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Disturbance 

R[s) 

FIGURE P7.5 
Helicopter control. 

Pilot 

sl+ l is + 1 Switch 

Helicopter dynamics 

G(s) 

Automatic stabilization 

K2(s + 1) 
SH 9 

Y(s) 
- • Pitch 

altitude 

P7.5 Automatic control of helicopters is necessary 
because, unlike fixed-wing aircraft which possess a fair 
degree of inherent stability, the helicopter is quite 
unstable. A helicopter control system that utilizes an 
automatic control loop plus a pilot stick control is 
shown in Figure P7.5. When the pilot is not using the 
control stick, the switch may be considered to be 
open. The dynamics of the helicopter are represented 
by the transfer function 

G(s)~-
25(5 + 0.03) 

(s f- 0.4)(52 - 0.36s + 0.16)' 

(a) With the pilot control loop open (hands off con
trol), sketch the root locus for the automatic stabiliza
tion loop. Determine the gain K2 that results in a 
damping for the complex roots equal- to t, — 0.707. 
(b) For the gain K2 obtained in part (a), determine the 
steady-state error due to a wind gust Td(s) - \/s. 
(c) With the pilot loop added, draw the root locus as 
K\ varies from zero to co when K2 is set at the value 
calculated in part (a), (d) Recalculate the steady-state 
error of part (b) when K\ is equal to a suitable value 
based on the root locus. 

P7.6 An attitude control system for a satellite vehicle 
within the earth's atmosphere is shown in Figure P7.6. 
The transfer functions of the system are 

G(s) = 7 -
K(s + 0.20) 

(s + 0.90)(s - 0.60)(^ - 0.10) 

and 

G,(s) = 
(s + 2 + /1.5)(5 + 2 - /1.5) 

5 + 4.0 

FIGURE P7.6 
Satellitte attitude 
control. 

fate) 
Dcsiicd 
altitude 

(a) Draw the root locus of the system as K varies from 
0 to oo. (b) Determine the gain K that results in a sys
tem with a settling time (with a 2% criterion) less than 
12 seconds and a damping ratio for the complex roots 
greater than 0.50. 

P7.7 The speed control system for an isolated power sys
tem is shown in Figure P7.7. The valve controls the 
steam flow input to the turbine in order to account for 
load changes LL(s) within the power distribution net
work. The equilibrium speed desired results in a gener
ator frequency equal to 60 cps. The effective rotary 
inertia J is equal to 4000 and the friction constant b is 

Attitude . 

Controller 

Gc{s) 

Satellite 
dynamics 

G(s) 

FIGURE P7.7 
Power system 
control. 

Reference 
speed 

Aw(.v) 
• Speed 

deviation 

R = regulation factor 
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equal to 0.75. The steady-state speed regulation factor 
R is represented by the equation R « (<o0 - cor)/AL, 
where ior equals the speed at rated load and w0 equals 
the speed at no load. We want to obtain a very small 
R, usually Jess than 0.10. (a) Using root locus tech
niques, determine the regulation R attainable when 
the damping ratio of the roots of the system must be 
greater than 0.60. (b) Verify that the steady-state speed 
deviation for a load torque change AL(s) = AL/s is, 
in fact, approximately equal to RAL when i? s 0.1. 

P7.8 Consider again the power control system of Prob
lem P7.7 when the steam turbine is replaced by a 
hydroturbine. For hydroturbines, the large inertia of 
the water used as a source of energy causes a consid
erably larger time constant. The transfer function of a 
hydroturbine may be approximated by 

Gt(s) = 
-TS + 1 

(T/2)5 + {' 

where T = 1 second. With the rest of the system 
remaining as given in Problem P7.7, repeat parts (a) 
and (b) of Problem P7.7. 

P7.9 The achievement of safe, efficient control of the 
spacing of automatically controlled guided vehicles is 
an important part of the future use of the vehicles in a 
manufacturing plant [14, 15]. It is important that the 
system eliminate the effects of disturbances (such as 
oil on the floor) as well as maintain accurate spacing 
between vehicles on a guideway. The system can be 
represented by the block diagram of Figure P7.9. The 
vehicle dynamics can be represented by 

G(s) -
(s + 0.1)(52 + Is + 289) 

s(s - 0.4)(5 + 0.8)(52 + 1.455 + 361)' 

(a) Sketch the root locus of the system, (b) Determine 
all the roots when the loop gain K = K, K2 is equal to 
4000. 

R(s) 
Desired 
spacing 

FIGURE P7.9 
Guided vehicle 
control. 

. 

Controller 

Kt(s + 0.5) 
(5 + 30) 

Engine throttle 

* 2 

5 + 30 

Sensor 

1 

Vehicle 

G(s) Spacing between 
vehicles 

P7.10 New concepts in passenger airliner design will have 
the range to cross the Pacific in a single flight and the 
efficiency to make it economical [16, 31]. These new 
designs will require the use of temperature-resistant, 
lightweight materials and advanced control systems. 
Noise control is an important issue in modern aircraft 
designs since most airports have strict noise level 
requirements. One interesting concept is the Boeing 
Sonic Cruiser depicted in Figure P7.10(a). It would 
seat 200 to 250 passengers and cruise at just below the 
speed of sound. 

The flight control system must provide good han
dling characteristics and comfortable flying condi
tions. An automatic control system can be designed 
for the next generation passenger aircraft. 

The desired characteristics of the dominant roots 
of the control system shown in Figure P7.10(b) have a 
£ = 0.707. The characteristics of the aircraft are 
o)„ = 2.5, £ = 0.30, and T = 0.1. The gain factor Klt 

however, will vary over the range C.02 at medium-
weight cruise conditions to 0.20 at lightweight descent 
conditions, (a) Sketch the root locus as a function of 
the loop gain K.\K%. (b) Determine the gain K2 neces
sary to yield roots with £ = 0.707 when the aircraft is 
in the medium-cruise condition, (c) With the gain K2 

as found in part (b), determine the t, of the roots when 
the gain Kx results from the condition of light descent. 

P7.ll A computer system requires a high-performance 
magnetic tape transport system [17]. The environmen
tal conditions imposed on the system result in a severe 
test of control engineering design. A direct-drive DC 
motor system for the magnetic tape reel system is 
shown in Figure P7.ll, where r equals the reel radius, 
and J equals the reel and rotor inertia. A complete 
reversal of the tape reel direction is required in 6 ms, 
and the tape reel must follow a step command in 3 ms 
or less. The tape is normally operating at a speed of 
100 in/s. The motor and components selected for this 
system possess the following characteristics: 

Kb = 0.40 
KP= 1 

r = 0.2 
Kx = 2.0 

K2 is adjustable. T, = T„ = 1 ms 
KT/(LJ) - 2.0 

The inertia of the reel and motor rotor is 2.5 X 10~3 

when the reel is empty, and 5.0 X 10-3 when the reel 
is full. A series of photocells is used as an error-
sensing device. The time constant of the motor is 
L/R = 0.5 ms. (a) Sketch the root locus for the system 
when K2 = 10 and J = 5.0 x 10~3, 0 < Ka < x. 
(b) Determine the gain Ka that results in a well-damped 
system so that the £ of all the roots is greater than or 
equal to 0.60. (c) With the Ka determined from part 
(b), sketch a root locus for 0 < A'-> < 00, 

http://P7.ll
http://P7.ll
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(a) 

Ris) • Q — 

Controller 

(s + 2)2/r, 
(.v + 10)(5- + 100) 

Actuator 

10 
5 + 1 0 

Aircraft dvnamics 

K\{TS + 1) 

s2 + 2|iw„a + a>~ 

FIGURE P7.10 
(a) A passenger jet 
aircraft of the 
future. (™ and © 
Boeing. Used under 
license.) (b) Control 
system. 

P7.12 A precision speed control system (Figure P7.12) is 
required for a platform used in gyroscope and inertial 
system testing where a variety of closely controlled 
speeds is necessary. A direct-drive DC torque motor 
system was utilized to provide (1) a speed range of 
0.017s to 6007s, and (2) 0.1% steady-state error maxi
mum for a step input. The direct-drive DC torque 
motor avoids the use of a gear train with its attendant 
backlash and friction. Also, the direct drive motor has 
a high-torque capability, high efficiency, and low motor 
time constants. The motor gain constant is nominally 
Km - 1.8, but is subject to variations up to 50%. The 
amplifier gain Ka is normally greater than 10 and sub
ject to a variation of 10%. (a) Determine the minimum 
loop gain necessary to satisfy the steady-state error 
requirement, (b) Determine the limiting value of gain 
for stability, (c) Sketch the root locus as Ka varies from 
0 to oo. (d) Determine the roots when Ka = 40, and 
estimate the response to a step input. 

P7.13 A unity feedback system has the loop transfer 
function 

Gc(s)G(s) = 
K 

Rate gyro 

Yls) 
Pitch 
rate 

(b) 

(a) Find the breakaway point on the real axis and the 
gain for this point, (b) Find the gain to provide two 
complex roots nearest the /co-axis with a damping 
ratio of 0.707. (c) Are the two roots of part (b) domi
nant? (d) Determine the settling time (with a 2% cri
terion) of the system when the gain of part (b) is used. 

P7.14 The loop transfer function of a single-loop negative 
feedback system is 

Gc(s)G(s) = 
K(s + 2)(s + 3) 

s\s + 1)(5 H 10)(5 + 50)' 

5(5 + 3)(52 + 45 + 11 

This system is called conditionally stable because it is 
stable only for a range of the gain K such that 
ki < K < k2. Using the Routh-Hurwitz criteria and 
the root locus method, determine the range of the gain 
for which the system is stable. Sketch the root locus 
forO < K < no. 

P7.15 Let us again consider the stability and ride of a 
rider and high performance motorcycle as outlined 
in Problem 6.13. The dynamics of the motorcycle 
and rider can be represented by the loop transfer 
function 
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Tape reels 
and motors 

R(s) + 
Desired — • T j " * " 
position 

FIGURE P7.11 
(a) Tape control 
system, (b) Block 
diagram. 
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FIGURE P7.12 
Speed control. 
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Controller 

KJs + 25)(s + 15) 

S(s + 2) 
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K(s2 + 305 + 625) 

s(s + 20)(5-2 + 20A + 200)(52 + 6O5 + 3400) 

Sketch the root locus for the system. Determine the £ 
of the dominant roots when K = 3 X 104. 

P7.16 Control systems for maintaining constant tension 
on strip steel in a hot strip finishing mill are called 
"loopers." A typical system is shown in Figure P7.16. 

Disturbance u Speed 

The looper is an arm 2 to 3 feet long with a roller on the 
end; it is raised and pressed against the strip by a motor 
[18]. The typical speed of the strip passing the looper is 
2000 ft/min. A voltage proportional to the looper posi
tion is compared with a reference voltage and integrat
ed where it is assumed that a change in looper position 
is proportional to a change in the steel strip tension. 
The time constant T of the filter is negligible relative to 
the other time constants in the system, (a) Sketch the 
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FIGURE P7.16 
Steel mill control 
system. 
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root locus of the control system for 0 < Ka < DO. 
(b) Determine the gain Ku that results in a system 
whose roots have a damping ratio of f = 0.707 or 
greater, (c) Determine the effect of r as r increases 
from a negligible quantity. 

P7.17 Consider again the vibration absorber discussed in 
Problems 2.2 and 2.10 as a design problem. Using the 
root locus method, determine the effect of the para
meters M2 and k-2. Determine the specific values of 
the parameters M2 and £12 so that the mass Mi does 
not vibrate when F(t) - a sin(&>0f). Assume that 
M\ = \,kx = 1, and b = 1. Also assume that 
kv < 1 and that the term kl2 may be neglected. 

P7.18 A feedback control system is shown in Figure 
P7.18. The filter Gc(s) is often called a compensator, 
and the design problem involves selecting the parame
ters a and /3. Using the root locus method, determine 
the effect of varying the parameters Select a suitable 
filter so that the lime to settle (to within 2% of the 
final value) is less than 4 seconds and the damping 
ratio of the dominant roots is greater than 0.60. 

Filter 

as + 1 
0s + 1 

Process 

4 
s(s + 2) 

R(x) 

FIGURE P7.18 Filter design. 

• Yis) 

P7.19 In recent years, many automatic control systems 
for guided vehicles in factories have been installed. 
One system uses a guidance cable embedded in the 
floor to guide the vehicle along the desired lane [10, 
15]. An error detector, composed of two coils mount
ed on the front of the cart, senses a magnetic field pro
duced by the current in the guidance cable. An 
example of a guided vehicle in a factory is shown in 
Figure P7.19(a). We have 

G(.v) = 
s2 + 3.6s + 81 
s(s + l)(s + 5) 

and Ka is the amplifier gain, (a) Sketch a root locus 
and determine a suitable gain Ka so that the damping 
ratio of the complex roots is 0.707. (b) Determine the 
root sensitivity of the system for the complex root /'( 
as a function of (1) Ka and (2) the pole of G(s) at 
5 = - 1 . 

P7.20 Determine the root sensitivity for the dominant 
roots of the design for Problem 7.18 for the gain 
K = Aa/fi and the pole s = -2. 

P7.21 Determine the root sensitivity of the dominant 
roots of the power system of Problem P7.7. Evaluate 
the sensitivity for variations of (a) the poles at 
s = - 4 , and (b) the feedback gain, VR. 

P7.22 Determine the root sensitivity of the dominant 
roots of Problem P7.1(a) when K is set so that the 
damping ratio of the unperturbed roots is 0.707. Eval
uate and compare the sensitivity as a function of the 
poles and zeros of Gr(s)G(s). 
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(a) 

FIGURE P7.19 
(a) An automatically 
guided vehicle. 
(Photo courtesy of 
Control Engineering 
Corporation.) 
(b) Block diagram. 
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(b) 

P7.23 Repeat Problem P7.22 for the loop transfer func 
tion Gc(s)G(s) of Problem P7.1(c). 

P7.24 For systems of relatively high degree, the form of 
the root locus can often assume an unexpected pattern. 
The root loci of four different feedback systems of 
third order or higher are shown in Figure P7.24. The 
open-loop poles and zeros of KG(s) are shown, and the 
form of the root loci as K varies from zero to infinity is 
presented. Verify the diagrams of Figure P7.24 by con
structing the root loci. 

P7.25 Solid-state integrated electronic circuits are com
posed of distributed R and C elements. Therefore. 
feedback electronic circuits in integrated circuit form 
must be investigated by obtaining the transfer func
tion of the distributed RC networks. It has been shown 
that the slope of the attenuation curve of a distributed 
RC network is 10« dB/decade, where n is the order of 
the RC filter [13]. This attenuation is in contrast with 
the normal 20/t dB/decade for the lumped parameter 
circuits. (The concept of the slope of an attenuation 
curve is considered in Chapter 8. If it is unfamiliar. 
reexamine this problem after studying Chapter 8.) An 
interesting case arises when the distributed RC net
work occurs in a series-to-shunt feedback path of a 

transistor amplifier. Then the loop transfer function 
may be written as 

G,.(s)G(s) 
K(s - 1)(5 + 3)1'2 

(s + 1)(^ + 2)1/2 " 

(a) Using the root locus method, determine the locus 
of roots as K varies from zero to infinity, (b) Calculate 
the gain at borderline stability and the frequency of 
oscillation for this gain. 

P7.26 A single-loop negative feedback system has a loop 
transfer function 

Gc(s)G(s) = 
K(s + 2)' 

s(s2 + 1)(5 + 8) 

(a) Sketch the root locus for 0 < K s co to indicate 
the significant features of the locus, (b) Determine the 
range of the gain K for which the system is stable. 
(c) For what value of K in the range K > 0 do purely 
imaginary roots exist? What are the values of these 
roots? (d) Would the use of the dominant roots approx
imation for an estimate of settling time be justified in 
this case for a large magnitude of gain (K > 50)? 
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P7.27 A unity negative feedback system has a loop trans
fer function 

Gc(s)G(s) -
K(s2 + 0.105625) 

s(s2 + 1) 

K(s + j0.325)(s - /0.325) 

s(s2 + 1) 

Sketch the root locus as a function of K. Carefully cal
culate where the segments of the locus enter and leave 
the real axis. 

P7.28 To meet current U.S. emissions standards for auto
mobiles, hydrocarbon (HC) and carbon monoxide 
(CO) emissions are usually controlled by a catalytic 
converter in the automobile exhaust. Federal standards 

for nitrogen oxides (NOx) emissions are met mainly by 
exhaust-gas recirculation (EGR) techniques. However, 
as NOx emissions standards were tightened from the 
current limit of 2.0 grams per mile to 1.0 gram per mile, 
these techniques alone were no longer sufficient. 

Although many schemes are under investigation 
for meeting the emissions standards for all three emis
sions, one of the most promising employs a three-way 
catalyst—for HC, CO, and NOx emissions—in con
junction with a closed-loop engine-control system. 
The approach is to use a closed-loop engine control, as 
shown in Figure P7.2X [19,23]. The exhaust-gas sensor 
gives an indication of a rich or lean exhaust and com
pares it to a reference. The difference signal is 
processed by the controller, and the output of the con 
troller modulates the vacuum level in the carburetor 
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FIGURE P7.28 
Auto engine control. 
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to achieve the best air-fuel ratio for proper operation 
of the catalytic converter. The loop transfer function is 
represented by 

r , , K.y2 + 12.v + 20 
L(s) = —z - . 

53 + 10s2 + 25.9 
Calculate the root locus as a function of K. Carefully 
calculate where the segments of the locus enter and 
leave the real axis. Determine the roots when K = 2. 
Predict the step response of the system when K = 2. 

P7.29 A unity feedback control system has a transfer 
function 

K(s2 + 8s + 25) 
Gc(s)G(s) = — ^ -. ; s\s + 4) 

We desire the dominant roots to have a damping 
ratio equal to 0.707. Find the gain K when this con
dition is satisfied. Show that the complex roots are 
s = - 4 ± /4 at this gain. 

P7.30 An RLC network is shown in Figure P7.30. The 
nominal values (normalized) of the network elements 
are L - C = 1 and R = 2.5. Show that the root sen
sitivity of the two roots of the input impedance Z(s) to 
a change in R is different by a factor of 4. 

R 

Zls) 

FIGURE P7.30 RLC network. 

P7.31 The development of high-speed aircraft and missiles 
requires information about aerodynamic parameters 
prevailing at very high speeds. Wind tunnels are used to 
test these parameters. These wind tunnels are con
structed by compressing air to very high pressures and 
releasing it through a valve to create a wind. Since the 
air pressure drops as the air escapes, it is necessary to 
open the valve wider to maintain a constant wind 
speed. Thus, a control system is needed to adjust the 
valve to maintain a constant wind speed. The loop 
transfer function for a unity feedback system is 

Gc(s)G(s) = 
K(s + 4) 

where p = 7.3 + 9.7831;'. Sketch the root locus and 
show the location of the roots for K = 326 and 
K = 1350. 

P7.32 A mobile robot suitable for nighttime guard duty is 
available. This guard never sleeps and can tirelessly 
patrol large warehouses and outdoor yards. The steer
ing control system for the mobile robot has a unity 
feedback with the loop transfer function 

K(s + 1)(5 + 5) 
Gc(s)G{s) = 

s(s + 1.5)(5 + 2) 

(a) Find K for all breakaway and entry points on the 
real axis, (b) Find K when the damping ratio of the 
complex roots is 0.707. (c) Find the minimum value of 
the damping ratio for the complex roots and the asso
ciated gain K. (d) Find the overshoot and the time to 
settle (to within 2% of the final value) for a unit step 
input for the gain, K, determined in parts (b) and (c). 

P7.33 The Bell-Boeing V-22 Osprey Tiltrotor is both an 
airplane and a helicopter. Its advantage is the ability to 
rotate its engines to 90° from a vertical position for 
takeoffs and landings as shown in Figure P7.33(a), and 
then to switch the engines to a horizontal position for 
cruising as an airplane [20].The altitude control system 
in the helicopter mode is shown in Figure P7.33(b). 
(a) Determine the root locus as K varies and deter
mine the range of K for a stable system, (b) For 
K = 280, find the actual y(t) for a unit step input r(t) 
and the percentage overshoot and settling time (with a 
2% criterion), (c) When K = 280 and /-(0 = 0, find 
y(t) for a unit step disturbance, Td(s) = l/s. (d) Add a 
prefilter between R(s) and the summing node so that 

w = - 0.5 

1.5.5 + 0.5 

and repeat part (b). 

P7.34 The fuel control for an automobile uses a diesel 
pump that is subject to parameter variations. A unity 
negative feedback has a loop transfer function 

K(s 1 2) 
Gc(s)G(s) = (s + 1)(5 + 2.5)(5 + 4)(5 + 10)' 

5(5 + 0.16)(5 + p)(s - pY 

(a) Sketch the root locus as K varies from 0 to 2000. 
(b) Find the roots for K equal to 400, 500, and 600. 
(c) Predict how the percent overshoot to a step will 
vary for the gain K, assuming dominant roots, (d) Find 
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FIGURE P7.33 
(a) Osprey Tiltrotor 
aircraft, (b) Its 
control system. 
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(b) 

the actual time response for a step input for all three 
gains and compare the actual overshoot with the pre
dicted overshoot. 

P7.35 A powerful electrohydraulic forklift can be used to 
lift pallets weighing several tons on top of 35-foot 
scaffolds at a construction site. The negative unity 
feedback system has a loop transfer function 

Gc(s)G(s) 
K(s + 1)2 

s(s? + 1) " 

(a) Sketch the root locus for K > 0. (b) Find the gain 
K when two complex roots have a £ of 0.707, and cal
culate all three roots, (c) Find the entry point of the 
root locus at the real axis, (d) Estimate the expected 
overshoot to a step input, and compare it with the 
actual overshoot determined from a computer program. 

P7-36 A microrobot with a high-performance manipu
lator has been designed for testing very small parti
cles, such as simple living cells [6], The single-loop 
unity negative feedback system has a loop transfer 
function 

G,(s)G(s) 
K(s + 1)(5 -r 2)(s + 3) 

*3(* - 1) 

(a) Sketch the root locus for K > 0. (b) Find the gain 
and roots when the characteristic equation has two 
imaginary roots, (c) Determine the characteristic 
roots when K = 20 and K = 100. (d) For K = 20, 
estimate the percent overshoot to a step input, and 
compare the estimate to the actual overshoot deter
mined from a computer program. 

P7.37 (a) Draw the root locus of the system given in 
Figure P7.37. 

(b) Find the gain of the controller so that percent
age overshoot is 1.0%. 

(c) Find the velocity error coefficient correspond
ing to this value. 

Integral 
Controller 

• ± + & ^ \ 

Plant 

1 
1 + 0.5s 

1 
1 + 0.25s 

FIGURE P7.37 Gain of integral controller. 

P7.38 A unity feedback system has the loop transfer 
funr t inn 

K(s + 1) 

This system is open-loop unstable, (a) Determine the 
range of K so that the closed-loop system is stable. 
(b) Sketch the root locus, (c) Determine the roots for 
K = 10. (d) For K = 10, predict the percent over
shoot for a step input using Figure 5.13. (e) Determine 
the actual overshoot by plotting the response. 

P7.39 High-speed trains for U.S. railroad tracks must tra
verse twists and turns. In conventional trains, the axles 
are fixed in steel frames called trucks. The trucks pivot 
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as the train goes into a curve, but the fixed axles stay 
parallel to each other, even though the front axle tends 
to go in a different direction from the rear axle [24]. If 
the train is going fast, it may jump the tracks. One so
lution uses axles that pivot independently. To counter
balance the strong centrifugal forces in a curve, the 
train also has a computerized hydraulic system that 
tilts each car as it rounds a turn. On-board sensors cal
culate the train's speed and the sharpness of the curve 

FIGURE P7.39 
Tilt control for a 
high-speed train. 

Ms) 
Command 

lilt 5> 
Controller 

K 

s + 1 

and feed this information to hydraulic pumps under 
the floor of each car. The pumps tilt the car up to eight 
degrees, causing it to lean into the curve like a race car 
on a banked track. 

The tilt control system is shown in Figure P7.39. 
Sketch the root locus, and determine the value of K 
when the complex roots have maximum damping. 
Predict the response of this system to a step input 
R(s). 

Dynamics 

22 
s2 + 8.? + 22 

Y(s) 
•*• Actual 

till 

ADVANCED PROBLEMS 

AP7.1 The top view of a high-performance jet aircraft is 
shown in Figure AP7.1(a) [20]. Sketch the root locus 
and determine the gain K so that the £ of the complex 
poles near the /oi-axis is the maximum achievable. 
Evaluate the roots at this K and predict the response 
to a step input. Determine the actual response and 
compare it to the predicted response. 

A.P7.2 A magnetically levitated high-speed train "flies" 
on an air gap above its rail system [24]. The air gap 
control system has a unity feedback system with a 

loop transfer function 

Gc(s)G(s) -
K(s + l)(s + 3) 

s(s - \){s + 4)(4- + 8) ' 

The goal is to select K so that the response for a unit 
step input is reasonably damped and the settling 
time is less than 3 seconds. Sketch the root locus, and 
select K so that all of the complex roots have a £ 
greater than 0.6. Determine the actual response for 
the selected K and the percent overshoot. 

Aileron 

Elevator 

Rudder 

(a) 

Pitch Ms) 

(b) 

FIGURE AP7.1 
(a) High-performance aircraft, (b) Pitch control system. 
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AP7.3 A compact disc player for portable use requires a 
good rejection of disturbances and an accurate position 
of the optical reader sensor. The position control sys
tem uses unity feedback and a loop transfer function 

Gc(s)G(s) = 
JO 

S(S 1-1)(5 + p)' 

The parameter p can be chosen by selecting the 
appropriate DC motor. Sketch the root locus as a func
tion of p. Select /; so that the £ of the complex roots of 
the characteristic equation is approximately 1/ V 2 . 

AP7.4 A remote manipulator control system has unity 
feedback and a loop transfer function 

(s + a) 
GJs)G(s) = -. 

s- + (1 + a)s
2 + (a 1)5 + 1 - a 

We want the steady-state position error for a step input 
to be less than or equal to 10% of the magnitude of the 
input. Sketch the root locus as a function of the parame
ter a. Determine the range of a required for the desired 
steady-state error. Locate the roots for the allowable 
value of a to achieve the required steady-state error, 
and estimate the step response of the system. 

AP7.5 A unity feedback system has a loop transfer 
function 

Gr(s)G(s) = 
K 

53 + 10i-2 + 75 - 18" 

(a) Sketch the root locus and determine K for a stable 
system with complex roots with £ equal to 1 / V 2. 

(b) Determine the root sensitivity of the complex 
roots of part (a). 

(c) Determine the percent change in K (increase or 
decrease) so that the roots lie on the /co-axis. 

AP7.6 A unity feedback system has a loop transfer function 

K(s2 + 2s 4 5) 
GAs)G(s) = - 7 - ^ — —. 

53 + 252 + 25 + 1 

Sketch the root locus for K > 0, and select a value for 
K that will provide a closed step response with settling 
time less than 2 second. 

AP7.7 A feedback system with positive feedback is 
shown in Figure AP7.7. The root locus for K > 0 
must meet the condition 

KG(s) = ] /±&360° 

for A: = 0 , 1 , 2 , . . . . 

Sketch the root locus for 0 < K < °o . 

R(s) 

FIGURE AP7.7 
feedback. 

• Y{s) 

A closed-loop system with positive 

AP7.8 A position control system for a DC motor is shown 
in Figure AP7.8. Obtain the root locus for the velocity 
feedback constant K, and select K so that all the roots 
of the characteristic equation are real (two are equal 
and real). Estimate the step response of the system for 
the K selected. Compare the estimate with the actual 
response. 

AP7.9 A control system is shown in Figure AP7.9. Sketch 
the root loci for the following transfer functions Gc(s): 

(a) Gc(s) = K 
(b) Gc(s) = K(s + 3) 

FIGURE AP7.8 
A position control 
system with 
velocity feedback. 
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FIGURE AP7.9 
A unity feedback 
control system. 
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K(s + 1) 
(0 Gc(s) = ~7T^ 

K(s + 1)(5 

AP7.10 A feedback system is shown in Figure AP7.10. 
Sketch the root locus as K varies when K ^ 0, Deter
mine a value for K that will provide a step response 
with an overshoot less than 5% and a settling time 
(with a 2% criterion) less than 2.5 seconds. 

. 
in 

(s + 2)0 + 5) 

K 

AP7.11 A control system is shown in Figure AP7.11. 
Sketch the root locus, and select a gain K so that the 
step response of the system has an overshoot of less 
than 20% and the settling time (with a 2% criterion) is 
less than 5 seconds. 

AP7.12 A control system with PI control is shown in 
Figure AP7.12. (a) Let Kj/KP = 0.2 and determine 
Kp so that the complex roots have maximum damping 
ratio, (b) Predict the step response of the system with 
KP set to the value determined in part (a). 

AP7.13 The feedback system shown in Figure AP7.13 has 
two unknown parameters Ky and K2. The process 
transfer function is unstable. Sketch the root locus for 
0 < Ki, K2 < co. What is the fastest settling time 
that you would expect of the closed-loop system in 
response to a unit step input R(s) = ljsl Explain. 

s+ K 

FIGURE AP7.10 A nonunity feedback control system. 

R{s> 

FIGURE AP7.11 
A control system 
with parameter K. 
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FIGURE AP7.12 
A control system 
with a PI controller. 
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D E S I G N P R O B L E M S 

CDP7.1 The drive motor and slide system uses the output 
rj?> of a tachometer mounted on the shaft of the motor as 
\^rj shown in Figure CDP4.1 (switch-closed option). The 

output voltage of the tachometer is Vj — K\ti. Use the 
velocity feedback with the adjustable gain K\. Select 
the best values for the gain K\ and the amplifier gain 
Ka so that the transient response to a step input has an 
overshoot less than 5% and a settling time (to within 
2% of the final value) less than 300 ms. 

DP7.1 A high-performance aircraft, shown in Figure 
DP7.1(a), uses the ailerons, rudder, and elevator to 
steer through a three-dimensional flight path [20]. 
The pitch rate control system for a fighter aircraft at 
10,000 m and Mach 0.9 can be represented by the sys
tem in Figure DP7.1(b), where 

G(s) = 
-18(5 + 0.015)(.9 + 0.45) 

(s2 + 1.2s + I2)(s2 + 0.01s + 0.0025)' 

(a) Sketch the root locus when the controller is a gain, 
so that Gc(s) = K, and determine K when £ for the 
roots with <o„ > 2 is larger than 0.15 (seek a maxi
mum £). (b) Plot the response q(t) for a step input r{t) 
with K as in (a), (c) A designer suggests an anticipatory 

controller with Gc(s) = Ki + K2s = K(s + 2). 
Sketch the root locus for this system as K varies and 
determine a K so that the t, of all the closed-loop roots 
is >0.8. (d) Plot the response q(t) for a step input r(i) 
with K as in (c). 

DP7.2 A large helicopter uses two tandem rotors rotating 
in opposite directions, as shown in Figure P7.33(a). 
The controller adjusts the tilt angle of the main rotor 
and thus the forward motion as shown in Figure 
DP7.2. The helicopter dynamics are represented by 

G(s) = 
10 

s2 + 4.5s + 9' 

and the controller is selected as 

Gc(s) = Ki + 
K2 K(s + 1) 

(a) Sketch the root locus of the system and determine 
K when £ of the complex roots is equal to 0.6. (b) Plot 
the response of the system to a step input r(t) and find 
the settling time (with a 2% criterion) and overshoot 
for the system of part (a). What is the steady-state 
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error for a step input? (c) Repeat parts (a) and (b) 
when the £ of the complex roots is 0.41. Compare the 
results with those obtained in parts (a) and (b). 

DP7.3 The vehicle Rover has been designed for maneu
vering at 0.25 mph over Martian terrain. Because 
Mars is 189 million miles from Earth and it would 
take up to 40 minutes each way to communicate with 
Ear th [22,27], Rover must act independently and reli
ably. Resembling a cross between a small flatbed 
truck and an elevated jeep, Rover is constructed of 
three articulated sections, each with its own two inde
pendent, axle-bearing, one-meter conical wheels. A 
pair of sampling arms—one for chipping and drilling, 
the other for manipulating fine objects—extend from 
its front end like pincers. The control of the arms can 
be represented by the system shown in Figure DP7.3. 
(a) Sketch the root locus for K and identify the roots 
for K = 4.1 and 41. (b) Determine the gain K that re
sults in an overshoot to a step of approximately 1%. 
(c) Determine the gain that minimizes the settling 
time (with a 2% criterion) while maintaining an over
shoot of less than 1%. 

DP7.4 A welding torch is remotely controlled to achieve 
high accuracy while operating in changing and haz
ardous environments [21]. A model of the welding arm 
position control is shown in Figure DP7.4, with the dis
turbance representing the environmental changes. 
(a) With Td(s) = 0, select Kx and K to provide 
high-quality performance of the position control sys
tem. Select a set of performance criteria, and examine 
the results of your design, (b) For the system in part 
(a), let R(s) = 0 and determine the effect of a unit 
step T(l(s) = 1/s by obtaining y(t). 

DP7.5 A high-performance jet aircraft with an autopilot 
control system has a unity feedback and control sys
tem, as shown in Figure DP7.5. Sketch the root locus, 
and predict the step response of the system. Deter
mine the actual response of the system, and compare 
it to the predicted response, 

DP7.6 A system to aid and control the walk of a partially 
disabled person could use automatic control of the 
walking motion [25]. One model of a system that is 
open-loop unstable is shown in Figure DP7.6. Using 
the root locus, select K for the maximum achievable £ 

FIGURE DP7.3 
Mars vehicle robot 
control system. 
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of the complex roots. Predict the step response of the 
system, and compare it with the actual step response. 

DP7.7 Most commercial op-amps are designed to be 
unity-gain stable [26]. That is, they are stable when 
used in a unity-gain configuration. To achieve higher 
bandwidth, some op-amps relax the requirement to 
be unity-gain stable. One such amplifier has a DC 
gain of 105 and a bandwidth of 10 kHz. The amplifier, 
G(s), is connected in the feedback circuit shown in 
Figure DP7.7(a). The amplifier is represented by the 
model shown in Figure DP7.7(b), where Ka = 105. 
Sketch the root locus of the system for K. Determine 
the minimum value of the DC gain of the closed-loop 
amplifier for stability. Select a DC gain and the resis
tors Rx and R2. 

DP7.8 A robotic arm actuated at the elbow joint is shown 
in Figure DP7.8(a), and the control system for the 
actuator is shown in Figure DP7.8(b). Plot the root 
locus for K > 0. Select Gp(s) so that the steady-state 
error for a step input is equal to zero. Using the Gp(s) 
selected, plot y(t) for K equal to 1, 1.5, and 2.85. 
Record the rise time, settling time (with a 2% criteri
on), and percent overshoot for the three gains. We 
wish to limit the overshoot to less than 6% while 
achieving the shortest rise time possible. Select the 
best system for 1 < K < 2.85. 

DP7.9 The four-wheel-steering automobile has several 
benefits. The system gives the driver a greater degree 
of control over the automobile. The driver gets a more 
forgiving vehicle over a wide variety of conditions. 

FIGURE DP7.7 
(a) Op-amp circuit. 
(b) Control system. 
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The system enables the driver to make sharp, smooth 
lane transitions. It also prevents yaw, which is the 
swaying of the rear end during sudden movements. 
Furthermore, the four-wheel-steering system gives a 
car increased maneuverability. This enables the driver 
to park the car in extremely tight quarters. With addi
tional closed-loop computer operating systems, a car 
could be prevented from sliding out of control in 
abnormal icy or wet road conditions. 

The system works by moving the rear wheels 
relative to the front-wheel-steering angle. The control 
system takes information about the front wheels' steel
ing angle and passes it to the actuator in the back. This 
actuator then moves the rear wheels appropriately. 

When the rear wheels are given a steering angle 
relative to the front ones, the vehicle can vary its 
lateral acceleration response according to the loop 
transfer function 

Gc(s)G(s) = K 
1 + ( 1 + A)7/,s + (1 + \)T2s

2 

s[l r" (2S/w„)s + ( 1 / « „ V ] 

where A = 2(7/(1 - q), and q is the ratio of rear 
wheel angle to front wheel steering angle [14]. We will 
assume that T\ = T2 = 1 second and a>„ = 4. Design 
a unity feedback system, selecting an appropriate set 
of parameters (A, K, £) so that the steering control 
response is rapid and yet will yield modest overshoot 
characteristics. In addition, q must be between 0 and 1. 

DP7.10 A pilot crane control is shown in Figure 
DP7.10(a). The trolley is moved by an input F(i) in 
order to control x(t) and cf>(t) [13]. The model of the 
pilot crane control is shown in Figure DP7.10(b). 

Design a controller that will achieve control of the 
desired variables when Gc(s) = K. 

DP7.11 A rover vehicle designed for use on other plan
ets and moons is shown in Figure DP7.11(a) [21]. 
The block diagram of the steering control is shown 
in Figure DP7.11(b), where 

c ( s = s + 1.5 
Ki) (s + 1)(5 + 2)(s - 4)(s + 10)' 

(a) 

• Steering 
angle 

(b) 

FIGURE DP7.11 (a) Planetary rover vehicle, (b) Steering 
control system. 

(a) 

Xjis) 
Desired 
trolley 
position 

FIGURE DP7.10 
(a) Pilot crane 
control system. 
(b) Block diagram. 

X{s) 
• Trolley 

position 

(b) 
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(a) When Gc(s) = K, sketch the root locus as K 
varies from 0 to 1000. Find the roots for K equal to 
100, 300, and 600. (b) Predict the overshoot, settling 
time (with a 2% criterion), and steady-state error for a 
step input, assuming dominant roots, (c) Determine 
the actual time response for a step input for the three 
values of the gain K, and compare the actual results 
with the predicted results. 

DP7.12 The automatic control of an airplane is one 
example that requires multiple-variable feedback 
methods. In this system, the attitude of an aircraft is 
controlled by three sets of surfaces: elevators, a rud
der, and ailerons, as shown in Figure DP7.12(a). By 
manipulating these surfaces, a pilot can set the aircraft 
on a desired flight path [20]. 

An autopilot, which will be considered here, is 
an automatic control system that controls the roll 
angle </> by adjusting aileron surfaces. The deflection 
of the aileron surfaces by an angle 6 generates a 
torque due to air pressure on these surfaces. This 
causes a rolling motion of the aircraft. The aileron 
surfaces are controlled by a hydraulic actuator with a 
transfer function Us. 

The actual roll angle c/> is measured and com
pared with the input. The difference between the 

desired roll angle <pd and the actual angle <i> will drive 
the hydraulic actuator, which in turn adjusts the deflec
tion of the aileron surface. 

A simplified model where the rolling motion 
can be considered independent of other motions is 
assumed, and its block diagram is shown in Figure 
DP7.12(b). Assume that K\ = 1 and that the roll rate 
4> is fed back using a rate gyro. The step response 
desired has an overshoot less than 10% and a settling 
time (with a 2% criterion) less than 9 seconds. Select 
the parameters Ka and K2-

DP7.13 Consider the feedback system shown in Figure 
DP7.13. The process transfer function is marginally 
stable. The controller is the proportional-derivative 
(PD) controller 

GM = KP + KDs. 

(a) Determine the characteristic equation of the 
closed-loop system. 

(b) Let T = Kp/Kf). Write the characteristic equation 
in the form 

A(s) = 1 + K, 
/2(5) 

d(sy 

Aileron 

Roll an ale 

(a) 

FIGURE DP7.12 
(a) An airplane with 
a set of ailerons. 
(b) The block 
diagram for 
controlling the roll 
rate of the airplane. 

. ^^ 

Amplifier 

Ka 

Actuator 

1 

Rate gyro 

^2 

Attitude gyro 

" • 1 

1 
S+ 1 

<t> l 
s 

<f> 

(b) 
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(c) Plot the root locus for 0 s KD < co when 
T = 6. 

(d) What is the effect on the root locus when 
0 < r < VlO? 

(e) Design the PD controller to meet the following 
specifications: 
(i) P.O. < 5% 
(ii) % < 1 s 

FIGURE DP7.13 
A marginally stable 
plant with a PD 
controller in the 
loop. 

R(s) ~\ Ea(sl 
Controller 

Kp ~r KQS 

Process 

10 

s2+W 
• Y(s) 

COMPUTER PROBLEMS 

CP7.1 Using the riocus function, obtain the root locus for 
the following transfer functions of the system shown 
in Figure CP7.1 when 0 < K < oo: 

(a) G ( s ) = ^ — — 

CP7.3 Compute the partial fraction expansion of 

s + 2 
V(s) = 

s(s2 + 6s + 5) 

(b) G(s) = 

(c) G(s) = 

(d) GOO = 

c -i- 14s2 + 43s + 30' 
s + 20 

s2 + 5s + 20 

i-2 + 5 + 1 

s(s2 + 5s + 10) 

s5 + 454 + 6s3 + 8s2 + 6s + 4 

s6 + 2s5 + 254 + s3 + s2 + 10.J + 1 

and verify the result using the residue function. 

CP7.4 

(a) Using MATLAB, draw the root locus of the sys
tem given in Figure CP7.4. 

(b) Find the gain corresponding to a velocity error 
coefficient of 5. 

(c) From the root locus obtain the closed-loop poles 
and step response. 

R(s) KG(s) -+Y(s) -^*0 ?\ 
9 

K 
S 

.̂ 
w 

1 
5̂  + 2^ + 2 

FIGURE CP7.1 A single-loop feedback system with 
parameter K. 

FIGURE CP7.4 Ve ocity error constant and step 
response. 

CP7.2 A unity negative feedback system has the loop CP7.5 The open-loop transfer function of a unity feed-
transfer function back system is 

KG{s) = K—^ 
s(s2 + 3s + 2) 

Develop an m-rile to plot the root locus and show with 
the rlocfind function that the maximum value of K for 
a stable system is K = 0.79. 

(s + 1)(5 + 2 )0 + 3) 

(a) Using MATLAB, find the gain K corresponding 
to a damping ratio of 0.7. 
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FIGURE CP7.6 
A single-loop 
feedback control 
system with 
controller Gc&). 

Ris) 
, — 

Controller 

Cc{s) 

Process 

1 
s2 + 5s + 6 

• Y(s) 

FIGURE CP7.7 
A spacecraft 
attitude control 
system with a 
proportional-
derivative controller. 

0<, 
Desired 
altitude 

PD controller 

Kp T Kr~iS 

Spacecraft 
model 

Js* 
•>• Actual 

allilude 

(b) Obtain the steady-state error due to a step input. 
(c) What should be the gain if the steady-state 

er ror has to be reduced to 50% of the original 
value? 

(d) Obtain the step responses corresponding to the 
gain obtained in (a) and (c). 

CP7.6 The open-loop transfer function of a unity feed
back system is, 

K(s + 1)(5 + 2) 

s(s + 4) 

(a) Find the characteristic equation of the system. 
(b) Using the VI ATT.AB function "roots", find the roots 

of the characteristic equation for K<= 0 ,1 ,2 , . . . , 10. 
(c) Plot the mots of the characteristic equation 

obtained in (b) on a graph sheet. 
(d) Draw the root locus of the system using the 

MATLAB funtion rlocus. 
(e) Compare (c) and (d). 

CP7.7 Consider the spacecraft single-axis attitude control 
system shown in Figure CP7.7. The controller is known 
as a proportional-derivative (PD) controller. Suppose 
that we require the ratio of Kp/Kj) — 5. Then, develop 
an m-file using root locus methods find the values of 

KD/J and Kp/J so that the settling time 7j is less than or 
equal to 4 seconds, and the peak overshoot P.O. is less 
than or equal to 10% for a unit step input. Use a 2% cri
terion in determining the settling time. 

CP7.8 Consider the feedback control system in Figure 
CP7.8. Develop an m-file to plot the root locus for 
0 < K < 00, Find the value of K resulting in a damp
ing ratio of the closed-loop poles equal to 0.707. 

CP7.9 Consider the system represented in state variable 
form 

where 

0 
0 

- 1 

x = Ax + Bu 
y = Cx + DM, 

1 0 
0 1 

- 5 - 2 - k 
,B = 

~1 
0 
4 

A = 

C = [1 - 9 12J, and D -- [0]. 

(a) Determine the characteristic equation, (b) Using 
the Routh-Hurwitz criterion, determine the values of 
k for which the system is stable, (c) Develop an m-file 
to plot the root locus and compare the results to those 
obtained in (b). 

FIGURE CP7.8 
Unity feedback 
system with 
parameter K. 

A'(.v) 
K 

.v3 + 8i-2 + 10.v + 1 
- • Y{s) 
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TERMS AND CONCEPTS 

Angle of departure The angle at which a locus leaves a 
complex pole in the s-plane. 

Angle of the asymptotes The angle 4>A t n a t the asymp
tote makes with respect to the real axis. 

Asymptote The path the root locus follows as the para
meter becomes very large and approaches infinity.The 
number of asymptotes is equal to the number of poles 
minus the number of zeros. 

Asymptote centroid The center crA of the linear asymp
totes. 

Breakaway point The point on the real axis where the 
locus departs from the real axis of the s-plane. 

Dominant roots The roots of the characteristic equation 
that represent or dominate the closed-loop transient 
response. 

Locus A path or trajectory that is traced out as a para
meter is changed. 

Logarithmic sensitivity A measure of the sensitivity of 
the system performance to specific parameter changes, 

_ dT(s)/T(s) 
given by SK(s) = ———, where T(s) is the system 

transfer function and K is the parameter of interest. 

Number of separate loci Equal to the number of poles of 
the transfer function, assuming that the number of 
poles is greater than or equal to the number of zeros 
of the transfer function. 

Parameter design A method of selecting one or two 
parameters using the root locus method. 

PID controller A widely used controller used in industry 

of the form Gc(s) = Kp + h KDs. where Kp is 

the proportional gain, Kj is the integral gain, and KD 

is the derivative gain. 

Proportional plus deriviative (PD) controller A two-
term controller of the form Gc(s) - K„ + KDs, 
where K., is the proportional gain and Kn is the deriv
ative gain. 

Proportional plus integral (PI) controller A two-term 
K-i 

controller of the form GJs) = K0 H , where KD 

' s v 

is the proportional gain and K/ is the integral gain. 
Root contours The family of loci that depict the effect of 

varying two parameters on the roots of the character
istic equation. 

Root locus The locus or path of the roots traced out on 
the .v-plane as a parameter is changed. 

Root locus method The method for determining the locus 
of roots of the characteristic equation 1 -I- KP(s) = 0 
as K varies from 0 to infinity. 

Root locus segments on the real axis The root locus lying 
in a section of the real axis to the left of an odd num
ber of poles and zeros. 

Root sensitivity The sensitivity of the roots as a parame
ter changes from its normal value. The root sensitivity 

is given by Sr^ = , the incremental change in the 
dK/K 

root divided by the proportional change of the para
meter. 
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PREVIEW 

In previous chapters, we examined the use of test signals such as a step and a ramp 
signal. In this chapter, we consider the steady-state response of a system to a sinu
soidal input test signal. We will see that the response of a linear constant coefficient 
system to a sinusoidal input signal is an output sinusoidal signal at the same fre
quency as the input. However, the magnitude and phase of the output signal differ 
from those of the input sinusoidal signal, and the amount of difference is a function 
of the input frequency. Thus, we will be investigating the steady-state response of the 
system to a sinusoidal input as the frequency varies. 

We will examine the transfer function G(s) when s = jco and develop methods 
for graphically displaying the complex number G(J(o) as co varies. The Bode plot is 
one of the most powerful graphical tools for analyzing and designing control sys
tems, and we will cover that subject in this chapter. We will also consider polar plots 
and log magnitude and phase diagrams. We will develop several time-domain per
formance measures in terms of the frequency response of the system, as well as 
introduce the concept of system bandwidth. The chapter concludes with a frequency 
response analysis of the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 8, students should: 

Q Understand the powerful concept of frequency response and its role in control system 
design. 

J Know how to sketch a Bode plot and also how to obtain a computer-generated Bode plot. 
3 Be familiar with log magnitude and phase diagrams. 
Q Understand performance specifications in the frequency domain and relative stability 

based on gain and phase margins. 
U Be capable of designing a controller to meet desired specifications using frequency 

response methods. dQ^ 
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8.1 INTRODUCTION 

In preceding chapters, the response and performance of a system have been described 
in terms of the complex frequency variable 51 and the location of the poles and zeros 
on the s-plane. A very practical and important alternative approach to the analysis 
and design of a system is the frequency response method. 

The frequency response of a system is defined as the steady-state response of 
the system to a sinusoidal input signal. The sinusoid is a unique input signal, 

and the resulting output signal for a linear system, as well as signals 
throughout the system, is sinusoidal in the steady state; it differs 

from the input waveform only in amplitude and phase angle. 

For example, consider the system Y(s) = T(s)R(s) with r(t) = A sin <ot. We have 

A(o 

and 

* (* ) = 

T(s) = 
m(s) m(s) 

n>+ft) 
,-=1 

where — pt are assumed to be distinct poles. Then, in partial fraction form, we have 

Y(s) = * i as + fi 

s + p\ s + pn s2 + a?' 

Taking the inverse Laplace transform yields 

y{t) = kxe-** +••• + Ke'Pn' + 2 - 1 / ^ - 1 4 1 
[ r + or) 

where a and (3 are constants which are problem dependent. If the system is stable, 
then all p. have positive real parts and 

lim y(t) = lim, 
_] J as + /3 

since each exponential term k-te
 p'f decays to zero as t —» 00. 

In the limit for y(t), it can be shown, for t -» 00 (the steady state), 

y(t) = % -1 as + (3 

A(OT(JOJ) sin(o>r + ¢) 

= A\T(JOJ)\ sin(arf + ¢), (8.1) 

where <£ = /T(JOJ). 
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Thus, the steady-state output signal depends only on the magnitude and phase 
of T(jco) at a specific frequency w. Notice that the steady-state response, as 
described in Equation (8.1), is true only for stable systems, T(s). 

One advantage of the frequency response method is the ready availability of 
sinusoid test signals for various ranges of frequencies and amplitudes. Thus, the 
experimental determination of the system's frequency response is easily accom
plished; it is the most reliable and uncomplicated method for the experimental 
analysis of a system. Often, as we shall find in Section 8.4, the unknown transfer 
function of a system can be deduced from the experimentally determined frequency 
response of a system [1, 2]. Furthermore, the design of a system in the frequency 
domain provides the designer with control of the bandwidth of a system, as well as 
some measure of the response of the system to undesired noise and disturbances. 

A second advantage of the frequency response method is that the transfer func
tion describing the sinusoidal steady-state behavior of a system can be obtained by 
replacing s withy'w in the system transfer function T(s).The transfer function repre
senting the sinusoidal steady-state behavior of a system is then a function of the 
complex variable jco and is itself a complex function T(jta) that possesses a magni
tude and phase angle. The magnitude and phase angle of T(JOJ) are readily repre
sented by graphical plots that provide significant insight into the analysis and design 
of control systems. 

The basic disadvantage of the frequency response method for analysis and 
design is the indirect link between the frequency and the time domain. Direct corre
lations between the frequency response and the corresponding transient response 
characteristics are somewhat tenuous, and in practice the frequency response char
acteristic is adjusted by using various design criteria that will normally result in a 
satisfactory transient response. 

The Laplace transform pair was given in Section 2.4; it is written as 

/.OO 

F(s) = 2{f(t)} = / f(ty*dt 
./0 

and 

, re+joo 

f{t) = 2Tl{F{s)} = — / F(Sy'ds, 

(8.2) 

(8.3) 

where the complex variable s = a + jco. Similarly, the Fourier transform pair is 
written as 

(8.4) 

and 

l r°° 
f(t) = ®-l{F(co)} = — / F(m)e}'m do. 

2-7T J-oo 
(8.5) 
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The Fourier transform exists for f{t) when 
/.00 

/ | / (0l dt < 00. 
. / - 0 0 

The Fourier and Laplace transforms are closely related, as we can see by exam
ining Equations (8.2) and (8.4). When the function/(r) is defined only for t > 0, as 
is often the case, the lower limits on the integrals are the same. Then we note that the 
two equations differ only in the complex variable. Thus, if the Laplace transform of 
a function /\(/) is known to be F\(s), we can obtain the Fourier transform of this 
same time function by setting .v = joi in F\(s) [3]. 

Again we might ask, Since the Fourier and Laplace transforms are so closely 
related, why can't we always use the Laplace transform? Why use the Fourier trans
form at all? The Laplace transform permits us to investigate the s-plane location of 
the poles and zeros of a transfer function T(s), as in Chapter 7. However, the fre
quency response method allows us to consider the transfer function T(jco) and to 
concern ourselves with the amplitude and phase characteristics of the system. This 
ability to investigate and represent the character of a system by amplitude, phase 
equations, and curves is an advantage for the analysis and design of control systems. 

If we consider the frequency response of the closed-loop system, we might have 
an input r{t) that has a Fourier transform in the frequency domain as follows: 

/

00 

r{t)e~jm dt, 
DO 

Then the output frequency response of a single-loop control system can be obtained 
by substituting s = jm in the closed-loop system relationship, Y(s) = T(s)R(s), so 
that we have 

Y(M = r o - W ) = , + ^ w » ) , (8.6) 

Using the inverse Fourier transform, the output transient response would be 

y(t) = <*-l{Y(jc»)\ = ~ J_J(J")eJC°' dco. (8.7) 

However, it is usually quite difficult to evaluate this inverse transform integral for 
all but the simplest systems, and a graphical integration may be used. Alternatively, 
as we will note in succeeding sections, several measures of the transient response 
can be related to the frequency characteristics and utilized for design purposes. 

8.2 FREQUENCY RESPONSE PLOTS 

The transfer function of a system G(s) can be described in the frequency domain by 
the relation 

G(jio) = G(s)\s=ja) = R((o) + }X((o), (8.8) 

where 

R(oi) = R e [ G ( » ] and X(co) = lm[G(jto)l 
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Ira(G) = X(<o) 

RefG) = R(CJ) 

497 

See the MCS website for a review of complex numbers. 
Alternatively, the transfer function can be represented by a magnitude \G(ja>)\ 

and a phase (f>(jo>) as 

G(/V) = \G(j<o)\e>*M = \G(jto)\/4(a>)t (8.9) 

where 

<Ko>) = t a n " 1 ^ a n d \G(j<o)\2 = [R(o>)]2 + [X(a>)]2. 

The graphical representation of the frequency response of the system G(JCJ) can uti
lize either Equation (8.8) or Equation (8.9).The polar plot representation of the fre
quency response is obtained by using Equation (8.8). The coordinates of the polar 
plot are the real and imaginary parts of G(jw), as shown in Figure 8.1. An example 
of a polar plot will illustrate this approach. 

EXAMPLE 8.1 Frequency response of an RC filter 

A simple RC filter is shown in Figure 8.2. The transfer function of this filter is 

V2(s) 1 
G(-y) V,(s) RCs + V 

and the sinusoidal steady-state transfer function is 

G(jco) = -
1 1 

j(o(RC) + 1 

where 

/W«i) + l' 

1 

(8.10) 

(8.11) 

RC 

+ o-

Vds) 

R 
A / W -o + 

\Us) 
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X(o>) 

FIGURE 8.3 
Polar plot for RC 
filter. 
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Then the polar plot is obtained from the relation 

G(j<o) = R(co) + jX(co) 

_ 1 ~ K<o/iQ\) 

' ( t t /oi)2 + 1 

1 /W^i) 
\2' 

(8.12) 
1 + (G>/O>I)2 1 + (to/tox)' 

The first step is to determine R(a)) and ^ (w) at the two frequencies, w = 0 and 
(i) = oo. At a) = 0, we have R(o)) = 1 and X(co) = 0. At co — oo, we have i?(w) = 0 
and Z(w) = 0. These two points are shown in Figure 8.3. The locus of the real and 
imaginary parts is also shown in Figure 8.3 and is easily shown to be a circle with the cen
ter at Q, OJ. When co = &jl5 the real and imaginary parts are equal in magnitude, and the 
angle 4>{<a) = 45°. The polar plot can also be readily obtained from Equation (8.9) as 

G(jco) = \GU»)\/M»), (8.13) 

where 

| G ( » | 
[1 + (ft>/o>,)2]1/2 

and ({)((1)) = - t a n l(a>/ft»i). 

Hence, when co ~ oij, the magnitude is |G(/o>i)| = 1/V2 and the phase <£(ft>i) = 
-45°. Also, when w approaches + oo, we have 1 G(j(o) I —> 0 and <£(a>) = -90°. Similarly, 
whenw = 0, we have \G(jco)\ = 1 and (f)(co) = 0. • 

EXAMPLE 8.2 Polar plot of a transfer function 

The polar plot of a transfer function is useful for investigating system stability and 
will be utilized in Chapter 9. Therefore, it is worthwhile to complete another exam
ple at this point. Consider a transfer function 

G(s)U/&, = G(jo)) = : f :
K , - = . - , . (8.14) 

j(,)(j(OT + 1) J(0 — ft!IT 
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Table 8.1 

CO 

m<o)\ 
0 

oo 
-90° 

1 / 2 T 

4KT/V3 
-117° 

1 / T 

KT/V2 

-135° 

GO 

0 
-180° 

Im[G] 

Increasing w ^ ' 

1 

Positive w 

FIGURE 8.4 
Polar plot for G(jco) = 
K/(ja>(jt*T + 1)). Note w ** ° 
that co = oo at the 
origin. 

Re[G] 

Then the magnitude and phase angle are written as 

K 
\G(jco)\ = and (f)(co) = - t a n - l 1 

— OJT 

The phase angle and the magnitude are readily calculated at the frequencies 
co = 0,co = 1/T, and co — +oo.The values of |G(w)| and 4>(co) are given in Tabic 8.1, 
and the polar plot of G(jco) is shown in Figure 8.4. 

An alternative solution uses the real and imaginary parts of G(jco) as 

K K(-iio - CO2T) 
GQco) = =- = V , d i = R(<o) + JX(OJ), (8.15) 

)00 2 
co r 

oo2 + o>V 

where R(co) = -KOO2T/M(CO) and X{co) = -coK/M{co), and where M(co) = 
co2 + CO4T2. Then when co = oo,wehavetf(<w) = 0 and X (to) = O.Whenw - 0, we have 
R(co) = —KT and X(co) = - o o . When co = 1/T, we have R(co) = -Kr/2 and 
X(co) = —Kr/2. as shown in Figure 8.4. 

Another method of obtaining the polar plot is to evaluate the vector G(jco) graph 
ically at specific frequencies, co, along the s = jco axis on the ^-plane. We consider 

Kir 

with the two poles shown on the j-planc in Figure 8.5. 
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FIGURE 8.5 
Two vectors on the 
s-planeto evaluate 
Qfrn>. 
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When s = yo>, we have 

G(ja>) = 
K/r 

ja)(j(o + p)' 

where p = 1/r. The magnitude and phase of G(JOJ) can be evaluated at a specific fre
quency, (0\, on the y'w-axis, as shown in Figure 8.5. The magnitude and the phase are, 
respectively, 

|G(M)I = T-
K/r 

Mil/ft)! + p\ 

and 

4>{<o) = -/(jwy) - / ( /a) , + p) = -90° - tim-^tojp). 

There are several possibilities for coordinates of a graph portraying the fre
quency response of a system. As we have seen, we may use a polar plot to represent 
the frequency response (Equation 8.8) of a system. However, the limitations of 
polar plots are readily apparent. The addition of poles or zeros to an existing system 
requires the recalculation of the frequency response, as outlined in Examples 8.1 
and 8.2. (See Table 8.1.) Furthermore, calculating the frequency response in this 
manner is tedious and does not indicate the effect of the individual poles or zeros. 

The introduction of logarithmic plots, often called Bode plots, simplifies the 
determination of the graphical portrayal of the frequency response. The logarith
mic plots are called Bode plots in honor of H. W. Bode, who used them extensively 
in his studies of feedback amplifiers [4, 5]. The transfer function in the frequency 
domain is 

G(;V) = \G(j<o)\e J4>M (8.16) 

The logarithm of the magnitude is normally expressed in terms of the logarithm to 
the base 10, so we use 

Logarithmic gain = 20 log1()|G(/a;)|, (8.17) 
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FIGURE 8.6 
Bode diagram for 
G(jco) = 1/(70,7- + 1): 
(a) magnitude plot 
and (b) phase plot. 
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where the units are decibels (dB). A decibel conversion table is given on the MCS 
website. The logarithmic gain in dB and the angle </3(ai) can be plotted versus the fre
quency co by utilizing several different arrangements. For a Bode diagram, the plot 
of logarithmic gain in dB versus co is normally plotted on one set of axes, and the 
phase 4>(co) versus co on another set of axes, as shown in Figure 8.6. For example, the 
Bode diagram of the transfer function of Example 8.1 can be readily obtained, as we 
will find in the following example. 

EXAMPLE 8.3 Bode diagram of an RC filter 

The transfer function of Example 8.1 is 

G(jco) = T 
1 

jco(RC) + 1 jcoT + 1 ' 

where 

r = RC, 

the time constant of the network. The logarithmic gain is 

W2 

(8.18) 

201og|G(/«)| = 20 log = -101og(l +• (cor)1). (8.19) 
1 + (cor)2 

For small frequencies—that is, co « 1/T—the logarithmic gain is 

201og|G(/«)l = -101og(l) = OdB, co « 1/T. (8.20) 
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For large frequencies—that is, co » 1/r—the logarithmic gain is 

201ogG(» = -201og(wr) co » 1/T, (8.21) 

and at to = 1/T, we have 

20\og\G(jco)\ - -10 log 2 = -3.01 dB. 

The magnitude plot for this network is shown in Figure 8.6(a). The phase angle of 
the network is 

(f)(co) = —tan (aw). (8.22) 

The phase plot is shown in Figure 8.6(b). The frequency co = 1/T is often called the 
break frequency or corner frequency. • 

A linear scale of frequency is not the most convenient or judicious choice, and we 
consider the use of a logarithmic scale of frequency. The convenience of a logarithmic 
scale of frequency can be seen by considering Equation (8.21) for large frequencies 
co » 1/T, as follows: 

201og|G(/w)| = -201og(ow) - -20 log T - 20 log co. (8.23) 

Then, on a set of axes where the horizontal axis is log co, the asymptotic curve for 
co » 1/T is a straight line, as shown in Figure 8.7. The slope of the straight line can 
be ascertained from Equation (8.21). An interval of two frequencies with a ratio 
equal to 10 is called a decade, so that the range of frequencies from W] to co2, where 
co2 = lOwj, is called a decade. The difference between the logarithmic gains, for 
co y> 1/T, over a decade of frequency is 

201og|G(M)l -201og|G(yW2)| = -201og(cu,T) - (-201og(W2T)) 
CO\T 

-20 log — 
W 2 T 

- 2 0 l o g — = 420 dB; 

(8.24) 

that is, the slope of the asymptotic line for this first-order transfer function is 
—20 dB/decade, and the slope is shown for this transfer function in Figure 8.7. Instead 
of using a horizontal axis of log co and linear rectangular coordinates, it is easier to use 
semilog paper with a linear rectangular coordinate for dB and a logarithmic coordinate 
for co. Alternatively, we could use a logarithmic coordinate for the magnitude as well as 
for frequency and avoid the necessity of calculating the logarithm of the magnitude. 
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-20 
FIGURE 8.7 
Asymptotic curve 
for (JCOT + 1J~1. 
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The frequency interval co2 = 2(0\ is often used and is called an octave of frequen
cies. The difference between the logarithmic gains for to >>> l/T, for an octave, is 

201og|G(M)l " 201og|G(/6>2)l - - 2 0 log ^ -

= - 2 0 l o g - = 6.02 dB. (8.25) 

Therefore, the slope of the asymptotic line is —6 dB/octave. 
The primary advantage of the logarithmic plot is the conversion of multiplicative 

factors, such as {Jon + 1), into additive factors, 201og(y'o>r + 1), by virtue of the 
definition of logarithmic gain. This can be readily ascertained by considering the gen
eralized transfer function 

GQa>) = s -f1 . (8.26) 

(jco)NYl{l + M „ ) I ] [ ( 1 + (Uk/<»nk)j<» + (j<o/<ollk)
2)] 

m = \ k = \ 

This transfer function includes Q zeros, N poles at the origin, M poles on the real axis, 
and R pairs of complex conjugate poles. Obtaining the polar plot of such a function 
would be a formidable task indeed. However, the logarithmic magnitude of G(jo)) is 

Q 

201og|G(;V)| = 20 log Kb + 2 0 J > g ! l + . / ^ 1 
1=1 

A/ 

-20 logl(ja>)N\ - 2 0 2 l o g ! l + / W j 
m=\ 

- 2 0 2 log 
/c=i 

1 H id) + I, (8.27) 
<»nk \<»„k) I 

and the Bode diagram can be obtained by adding the plot due to each individual 
factor. Furthermore, the separate phase angle plot is obtained as 

Q M 

4>(a>) = H - S t a n - V i ) " ^(90°) - 2 t a n _ 1 ( ^ 0 
/=1 m=\ 

- i t a n - ^ ^ , (8.28) 
/c = l W«/c - <*> 

which is simply the summation of the phase angles due to each individual factor of 
the transfer function. 

Therefore, the four different kinds of factors that may occur in a transfer func
tion are as follows: 

1. Constant gain Kh 

2. Poles (or zeros) at the origin (j(o) 

3. Poles (or zeros) on the real axis (jan + 1) 

4. Complex conjugate poles (or zeros) [1 + (2£/a>n)j(o + (/'<«/a>„)2] 
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We can determine the logarithmic magnitude plot and phase angle for these four fac
tors and then use them to obtain a Bode diagram for any general form of a transfer 
function. Typically, the curves for each factor are obtained and then added together 
graphically to obtain the curves for the complete transfer function. Furthermore, this 
procedure can be simplified by using the asymptotic approximations to these curves 
and obtaining the actual curves only at specific important frequencies. 

Constant Gain Kb. The logarithmic gain for the constant Kf, is 

20 log Kb = constant in dB, 

and the phase angle is 

<j>(a>) = 0 . 

The gain curve is a horizontal line on the Bode diagram. 
If the gain is a negative value. —Kb, the logarithmic gain remains 20 log Kh. The 

negative sign is accounted for by the phase angle, -180°. 

Poles (or Zeros) at the Origin, (/&>). A pole at the origin has a logarithmic 
magnitude 

(8.29) 

and a phase angle 

¢(0)) = -90° . 

The slope of the magnitude curve is -20 dB/decade for a pole. Similarly, for a multi
ple pole at the origin, we have 

20 log 
1 

0-)'v = -20N log lo, (8.30) 

and the phase is 

¢(0)) = -90°N. 

In this case, the slope due to the multiple pole is -20N dB/decade. For a zero at the 
origin, we have a logarithmic magnitude 

(8.31) 201og|/«| = +20 log a) 

where the slope is +20 dB/decade and the phase angle is 

¢(0)) = -+-90°. 

The Bode diagram of the magnitude and phase angle of (/'&>) is shown in Figure 8.8 
for N = 1 and N = 2. 

Poles or Zeros on the Real Axis. The pole factor (1 + jcor)"1 has been consid
ered previously, and we found that, for a pole on the real axis, 



FIGURE 8.8 
Bode diagram for 
U»)*N. 
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(»" 
100 

20 log 
1 

1 + JC0T 
= -101og(l + ft)V) (8.32) 

The asymptotic curve for co <SC l / r is 20 log 1 = 0 dB, and the asymptotic curve for 
co » 1/T is -20 log(<wr), which has a slope of —20 dB/decade. The intersection of 
the two asymptotes occurs when 

20 log 1 = 0 dB = - 2 0 log(wT), 

or when co = l/r, the break frequency. The actual logarithmic gain when co = l / r is 
—3 dB for this factor. The phase angle is cf>(co) = - t an - 1 (cur) for the denominator 
factor. The Bode diagram of a pole factor (i + ;W) _ 1 is shown in Figure 8.9. 
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'Ihe Bode diagram of a zero factor 1 +- JCOT is obtained in the same manner as 
that of the pole. However, the slope is positive at +20 dB/decade, and the phase 
angle is <̂ >(w) = +tan-1(<wT). 

A piecewise linear approximation to the phase angle curve can be obtained as 
shown in Figure 8.9. This linear approximation, which passes through the correct 
phase at the break frequency, is within 6° of the actual phase curve for all frequen
cies. This approximation will provide a useful means for readily determining the 
form of the phase angle curves of a transfer function G(s). However, often the accu
rate phase angle curves are required, and the actual phase curve for the first-order 
factor must be obtained via a computer program. The exact values of the frequency 
response for the pole (1 + ;wr)_1, as well as the values obtained by using the 
approximation for comparison, are given in Table 8.2. 

Complex Conjugate Poles or Zeros [1 + (2£/Vi>„)ja> + (jw/con)
2]. The quadratic 

factor for a pair of complex conjugate poles can be written in normalized form as 

[1 + j2£u - u2]~\ (8.33) 

where u = <af<an. Then the logarithmic magnitude for a pair of complex conjugate 
poles is 

(8.34) 20 log|G'0'o>)l = -10 log((l u2)2 + 4 £ V ) , 

and the phase angle is 
o y 

¢((0) = - t a n - 1 - r. 
1 - ur 

(8.35) 

When u « \, the magnitude is 

201og|G(/w)| - -10 log 1 = OdB, 

and the phase angle approaches 0°. When u » 1, the logarithmic magnitude 
approaches 

20 log I G(j(o) | = -10 log u4 -= -40 log u, 

which results in a curve with a slope of - 4 0 dB/decade. The phase angle, when 
u » 1, approaches —180°. The magnitude asymptotes meet at the 0 dB line when 
u = co/(on = 1. However, the difference between the actual magnitude curve and 
the asymptotic approximation is a function of the damping ratio and must be 
accounted for when t, < 0.707. The Bode diagram of a quadratic factor due to a 

Table 8.2 

HOT 0.10 0.50 0.76 1.31 10 

20 log!(1 + y W r r , d B 
Asymptotic 

approximation. dB 
(f)(co), degrees 

Linear approximation, 
degrees 

-0.04 -1.0 

-31.50 

-2.0 -3.0 -4.3 -7.0 

-39.5 -45.0 -50.3 -58.5 

-14.2 -20.04 

0 
-5.7 

0 
26.6 

0 
-37.4 

0 
-45.0 

-2.3 
-52.7 

-6 .0 
-63.4 

-14.0 
-78.7 

-20.0 
-84.3 

-76.5 -90.0 
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pair of complex conjugate poles is shown in Figure 8.10. The maximum value Mpo, 
of the frequency response occurs at the resonant frequency to,.. When the damping 
ratio approaches zero, then cor approaches co„, the natural frequency. The resonant 
frequency is determined by taking the derivative of the magnitude of Equation 
(8.33) with respect to the normalized frequency, u, and setting it equal to zero. The 
resonant frequency is given by the relation 

»r = o»„Vl - 2 £ 2 , C < 0.707, (8.36) 
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FIGURE 8.10 
Bode diagram for 
G(ja>) = 11 - (2£K) 
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and the maximum value of the magnitude | G(j(o)\ is 

Mm = |G(;V)I = feVl - C2Y\ C < 0.707, (8.37) 

for a pair of complex poles. The maximum value of the frequency response, Mp(0, 
and the resonant frequency ojr are shown as a function of the damping ratio £, for a 
pair of complex poles in Figure 8.11. Assuming the dominance of a pair of complex 
conjugate closed-loop poles, we find that these curves are useful for estimating the 
damping ratio of a system from an experimentally determined frequency response. 

The frequency response curves can be evaluated on the .?-plane by determining 
the vector lengths and angles at various frequencies co along the (s =- +;'w)-axis. For 
example, considering the second-order factor with complex conjugate poles, we have 

G(s) = 
1 

(s/(on)
2 + 2£s/ajn •+- 1 s2 + 2£cons + orn 

(8.38) 

FIGURE 8.11 
The maximum /ML, 
of the frequency 
response and the 
resonant frequency 
u)r versus f for a 
pair of complex 
conjugate poles. 
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The poles for varying £ lie on a circle of radius o>n and are shown for a particular £ in 
Figure 8.12(a). The transfer function evaluated for real frequency s = ja* is written as 

G(jo>) = 
(S - 5j)(5 - 5j) S = J(0 (JCO ~ S^ijo) ~ Stf 

(8.39) 

where s^ and s\ are the complex conjugate poles. The vectors jco — S\ and jco — s± 
are the vectors from the poles to the frequency jco, as shown in Figure 8.12(a). Then 
the magnitude and phase may be evaluated for various specific frequencies. The 
magnitude is 

\G(jo>)\ (8.40) 
\jco - s{\\jco - s\\' 

and the phase is 

¢((0) = -/(jco - sP - /(/ft) - st). 

The magnitude and phase may be evaluated for three specific frequencies, namely, 

co — 0, co = con and co = co^, 

as shown in Figure 8.12 in parts (b), (c), and (d), respectively. The magnitude and 
phase corresponding to these frequencies are shown in Figure 8.13. 

(a) (b) 

FIGURE 8.12 
Vector evaluation of 
the frequency 
response for 
selected values of co. 
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FIGURE 8.13 
Bode diagram for 
complex conjugate 
poles. 
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EXAMPLE 8.4 Bode diagram of a twin-T network 

As an example of the determination of the frequency response using the pole-zero 
diagram and the vectors to jco, consider the twin-T network shown in Figure 8.14 [6]. 
The transfer function of this network is 

G(s) 
Vo(s) 
VJs) 

(sr)2 + 1 
(8.41) 

( JT) 2 + AST + 1' 

where T = i?C.The zeros are at ±yl, and the poles are at -2 ± in the .?T-plane, 
as shown in Figure 8.15(a). At co = 0, we have \G(ja>)\ = 1 and ¢((0) = 0°. At 
o) = 1/T, \G(JCO)\ — 0 and the phase angle of the vector from the zero at sr = /1 
passes through a transition of 180°. When &> approaches 00, \G(jco)\ = 1 and 
4>(co) = 0 again. Evaluating several intermediate frequencies, we can readily obtain 
the frequency response, as shown in Figure 8.15(b). • 

A summary of the asymptotic curves for basic terms of a transfer function is 
provided in Table 8.3. 

In the previous examples, the poles and zeros of G(s) have been restricted to 
the left-hand plane. However, a system may have zeros located in the right-hand s-
plane and may still be stable. Transfer functions with zeros in the right-hand s-plane 
are classified as nonminimum phase transfer functions. If the zeros of a transfer 
function are all reflected about the /w-axis, there is no change in the magnitude of 
the transfer function, and the only difference is in the phase-shift characteristics. If 
the phase characteristics of the two system functions are compared, it can be readily 

FIGURE 8.14 
Twin-T network. 
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FIGURE 8.15 
Twin-T network. 
(a) Pole-zero pattern. 
(b) Frequency 
response. 
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shown that the net phase shift over the frequency range from zero to infinity is less 
for the system with all its zeros in the left-hand s-plane. Thus, the transfer function 
G\{s), with all its zeros in the left-hand s-plane, is called a minimum phase transfer 
function. The transfer function G2(s), with \G2(j(o)\ = {Gi(jo))\ and all the zeros of 
Gi(s) reflected about the /cu-axis into the right-hand s-plane, is called a nonmini-
mum phase transfer function. Reflection of any zero or pair of zeros into the right 
half-plane results in a nonminimum phase transfer function. 

A transfer function is called a minimum phase transfer function if all its 
zeros lie in the left-hand s-plane. It is called a nonminimum phase 

transfer function if it has zeros in the right-hand s-plane. 

The two pole-zero patterns shown in Figures 8.16(a) and (b) have the same 
amplitude characteristics as can be deduced from the vector lengths. However, the 
phase characteristics are different for Figures 8.16(a) and (b).The minimum phase 
characteristic of Figure 8.16(a) and the nonminimum phase characteristic of Figure 
8.16(b) are shown in Figure 8.17. Clearly, the phase shift of 

Gi(s) = 
a + z 
s + p 

ranges over less than 80°, whereas the phase shift of 

(his) = s - z 
s + /; 

ranges over 180°.The meaning of the term minimum phase is illustrated by Figure 8.17. 
The range of phase shift of a minimum phase transfer function is the least possible 
or minimum corresponding to a given amplitude curve, whereas the range of the 
nonminimum phase curve is the greatest possible for the given amplitude curve. 
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Table 8.3 Asymptotic Curves for Basic Terms of a Transfer Function 

Term Magnitude 20 log|G| Phase <£(«>) 

I. Gain, 
G(j<o) = K 

40 

20 
20 log K 
dB 0 

-20 

-40 

90° 

45° 

-45° 

-90° 

, 1_ 

2. Zero, 
G(j<o) = 
1 + ]0ij<l)\ 

3. Pole, 
G(J<o) = 

(l + yw/ft),)"1 

4. Pole at the origin, 
G(ja>) = 1//0) 

5. Two complex poles, 
0.1 < £ < l,G{Ja>) = 

(1 + /20i - K2)-1 20 

U - co/con d R 0 

0.01 0.1 10 100 

-40 
0.01 0.01 
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FIGURE 8.16 
Pole-zero patterns 
giving the same 
amplitude response 
and different phase 
characteristics. 
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FIGURE 8.17 
The phase 
characteristics for 
the minimum phase 
and nonminimum 
phase transfer 
function. 

A particularly interesting nonminimum phase network is the all-pass network, 
which can be realized with a symmetrical lattice network [8]. A symmetrical pattern 
of poles and zeros is obtained as shown in Figure 8.18(a). Again, the magnitude 
\G(jo))\ remains constant; in this case, it is equal to unity. However, the angle varies 

FIGURE 8.18 
The all-pass 
network (a) 
pole-zero pattern, 
(b) frequency 
response, and (c) a 
lattice network. 
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from 0° to -360°. Because d2 = 180° - 0, and B*2 - 180° - Bh the phase is given by 
¢((0) = -2(0! + $1). The magnitude and phase characteristic of the all-pass net
work is shown in Figure 8.18(b). A nonminimum phase lattice network is shown in 
Figure 8.18(c). 

EXAMPLE 8.5 Sketching a bode plot 

The Bode diagram of a transfer function G(s), which contains several zeros and 
poles, is obtained by adding the plot due to each individual pole and zero. The sim
plicity of this method will be illustrated by considering a transfer function that pos
sesses all the factors considered in the preceding section. The transfer function of 
interest is 

G(jco) = 
5(1 + /O.lw) 

M l + /0.5G>)(1 + /0.6(a>/50) + 0V50)2) " 
(8.42) 

The factors, in order of their occurrence as frequency increases, are as follows: 

1. A constant gain K = 5 

2. A pole at the origin 

3. A pole at w = 2 

4. A zero at w = 10 

5. A pair of complex poles at co = a>„ — 50 

First, we plot the magnitude characteristic for each individual pole and zero fac
tor and the constant gain: 

1. The constant gain is 20 log 5 - 14 dB, as shown in Figure 8.19. 

2. 'the magnitude of the pole at the origin extends from zero frequency to infinite fre
quencies and has a slope of —20 dB/decade intersecting the 0-dB line at co = 1, as 
shown in Figure 8.19. 

3. The asymptotic approximation of the magnitude of the pole at co = 2 has a slope of 
-20 dB/decade beyond the break frequency at co - 2. The asymptotic magnitude 
below the break frequency is 0 dB, as shown in Figure 8.19. 

4. The asymptotic magnitude for the zero at o> = +10 has a slope of +20 dB/decade 
beyond the break frequency at co - 10, as shown in Figure 8.19. 

FIGURE 8.19 
Magnitude 
asymptotes of 
poles and zeros 
used in the 
example. 
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5. The magnitude for the complex poles is -40 dB/decade. The break, frequency is 
co = o)„ - 50, as shown in Figure 8.19. This approximation must be corrected to the 
actual magnitude because the damping ratio is £ = 0.3, and the magnitude differs 
appreciably from the approximation, as shown in Figure 8.20. 

Therefore, the total asymptotic magnitude can be plotted by adding the asymp
totes due to each factor, as shown by the solid line in Figure 8.20. Examining the as
ymptotic curve of Figure 8.20, we note that the curve can be obtained directly by 
plotting each asymptote in order as frequency increases. Thus, the slope is 
-20 dB/decade due to (Jto)~l intersecting 14 dB at w = 1. Then, at co = 2, the slope 
becomes -40 dB/decade due to the pole at ID — 2. The slope changes to 
-20 dB/decade due to the zero at w = 10. Finally, the slope becomes 
—60 dB/decade at co = 50 due to the pair of complex poles at con = 50. 

The exact magnitude curve is then obtained by using Table 8.2, which provides 
the difference between the actual and asymptotic curves for a single pole or zero. 
The exact magnitude curve for the pair of complex poles is obtained by utilizing 
Figure 8.10(a) for the quadratic factor. The exact magnitude curve for G(jco) is 
shown by a dashed line in Figure 8.20. 

The phase characteristic can be obtained by adding the phase due to each indi
vidual factor. Usually, the linear approximation of the phase characteristic for a sin
gle pole or zero is suitable for the initial analysis or design attempt. Thus, the 
individual phase characteristics for the poles and zeros are shown in Figure 8.21 and 
are as follows: 

1. The phase of the constant gain is 0°. 

2. The phase of the pole at the origin is a constant -90°. 

3. The linear approximation of the phase characteristic for the pole at co = 2 is shown in 
Figure 8.21, where the phase shift is —45" at co — 2. 

4. The linear approximation of the phase characteristic for the zero at co = 10 is also 
shown in Figure 8.21, where the phase shift is +45° at co = 10. 

FIGURE 8.20 
Magnitude 
characteristic. 
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FIGURE 8.21 
Phase 
characteristic. 
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5. The actual phase characteristic for the pair of complex poles is obtained from Figure 
8.10 and is shown in Figure 8.21. 

Therefore, the total phase characteristic, 4>(co), is obtained by adding the phase due 
to each factor as shown in Figure 8.21. While this curve is an approximation, its useful
ness merits consideration as a first attempt to determine the phase characteristic. Thus, 
a frequency of interest, as we shall note in the following section, is the frequency for 
which ¢((0) - -180°. The approximate curve indicates that a phase shift of -180° 
occurs at co - 46. The actual phase shift at co = 46 can be readily calculated as 

- l cj)(co) = —90° - tan COTI + tan COT2 — tan 
_i 2£u 

\-u2 
(8.43) 

where 

T] = 0.5, r2 = 0.1, 2£ = 0.6, and u = co/coti = to/50. 

Then we find that 

0(46) = -90° - tan"1 23 + tan"1 4.6 - tan"1 3.55 = -175°, (8.44) 

and the approximate curve has an error of 5° at co = 46. However, once the 
approximate frequency of interest is ascertained from the approximate phase 
curve, the accurate phase shift for the neighboring frequencies is readily deter
mined by using the exact phase shift relation (Equation 8.43). This approach is usu
ally preferable to the calculation of the exact phase shift for all frequencies over 
several decades. In summary, we may obtain approximate curves for the magnitude 
and phase shift of a transfer function G(jco) in order to determine the important 
frequency ranges. Then, within the relatively small important frequency ranges, the 



Section 8.3 Frequency Response Measurements 517 

FIGURE 8.22 
The Bode plot of 
the G(jto) of 
Equation (8.42). 
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exact magnitude and phase shift can be readily evaluated by using the exact equa
tions, such as Equation (8.43). 

The frequency response of G(jco) can be calculated and plotted using a computer 
program. The Bode plot for the example in this section (Equation 8.42) can be read
ily obtained, as shown in Figure 8.22. The plot is generated for four decades, and the 
0-dB line is indicated, as well as the —180° line. The data above the plot indicate that 
the magnitude is 34 dB and that the phase is -92.36° at to = 0.1. Similarly, the data 
indicate that the magnitude is - 4 3 dB and that the phase is -243° at w = 100. 
Using the tabular data provided, we find that the magnitude is 0 dB at to = 3.0, and 
the phase is -180° at w = 50. • 

8.3 FREQUENCY RESPONSE MEASUREMENTS 

A sine wave can be used to measure the open-loop frequency response of a control 
system. Tn practice, a plot of amplitude versus frequency and phase versus frequency 
will be obtained [1, 3, 6]. From these two plots, the open-loop transfer function 
GH{jto) can be deduced. Similarly, the closed-loop frequency response of a control 
system, T(j(o), may be obtained and the actual transfer function deduced. 

A device called a wave analyzer can be used to measure the amplitude and 
phase variations as the frequency of the input sine wave is altered. Also, a device 
called a transfer function analyzer can be used to measure the open-loop and 
closed-loop transfer functions f6]. 

A typical signal analyzer instrument can perform frequency response measure
ments from DC to 100 kHz. Built-in analysis and modeling capabilities can derive 
poles and zeros from measured frequency responses or construct phase and magni
tude responses from user-supplied models. This device can also synthesize the fre
quency response of a model of a system, allowing a comparison with an actual 
response. 

As an example of determining the transfer function from the Bode plot, let us 
consider the plot shown in Figure 8.23. The system is a stable circuit consisting of 
resistors and capacitors. Because the magnitude declines at about -20 dB/decade as 
to increases between 100 and 1000, and because the phase is -45° and the magnitude 
is —3 dB at 300 rad/s, we can deduce that one factor is a pole at p^ = 300. Next, we 
deduce that a pair of quadratic zeros exist at to,, = 2450. This is inferred by noting 
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that the phase changes abruptly by nearly +180°, passing through 0° at (o„ = 2450. 
Also, the slope of the magnitude changes from —20 dB/decade to +20 dB/decade at 
o>n = 2450. Because the slope of the magnitude returns to 0 dB/decade as o exceeds 
50,000, we determine that there is a second pole as well as two zeros. This second pole 
is at p2 = 20,000, because the magnitude is — 3 dB from the asymptote and the phase 
is +45° at this point (-90° for the first pole, +180° for the pair of quadratic zeros, and 
—45° for the second pole). We sketch the asymptotes for the poles and the numerator 
of the proposed transfer function T(s) of Equation (8.45), as shown in Figure 8.23(a). 
The equation is 

T(s) = 
(s/(on)

2 + (2£/<oa)s + 1 
(s/Pl + l)(s/p2 + 1) ' 

(8.45) 
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The difference in magnitude from the corner frequency (con - 2450) of the 
asymptotes to the minimum response is 10 dB, which, from Equation (8.37), indicates 
that f = 0.16. (Compare the plot of the quadratic zeros to the plot of the quadratic 
poles in Figure 8.10. Note that the plots need to be turned "upside down" for the qua
dratic zeros and that the phase goes from 0° to +180° instead of -180°.) Therefore, 
the transfer function is 

T(s) = 
(5/2450)2 + (0.32/2450)5 + 1 

(5/300 + 1)(5/20000 + 1) ' 

This frequency response is actually obtained from a bridged-T network (see Prob
lems 2.8 and 8.3 and Figure 8.14). 

8.4 PERFORMANCE SPECIFICATIONS IN THE FREQUENCY DOMAIN 

We must continually ask the question: how does the frequency response of a system 
relate to the expected transient response of the system? In other words, given a set 
of time-domain (transient performance) specifications, how do we specify the fre
quency response? For a simple second-order system, we have already answered this 
question by considering the time-domain performance in terms of overshoot, set
tling time, and other performance criteria, such as integral squared error. For the 
second-order system shown in Figure 8.24, the closed-loop transfer function is 

T(s) = 
sf + 2£(o„s + (of, 2' 

(8.46) 

The frequency response of this feedback system will appear as shown in Figure 8.25. 
Because this is a second-order system, the damping ratio of the system is related to the 
maximum magnitude Mpa), which occurs at the frequency cor as shown in Figure 8.25. 

At the resonant frequency a>r a maximum value Mp(a of the frequency 
response is attained. 

FIGURE 8.24 
A second-order 
closed-loop 
system. 

R{\\ • Y(s) 

FIGURE 8.25 
Magnitude 
characteristic of the 
second-order 
system. 

20 logM 
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The bandwidth, coB, is a measure of a ability of the system to faithfully repro
duce an input signal. 

The bandwidth is the frequency taB at -which the frequency response has 
declined 3 dB from its low-frequency value. This corresponds to approximately 

half an octave, or about 1 /V 2 of the low-frequency value. 

The resonant frequency o)r and the — 3-dB bandwidth can be related to the 
speed of the transient response. Thus, as the bandwidth coB increases, the rise time of 
the step response of the system will decrease. Furthermore, the overshoot to a step 
input can be related to Mpi0 through the damping ratio £. The curves of Figure 8.11 
relate the resonance magnitude and frequency to the damping ratio of the second-
order system. Then the step response overshoot may be estimated from Figure 5.8 
or may be calculated by utilizing Equation (5.15).Thus, we find as the resonant peak 
Mpco increases in magnitude, the overshoot to a step input increases. In general, the 
magnitude MP(l) indicates the relative stability of a system. 

The bandwidth of a system tog, as indicated on the frequency response, can be 
approximately related to the natural frequency of the system. Figure 8.26 shows the 
normalized bandwidth cos/(an versus t, for the second-order system of Equation 
(8.46). The response of the second-order system to a unit step input is of the form 
(see Equation (5.9)) 

y{t) - 1 + Be frV cos(w]/ + ')• (8.47) 

The greater the magnitude of (on when £ is constant, the more rapidly the response 
approaches the desired steady-state value. Thus, desirable frequency-domain speci
fications are as follows: 

1. Relatively small resonant magnitudes: Mpoi < 1.5, for example. 

2. Relatively large bandwidths so that the system time constant r = l/(£w„) is sufficiently 
small. 

FIGURE 8.26 
Normalized 
bandwidth, coB/con, 
versus £ for a 
second-order 
system (Equation 
8.46). The linear 
approximation 
(»B/a>n = 

-1 .1¾ + 1.85 is 
accurate for 
0.3 ^ I < 0.8. 
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The usefulness of these frequency response specifications and their relation to 
the actual transient performance depend upon the approximation of the system by a 
second-order pair of complex poles. This approximation was discussed in Section 
7.3, and the second-order poles of T(s) are called the dominant roots. If the fre
quency response is dominated by a pair of complex poles, the relationships between 
the frequency response and the time response discussed in this section will be valid. 
Fortunately, a large proportion of control systems satisfy this dominant second-
order approximation in practice. 

The steady-state error specification can also be related to the frequency 
response of a closed-loop system. As we found in Section 5.6, the steady-state error 
for a specific test input signal can be related to the gain and number of integrations 
(poles at the origin) of the loop transfer function. Therefore, for the system shown in 
Figure 8.24, the steady-state error for a ramp input is specified in terms of Kv, the 
velocity constant. The steady-state error for the system is 

lime(0 = 
t-*OQ K„ 

where A = magnitude of the ramp input. The velocity constant for the system of 
Figure 8.24 without feedback is 

0)1 ) 0), 
Kv = lim sG(s) = \ims\ " = -f (8.48) 

Tn Rode diagram form (in terms of time constants), the transfer function is written as 

<o„/(2<0 _ Kv 

G(S) " s(s/(2£con) + 1) ~ S(TS + 1)' ( 8 ' 4 9 ) 

and the gain constant is Kv for this type-one system. For example, reexamining Ex
ample 8.5, we had a type-one system with a loop transfer function 

5(1 + /W2) 
G(i(o) = — =-, (8.50) 

KJ ' /CD(1 + /ft>Ti)(l + j0.6u - u2) 

where u = OJ/OJ,,. Therefore, in this case, we have Kv = 5. In general, if the loop 
transfer function of a feedback system is written as 

A/ 

G(;V) = ^¾ , (8.51) 

u<o)Nuo- +j^k) 
k=l 

then the system is type N and the gain K is the gain constant for the steady-state 
error. Thus, for a type-zero system that has a loop transfer function, we have 

G(jco) = ~ ; § ; ; r. (8.52) 

In this equation, K = Kp (the position error constant) that appears as the low-
frequency gain on the Bode diagram. 
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Furthermore, the gain constant K = Kv for the type-one system appears as the 
gain of the low-frequency section of the magnitude characteristic. Considering only 
the pole and gain of the type-one system of Equation (8.50), we have 

G ' O ) = — = ^ , to < 1/ri, (8.53) 
jo ](*> 

and the Kv is equal to the magnitude when this portion of the magnitude character
istic intersects the 0-dB line. For example, the low-frequency intersection of KJjco 
in Figure 8.20 is equal to co = 5, as we expect. 

Therefore, the frequency response characteristics represent the performance of 
a system quite adequately, and with some experience, they are quite useful for the 
analysis and design of feedback control systems. 

8.5 LOG MAGNITUDE AND PHASE DIAGRAMS 

There are several alternative methods for presenting the frequency response of a 
function G{j(o). We have seen that suitable graphical presentations of the frequency 
response are (1) the polar plot and (2) the Bode diagram. An alternative approach 
to portraying the frequency response graphically is to plot the logarithmic magni
tude in dB versus the phase angle for a range of frequencies. Because this informa
tion is equivalent to that portrayed by the Bode diagram, it is normally easier to 
obtain the Bode diagram and transfer the information to the coordinates of the log 
magnitude versus phase diagram. 

An illustration will best portray the use of the log-magnitude-phase diagram. 
This diagram for a transfer function 

Gl(/M) =
 MO.S/« + i)0V6 + i) (8'54) 

is shown in Figure 8.27. The numbers indicated along the curve are for values of fre
quency to. 

The log-magnitude-phase curve for the transfer function 

5(0.1/6) + 1) 
G2(ico) = — =- (8.55) yJ ' j(o(0.5jo) + 1)(1 -+- ;0.6(<u/50) + (/w/50)2) 

considered in Section 8.2 is shown in Figure 8.28. This curve is obtained most readily by 
utilizing the Bode diagrams of Figures 8.20 and 8.21 to transfer the frequency response 
information to the log magnitude and phase coordinates. The shape of the locus of the 
frequency response on a log-magnitude-phase diagram is particularly important as the 
phase approaches -180° and the magnitude approaches 0 dB. The locus of Equation 
(8.54) and Figure 8.27 differs substantially from the locus of Equation (8.55) and Figure 
8.28. Therefore, as the correlation between the shape of the locus and the transient 
response of a system is established, we will obtain another useful portrayal of the fre
quency response of a system. In Chapter 9, we will establish a stability criterion in the 
frequency domain for which it will be useful to utilize the log-magnitude-phase dia
gram to investigate the relative stability of closed-loop feedback control systems. 
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8.6 DESIGN EXAMPLES 

In this section we present two illustrative examples using frequency response meth
ods to design controllers. The first example illustrates the use of log-magnitude-
phase plots, as well as open-and closed-loop Bode plots. The specific problem is to 
design a proportional controller gain for an engraving machine control feedback 
control system. The second example considers the control of one leg of a six-legged 
robotic device. In this example, the specifications that must be satisfied include a 
mix of time-domain specifications (percent overshoot and settling time) and 
frequency-domain specifications (bandwidth). The design process leads to a viable 
PID controller meeting all the specifications. 

EXAMPLE 8.6 Engraving machine control system 

The engraving machine shown in Figure 8.29(a) uses two drive motors and associat
ed lead screws to position the engraving scribe in the x direction [7]. A separate 
motor is used for both the y- and z-axes, as shown. The block diagram model for the 
.r-axis position control system is shown in Figure 8.29(b). The goal is to select an 
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2-axts 

Metal to be 

y engraved 

x-motor 1 

x-motor 2 
^ 

Controller 

Position measurement 

Desired position -

\ " Position measurement 

FIGURE 8.29 
(a) Engraving 
machine control 
system, (b) Block 
diagram model. 

R(s) 

Controller 
Motor, screw, and 

scribe holder 

I 
s(s + l)(s + 2) 

(b) 

Y{s) 
•*• Position on 

x-axis 

appropriate gain K, using frequency response methods, so that the time response to 
step commands is acceptable. 

To represent the frequency response of the system, we will first obtain the open-
loop and closed-loop Bode diagrams. Then we will use the closed-loop Bode dia
gram to predict the time response of the system and check the predicted results with 
the actual results. 

To plot the frequency response, we arbitrarily select K = 2 and proceed with 
obtaining the Bode diagram. If the resulting system is not acceptable, we will later 
adjust the gain. 

The frequency response of G(jto) is partially listed in Table 8.4 and is plotted in 
Figure 8.30. We need the frequency response of the closed-loop transfer function 

r(s) = 2 
s3 + 3s2 + 2s + 2 

(8.56) 

Table 8.4 Frequency Response for G[jeo) 

co 0.2 0.4 0.8 
20 log|G| 14 7 - 1 
A 107° -123° -150.5° 

1.0 

- 4 

- 1 6 2 ° 

1.4 

- 9 

- 179.5D 

1.8 

- 1 3 

- 1 9 3 
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Therefore, we let s = jco, obtaining 

7-(/A>) = 2V (2 - 3«0 + yo)(2 - a/) 
(8.57) 

The Bode diagram of the closed-loop system is shown in Figure 8.31, where 
20 log 17(/6))1 = 5 dB at <or = 0.8. Hence, 

201ogMp&) = 5 or Mpo) = 1.78. 
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If we assume that the system has dominant second-order roots, we can approximate 
the system with a second-order frequency response of the form shown in Figure 
8.10. Since Mp(0 = 1.78, we use Figure 8.11 to estimate £ to be 0.29. Using this t, and 
cor = 0.8, we can use Figure 8.11 to estimate cor/con - 0.91. Therefore, 

<o„ = 
0.8 

0.91 
= 0.88. 

Since we are now approximating T(s) as a second-order system, we have 

0.774 
T(s) 

(0, 

s2 + 2£cons + o)2
n s2 + 0.51s + 0.774 

(8.58) 

We use Figure 5.8 to predict the overshoot to a step input as 37% for £ = 0.29. The 
settling time (to within 2% of the final value) is estimated as 

(0.29)0.88 
= 15.7s. 

The actual overshoot for a step input is 34%, and the actual settling time is 17 sec
onds. Wc see that the second-order approximation is reasonable in this case and can 
be used to determine suitable parameters on a system. If we require a system with 
lower overshoot, we would reduce K to 1 and repeat the procedure. • 

EXAMPLE 8.7 Control of one leg of a six-legged robot 

The Ambler is a six-legged walking machine being developed at Carnegie-Mellon 
University [23]. An artist's conception of the Ambler is shown in Figure 8.32. 

In this example wc consider the control system design for position control of 
one leg. The elements of the design process emphasized in this example are high
lighted in Figure 8.33.The mathematical model of the actuator and leg is provided. 
The transfer function is 

G(s) = 
1 

s(s2 + 2s + 10) 
(8.59) 

FIGURE 8.32 
An artist's conception 
of the six-legged 
Ambler. 
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Topics emphasized in this example 

FIGURE 8.33 
Elements of the 
control system 
design process 
emphasized in this 
six-legged robot 
example. 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

1 
Obtain a model of the process, the 

actuator, and the sensor 

1 
Describe a controller and select key 

parameters to be adjusted 

1 
Optimize the parameters and 

analyze the performance 

1 

Control the robot leg 
position and maintain the 
desired position in the 
presence of disturbances. 

Leg position. 

Design specifications: 
DSl:a>b> 1Hz-
DS2: P.O. < 15% 
DS3: Zero steady-state 

error to a step. 

See Figure 8.32 and 8.34 

See Equation (8.59). 

See Equation (8.60). 

Use control design 
software. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

The input is a voltage command to the actuator, and the output is the leg posi
tion (vertical position only). A block diagram of the control system is shown in 
Figure 8.34. The control goal is 

Control Goal 
Control the robot leg position and maintain the position in the presence of un
wanted measurement noise. 

The variable to be controlled is 

Variable to Be Controlled 
Leg position, Y(s). 

We want the leg to move to the commanded position as fast as possible but with 
minimal overshoot. As a practical first step, the design goal will be to produce a sys
tem that moves, albeit slowly. In other words, the control system bandwidth will ini
tially be low. 
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Ea(s) 

Controller 

Gc(s) 
Y(s) 

• Actual leg 
position 

FIGURE 8.34 Control system for one leg. 

The control design specifications are 

Control Design Specifications 
DS1 Closed-loop bandwidth greater than 1 Hz. 
DS2 Percent overshoot less than 15% to a step input. 
DS3 Zero steady-state tracking error to a step input. 

Specifications DS1 and DS2 are intended to ensure acceptable tracking performance. 
Design specification DS3 is actually a nonissue in our design: the actuator/leg transfer 
function is a type-one system so a zero steady-state tracking error to a step input is guar
anteed. We simply need to ensure that Gr(s)G(s) remains at least a type-one system. 

Consider the controller 

K(s2 + as + b) 
Gc(s) = 

s + c 
(8.60) 

As c -» 0, a PID controller is obtained with KP = Ka, KD = K, and K[ = Kb. We 
can let c be a parameter at this point and see if the additional freedom in selecting 
c v* 0 is useful. It may be that we can simply set c — 0 and use the PTD form. The 
key tuning parameters are 

Select Key Tuning Parameters 
K, a, b, and c. 

The controller in Equation (8.60) is not the only controller that we can consider. For 
example, we might consider 

GJs) = K 
s + z 
s + p 

(8.61) 

where K, z, andp are the key tuning parameters. The design of the type of controller 
given in Equation (8.61) will be left as a design problem at the end of the chapter. 

The response of a closed-loop control system is determined predominantly by 
the location of the dominant poles. Our approach to the design is to determine 
appropriate locations for the dominant poles of the closed-loop system. We can 
determine the locations from the performance specifications by using second-order 
system approximation formulas. Once the controller parameters are obtained so 
that the closed-loop system has the desired dominant poles, the remaining poles are 
located so that their contribution to the overall response is negligible. 
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The bandwidth cog is approximately related to the natural frequency con by 

— ~ -1.19611 + 1.8508 (0.3 < t, < 0.8). (8.62) 

This approximation applies to second-order systems. Per specification DSl, we want 

<oR ~- 1 Hz = 6.28 rad/s. (8.63) 

From the percent overshoot specification, we can determine the minimum value of £. 
Thus for P.O. < 15%, we require 

C £ 0.52, (8.64) 

where we have used Equation (5.16) (valid for second-order systems) that 

P.O. = l O O e - ^ 1 - ? . 

Another useful design formula (Equation (8.37)) relates Mpa) - |T(oy)| to the 
damping ratio: 

1_ 

2£ V I - C2 Mp„ = \T(a>r)\ = _ r == (C < 0.707). (8.65) 

The relationship between the resonant frequency, a>r the natural frequency mn, and 
the damping ratio £ is given by (Equation (8.36)) 

cor = r / ) „ \ / T ^ ^ (£ < 0.707). (8.66) 

We require t, > 0.52; therefore, we will design with t, = 0.52. Even though settling 
time is not a design specification for this problem, we usually attempt to make the 
system response as fast as possible while still meeting all the design specifications. 
From Equations (8.62) and (8.63) it follows that 

^ = - U 9 6 u ' + 1-8508 ^ 5 1 1 r a d / S - ( 8 - 6 7 ) 

Then with con — 5.11 rad/s and £ = 0.52 and using Equation (8.66) we compute 

cor = 3.46 rad/s. (8.68) 

So if we had a second-order system, we would want to determine values of the con
trol gains such that 

con = 5.11 rad/s and £ = 0.52, 

which give 

Mp(0 = 1.125 and cor = 3.46 rad/s. 

Our closed-loop system is a fourth-order system and not a second-order system. 
So, a valid design approach would be to select K, a, b, and c so that two poles are 
dominant and located appropriately to meet the design specifications. This will be 
the approach followed here. 
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Another valid approach is to develop a second-order approximation of the 
fourth-order system. In the approximate transfer function, the parameters K, a, £>, 
and c are left as variables. Following the approach discussed in Chapter 5, we can 
obtain an approximate transfer function TL(s) in such a way that the frequency 
response of TL(s) is very close to that of the original system. 

The loop transfer function is 

K(s2 + as + b) 
Gc(s)G(s) = 

s(s2 + 2s + 10)(5 + c)' 

and the closed-loop transfer function is 

Gc(s)G(s) 
7(*) = 7 1 7 7 ^ (8-69) 

1 + Gc(s)G(s) 
K(s2 + as + b) 

~ sA + (2 + c)s2 + (10 + 2c + K)s2 + (10c + Ka)s + Kb' 

The associated characteristic equation is 

s4 + (2 + c)s3 + (10 + 2c + K)s2 + (10c + Ka)s + Kb = 0. (8.70) 

The desired characteristic polynomial must also be fourth-order, but we want it to 
be composed of multiple factors, as follows: 

Pd(s) = (s2 + 2£cons + col)(s2 - dxs + d0), 

where £ and con are selected to meet the design specifications, and the roots of 
s2 + 2£(ons + a)* = 0 are the dominant roots. Conversely we want the roots of 
52 + d\S - do - 0 to be the nondominant roots. The dominant roots should lie on a 
vertical line in the complex plane defined by the distance 5 = — £&»„ away from the 
imaginary axis. Let 

d1 = 2at,(on. 

Then the roots of 52 + d\S + d$ = 0, when complex, lie on a vertical line in the 
complex plane defined by s =- —a£con. By choosing a > 1, we effectively move the 
roots to the left of the dominant roots. Tlie larger we select a, the further the non-
dominant roots lie to the left of the dominant roots. A reasonable value of a is 

a = 12. 

Also, if we select 

d0 = cxYcol 

then we obtain two real roots 

s2 f dts + d0 = (s + a^con)
2 = 0. 
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Choosing d0 = a2£2a>^ is not required, but this seems to be a reasonable choice 
since we would like the contribution of the nondominant roots to the overall re
sponse to be quickly fading and nonoscillatory. 

The desired characteristic polynomial is then 

sA + [2£<w„(l + a)]s3 + K 2 ( l + a£2{a + A))]s2 (8.71) 

+ [2a£a)n\l + C2a)}s + a2£2a)n
4 = 0. 

Equating the coefficients of Equations (8.70) and (8.71) yields four relationships 
involving K, a, b, c, and a: 

2£ton(l + a) = 2 + c, 

co2(l + a?(4 + a)) = 10 + 2c + K, 

2aCo>^{\ + l2a) = 10c + Ka, 

a2rV = Kb. 
In our case t, — 0.52, a>n = 5.11, and a — 12. Thus we. obtain 

c = 67.13 

K = 1239.2 

a = 5.17 

b = 21.48 

and the resulting controller is 

J 2 + 5.17J + 21.48 
Gc{s) = 1239—7Tvu3—• (8'72) 

The step response of the closed-loop system using the controller in Equation 
(8.72) is shown in Figure 8.35. The percent overshoot is P.O. - 14%, and the set
tling time is Ts = 0.96 second. 

The magnitude plot of the closed-loop system is shown in Figure 8.36. The band
width is COB = 27.2 rad/s = 4.33 Hz. This satisfies DSl but is larger than the 
tojj = 1 Hz used in the design (due to the fact that our system is not a second-order 
system). The higher bandwidth leads us to expect a faster settling time. The peak 
magnitude is Mp(0 = 1 ..21. We were expecting Mpo) = 1.125. 

What is the steady-state response of the closed-loop system if the input is a sinu
soidal input? From our previous discussions we expect that as the input frequency 
increases, the magnitude of the output will decrease. Two cases are presented here. In 
Figure 8.37 the input frequency is to = 1 rad/s. The output magnitude is approximate
ly equal to 1 in the steady-state. In Figure 8.38 the input frequency is to — 500 rad/s. 
The output magnitude is less than 0.005 in the steady-state. This verifies our intuition 
that the system response decreases as the input sinusoidal frequency increases. 

Using simple analytic methods, we obtained an initial set of controller parame
ters for the mobile robot. The controller thus designed proved to satisfy the design 
requirements. Some fine-tuning would be necessary to meet the design specifica
tions exactly. • 
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FIGURE 8.35 
Step response 
using the controller 
in Equation (8.72). 
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FIGURE 8.36 
Magnitude plot of 
the closed-loop 
system with the 
controller in 
Equation (8.72). 
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FIGURE 8.37 
Output response of 
the closed-loop 
system when the 
input is a sinusoidal 
signal of frequency 
ay = 1 rad/s. 
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FIGURE 8.38 
Output response of 
the closed-loop 
system when the 
input is a sinusoidal 
signal of frequency 
w = 500 rad/s. 
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8.7 FREQUENCY RESPONSE METHODS USING CONTROL DESIGN SOFTWARE 

This section begins with an introduction to the Bode diagram and then discusses the 
connection between the frequency response and performance specifications in the 
time domain. The section concludes with an illustrative example of designing a con
trol system in the frequency domain. 

We will cover the functions bode and logspace. The bode function is used to 
generate a Bode diagram, and the logspace function generates a logarithmically 
spaced vector of frequencies utilized by the bode function. 

Bode Diagram. Consider the transfer function 

5(1 4 0.1s) 
G ( * > -

s(l + 0.5.s)(l + (O .6 /50) J 4 ( 1 / 5 0 V ) 
(8.73) 

The Bode diagram corresponding to Equation (8.73) is shown in Figure 8.39. The 
diagram consists of the logarithmic gain in dB versus <w in one plot and the phase 
(p(co) versus to in a second plot. As with the root locus plots, it will be tempting to 
rely exclusively on control design software to obtain the Bode diagrams. The soft
ware should be treated as one tool in a tool kit that can be used to design and ana
lyze control systems. It is essential to develop the capability to obtain approximate 
Bode diagrams manually. There is no substitute for a clear understanding of the un
derlying theory. 

A Bode diagram is obtained with the bode function, shown in Figure 8.40. The 
Bode diagram is automatically generated if the bode function is invoked without 
left-hand arguments. Otherwise, the magnitude and phase characteristics are placed 
in the workspace through the variables mag and phase. A Bode diagram is obtained 
with the plot or semilogx function using mag, phase, and to. The vector co contains 
the values of the frequency in rad/s at which the Bode diagram will be calculated. 
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Equation (8.73). 
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FIGURE 8.40 
The bode function, 
given G(s). 
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G{s) = sys 
User-supplied 

frequency (optional) 

[mag,phase,w]=bode(sys,w) 

If to is not specified, the bode function will automatically choose the frequency val
ues by placing more points in regions where the frequency response is changing 
quickly. If the frequencies are specified explicitly, it is desirable to generate the vec
tor oj using the logspace function. The logspace function is shown in Figure 8.41. 

The Bode diagram in Figure 8.39 is generated using the script shown in Figure 
8.42. The bode function automatically selected the frequency range. This range is 
user selectable using the logspace function. The bode function can be used with a 
state variable model, as shown in Figure 8.43. The use of the bode function is exactly 
the same as with transfer functions, except that the input is a state-space object 
instead of a transfer function object. 

Keep in mind that our goal is to design control systems that satisfy certain per
formance specifications given in the time domain. Thus, we must establish a connec
tion between the frequency response and the transient time response of a system. 
The relationship between specifications given in the time domain to those given in 
the frequency domain depends upon approximation of the system by a second-
order system with the poles being the system dominant roots. 

Consider the second-order system shown in Figure 8.24. The closed-loop trans
fer function is 

7/(.) = 
s2 + 2£cons + <on 

2' 
(8.74) 

The Bode diagram magnitude characteristic associated with the closed-loop 
transfer function in Equation (8.74) is shown in Figure 8.25. The relationship 
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n points between 10a and 10fc 

w=logspace(a,b,n) 

Logarithmically spaced vector 

Example Generate 200 points between 0.1 and 1000. 

»w=logspace(-1,3,200); 
»bode(sys,w); 

FIGURE 8.41 
The logspace 
function. 
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FIGURE 8.42 
The script for the 
Bode diagram in 
Figure 8.39. 

% Bode plot script for Figure 8.39 
% 
num=5*[0.1 1]; 
f1=[1 0]; f2=[0.5 1]; f3=[1/2500 .6/50 1 
den=conv(f1 ,conv(f2.f3)); -4 

sys=tf(num,den); 
bode(sys) 

between the resonant frequency, con the maximum of the frequency response, 
Mpv, and the damping ratio, ^, aad the natural frequency, (on, is shown in Figure 
8.44 (and in Figure 8.11). The information in Figure 8.44 will be quite helpful in 
designing control systems in the frequency domain while satisfying time-domain 
specifications. 
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FIGURE 8.43 
The bode function 
with a state variable 
model. 

bode(sys) 

t 

1 
bode(sys) 

Transfer function model 
sys = tf(num,den) 

Slate-space model 
sys = ss(A, B, C, D) 

0.2 0.4 0.6 0.8 

(a) 

FIGURE 8.44 
(a) The relationship 
between (M^, <or) 
and [l, (on) for a 
second-order 
system, (b) m-file 
script. 

zeta=[0.15:0.01:0.7]; -4 
wr_over_wn=sqrt(1 -2*zeta.A2); 
Mp=(2*zeta .* sqrt(1-zeta.A2)).A(-1); 
% 
subplot(211 ),plot(zeta,Mp),grid 
xlabel('\zeta'), ylabel('M_{p\omega}') -* 
subplot(212),plot(zeta,wr_over_wn),grid 
xlabel('\zeta'), ylabel('\omega_r/\omega_n') 

zeta ranges from 0.15 to 0.70 

Generate plots 

(b) 

EXAMPLE 8.8 Engraving machine system 

Consider the block diagram model in Figure 8.29. Our objective is to select K so that 
the closed-loop system has an acceptable time response to a step command. A func
tional block diagram describing the frequency-domain design process is shown in 
Figure 8.45. First, we choose K = 2 and then iterate K if the performance is unac
ceptable. The script shown in Figure 8.46 is used in the design. The value of K is 
defined at the command level. Then the script is executed and the closed-loop Bode 
diagram is generated. The values of Mpuj and cor are determined by inspection from 
the Bode diagram. Those values are used in conjunction with Figure 8.44 to deter
mine the corresponding values of t, and a>„. 

Given the damping ratio, £, and the natural frequency, (on, the settling time and 
percent overshoot are estimated using the formulas 

T, 
fan 

P.O. » 100 exp 
- £ T T -

VT 

If (he time-domain specifications are not satisfied, then we adjust K and iterate. 
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FIGURE 8.45 
Frequency design 
functional block 
diagram for the 
engraving machine. 
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The values for t, and u>n corresponding to K = 2 are t, = 0.29 and co,, = 0.88. 
This leads to a prediction of P.O. = 37% and 75 = 15.7 seconds. The step response, 
shown in Figure 8.47, is a verification that the performance predictions are quite 
accurate and that the closed-loop system performs adequately. 

In this example, the second-order system approximation is reasonable and leads 
to an acceptable design. However, the second-order approximation may not always 
lead directly to a good design. Fortunately, the control design software allows us to 
construct an interactive design facility to assist in the design process by reducing the 
manual computational loads while providing easy access to a host of classical and 
modern control tools. • 



FIGURE 8.46 
Script for the 
design of an 
engraving machine. 
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engrave.m 

539 

num=[K]; den=[1 3 2 K]; -* 
sys=tf(num,den); 
w=logspace(-1,1,400); 
[mag,phase,w]=bode(sys,w); •« 
[mp,l]=max(mag);wr=w(l); 

zeta=sqrt(0.5*(1 -sqrt(1 -1/mpA2))); 
wn=wr/sqrt(1 -2*zetaA2); 

ts=4/zeta/wn 
po=100*exp(-zeta*pi/sqrt(1 -zetaA2)) 

Closed-loop transfer function. 

» K=2; engrave 

ts = 
15.7962 

po= •* 
39.4570 

Check specifications 
and iterate, if necessary. 

Closed-loop Bode plot. 

Solving Eqs. (8.36) and 
(8.37) for £ and a>„. 
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FIGURE 8.47 
(a) Engraving 
machine step 
response for K = 2. 
(b) m-file script. 

K=2; num=[K]; den=[1 3 2 KJ; sys=tf(num,den); 
t=[0:0.01:20]; 
y=slep(sys,t); plot(t.y); grid 
xlabel(Time (s)'), ylabel('y(t)') 

(b) 
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8.8 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

The disk drive uses a flexure suspension to hold the reader head mount, as shown in 
Figure 2.71. As noted in Section 3.10, this flexure may be modeled by a spring and 
mass, as shown in Figure 3.40. In this chapter, we will include the effect of the flex
ure within the model of the motor-load system [22]. 

We model the flexure with the mounted head as a mass M, a spring k, and a slid
ing friction b, as shown in Figure 8.48. Here, we assume that the force u(t) is exerted 
on the flexure by the arm. The transfer function of a spring-mass-damper was devel
oped in Chapter 2, where 

no 
U(s) 

CO, 1 
3{S) s2 + 2£mns + o>„2 1 + (2Cs/ion) + (s/a>„)2' 

A typical flexure and head has t, = 0.3 and a natural resonance at /„ = 3000 Hz. 
Therefore, con = 18.85 X 10 as shown in the model of the system (see 
Figure 8.49). 

First, we sketch the magnitude characteristics for the open-loop Bode diagram. 
The Bode diagram sketch is shown in Figure 8.50. Note that the actual plot has a 10-dB 
gain (over the asymptotic plot) at the resonance <o = oo„, as shown in the sketch.The 
sketch is a plot of 

20log\K(ja> + l ^ / c ^ O y ^ O V ) ! , 

for the system of Figure 8.49 when K = 400. Note the resonance at a>n. Clearly, we 
wish to avoid exciting this resonance. 

FIGURE 8.48 
Spring, mass, 
friction model of 
flexure and head. 
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r, = 10- 3 r2 = 1/20 £ = 0.3, co„= 18.85 X 103 
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FIGURE 8.49 Disk drive head position control, including effect of flexure head mount. 
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FIGURE 8.50 Sketch of the Bode diagram magnitude for the system of Figure 849. 

Plots of the magnitude of the open-loop Bode diagram and the closed-loop 
Bode diagram are shown in Figure 8.51. The bandwidth of the closed-loop system is 
ojfj = 2000 rad/s. We can estimate the settling time (with a 2% criterion) of this sys
tem using 

where £ =* 0.8 and co„ - coB = 2000 rad/s. Therefore, we expect Ts = 2.5 ms for the 
system of Figure 8.49. As long as K ^ 400, the resonance is outside the bandwidth 
of the system. 

8.9 SUMMARY 

In this chapter, we have considered the representation of a feedback control sys
tem by its frequency response characteristics. The frequency response of a system 
was defined as the steady-state response of the system to a sinusoidal input signal. 
Several alternative forms of frequency response plots were considered. They 
included the polar plot of the frequency response of a system G(ja>) and logarith
mic plots, often called Bode plots. The value of the logarithmic measure was also 
illustrated. The ease of obtaining a Bode plot for the various factors of G(jco) was 
noted, and an example was considered in detail. The asymptotic approximation for 

, Sketch of actual curve 
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sketching the Bode diagram simplifies the computation considerably. A summary 
of fifteen typical Bode plots is shown in Table 8.5. Several performance specifica
tions in the frequency domain were discussed; among them were the maximum 
magnitude Mpu and the resonant frequency a>r. The relationship between the 
Bode diagram plot and the system error constants (Kp and Kv) was noted. Finally, 
the log-magnitude versus phase diagram was considered for graphically represent
ing the frequency response of a system. 
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FIGURE 8.51 The magnitude Bode plot for (a) the open-loop 
transfer function and (b) the closed-loop system. 



Table 8.5 Bode Diagram Plots for Typical Transfer Functions 
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Table 8.5 (continued) 
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Table 8.5 (continued) 

G{s) Bode Diagram G(s) Bode Diagram 
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EXERCISES 

E8.1 (a) Draw the polar plot of a system with transfer 
function 

G(s) = 
s(s + 2) 

(b) Find the frequency corresponding to | G(jto) \ = 1. 

E8.2 The feedforward transfer function of closed-loop 
system 

G(s) 
1 

s(s + 2)' 

and feedback transfer function 

1 
H(s) = 

s + 1 

(a) Draw the. polar plot of G(s)H(s). 
(b) Find co corresponding to 

/.G(jco)H{jco) = 180° 

(c) Find \G(jo))H(jto)\ corresponding to the angle 
obtained in (b). 

E8.3 A robotic arm has a joint-control loop transfer 
function 

Gc(s)G(s) = 
3000 + 100) 

s(s + 10)(5 + 40)' 

Prove that the frequency equals 283 rad/s when the 
phase angle of (j<a) is -180°. Find the magnitude of 
Gc{jco)G(jco) at that frequency. 

Answer: |GC(/28.3)G(/28.3)| = -2.5 dB 

E8.4 (a) Derive the transfer function of the system given 
in Figure E8.4. 
(b) If i?1 = 10K,i?2 = 5K and C=0.1/JF,draw the Bode 

plot. 

mn VII) 

FIGURE E8.4 A RC Network. 

E8.5 The magnitude plot of a transfer function 

K{\ + 0.55)(1 + as) 
G(s) = 

s(l + s/S)(l + bs)(l + ^/36) 

is shown in Figure E8.5. Determine K, a, and b from 
the plot. 

Answer: K = 8, a = 1/4, b = 1/24 

E8.6 Several studies have proposed an extravehicular 
robot that could move around in a NASA space sta
tion and perform physical tasks at various worksites 
[9]. The arm is controlled by a unity feedback control 
with loop transfer function 

Us) = Gc(s)G(s) = 
K 

s(s/6 + 1)(5/100 + 1)' 

Draw the Bode diagram for K = 10, and determine 
the frequency when 20 \og\L(jco)\ is 0 dB. 

FIGURE E8.5 
Bode diagram. 
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E8.7 Consider a system with a closed-loop transfer function 

T(s) = 
(s2 + s + 1)(5-2 + 0.45 + 4)' 

This system will have no steady-state error for a 
step input, (a) Plot the frequency response, noting 
the two peaks in the magnitude response, (b) Predict 
the time response to a step input, noting that the 
system has four poles and cannot be represented as 
a dominant second-order system, (c) Plot the step 
response. 

E8.8 A feedback system has a loop transfer function 

100(5 - 1) 
Gc(s)G(s) = 

s2 + 25s + 100' 

(a) Determine the corner frequencies (break fre
quencies) for the Bode plot, (b) Determine the slope 
of the asymptotic plot at very low frequencies and at 
high frequencies, (c) Sketch the Bode magnitude 
plot. 

E8.9 The Bode diagram of a system is shown in Figure 
E8.9. Determine the transfer function G(s). 

E8.10 The dynamic analyzer shown in Figure E8.10(a) 
can be used to display the frequency response of a 
selected G(jco) model. Also shown is a head position
ing mechanism for a disk drive, which uses a linear 
motor to position the head. Figure E8.10(b) shows the 
actual frequency response of the head positioning 
mechanism. Estimate the poles and zeros of the 
device. Note X = 1.37 kHz at the first cursor, and 
AX = 1.257 kHz to the second cursor. 

E8.ll 
(a) Draw the Bode plot of a system with transfer 

function 

0(5) = 
20 

0 

-2 

1 

-3 J 
x + 

[~o l 

w 

(b) Find the frequency corresponding to 
ZG(jco)H(ja>) = 180° from the phase plot. 

(c) Find the gain in db corresponding to the frequency 
obtained in (b). 

E8.12 Consider the system represented in state variable 
form 

x = 

y = [1 - l ] x + [0]« 

(a) Determine the transfer function representation of 
the system, (b) Sketch the Bode plot. 

E8.13 Frequency domain specification of a II order system 
is given as wr (the resonance frequency) = 0.707 rad/5 
MPl0 (maximum value of frequency response) in 
dB - 3.5dB. 

(a) Find the transfer function of the system. 
(b) Find the time domain specifications. 

E8.1.4 Consider the nonunity feedback system in Figure 
E8.14, where the controller gain is K = 2. Sketch the 
Bode plot of the loop transfer function. Determine the 
phase of the loop transfer function when the magnitude 
201og|L(/<*»)l = 0 d B . Recall that the loop transfer 
function is L(s) = Gc(s)G(s)H(s). 

E8.15 Consider the single-input, single-output system 
described by 

x(0 = Ax(r) + Bu(0 

y{t) = Cx(0 
where 

0 1 
-5 - K -2 

.B = , C = [ 6 3]. 

5(5 + 2)(5 + 5) 

Compute the bandwidth of the system for K = 1,2, 
and 10. As K increases, does the bandwidth increase or 
decrease? 

FIGURE E8.9 
Bode diagram. 
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Vv 
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Ya =-4.9411 AX = 1.275kHz 
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FIGURE E8.10 (a) Dual-exposure photo showing the head positioner and 
the Signal Analyzer 3562A. (b) Frequency response. (Courtesy of Hewlett-
Packard Co.) 
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FIGURE E8.11 
Unity feedback 
system. 

FIGURE E8.14 
Nonunity feedback 
system with 
controller gain K. 

Ris) -

R{s) -

- & -

I 

Controller 

1000 

s + 2 

Controller, Gc(s) 

K 

Process 

s 

1 
2 + [Os + 100 

— • 

Process, G(s) 

1 
S2+ 1.45 -

Sensor, H(s) 

10 
s f 0 

>n.s 

• • Y(s) 

PROBLEMS 

P8.1 Sketch the polar plot of the frequency response for 
the following loop transfer functions: 

(a) Gc(s)G(s) = ' 

(b) G,(.v)G(.v) = 

(c) Gc(s)G(s) = 

(d) Gr(,v)C(.v) -

(1 + 0.55)(1 + 2») 

lOQy2 + 1.45 + 1) 

(5 - 1)2 

5 - 1 0 

52 + 65 + 10 

30(5 + 8) 
5(5 + 2)(5 + 4) 

P8.2 Sketch the Bode diagram representation of the fre
quency response for the transfer functions given in 
Problem 8.1. 

P8.3 A rejection network that can be used instead of the 
twin-T network of Example 84 is the bridged-T net
work shown in Figure P8.3. The transfer function of 
this network is 

G(s) = 
52 + 2((oJQ)s + a>,f 

(can you show this?), where a>„2 = 2/LC,Q = ojnL/Rx, 
and R2 is adjusted so that R2 - (to,,L)2/4Ri [3]. 
(a) Determine the pole-zero pattern and, using the 
vector approach, evaluate the approximate fre
quency response, (b) Compare the frequency res
ponse of the twin-T and bridgcd-T networks when 
Q = 10. 

I. 

)t-
V-. 

R-, 

FIGURE P8.3 Bridged-T network. 

P8.4 The transfer function of an AC servomotor is ob-
. , w(s) 4.2 

tamed as —-— = —-
V(s) 1 + 205 

(a) Obtain the Bode Plot. 
(b) Obtain the Bandwidth. 

P8.5 Consider the system given in Figure P8.5 where 

K(s + 5) 
Gc(s) = 

GP(s) -

(5 + 10) 

I 

5(52 + 25 + 2) 

H(s) = 1 

(a) Find K such that the velocity error coefficient 
K0 - 10. 

(b) Draw the Bode plot of the open-loop system. 
(e) From the Bode plot, find the frequency corre

sponding to 0 dB gain. 
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FIGURE P8.4 
Bode Plot. 

Controller 

Gc(s) 

Plant 

Gp(s) 

TJ/ r. \ 

H(s) 

Y(s) 

P8.6 The asymptotic log-magnitude curves for two trans
fer functions are given in Figure P8.6. Sketch the cor
responding asymptotic phase shift curves for each 
system. Determine the transfer function for each sys
tem. Assume that the systems have minimum phase 
transfer functions. 

P8.7 Driverless vehicles can be used in warehouses, 
airports, and many other applications. These vehicles 
follow a wire embedded in the floor and adjust the 
steerable front wheels in order to maintain proper 
direction, as shown in Figure P8.7(a) [10].The sensing 
coils, mounted on the front wheel assembly, detect an 
error in the direction of travel and adjust the steering. 

The overall control system is shown in Figure P8.7(b). 
The loop transfer function is 

L(s) = 
K K„ 

s(s + IT)2 S(S/TT + 1)2 

We want the bandwidth of the closed-loop system to 
exceed 2w rad/s. (a) Set Kv = 2TT and sketch the 
Bode diagram, (b) Using the Bode diagram, obtain 
the logarithmic-magnitude versus phase angle curve. 

P8.8 A feedback control system is shown in Figure P8.8. 
The specification for the closed-loop system requires 
that the overshoot to a step input be less than 10%. 

• log co 

(a) 

FIGURE P8.6 
Log-magnitude 
curves. (b) 
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Energized guidepath wire 

(a) 

Reference 

FIGURE P8.7 
Steerable wheel 
control. 

~A 

J 
Controller Motor 

Sensing 
coils 

Vehicle 
wheels 

Direction 
of travel 

(b) 

(a) Determine the corresponding specification Mpm in the 
frequency domain for the closed-loop transfer function 

R(Jo>) 
= T(jo>). 

(b) Determine the resonant frequency a>r. (c) Deter
mine the bandwidth of the closed-loop system. 

P8.9 Sketch the logarithmic-magnitude versus phase 
angle curves for the transfer functions (a) and (b) of 
Problem 8.1. 

P8.10 A linear actuator is used in the system shown in 
Figure P8.10 to position a mass M.The actual position of 
the mass is measured by a slide wire resistor, and thus 
H(s) = 1.0. The amplifier gain is selected so that the 
steady-state error of the system is less than 1% of the 
magnitude of the position reference i?(^).The actuator has 
a field coil with a resistance Rf — 0.1 i l a n d L f - 0.2 H. 

The mass of the load is 0.1 kg, and the friction is 0.2 N 
s/m. The spring constant is equal to 
0.4 N/m. (a) Determine the gain K necessary to maintain 
a steady-state error for a step input less than 1 %.That is, 
Kp must be greater than 99. (b) Sketch the Bode dia
gram of the loop transfer function, L(s) — G(s)H(s). 
(c) Sketch the logarithmic magnitude versus phase angle 
curve for L(Jia). (d) Sketch the Bode diagram for the 
closed-loop transfer function, Y(jco)/R{ja>). Determine 
Mpa,, con and the bandwidth. 

P8. l l Automatic steering of a ship would be a particularly 
useful application of feedback control theory [20]. 
In the case of heavily traveled seas, it is important 
to maintain the motion of the ship along an accurate 
track. A n automatic system would be more likely to 
maintain a smaller error from the desired heading than 
a helmsman who recorrects at infrequent intervals. 
A mathematical model of the steering system has 

FIGURE P8.8 
Second-order unity 
feedback system. 

Ms) 
. 

Controller 

K 

Process 

1 

s(s + 7) 
Y(s) 

http://P8.ll


5 5 2 Chapter 8 Frequency Response Methods 
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Ris) <? 

FIGURE P8.10 
Linear actuator 
control. 
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FIGURE P8.11 
Frequency 
response of ship 
control system. 
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been developed for a ship moving at a constant veloc
ity and for small deviations from the desired track. For 
a large tanker, the transfer function of the ship is 

_ E(s) _ 0.164(5 + 0.2)(-5 + 0.32) 

S(s7 " s2(s + 0.25)(i- - 0.009) ' 

where E(s) is the Laplace transform of the deviation 
of the ship from the desired heading and S(s) is the 
Laplace transform of the angle of deflection of the 
steering rudder. Verify that the frequency response of 
the ship, E(jco)/8(ja)), is that shown in Figure P8.ll. 

P8.12 The block diagram of a feedback control system is 
shown in Figure P8.12(a). The transfer functions of the 
blocks are represented by the frequency response 
curves shown in Figure P8.12(b). (a) When G3 is dis
connected from the system, determine the damping 
ratio I of the system, (b) Connect G3 and determine 
the damping ratio £. Assume that the systems have 
minimum phase transfer functions. 

P8.13 A position control system may be constructed by 
using an AC motor and AC components, as shown in 
Figure P8.13.The syncro and control transformer may 
be considered to be a transformer with a rotating 
winding. The syncro position detector rotor turns with 
the load through an angle 60. The syncro motor is 
energized with an AC reference voltage, for example, 
115 volts, 60 Hz. The input signal or command is 
R(s) = 9in(s) and is applied by turning the rotor of the 
control transformer. The AC two-phase motor oper
ates as a result of the amplified error signal. The 
advantages of an AC control system are (1) freedom 
from DC drift effects and (2) the simplicity and accu
racy of AC components. To measure the open-loop 
frequency response, we simply disconnect X from Y 
and X' from Y' and then apply a sinusoidal modula
tion signal generator to the Y - Y' terminals and 
measure the response at X - X'. (The error (0O - 9) 
will be adjusted to zero before applying the AC gener
ator.) The resulting frequency response of the loop 

http://P8.ll
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• Y(s) 

(a) 

Im 

Polar plot 
Giijto) 

Bode plot 
G2(jco) 

10 
Re 0 

CO 

increasing 

m = 

1 

t 
] 

Logarithmic magnitude 

9.54 

vs. phase plot 
G 3 ( » 

-360° -270° - 1 } -90° 

FIGURE P8.12 
Feedback system. (b) 

transfer function L(jco) = Gc(j(o)G(i(o)H(j(o), is 
shown in Figure P8.13(b). Determine the transfer 
function L(jco). Assume that the system has a mini
mum phase transfer function. 

P8.14 A bandpass amplifier may be represented by the 
circuit model shown in Figure P8.14 [3]. When R^ = 
R2 = 1 kfl, C, = 100 pF, C, = 1 /*F, and K = 100, 
show that 

G(s) = 
10ys 

(s + 1000)(s + 107) 

(a) Sketch the Bode diagram of G(ju). (b) Find the 
midband gain (in dB). (c) Find the high and low fre
quency —3 dB points. 

P8.15 To determine the transfer function of a process 
G(s), the frequency response may be measured using 
a sinusoidal input. One system yields the data in the 
following table: 

to, rad/s 

0.1 
1 
2 
4 
5 
6.3 
8 
10 
12.5 
20 
31 

\G(jco)\ 

50 
5.02 
2.57 
1.36 
1.17 
1.03 
0.97 
0.97 
0.74 
0.13 
0.026 

Phase, 
degrees 

- 9 0 
-92.4 
-96.2 

-100 
-104 
-110 
-120 
-143 
-169 
-245 
-258 

Determine the transfer function G(s). 

P8.16 The space shuttle has been used to repair satellites 
and the Hubble telescope. Figure P8.16 illustrates how 
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9 V.. 9 
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FIGURE P8.13 
(a) AC motor control, 
(b) Frequency 
response. 
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FIGURE P8.14 Bandpass amplifier. 

a crew member, with his feet strapped to the platform 
on the end of the shuttle's robotic arm, used his arms 
to stop the satellite's spin. The control system of the 
robotic arm has a closed-loop transfer function 

Y(s) 
R(s) 

53.5 

(a) Determine the response y(t) to a unit step input, 
R(s) = 1/s. (b) Determine the bandwidth of the system. 

s2 + 14. Ly + 53.5 FIGURE P8-16 Satellite repair. 
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P8.17 The experimental Oblique Wing Aircraft (OWA) 
has a wing that pivots, as shown in Figure P8.17. The 
wing is in the normal unskewed position for low 
speeds and can move to a skewed position for 
improved supersonic flight [11]. The aircraft control 
system loop transfer function is 

Gc(s)G(s) = 
4(0.5s + 1) 

s(2s + 1) — + 1 
20 

(a) Sketch the Bode diagram, (b) Find the frequency 
(0] when the magnitude is 0 dB, and find the frequency 
«2 when the phase is —180°. 

Maximum skewed 
wing position 

FIGURE P8.17 The Oblique Wing Aircraft, top and side 
views. 

P8.18 Remote operation plays an important role in 
hostile environments, such as those in nuclear or 
high-temperature environments and in deep space. 
In spite of the efforts of many researchers, a tele-
operation system that is comparable to the human's 
direct operation has not been developed. Research 
engineers have been trying to improve teleope-
rations by feeding back rich sensory information 
acquired by the robot to the operator with a sensation 
of presence. This concept is called tele-existence or 
telepresence [9]. 

The tele-existence master-slave system consists 
of a master system with a visual and auditory sensa
tion of presence, a computer control system, and an 
anthropomorphic slave robot mechanism with an arm 
having seven degrees of freedom and a locomotion 
mechanism. The operator's head movement, right arm 
movement, right hand movement, and other auxiliary 
motion are measured by the master system. A specially 
designed stereo visual and auditory input system 
mounted on the neck mechanism of the slave robot 
gathers visual and auditory information from the 

remote environment. These pieces of information are 
sent back to the master system and are applied to the 
specially designed stereo display system to evoke the 
sensation of presence of the operator. The locomotion 
control system has the loop transfer function 

Gc(s)G(s) = 
12(5 + 0.5) 

s2 + 13s + 30' 

Obtain the Bode diagram for Gc(jio)G(joj) and deter
mine the frequency when 20 \og\Gc(ja))G(jw)\ is very 
close to 0 dB. 

P8.19 A DC motor controller used extensively in auto
mobiles is shown in Figure P8.19(a). The measured 
plot of 6(5)/ / (5) is shown in Figure P8.19(b). Deter
mine the transfer function of 6(5)/ /(5) . 

P8.20 For the successful development of space projects, 
robotics and automation will be a key technology. 
Autonomous and dexterous space robots can reduce 
the workload of astronauts and increase operational 
efficiency in many missions. Figure P8.20 shows a con 
cept called a free-flying robot [9,13]. A major charac
teristic of space robots, which clearly distinguishes 
them from robots operated on earth, is the lack of a 
fixed base. Any motion of the manipulator arm will 
induce reaction forces and moments in the base, which 
disturb its position and attitude. 

The control of one of the joints of the robot can 
be represented by the loop transfer function 

781(5 + 10) 
Gc(s)G(s) = -= —. 

52 + 225 + 484 

(a) Sketch the Bode diagram of Gc(jo)G(j(o). (b) De
termine the maximum value of 201og|Gc(/'&>)G(jctf)|, 
the frequency at which it occurs, and the phase at that 
frequency. 

P8.21 Low-altitude wind shear is a major cause of air carrier 
accidents in the United States. Most of these accidents 
have been caused by either microbursts (small-scale, 
low-altitude, intense thunderstorm downdrafts that im
pact the surface and cause strong divergent outflows of 
wind) or by the gust front at the leading edge of expand
ing thunderstorm outflows. A microburst encounter is a 
serious problem for either landing or departing aircraft, 
because the aircraft is at low altitudes and is traveling at 
just over 25% above its stall speed [12]. 

The design of the control of an aircraft encoun
tering wind shear after takeoff may be treated as a 
problem of stabilizing the climb rate about a desired 
value of the climb rate. The resulting controller uses 
only climb rate information. 

The standard negative unity feedback system of 
Figure 8.24 has a loop transfer function 

Gc(s)G(s) = -
-2005 »2 

1452 + 445 + 40 
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FIGURE P8.19 
(a) Motor controller. 
(b) Measured plot. 

O.l 1Hz 

(b) 

10 

FIGURE P8.20 A space robot with three arms, shown 
capturing a satellite. 

Note the negative gain in Gc(s)G(s). This system rep
resents the control system for the climb rate. Sketch 
the Bode diagram and determine gain (in dB) when 
the phase is -180°. 

P8.22 The frequency response of a process G(jco) is 
shown in Figure P8.22. Determine G(s). 

P8.23 The frequency response of a process G(jco) is 
shown in Figure P8.23. Deduce the type number 
(number of integrations) for the system. Determine 
(he transfer function of the system, G(s). Calculate the 
error to a unit step input. 

P8.24 The Bode diagram of a closed-loop film transport 
system is shown in Figure P8.24 [17]. Assume that the 
system transfer function T(s) has two dominant 
complex conjugate poles, (a) Determine the best sec
ond-order model for the system, (b) Determine the 
system bandwidth, (c) Predict the percent overshoot 
and settling time (with a 2% criterion) for a step input. 

P8.25 A unity feedback closed-loop system has a steady-
state error equal to /1/10, where the input is 
r(t) = At2/2. The Bode plot of the magnitude and 
phase angle versus «> is shown in Figure P8.25 for 
G(jco). Determine the transfer function G(s). 

P8.26 Determine the transfer function of the op-amp cir
cuit shown in Figure P8.26. Assume an ideal op-amp. 
Plot the frequency response when R = 10 £11, 
/?t = 9 kH, R2 = I kn , and C = 1 p,F. 

P8.27 A unity feedback system has the loop transfer 
function 

L(s) - Gc(s)G(s) = 
K(s + 50) 

s2 + 10s + 25* 
Sketch the Bode plot of the loop transfer function and 
indicate how the magnitude 20 log|L(/co)| plot varies as 
K varies. Develop a table for K = 0.75,2, and 10, and 
for each K determine the crossover frequency 
(a)c for 201og|L(/&»)| = OdB), the magnitude at low 
frequency (20 log|L0'w)'for w « 1), and for the 
closed-loop system determine the bandwidth for each K. 
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FIGURE P8.22 Bode plot of G(s). 
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FIGURE P8.24 Bode plot of a closed-film transport system. 
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FIGURE P8.26 
An op-amp circuit. 
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AP8.1 A spring-mass-damper system is shown in Figure 
AP8.1(a). The Bode diagram obtained by experimen
tal means using a sinusoidal forcing function is shown 

in Figure AP8.1(b). Determine the numerical values 
of m, b, aa.dk. 

FIGURE AP8.1 
A spring-mass-
damper system. 
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AP8.2 A system is shown in Figure AP8.2. The nominal 
value of the parameter b is 4.0. Determine the sensi-

FiGURE AP8.2 
System with 
parameter b. 

AP8.3 As an automobile moves along the road, the vertical 
displacements at the tires act as the motion excitation 
to the automobile suspension system [16]. Figure AP8.3 
is a schematic diagram of a simplified automobile 

FIGURE AP8.3 
Auto suspension 
system model. 

AP8.4 A helicopter with a load on the end of a cable is 
shown in Figure AP8.4(a). The position control system 
is shown in Figure AP8.4(b), where the visual feed
back is represented by H(s). Sketch the Bode diagram 
of G(ja>)H(jot). 

AP8.5 A closed-loop system with unity feedback has a 
transfer function 

T(s) = 
10(5 + 1) 

s2 + 9s + 10' 

(a) Determine the loop transfer function Gc(s) G(s). 
(b) Plot the log-magnitude-phase (similar to Figure 
8.27), and identify the frequency points for o) equal to 
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tivity Sj, and plot 20 log|S£|, the Bode magnitude dia
gram for K — 2. 

0.5 

b 
s+ 1 • tt.v) 

suspension system, for which we assume the input is si
nusoidal. Determine the transfer function X(s)/R(s), 
and sketch the Bode diagram when M = 1 kg, 
b = 4 N s/m, and k = 18 N/m. 

1,10,50,110, and 500. (c) Is the open-loop system sta
ble? Is the closed-loop system stable? 

AP8.6 Consider the spring-mass system depicted in Fig
ure AP8.6. Develop a transfer function model to 
describe the motion of the mass A/ - 2 kg, when the 
input is u(t) and the output is x(t). Assume that the ini
tial conditions are x(0) = 0 and xiO) = 0. Determine 
values of k and b such that the maximum steady-state 
response of the system to a sinusoidal input 
u(t) = sin(tof) is less than 1 for all w. For the values 
you selected for k and b, what is the frequency at 
which the peak response occurs? 



560 Chapter 8 Frequency Response Methods 

a • • • • a o a 

FIGURE AP8.4 
A helicopter 
feedback control 
system. 

h 
(a) 

G(s) 

y + 3.2s ) 16 

H(s) 

Y(s) 
- • Load 

position 

(b) 

FIGURE AP8.6 
Suspended spring- **» 
mass system with 
parameters k and b. 

DESIGN PROBLEMS 

CDP8.1 In this chapter, we wish to use a PD controller 
f C\ such that 

Gr(s) = K(s + 2). 

The tachometer is not used (see Figure CDP4.1). 
Plot the Bode diagram fur the system when K = 40. 
Determine the step response of this system and esti
mate the overshoot and settling time (with a 2% 
criterion). 

DP8.1 Understanding the behavior of a human steering 
an automobile remains an interesting subject [14,15, 
16, 21]. The design and development of systems 
for four-wheel steering, active suspensions, active, 
independent braking, and "drive-by-wire" steering 
provide the engineer with considerably more freedom 
in altering vehicle-handling qualities than existed in 
the past. 
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FIGURE DP8.1 
Human steering 
control system. 

R(s) 
Desired 

distance from 
center line 

- ^ EiTor 

? ' 

Gc(s) 
Driver 

K(s + 2) 

G(s) 
Vehicle 

1 

s2(s + 12) 

>'(.v) 
Distance 

from cenifi 
line 

The vehicle and the driver are represented by 
the model in Figure DP8.1, where the driver devel
ops anticipation of the vehicle deviation from the 
center line. For K - 1, plot the Rode diagram of (a) 
the loop transfer function Gc(s)G(s) and (b) the 
closed-loop transfer function T(s). (c) Repeat parts 
(a) and (b) when K = 50. (d) A driver can select the 
gain K. Decermine the appropriate gain so that 
MpoJ ^ 2, and the bandwidth is the maximum attain
able for the closed-loop system, (e) Determine the 
steady-state error of the system for a ramp input 
'"(') = t. 

DP8.2 The unmanned exploration of planets such as 
Mars requires a high level of autonomy because of the 
communication delays between robots in space and 
their Earth-based stations. This affects all the compo
nents of the system: planning, sensing, and mechanism. 
In particular, such a level of autonomy can be 
achieved only if each robot has a perception system 
that can reliably build and maintain models of the 
environment.The perception system is a major part of 

the development of a complete system that includes 
planning and mechanism design. The target vehicle is 
the Spider-bot, a four-legged walking robot shown in 
Figure DP8.2(a), being developed at NASA Jet 
Propulsion Laboratory [18].The control system of one 
leg is shown in Figure DP8.2(b). 

(a) Sketch the Bode diagram for Gr(s)G(s) 
when K = 20. Determine (1) the frequency when the 
phase is -180° and (2) the frequency when 
20log|GcG| = OdB. (b) Plot the Bode diagram for 
the closed-loop transfer function T(s) when K = 20. 
(e) Determine Mpa>, a>r, and ioB for the closed-loop sys
tem when K = 20 and K = 40. (d) Select the best gain 
of the two specified in part (c) when it is desired that 
the overshoot of the system to a step input /-(/), be less 
than 35% and the settling time be as short as possible. 

DP8.3 A table is used to position vials under a dispenser 
head, as shown in Figure DP8.3(a). The objective is 
speed, accuracy, and smooth motion in order to elimi
nate spilling. The position control system is shown in 
Figure DP8.3(b). Since we want small overshoot for a 

FIGURE DP8.2 
(a) The Mars-bound 
Spider-bot. (Photo 
courtesy of NASA.) 
(b) Block diagram of 
the control system 
for one leg. 

R(s) 
+.n . 

^ ^ I 

Gc(s) Amplifier 
and controller 

K(s + 1) 
4- + 5 

G(s) 
Actuator and leg 

1 
4-(5-2 + 24" + 10) 

• Y(s) 

(b) 
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Dispenser 

1 i 

)>-axis motor 
and sensor 

Position 
command 

FIGURE DP8.3 
Automatic table 
and dispenser. 

. 

K 

s2 + 2s + 2 

Sensor 

5 
(* + 5) 

Y(5) 
Position 

(b) 

step input and yet desire a short settling time, we will 
limit 20 log Mp'u to 3 dB for T(ja>). Plot the Bode dia
gram for a gain K that will result in a stable system. 
Then adjust K until 201ogA/po) - 3dB, and deter
mine the closed-loop system bandwidth. Determine 
the steady-state error for the system for the gain K 
selected to meet the requirement for Mpio. 

DP8.4 Anesthesia can be administered automatically by a 
control system. For certain operations, such as brain 
and eye surgery, involuntary muscle movements can be 
disastrous, l b ensure adequate operating conditions 
for the surgeon, muscle relaxant drugs, which block in
voluntary muscle movements, are administered. 

A conventional method used by anesthesiolo
gists for muscle relaxant administration is to inject a 
bolus dose whose size is determined by experience 
and to inject supplements as required. However, an 
anesthesiologist may sometimes fail to maintain a 
steady level of relaxation, resulting in a large drug 
consumption by the patient. Significant improve
ments may be achieved by introducing the concept of 

automatic control, which results in a considerable 
reduction in the total relaxant drug consumed [19]. 

A model of the anesthesia process is shown in 
Figure DP8.4. Select a gain K so that the bandwidth of 
the closed-loop system is maximized while Mpiu < 1.5. 
Determine the bandwidth attained for your design. 

DP8.5 Consider the control system depicted in Figure 
DP8.5(a) where the plant is a "black box" for which 
little is known in the way of mathematical models. The 
only information available on the plant is the frequency 
response shown in Figure DP8.5(b). Design a con
troller Gc(s) to meet the following specifications: (i) 
The crossover frequency is between 10 rad/s and 50 
rad/s; (ii) The magnitude of Ge(s)G(s) is greater than 
20 dB for (o < 0.1 rad/s. 

DP8.6 A single-input, single-output system is described by 

i ( f ) = 
0 1 

- 1 -p 

y(t) = [0 l]x(0 

x(0 + *1 
0 

w(f) 
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(a) Determine p and K such that the unit step 
response exhibits a zero steady-state error and 
the percent overshoot meets the requirement 
P.O. < 5%. 

(b) For the values of p and K determined in part (a), 
determine the system damping ratio £ and the 
natural frequency ew„. 

(c) For the values of p and K determined in part (a), 
obtain the Bode plot of the system and determine 
the bandwidth oin. 

(d) Using the approximate formula shown in Figure 
8.26, compute the bandwidth using t, and co„ and 
compare the value to the actual bandwidth from 
part (c). 

FIGURE DP8.4 
Model of an 
anesthesia control 
system. 
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relaxation 
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Controller 

K 
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Drug 
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Controller 
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0 
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FIGURE DP8.5 
(a) Feedback 
system with "black 
box" plant, (b) 
Frequency 
response plot of the 
"black box" 
represented by G{s). 
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COMPUTER PROBLEMS 

CP8.1 Write a MATLAB program to draw the polar plot of 
a type I third-order system with transfer function 

G(s) = 
K 

s(s2 + 2s + 4) 

for a specified value of K. 

(a) Using the program draw polar plot when K = 3. 
(b) From the plot find &>, when ZG(j<t>) = 180°. 
(c) Find \G(jo))\ corresponding to frequency ob

tained in (b). 

CP8.2 For the following transfer functions, sketch the 
Bode plots, then verify with the bode function: 

(a) G(s) = ' 

(b) G(s) = 

(s + 1 ) (5+ 10) 

s + 10 

(s + 2)(.T + 40) 

(c) G(s) = -. 
s2 + 2s + 50 

s - 7 
(d) G(s) = 

(s + 2)(s2 t- 12.9 f 50) 
CP8.3 For each of the following transfer functions, sketch 

the Bode plot and determine the crossover frequency 
(that is, the frequency at which 20 log10| G(j(o) \ - 0 dB): 

(a) C*) = 100° 

(b) G(s) = 

(c) G(s) = 

(d) G(s) = 

(s + I0)(s I 30) 

100 

(s + 0.2)(^2 h s t 20) 

50(5 + 100) 

(5 + 1)(5 + 50) 

100(52 + Us + 50) 

(s + 1)(5 + 2)(5 + 500) 
CP8.4 A unity negative feedback system has the loop 

transfer function 

Gc(s)G(s) = 50 
s(s + 5) 

Determine the closed-loop system bandwidth by using 
the bode function to obtain the Rode plot, and esti
mate the bandwidth from the plot. Label the plot with 
the bandwidth. 

CP8.5 A block diagram of a second-order system is shown 
in Figure CP8.5. 

(a) Determine the resonant peak Mpu} the reso
nant frequency a>n and the bandwidth MB, of the system 
from the closed-loop Bode plot. Generate the Bode 

plot with an m-file for a; = 0.1 to CD - 1000 rad/s using 
the logspace function, (b) Estimate the system damping 
ratio, £, and natural frequency a>„, using Equations 
(8.36) and (8.37) in Section 8.2. (c) From the closed-
loop transfer function, compute the actual f and a>„ and 
compare with your results in part (b). 

R(s) 

FIGURE CP8.5 
system. 

• Y(s) 

A second-order feedback control 

CP8.6 Using MATLAB obtain Bode plot of a system with 
transfer function 

G(s) = 
K(\ + 0.1$) 

5(1 + 25)(52 + 25 + 2) 

(a) K = 10. 
(b) K = 20. 
(c) Compare plots obtained in (a) and (b). 

CP8.7 Given. 

Gc(s) -
(1 + 0.55) 

(1 + 0.055) 

12 
GP(s) = 

s(s + 1) 

using MATLAB 

(a) Obtain Bode plot of Gc (s). 
(b) Obtain Bode plot of GP(s). 
(c) Obtain Bode plot of Gc is) • GP(s). 

CP8.8 Consider the problem of controlling an inverted 
pendulum on a moving base, as shown in Figure 
CP8.8(a).The transfer function of the system is 

G(s) = 
-\/{MhL) 

s2 - (Mb + Ms)g/(MbL) 

The design objective is to balance the pendulum 
(i.e., 9(t) ~ 0) in the presence of disturbance inputs. A 
block diagram representation of the system is depicted 
in Figure CP8.8(b). Let Ms = 10 kg, Mb = 100 kg, 
L = lm,g = 9.81 m/s 2 ,a = 5, and b = 10. The 



Computer Problems 565 

(a) 

9,,(s) = 0 

FIGURE CP8.8 
(a) An inverted 
pendulum on a 
moving base. 
(b) A block diagram 
representation. 

Controller 

-K(s + a) 
s + b 

Disturbance 

:o*. *{J * 

Pendulum model 

M^L 

, [Mb + Ms)g 
MhL 

Cb) 

design specifications, based on a unit step disturbance, 
are as follows: 

1. settling time (with a 2% criterion) less than 10 
seconds, 

2. percent overshoot less than 40%, and 
3. steady-state tracking error less than 0.1° in the 

presence of the disturbance. 

Develop a set of interactive m-file scripts to aid in the 
control system design.The first script should accomplish 
at least the following: 

1. Compute the closed-loop transfer function from the 
disturbance to the output with K as an adjustable 
parameter, 

2. Draw the Bode plot of the closed-loop system. 
3. Automatically compute and output Mpu> and 

(Or. 

As an intermediate step, use M„w and o>r and Equa
tions (8.36) and (8.37) in Section 8.2 to estimate £ and 
OJ„. The second script should at least estimate the set
tling time and percent overshoot using £ and con as 
input variables. 

If the performance specifications are not satis
fied, change. K and iterate on the design using the first 
two scripts. After completion of the first two steps, the 

final step is to test the design by simulation. The func
tions of the third script are as follows: 

1. plot the response, #(/), to a unit step disturbance 
with K as an adjustable parameter, and 

2. label the plot appropriately. 

Utilizing the interactive scripts, design the controller to 
meet the specifications using frequency response Bode 
methods. To start the design process, use analytic 
methods to compute the minimum value of K to meet 
the steady-state tracking error specification. Use the 
minimum K as the first guess in the design iteration. 

CP8.9 Design a filter, G(s), with the following frequency 
response: 

1 rad/s, the magnitude 20 log]0|G(/w)| < 1. For a) 
OdB 

2. For 1 
\GQ<o) 

: ot < 1000 rad/s, the magnitude 20 log1() 

2: 0 dB 
' 3. For Co > 1000 rad/s, the magnitude 20 log]0 

I G O ) | < OdB 

Try to maximize the peak magnitude as close to 
to = 40 rad/s as possible. 
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TERMS AND CONCEPTS 

All-pass network A nonminimum phase system that 
passes all frequencies with equal gain. 

Bandwidth The frequency at which the frequency re
sponse has declined 3 dB from its low-frequency 
value. 

Bode plot The logarithm of the magnitude of the trans
fer function is plotted versus the logarithm of <w, the 
frequency. The phase cf> of the transfer function is sep
arately plotted versus the logarithm of the frequency. 

Break frequency The frequency at which the asymptotic 
approximation of the frequency response for a pole 
(or zero) changes slope. 

Corner frequency See Break frequency. 

Decade A factor of 10 in frequency (e.g., the range of fre
quencies from 1 rad/s to 10 rad/s is one decade). 

Decibel (dB) The units of the logarithmic gain. 
Dominant roots The roots of the characteristic equation 

that represent or dominate the closed-loop transient 
response. 

Fourier transform The transformation of a function of 
time f(i) into the frequency domain. 

Fourier transform pair A pair of functions, one in the 
time domain, denoted by /(/), and the other in the fre
quency domain, denoted by F(&>), related by the 
Fourier transform as F(CD) = &{f{t)}, where S> 
denotes the Fourier transform. 

Frequency response The steady-state response of a sys
tem to a sinusoidal input signal. 

Laplace transform pair A pair of functions, one in the 
time domain, denoted by fit), and the other in the 

frequency domain, denoted by F(s), related by the 
Laplace transform as F(s) = -S£{/(0}« where X 
denotes the Laplace transform. 

Logarithmic magnitude The logarithm of the magnitude 
of the transfer function, usually expressed in units of 
20dB,thus201og]0|G|. 

Logarithmic plot See Bode plot. 

Maximum value of the frequency response A pair of com
plex poles will result in a maximum value for the fre
quency response occurring at the resonant frequency. 

Minimum phase transfer function All the zeros of a 
transfer function lie in the left-hand side of the s-
plane. 

Natural frequency The frequency of natural oscillation 
that would occur for two complex poles if the damp
ing were equal to zero. 

Nonminimum phase transfer function Transfer functions 
with zeros in the right-hand s-plane. 

Polar plot A plot of the real part of G(jo>) versus the 
imaginary part of G(ja>). 

Resonant frequency The frequency ior at which the max
imum value of the frequency response of a complex 
pair of poles is attained. 

Transfer function in the frequency domain The ratio of 
the output to the input signal where the input is a 
sinusoid. It is expressed as G(jio). 
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PREVIEW 

In previous chapters, we discussed stability and developed various tools to deter
mine stability and to assess relative stability. We continue that discussion in this 
chapter by showing how frequency response methods can be used to investigate sta
bility. The important concepts of gain margin, phase margin, and bandwidth are 
developed in the context of Bode plots and Nyquist diagrams. A frequency response 
stability result—known as the Nyquist stability criterion—is presented and its use 
illustrated through several interesting examples. The implications of having pure 
time delays in the system on both stability and performance are discussed. We will 
see that the phase lag introduced by the time delay can destabilize an otherwise 
stable system. The chapter concludes with a frequency response analysis of the 
Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

U p o n completion of Chapter 9, students should: 

G Understand the Nyquist stability criterion and the role of the Nyquist plot. 
G Be familiar with time-domain performance specifications in the frequency domain. 
G Appreciate the importance of considering time delays in feedback control systems. 
G Be capable of analyzing the relative stability and performance of feedback control 

systems using frequency response methods considering phase and gain margin, and 
system bandwidth. 

567 
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9.1 INTRODUCTION 

For a control system, it is necessary to determine whether the system is stable. 
Furthermore, if the system is stable, it is often necessary to investigate the rela
tive stability. In Chapter 6, we discussed the concept of stability and several meth
ods of determining the absolute and relative stability of a system. The 
Routh-Hurwitz method, discussed in Chapter 6. is useful for investigating the 
characteristic equation expressed in terms of the complex variable s — a + jco. 
Then, in Chapter 7, we investigated the relative stability of a system utilizing the 
root locus method, which is also expressed in terms of the complex variable s. In 
this chapter, we are concerned with investigating the stability of a system in the 
real frequency domain, that is, in terms of the frequency response discussed in 
Chapter 8. 

The frequency response of a system represents the sinusoidal steady-state 
response of a system and provides sufficient information for the determination 
of the relative stability of the system. The frequency response of a system can 
readily be obtained experimentally by exciting the system with sinusoidal input 
signals; therefore, it can be utilized to investigate the relative stability of a sys
tem when the system parameter values have not been determined. Furthermore, 
a frequency-domain stability criterion would be useful for determining suitable 
approaches to adjusting the parameters of a system in order to increase its rela
tive stability. 

A frequency domain stability criterion was developed by H. Nyquist in 1932, 
and it remains a fundamental approach to the investigation of the stability of lin
ear control systems [1,2]. The Nyquist stability criterion is based on a theorem in 
the theory of the function of a complex variable due to Cauchy. Cauchy's theorem 
is concerned with mapping contours in the complex s-plane, and fortunately the 
theorem can be understood without a formal proof requiring complex variable 
theory. 

To determine the relative stability of a closed-loop system, we must investigate 
the characteristic equation of the system: 

F(s) = 1 + L(s) = 0. (9.1) 

For the single-loop control system of Figure 9.1, L(s) = Gc(s)G(s)H(s). For a mul
tiloop system, we found in Section 2.7 that, in terms of signal-flow graphs, the char
acteristic equation is 

F(s) = &(s) = 1 - 2Ln + ^LmLq... = 0, 

where A(.v) is the graph determinant. Therefore, we can represent the character
istic equation of single-loop or multiple-loop systems by Equation (9.1), where 
L(s) is a rational function of s. To ensure stability, we must ascertain that all the 
zeros of F(s) lie in the left-hand s-plane. Nyquist thus proposed a mapping of the 
right-hand .5-plane into the F(j)-plane. Therefore, to use and understand 
Nyquist's criterion, we shall first consider briefly the mapping of contours in the 
complex plane. 
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9.2 MAPPING CONTOURS IN THE s-PLANE 

We are concerned with the mapping of contours in the s-plane by a function F(s).A 
contour map is a contour or trajectory in one plane mapped or translated into anoth
er plane by a relation F(s). Since s is a complex variable, s = a + /<*>, the function F(s) 
is itself complex; it can be defined as F(s) = u + jv and can be represented on a com
plex F(i)-plane with coordinates u and v. As an example, let us consider a function 
F(s) - 2s + 1 and a contour in the s-plane, as shown in Figure 9.2(a). The mapping 

FIGURE 9.2 
Mapping a square 
contour by 
F(s) - 2s •+ 1 = 
2(8 + 1/2). 

JM 

/2 

Or" "*-

- 2 -1 

C 

_I 
: 

-Q-

j i 

s-plane j 

0 

- / 1 -

-i—r 

2 

- / 2 -

(a) 

- > <T 

;w 

! 

1 ' 

i \\ 

! 
~2 - 1 

; ; 

1 i 

| 

1 

. , 
F(s)-p\i 

"J' 

•A 

ne 

j 
i 

o 

q n 

2 

i 

i 

h 

i 
A 

• 

3 _ 

| 
J 

^ 

(b) 



570 Chapter 9 Stability in the Frequency Domain 

of the .y-plane unit square contour to the F(s)-plane is accomplished through the 
relation F(s), and so 

u + jv = F(s) = 2s + I =2(a + jco) + 1. (9.2) 

Therefore, in this case, we have 

u = 2<r + 1 (9.3) 

and 

v = 2(o. (9.4) 

Thus, the contour has been mapped by F(s) into a contour of an identical form, a 
square, with the center shifted by one unit and the magnitude of a side multiplied by 
two. This type of mapping, which retains the angles of the s-plane contour on the 
F(/)-p\an&, is called a conformal mapping. We also note that a closed contour in the 
.v-plane results in a closed contour in the F(s)-plane. 

The points A, B, C, and D, as shown in the .s-plane contour, map into the points 
A, B, C, and D shown in the F(^)-plane. Furthermore, a direction of traversal of the 
s-plane contour can be indicated by the direction ABCD and the arrows shown on 
the contour. Then a similar traversal occurs on the F(s)-p\&ne contour as we pass 
ABCD in order, as shown by the arrows. By convention, the area within a contour to 
the right of the traversal of the contour is considered to be the area enclosed by the 
contour. Therefore, we will assume clockwise traversal of a contour to be positive 
and the area enclosed within the contour to be on the right. This convention is op
posite to that usually employed in complex variable theory, but is equally applicable 
and is generally used in control system theory. We might consider the area on the 
right as we walk along the contour in a clockwise direction and call this rule "clock
wise and eyes right." 

Typically, we are concerned with an F(s) that is a rational function of s. There
fore, it will be worthwhile to consider another example of a mapping of a contour. 
Let us again consider the unit square contour for the function 

F(s) = jj-2. (9.5) 

Several values of F(s) as s traverses the square contour are given in Table 9.1, and 
the resulting contour in the F(^)-plane is shown in Figure 9.3(b). The contour in the 
F(s)-p\ane encloses the origin of the F(.y)-plane because the origin lies within the en
closed area of the contour in the F(s)-plane. 

Table 9.1 Values of F(s) 

S = O" + j(0 

F(s) = u + jv 

Point A 

l + 7 ' l 

4 + 2/ 

10 

1 

1 
3 

Point B 

i -n 
4 - 2 ; 

10 

-n 
1 - 2 ; 

5 

Point C 

- 1 - yl 

-J 

- 1 

- 1 

Point D 

- 1 + /1 

+j 

/1 
1 +2 ; 



Section 9.2 Mapping Contours in the s-Plane 571 

J<o 

FIGURE 9.3 
Mapping for 
F(s) = s/{s + 2). 
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Cauchy's theorem is concerned with mapping a function F(s) that has a finite 
number of poles and zeros within the contour, so that we may express F(s) as 

TL(s + pk) 
k=i 

(9.6) 

where — z, are the zeros of the function F(s) and -pk are the poles of F(^).The func
tion F(s) is the characteristic equation, and so 

where 

Therefore, we have 

F{s) = 1 + L(s), 

N(s) 

(9.7) 

Us)» D(Sy 

F(s) = 1 + L(s) = 1 + 
N(s) D(s) + N(s) K ^ s + Z^ 

D(s) D(s) M 

n o - pk) 
k = l 

(9.8) 

and the poles of L(s) are the poles of F(s). However, it is the zeros of F(s) that are 
the characteristic roots of the system and that indicate its response. This is clear if we 
recall that the output of the system is 

51¾ A* ypk&k 

where P^ and A^ are the path factors and cofactors as defined in Section 2.7. 

(9.9) 
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Reexamining the example when F(s) = 2(s + 1/2), we have one zero of F(s) 
at s = -1 /2 , as shown in Figure 9.2. The contour that we chose (that is, the unit 
square) enclosed and encircled the zero once within the area of the contour. Simi
larly, for the function F(s) - s/(s + 2), the unit square encircled the zero at the 
origin but did not encircle the pole at s = —2. The encirclement of the poles and 
zeros of F{s) can be related to the encirclement of the origin in the F(,?)-plane by 
Cauchy's theorem, commonly known as the principle of the argument, which 
states [3,4]: 

If a contour Vs in the 5-plane encircles Z zeros and P poles of F(s) and does not pass 
through any poles or zeros of F(s) and the traversal is in the clockwise direction along 
the contour, the corresponding contour VF in the F(v)-plane encircles the origin of the 
F(i')-plane N - Z - P times in the clockwise direction. 

Thus, for the examples shown in Figures 9.2 and 9.3, the contour in the F(s)-
plane encircles the origin once, because N — Z — P = 1, as we expect. As another 
example, consider the function F(s) *= s/(s + 1/2). For the unit square contour 
shown in Figure 9.4(a), the resulting contour in the F(s) plane is shown in Figure 9.4(b). 
In this case, N - Z - P = 0, as is the case in Figure 9.4(b), since the contour TF 

does not encircle the origin. 
Cauchy's theorem can be best comprehended by considering F(s) in terms of 

the angle due to each pole and zero as the contour Ts is traversed in a clockwise di
rection. Thus, let us consider the function 

(s +• Z])(s + o ) 

(s + Pl)(s + P?y
 K 

where - z , is a zero of F(s), and — pk is a pole of F(s). Equation (9.10) can be written 

as 

Si + /S + Zi - /S - p, - / 5 + p2 

F(s) = \F(s)\/F(s) 

= \s + Zi\\s + Z2\ f 

\s + p:\\s + p2l 

= 1^)1(^, + ^ - ^ - ^ ) - (9-11) 

Now, considering the vectors as shown for a specific contour Vs (Figure 9.5a), we 
can determine the angles as s traverses the contour. Clearly, the net angle change as 
s traverses along rs (a full rotation of 360° for <pPx, (f>pi and 4>z^ is zero degrees. 
However, for <f>Zi as s traverses 360° around Ts, the angle <pZl traverses a full 360° 
clockwise.Thus, as Ts is completely traversed, the net angle increase of F(s) is equal 
to 360°, since only one zero is enclosed. If Z zeros were enclosed within Ts, then the 
net angle increase would be equal to <pz = 2TTZ rad. Following this reasoning, if Z 
zeros and P poles are encircled as Ts is traversed, then 2-7rZ - 2-77P is the net resul
tant angle increase of F(s).Thus, the net angle increase of Tf of the contour in the 
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FIGURE 9.4 
Mapping for 
F(s) = s/(s + 1/2). 
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F(s)-plane is simply 

or 

0F - </>Z ~ <£/>> 

2TTA^ = 2TT2: - 2TTP, (9.12) 

and the net number of encirclements of the origin of the F(s)-plane is N = Z - P. 
Thus, for the contour shown in Figure 9.5(a), which encircles one zero, the contour 
TF shown in Figure 9.5(b) encircles the origin once in the clockwise direction. 

FIGURE 9.5 
Evaluation of the 
net angle of TF. 

Tp contour 

(a) (b) 
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FIGURE 9.6 
Example of 
Cauchy's theorem 
with three zeros 
and one pole 
within TV 

• o- • u 

(a) (b) 

As an example of the use of Cauchy's theorem, consider the pole-zero pattern 
shown in Figure 9.6(a) with the contour Fs to be considered. The contour encloses 
and encircles three zeros and one pole. Therefore, we obtain 

M = 3 - 1 = +2, 

and TF completes two clockwise encirclements of the origin in the .F(s')-plane, as 

shown in Figure 9.6(b). 

For the pole and zero pattern shown and the contour Ts as shown in Figure 9.7(a), 
one pole is encircled and no zeros are encircled. Therefore, we have 

N = Z - P = - 1 , 

and we expect one encirclement of the origin by the contour FF in the F(s)-plane. 
However, since the sign of N is negative, we find that the encirclement moves in the 
counterclockwise direction, as shown in Figure 9.7(b). 

FIGURE 9.7 
Example of 
Cauchy's theorem 
with one pole 
within To. 

-* O • a- • » 

(a) (b) 
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Now that we have developed and illustrated the concept of mapping of con
tours through a function F(s), we are ready to consider the stability criterion pro
posed by Nyquist. 

9.3 THE NYQUIST CRITERION 

To investigate the stability of a control system, we consider the characteristic equa
tion, which is F(s) = 0, so that 

F(s) = 1 + L(s) = 
i=l 

M 

n> + A) 
k = \ 

= 0. (9.13) 

For a system to be stable, all the zeros of F(s) must lie in the left-hand s-plane. Thus, 
we find that the roots of a stable system (the zeros of F(s)) must lie to the left of the 
/w-axis in the s-plane. Therefore, we choose a contour Ts in the s-plane that encloses 
the entire right-hand s-plane, and we determine whether any zeros of F(s) lie within 
Ts by utilizing Cauchy's theorem. That is, we plot TF in the F(s)-plane and determine 
the number of encirclements of the origin N. Then the number of zeros of F(s) with
in the Vs contour (and therefore, the unstable zeros of F(s)) is 

Z = N + P. (9.14) 

Thus, if P = 0, as is usually the case, we find that the number of unstable roots of the 
system is equal to N, the number of encirclements of the origin of the F(s)-plane. 

The Nyquist contour that encloses the entire right-hand s-plane is shown in 
Figure 9.8. The contour Ts passes along the y'w-axis from — /oo to +/oo, and this 
part of the contour provides the familiar F(jo>). The contour is completed by a 

FIGURE 9.8 
Nyquist contour is 
shown as the heavy 
line. 

Nyquist contour 

r5 
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semicircular path of radius r, where r approaches infinity so this part of the con
tour typically maps to a point. This contour VF is known as the Nyquist diagram or 
polar plot. 

Now, the Nyquist criterion is concerned with the mapping of the characteristic 
equation 

F(s) = 1 + L(s) (9.15) 

and the number of encirclements of the origin of the F^-plane. Alternatively, we 
may define the function 

F'(s) = F(.v) - 1 ^ L(s). (9.16) 

The change of functions represented by Equation (9.16) is very convenient 
because L(s) is typically available in factored form, while 1 + L(s) is not. Then, 
the mapping of Ts in the s-plane will be through the function F'($) = L(s) into 
the L(s)-plane. In this case, the number of clockwise encirclements of the origin 
of the F(.s,)-plane becomes the number of clockwise encirclements of the - 1 point 
in the F'(s) = L(s)-plane because F'(s) = F(s) - 1. Therefore, the Nyquist sta
bility criterion can be stated as follows: 

A feedback system is stable if and only if the contour TL in the L(s>plane does 
not encircle the (— 1, 0) point when the number of poles of L(s) in the right-

hand s-plane is zero (P = 0). 

When the number of poles of L(s) in the right-hand .v-plane is other than zero, 
the Nyquist criterion is stated as follows: 

A feedback control system is stable if and only if, for the contour TL, the 
number of counterclockwise encirclements of the (— 1, 0) point is equal to the 

number of poles of L(s) with positive real parts. 

The basis for the two statements is the fact that, for the F'(s) = L(s) mapping, 
the number of roots (or zeros) of 1 + L(s) in the right-hand s-plane is represented 
by the expression 

Z = N + P, 

Clearly, if the number of poles of L(s) in the right-hand s-plane is zero (P = 0), we 
require for a stable system that N = 0, and the contour Tp must not encircle the - 1 
point. Also, if P is other than zero and we require for a stable system that Z = 0, 
then we must have N = —P, or P counterclockwise encirclements. 

Tt is best to illustrate the use of the Nyquist criterion by completing several 
examples. 
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EXAMPLE 9.1 System with two real poles 

A single-loop control system is shown in Figure 9.1, where 

K 
L{s) 

(r,.? + l)(T2S + 1) ' 
(9.17) 

In this case, L(s) = Gc(s)G(s)H(s), and we use a contour TL in the L(s)-plane.The 
contour Ts in the s-plane is shown in Figure 9.9(a), and the contour FL is shown in 
Figure 9.9(b) for T\ = 1, T? = 1/10, and K = 100. The magnitude and phase of 
L(J(o) for selected values of to are given in Table 9.2. We use these values to obtain 
the polar plot of Figure 9.9(b). 

The +;w-axis is mapped into the solid line, as shown in Figure 9.9. The —yw-axis 
is mapped into the dashed line, as shown in Figure 9.9. The semicircle with r —> oo in 
the 5-plane is mapped into the origin of the L(s)-plane. 

We note that the number of poles of L(s) in the right-hand .s-plane is zero, 
and thus P = 0. Therefore, for this system to be stable, we require N = Z = 0, 
and the contour must not encircle the - 1 point in the L(s)-plane. Examining 
Figure 9.9(b) and Equation (9.17), we find that, irrespective of the value of K, the 
contour does not encircle the - 1 point, and the system is always stable for all K 
greater than zero. • 

FIGURE 9.9 
Nyquist contour and 
mapping for L{s) = 

100 
(s + 1)(s/10 + 1)" 

Jv 
Negative frequency 

" \ ~co= -0.76 

L(s)-plane 

Nyquist 
contour 

to = 0.76 

(a) (b) 

Table 9.2 Magnitude and Phase of L{Jo>) 

oj 0 0.1 0.76 1 2 10 20 100 

\W*>)\ 
/L(M 
(degrees) 

100 
0 

96 
-5.7 

79.6 
-41.5 

70.7 
-50.7 

50.2 
-74.7 

6.8 
-129.3 

2.24 0.10 0 
-150.5 -173.7 -180 
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EXAMPLE 9.2 System with a pole at the origin 

A single-loop control system is shown in Figure 9.1, where 

K 
Us) S(TS + 1)' 

In this single-loop case, L(s) = Gc(s)G(s)H(s), and we determine the contour YL in 
the L(s)-plane. The contour Ts in the 5-plane is shown in Figure 9.10(a), where an 
infinitesimal detour around the pole at the origin is effected by a small semicircle of 
radius e, where e —> 0. This detour is a consequence of the condition of Cauchy's 
theorem, which requires that the contour cannot pass through the pole at the origin. 
A sketch of the contour TL is shown in Figure 9.10(b). Clearly, the portion of the 
contour TL from co = 0+ to co = +co is simply L(jco), the real frequency polar plot. 
Let us consider each portion of the Nyquist contour Ts in detail and determine the 
corresponding portions of the L(s)-plane contour TL. 

(a) The Origin of the s-plane. The small semicircular detour around the pole at 
the origin can be represented by setting s = ee1^ and allowing c\> to vary from -90° 
at co = 0 to +90° at w = 0+. Because e approaches zero, the mapping for L(s) is 

K K 
limL(s) = lim—rr = lim—e~j*. 
e^0 e-*0eeI<t> e-»0 6 

(9.18) 

Therefore, the angle of the contour in the L(s)-plane changes from 90° at w - 0 
to -90° at o) = 0+, passing through 0° at co = 0. The radius of the contour in the 
L(i)-plane for this portion of the contour is infinite, and this portion of the contour 
is shown in Figure 9.10(b). The points denoted by A, B, and C in Figure 9.10(a) map 
to A, B, and C, respectively, in Figure 9.10(b). 

(b) The Portion from co = 0 + to co = +oo. The portion of the contour Ts 

from co = 0+ to co = + oo is mapped by the function L(s) as the real frequency polar 

FIGURE 9.10 
Nyquist contour and 
mapping for 
L(s) = K/(s(rs + 1)). 

.s-plane 

Nyquist contour 

w = 0 

(a) (b) 
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plot because s = jco and 

L(s)\s=jw = L f » (9.19) 

for this part of the. contour. This results in the real frequency polar plot, shown in 
Figure 9.10(b). When co approaches +oo , we have 

lim L(jco) = lim ——: — 

jy-^+oo w-»+oo +J(o(jCOT + 1 ) 

/ - ( T T / 2 ) - tan"1
 (CUT). (9.20) 

Therefore, the magnitude approaches zero at an angle of -180°. 

(c) The Portion from co = + oo to co = — oo. The portion of Ts from 
co = +oo t o w - - o o i s mapped into the point zero at the origin of the L(.?)-plane 
by the function L(.y).The mapping is represented by 

(9.21) 

as 0 changes from (/> =: +90° at co = +oo to c\> = -90° at co = -oo . Thus, the con
tour moves from an angle of -180° at co = I oo to an angle of I 180° at co = - co . 
The magnitude of the L(s) contour when r is infinite is always zero or a constant. 

(d) The Portion from co = — oo to co = 0_. The portion of the contour Ts 

from co = - c o to co - 0_ is mapped by the function L(s) as 

L(s)\s-iM = L(-jco). (9.22) 

Thus, we obtain the complex conjugate of L(Jco), and the plot for the portion of the 
polar plot from co - - c o to co = 0_ is symmetrical to the polar plot from to = +oo 
to co = 0+. This symmetrical polar plot is shown on the L(j)-plane in Figure 9.10(b). 

To investigate the stability of this second-order system, we first note that the 
number of poles, P, within the right-hand s-plane is zero. Therefore, for this system 
to be stable, we require N = Z = 0, and the contour T^ must not encircle the - 1 
point in the L(.v)-plane. Examining Figure 9.10(b), we find that irrespective of the 
value of the gain K and the time constant r, the contour does not encircle the - 1 
point, and the system is always stable. As in Chapter 7, we are considering positive 
values of gain K. If negative values of gain are to be considered, we should use -K, 
where K > 0. 

We may draw two general conclusions from this example: 

1. The plot of the contour TL for the range - c o < w < 0_ will be the complex conjugate 
of the plot for the range 0+ < co < +oo, and the polar plot of L(s) = Gc(s)G(s)H(s) 
will be symmetrical in the L(s)-plane about the u-axis. Therefore, it is sufficient to con
struct the contour l'L for the frequency range 0+ < co < + oo in order to investigate 
the stability (keeping in mind the detour around the origin). 

lim 
w->oo 

K 

rco 

l i m L ( » | s = r e ^ = lim 
K_ 
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2. The magnitude of L{s) = Gc{s)G{s)H{s) as s = re7'* and r —» oo will normally approach 
zero or a constant. • 

EXAMPLE 9.3 System with three poles 

Let us again consider the single-loop system shown in Figure 9.1 when 

L(s) = Gc(s)G(s)H(s) 
K 

S(TXS +- l)(r2s + 1)' 
(9.23) 

The Nyquist contour Ts is shown in Figure 9.10(a). Again, this mapping is symmetri
cal for L(jco) and L(-jco) so that it is sufficient to investigate the L(/w)-locus. The 
small semicircle around the origin of the s-plane maps into a semicircle of infinite 
radius, as in Example 9.2. Also, the semicircle re^ in the .v-plane as r —* co maps into 
the point L(s) = 0, as we expect. Therefore, to investigate the stability of the sys
tem, it is sufficient to plot the portion of the contour T/. that is the real frequency 
polar plot L(jco) for 0+ < co < -f-no. Thus, when s = +jco, we have 

L(jo>) = -
K 

jo){j(i)Ti + l)(jcor2 + 1) 

- K f o + r2) - jK{\jo>){l - g ^ j 

1 + co2{r\ + 4) + (JI\T\ 

K 

[«4(ri + r2)2 + a>2(l - Jrriffl* 

X / - t a n - 1 (COTO - tan"1(a>T2) - (TT/2). (9.24) 

When a) = 0,, the magnitude of the locus is infinite at an angle of - 90° in the 
L(s)-plane. When co approaches +00, we have 

lim L(jco) = Km 
u)—*<x> o)—*oo 

lim 
0)->0O 

CO 7\T2 

/-{IT/2) - tan \ttrrx) - tan l(o>r2) 

co T{T2 

/ - 3 ^ / 2 . (9.25) 

Therefore, L(jco) approaches a magnitude of zero at an angle of -270° [30]. To 
approach at an angle of -270°, the locus must cross the //-axis in the L(s)-plane, as 
shown in Figure 9.11. Thus, it is possible to encircle the - 1 point. The number of en
circlements when the —1 point lies within the locus, as shown in Figure 9.11, is equal 
to two, and the system is unstable with two roots in the right-hand s-plane.The point 
where the L(s)-locus intersects the real axis can be found by setting the imaginary 
part of L(jto) — u + jv equal to zero. We then have, from F.quation (9.24), 
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FIGURE 9.11 
Nyquist diagram for 
L{s) -K/(s(r iS + 1) 
(r2s + 1)). The tic 
mark shown to the 
left of the origin is 
the - 1 point. 

X 
\ 

\ Z,(.v)-plane 

\ 
a) = +<» | 

I 

X 

• u 

-X(l/o))( l - o i V a ) _ 0 

1 + O?{T\ + T\) + J T H 
(9.26) 

Thus, v = 0 when 1 - fcrV^ = 0 or o) - 1 / \A"IT 2 . The magnitude of the real part 
of L(j(o) at this frequency is 

-Kir, + r2) 

1 + W2(T? + T§) + W4T?^ 

- ^ ( T j + T2)T!T2 

t0 2 =l /TjT 2 

- A : T ! T 2 

»*1T2 + (^1 + r l ) + T1T2 T l + T2 

Therefore, the system is stable when 

-KTXT2 

Tt + T2 
* - l , 

or 

K £ 
Tl + T2 

T l T 2 

(9.27) 

(9.28) 

Consider the case where T, = r2 = 1, so that 

L(j) = Gc(s)G(s)H(s) = - ~ - j . 
.?(.$• + 1) 

Using Equation (9.28), we expect stability when 

K < 2. 

The Nyquist diagrams for three values of K are shown in Figure 9.12. • 

http://iURE9.11
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s(s + r 
when (a) K = 1, (b) K = 2, and (c) K = 3. 

EXAMPLE 9.4 System with two poles at the origin 

Again, let us determine the stability of the single-loop system shown in Figure 9.1 
when 

L(s) = Gc(s)G(s)H(s) = 
K 

S\TS + 1) 

The real frequency polar plot is obtained when s = jco, and we have 

K K 
L(ja>) = 

-0)\J0)T + 1) [^4 + T V I 
^ / - g - t a n (aw). 

(9.29) 

(9.30) 

We note that the angle of L(jco) is always —180° or less, and the locus of L(jco) is 
above the w-axis for all values of co. As co approaches 0+, we have 

K 
lim L(ico) = lim —r 

>—0 + o>—0 + of 

-IT. 

As co approaches +oo, we have 

K 
lim L(jco) = lim —r/-3-77-/2. 

(9.3i; 

(9.32) 
w-»+no M 

At the small semicircular detour at the origin of the s-plane where s = ee^, we have 

K 
lim L{s) = lim - r e"2^, 
e->0 e - 0 ê  

(9.33) 

where —7r/2 < <£ < 77/2. Thus, the contour FL ranges from an angle of +irco = 0_ 
to —IT at co = 0+ and passes through a full circle of 2TT rad as co changes from co = 0_ 
to co = 0+. The complete contour plot of T/ is shown in Figure 9.13. Because the 

file://-/-ttco
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FIGURE 9.13 
Nyquist contour 
plot for L(s) = 
K/(s2(rs - 1)). 

vL($)-pIane 

contour encircles the —1 point twice, there are two roots of the closed-loop system 
in the right-hand plane, and the system, irrespective of the gain K, is unstable. • 

EXAMPLE 9.5 System with a pole in the right-hand s-plane 

Let us consider the control system shown in Figure 9.14 and determine the stability 
of the system. First, let us consider the system without derivative feedback, so that 
Ko = 0. We then have the loop transfer function 

L(s) = Gc(s)G(s)H(s) = 
/<:, 

s(s I)" 
(9.34) 

Thus, the loop transfer function has one pole in the right-hand s-plane, and there
fore P = 1. For this system to be stable, we require N ~- —P - - 1 , one counter
clockwise encirclement of the —1 point. At the semicircular detour at the origin 

ff<«)0 * 

(a) 

FIGURE 9.14 
Second-order 
feedback control 
system, (a) Signal-
flow graph. 

Block diagram. 

R(s) 

(b) 

~> » 

FV 
\ 

K\ 

\ K2 

1 
5 - 1 

1 
s 

• * Y(s) 
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FIGURE 9.15 
Nyquist diagram for 
L{s) = /C,/(s(s - 1)). co = 0 

of the s-plane, we let s = ee'* when -TT/2 < <̂> < IT/2. Then, when s = ee^, 
we have 

K 
lim L(s) = lim rr = lim 
e-»0 e - * 0 - W * e-»0 

Ki 
/ - 1 8 0 ° - </>. (9.35) 

Tlierefore, this portion of the contour FL is a semicircle of infinite magnitude in the 
left-hand L(s)-plane, as shown in Figure 9.15. When 51 = jco, we have 

L(jco) -= Gc(jo))G(jo))H(j(o) - -
/<, Kx 

jco{jco - 1) (a>2 + coA)1'2 

' (to2 + co4)1'2 

/ ( - i r / 2 ) - tan-^-o)) 

/+TT/2 + tan~'a). 

Finally, for the semicircle of radius r as r approaches infinity, we have 

lim L(s)\s=rei* = lim , - 2 ^ 

(9.36) 

(9.37) 

where </> varies from 7T/2 to —7r/2 in a clockwise direction. Therefore, the contour 
TL, at the origin of the L(.y)-plane, varies 2n rad in a counterclockwise direction. 
Several important values of the L(.s)-locus are given in Table 9.3. The contour TL in 
the L(.s)-plane encircles the 1 point once in the clockwise direction so N = +1 , 

Table 9.3 Values of L(s) = Gc{s)G(s)H{s) 

s y'0- y'0+ /1 +y'oc -yoo 

W/Kr 
/L 

oo 
-90° 

oo 
+90c 

1/V2 
+ 135° 

0 
+ 180° 

0 
-180° 
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and there is one pole s = 1 in the right-hand plane so P — 1. Hence, 

Z - N + P = 2, (9.38) 

and the system is unstable because two roots of the characteristic equation, irre
spective of the value of the gain Ki, lie in the right half of the s-plane. 

Let us now consider again the system when the derivative feedback is included 
in the system shown in Figure 9.14 (K2 > 0). Then the loop transfer function is 

L(s) = Gc(s)G(s)M(s) = 
* i ( l + K2s) 

s(s-l) • 
(9.39) 

The portion of the contour TL when s = ee'^ is the same as the system without 
derivative feedback, as shown in Figure 9.16. However, when s = re''*' as r ap
proaches infinity, we have 

limL(j)|s=re' '* = lim 
KXK2 

,-}* (9.40) 

and the T^-contour at the origin of the L(i')-plane varies IT rad in a counterclock
wise direction. The frequency locus L(jo>) crosses the w-axis at a point determined 
by considering the real frequency transfer function 

L(jco) = Gc(jto)G(jo>)H(jto) = 
-co2 - jco 

-K^co2 + co2K2) + j(g> - K2o)3)K^ 

co2 + co4 
(9.41) 

The L(/o>)-locus intersects the z<-axis at a point where the imaginary part of L(j<t>) is 
zero. Therefore, 

co - K2co* = 0 3 _ 

FIGURE 9.16 
Nyquist diagram for 
L(s) = K,(1 + K2s)l 
(sfe- 1)). 

*•« 
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at this point, or co1 = 1/K2. The value of the real part of L(jeo) at the intersection is 
then 

• -a ta lCi + *2) = -KiK2. (9.42) 
W2=I/A:2 

Therefore, when -K{K2 < - 1 or K^K2 > 1, the contour TL encircles the - 1 point 
once in a counterclockwise direction, and therefore N = — 1. Then the number of 
zeros of the system in the right-hand plane, is 

Z = N + P = - 1 + 1 = 0. 

Thus, the system is stable when KiK2 > 1. Often, it may be useful to utilize a com
puter to plot the Nyquist diagram [5]. • 

EXAMPLE 9.6 System with a zero in the right-hand s-plane 

Let us consider the feedback control system shown in Figure 9.1 when 

K(s - 2) 
L(s) = Gc(s)G(s)H{s) = ( J + 1 ) 2 -

We have 

K(j6) - 2) _ K(ja> - 2) 

(/<u + 1)2 ~ (1 - w2) + j2co 

As co approaches + oo on the +jco axis, we have 

£(/*>) = T ; — r - x2 = Tx 2x , ~ • (9-43) 

liin L(ico) = lim — /—IT/2. 
,« -» + 00 &)—»+00 O) 

When w = v 5 , we have L(jco) = AT/2. At co = 0+, we have L(jco) - —2K. The 
Nyquist diagram for L(jco)/K is shown in Figure 9.17. L(jco) intersects the —1 + / 0 
point when K = 1/2. Thus, the system is stable for the limited range of gain 
0 < K < 1/2. When K > 1/2, the number of encirclements of the - 1 point is N = 1. 
The number of poles of L(s) in the right half s-plane is P = 0. Therefore, we have 

Z = N + P = \, 

and the system is unstable. Examining the Nyquist diagram of Figure 9.17, which is 
plotted for L(jco)/K, we conclude that the system is unstable for all K > 1/2. • 

9.4 RELATIVE STABILITY AND THE NYQUIST CRITERION 

We discussed the relative stability of a system in terms of the s-plane in Section 6.3. 
For the s-plane, we defined the relative stability of a system as the property mea
sured by the relative settling time of each root or pair of roots. Therefore, a system 
with a shorter settling time is considered more relatively stable. We would like to 



FIGURE 9.17 
Nyquist diagram for 
Example 9.6 for 
UM/K. 
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determine a similar measure of relative stability useful for the frequency response 
method. The Nyquist criterion provides us with suitable information concerning the 
absolute stability and, furthermore, can be utilized to define and ascertain the rela
tive stability of a system. 

The Nyquist stability criterion is defined in terms of the ( - 1 , 0) point on the 
polar plot or the 0-dB, -180° point on the Bode diagram or log-magnitude-phase 
diagram. Clearly, the proximity of the L(/w)-locus to this stability point is a measure of 
the relative stability of a system. The polar plot for L(JOJ) for several values of K and 

L(j<o) = Gc(io))G(Jco)H(jco) 
K 

J0){j(l)T\ + l)(]COT2 + 1) 
(9.44) 

is shown in Figure 9.18. As K increases, the polar plot approaches the —1 point and 
eventually encircles the - 1 point for a gain K = K3. We determined in Section 9.3 
that the locus intersects the K-axis at a point 

u = (9.45) 

Therefore, the system has roots on the ;'w-axis when 

T, + T2 
u = - 1 or K = 

T\Tl 

As K is decreased below this marginal value, the stability is increased, and the mar
gin between the critical gain K =• (TJ + T^IT^I and a gain K = K2 is a measure of 
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FIGURE 9.18 
Polar plot for L[ja>) 
for three values of 
gain. 

K% > K2 > Kx 

• u 

the relative stability. This measure of relative stability is called the gain margin and 
is defined as the reciprocal of the gain \L(jco)\ at the frequency at which the phase 
angle reaches —180° (that is, v = 0). The gain margin is a measure of the factor by 
which the system gain would have to be increased for the L(jio) locus to pass 
through the u = — 1 point. Thus, for a gain K = K2 in Figure 9.18, the gain margin is 
equal to the reciprocal of L(jco) when v = 0. Because co = 1/v TiT2 when the phase 
shift is -180°, we have a gain margin equal to 

1 

\L(jw)\ 

-1 
(9.46) 

The gain margin can be defined in terms of a logarithmic (decibel) measure as 

20 log ̂ - = -20 log d dB. 
a 

(9.47) 

For example, when r\ -1% — 1, the system is stable when K < 2. Thus, when 
K = K2 = 0.5, the gain margin is equal to 

^ 2 r l T 2 

Tj + T2 

-1 

= 4, (9.48) 

or, in logarithmic measure, 

20 log 4 = 12 dB. (9.49) 

Therefore, the gain margin indicates that the system gain can be increased by a fac
tor of four (12 dB) before the stability boundary is reached. 

The gain margin is the increase in the system gain when phase = -180° that 
will result in a marginally stable system with intersection of the - 1 + jfO point 

on the Nyquist diagram. 



Section 9.4 Relative Stability and the Nyquist Criterion 589 

An alternative measure of relative stability can be defined in terms of the phase 
angle margin between a specific system and a system that is marginally stable. The 
phase margin is defined as the phase angle through which the Lijca) locus must be 
rotated so that the unity magnitude |L(/'w)| = 1 point will pass through the 
(— 1, 0) point in the L(jco) plane. This measure of relative stability is equal to the 
additional phase lag required before the system hecomes unstable.This information 
can be determined from the Nyquist diagram shown in Figure 9.18. For a gain 
K = K% an additional phase angle, cf)2, may be added to the system before the sys
tem becomes unstable. Similarly, for the gain Kh the phase margin is equal to <£1s as 
shown in Figure 9.18. 

The phase margin is the amount of phase shift of the L(jto) at unity magnitude 
that will result in a marginally stable system with intersection of the — 1 + jO 

point on the Nyquist diagram. 

The gain and phase margins are easily evaluated from the Bode diagram, and 
because it is preferable to draw the Bode diagram in contrast to the polar plot, it is 
worthwhile to illustrate the relative stability measures for the Bode diagram. The 
critical point for stability is u = -1,¾ = 0 in the L(y'o>)-plane, which is equivalent to 
a logarithmic magnitude of 0 dB and a phase angle of 180° (or -180°) on the Bode 
diagram. 

It is relatively straightforward to examine the Nyquist diagram of a minimum-
phase system. Special care is required with a nonminimum-phase system, however, 
and the complete Nyquist diagram should be studied to determine stability. 

The gain margin and phase margin can be readily calculated by utilizing a com
puter program, assuming the system is minimum phase. In contrast, for nonmini
mum-phase systems, the complete Nyquist diagram must be constructed. 

The Bode diagram of 

L(ja>) = Gc(jm)G{ja>)H(j<*>) = \ (9.50) 
J(o{j(o + l){i).2]o) + 1) 

is shown in Figure 9.19. The phase angle when the logarithmic magnitude is 0 dB is 
equal to 137°. Thus, the phase margin is 180° - 137° = 43°, as shown in Figure 9.19. 
The logarithmic magnitude when the phase angle is —180° is —15 dB, and therefore 
the gain margin is equal to 15 dB, as shown in Figure 9.19. 

The frequency response of a system can be graphically portrayed on the loga
rithmic-magnitude-phase-angle diagram. For the log-magnitude-phase diagram, 
the critical stability point is the 0-dB, -180° point, and the gain margin and phase 
margin can be easily determined and indicated on the diagram. The log-magnitude-
phase locus of 

]co(jco + l)(0.2;w + 1) 
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FIGURE 9.19 
Bode diagram for 
L(jo>) = 
^/(Mi<o + ^)) 
(0.2/o> + 1). 
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is shown in Figure 9.20. The indicated phase margin is 43°, and the gain margin is 
15 dB. For comparison, the locus for 

L2(j(o) = Gc(ja>)G(ja))H2(j<*>) = 
1 

M/fti + ly 
(9.52) 

is also shown in Figure 9.20. The gain margin for L2 is equal to 5.7 dB, and the 
phase margin for L2 is equal to 20°. Clearly, the feedback system L2(jo)) is rela
tively less stable than the system L\(j<a). However, the question still remains: 
How much less stable is the system L2(ja) in comparison to the system Lv(jco)l In 
the following, we answer this question for a second-order system, and the gener
al usefulness of the relation that we develop will depend on the presence of dom
inant roots. 

Let us now determine the phase margin of a second-order system and relate the 
phase margin to the damping ratio t, of an underdamped system. Consider the loop-
transfer function of the system shown in Figure 9.1, where 

L(s) = Gc(s)G(s)H(s) = 
CO, 

s(s + 2£ton) 

The characteristic equation for this second-order system is 

s2 + 2£tons + con
2 = 0. 

Therefore, the closed-loop roots are 

(9.53) 

s = -£ton ± ;&)„V1 - r . 



FIGURE 9.20 
Log-magnitude-
phase curve for 
L-t and L2-
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The frequency domain form of Equation (9.53) is 

CO, 
(9.54) 

The magnitude of the frequency response is equal to 1 at a frequency coc; thus, 

., 2 
— — = 1 (9 55) 

Rearranging Equation (9.55), we obtain 

K2)2 + 4*Vfo*) - con
4 = 0. 

Solving for coc, we find that 

(9.56) 

« , = (4^ + l)1 ' 2 - 2£2. 

http://Phn.se
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FIGURE 9.21 
Damping ratio 
versus phase 
margin for a 
second-order 
system. 
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The phase margin for this system is 

>pn] = 180° - 90° - tan" 1 — c -

= 90° - tan"1! ^ [ ( 4 ^ + 1)1/2 - 2£2}^2 

— tan -1 2 

[(4 + l/rt]/2 - 2f'r (9'57) 

Equation (9.57) is the relationship between the damping ratio £ and the phase mar
gin 4>pm, which provides a correlation between the frequency response and the time 
response. A plot of £ versus iftpm is shown in Figure 9.21. The actual curve of £ versus 
4>pm can be approximated by the dashed line shown in Figure 9.21. The slope of the 
linear approximation is equal to 0.01, and therefore an approximate linear relation
ship between the damping ratio and the phase margin is 

£ = O.O10or (9.58) 

where the phase margin is measured in degrees. This approximation is reasonably 
accurate for £ < 0.7 and is a useful index for correlating the frequency response 
with the transient performance of a system. Equation (9.58) is a suitable approxima
tion for a second-order system and may be used for higher-order systems if we can 
assume that the transient response of the system is primarily due to a pair of domi
nant underdamped roots. The approximation of a higher-order system by a domi
nant second-order system is a useful approximation indeed! Although it must be 
used with care, control engineers find this approach to be a simple, yet fairly accu
rate, technique of setting the specifications of a control system. 

'Iherefore, for the system with a loop transfer function 

L{jco) = 
1 

(9.59) 
jco(jo) + l)(0.2/w + 1)' 

we found that the phase margin was 43°, as shown in Figure 9.19. Thus, the damping 
ratio is approximately 

£ - O.O10pm = 0.43. (9.60) 
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Then the percent overshoot to a step input for this system is approximately 

P.O. = 22%, (9.61) 

as obtained from Figure 5.8 for £ = 0.43. 
It is feasible to develop a computer program to calculate and plot phase margin 

and gain margin versus the gain K for a specified L(Ja>). Consider the system of 
Figure 9.1 with 

L(s) = Gc(s)G(s)H(s) = 
K 

s(s + 4'y 

The gain for which the system is marginally stable is K = K* = 128. The gain mar
gin and the phase margin plotted versus K are shown in Figures 9.22(a) and (b), 
respectively. The gain margin is plotted versus the phase margin, as shown in Figure 
9.22(c). Note that either the phase margin or the gain margin is a suitable measure 
of the performance of the system. We will normally emphasize phase margin as a 
frequency-domain specification. 

The phase margin of a system is a quite suitable frequency response measure 
for indicating the expected transient performance of a system. Another useful index 
of performance in the frequency domain is Mpo), the maximum magnitude of the 
closed-loop frequency response, and we shall now consider this practical index. 
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9.5 TIME-DOMAIN PERFORMANCE CRITERIA IN THE FREQUENCY DOMAIN 

The transient performance of a feedback system can be estimated from the closed-
loop frequency response. The closed-loop frequency response is the frequency 
response of the closed-loop transfer function T(Jco). The open- and closed-loop fre
quency responses for a single-loop system are related as follows: 

R(jco) 
= T(j<o) = 

Gc(ja>)G{j(o) 

1 + Gc(j<o)G(j<o)HUa>y 
(9.62) 

The Nyquist criterion and the phase margin index are defined for the loop transfer 
function LQm) = Gc(ja))G(jco)H(jco). However, as we found in Section 8.2, the 
maximum magnitude of the closed-loop frequency response can be related to the 
damping ratio of a second-order system of 

Mp0 = \T(<or)\ = (2£VT I 2\ - l . i < 0.707. (9.63) 

This relation is graphically portrayed in Figure 8.11. Because this relationship be
tween the closed-loop frequency response and the transient response is a useful one, 
we would like to be able to determine Mpa) from the plots completed for the investi
gation of the Nyquist criterion. That is, we want to be able to obtain the closed-loop 
frequency response (Equation 9.62) from the open-loop frequency response. Of 
course, we could determine the closed-loop roots of 1 + L(s) and plot the closed-
loop frequency response. However, once we have invested all the effort necessary to 
find the closed-loop roots of a characteristic equation, then a closed-loop frequency 
response is not necessary. 

The relation between the closed-loop and open-loop frequency response is illu
minated on the magnitude-phase plot when considering unity feedback systems, 
that is, when H(s) = 1 in Figure 9.1. In the unity feedback case, key performance 
indicators such as Mpco and o)r can be determined from the magnitude-phase plot 
using circles of constant magnitude of the closed-loop transfer function. These cir
cles are known as constant M-circles. If the system is not in fact a unity feedback sys
tem where H(jco) = 1, we can modify the system (see Section 5.6). For unity 
feedback systems, Equation (9.62) becomes 

T(jco) = M{(o)e j<f>(u>) _ 
Gc(jcQ)G(ja>) 

1 + G,(jco)G(j(o)' 
(9.64) 

The relationship between T(Jw) and Gc{jw)G{joj) is readily obtained in terms of 
complex variables in the Gc.G(7-w)-plane. The coordinates of the Gc.G(yw)-plane are 
u and v, and we have 

Gc(jco)G(jo)) = u + jv. 

Therefore, the magnitude of the closed-loop transfer function is 

M(o>) = 
Gc(jo))G(j<o) 

1 + Gc(j<o)G(ja>) 

jv 

1 + u + jv 

(u2 Jvl/2 

[(1 + u)2 + v1^1' 

(9.65) 

(9.66) 
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Squaring Equation (9.66) and rearranging, we obtain 

(1 - M2)u- + ( 1 - M2)v2 - 2M2u = M2. (9.67} 

2 VI2 Dividing Equation (9.67) by 1 - M2 and adding the term [My(I - Ml)f to both 
sides, we have 

v2-
2M2u 

+ 1 - M2 \ 1 - M2 

W Ml 

1 - Ml + 
Ml 

1 - M' 

Rearranging, we obtain 

M* 

1 - M2 + v 2 _ M 

1 - M2 

(9.68) 

(9.69) 

which is the equation of a circle on the (u, i>)-plane with the center at 

M2 

1 - M2' 
v = 0. 

The radius of the circle is equal to |M/( l - M2) \. Therefore, we can plot several cir
cles of constant magnitude M in the [Gc(jo))G(jo)) = u + /y]-plane. Several con
stant M circles are shown in Figure 9.23. The circles to the left of u = -1 /2 are for 
M > 1, and the circles to the right of u = - 1 /2 are for M < 1. When M = 1, the 
circle becomes the straight line u = - 1 /2 , which is evident from inspection of 
Equation (9.67). 

The open-loop frequency response for a system is shown in Figure 9.24 for two 
gain values where K2 > K\. The frequency response curve for the system with gain 
Ky is tangent to magnitude circle M] at a frequency a>H. Similarly, the frequency 
response curve for gain K2 is tangent to magnitude circle M2 at the frequency (or2. 
Therefore, the closed-loop frequency response magnitude curves are estimated as 
shown in Figure 9.25. Hence, we can obtain the closed-loop frequency response of a 

FIGURE 9.23 
Constant M circles. 

• M 

u = -0.5 
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• a 
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FIGURE 9.25 Closed-loop frequency response 
o f 7 f » = Gc(ja))G{jco)/{1 + Gc(jw)G(j<o)). Note that 

K2 > Kv 

• ai 

F IGURE 9.24 Polar plot of Gc{ja>)G(ja>) for 
two values of a gain {K2 > K,). 

system from the (u -+- /?;)-plane. If the maximum magnitude, Mpa), is the only infor
mation desired, then it is sufficient to read this value directly from the polar plot. 
The maximum magnitude of the closed-loop frequency response, Mp(0, is the value 
of the M circle that is tangent to the Gc(jco)G(jco)-locus. The point of tangency 
occurs at the frequency o)n the resonant frequency. The complete closed-loop fre
quency response of a system can be obtained by reading the magnitude M of the cir
cles that the Gc(/'w)G(7w)-locus intersects at several frequencies. Therefore, the 
system with a gain K = K2 has a closed-loop magnitude Mj at the frequencies o>: and 
oi2. This magnitude is read from Figure 9.24 and is shown on the closed-loop frequency 
response in Figure 9.25.The bandwidth for K± is shown as wm. 

It may be empirically shown that the crossover frequency coc on the open-loop 
Bode diagram is related to the closed-loop system bandwidth u>B by the approxima
tion coB — 1.6wc for I in the range 0.2 to 0.8. 

In a similar manner, we can obtain circles of constant closed-loop phase angles. 
Thus, for Equation (9.64), the angle relation is 

d> = /T(jo>) = /{u + jv)/{\ + u + jv) 

= tan x\ I lan 
u 

- 1 

1 + u 
(9.70) 

Taking the tangent of both sides and rearranging, we have 

.2 , „ 2 ul + vl + u - — - 0, 
N 

(9.71) 
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where N = tan </>. Adding the term 1/4[1 + \/N2} to both sides of the equation and 
simplifying, we obtain 

i \ 2 ( 1 \ 2 1 ( i \ 
(9.72) 

which is the equation of a circle with its center at u = —1/2 and v = +1/(2N). The 
radius of the circle is equal to 1/2[1 + 1/N2]1'2. Therefore, the constant phase 
angle curves can be obtained for various values of N in a manner similar to the M 
circles. 

The constant M and N circles can be used for analysis and design in the polar 
plane. However, it is much easier to obtain the Bode diagram for a system, and it 
would be preferable if the constant M and N circles were translated to a logarithmic 
gain phase. N. B. Nichols transformed the constant M and N circles to the log-
magnitude-phase diagram, and the resulting chart is called the Nichols chart [3, 7]. 
The M and N circles appear as contours on the Nichols chart shown in Figure 9.26. 
The coordinates of the log-magnitude-phase diagram are the same as those used in 
Section 8.5. However, superimposed on the log-magnitude-phase plane we find 
constant M and N lines. The constant M lines are given in decibels and the N lines in 
degrees. An example will illustrate the use of the Nichols chart to determine the 
closed-loop frequency response. 

EXAMPLE 9.7 Stability using the Nichols chart 

Consider a unity feedback system with a loop transfer function 

Gc(jco)G{jco) = . * n 9 - T IT" ( 9 / 7 3 ) 

The Gc(jo))G(j(o)-locus is plotted on the Nichols chart and is shown in Figure 9.27. 
The maximum magnitude, Mpio, is equal to +2.5 dB and occurs at a frequency 
(or = 0.8. The closed-loop phase angle at cor is equal to -72°. The 3-dB closed-loop 
bandwidth, where the closed-loop magnitude is - 3 dfi, is equal to o)B = 1.33, as 
shown in Figure 9.27. The closed-loop phase angle at wB is equal to -142°. • 

EXAMPLE 9.8 Third-order system 

Let us consider a unity feedback system with a loop transfer function 

Gc(j<o)G(jw) = . . . . ~ ; .., (9.74) 

where £ = 0.5 for the complex poles. The Nichols diagram for this system is shown 
in Figure 9.28.The phase margin for this system as it is determined from the Nichols 
chart is 30°. On the basis of the phase, we use Equation (9.58) to estimate the system 
damping ratio as £ = 0.30. The maximum magnitude is equal to +9 dR occurring at 
a frequency (or = 0.88. Therefore, 

2Q\ogMpu) = 9dB, or Mpa) -- 2.8. 
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Loop gain-phase diagram 
1 GrG 

versus G..G 
-24 dB 

-210 -180 -150 -120 - 9 0 -60 

Loop phase, L (GCG), in degrees 

- 3 0 

FIGURE 9.26 Nichols chart. The phase curves for the closed-loop system are shown as heavy 
curves. 
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FIGURE 9.27 
Nichols diagram for 
Gc(/a>)G(/a>) = 
yiMJio + 1) 
(0.2/a. + 1)). 
Three points on 
curve are shown for 
(a = 0.5, 0.8, and 
1.35, respectively. 

•a 
O0 

-24 
-210 -180 -150 -120 -90 

Loop phase, L (GCG), degrees 
-60 

Solving Equation (9.63), we find that £ = 0.18. We are confronted with two conflict
ing damping ratios, where one is obtained from a phase margin measure and another 
from a peak frequency response measure. In this case, we have discovered an exam
ple in which the correlation between the frequency domain and the time domain is 
unclear and uncertain. This apparent conflict is caused by the nature of the 
Gc(j<o)G(j(o)-locus, which slopes rapidly toward the 180° line from the 0-dB axis. If 
we determine the roots of the characteristic equation for 1 + L(s), we obtain 

q{s) = (s + 0.77)(^2 + 0.225s + 0.826) = 0. (9.75) 

The damping ratio of the complex conjugate roots is equal to 0.124, where the com
plex roots do not dominate the response of the system. Therefore, the real root will 
add some damping to the system, and we might estimate the damping ratio to be 
approximately the value determined from the Mpo) index; that is, £ = 0.18. A designer 
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18 

FIGURE 9.28 Nichols 
diagram for 
GcUco)G(jco) = 
0.64/<M(/*>)2 + fa + 11)-

./ l.OdB 

-210 -180 -150 -120 -90 
Loop phase, L (GCG). in degrees 

-60 

must use the frequency-domain-to-time-domain correlations with caution. However, 
we are usually safe if the lower value of the damping ratio resulting from the phase 
margin and the Mpco relation is used for analysis and design purposes. • 

The Nichols chart can be used for design purposes by altering the GcG(jco)-locus 
so we can obtain a desirable phase margin and Mpat. The system gain K is readily 
adjusted to provide a suitable phase margin and Mpu> by inspecting the Nichols chart. 
For example, let us consider again Fxample 9.8, where 

Gc(jco)G(j<o) = -
K 

M(ja>¥ + j<o + 1] 
(9.76) 

The GcG(;'o>)-locus on the Nichols chart for K = 0.64 is shown in Figure 9.28. Let us 
determine a suitable value for K so that the system damping ratio is greater than 
0.30. Examining Figure 8.11, we find that it. is required that Mpco be Jess than 1.75 (4.9 
dB). From Figure 9.28, we find that the GcG(/w)-locus will be tangent to the 4.9-dB 
curve if the GCG(/OJ)-1OCUS is lowered by a factor of 2.2 dB. Therefore, K should be 
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reduced by 2.2 dB or the factor antilog(2.2/20) = 1.28. Thus, the gain K must be less 
than 0.64/1.28 - 0.50 if the system damping ratio is to be greater than 0.30. 

9.6 SYSTEM BANDWIDTH 

The bandwidth of the closed-loop control system is an excellent measurement of the 
range of fidelity of response of the system. In systems where the low-frcqucncy mag
nitude is 0 dB on the Bode diagram, the bandwidth is measured at the -3-dB fre
quency. The speed of response to a step input will be roughly proportional to (oB, 
and the settling time is inversely proportional to coB. Thus, we seek a large band
width consistent with reasonable system components [12]. 

Consider the following two closed-loop system transfer functions: 

s 4 1 

and 

Us) = ^ . (9.77) 

The frequency response of the two systems is contrasted in part (a) of Figure 9.29, 
and the step response of the systems is shown in part (b). Also the response to a 
ramp is shown in part (c) of that figure. The system with the larger bandwidth pro
vides the faster step response and higher fidelity ramp response. 

Now consider the two second-order systems with closed-loop transfer functions 

Us) 
s2 + 1.0.v + 100 

and 

T4(s) = -7
 9 0 ° . (9.78) 

s2 + 30s + 900 v 

Both systems have a £ of 0.5. The frequency response of both closed-loop systems is 
shown in Figure 9.30(a). The natural frequency is 10 and 30 for systems T3 and T4, 
respectively. The bandwidth is 12.7 and 38.1 for systems 73 and T%> respectively. Both 
systems have a 16% overshoot, but T4 has a peak time of 0.12 second compared to 
0.36 for T3, as shown in Figure 9.30(b). Also, note that the settling time for 7'4 is 0.27 
second, while the settling time for T$ is 0.8 second.The system with a larger bandwidth 
provides a faster response. 

9.7 THE STABILITY OF CONTROL SYSTEMS WITH TIME DELAYS 

The Nyquist stability criterion has been discussed and illustrated in the previous 
sections for control systems whose transfer functions are rational polynomials of 
jco. Many control systems have a time delay within the closed loop of the system 
that affects the stability of the system. A time delay is the time interval between the 
start of an event at one point in a system and its resulting action at another point in 
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-20 -
>•(') 

0.1 0.2 

OQ (b) 

FIGURE 9.29 Response of two first-order systems. 

the system. Fortunately, the Nyquist criterion can be utilized to determine the 
effect of the time delay on the relative stability of the feedback system. A pure time 
delay, without attenuation, is represented by the transfer function 

Gd(s) = e-*T, (9.79) 

where T is the delay time. The Nyquist criterion remains valid for a system with a 
time delay because the factor e does not introduce any additional poles or zeros 
within the contour. The factor adds a phase shift to the frequency response without 
altering the magnitude curve. 

This type of time delay occurs in systems that have a movement of a material 
that requires a finite time to pass from an input or control point to an output or 
measured point [8,9]. 

For example, a steel rolling mill control system is shown in Figure 9.31. The 
motor adjusts the separation of the rolls so that the thickness error is minimized. If 
the steel is traveling at a velocity u, then the time delay between the roll adjustment 
and the measurement is 

T = -. 
v 
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> OJ 

FIGURE 9.30 
Response of two 
second-order 
systems. 

FIGURE 9.31 
Steel rolling mill 
control system. 
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Therefore, to have a negligible time delay, we must decrease the distance to the 
measurement and increase the velocity of the flow of steel. Usually, we cannot elim
inate the effect of time delay; thus, the loop transfer function is [10] 

Gc(s)G(s)e-sT. (9.80) 

However, we note that the frequency response of this system is obtained from the 
loop transfer function 
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L(jco) = Gc(jco)G(jco)e^T. (9.81) 

The usual loop transfer function is plotted on the L(/w)-plane and the stability ascer
tained relative to the —1 point. Alternatively, we can plot the Bode diagram including 
the delay factor and investigate the stability relative to the 0-dB, -180° point. The 
delay factor e~itoT results in a phase shift 

4>{co) = -OJT (9.82) 

and is readily added to the phase shift resulting from GC(JCO)G(JOJ). Note that the 
angle is in radians in Equation (9.82). An example will show the simplicity of this 
approach on the Bode diagram. 

EXAMPLE 9.9 Liquid level control system 

A level control system is shown in Figure 9.32(a) and the block diagram in Figure 
9.32(b) [11]. The time delay between the valve adjustment and the fluid output is 
T = d/v. Therefore, if the flow rate is 5 m3/s, the cross-sectional area of the pipe is 
1 m2, and the distance is equal to 5 m, then we have a time delay T = 1 s. The loop 
transfer function is then 

L(s) - GA(s)G(s)Gf(s)e-sT 

= ~ ersT. (9.83) 
(s J- 1)(30. + l)[(*2/9) + (s/3) + 1] 

The Bode diagram for this system is shown in Figure 9.33. The phase angle is shown 
both for the denominator factors alone and with the additional phase lag due to the 
time delay. The logarithmic gain curve crosses the 0-dB line at w = 0.8. Therefore, 
the phase margin of the system without the pure time delay would be 40°. However, 
with the time delay added, we find that the phase margin is equal to -3° , and the 
system is unstable. Consequently, the system gain must be reduced in order to pro
vide a reasonable phase margin. To provide a phase margin of 30°, the gain would 
have to be decreased by a factor of 5 dB, to K = 31.5/1.78 = 17.7. 

A time delay e~sT in a feedback system introduces an additional phase lag and 
results in a less stable system. Therefore, as pure time delays are unavoidable in 
many systems, it is often necessary to reduce the loop gain in order to obtain a sta
ble response. However, the cost of stability is the resulting increase in the steady-
state error of the system as the loop gain is reduced. • 

The systems considered by most analytical tools are described by rational func
tions (that is, transfer functions) or by a finite set of ordinary constant coefficient 
differential equations. Since the time-delay is given by ef , where Tis the delay, we 
see that the time delay is nonrational. It would be helpful if we could obtain a ratio
nal function approximation of the time-delay. Then it would be more convenient to 
incorporate the delay into the block diagram for analysis and design purposes. 

The Pade approximation uses a series expansion of the transcendental function 
e~s and matches as many coefficients as possible with a series expansion of a rational 
function of specified order. For example, to approximate the function c. sT with a first-
order rational function, we begin by expanding both functions in a series (actually a 
Maclaurin series1), 

'/(») = /(0) + i/(0) -+ 1/(0) + ••• 
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(a) Liquid level 
control system. 
(b) Block diagram. 
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T (sTf (sT? (sT)4 (sT)5 1 = l - ^ + V - - V " + ^ f " V + - ' (9-84) 

nxs + n0 _ «Q Idpni - n0dA (d^ n0 _ d^ 

and 

d\S + do do \ do / \ CLQ «<f 

For a first-order approximation, we want to find n0,
 nh do, and rfx such that 

r riis + /t0 
e ~ . 

d\s + do 

Equating the corresponding coefficients of the terms in s, we obtain the relationships 

Hi = i Hi _ H ^ I = _r
 d?n° _ ^ h . = l ! . . . 

do ' dQ dl ' do d\ 2 ' 

Solving for n0, do, nh and d\ yields 

no = d0, 
. d0T 

doT 

Setting do — 1, and solving yields 

_sT ^ njS + «Q " I 5 

<*i.s + d0 ^ 4 1 
(9.85) 

A series expansion of Equation (9.85) yields 

n,s + no ~\s + 1 7 V j3 3 
-y -° = - ^ = 1 - Ts + — — + •••. (9.86) 
dis + d0 l s + l 2 4 

Comparing Equation (9.86) to Equation (9.84), we verify that the first three terms 
match. So for small s, the Pade approximation is a reasonable representation of the 
time-delay. Higher-order rational functions can be obtained. 

9.8 DESIGN EXAMPLES 

In this section we present two illustrative examples. The first example is a remotely 
controlled reconnaissance vehicle control design. The Nichols chart is illustrated as 
a key element of the design of a controller gain to meet time-domain specifications. 
The second example considers the control of a hot ingot robot used in manufactur
ing. The goal is to minimize the tracking error in the presence of disturbances and a 
known time-delay. The design process is illustrated, leading to a PI controller that 
meets a mixture of time-domain and frequency-domain performance specifications. 
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EXAMPLE 9.10 Remotely controlled reconnaissance vehicle 

The use of remotely controlled vehicles for reconnaissance for UN. peacekeeping 
missions may be an idea whose time has come. One concept of a roving vehicle is 
shown in Figure 9.34(a), and a proposed speed control system is shown in Figure 
9.34(b).The desired speed R(s) is transmitted by radio to the vehicle; the disturbance 
Td(s) represents hills and rocks.The goal is to achieve good overall control with a low 
steady-state error and a low-overshoot response to step commands,R(s) [13]. 

First, to achieve a low steady-state error for a unit step command, we calculate 

= limsE(s) 

= hms 
R(s) 

1 + L(s) 

1 1 
1 + L(s) 1 + K/2' 

where /.(.<r) = Gc(s)G(s). If we select K = 20, we will obtain a steady-state error of 
9% of the magnitude of the input command. Using K = 20, we reformulate 
L(s) = Gc(s)G(s) for Bode diagram calculations, obtaining 

10(1 + s/2) 

(1 + 5-)(1 + s/2 + s2/4)" 
L(s) = Gc(s)G(s) = 

FIGURE 9.34 
(a) Remotely 
controlled 
reconnaissance 
vehicle, (b) Speed 
mntrol system. This 
vehicle could be 
used for United 
Nations 
peacekeeping 
missions. 
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speed 

o-
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Gc(,s) 
Controller 

K(s 4 2) 
s+ I 
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s2 +• 2s + 4 
HtsJ 

Speed 
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Table 9.4 Frequency Response Data for Design Example 

(o 0 1.2 1.6 2.0 2.8 

dB 
Degrees 

20 18.4 
-65 

17.8 
-86 

16.0 
-108 

10.5 
-142 

2.7 
-161 

-5.2 
-170 

The calculations for 0 ^ co ^ 6 provide the data summarized in Table 9.4. The 
Nichols diagram for K = 20 is shown in Figure 9.35. Examining the Nichols chart, 
we find that Mpo} is 12 dB and the phase margin is 15 degrees. The step response of 
this system is underdamped, and we use Equation (9.58) and Figure 5.8 to predict an 
excessive overshoot of approximately 61 %. 

To reduce the overshoot to a step input, we can reduce the gain to achieve a pre
dicted overshoot. To limit the overshoot to 25%, we select a desired £ of the domi
nant roots as 0.4 (from Figure 5.8) and thus require Mpco = 1.35 (from Figure 8.11) 
or 20 log Mpw = 2.6 dB. To lower the gain, we will move the frequency response 

FIGURE 9.35 
Nichols diagram for 
the design example 
when K = 20 and 
for two reduced 
gains. 

-180 -150 -120 -90 
Loop phase, Z (GrG), in degrees 

-60 
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vertically down on the Nichols chart, as shown in Figure 9.35. At o^ = 2.8, we just 
intersect the 2.6-dB closed-loop curve. The reduction (vertical drop) in gain is equal 
to 13 dB, or a factor of 4.5. Thus, K = 20/4.5 = 4.44. For this reduced gain, the 
steady-state error is 

1 
t-CQ 

1 + 4.4/2 
= 0.31, 

so that we have a 31% steady-state error. 
The actual step response when K = 4.44, as shown in Figure 9.36, has an over

shoot of 32%. If we use a gain of 10, we have an overshoot of 48% with a steady-
state error of 17%. The performance of the system is summarized in Table 9.5. As a 
suitable compromise, we select K = 10 and draw the frequency response on the 
Nichols chart by moving the response for K = 20 down by 20 log 2 = 6 dB, as 
shown in Figure 9.35. 

FIGURE 9.36 
The response of the 
system for three 
values of K for a 
unit step input r(t). 
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Table 9.5 Actual Response for Selected Gains 

K 
Percent overshoot 
Settling time (seconds) 
Peak time (seconds) 
®ss 

4.44 
32.4 
4.94 
1.19 

31% 

10 
48.4 
5.46 
0.88 

16.7% 

20 
61.4 
6.58 
0.67 
9.1% 

Note: Percent overshoot is defined by Equation (5.12). 
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Examining the Nichols chart for K = 10, we have Mpoi = 7 dB, and a phase 
margin of 26 degrees. Thus, we estimate a t, for the dominant roots of 0.23 which 
should result in an overshoot to a step input of 23%.The actual response is record
ed in Table 9.5. The bandwidth of the system is o>B «s 5. Therefore, we predict a set
tling time (with a 2% criterion) of 

7\ = 
4 

£<on (0.34)(^/1-4) 
- -T = 3.3 s, 

since coB ~ lAcon for £ - 0.34, using Figure 8.26. The actual settling time is approx
imately 5.4 seconds, as shown in Figure 9.36. 

The steady-state effect of a unit step disturbance can be determined by using 
the final-value theorem with R{s) - 0, as follows: 

y(oo) = Urn s 
s—»0 

G(s) 

1 + L(s) 

1 

4 + IK' 
(9.86) 

Thus, the unit disturbance is reduced by the factor 4 + 2K. For K = 10, we have 
y{°°) = 1/24, or the steady-state disturbance is reduced to 4% of the disturbance 
magnitude. Thus we have achieved a reasonable result with K = 10. 

The best compromise design would be A' = 10, since we achieve a compromise 
steady-state error of 16.7%. If the overshoot and settling time are excessive, then we 
need to reshape the L(y'w)-locus on the Nichols chart by methods we will describe in 
Chapter 10. • 

EXAMPLE 9.11 Hot ingot robot control 

The hot ingot robot mechanism is shown in Figure 9.37. The robot picks up hot ingots 
and sets them in a quenching tank. A vision sensor is in place to provide a measure
ment of the ingot position. The controller uses the sensed position information to ori
ent the robot over the ingot (along the x-axis).The vision sensor provides the desired 
position input R(s) to the controller. The block diagram depiction of the closed-loop 

FIGURE 9.37 
Artist's depiction of 
the hot ingot robot 
control system. 
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FIGURE 9.38 
Hot ingot robot 
control system 
block diagram. 
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system is shown in Figure 9.38. More information on robots and robot vision systems 
can be found in [15,31,32]. 

The position of the robot along the track is also measured (by a sensor other 
than the vision sensor) and is available for feedback to the controller. We assume 
that the position measurement is noise free. This is not a restrictive assumption since 
many accurate position sensors are available today. For example some laser diode 
systems are self-contained (including the power supply, optics, and laser diode) and 
provide position accuracy of over 99.9%. 

The robot dynamics are modeled as a second-order system with two poles at 
5 = - 1 and include a time delay of 7" = 7r/4 s. Therefore, 

,sT 
G(s) = 

(s + D2' 
(9.87) 

where T = TT/A s. The elements of the design process emphasized in this example 
are highlighted in Figure 9.39. The control goal is as follows: 

Control Goal 
Minimize the tracking error E(s) = R(s) - Y(s) in the presence of external 
disturbances while accounting for the known time-delay. 

To this end the following control specifications must be satisfied: 

Design Specifications 

DS1 Achieve a steady-state tracking error less than 10% for a step input. 

DS2 Phase margin greater than 50° with the time-delay T = 77-/4 s. 

DS3 Percent overshoot less than 10% for a step input. 

Our design method is first to consider a proport ional controller. We will show 
that the design specifications cannot be simultaneously satisfied with a propor
tional controller; however, the feedback system with proportional control pro
vides a useful vehicle to discuss in some detail the effects of the time-delay. In 
particular, we consider the effects of the time-delay on the Nyquist plot. The final 
design uses a PI controller, which is capable of providing adequate performance 
(that is, it satisfies all design specifications). 

As a first try, we consider a simple proportional controller: 

Gc(s) = K. 

Then ignoring the time-delay for the moment, we have the loop gain 

L(s) = Gc(s)G(s) = 
K K 

(s + IV s2 + 2s f 1 
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Topics emphasized in this example 

Establish the control goals 

Identify the variables to be controlled 

Write the specificatioos 

Establish the system configuration 

Obtain a model of the process, the 
actuator, and the sensor 

Describe a controller and select key 
parameters to be adjusted 

Optimize the parameters and 
analyze the performance 

See Figure 9.37 and 9.38, and 
Equation (9.87). 

See Equation (9.90) for 
the PI controller. 

See Figures 9.46 and 9.47. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 9.39 Elements of the control system design process emphasized in the hot ingot robot control example. 

F IGURE 9 .40 
Hot ingot robot 
control system 
block diagram with 
the proportional 
controller and no 
time-delay 
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The feedback control system is shown in Figure 9.40 with a proportional controller 
and no time-delay. The system is a type-zero system, so we expect a nonzero steady-
state tracking error to a step input (see Section 5.6 for a review of system type). The 
closed-loop transfer function is 

T(s) = 
K 

s1 + 2s + 1 + K 

With the tracking error defined as 

E(s) = R{s) - Y(s), 
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and with R(s) = a/s, where a is the input magnitude, we have 

s2 + 2s + 1 a 

613 

E(s) = 
s2 + 2s + 1 + K s 

Using the final value theorem (which is possible since the system is stable for all 
positive values of K) yields 

e„ = lim5£(j) = —. 
ss *-»o w I + K 

Per specification DS1, we require the steady-state tracking error be less than 10%. 
Therefore, 

a 
e < — ss 10* 

Solving for the appropriate gain K yields K > 9. With K = 9, we obtain the Bode 
plot shown in Figure 9.41. 

If we raise the gain above K = 9, we find that the crossover moves to the right 
(that is, o>c increases) and the corresponding phase margin (P.M.) decreases. Is a 
P.M. = 38.9° at co — 2.8 rad/s sufficient for stability in the presence of a time-delay 
of T - 7r/4 s? The addition of the time-delay term causes a phase lag without chang
ing the magnitude plot. The amount of time-delay that our system can withstand while 
remaining stable is <j> = —coT which implies that 

-38.97T 

180 
= -2.87. 

FIGURE 9.41 
Bode plot with 
K = 9 and no time-
delay showing gain 
margin G.M. = oo 
and phase margin 
P.M. = 38.9°. 
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Solving for T yields T = 0.24 s. Thus for time-delays less than T = 0.24 s, our 
closed-loop system remains stable. However, the time-delay T = 7r/4 S will cause 
instability. Raising the gain only exacerbates matters, since the phase margin goes 
down further. Lowering the gain raises the phase margin, but the steady-state track
ing error exceeds the 10% limit. A more complex controller is necessary. Before 
proceeding, let us consider the Nyquist plot and see how it changes with the addition 
of the time-delay. The Nyquist plot for the system (without the time-delay) 

Lis) = Gc(s)G(s) = 
K 

(s + If 

is shown in Figure 9.42, where we use K = 9. The number of open-loop poles of 
Gc(s)G(s) in the right half-plane is P = 0. From Figure 9.42 we see that there are no 
encirclements of the - 1 point, thus, N = 0. 

By the Nyquist theorem, we know that the net number of encirclements N 
equals the number of zeros Z (or closed-loop system poles) in the right half-plane 
minus the number of open-loop poles P in the right half-plane. Therefore, 

Z = N + P = 0. 

Since Z = 0, the closed-loop system is stable. More importantly, even when the gain 
K is increased (or decreased), the - 1 point is never encircled—the gain margin is 
co. Similarly when the time-delay is absent, the phase margin is always positive. The 
value of the P.M. varies as K varies, but the P.M. is always greater than zero. 

FIGURE 9.42 
Nyquist plot with 
K = 9 and no time-
delay showing no 
encirclements of 
the minus 1 point. 
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With the time-delay in the loop, we can rely on analytic methods to obtain the 
Nyquist plot. The loop transfer function with the time-delay is 

L(s) = Gc(s)G(s) = 
K ,sT 

(S + 1)2 

Using the Euler identity 

e-jo>T = c o s ( w 7 ) _ i sin(ft,r), 

and substituting s = jto into L(s) yields 

K 

(jo + If 
L(Jco) = - - = ^ 

is 

= —([(1 - (o2) cos(wT) - 2(osm(wT) - ;[(1 - a>2) sm(coT) + 2(0cos((oT)), 

(9.88) 

where 

2\2 A = (1 - cozY + 4a/. 

Generating a plot of Re(L(/w)) versus Im(L(;'&>)) for various values of co leads 
to the plot shown in Figure 9.43. With K = 9, the number of encirclements of the - 1 
point is N = 2. Therefore, the system is unstable since Z = N + P = 2. 

FIGURE 9.43 
Nyquist plot with 
K = 9 and T = TT/4 
showing two 
encirclements of 
the —1 point, 
N = 2. 
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FIGURE 9.44 
Nyquist plot with 
K = 9 and various 
time-delays. 
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Figure 9.44 shows the Nyquist plot for four values of time-delay: T = 0, 0.1, 
0.24, and 7r/4 = 0.78 s. For T = 0 there is no possibility of an encirclement of the 
- 1 point as K varies (see the upper left graph of Figure 9.44). We have stability (that 
is,iV = 0)forT = 0.1 s (upper right graph), marginal stability for T = 0.24 s (lower 
left graph), and for T = TT/4 = 0.78 s we have A/ = 1 (lower right graph), thus the 
closed-loop system is unstable. 

Since we know that T = TT/4 in this example, the proportional gain controller is 
not a viable controller. With it we cannot meet the steady-state error specifications 
and have a stable closed-loop system in the presence of the time-delay T = TT/4. 
However, before proceeding with the design of a controller that meets all the speci
fications, let us take a closer look at the Nyquist plot with a time-delay. 

Suppose we have the case where K = 9 and T = 0.1 s. The associated Nyquist 
plot is shown in the upper right of Figure 9.44. The Nyquist plot intersects (or cross
es over) the real axis whenever the imaginary part of Gc(jco)G(ja>) = 0 [see Equa
tion (9.88)], or 

(1 co2) sin(O.lcu) + 2w cos(O.lcu) - 0. 

Thus we obtain the relation that describes the frequencies co at which crossover occurs: 

(1 - co2) tan(O.lw) 
- - 1 . (9.89) 

2co 
Equation (9.89) has an infinite number of solutions. The first real-axis crossing (far
thest in the left half-plane) occurs when co = 4.43 rad/s. 

The magnitude of |L(/4.43)| is equal to 0.0484 K. For stability we require that 
1^0^)1 < 1 when co = 4.43 (to avoid an encirclement of the - 1 point). Thus, for 
stability we find 
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1 
K < —•—- = 20.67, 

0.0484 

when T = 0.1. When K = 9, the closed-loop system is stable, as we already know. If 
the gain K = 9 increases by a factor of 2.3 to K = 20.67, we will be on the border of 
instability. This factor 8 is the gain margin: 

G.M. = 20 logio 2.3 = 7.2 dB. 

Consider the PI controller 

GM « KP + f = ^ ¾ (9.90) 

LC0 = Ge(s)G(s) = ~^—„ -~ 7^ e 

The loop system transfer function is 

KPs + Kj K _sT 

(S + lf"' 

The system type is now equal to 1; thus we expect a zero steady-state error to a step 
input. The steady-state error specification DS1 is satisfied. We can now concentrate 
on meeting specification DS3, P.O. < 10% and DS2, the requirement for stability in 
the presence of the time-delay T = IT/4 S. 

From the percent overshoot specification we can determine a desired system 
damping ratio.Thus we determine for P.O. ^ 10% that t, ^ 0.59. Due to the PI con
troller, the system now has a zero at s = —Kj/KP. The zero will not affect the 
closed-loop system stability, but it will affect the performance. Using the approxi
mation (valid for small £, P.M. expressed in degrees) 

. P.M. 
Q ~ 100 ' 

we determine a good target phase margin (since we want £ ^ 0.59) to be 60%. We 
can rewrite the PI controller as 

Gc(s) = K.^f-, 

where 1/T = Kf/KP is the break frequency of the controller. The PI controller is 
essentially a low-pass filter and adds phase lag to the system below the break frequency. 
We would like to place the break frequency below the crossover frequency so that 
the phase margin is not reduced significantly due to the presence of the PI zero. 

The uncompensated Bode plot is shown in Figure 9.45 for 

G(s) = 9—^e-sT, 

where T = 77-/4. The uncompensated system phase margin is P.M. -— -88.34° at 
(oc = 2.83 rad/s. Since we want P.M. = 60°, we need the phase to be minus 120° at 
the crossover frequency. In Figure 9.45 wc can estimate the phase </> = —120° 
at o) =¾ 0.87 rad/s. This is an approximate value but is sufficiently accurate for the 
design procedure. At to = 0.87 the magnitude is about 14.5 dB. If we want the 
crossover to be toc = 0.87 rad/s, the controller needs to attenuate the system gain 
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FIGURE 9.45 
Uncompensated 
Bode plot with 
K = 9 and 
T = TT/4. 
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by 14.5 dB, so that the magnitude is 0 dB at coc = 0.87. With 

Gc(s) = KP 
S + Tl 

we can consider KP to be the gain of the compensator (a good approximation for 
large to). Therefore, 

Kp = 10-04.5/20) = 0.188. 

Finally we need to select Kj. Since we want the break frequency of the controller to 
be below the crossover frequency (so that the phase margin is not reduced signifi
cantly due to the presence of the PI zero), a good rule-of-thumb is to select 
1/T = K[/KP = 0.1<wc. To make the break frequency of the controller zero one 
decade below the crossover frequency. The final value of Kf is computed to be 
Ki = 0.1cocKP = 0.0164, where coL = 0.87 rad/s. Thus the PI controller is 

Gc(s) = 
0.188* + 0.0164 

(9.91) 

The Bode plot of Gc(s)G(s) is shown in Figure 9.46. The gain and phase margins are 
G.M. = 5.3 dB and P.M. = 56.5°. 
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FIGURE 9.46 
Compensated Bode 
plot with K = 9 and 
T = TT/4. 
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FIGURE 9,47 
Hot ingot robot 
control step 
response. 
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We consider whether the design specifications have been met. The steady-state 
tracking specification (DS1) is certainly satisfied since our system is type one; the PI 
controller introduced an integrator. The phase margin (with the time-delay) is 
P.M. = 56.5°, so the phase margin specification, DS2, in satisfied. The unit step 
response is shown in Figure 9.47. The percent overshoot is approximately 
P.O. « 4.2%. The target percent overshoot was 10%, so DS3 is satisfied. Overall 
the design specifications are satisfied. 

9.9 PID CONTROLLERS IN THE FREQUENCY DOMAIN 

The PID controller provides a proportional term, an integral term, and a derivative 
term (see Section 7.6). We then have the PID controller transfer function as 

Gc{s) = KP + — + KDs. (9.92) 

If we set KD = 0, we have the PI controller 

Gc(s) = KP + ^-. (9.93) 

If we set Kj = 0, we have the PD controller 

Gc(s) = KP + KDs. (9.94) 

In general, we no te that PID controllers are particularly useful for reducing the 
steady-state error and improving the transient response when G(s) has one or two 
poles (or may be approximated by a second-order process). 

We may use frequency response methods to represent the addition of a PID 
controller. The PID controller, Equation (9.92), may be rewritten as 

Gc(s) = —± 1 = -^ '-. (9.95) 

The Bode diagram of Equation (9.95) is shown in Figure 9.48 for COT, K, = 2, and 
a = 10. The PID controller is a form of a notch (or bandstop) compensator with a 
variable gain, Kj. Of course, it is possible that the controller will have complex zeros 
and a Bode diagram that will be dependent on the t. of the complex zeros. The con
tribution by the zeros to the Bode chart may be visualized by reviewing Figure 8.10 
for complex poles and noting that the phase and magnitude change as £ changes. 
The PID controller with complex zeros is 

Kj[l + (2£/a>Jja> - (cu/o>M)2] 
Giw) = -. . (9.96) 

)<o 

Normally, we choose 0.9 > C, > 0.7. 
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FIGURE 9.48 
Bode diagram for a 
PID controller using 
the asymptomatic 
approximation for 
the magnitude 
curve. 
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9.10 STABILITY IN THE FREQUENCY DOMAIN USING CONTROL DESIGN SOFTWARE 

We now approach the issue of stability using the computer as a tool. This section revis
its the Nyquist diagram, the Nichols chart, and the Bode diagram in our discussions on 
relative stability. Two examples will illustrate the frequency-domain design approach. 
We will make use of the frequency response of the closed-loop transfer function T(j(o) 
as well as the loop transfer function L(ja>). We also present an illustrative example that 
shows how to deal with a time delay in the system by utilizing a Pade approximation 
[6]. The functions covered in this section are nyquist, nichols, margin, pade, and ngrid. 

It is generally more difficult to manually generate the Nyquist plot than the 
Bode diagram. However, we can use the control design software to generate the 
Nyquist plot. The Nyquist plot is generated with the nyquist function, as shown in 
Figure 9.49. Wrhen nyquist is used without left-hand arguments, the Nyquist plot is 

FIGURE 9.49 
The nyquist 
function. 
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»num=[0.5]; den=[1 2 1 0.5 
»sys=tf(num,den); 
»nyquist(sys) 

FIGURE 9.50 
An example of the 
nyquist function. 
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automatically generated; otherwise, the real and imaginary parts of the frequency 
response (along with the frequency vector co) is returned. An illustration of the 
nyquist function is given in Figure 9.50. 

As discussed in Section 9.4, relative stability measures of gain margin and phase 
margin can be determined from both the Nyquist plot and the Bode diagram. The 
gain margin is a measure of how much the system gain would have to be increased 
for the L(jco) locus to pass through the —1 + / 0 point, thus resulting in an unstable 
system. The phase margin is a measure of the additional phase lag required before 
the system becomes unstable. Gain and phase margins can be determined from both 
the Nyquist plot and the Bode diagram. 

Consider the system shown in Figure 9.51. Relative stability can be determined 
from the Bode diagram using the margin function, which is shown in Figure 9.52. If 
the margin function is invoked without left-hand arguments, the Bode diagram is 
automatically generated with the gain and phase margins labeled on the diagram. 
This is illustrated in Figure 9.53 for the system shown in Figure 9.51. 

The script to generate the Nyquist plot for the system in Figure 9.51 is shown in 
Figure 9.54. In this case, the number of poles of L(s) = Gc(s)G(s)H(s) with positive 
real parts is zero, and the number of counterclockwise encirclements of 1 is zero; 

FIGURE 9.51 
closed-loop 

system 
e for Nyquist 

Bode with 
stability. 

«(v) 
0.5 

s3 + 2s2 + s + 0.5 -*• Yix) 
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FIGURE 9.52 
The margin 
function. 

[mag, phase,w]=bode(sys); 
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w); 

Example 

num=[0.5]; den=[1 2 1 0.5]; 
sys=tf(num,den); 
margin(sys); 

Gm = gain margin (dB) 
Pm = phase margin (deg) 

Wcg = freq. for phase = —180 
Wcp — freq. for gain = 0 dB 

or [Gm,Pm,Wcg,Wcp]=margin(sys); 
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FIGURE 9.53 
The Bode diagram 
for the system in 
Figure 9.51 with the 
gain margin and the 
phase margin 
indicated on the 
plots. 

num=[0.5]; 
den=[1 2 1 0.5 ]; 
sys=tf(num,den); •*-
% 
margin(sys) 

Loop transfer function 
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Gm = 3.0127. Pm = 49.2851 
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FIGURE 9.54 
(a) The Nyquist plot 
for the system in 
Figure 9.51 with 
gain and phase 
margins, (b) m-file 
script. 

% The Nyquist plot of 
% 
% 0.5 
% G(s) = 
% sA3 + 2 s*2 + S + 0.5 
% 
% with gain and phase margin calculation. 
% 
num=[0.5]; den=[1 2 1 0.5]; sys=tf(num,den); 
% 
[mag,phase,w]=bode(sys); < 
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w); 
% 
nyquist(sys); -*-

Compute gain and 
phase margins. 

Nyquist plot 

title(['Gm = ',num2str(gm),' Pm = ',niim2str(Pm)])-

Label gain and phase 
margins on plot. 

hence, the closed-loop system is stable. We can also determine the gain margin and 
phase margin, as indicated in Figure 9.54. 

Nichols Chart. Nichols charts can be generated using the nichols function, shown 
in Figure 9.55. If the nichols function is invoked without left-hand arguments, the 
Nichols chart is automatically generated; otherwise the nichols function returns the 
magnitude and phase in degrees (along with the frequency at). A Nichols chart grid 
is drawn on the existing plot with the ngrid function. The Nichols chart, shown in 
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FIGURE 9.55 
The nichols 
function. 
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FIGURE 9.56 
Nichols chart for 
the system of 
Equation (9.97). 

num=[1];den=[0.2 1.2 1 0 
sys=tf(num,den); 
w=logspace(-1,1,400); -4— 
nichols(sys,w); -« 
ngrid 

Set up to generate 
Figure 9.27. 

Plot Nichols chart 
and add grid lines. 
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Figure 9.56, is for the system 

G(jio) = -
1 

jcoijco + 1)(0.2/6) + 1) 
(9.97) 

EXAMPLE 9.12 Liquid level control system 

Consider a liquid level control system described by the block diagram shown in 
Figure 9.32 (see Example 9.9). Note that this system has a time delay. The loop 
transfer function is given by 

L(s) = 
31.5e rsT 

(s + l)(30s + l)(s2/9 + s/3 + 1)' 
(9.98) 

Wc first change Equation (9.98) in such a way that L(s) has a transfer function 
form with polynomials in the numerator and the denominator. To do this, we can 
make an approximation to e~sT with the pade function, shown in Figure 9.57. For 
example, suppose our time delay is T = 1 s, and we want a second-order 
approximation n = 2. Using the pade function, we find that 

s2 - 6s + 12 
e " =* s2 + 6s + 12' 

Substituting Equation (9.99) into Equation (9.98), we have 

(9.99) 

L(s)* 
31.5(s2 - 6s + 12) 

(s + 1)(30^ + 1)( / /9 + s/3 + 1 ) ( / + 6s + 12) 

Now we can build a script to investigate the relative stability of the system using the 
Bode diagram. Our goal is to have a phase margin of 30°. The associated script is 
shown in Figure 9.58. To make the script interactive, we let the gain K (now set at 
K = 31.5) be adjustable and defined outside the script at the command level. Then 
we set K and run the script to check the phase margin and iterate if necessary. The 
final selected gain is K = 16. Remember that we have utilized a second-order Pade 
approximation of the time delay in our analysis. • 

FIGURE 9.57 
The pade function. 

Time delay Order of approximation 

¥ 
[num,den]=pade(T,n) 

,-sT = j _ sT+ — (sT)2 + num(j) 
den(i) 
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Gm = 4.364 (at 0.73145 rad/s), Pm = 30.852 deg. (at 048496 rad/s) +-
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FIGURE 9.58 
(a) Bode diagram 
for the liquid level 
control system. 
(b) m-file script. 

»K=16; liquid -* Command level input. 

liquid, m 

% Liquid Control System Analysis 
% 
[npfdp]=pade(1,2); 
sysp=tf(np,dp); 
num=K; 
d1=[1 1];d2=[30 1];d3=[1/9 1/3 1j; 
den=con\/(d1 ,conv(d2,d3)); 
sysg=tf(num,den); 
sys=series(sysp,sysg); < 
% 
margin(sys); < 

Compute L(s). 

Compute gain and 
phase margins. 

(b) 

EXAMPLE 9.13 Remotely controlled reconnaissance vehicle 

Consider the speed control system for a remotely controlled reconnaissance vehicle 
shown in Figure 9.34. The design objective is to achieve good control with a low 
steady-state error and a low overshoot to a step command. Building a script will allow 
us to perform many design iterations quickly and efficiently. First, we investigate the 
steady-state error specification. The steady-state error to a unit step command is 

e« = 
1 

1 + K/2' 
(9.100) 
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The effect of the gain K on the steady-state error is clear from Equation (9.100): If 
K = 20, the error is 9% of the input magnitude; if K = 10, the error is 17% of the 
input magnitude. 

Now we can investigate the overshoot specification in the frequency domain. 
Suppose we require that the percent overshoot is less than 50%. Solving 

100 exp~C7T/V^2 
P.O. < 50 

for C yields £ > 0.715. Referring to Figure 8.11, we find that Mpio < 2.45. Wc must 
keep in mind that the information in Figure 8.11 is for second-order systems only 
and can be used here only as a guideline. We now compute the closed-loop Bode 
diagram and check the values of Mpo}. Any gain K for which Mpm ^ 2.45 may be a 
valid gain for our design, but we will have to investigate step responses further to 
check the actual overshoot. The script in Figure 9.59 aids us in this task. We further 
investigate the gains K = 20, 10, and 4.44 (even though Mpo) > 2.45 for K = 20). 
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FIGURE 9.59 
Remotely controlled 
vehicle, (a) Closed-
loop system Bode 
diagram, (b) m-file 
script. 

w=logspace(0,1,200); K=[20,10,4.44]; « - | ^ % ¾ ^ 

for i=1:3 
numgc=K(i)*[1 2]; dengc=(1 1];sysgc=tf(numgc,dengc); 
numg=[1]; deng=[1 2 4]; sysg=tf(numg,deng); 
[syss]=series(sysgc,sysg); sys=feedback(syss,[1]); 
[mag,phase,w]=bode(sys,w; 
mag_save(i,:)-mag(:,1,:); -4 

end 
% 
loglog(w,mag_save(1,:), w,mag_save(2,:), w,mag_save(3,:)) 
xlabel('Frequency (rad/s)'), ylabel('Magnitude'), grid on 

(b) 

Compute closed-loop 
frequency response 
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FIGURE 9.60 
Remotely controlled 
vehicle, (a) Step 
response, (b) m-file 
script. 

t=[0:0.01:10];K=[20,10,4.44]; < . 
y=zeros(length(t), lenglh(k)); 
% 
for i=1:3 

numgc=K(i)*[1 2]; dengc=[1 1]; sysgc=tf(numgc,dengc 
numg=[1j; deng=[1 2 4]; sysg=tf(numg,deng); 
syss=series(sysgc,sysg); 
sys=feedback(syss,[1 ]); 
y(:,i)=step(sys,t); < 

end 
% 
plot(t,y(:,1),t,y(:32),t,y(:,3)),grid 
xlabel(Time (s)'), ylabel('y(t)') 

Loop for three gains 
# = 20,10,4.44. 

Compute step 
response. 

(b) 

We can plot the step responses to quantify the overshoot as shown in Figure 9.60. 
Additionally, we could have used a Nichols chart to aid the design process, as shown 
in Figure 9.61. 

The results of the analysis are summarized in Table 9.5 for K = 20,10, and 4.44. 
We choose K = 10 as our design gain. Then we obtain the Nyquist plot and check 
relative stability, as shown in Figure 9.62. The gain margin is GM - 49.56 dB and 
the phase margin is PM = 26.11°. • 

9.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

,̂ > In this chapter, we will examine the system described in Chapter 8, using the system 
\J represented by Figure 8.49.This system includes the effect of the flexure resonance 
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180 -160 - 120 -100 - 8 0 
Open-Loop Phase 

(a) 

FIGURE 9.61 
Remotely controlled 
vehicle, (a) Nichols 
chart, (b) m-file 
script. 

% Remotely Controlled Battlefield Vehicle 
% 
numgc=[1 2]; dengc=[1 1]; sysgc=tf(numgc,dengc); 
numg=[1]; deng=[1 2 4]; sysg=tf(numg,deng); 
sys=series(sysgc,sysg); -4 
% 
w=logspace(-1,1,200); 
% 
K=[20,10,4.44]; < 
hold off, elf 
for 1=1:3 

nichols(K(i)*sys,w), ngrid 
hold on 
end 

Compute GcG(s). 

Nichols chart for 
K = 20,10, and 4.44. 

(b) 

and incorporates a PD controller with a zero at s = — 1. We will determine the system 
gain margin and phase margin when K = 400. 

The Bode diagram for the system of Figure 8.49 when K = 400 is shown in 
Figure 9.63. The gain margin is 22.9 dB, and the phase margin is 37.2°.The plot of the 
step response of this system is shown in Figure 9.64. The settling time of this design 
is T* = 9.6 ms. 
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FIGURE 9.62 
(a) Nyquist chart for 
the remotely 
controlled vehicle 
with/<= 10. 
(b) m-file script. 
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(a) 

% Remotely Controlled Vehicle 
% Nyquist plot for K=10 
% 
numgc=10,,[1 2]; dengc=[1 1]; sysgc=tf(numgc,dengc); 
numg=[1l; deng=f1 2 41; sysg=tf(numg,deng); 
sys=series(sysgc,sysg); 
% 
[Gm,Pm,Wcg,Wcp]=margin(sys); 
% 
nyquist(sys); 
title(['Gm = ',num2str(Gm),' Pm = l

Inum2str(Pm)]) 

(b) 

FIGURE 9.63 
Bode diagram of 
the system shown 
in Figure 8.49. 
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FIGURE 9.64 
Response of the 
system to a step 
input. 

Chapter 9 Stability in the Frequency Domain 

1.4 

1.2 / - — \ -

0.8 -

0.6 -

0.4 

0.2 

J 

—L_ 

-

9.6 ms 

0.002 0.004 0.006 0.008 0.01 0.012 

Time (s) 

0.014 0.016 0.018 0.02 

9.12 SUMMARY 

The stability of a feedback control system can be determined in the frequency domain 
by utilizing Nyquist's criterion. Furthermore, Nyquist's criterion provides us with two 
relative stability measures: (1) gain margin and (2) phase margin. These relative stabil
ity measures can be utilized as indices of the transient performance on the basis of cor
relations established between the frequency domain and the transient response. The 
magnitude and phase of the closed-loop system can be determined from the frequency 
response of the open-loop transfer function by utilizing constant magnitude and phase 
circles on the polar plot. Alternatively, we can utilize a log-magnitude-phase diagram 
with closed-loop magnitude and phase curves superimposed (called the Nichols chart) 
to obtain the closed-loop frequency response. A measure of relative stability, the maxi
mum magnitude of the closed-loop frequency response, Mpo„ is available from the 
Nichols chart. The frequency response, Mpw, can be correlated with the damping ratio 
of the time response and is a useful index of performance. Finally, a control system with 
a pure time delay can be investigated in a manner similar to that for systems without 
time delay. A summary of the Nyquist criterion, the relative stability measures, and the 
Nichols diagram is given in Table 9.6 for several transfer functions. 

Table 9.6 is very useful and important to the designer and analyst of control sys
tems. If we have the model of a process G(s) and a controller Gc(s), then we can deter
mine L(s) = Gc(s)G(s), With this loop transfer function, we can examine the transfer 
function table in column l.This table contains fifteen typical transfer functions. For a 
selected transfer function, the table gives the Bode diagram, the Nichols diagram, and 
the root locus. With this information, the designer can determine or estimate the per
formance of the system and consider the addition or alteration of the controller Gc(s). 
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Table 9.6 Transfer Function Plots for Typical Transfer Functions 

L{s) Polar Plot Bode Diagram 
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Table 9.6 (continued) 

Nichols Diagram 

Chapter 9 Stability in the Frequency Domain 

Root Locus Comments 

J co 

Root locus 
< K-

Stable; gain margin = oo 

OdB 

7« 

-*-

1¾ 
D r 2 

Hlementary regulator; stable; gain 
margin = oo 

Regulator with additional energy-
storage component; unstable, but can 
be made stable by reducing gain 

M 

OdB 

Phase 
margin 

-180° -90° <$> 

jc 

Ideal integrator; stable 

(continued) 
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Table 9.6 (continued) 

L{s) Polar Plot Bode Diagram 
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Table 9.6 (continued) 

Nichols Diagram Root Locus Comments 

OdB 
-*-

JCO 

Ur2 

Elementary instrument servo; inher
ently stable; gain margin — oo 

G a i n - 4 _ r i 8 0 ° - 9 0 ° <!> 
margin 

Instrument servo with field control 
motor or power servo with elemen
tary Wark-Leonard drive; stable as 
shown, but may become unstable with 
increased gain 

Elementary instrument servo with 
phase-lead (derivative) compensator; 
stable 

M 

OdB 
-270° -1 

Phase 
margin = 0 

)° -90° cf> 

Double 
pole \ Ur\ 

Or2 

Inherently marginally stable; must be 
compensated 

(continued) 
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Table 9.6 (continued) 

L(s) Polar Plot 
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Bode Diagram 
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Table 9.6 (continued) 

Nichols Diagram Root Locus Comments 

M 

/ 
OdB 

-180° -90° <f> 

. Phase 
margin 
(negative) 

Double 
pole 

Inherently unstable; must be 
compensated 

Phase 
margin 

Double 
pole 

Stable for all gains 

M 

OdB 

Phase 
margin 

-270° -180° -90° Inherently unstable 

Phase 
margin 

Inherently unstable 

(continued) 
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Table 9.6 (continued) 

L(s) Polar Plot Bode Diagram 
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Table 9.6 (continued) 

Nichols Diagram Root Locus Comments 

Phase /j 
margin 

Conditionally stable; becomes 
unstable if gain is too low 

Phase 
margin 

•*-o-x x-o-o—oo-x )<• 

Conditionally stable; stable at low 
gain, becomes unstable as gain is 
raised, again becomes stable as gain is 
further increased, and becomes 
unstable for very high gains 

Conditionally stable; becomes 
unstable at high gain 

EXERCISES 

E9.1 A system has the loop transfer function 

2.5(1 + 5/5) 
Gc(s)G(s) = 

s(l + 25)(1 + s/7 -+ sz/49) 

Plot the Bode diagram. Show that the phase margin is 
approximately 28° and that the gain margin is approx
imately 21 dB. 

E9.2 Consider a unity feedback system with open-loop 
transfer function 

10 
s(s + 2)(s + 5) 

(a) Draw the polar plot. 
(b) Find the gain crossover frequency and phase 

crossover frequency. 
(c) Find the gain margin and phase margin. 

E9.3 Consider the system given in Figure E9.3. Obtain 
gain margin and phase margin by drawing Bode 
plot of appropriate transfer function. 

E9.4 Consider a system with a loop transfer function 

Gc(s)G(s) = 
100 

s(s + 10)' 
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is) -^Hgh 10 
(5+5) 

(s+2) 

Y{S) E9.7 A unity feedback system has a loop transfer function 

K 

FIGURE E9.3 Gain Margin and Phase Margin. 

Gc(s)G(s) = 
s -2' 

Determine the range of K for which the system is sta
ble by drawing the polar plot. 

E9.8 The open-loop transfer function of a unity feed back 
system is, 

We wish to obtain a resonant peak Mpo) - 3.0 dB for 
the closed-loop system. The peak occurs between 6 
and 9 rad/s and is only 1.25 dR Plot the Nichols chart 
for the range of frequency from 6 to 15 rad/s. Show 
that the system gain needs to be raised by 4.6 dB to 
171. Determine the resonant frequency for the adjusted 
system. 

Answer: a>f ~ 11 rad/s 

E9.5 An integrated CMOS digital circuit can be repre
sented by the Bode diagram shown in Figure E9.5. 
(a) Find the gain and phase margins of the circuit. 
(b) Estimate how much we would need to reduce the 
system gain (dB) to obtain a phase margin of 60°. 

E9.6 A system has a loop transfer function 

K(s + 100) 
0 - M ° « = 1(, ; 10)(, + 40)-

When K = 500, the system is unstable. Show that if 
we reduce the gain to 50, the resonant peak is 3.5 dB. 
Find the phase margin of the system with K = 50. 

(a) 

1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 
Frequency 

(b) -360 

FIGURE E9.5 CMOS circuit 

5(1 + 0.55)(1 + 0.1s) 

(a) Draw the Bode Plot of loop transfer function. 
(b) Find the gain crossover frequency, gain margin 

and phase margin. 
(c) If the steady gain is doubled, find gain crossover 

frequency, gain margin and phase margin. 

E9.9 Consider a unity feedback system with open-loop 
transfer function. 

K 

s{\ -^ s)(l + 2s) 

(a) Draw the Nyquist plot and check whether the sys
tem is stable if K=1. 

(b) From the Nyquist plot find the range of values of 
K for which the system is stable. 

E9.10 Consider the wind tunnel control system of Problem 
P7.31. Obtain the Bode diagram and show that the phase 
margin is 25° and that the gain margin is 10 dB. Also, show 
that the bandwidth of the closed-loop system is 6 rad/s. 

E9.ll Consider a unity feedback system with the loop 
transfer function 

Gc(s)G(s) = 
10(1 + 0.4s) 

s(l + 2s)(l + 0.24s + 0.04s2)' 

(a) Plot the Bode diagram, (b) Find the gain margin 
and the phase margin. 

E9.12 A closed-loop system, as shown in Figure 9.1, has 
H(s) = 1 and 

Gc(s)G(s) = 
K 

S(T,S + 1)(T2S + 1)' 

where rx = 0.02 and r2 = 0.2 s. (a) Select a gain AT so 
that the steady-state error for a ramp input is 10% of 
the magnitude of the ramp function A, where 
r{t) = At,t> 0. (b) Plot the Bode plot of 
Gc(s)G(s), and determine the phase and gain mar
gins. (c) Using the Nichols chart, determine the band
width CQS, the resonant peak Mpw, and the resonant 
frequency cor of the closed-loop system. 

Answer: 

(a) K = 10 

(b) PM = 32°, GM = 15 dB 
(c) coB = 10.3, MPM = 1.84, co, = 6.5 

http://E9.ll
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E9.13 A unity feedback system has a loop transfer function 

150 
Gc(s)G(s) = 

s(s + 5)' 

(a) Find the maximum magnitude of the closed-loop 
frequency response using the Nichols chart, (b) Find 
the bandwidth and the resonant frequency of this sys
tem. (c) Use these frequency measures to estimate the 
overshoot of the system to a step response. 
Answers: (a) 7.5 dB, (b) coB = 19, cor = 12.6 

E9.14 A Nichols chart is given in Figure E9.14 for a system 
where Gc(/a>)G(;'w) is plotted. Using the following 
table, find (a) the peak resonance Mp<0 in dB; (b) the 
resonant frequency cor; (c) the 3-dB bandwidth; and (d) 
the phase margin of the system. 

« i Oi2 a>4 

E9.15 Consider a unity feedback system with the loop 
transfer function 

Gc(s)G(s) = 
100 

s + 10" 

rad/s 10 

Find the bandwidth of the closed-loop system. 

Answers: (aD - 109 

E9.16 The pure time delay e~sT may be approximated by 
a transfer function as 

-,r .. I ~ Ts/2 
e m 

1 + Ts/2 

for 0 < (o < 2/T. Obtain the Bode diagram for the 
actual transfer function and the approximation for 
T = 2for0 < o) < 1. 

FIGURE E9.14 
Nichols chart for 
Gc(ja>)G(jco). 

-210 -180 -150 -120 -90 -60 
Loop phase Z GCG (degrees) 
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E9.17 A unity feedback system has a loop transfer function 

K(s + 2) 
Gc(s)G(s) = 

+ 2s2 + 15s 

(a) Plot the Bode diagram and (b) determine the gain 
K required to obtain a phase margin of 30°. What is 

the steady-state error for a ramp input for the gain of 
part (b)? 

E9.18 An actuator for a disk drive uses a shock, mount to 
absorb vibrational energy at approximately 60 Hz 
[14]. The Bode diagram of Gc(s)G(s) of the control 
system is shown in Figure E9.18. (a) Find the expected 
percent overshoot for a step input for the closed-loop 

X: 486.93 
Trans 1 

40.000 

Y: -4.5924m Y: 0.0 
R#:3 #A: 100 Expand 

LGMAG 
DB 

-10.000 
40.000 -186 117 

Gain crossover 

600.00 

X: 486.93 Y: 36.215 Y: 0.0 
Trans 1 R#:3 #A: 100 Expand 

180.00 

Phase 
margin 

FIGURE E9.18 
Bode diagram of 
the disk drive, 
Gc(s)G(s). 

18() no 

Phase margin 
at crossover 

40.000 LGHZ 

(b) 

486 Hz 600.00 
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FIGURE E9.20 
Automobile control 
system. 

. 

Driver 

2 

Automobile 

34 
(s + 2)(5 + 8) 

Velocity of 
Automobile 

system, (b) estimate the bandwidth of the closed-loop 
system, and (c) estimate the settling time (with a 2% 
criterion) of the system. 

E9.19 A unity feedback system with Gc(s) = K has 

„-0.l4-
G(s) = 

s + 10 

Select a gain K so that the phase margin of the system is 
50°. Determine the gain margin for the selected gain, K. 

E9.20 Consider a simple model of an automobile driver 
following another car on the highway at high speed. 
The model shown in Figure E9.20 incorporates the 
driver's reaction time, T. One driver has T — 1 s, and 
another has T = 1.5 s. Determine the time response 
y(t) of the system for both drivers for a step change in 
the command signal R(s) = —l/s, due to the braking 
of the lead car. 

E9.21 A unity feedback control system has a loop trans
fer function 

Gc(s)G(s) = 
K 

s(s + 2)(s + 50) 

Determine the phase margin, the crossover frequency, 
and the gain margin when K = 1300. 

Answers: PM = 16.6°, coc = 4.9, GM = 4 or 12 dB 

E9.22 A unity feedback system has a loop transfer function 

GJs)G(s) = 
K(s + 1) 

(s - l)(s - 6)-

(a) Using a Bode diagram for K = 8, determine the 
system phase margin, (b) Select a gain K so that the 
phase margin is at least 45°. 

E9.23 Consider again the system of E9.21 when K = 438. 
Determine the closed-loop system bandwidth, resonant 
frequency, and Mpio using the Nichols chart. 

Answers: wB - 4.25 rad/s, cor = 2.7, Mpu) = 1.7 

E9.24 A unity feedback system has a loop transfer function 

K 
Gc(s)G(s) = 

- 1 + TS ' 

where K = ^ and T - 1. The polar plot for 
Gc(jo))G(joj) is shown in Figure E9.24. Determine 
whether the system is stable by using the Nyquist 
criterion. 

FIGURE E9.24 
Polar plot for 
Gc(s)G(s) = 
K / ( - l + TS) 

E9.2S A unity feedback system has a loop transfer function 

11.7 
Gc(s)G(s) = 

J(1 + 0.05^)(1 + 0.1s)' 

Determine the phase margin and the crossover fre
quency. 

Answers: PM = 21.T, u>c = 8.31 rad/s 

E9.26 For the system of E9.25, determine Mpaj, o)n and 
coB for the closed-loop frequency response by using 
the Nichols chart. 

E9.27 A unity feedback system has a loop transfer function 

K 
Gc{s)G{s) = 

s{s + 6)2 
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Determine the maximum gain K for which the phase 
margin is at least 40° and the gain margin is at least 6 
dB. What are the gain margin and phase margin for 
this value of Kl 

E9.28 A unity feedback, system has the loop transfer 
function 

Gc(s)G(s) = 
K 

s(s + 0.2) 

(a) Determine the phase margin of the system when 
K = 0.16. (b) Use the phase margin to estimate £ and 
predict the overshoot, (c) Calculate the actual re
sponse for this second-order system, and compare the 
result with the part (b) estimate. 

E9.29 A loop transfer function is 

Gc(s)G(s) = 
1 

s + 2 
Using the contour in the s-plane shown in Figure 
E9.29, determine the corresponding contour in the 
F0)-plane (B = - 1 + /). 

W 
i 

B 

- 1 

H 

.4 

. 

- / 2 

C 

0 

G 

D 

E 

1 

F 

E9.30 Consider the system represented in state variable 
form 

x = Ax + B« 
v = Cx + DM, 

where 

A = 
0 

- 1 0 

1 

-100 J 
, B = 

0 

_lj 
C = [1000 0], and D = [0]. 

Sketch the Bode plot. 

E9.31 A closed-loop feedback system is shown in Figure 
E9.31. Sketch the Bode plot and determine the phase 
margin. 

R(s) • N.v) 

FIGURE E9.31 Nonunity feedback system. 

E9.32 Consider the system described in state variable 
form by 

x(f) = Ax(0 + BM(0 

y{t) = Cx(f) 

where 

A = 
0 

-4 

1 

- 1 
, B = 

0 

L3.62J 
,C = [1 0]. 

Compute the phase margin. 

E9.33 Consider the system shown in Figure E9.33. Com
pute the loop transfer function L(s), and sketch the 
Bode plot. Determine the phase margin and gain mar
gin when the controller gain K = 5. 

FIGURE E9.29 Contour in the s-plane. 

Ris) 

FIGURE E9.33 
Nonunity feedback 
system with 
proportional 
controller K. 

. 

Controller 

K 

Sensor 

10 
s+ 10 

Process 

4 

s2 + 2.S3s + 4 
• Yu) 
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PROBLEMS 

P9.1 For the polar plots of Problem P8.1, use the Nyquist 
criterion to ascertain the stability of the various sys
tems. In each case, specify the values of N, P, and Z. 

P9.2 Sketch the polar plots of the following loop transfer 
functions Gc(s)G(s), and determine whether the sys
tem is stable by applying the Nyquist criterion: 

(a) Gc(s)G(s) = K 

s(sz + 5 + 4) 

K(s + 2) 
(b) Gc(s)G(s) = ' 

s\s + 4) 

If the system is stable, find the maximum value for K 
by determining the point where the polar plot crosses 
the w-axis. 

P9.3 (a) Find a suitable contour Ts in the i-plane that can 
be used to determine whether all roots of the charac
teristic equation have damping ratios greater than £j. 
(b) Find a suitable contour Ts in the s-plane that can 
be used to determine whether all the roots of the char
acteristic equation have real parts less than s = — crj. 
(c) Using the contour of part (b) and Cauchy's theo
rem, determine whether the following characteristic 
equation has roots with real parts less than 5 = - 1 : 

q(s) = s3 + Us2 + 56s + 96. 

P9.4 The polar plot of a conditionally stable system is shown 
in Figure P9.4 for a specific gain K. (a) Determine 

G,.ij co)G( j co)-plane 

whether the system is stable, and find the number of 
roots (if any) in the right-hand i'-plane. The system has 
no poles of Gc(s)G(s) in the right half-plane, (b) Deter
mine whether the system is stable if the — 1 point lies at 
the dot on the axis. 

P9.5 A speed control for a gasoline engine is shown in 
Figure P9.5. Because of the restriction at the carburetor 
intake and the capacitance of the reduction manifold, 
the lag r, occurs and is equal to 1 second. The engine 
time constant TC is equal to J/b = 3 s. The speed mea
surement time constant is T,„ = 0.4 s. (a) Determine 
the necessary gain K if the steady-state speed error is 
required to be less than 10% of the speed reference set
ting. (b) With the gain determined from part (a), apply 
the Nyquist criterion to investigate the stability of the 
system, (c) Determine the phase and gain margins of 
the system. 

P9.6 A direct-drive arm is an innovative mechanical arm in 
which no reducers are used between motors and their 
loads. Because the motor rotors are directly coupled to 
the loads, the drive systems have no backlash, small fric
tion, and high mechanical stiffness, which are all impor
tant features for fast and accurate positioning and 
dexterous handling using sophisticated torque control. 

The goal of the MIT direct-drive arm project is to 
achieve arm speeds of 10 m/s [15]. The arm has 
torques of up to 660 N m (475 ft lb). Feedback and a 
set of position and velocity sensors are used with each 
motor. The frequency response of one joint of the arm 
is shown in Figure P9.6(a).The two poles appear at 3.7 
Hz and 68 Hz. Figure P9.6(b) shows the step response 
with position and velocity feedback used. The time 
constant of the closed-loop system is 82 ms. Develop 
the block diagram of the drive system and prove that 
82 ms is a reasonable result. 

P9.7 A vertical takeoff (VTOL) aircraft is an inherently 
unstable vehicle and requires an automatic stabiliza
tion system. An attitude stabilization system for the 
K-16B U.S. Army VTOL aircraft has been designed 
and is shown in block diagram form in Figure P9.7 
[16]. At 40 knots, the dynamics of the vehicle are 
approximately represented by the transfer function 

FIGURE P9.4 
system. 

Polar plot of conditionally stable G(s) 
10 

s2 + 0.36' 

FIGURE P9.5 
Engine speed 
control. 

V'l.v) 
Speed 
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FIGURE P9.6 
The MIT arm: 
(a) frequency 
response, and 
(b) position 
response. 
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82 ms 
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(b) 

TAs) 

FIGURE P9.7 
VTOL aircraft 
stabilization 
system. 
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H(s) = s 

Vehicle 

G(s) Attitude 

The actuator and filter are represented by the transfer 
function 

Gc(s) = 
Ki(s f 7) 

s + 3 ' 

(a) Obtain the Bode diagram of the loop transfer 
function L(s) = Gc(s)G(s)H(s) when the gain is 
K\ = 2. (b) Determine the gain and phase margins of 
this system, (c) Determine the steady-stale error for a 
wind disturbance of Td(s) = 1/s. (d) Determine the 
maximum amplitude of the resonant peak of the 
closed-loop frequency response and the frequency of 
the resonance, (e) Estimate the damping ratio of the 
system from Mpu) and the phase margin. 

P9.8 Electrohydraulic servomcchanisms arc used in con
trol systems requiring a rapid response for a large 
mass. An electrohydraulic servomechanism can pro
vide an output of 100 kW or greater [17]. A photo of a 
servovalve and actuator is shown in Figure P9.8(a). 

The output sensor yields a measurement of actuator 
position, which is compared with Vm. The error is 
amplified and controls the hydraulic valve position, thus 
controlling the hydraulic fluid flow to the actuator. The 
block diagram of a closed-loop electrohydraulic servo-
mechanism using pressure feedback to obtain damping 
is shown in Figure P9.8(b) [17, 18]. Typical values for 
this system are T — 0.02 s; for the hydraulic system 
they are co2 = 7(2TT) and Ci = 0.05. The structural 
resonance (ox is equal to 10(27r), and the damping is 
£i = 0.05. The loop gain is KAKiK2 = 1.0. (a) Sketch 
the Bode diagram and determine the phase margin of 
the system, (b) The damping of the system can be in
creased by drilling a small hole in the piston so that 
It - 0.25. Sketch the Bode diagram and determine 
the phase margin of this system. 

P9.9 The space shuttle, shown in Figure P9.9(a), carries 
large payloads into space and returns them to earth 
for reuse [19]. The shuttle uses elevons at the trailing 
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(a) 

FIGURE P9.8 
(a) A servovalve and 
actuator (courtesy 
of Moog, Inc., 
Industrial Division). 
(b) Block diagram. 
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\ an u>2 ' 

Vis) 
Position 

(b) 

edge of the wing and a brake on the tail to control the 
flight during entry. The block diagram of a pitch rate 
control system is shown in Figure P9.9(b). The sensor 
is represented by a gain, H(s) = 0.5, and the vehicle 
by the transfer function 

G(s) = 
).30(.v + 0.05)(s2 + 1600) 

(s2 + 0.05s I 16)(5 + 70) 

The controller Gc(s) can be a gain or any suitable 
transfer function, (a) Sketch the Bode diagram of the 
system when GJs) = 2 and determine the stability 
margin, (b) Sketch the Bode diagram of the system 
when 

Gc(s) = Kr + Kj/s and K,/KP = 0.5. 

The gain KP should be selected so that the gain mar
gin is 10 dB. 

P9.10 Machine tools are often automatically contiolled as 
shown in Figure P9.10. These automatic systems are 
often called numerical machine controls [9]. On each 
axis, the desired position of the machine tool is 

compared with the actual position and is used to actu
ate a solenoid coil and the shaft of a hydraulic actuator. 
The transfer function of the actuator (see Table 2.7) is 

Ga(s) = K. X(s) _ 

Y(s) s ( iv + 1)' 

where Ka = ] and T„ = 0.4 s. The output voltage of 
the difference amplifier is 

£0vv) = K,{X{s) - Xd(s)), 

where xd(t) is the desired position input. The force on 
the shaft is proportional to the current i, so that 
F = K2i(t), where K2 - 3.0. The spring constant Ks 

is equal to 1.5, R = 0.1, and L = 0.2. 

(a) Determine the gain K\ that results in a system 
with a phase margin of 30°. (b) For the gain K\ of part 
(a), determine Mpa), con and the closed-loop system 
bandwidth, (c) Estimate the percent overshoot of the 
transient response to a step input X,t(s) = \/s, and 
the settling time (to within 2% of the final value). 
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FIGURE P9.9 
(a) The Earth-
orbiting space 
shuttle against the 
blackness of space. 
The remote 
manipulator robot is 
shown with the 
cargo bay doors 
open in this top 
view, taken by a 
satellite, (b) Pitch 
rate control system. 
(Courtesy of NASA.) 

Ms) 

Controller 

G,-(.v) 

Vehicle 

C(s) 

Sensor 

H(s) 

Y(s) 
Pitch rate 

(b) 

FIGURE P9.10 
Machine tool 
control. Supply 

P9. l l A control system for a chemical concentration con
trol system is shown in Figure P9. l l . The system 
receives a granular feed of varying composition, and 
we want to maintain a constant composition of the 
output mixture by adjusting the feed-flow valve. The 
transfer function of the tank and output valve is 

G(s) = 
5s + r 

and that of the controller is 

K2 
Gc(s) = Kx + — . 

http://P9.ll
http://P9.ll
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FIGURE P9.11 
Chemical 
concentration 
control. 
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The transport of the feed along the conveyor requires 
a transport (or delay) time, T = 1.5 s. (a) Sketch the 
Bode diagram when Ky = K2 = 1, and investigate 
the stability of the system, (b) Sketch the Rode dia
gram when Ky = 0.1 and K2 = 0.04, and investigate 
the stability of the system, (c) When K\ = 0, use the 
Nyquist criterion to calculate the maximum allowable 
gain K2 for the system to remain stable. 

P9.12 A simplified model of the control system for regu
lating the pupillary aperture in the human eye is 
shown in Figure P9.12 [20]. The gain K represents the 
pupillary gain, and T is the pupil time constant, which 
is 0.6 s. The time delay T is equal to 0.15 s. The pupil
lary gain is equal to 3.8. 

(a) Assuming the time delay is negligible, sketch the 
Bode diagram for the system. Determine the phase 
margin of the system, (b) Include the effect of the time 
delay by adding the phase shift due to the delay. 
Determine the phase margin of the system with the 
time delay included. 

P9.13 A controller is used to regulate the temperature 
of a mold for plastic part fabrication, as shown in 
Figure P9.13.The value of the delay time is estimated 
as 1.2 s. (a) Using the Nyquist criterion, determine 
the stability of the system for Kn = K = 1. 
(b) Determine a suitable value for Ka for a stable sys
tem that will yield a phase margin greater than 50° 
when K = 1. 

Ris) + Q 
Reference -r^ 

FIGURE P9.12 
Human pupil 
aperature control. 
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R(s) 

FIGURE P9.13 
Temperature 
controller. 
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Controller 
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FIGURE P9.14 
Automobile steering 
control. 
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Human 
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P9.14 Electronics and computers are being used to control 
automobiles. Figure P9.14 is an example of an 
automobile control system, the steering control for a re
search automobile. The control stick is used for steer
ing. A typical driver has a reaction time of T = 0.2 s. 

(a) Using the Nichols chart, determine the magnitude 
of the gain K that will result in a system with a 
peak magnitude of the closed-loop frequency 
response Mpoi less than or equal to 2 dB. 

(b) Estimate the damping ratio of the system based 
on (1) Mpai and (2) the phase margin. Compare 
the results and explain the difference, if any. 

(c) Determine the closed-loop 3-dB bandwidth of the 
system. 

P9.15 Consider the automatic ship-steering system dis
cussed in Problem P8. l l .Tl ie frequency response of 
the open-loop portion of the ship steering control sys
tem is shown in Figure P8. l l . The deviation of the 
tanker from the straight track is measured by radar 
and is used to generate the error signal, as shown in 
Figure P9.15. This error signal is used to control the 
rudder angle 5(.v). 

(a) Is this system stable? Discuss what an unstable 
ship-steering system indicates in terms of the 
transient response of the system. Recall that the 
system under consideration is a ship attempting 
to follow a straight track. 

(b) Is it possible to stabilize this system by lowering 
the gain of the transfer function G(s)? 

(c) Is it possible to stabilize this system? Suggest a 
suitable feedback compensator? 

(d) Repeat parts (a), (b), and (c) when switch S is 
closed. 

Rudder 
angle 
5(5) 

1 

Defied constant 
heading 

Ship 

G(s) 
Heading 

_K 
E(s) 

Derivative 
feedback 

Ks 
Switch .V 

FIGURE P9.15 Automatic ship steering. 

P9.16 An electric carrier that automatically follows a 
tape track laid out on a factory floor is shown in 
Figure P9.16(a) [15]. Closed-loop feedback systems 
are used to control the guidance and speed of the 
vehicle. The cart senses the tape path by means of an 
array of 16 phototransistors. The block diagram of 
the steering system is shown in Figure P9.16(b). Se
lect a gain K so that the phase margin is approxi
mately 30°. 

P9.17 The primary objective of many control systems is to 
maintain the output variable at the desired or reference 
condition when the system is subjected to a disturbance 

http://P8.ll.Tlie
http://P8.ll
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(a) 

FIGURE P9.16 
(a) An electric 
carrier vehicle 
(photo courtesy of 
Control Engineering 
Corporation). 
(b) Block diagram. 
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array 
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Motor and cart dynamics 
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Y(s) 
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(b) 

Vis) 

/?(s) T — • Y(s) 

FIGURE P9.17 
Chemical reactor 
control. 

[23]. A typical chemical reactor control scheme is 
shown in Figure P9.17. The disturbance is represented 
by U(s), and the chemical process by G3 and G4. The 
controller is represented by G t and the valve by G2. 
The feedback sensor is H(s) and will be assumed to be 
equal to 1. We will assume that G2, G3, and G4 are all of 
the form 

GM = 
Ki 

1 + T,-S' 

where r 3 = T 4 = 4 s and AT3 = K4 = 0.1. The valve 
constants are K2 = 20 and T 2 = 0.5 s. We want to 
maintain a steady-state error less than 5% of the 
desired reference position. 
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(a) When GJ(A') = K\, find the necessary gain to sat
isfy the error-constant requirement. For this con
dition, determine the expected overshoot to a 
step change in the reference signal r(t). 

(b) If the controller has a proportional term plus an in
tegral term so that Gi(s) = Kx(l + I/.-?), deter
mine a suitable gain to yield a system with an 
overshoot less than 30%, but greater than 5%. For 
parts (a) and (b), use the approximation of the 
damping ratio as a function of phase margin that 
yields C, = 0.01</»pm. For these calculations, assume 
that U(s) = 0. 

(c) Estimate the settling time (with a 2 % criterion) of 
the step response of the system for the controller 
of parts (a) and (b). 

(d) The system is expected to be subjected to a step 
disturbance U(s) = A/s. For simplicity, assume 
that the desired reference is r(t) = 0 when the 
system has settled. Determine the response of the 
system of part (b) to the disturbance. 

P9.18 A model of an automobile driver attempting to steer 
a course is shown in Figure P9.18, where K = 5.3. 
(a) Find the frequency response and the gain and phase 
margins when the reaction time T is zero, (b) Find the 
phase margin when the reaction time is 0.1 s. 
(c) Find the reaction time that will cause the system to 
be borderline stable (phase margin = 0°). 

P9.19 In the United States, billions of dollars are spent 
annually for solid waste collection and disposal. One 
system, which uses a remote control pick-up arm for 
collecting waste bags, is shown in Figure P9.19. The 
loop transfer function of the remote pick-up arm is 

Gc(s)G(s) = 
0.25 

.5(45 + 1)(5 + 3) ' 

(a) Plot the Nichols chart and show that the gain mar
gin is approximately 32 dB. (b) Determine the phase 
margin and the Mpw for the closed loop. Also, deter
mine the closed-loop bandwidth. 

P9.20 The Bell-Boeing V-22 Osprey Tiltrotor is both an air
plane and a helicopter. Its advantage is the ability to 
rotate its engines to a vertical position, as shown in 
Figure P7.33(a), for takeoffs and landings and then 
switch the engines to a horizontal position for cruising 
as an airplane. The altitude control system in the 
helicopter mode is shown in Figure P9.20. (a) Obtain 
the frequency response of the system for K = 100. 

(b) Find the gain margin and the phase margin for this 
system, (c) Select a suitable gain K so that the phase 
margin is 40°. (Decrease the gain above K = 100.) 
(d) Find the response y(/) of the system for the gain 
selected in part (c). 

FIGURE P9.18 
Automobile and 
driver control. 
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FIGURE P9.20 
Tiltrotor aircraft 
control. 
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P9.21 The open-loop transfer function of a unity feedback 
system is, 

K 

(1 + 0.1s)(s -i 2) 

Find the value of K so that the phase margin is 40°. 

P9.22 The Nichols diagram for Gc{j<o)G(jio) of a closed-
loop system is shown in Figure P9.22. "The frequency 

for each point on the graph is given in the following 
table: 

Point 1 7 8 9 

co 1 2.0 2.6 3.4 4.2 5.2 6.0 7.0 8.0 

Determine (a) the resonant frequency, (b) the band
width, (c) the phase margin, and (d) the gain margin. 
(e) Estimate the overshoot and settling time (with a 
2% criterion) of the response to a step input. 

FIGURE P9.22 
Nichols chart. 
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FIGURE P9.23 Speed control system. 

P9.23 Consider the system given in figure P9.23. 

(a) If K/ = 1, find gain Margin using Bode Plot. Also 
find steady state error to a ram input. 

(b) Find Kj so that gain margin is 5. 
(c) Corresponding to the Kf obtained in (b) find the 

steady-state error to a ramp input. 

P9.24 A closed-loop system with unity feedback has a 
loop transfer function 

K(s + 20) 

(a) Determine the gain K so that the phase margin is 
45°. (b) For the gain K selected in part (a), determine 
the gain margin, (c) Predict the bandwidth of the 
closed-loop system. 

P9.25 A closed-loop system has the loop transfer function 

Ke -Ts 

Safety 
guard 

Gc(s)G(s) = 

(a) Determine the gain K so that the phase margin is 
60° when T = 0.2. (b) Plot the phase margin versus 
the time delay T for K as in part (a). 

P9.26 A specialty machine shop is improving the efficien
cy of its surface-grinding process [22]. The existing 
machine is mechanically sound, but manually operat
ed. Automating the machine will free the operator for 
other tasks and thus increase overall throughput of 
the machine shop. The grinding machine is shown in 
Figure P9.26(a) with all three axes automated with 
motors and feedback systems. The control system for 
the y-axis is shown in Figure P9.26(b). To achieve a 
low steady-state error to a ramp command, we choose 
K = 10. Sketch the Bode diagram of the open-loop 
system and obtain the Nichols chart plot. Determine 
the gain and phase margin of the system and the band
width of the closed-loop system. Estimate the £ of the 
system and the predicted overshoot and settling time 
(with a 2% criterion) 

P9.27 Consider the system shown in Figure P9.27. Deter
mine the maximum value of K = Kmax for which the 
closed-loop system is stable. Plot the phase margin 
as a function of the gain 1 < K < Kmax. Explain 
what happens to the phase margin as K approaches 
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FIGURE P9.26 Surface-grinding wheel control system. 
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P9.28 Consider the feedback system shown in Figure 
P9.28 with the process transfer function given as 

G (" - * 7 T ? 
The controller is the proportional controller 

Gc(s) = KP. 

(a) Determine a value of KP such that the phase mar
gin is approximately P.M. ~ 45°. 

(b) Using the P.M. obtained, predict the percent over
shoot of the closed-loop system to a unit step input. 

(c) Plot the step response and compare the actual 
percent overshoot with the predicted percent 
overshoot. 

FIGURE P9 .28 
A unity feedback 
system with a 
proportional 
controller in the 
loop. 
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A D V A N C E D P R O B L E M S 

AP9.1 Operational spacecraft undergo substantial mass 
property and configuration changes during their life
time [26]. For example, the inertias change consider
ably during operations. Consider the orientation 
control system shown in Fig. AP9.1. 
(a) Plot the Bode diagram, and determine the gain 
and phase margins when to2 = 15,267. (b) Repeat 
part (a) when co,,2 - 9500. Note the effect of chang
ing co„2 by 38%. 

AP9.2 Anesthesia is used in surgery to induce uncon
sciousness. One. problem with drug-induced uncon
sciousness is large differences in patient responsiveness. 
Furthermore, the patient response changes during an 
operation. A model of drug-induced anesthesia control 
is shown in Figure AP9.2. The proxy for unconscious
ness is the arterial blood pressure. 

(a) Plot the Bode diagram and determine the gain mar
gin and the phase margin when T = 0.05 s. (b) Repeat 

FIGURE AP9.1 
Spacecraft 
orientation control. 
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FIGURE AP9.2 
Control of blood 
pressure with 
anesthesia. 
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FIGURE AP9.3 
Weld bead depth 
control. 
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Paper machine 
control. 
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part (a) when T = 0.1 s. Describe the effect of the 
100% increase in the time delay T. (c) Using the phase 
margin, predict the overshoot for a step input for parts 
(a) and (b). 

AP9.3 Welding processes have been automated over the 
past decades. Weld quality features, such as final met
allurgy and joint mechanics, typically are not measur
able online for control. Therefore, some indirect way 
of controlling the weld quality is necessary. A compre
hensive approach to in-process control of welding 
includes both geometric features of the bead (such as 
the cross-sectional features of width, depth, and 
height) and thermal characteristics (such as the heat-
affected zone width and cooling rate). The weld bead 
depth, which is the key geometric attribute of a major 
class of welds, is very difficult to measure directly, but 
a method to estimate the depth using temperature 
measurement has been developed [27]. A model of the 
weld control system is shown in Figure AP9.3. 

(a) Determine the phase margin and gain margin for 
the system when K = 1. (b) Repeat part (a) when 
AT = 1.5. (c) Determine the bandwidth of the system 
for K = 1 and K = 1.5 by using the Nichols chart. 
(d) Predict the settling time (with a 2 % criterion) of a 
step response for K = 1 and K = 1.5. 

AP9.4 I h e control of a paper-making machine is quite 
complex [28].The goal is to deposit the proper amount 
of fiber suspension (pulp) at the right speed and in a 
uniform way. Dewatering, fiber deposition, rolling, 

and drying then take place in sequence. Control of the 
paper weight per unit area is very important. For the 
control system shown in Figure AP9.4, select K so that 
the phase margin >40° and the gain margin a 10 dB. 
Plot the step response for the selected gain. Deter
mine the bandwidth of the closed-loop system. 

AP9.5 NASA is planning many Mars missions with rover 
vehicles. A typical rover is a solar-powered vehicle 
which will see where it is going with TV cameras and 
will measure distance to objects with laser range find
ers. It will be able to climb a 30° slope in dry sand and 
will carry a spectrometer that can determine the 
chemical composition of surface rocks. It will be con
trolled remotely from Earth. 

For the model of the position control system 
shown in Figure AP9.5, determine the gain K that 
maximizes the phase margin. Determine the over
shoot for a step input with the selected gain. 

AP9.6 The acidity of water draining from a coal mine is 
often controlled by adding lime to the water. A valve 
controls the lime addition and a sensor is downstream. 
For the model of the system shown in Figure AP9.6, 
determine K and the distance D to maintain stability. 
We require D > 2 meters in order to allow full mix
ing before sensing. 

AP9.7 Building elevators are limited to about 800 meters. 
Above that height, elevator cables become too thick 
and too heavy for practical use. One solution is to elim
inate the cable. The key to the cordless elevator is the 
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FIGURE AP9.5 Position control system of a Mars rover. 

linear motor technology now being applied to the 
development of magnetically levitated rail transporta
tion systems. Under consideration is a linear synchro
nous motor that propels a passenger car along the 
tracklike guideway running the length of the elevator 
shaft. The motor works by the interaction of an elec
tromagnetic field from electric coils on the guideway 
with magnets on the car [29]. 

If we assume that the motor has negligible friction, 
the system may be represented by the model shown in 
Figure AP9.7. Determine K so that the phase margin of 
the system is 45°. For the gain K selected, determine 
the system bandwidth. Also calculate the maximum 
value of the output for a unit step disturbance for the 
selected gain. 

AP9.8 A control system is shown in Figure AP9.8. The 
gain K is greater than 500 and less than 3000. Select a 
gain that will cause the system step response to have 
an overshoot of less than 18%. Plot the Nichols dia
gram, and calculate the phase margin. 

AP9.9 Consider again the system shown in Figure AP7.12 
which uses a PI controller. Let 

and determine the gain Kp that provides the maxi
mum phase margin. 

AP9.10 A multiloop block diagram is shown in Figure. 
AP9.10. 

(a) Compute the transfer function T(s) = Y(s)/R(s). 
(b) Determine K such that the steady-state tracking 

error to a unit step input R(s) = l/s is zero. Plot 
the unit step response. 

(c) Using K from part (b), compute the system band
width 0)h. 

FIGURE AP9.6 
Mine water acidity 
control. 
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FIGURE AP9.7 
Elevator position 
control. 
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K(.v) • ( * ) 

FIGURE AP 9.10 
Multiloop feedback 
control system. 

• n.v) 

DESIGN PROBLEMS 

CDP9.1 The system of Figure CDP4.1 uses a controller 
f ^ G^s) = Ka. Determine the value of K„ so that the 
^ yj phase margin is 70°. Plot the response of this system to 

a step input. 

DP9.1 A mobile robot for toxic waste cleanup is shown in 
Figure DP9.1(a) [24].The closed-loop speed control is 
represented by Figure 9.1 with H(x) = 1. The Nichols 
chart in Figure DP9.1(b) shows the plot of Gc(;'&>) 
G(jco)/K versus co. The value of the frequency at the 
points indicated is recorded in the following table: 

Point 1 2 3 4 5 

5 10 20 50 

(a) Determine the gain and phase margins of the 
closed-loop system when K = 1. (b) Determine the 
resonant peak in dB and the resonant frequency for 
K ~ \. (c) Determine the system bandwidth and 
estimate the settling time (with a 2% criterion) and 
percent overshoot of this system for a step input. 
(d) Determine the appropriate gain K so that the 
overshoot to a step input is 30%, and estimate the set
tling time of the system. 

DP9.2 Flexible-joint robotic arms are constructed of 
lightweight materials and exhibit lightly damped 
open-loop dynamics [15]. A feedback control system 
for a flexible arm is shown in Figure DP9.2. Select K 
so that the system has maximum phase margin. Pre
dict the overshoot for a step input based on the phase 
margin attained, and compare it to the actual over
shoot for a step input. Determine the bandwidth of 
the closed-loop system. Predict the settling time (with 
a 2% criterion) of the system to a step input and com
pare it to the actual settling time. Discuss the suitability 
of this control system. 

DP9.3 An automatic drug delivery system is used in the 
regulation of critical care patients suffering from car
diac failure [25]. The goal is to maintain stable patient 

status within narrow bounds. Consider the use of a 
drug delivery system for the regulation of blood pres
sure by the infusion of a drug. The feedback control 
system is shown in Figure DP9.3. Select an appropri
ate gain K that maintains narrow deviation for blood 
pressure while achieving a good dynamic response. 

DP9.4 A robot tennis player is shown in Figure DP9.4(a), 
and a simplified control system for 92(t) is shown in 
Figure DP9.^(b).The goal of the control system is to 
attain the best step response while attaining a high Kv 

for the system. Select Kvi = 0.325 and Kv2 = 0.45. 
and determine the phase margin, gain margin, and 
closed-loop bandwidth for each case. Estimate the 
step response for each case and select the best value 
for K. 

DP9.5 An electrohydraulic actuator is used to actuate 
large loads for a robot manipulator, as shown in 
Figure DP9.5 [17]. The system is subjected to a step 
input, and we desire the steady-state error to be mini
mized. However, we wish to keep the overshoot less 
than 10%. Let T = 0.8 s. 

(a) Select the gain K when Gc(s) = K, and determine 
the resulting overshoot, settling time (with a 2% crite
rion), and steady-state error, (b) Repeat part (a) when 
Gc(s) = Kv + K2/s by selecting Kx and K2. Sketch 
the Nichols chart for the selected gains K x and K2. 

DP9.6 The physical representation of a steel strip-rolling 
mill is a damped-spring system [8]. The output thick
ness sensor is located a negligible distance from the 
output of the mill, and the objective is to keep the thick
ness as close to a reference value as possible. Any 
change of the input strip thickness is regarded as a dis
turbance. The system is a nonunity feedback system, as 
shown in Figure DP9.6. Depending on the maintenance 
of the mill, the parameter varies as 80 < b < 300. 

Determine the phase margin and gain margin for 
the two extreme values of b when the normal value of 



660 Chapter 9 Stability in the Frequency Domain 

(a) 

FIGURE DP9.1 
(a) Mobile robot for 
toxic waste 
cleanup, (b) Nichols 
chart. 
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FIGURE DP9.2 
Control of a flexible 
robot arm. 

FIGURE DP9.3 
Automatic drug 
delivery. 
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FIGURE DP9.4 
(a) An articulated 
two-link tennis 
player robot. 
(b) Simplified 
control system. 
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Ms) 

Controller 

K(s + 0.\) 

FIGURE DP9.6 
Steel strip-rolling 
mill. 
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3 
s+3 

Strip mill 

333.3 

s2 + bs + 10,000 
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the gain is K - 170. Recommend a reduced value for 
K so that the phase margin is greater than 40° and the 
gain margin is greater than 8 dB for the range of b. 

DP9.7 Vehicles for lunar construction and exploration 
work will face conditions unlike anything found on 
Earth. Furthermore, they will be controlled via 
remote control. A block diagram of such a vehicle 
and the control are shown in Figure DP9.7. Select a 
suitable gain K when 7" = 0.5 s. The goal is to 
achieve a fast step response with an overshoot of 
less than 20%. 

DP9.8 The control of a high-speed steel-rolling mill is 
a challenging problem. The goal is to keep the strip 
thickness accurate and readily adjustable. The 
model of the control system is shown in Figure 
DP9.8. Design a control system by selecting K so 
that the step response of the system is as fast as pos
sible with an overshoot less than 0.5% and a settling 
time (with a 2% criterion) less than 4 seconds. Use 

the root locus to select K, and calculate the roots for 
the selected K. Describe the dominant root(s) of the 
system. 

DP9.9 A two-tank system containing a heated liquid 
has the model shown in Figure DP9.9(a), where T() is 
the temperature of the fluid flowing into the first 
tank and T2 is the temperature of the liquid flowing 
out of the second tank. The block diagram model is 
shown in Figure DP9.9(b). The system of the two 
tanks has a heater in tank 1 with a controllable heat 
input Q. The time constants are TJ = 10 s and 
T7 = 50 s. 

(a) Determine T2(s) in terms of Tf)(s) and I M (5) . 
(b) If 7*2d(.s), the desired output temperature, is 

changed instantaneously from T2d(s) = A/s to 
T2(i(s) = 2A/s, determine the transient response 
of T2(t) when GAs) = K = 500. Assume that, 
prior to the abrupt temperature change, the sys
tem is at steady state. 

FIGURE DP9.7 
Lunar vehicle 
control. 
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Liquid in • Valve 

Valve 
Liquid out 

(a) 

FIGURE DP9.9 
Two-tank 
temperature 
control. (b) 

(c) Find the steady-state error ess for the system of 
part (b), where E(s) = T2d(s) - T2(s). 

(d) Let Gc(s) = K/s and repeat parts (b) and (c). 
Use a gain K such that the percent overshoot is 
less than 10%. 

(e) Design a controller that will result in a system 
with a settling time (with a 2% criterion) of 
Ts < 150 s and a percent overshoot of less than 
10%, while maintaining a zero steady-state error 
when 

Gc(s) = KP + ^-. 

(f) Prepare a table comparing the percent overshoot, 
settling time, and steady-state error for the designs 
of parts (b) through (e). 

DP9.10 Consider the system is described in state variable 
form by 

where 

i(r) = Ax(0 
y(t) = Cx(0 

Bu(r) 

0 1 

[_2 3 J 
,B = 

r 0 

l j 
.C = [l 0]. 

Assume that the input is a linear combination of the 
states, that is, 

u(t) = -Kx(t) + r(t), 

where r{t) is the reference input and the gain matrix is 
K = [Ki K2]- Substituting u(t) into the state vari
able equation yields the closed-loop system 

x(f) = [A - BK]x(0 

y(/) = Cx(0 

Br(0 

(a) Obtain the characteristic equation associated 
with A-BK. 

(b) Design the gain matrix K to meet the following 
specifications: (i) the closed-loop system is stable; 
(ii) the system bandwidth W(,> 1 rad/s; and (iii) 
the steady-state error to a unit step input 
R(s) = 1/s is zero. 
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C O M P U T E R P R O B L E M S 

CP9.1 Consider two systems with transfer function 

G,(J ) = -z 
1V ' s~ + 2s + 4 

G2(s) = 
25 

s2 + 5s + 25 

Using MATLAB: 
(a) Draw the Bode Plot of both systems on the same 

sheet. 
(b) From the Bode plot, find the band width OJB. 
(c) Obtain the step response of the systems. 
(c) From the step response, find percentage over

shoot, rise time and settling time. 
(c) What is the effect of band width on time response? 

CP9.2 Consider the closed-loop feedback system given in 
Figure CP9.2. Write a MATLAB program to: 
(a) Draw the Rode plot of loop transfer function. 
(b) Draw the Bode plot of closed-loop transfer function. 
(c) Find gain margin, phase margin and Band width 

of the system. 

U(s) -?\ 

9 
10 

s + 1 

3 
305+ 1 

9 
{s- + 3^ + 9) 

Ylsi 

FIGURE CP9.2 A closed-loop feedback system. 

CP9.3 Using the nichols, and logspace functions, obtain 
the Nichols chart with a grid for the following transfer 
functions: 

(c) G(s) 
s3 4- fi,v2 + 11.S + 6 

Determine the approximate phase and gain margins 
from the Nichols charts and label the charts accord
ingly. 

CP9.4 Consider a unity feedback system with open-loop 

transfer function G(s) = — 
w (s + \)(s + 2) 

(a) Draw the Bode plot of G(s) and find gain margin 
and phase margin. 

(b) If a pure delay with transfer function D(s) = e~L2s 

is also present in the feed forward path, draw the 
Bode plot of D(s)G(s). 

(c) Compare the G. M. and P. M. of G(s) and D(s)G{s). 

CP9.5 Consider the paper machine control in Figure 
AP9.4. Develop an m-file to plot the bandwidth of the 
closed-loop system as K varies in the interval 
1 < K s 50. 

CP9.6 A block diagram of the yaw acceleration con
trol system for a bank-to-turn missile is shown in 
Figure CP9.6. The input is yaw acceleration com
mand (in g's), and the output is missile yaw acceler
ation (in g's). The controller is specified to be a 
proportional, integral (PI) controller. The nominal 
value of fen is 0.5. 

(a) Using the margin function, compute the phase 
margin, gain margin, and system crossover fre
quency (0 dB), assuming the nominal value of /;0. 

(b) Using the gain margin from part (a), determine 
the maximum value of ba for a stable system. 
Verify your answer with a Routh-Hurwitz 
analysis of the characteristic equation. 

CP9.7 An engineering laboratory has presented a plan 
to operate an Earth-orbiting satellite that is to be 
controlled from a ground station. A block diagram of 
the proposed system is shown in Figure CP9.7. It 
takes T seconds for a signal to reach the spacecraft 
from the ground station and the identical delay for a 
return signal. The proposed ground-based controller 
is a proportional-derivative (PD) controller, where 

Gc(s) ~KP+ KDs. 

FIGURE CP9.6 
A feedback control 
system for the yaw 
acceleration control 
of a bank-to-turn 
missile. 

desired 

PI controller 
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(a) Assume no transmission time delay (i.e., T = 0), 
and design the controller to the following specifica
tions: (1) percent overshoot less than 20% to a unit 
step input and (2) time to peak less than 30 seconds. 

(b) Compute the phase margin with the controller in 
the loop but assuming a zero transmission time 
delay. Estimate the amount of allowable time 
delay for a stable system from the phase margin 
calculation. 

(c) Using a second-order Pade approximation to the 
time delay, determine the maximum allowable 
delay Tmax for system stability by developing a m-
file script that employs the pade function and 
computes the closed-loop system poles as a func
tion of the time delay T. Compare your answer 
with the one obtained in pari (b). 

CP9.8 Consider the system represented in state variable 
form 

CP9.9 For the system in CP9.8, use the nichols function 
to obtain the Nichols chart and determine the phase 
margin and gain margin. 

CP9.10 Consider a unity feedback system with open-loop 
K(s + 4) 

transfer function — — —. Using MATLAB 
s(s •* 1)(5 r 2) 

(a) Obtain Nyquist plot and comment on the stability 
of the system if K — 1. 

(b) Find the maximum value of K for which the sys
tem is stable. 

0 1 
- 1 -10 

0 
22 

y = [10 0]x + [0]K 

Using the nyquist function, obtain the polar plot. 

FIGURE CP9.7 
A block diagram of 
a ground-controlled 
satellite. 
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TERMS AND CONCEPTS 

Bandwidth The frequency at which the frequency 
response has declined 3 dB from its low-frequency 
value. 

Cauchy's theorem If a contour encircles Z zeros and P 
poles of F(s) traversing clockwise, the corresponding 
contour in the F(^)-plane encircles the origin of the 
F(s)-plane N = Z - P times clockwise. 

Closed-loop frequency response The frequency response 
of the closed-loop transfer function T(jm). 

Conformal mapping A contour mapping that retains the 
angles on the i-planc on the F(;y)-planc. 

Contour map A contour or trajectory in one plane is 
mapped into another plane by a relation F(s). 

Gain margin The increase in the system gain when 
phase = -180° that will result in a marginally stable 
system with intersection of the - 1 + / 0 point on the 
Nyquist diagram. 
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Closed-loop frequency response The frequency response 
of the closed-loop transfer function T(jco). 

Conformal mapping A contour mapping that retains the 
angles on the s-plane on the -F(s)-plane. 

Contour map A contour or trajectory in one plane is 
mapped into another plane by a relation F(s). 

Gain margin The increase in the system gain when 
phase = 180° that will result in a marginally stable 
system with intersection of the —1 + / 0 point on the 
Nyquist diagram. 

Logarithmic (decibel) measure A measure of the gain 

margin defined as 20 log1 0(l/rf), where — = r 
d \L(ja>)\ 

when the phase shift is —180°. 

Nichols chart A chart displaying the curves for the rela
tionship between the open-loop and closed-loop fre
quency response. 

Nyquist stability criterion A feedback system is stable if, 
and only if, the contour in the L(.?)-plane does not en
circle the ( - 1 , 0 ) point when the number of poles of 
L(s) in the right-hand s-plane is zero. If L(s) has P 
poles in the right-hand plane, then the number of 
counterclockwise encirclements of the (—1,0) point 
must be equal to P for a stable system. 

Phase margin The amount of phase shift of the L{jco) at 
unity magnitude that will result in a marginally stable 
system with intersections of the — 1 + / 0 point on the 
Nyquist diagram. 

Principle of the argument See Cauchy's theorem. 

Time delay A time delay T, so that events occurring at 
time t at one point in the system occur at another 
point in the system at a later time t + T. 
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PREVIEW 

In this chapter, we address the central issue of the design of compensators. Using the 
methods of the previous chapters, we develop several design techniques in the fre
quency domain that enable us to achieve the desired system performance. The pow
erful lead and lag controllers are introduced and used in several design examples. 
Phase-lead and phase-lag control design approaches using both root locus plots and 
Bode diagrams are presented. The proportional-integral (PI) controller is revisited 
in the context of achieving high steady-state tracking accuracies. The chapter con
cludes with a proportional-derivative (PD) controller design with prefiltering for 
the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 10, students should: 

• Be familiar with the design of lead and lag compensators using root locus and Bode plot 
methods. 

Q Understand the value of prefilters and how to design for deadbeat response. 

Q Have a greater appreciation for the varied approaches available for control system 
design. 

667 
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10.1 INTRODUCTION 

The performance of a feedback control system is of primary importance. This sub
ject was discussed at length in Chapter 5 and quantitative measures of performance 
were developed. We have found that a suitable control system is stable and that it 
results in an acceptable response to input commands, is less sensitive to system 
parameter changes, results in a minimum steady-state error for input commands, 
and, finally, is able to reduce the effect of undesirable disturbances. A feedback con
trol system that provides an optimum performance without any necessary adjust
ments is rare indeed. Usually, we find it necessary to compromise among the many 
conflicting and demanding specifications and to adjust the system parameters to 
provide a suitable and acceptable performance when it is not possible to obtain all 
the desired optimum specifications. 

At several points in the preceding chapters, we have considered the question of 
design and adjustment of the system parameters in order to provide a desirable 
response and performance. In Chapter 5, we defined and established several suitable 
measures of performance. In Chapter 6, we determined a method of investigating 
the stability of a control system, recognizing that a system is unacceptable unless it is 
stable. In Chapter 7, we used the root locus method to design a self-balancing scale 
and illustrated a method of parameter design by using the root locus method. Fur
thermore, in Chapters 8 and 9, we developed suitable measures of performance in 
terms of the frequency variable oj and used them to design several suitable control 
systems. Thus, we have been considering the problems of the design of feedback 
control systems as an integral part of the subjects of the preceding chapters. It is now 
our purpose to study the question further and to point out several significant design 
and compensation methods. 

The preceding chapters have shown that it is often possible to adjust the system 
parameters in order to provide the desired system response. However, we often find 
that it is not sufficient to adjust a system parameter and thus obtain the desired per
formance. Rather, we are required to consider the structure of the system and 
redesign the system in order to obtain a suitable one. That is, we must examine the 
scheme or plan of the system and obtain a new design or plan that results in a suitable 
system. Thus, the design of a control system is concerned with the arrangement, or the 
plan, of the system structure and the selection of suitable components and parame
ters. For example, if we desire a set of performance measures to be less than some 
specified values, we often encounter a conflicting set of requirements. Hence, if we 
wish a system to have a percent overshoot less than 20% and conTp = 3.3, we obtain a 
conflicting requirement on the system damping ratio £, as can be seen by examining 
Figure 5.8 again. If we are unable to relax these two performance requirements, we 
must alter the system in some way. The alteration or adjustment of a control system in 
order to provide a suitable performance is called compensation; that is, compensation 
is the adjustment of a system in order to make up for deficiencies or inadequacies. 

In redesigning a control system to alter the system response, an additional com
ponent is inserted within the structure of the feedback system. It is this additional 
component or device that equalizes or compensates for the performance deficiency. 
The compensating device may be electric, mechanical, hydraulic, pneumatic, or 
some other type of device or network and is often called a compensator. Commonly, 
an electric circuit serves as a compensator in many control systems. 
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FIGURE 10.1 
Types of 
compensation. 
(a) Cascade 
compensation. 
(b) Feedback 
compensation. 
(c) Output, or load, 
compensation. 
(d) Input 
compensation. 
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A compensator is an additional component or circuit that is inserted into a 
control system to compensate for a deficient performance. 

The transfer function of a compensator is designated as Gc(s) = E0(s)/Ein(s), 
and the compensator can be placed in a suitable location within the structure of the 
system. Several types of compensation are shown in Figure 10.1 for a simple, single-
loop feedback control system. The compensator placed in the feedforward path is 
called a cascade, or series, compensator (Figure 10.1a). Similarly, the other compen
sation schemes are called feedback, output (or load), and input compensation, as 
shown in Figures 10.1(b), (c), and (d), respectively. The selection of the compensa
tion scheme depends upon a consideration of the specifications, the power levels at 
various signal nodes in the system, and the networks available for use. Usually, the 
output Y(s) is a direct output of the process G(s) and the output compensation of 
Figure 10.1(c) is not physically realizable. We cannot consider all the possibilities in 
this chapter; Chapters 11 and 12 will provide further information. 

10.2 APPROACHES TO SYSTEM DESIGN 

The performance of a control system can be described in terms of the time-domain 
performance measures or the frequency-domain performance measures. The per
formance of a system can be specified by requiring a certain peak time Tp, maximum 
overshoot, and settling-time for a step input. Furthermore, it is usually necessary to 
specify the maximum allowable steady-state error for several test signal inputs and 
disturbance inputs. These performance specifications can be defined in terms of the 
desirable location of the poles and zeros of the closed-loop system transfer function 
T(s). Thus, the location of the s-piane poles and zeros of T(s) can be specified. As we 
found in Chapter 7, the locus of the roots of the closed-loop system can be readily 
obtained for the variation of one system parameter. However, when the locus of 
roots does not result in a suitable root configuration, we must add a compensating 
network (Figure 10.1) to alter the locus of the roots as the parameter is varied. 
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Therefore, we can use the root locus method and determine a suitable compensator 
network transfer function so that the resultant root locus yields the desired closed-
loop root configuration. 

Alternatively, we can describe the performance of a feedback control system in 
terms of frequency performance measures. Then a system can be described in terms 
of the peak of the closed-loop frequency response Mp(0, the resonant frequency con 

the bandwidth, and the phase margin of the system. We can add a suitable compen
sation network, if necessary, in order to satisfy the system specifications. The design 
of the network, represented by Gc(s), is developed in terms of the frequency 
response as portrayed on the polar plane, the Bode diagram, or the Nichols chart. 
Because a cascade transfer function is readily accounted for on a Bode plot by adding 
the frequency response of the network, we usually prefer to approach the frequency 
response methods by utilizing the Bode diagram. 

Thus, the design of a system is concerned with the alteration of the frequency 
response or the root locus of the system in order to obtain a suitable system perfor
mance. For frequency response methods, we are concerned with altering the system 
so that the frequency response of the compensated system will satisfy the system 
specifications. Hence, in the frequency response approach, we use compensation 
networks to alter and reshape the system characteristics represented on the Bode 
diagram and Nichols chart. 

Alternatively, the design of a control system can be accomplished in the s-plane by 
root locus methods. For the case of the s-plane, the designer wishes to alter and reshape 
the root locus so that the roots of the system will lie in the desired position in the s-plane. 

We have illustrated several of these approaches in the preceding chapters. In 
Chapter 7, we used the root locus method in considering the design of a feedback 
network in order to obtain a satisfactory performance. In Chapters 8 and 9, we con
sidered the selection of the gain in order to obtain a suitable phase margin and 
therefore a satisfactory relative stability. 

Quite often, in practice, the best and easiest way to improve the performance of 
a control system is to alter, if possible, the process itself. That is, if the system 
designer is able to specify and alter the design of the process that is represented by 
the transfer function G(s), then the performance of the system may be readily 
improved. For example, to improve the transient behavior of a servomechanism 
position controller, we often can choose a better motor for the system. In the case of 
an airplane control system, we might be able to alter the aerodynamic design of the 
airplane and thus improve the flight transient characteristics. Thus, a control system 
designer should recognize that an alteration of the process may result in an improved 
system. However, the process is often unalterable or has been altered as much as pos
sible and still results in unsatisfactory performance. Then the addition of compensa
tion networks becomes useful for improving the performance of the system. 

In the following sections, we will assume that the process has been improved as 
much as possible and that the G(s) representing the process is unalterable. First, we 
shall consider the addition of a so-called phase-lead compensation network and 
describe the design of the network by root locus and frequency response techniques. 
Then, using both the root locus and frequency response techniques, we will describe 
the design of the integration compensation networks in order to obtain a suitable 
system performance. 
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10.3 CASCADE COMPENSATION NETWORKS 

In this section, we will consider the design of a cascade or feedback network, as 
shown in Figures 10.1(a) and (b), respectively. The compensation network function 
Gc(s) is cascaded with the specified process G(s) in order to provide a suitable loop 
transfer function L(s) = Gc(s)G(s)H(s). The compensator Gc(s) can be chosen to 
alter either the shape of the root locus or the frequency response. In either case, the 
network may be chosen to have a transfer function 

M 

/=1 

(10.1) 

Then the problem reduces to the judicious selection of the poles and zeros of the 
compensator. To illustrate the properties of the compensation network, we will con
sider a first-order compensator. The compensation approach developed on the basis 
of a first-order compensator can then be extended to higher-order compensators, 
for example, by cascading several first-order compensators. 

A compensator Gc{s) is used with a process G(s) so that the overall loop gain 
can be set to satisfy the steady-state error requirement, and then Gc(s) is used to 
adjust the system dynamics favorably without affecting the steady-state error. 

Consider the first-order compensator with the transfer function 

(10.2) 

The design problem then becomes the selection of z,p, and K in order to provide a 
suitable performance. When \z\ < I pi, the network is called a phase-lead network 
and has a pole-zero s-plane configuration, as shown in Figure 10.2. If the pole was 
negligible, that is,\p\ » \z\, and the zero occurred at the origin of the ,9-plane, we 
would have a differentiator so that 

Gc(s) » -~s. (10.3) 

}<* 

FIGURE 10.2 
Pole-zero diagram 
of the phase-lead 
network. 

-X- O " • (T 
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Thus, a compensation network of the form of Equation (10.2) is a differentiator-type 
network. The differentiator network of Equation (10.3) has the frequency characteristic 

K K 
Gc{ja)) = j—a) = —& \e .+/90° 

P P 
(10.4) 

and a phase angle of +90°. Similarly, the frequency response of the differentiating 
network of Equation (10.2) is 

K(Jm + z) (Kz/p)[j(co/z) + 1] # i ( l + /war) 
Gc(/to) = = = , (10.5) 

/to + p /(to/p) + 1 1 + j(x)T 

where r = \/p, p = az, and K\ = Kja. The frequency response of this phase-lead 
network is shown in Figure 10.3. The angle of the frequency characteristic is 

- i , <fi(co) = tan (CXCOT) — tan (COT). (10.6) 

Because the zero occurs first on the frequency axis, we obtain a phase-lead charac
teristic, as shown in Figure 10.3. The slope of the asymptotic magnitude curve is 
+20 dB/decade. 

The phase-lead compensation transfer function can be obtained with the net
work shown in Figure 10.4. The transfer function of this network is 

Gc(s) = 
Vi(s) 

R-, + 
RJ(Cs) 

Therefore, we let 

T = ^7T^C and a = 

Ri + Vies) 

R2 giCs + 1 

Rx + R2 [R^iRi + R2)]Cs + 1' 

Ri + R2 

R, 

(10.7) 

FIGURE 10.3 
Bode diagram of 
the phase-lead 
network. 
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FIGURE 10.4 
Phase-lead 
network. 

VAx) 

-o + 

V,(s) 

and we obtain the phase-lead compensation transfer function 

Gc(s) 
1 + CCTS 

(10.8) 

which is equal to Equation (10.5) when an additional cascade gain K is inserted. 
The maximum value of the phase lead occurs at a frequency a)m, where mm is the 

geometric mean of p = 1/r and z = l /(ar); that is, the maximum phase lead occurs 
halfway between the pole and zero frequencies on the logarithmic frequency scale. 
Therefore, 

W,r, = 
1 

zp 
T va 

To obtain an equation for the maximum phase-lead angle, we rewrite the phase 
angle of Equation (10.5) as 

(f) = tan 
acor — cor 

2 ' 1 + (corYa 
(10.9) 

Then, substituting the frequency for the maximum phase angle, com = 1/(T Va), we 
have 

tan 4>m = a va — l/ v a a 1 
l + 1 2VS' 

(10.10) 

We use the trigonometric relationship sin $ = tan <f>/ V 1 + tan2 <f> and obtain 

sin 4>m = 
a - 1 

a + V 
(10.11) 

Equation (10.11) is very useful for calculating a necessary a ratio between the pole 
and zero of a compensator in order to provide a required maximum phase lead. A 
plot of </)„, versus a is shown in Figure 10.5. The phase angle readily obtainable from 
this network is not much greater than 70°. Also, since a = (R-[ + R^)/^ there are 
practical limitations on the maximum value of a that we should attempt to obtain. 
Therefore, if we required a maximum angle greater than 70°, two cascade compen
sation networks would be used. Then the equivalent compensation transfer function 
would be Gc^(s)GC2(s) when the loading effect o£Ge£$) on G^(s) is negligible. 
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FIGURE 10.5 
Maximum phase 
angle $ m versus a 
for a phase-lead 
network. 

FIGURE 10.6 
Phase-lag network. 

+ o- A A / V -o + 

It is often useful to add a cascade compensation network that provides a phase-
lag characteristic. The phase-lag network is shown in Figure 10.6. The transfer func
tion of the phase-lag network is 

Gc(s) = 
R2 + l/(Cs) R2Cs + 1 

VbtW ~ ^1 + ^2 + i/(Cs) (Rj + R2)Cs + 1 
(10.12) 

When T = R2C and a — (Rl + R2)/R2, we have the phase-lag compensation trans
fer function 

(10.13) Gc(s) = 
1 + 

1 + 

TS 

ars 

1 

a 

s 

s 

+ 

+ 

7 
? 

P 

where z = 1/r and p = l/(ar). In this case, because a > 1, the pole lies closest to 
the origin of the s-plane, as shown in Figure 10.7. This type of compensation network 
is often called an integrating network because it has a frequency response like an in
tegrator over a finite range of frequencies. The Bode diagram of the phase-lag net
work is obtained from the transfer function 

Gc{jb)) = 
1 + /CUT 

1 + jcoar 
(10.14) 

FIGURE 10.7 
Pole-zero diagram 
of the phase-lag 
network. 
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FIGURE 10.8 
Bode diagram of 
the phase-lag 
network. 
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and is shown in Figure 10.8. The form of the Bode diagram of the lag network is sim
ilar to that of the phase-lead network; the difference is the resulting attenuation and 
phase-lag angle instead of amplification and phase-lead angle. However, note that 
the shapes of the diagrams of Figures 10.3 and 10.8 are similar. Therefore, we can 
show that the maximum phase lag occurs at u>m = Vzp. 

In the succeeding sections, we wish to utilize these compensation networks to 
obtain a desired system frequency response or s-plane root location. The lead net
work can provide a phase-lead angle and thus a satisfactory phase margin for a sys
tem. Alternatively, the phase-lead network can enable us to reshape the root locus 
and thus provide the desired root locations. The phase-lag network is used, not to 
provide a phase-lag angle, which is normally a destabilizing influence, but rather to 
provide an attenuation and to increase the steady-state error constant [3]. The fol
lowing six sections discuss these approaches to design utilizing the phase-lead and 
phase-lag networks. 

10.4 PHASE-LEAD DESIGN USING THE BODE DIAGRAM 

The Bode diagram is used to design a suitable phase-lead network in preference to 
other frequency response plots. The frequency response of the cascade compensation 
network is added to the frequency response of the uncompensated system. That is, 
because the total loop transfer function of Figure 10.1(a) is L(j(o) = Gc(j(o)G(j<o)H(jco), 
we will first plot the Bode diagram for G(jco)H{j(x>). Then we can examine the plot for 
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G(jco)H(jto) and determine a suitable location foi p and z of Gc(jto) in order to satis
factorily reshape the frequency response. The uncompensated G(joj)H(jco) is plotted 
with the desired gain to allow an acceptable steady-state error. Then the phase margin 
and the expected Mpoj are examined to find whether they satisfy the specifications. If 
the phase margin is not sufficient, phase lead can be added to the phase-angle curve of 
the system by placing the Gc(jai) in a suitable location. To obtain maximum additional 
phase lead, we adjust the network so that the frequency wm is located at the frequency 
where the magnitude of the compensated magnitude curve crosses the 0-dB axis. 
(Recall the definition of phase margin.) The value of the added phase lead required allows 
us to determine the necessary value for a from Equation (10.11) or Figure 10.5. The 
zero z = l/(crr) is located by noting that the maximum phase lead should occur at 
wm = Vzp , halfway between the pole and the zero. Because the total magnitude gain 
for the network is 20 log a, we expect a gain of 10 log a at w,„. Thus, we determine the 
compensation network by completing the following steps: 

1. Evaluate the uncompensated system phase margin when the error constants are satisfied. 

2. Allowing for a small amount of safety, determine the necessary additional phase lead <£,„. 

3. Evaluate a from Equation (10.11). 
4. Evaluate 10 log a and determine the frequency where the uncompensated magni

tude curve is equal to ^10 log a dR. Because the compensation network provides a 
gain of 10 log a. at co„„ this frequency is the new 0-dB crossover frequency and o)m 

simultaneously. 

5. Calculate the pole p = uim\fa and z = p/a. 

6. Draw the compensated frequency response, check the resulting phase margin, and 
repeat the steps if necessary. Finally, for an acceptable design, raise the gain of the 
amplifier in order to account for the attenuation (l/a). 

EXAMPLE 10.1 A lead compensator for a type-two system 

Let us consider a single-loop feedback control system as shown in Figure 10.1(a), where 

G(s) = - T (10.15) 
s* 

and H{s) = 1. The uncompensated system is a type-two system and at first appears 
to possess a satisfactory steady-state error for both step and ramp input signals. How
ever, the response of the uncompensated system is an undamped oscillation because 

Y(s) #, 
r w = W) = 7TZ (iai6) 

Therefore, the compensation network is added so that the loop transfer function is 
L(s) = Gc(s)G(s). The specifications for the system are 

Settling time, Ts < 4 s; 

System damping constant £ > 0.45. 

The settling time (with a 2% criterion) requirement is 
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therefore, 

1 1 

"" ~ f " 045 
= 2.22. 

Perhaps the easiest way to check the value of w„ for the frequency response is to 
relate <an to the bandwidth coB, and evaluate the -3-dB bandwidth of the closed-
loop system. For a closed-loop system with £ = 0.45, we estimate from Figure 8.26 
that coB = 1.33o>„. Therefore, we require a closed-loop bandwidth a)B = 
1.33(2.22) = 3.00. The bandwidth can be checked following compensation by utiliz
ing the Nichols chart. For the uncompensated system, the bandwidth of the system is 
o)B = 133(on and con = vK. Therefore, a loop gain equal to K = w„2 ~ 5 would be 
sufficient. To provide a suitable margin for the settling time, we will select K = 10 in 
order to draw the Bode diagram of 

G{jm) = 
K 

Q*>y 

The Bode diagram of the uncompensated system is shown as solid lines in Figure 10.9. 
By using Equation (9.58), the phase margin of the system is required to be 

approximately 

0pm = 
I 0.45 

pm 0.01. 0.01 
= 45°. (10.17) 

The phase margin of the uncompensated system is 0° because the double integra
tion results in a constant 180° phase lag. Therefore, we must add a 45° phase-lead 
angle at the crossover (0-dB) frequency of the compensated magnitude curve. Eval
uating the value of a, we have 

a- 1 

a 
- sin (f)m = sin 45°, (10.18) 

FIGURE 10.9 
Bode diagram for 
Example 10.1. 
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and thus a = 5.8. To provide a margin of safety, we will use a = 6. The value of 
10 log a is then equal to 7.78 dB.Then the lead network will add an additional gain 
of 7.78 dB at the frequency com. and we want to have tom equal to the compensated 
slope near the 0-dB axis (the dashed line) so that the new crossover is (om and the 
dashed magnitude curve is 7.78 dB above the uncompensated curve at the crossover 
frequency. Thus, the compensated crossover frequency is located by evaluating the 
frequency where the uncompensated magnitude curve, is equal to —7.78 dB, which 
in this case is w = 4.95. Then the maximum phase-lead angle is added to 
a = b)m = 4.95, as shown in Figure 10.9. Using step 5, we determine the pole 
p = comVa = 12.0 and the zero z = p/a = 2.0. 

The bandwidth of the compensated system can be obtained from the Nichols 
chart. For estimating the bandwidth, we can simply examine Figure 9.26 and note 
that the — 3-dB line for the closed-loop system occurs when the magnitude of G(jco) 
is —6 dB and the phase shift of G(j<o) is approximately -140° . Therefore, to esti
mate the bandwidth from the open-loop diagram, we will approximate the band
width as the frequency for which 20 X log|G| is equal to - 6 dB. Thus, the 
bandwidth of the uncompensated system is approximately equal to w# = 4.4, while 
the bandwidth of the compensated system is equal to OJB = 8.4. The lead compensa
tion doubles the bandwidth in this case, and satisfies the specification that 
(og > 3.00. Therefore, the compensation of the system is completed, and the system 
specifications are satisfied. The total compensated loop transfer function is 

1070)/2.0 - 1] 
L O ) = Gcijm)G(j<*) = ' , „ ' v (10-19) 

(jo)) [/0)/12.0 + 1J 

The transfer function of the compensator is 

1 + (XTS 1 1 + .5/2.0 
G^S) = ,1 4- \ = 2 1 I /19 0 ' ( 1 0-2 0) 

a ( l + TS) 6 1 + 5/12.0 
in the form of Equation (10.8). Because an attenuation of \ results from the passive RC 
network, the gain of the amplifier in the loop must be raised by a factor of 6 so that the 
total DC loop gain is still equal to 10, as required in Equation (10.19). When we add the 
compensation network Bode diagram to the uncompensated Bode diagram, as in 
Figure 10.9, we assume that we can raise the amplifier gain to account for this \/a 
attenuation. The pole and zero values can be read from Figure 10.9, noting that p = az-

The total loop transfer function is (recall that H{s) = 1) 
10(1 + 5/2) 60(.5 + 2) 

Lis) = -^ = - ; . 

' s\\ + s/12) s\s + 12) 

The closed-loop transfer function is 
60(s + 2) 60(5 + 2) T(s) = 

s3 + 12s2 + 60s + 120 (52 + 65 + 20)(5 + 6) ' 

and the effects of the zero at s = —2 and the third pole zX s — -6 will affect the 
transient response. Plotting the step response, we find an overshoot of 34% and a 
settling time of 1.4 seconds. • 
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EXAMPLE 10.2 A lead compensator for a second-order system 

A unity feedback control system has a loop transfer function 

L(s) = ^ j2L_ (10.21) 

where L(s) = Gc(s)G(s) and H(s) = 1. We want to have a steady-state error for a 
ramp input equal to 5% of the velocity of the ramp. Therefore, we require that 

*•= i= oh=2()- (10-22) 
Furthermore, we desire that the phase margin of the system be at least 45°. The first 
step is to plot the Bode diagram of the uncompensated transfer function 

GUt0) = M0.5/» + l) =
 MOJH + l)' (m23) 

as shown in Figure 10.10(a). The frequency at which the magnitude curve crosses the 
0-dR line is 6.2 rad/s, and the phase margin at this frequency is determined readily 
from the equation of the phase of G(jco), which is 

/G(j(o) = ¢((0) = -90° - tan_I(0.5<w). (10.24) 

At the crossover frequency co = coc = 6.2 rad/s, we have 

d>(co) = - 1 6 2 ° , (10.25) 

and therefore the phase margin is 18°. Using Equation (10.24) to evaluate the phase 
margin is often easier than drawing the complete phase-angle curve, which is shown 
in Figure 10.10(a).Thus, we need to add a phase-lead network so that the phase mar
gin is raised to 45° at the new crossover (0-dB) frequency. Because the compensa
tion crossover frequency is greater than the uncompensated crossover frequency, 
the phase lag of the uncompensated system is also greater. We shall account for this 
additional phase lag by attempting to obtain a maximum phase lead of 
45° — 18° = 27°, plus a small increment (10%) of phase lead to account for the 
added lag. Thus, we will design a compensation network with a maximum phase lead 
equal to 27° + 3° = 30°. Then, calculating a, we obtain 

°LZ— = sin 30° = 0.5, (10.26) 
a + 1 

and therefore a = 3. 
The maximum phase lead occurs at wm, and this frequency will be selected so 

that the new crossover frequency and to,,, coincide. The magnitude of the lead net
work at tom is 10 log <x = 10 log 3 = 4.8 dB. The compensated crossover frequency 
is then evaluated where the magnitude of G(ja>) is -4.8 dB, and thus 
&m = OJC = 8.4. Drawing the compensated magnitude line so that it intersects the 
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(a) 

FIGURE 10.10 
(a) Bode diagram 
for Example 10.2. 
(b) Nichols diagram 
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0-dB axis at co = coc = 8.4, we find that z = wm/Va = 4.8 and p = az = 14.4. 
Therefore, the compensation network is 

1 1 + s/4.8 
G ^ = 3 1 ^ 7 ^ - < m 2 7 ) 

The total DC loop gain must be raised by a factor of three in order to account for the 
factor \/a = i. Then the compensated loop transfer function is 

20(5/4.8 + 1) 
L(s) = Gc{s)G(s) = — i [){s/UA - 1}. (10.28) 

To verify the final phase margin, we can evaluate the phase of Gc(J<o)G(ja)) at 
co = coc = 8.4 and thus obtain the phase margin. The phase angle is then 

0 K ) = -90° - tan"1 0.5o,c - t a n " 1 ^ + t a i T 1 ^ 

= -90° - 76.5° - 30.0° + 60.2° 

= -136.3°. (10.29) 

Therefore, the phase margin for the compensated system is 43.7°. If we desire to 
have exactly a 45° phase margin, we would repeat the steps with an increased value 
of a—for example, with a = 3.5. In this case, the phase lag increased by 7° between 
co = 6.2 and co = 8.4, and therefore the allowance of 3° in the calculation of a was 
not sufficient. The step response of this system yields a 28% overshoot with a set
tling time of 0.75 second. 

The Nichols diagram for the compensated and uncompensated system is shown 
in Figure 10.10(b). The reshaping of the frequency response locus is clear on this 
diagram. Note the increased phase margin for the compensated system as well as 
the reduced magnitude of Mp(l), the maximum magnitude of the closed-loop fre
quency response. In this case, Mpa) has been reduced from an uncompensated value 
of +12 dB to a compensated value of approximately +3.2 dB. Also, we note that the 
closed-loop 3-dB bandwidth of the compensated system is equal to 12 rad/s com
pared with 9.5 rad/s for the uncompensated system. • 

Looking again at Examples 10.1 and 10.2, we note that the system design is sat
isfactory when the asymptotic curve for the magnitude 20 log|GGf | crosses the 0-dB 
line with a slope of 20 dB/decade. 

10.5 PHASE-LEAD DESIGN USING THE ROOT LOCUS 

The design of the phase-lead compensation network can also be readily accom
plished using the root locus. The phase-lead network has a transfer function 

s + l/ar s + z 
Gc(s) = 7— = i , (10.30) 

c W s + 1/T 5 + p K J 
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where a and r are defined for the RC network in Equation (10.7). The locations of 
the zero and pole are selected so as to result in a satisfactory root locus for the com
pensated system. The specifications of the system are used to specify the desired 
location of the dominant roots of the system. The .v-plane root locus method is as 
follows: 

1. List the system specifications and translate them into a desired root location for the 
dominant roots. 

2. Sketch the uncompensated root locus, and determine whether the desired root loca
tions can be realized with an uncompensated system. 

3. If a compensator is necessary, place the zero of the phase-lead network directly below 
the desired root location (or to the left of the first two real poles). 

4. Determine the pole location so that the total angle at the desired root location is 180° 
and therefore is on the compensated root locus. 

5. Evaluate the total system gain at the desired root location and then calculate the error 
constant. 

6. Repeat the steps if the error constant is not satisfactory. 

Therefore, we first locate our desired dominant root locations so that the dominant 
roots satisfy the specifications in terms of £ and o>„, as shown in Figure 10.11(a). The 
root locus of the uncompensated system is sketched as illustrated in Figure 10.11(b). 

Desired I line 
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Then the zero is added to provide a phase lead by placing it to the left of the first two 
real poles. Some caution is necessary because the zero must not alter the dominance of 
the desired roots; that is, the zero should not be placed closer to the origin than the sec
ond pole on the real axis, or a real root near the origin will result and will dominate the 
system response.Thus, in Figure 10.11(c), we note that the desired root is directly above 
the second pole, and we place the zero z somewhat to the left of the second real pole. 

Consequently, the real root may be near the real zero, and the coefficient of this 
term of the partial fraction expansion may be relatively small. Hence, the response due 
to this real root may have very little effect on the overall system response. Neverthe
less, the designer must be continually aware that the compensated system response will 
be influenced by the roots and zeros of the system and that the dominant roots will not 
by themselves dictate the response. It is usually wise to allow for some margin of error 
in the design and to test the compensated system using a computer simulation. 

Because the desired root is a point on the root locus when the final compensation 
is accomplished, we expect the algebraic sum of the vector angles to be 180° at that 
point. Thus, we calculate the angle 6p from the pole of the compensator in order to 
result in a total angle of 180°.Then, locating a line at an angle 6p intersecting the desired 
root, we are able to evaluate the compensator pole p, as shown in Figure 10.11(d). 

The advantage of the root locus method is the ability of the designer to specify 
the location of the dominant roots and therefore the dominant transient response. 
The disadvantage of the method is that we cannot directly specify an error constant 
(for example, Kv) as in the Bode diagram approach. After the design is complete, 
we evaluate the gain of the system at the root location, which depends on p and z, 
and then calculate the error constant for the compensated system. If the error con
stant is not satisfactory, we must repeat the design steps and alter the location of 
the desired root as well as the location of the compensator pole and zero. We shall 
consider again Examples 10.1 and 10.2 and design a compensation network using 
the root locus (.v-plane) approach. 

EXAMPLE 10.3 Lead compensator using the root locus 

Let us consider again the system of Example 10.1 where the uncompensated loop 
transfer function is 

L ( s ) - % (10.31) 
s 

The characteristic equation of the uncompensated system is 
is 

1 + L(s) = 1 + — = 0, (10.32) 
r 

and the root locus is the jco-axis. Therefore, we propose to compensate this system 
with a network 

°M = j ~ ^ (10-33) 

where |z| < \p\. The specifications for the system are 

Settling time (with a 2% criterion), Ts ^ 4 s ; 
Percent overshoot for a step input P.O. ^ 35%. 
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Therefore, the damping ratio should be t, > 0.32. The settling time requirement is 

fan 

so £o>„ = 1. Thus, we will choose a desired dominant root location as 

rl5;, = - 1 ± ; 2 , (10.34) 

as shown in Figure 10.12 (hence, £ = 0.45). 
Now we place the zero of the compensator directly below the desired location 

at 51 = ~z = - 1 , as shown in Figure 10.12. Measuring the angle at the desired root, 
we have 

<j> = -2(116°) -r 90° = -142°. 

Therefore, to have a total of 180° at the desired root, we evaluate the angle from the 
undetermined pole, dp, as 

-180° = -142° - 'p- (10.35) 

or $p = 38°. Then a line is drawn at an angle 9p = 38° intersecting the desired root 
location and the real axis, as shown in Figure 10.12. The point of intersection with 
the real axis is then s = —p = -3.6. Therefore, the compensator is 

Or(s) = 
s + 1 

5 + 3.6' 
(10.36) 

j& 

FIGURE 10.12 
Phase-lead design 
for Example 10.3. 
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and the compensated loop transfer function for the system is 

Kx(s + 1) 
Us) = Gc{s)G(s) = 2 . n . ; . (10.37) 

s (s + 3.6) 

The gain K\ is evaluated by measuring the vector lengths from the poles and zeros 
to the root location. Hence, 

(2.23)2(3.25) 
X, = Y = 8.1. (10.38) 

Finally, the error constants of this system are evaluated. We find that this system 
with two open-loop integrations will result in a zero steady-state error for a step and 
ramp input signal. The acceleration constant is 

Ka = | i = 2.25. (10.39) 

The steady-state performance of this system is quite satisfactory, and therefore 
the compensation is complete. When we compare the compensation network evalu
ated by the s-plane method with the network obtained by using the Bode diagram 
approach, we find that the magnitudes of the poles and zeros are different. Howev
er, the resulting system will have the same performance, and we need not be con
cerned with the difference. In fact, the difference arises from the arbitrary design 
step (number 3), which places the zero directly below the desired root location. If 
we placed the zero at s = -2.0, we would find that the pole evaluated by the s-plane 
method is approximately equal to the pole evaluated by the Bode diagram 
approach. 

The specifications for the transient response of this system were originally 
expressed in terms of the overshoot and the settling time of the system. These specifi
cations were translated, on the basis of an approximation of the system by a 
second-order system, to an equivalent £ and <y„ and therefore a desired root loca
tion. However, the original specifications will be satisfied only if the selected roots 
are dominant. The zero of the compensator and the root resulting from the addition 
of the compensator pole result in a third-order system with a zero. The validity of 
approximating this system with a second-order system without a zero is dependent 
upon the validity of the dominance assumption. Often, the designer will simulate the 
final design by using a digital computer and obtain the actual transient response of 
the system. In this case, a computer simulation of the system resulted in an over
shoot of 46% and a settling time (to within 2% of the final value) of 3.8 seconds for 
a step input. These values compare moderately well with the specified values of 35% 
and 4 seconds, and they justify the use of the dominant root specifications. The dif
ference in the overshoot from the specified value is due to the zero, which is not neg
ligible. Thus, again we find that the specification of dominant roots is a useful 
approach but must be utilized with caution and understanding. A second attempt 
to obtain a compensated system with an overshoot of 30% would use a prefilter to 
eliminate the effect of the zero in the closed-loop transfer function, as described in 
Section 10.10. • 
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EXAMPLE 10.4 Lead compensator for a type-one system 

Now, let us consider again the system of Example 10.2 and design a compensator 
based on the root locus approach. The system loop transfer function is 

We want the damping ratio of the dominant roots of the system to be £ = 0.45 and 
the velocity error constant to be equal to 20. To satisfy the error constant require
ment, the gain of the uncompensated system must be K = 40. When K = 40, the 
roots of the uncompensated system are 

s2 + 2s + 40 = (s + 1 + j6.25)(s + 1 - /6.25). (10.41) 

The damping ratio of the uncompensated roots is approximately 0.16, and therefore 
a compensation network must be added. To achieve a rapid settling time, we will 
select the real part of the desired roots as £&>„ = 4, and therefore Ts = 1 s. This 
implies the natural frequency of these roots is fairly large, con = 9; hence, the velocity 
constant should be reasonably large. The location of the desired roots is shown in 
Figure 10.13(a) for £con = 4, £ = 0.45, and w„ = 9. 

The zero of the compensator is placed at s = —z — —4, directly below the 
desired root location. Then the angle at the desired root location is 

<f> = -116° - 104° + 90° = -130°. (10.42) 

Therefore, the angle from the undetermined pole is determined from 

-180° = -130° - 6p, 

and thus dp = 50°. This angle is drawn to intersect the desired root location, and p is 
evaluated as s = -p = -10.6, as shown in Figure 10.13(a). The gain of the compen
sated system is then 

9(8.25)(10.4) 
K = — £ = 96.5. (10.43) 

8 

The compensated system loop transfer function is then 

96.5(\y + 4) 
Us) = Gr(s)G(s) - : ; . (10.44) 

s(s + 2)(s + 10.6) 
Therefore, the velocity constant of the compensated system is 

96.5(4) 
Kv = fm.S[Gc(s)G(s)) = ^ ^ = 18.2. (10.45) 

The velocity constant of the compensated system is less than the desired value of 20. 
Accordingly, we must repeat the design procedure for a second choice of a desired 
root. If we choose ojn = 10, the process can be repeated, and the resulting gain K 
will be increased. The compensator pole and zero location will also be altered. 
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FIGURE 10.13 
(a) Design of a 
phase-lead network 
on the s-plane for 
Example 10.4. 
(b) Step response 
of the compensated 
system of Example 
10.4. 
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Then the velocity constant can be again evaluated. We will leave it as an exercise to 
show that for o)n = 10, the velocity constant is Kv = 22.7 when z = 4.5 and 
p = 11.6. 

Finally, for the compensation network of Equation (10.44), we have 

5 + 4 s + \/(ar) 
Gc(s) = 

s + 10.6 s + 1/T 
(10.46) 

The design of an i?C-lead network to implement Gc(s), as shown in Figure 10.4, fol
lows directly from Equations (10.46) and (10.7): 

Gc(s) = 

Thus, in this case, we have 

1 

R, R^Cs + 1 
Ri + R2 [RiRj/iR: + R2)} Cs + 1' 

(10.47) 

i?iC 
= 4 and a = 

2?! + R2 10.6 
Ri 4 

Then, choosing C = 1 /xf, we obtain R1 = 250,000 O, and R2 = 152,000 O. The step 
response of the compensated system yields a 32% overshoot with a settling time of 
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0.8 second, as shown in Figure 10.13(b). As shown here, we may use a computer to 
verify the actual transient response. • 

The phase-lead compensation network is a useful compensator for altering the 
performance of a control system. The phase-lead network adds a phase-lead angle 
to provide an adequate phase margin for feedback systems. Using an j-plane design 
approach, we can choose the phase-lead network in order to alter the system root 
locus and place the roots of the system in a desired position in the s-plane. When the 
design specifications include an error constant requirement, the Bode diagram 
method is more suitable, because the error constant of a system designed on the 
.9-plane must be ascertained following the choice of a compensator pole and zero. 
Therefore, the root locus method often results in an iterative design procedure 
when the error constant is specified. On the other hand, the root locus is a very sat
isfactory approach when the specifications are given in terms of overshoot and set
tling time, thus specifying the t, and con of the desired dominant roots in the .v-plane. 
The use of a lead network compensator always extends the bandwidth of a feedback 
system, which may be objectionable for systems subjected to large amounts of noise. 
Also, lead networks are not suitable for providing high steady-state accuracy in sys
tems requiring very high error constants. To provide large error constants, typically 
Kp and Kv, we must consider the use of integration-type compensation networks. 
This is the subject of the following section. 

10.6 SYSTEM DESIGN USING INTEGRATION NETWORKS 

For a large proportion of control systems, the primary objective is obtaining a high 
steady-state accuracy. Another goal is maintaining the transient performance of 
these systems within reasonable limits. As we found in Chapters 4 and 5, the steady-
state accuracy of many feedback systems can be increased by increasing the amplifi
er gain in the forward channel. However, the resulting transient response may be 
totally unacceptable—even unstable. Therefore, it is often necessary to introduce a 
compensation network in the forward path of a feedback control system in order to 
provide a sufficient steady-state accuracy. 

Consider the single-loop control system shown in Figure 10.14. The compensa
tion network is chosen to provide a large error constant. With Gp(s) — 1, the steady-
state error of this system is 

l im e(t) = Urns- _ . . _. . TT. . . 
/-oo w 5-0 1 + Gc(s)G(s)H(s) 

(10.48) 

FIGURE 10.14 
Single-loop 
feedback control 
system. 

R(s) Gp(s) T Gc(s) 

u/-\ 
ti fi) 

G(s) n.s) 
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We found in Section 5.6 that the steady-state error of a system depends on the num
ber of poles at the origin for L(s) = Gc(s)G(s)H(s). A pole at the origin can be con
sidered an integration, and therefore the steady-state accuracy of a system 
ultimately depends on the number of integrations in the loop transfer function 
L(s) = Gc(s)G(s)H(s). If the steady-state accuracy is not sufficient, we will intro
duce an integration-type network Gc(s) in order to compensate for the lack of inte
gration in the uncompensated loop transfer function G(s)H(s). 

One widely used form of controller is the proportional plus integral (PI) con
troller, which has a transfer function 

Gc(s) =Kp + Y' (10.49) 

For an example, let us consider a temperature control system where the transfer 
function H(s) = 1, and the transfer function of the heat process is [32] 

G(s) = K] 

faa + \)(r2s + I) ' 

The steady-state error of the uncompensated system is then 

A/s A 
lim e(t) = \ims- —— = —, (10.50 

where R(s) = A/s, a step input signal. To obtain a small steady-state error (less than 
0.05 A, for example), the magnitude of the gain Ki must be quite large. However, 
when Ki is quite large, the transient performance of the system will very likely be 
unacceptable. 'Iherefore, we must consider the addition of a compensation transfer 
function Gc(s), as shown in Figure 10.14. To eliminate the steady-state error of this 
system, we might choose the compensation as 

CM = KP>^- = KpS + * ' . (10.51) 

This PI compensation can be readily constructed by using an integrator and an 
amplifier and adding their output signals. '1 Tie steady-state error for a step input of 
the system is always zero, because 

A/s 
lim e(t) = lim s 

/ - • 0 0 5^0 1 + Gc(s)G(s) 

A 
= lim 

^ o i + (Kps + Kj)/sK,/[{rxs + l)(r2s + 1)] 
- 0. (10.52) 

The transient performance can be adjusted to satisfy the system specifications by 
adjusting the constants Kh Kp, and Kt. The adjustment of the transient response 
is perhaps best accomplished by using the root locus methods of Chapter 7 and 
drawing a root locus for the gain KPK^ after locating the zero s = -Kj/KP on the 
.9-plane by the method outlined for the s-plane in the preceding section. 

file:///ims-
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The addition of an integration as Gc(s) = KP + Kj/s can also be used to reduce 
the steady-state error for a ramp input r(t) ==( , /2 0. For example, if the uncom
pensated system G(s) possessed one integration, the additional integration due to 
Gc(s) would result in a zero steady-state error for a ramp input. To illustrate the de
sign of this type of integration compensator, we will consider a temperature control 
system in some detail. 

FIGURE 10.15 
The s-plane design 
of an integration 
compensator. 

EXAMPLE 10.5 Temperature control system 

The uncompensated loop transfer function of a unity feedback temperature control 
system is 

AT, Kx 
L(s) = G(s) = (10.53) 

(2^+1)(0.55 + 1) (s + .5)(^ + 2)' 

where Kx can be adjusted. To maintain zero steady-state error for a step input, we 
will add the PI compensation network 

K, s + Kj/Kp 
Gc(s) = KP + — = KP 2 - £ . 

s s 

(10.54) 

Furthermore, the transient response of the system is required to have an overshoot 
less than or equal to 10%. Therefore, the dominant complex roots must be on (or 
below) the t, - 0.6 line, as shown in Figure 10.15. We will adjust the compensator 
zero so that the negative real part of the complex roots is £tt„ = 0.75, and thus the 
settling time (with a 2% criterion) is Ts = 4/(£«„) = y s. Now, as in the preceding 
section, we will determine the location of the zero z = —Kj/KP by ensuring that 
the angle at the desired root is —180°. Therefore, the sum of the angles at the desired 
root is 

-180° = 127° - 104° - 38° + 0-, 

where 6Z is the angle from the undetermined zero. Consequently, we find that 
dz = +89°, and the location of the zero is z = -0.75. Finally, to determine the gain at 
the desired root, we evaluate the vector lengths from the poles and zeros and obtain 

K — K\Kp — 
1.25(1.03)1.6 

1.0 
= 2.08. 
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The compensated root locus and the location of the zero are shown in Figure 10.15. 
Note that the zero z = -K//KP should be placed to the left of the pole at .9 = -0.5 
to ensure that the complex roots dominate the transient response. In fact, the third 
root of the compensated system of Figure 10.15 can be determined as s = —1.0, and 
therefore this real root is only | times the real part of the complex roots. Although 
complex roots dominate the response of the system, the equivalent damping of the 
system is somewhat less than £ = 0.60 due to the real root and zero. 

The closed-loop transfer function of the system of Figure 10.14 is 

= Gp(s)Gc(S)G(s) = 2.08(5 + 0.75)Gp(s) 
/{S) ' 1 + Gc(s)G(s) =

 {s + i) ( 5 + r j ) ( 5 + pi}' 

where. rx = —0.75 4- /1 . The effect of the zero is to increase the overshoot to a step 
input (see Figure 5.13). If we wish to attain an overshoot of 5%, we may use a pre-
filter Gp(s), so that the zero is eliminated in T(s) by setting 

Note that the overall DC gain (set s = O)isT(O) = 1.0 when Gp(s) = 1, as obtained 
with the prefilter of Equation (10.56). The overshoot without the prefilter is 17.6%; 
with the prefilter, it is 2%. Further discussion of the use of a prefilter is provided in 
Section 10.10. • 

10.7 PHASE-LAG DESIGN USING THE ROOT LOCUS 

The phase-lag RC network of Figure 10.6 is an integration-type network and can 
be used to increase the error constant of a feedback control system. We found in 
Section 10.3 that the transfer function of the RC phase-lag network is of the form 

O^-'-f^j, (,0.57) 

as given in Equation (10.13), where 

1 1 #i + R2 1 
z = — — , a = , and p = —. 

T R2C R2
 F ar 

The steady-state error of an uncompensated unity feedback system is 

lime(f) = lim J - — ^ - \. (10.58) 
, _ m v ' s^0 11 + Ci(s) J v 

Then, for example, the velocity constant of a type-one uncompensated system is 

Kv = lim s{G(s)}, (10.59) 
5—»0 
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as 

W{ 

shown in Section 5.7. In general, if 

; obtain the velocity 

G(s) = 

constant 

Kv 

G(s) is written as 
M 

/ = 1 

M 

UP/ 

•*) 

/>/) ' 
(10.60) 

(10.61) 

We will now add the integration-type phase-lag network as a compensator and 
determine the compensated velocity constant. If the velocity constant of the uncom
pensated system (Equation 10.61) is designated as Kvunc, we have 

Kvjcamp = lim.9{Gc(.?)G(s)} = lirn{Gc(s)}A:UiUrlc 
r i—•»0 s-*0 

-7= -̂- Jfflj (ia62) 

The gain on the compensated root locus at the desired root location will be Kfa. 
Now, if the pole and zero of the compensator are chosen so that \z\ = a\p\ < l,the 
resultant Kv will be increased at the desired root location by the ratio z/p = a. 
Then, for example, if z = 0.1 and p = 0.01, the velocity constant of the desired root 
location will be increased by a factor of 10. If the compensator pole and zero appear 
relatively close together on the s-plane, their effect on the location of the desired 
root will be negligible. Therefore, the compensator pole-zero combination near the 
origin of the s-plane compared to con can be used to increase the error constant of a 
feedback system by the factor a while altering the root location very slightly. The 
factor a does have an upper limit, typically about 100, because the required resistors 
and capacitors of the network become excessively large for a higher a. For example, 
when z = 0.1 and a = 100, we find from Equation (10.57) that 

z = 0.1 = —— and a = 100 = *-r—-. 
R2C /\2 

If we let C = 10 fxi, then R2 = 1 MQ, and R^ = 99 MO. As we increase a, we 
increase the required magnitude of R\. However, we should note that an attenuation 
a of 1000 or more may be obtained by utilizing pneumatic process controllers, which 
approximate a phase-lag characteristic (Figure 10.8). 

The steps necessary for the design of a phase-lag network on the s-plane are as 
follows: 

1. Obtain the root locus of the uncompensated system. 

2. Determine the transient performance specifications for the system and locate suit
able dominant root locations on the uncompensated root locus that will satisfy the 
specifications. 
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3. Calculate the loop gain at the desired root location and thus the system error constant. 

4. Compare the uncompensated error constant w:th the desired error constant, and cal
culate the necessary increase that must result from the pole-zero ratio a of the com
pensator. 

5. With the known ratio of the pole-zero combination of the compensator, determine a 
suitable location of the pole and zero of the compensator so that, the compensated 
root locus will still pass through the desired root location. Locate the pole and zero 
near the origin of the s-plane in comparison to a>„. 

The fifth requirement can be satisfied if the magnitudes of the pole and zero are 
significantly less than con of the dominant roots and they appear to merge as mea
sured from the desired root location. The pole and zero will appear to merge at the 
root location if the angles from the compensator pole and zero are essentially equal 
as measured to the root location. One method of locating the zero and pole of the 
compensator is based on the requirement that the difference between the angle of 
the pole and the angle of the zero as measured at the desired root is less than 2°. An 
example will illustrate this approach to the design of a phase-lag compensator. 

FIGURE 10.16 
Root locus of the 
uncompensated 
system of Example 
10.6. 

EXAMPLE 10.6 Design of a phase-lag compensator 

Consider the uncompensated unity feedback system of Example 10.2, where the 
uncompensated loop transfer function is 

K 
L^ = ^TTy 

(10.63) 

We require the damping ratio of the dominant complex roots to be 0.45, while a sys
tem velocity constant equal to 20 is attained. The uncompensated root locus is a ver
tical line at s = —1 and results in a root on the £ = 0.45 line at s = - 1 ± /2, as 
shown in Figure 10.16. Measuring the gain at this root, we have K = (2.24)2 = 5. 
Therefore, the velocity constant of the uncompensated system is 

*, = f = f = 2.5. 
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FIGURE 10.17 
Root locus of the 
compensated 
system of Example 
10.6. Note that the 
actual root will differ 
from the desired 
root by a slight 
amount. The 
vertical portion of 
the locus leaves the 
(T axis at 
a = -0.95. 
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C = 0.45 

Thus, the required ratio of the zero to the pole of the compensator is 

K 
= a = K 

u.comp 2 0 
" ~ T~Z = 8. 

u,unc 2.5 
(10.64) 

Examining Figure 10.17, we find that we might set z = 0.1 and then p = 0.1/8. The 
difference of the angles from p and z at the desired root is approximately 1 °; there
fore, s = —1 ±7*2 is still the location of the dominant roots. A sketch of the com
pensated root locus is shown as a heavy line in Figure 10.17. Thus, the compensated 
system loop transfer function is 

L(s) = Gc(s)G(s) = -
50 + 0.1) 

s(s + 2)(s + 0.0125)' 
(10.65) 

where K/a = 5, so K = 40, in order to account for the attenuation of the lag 
network. • 

EXAMPLE 10.7 Design of a phase-lag compensator 

Let us now consider a system that is difficult to design using a phase-lead network. 
The loop transfer function of the uncompensated unity feedback system is 

Us) = 
K 

s(s + 10) 2' 
(10.66) 

It is specified that the velocity constant of this system be equal to 20, while the damp
ing ratio of the dominant roots is equal to 0.707. The gain necessary for a Kv of 20 is 

^ = 20 = ^ , 



Section 10.7 Phase-Lag Design Using the Root Locus 695 

FIGURE 10.18 
Design of a phase-
lag compensator on 
the s-plane. 
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or i£ = 2000. However, using Routh's criterion, we find that the roots of the charac
teristic equation lie on the/w-axis at ±/10 when K = 2000. The roots of the system 
when the Kv requirement is satisfied are a long way from satisfying the damping 
ratio specification, and it would be difficult to bring the dominant roots from the 
/w-axis to the £ = 0.707 line by using a phase-lead compensator. Therefore, we will 
attempt to satisfy the Kv and t, requirements by using a phase-lag network. The 
uncompensated root locus of this system is shown in Figure 10.18, and the roots are 
shown when t, = 0.707 and s = -2.9 ± /2.9. Measuring the gain at these roots, we 
find that K = 236. Therefore, the necessary ratio of the zero to the pole of the com
pensator (use Equation 10.64) is 

a = 
2000 
236 

= 8.5. 

Thus, we will choose z = 0.1 and p = 0.1/9 in order to allow a small margin of safe
ty. Examining Figure 10.18, we find that the difference between the angle from the 
pole and zero of Gc(s) is negligible. Therefore, the compensated system is 

Gc(s)G(s) = 
236(5 + 0.1) 

s(s + 10)2(s + 0.0111)' 
(10.67) 

where K/a = 236 and a = 9. 

The design of an integration compensator to increase the error constant of an 
uncompensated control system is particularly illustrative using s-plane and root 
locus methods. We shall now turn to similarly useful methods of designing integra
tion compensation using Bode diagrams. 
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10.8 PHASE-LAG DESIGN USING THE BODE DIAGRAM 

'Ihe design of a phase-lag RC network suitable for compensating a feedback control 
system can be readily accomplished on the Bode diagram. The advantage of the 
Bode diagram is again apparent, for we will simply add the frequency response of 
the compensator to the Bode diagram of the uncompensated system in order to ob
tain a satisfactory system frequency response. The transfer function of the phase-lag 
network, written in Bode diagram form, is 

, „ 1 + jarr 
Gc(jo>) = y — . , (10.68) 

as wc found in Equation (10.14). Ihe Bode diagram of the phase-lag network is shown 
in Figure 10.8 for two values of a. On the Bode diagram, the pole and the zero of the 
compensator have a magnitude much smaller than the smallest pole of the uncom
pensated system. Thus, the phase lag is not the useful effect of the compensator; it is 
the attenuation —20 log a that is the useful effect for compensation. The phase-lag 
network is used to provide an attenuation and therefore to lower the 0-dB (crossover) 
frequency of the system. However, at lower crossover frequencies, we usually find that 
the phase margin of the system is increased, and our specifications can be satisfied. 
The design procedure for a phase-lag network on the Bode diagram is as follows: 

1. Obtain the Bode diagram of the uncompensated system with the gain adjusted for the 
desired error constant. 

2. Determine the phase margin of the uncompensated system and. if it is insufficient, 
proceed with the following steps. 

3. Determine the frequency where the phase margin requirement would be satisfied if 
the magnitude curve crossed the 0-dB line at this frequency, co'c. (Allow for 5° phase 
lag from the phase-lag network when determining the new crossover frequency.) 

4. Place the zero of the compensator one decade below the new crossover frequency o)'c, 
and thus ensure only 5° of additional phase lag at io'c (see Figure 10.8) due to the lag 
network. 

5. Measure the necessary attenuation at co'c to ensure that the magnitude curve crosses at 
this frequency. 

6. Calculate a by noting that the attenuation introduced by the phase-lag network is 
-20 log a at co'c. 

7. Calculate the pole as a)p = 1/(«T) = oiz/a, and the design is completed. 

An example of this design procedure will illustrate that the method is simple to 
carry out in practice. 

EXAMPLE 10.8 Design of a phase-lag network 

Let us consider again the unity feedback system of Example 10.6 and design a 
phase-lag network so that the desired phase margin is obtained. The uncompensat
ed loop transfer function is 

L<*" = MjhT) = MoJ: + iy (m69) 
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FIGURE 10.19 
(a) Design of a 
phase-lag network 
on the Bode 
diagram for 
Example 10.8. 
(b) Time response to 
a step input for the 
uncompensated 
system (solid line) 
and the 
compensated 
system (dashed line) 
of Example 10.8. 

where Kv = K/2. We want Kv = 20 while a phase margin of 45° is attained. The 
uncompensated Bode diagram is shown as a solid line in Figure 10.19. The uncompen
sated system has a phase margin of 20°, and the phase margin must be increased. 
Allowing 5° for the phase-lag compensator, we locate the frequency co where 
</>(<w) — —130°, which is to be our new crossover frequency (o'c. In this case, we find 
that (o'c = 1.5, which allows for a small margin of safety. The attenuation necessary 
to cause co'c to be the new crossover frequency is equal to 20 dB. Both the compen
sated and uncompensated magnitude curves are an asymptotic approximation. Both 
the actual curves are 2 dB lower than shown. Thus, a>'c = 1.5, and the required atten
uation is 20 dB. 
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Then we find that 20 dB — 20 log a, or a = 10. Therefore, the zero is one decade 
below the crossover, or wz — o)'J\0 = 0.15, and the pole is at cop = coz/10 = 0.015. 
The compensated system is then 

20(6.66/0) + 1) 
Gc(ja>)G(ja>) = , . . - . \ / / . (10.70) 

j (i)(0.5 j (o + 1)(66.6j(o + 1) 
The frequency response of the compensated system is shown in Figure 10.19(a) with 
dashed lines. It is evident that the phase lag introduces an attenuation that lowers the 
crossover frequency and therefore increases the phase margin. Note that the phase 
angle of the lag network has almost totally disappeared at the crossover frequency 
o)'c. As a final check, we numerically evaluate the phase margin and find that 
0pm = 46.8° at (JJ'C = 1.58 which is the desired result. Using the Nichols chart, we find 
that the closed-loop bandwidth of the system has been reduced from w = 10 rad/s 
for the uncompensated system to a) = 2.5 rad/s for the compensated system. Due to 
the reduced bandwidth, we expect a slower time response to a step command. 

The time response of the system is shown in Figure 10.19(b). Note that the over
shoot is 25% and the peak time is 1.85 seconds. Thus, the response is within the 
specifications. • 

EXAMPLE 10.9 Design of a phase-lag compensator 

Let us consider again the unity feedback system of Example 10.7, which is 

jo)(]o) + 10) ]co(o.ij(D + iy-

where Kv -= K/100. A velocity constant of Kv equal to 20 is specified. Furthermore, 
a damping ratio of 0.707 for the dominant roots is required. From Figure 9.21, we 
estimate that a phase margin of 65° is required. The frequency response of the uncom
pensated system is shown in Figure 10.20. The phase margin of the uncompensated 
system is 0°. Allowing 5° for the lag network, we locate the frequency where the 
phase is -110°. This frequency is equal to 1.74, and therefore we will attempt to 
locate the new crossover frequency at oJc — 1.5. Measuring the necessary attenuation 
at w = (o'c, we find that 23 dB is required; then 23 = 20 log a gives a = 14.2. The 
zero of the compensator is located one decade below the crossover frequency, and 
thus 

CD' 

'Z 

The pole is then 

(o7 0.15 
cop = a 14.2' 

Therefore, the compensated system is 

20(6.66/0) + 1) 
Gc(Jo))G(j(o) = — L

n . (10.72) 
c U ' U ' jo)(0.1jo) + l)2(94.6/w + 1) V 



Section 10.8 Phase-Lag Design Using the Bode Diagram 699 

FIGURE 10.20 
Design of a phase-
lag network on the 
Bode diagram for 
Example 10.9. 

-240° 

The compensated frequency response is shown in Figure 10.20. As a final check, we 
evaluate the phase margin at a>'c = 1.5 and find that r/>pnl = 67°, which is within the 
specifications. • 

We have seen that a phase-lag compensation network can be used to alter the 
frequency response of a feedback control system in order to attain satisfactory sys
tem performance. Examining both Examples 10.8 and 10.9, we note again that the 
system design is satisfactory when the asymptotic curve for the magnitude of 
the compensated system crosses the 0-dB line with a slope of -20 dB/decade. The 
attenuation of the phase-lag network reduces the magnitude of the crossover (0-dB) 
frequency to a point where the phase margin of the system is satisfactory. Thus, in 
contrast to the phase-lead network, the phase-lag network reduces the closed-loop 
bandwidth of the system as it maintains a suitable error constant. 

We might ask, why not place the compensator zero more than one decade below 
the new crossover o)'c (see step 4 of the design procedure) and thus ensure less than 5° 
of lag at o)'c due to the compensator? This question can be answered by considering the 
requirements placed on the resistors and capacitors of the lag network by the values 
of the poles and zeros (see Equation 10.12). As the magnitudes of the pole and zero of 
the lag network are decreased, the magnitudes of the resistors and the capacitor 
required increase proportionately. The zero of the lag compensator in terms of the cir
cuit components is z = 1/iRiC), and the a of the network is a = (R\ + #2)/^2-
Thus, considering Example 10.9, we require a zero at w, = 0.15, which can be 
obtained with C = 1 fi.F and R2 = 6.66 Mil. However, for a = 14, we require a 
resistance R1 of R{ = R2(a - 1) = 88 MO,. A designer does not wish to place the zero 
(oz further than one decade below <a'c and thus require larger values of Ru R2, and C. 
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FIGURE 10.21 
An RC lead-lag 
network. 

o + 

The phase-lead compensation network alters the frequency response of a net
work by adding a positive (leading) phase angle and therefore increases the phase 
margin at the crossover (0-dB) frequency. It becomes evident that a designer might 
wish to consider using a compensation network that provides the attenuation of a 
phase-lag network and the lead-phase angle of a phase-lead network. Such a net
work does exist. It is called a lead-lag network and is shown in Figure 10.21. The 
transfer function of this network is 

V2(s) Cglgif + 1 ) ( ^ 2 ^ + 1) 
Vi(s) ~ RxRfi&s* + (RxQ + R^C2 + R2C2)s + l" 

When ar, = RtCh (3r2 = R2C2, TJ + T2 = RQ + R& + R2C2, 
R\R2 CiC2, we note that «/3 = 1, and then Equation (10.73) is 

V2(S) = (1 + aTls)(l + pr2s) 
V^s) ' (1 + ru)(l + r2s) ' 

(10.73) 

and '1^2 = 

(10.74) 

where a > 1 and /3 < 1... The first factors in the numerator and denominator, which 
are functions of T15 provide the phase-lead portion of the network.'Irie second fac
tors, which are functions of T2, provide the phase-lag portion of the compensation 
network. The parameter /3 is adjusted to provide suitable attenuation of the low-fre
quency portion of the frequency response, and the parameter a is adjusted to pro
vide an additional phase lead at the new crossover (0-dB) frequency. Alternatively, 
the compensation can be designed on the .s-plane by placing the lead pole and zero 
compensation in order to locate the dominant roots in a desired location. Then the 
phase-lag compensation is used to raise the error constant at the dominant root lo
cation by a suitable ratio 1//3. The design of a phase lead-lag compensator follows 
the procedures already discussed. Other literature will further illustrate the utility of 
lead-lag compensation [2,3,29]. 

10.9 DESIGN ON THE BODE DIAGRAM USING ANALYTICAL METHODS 

We will often use computers, when appropriate, to assist the designer in the selec
tion of the parameters of a compensator. The development of algorithms for com
puter-aided design is an important alternative approach to the trial-and-error 
methods considered in earlier sections. Computer programs have been developed 
for the selection of suitable parameter values for compensators based on satisfac
tion of frequency response criteria such as the phase margin [3,4]. 
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An analytical technique of selecting the parameters of a lead or lag network has 
been developed for the Bode diagram [4,5]. For a single-stage compensator, 

Gc(s) = ^ ^ (10-75) 
1 + TS 

where a < 1 yields a lag compensator and a > 1 yields a lead compensator. The 
phase contribution of the compensator at the desired crossover frequency oic (sec 
Equation 10.9) is given by 

p = tan<ft = c c . (10.76) 
1 + (orj) a 

The magnitude M (in dB) of the compensator at a>c is given by 

1 + ((ocar)2 

1 + M: 

Eliminating cocr from Equations (10.76) and (10.77), we obtain the nontrivial solu
tion equation for a as 

(/72 - c + l)a2 + 2p2ca + p2c2 + c2 - c = 0. (10.78) 

For a single-stage compensator, it is necessary that c > p2 + 1. If we solve for a 
from Equation (10.78), we can obtain T from 

c = 10M/IO = i l A ^ L . (10.77) 

1 / 1 - c 
T = 

W c V e - a2' 
(10.79) 

The design steps for a lead compensator are: 

1. Select the desired a)c. 

2. Determine the phase margin desired and therefore the required phase 4> for 
Equation (10.76). 

3. Verify that the phase lead is applicable: ¢) > 0 and M > 0. 
4. Determine whether a single stage will be sufficient by testing c > p? + 1. 
5. Determine a from Equation (10.78). 
6. Determine T from Equation (10.79). 

If we need to design a single-lag compensator, then 0 < 0 and M < 0 (step 3). 
Step 4 will require c < 1/(1 + p2). Otherwise the method is the same. 

EXAMPLE 10.10 Design using an analytical technique 

Let us consider again the system of Example 10.1 and design a lead network by the 
analytical technique. Examine the uncompensated curves in Figure 10.9. We select 
b)c - 5. Then, as before, we desire a phase margin of 45D. The compensator must 
yield this phase, so 

p = tan45° = l. (10.80) 

The required magnitude contribution is 8 dB, or M = 8, so that 

c = io8/10 = 6.31. (10.81) 
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Using c and p, we obtain 

-4.31 a2 + 12.62a 4 73.32 = 0. (10.82) 

Solving for a, we obtain a = 5.84. Solving Equation (10.79), wc obtain r = 0.087. 
Therefore, the compensator is 

GM 
1 + 0.5155 
1 + 0.087s' 

(10.83) 

The pole is equal to 11.5, and the zero is 1.94. This design is similar to that obtained 
by the graphical technique of Section 10.4. • 

10.10 SYSTEMS WITH A PREFILTER 

In the earlier sections of this chapter, we utilized compensators of the form 

s + z 
Gc(s) = 

s + p 

that alter the roots of the characteristic equation of the closed-loop system. However, 
the closed-loop transfer function T(s) will contain the zero of Gc(s) as a zero of T(s). 
This zero will significantly affect the response of the system T(s). 

Let us consider the system shown in Figure 10.22, where 

G(,) = I 

Wc will introduce a PI compensator, so that 

Kj KPs + K, 
Gc(s)=KP + ^- = P ^ - . 

The closed-loop transfer function of the system with a prefilter (Figure 10.22) is 

(KPs + K,)Gp{s) 
T(s) = 

s2 + KPs + Ki 
(10.84) 

For illustrative purposes, the specifications require a settling time (with a 2% crite
rion) of 0.5 second and an overshoot of approximately 4%. We use t, = 1/V2 and 
note that 

S i< 

FIGURE 10.22 
Control system with 
a prefilter Gp{s). 

/?(.v) 
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Thus, we require that £<o„ = 8 or a)n = 8 V2. We now obtain 

KP = 2£a)n = 16 and K{ = a>l = 128. 

The closed-loop transfer function when Gp(s) = 1 is then 

16(5 + 8) 
T(s) = 

s2 + 16s + 128 

The effect of the zero on the step response is significant. Using Figure 5.13(a), we 
have a/(£(on) = 1 and t, = 1/V2, and the overshoot to a step as predicted from 
Figure 5.13(a) is 21%. 

We use a prefilter Gp(s) to eliminate the zero from T(s) while maintaining the 
DC gain of 1, thus requiring that 

GM = 
s + 

Then we have 

128 
T(s) = 

s2 + 16s + 128' 

and the overshoot of this system is 4.5%, as expected. 
Reviewing Figure 5.13(a), we note that the zero at s = -a has a significant 

effect when af£ton < 5, where —a is the zero and — £,u>n is the real part of the domi
nant roots of the characteristic equation of T(s). 

Let us now consider again Example 10.3, which includes the design of a lead 
compensator. The resulting closed-loop transfer function can be determined to be 
(using Figure 10.22) 

( _ 8-K' + P<W 
W (s + 1 + j2)(s + 1 - j2)(s + 1.62)' 

If Gp(s) = 1 (no prefilter), then we obtain a response with an overshoot of 46.6% 
and a settling time of 3.8 seconds. If we use a prefilter, 

Gp(s) = - l 

1' 

we obtain an overshoot of 6.7% and a settling time of 3.8 seconds. The real root at 
s = -1.62 helps to damp the step response. The prefilter is very useful in permitting 
the designer to introduce a compensator with a zero to adjust the root locations 
(poles) of the closed-loop transfer function while eliminating the effect of the zero 
incorporated in T(s). 

In general, we will add a prefilter for systems with lead networks or PI compen
sators. We will not use a prefilter for a system with a lag network, since we expect the 
effect of the zero to be insignificant. To check this assertion, let us consider again the 
design obtained in Example 10.6. The system with a phase-lag controller is 

5(5 + 0.1) 
G(s)Gc(s) = 

s(s + 2)(5 + 0.0125)' 
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The closed-loop transfer function is then 

50 + 0.1) 
T(s) = 

(s2 + 1.98s + 5.1)0 + 0-095) s2 + 1.98s + 5.1' 

since the zero at 5 = -0.1 and the pole at s — -0.095 approximately cancel. We 
expect an overshoot of 20% and a settling time (with a 2% criterion) of 4.0 seconds for 
the design parameters £ = 0.45 and £con = 1. However, the actual response has an 
overshoot of 26% and a longer settling time of 5.8 seconds due to the effect of the 
real pole of T(s) at s = —0.095. Thus, we usually do not use a prefilter with systems 
that utilize lag compensators. 

EXAMPLE 10.11 Design of a third-order system 

Consider a system of the form shown in Figure 10.22 with 

1 
G(s) = s(s + 1)0 + 5)' 

Let us design a system that will yield a step response with an overshoot less than 2% 
and a settling time less than 3 seconds by using both Gc(s) and Gp(s) to achieve the 
desired response. 

We use a lead compensation network 

gO + 1.2) 

and select K to find the complex roots with £ - l/ 'Vz. Then, with K = 78.7, the 
closed-loop transfer function is 

78.70 + 1-2)GP0) 
T(s) = 

0 + 1.71 + /1.71)0 + 1-71 - /1-71)0 + 1-45)0 + 11-1) 

7.1(5 + 1.2)0,,0) 

0 2 + 3.42s + 5.85)(5 + 1.45)' 

If we choose 

P_ 
5 + p 

the closed-loop transfer function is 

7.1p0 + 1-2) 

GP(s) = T-7^7 (10.85) 

T(s) 
0 2 + 3.425 + 5.85)(5 + 1.45)0 + p) 

If p = 1.2, we cancel the effect of the zero. The response of the system with a pre
filter is summarized in Table 10.1. We choose the appropriate value forp to achieve 
the response desired. Note that p = 2.40 will provide a response that may be desir
able, since it effects a faster rise time than p = 1.20. The prefilter provides an addi
tional parameter to select for design purposes. • 
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Table 10.1 Effect of a Prefilter on the Step Response 

GJs) p = 1 p = 1.20 p = 2.4 

Percent 
overshoot 

90% rise 
time (seconds) 

Settling 
time (seconds) 

9.9% 

1.05 

2.9 

0% 

2.30 

3.0 

4.8% 

1.60 

3.2 

10.11 DESIGN FOR DEADBEAT RESPONSE 

Often, the goal for a control system is to achieve a fast response to a step command 
with minimal overshoot. We define a deadbeat response as a response that proceeds 
rapidly to the desired level and holds at that level with minimal overshoot. We use 
the ±2% band at the desired level as the acceptable range of variation from the 
desired response. Then, if the response enters the band at time Ts, it has satisfied 
the settling time Ts upon entry to the band, as illustrated in Figure 10.23. A deadbeat 
response has the following characteristics: 

1. Steady-state error = 0 

2. Fast response —* minimum rise time and settling time 

3. 0 .1% ^ percent overshoot < 2 % 

4. Percent undershoot < 2 % 

Character is t ics (3) and (4) r equ i re tha t the response remain within the ± 2 % b a n d 
so that the entry to the band occurs at the settling time. 

FIGURE 10.23 
The deadbeat 
response. A is the 
magnitude of the 
step input. 
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We consider the transfer function T(s) of a closed-loop system. To determine 
the coefficients that yield the optimal deadbeat response, the standard transfer func
tion is first normalized. An example of this for a third-order system is 

T(s) = 
CO] 

s3 + (xa>ns
2 + (3coj,s + o?n 

Dividing the numerator and denominator by co?, yields 

1 
T(s)=-3 2 s s s 

- r + a—r + (3— + 1 
(07, cot <o„ 

(10.86) 

(10.87) 

Let s = s/ton to obtain 

T(s) 
1 

T;3 r + as1 + 13s + 1 
(10.88) 

Equation (10.88) is the normalized, third-order, closed-loop transfer function. For a 
higher-order system, the same method is used to derive the normalized equation. 
The coefficients of the equation—a, fi, y, and so on—are then assigned the values 
necessary to meet the requirement of deadbeat response. The coefficients recorded 
in Table 10.2 were selected to achieve deadbeat response and minimize settling time 
and rise time Tr to 100% of the desired command. The form of Equation (10.88) is 
normalized since 5 = s/con. Thus, we choose con based on the desired settling time or 
rise time. Therefore, if we have a third-order system with a required settling time of 
1.2 seconds, we note from Table 10.2 that the normalized settling time is 

a>nTs = 4.04. 

Therefore, we require that 

4.04 4.04 

7; 1.2 
= 3.37. 

Once co„ is chosen, the complete closed-loop transfer function is known, having the 
form of Equation (10.86). When designing a system to obtain a deadbeat response, 

Table 10.2 Coefficients and Response Measures of a Deadbeat System 

System 
Order 

2nd 
3rd 
4th 
5th 
6th 

a 

1.82 
1.90 
2.20 
2.70 
3.15 

/ • " * * • » . . . 

OOeii iuiems 

P 

2.20 
3.50 
4.90 
6.50 

r 

2.80 
5.40 
8.70 

S 

3.40 
7.55 

e 

4.05 

Percent 
Over
shoot 
P.O. 

0.10% 
1.65% 
0.89% 
1.29% 
1.63% 

Percent 
Under
shoot 
P.U. 

0.00% 
1.36% 
0.95% 
0.37% 
0.94% 

90% 
Rise 
Time 

7"r90 

3.47 
3.48 
4.16 
4.84 
5.49 

100% 
Rise 
Time 
Tr 

6.58 
4.32 
5.29 
5.73 
6.31 

Settling 
Time 
Ts 

4.82 
4.04 
4.81 
5.43 
6.04 

Note: All times arc normalized. 
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the compensator is chosen, and the closed-loop transfer function is found. This com
pensated transfer function is then set equal to Equation (10.86), and the required 
compensator can be determined. 

EXAMPLE 10.12 Design of a system with a deadbeat response 

Let us consider a unity feedback system with a compensator Gc(s) and a prefilter 
Gp(s), as shown in Figure 10.22. The process is 

G(s) = K 

and the compensator is 

s(s + 1)' 

r ( \ s + z 

s + p 

Using the necessary prefilter yields 

W = 7T? 
The closed-loop transfer function is 

T(s = Kz 
s3 + (1 + p)s2 + (K - p)s + Kz' 

We use Table 10.2 to determine the required coefficients, a = 1.90 and /3 = 2.20. If 
we select a settling time (with a 2% criterion) of 2 seconds, then Q)„TS = 4.04, and 
thus (on — 2.02. The required closed-loop system has the characteristic equation 

q(s) = s3 + aco,/ + (3a>2„s + co3
n = s3 + 3.84s2 + 8.98^ + 8.24. 

Then, we determine that p = 2.84, z = 1.34, and K = 6.14. The response of this 
system will have Ts = 2 s, Tr = 2.14 s, and Tr90 = 1.72 s. • 

10.12 DESIGN EXAMPLES 

In this section we present three illustrative examples. The first example is a rotor 
winder control system where both a lead and lag compensator are designed using 
root locus methods. The second example is an x-y plotter. In this example, three dif
ferent controllers are designed, including a proportional controller, a lead compen
sator, and a proportional-derivative (PD) controller. In the third example, precise 
control of a milling machine used in manufacturing is employed to illustrate the 
design process. A lag compensator is designed using root locus methods to meet 
steady-state tracking error and percent overshoot specifications. 

EXAMPLE 10.13 Rotor winder control system 

Our goal is to replace a manual operation using a machine to wind copper wire onto 
the rotors of small motors. Each motor has three separate windings of several hun
dred turns of wire. It is important that the windings be consistent and that the 
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Air supply 

Input 
command 

Armature wire 

Stepper 
motor 

Winding 
loop 

(a) 

FIGURE 10.24 
(a) Rotor winder 
control system. 
(b) Block diagram. 

R(s) O GM 
i 

s(s - 5)(s + 10) •*• Yls) 

(b) 

throughout of the process be high. The operator simply inserts an unwound rotor, 
pushes a start button, and then removes the completely wound rotor. The DC motor is 
used to achieve accurate rapid windings. Thus, the goal is to achieve high steady-state 
accuracy for both position and velocity. The control system is shown in Figure 10.24(a) 
and the block diagram in Figure 10.24(b).This system has zero steady-state error for a 
step input, and the steady-state error for a ramp input is 

e„ = A/Kt 

where 

Gc(s) 
K« = 1¾ 50 

When Gc(s) = K, we have Kv = £/50. If we select K = 500, we will have Kv = 10, 
but the overshoot to a step is 70%, and the settling time is 8 seconds. 

We first try a lead compensator so that 

Gc{s) = 
K(s + Zl) 

s + pt 
(10.89) 

Selecting Z\ — 4 and the pole pi so that the complex roots have a t, of 0.6, we have 
(see Figure 10.25) 

Gc(s) -
191.2(J + 4) 

s + 7.3 " 
(10.90) 
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FIGURE 10.25 
Root locus for lead 
compensator. 

-A—X-
-10 -7.3 

• <r 

We find the response to a step input has a 3% overshoot and a settling time of 1.5 
seconds. However, the velocity constant is 

191.2(4) 
v 7.3(50) ' 

which is inadequate. 
If we use a phase-lag design, we select 

Gc(s) = 
K(s + z2) 

s + p2 

in order to achieve Kv = 38. Thus, the velocity constant of the lag-compensated 
system is 

Using a root locus, we select K = 105 in order to achieve a reasonable uncompen
sated step response with an overshoot of less than or equal to 10%. We select 
a = z/p to achieve the desired Kv. We then have 

5 0 ^ 50(38) 
oc = —-1 = — r - ^ = 18.1. 

K 105 

Selecting z2 = 0.1 to avoid affecting the uncompensated root locus, we have 
p2 = 0.0055. We then obtain a step response with a 12% overshoot and a settling 
time of 2.5 seconds. 
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Table 10.3 Design Example Results 

Controller 

Step overshoot 
Settling time (seconds) 
Steady-state error for ramp 
Kv 

Gain, K 

70% 
8 
10% 
10 

Lead 
Network 

3% 
1.5 
48% 
2.1 

Lag 
Network 

12% 
2.5 
2.6% 
38 

Lead-Lag 
Network 

5% 
2.0 
4.8% 
21 

1.2 

1.0 

| 0.8 
5 

1 °-6 

a. 

Z 0.4 

0.2 
o ( ) 

i 

. I ; 

Time (s) 

1 t 

10 
9 

8 
7 
6 

m 5 

4 
3 
2 
I 
0 

, - ^ ^ ^ • , 

^ ' 

..' 
^ 

... . 

1 

- • -

• > * • " 

i 

0 1 4 5 6 

Time (s) 

(b) 

10 

FIGURE 10.26 (a) Step response and (b) ramp response for rotor winder system. 

The results for the simple gain, the lead network, and the lag network are sum
marized in Table 10.3. 

Let us return to the lead-network system and add a cascade lag network, so that 
the compensator is 

Gc(s) = 
K(s + zi)(s + z2) 

(10.91) 

The lead compensator of Equation (10.90) requires K ~ 191.2, Z\ = 4, and 
p\ = 7.3. The root locus for the system is shown in Figure 10.25. We recall that this 
lead network resulted in K.v = 2.1 (see Table 10.3). To obtain Kv = 21, we use 
a = 10 and select z2

 = 0.1 and p2 = 0.01. Then the compensated loop transfer 
function is 

191.2(5 + 4){s + 0.1) 
G(S)G^ = , ( , + 5)(, + 10)(, ? 7.28)(, + 0.01)- <1 ( I 9 2 ) 
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The step response and ramp response of this system are shown in Figure 10.26 in 
parts (a) and (b), respectively, and are summarized in Table 10.3. Clearly, the lead-
lag design is suitable for satisfaction of the design goals. • 

EXAMPLE 10.14 X-Y plotter 

Many physical phenomena are characterized by parameters that are transient or 
slowly varying. If recorded, these changes can be examined at leisure and stored for 
future reference or comparison. To accomplish such a recording, a number of electro
mechanical instruments have been developed, among them the x-y recorder. In this 
instrument, the displacement along the x-axis represents a variable of interest or time 
and the displacement along the y-axis varies as a function of another variable [6]. 

Such recorders can be found in many laboratories recording experimental data, 
such as changes in temperature, variations in transducer output levels, and stress 
versus applied strain, to name just a few. The x-y plotter produces graphs with ink 
pens by drawing lines from a graphics file or directly from input data. These output 
devices offer a resolution superior to a printer since the lines are actually drawn 
rather than being composed of tiny dots. 

The purpose of a plotter is to accurately follow the input signal as it varies. We 
will consider the design of the movement of one axis, since the movement dynamics 
of both axes are identical. Thus, we will strive to control the position and the move
ment of the pen very accurately as it follows the input signal. 

To achieve accurate results, our goal is to achieve (1) a step response with an 
overshoot of less than 5% and a settling time (with a 2% criterion) less than 0.5 sec
ond, and (2) a percentage steady-state error for a step equal to zero. If we achieve 
these specifications, we will have a fast and accurate response. 

To move the pen, we select a DC motor as the actuator. The feedback sensor 
will be a 500-line optical encoder. By detecting all state changes of the two-channel 
quadrature output of the encoder, 2000 encoder counts per revolution of the motor 
shaft can be detected. This yields an encoder resolution of 0.001 inch at the pen tip. 
The encoder is mounted on the shaft of the motor. Since the encoder provides digi
tal data, it is compared with the input signal by using a microprocessor. Next, we 
propose using the difference signal calculated by the microprocessor as the error 
signal and then using the microprocessor to calculate the necessary algorithm to ob
tain the designed compensator. The output of the compensator is then converted to 
an analog signal that will drive the motor. 

The model of the feedback position control system is shown in Figure 10.27. 
Since the microprocessor calculation speed is very fast compared to the rate of 
change of the encoder and input signals, we assume that the continuous signal 
model is very accurate. 

The model for the motor and pen carriage is 

° « = s{s + wis + IOOO)- <ia93) 
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FIGURE 10.27 
Model of the pen-
plotter control 
system. 
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and our initial attempt at a specification of a compensator is to use a simple gain so that 

Gc(s) = K. 

In this case, we have only one parameter to adjust: K.To achieve a fast response, 
we have to adjust K so that it will provide two dominant s-plane roots with a damp
ing ratio of 0.707, which will result in a step response overshoot of about 4.5%. A 
sketch of the root locus (note the break in the real axis) is shown in Figure 10.28. 

Adjusting the gain to K = 47,200, we obtain a system with an overshoot of 
3.6% to a step input and a settling time of 0.8 second. Since the transfer function has 
a pole at the origin, we have a steady-state error of zero for a step input. 

This system does not meet our specifications, so we select a compensator that 
will reduce the settling time. Let us select a lead compensator so that 

Gc(s) = 
Ka(s + z) 

(s + p) ' 
(10.94) 

where p = az. Let us use the method of Section 10.5, which selects the phase-lead 
compensator on the 5-plane. Hence, we place the zero at 5" = 20 and determine 
the location of the pole,/?, that will place the dominant roots on the line that has the 
damping ratio of 1/V2. Thus, we find that p = 60 and a = 3, so that 

G(s)Gc(s) = 
142,600(5 + 20) 

s(s + 10)(^ + 60)(s + 1000)' 
(10.95) 

Obtaining the actual step response, we determine that the percent overshoot is 2% 
and that the settling time is 0.35 second, which meet the specifications. The third 
design approach is to recognize that the encoder can be used to generate a velocity 
signal by counting the rate at which encoder lines pass by a fixed point, using the 
microprocessor. Since the position signal and the velocity signal are available, we 
can describe the compensator as 

Gc(s) = KP + KDs, (10.96) 

where KP is the gain for the error signal and KD is the gain for the velocity signal. 
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FIGURE 10.28 
Root locus for the 
pen plotter, 
showing the roots 
with a clamping 
ratio of 1/V2. Ths 
dominant roots are 
s = -4.9 ± /4.9. 
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Then we can write 

G(s)Gc(s) = 
KD(s + KP/KD) 

s(s + 10)(s + 1000)' 

If we set KP/KD = 10, we cancel the pole at s = -10 and obtain 

The characteristic equation for this system is 

s2 + 1000^ + KD = 0, (10.97) 

and we want £ = 1/V2. Noting that 2£<y„ = 1000, we have con = 707 and KD = (o2
n. 

Therefore, we obtain KD = 5 X 105, and the compensated system is 

5 X 105 

Gc(s)G(s) = 
s(s + 1000)' 

(10.98) 

The response of this system will provide an overshoot of 4.3% and a settling time of 
8 milliseconds. 

The results for the three approaches to system design are compared in Table 10.4. 
The best design uses the velocity feedback. • 

Table 10.4 Results for Three Designs 

System 

Gain adjustment 
Gain and lead compensator 
Gain adjustment plus velocity signal 

multiplied by gain KD 

Step Response 
Percent 
Overshoot 

3.6 
2.0 

4.3 

Settling Time 
(milliseconds) 

800 
350 

8 



714 Chapter 10 The Design of Feedback Control Systems 

EXAMPLE 10.15 Milling machine control system 

Smaller, lighter, less costly sensors are being developed by engineers for machin
ing and other manufacturing processes. A milling machine table is depicted in 
Figure 10.29. This particular machine table has a new sensor that obtains information 
about the cutting process (that is, the depth-of-cut) from the acoustic emission 
(AE) signals. Acoustic emissions are low-amplitude, high-frequency stress waves 
that originate from the rapid release of strain energy in a continuous medium. The 
AE sensors are commonly piezoelectric amplitude sensitive in the 100 kHz to 
1 MHz range; they are cost effective and can be mounted on most machine tools. 

There is a relationship between the sensitivity of the AE power signal and small 
depth-of-cut changes ([16], [20], [21]). This relationship can be exploited to obtain a 
feedback signal or measurement of the depth-of-cut. A simplified block diagram of 
the feedback system is shown in Figure 10.30. The elements of the design process 
emphasized in this example are highlighted in Figure 10.31. 

Since the acoustic emissions are sensitive to material, tool geometry, tool wear, 
and cutting parameters such as cutter rotational speed, the measurement of the 
depth-of-cut is modeled as being corrupted by noise, denoted by N(s) in Figure 10.30. 
Also disturbances to the process, denoted by T^s), are modeled. These could repre
sent external disturbances resulting in unwanted motion of the cutter, fluctuations in 
the cutter rotation speed, and so forth. 

The process model G(s) is given by 

G(s) = 
s(s + l)(s + 5)' 

(10.99) 

and represents the model of the cutter apparatus and the AE sensor dynamics. The 
input to G(s) is a control signal to actuate an electromechanical device, which then 
applies downward pressure on the cutter. 

FIGURE 10.29 
A depiction of the 
milling machine. 

AE signal 

AE sensor Workpiece 

Milling machine tabic 
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TJx) 

FIGURE 10.30 
A simplified block 
diagram of the 
milling machine 
feedback system. 

R(s) + 

Desired > 
depth-of-cut 

Measurement 
noise 

depth-of-cut 

Topics emphasized in this example. 

Establish the control goals 
Control the depth-of-cut 
to the desired value. 

Identify the variables to be controlled Depth-of-cut. 

Write the specifications 

Establish the system configuration 

i 
Obtain a model of the process, the 

actuator, and the sensor 

i 
Describe a controller and select key 

parameters to be adjusted 

4 
Optimize the parameters and 

analyze the performance 

J 

Design specifications: 
DS1: Track a ramp input with 

zero steady-stale error. 
DS2: P.O. < 20% 

See Figures 10.29 and 10.30. 

See Equation (10.99). 

See Equation (10.100). 

Use control design 
software. 

If the performance does not meet the If the performance meets the specifications, 
specifications, then iterate the configuration. then finalize the design. 

FIGURE 10.31 Elements of the control system design process emphasized in this milling machine 
control system design example. 
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There are a variety of methods available to obtain the model represented by 
Equation (10.99). One approach would be to use basic principles to obtain a mathe
matical model in the form of a nonlinear differential equation, which can then be 
linearized about an operating point leading to a linear model (or equivalently, a 
transfer function). The basic principles include Newton's laws, the various conserva
tion laws, and Kirchhoff s laws. Another approach would be to assume a form of the 
model (such as a second-order system) with unknown parameters (such as wn and £), 
and then experimentally obtain good values of the unknown parameters. 

A third approach is to conduct a laboratory experiment to obtain the step or 
impulse response of the system. In other words we can apply an input (in this case, a 
voltage) to the system and measure the output—the depth-of-cut into the desired 
workpiece. Suppose, for example, we have the impulse response data shown in 
Figure 10.32 (the small circles on the graph represent the data). If we had access to 
the function Cimp(f)—the impulse response function of the milling machine—we 
could take the Laplace transform to obtain the transfer function model. There are 
many methods available for curve fitting the data to obtain the function Cimp((). We 
will not cover curve fitting here, but we can say a few words regarding the basic 
structure of the function. 

From Figure 10.32 we see that the response approaches a steady-state value: 

q r a p(0->Cj mp,ss 

2 
- as/ oo. 

So we expect that 

Omp(t) = - + ACimp(r), 

FIGURE 10.32 
Hypothetical 
impulse response 
of the milling 
machine. 

U 

-0.05 
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where AC;mp(/) is a function that goes to zero as t. gets large. This leads us to consider 
ACjmp(/) as a sum of stable exponentials. Since the response does not oscillate, we 
might expect that the exponentials are, in fact, real exponentials, 

ACimp(r)= 2 * ^ ' , 
i 

where 17 are positive real numbers. The data in Figure 10.32 can be fitted by the 
function 

2 1 - 1 
i m p W 5 10 2 ' 

for which the Laplace transform is 

OW = i£{cimpW} = §1 +JL-Lj - I - L - - + A- - s), 

Thus we can obtain the transfer function model of the milling machine. 
The control goal is to develop a feedback system to track a desired step input. In 

this case the reference input is the desired depth-of-cut. The control goal is stated as 

Control Goal 
Control the depth-of-cut to the desired value. 

The variable to be controlled is the depth-of-cut, or 

Variable to Be Controlled 
Depth-of-cut y(0-

Since we are focusing on lead and lag controllers in this chapter, the key tuning 
parameters are the parameters associated with the compensator given in Equation. 
(10.100). 

Select Key Tuning Parameters 
Compensator variables:/), z, and K. 

The control design specifications are 

Control Design Specifications 
DS1 Track a ramp input, R(s) = a/s2, with a steady-state tracking error less than a/81, 

where a is the ramp velocity. 

DS2 Percent overshoot to a step input less than 20%. 

The lag compensator is given by 

Gds) = ^^-r^* IPI < W. (10-10°) 

where a = z/p. The tracking error is 

E(s) = R(s) - Y(s) = (1 - T(s))R(s), 

where 

= Gc(s)G(s) 
W 1 + Gc(s)G(sY 
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Therefore, 

1 + Gc(s)G(s) 

With R(s) = a/s2 and using the final value theorem, we find that 

1 a 
e*~ = lim e(t) = l im,£(,) = Urns- ^, ^^y v ^r, 

or equivalently, 

lim,£(,) = . . _. .. 

*^o hms-n)SGc($)G(s) 

According to DS1, we require that 

a a 
< — 

lims^0,Gc(,)G(,) 8' 

or 

lim sGc(s)G(s) > 8. 
5-^0 

Substituting for G(s) and Gc(s) from Equations (10.99) and (10.100), respectively, 
we obtain the compensated velocity constant 

5 a p S p ^•t'COmp r -. — r- ^ - "> 

where # = AT/a. The compensated velocity constant is the velocity constant of the 
system when the lag compensator is in the loop. 

The loop transfer function is 

L(s) = Gc(s)G(s) = S 

s + p , ( , + 1)(, + 5)' 

We separate the lag compensator from the process and obtain the uncompensated 
root locus by considering the feedback loop with the gain K, but not the lag com
pensator zero and pole factors. The uncompensated root locus for the characteristic 
equation 

1 + ^ , ( , + 1)(, + 5) " ° 

is shown in Figure 10.33. 
From DS2 we determine that the target damping ratio of the dominant roots is 

t > 0.45. We find that K < 2.48 at £ > 0.45. Then with K = 2.0 the uncompensat
ed velocity constant is 

IK 2K 
^ ? ) unc = lim,— „-———• = —- = 0.8. 

v,unc s->o , ( , + 1)(, + 5) 5 
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FIGURE 10.33 
Root locus for the 
uncompensated 
system. 
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The compensated velocity constant is 

v r s + z 2 ^ z v 
Kv'camp W s + p s(s + l)(s + 5) p v'unc-

Therefore with a = z/p, we obtain the relationship 

a — 
-v,comp 

K. w.unc 

We require KVtCOmp 

constant. Then 
8. A possible choice is Kv.comp = 10 as the desired velocity 

-**-•» r n m n XU 

a = 
•w.conip 

K y,unc 
= 7T^ = 12.5 

0.8 

But a = z/p, thus our lag compensator should have p - 0.08z. If we select z = 0.01 
then p « 0.0008. 

The compensated loop transfer function is given by 

Gc(s)G(s) = K 
s + z 
s + p s(s - 1)(.1 - 5)' 

The lag compensator with z and p as above is determined to be 

s + 0.01 
Gc(s) = 2.0 

s 4 0.0008' 
(10.101) 

The step response is shown in Figure 10.34. The percent overshoot is approximately 
20%.The velocity error constant is approximately 10, which satisfies DSl. • 
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FIGURE 10.34 
Step response for 
the compensated 
system. 
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10.13 SYSTEM DESIGN USING CONTROL DESIGN SOFTWARE 

We want to use computers, when appropriate, to assist the designer in the selection 
of the parameters of a compensator. The development of algorithms for computer-
aided design is an important alternative approach to the trial-and-error methods 
considered in earlier sections. Computer programs have been developed for the 
selection of suitable parameter values for compensators based on satisfaction of fre
quency response criteria such as the phase margin [3,4]. 

In this section, the compensation of control systems is illustrated using frequen
cy response and s-plane methods. We will consider again the rotor winder design 
example of Section 10.12 to illustrate the use of m-file scripts in designing and 
developing control systems with good performance characteristics. We examine 
both the lead and lag compensators for this design example and obtain the system 
response using computer-based analysis tools. 

EXAMPLE 10.16 Rotor winder control system 

Let us consider again the rotor winder control system shown in Figure 10.24. The 
design objective is to achieve high steady-state accuracy to a ramp input. The steady-
state error to a unit ramp input R(s) = 1/s' •2is 

<?« = 
_1_ 

where 
Gc(s) 

Kv = lim — . 
s-*« 50 

The performance specification of overshoot and settling time must be considered, as 
must the steady-state tracking error. In all likelihood, a simple gain will not be 
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satisfactory, so we will also consider compensation utilizing lead and lag compen
sators, using both Bode diagram and root locus plot design methods. Our approach 
is to develop a series of m-file scripts to aid in the compensator designs. 

Consider a simple gain controller 

Gc(s) = K. 

Then the steady-state error is 

e„ = 
50 
K' 

The larger we make K, the smaller is the steady-state error ess. However, we must 
consider the effect that increasing K has on the transient response, as shown in 
Figure 10.35. When K = 500, our steady-state error for a ramp is 10%, but the over
shoot is 70%, and the settling time is approximately 8 seconds for a step input. We 
consider this to be unacceptable performance and thus turn to compensation. The 
two important compensator types that we consider are lead and lag compensators. 

First, we try a lead compensator 
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FIGURE 10.35 
(a) Transient 
response for simple 
gain controller. 
(b) m-file script. 

K=[50 100 200 500];-«-
% 
numg=[1]; deng=[l 15 50 0]; 
sysg=tf(numg,deng); 
t=[0:0.1:5]; 
% 
for 1=1:4 
sys=feedback(K(i)*sysg,[1]); •* 
y=step(sys,t); 
Ys(:,i)=y; < 
end 
% 
plot(t,Ys(:,1),t,Ys(:,2),t,Ys(:,3),t,Ys(;,4)) 
xlabel(Time (s)'), ylabel('y(t)') 

Compute response 
for four gains. 

Closed-loop 
transfer function. 

Store response for 
/th gain in Ys. 

(b) 
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K(s + Z) 
GAS) — , 

c W s + p 
where \z\ < \p\. The lead compensator will give us the capability to improve the 
transient response. We will use a frequency-domain approach to design the lead 
compensator. 

We want a steady-state error of less than 10% to a ramp input and Kv = 10. In 
addition to the steady-state specifications, we want to meet certain performance 
specifications: (1) settling time (with a 2% criterion) Ts ^ 3 s, and (2) percent over
shoot for a step input ^10%. Solving for £ and con using 

i—5 4 
P.O. = 100 exp_fi r /V1-* = 10 and Ts = — = 3 

fan 

< V = 7^7^ 60°. 

yields t, = 0.59 and con = 2.26. We thus obtain the phase margin requirement: 

t_ 
0.01 

The steps leading to the final design are as follows: 

1. Obtain the uncompensated system Bode diagram with K = 500, and compute the 
phase margin. 

2. Determine the amount of necessary phase lead $,„. 
3. Evaluate a from sin <£,„ = (a - \)/{a + 1). 
4. Compute 10 log a and find the frequency com on the uncompensated Bode diagram 

where the magnitude curve is equal to -10 log a. 
5. In the neighborhood of com on the uncompensated Bode diagram, draw a line through 

the 0-dB point at a)m with slope equal to the current slope plus 20 dB/decade. Locate 
the intersection of the line with the uncompensated Bode diagram to determine the 
lead compensation zero location. Then calculate the lead compensator pole location 
as p = az-

6. Obtain the compensated Bode diagram and check the phase margin. Repeat any steps 
if necessary. 

7. Raise the gain to account for the attenuation 1/a. 
8. Verify the final design with simulation using step function inputs, and repeat any 

design steps if necessary. 

We use three scripts in the design. The design scripts are shown in Figure 
10.36-10.38. The script in Figure 10.36 is for the Bode diagram of the uncompensat
ed system. The script in Figure 10.37 is for the detailed Bode diagram of the com
pensated system. The script in Figure 10.38 is for the step response analysis. The final 
lead compensator design is 

1800(^ + 3.5) 

where K = 1800 was selected after iteratively using the m-file script. 
The settling time and overshoot specifications are satisfied, but Kv = 5, resulting in 

a 20% steady-state error to a ramp input. It is possible to continue the design iteration 
and refine the compensator somewhat, although it should be clear that the lead com
pensator has added phase margin and improved the transient response as anticipated. 
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FIGURE 10.36 
(a) Bode diagram. 
(b) m-file script. 

K=500; 
numg=[1]; deng=[1 15 50 0]; sysg=tf(numg,deng); 
sys=K*sysg; 
% 
[Gm,Pm,Wcg,Wcp]=margin(sys); 
% 
Phi=(60-Pm)*pi/180; « 

alpha=(l+sin(Phi))/(1-sin(Phi)H 
[mag,phase,w]=bode(sys); 
mag save(1 ,:)=mag(:,1,:); 
% 
M=-101og10(alpha)*ones(length(w),1); •*• 
% 

Compute 
phase margin. 

Additional phase lead. 

Compute a. 

semilogx(w,20*log10(mag_save),w,M), grid 
xlabel('Frequency (rad/s)'), ylabel('Magnitude (dB)'' 

Plot -!01og(a)lineto 
aid in locating o>m. 

(b) 

To r educe the s teady-s ta te er ror , w e can consider the lag compensa tor , which 

has the form 

Gc(s) = 
K(s + z) 

s + p 

where \p\ < \z\- We will use a root locus approach to design the lag compensator, 
although it can be done using a Bode diagram as well. The desired root location re
gion of the dominant roots is specified by 

£ = 0.59 and <an = 2.26. 

The steps in the design are as follows: 

1. Obtain the root locus of the uncompensated system. 

2. Locate suitable root locations on the uncompensated system that lie in the region 
defined by £ - 0.59 and wn = 2.26. 

3. Calculate the loop gain at the desired root location and the system error constant, Kvunc. 

4. Compute a = Kvxomp/Kv_mc, where KVJCOtap = 10. 
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FIGURE 10.37 
Lead compensator: 
(a) compensated 
Bode diagram, 
(b) m-file script. 

K 1ROO' rf 

numg=[1]; deng=[1 15 50 0]; 

sysg=tf(numg,deng); L 
sysgc=tf(numgc,dengc); 
sys=series(sysgc,sysg); 
margin(sys) 

Increase K to account 
for attenuation of 1 /a. 

Lead compensator. 

(b) 

1.2 
1 

0.8 
0.6 
0.4 

0.2 

0 
0 0.4 0.8 1.2 

Time (s) 

(a) 

1.6 

FIGURE 10.38 
Lead compensator: 
(a) step response, 

m-file script. 

K=1800; 
% 
numg=[1]; deng=[1 15 50 0]; sysg=tf(numg,deng); 
numgc=K*[1 3.5]; dengc=[1 25]; sysgc=tf(numgc,dengc); 
% 
syso=series(sysgc,sysg); 
sys=feedback(syso,[1 ]); 
% 
t=[0:0.01:2]; 
step(sys.t) 
ylabel ('y(t)1) 

(b) 
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-10 -5 
Real Axis 

(a) 

FIGURE 10.39 
Lag compensator: 
(a) uncompensated 
root locus, (b) m-file 
script. 

numg=[1]: deng=[1 15 50 0]; 
sysg=tf(numg,deng); 
elf; rlocus(sysg); hold on 

Plot performance 
regions on locus. 

% i 
zeta=0.5912;wn=2.2555; 
% 1 
x=[-10:0.1 :-zeta*wn]:y=-(sqrt(1-zetaA2)/zeta)*x; 
xc=[-10:0.1 :-zeta*wn]; c=sqrt(wriA2-xc.A2); 
% 
plot(x,y,':',x,-y.':\xc,c,':',xc,-c,':') 
axis([-15,1,-10,10]); 

(b) 

5. With a known, determine suitable locations of the compensator pole and zero so that 
the compensated root locus still passes through the desired location. 

6. Verify with simulation and repeat any steps if necessary. 

The design methodology is illustrated in Figures 10.39-10.41. Using the rlocfind 
function, we can compute the gain K associated with the roots of our choice on the 
uncompensated root locus that lie in the performance region. We then compute a 
to ensure that we achieve the desired Kv. We place the lag compensator pole and 
zero to avoid affecting the uncompensated root locus. In Figure 10.40, the lag com
pensator pole and zero are very near the origin, at z = —0.1 and p = -0.01. 

The settling time and overshoot specifications are not satisfied, but Kv = 10, as 
desired. It is possible to continue the design iteration and refine the compensator 
somewhat, although it should be clear that the lag compensator has improved the 
steady-state errors to a ramp input relative to the lead compensator design. The 
final lag compensator design is 

100(. + 0.1) 
GAS) = . 

cK ' s + 0.01 
The resulting performance is summarized in Table 10.5. • 
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Compensated root locus 
remains almost unchanged. 
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FIGURE 10.40 
Lag compensator: 
(a) compensated 
root locus, (b) m-file 
script. 

numg=[1]; deng=[1 15 50 0]; sysg=tf(numg,deng); 
numgc=[1 0.1]; dengc=[1 0.01]; sysgc=tf(numgc,dengc); 
sys=series(sysgc,sysg); 
elf; rlocus(sys); hold on 
% 
zeta=0.5912; wn=2.2555; 
x=[-10:0.1 :-zeta*wn]; y=-(sqrt(1-zetaA2)/zeta)*x; 
xc=[-10:0.1:-zeta*wn];c=sqrt(wnA2-xc.A2); 
plotfx.y.V.x.-y.V.xcc.'.-'.xc-c,':1) 
axis([-15,1,-10,10]); 

(b) 

Table 10.5 Compensator Design Results 

Controller Gain, K = 500 Lead 
Step overshoot 70% 
Settling time (seconds) 8 
Steady-state error for ramp J 0% 
K„ 1.0 

8% 
1 
20% 
5 

Lag 
13% 
9 
10% 
10 

10.14 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In this chapter, we design a proportional-derivative controller (PD) to achieve the 
specified response to a unit step input. The specifications are given in Table 10.6. The 
closed-loop system is shown in Figure 10.42. A prefilter is used to eliminate any unde-
sired effects of the term s + z introduced in the closed-loop transfer function. We will 
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FIGURE 10.41 
Lag compensator: 
(a) step response, 
(b) m-file response. 

K=100; 
% 
numg=[1]; deng=[1 15 50 0]; sysg=tf(numg,deng); 
numgc=K*[1 0.1]; dengc=[1 0.01]; sysgc=tf(numgc,dengc) 
% 
syso=series(sysgc,sysg); 
sys=feedback(syso,[1]); 
% 
step(sys) 

(b) 

Table 10.6 Disk Drive Control System Specifications 

and Actual Performance 

Performance Measure Desired Value Actual Response 

Percent overshoot 
Settling time 
Maximum response 

to a unit disturbance 

Less than 5% 
Less than 250 ms 
Less than 5 X 10- 3 

0 .1% 
40 ms 
6.9 X 10- 5 

TJs) 

R(s) • Yis) 

FIGURE 10.42 Disk drive control system with PD controller (second-order model). 
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use the deadbeat system of Section 10.11, where the desired closed-loop transfer func
tion (Equation 10.86) is 

T(s) = 2 "" 2. • (10.102) 
s + acons + a)n 

For the second-order model shown in Figure 10.42, we require a ~ 1.82 (see 
Table 10.2). Then the settling time is 

conTs = 4.82. 

Since we want a settling time less than 50 ms, we will use co„ = 120. Then we expect 
Ts = 40 ms. Therefore, the denominator of Equation (10.102) is 

s2 + 218.4s + 14400. (10.103) 

The characteristic equation of the closed-loop system of Figure 10.42 is 

s2 + (20 + 5KD)s + 5KP = 0. (10.104) 

Equating Equations (10.103) and (10.104), we have 

218.4 - 20 + 5KD 

and 

14400 = 5KP. 

Therefore, KP = 2880 and KD = 39.68. Then we note that 

Gc(s) = 39.68(5 + 72.58). 

The prefilter will then be 

72.58 
Gls) = 

s + 72.58' 

The model neglected the motor field. Nevertheless, this design will be very accurate. 
The actual response is given in Table 10.6. All the specifications are satisfied. 

10.15 SUMMARY 

In this chapter, we have considered several alternative approaches to the design 
of feedback control systems. In the first two sections, we discussed the concepts 
of design and compensation and noted the several design cases that we complet
ed in the preceding chapters. Then we examined the possibility of introducing 
cascade compensation networks within the feedback loops of control systems. 
The cascade compensation networks are useful for altering the shape of the root 
locus or frequency response of a system. The phase-lead network and the phase-lag 
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network were considered in detail as candidates for system compensators. Then 
system compensation was studied by using a phase-lead .s-plane network on the 
Bode diagram and the root locus s-plane. We noted that the phase-lead compen
sator increases the phase margin of the system and thus provides additional sta
bility. When the design specifications include an error constant, the design of a 
phase-lead network is more readily accomplished on the Bode diagram. Alterna
tively, when an error constant is not specified but the settling time and overshoot 
for a step input are specified, the design of a phase-lead network is more readily 
carried out on the .y-plane. When large error constants are specified for a feed
back system, it is usually easier to compensate the system by using integration 
(phase-lag) networks. We also noted that the phase-lead compensation increases 
the system bandwidth, whereas the phase-lag compensation decreases the system 
bandwidth. The bandwidth may often be an important factor when noise is pre
sent at the input and generated within the system. Also, we noted that a satisfac
tory system is obtained when the asymptotic course for magnitude of the 
compensated system crosses the 0-dB line with a slope of —20 dB/decade. The 
characteristics of the phase-lead and phase-lag compensation networks are sum
marized in Table 10.7. Operational amplifier circuits for phase-lead and phase-
lag and for PI and PD compensators are summarized in Table 10.8 [1]. The use of 
these controllers has been widely demonstrated in this and earlier chapters. 
These operational amplifier circuits are widely used in industrial practice to 
provide the compensator Gc(s). 

Table 10.7 A Summary of the Characteristics of Phase-Lead 
and Phase-Lag Compensation Networks 

Compensation 

Phase-Lead Phase-Lag 
Approach Addition of phase-lead angle near 

crossover frequency on Bode diagram. 
Add lead network to yield desired 
dominant roots in s-plane. 

Results 1. Increases system bandwidth 
2. Increases gain at higher frequencies 

Advantages 1. Yields desired response 
2. Improves dynamic response 

Disadvantages 1. Requires additional amplifier gain 
2. Increases bandwidth and thus 

susceptibility to noise 
3. May require large values of 

components for RC network 

Applications 1. When fast transient response is desired 
Situations not 1. When phase decreases rapidly near 
applicable crossover frequency 

Addition of phase-lag to yield an increased 
error constant while maintaining desired 

dominant roots in s-plane or phase margin 
on Bode diagram 

1. Decreases system bandwidth 

1. Suppresses high-frequency noise 
2. Reduces steady-state error 
1. Slows down transient response 
2. May require large values of components 

for RC network 

1. When error constants are specified 
1. When no low-frequency range exists where 

phase is equal to desired phase margin 
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Table 10.8 Operational Amplifier Circuits for Compensators 

Type of 
Controller 

Gc(s) = 
Vi(s) 

PD 
RARJ , 

R^Rl 

PI 
_ R4R2(R2C2s + 1) 

R3R,(R2C2s) 

Lead or lag Gc = 

Lead if Rfc > R2C2 

Lag if ^ C ^ R2C2 

R4R2(RiCiS + 1) 

R,R,(R2C2s + 1) 

EXERCISES 

ElO.l A negative feedback control system has a transfer 
function 

E10.2 A control system with negative unity feedback has 
a process 

G(s) = 

We select a compensator 

Gc(s) = 

K 

5 + 2 

s + a 

in order to achieve zero steady-state error for a step 
input. Select a and K so that the overshoot to a step is 
approximately 5% and the settling time (with a 2% 
criterion) is approximately 1 second. 

Answer: K = 6, a = 5.6 

G M -
400 

s(s + 40)' 

and we wish to use proportional plus integral compen
sation, where 

Gc(.v) = KP + A 

Note that the steady state error of this system for a 
ramp input is zero, (a) Set Kj = 1 and find a suitable 
value of AT/i so the step response will have an over
shoot of approximately 20%. (b) What is the expected 
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settling time (with a 2% criterion) of the compensated 
system? 
Answer: KP - 0.5 

E10.3 A unity negative feedback control system in a 
manufacturing system has a process transfer function 

e~s 

and it is proposed that we use a compensator to achieve 
a 5% overshoot to a step input. The compensator is [4] 

1 
Gc(s) = K\ 1 + - ), 

which provides proportional plus integral control. 
Show that one solution is K = 0.5 and r •* 1. 

E10.4 The step response of a closed-loop system is given 
in Figure E10.4. Mark the locations of the dominant 
closed-loop poles. 

FIGURE E10.4 Step Response. 

E10.S (a) Derive the transfer function of the compensat
ing network given in Figure E10.5. 

(b) If /?, = 10K, R2 = 5K and C - 0.1 fiF, draw the 
Bode plot. 

e in 
C 

t 
e (1) 

I 
FIGURE E10.5 Lead Network. 

E10.6 Consider again the wind tunnel control system of 
Problem P7.31. When K = 326, find T(s) and esti
mate the expected overshoot and settling time (with a 
2% criterion). Compare your estimates with the actu

al overshoot of 60% and a settling time of 4 seconds. 
Explain the discrepancy in your estimates. 

E10.7 NASA astronauts retrieved a satellite and brought 
it into the cargo bay of the space shuttle, as shown in 
Figure E10.7(a). A model of the feedback control sys
tem is shown in Figure E10.7(b). Determine the value 
of K that will result in a phase margin of 45° when 
T = 0.5 s. 

Answer :K = 20.88 

E10.8 Consider a unity feedback system with open-loop 
transfer function 

G(s) = 
K 

s(s + 2) 

(a) 
(b) 
(c) 

(d) 

(«0 

(f) 

Draw the root locus of the system. 
If K = 2 mark the closed-loop poles. 
Corresponding to K = 2 find percentage over
shoot and Kv. 
Find the value of K and corresponding closed-
loop poles if the required Kv = 10. 
Find percentage overshoot corresponding to K 
obtained in (d). 
Comment on the choice of K. 

E10.9 A control system with a controller is shown in 
Figure E10.9. Select KP and K, so that the overshoot 
to a step input is equal to 5% and the velocity constant 
Kv is equal to 5. Verify the results of your design. 

E10.10 A control system with a controller is shown in 
Figure E10.10. We will select K, = 4 in order to pro
vide a reasonable steady-state error to a step [8]. Find 
KP to obtain a phase margin of 605. Find the peak time 
and percent overshoot of this system. 

E10.ll A unity feedback system has 

G{s) = 
1350 

s(s + 2)(s + 30)' 

A lead network is selected so that 

Gc(s) = 
1 + 0.25s 
1 + 0.025s' 

Determine the peak magnitude and the bandwidth of 
the closed-loop frequency response using (a) the 
Nichols chart, and (b) a plot of the closed-loop fre
quency response. 

Answer: Mpw = 2.3 dB, a>B = 22 

EtO.12 The control of an automobile ignition system has 
unity negative feedback and a loop transfer function 
Gc(s)G(s), where 

U(s) = 
K 

s(s + 5) 
and Ge(s) = KP + K,/s. 

http://E10.ll
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-

(a) 

FIGURE E10.7 
Retrieval of a 
satellite. 

FIGURE E10.9 
Design of a 
controller. 

FIGURE E10.10 
Design of a PI 
controller. 

i\\ J ; w \ 
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R(s) i( 
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^ 
J 

^ 
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K 
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— f a . e"*7" 
A'(i' + 15) 

Visual feedback 

(b) 

Controller 

KP+T 

KP+ — 

Process 

1 
5 + 1 

(SH 

I 
- 1)(5 + 2) 

Y(s) 

position 

W M .1. ' 

A designer selects K//KP = 0.5 and asks you to deter
mine KKp so that the complex roots have a £ of 1 /V2. 

E10.13 The design of Example 10.3 determined a lead 
network in order to obtain desirable dominant root 
locations using a cascade compensator Gc{s) in the 
system configuration shown in Figure 10.1(a). The 
same lead network would be obtained if we used the 
feedback compensation configuration of Figure 
10.1(b). Determine the closed-loop transfer function 
T(s) = Y(s)/R(s) of both the cascade and feedback 
configurations, and show how the transfer function of 
each configuration differs. Explain how the response 
to a step R(x) will be different for each system. 

E10.14 A robot will be operated by NASA to build a 
permanent lunar station. The position control system 
for the gripper tool is shown in Figure 10.1(a), where 
H(s) = l , and 

G(s) = 
s(x + l)(0.25.y+ i; 

Determine a compensator lag network Gc(s) that will 
provide a phase margin of 45°. 

_ . . 1 + 7.55 
AnsWer:Gc(s) = - + u -
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E10.15 A unity feedback control system has a plant trans
fer function 

G(s) = 
40 

s(s + 2)" 

We desire to attain a steady-state error to a ramp 
r(t) = At of less than 0.05A and a phase margin of 30°. 
We desire to have a crossover frequency coc of 10 rad/s. 
Use the methods of Section 10.9 to determine whether 
a lead or a lag compensator is required. 

E10.16 Consider again the system and specifications of 
Exercise El 0.15 when the required crossover fre
quency is 2 rad/s. 

E10.17 Consider again the system of Exercise 10.9. Select 
KP and K, so that the step response is deadbeat and the 
settling time (with a 2% criterion) is less than 2 seconds. 

E10.18 The nonunity feedback control system shown in 
Figure F.10.18 has the transfer functions 

G(s) = 
1 

s - 20 
and H(s) = 10. 

Design a compensator Gc(s) and prefilter GJs) so 
that the closed-loop system is stable and meets the 

following specifications: (i) a percent overshoot to a 
unit step input of less than 10%, (ii) a settling time of 
less than 2 seconds, and (iii) zero steady-state track
ing error to a unit step. 

E10.19 A unity feedback control system has the plant 
transfer function 

G(s) = 
1 

s(s - 5) 

Design a PID controller of the form 

Gc(s) = Kp + KDs + -y 

so that the closed-loop system has a settling time less 
than 1 second to a unit step input. 

E10.20 Consider the system shown in Figure E10.20. 
Design the proportional-derivative controller Gc(s) = 
KP + KDs such that the system has a phase margin of 
P.M. w 45°. 

E10.21 Consider the unity feedback system shown in 
Figure E10.21. Design the controller gain, K, such that 
the maximum value of the output y(r) in response lo a 
unit step disturbance T,i(s) = l/s is less than 0.1. 

R(s) 

Prefilter 

G0{s) 

FIGURE E10.18 
Nonunity feedback 
system with a 
prefilter. 

~N fc ? 
Controller 

Gc{s) 

His) 

— • 

Plant 

G(s) • Y(s) 

FIGURE E10.20 
Unity feedback 
system with PD 
controller. 

K(A) • Q 
^ Ea(s) 

J * 

Controller 

KP+ KpS 

Process 

1 
s(s - 1) • Yls) 

FIGURE E10.21 
Closed-loop 
feedback system 
with a disturbance 
input. 

/?(.v) 

Controller Process 

1 
s(s + 4.4) 

•*• Yls) 
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PROBLEMS 

P10.1 The design of a lunar excursion module (LEM) is 
an interesting control problem. The attitude control 
system for the lunar vehicle is shown in Figure P10.1. 
The vehicle damping is negligible, and the attitude is 
controlled by gas jets. The torque, as a first approxima
tion, will be considered to be proportional to the signal 
V(s) so that T(s) = K2V(s). The loop gain may be 
selected by the designer in order to provide a suitable 
damping. A damping ratio of I = 0.6 with a settling 
time (with a 2% criterion) of less than 2.5 seconds is 
required. Using a lead network compensation, select 
the necessary compensator Gc(s) by using (a) frequen
cy response techniques and (b) root locus methods. 

P10.2 A magnetic tape recorder transport for modern 
computers requires a high-accuracy, rapid-response 
control system. The requirements for a specific trans
port are as follows: (1) The tape must stop or start in 
10 ms, and (2) it must be possible to read 45,000 characters 
per second. This system was discussed in Problem 
P7.ll. We desire to set J = 5 X 10"3, and Kv is set on 
the basis of the maximum error allowable for a velocity 
input. In this case, we desire to maintain a steady-state 
speed error of less than 5 %. We will use a tachometer in 
this case and set K„ = 50,000 and K2 = 1. To provide 

a suitable performance, a compensator Gc(s) is insert
ed immediately following the photocell transducer. 
Select a compensator Gc(s) so that the overshoot of the 
system for a step input is less than 25%. We will assume 
that TJ = ra = 0. 

P10.3 A simplified version of the attitude rate control for 
the F-94 or X-15 type aircraft is shown in Figure P10.3. 
When the vehicle is flying at four times the speed of 
sound (Mach 4) at an altitude of 100,000 ft, the para
meters are [30] 

1 
= 1.0, 

io> a = 1.0, and 

Kx = 1.0, 

0>a = 4 

Design a compensator Gc(s) so that the response to a 
step input has an overshoot of less than 5% and a set
tling time (with a 2% criterion) of less than 5 seconds. 

P10.4 Magnetic particle clutches are useful actuator devices 
for high power requirements because they can typically 
provide a 200-W mechanical power output. The particle 
clutches provide a high torque-to-inertia ratio and fast 
time-constant response. A particle clutch positioning sys
tem for nuclear reactor rods is shown in Figure P10.4. 
The motor drives two counter-rotating clutch housings. 

FIGURE P10.1 
Attitude control 
system for a lunar 
excursion module. 

Rett -K —r t • Attitude ~> t, 

? 

Compensation 

Gct*) 
V(s) 

Actuator 

K2 

*1 

T(s) 

Vehicle 

1 

Js2 

FIGURE P10.3 
Aircraft attitude 
control. 
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Compensation 

CM 

Hydraulic 
actuator 

x 
s 

Rate gyro 

1 

Aircraft 

K,wl{ras + 1) 

s2 + 2£a)as + a>2 dt 

FIGURE P10.4 
Nuclear reactor rod 
control. 

Amplifier 

A' 

Compensation 

Gc{s) 

Clutches 
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n — • 

Load 
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Rod 
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http://P7.ll
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The clutch housings are geared through parallel gear 
trains, and the direction of the servo output is depen
dent on the clutch that is energized. The time constant of 
a 200-W clutch is T = 1/40 s. The constants are such 
that KTn/J = 1. We want the maximum overshoot for 
a step input to be in the range of 10% to 20%. Design a 
compensating network so that the system is adequately 
stabilized. The settling time (with a 2% criterion) of the 
system should be less than or equal to 2 seconds. 

P10.5 A stabilized precision rate table uses a precision 
tachometer and a DC direct-drive torque motor, as 
shown in Figure P10.5. We want to maintain a high 
steady-state accuracy for the speed control. To obtain 
a zero steady-state error for a step command design, 
select a proportional plus integral compensator. Select 
the appropriate gain constants so that the system has 
an overshoot of approximately 10% and a settling 
time (with a 2% criterion) less than 1.5 seconds. 

P10.6 Repeat Problem 10.5 by using a lead network com
pensator, and compare the results. 

P10.7 The primary control loop of a nuclear power plant 
includes a time delay due to the need to transport the 
fluid from the reactor to the measurement point (see 
Figure P10.7).The transfer function of the controller is 

Ki 

G£(s) = KP + —. 

The transfer function of the reactor and time delay is 

TS + 1 

where T = 0.4 s and r = 0.2 s. Using frequency 
response methods, design the controller so that the 
overshoot of the system is less than 10%. Estimate the 
settling time (with a 2% criterion) of the system 
designed. Determine the actual overshoot and settling 
time. 

P10.8 A chemical reactor process whose production rate is 
a function of catalyst addition is shown in block dia
gram form in Figure P10.8 [11]. The time delay is 

Ms) 

FIGURE P10.5 
Stabilized rate 
table. 

Gc(s) 

Amplifier Motor and load 

3 75 
(5 + 0.15)(0.15.9+ I) Speed 

t Steam generator f 

FIGURE P10.7 
Nuclear reactor 
control. 

Temperature 
measurement 

+ Temperature 
setting 

Catalyst 
input 

FIGURE P10.8 
Chemical reactor 
control. 

Y(s) 
• Production 

output 
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T — 50 s, and the time constant T is approximately 40 s. 
The gain of the process is K = 1. Design a compensa
tion by using Bode diagram methods in order to pro
vide a suitable system response. We want to have a 
steady-state error less than 0.10A for a step input 
R(s) = A/s. For the system with the compensation 
added, estimate the settling time of the system. 

P10.9 A numerical path-controlled machine turret lathe 
is an interesting problem in attaining sufficient accu
racy [2, 26]. A block diagram of a turret lathe control 
system is shown in Figure P10.9. The gear ratio is 
n = 0 . 1 , / = 10~3, and b = 10-2. It is necessary to 
attain an accuracy of 5 X 10- 4 in., and therefore a 
steady-state position accuracy of 2.5% is specified for 
a ramp input. Design a cascade compensator to be 
inserted before the silicon-controlled rectifiers in 
order to provide a response to a step command with 
an overshoot of less than 5%. A suitable damping ratio 
for this system is 0.7. The gain of the silicon-controlled 
rectifiers is KR = 5. Design a suitable lag compen
sator by using the (a) Bode diagram method and 
(b) i-plane method. 

PIO.IO The Avemar ferry, shown in Figure PI 0.10(a), is a 
large 670-ton ferry hydrofoil built for Mediterranean 
ferry service. It is capable of 45 knots (52 mph) [33]. 
The boat's appearance, like its performance, derives 
from the innovative design of the narrow "wavepierc-
ing" hulls which move through the water like racing 
shells. Between the hulls is a third quasihull which 
gives additional buoyancy in rough seas. Loaded with 
900 passengers and crew, and a mix of cars, buses, and 
freight cars trucks, one of the boats can carry almost 
its own weight. The Avemar is capable of operating in 
seas with waves up to 8 ft in amplitude at a speed of 40 
knots as a result of an automatic stabilization control 
system. Stabilization is achieved by means of flaps on 
the main foils and the adjustment of the aft foil. The 
stabilization control system maintains a level flight 
through rough seas. Thus, a system that minimizes 
deviations from a constant lift force or, equivalently, 
that minimizes the pitch angle 9 has been designed. A 
block diagram of the lift control system is shown in 
Figure P10.10(b). The desired response of the system 
to wave disturbance is a constant-level travel of the 
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FIGURE P10.9 
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craft. Establish a set of reasonable specifications and 
design a compensator Gc(s) so that the performance 
of the system is suitable. Assume that the disturbance 
is due to waves with a frequency o> = 6 rad/s. 

P10.ll (a) Design a phase lag network giving a maximum 
phase lag of 30° at 200 Hz. 

(b) Draw the Bode plot of designed network. 

P10.12 A unity feedback control system of the form 
shown in Figure 10.1(a) has a plant 

0(s) = 
160 

Select a lead-lag compensator so that the percent 
overshoot for a step input is less than 5% and the set
tling time (with a 2% criterion) is less than 1 second. It 
also is desired that the acceleration constant Ka be 
greater than 7500 (see Table 5.5). 

P10.13 Design a compensating network with a pole and a 
zero as given in Figure P10.13. 

-X-
-3000 

O 
-1000 

s-plane 

FIGURE P10.13 
Network. 

Pole-Zero Plot of a Compensating 

P10.14 Materials testing requires the design of control 
systems that can faithfully reproduce normal speci
men operating environments over a range of speci
men parameters [26]. From the control system design 
viewpoint, a materials-testing machine system can be 

considered a servomechanism in which we want to 
have the load waveform track the reference signal. 
The system is shown in Figure PI 0.14. 

(a) Determine the phase margin of the system with 
Gc(s) = K, choosing K so that a phase margin of 
50° is achieved. Determine the system bandwidth 
for this design. 

(b) The additional requirement introduced is that the 
velocity constant K„ be equal to 2.0. Design a lag 
network so that the phase margin is 50° and 
Kv = 2. 

P10.15 For the system described in Problem 10.14, the 
goal is to achieve a phase margin of 50° with the addi
tional requirement that the time to settle (to within 
2% of the final value) be less than 4 seconds. Design a 
lead network to meet the specifications. As before, we 
require Kv - 2. 

PI 0.16 A robot with an extended arm has a heavy load, 
whose effect is a disturbance, as shown in Figure 
P10.16 [25]. Let R(s) = 0 and design Gc(s) so that the 
effect of the disturbance is less than 20% of the open-
loop system effect. 

P10.17 A driver and car may be represented by the sim
plified model shown in Figure P10.17 [18].The goal is 
to have the speed adjust to a step input with less than 
10% overshoot and a settling time (with a 2% criteri
on) of 1 second. Select a proportional plus integral 
(PI) controller to yield these specifications. For the 
selected controller, determine the actual response 
(a) for Gp(s) = 1 and (b) with a prefilter Gp(s) that 
removes the zero from the closed-loop transfer func
tion T(s). 

P10.18 A unity feedback control system for a robot subma
rine has a plant with a third-order transfer function [22]: 

G(s) = 
K 

s(s + I0)(s + 50) 

Referenc »-K> 
FIGURE P10.14 
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Robot control. 
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/?(-0 

FIGURE P10.17 
Speed control of an 
automobile. 
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We want the overshoot to be approximately 7.5% for 
a step input and the settling time (with a 2% criterion) 
of the system be 400 ms. Find a suitable phase-lead 
compensator by using root locus methods. Let the 
zero of the compensator be located at s — - 1 5 , and 
determine the compensator pole. Determine the 
resulting system Kv. 

P10.19 NASA is developing remote manipulators that 
can be used to extend the hand and the power of 
humankind through space by means of radio. A concept 
of a remote manipulator is shown in Figure P10.19(a) 
[12,25]. The closed-loop control is shown schematically 
in Figure PI 0.19(b). Assuming an average distance of 
238,855 miles from Earth to the moon, the time delay Tin 
transmission of a communication signal is 1.28 seconds. 
The operator uses a control stick to control remotely 
the manipulator placed on the moon to assist in geological 
experiments, and the TV display to access the response of 
the manipulator. The time constant of the manipulator is 

(a) Set the gain K] so that the system has a phase mar
gin of approximately 30°. Evaluate the percentage 
steady-state error for this system for a step input. 
(b) To reduce the steady-state error for a position 
command input to 5%, add a lag compensation net
work in cascade with Kt. Plot the step response. 

P10.20 Tliere have been significant developments in the 
application of robotics technology to nuclear power 
plant maintenance problems. Thus far, robotics 
technology in the nuclear industry has been used pri
marily on spent-fuel reprocessing and waste manage
ment. Today, the industry is beginning to apply the 
technology to such areas as primary containment 
inspection, reactor maintenance, facility decontamina
tion, and accident recovery activities. These develop
ments suggest that the application of remotely 
operated devices can significantly reduce radiation 
exposure to personnel and improve maintenance-
program performance. 

second. 
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Manipulator/arm 

FIGURE P10.20 
Remotely controlled 
robot for nuclear 
plants. 

Surveillance 
camera 

Communication 

Currently, an operational robotic system is under 
developmen: to address particular operational prob
lems within a nuclear power plant. This device, IRIS 
(Industrial Remote Inspection System), is a general-
purpose surveillance system that conducts particular 
inspection and handling tasks with the goal of signifi
cantly reducing personnel exposure to high radiation 
fields [13]. The device is shown in Figure P10.20. The 
open-loop transfer function is 

G(s) = 
Ke -sT 

(s + l)(s + 3)' 

(a) Determine a suitable gain K for the system when 
T = 0.5 s, so that the overshoot to a step input is less 
than 30%. Determine the steady-state error, (b) Design 
a compensator 

Gc(s) = 
s + 2 

s + b 

to improve the step response for the system in part (a) 
so that the steady-state error is less than 12%. Assume 
the closed-loop system of Figure 10.1(a). 

P10.21 An uncompensated control system with unity 
feedback has a plant transfer function 

G(s) = 
K 

s(s/2 + 1)(5,/6 + 1) 

We want to have a velocity error constant of Kv = 20. 
We also want to have a phase margin of approximate
ly 45° and a closed-loop bandwidth greater than 
co = 4 rad/s. Use two identical cascaded phase-lead 
networks to compensate the system. 

P10.22 For the system of Problem 10.21, design a phase-
lag network to yield the desired specifications, with 
the exception that a bandwidth equal to or greater 
than 2 rad/s will be acceptable. 

P10.23 For the system of Problem 10.21, we wish to 
achieve the same phase margin and Kv, but in addi
tion, we wish to limit the bandwidth to less than 10 
rad/s but greater than 2 rad/s. Use a lead-lag compen

sation network to compensate the system. Tire lead-
lag network could be of the form 

Ge(s) = 
(1 + s/10a)(l + s/b) 

(1 + s/a)(l + s/IObY 

where a is to be selected for the lag portion of the 
compensator, and b is to be selected for the lead por
tion of the compensator. The ratio a is chosen to be 10 
for both the lead and lag portions. 

P10.24 A system of the form of Figure 10.1(a) with unity 
feedback has 

G(s) = 
K 

(s + 4) X 

We desire the steady-state error to a step input to be 
approximately 5% and the phase margin of the system 
to be approximately 45°. Design a lag network to meet 
these specifications. 

P10.25 The stability and performance of the rotation of a 
robot (similar to waist rotation) presents a challenging 
control problem. The system requires high gains in 
order to achieve high resolution; yet a large overshoot 
of the transient response cannot be tolerated. The 
block diagram of an electrohydraulic system for rota
tion control is shown in Figure P10.25 [16J. The arm-
rotating dynamics are represented by 

100 
G(s) = —=-

s(s2/6400 + s/50 + 1) 

We want to have Kv = 20 for the compensated sys
tem. Design a compensator that results in an over
shoot to a step input of less than 10%. 

P10.26 The possibility of overcoming wheel friction, wear. 
and vibration by contactless suspension for passenger-
carrying mass-transit vehicles is being investigated 
throughout the world. One design uses a magnetic sus
pension with an attraction force between the vehicle 
and the guideway with an accurately controlled airgap. 
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FIGURE P10.25 
Robot position 
control. 
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FIGURE P10.26 
Airgap control of 
train. 

A system is shown in Figure P10.26, which incorpo
rates feedback compensation. Using root locus meth
ods, select a suitable value for K\ and b so the system 
has a damping ratio for the underdamped roots of 
C = 0.50. Assume, if appropriate, that the pole of the 
air gap feedback loop (s ~ -200) can be neglected. 

P10.27 A computer uses a printer as a fast output device. 
We desire to maintain accurate position control while 
moving the paper rapidly through the printer. Consid
er a system with unity feedback and a transfer func
tion for the motor and amplifier of 

G(s) = 
0.15 

s(s + l)(5s + 1)' 

Design a lead network compensator so that the sys
tem bandwidth is 0.75 rad/s and the phase margin is 
30°. Use a lead network with a = 10. 

P10.28 An engineering design team is attempting to con
trol a process shown in Figure P10.28. The system has 
a controller Gc(s), but the design team is unable to 
select Gc(s) appropriately. It is agreed that a system 
with a phase margin of 50° is acceptable, but Gc(s) is 
unknown. Determine Gc(s). 

First, let Gc(s) = K and find (a) a value of K that 
yields a phase margin of 50° and the system's step re
sponse for this value of K. (b) Determine the settling 
time, percent overshoot, and the peak time, (c) Obtain 
the system's closed-loop frequency response, and 
determine Mpa and the bandwidth. 

The team has decided to let 

Gc(s) = 
K(s + 12) 

(s + 20) 

and to repeat parts (a), (b), and (c). Determine the 
gain K that results in a phase margin of 50° and then 
proceed to evaluate the time response and the closed-
loop frequency response. Prepare a table contrasting 
the results of the two selected controllers for Gc(s) by 
comparing settling time (with a 2% criterion), percent 
overshoot, peak time, Mpta, and bandwidth. 

P10.29 An adaptive suspension vehicle uses a legged 
locomotion principle. The control of the leg can be 
represented by a unity feedback system with [13J 

G(s) = 
K 

s(s + 10)0 + 14)" 

R(s) * 0 

FIGURE P10.28 
Controller design. 
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We desire to achieve a steady-state error for a ramp 
input of 10% and a damping ratio of the dominant 
roots of 0.707. Determine a suitable lag compensator, 
and determine the actual overshoot and the time to 
settle (to within 2% of the final value). 

P 10.30 A liquid-level control system (see Figure 9.32) has 
a loop transfer function 

L(s) = Gc(s)G(s)H(s), 

where H(s) — 1, Gc(s) is a compensator, and the 
plant is 

10<T,r 

G(s) = 
s2(s + 10)' 

where T = 50 ms. Design a compensator so that 
Mpu) does not exceed 3.5 dB and a>r is approximately 
1.4 rad/s. Predict the overshoot and settling time 
(with a 2% criterion) of the compensated system 
when the input is a step. Plot the actual response. 

P10.31 An automated guided vehicle (AGV) can be con
sidered as an automated mobile conveyor designed to 
transport, materials. Most AGVs require some type of 
guide path. The steering stability uf the guidance con
trol system has not been fully solved. The slight 
"snaking" of the AGV about the track generally has 
been acceptable, although it indicates instability of 
the steering guidance control system [9]. 

Most AGVs have a specification of maximum 
speed of about 1 m/s, although in practice they are 
usually operated at half that speed. In a fully automat
ed manufacturing environment, there should be few 
personnel in the production area; therefore, the AGV 
should be able to be run at full speed. As the speed of 
the AGV increases, so does the difficulty in designing 
stable and smooth tracking controls. 

A steering system for an AGV is shown in Figure 
PI0.31, where T^ = 40 ms and r% — 1 ms. We require 
that the velocity constant Ku be 100 so that the steady-
state error for a ramp input will be 1% of the slope of 
the ramp. Neglect r2 and design a lead compensator so 
that the phase margin is 

45° < P.M. =£ 65°. 

Attempt to obtain the two limiting cases for phase 
margin, and compare your results for the two designs 

by determining the actual percent overshoot and set
tling time for a step input. 

P10.32 For the system of Problem 10.31, use a phase-lag 
compensator and attempt to achieve a phase margin 
of approximately 50°. Determine the actual overshoot 
and peak time for the compensated system. 

P10.33 When a motor drives a flexible structure, the 
structure's natural frequencies, as compared to the 
bandwidth of the servodrive, determine the contribu
tion of the structural flexibility to the errors of the 
resulting motion. In current industrial robots, the drives 
are often relatively slow, and the structures are rela
tively rigid, so that overshoots and other errors are 
caused mainly by the servodrive. However, depending 
on the accuracy required, the structural deflections of 
the driven members can become significant. Structur
al flexibility must be considered the major source of 
motion errors in space structures and manipulators. 
Because of weight restrictions in space, large arm 
lengths result in flexible structures. Furthermore, 
future industrial robots should require lighter and more 
flexible manipulators. 

To investigate the effects of structural flexibility 
and how different control schemes can reduce 
unwanted oscillations, an experimental apparatus was 
constructed consisting of a DC motor driving a slen
der aluminum beam. The purpose of the experiments 
was to identify simple and effective control strategies 
to deal with the motion errors that occur when a ser
vomotor is driving a very flexible structure [14J. 

The experimental apparatus is shown in Figure 
P10.33(a), and the control system is shown in Figure 
P10.33(b).The goal is that the system will have a K„ of 
100. (a) When Gc(s) = K, determine K and plot the 
Bode diagram. Find the phase margin and gain mar
gin. (b) Using the Nichols chart, find cor, Mpol, and a>B. 
(c) Select a compensator so that the phase margin is 
greater than 35° and find con Mpoi, and wB for the 
compensated system. 

P10.34 A human's ability to perform physical tasks is lim
ited not by intellect but by physical strength. If, in an 
appropriate environment, a machine's mechanical 
power is closely integrated with a human arm's 
mechanical strength under the control of the human 
intellect, the resulting system will be superior to a 

R(s) * Q 
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guide path 
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FIGURE P10.33 
Flexible arm 
control. 

• Y(s) 

(b) 

loosely integrated combination of a human and a fully 
automated robot. 

Extenders are defined as a class of robot manipu
lators that extend the strength of the human arm 
while maintaining human control of the task [15]. The 
defining characteristic of an extender is the transmis
sion of both power and information signals. The exten
der is worn by the human; the physical contact 
between the extender and the human allows the direct 
transfer of mechanical power and information signals. 
Because of this unique interface, control of the exten
der trajectory can be accomplished without any type 
of joystick, keyboard, or master-slave system. The 
human provides a control system for the extender, 
while the extender actuators provide most of the 
strength necessary for the task. The human becomes a 
part of the extender and "feels" a scaled-down version 
of the load that the extender is carrying. The extender 
is distinguished from a conventional master-slave 
system; in that type of system, the human operator is 
either at a remote location or close to the slave manip
ulator, but is not in direct physical contact with the 
slave in the sense of transfer of power. An extender is 
shown in Figure P10.34(a) [15]. The block diagram of 
the system is shown in Figure P10.34(b). The goal is 
that the compensated system will have a velocity con
stant K„ equal to 80, so that the settling time (with a 
2% criterion) will be 1.6 seconds, and that the over
shoot will be 16%. so that the dominant roots have a £ 

of 0.5. Determine a lead-lag compensator using root 
locus methods. 

PI0.35 A magnetically levitated train is operating in 
Berlin, Germany. The M-Bahn 1600-m line repre
sents the current state of worldwide systems. Fully 
automated trains can run at short intervals and oper
ate with excellent energy efficiency. The control sys
tem for the levitation of the car is shown in Figure 
PI0.35. Select a compensator so that the phase mar
gin of the system is 45° < P.M. :£ 55°. Predict the 
response of the system to a step command, and de
termine the actual step response for comparison. 

P10.36 A unity feedback system has the loop transfer 
function 

L(s) = Gc(s)G(s) = 
Ks + 0.54 

s(s + 1.76)1 
.-Ts 

where T is a time delay and K is the controller pro
portional gain. The block diagram is illustrated in 
Figure PI0.36. The nominal value of K — 2. Plot 
the phase margin of the system for 0 s T s 2 s 
when K = 2. What happens to the phase margin as 
the time delay increases? What is the maximum 
time delay allowed before the system becomes 
unstable? 

P10.37 A system's open-loop transfer function is a 
pure time delay of 0.5 s, so that G(.v) = e-*' . Select a 
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control. 
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compensator Gc(s) so that the steady-state error for a 
step input is less than 2% of the magnitude of the step 
and the phase margin is greater than 30°. Determine 
the bandwidth of the compensated system and plot 
the step response. 

P10.38 Design a lead network to provide a phase lead of 
80° at 300 Hz. 

P10.39 A unity feedback system of the form shown in 
Figure 10.1(a) has 

1 
G(s) = 

(s + l)(s + 10)' 

Design a compensator Gc(s) so that the overshoot for 
a step input R(s) is less than 10% and the steady-state 
error is less than 5%. Determine the bandwidth of the 
system. 

P10.40 A unity feedback system has a plant 

40 
G(s) = 

s(s + 2)' 

We desire to have a phase margin of 30° and a rela
tively large bandwidth. Select the crossover frequency 
coc = 10 rad/'s, and design a lead compensator using 
the analytical method of Section 10.9. Verify the 
results by plotting the compensated Bode diagram. 
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P10.41 A unity feedback system has a plant 

40 
G(s) = 

s(s + 2)' 

We desire that the phase margin be equal to 30°. For a 
ramp input r(/) = t, we want the steady-state error to 
be equal to 0.05. Design a lag compensator to satisfy 
the requirements using the methods of Section 10.9. 
Verify the results by plotting the Bode diagram. 

P10.42 For the system and requirements of Problem 10.41, 
determine the required compensator when the steady-
state error for the ramp input must be equal to 0.02. 

P10.43 Repeat Example 10.12 when we want the 100% 
rise time Tr be 1 second. 

P10.44 Consider again the design for Example 10.4. 
Using a system as shown in Figure 10.22 and the com
pensator determined in Equation (10.46), select an ap

propriate prefilter. Compare the response of the sys
tem with and without the prefilter. 

P10.45 Consider the system shown in Figure P10.45 and 
let R(s) = 0 and Td(s) = 0. Design the controller 
Gc(s) = K such that, in the steady-state, the response 
of the system y(t) is less than - 4 0 dB when the 
noise N(s) is a sinusoidal input at a frequency of 
a) > 100 rad/s. 

P10.46 A unity feedback system has a loop transfer 
function 

L(s) = Gc(s)G(s) = 
K(s + 10) 

s{s + 4)(>2 + 2s + 1) 

Plot the percent overshoot of the closed-loop system 
response to a unit step input for K in the range 
0 < K < 100. Explain the behavior of the system 
response for K in the range 0.7 < K < 57.3. 

FIGURE 10.45 
Unity feedback 
system with 
proportional 
controller and 
measurement 
noise. 
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ADVANCED PROBLEMS 

APlO.l A three-axis pick-and-place application requires 
the precise movement of a robotic arm in three-di
mensional space, as shown in Figure APlO.l for joint 
2. The arm has specific linear paths it must follow to 
avoid other pieces of machinery. The overshoot for a 
step input should be less than 13%. 
(a) Let Gc(s) = K, and determine the gain K that sat
isfies the requirement. Determine the resulting settling 
time (with a 2% criterion), (b) Use a lead network and 
reduce the settling time to less than 3 seconds. 

AP10.2 The system of Advanced Problem APlO.l is to 
have a percent overshoot less than 13%. In addition, 
we desire that the steady-state error for a unit ramp 
input will be less than 0.125 (Kv = 8) [28]. Design a 
lag network to meet the specifications. Check the re
sulting percent overshoot and settling time (with a 
2% criterion) for the design. 

AP10.3 The system of Advanced Problem AP 10.1 is required 
to have a percent overshoot less than 13% with a steady-
state error for a unit ramp input less than 0.125 (Kv = 8). 

Design a proportional plus integral (PI) controller to 
meet the specifications. 

AP10.4 A DC motor control system with unity feedback 
has the form shown in Figure AP10.4. Select K\ and 
K2 so that the system response has a settling time 
(with a 2% criterion) less than 1 second and an over
shoot less than 5% for a step input. 

AP10.5 A unity feedback system is shown in Figure 
AP10.5. We want the step response of the system to 
have an overshoot of about 16%, a fast response, and a 
settling time (with a 2% criterion) of about 1.8 seconds. 

(a) Design a lead compensator Gc(s) t 0 achieve the 
dominant roots desired, (b) Determine the step 
response of the system when W w ~~ •* • (c) Select a 
prefilter Gp(s), and determine the step response of the 
system with the prefilter. 

AP10.6 Consider again Example 10.12 when we wish to 
minimize the settling time of the system while requiring 
that K < 52. Determine the appropriate compensator 
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Motor 2 

Motor 1 

(a) 

FIGURE AP10.1 
Pick-and-place 
robot. 

R(s) 

(b) 

• YU 

that will minimize the settling time. Plot the system 
response. 

AP10.7 A system has the form shown in Figure 10.22, 
with 

G W -
1 

s(s + 2)(5 + 8)" 

A lead compensator is used, with 

K(s + 3) 
Gc(s) = 

s + 28 

Determine K so that the complex roots have 
£ = 1 /V2. The prefilter is 

GJs) = 
s + p 

(a) Determine the overshoot and rise time for 
Gp(s) = 1 and for p — 3, (b) Select an appropriate 
value forp that will give an overshoot of 1 % and com
pare the results. 

AP10.8 The Manutec robot has large inertia and arm 
length resulting in a challenging control problem, as 

R(s) 

FIGURE AP10.4 
Motor control 
system. 
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Position 
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tf(.v) 

FIGURE AP10.5 
Unity feedback with 
a prefilter. 

GJA) i 9 ^ GM 
100 

S{S + 1)(5 + 100) -+• n 

shown in Figure AP10.8(a).The block diagram model 
of the system is shown in Figure AP10.8(b). The plant 
dynamics are represented by 

G(s) = 
250 

s(s - 2)($ + 40)(5 + 45)' 

The percentage overshoot for a step input should be 
less than 20% with a rise time less t.ian | second and a 
settling time (with a 2% criterion) less than 1.2 sec
onds. Also, we desire that for a ramp input Kv s 10. 
Determine a suitable lead compensator. 

AP10.9 The plant dynamics of a chemical process are 
represented by 

G(s) = 
100 

s(s + 5)(5 + 10)" 

We desire that the system have a small steady-state 
error for a ramp input so that K„ - 100. For stability 
purposes, we desire a gain margin of 10 dB or greater 
and a phase margin of 40° or greater. Determine a 
lead-lag compensator that meets these specifications. 
Assume the system is of the form shown in Figure 
10.1(a) with H(s) = 1-

AP10.10 An op-amp lead circuit is shown in Figure AP10.10. 
(a) Determine the transfer function of this circuit. 
(b) Sketch the frequency response of the circuit when 
Rx = 10 Ml, R2 ~ 1 0 n , C , = 0.1 /xF, and C2 = 1 mF. 

FIGURE AP10.10 Op-amp lead circuit. 

(a) 

R(si 

FIGURE AP10.8 
(a) Manutec robot. 
(b) Block diagram. 

. 
Gc(s) 

Arm dynamics 

G(s) • Y(s) 

(b) 
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\j DESIGN PROBLEMS 

CDPlO.l The capstan-slide system of Figure CDP4.1 
uses a PD controller. Determine the necessary values 
of the gain constants of the PD controller so that the 
deadbeat response is achieved. Also, wc want the set
tling time (with a 2% criterion) to be less than 250 ms. 
Verify the results. 

DP10.1 In Figure DP10.1, two robots are shown cooperat
ing with each other to manipulate a long shaft to insert 
it into the hole in the block resting on the table. Long 
part insertion is a good example of a task that can ben
efit from cooperative control. The unity feedback con
trol system of one robot joint has the process transfer 
function 

The specifications require a steady-state error for a 
unit ramp input of 0.0125, and the step response has an 
overshoot of less than 25% with a settling time (with a 
2% criterion) of less than 2 seconds. Determine a lead-
lag compensator that will meet the specifications, and 
plot the compensated and uncompensated responses 
for the ramp and step inputs. 

DP10.2 The heading control of the traditional bi-wing 
aircraft, shown in Figure DP10.2(a), is represented by 
the block diagram of Figure DP10.2(b). 

(a) Determine the minimum value of the gain K 
when Gc(s) = K, so that the steady-state effect 
of a unit step disturbance Td(s) = 1/s is less than 
or equal to 5% of the unit step (y(oo) = 0.05). 

FIGURE DP10.1 Two robots cooperate to insert a shaft. 

(b) Determine whether the system using the gain of 
part (a) is stable. 

(c) Design a compensator using one stage of lead 
compensation, so that the phase margin is 30°. 

(d) Design a two-stage lead compensator so that the 
phase margin is 55°. 

(e) Compare the bandwidth of the systems of parts 
(c) and (d). 

(f) Plot the step response y(t) for the systems of parts 
(c) and (d) and compare percent overshoot set
tling time (with a 2% criterion), and peak time. 

DP10.3 NASA has identified the need for large deploy-
able space structures, which will be. constructed of 
lightweight materials and will contain large numbers 
of joints or structural connections. This need is evi
dent for programs such as the space station. These 
deployable space structures may have precision 
shape requirements and a need for vibration sup
pression during in-orbit operations [17]. 

One such structure is the mast flight system, 
which is shown in Figure DP10.3(a).The intent of the 
system is to provide an experimental test bed for con
trols and dynamics.The basic element in the mast flight 
system is a 60.7-m-long truss beam structure, which is 
attached to the shuttle orbiter. Included at the tip of 
the truss structure are the primary actuators and collo
cated sensors. A deployment/retraction subsystem, 
which also secures the stowed beam package during 
launch and landing, is provided. 

The system uses a large motor to move the struc
ture and has the block diagram shown in Figure 
DP10.3(b).Thc goal is an overshoot to a step response 
of less than or equal to 16%; thus, we estimate the sys
tem £ as 0.5 and the required phase margin as 50°. 
Design for 0.1 < K < 1 and record overshoot, rise 
time, and phase margin for selected gains. 

DP10.4 A mobile robot using a vision system as the mea
surement device is shown in Figure DP10.4 [22]. The 
control system is of the form shown in Figure 10.14. 
where 

' (s + 1)(0.5.9 + 1)' 

and Gc(s) is selected as a PI controller so that the 
steady-state error for a step input is equal to zero. We 
then have 

Gc{s) = KP 4- -f = . 

Determine a suitable Gc so that (a) the percent over
shoot for a step input is 5% or less; (b) the settling 
time (with a 2% criterion) is less than 6 seconds; 
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(a) 

FIGURE DP10.2 
(a) Bi-wing aircraft. 
{Source: The 
illustrated London 
News, October 9, 
1920.) (b) Control 
system. 

Controller 

Gc(s) — • 

Engine 

100 
(s + 10) 

Wind 
disturbance 

TH(s) 

Cb) 

Aircraft 
dynamics 

40 

s(s + 20) 
+ Y(s) 

Mast 

Deployer/retractor 

Shuttle 

(a) 

FIGURE DP10.3 
Mast flight system. 

Rls) • Y(s) 

(b) 
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(c) the system Kv is greater than 0.9; and (d) the peak 
time for a step input is minimized. 

DP10.5 A high-speed train is under development in 
Texas [23] with a design based on the French Train a 
Grande Vitesse (TGV). Train speeds of 186 miles per 
hour are foreseen. To achieve these speeds on tight 
curves, the train may use independent axles combined 
with the ability to tilt the train. Hydraulic cylinders 
connecting the passenger compartments to their 
wheeled bogies allow the train to lean into curves like 
a motorcycle. A pendulumlike device on the leading 
bogie of each car senses when it is entering a curve 
and feeds this information to the hydraulic system. 
Tilting does not make the train safer, but it does make 
passengers more comfortable. 

Consider the tilt control shown in Figure 
DP10.5. Design a compensator Gc(s) for a step-
input command so that the overshoot is less than 5% 
and the settling time (with a 2% criterion) less than 
0.6 second. We also desire that the steady-state error 
for a velocity (ramp) input be less than 0.15/1, where 
r(i) = Ac, t > 0. Verify the results for the design. 

DP10.6 A large antenna, as shown in Figure DP10.6(a), is 
used to receive satellite signals and must accurately 
track the satellite as it moves across the sky. The con
trol system uses an armature-controlled motor and a 
controller to be selected, as shown in Figure 
DP10.6(b).The system specifications require a steady-
state error for a ramp input r(t) = Bt be less than or 

equal to 0.015. We also seek an overshoot to a step 
input less than 5% with a settling time (with a 2% cri
terion) less than 2 seconds, (a) Design a controller 
Gc(s) and plot the resulting time response, (b) Deter
mine the effect of the disturbance D(s) = Q/s on the 
output Y(s). (For simplicity, let R{s) = 0.) 

DP10.7 High-performance tape transport systems are de
signed with a small capstan to pull the tape past the 
read/write heads and with take-up reels turned by DC 
motors. The tape is to be controlled at speeds up to 200 
inches per second, with start-up as fast as possible, 
while preventing permanent distortion of the tape. 
Since we wish to control the speed and the tension of 
the tape, we will use a DC tachometer for the speed 
sensor and a potentiometer for the position sensor. We 
will use a DC motor for the actuator. Then the linear 
model for the system is a unity feedback system with 

Y(s) 

W)'GM = 

K(s + 4000) 

s(s + 1000)( J + 3000)(^ + pi)(s + pi)' 

where px - +2000 + /2000, and Y(s) is position. 
The specifications for the system are (1) settling 

time of less than 12 ms, (2) an overshoot to a step 
position command of less than 10%, and (3) a steady-
state velocity error of less than .5%. Determine a 
compensator scheme to achieve these stringent speci
fications. 

Motion subsystem 

FIGURE DP10.4 
A robot and vision 
system. 

Recognition 
subsystem 

' Computer 

FIGURE DP10.5 
High-speed train 
feedback control 
system. 

RU) 
Desired 

lilt o Gc(s) 
12 

s(s + 10)(5 + 70) Tilt 
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(a) 

/?K -y 
FIGURE DP10.6 
Antenna position 
control. 

"̂  h 

f 

Controller 

OJA 

T(l(s) 

•b • *\J * 

Motor and 
antenna 

10 
s(s + 5)($ + 10) 

Y{s) 
Position 

(b) 

DP10.8 The past several years have witnessed a signifi
cant engine model-building activity in the automotive 
industry in a category referred to as "control-orient
ed" or "control design" models. These models contain 
representations of the throttle body, engine pumping 
phenomena, induction process dynamics, fuel system, 
engine torque generation, and rotating inertia. 

The control of the fuel-to-air ratio in an automo
bile carburetor became of prime importance in the 
1980s as automakers worked to reduce exhaust-
pollution emissions. Thus, auto engine designers turned 
to the feedback control of the fuel-to-air ratio. Opera
tion of an engine at or near a particular air-to-fuel ratio 
requires management of both air and fuel flow into the 
manifold system. The fuel conunand is considered the 
input and the engine speed is considered the output [9,11]. 

The block diagram of the system is shown in 
Figure DP10.8. where T = 0.066 second. A compen
sator is required to yield zero steady-state error for a 
step input and an overshoot of less than 10%. We also 
desire that the settling time (with a 2% criterion) not 
exceed 10 seconds. 

DP10.9 A high-performance jet airplane is shown in 
Figure DP10.9(a), and the roll-angle control system is 
shown in Figure DP10.9(b). Design a controller Gc(s) 

so that the step response is well behaved and the 
steady-state error is zero. 

DP10.10 A simple closed-loop control system has been 
proposed to demonstrate proportional-integral (PI) 
control of a windmill radiometer [31]. The windmill 
radiometer is shown in Figure DPI 0.10(a) and the 
control system is shown in Figure DP10.10(b). The 
variable to be controlled is the angular velocity co of 
the windmill radiometer whose vanes turn when ex 
posed to infrared radiation. An experimental setup 
using a reflexive photoelectric sensor and basic elec
tronic circuitry makes possible the design and imple
mentation of a highperformance control system. 

The transfer function of the light source and 
radiometer is 

TS + 1 

where r ~ 20 s. Design a PI controller so that the 
system achieves a deadbeat response with a settling 
time less than 25 s. 

DP10.11 The feedback control system shown in Figure 
DP10.11 has the transfer function 

G(s) = 
60 

(s2 + 4.v + 6)(5 + 10) 
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TM) 

R(s) 

FIGURE DP10.8 
Engine control 
system. 

. 

Controller 

Cc(s) -£- 2e~sT 

(0,21s + 1)(45 + 1) 

Y(s) 
W 1_ 11^.1 IIV, 

speed 

Design a PID compensator Gcl(s) and a lead-lag DP10.12 A unity feedback system has the process trans-
compensator Gc2(s) such that, in each case, the fer function 
closed-loop system is stable in the presence of a 
time-delay T = 0.1 s. Discuss the capability of each G(s) = - + 

compensator to insure stability in the presence of an s(s + 3.7)(52 + 2.4s + 0.43) 
increase in the time-delay uncertainty of up to 0.2 
second. 

(a) 

FIGURE DP10.9 
Roll-angle control 
of a jet airplane. 

/?(.v) -
+ _ . 

_ i . 
Gc(s) 

5 
(s + 12)(.^ + 2s + 4) 

(b) 

Yis) 

ansle <b 

FIGURE DP10.10 
(a) Radiometric 
windmill, (b) Control 
system. 

Infrared 
radiation 

R(s) »n V 
" 

Gc(s) G(s) 

(a) (b) 
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Design the controller Gc(s) such that the Bode magni
tude plot of the loop transfer function L(s) = 
Gc(s)G(s) is greater than 20 dB for a < 0.01 rad/s 
and less than - 2 0 dB for <a < 10 rad/s. The desired 
shape of the loop transfer function Bode plot magni
tude is illustrated in Figure DP10.12. Explain why we 
would want the gain to be high at low-frequency and 
the gain to be low at high-frequency. 

K(v) 
. 

Controller 

Gc(s) 

Time delay 

e-<r 

Plant 

G(s) • Yis) 

FIGURE DP10.11 
time-delay. 

Feedback control system with a 

10"' 10° 

Frequency (rad/s) 

FIGURE DP10.12 
Bode plot loop 
shaping 
requirements. 

COMPUTER PROBLEMS 

CP10.1 Consider the system given in Figure CP10.1. 
(a) Using MATLAB obtain the Bode plot of the un

compensated system, hence find gain margin and 
phase margin. 

(b) Do (a) for the compensated system. 
(c) Compare (a) and (b). 

CP10.2 Consider a plant controlled with a proportional 
controller given in Figure CP10.2. 

Compensator 

l + 0.42.9 

l + O.Hi-

Plant 

10 
s(s+\) 

FIGURE CP10.1 
system. 

Compensated and uncompensated 
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+ 

, n 1 -V I 

Proportional 
ConlroJler 

K 

Plant 

2 
s(s+ 2) 

FIGURE CP10.2 Plant with proportional controller. 

(a) Using MATLAB find the gam of the proportional 
controller such that phase margin is 40°. 

(c) Find K such that Kv = 20. 
(d) Find the phase margin corresponding to the value 

of K obtained in (c). 
(e) Can we obtain a satisfactory Kv and phase mar

gin for this plant using proportional controller 
alone. 

CP10.3 Consider the system given in Figure CP10.3. 

(a) Find the value of K such that Kv = 1.0. 
(b) Design a compensator such that phase margin is 

40°. 
(c) Obtain the Bode plot of compensated controller. 

CP10.4 Consider a unity feedback system with open-loop 
, , . k 

transfer function —- — -. 
s(s + l)(s + 4) 

(a) Find Ksuch that X , » 5. 
(b) Using MATLAB, draw the Bode plot of gain ad

justed uncompensated system. 
(c) Design a phase lag network so that phase margin 

of compensated system is greater than 40°. 

CP10.5 The pitch attitude motion of a rigid spacecraft is 
described by 

J6 = u, 

where J is the principal moment of inertia, and u is the 
input torque on the vehicle [7]. Consider the PD con
troller 

Gc(s) = KP + KDs. 

(a) Obtain a block diagram of the control system. Design 
a control system to meet the following specifications: 
(1) closed-loop system bandwidth about 10 rad/s, and 
(2) percent overshoot less than 20% to a 10° step 
input. Complete the design by developing and using 
an interactive m-file script, (b) Verify the design by 
simulating the response to a 10° step input, (c) Include 
a closed-loop transfer function Bode plot to verify 
that the bandwidth requirement is satisfied. 

CP10.6 Consider the control system shown in Figure 
CP10.6. Design a lag compensator using root locus 
methods to meet the following specifications: (1) steady-
state error less than 10% for a step input, (2) phase mar
gin greater than 45°, and (3) settling time (with a 2% 
criterion) less than 5 seconds for a unit step input. 

(a) Design a lag compensator utilizing root locus 
methods to meet the design specifications. Develop a 
set of m-file scripts to assist in the design process. 
(b) Test the controller developed in part (a) by simu
lating the closed-loop system response to unit step 
input. Provide the time histories of the output y(t). 
(c) Compute the phase margin using the margin 
function. 

FIGURE CP10.3 
Compensated 
Design. 

c 

Compensator 

K 

Plant 

2 

s(s + 1) 

FIGURE CP10.6 
A unity feedback 
control system. 

Rls) to . -*sr 
I 

Lag 
compensator 

Gc(s) 

Process 

s + 10 

52 - 2s + 20 
• Y(s) 
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CP10.7 A lateral beam guidance system has an inner loop 
as shown in Figure CP10.7, where the transfer function 
for the coordinated aircraft is [30] 

Consider the PI controller 

Gc(s) - Kp + -¾ 

(a) Design a control system to meet the following 
specifications: (1) settling time (with a 2% criterion) 
to a unit step input of less than 1 second, and (2) 
steady-state tracking error for a unit ramp input of 
less than 0.1. (b) Verify the design by simulation. 

CF10.8 Consider again the system and the lead compen
sator designed in Example 10.3. The actual overshoot 

TERMS AND CONCEPTS 

Cascade compensation network A compensator network 
placed in cascade or series with the system process. 

Compensation The alteration or adjustment of a control 
system in order to provide a suitable performance. 

Compensator An additional component or circuit that is 
inserted into the system to compensate for a perfor
mance deficiency. 

Deadbeat response A system with a rapid response, 
minimal overshoot, and zero steady-state error for a 
step input. 

Design of a control system The arrangement or the plan 
of the system structure and the selection of suitable 
components and parameters. 

of the compensated system will be 46%. We want 
to reduce the overshoot to 32%. Using a m-file 
script, determine an appropriate value for the zero 
of Gc{s). 

CP10.9 Plot the frequency response of the circuit of 
AP10.10. 

CP10.10 The feedback control system shown in Figure 
CP10.10 has the transfer function 

K(s + 0.2) 

The time delay is T = 0.2 s. Plot the phase margin for 
the system versus the gain in the range 0.1 < # < 10. 
Determine the gain K that maximizes the phase margin. 

Coordinated 
aircraft 

Integration network A network that acts, in part, like an 
integrator. 

Lag network See Phase-lag network. 
Lead-lag network A network with the characteristics of 

both a lead network and a lag network. 

Lead network See Phase-lead network. 

Phase lag compensation A widely-used compensator 
that possesses one zero and one pole with the pole 
closer to the origin of the s-plane. This compensator 
reduces the steady-state tracking errors. 

Phase lead compensation A widely-used compensator 
that possesses one zero and one pole with the zero 

PI 
compensator 

FIGURE CP10.7 
A lateral beam 
guidance system 
inner loop. 

-A/ 
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• > fc K P + -
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FIGURE CP10.10 KLs] 

Feedback control 
system with a time 
delay. 
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closer to the origin of the s-plane. This compensator 
increases the system bandwidth and improves the 
dynamic response. 

Phase-lag network A network that provides a negative 
phase angle and a significant attenuation over the fre
quency range of interest. 

Phase-lead network A network that provides a positive 
phase angle over the frequency range of interest.Thus, 
phase lead can be used to cause a system to have an 
adequate phase margin. 

P D controller Controller with a proportional term and a 
derivative term (Proportional-Derivation). 

PI controller Controller with a proportional term and 
an integral term (Proportional-Integral). 

Prefilter A transfer function Gp(s) that filters the input 
signal R(s) prior to calculating the error signal. 
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PREVIEW 

The design of controllers utilizing state feedback is the subject of this chapter. We 
first present a system test for controllability and observability. Using the powerful 
notion of state variable feedback, we introduce the pole placement design tech
nique. Ackermann's formula can be used to determine the state variable feedback 
gain matrix to place the system poles at the desired locations. The closed-loop sys
tem pole locations can be arbitrarily placed if and only if the system is controllable. 
When the full state is not available for feedback, we introduce an observer. The 
observer design process is described and the applicability of Ackermann's formula 
is established. The state variable compensator is obtained by connecting the full-
state feedback law to the observer. We consider optimal control system design and 
then describe the use of internal model design to achieve prescribed steady-state 
response to selected input commands. The chapter concludes by revisiting the 
Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 11, students should: 

II Be familiar with the concepts of controllability and observability. 
G Be able to design full-state feedback controllers and observers. 
LI Appreciate pole-placement methods and the application of Ackermann's; formula. 
• Understand the separation principle and how to construct state variable compensators. 
• Have a working knowledge of reference inputs, optimal control, and internal model design. 

756 
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11.1 INTRODUCTION 

The time-domain method, expressed in terms of state variables, can also be used to 
design a suitable compensation scheme for a control system. Typically, we are inter
ested in controlling the system with a control signal u(r) that is a function of several 
measurable state variables. Then we develop a state variable controller that oper
ates on the information available in measured form. This type of system compensa
tion is quite useful for system optimization and will be considered in this chapter. 

State variable design typically comprises three steps. In the first step, we 
assume that all the state variables are measurable and utilize them in a full-state 
feedback control law. Full-state feedback is usually not practical because it is not 
possible (in general) to measure all the states. In practice, only certain states (or lin
ear combinations thereof) are measured and provided as system outputs. The sec
ond step in state variable design is to construct an observer to estimate the states 
that are not directly sensed and available as outputs. Observers can either be full-
state observers or reduced-order observers. Reduced-order observers account for 
the fact that certain states are already available as system outputs; hence they do not 
need to be estimated [29]. In this chapter, we consider only full-state observers. The 
final step in the design process is to appropriately connect the observer to the full-
state feedback control law. It is common to refer to the state-variable controller 
(full-state control law plus the observer) as a compensator. The state variable design 
yields a compensator of the form depicted in Figure 11.1. Additionally, it is possible 
to consider reference inputs to the state variable compensator to complete the 
design. All three steps in the design process are discussed in the subsequent sections, 
as well as how to incorporate the reference inputs. 

11.2 CONTROLLABILITY AND OBSERVABILITY 

A key question that arises in the design of state variable compensators is whether or 
not all the poles of the closed-loop system can be arbitrarily placed in the complex 
plane. Recall that the poles of the closed-loop system are equivalent to the eigen
values of the system matrix in state variable format. As we shall see, if the system is 

FIGURE 11.1 
State variable 
compensator 
employing full-state 
feedback in series 
with a full-state 
observer. 
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controllable and observable, then we can accomplish the design objective of placing 
the poles precisely at the desired locations to meet the performance specifications. 
Full-state feedback design commonly relies on pole-placement techniques [2, 30]. 
Pole placement is discussed more fully in Section 11.3. It is important to note that a 
system must be completely controllable and completely observable to allow the 
flexibility to place all the closed-loop system poles arbitrarily. The concepts of con
trollability and observability (discussed in this section) were introduced by 
Kalman in the 1960s [31-33]. Rudolph Kalman was a central figure in the devel
opment of mathematical systems theory upon which much of the subject of state 
variable methods rests. Kalman is well known for his role in the development of 
the so-called Kalman filter, which was instrumental in the successful Apollo moon 
landings [34,35]. 

A system is completely controllable if there exists an unconstrained 
control u( t) that can transfer any initial state x(r0) to any other desired 

location x(f) in a finite time, /0 =s t £ T. 

For the system 

x = Ax + Bw, 

we can determine whether the system is controllable by examining the algebraic 
condition 

rank[B AB A2B ... A"_1B] = n. (11.1) 

The matrix A is an n X n matrix and B is an n X 1 matrix. For multi-input systems, 
B can b e n X m , where m is the number of inputs. 

For a single-input, single-output system, the controllability matrix Pc is described 
in terms of A and B as 

Pc = [B AB A B .. . A" -B] , (11.2) 

which is an n X n matrix. Therefore, if the determinant of Pc is nonzero, the system 
is controllable [12]. 

Advanced state variable design techniques can handle situations wherein the 
system is not completely controllable, but where the states (or linear combinations 
thereof) that cannot be controlled are inherently stable. These systems are classi
fied as stabilizable. If a system is completely controllable, it is also stabilizable.The 
Kalman state-space decomposition provides a mechanism for partitioning the 
state-space so that it becomes apparent which states (or state combinations) are 
controllable and which are not [14,20]. The controllable subspace is thus exposed, 
and if the system is stabilizable, the control system design can, in theory, proceed. 
In this chapter, we consider only completely controllable systems. 
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EXAMPLE 11.1 Controllability of a system 

Let us consider the system 

^ 0 1 0 
0 0 1 

|_-flo ~«1 ~02 J 

y = [l 0 0]x + [0]« 
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x 

The signal-flow graph and block diagram model are illustrated in Figure 11.2. Then 
we have 

A = 
0 
0 

_ - « 0 

1 
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0 
1 
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0 
1 

_ - « 2 _ 

, and A2B = 
1 

- « 2 

_al " «i_ 

Therefore, we obtain 

Pc = [B AB A2B] = 

The determinant of Pc = - 1 ^ 0 , hence this system is controllable. 

1 0 0 
0 1 -a2 

|_1 -a2 al - « i j 
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FIGURE 11.2 
Third-order system. 
(a) Signal-flow 
graph model, (b) 
Block diagram 
model. 
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•*• Y(s) 
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EXAMPLE 11.2 Controllability of a two-state system 

Let us consider a system represented by the two state equations 

X\ = — 2;q + u, and x2 = —3x2 + dxi 

and determine the condition for controllability. Also, we have y = x2, as shown in 
Figure 11.3. The system state variable model is 

x = 
- 2 

d 

0 
3J x + 

1 

|_uj 
u 

y = [0 l]x + [0]u. 

We can determine the requirement on the parameter d by generating the matrix Pr. 
So, with 

B and AB = - 2 0 
d - 3 

- 2 
d 

we have 

1 - 2 
0 d 

The determinant of Pc is equal to d, which is nonzero whenever d is nonzero. • 

All the poles of the closed-loop system can be placed arbitrarily in the complex 
plane if and only if the system is observable and controllable. Observability refers to 
the ability to estimate a state variable. 

A system is completely observable if and only if there exists a finite time T such 
that the initial state x(0) can be determined from the observation history y(t) 

given the control «(*), 0 =£ t =s T. 

Vis) O 
» 

•O H*> 

- 2 - 3 

(a) 

FIGURE 11.3 
(a) Flow graph 
model for Example 
11.2. (b) Block 
diagram model. 

Uis) H Q 

(b) 

~> fc 1 
5 

2 

*' d 
+ /~\ 

_ i . 
1 
s 

3 

X: 
•+• Y(s) 
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Consider the single-input, single-output system 

x = Ax + Bw and y = Cx, 

where C is a 1 X n row vector, and x is an n X 1 column vector. This system is com
pletely observable when the determinant of the observability matrix P0 is nonzero, 
where 

P0 = 

C 
CA 

CA n-\ 

(11.3) 

which is an n X n matrix. 
As discussed in this section, advanced state variable design techniques can han

dle situations wherein the system is not completely controllable, as long as the sys
tem is stabilizable. These same techniques can handle cases wherein the system is 
not completely observable, but where the states (or linear combinations thereof) 
that cannot be observed are inherently stable. These systems are classified as 
detectable. If a system is completely observable, it is also detectable. The Kalman 
state-space decomposition provides a mechanism for partitioning the state-space so 
that it becomes apparent which states (or state combinations) are observable and 
which are not [14,20]. The unobservable subspace is thus exposed, and if the system 
is detectable, the control system design can, in theory, proceed. In this chapter, we 
consider only completely observable systems. The approach to state-variable design 
involves first verifying that the system under consideration is completely control
lable and completely observable. If so, the pole placement design technique consid
ered here can provide acceptable closed-loop system performance. 

EXAMPLE 11.3 Observability of a system 

Consider again the system of Example 11.1. The model is shown in Figure 11.2. To 
construct P0, we use 

0 1 0 
0 0 1 

\_-OQ - f l ] - f l 2 J 

and C = [1 0 0]. 

Therefore, 

Thus, we obtain 

CA = [0 1 0] and CA2 = [0 0 ].]. 

P0 = 

1 
0 
0 

0 
1 
0 

0~| 
0 
1_ 

The det P0 = 1, and the system is completely observable. 

file:///_-Oq
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EXAMPLE 11.4 Observability of a two-state system 

Consider the system given by 

2 

-1 

0 

1_ 
x + 

1 

L~ij 
u and v = [1 l]x. 

The system is illustrated in Figure 11.4. We can check the system controllability and 
observability using the Pc and V0 matrices. 

From the system definition, we obtain 

B = 
1 

- 1 
and AB 

2 

- 2 

Therefore, the controllability matrix is determined to be 

Pc = [B AB] = 

and det Pc = 0. Thus, the system is not controllable. 

1 2 
- 1 - 2 

U'.s) >'(o 

FIGURE 11.4 
Two state system 
model for Example 
11.4. (a) Signal-flow 
graph model, (b) 
Block diagram 
model. 

LHs) 

W 
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From the system definition, we have 

C = [1 1] and CA = [1 1]. 

Therefore, computing the observability matrix yields 

763 

C 
CA 

and det P0 = 0. Hence, the system is not observable. 
If we look again at the state model, we note that 

However, 

y = Xi + x2. 

k\ \- x2 = 2xx + (x2 — x{) + u — u = x1 + x2. 

Thus, the system state variables do not depend on u, and the system is not controllable. 
Similarly, the output X\ + x2 depends on *i(0) plus x2(0) and does not allow us to de
termine XL(0) and x2(0) independently. Consequently, the system is not observable. • 

11.3 FULL-STATE FEEDBACK CONTROL DESIGN 

In this section, we consider full-state variable feedback to achieve the desired pole 
locations of the closed-loop system. 

The first step in the state variable design process requires us to assume that all 
the states are available for feedback—that is, we have access to the complete state 
x(/) for all t. The system input u{t) is given by 

u = —Kx. (11.4) 

Determining the gain matrix K is the objective of the full-state feedback design pro
cedure. The beauty of the state variable design process is that the problem naturally 
separates into a full-state feedback component and an observer design component. 
These two design procedures can occur independently, and in fact, the separation 
principle provides the proof that this approach is optimal. We will show later that 
the stability of the closed-loop system is guaranteed if the full-state feedback con
trol law stabilizes the system (under the assumption of access to the complete state) 
and the observer is stable (the tracking error is asymptotically stable). Observers 
are discussed in Section 11.4. The full-state feedback block diagram is illustrated in 
Figure 11.5. With the system defined by the state variable model 

x = Ax + Bw 

and the control feedback given by 

u = -Kx, 
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FIGURE 11.5 
Full-state feedback 
block diagram (with 
no reference input). 

I • 

System Model 

x = Ax + Bu 

Control Law 

-K 

Full-state feedback ] 

we find the closed-loop system to be 

x = Ax - BM = Ax - BKx = (A - BK)x. (11.5) 

As discussed in Section 6.4, the characteristic equation associated with Equation 
(11.5) is 

det(AI - (A - BK)) = 0. 

If all the roots of the characteristic equation lie in the left half-plane, then the 
closed-loop system is stable. In other words, for any initial condition x(f0), it follows 
that 

x(f) - e(A"~BK)'x(;0) ^ 0 as t -> oo. 

Given the pair (A, B), we can always determine K to place all the system closed-
loop poles in the left half-plane if and only if the system is completely controllable— 
that is, if and only if the controllability matrix Pc is full rank (for a single-input, 
single-output system, full rank implies that Pc is invertible). 

The addition of a reference input can be written as 

u{t) = -Kx(0 + Nr(t), 

where r{t) is the reference input. The question of reference inputs is addressed in 
Section 11.6. When r(t) = 0 for all t > t0, the control design problem is known as 
the regulator problem. That is, we want to compute K so that all initial conditions are 
driven to zero in a specified fashion (as determined by the design specifications). 

When using this state variable feedback, the roots of the characteristic equation 
are placed where the transient performance meets the desired response. 

EXAMPLE 11.5 Design of a third-order system 

Let us consider the third-order system with the differential equation 

dy d\ dly 
—{ + 5 — 
dr dt 2 + 3 - + 2y = u. 
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We can select the state variables as the phase variables (see Section 3.4) so that 
X\ — v, x2 ~ dy/dt, x3 = d2y/dt2, and then 

x = 

0 
0 

- 2 

1 
0 

- 3 

°1 
1 

- 5 _ 
x + 

~°] 
0 

_ 1 _ 
u = Ax + BM 

and 

V = [1 0 0]x. 

If the state variable feedback matrix is 

K = [kx k2 k3] 

and 

u = —Kx, 

then the closed-loop system is 

x = Ax - BKx = (A - BK)x 

The state feedback matrix is 

[A - BK] 
0 1 0 
0 0 1 

\_-2-ki -3-k2 ~5-fc3J 

and the characteristic equation is 

A(A) = det(AI - (A - BK)) = A3 + (5 + k2)\
2 + (3 + k2)X + (2 + fc,) = 0. 

(11.6) 

If we seek a rapid response with a low overshoot, we choose a desired characteristic 
equation such as (see Equation 5.18 and Table 5.2) 

A(A) = (A2 + 2£a>n\ + w2
n)(\ + foj. 

We choose £ = 0.8 for minimal overshoot and a>„ to meet the settling time require
ment. If we want a settling time (with a 2% criterion) equal to 1 second, then 

Ts = 1. 
£<o„ (0.8K 

If we choose co„ = 6, the desired characteristic equation is 

(A2 + 9.6A + 36)(A + 4.8) = A3 + 14.4A2 + 82.1A + 172.8. (11.7) 

file:///_-2-ki
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Comparing Equations (11.6) and (11.7) yields the three equations 

5 + k3 = 14.4 
3 + k2 = 82.1 
2 + kx « 172.8. 

Therefore, we require that k3 = 9.4, k2 = 79.1, and k\ - 170.8. The step response 
has no overshoot and a settling time of 1 second, as desired. • 

EXAMPLE 11.6 Inverted pendulum control 

Consider the control of the cart and the unstable inverted pendulum shown in 
Figure 3.22. We measure and utilize the state variables of the system in order to con
trol the cart (see Example 3.4). Thus, if we want to measure the state variable 
x3 = 0, we could use a potentiometer connected to the shaft of the pendulum hinge. 
Similarly, we could measure the rate of change of the angle X4 = 6 by using a 
tachometer generator. The state variables X\ and x2, which are the position and 
velocity of the cart, can also be measured by suitable sensors. If the state variables 
are all measured, then they can be used in a feedback controller so that u = -Kx, 
where K is the feedback matrix.The state vector x represents the state of the system; 
therefore, knowledge of x(f) and the equations describing the system dynamics pro
vide sufficient information for control and stabilization of a system [4,5,7]. 

To illustrate the use of state variable feedback, let us consider again the unsta
ble portion of the inverted pendulum system and design a suitable state variable 
feedback control system. We begin by considering a reduced system. If we assume 
that the control signal is an acceleration signal and that the mass of the cart is negli
gible, we can focus on the unstable dynamics of the pendulum. When u{t) is an 
acceleration signal, Equation (3.69) becomes 

gx3 - LxA = x2 = y = u{t). 

For the reduced system, where the control signal is an acceleration signal, the posi
tion and velocity of the cart are integral functions of u{i). The portion of the state 
vector under consideration is [x3, xA) = [0,6], Thus, the state vector differential 
equation reduces to 

dt 
*3 
XA 

0 1 

gji 0 
x3 
XA 

+ 
0 
1/7 

11(0- (11.8) 

The A matrix of Equation (11.8) is simply the lower right-hand portion of the A matrix 
of Equation (3.73), and the system has the characteristic equation A2 — g/l = 0 with 
one root in the right-hand s-plane. To stabilize the system, we generate a control signal 
that is a function of the two state variables, x3 and x4. Then we have 

u(t) = -Kx = -[&! k2] *3 

XA, 
= —h\X$ — k2XA. 
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Substituting this control signal relationship into Equation (11.8), we have 

*3 0 1 #3 
+ 

0 

_x4_ _g/l 0_ _x4_ _(1//)(M3 + k2x4)_ 

Combining the two additive terms on the right side of the equation, we find that 

*3 

x4 

0 1 
(g + kj/l k2/l 

* 3 

XA 

Obtaining the characteristic equation, we have 

A - 1 
-(g + ki)/l A - / : 2 / / -<*-*-i±* 

= A2 

/ 
A + 

g + ^ i 
/ 

(11.9) 

Thus, for the system to be stable, we require that k2/l < 0 and k} > -g. Hence, we 
have stabilized an unstable system by measuring the state variables x3 and xA and using 
the control function u — -Kx to obtain a stable system. If we wish to achieve a rapid 
response with modest overshoot, we select con = 10 and C, = 0.8. Then we require 

k2 k\ + g 
-j = -16 and b = 100. 

The step response would have an overshoot of 1.5% and a settling time of 0.5 second. • 

Thus far, we have established an approach for the design of a feedback control 
system by using the state variables as the feedback variables in order to increase the 
stability of the system and obtain the desired system response. Now we face the task 
of computing the gain matrix K to place the poles at desired locations. For a single-
input, single-output system, Ackermann's formula is useful for determining the state 
variable feedback matrix 

where 

K = [fc, k2...kn], 

u = —Kx. 

Given the desired characteristic equation 

q(\) = A" + a ^ A " " 1 + 

the state feedback gain matrix is 

<*o, 

K = [0 0 ... 0 1]P~lq(A), (11.10) 
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where 

<?(A) = A" + a„-iA"- 1 + —a1A+ a0l, 

and Pc is the controllability matrix of Equation (11.2). 

EXAMPLE 11.7 Second-order system 

Consider the system 

Y(s) 

U(s) 
= G(s) 

and determine the feedback gain to place the closed-loop poles at s — —1 ± j . 
Therefore, we require that 

q(k) = A2 + 2A + 2, 

and «! = a2 = 2. With X\ = y and JC2 = y, the matrix equation for the system G(s) is 

0 1 
0 0 u. 

The controllability matrix is 

Pc = [B AB] 
0 1 
1 0 

Thus, we obtain 

where 

and 

<7(A) = 

'Then we have 

K = [ 0 1] 

K = [0 l]PcV(A), 

p - : = — r ° - 1 
0 

-1 
- l i 

0_ 
r° 
_i 

i~i 
0_ 

0 1 
0 0 

+ 2 
0 1 
0 0 + 2 

1 0 

0 1 

r° i~\ 
_1 0 

[~2 2~| 
0 2_ = [0 1] r° 2 i 

_2 2 

2 2 

0 2 

= [2 2]. 

Note that computing the gain matrix K using Ackcrmann's formula requires the use 
of P71, We see that complete controllability is essential because only then can we 
guarantee that the controllability matrix Pt. has full rank and hence that PJ1 exists. 
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11.4 OBSERVER DESIGN 

In the full-state feedback design procedure discussed in Section 11.3, it was assumed 
that all the states were available for feedback at all times. This is a good assumption 
for the control law design process. However, generally speaking, only a subset of the 
states are readily measurable and available for feedback. Having all the states avail
able for feedback implies that these states are measured with a sensor or sensor 
combinations. The cost and complexity of the control system increase as the number 
of required sensors increases. So, even in situations where extra sensors are avail
able, it may not be cost effective to employ these extra sensors, if indeed, the control 
system design goals can be accomplished without them. Fortunately, if the system is 
completely observable with a given set of outputs, then it is possible to determine 
(or to estimate) the states that are not directly measured (or observed). 

According to Luenberger [29], the full-state observer for the system 

is given by 

x = Ax + Bu 
y = Cx 

x = Ax + Bu + L(y - Cx) (11.11) 

where x denotes the estimate of the state x.The matrix L is the observer gain matrix 
and is to be determined as part of the observer design procedure. The observer is 
depicted in Figure 11.6. The observer has two inputs, u and y, and one output, x. 

The goal of the observer is to provide an estimate x so that x —> x as t —> oo. 
Remember that we do not know x(/0) precisely; therefore we must provide an initial 
estimate x(t0) to the observer. Define the observer estimation error as 

e(f) = x(r) - x(t). (11.12) 

The observer design should produce an observer with the property that e(t) —> 0 as 
t —* oo. One of the main results of systems theory is that if the system is completely 
observable, we can always find L so that the tracking error is asymptotically stable, 
as desired. 

Taking the time-derivative of the estimation error in Equation (11.12) yields 

e = x — x 

FIGURE 11.6 
The full-state 
observer. 

x •«-

Observer 

x = Ax + Bu -1- L> 

•+• C 

y = y - Cx 
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and using the system model and the observer in Equation (11.11), we obtain 

e = Ax + Bu - Ax - Bu - L(y - Cx) 

or 
e(0 = (A - LC)e(r). (11.13) 

We can guarantee that e(/) —> 0 as t —> oo for any initial tracking error e(t0) if the 
characteristic equation 

det(AI - (A - LC)) = 0 (11.14) 

has all its roots in the left half-plane. Therefore, the observer design process reduces 
to finding the matrix L such that the roots of the characteristic equation in Equation 
(11.14) lie in the left half-plane. This can always be accomplished if the system is 
completely observable; that is, if the observability matrix P0 has full rank (for a sin
gle-input, single-output system, full rank implies that P„ is invertible). 

EXAMPLE 11.8 Second-order system observer design 

Consider the second-order system 

x = 
2 3 
- 1 4 x + 

0 

y = [l 0]x. 

In this example, we can only directly observe the state y = X\. The observer will 
provide estimates of the second state x2-

In this book, we only consider full-state observers, which implies that the observ
er will provide estimates of all the states. We might be inclined to suppose that since 
some states are directly measured, it may be possible to design an observer that pro
vides just the estimates of the states not directly measured. This is, in fact, possible, 
and the resulting observers are known as reduced-order observers [14,20]. However, 
since sensors are not noise free, even states that are directly measured are generally 
estimated in an effort to reduce the effect of sensor noise on the state estimate. The 
Kalman filter (which is a time-varying optimal observer) solves the observer prob
lem in the presence of measurement noise (and process noise as well) [36,37]. 

The observer design begins by checking the system observability to verify that 
an observer can be constructed to guarantee the stability of the estimation error. 
From the system model, we find that 

2 
- 1 

and C = [1 0J. 

The corresponding observability matrix is 

C 
CA 

1 0 
2 3 
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Since det P0 = 3 •¥=• 0, the system is completely observable. Suppose that the desired 
characteristic equation is given by 

Ad(A) = X1 + 2£(x)nX + (oz
n. (11.15) 

We can select £ = 0.8 and con = 10, resulting in an expected settling time of less 
than 0.5 second. Computing the actual characteristic equation yields 

det(AI - (A - LC)) = A2 + {Lx - 6)A - 4(Lt - 2 ) + 3(L2 + 1), (11.16) 

where L = [Lx L2]
T. Equating the coefficients in Equation (11.15) to those in 

Equation (11.16) yields the two equations 

Lx - 6 = 16 

-4{Li - 2 ) + 3(L2 + 1) = 100 

which, when solved, produces 

L = Li 
L2 

22 

59 

The observer is thus given by 

. 
X = 

" 2 

_ - l 

3 
4J 

x + 
0 

1 
u + 

22 

59 
(y - *i)-

The response of the estimation error to an initial error of 

e = 
1 

- 2 

is shown in Figure 11.7. 

FIGURE 11.7 
Second-order 
observer response 
to initial estimation 
errors. 
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Ackermann's formula can also be employed to place the roots of the observer char
acteristic equation at the desired locations. Consider the observer gain matrix 

L - [ L , L2 ••• Ln]
T 

and the desired observer characteristic equation 

p(A) = A" + /3n_1A"-1 + • • • + frA + 0o-

The /3's are selected to meet given performance specifications for the observer. The 
observer gain matrix is then computed via 

L = p(A)P"1[0--- 0 1]', (11.17) 

where P„ is the observability matrix given in Equation (11.3) and 

p(A) = A" + Pn-jA"-1 + ••• + /3, A + JSQI. 

EXAMPLE 11.9 Second-order system observer design using Ackermann's formula 

Consider the second-order system in Example 11.8. The desired characteristic equa
tion was given as 

/7(A) = A2 4 2£a>„A + w2„ 

where { = 0.8 and o)n = 10; hence, y3x = 16 and (32 = 100. Computing p(A) yields 

p(A) = 
2 

- 1 
+ 16 

2 
- 1 + 100 

1 

0 

0 

1 
= 

133 

-22 

66 

177 

and from Example 11.8, we have the observability matrix 

P0 = 
1 0 
2 3 

which implies that 

>-i _ 1 0 
-2 /3 1/3 

Using Ackermann's formula in Equation (11.17) yields the observer gain matrix 

L - p ( A ) P ^ [ 0 ••• 0 I f -
1 0 

-2 /3 1/3 

This is the identical result obtained in Example 11.8 using other methods. 

133 66 
-22 177 

22 
59 
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11.5 INTEGRATED FULL-STATE FEEDBACK AND OBSERVER 

The state variable compensator is constructed by appropriately connecting the full-
state feedback control law (see Section 11.3) to the observer (see Section 11.4).The 
compensator is shown in Figure 11.1 (as discussed in Section 11.1). Our strategy was 
to design the state feedback control law as u{t) = -Kx(t), where we assumed that 
we had access to the complete state x(t). Then we designed an observer to provide 
an estimate of the state x(t). It seems reasonable that we can employ the state esti
mate in the feedback control law in place of x(t). In other words, we can consider the 
feedback law 

u(t) = -Kx(f). (11.18) 

But is this a good strategy? The feedback gain matrix K was designed to guarantee 
stability of the closed-loop system; that is, the roots of the characteristic equation 

det(AI - (A - BK)) = 0 

are in the left half-plane. Under the assumption that the complete state x(t) is avail
able for feedback, the feedback control law (with properly designed gain matrix K) 
leads to the desired result that x(f) —> 0 as t —> co for any initial condition x(/0). We 
need to verify that, when using the feedback control law in Equation (11.18), we 
retain the stability of the closed-loop system. 

Consider the observer (from Section 11.4) 

x = Ax + Bu + L(y ~ Cx). 

Substituting the feedback law in Equation (11.18) and rearranging terms in the 
observer yields the compensator system 

x = (A - BK - LC)x + Ly 

u = - K . (11.19) 

Notice that the system in Equation (11.19) has the form of a state variable model 
with input y and output u, as illustrated in Figure 11.8. 

FIGURE 11.8 
State variable 
compensator with 
integrated full-state 
feedback and 
observer. 

u -4-

Control gain 

- K «* I < > 

A - BK - LC 

Observer gain 

L 
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Computing the estimation error using the compensator in Equation (11.19) yields 

e = x - x = Ax + Bu — Ax — Jtu - Ly + LCx, 

or 

e - (A - LC)e. (11.20) 

This is the same result as we obtained for the estimation error in Section 11.4. The 
estimation error does not depend on the input as seen in Equation (11.20), where 
the input terms cancel. Recall that the underlying system model is given by 

x = Ax + BM 
y = Cx. 

Substituting the feedback law u(t) = -Kx(r) into the system model yields 

x = Ax + Bu = Ax - BKx, 

and with x = x - e, we obtain 

A - (A - BK)x + BKe. (11.21) 

Writing Equations (11.20) and (11.21) in matrix form, we have 

x \ r A - BK BK 

e 7 0 A - LC 
(11.22) 

Recall that our goal is to verify that, with u(t) = — Kx(r), we retain stability of the 
closed-loop system and the observer. The characteristic equation associated with 
Equation (11.22) is 

A(A) = det(AI - (A - BK)) det(AI - (A - LC)). 

So if the roots of det(AI - (A - BK)) = 0 lie in the left half-plane (which they do by 
design of the full-state feedback law), and if the roots of det(AI - (A - LC)) = Olie 
in the left half-plane (which they do by design of the observer), then the overall sys
tem is stable. Therefore, employing the strategy of using the state estimates for the 
feedback is in fact a good strategy. 

Ill other words, when we use u(t) = -Kx(f) where K is designed using the methods 
proposed in Section 11.3 and xis derived from the observer discussed in Section 11.4, 
then x(t) —» 0 as t —> oo for any initial condition x(r0) and e(r) —> 0 as t —> oo for any 
initial estimation error e(fo)- The fact that the full-state feedback law and the 
observer can be designed independently is an illustration of the separation principle. 

The design procedure is summarized as follows: 

1. Determine K such that det(AI - (A - BK)) «= 0 has roots in the left half-plane and 
place the poles appropriately to meet the control system design specifications. The 
ability to place the poles arbitrarily in the complex plane is guaranteed if the system is 
completely controllable. 
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2. Determine L such that det(AJ - (A - LC)) - 0 has roots in the left half-plane and 
place the poles to achieve acceptable observer performance.The ability to place the 
observer poles arbitrarily in the complex plane is guaranteed if the system is com
pletely observable. 

3. Connect the observer to the full-state feedback law using 

u(t.) = -Kx(r). 

Compensator Transfer Function. The compensator given in Equation (11.19) can be 
given equivalently in transfer function form with input Y(s) and output U(s). Taking 
the Laplace transform (with zero initial conditions) of the compensator yields 

sX(s) - (A - BK - LC)X(s) + LY(s) 

U(s) = ~KX(s), 

and rearranging and solving for U(s), we obtain the transfer function 

U(s) = [~K(sl - (A BK - LC))_1L]y(j). (11.23) 

Note that the compensator transfer function itself (when viewed as a system) may 
or may not be stable. Even though A - BK is stable and A — LC is stable, it does 
not necessarily follow that A - BK - LC is stable. However, the overall closed-
loop system is stable (as we proved in the previous discussions). The controller in 
Equation (11.23) is commonly referred to as a stabilizing controller. 

EXAMPLE 11.10 Compensator design for the inverted pendulum 

Consider the inverted pendulum of Example 3.4. The state variable model repre
senting the inverted pendulum atop a moving cart is 

x = 

0 

0 

0 

0 

1 

0 

0 

u 

0 
-mg 

M 

0 
g 
1 

0 

0 

1 

u 

x + 

0 
1 
M 

0 
- 1 
Ml 

K, 

where x = ix\, x2, x$, x4)
T, x-\ is the cart position, x2 is the cart velocity, x3 is the pen

dulum angular position (measured from the vertical), x4 is the pendulum angular 
rate, and u is the input applied to the cart. As discussed in Example 11.6, we can 
measure the state variable x3 = 9 using a potentiometer attached to the shaft, or 
measure x4 = 9 using a tachometer generator. However, suppose that we have a 
sensor available to measure the position of the cart. Is it possible to hold the angular 
position of the pendulum at the desired value (9 = 0°) when only the output v = X\ 
(the cart position) is available? In this case, we have the output equation 

y = [1 0 0 0]x. 
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Let the system parameters be 

I = 0.098 m 
g = 9.8 m/s2 

m = 0.825 kg 
M = 8.085 kg. 

Therefore, using the parameter values, the system state and input matrices are 

A = 

0 1 0 0 
0 0 - 1 0 
0 0 0 1 
0 0 100 0 

and B = 

0 
0.1237 

0 
-1.2621 

Checking controllability yields the controllability matrix 

Pc = 

0 
0.1237 

0 
-1.2621 

0.1237 
0 

-1.2621 
0 

0 
1.2621 

0 
-126.21 

1.2621 
0 

-126.21 
0 

Computing det Pc = 196.49 =£ 0; hence, the system is completely controllable. Like
wise, computing the observability matrix 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 

- 1 
0 

o] 
0 
0 

- 1 _ 

and det P0 = 1 5* 0; hence, the system is completely observable. We can now pro
ceed with the three-step design procedure knowing that we can determine a control 
gain matrix K and observer gain matrix L to place all the closed-loop system poles 
at desired locations. 

STEP 1: Design the Full-State Feedback Control Law. 
The open-loop system poles are located at A = 0, 0, -10, and 10. It is evident that 
the open-loop system is unstable (there is a pole in the right half-plane). Suppose 
that the desired closed-loop system characteristic equation is given by 

q(X) = (A2 + 2£a)„A + w2)(A2 + ak + b), 

where we choose (1) the pair (£, <on) so that these poles are the dominant poles and 
(2) the pair (a, b) farther in the left half-plane so as not to dominate the response. To 
obtain a settling time less than 10 seconds with low overshoot, we can select 
(£, con) = (0.8. 0.5). Then, we choose a separation factor of 20 between the domi
nant poles and the remaining poles, from which it follows that (a, b) = (16,100). 
Figure 11.9 shows the pole zero map for the system design. The separation factor 
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FIGURE 11.9 
System pole map: 
open-loop poles, 
desired closed-loop 
poles, and observer 
poles. 
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between the dominant and nondominant poles is a parameter that can be varied as 
part of the design process. The larger the separation selected, the further left in the 
left half-plane the nondominant poles will be placed, and hence the larger the 
required control law gains. The desired roots are then specified to be 

det(AI - (A - BK)) = (A + 8 ± /6)(A + 0.4 ± /0.3) 

The poles at A = —0.4 ± 0.3; are the dominant poles. Using Ackermann's formula 
yields the feedback gain matrix 

K = [-2.2509 -7.5631 -169.0265 -14.0523]. 

STEP 2: Observer Design 
The observer needs to provide an estimate of the states that cannot be directly 
observed. The goal is to achieve an accurate estimate as fast as possible without 
resulting in too large a gain matrix L. How large is too large depends on the 
problem under consideration. In particular, if there are significant levels of 
measurement noise (this is sensor dependent), then the magnitude of the ob
server matrix should be kept correspondingly low to avoid amplifying the mea
surement noise. The trade-off between the time required to obtain accurate 
observer performance and the amount of noise amplification is a primary design 
issue. For design purposes, we will attempt to insure a separation of the desired 
closed-loop system poles and the observer poles on the order of 2 to 10 (as illus
trated in Figure 11.9). The desired observer characteristic equation is selected to 
be of the form 

p(X) = (A2 + ClA - c2f 
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FIGURE 11.10 Pendulum performance under full-state feedback control with the observer in the loop. 

where the constants cx and c2 are appropriately chosen. As a first attempt, we se
lect c-[ = 32 and C2 = 711.11. These values should produce a response to an initial 
state estimation error that settles in less than 0.5 second with minimal overshoot. 
Using Ackermann's formula from Section 11.3, we determine that the observer 
gain that achieves the desired observer pole locations det(AI - (A - LC)) = 
((A + 16 + /21.3)(A + 16 - /21.3))2 is 

L = 

64.0 
2546.22 

-5.1911E04 
-7.6030E05 

STEP 3: Compensator Design 
The final step in the design is to connect the observer to the full-state feedback con
trol law via u = -Kx . As proved earlier, the closed-loop system will remain stable; 
however, we should not expect the closed-loop performance to be as good when 
using the state estimate from the observer. This makes sense, since it takes a finite 
amount of time for the observer to provide accurate state estimates. The response of 
the inverted pendulum design is shown in Figure 11.10. The pendulum is initially sta
tionary at #o = 5.72°, and the cart is initially not moving. The initial state estimate in 
the observer is set to zero. 

In Figure 11.10(a), we see that, indeed, the pendulum is balanced to the vertical 
in under 4 seconds. The response of the compensator (with the observer) is more os
cillatory than without the observer in the loop—but this difference in performance 
is expected, since it takes about 0.4 second for the observer to converge to a minimal 
state tracking error, as seen in Figure 11.10(b). • 
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11.6 REFERENCE INPUTS 

The feedback strategies discussed in the previous sections (and illustrated in 
Figure 11.1) were constructed without consideration of reference inputs. We referred 
to the design of state variable feedback compensators without reference inputs (i.e., 
r(r) = 0) as regulators. Since command following is also an important aspect of feed
back design, it is important to consider how we can introduce a reference signal into 
the state variable feedback compensator. There are, in fact, many different tech
niques that can be employed to permit the tracking of a reference input. Two of the 
more common methods are discussed in this section. 

The general form of the state variable feedback compensator is 

x = Ax + Bw + Ly + Mr 
u = u + Nr - -Kx + Nr, (11.24) 

where "y = y — Cx and w = -Kx. The state variable compensator with the refer
ence input is illustrated in Figure 11.11. Notice that when M = 0 and N = 0, the 
compensator in Equation (11.24) reduces to the regulator described in Section 11.5 
and illustrated in Figure 11.1. 

The compensator key design parameters required to implement the command 
tracking of the reference input are M and N. When the reference input is a scalar 
signal (i.e., a single input), the parameter M is a column vector of length n, where n 
is the length of the state vector x, and N is a scalar. Here, we consider two possibili
ties for selecting M and N. In the first case, we select M and N so that the estimation 
error e(/) is independent of the reference input r(t). In the second case, we select IVX 
and N so that the tracking error y{t) - r(t) is used as an input to the compensator. 
These two cases will result in implementations wherein the compensator is in the 
feedback loop in the first case and in the forward loop in the second case. 

Employing the generalized compensator in Equation (11.24), the estimation 
error is found to be described by the differential equation 

e = x — x = Ax + Bit — Ax - Bi/ — Ly — Mr, 

FIGURE 11.11 
State variable 
compensator with a 
reference input. 

N -KD 
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•*• c 
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FIGURE 11.12 
State variable 
compensator with 
reference input and 
M = BN. 
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x = (A - LC)x + Bit + Ly 

or 

e = (A - LC)e + (BN - M)r. 

Suppose that we select 

M = BN. 

Then the corresponding estimation error is given by 

e = (A - LC)e. 

(11.25) 

In this case, the estimation error is independent of the reference input r(r).This is 
the identical result found in Section 11.4, where we considered the observer design 
assuming no reference inputs. The remaining task is to determine a suitable value of 
N, since the value of M follows from -Equation (11.25). For example, we might 
choose N to obtain a zero steady-state tracking error to a step input r(f). 

With M = BN, we find that the compensator is given by 

x = Ax + Bw + Ly 

a = -Kx + Nr. 

This implementation of the state variable compensator is illustrated in Figure 11.12. 
As an alternative approach, suppose that we select N - 0 and M = —L. Then, 

the compensator in Equation (11.24) is given by 

x = Ax + Bu + Uy 

u = -Kx, 

hr 

which can be rewritten as 

x = (A - BK - LC)x + L(>; - r) 

u = -Kx. 

In this formulation, the observer is driven by the tracking error y - r. The reference 
input tracking implementation is illustrated in Figure 11.13. 

Notice that in the first implementation (with M = BN) the compensator is in 
the feedback loop, whereas in the second implementation (N = 0 and M = —L) the 
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FIGURE 11.13 
State variable 
compensator with 
reference input and 
N = 0 and 
M = - L . 
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compensator is in the forward path. These two implementations are representative of 
the possibilities open to control system designers when considering reference inputs. 

Depending on the choice of N and M, other implementations are possible. For 
example, Section 11.8 presents a method of tracking reference inputs with guaran
teed steady-state tracking errors using interna] model design techniques. 

11.7 OPTIMAL CONTROL SYSTEMS 

The design of optimal control systems is an important function of control engineer
ing. The purpose of design is to realize a system with practical components that will 
provide the desired operating performance. The desired performance can be readily 
stated in terms of time-domain performance indices. For example, the maximum 
overshoot and rise time for a step input are valuable time-domain indices. In the case 
of steady-state and transient performance, the performance indices are normally 
specified in the time domain; therefore, it is natural that we wish to develop design 
procedures in the time domain. 

The performance of a control system can be represented by integral performance 
measures, as we found in Section 5.7. Therefore, the design of a system must be based 
on minimizing a performance index, such as the integral of the squared error (ISE), as 
in Section 5.7. Systems that are adjusted to provide a minimum performance index are 
often called optimal control systems. In this section, we will consider the design of an 
optimal control system that is described by a state variable formulation. We will con
sider the measurement of the state variables and their use in developing a control sig
nal u{t) so that the performance of the system is optimized. 

The performance of a control system, written in terms of the state variables of a 
system, can be expressed in general as 

J = g(x, u, t) dt, (11.26) 

where x equals the state vector, u equals the control vector, and tj equals the final time.1 

We are interested in minimizing the error of the system; therefore, when the de
sired state vector is represented as xd = 0, we are able to consider the error as iden
tically equal to the value of the state vector. That is, we intend the system to be at 

Note that to denote the performance index, J is used instead of I, as in Chapter 5. This will enable the 
reader to distinguish readily the performance index from the identity matrix, which is represented by the 
boldfaced capital I. 



782 Chapter 11 The Design of State Variable Feedback Systems 

FIGURE 11.14 
A control system in 
terms of x and u. 
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equilibrium, x = x^ = 0, and any deviation from equilibrium is considered an error. 
Therefore, in this section, we will consider the design of optimal control systems 
using state variable feedback and error-squared performance indices [1-3]. 

The control system we will consider is shown in Figure 11.14 and can be repre
sented by the vector differential equation 

x = Ax + Bu. (11.27) 

We will select a feedback controller so that u is some function of the measured state 
variables x and therefore 

u = -k(x). 

For example, we might use 

ux = -kxxh u2 = ~k2x2, . . . , um = 

Alternatively, we might choose the control vector as 

U\ = —k\{x\ + x2), u2 = —k2(x2 + x-$), 

' KmXm, (11.28) 

(11.29) 

The choice of the control signals is somewhat arbitrary and depends partially on the 
actual desired performance and the complexity of the feedback structure allowable. 
Often, we are limited in the number of state variables available for feedback, since 
we are only able to use measurable state variables. 

In our case, we limit the feedback function to a linear function so that 
u = — Kx, where K is an m X n matrix, as in Section 11.3. Therefore, in expanded 
form, we have 

u2 

"11 k \n 

k ml k, 

X2 (11.30) 

Substituting Equation (11.30) into Equation (11.27), we obtain 

x = Ax - BKx = Hx, (11.31) 

where H is the n X n matrix resulting from the addition of the elements of A and -BK. 
Now, returning to the error-squared performance index, we recall from Section 

5.7 that the index for a single state variable, x\, is written as 

J = [xt(t)fdt. (11.32) 
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A performance index written in terms of two state variables would then be 

J = (jq2 + x2
2) dt. (11.33) 

Since we wish to define the performance index in terms of an integral of the sum of 
the state variables squared, we will use the matrix operation 

x x — [xi, X2, *3, • • •, xn] 
*2 2 = x-f + x2

2 + x3
z + ••• + xn\ (11.34) 

where xT indicates the transpose of the x matrix/ Then the specific form of the per
formance index, in terms of the state vector, is 

J = xTx dt. (11.35) 

The general form of the performance index (Equation 11.26) incorporates a term 
with u that we have not included at this point, but we will do so later in this section. 

Again considering Equation (11.35), we will let the final time of interest be 
tf = oo. To obtain the minimum value of J, we postulate the existence of an exact 
differential so that 

d_ 

dt 
(x 'Px) = - x ' x , (11.36) 

where P is to be determined. A symmetric P matrix will be used to simplify the alge
bra without any loss of generality. Then, for a symmetric P matrix, p(; = PjL. Complet
ing the differentiation indicated on the left-hand side of Equation (11.36), we have 

d_ 
dt 

(xyPx) = x 'Px + x 'Px . 

Substituting Equation (11.31), we obtain 

d 

dt 
(x'Px) = (Hx) 'Px + x 'P(Hx) 

= x r H r P x + x r P H x 

= x r ( H r P + PH)x, (11.37) 

where (Hx) r - x r H r by the definition of the transpose of a product. If we let 
H 7 P + P H = - I , then Equation (11.37) becomes 

dt 
- jr, (x'Px) = - x ' x , (11.38) 

The matrix operation x x is discussed on the MCS website. 
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which is the exact differential we are seeking. Substituting Equation (11.38) into 
Equation (11.35), we obtain 

J= I -—(xTP\)dt-- x 'Px = xy(0)Px(0). 
0 

(11.39) 

In the evaluation of the limit at t = co, we have assumed that the system is stable, 
and hence x(oo) = 0, as desired. Therefore, to minimize the performance index / , 
we consider the two equations 

(11.40) 

and 

H 7 P + P H = - I . (11.41) 

The design steps are then as follows: 

1. Determine the matrix P that satisfies Equation (11.41), where H is known. 

2. Minimize J by determining the minimum of Equation (11.40) by adjusting one or 
more unspecified system parameters. 

EXAMPLE 11.11 State variable feedback 

Consider the open-loop control system shown in Figure 11.15. The state variables 
are identified as xx and JC2. The performance of this system is quite unsatisfactory 
because an undamped response results for a step input.The vector differential equa
tion of this system is 

d_ 

dt 
X\ 

x2 

0 1 

0 0 
Xi 

Xy 

where 

0 1 

0 0 

u(*), 

and B = 

We will choose a feedback control system so that 

u(t) = —k\Xi - k2x2, 

(11.42) 

(11.43) 

FIGURE 11.15 
Open-loop control 
system of Example 
11.11. 

6'l.v 
Xi 

•+- ri.v) 
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and therefore the control signal is a linear function of the two state, variables. Then 
Equation (11.42) becomes 

in matrix form, we have 

X2 ~ -k&x - k2x2; 

X - Hx 

0 1 

~k\ -ki 

(11.44) 

x. (11.45) 

We note that Xi would represent the position of a position control system, and the 
transfer function of the system would be G(s) = \/(Ms7), where M = 1 and the fric
tion is negligible. We will let A; j = 1 and determine a suitable value for k2 so that the 
performance index is minimized. Writing Equation (11.41), we have 

HFP + PH = - I , 

and in expanded form 

0 
1 

- 1 
-k2 

Pn 
Pn 

Pn 
P22J 

Pu 
Pn 

Pn 
P22 

0 
- 1 

1 

-k2\ 

- 1 
0 - 1 

(11.46) 

Completing the matrix multiplication and addition, we have 

~Pi2 ~ Pn = ~h 

Pu ~ k2pl2 - p22 = 0, 

Pn ~ k2p22 + Pn ~ k2p22 = - 1 . 

Solving these simultaneous equations, we obtain 

(11.47) 

Pn = 
1 

P22 = 
1 k,2 + 2 

T ™ k2' 

The integral performance index is then 

J = xr(0)Px(0), 

Pn = 2k? 

(11.48) 

and we will consider the case where each state is initially displaced one unit from 
equilibrium so that xr(0) = [1,1]. Therefore Equation (11.48) becomes 

7 = [1 1] 

= [1 1] 
_Pl2 I " J>22j 

r (Pn + Pn) + (Pn + Pn) a Pu + 2pi2 + pn- (11.49) 

Pu Pn 

Pn Pn_ 

Pw + Pn 
Pn + P22_ 

[l] 
1 
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Substituting the values of the elements of P, we have 

J = 
k2

2 + 2 1 k2
2 + 2k2 + 4 

+ 1 + - = 
2k2 k2 2/cj 

(11.50) 

To minimize as a function of k2, we take the derivative with respect to k2 and set it 
equal to zero: 

dJ 2k2(2k2 + 2 ) - 2(k2
2 + 2k2 + 4) 

dk, (2k2y 
0. (11.51) 

Therefore, k2 = 4, and k2 = 2 when 7 is a minimum. The minimum value of J is 
obtained by substituting k2 = 2 into Equation (11.50). Thus, we obtain 

T • = 3 
•'mm J -

The system matrix H, obtained for the compensated system, is then 

H 
0 1 

-1 - 2 
(11.52) 

The characteristic equation of the compensated system is therefore 

det[AI - H] = det 
A - 1 
1 A + 2 

= A2 + 2A + 1. (11.53) 

Because this is a second-order system, we note that the characteristic equation is 
of the form s2 + 2ga)ns + wn

2 = 0, and therefore the damping ratio of the com
pensated system is t, = 1.0. This compensated system is considered to be an opti
mal system in that the compensated system results in a minimum value for the 
performance index when k\ = 1 is fixed. Of course, we recognize that this system 
is optimal only for the specific set of initial conditions that were assumed. The 
compensated system is shown in Figure 11.16. A curve of the performance index 
as a function of k2 is shown in Figure 11.17. It is clear that this system is not very 
sensitive to changes in k2 and will maintain a near-minimum performance index 
if the k2 is altered by some percentage. We define the sensitivity of an optimal 
system as 

AJ/J 
(11.54) ,, opt _ 

Ak/k' 

where k is the design parameter. Then, for this example, we have k = k2, and con
sidering k2 = 2.5, for which J = 3.05, we obtain 

SJS opt 
0.05/3 
0.5/2 

= 0.07. (11.55) 
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FIGURE 11.16 Compensated control system of 
Example 11.11. 
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FIGURE 11.17 
Performance index versus the 
parameter k2-

EXAMPLE 11.12 Determination of an optimal system 

Now let us consider again the system of Example 11.11, where both the feedback 
gains, ki and k2, are unspecified. To simplify the algebra without any loss in insight 
into the problem, let us set kt = k2 = k. We can prove that if ki and k2 are unspec
ified, then k\ = k2 when the minimum of the performance index (Equation 11.40) is 
obtained. Then, for the system of Example 11.11, Equation (11.45) becomes 

r 
x = Hx = 

0 1 
-k ~k 

(11.56) 

To determine the P matrix, we use Equation (11.41), which is 

H r P + P H = - I (11.57) 

Solving the set of simultaneous equations resulting from Equation (11.57), we find that 

P\2 
k + \ , 1 + 2 * 

P22 = „ , * and pu = 2kz 2k 

Let us consider the case where the system is initially displaced one unit from equi
librium so that xr(0) = [1 0]. Then the performance index (Equation 11.40) 
becomes 

J = xlxdt = x;(0)Px(0) = pn. (11.58) 

Thus, the performance index to be minimized is 

1 + Ik 
^ = Pu 2k - l + 2~k-

(11.59) 

The minimum value of J is obtained when k approaches infinity; the result is 
/ m i n — 1. A plot of/ versus k, shown in Figure 11.18, illustrates that the perfor
mance index approaches a minimum asymptotically as k approaches an infinite 
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FIGURE 11.18 
Performance index 
versus the 
feedback gain k for 
Example 11.12. 
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value. Now, we recognize that, in providing a very large gain k, we can cause the 
feedback signal 

u(t) = -k\xi{t) + x2(t)} 

to be very large. However, we are restricted to realizable magnitudes of the control 
signal u(t). Therefore, we must introduce a constraint on u{i) so that the gain k is not 
made too large. Then, for example, if we establish a constraint on u{i) so that 

|u(r)| =£ 50, 

we require that the maximum acceptable value of k in this case be 

(11.60) 

*vmaY 
*i(0) 

= 50. (11.61) 

Then the minimum value of./ is 

/mi, = 1 + 
ZJK,V 

= l.oi, (11.62) 

which is sufficiently close to the absolute minimum of J to satisfy our requirements. 
Upon examining the performance index (Equation 11.35), we recognize that 

the reason the magnitude of the control signal is not accounted for in the original 
calculations is that u(t) is not included within the expression for the performance 
index. However, in many cases, we are concerned with the expenditure of the con
trol signal energy. For example, in an electric vehicle control system, [u(t)]2 repre
sents the expenditure of battery energy and must be restricted to conserve the energy 
for long periods of travel. To account for the expenditure of the energy of the control 
signal, we will use the performance index 

(11.63) 
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where A is a scalar weighting factor and I = identity matrix. The weighting factor A 
will be chosen so that the relative importance of the state variable performance is 
contrasted with the importance of the expenditure of the system energy resource 
that is represented by u u. As in the previous paragraphs, we will represent the state 
variable feedback by the matrix equation 

u = -Kx, (11.64) 

and the system with this state variable feedback as 

x = Ax + Bu = Hx. (11.65) 

Now, substituting Equation (11.64) into Equation (11.63), we have 

J = / (x7Ix + A(Kx)7(Kx))rff 
Jo 

,T/ >Ti x' (I + AK'K)x dt = xrQx dt, 
/o Jo 

(11.66) 

where Q = I + AK7K is an n X n matrix. Following the development of Equations 
(11.35) through (11.39), we postulate the existence of an exact differential so that 

d 

dt 
- -rJi (x'Px) = -x'Qx. 

Then, in this case, we require that 

H r P + PH = - Q , 

and thus we have, as before, (Equation 11.39): 

J - xr(0)Px(0). 

(11.67) 

(11.68) 

(11.69) 

Now, the design steps are exactly as for Equations (11.40) and (11.41), with the 
exception that the left side of Equation (11.68) equals - Q instead of —I. Of course, 
if A = 0, Equation (11.68) reduces to Equation (11.41). Now, let us consider again 
Example 11.11 when A is other than zero and account for the expenditure of control 
signal energy. • 

EXAMPLE 11.13 Optimal system with control energy considerations 

Let us consider again the system of Example 11.11, which is shown in Figure 11.15. 
For this system, we use a state variable feedback so that 

u = -Kx = [-k -k] 
x2 

(11.70) 

Therefore, the matrix 

Q = I + AK'K = 
1 + Xk2 Xk2 

Xk2 1 + Xk2 (11.71) 
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FIGURE 11.19 
Performance index 
versus the 
feedback gain k for 
Example 11.13. 
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As in Example 11.12, we will let xr(0) = [1, 0] so that J = pn. We evaluate pu 

from Equation (11.68), namely, 

H r P + PH = - Q . 

Thus, we find that 

(11.72) 

J = pn = (1 + Ak2)ll + — -Xk\ (11.73) 

and we note that the right-hand side of Equation (11.73) reduces to Equation 
(11.59) when A = 0. Now, the minimum of J is found by taking the derivative of J, 
which is 

£=IMH (11.74) 

Therefore, the minimum of the performance index occurs when k = kmin = —-̂ =, 

where kmin is the solution of Equation (11.74). 

Let us complete this example for the case where the control energy and the 
state variables squared are equally important, so that A = 1. Then Equation (11.74) 
is satisfied when k2 - 1 = 0, and we find that kmin = 1.0. The value of the perfor
mance index J obtained with kmin is greater than that of the previous example 
because the expenditure of energy is equally weighted as a cost. 'The plot of / versus 
k for this case is shown in Figure 11.19. The plot of J versus k for Example 11.12 is 
also shown for comparison in Figure 11.19. • 

It has become clear from the examples in this chapter that the actual minimum 
obtained depends on the initial conditions, the definition of the performance index, 
and the value of the scalar factor A. 

The design of several parameters can be accomplished in a manner similar to 
that illustrated in the examples. Also, the design procedure can be carried out for 
higher-order systems. However, we must then consider the use of a digital computer 
to determine the solution of Equation (11.41) in order to obtain the P matrix. The 
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computer may also provide a suitable approach for evaluating the minimum value of 
J for one or more parameters. However, the solution of Equation (11.68) may be dif
ficult, especially when the system order is quite high (n > 3). An alternative method 
suitable for computer calculation is stated without proof in the following paragraph. 

Consider the uncompensated single-input, single-output system with 

x = Ax + Bu 
and feedback 

u = -Kx = — \k\ k2...kn]x. 

The performance index is 

/

00 

(xrQx + Ru2) dt, 

where R is the scalar weighting factor. This index is minimized when 

K = /?_1BrP 

The n X n matrix P is determined from the solution of the equation 

A r P + PA - PBiTlBrP + Q = 0 (11.75) 

Equation (11.75) can be easily programmed and solved using numerical methods. 
Equation (11.75) is often called the Riccati equation. This optimal control is called 
the linear quadratic regulator (LQR) [14,22]. 

11.8 INTERNAL MODEL DESIGN 

In this section, we consider the problem of designing a compensator that provides 
asymptotic tracking of a reference input with zero steady-state error. The refer
ence inputs considered can include steps, ramps, and other persistent signals, such 
as sinusoids. For a step input, we know that zero steady-state tracking errors can 
be achieved with a type-one system. This idea is formalized here by introducing an 
internal model of the reference input in the compensator [5,20]. 

Let us consider a state variable model of the plant given by 

x = Ax + Bw, v = Cx, (11.76) 

where x is the state vector, u is the input, and y is the output. We will consider a ref
erence input to be generated by a linear system of the form 

xr = Arxn r = drxr, (11.77) 

with unknown initial conditions. An equivalent model of the reference input r(t) is 

r<w) - a„-i/*(w_1) + a„_2/'<n-2) + ••• + axr + aQr, (11.78) 

where r(w) is the nth derivative of r(t). 



792 Chapter 11 The Design of State Variable Feedback Systems 

We begin by considering a familiar design problem, namely, the design of a con
troller to enable the tracking of a step reference input with zero steady-state error. 
In this case, the reference input is generated by 

xr ~ 0, r = xn 

or equivalently 

r = 0, 

(11.79) 

(11.80) 

and the tracking error e is defined as 

Taking the time derivative yields 

e - y — r. 

e = y = Cx, 

where we have used the reference input model of Equation (11.80) and the process 
model of Equation (11.76). If we define the two intermediate variables 

z — x and w = u, 

we have 

0 

l_° 
c 
A_ tt W 

+ 0 

LBJ w. (11.81) 

If the system in Equation (11.81) is controllable, we can find a feedback of the form 

w = -Kxe - K2i (11.82) 

such that Equation (11.81) is stable. This implies that the tracking error e is stable; 
thus, we will have achieved the objective of asymptotic tracking with zero steady-
state error. The control input, found by integrating Equation (11.82), is 

u(t) = ~Ki e(r) dT - K2x{t). 

The corresponding block diagram is shown in Figure 11.20. We see that the compen
sator includes an internal model (that is, an integrator) of the reference step input. 

FIGURE 11.20 
Internal model 
design for a step 
input. 

Rls) K ) • Y(\) 
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EXAMPLE 11.14 Internal model design for a unit step input 

Let us consider a process given by 

x = 
0 

- 2 

1 

- 2 J 
x + 

0 

L L 
u y = [ l 0]x. (11.83) 

We want to design a controller for this system to track a reference step input with 
zero steady-state error. From Equation (11.81), we have 

.\ 
e\ . = 
z/ / 

0 

0 
0 

1 

0 
- 2 

0 

1 
- 2 

/ \ 
I e\ + w 
\ / 

0 

0 

1 
w. (11.85) 

A check of controllability shows that the system described by Equation (11.85) is 
completely controllable. We use 

K} = 20, K2 = [20 10], 

in order to locate the roots of the characteristic equation of Equation (11.85) at 
S = — 1 ± j , —10. With w given in Equation (11.82), we have the system of Equa
tion (11.85) as asymptotically stable. So for any initial tracking error e(0) we are 
guaranteed that e(t) —* 0 as t —> oo. The asymptotic stability of the tracking error is 
illustrated in Figure 11.21 for a step input. • 

Consider the block diagram model of Figure 11.20 where the process is repre
sented by G(s) and the cascade controller is Gc(s) = KJs. The internal model prin
ciple states that if G(s)Gc(s) contains R(s), theny(f) will track r{t) asymptotically. In 
this case R(s) - l/s, which is contained in G(s)Gc(s), as we expect. 

Consider the problem of designing a controller to provide asymptotic tracking 
of a ramp input with zero steady-state error r(t) = Mt, t >• 0, where M is the ramp 
magnitude. In this case, the reference input model is 

xr Arxr 

r = drxr = [1 0]xr. 

0 1 
0 0 

(11.86) 

FIGURE 11.21 
Internal model 
design response to 
an initial tracking 
error for a unit step 
input. 
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In input-output form, the reference model in Equation (11.86) is given by 

r = 0. 

Proceeding as before, we define the tracking error as 

e = y - r, 

and taking the time-derivative twice yields 

e = y — Cx. 

With the definitions 

we have 

z = x, w = u, 

0 I 0 
0 0 C 

7,) _0 0 A _ \ z / 

fe\ 
+ 

0 
0 
B 

w. (11.87) 

So if the system of Equation (11.87) is controllable, then we can compute 
Kj, i = 1, 2, 3, such that with 

w -IK, K2 K3] (11.88) 

the system represented by Equation (11.87) is asymptotically stable; hence, the 
tracking error e(t) —» 0 as t —* co, as desired. The control, u, is found by integrating 
Equation (11.88) twice. In Figure 11.22, we see that the resulting controller has a 
double integrator, which is the internal model of the reference ramp input. 

The internal model approach can be extended to other reference inputs by fol
lowing the same general procedure outlined for the step and ramp inputs. In addi
tion, the internal model design can be used to reject persistent distuibances by 
including models of the disturbances in the compensator. 

FIGURE 11.22 
Internal model 
design for a ramp 
input. Note that 
G(s)Gcis) contains 
1/s2, the reference 
input R{s). 

His) 
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11.9 DESIGN EXAMPLES 

795 

In this section we present two illustrative examples. In the first example, a fourth-
order state variable model of an automatic test system controller is used to illustrate 
the full-state feedback controller design to meet time-domain performance specifi
cations. In the second example, a control system is designed to manage the speed of 
the electric motor shaft of a diesel electric locomotive. The design process focuses 
on the design of a full-state feedback control system using pole-placement methods. 

EXAMPLE 11.15 Automatic test system 

An automatic test and inspection system uses a DC motor to move a set of test 
probes, as shown in Figure 11.23. Low throughput and a high degree of error can 
occur from manually testing various panels of switches, relay, and indicator lights. 
Automating the test from a controller requires placing a plug across the leads of a 
part and testing for continuity, resistance, or functionality [19]. The system uses a 
DC motor with an encoded disk to measure position and velocity, as shown in 
Figure 11.24. The parameters of the system are shown in Figure 11.25 with K repre
senting the required power amplifier. 

We select the state variables as xx = d, x2 = dd/dt, and *3 = if, as shown in 
Figure 11.25. State variable feedback is available, and we let 

or 

u = \-K\ -K2 -K3]x + r, 

u = -K{Xi — K2x2 - K3X3 + r, (1.1.89) 

FIGURE 11.23 
Automatic test 
system. 

Lead screw 

Probe legs 

Switch bank Field voltage 

FIGURE 11.24 
A DC motor with 
mounted encoder 
wheel. Field voltage 
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FIGURE 11.25 
Open-loop Plock 
diagram of the DC 
motor with 
mounted encoder 
wheel. 
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FIGURE 11.26 
Closed-loop block 
diagram of the DC 
motor. 
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as shown in Figure 11.26. The goal is to select the gains so that the response to a step 
command has a settling time (with a 2% criterion) of less than 2 seconds and an 
overshoot of less than 4.0%. 

To achieve an accurate output position, we let K] = 1 and determine K, Kj, 
and Ky The characteristic equation of the system may be obtained in several ways. 

The state variable model associated with Figure 11.25 is given by 

0 
0 
0 

1 
- 1 

0 

0 
1 

- 5 _ 
x + 

0 
0 

_K_ 
u. x = Ax + Bw = 

y = [1 0 0]x 

Substituting for u, as defined by Equation (11.89), we have 

(11.90) 

(11.91) 
0 1 0 

x 0 - 1 1 x -
-K -KK2 ~(5 + K3K)_ 

when K-[ = 1. The characteristic equation can be obtained from Equation (11.91) as 

0 
0 
K 

det 
s - 1 0 
0 s + 1 - 1 
K KK2 s + (5-K3K)J 

= 0 

yielding 

s3 + 6s2 + 5s + K3Ks2 + K3Ks - KK2s + K = 0. 

As will be shown in Section 11.10, we can plot a root locus for K3K as 

1 + 
KK3(s

2 + as + b) 

s(s + l)(s + 5) 
= 0, (11.92) 
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FIGURE 11.27 
Root locus for the 
automatic test 
system. 
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where a and /? are 

and 

a = (K2 + K3)/K3 

b = 1/K3. 

Setting a = 8 and b = 20, we place the zeros ax s — -4 ± /2 in order to pull the 
locus to the left in the s-plane. Then 

K2 + i£3 and — = 20. 

Therefore, K} = 1, K2 = 0.35, and iC3 = 0.05. A plot of the root locus is shown in 
Figure 11.27. When KK3 = 12, the roots lie on the £ = 0.76 line, as shown in Figure 
11.27. Since K3 = 0.05, we have K = 240. The roots at K = 240 are 

s = -10.62, and s = -3.69 ± /3.00. 

The step response of this system is shown in Figure 11.28. The overshoot is 3%, 
and the settling time is 1.8 seconds. Thus the design is quite acceptable. • 

FIGURE 11.28 
Step response of 
the automatic test 
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EXAMPLE 11.16 Diesel electric locomotive control 

The diesel electric locomotive is depicted in Figure 11.29. The efficiency of the diesel 
engine is very sensitive to the speed of rotation of the motors. We want to design a 
control system that drives the electric motors of a diesel electric locomotive for use 
on railroad trains. The locomotive is driven by DC motors located on each of the 
axles. The throttle position (see Figure 11.29) is set by moving the input poten
tiometers. The elements of the design process emphasized in this example are high
lighted in Figure 11.30. 

The control objective is to regulate the shaft rotation speed co0 to the desired 
value cor. 

Control Goal 
Regulate the shaft rotation speed to the desired value in the presence of exter
nal load torque disturbances. 

The corresponding variable to be controlled is the shaft rotation speed co0. 

Variable to Be Controlled 
Shaft rotation speed a>0. 

The controlled speed &>„ is sensed by a tachometer, which supplies a feedback volt
age v0. The electronic amplifier amplifies the error signal, vr - v0, between the ref
erence and feedback voltage signals and provides a voltage vy that is supplied to the 
field winding of a DC generator. 

The generator is run at a constant speed (od by the diesel engine and generates a 
voltage vg that is supplied to the armature of a DC motor. The motor is armature 

FIGURE 11.29 
Diesel electric 
locomotive system. LQ = Tachometer voltage 
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• Topics emphasized in this example 

Establish the control goals 

Identify the variables to be controlled 

Write the sDecifications 

c c i..ui:-u >u. -,.,-. 
r.sifiujiMi mo ajraiGui t-uiuigwiauvu 

i 
Obtain a model of the process, the 

actuator air^ fn» csncnr 

i ' 

Describe a controller and select key 
parameters to be adjusted 

i 
Optimize the parameters and 

analyze the performance 

1 

Regulate the shaft rotation speed 
to the desired value in the 

presence of external load torque 
disturbances. 

Shaft rotation speed, wn. 

Design specifications: 
DS1: Steady-state tracking 

error less than 2%. 
DS2: P.O. < 10% 
DS3: Ts< I s 

See Figure 11.29 and 11.31. 

See Equation (11.93). 

See Equation (11.94). 

See analysis with m-files. 

I; the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 11.30 Elements of the control system design process emphasized in this diesel electric 
locomotive example. 

controlled, with a fixed current supplied to its field. As a result, the motor produces 
a torque T and drives the load connected to its shaft so that the controlled speed io0 

tends to equal the command speed (or. 
A block diagram and signal flow graph of the system are shown in Figure 11.31. 

Tn Figure 11.31 we use L, and Rn which are defined as 

'-'t = '-'a "•" L'g, 

Rt = Ra + Rg. 

Values for the parameters of the diesel electric locomotive are given in Table 11.1. 
Notice that the system has a feedback loop; we use the tachometer voltage v0 as 

a feedback signal to form an error signal vr - v0. Without additional stale feedback, 
the only tuning parameter is the amplifier gain K. As a first step, we can investigate 
the system performance with tachometer voltage feedback only. 
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FIGURE 11.31 Signal flow graph of the diesel electric locomotive, (a) Signal flow graph, (b) Block 
diagram controller feedback loops are shown in light. 

Table 11.1 Parameter Values for the Diesel Electric Locomotive 

Km Kg Kb J b La Ra Rf L/ Kt Kpot L^ Rg 

10 100 0.62 1 1 0.2 1 1 0.1 1 1 0.1 1 

The key tuning parameters are given by 

Select Key Timing Parameters 

KandK 

The matrix K is the state feedback gain matrix. The design specifications are 

Design Specifications 
DS1 Steady-state tracking error less than 2% to a unit step input. 

DS2 Percent overshoot of co0(t) less than 10% to a unit step input cor(s) = Vs. 

DS3 Settling time less than 1 second to a unit step input. 
The first step in the development of the vector differential equation that accurately 
describes the system is to choose a set of state variables. In practice the selection of 
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state variables can be a difficult process, especially for complex systems. The state 
variables must be sufficient in number to determine the future behavior of the sys
tem when the present state and all future inputs are known. The selection of state 
variables is intimately related to the issue of complexity. 

The diesel electric locomotive system has three major components: two electri
cal circuits and one mechanical system. It seems logical that the state vector will in
clude state variables from both electrical circuits and from the mechanical system. 
One reasonable choice of state variables is x\ = co0, x2 = ia, and x3 = if. This state 
variable selection is not unique. With the state variables defined above, the state 
variable model is 

b Km 1 

where 

* 1 = 

h = 

*3 = " 

~ / * 1 + J *2 " . / ' « ' 

Kb Rt K8 

~Lt
Xl" L,X2+ L / 3 ' 

*f 1 
— x 3 + — u, 

Lf Lf 

u = KKpoxwr 

In matrix form (with Td(s) = 0), we have 

where 

A = 

_h_ 

J 

Kb 

u 
o 

x = Ax + Bw, 

v = Cx + DM, 

K„ 

J 

Rt_ 
U 

o -

0 

ff* 
s 

Rf 

h-

, B = 

" 0 " 
0 
1 

h 

(11.93) 

, and 

C = [1 0 0], D = [0]. 

The corresponding transfer function is 

I D -G(s) = C(sl - A)_1B 
KgKm 

(Rf + Lfs)[(R, + L,s)(Js h b) + K„,KbY 

Begin by assuming the tachometer feedback in available, that is, that Kt is in the 
loop. If we take advantage of the fact that 

#pot - K{ — 1, 
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FIGURE 11.32 
Block diagram 
representation of 
the diesel electric 
locomotive. 

CJr(5) 

. 

Amplifier 
gain 

K 

Diesel electric 
locomotive 

G(s) • (oJs) 

then (from an input-output perspective) the system has the simple feedback config
uration shown in Figure 11.32. 

Using the parameter values given in Table 11.1 and computing the steady-state 
tracking error for a unit step input yields 

1 1 
Ccc 

1 + KG(0) 1 + 121.95A:' 

Using the Routh-Hurwith method, we also find that the closed-loop system is stable for 

-0.008 < K < 0.0468. 

The smallest steady-state tracking error is achieved for the largest value of K. At 
best we can obtain a 15% tracking error, which does not meet the design specifica
tion DS1. Also, as K gets larger, the response becomes unacceptably oscillatory. 

We now consider a full state feedback controller design. The feedback loops are 
shown in Figure 11.31, which shows that o>0, ia, and L are available for feedback. With
out any loss of generality, we set K = 1. Any value of K > 0 would work as well. 

The control input is 

u = Kpoxa)r - Ktx{ - K2x2 - K3x3. 

The feedback gains to be determined are Kt, K2, and K3. The tachometer gain, Kc, is 
now a key parameter of the design process. Also Kpol is a key variable for tuning. By 
adjusting the parameter A"pot, we have the freedom to scale the input o)r. When we 
define 

K = [Kt K2 K2], 

then 

u = — Kx + Kpolo)r. 

The closed-loop system with state feedback is 

(11.94) 

x = (A - BK)x + B-y, 
y = Cx, 

where 

v = Kpota)r 
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We will use pole-placement methods to determme K such that the eigenvalues of 
A — BK are in the desired locations. First we make sure the system is controllable. 
When n = 3 the controllability matrix is 

Pc - [B AB A2B]. 

Computing the determinant of Pc yields 

Kg
2Km 

det Pc = z—r. 

3T 2-Since Kg * 0 and K,„ * 0 and JLfLf is nonzero, we determine that 

det Pc * 0. 

Thus the system is controllable. We can place all the poles of the system appropri
ately to satisfy DS2 and DS3. 

The desired region to place the eigenvalues of A — BK is illustrated in 
Figure 11.33. The specific pole locations are selected to be 

Pi = -50, 

p2 = -4 + 3/, 

P3 = ~4- 3/. 

Selecting pi = -50 allows for a good second-order response that is governed by p2 

and p3. 
The gain matrix K that achieves the desired closed-loop poles is 

K = [-0.0041 0.0035 4.0333]. 

Imag axis 

FIGURE 11.33 
Desired location of 
the closed-loop 
poles (that is, the 
eigenvalues of 
A - BK) 

Desired region for pole 
placement to meet the 
design specifications. 

DS2: P.O. < 10% implies (> 0.59 
DS3: Ts < 1 s implies fa„ > 4 

- • Real axis 

5 -= -4 
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FIGURE 11.34 
Closed-loop step 
response of the 
diesel electric 
locomotive. 
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To select the gain Kpol, we first compute the DC gain of the closed-loop transfer 
function. With the state feedback in place, the closed-loop transfer function is 

T(s) = C(sl - A + BK)_1B 

Then 

Using the gain Kpot in this manner effectively scales the closed-loop transfer func
tion so that the DC gain is equal to ]. We then expect that a unit step input repre
senting a l°/s step command results in a lc/s steady-state output at (o0. 

The step response of the system is shown in Figure 11.34. We can see that all the 
design specifications are satisfied. • 

11.10 STATE VARIABLE DESIGN USING CONTROL DESIGN SOFTWARE 

Controllability and observability of a system in state variable feedback form can be 
checked using the functions ctrb and obsv, respectively. The inputs to the ctrb func
tion, shown in Figure 11.35, are the system matrix A and the input matrix B; the out
put of ctrb is the controllability matrix Pc. Similarly, the input to the obsv function, 
shown in Figure 11.35, is the system matrix A and the output matrix C; the output of 
obsv is the observability matrix P0. 
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Notice that the controllability matrix Pc. is a function only of A and B, while the 
observability matrix P0 is a function only of A and C. 

EXAMPLE 11.17 Satellite trajectory control 

Let us consider a satellite in a circular, equatorial orbit at an altitude of 250 nautical 
miles above the Earth, as illustrated in Figure 11.36 [16,27]. The satellite motion (in 
the orbit plane) is described by the normalized state variable model 

x = 

0 

3co2 

0 

0 

1 
0 
0 
2co 

0 
0 
0 
0 

0 " 
2(o 
1 
0 

x + 

0 
1 
0 

_0_ 

ur + 

0 
0 
0 

_1_ 

u (11.95) 

where the state vector x represents normalized perturbations from the circular, 
equatorial orbit; ur is the input from a radial thruster; ut is the input from a tan
gential thruster; and co = 0.0011 rad/s (approximately one orbit of 90 minutes) is 
the orbital rate for the satellite at the specific altitude. In the absence of pertur
bations, the satellite will remain in the nominal circular equatorial orbit. However, 
disturbances such as aerodynamic drag can cause the satellite to deviate from 
its nominal path. The problem is to design a controller that commands the satel
lite thrusters in such a manner that the actual orbit remains near the desired 
circular orbit. Before commencing with the design, we check controllability. In 
this case, we investigate controllability using the radial and tangential thrusters 
independently. 

Controllability x = Ax + Bu 
matrix y = Cx + DM 

t r 
Pc=ctrb(A,B) 

Po=obsv(A,C) 

Observability k = Ax + BM 
matrix y = Cx + DM 

FIGURE 11.35 Thectrb 
and obsv functions. 

Circular, equatorial orbit 

FIGURE 11.36 The satellite in an equatorial circular orbit. 
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radial.m 

% This script computes the satellite controllability 
% with a radial thruster only (i.e. failed tangential thruster) 
% 
w=0.0011; 
A=[0 1 0 0;3*wA2 0 0 2*w;0 0 0 1 ;0 -2*w 0 0]; 
b1=[0;1;0;0]; A 
Pc=ctrb(A,b1); < 
n=det(Pc); -« 

Tnput matrix associated v/ith radial thruster 

Compute controllability matrix 

if abs(n) < eps ' 
disp('Satellite is uncontrollable with radial thruster only!') 
else 
disp('Satellite is controllable with radial thruster only!') 
end 

n - determinant of controllability matrix 

(a) 

FIGURE 11.37 
Controllability with 
radial thrusters 
only: (a) m-file 
script, (b) output. 

»radial < 
Satellite is uncontrollable with radial thruster only! 

(b) 

Execute m-file script radial.m 

radial.m output 

Suppose the tangential thruster fails (i.e., u, = 0), and only the radial thruster is 
operational. Is the satellite controllable from ur only? We answer this question by 
using an m-file script to determine the controllability. Using the script shown in 
Figure 11.37, we find that the determinant Pc. is zero; thus, the satellite is not com 
pletely controllable when the tangential thruster fails. 

Suppose now that the radial thruster fails (i.e., ur = 0) and that the tangential 
thruster is functioning properly. Is the satellite controllable from u, only? Using the 
script in Figure 11.38, we find that the satellite is completely controllable using the 
tangential thruster only. • 

We conclude this section with a controller design for an automatic test system 
using state variable models. The design approach utilizes root locus methods and in
corporates m-file scripts to assist in the procedure. 

EXAMPLE 11.18 Automatic test system 

The state-space representation for the automatic test system of Example 11.15 is 

x = Ax + B», (11.96) 

where 

0 
0 
0 

1 
- 1 

0 

0 
1 

- 5 
and B = 

0 
0 
K 

Our design specifications are a step response with (1) a settling time (with a 2% cri
terion) less than 2 seconds and (2) an overshoot less than 4%. We assume that the 
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tangent.m 

807 

% This script computes the satellite controllability 
% with a tangential thruster only (i.e. failed radial thruster) 
% 
w=0.0011; 
A=[0 1 0 0;3*wA2 0 0 2*w;0 0 0 1,0 -2*w 0 0]; 
b2=[0;0;0;1]; A 
Pc=ctrb(A,b2); < 
n=det(Pc); 4 

Input matrix associated with tangential thruster 

Compute controllability matrix 

if abs(n) < eps 
disp('Satellite is uncontrollable with tangential thruster only!') 

else 
disp('Satellite is controllable with tangential thruster only!') 

end 

n = determinant of controllability matrix 

(a) 

FIGURE 11.38 
Controllability with 
tangential thrusters 
only: (a) m-file 
script, (b) output. 

»tangent -« 
Satellite is controllable with tangential thruster only! 

(b) 

Execute MATLAB script tangent.m 

Tangent.m output 

state variables are available for feedback, so that the control is given by 

it = - [ # ! K2 K3]x + r = -Kx + r. (11.97) 

We must select the gains K, K:, K2, and K3 to meet the performance specifications. 
Using the design approximations 

T= — <2 and P.O. = l O O e - ^ 1 - ' 2 < 4, 
fan 

we find that 
t, > 0.72 and <u„ > 2.8. 

This defines a region in the complex plane in which our dominant roots must lie, so 
that we expect to meet the design specifications, as shown in Figure 11.39. Substitut
ing Equation (11.97) into Equation (11.96) yields 

0 1 0 
0 - 1 1 x 

i-KK} -KK2 - (5 + KK3)_ 

0 
0 
K 

r = Hx + Br, (11.98) 

where H = A — BK. The characteristic equation associated with Equation (11.98) 
can be obtained by evaluating det(,sl - H) = 0, resulting in 

5(,-1 1)(5 + 5) + KK3(s
2 + K3 + K2 ' V 

K, - I 1 »• (11.99) 
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< 

1 

10 

8 

6 

4 

2 

0 

- 2 

- 4 

- 6 

- 8 

-10 

Valid region to meet 
fj performance specifications p 

a>n = 2.8 £ = 0.72 

\ \ k v ^ • — 

- 10 - 6 - 4 

Real Axis 

(a) 

- 2 

FIGURE 11.39 
(a) Root locus for 
the automatic test 
system, (b) m-file 
script. 

% Root locus script for the Automatic Test System 
% including performance specs regions 
num=[1 8 20]; den=[1 6 5 0]; sys=tf(num,den); 
elf; rlocus(sys); hold on < 1 
% ' — 
zeta=0.72; wn=2.8; 

Hold plot to add 
stability regions 

x=[-10:0.1 :-zeta*wn]; y=-(sqrt(1-zetaA2)/zeta)*x; 
xc=[-10:0.1 :-zeta*wn];c=sqrt(wnA2-xc.A2); 
plot(x,y,,:\x,-y,,:l,xc,c,,:'.xc)-c,':') 

(b) 

Tf we view KK3 as a parameter and let K] = 1, then we can write Equation (11.99) 
as 

K3 + K2 1 
-s + -— 

1 + KK* 
K-x K, 

s(s + l)(s + 5) 
= 0. 

We place the zeros at s = —4 ± 2/ in order to pull the locus to the left in the s-plane. 
Thus, our desired numerator polynomial is s2 + 8s + 20. Comparing corresponding 
coefficients leads to 

K3 + K2 
and — = 20. 

K3 

Therefore, K2 = 0.35 and i£3 = 0.05. We can now plot a root locus with KK3 as the 
parameter, as shown in Figure 11.39. 
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FIGURE 11.40 
Step response for 
the automatic test 
system. 

l . i . 

1.0 

0.8 

0.6 

0.4 

0.2 

i / 

/ 

0.5 1 1.5 2 
Time (s) 

2.5 

The characteristic equation, Equation (11.99), is 

-2 + 8s + 20 
1 +KK3 s(s + l)(s + 5) 

= 0. 

The roots for the selected gain, KK3 = 12, lie in the performance region, as shown 
in Figure 11.39. The riocfind function is used to determine the value of KK3 at the 
selected point. The final gains are as follows: 

K = 240.00, 
Kx = 1.00, 
K2 = 0.35, 
K3 = 0.05. 

The controller design results in a settling time of about 1.8 seconds and an over
shoot of 3%, as shown in Figure 11.40. • 

In Section 11.4, we discussed Ackermann's formula to place the poles of the 
system at desired locations. The function acker calculates the gain matrix K to 
place the closed-loop poles at the desired locations. The acker function is illustrated 
in Figure 11.41. 

FIGURE 11.41 
The acker function. 

Feedback gain matrix K. 

. i 

K= 

x = Ax + BM 

acker(A 

Vector containing desired 
closed-loop poles. 

B,P) 
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FIGURE 11.42 
Using acker to 
compute K to place 
the poles at 
F - [ - 1 + / - 1 - / 1 7 . 

A=[0 1;0 0]; 
B=[0;1]; 
P=[-1+j;-1-j]; 
K=acker(A,B,P; 

\ 

K = 

2 

i< 

2 

Thp fppHhark 

gain matrix. 

EXAMPLE 11.19 Second-order system design using the acker function 

Consider again the second-order system in Example 11.7. The system model is 

r° 
0 

i 

oj 
x + r° 

[ij 
u. 

The desired closed-loop pole locations are s\2 = ~ 1 ± /• To apply Ackermann's 
formula using the acker function, form the vector 

Then, with 

A = 

' • 

[o r 
0 0_ 

-1 + / 

, -1 - L 
• 

and B = 
i 

the acker formula, illustrated in Figure 11.42, determines that the gain matrix that 
achieves the desired pole locations is 

K - [2 2]. 

This confirms the result in Example 11.7. • 

11.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

_ _ In this chapter, we will design a state variable feedback system that will achieve the 
jg^' desired system response. The specifications for the system are given in Table 11.2. 

The second-order open-loop model is shown in Figure 11.43. We will design the sys
tem for this second-order model and then test the system response for both the 
second-order and third-order models. 

First, we select the two state variables as xx{t) = y(t) and x2(t) = dyjdt = 
dxi/dt, as shown in Figure 11.44. It is practical to measure these variables as the po
sition and velocity of the reader head. We then add the state variable feedback, as 
shown in Figure 11.44. We choose K\ « 1, since our goal is for y (/) to closely and ac
curately follow the command r(t). The state variable differential equation for the 
open-loop system is 

x = r° 
0 

i 

-20 
x + 

0 
5/C« 

r(t). 



Section 11.11 Sequential Design Example: Disk Drive Read System 8 1 1 

Table 11.2 Disk Drive Control System Specrfications and Actual 
Performance 

Performance 
Measure 
Percent overshoot 
Settling time 
Maximum response for a 
unit step disturbance 

Desired 
Value 

<5% 
<50ms 
<5 X 10~3 

Response for 
Second-Order 
Model 

<1% 
34.3 ms 
5.2 X 10~5 

Response for 
Third-Order 
Model 
0% 
34.2 ms 
5.2 x 10-3 

FIGURE 11.43 
Open-loop model 
of head control 
system. 

Amplifier 

Ktl 

Motor gain 

GtU) = 5 

Td(s) 

4- l 
s + 20 

— • ! 
i 

5 

Yis) 
Position 
of head 

FIGURE 11.44 
Closed-loop system 
with feedback of 
the two state 
variables. 

Amplifier 

Ka 

Motor gain 

5 

The closed-loop state variable differential equation obtained from Figure 11.44 is 

x = 
0 1 

-5KxKa - (20 + 5K2Ka) 
0 

5JC 
r{t). 

The characteristic equation of the closed-loop system is 

s2 + (20 + 5K2Ka)s + SKa = 0, 

since K\ = 1.. In order to achieve the specifications, we select I = 0.90 and 
£<w„ = 125. Then the desired closed-loop characteristic equation is 

.2 _ J. sl + 2lo>n$ + o)% = sl + 250s + 19290 = 0. 



812 Chapter 11 The Design of State Variable Feedback Systems 

Therefore, we require that 5Ka = 19290 or Ka = 3858. Furthermore, we require that 

20 + 5K2Ka = 250, 

or K7 = 0.012. 
The system with the second-order model has the desired response and meets all 

the specifications, as shown in Table 11.2. If we add the field inductance L — 1 mH, 
we have a third-order model with 

Gi(s) = 
5000 

1000' 

Using this model, which incorporates the field inductance, we test the response of 
the system with the feedback gains selected for the second-order model. The results are 
provided in Table 11.2, illustrating that the second-order model is a very good model of 
the system. The actual results of the third-order system meet the specifications. 

11.12 SUMMARY 

In this chapter, the design of control systems in the time domain was examined. The 
three-step design procedure for constructing state variable compensators was pre
sented. The optimal design of a system using state variable feedback and an integral 
performance index was considered. Also, the s-piane design of systems utilizing 
state variable feedback was examined. Finally, internal model design was discussed. 

EXERCISES 

Ell. l The ability to balance actively is a key ingredient in 
the mobility of a device that hops and runs on one 
springy leg, as shown in Figtire Ell.l [9]. The control 
of the attitude of the device uses a gyroscope and a 
feedback such that u — Kx, where 

K = 
- 1 0 

0 -k 

and 

where 

x(t) = Ax(t) + Bu(t) 

A = 
0 1 
1 0 

and B 

Determine a value for k so that the response of each 
hop is critically damped. 

E11.2 Consider the system with the follwoing state equations 

x2 = -2*! - 3xz + u 
where, X\, x2 are state variables and u is the input. Is 
the system controllable? 

Compass 
Servovalve 

Hydraulic actuator 
and position/velocity 

sensors 

Foot switch 

FIGURE E11.1 Single-leg control. 
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E11.3 A state-space model of a system is given below. Is 
the model controllable? 

- 2 1 0 0 
0 - 2 0 0 
0 0 - 1 0 
0 0 0 - 5 

0 0 0 0 - 4 

0 
0 
0 
0 
4 

x + 

0 
2 
1 
1 
2 

E11.4 Consider a system with state-space model given 
below 

x = 

y 

- 3 1 
0 - 3 
0 0 

ax 0 0~ 
0 1 0 

0 
1 x + 
>** 

~5 \ 

1 
0 
1 

(a) Is the system observable? Does it depend on "flj"? 
(b) Find the range of values of ax for which the sys

tem is observable? 
(c) Is the system controllable? Doses it depend on «i? 

E11.5 The state-space model of a system is given by 

x = Ax -̂  Bu 

y = Cx + Du 

0 1 0 
ICA - 0 0 1 

_ - 6 -11 - 6 
system observable? 

and C = [4 5 1], is the 

Ell.6 Consider a system represented by the state-space 
model 

0 1 0 
0 0 1 

- 7 - 2 - 3 
x + 

y = [2 - 3 4Jx + [l]u. 

Sketch a block diagram model of the system. 

E11.7 Consider the system represented in state variable 
form 

x - Ax + Bu 

y = Cx + DM, 

where 

A -
0 1 

- 2 - 7 
B = 

0 

10 

C = [1 - 2 ] , and D = [0]. 

Sketch a block diagram model of the system. 

E11.8 Consider the third-order system 

x = 

0 
0 
-9 

1 
0 

-3 

0 
1 

-1 
x + 

0 
-1 
4 

y = [2 8 10]x + [1]«. 

Sketch a block diagram model of the system. 

E11.9 Consider the second-order system 

x = 
1 

- 1 

- 1 
1 

y = [1 0]x + [0]u. 

For what values of kx and k2 is the system completely 
controllable? 

E11.10 Consider the block diagram model in Figure El 1.10. 
Write the corresponding state variable model in the 
form 

x = Ax + Bu 
y = Cx + Du. 

FIGURE E11.10 
State variable block 
diagram. 
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E l l . l l Consider the system shown in block diagram form 
in Figure E l l . l l . Obtain a state variable representa 
tion of the system. Determine if the system is control
lable and observable. 

E11.12 Consider the single-input, single-output system is 
described by 

i(t) = Ax(f) + B«(0 

y(j) = cx(» 

where 

0 

- 2 

1 

- i j 
,B = A , C - [ 1 0]. 

Compute the corresponding transfer function repre
sentation of the system. If the initial conditions are 
zero (i.e., .*i(0) = 0 and x2(0) = 0), determine the 
response when u(t) is a unit step input for t ^ 0. 

Uis) 

FIGURE E11.11 
State variable block 
diagram with a 
feedforward term. 

PROBLEMS 

Pl l . l A first-order system is represented by the time-
domain differential equation 

x = x + u. 

A feedback controller is to be designed such that 

u(t) - -kx, 

and the desired equilibrium condition is x(t) = 0 as 
t —> oo. The performance integral is defined as 

J = x2 dt, 

and the initial value of the state variable is x(0) = V 2 . 
Obtain the value of k in order to make ./ a minimum. 
Is this k physically realizable? Select a practical value 
for the gain k and evaluate the performance index 
with that gain. Is the system stable without the feed
back due to «(.')? 

Pll.2 To account for the expenditure of energy and 
resources, the control signal is often included in the 
performance integral. Then the operation will not 
involve an unlimited control signal u(t). One suitable 
performance index, which includes the effect of the 
magnitude of the control signal, is 

J = (x2(() + A«2(0) dt. 

(a) Repeat Problem P l l . l for the performance index. 
(b) If A = 2, obtain the value of k that minimizes the 

performance index. Calculate the resulting mini
mum value of/. 

1*11.3 An unstable robot system is described by the vec
tor differential equation [10] 

d 

dt 
Xy 

*2 

1 0 
1 2 *2 

«(0-

Both state variables are measurable, and so the con
trol signal is set as u(t) -• —k(X\ + x2)- Following the 
method of Section 11.7, design gain k so that the per
formance index is minimized. Evaluate the minimum 
value of the performance index. Determine the sensi
tivity of the performance to a change in k. Assume 
that the initial conditions are 

x(0) = 

Is the system stable without the feedback signals due 
to u(r)? 
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P11.4 Determine the feedback gain k of Example 11.12 
that minimizes the performance index 

J = \Txdt 

when xr(0) = [1 1]. Plot the performance index J 
versus the gain k. 

P11.5 Determine the feedback gain k of Example 11.13 
that minimizes the performance index 

J = 

when xr(0) = [1 
versus the gain k. 

(x'x + u 'u) dt 

1]. Plot the performance index J 

P11.6 For the solutions of Problems PI 1.3, PI 1.4, and 
PI 1.5, determine the roots of the closed-loop optimal 
control system. Note that the resulting closed-loop 
roots depend on the performance index selected. 

P11.7 A system has the vector differential equation as given 
in Equation (11.42). We want both state variables to be 

used in the feedback so that u(t) — -k^x^ - k2x2. 
Also, we desire to have a natural frequency wn for this 
system equal to 2. Find a set of gains kt and k2 in order 
to achieve an optimal system when J is given by Equa
tion (11.63). Assume xr(0) = [1 0]. 

P11.8 For the system of Example 11.11 determine the opti
mum value for k2 when k, = landx r (0) = [1 0]. 

P11.9 An interesting mechanical system with a challeng
ing control problem is the ball and beam, shown in 
Figure P11.9(a) [11]. It consists of a rigid beam that is 
free to rotate in the plane of the paper around a cen
ter pivot, with a solid ball rolling along a groove in 
the top of the beam. The control problem is to posi
tion the ball at a desired point on the beam using a 
torque applied to the beam as a control input at the 
pivot. 

A linear model of the system with a measured 
value of the angle 4> and its angular velocity d<j)/dt = to 
is available. Select a feedback scheme so that the 
response of the closed-loop system has an overshoot of 
4% and a settling time (with a 2% criterion) of 1 second 
for a step input. 

Beam 

Pivot 

(a) 

Control 
input •n ft 

Motor and amplifier 

K 
Torque 

FIGURE P11.9 
(a) Ball and beam. 
(b) Model of the ball 
and beam. 

Inputs to 
be selected 

(b) 

P11.10 The dynamics of a rocket are represented by 

*0 O" 

\ 0_ 

= [0 l]x~ 

x = X + II 

and state variable feedback is used, where u = -8x] -
16*2. Determine the roots of the characteristic equa
tion of this system and the response of the system 
when the initial conditions are .V|(0) = 1 and 
x2(0) = 0. 

P11.11 The state variable model of a plant to be con
trolled is 

x = 
-5 
2 

y = [0 1] 

- 2 

uj 
x + 

0.5 

_ U J 
". 

Use state variable feedback and incorporate a com
mand input u = — Kx + ar. Select the gains K and a 
so that the system has a rapid response with an over
shoot of approximately 1 %, a settling time (with a 2% 
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criterion) less than 1 second, and a zero steady-state 
error to a unit step input. 

P11.12 A DC motor has the state variable model 

x = 

- 3 
- 3 

0 
0 
0 

- 2 

0 
2 

0 
0 

-0.75 
0 
0 
1 
0 

0 
0 
0 
0 
2 

0 
0 
f) 

0 
0 

x + 

1 
0 
0 
0 

0 

y = [0 0 0 0 2.75]x. 

Determine whether this system is controllable and 
observable. 

P11.13 Consider a system with state-space model 

0 
0 

- 2 

1 

0 
- 3 

0 
1 

- 5 
x + 

0 

0 
1 

y = xx 

Design a state feedback controller such that closed-loop 
poles are sx — -4.8, $2 - -4.8 + /6, s3 = -4.8 - /6. 

PI 1.14 A process has the transfer function 

x = 
[-10 

1 

(f 
uj 

v + 

y = [0 l]x + [0]u. 

Determine the state variable feedback gains to achieve 
a settling time (with a 2% criterion) of 1 second and an 
overshoot of about 10%. Also sketch the block dia
gram of the resulting system. Assume the complete 
state vector is available for feedback. 

P11.15 A telerobot system has the matrix equations [18] 

x = 

1 
0 

0 

0 
- 2 

0 

0 
0 

- 3 
x + 

1 
1 
0 

and 

y = [1 0 2]x. 

(a) Determine the transfer function, G(s) = 
Y(s)/U(s). (b) Draw the block diagram indicating 
the state variables, (c) Determine whether the sys
tem is controllable, (d) Determine whether the sys
tem is observable. 

PI 1.16 Hydraulic power actuators were used to drive the 
dinosaurs of the movie Jurassic Park [23]. The motions 
of the large monsters required high-power actuators 
requiring 1200 watts. 

One specific limb motion has dynamics repre
sented by 

[-2 
1 

ol 
0^ 

x + 
" l 

_oJ 
y = [0 l]x + [0]u. 

We want to place the closed-loop poles at s = 
-2 ± j2. Determine the required state variable 
feedback using Ackermann's formula. Assume that 
the complete state vector is available for feedback. 

P11.17 A system has a transfer function 

s + a Y(s) 

R(s) s4 + 9s3 + 28s2 + 38s + 24' 

Determine a real value of a so that the system is either 
uncontrollable or unobservable. 

P11.18 A system has a plant 

U(s) 
= G(s) = 

1 

0 + l)2 

(a) Find the matrix differential equation to represent 
this system. Identify the state variables on a block dia
gram model, (b) Select a state variable feedback struc
ture using u(t), and select the feedback gains so that the 
response y(t) of the unforced system is critically damped 
when the initial condition is xx(0) - 1 and x2(0) = 0, 
where xx = y(i). The repeated roots are at s = V 2 . 

P11.19 The block diagram of a system is shown in Figure 
PI 1.19. Determine whether the system is controllable 
and observable. 

FIGURE P11 19 
Multiloop feedback 
control system. 

Xr 
V 

3 

1 
5 + 2 

•xi 

V 

1 
S * L 

-

+ 

' • * • 
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Pll.20 Consider the automatic ship-steering system dis
cussed in Problems P8.ll and P9.15.The state variable 
form of the system differential equation is 

*(') = 

-0.05 - 6 0 0 
-10"3 -0.15 0 0 
1 0 0 13 
0 1 0 0 

„77,\ _ 

x(r) 

-0 .2 

0.03 

0 

0 

s(ty 

where x'(r) = [u u)s y 0]. The state variables are 
Xi = v = the transverse velocity; x2 = a)5. = angular 
rate of ship's coordinate frame relative to response 
frame; *3 = y = deviation distance on an axis per
pendicular to the track; x4 = d = deviation angle. 
(a) Determine whether the system is stable, (b) Feed
back can be added so that 

5(0 = -*iX] - k3x%. 

Determine whether this system is stable for suitable 
values of/c] and k$. 

P11.21 An RL circuit is shown in Figure PI 1.21. (a) Select 
the two stable variables and obtain the vector differ
ential equation where the output is v0(l). (b) Deter
mine whether the state variables are observable when 
R\/L] = R2/L2. (c) Find the conditions when the sys
tem has two equal roots. 

R3 v0U) 

FIGURE P11.21 RL circuit. 

P11.22 A manipulator control system has a loop transfer 
function of 

1 
G(s)~ 

s(s + 0.4) 

and negative unity feedback [17]. Represent this sys
tem by a state variable signal-flow graph or block dia
gram and a vector differential equation, (a) Plot the 
response of the closed-loop system to a step input. 
(b) Use state variable feedback so that the overshoot 
is 5% and the settling time (with a 2% criterion) is 
1.35 seconds, (c) Plot the response of the state variable 
feedback system to a step input. 

P11.23 Consider again the system of Example 11.7 when 
we desire that the steady-state error for a step input 
be zero and the desired roots of the characteristic 
equation be.? = - 2 ± j \ and s = - 10 . 

Pll.24 Consider again the system of Example 11.7 when 
we desire that the steady-state error for a ramp input 
be zero and the roots of the characteristic equation be 
s = -2 ± /2 and s = - 2 0 . 

P11.25 Consider the system represented in state variable 
form 

x = Ax + B» 

y = Cx + DM, 

where 

A = 
1 

[-5 
4 

10_ 
, B = r°i 

[lj 
C = [1 - 4 ] , and D = [0]. 

Verify that the system is observable. Then design 
a full-state observer by placing the observer poles 
at S\ 2 = - 1 . Plot the response of the estimation 
error e = x — x with an initial estimation error of 
e(0) = [l I f . 

P11.26 Consider the third-order system 

x = 

y ~ [2 - 4 0]x + [0]M. 

Verify that the system is observable. If so, determine 
the observer gain matrix required to place the observ
er poles at sii2 = - 1 ± /2 and s3 = - 10 . 

P11.27 Consider the second-order system 

0 
0 

- 1 

1 
0 

- 2 

0 
1 

-3 
x + 

0 
0 
4 

1 0 

- 3 - 2 

y = [1 0]x + [0]M. 

10 
0 

Determine the observer gain matrix required to place 
the observer poles at S[2 ~ —\ ± j . 

P11.28 Consider the single-input, single-output system is 
described by 

x(r) = Ax(r) + Bw(/) 

y{t) = Cx(t) 

where 

A = 
0 

-16 
,B = , C = [1 0]. 

http://P8.ll
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(a) Determine the value of K resulting in a zero 
steady-state tracking error when u(t) is a unit step 
input for f a 0. The tracking error is defined here 
ase(r) = u(t) - y(t). 

(b) Plot the response to a unit step input and verify 
that the tracking error is zero for the gain K 
determined in part (a). 

P11.29 The block diagram shown in Figure PI 1.29 is an 
example of an interacting system. Determine a state 
variable representation of the system in the form 

x(r) = Ax(/) + BM(0 

y(t) = Cx(r) + D K ( 0 

J 

' — 
1 
s 

' d— 

FIGURE P11.29 Interacting feedback system. 

ADVANCED PROBLEMS 

AP11.1. A DC motor control system has the form shown 
in Figure API 1.1 [6]. The three state variables are 
available for measurement; the output position is 
*:(/). Select the feedback gains so that the system has 
a steady-state error equal to zero for a step input and 
a response with a percent overshoot less than 3%. 

AP11.2 A system has the model 

u. 

Add state variable feedback so that the closed-loop 
poles are .v = - 4 , - 4 , and - 5 . 

AP11.3 A system has a matrix differential equation 

- 3 
4 

0 

-1.75 
0 
1 

--1.25 
0 

0 
x + 

2 
0 
0 

X = 
b; 

What values for b\ and b2 are required so that the sys
tem is controllable? 

AP11.4 The vector differential equation describing the 
inverted pendulum of Example 3.3 is 

0 
1 

4 o 
- 1 

dx 
It = 

0 
0 
0 

_0 

FIGURE AP11.1 
Field-controlled DC 
motor. 

l 

0 
0 
0 

U(s) • 

0 0 
- 1 0 

0 1 
9.8 0 

2ft 
s + 4 

X3{s) = / / J ) 

Field 
current 

Assume, that all state variables are available for mea
surement and use state variable feedback. Place the 
system characteristic roots at s = —2 ± j , - 5 , and 
- 5 . 

AP11.5 An automobile suspension system has three 
physical state variables, as shown in Figure API 1.5 
[15]. The state variable feedback structure is shown 
in the figure, with K] - 1. Select K2 and K% so that 
the roots of the characteristic equation are three 
real roots lying between s = - 3 and s = - 6 . Also, 
select Kp so that the steady-state error for a step 
input is equal to zero. 

AP11.6 A system :s represented by the differential equa
tion 

dl2 dt 

du 
+ , = T + u, 

where y = output and u = input. 

(a) Develop a state variable representation and 
show that it is a controllable system, (b) Define the 
state variables as X\ - y and x2 ~ dy/dt - u, and 
determine whether the system is controllable. Note 
that the controllability of a system depends on the 
definition of the state variables. 

AP11.7 The new Radisson Diamond uses pontoons and sta
bilizers to damp out the effect of waves hitting the ship, 

s+ 1 

X2(s) 

Velocity Position 
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/?(.<.)• 

FIGURE AP11.5 
Automobile 
suspension system. 

KP 

+ r 2 
s \ 4 

K7, 

K2 

K\ 

x? 

M 

(V) 1 
.v + 2 

X2«) 1 
x + 3 

-v, s) --= > ' ( W 

SIDE VIEW FRONT VIEW 

Passenger 
cabins 

J ^ j Strut 
I fc - - --tS Pontoon 

Electronically 
controlled stabilizers 

R(s) = 0 

FIGURE AP11.7 
(a) Radisson 
Diamond (courtesy 
of Conde-Nast 
Traveler, My 1993, 
23). (b) Control 
system to reduce 
the effect of the 
disturbance. 

(6(. V) 

Roll angle 

(b) 

as shown in Figure AP11.7(a).The block diagram of the 
ship's roll control system is shown in Figure API 1.7(b). 
Determine the feedback gains K2 and K3 so that the 
characteristic roots are s = —15 and 5 = —2±j2. 
Plot the roll output ¢(1) for a unit step disturbance. 

AP11.8 Consider again the liquid-level control system 
described in Problem P3.36. 

(a) Design a state variable controller using only 
h(t) as the feedback variable, so that the step response 
has an overshoot less than 10% and a settling time 
(with a 2 % criterion) less than or equal to 5 seconds. 
(b) Design a state variable controller feedback using 
two state variables, level h(t) and shaft position 6(t), 

to satisfy the specifications of part (a), (c) Compare 
the results of parts (a) and (b). 

AP11.9 The motion control of a lightweight hospital 
transport vehicle can be represented by a system of 
two masses, as shown in Figure API 1.9, where 
m, = m2 = 1 and k\ = k2 = 1 [24]. (a) Determine 
the state vector differential equation, (b) Find the 
roots of the characteristic equation, (c) We wish to sta
bilize the system by letting u - —kx,, where u is the 
force on the lower mass, and x, is one of the state vari
ables. Select an appropriate state variable X/. (d) 
Choose a value for the gain k and sketch the root 
locus as k varies. 
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> * 1 

> 
r m, 

j 

\ " 
m2 

V 

V 

Input force 

FIGURE AP11.9 Model of hospital vehicle. 

APll.lO Consider the inverted pendulum mounted to 
a motor, as shown in Figure API 1.10. The motor and 
load are assumed to have no friction damping. The 
pendulum to be balanced is attached to the horizon
tal shaft of a servomotor. The servomotor carries a 
tachogenerator, so that a velocity signal is available, 
but there is no position signal. When the motor is 
unpowered, the pendulum will hang vertically 

Motor 9 Tachomeier 

A. 
Tachometer 

output 

FIGURE AP11.10 Motor and inverted pendulum. 

downward and, if slightly disturbed, will perform 
oscillations. If lifted to the top of its arc, the pendu
lum is unstable in that position. Devise a feedback 
compensator Gc(s) using only the velocity signal 
from the tachometer. 

APll.ll Determine an internal model controller Gc(s) 
for the system shown in Figure APll.ll. We want the 
steady-state error to a step input to be zero. We also 
want the settling time (with a 2% criterion) to be less 
than 5 seconds. 

AP 11.12 Repeat Advanced Problem API 1.11 when we 
want the steady-state error to a ramp input to be zero 
and the settling time (with a 2% criterion) of the ramp 
response to be less than 6 seconds. 

AP11.13 Consider the system represented in state vari
able form 

where 

A = 

C = [6 -4], and D = [0]. 

Verify that the system is observable and controllable. 
If so, design a full-state feedback law and an observer 
by placing the closed-loop system poles at si2 = 
- 1 ± ;' and the observer poles at .V] 2 =

 _ 10. 

AP11.14 Consider the third-order system 

x = 

y = [2 -9 2]x + [0J«. 

Verify that the system is observable and control
lable. Then, design a full-state feedback law and an 

x = Ax + Bit 

y = Cx + DM, 

1 2 1 
- 5 -10 

, B = r_4i 
i 

0 
0 

- 4 

1 
0 

- 5 

0 
1 
6 

x + 
0 
0 
4 

R(s) o 

FIGURE AP11.11 
Internal model 
control. 

Gc(s) o 
Process G(s) 

I 
(j + 1)(J + 2) 

K7 

• * • >'(.?) 
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observer by placing the closed-loop system poles at 
Si,2 = - 1 ± / , S3 — ~2 and the observer poles at 
sh2 = - 1 0 ± / 2 , ¾ = - 2 0 . 

AP11.15 Consider the system depicted in Figure API 1.15. 
Design a full-state observer for the system. Determine 
the observer gain matrix L to place the observer poles 
atsi,2 = - 1 0 ± /10. 

U{s) 6— n. 

FIGURE AP11.15 A second-order system block 
diagram. 

DESIGN PROBLEMS 

CDP11.1 We wish to obtain a state variable feedback sys-
r> tern for the capstan-slide the state variable model de-
rj veloped in CDP3.1 and determine the feedback 

system. The step response should have an overshoot 
less than 2% and a settling time less than 250 ms. 

DP 11.1 Consider the device for the magnetic Ievitation 
of a steel ball, as shown in Figures DPI 1.1 (a) and (b). 
Obtain a design that will provide a stable response 
where the ball will remain within 10% of its desired 
position. Assume that y and dyldt are measurable. 

DP11.2 The control of the fuel-to-air ratio in an automo
bile carburetor became of prime importance in the 
1980s as automakers worked to reduce exhaust-pollu
tion emissions. Thus, auto engine designers turned to 
the feedback control of the fuel-to-air ratio. A sensor 
was placed in the exhaust stream and used as an input 
to a controller. The controller actually adjusts the ori
fice that controls the flow of fuel into the engine [3]. 

Select the devices and develop a linear model for 
the entire system. Assume that the sensor measures 
the actual fuel-to-air ratio with a negligible delay. With 
this model, determine the optimum controller when 
we desire a system with a zero steady-state error to a 
step input and an overshoot for a step command of less 
than 10%. 

DP11.3 Consider the feedback system depicted in Figure 
DPI 1.3. The system model is given by 

x(r) = Ax(0 + Bw(f) 

y(t) = Cx(/) 

where 

,C = [1 0]. 
0 

10.5 

1 

-11.3 
, B = 

0 

0.55 

\zzr 

Electromagnet 

Light 
sensor g=0 O ^ K Light 

source 

(a) 

Current 
to coil s2 

-18 
- 2055 

Y{s) 
. Vertical 

position 
of ball 

(b) 

FIGURE DP11.1 (a) The Ievitation of a ball using an 
electromagnet, (b) The model of the electromagnet and 
the ball. 

Design the compensator to meet the following specifi
cations: 

1. The steady-state error to a unit step input is zero. 
2. The settling time Ts < I s and the percent over

shoot is P.O. < 5%. 
3. Select initial conditions for x and different initial 

conditions for x and simulate the response of the 
closed-loop system to a unit step input. 
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N HO 
FIGURE DP11.3 
Feedback system 
constructed to 
track a desired 
input r(t). 

System Model 

x == Ax + BK 
v = Cx 

Compensator (Observer + Control Law) 

x = (A - BK - LQx -*• Lv + Mr 
u = — Kx 

• * • \ 

DPI 1.4 A high-performance helicopter has a model 
shown in Figure DPI 1.4. The goal is to control the 
pitch angle 6 of the helicopter by adjusting the rotor 
thrust angle S. 

The equations of motion of the helicopter are 

dt2 

dt2 

de 
dt 

- a2 

d± 
1 dt 

nS 

de 
dt <r2 dt + 

where A: is the translation in the horizontal direction. 
For a military high-performance helicopter, we find 
that 

(7-, = 0.415 

o-2 = 0.0198 

a, = 0.0111 

a2 = 1.43 

n = 6.21 

g = 9.S 

all in appropriate SI units. 
Find (a) a state variable representation of this sys

tem and (b) the transfer function representation for 

Body fixed axis 

Q(s)/5(s). (c) Use state variable feedback to achieve 
adequate performances for the controlled system. 

Desired specifications include (1) a steady-state 
for an input step command for dais). the desired pitch 
angle, less than 20% of the input step magnitude; (2) 
an overshoot for a step input command less than 20%; 
and (3) a settling (with a 2% criterion) time for a step 
command of less than 1.5 seconds. 

DP11.5 The headbox process is used in the manufacture 
of paper to transform the pulp slurry flow into a jet of 
2 cm and then spread it onto a mesh belt [25]. To 
achieve desirable paper quality, the pulp slurry must be 
distributed as evenly as possible on the belt, and the 
relationship between the velocity of the jet and that of 
the belt, called the jet/belt ratio, must be maintained. 
One of the main control variables is the pressure in the 
headbox, which in turn controls the velocity of the 
slurry at the jet. The total pressure in the headbox is 
the sum of the Jiquid-level pressure and the air pres
sure that is pumped into the headbox. Because the 
pressurized headbox is a highly dynamic and coupled 
system, manual control would be difficult to maintain 
and could result in degradation in the sheet properties. 

The state-space model of a typical headbox, lin
earized about a particular stationary point, is given by 

-0.8 
-0.02 

0.02 
0 x + 

0.05 
0.001 

FIGURE DP11.4 Helicopter pitch angle, 8, control. 

and y = [1 ()]x. 
The state variables are .tj = liquid level and 

x-, = pressure. The control variable is «i = pump cur
rent. (a) Design a state variable feedback system that 
has a characteristic equation with real roots with a mag
nitude greater than five, (b) Design an observer with 
observer poles located at least ten times farther in the 
left half-plane than the state variable feedback system. 
(c) Connect the observer and full-state feedback system 
and sketch the block diagram of the integrated system. 
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DP11.6 A coupled-drive apparatus is shown in Figure 
DPI 1.6. The coupled drives consist of two pulleys 
connected via an elastic belt, which is tensioned by a 
third pulley mounted on springs providing an under-
damped dynamic mode. One of the main pulleys, pul
ley A, is driven by an electric DC motor. Both pulleys 
A and B are fitted with tachometers that generate 
measurable voltages proportional to the rate of rota
tion of the pulley. When a voltage is applied to the 
DC motor, pulley A will accelerate at a rate governed 
by the total inertia experienced by the system. Pulley 
B, at the other end of the elastic belt, will also accel
erate owing to the applied voltage or torque, but with 
a lagging effect caused by the elasticity of the belt. In
tegration of the velocity signals measured at each pul
ley will provide an angular position estimate for the 
pulley [26]. 

The second-order model of a coupled-drive is 

Pulley A Pulley B 

FIGURE DP11.6 

0 1 

- 3 6 - 1 2 
x + 

and y = .r,. 
(a) Design a state variable feedback controller that 
will yield a step response with deadbeat response and 
a settling time (with a 2% criterion) less than 0.5 sec
ond. (b) Design an observer for the system by placing 
the observer poles appropriately in the left half-plane. 
(c) Draw the block diagram of the system including 
the compensator with the observer and state feed
back. (d) Simulate the response to an initial state at 
x(0) = [1 Of and x(0) = [0 Of. 

DP11.7 A closed-loop feedback system is to be designed 
to track a reference input. The desired feedback block 
diagram is shown in Figure DPI 13. The system model 
is given by 

x(0 = Ax(r) + Bu(0 

y(t) = Cx(0 
where 

A -

0 
0 

- 2 

1 
0 
-5 

0 
1 

-10 
,B = 

0 
0 
1 

, C = [1 0 0]. 

Design the observer and the control law to meet the 
following specifications: 

1. The steady-state error of the closed-loop system 
to a unit step input is zero. 

2. The gain margin CM. ^ 6 dB. 
3. The bandwidth of the closed-loop system 

O)Q > 10 rad/s. 
4. Select initial conditions for x and different initial 

conditions for x and simulate the response of the 
closed-loop system to a unit step input. Verify that 
the tracking error is zero in the steady-state. 

FIGURE DP11.7 
Feedback system 
constructed to 
track a desired 
input r(f). 

+ • 

Control Law 

K 

System Model 

x = Ax + B« 
v = Cx 

Observer 

x = (A - LC)x + B« + Lv 

• * • \ 
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COMPUTER PROBLEMS 

CPll . l State-space model of a system is given by the 
equations given below 

X] = — 2*i + u 

x2 - *i 

y = x7 

where u is the input andy is the output. Using MATLAB 
design a state variable feedback controller so that the 
closed-loop poles are —2 ± /2. 

CP11.2 Consider a system with state-space model 

where 

A = 

and 

0.0389 
0.0482 
0.1024 

0 

0.0271 
-1.0100 

0.3681 
0 

0.0188 
0.0019 

-0.7070 
1 

-0.4555 

-4.0208 
1.4200 

0 

x = 
0 1 

-3 
x f r°i 

i 

y = * i , 

and state feedback controller 

It = X\ + X2. 

Using MATLAB find the eigen values of the system 

(a) with controller. 
(b) without controller. 

CP11.3 The system represented by the equation 

r° ! i 
0 0_ 

1 °1 *+k 
is provided with a state feedback controller 

u = 2x\ + 2x2. 

If x,(0) = x2(0) = 1, using SIMULINK, obtain solu
tion of state equation. 

(a) without state feedback. 
(b) with state feedback. 

CP11.4 Using MATLAB, check whether the following 
system is completely state controllable and completely 
observable. 

x = 

y = [20 9 l]x. 

CP11.5 A linearized model of a vertical takeoff and land
ing (VTOL) aircraft is [27] 

x = Ax + Bi«] + H2u2, 

0 
0 

- 6 

1 
0 

11 

0 
1 

- 6 
x + 

0 
0 
1 

B, = 

0.4422 
3.5446 

-6.0214 
0 

B, = 

0.1291 
-7.5922 

4.4900 
0 

The state vector components are (i) X\ is the horizon
tal velocity (knots), (ii) x2 is the vertical velocity 
(knots), (iii) x?, is the pitch rate (degrees/second), and 
(iv) x4 is the pitch angle (degrees).The input u\ is used 
mainly to control the vertical motion, and u2 is used 
for the horizontal motion. 

(a) Compute the eigenvalues of the system 
matrix A. Is the system stable? (b) Determine the 
characteristic polynomial associated with A using the 
poly function. Compute the roots of the characteristic 
equation, and compare them with the eigenvalues in 
part (a), (c) Is the system controllable from u^ alone? 
What about from u2 alone? Comment on the results. 

CP11.6 In an effort to open up the far side of the moon 
to exploration, studies have been conducted to deter
mine the feasibility of operating a communication 
satellite around the translunar equilibrium point in 
the Earth-Sun-Moon system. The desired satellite 
orbit, known as a halo orbit, is shown in Figure 
CP11.6. The objective of the controller is to keep the 
satellite on a halo orbit trajectory that can be seen 
from the earth so that the lines of communication are 
accessible at all times. The communication link is 
from the earth to the satellite and then to the far side 
of the moon. 

The linearized (and normalized) equations of mo
tion of the satellite around the translunar equilibrium 
point are [28] 

0 
0 
0 

7.3809 
0 

0 

0 
0 
0 

0 
-2.1904 

0 

0 
0 
0 
0 

0 
-3.1904 

1 
0 
0 
0 

- 2 
0 

0 
1 
0 
2 
0 
0 

0 
0 
1 

0 
0 
0 
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0 
0 
0 
1 
0 
0 

«! + 

0 
0 
0 
0 
1 
0 

u2 + 

0 
0 
0 
0 
0 
1 

CP11.7 Consider the system 

W3. 

The state vector x is the satellite position and veloc
ity, and the inputs u^i = 1,2,3, are the engine 
thrust accelerations in the £, 77, and £ directions, 
respectively. 

(a) Is the translunar equilibrium point a stable 
location? (b) Is the system controllable from ii\ 
alone? (c) Repeat part (b) for u2- (d) Repeat part (b) 
for u3. (e) Suppose that we can observe the position in 
the r] direction. Determine the transfer function from 
u2 to 7). (Hint: Let v = [0 1 0 0 0 0]x.) 
(f) Compute a state-space representation of the 
transfer function in part (e) using the s s function. 
Verify that the system is controllable, (g) Using state 
feedback 

i<2 = - K x , 

design a controller (i.e., find K) for the system in part 
(f) such that the closed-loop system poles are at 
H,2 = — 1 ± ; and S34 = -10 . 

0 1 0 
x(0 0 0 1 

- 2 - 4 - 6 

y(t) = [l 0 0]x(r). 

x(r), 

(CP11.1) 

Earth 

View from the earth 

V < 

Halo orbit of 
spacecraft 

^Moon, 

FIGURE CP11.6 The translunar satellite halo orbit. 

Suppose that we are given three observations y(f,), 
i = 1,2,3, as follows: 

y(*t) = 1 at tt = 0 

y(r2) = -0.0256 at t2 = 2 

v(h) = -0.2522 at t3 = 4. 

(a) Using the three observations, develop a method 
to determine the initial value of the state vector x(/0) for 
the system in Equation (1) that will reproduce the three 
observations when simulated using the Isim function. 
(b) With the observations given, compute x(r0) and dis
cuss the condition under which this problem can be 
solved in general, (c) Verify the result by simulating the 
system response to the computed initial condition. 
(Hint: Recall that \(t) = eA('~'o)x(f0) for the system in 
Equation CP11.1.) 

CP11.8 A system is described by a single-input state 
equation with 

A = 

Using the method of Section 11.7 (Equation 11.40) 
and a negative unity feedback, determine the optimal 
system when xr(0) = [1 0]. 

CP11.9 A first-order system is given by 

x — -x + u 

with the initial condition x(0) — XQ. We want to 
design a feedback controller 

u = -kx 

such that the performance index 

J = [ (x2(t) + \u\t)) dt 
./0 

is minimized. 
(a) Let A = 1. Develop a formula f o r / i n terms 

of k, valid for any XQ, and use an m-file to plot J'jx\ 
versus k. From the plot, determine the approximate 
value of k = km-m that minimizes J/xfj. (b) Verify the 
result in part (a) analytically, (c) Using the procedure 

0 

1 

0 

u 
and B = 0 

1 
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developed in part (a), obtain a plot of kmin versus A, 
where kmin is the gain that minimizes the perfor
mance index. 

CPll.lO Consider the system represented in state vari
able form 

x = Ax + B« 

v = Cx + D«, 

where 

A = 
0 

-19.04 
1 

-11.42 J 
, B = 

~12.8~ 

24.6J 

C = [1 0] and D = [0]. 

Using the acker function, determine a full-state feed
back gain matrix and an observer gain matrix to place 
the closed-loop system poles at s^j = ~ 1 and the 
observer poles at s1 2 = - 1 2 ± /4. 

CP11.11 Consider the third-order system 

0 
0 

-4.3 

1 
0 

-1.7 

0 
1 

-6.7 
x + 

0 
0 

0.35 

y = 10 1 0]x + [0]u. 

(a) Using the acker function, determine a full-state feed
back gain matrix and an observer gain matrix to place 
the closed-loop system poles at s1-2 = —1-4 ± /1.4, 
ST, — - 2 and the observer poles at Sj^ = —18 ± /5, 
s3 = -20 . (b) Construct the state variable compen
sator using Figure 11.1 as a guide, (c) Simulate the 
closed-loop system with the state initial conditions 
x(0) = (1 0 0 ) r and initial state estimate of 
x(0) = (0.5 0.1 0.1)7. 

CP11.12 Implement the system shown in Figure 
CP11.12 in an m-file. Obtain the step response of the 
system. 

CP11.13 Consider the system in state variable form 

0 1 0 0 
0 0 1 0 
0 0 0 1 

- 2 - 5 - 1 - 1 3 

v = [1 0 0 0]x + [0]«. 

Design a full-state feedback gain matrix and an 
observer gain matrix to place the closed-loop system 
poles at 5| 7 = —1.4 ± /1.4, s^A = — 2 ± j and the 
observer poles s 1 2 = - 1 8 ± / 5 , s 3 4 = —20. Con
struct the state variable compensator using Figure 
11.1 as a guide and simulate the closed-loop system 
using Simulink. Select several values of initial states 
and initial state estimates in the observer and display 
the tracking results on an x y-graph. 

l —•O"-** YLS] 

FIGURE CP11.12 
implementation. 

Control system for Simulink 

TERMS AND CONCEPTS 

Command following An important aspect of control 
system design wherein a nonzero reference input is 
tracked. 

Controllability matrix A linear system is (completely) 
controllable if and only if the controllability matrix 
Pc = [B AB A2B . . . A"_1B] has full rank, where 
A is an n x n matrix. For single-input, single-output 
linear systems, the system is controllable if and only if 
the determinant of the n X n controllability matrix Pc 

is nonzero. 

Controllable system A system is controllable on the 
interval [t0, tf] if there exists a continuous input u(t) 

such that any initial state \(t0) can be driven to any 
arbitrary trial state \{tf) in a finite time interval 
tf - t0 > 0. 

Detectable A system in which the states that are unob-
servable are naturally stable. 

Estimation error The difference between the actual 
state and the estimated state e(t) = x(t) — x(t). 

Full-state feedback control law A control law of the 
form u = - K x where x is the state of the system 
assumed known at all times. 

Internal model design A method of tracking reference 
inputs with guaranteed steady-state tracking errors. 
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Kalman state-space decomposition A partition of the state 
space that illuminates the states that are controllable and 
unobservable, uncontrollable and unobservable, control
lable and observable, and uncontrollable and observable. 

Linear quadratic regulator An optimal controller 
designed to minimize the quadratic performance index 

„ 0 0 

J = / (x"Qx + urRu) dU where Q and R are 
h 

design parameters. 

Observability matrix A linear system is (completely) 
observable if and only if the observability matrix 
P 0 = [C r (CA)7" ( C A 2 ) r . . . ( C A " - 1 ) r ] T has full 
rank, where A is an n x n matrix. For single-input, 
single-output linear systems, the system is observable 
if and only if the determinant of the n X n observabil
ity matrix Pn is nonzero. 

Observable system A system is observable on the interval 
[f0, tf] if any initial state x(/0) is uniquely determined 
by observing the output y{t) on the interval [t0, tf\. 

Observer A dynamic system used to estimate the state 
of another dynamic system given knowledge of the 

system inputs and measurements of the system 
outputs. 

Optimal control system A system whose parameters are 
adjusted so that the performance index reaches an 
extremum value. 

Pole placement A design methodology wherein the 
objective is to place the eigenvalues of the closed-
loop system in desired regions of the complex plane. 

Separation principle The principle that states that the 
full-state feedback law and the observer can be 
designed independently and when connected will 
function as an integrated control system in the desired 
manner (i.e., stable). 

Stabilizable A system in which the states that arc not 
controllable are naturally stable. 

Stabilizing controller A controller that stabilizes the 
closed-loop system. 

State variable feedback Occurs when the control signal 
u for the process is a direct function of all the state 
variables. 
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PREVIEW 

Physical systems and the external environment in which they operate cannot be 
modeled precisely, may change in an unpredictable manner, and may be subject to 
significant disturbances. The design of control systems in the presence of significant 
uncertainty requires the designer to seek a robust system. Recent advances in 
robust control design methodologies can address stability robustness and perfor
mance robustness in the presence of uncertainty. In this chapter, we describe five 
methods for robust design, including root locus, frequency response, ITAE methods 
for a robust PID systems, internal model control, and pseudo-quantitative feedback 
methods. However, we should also realize that classical design techniques may also 
produce robust control systems. Control engineers who are aware of these issues 
can design robust PID controllers, robust lead-lag controllers, and so forth. The 
chapter concludes with a PID controller design for the Sequential Design Example: 
Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 12, students should: 

• Appreciate the role of robustness in control system design. 
• Be familiar with uncertainty models, including additive uncertainty, multiplicative 

uncertainty, and parameter uncertainty. 
J Understand the various methods of tackling the robust control design problem using 

root locus, frequency response, ITAE methods for PID control, internal model, and 
pseudo-quantitative feedback methods. 
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12.1 INTRODUCTION 

829 

A control system designed using the methods and concepts of the preceding chap
ters assumes knowledge of the model of the process and controller and constant pa
rameters. The process model will always be an inaccurate representation of the 
actual physical system because of 

• parameter changes 

Q unmodeled dynamics 

Q unmodeled time delays 

Q changes in equilibrium point (operating point) 

Q sensor noise 

Q unpredicted disturbance inputs. 

The goal of robust systems design is to retain assurance of system performance in 
spite of model inaccuracies and changes. A system is robust when the system has 
acceptable changes in. performance due to model changes or inaccuracies. 

A robust control system exhibits the desired performance despite the presence 
of significant process uncertainty. 

A system structure that incorporates potential system uncertainties is shown in 
Figure 12.1. This model includes the sensor noise N(s), the unpredicted disturbance 

TM) 

R(x) 

V(.v) 

Tjs) 

FIGURE 12.1 
Closed-loop control 
system, (a) Signal 
flow graph; (b) 
Block diagram. 
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input Tj(s), and a process G(s) with potentially unmodeled dynamics or parameter 
changes. The unmodeled dynamics and parameter changes may be significant or 
very large, and for these systems the challenge is to create a design that retains the 
desired performance. 

12.2 ROBUST CONTROL SYSTEMS AND SYSTEM SENSITIVITY 

Designing highly accurate systems in the presence of significant plant uncertainty is 
a classical feedback design problem. The theoretical bases for the solution of this 
problem date back to the works of H. S. Black and H. W. Bode in the early 1930s, 
when this problem was referred to as the sensitivities design problem. A significant 
amount of literature has been published since then regarding the design of systems 
subject to large process uncertainty. The designer seeks to obtain a system that per
forms adequately over a large range of uncertain parameters. A system is said to be 
robust when it is durable, hardy, and resilient. 

A control system is robust when (1) it has low sensitivities, (2) it is stable over 
the range of parameter variations, and (3) the performance continues to meet the 
specifications in the presence of a set of changes in the system parameters [3, 4J. 
Robustness is the low sensitivity to effects that are not considered in the analysis 
and design phase—for example, disturbances, measurement noise, and unmodeled 
dynamics. The system should be able to withstand these neglected effects when per
forming the tasks for which it was designed. 

For small-parameter perturbations, we may use, as a measure of robustness, the 
differential sensitivities discussed in Sections 4.3 (system sensitivity) and Section 7.5 
(root sensitivity) [6].The system sensitivity is defined as 

(12.1) 

where a is the parameter and 7" the transfer function of the system. The root sensi
tivity is defined as 

(12.2) 

When the zeros of T(s) are independent of the parameter a, we showed that 

" 1 

,=1 S + tj 

for an /7th-order system. For example, if we have a closed-loop system, as shown in 
Figure 12.2, where the variable parameter is a, then T(s) = 1/[s + (a + 1)], and 

(12.3) 

Sr = Z^ 
a s + a + 1 

This follows because T\ - f (a 4- 1), and 

-S2 = -a. 

(12.4) 

(12.5) 



Section 12.2 Robust Control Systems and System Sensitivity 831 

FIGURE 12.2 
A first-order 
system. 

• W.«) 

FIGURE 12.3 
A second-order 
system. 

K ( v ) *• Yisi 

Therefore, 

sr _ - ^ ! = ~a 

as + a + l s + a + i 
(12.6) 

Let us examine the sensitivity of the second-order system shown in Figure 12.3. 
The transfer function of the closed-loop system is 

K 
T(s) = -=-w s2 + s + K 

The system sensitivity for K is 

S(s) = ST
K = 

s(s +- 1) 

s2 + s + K 

(12.7) 

(12.8) 

A Bode plot of the asymptotes of 20 log| T(j<o) \ and 20 log 15(/^)1 is shown in Figure 
12.4 for K = 1/4 (critical damping). Note that the sensitivity is small for lower fre
quencies, while the transfer function primarily passes low frequencies. 

Of course, the sensitivity S(s) only represents robustness for small changes in 
gain. Tf K changes from 1/4 within the range K = 1/16 to K = 1, the resulting range 
of step response is shown in Figure 12.5. This system, with an expected wide range of 
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FIGURE 12.4 Sensitivity and 20 log | T(jco)\ for the 
second-order system in Figure 12.3. The asymptotic 
approximations are shown for K = \. 

>'(/) 

FIGURE 12.5 The step response for selected gain K. 
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FIGURE 12.6 
A system with a PD 
controller. 

R(s) • r Controller 

Kp + K„s 

Process 

l 
-> •*- K(i) 

K, may not be considered adequately robust. A robust system would be expected to 
yield essentially the same (within an agreed-upon variation) response to a selected 
input. 

EXAMPLE 12.1 Sensitivity of a controlled system 

Consider the system shown in Figure 12.6, where G(s) = 1/s2 and a PD controller 
Gc(s) = Kp + KDs. Then the sensitivity with respect to changes in G{s) is 

STr = 
1 

1 + Gc(s)G(s) s2 + KDs + K, 

and 

(12.9) 

T(s) = 
K»s + Kp 

s2 + KDs + Kp 

(12.10) 

Consider the normal condition £ = 1 and a>n = vKp. Then, KD = 2a>„ to achieve 
£ = 1. Therefore, we may plot 201og|5| and 201og|T| on a Bode diagram, as 
shown in Figure 12.7. Note that the frequency w„ is an indicator on the boundary 
between the frequency region in which the sensitivity is the important design cri
terion and the region in which the stability margin is important. Thus, if we specify 
o)n properly to take into consideration the extent of modeling error and the fre
quency of external disturbance, we can expect the system to have an acceptable 
amount of robustness. • 

EXAMPLE 12.2 System with a right-hand-plane zero 

Consider the system shown in Figure 12.8, where the plant has a zero in the right-
hand plane. The closed-loop transfer function is 

7 » = 
/ ^ ( , - 1 ) 

s2 + (2 + K)s + (1- K) 
(12.11) 

The system is stable for a gain - 2 < K < 1. The steady-state error due to a nega
tive unit step input R(s) = — 1/s is 

1 -IK 
e^ = l /r 

(12.12) 
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and £*ss = 0 when K = 1/2. The response is shown in Figure 12.9. Note the initial 
undershoot at t — 1 s. This system is sensitive to changes in K, as recorded in Table 
12.1. The performance of this system might be considered barely acceptable for a 
change of gain of only ±10%. Thus, this system would not be considered robust.The 
steady-state error of this system changes greatly as K changes. • 

Table 12.1 Results for Example 12.2 
K 0.25 0.45 
|«„| 0.67 0.18 
Undershoot 5% 9% 
Settling time (seconds) 15 24 

0.50 
0 
10% 
27 

0.55 
0.22 

11% 
30 

0.75 

1.0 
15% 
45 
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12.3 ANALYSIS OF ROBUSTNESS 

Consider the closed-loop system shown in Figure 12.1. System goals include main
taining a small tracking error [E(s) = R(s) ~ Y(s)] for an input R(s) and keeping 
the output Y(s) small for a disturbance Td(s). 

Following the discussion in Section 4.1, the sensitivity function is 

S(s) = [1 + Gc(s)G(s)]-\ 

and the complementary sensitivity function is 

as) = 
Gc(s)G(s) 

1 + Gc(s)G(s)' 

We also have the relationship 

S(s) + C(s) = 1. (12.13) 

For physically realizable systems, the loop gain L(s) - Gc(s)G(s) must be small for 
high frequencies. This means that S(ja) approaches 1 at high frequencies. 

An additive perturbation characterizes the set of possible processes as follows 
(here we assume that Gc(s) = 1): 

Ga(s) = G(s) + A(s), 

where G(s) is the nominal process, and A(s) is the perturbation that is bounded in 
magnitude. We assume that Ga(s) and G(s) have the same number of poles in the 
right-hand s-plane (if any) [361. Then the system stability will not change if 

\A(j(o)\ <\1 + G(Jco), for all to. (12.14) 

This assures stability but not dynamic performance. 
A multiplicative perturbation is modeled as 

Gm(s) = G(s)[l + M(s)]. 

The perturbation is bounded in magnitude, and it is again assumed that Gm(s) and 
G(s) have the same number of poles in the right-hand s-plane. Then the system sta
bility will not change if 

\M(jco)\ < for all M. (12.15) 

Equation (12.15) is called the robust stability criterion. This is a test for robustness 
with respect to a multiplicative perturbation. This form of perturbation is often used 
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because it satisfies the intuitive properties of (1) being small at low frequencies, 
where the nominal process model is usually well known, and (2) being large at high 
frequencies, where the nominal model is always inexact. 

EXAMPLE 12.3 System with multiplicative perturbation 

Consider the system of Figure 12.1 with Gc = K, and 

170,000 (s + 0.1) 
G(s) = 

s(s + 3)(s2 + 10s + 10,000) 

The system is unstable with K = 1, but a reduction in gain to K = 0.5 will stabilize 
it. Now, consider the effect of an unmodeled pole at 50 rad/s. In this case, the multi
plicative perturbation is determined from 

1 + M(s) = 
50 

s + 50' 

or M{s) ~ -s/(s + 50). The magnitude bound is then 

\M(Jco)\ = -J<'> 

j<o + 50 

\M(jco)\ and | l + l/(KG(Jco))\ are plotted in Figure 12.10(a), where it is seen that 
the criterion of Equation (12.15) is not satisfied. Thus, the system may not be stable. 

If we use a lag compensator 

Gc(s) = 
Q.l5(s - 25) 

s + 2.5 ' 

the loop transfer function is 1 + Gc(s)G(s), and we reshape the function 
Gc(j(o)G(j(o) in the frequency range 2 < w < 25. Then we have the altered magni
tude 

1 

Gc(jio)G(j(t)) 

as plotted in Figure 12.10(b). Here the robustness inequality is satisfied, and the sys
tem remains stable. • 

The control objective is to design a compensator Gc(s) so that the transient, 
steady-state, and frequency-domain specifications are achieved and the cost of feed
back measured by the bandwidth of the compensator Gc(jo)) is sufficiently small. 
This bandwidth constraint is needed mainly because of noise that is inevitable in 
measuring the system output. A large noise amplification can saturate either the lat
ter stages of Gc(s) or the early process stages. In subsequent sections, we can add a 
pre-filter in a two-degree-of-freedom configuration to help achieve the design goals. 
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o} (rad/s) 

(a) 

The robust stability «(rad/s) 
criterion for 
Example 12.3. (b) 

12.4 SYSTEMS WITH UNCERTAIN PARAMETERS 

Many systems have several parameters that are constants but uncertain within a 
range. For example, consider a system with a characteristic equation 

s" + ^ - i * " " 1 + an-2s
n-2 + ••• + a0 = 0 (12.16) 

with known coefficients within bounds 

0¾ ̂  a, ^ /3, and i = 0, . . . , n, 

where an = 1. 
To ascertain the stability of the system, we might have to investigate all possible 

combinations of parameters. Fortunately, it is possible to investigate a limited num
ber of worst-case polynomials [22].The analysis of only four polynomials is sufficient, 
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and they are readily defined for a third-order system with a characteristic equation 

j 3 + a2s
2 -r a^s + do ~ 0. (12.17) 

Then the four polynomials are 

qt(s) = s3 + a2s
2 H $ts + j80, 

q2(s) = s3 + p2s
2 + a\S + a0, 

q3(s) = s3 + (32s
2 + fas + a0, 

q4(s) = s3 + a2s
2 + a\S + /30. 

One of the four polynomials represents the worst case and may indicate either unstable 
performance or at least the worst performance for the system in that case. 

EXAMPLE 12.4 Third-order system with uncertain coefficients 

Consider a third-order system with uncertain coefficients such that 

8 < a0 < 60 => a0 = 8, /3n = 60; 

12 < a- < 100 => a, = 12, /3i = 100; 

7 =5 a2 ^ 25 =* u2 - 7, ^32 = 25. 

The four polynomials are 

qt(s) = s3 + Is2 + 100.V + 60, 

q2{s) = s3 + 25s2 + 12s + 8, 

q3(s) = s3 + 25s2 + 100s + 8, 

q4(s) = s3 + Is2 + 12s + 60. 

We then proceed to check these four polynomials by means of the Routh-Hurwitz 
criterion, and hence we determine that the system is stable for all the range of 
uncertain parameters. • 

EXAMPLE 12.5 Stability of uncertain system 

Consider a unity feedback system with a process transfer function (under nominal 
conditions) 

4.5 
G{S) = s(s + 1)(.9 + 2) ' 

The nominal characteristic equation is then 

q(s) = s3 + 3s2 + 2s + 4.5 = 0. 

Using the Routh-Hurwitz criterion, we find that this system is nominally stable. 
However, if the system has uncertain coefficients such that 

4 < tfn < 5 => a0 = 4, £0 = 5; 

1 < ax < 3 => orj = 1, j8i = 3; and 

2 < a2 2£ 4 => a2 - 2, (i2 = 4, 
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then we must examine the four polynomials: 

q^s) = s3 + 2.v2 + 3s + 5, 

q2(s) = s3 + As1 + Is + 4, 

q3(s) = s3 + 4s2 + 3s + 4, 

q4(s) = s3 + Is1 + Is + 5. 

Using the Routh-Hurwitz criterion, q\(s) and q3(s) are stable and q2(s) is marginally 
stable. For q4(s), we have 

s3 

s2 

s1 

1 1 
2 5 

-3 /2 
5 

Therefore, the system is unstable for the worst case, where a2 = minimum, 
«! = minimum, and /30 = maximum. This occurs when the process has changed to 

G(s) = 
s(s + l)(s + 1)' 

Note that the third pole has moved toward the yw-axis to its limit at s = —1 and that 
the gain has increased to its limit at K = 5. Often, we are able to examine the trans
fer function G{s) and predict the worst-case conditions. • 

12.5 THE DESIGN OF ROBUST CONTROL SYSTEMS 

The design of robust control systems is based on two tasks: determining the struc
ture of the controller and adjusting the controller's parameters to give an "optimal" 
system performance. This design process is normally done with "assumed complete 
knowledge" of the process. Furthermore, the process is normally described by a lin
ear time-invariant continuous model. The structure of the controller is chosen such 
that the system's response can meet certain performance criteria. 

One possible objective in the design of a control system is that the controlled 
system's output should exactly and instantaneously reproduce its input. That is, the 
system transfer function should be unity: 

Y(s) 
T(s) = — = 1. (12.18) 

In other words, the system should be presentable on a Bode gain versus frequency 
diagram with a 0-dB gain of infinite bandwidth and zero phase shift. In practice, this 
is not possible, since every system will contain inductive- and capacitive-type com
ponents that store energy in some form. These elements and their interconnections 
with energy-dissipative components produce the system's dynamic response charac
teristics. Such systems reproduce some inputs almost exactly, while other inputs are 
not reproduced at all, signifying that the system bandwidth is less than infinite. 
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Once we recognize that the system dynamics cannot be ignored, we need a new 
design objective. One possible design objective is to maintain the magnitude response 
curve as flat and as close to unity for as large a bandwidth as possible for a given plant 
and controller combination [22]. 

Another important goal of a control system design is that the effect on the out
put of the system due to disturbances is minimized. Thus, we wish to minimize 
Y(s)/Td(s) over a range of frequency. 

Consider the control system shown in Figure 12.11, where G(s) = Gi(s)G2(s) is 
the plant and Td(s) is the disturbance. Wc then have 

T(s) = 
Y(s) Gc(s)G1(s)G2(s) 

and 

R(s) 1 + Gc(s)Gi(s)G2(Sy 

G2(s) Y(s) = 

Td(s) " 1 + GMG1(s)G2(s)' 

(12.19) 

(12.20) 

Note that both the reference and disturbance transfer functions have the same 
denominator; in other words, they have the same characteristic equation—namely, 

1 + Gc(s)G1(s)G2(s) = 1 + L(s) - 0. 

Recall that the sensitivity of T(s) with respect to G(s) is 

STr = 
1 

1 + Gc(s)Cn(s)G2(sy 

(12.21) 

(12.22) 

and the characteristic equation is the influencing factor on the sensitivity. Equation 
(12.22) shows that for low sensitivity S, we require a high value of loop gain L(/w), 
but it is known that a high gain could cause instability or poor responsiveness of 
T(s). Thus, we seek the following: 

1. T(s) with wide bandwidth and faithful reproduction of R(s). 
2. T,arge loop gain /.(<?) in order to minimize sensitivity S. 
3. Large loop gain L(s) attained primarily by Gc(s)G](s), since 

Y{s)/Td(s) - l/Gc(s)G,(s). 

Setting the design of robust systems in frequency-domain terms, we must find a 
proper compensator Gc(s) such that the closed-loop sensitivity is less than some toler
ance value. But sensitivity minimization involves finding a proper compensator such 
that the closed-loop sensitivity equals or is arbitrarily close to the minimal attainable 

FIGURE 12.11 
A system with a 
disturbance. 

7;,(.v) 

• n.si 
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FIGURE 12.12 
Bode diagram for 
20 log \Gc(jco)G(jco) 

High gains for good performance 
(command following) 

20 log|G(.G 
Stable crossover 

(gain and phase margins) 

Minimum performance 
bounds 

Low gains to reduce 
sensitivity to sensor 

noise and model uncertaintv 

Robustness 
bounds 

sensitivity. Similarly, the gain margin problem is to find a proper compensator to 
achieve some prescribed gain margin. But gain margin maximization involves finding 
a proper compensator to achieve the maximal attainable gain margin. For the fre
quency-domain specifications, we require the following conditions for the Bode dia
gram of Gc(jco)G(jco), shown in Figure 12.12: 

1. For relative stability, Gc(j(o)G(jco) must have, for an adequate range of w, not more 
than a —20-dB/decade slope at or near the crossover frequency a>c. 

2. Steady-state accuracy achieved by the low frequency gain. 

3. Accuracy over a bandwidth wB, by maintaining \Gc(joj)G(jco)\ above a prescribed 
level. 

4. Disturbance rejection by a high gain for Gc(jco) over the system bandwidth. 

Using the root sensitivity concept, we can state that Sr
a must be minimized while 

attaining T(s) with dominant roots that will provide the appropriate response and 
minimize the effect of Td(s). Again, we see that the goal is to have the gain of the 
loop primarily attained by Gc(s), As an example, let Gc(s) = K,G\(s) — 1, and 
G2(s) = l/(s(s + 1)) for the system in Figure 12.11. This system has two roots, and 
we select a gain K so that Y(s)/Td(s) is minimized, Sr

K is minimized, and T(s) has 
desirable dominant roots.The sensitivity is 

sv 
dr K 
dK' r 

ds 
IK 

A: 
r' 

and the character is t ic equa t ion is 

s(s + 1) + K = 0. 

Therefore,dKjds = ~(2s + 1), since K = -s(s + l).We then obtain 

- 1 -s(s + 1) 
Sr* = • " ' 2s + 1 LS T 1 S s = r 

W h e n I < 1, the r o o t s a r e complex and r = —0.5 + jco. Then , 

sv ->K 

(12.23) 

(12.24) 

(12.25) 

(12.26) 
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FIGURE 12.13 
Sensitivity and 
percent overshoot 
for a second-order 
system. 

o o 

O 4U 

The magnitude of the sensitivity is plotted in Figure 12.13 for K = 0.2 to K = 5. 
Trie percent overshoot to a step is also shown. It is best to reduce the sensitivity 
while limiting K to 1.5 or less. We then attain the majority of the attainable reduc
tion in sensitivity while maintaining good performance for the step response. In 
general, wc can use the design procedure as follows: 

1. Sketch the root locus of the compensated system with Gc(s) chosen to attain the desired 
location for the dominant roots. 

2. Maximize the gain of Gc(s) to reduce the effect of the disturbance. 

3. Determine Sr
a and attain the minimum value of the sensitivity consistent with the tran

sient response required, as described in Step 1. 

EXAMPLE 12.6 Sensitivity and compensation 

Let us consider again the system in Example 10.1 when G(s) = 1/s2, H(s) = 1, and 
Gc(s) is to be selected by frequency response methods. Therefore, the compensator 
is to be selected to achieve an appropriate gain and phase margin while minimizing 
sensitivity and the effect of the disturbance. Thus, we choose 

Gc(s) 
K{s/z + 1) 

s/p + 1 
(12.27) 

As in Example 10.1, we choose K ~ 10 to reduce the effect of the disturbance. To 
attain a phase margin of 45°. we select z = 2.0 and p = 12.0. We then attain the 
compensated diagram shown in Figure 10.9 and repeated in Figure 12.14. Recall 
that the closed-loop bandwidth is o>B = 1.6 oic Thus, we will increase the band
width by using the compensator and improve the fidelity of reproduction of the 
input signals. 

The sensitivity at coc may be ascertained as 
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FIGURE 12.14 
Bode diagram for 
Example 12.6. 
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To estimate |SQ\, we recall that the Nichols chart enables us to obtain 

Gc(jo))G(j(o) 
\T(ja>)\ = 

1 + Gc(ja>)G(ja>) 
(12.29) 

Thus, we can plot a few points of Gc(jw)G(j(o) on the Nichols chart and then read 
T(co) from the chart. Then 

\sUm)\ = 
\T(M)\ 

I G<:(M)G(M) I' 
(12.30) 

where co] is chosen arbitrarily as (oc/2.5. In general, we choose a frequency below (oc 

to determine the value of 15(a>i)|. Of course, we desire a low value of sensitivity. The 
Nichols chart for the compensated system is shown in Figure 12.15. For 
(o-i = o)J2.5 = 2, we have 201og|T(M)| = 2.5 dB and 20 log |Gt.(jw1)G(/w1)| -
9 dB.Therefore, 

\S(m)\ = 
|r(M)l 1.33 

|GC(M)G(M)I 2.8 
= 0.47. 

EXAMPLE 12.7 Sensitivity with a lead compensator 

Let us again consider the system in Example 12.6, using the root locus design obtained 
in Example 10.3. The compensator was chosen as 

8.1(5 + 1) 
Gc(s) = 

s + 3.6 
(12.31) 

for the system of Figure 12.16. The dominant roots are thus 5 = -1 ± /2. Because 
the gain is 8.1, the effect of the disturbance is reduced, and the time response meets 
the specifications. The sensitivity at a root r may be obtained by assuming that the 



FIGURE 12.15 
Nichols chart for 
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system, with dominant roots, may be approximated by the second-order system 

Tin) = -= = —~ , 

s2 4- 2£a)ns + K s2 + 2s + K 

since £w„ = 1. The characteristic equation is thus 

s2 + 2s 4- K - 0. 

Then dK/ds - - (2s + 2), since K = -(s2 + 2s). Therefore, 
s(s + 2) 

SrK = 
-1 

2s + 2 
-(s2 + 2s) 

1 
(12.32) 

(2. + 2) 

where r = — 1 + /2. Then, substituting s = r, we obtain 

\Sr
K\ = 1-25. 

If we raise the gain to in Equation (12.31) from 8.1 to 10, we expect r — —1.1 ± /2.4. 
Then the sensitivity is 

ISfrl = 1-4. • 

12.6 THE DESIGN OF ROBUST PID-CONTROLLED SYSTEMS 

The PID controller has the transfer function 

Gc(s) =KP + ^ ± KDs. 

The popularity of PID controllers can be attributed partly to their robust perfor
mance in a wide range of operating conditions and partly to their functional sim
plicity, which allows engineers to operate them in a simple straightforward manner. 
l b implement such a controller, three parameters must be determined for the given 
process: proportional gain, integral gain, and derivative gain [35]. 

Consider the PID controller 

Gc{s) = KP + — + KDs = 

KD(s2 ~as + b) KD(s + Zl)(s + z2) 
s s 

— IJ \ "r II i / \ T-,1 s - • i i \ — .. , i 

(12.33) 

where a = KpjKD and b ~ KJ/KQ. Therefore, a PID controller introduces a trans
fer function with one pole at the origin and two zeros that can be located anywhere 
in the left-hand s-plane. 

Recall that a root locus begins at the poles and ends at the zeros. If we have a 
system as shown in Figure 12.16 with 

G(s) = 7
 [ 

(s + 2)(s + 5)' 
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and we use a PID controller with complex zeros, we can plot the root locus as shown 
in Figure 12.17. As the gain KD of the controller is increased, the complex roots 
approach the zeros. The closed-loop transfer function is 

T{s) = 
G(s)Gc(s)Gp(s) 

1 + G(s)Gc(s) 

KD(s \ zi)(s + £i) 
<T7<W (S + r2)(s + n)(s + h) P 

^ KpGp(s) 

5 + 7*2 

because the zeros and the complex roots are approximately equal (rt 

Gp(s) = 1, we have 

T(s) = 
K, Kr 

s + r2 s + KL 

(12.34) 

Z\). Setting 

(12.35) 

when KD~» I. The only limiting factor is the allowable magnitude of U(s) (Figure 
12.16) when KD is large. If KQ is 100, the system has a fast response and zero steady-
state error. Furthermore, the effect of the disturbance is reduced significantly. 

In general, we note that PID controllers are particularly useful for reducing 
steady-state error and improving the transient response when G(s) has one or two 
poles (or may be approximated by a second-order process). 

The selection of the three coefficients of PID controllers is basically a search prob
lem in a three-dimensional space. Points in the search space correspond to different 
selections of a PID controller parameters. By choosing different points of the parame
ter space, we can produce, for example, different step responses for a step input. A PID 
controller can be determined by moving in this search space on a trial-and-error basis. 

The main problem in the selection of the three coefficients is that these coeffi
cients do not readily translate into the desired performance and robustness charac
teristics that the control system designer has in mind. Several rules and methods 

FIGURE 12.17 
Root locus with 
-z , - - 6 + /2. 

increasing 

;4 
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have been proposed to solve this problem. In this section, we consider several design 
methods using root locus and performance indices. 

The first design method uses the ITAE performance index of Section 5.7 and 
the optimum coefficients of Table 5.6 for a step input or Table 5.7 for a ramp input. 
Hence, we select the three PID coefficients to minimize the ITAE performance 
index, which produces an excellent transient response to a step (Figure 5.30c) or a 
ramp. The design procedure consists of three steps: 

1. Select the con of the closed-loop system by specifying the settling time. 

2. Determine the three coefficients using the appropriate optimum equation (Table 5.6) 
and the o)n of step 1 to obtain Gc(s). 

3. Determine a prefilter Gp(s) so that the closed-loop system transfer function, T(s), 
does not have any zeros, as required by Equation (5.47). 

EXAMPLE 12.8 Robust control of temperature 

Consider a temperature controller with a control system as shown in Figure 12.16 
and a process 

(S + iy 
If Gc(s) = 1, the steady-state error is 50%, and the settling time (with a 2% criterion) 
is 3.2 seconds for a step input. We want to obtain an optimum ITAE performance for 
a step input and a settling time of less than 0.5 second. Using a PID controller, we have 

KDs2 + Kps + Ki 
Gc{s) = . (12.37) 

Therefore, the closed-loop transfer function without prefiltering [Gp(s) = 1] is 

Y(s) GrXs)G(s) 

G(s) = T—~.To- (12-36) 

Us) = 
Kr.K2 + Kr,* + Kr 

(12.38) 

R{s) 1 + Gc(s)G{s) 

KDs2 + KPs + Kf 

/ + (2 + KD)s2 + ( 1 + KP)s + Ki 

The optimum coefficients of the characteristic equation for ITAE are obtained from 
Table 5.6 as 

53 + 1.75o)ns
2 + 2.15to„2s + (o„3. (12.39) 

We need to select. o>„ in order to meet the settling time requirement. Since 
Ts = 4/(gcon) and g is unknown but near 0.8, we set o)„ = 10. Then, equating the 
denominator of Equation (12.38) to Equation (12.39), we obtain the three coefficients 
as KP = 214, KD = 15.5, and Kr = 1000. 

Then Equation (12.38) becomes 

15.5/ + 214.? + 1000 

^ " s3 + 17.5/ + 215* + 1000 
15.5(^ + 6.9 + /4.1)(* + 6.9 - /4.1) 

= , f—£ J—L. (12.40) 
j 3 + 17.5/ + 215.? + 1000 
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The response of this system to a step input has an overshoot of 32%, as recorded in 
Table 12.2. 

We select a prefilter Gp(s) so that we achieve the desired ITAE response with 

Gc(s)G(s)Gp(s) = i00f£ 

1 + Gc(s)G(s) ' s3 -* 17.5s2 + 215.? + 1000" 
TW = ^ 7 7 ^ 7 = . „ « , , _ • (12.41) 

Therefore, we require that 

64 5 
GJs) - -= (12.42) 

p s2 + 13.8s + 64.5 
in order to eliminate the zeros in Equation (12.40) and bring the overall numerator 
to 1000. The response of the system T(s) to a step input is indicated in Table 12.2. 
The system has a small overshoot, a settling time of less than 5 second, and zero 
steady-state error. Furthermore, for a disturbance Td(s) = 1/s, the maximum value 
of y(t) due to the disturbance is 0.4% of the magnitude of the disturbance. This is a 
very favorable design. • 

EXAMPLE 12.9 Robust system design 

Let us consider again the system in Example 12.8 when the plant varies significantly, 
so that 

G(s) = — r, (12.43) 
J
 (TS + 1)2 K ' 

where 0.5 < r ^ 1 and 1 S K ^ 2. We want to achieve robust behavior using an 
ITAE optimum system with a prefilter while attaining an overshoot of less than 4% 
and a settling time (with a 2% criterion) of less than 2 seconds, while G(s) can attain 
any value in the range indicated. We select con = 8 in order to attain the settling time 
and determine the ITAE coefficients for K = 1 and T = 1. Completing the calcula
tion, we obtain the system without a prefilter [Gp(s) = 1] as 

12(s2 + 11.38s + 42.67) 
TAs) = -=-^ z -, (12.44 

53 + 14s2 + 137.6s + 512 

Table 12.2 Results for Example 12.8 

Controller 

Percent overshoot 
Settling time (seconds) 
Steady-state error 
Disturbance error 

Gc(s) = 1 

0 
3.2 
50.1 % 
52% 

PID and 
Gp(s) = 1 

31.7% 
0.20 
0.0% 
0.4% 

PID with 
Gp{s) Prefilter 

1.9% 
0.45 
0.0% 
0.4% 
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and 

We select a prefilter 

1202 + H.3&S + 42.67) 
Gc(s) = - i -. (12.45) 

( - / , ) « _ ^^L (12.46) 
pK ' s2 + 11.38A- + 42.67 v 

to obtain the optimum ITAE transfer function 

512 
T(s) = i = . (12.47) 

W s3 + 14.92 + 137.65 + 512 
We then obtain the step response for the four conditions: r = l,K — 1;T = 0.5, 
K = 1;T = 1, K = 2; and r = 0.5, K = 2. The results are summarized in Table 
12.3. This is a very robust system. • 

The value of <an that can be chosen will be limited by considering the maximum 
allowable u(t), where u(t) is the output of the controller, as shown in Figure 12.16. If 
the maximum value of ea{t) is 1, then u{t) would normally be limited to 100 or less. 
As an example, consider the system in Figure 12.16 with a PID controller, 
G(s) = l/(s(s + 1)), and the necessary prefilter Gp(s) to achieve ITAE perfor
mance. If we select con = 10, 20, and 40, the maximum value of u(i) is as recorded in 
Table 12.4. If we wish to limit u(t) to a maximum equal to 100, we need to limit con to 
16. Thus, we are limited in the settling time we can achieve. 

Let us consider the design of a PID compensator using frequency response 
techniques for a system with a time delay so that 

Ke~Ts 

G(,) = _ . (12.48) 

This type of system represents many industrial processes that incorporate a time 
delay. We use a PID compensator to introduce two equal zeros so that 

Table 12.3 Results for Example 12.9 with cjn = 8 

T = 1 T = 0.5, T = 1 , T = 0 . 5 , 
Plant Conditions K = 1 K = 1 K = 2 K = 2 
Percent overshoot 2% u% 0% 1% 
Settling time (seconds) 1.25 0.8 0.8 0.9 

Table 12.4 Maximum Value of Plant Input 

con 
u(t) maximum for R(s) = 
Settling time (seconds) 

= 1/5 
10 
35 
0.9 

20 
135 
0.5 

40 
550 
0.3 
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The design me thod is as follows: 

1. Plot the uncompensated Bode diagram for KjG(s)/s with a gain K, that satisfies the 
steady-state error requirement. 

2. Place the two equal zeros at or near the crossover frequency coc. 

3. Test the results and adjust K[ or the zero locations, if necessary. 

EXAMPLE 12.10 PID control of a system with a delay 

Consider the system of Figure 12.16 when 

G(s) = 
0.1s + V 

(12.50) 

where K = 20 is selected to achieve a small steady-state error for a step input, and 
where Gp(s) = 1. We want an overshoot to a step input of less than 5%. 

Plotting the Bode diagram for G(j(a), we find that the uncompensated system 
has a negative phase margin and that the system is unstable. 

We will use a PID controller of the form of Equation (12.49) to attain a desir
able phase margin of 70°. Then the loop transfer function is 

20<T°-U(™ + 1)2 

(wwow = - ^ V i r - (1Z51) 

where K(K = 20. We plot the Bode diagram without the two zeros, as shown in 
Figure 12.18. The phase margin is -32°, and the system is unstable prior to the 
introduction of the zeros. 

Because we have introduced a pole at the origin due to the integration term in 
the PID compensator, we may reduce the gain KfK because ess is now zero. We 

FIGURE 12.18 
Bode diagram for 
G(s)/s for Example 
12.10. 
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FIGURE 12.19 
Bode diagram for 
Gc(s)G(s) for 
Example 12.10. 
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place the two zeros at or near the crossover coc = 11. We choose to set TJ = 0.06 so 
that the two zeros are set at w - 16.7. Also, we reduce the gain to KjK = 4.5. Then 
we obtain the frequency response shown in Fig. 12.19, where 

4.5(0.06* + l ) V ° l i 

Gc(s)G(s) = 
s(0.1s + 1) 

(12.52) 

The new crossover frequency is coc = 4.5, and the phase margin is 70°. The step 
response of this system has no overshoot and has a settling time (with a 2% criterion) 
of 0.80 second. This response satisfies the requirements. However, if we wanted to 
adjust the system further, we could raise KjK to 10 and achieve a somewhat faster 
response with an overshoot of Jess than 5%. • 

As a final consideration of the design of robust control systems using a PID 
controller, we turn to an s-plane root locus method. This design approach may be 
simply stated as follows: 

1. Place the poles and zeros of G(s)/s on the s-plane. 

2. Select a location for the zeros of G,.(s) that will result, in an acceptable root locus and 
suitable dominant roots. 

3. Test the transient response of the compensated system and iterate Step 2, if necessary. 

12.7 THE ROBUST INTERNAL MODEL CONTROL SYSTEM 

The internal model control system is shown in Figure 12.20 and was previously con
sidered in Section 11.8. We now consider again the use of the internal model design 
with special attention to robust system performance. The internal mode] principle 
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FIGURE 12.20 
The internal model 
control system. 
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states that if Gc(s)G(s) contains R(s) then y(t) will track r{t) asymptotically (in the 
steady state), and the tracking is robust. 

Examining the system of Figure 12.20, we note that for lower-order processes, state 
variable feedback will not be required, and a suitable Gc(s) can be obtained. However, 
with higher-order systems, the feedback of all state variables may be required. 

Consider a simple system with G(s) = 1/s, for which we seek a ramp response 
with a steady-state error of zero. A PI controller is sufficient, and wc let K = 0 (no 
state variable feedback). Then we have 

Gc(s)G(s) =Up+
 KJ Kps K, 

(12.53) 

Note that for a ramp, R(s) = 1/s2, which is contained as a factor of Equation 
(12.53), and the closed-loop transfer function is 

m Kps + Ki 

sz + KpS + Ki 
(12.54) 

Using the ITAE specifications for a ramp response (Table 5.7), we require that 

T{s) = 
3.2<w„.v + o>„2 

s + 3.2o)„s + toj-
12.55) 

We select wn to satisfy a specification for the settling time. For a settling time (with 
a 2% criterion) of 1 second, we select a)n = 5. Then we require Kp = 16 and 
Ki = 25. The response of this system settles in 1 second and then tracks the ramp 
with zero steady-state error. If this system (designed for a ramp input) receives a 
step input, the response has an overshoot of 5% and a settling time of 1.5 seconds. 
This system is very robust to changes in the plant. For example, if G(s) = K/s 
changes gain so that K shifts from K = 1 by ±50%, the change in the ramp 
response is insignificant. 

EXAMPLE 12.11 Design of an internal model control system 

Consider the system of Figure 12.21 with state variable feedback and a compensator 
Gc(s). We wish to track a step input with zero steady-state error. Here, we select a 
PID controller for Gc(s). We then have 

KDs2 + KPs + Kj 
GAS) = , 
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FIGURE 12.21 
An internal model 
control with state 
variable feedback 
and GJs). 
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and G(s)Gc(s) will contain R(s) = 1/s, the input command. Note that we feed back 
both state variables and add these additional signals after Gc(s) in order to retain 
the integrator in Gc(s). 

The goal is to achieve a settling time (to within 2% of the final value) in less 
than 1 second and a deadbeat response (see Section 10.1.1) while retaining a robust 
response. Here, we assume that the two poles of G(s) can change by =50%. Then 
the worst-case condition is 

G(s) = 
1 

(s + 0.5)(5 + 1)' 

One design approach is to design the control for this worst-case condition. Another 
approach, which we use here, is to design for the nominal G(s) and one-half the 
desired settling time. Then we expect to meet the settling time requirement and attain 
a very fast, highly robust system. Note that the prefilter GP(s) is used to attain the 
desired form for T(s). 

The response desired is deadbeat (see Table 10.2), so we use a third-order trans
fer function as 

7(5) = (,), 

s3 + 1.9cons
2 + 2.20ojn

2s + con
r (12.56) 

and the settling time (with a 2% criterion) is Ts = 4.04/<on. For a settling time of 2 

second, we use con = 8.08. 
The closed-loop transfer function of the system of Figure 12.21 with the appro

priate GP(s) is 

m = K, 

s3 I (3 + KD + Kb)s
2 + (2 + KP + Ka + 2Kb)s + A7 

(12.57) 

We let Ka = 10, Kb = 2,KP = 127.6, K, = 527.5, and KD = 10.35. Note that T(s) 
could be achieved with other gains, including Kb = 0. 

The step response of this system has a deadbeat response with an overshoot of 
1.65% and a settling time of 0.5 second. When the poles of G{s) change by ±50%, 
the overshoot changes to 1.86%, and the settling time becomes 0.95 second. This is 
an outstanding design of a very robust, deadbeat response system. • 
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12.8 DESIGN EXAMPLES 

In this section we present five illustrative examples. In the first example, an aircraft 
autopilot is analyzed using root locus methods. In the second example, a PI con
troller and a PID controller are designed for a space telescope control system in the 
presence of time delays. The third example is the design of a robust bobbin drive 
using robust PID controller design approach with ITAE optimal performance 
objectives. The fourth example illustrates the design of two degree-of-freedom con
trollers (that is, two separate controllers) for an ultra-precision diamond turning 
machine. In the fifth and final design example, we consider the practical problem of 
designing a controller in the presence of an uncertain time delay. The specific prob
lem under investigation is a PID controller for a digital audio tape drive. The design 
process is highlighted with an emphasis on robustness. 

EXAMPLE 12.12 Aircraft autopilot 

A typical aircraft autopilot control system consists of electrical, mechanical, and 
hydraulic devices that move the flaps, elevators, fuel-flow controllers, and other 
components that cause the aircraft, to vary its flight. Sensors provide information on 
velocity, heading, rate of rotation, and other flight data. This information is com
bined with the desired flight characteristics (commands) available electronically to 
the autopilot.The autopilot should be able to fly the aircraft on a heading and under 
conditions set by the pilot. The command often consists of a predetermined heading. 
Design often focuses on a forward-moving aircraft that moves somewhat up or 
down without moving right or left and without rolling (tipping the wings). Such a 
study is called pitch axis design. The aircraft is represented by a process [26] 

G(s) = ; =-^ - r , (12.58) 
V ; s(s + 1/T)(S2 + 2^(0^ + (Oi2) 

where r is the time constant of the actuator. Let r = 4, ̂ i = 2, and C - r Th e n t n e 

s-plane plot has two complex poles, a pole at the origin, and a pole at s = —4, as 
shown in Figure 12.22. The complex poles, representing the aircraft dynamics, can 
vary within the dashed-line box shown in the figure. We then choose the zeros of 
the controller as s = -1.3 ± ;2, as shown. We select the gain K so that the roots r2 

and r2 are complex with a £ of 1/V2. The other roots, r: and rh lie very near the 
zeros. Therefore, the closed-loop transfer function is approximately 

T(s) * -z — = -5 , (12.59) 
sz + 2£<ons + (02 s2 + 3.16s I 5 

with a)n = V 5 and t, = 1/V2. The resulting response to a step input has an over
shoot of 4.5% and a settling time (with a 2% criterion) of 2.5 seconds, as expected. • 

EXAMPLE 12.13 Space telescope control system 

Scientists have proposed the operation of a space vehicle as a space-based research 
laboratory and test bed for equipment to be used on a manned space station. The 
industrial space facility (ISF) would remain in space, and the astronauts would be able 
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M / V 5 

FIGURE 12.22 
Root locus for 
aircraft autopilot. 
The complex poles 
can vary within the 
dashed-line box. 

• a 

to use it only when the shuttle is attached [16,21].The ISF will be the first permanent, 
human-operated commercial space facility designed for R&D, testing, and, eventually, 
processing in the space environment. 

We will consider an experiment operated in space but controlled from Earth. The 
goal is to manipulate and position a small telescope to accurately point at a planet. We 
want to have a steady-state error equal to zero, while maintaining a fast response to a 
step with an overshoot of less than 5%. The actuator chosen is a low-power actuator, 
and the model of the combined actuator and telescope is shown in Figure 12.23. The 
command signal is received from an Earth station with a delay of 7r/16 seconds. A sen
sor will measure the pointing direction of the telescope accurately. However, this mea
surement is relayed back to Earth with a delay of TT/16 seconds. Thus, the total transfer 
function of the telescope, actuator, sensor, and round-trip delay (Figure 12.24) is 

_-«r/8 

O W - ^ - j j J . (12.60) 

We propose a PID controller where 

Gr(s) = KP 4- h KDs = . (12.61) 

FIGURE 12.23 
Model of a low-
power actuator and 
telescope. 
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FIGURE 12.24 
Feedback control 
system for the 
telescope 
experiment. 
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The use of only the proportional term will not be acceptable since we require a 
steady-state error of zero for a step input. Thus, we must use a nonzero value of Kh 

and hence we may elect to use either a proportional plus integral control (PI) or a 
proportional plus integral plus derivative control (PID). 

We will first try PI control, so that 

Gc(s) = KP + 
Kj KPs + KL 

(12.62) 

Since we have a pure delay e 7 we use the frequency response methods for the 
design process. Thus, we will translate the overshoot specification to the frequency 
domain. If we have two dominant characteristic roots, the overshoot to a step is 5% 
when £ = 0.7, or the phase margin requirement is about 70°. 

If we choose KP = 0.022 and Kj = 0.22, we have 

Gc(s)G(s) = 
0.22(0.15 + l ) e - w / 8 

s(s + 1) \2 
(12.63) 

and the Bode diagram is shown in Figure 12.25. The location of the zero at s = -10 
was chosen to add a phase lead angle in order to attain the desired phase margin. An 
iterative procedure yields a series of trials for Kx and K2 until the desired phase 
margin is achieved. Note that we have achieved a phase margin of about 63°. The 
actual step response was plotted, and we determine that the overshoot was 4.7% 
with a settling time (with a 2% criterion) of 16 seconds, as recorded in Table 12.5. 

The proportional plus integral plus derivative controller is 

Gc(s) = 
KPs + Kj + KDsl 

(12.64) 

We now have three parameters to vary to achieve the desired phase margin. If we 
select, after some iteration, KP = 0.8, Kt = 0.5, and KD = 10-3, we obtain a phase 
margin of 64°. The percentage overshoot is 3.7%, and the settling time (with a 2% 
criterion) is 5.8 seconds. Perhaps the easiest way to select the gain constants is to let 
KD be a small, but nonzero, number initially and KP = K} = 0, then plot the fre
quency response. In this case, we choose KD = 10-3 and obtain a Bode plot. We then 
use KP ~ Kj and iterate to obtain the appropriate values of these unspecified gains. 

The performance of the PI- and the PID-compensated systems is recorded in Table 
12.5. The PID controller is the most desirable, since it provides a shorter settling time. • 
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FIGURE 12.25 
Bode diagram for 
the system with the 
PI controller. 
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Table 12.5 Step Response of the Space Telescope for Two Controllers 

Steady-State 
Error 

Percent 
Overshoot 

Settling Time 
(seconds) 

PI controller 
PID controller 

4.7 
3.7 

16.0 
5.8 

EXAMPLE 12.14 Robust bobbin drive 

Monofilament nylon is produced by an extrusion process that outputs filament at a 
constant rate. The product is wound onto a bobbin that rotates at a maximum speed 
of 2000 rpm.The tension in the filament must be held between 0.2 and 0.6 pound to 
ensure that it is not stretched. The winding diameter varies between 2 to 4 inches. 

The filament is laid onto the bobbin by a ballscrew-driven arm that oscillates 
back and forth at constant speed, as shown in Figure 12.26(a).The arm must reverse 
rapidly at the end of the move. The required ballscrew speed is 60 rpm. The prime 
requirement of the bobbin drive is to provide a controlled tension. Since the wind
ing diameter varies by 2 to 1, the tension will fall by 50% from start to finish. 

The control system will have a system structure as shown in Figure 12.26(b), for 
which we select a PID controller. The parameter variations are 1,5 ^ Km ^ 2.5 and 
3 < p < 5 with the nominal conditions Km = 2 and p = 4. Furthermore, a third 
pole at s = -50 has been omitted from the model. The requirements are an over
shoot less than 2.5% and a settling time (with a 2% criterion) less than 0.4 second. 
The magnitude of u(i) must be less than 100. 

Using a PID controller, the TTAE design, and the nominal parameters, we de
termine con from the settling time requirement. Since we expect that £ « 0.8, we use 

T, 
4 

0.8(ot 
< 0.4. 

We select con = 23 as the maximum allowable for \u\ < 100. Then, for 

Gc(s) -=KP + 
Kj 

KDs, 
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Bobbin 

Monofilament 

(a) 

Traverse 
motor 

FIGURE 12.26 
A monofilament 
bobbin winder. 

Rls) GJs) Gc(s) 
U(s) 

G(s) 

Km 
s(s + p) 

(b) 

we obtain KP = 568.68, Kj = 6083.5, and KD = 18.13. Using the appropriate pre-
filter, we obtain the response recorded in Table 12.6. The system does not offer ro
bust performance since the overshoot requirement is not satisfied when the 
worst-case parameters are considered. 

We also examine the performance of the system with the nominal parameters 
but with the unmodeled pole added, so that the actual process is 

2(50) 
G ( S ) = s(s + 4 ) ( /+ SO)' ( 1 2 6 5 ) 

Table 12.6 Response of the Bobbin Drive System for a Unit Step Input 
(original design) 

Percent Settling 
Parameters Overshoot Time 

u(t) 
r(f) 

Nominal Km = 2, 1.96% 
parameters p = 4 

Worst-case Km = 1.5, 7.48% 
parameters p = 3 

Nominal parameters 9.82% 
and added third pole 
at s = -50 

0.318 

0.375 

0.732 

95 

90 
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30 

FIGURE 12.27 
Root locus for the 
normal case and 
the worst case for 
K -= 1 and K = 3. 
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case s>

 s(s + 4) 

-10 

_ Worst _ 
• G{s) 

case S(s + 5) 

•30 -25 -20 -15 -10 
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(Note that the DC gain, lim sG(s), remains 0.5.) The response of the PID controller 
with the added pole is recorded in Table 12.6. Again, the system fails the require

ment of robust performance. 
We need to adjust the system so that the performance with the worst-case para

meters is acceptable. Examine the root locus for the nominal parameters shown in 
Figure 12.27. Insert a cascade gain K prior to Gc(s) so that we have KGc(s)G(s). 
Then the roots for K = 1 and K = 3 are shown on the locus. Since the worst-case 
response occurs when the motor constant Km drops to 1.5, we use the cascade gain 
K = 3 to move the roots to the left on the s-plane. Then, when the gain Km drops to 
1.5, the roots still are in the desired region. The response of the system with K = 3 is 
recoi_ded in Tabic 12.7 for the nominal and worst-case conditions, as well as with the 
added pole. This system meets all the specifications. This approach uses a cascade 
gain that, when adjusted correctly, will drive the dominant roots near the complex 
zeros of the PID controller. Then, when the worst parameter change occurs, the sys
tem will still maintain the required performance. • 

EXAMPLE 12.15 Ultra-precision diamond turning machine 

The design of an ultra-precision diamond turning machine has been studied at 
Lawrence Livermore National Laboratory. This machine shapes optical devices 
such as mirrors with ultra-high precision using a diamond tool as the cutting device. 
In this discussion, we will consider only the z-axis control. Using frequency response 
identification with sinusoidal input to the actuator we determined that 

G(s) = 
4500 

s + 60" 
(12.66) 
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Table 12.7 Response of the Bobbin Drive System for a Unit 
Step with Additional Cascade Gain K = 3 

Percent 
Overshoot 

Settling Time 
(seconds) 

Nominal parameters 
Worst-case parameters 
Nominal parameters 

and third pole 

0.12% 
0.47% 
0.50% 

0.218 
0.214 
0.242 

FIGURE 12.28 
Turning machine 
control system. 

The system can accommodate high gains, such as 4500, since the input command, 
r(t), is a series of step commands of very small magnitude (a fraction of a micron). 
The system has an outer loop for position feedback using a laser interferometer 
with an accuracy of 0.1 micron (10-7 m). An inner feedback loop is also used for 
velocity feedback, as shown in Figure 12.28. 

We want to select the controllers, G-[(s) and G2(s), to obtain an overdamped, 
highly robust, high-bandwidth system. The robust system must accommodate 
changes in G(s) due to varying loads, materials, and cutting requirements. Thus, we 
seek a large phase margin and gain margin for the inner and outer loops, and low 
root sensitivity. The specifications are summarized in Table 12.8. 

Since we want zero steady-state error for the velocity loop, we use a velocity 
loop controller G2(s) = G^fyG^s), where G3(s) is a PI controller and G4(s) is a 
lead controller. We use 

K, 
G2(s) = G3(s)G4(s) ={Kp + -f 

1 + K4s 

and choose KP/Kj = 0.00532, K4 = 0.00272, and a = 2.95. We now have 

5 + 188 s + 368 

Position _, 
command 

(microns) 

. 

Position 
controller 

G,(0 

G2(s) = KP-

U(s) + r 

_ , 

Laser 
Interferometer 

1 
i 

s s 

Velocity 
controller 

G2(s) 

+ 

Tachometer 

1 

1085' 

Actuator 
and cutter 

G(s) 

V(s) 
Velocity 1 

s • • R v ) 
Position 
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Table 12.8 Specifications for Turning Machine Control System 

Transfer Function 

Specification 

Minimum bandwidth 
Steady-state error 
to a step 

Minimum damping 
ratio I 

Maximum root 
sensitivity I Sr

K | 
Minimum phase 
margin 

Minimum gain 
margin 

Velocity, 
V(s)/U{s) 

950 rad/s 
0 

0.8 

1.0 

90° 

40 dB 

Position 
Y(s)/R(s) 
95 rad/s 
0 

0.9 

1.5 

75° 

60 dB 

The root locus for G2(s)G(s) is shown in Figure 12.29. When KP = 2, we have, for 
the velocity closed-loop transfer function, 

V(s) 90000 + 188)(5 + 368) 104 

Hs) = U(s) (s + 205)(5 + 305)0 + 104) (s + 104)' 
(12.67) 

which is a large-bandwidth system. The actual bandwidth and root sensitivity are 
summarized in Table 12.9. Note that we have exceeded the specifications for the ve
locity transfer function. 

We will use a lead network for the position loop of the form 

GAs) = K 
1 + K<s 

FIGURE 12.29 
Root locus for 
velocity loop as Kp 
varies. 
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Table 12.9 Design Results for Turning Machine Con
trol System 

Achieved Result 

Closed-loop 
bandwidth 

Steady-state 
error 

Damping ratio, t, 
Root sensitivity, 

\srK\ 
Phase margin 
Gain margin 

Velocity 
Transfer 
Function 

1000 rad/s 

0 

1.0 
0.92 

93° 
Infinite 

Position Transfer 
Function 
Y(s)/R(s) 

1000 rad/s 

0 

1.0 
1.2 

85° 
76 dB 

and we choose a = 2.0 and iC5 = 0.0185 so that 

Kx{s + 54) 
GM = 108 

We then plot the root locus for 

If we use the approximate T2(s) of Equation (12.67), we have the root locus of 
Figure 12.30(a). Using the actual T2(s), wc get the close-up of the root locus shown 
in Figure 12.30(b). We select KP = 1000 and achieve the actual results for the total 
system transfer function as recorded in Table 12.9. The total system has a high phase 
margin, has a low sensitivity, and is overdamped with a large bandwidth. This system 
is very robust. • 

EXAMPLE 12.16 Digital audio tape controller 

Consider the feedback control system shown in Figure 12.31, where 

Gd(s) = e-T*. 

The exact value of the time delay is uncertain, but it is known to lie in the interval 
T\ < 7' s T2. For example, if a robot on Mars is being remotely controlled from 
earth, the time it takes the signals to reach the planetary robot is not precisely 
known since transient time depends on the distance between the transmitter and the 
planetary robot, the atmospheric medium through which the signals travel, inter
planetary space effects, and so forth—all of which are time varying and cannot be 
precisely modeled. 

Define 

GJs) = e-TsG{s). 



862 Chapter 12 Robust Control Systems 

;« 

K\ increasing 

—Xr 
-104 

-**- -> a 

(a) 

FIGURE 12.30 
The root locus for 
K1 > 0 for (a) 
overview and (b) 
close-up near origin 
of the s-plane. 

FIGURE 12.31 
A feedback system 
with a time delay in 
the loop. 
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or 

GJs) - G(s) = e~TsG(s) - G(s) = (e~Ts - l)G(s) 

Gm(s) 

G(s) 
- 1 = e~Ts - 1. 



FIGURE 12.32 
Multiplicative 
uncertainty 
representation. 
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If we define 

863 

MO) = e~,s - 1, 

then we have 

Gm{s) = (1 + M(s))G(s). (12.68) 

In the development of a robust stability controller, we would like to represent 
the time-delay uncertainty in the form shown in Figure 12.32 where we need to 
determine a function M(s) that approximately models the time delay. This will lead 
to the establishment of a straightforward method of testing the system for stability 
robustness in the presence of the uncertain time-delay. The uncertainty model is 
known as a multiplicative uncertainty representation, as discussed in Section 12.3. 

Since we are concerned with stability, we can consider R(s) = 0. Then we can 
manipulate the block diagram in Figure 12.32 to obtain the form shown in Figure 
12.33. Using the so-called small gain theorem, we have the condition that the closed-
loop system is stable if 

| M r ., Gc(jco)G(jco) 
1 + Gc(j(o)G(j<o) 

or equivalently (see Equation (12.15)) 

1 
\M(j(o)\ 1 + 

Gc(jco)G(j<o) 

< 1, 

for all o). 

The problem is that the time delay T is not known exactly. One approach to 
solving the problem is to find a weighting function, denoted by W(s), such that 

[e-A»r - i | < \W(ja>)\ for all o> and Tx < T < T2. 

If W(s) satisfies the above inequality, it follows that 

\M(jco)\ < \W(ja>)\. 

Ris) 
+y-N 

_ i k 

Controller 

Gc(s) 

z 
M(s) 

e 

1^-

Process 

G{s) - • >'(.v| 

FIGURE 12.33 
Equivalent block 
diagram depiction 
of the multiplicative 
uncertainty. 

M(s) 

-Gr(s)G(s) 
l + Gc(s)G(s) 
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Therefore, the robust stability condition can be satisfied by 

\W(jio)\ < 1 + 
1 

Gc{joy)G(joi) 
for all to. (12.69) 

This is a conservative bound. If the condition in Eq. (12.69) is satisfied, then stabili
ty is guaranteed in the presence of any time delay in the range T1 ^ T ^ T2 [5], 
[36]. If the condition is not satisfied, the system may or may not be stable. 

Suppose we have an uncertain time delay that is known to lie in the range 
0.1 < T < 1. We can determine a suitable weighting function W(s) by plotting the 
magnitude of e~julT - 1, as shown in Figure 12.34 for various values of Tin the range 
T] < T s T2. A reasonable weighting function obtained by trial and error is 

This function satisfies the condition 

\e-i»T - 1 

1.2̂  + 1 

< W(ja>)\. 

Keep in mind that the selection of the weighting function is not unique. 
A digital audio tape (DAT) stores 1.3 gigabytes of data in a package the size of 

a credit card—roughly nine times more than a half-inch-wide reel-to-reel tape or 
quarter-inch-wide cartridge tape. A DAT sells for about the same amount as a flop
py disk, even though it can store 1000 times more data. A DAT can record for two 

FIGURE 12.34 
Magnitude plot of 
\e-ia,T - 11 for 
T= 0.1,0.5, and 1. Frequency (rad/s) 



FIGURE 12.35 
Digital audio tape 
driver mechanism. 
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- Guide roller 

Fixed post 

Take-up 
reel 

hours (longer than either reel-to-reel or cartridge tape), which means that it can 
run longer unattended and requires fewer changes and hence fewer interruptions 
of data transfer. DAT gives access to a given data file within 20 seconds, on the av
erage, compared with several minutes for either cartridge or reel-to-reel tape [2]. 

The tape drive electronically controls the relative speeds of the drum and tape so 
that the heads follow the tracks on the tape, as shown in Figure 12.35. The control system 
is much more complex than that for a CD-ROM because more motors have to be accu
rately controlled: capstan, take-up and supply reels, drum, and tension control. The ele
ments of the design process emphasized in this example are highlighted in Figure 12.36. 

Consider the speed control system shown in Figure 12.37. The motor and load 
transfer function varies because the tape moves from one reel to the other. The 
transfer function is 

G(s) -
Kt 

(s + PMS + p2y 
(12.70) 

where nominal values are Km = 4, p{ = 1, and p2 = 4. 
However, the range of variation is 3 < Km < 5,0.5 < pl < 1.5, and 

3.5 < /?2 — 4.5. Thus, the process belongs to a family of processes, where each mem
ber corresponds to different values of Km, ph and p2. The design goal is 

Design Goal 
Control the DAT speed to the desired value in the presence of significant process 
uncertainties. 

Associated with the design goal we have the variable to be controlled defined as the 
tape speed: 

Variable to Be Controlled 
DAT speed Y(s). 

The design specifications are 

Design Specifications 

DS1 Percent overshoot less than 13% and settling time less than 2 seconds for a unit 
step input. 
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| Topics emphasized in this example 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

i 
Establish the system configuration 

i 
Obtain a model of the process, the 

actuator, and the sensor 

< r 

Describe a controller and select key 
parameters to be adjusted 

i 
Optimize the parameters and 

analyze the performance 

1 

Control the DAT speed 
to the desired value 

in the presence of significant 
plant uncertainties. 

DAT speed, Y(s), 

Design specifications: 
DSl: P.O. <I3%andTJ<2s 
DS2: Robust stability 

See Figures 12,35 and 12.37. 

See Equation (12.70). 

See Equation (12.71). 

See Figures 12.39-12.41. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

FIGURE 12.36 Elements of the control system design process emphasized in this digital audio 
tape speed control design. 

DS2 Robust stability in the presence of a time delay at the plant input. The time delay 
value is uncertain but known to be in the range 0 s r < 0.1, 

Design specification DSl must be satisfied for all process in the family. Design specifi
cation DS2 must be satisfied by the nominal process (Km = 4, p1 = 1, p2 = 4). 

The following constraints on the design are given: 

G Fast peak time requires that an overdamped condition is not acceptable. 

J Use a PID controller: 

is 
Gc(s) = KP + — + KDs. 

3 KmKD < 20 when Km = 4. 

The key tuning parameters are the PID gains: 

Select Key Tuning Parameters 
KP, Kj, and Kp. 

(12.71) 
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FIGURE 12.37 
Block diagram of 
the digital audio 
tape speed control 
system. 

Controller 

GJA 

Motor and load 

G(s) • Y(s) 

Since we are constrained to have KmKo ^ 20 when Km = 4, we must select KD ^ 5. 
We will design the PID controller using nominal values for Km, p\, and p2. We will 
analyze the performance of the controlled system for the various values of the process 
parameters, using a simulation to check that DSl is satisfied. The nominal process is 
given by 

G(s) = 
(s + l)(s + 4)* 

The closed-loop transfer function is 

= AKpS2 + AKPs + AK, 
{S) s3 + (5 + 4KD)s2 + (4 + 4KP)s + 4K,' 

If we choose KD = 5, then we write the characteristic equation as 

s3 + 25s2 + 4s + 4(KPs + Kt) = 0, 

or 

i + 4KP(s + K,/KP) = Q 

s(s2 + 25s + 4) 

Per specifications, we try to place the dominant poles in the region defined by 
£a)n > 2 and £ > 0.55. We need to select a value of r = K]/KP, and then we can 
plot the root locus with the gain 4KP as the varying parameter. After several itera
tions, we choose a reasonable value of r = 3. The root locus is shown in Figure 
12.38. We determine that 4KP =» 120 represents a valid selection since the roots lie 
inside the desired performance region. This value of 4KP has been rounded off from 
the exact value on the root locus plot of AKP — 121.7683. We obtain KP = 30, and 
K/ = TKP = 90. The PID controller is then given by 

90 
Gc(s) = 30 + — + 5.s-. 

s 
(12.72) 

The step response (for the process with nominal parameter values) is shown in 
Figure 12.39. A family of responses is shown in Figure 12.40 for various values of 
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FIGURE 12.38 
Root locus for the 
DAT system with 
KD = 5 and 
T = K,jKP = 3. 

-15 -10 
Real Axis 

FIGURE 12.39 
Unit step response 
for the DAT system 
with KP = 30, 
KD = 5, and 
K, - 90. 

y{t) 



FIGURE 12.40 
A family of step 
responses for the 
DAT system for 
various values of 
the process 
parameters Km,p-\, 
and p2. 
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Km, Pi, and p2. None of the responses suggests a percent overshoot over the speci
fied value of 13%, and the settling times are all under the 2 second specification as 
well. As we can see in Figure 12.40, all of the tested processes in the family arc ade
quately controlled by the single PTD controller in Equation (12.72). Therefore DS1 
is satisfied for all processes in the family. 

Suppose the system has a time delay at the input to the process. The actual time 
delay is uncertain but known to be in the range 0 < T < 0.1 s. Following the 
method discussed previously, we determine that a reasonable function W(s) which 
bounds the plots of \e~^T - 1| for various values of Tis 

W(s) = 
0.29s 

0.28^ + 1 

To check the stability robustness property, we need to verify that 

\W(jco)\ < 1 + 
1 

GJU»YS(]») 
for all (o. (12.73) 

The plot of both | W(Jco) | and 1 + 
1 

is shown in Figure 12.41. It can be 
GcU<o)G(j<o) 

seen that the condition in Equation (12.73) is indeed satisfied. Therefore, we expect that 
the nominal system will remain stable in the presence of time-delays up to 0.1 seconds. • 
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FIGURE 12.41 
Stability robustness 
to a time delay of 
uncertain 
magnitude. 
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12.9 THE PSEUDO-QUANTITATIVE FEEDBACK SYSTEM 

Quantitative feedback theory (QFT) uses a controller, as shown in Figure 12.42, to 
achieve robust performance. The goal is to achieve a wide bandwidth for the closed-
loop transfer function with a high loop gain K. Typical QFT design methods use 
graphical and numerical methods in conjunction with the Nichols chart. Generally, 
QFT design seeks a high loop gain and large phase margin so that robust perfor
mance is achieved [27-29,32]. 

In this section, we. pursue a simple method of achieving the goals of QFT with 
an s-plane, root locus approach to the selection of the gain K and the compensator 
Gc(s). This approach, dubbed pseudo-QFT, follows these steps: 

1. Place the n poles and m zeros of G(s) on the s-plane for the nth order G(s). Also, add 
any poles of Gc(s). 

2. Starting near the origin, place the zeros of Gc(s) immediately to the left of each of the 
(n — 1) poles on the left-hand s-plane.This leaves one pole far to the left of the left-
hand side of the .s-plane. 

3. Increase the gain K so that the roots of the characteristic equation (poles of the 
closed-loop transfer function) are close to the zeros of Gc(s)G(s). 

This m e t h o d in t roduces zeros so tha t all b u t o n e of t he roo t loci end on finite 
zeros. If the gain K is sufficiently large, then the poles of T(s) are almost equal to 
the zeros of Gc{s)G{s). This leaves one pole of T{s) with a significant partial frac
tion residue and the system with a phase margin of approximately 90° (actually 
about 85°). 
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FIGURE 12.42 
Feedback system, 

Ris\ K Gc(s) G(s) - •> ' (v ) 

EXAMPLE 12.17 Design using the psendo-QFT method 

Consider the system of Figure 12.42 with 

G(» = 
1 

0 + Pi)(s + PiY 

where the nominal case is /?, = 1 and p2 = 2, with ±50% variation. The worst case 
is with p1 = 0.5 and p2 = 1. We wish to design the system for zero steady-state error 
for a step input, so we use the PID controller 

Gc{s) = . 

We then invoke the internal model principle, with R(s) = \/s incorporated within 
Gc(s)G(s). Using Step 1, we place the poles of Gc(s)G(s) on the s-plane, as shown in 
Figure 12.43.There are three poles (at s = 0, - 1 , and -2) , as shown. Step 2 calls for 
placing a zero to the left of the pole at the origin and at the pole at s = - 1 , as shown 
in Figure 12.43. 

The compensator is thus 

Gc(s) = 
(s + 0.8)(.v + 1.8) 

(12.74) 

We select K = 100, so that the roots of the characteristic equation are close to the 
zeros. The closed-loop transfer function is 

T(s) 
100(J + 0.80)(5 f 1.80) 100 

(s + 0.798)(.y + 1.797)(^ + 100.4) s + 100' 
(12.75) 

This closed-loop system provides a fast response and possesses a phase margin 
of approximately 85°. The performance is summarized in Table 12.10. 

When the worst-case conditions are realized (pi = 0.5 and p2 = 1), the perfor
mance remains essentially unchanged, as shown in Table 12.10. Pseudo-QFT design 
results in very robust systems. • 

12.10 ROBUST CONTROL SYSTEMS USING CONTROL DESIGN SOFTWARE 

In this section, we will investigate robust control systems using control design soft
ware. In particular, we will consider the commonly used PID controller in the feed
back control system shown in Figure 12.16. Note that the system has a prefilter 
Gp(s). The contribution of the prefilter to optimum performance is discussed in 
Section 10.10. 
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FIGURE 12.43 
Root locus for 
KGc(s)G(s). 

jo 

-1.8 

- 2 

-0.8 

-1 
->- a 

Table 12.10 Performance of Pseudo-QFT Design 

Percent 
Overshoot 

Settling Time 

Nominal G(s) 
Worst-case G(s) 

0.01% 
0.97% 

40 nis 
40 ms 

The PID controller has the form 

Gc(s) = 
KDs2 + KPs + Kj 

Note that the PID controller is not a proper rational function (i.e., the degree of the 
numerator polynomial is greater than the degree of the denominator polynomial). 
The objective is to choose the parameters KP, Kh and KD to meet the performance 
specifications and have desirable robustness properties. Unfortunately, it is not 
immediately clear how to choose the parameters in the PID controller to obtain cer
tain robustness characteristics. An illustrative example will show thai it is possible to 
choose the parameters iteratively and verify the robustness by simulation. Using the 
computer helps in this process, because the entire design and simulation can be 
automated using scripts and can easily be executed repeatedly. 

EXAMPLE 12.18 Robust control of temperature 

Consider the feedback control system in Figure 12.16, where 

G(s) = 
1 

2' (s + c0y 
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and the nominal value is CQ — 1, and Gp{s) = 1. We will design a compensator based 
on CQ = 1 and check robustness by simulation. Our design specifications include 

1. A settling time (with a 2% criterion) Ts < 0.5 s, and 

2. An optimum ITAE performance for a step input. 

For this design, we will not use a prefilter to meet specification (2), but will 
instead show that acceptable performance (i.e., low overshoot) can be obtained by 
increasing a cascade gain. 

The closed-loop transfer function is 

T(s) = 
KDs2 + KPs + K} 

s3 + (2 + KD)s2 + ( 1 + KP)s + K,' 

The associated root locus equation is 

~(s2 + as + b\ n 
l + K[ -3 - = 0 , 

(12.76) 

where 

K = KD + 2, a = 
1 + KP 

2 + K 
and b 

K, 

D 2 + K, 

The settling time requirement Ts < 0.5 s leads us to choose the roots of 
52 + as + b to the left of the s = —t,oin = —8 line in the s-plane, as shown in 
Figure 12.44, to ensure that the locus travels into the required 5-plane region. We 
have chosen a = 16 and b = 70 to ensure the locus travels past the s = - 8 line. 
We select a point on the root locus in the performance region, and using the 
riocfind function, we find the associated gain K and the associated value of con. For 

FIGURE 12.44 
Hoot locus for the 
PID-compensated 
temperature 
controller as K 

Real Axis 

»a=16; b^70; num=[1 a b]; den=[1 0 0 0]; sys=tf(num,den); 
»rlocus(sys) 
»rlocfind(sys) 
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our chosen point, we find that 

K = 118. 

Then, with K, a, and b, we can solve for the PID coefficients as follows: 

KD - K - 2 = 116, 
KP = a(2 + KD) - 1 = 1887, 
Ki = b(2 + KD) = 8260. 

To meet the overshoot performance requirements for a step input, we will use a cas
cade gain K that will be chosen by iterative methods using the step function, as illus
trated in Figure 12.45. The step response corresponding to K = 5 has an acceptable 
overshoot of 2%. With the addition of the gain K = 5, the final PID controller is 

^Kpf + Kps + K, 1 1 6 J 2 - M 8 8 7 J + 8260 
Gc(s) — K = 5 . (12.77) 

s 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

II-'-/ 

. -

K - 1 

: — 4 — _ _ 

K=2 

K = 5 

, 

— — 

__ 

j 

0 0.05 0.1 0.15 0.2 0.25 0.3 

Time (sec) 

FIGURE 12.45 
Step response of 
the PID 
temperature 
controller. 

Ks=118;<«— 
a=16;b=70; 
K=5;-« 

Gain from uncompensated 
root locus. [ 

Increase system gain 
to reduce overshoot. 

KD=Ks-2, KP=a'(2+Ku) 1, K/=b*(2+KD) -4 
numgc=K*[KD KP K,]; dengc=[1 0]; sysgc=tf(numgc,dengc); 
numg=[1]; deng=[1 2 1]; sysg=tf(numg,deng); 
% , _ 
syso=series(sysgc,sysg); 
% 
sys=feedback(syso,[1 ]); 
step(sys) 

PID gains. 
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FIGURE 12.46 
Robust PID 
controller analysis 
with variations in c0. 

cO-10-*-
numg=[1]; deng=[1 2*c0 cOA2]; 
numgc=5*[116 1887 8260]; dengc=[1 0]; 
sysg=tf(numg,deng); 
sysgc=tf(numgc,dengc); 
% 
syso=series(sysgc,sysg); 
% 
sys=feedback(syso,[1]); 
% 
step(sys) 

Specify process parameter. 

We do not use the prcfiltcr. as in Example 12.8. Instead, we increase the cascade 
gain K to obtain satisfactory transient response. Now we can consider the question 
of robustness to changes in the plant parameter CQ, 

The investigation into the robustness of the design consists of a step response 
analysis using the PID controller given in Equation (12.77) for a range of plant 
parameter variations of 0.1 < CQ ^ 10. The results are displayed in Figure 12.46. 
The script is written to compute the step response for a given c0. It can be conve
nient to place the input of CQ at the command prompt level to make the script more 
interactive. 

The simulation results indicate that the PID design is robust with respect to 
changes in CQ. The differences in the step responses for 0.1 ^ CQ ^ 10 are barely dis
cernible on the plot. If the results showed otherwise, it would be possible to iterate 
on the design until an acceptable performance was achieved. Trie interactive capa
bility of the m-file allows us to check the robustness by simulation. • 
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12.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In this section, we will design a PID controller to achieve the desired system re
sponse. Many actual disk drive head control systems use a PID controller and use a 
command signal r(t) that utilizes an ideal velocity profile at the maximum allowable 
velocity until the head arrives near the desired track, when r{t) is switched to a step-
type input. Thus, we want zero steady-state error for a ramp (velocity) signal and a 
step signal. Examining the system shown in Figure 12.47, we note that the forward 
path possesses two pure integrations, and we expect zero steady-state error for a ve
locity input r(i) = At,t > 0. 

The PID controller is 

rt* *r u Kl , r * K°(s + Z l ) (* + *l } 
Gc(s) = Kp + - + KDs = . 

The motor field transfer function is 

CM 
5000 

(s + 1000) 5. 

The second-order model uses Gi(s) = 5, and the design is determined for this 
model. 

We use the second-order model and the PID controller for the s-plane design 
technique illustrated in Section 12.6. The poles and zeros of the system are shown in 
the 5-plane in Figure 12.48 for the second-order model and GT(s) = 5. Then we have 

GMGiisjGAs) = 
5KD(s + zi)(s + zQ 

s*{s + 20) 

We select —Z\ = —120 + /40 and determine 5KD so that the roots are to the left of 
the line s = —100. If we achieve that requirement, then 

T < 
* 100' 

and the overshoot to a step input is (ideally) less than 2% since £ of the complex 
roots is approximately 0.8. Of course, this sketch is only a first step. As a second 

R(.s) 

PID controller 

_ KD(s + z1)(s + zl) 
Gc(s) - s 

^ 
w 

Motor coil 

GtW 

Us) 

•i • 
+>U " 

Load 

f tr\ — 
C 2 ( 5 ) , ( , + 20) 

f *• 
F " 

FIGURE 12.47 Disk drive feedback system with a PID controller. 
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FIGURE 12.48 
A sketch of a root 
locus at K3 

increases for 
estimated root 
locations with a 
desirable system 
response. 

-^+^ • a 

step, we recompute determine KD. We then obtain the actual root locus as shown in 
Figure 12.49 with KD = 800. The system response is recorded in Table 12.11. The 
system meets all the specifications. 

200 

FIGURE 12.49 
Actual root locus 
for the second-
order model. 

< 

- 50 -

-100 

-150 

-200 
-300 -100 

Real Axis 
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Table 12.11 Disk Drive Control System 
Specifications and Actual Performance 

Performance 
Measure 

Percenl overshoot 
Settling time for 
step input 

Maximum response 
for a unit step 
disturbance 

Desired 
Value 

<5% 
<50ms 

<5 x 10 3 

Response for 
Second-Order 
Model 

4.5% 
6 ms 

7.7 x irr7 

12.12 SUMMARY 

The design of highly accurate control systems in the presence of significant plant un
certainty requires the designer to seek a robust control system. A robust control sys
tem exhibits low sensitivities to parameter change and is stable over a wide range of 
parameter variations. 

The three-mode, or PID, controller was considered as a compensator to aid in 
the design of robust control systems. The design issue for a PID controller is the 
selection of the gain and two zeros of the controller transfer function. We used 
three design methods for the selection of the controller: the root locus method, 
the frequency response method, and the U A H performance index method. An 
operational amplifier circuit used for a PID controller is shown in Figure 12.50. 
In general, the use of a PID controller will enable the designer to attain a robust 
control system. 

The internal model control system with state variable feedback and a controller 
Gc(s) was used to obtain a robust control system. Finally, the robust nature of a 
pseudo-QFT control system was demonstrated. 

V0(s) R4R2(RiC]s + \){R2C2s + I) 
G..(s) = = 

Vt{s) RzR}(RzC2s) 

FIGURE 12.50 
Operational 
amplifier circuit 
used for PID 
controller. 

+ 0-
A / A r <, 

/? , 

AA /V 



Exercises 879 

A robust control system provides stable, consistent performance as speci
fied by the designer in spite of the wide variation of plant parameters and 
disturbances. It also provides a highly robust response to command inputs 

and a steady-state tracking error equal to zero. 

For systems with uncertain parameters, the need for robust systems will require the 
incorporation of advanced machine intelligence, as shown in Figure 12.51. 

FIGURE 12.51 
Intelligence 
required versus 
uncertainty for 
modern control 
systems. 

High 

Low 

Adaptive 
system 

Robust 
system 

Feedback 
system 

Open-loop system 
(without feedback) 

Low Moderate High 

Uncertainty of parameters and disturbances 

EXERCISES 

E12.1 The open-loop transfer function of a unity feedback sys
tem is. 

s + a 

(a) Find the system sensitivity w.r.t. a, $£• 

(b) Find the system sensitivity w.r.t. K, S£. 

E12.2 Consider the system with unknown poles. However, it is 
known that P\ and p2 lies between 1 and 3, and K is between 
1 and 5. Is the system stable for all values of K, px and p2 if 

(a) K, = 0.1? 
(b) K, = 1.0? 

. 
s 

Grts) 

K 
(s+Pl) (s+p2) 

G(s) 

E12.3 A closed-loop unity feedback system has the loop 
transfer function 

GC(S)G(S) = -
s(s 

18 

by 
where b is normally equal to 5. Determine S'b and plot 
\T(jo))\ and 'S(jco) on a Bode plot. 

-bs 
b Answer: Si -

FIGURE E12.2 System with unknown poles. 

r bs + 18 
E12.4 A PID controller is used in the system in Figure 12.1, 

where 

G ( S ) = (s ; 2)(, + 8) ' 

The gain KD of the controller (Equation (12.33)) is 
limited to 180. Select a set of compensator zeros so 
that the pair of closed-loop roots is approximately 
equal to the zeros. Find the step response for the 
approximation in Equation (12.35) and the actual 
response, and compare them. 
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E12.5 A system has a process function 

1000 
G(s) = 

10 55 + 1 

and negative unity feedback with a PD compensator 

Gc(s) = Kp + KDs. 

The objective is to design Gc(s) so that the overshoot 
to a step is less than 5% and the settling time (with a 
2% criterion) is less than 50 ms. Find a suitable Gc(s). 

E12.6 Consider the control system shown in Figure E12.6 
when G(s) = \/{s + 5)2, and select a PID controller 
so that the settling time (with a 2% criterion) is less 
than 1.5 second for an 1TAE step response. Plot y{t) 
for a step input r{t) with and without a prefilter. 
Determine and plot y{t) for a step disturbance. Discuss 
the effectiveness of the system. 

Answer: One possible controller is 

Oc{s) = 
Q.5sz + 52.4s + 216 

E12.7 For the control system of Figure E12.6 with 
G(s) = 1/(.5 + 4)2, select a PID controller to achieve 
a settling time (with a 2% criterion) of less than 1.0 
second for an ITAE step response. Plot y(/) for a step 
input /-(0 with and without a prefilter. Determine and 
plot y(t) for a step disturbance. Discuss the effective
ness of the system. 

E12.8 Repeat Exercise 12.6, striving to achieve a mini
mum settling time while adding the constraint that 
«(f)| < 80 for t > 0 for a unit step input, 

r(t) = l , r > 0 . 

Answer: Gc{s) 
3600 + 80s 

E12.9 A system has the form shown in Figufe E12.6 with 

K 
G(s) = 

s(s + l)(s + 4) ' 

where K = 1. Design a PD controller to place the dom
inant closed-loop poles at s = —1.5 ± /2. Determine 
the step response of the system. Predict the effect of a 
change in K of ±50%. Estimate the step response of 
the worst-case system. 

E12.10 A system has the form shown in Figure E12.6 with 

0(s) = 
K 

s(s + 1)(5 + 4) ' 

where K — 1. Design a PI controller so that the dom
inant roots are at s = -0.365 ± /0.514. Determine 
the step response of the system. Predict the effect of a 
change in K of ±50%. Estimate the step response of 
the worst-case system. 

E12.ll Consider the closed-loop system represented in 
state variable form 

where 

X = = Ax + Br 

y = Cx + Dr, 

. • 

" 0 1 " 
- 3 -k 

B = , C = [3 0], and D = 

The nominal value of k -2. However, the value of k 
can vary in the range 0.1 =£ k s 6. Plot the percent 
overshoot to a unit step input as k. varies from 0.1 to 6. 

E12.12 Consider the second-order system 

0 1 " 

-a -b 

y = [1 0]x + [0]w. 

x = X + 

The parameters a, b, Cj, and t-2 are unknown a priori. 
Under what conditions is the system completely con
trollable? Select valid values of a, b, cj, and c2 to 
ensure controllability and plot the step response. 

FIGURE E12.6 
System with 
controller. 

R(s) 
Desired 

inpul 
Gp{s) 

+ r~~\ 
t . 

Controller 

GM 

Disturbance 

*u * Gis) 
Y(s) 

Output 

http://E12.ll
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PROBLEMS 

P12.1 Interest in unmanned underwater vehicles (UUVs) 
has been increasing recently, with a large number of 
possible applications being considered. These include 
intelligence gathering, mine detection, and surveil
lance applications. Regardless of the intended mis
sion, a strong need exists for reliable and robust 
control of the vehicle. The proposed vehicle is shown 
in Figure P12.l(a) [13]. 

We want to control the vehicle through a range of 
operating conditions. The vehicle is 30 feet long with a 
vertical sail near the front. The control inputs are stern-
plane, rudder, and shaft speed commands. In this case, we 
wish to control the vehicle roll by using the stern planes. 
The control system is shown in Figure PI 2.1(b), where 
R(s) = 0, the desired roll angle, and Td(s) = 1/s. We 
select Gc(s) -= K(s + 2), where K = A. (a) Plot 
20 log | r | and 20 Iog|S£| on a Bode diagram, (b) Eval
uate 1 ¾ at 6)B, w/j/2, and (oB/4(T(s) = Y(s)/R(s)). 

P12.2 A new suspended, mobile, remote-controlled video-
camera system to bring three-dimensional mobility to 
professional NFL football is shown in Figure P12.2(a) 
[24].The camera can be moved over the field, as well as 
up and down. The motor control on each pulley is rep
resented by the system in Figure P12.2(b), where 
T1 = 20 ms and T2 = 2 ms. 

(a) Select K so that Mpa> = 1.84. (b) Plot 20 log|T| 
and 20 log|S£| on one Bode diagram, (c) Evaluate 
\Sjc\ at o)B, <w#/2, and o>g/4. (d) Let R(s) = 0 and de
termine the effect of Td(s) = 1/5 for the gain K of 
part (a) by plotting y(t). 

P12.3 Magnetic levitation (maglev) trains may replace air
planes on routes shorter than 200 miles. The maglev 
train developed by a German firm uses electromagnet
ic attraction to propel and levitate heavy vehicles, car
rying up to 400 passengers at 300-mph speeds. But the 
4-inch gap between car and track is difficult to maintain 
[7,12,17]. 

The air-gap control system is shown in Figure 
P12.3(a).The block diagram of the air-gap control sys
tem is shown in Figure P12.3(b). The compensator is 

K(s + 5) 

(a) Find the range of K for a stable system, (b) Select a 
gain so that the steady-state error of the system is zero 
for a step input command, (c) Find y(t) for the gain of 
part (b). (d) Find y(t) when K varies ±15% from the 
gain of part (b). 

P12.4 Computer control of a robot to spray-paint an 
automobile is accomplished by the system shown in 

(a) 

Ms) = 0 

FIGURE P12.1 
Control of an 
underwater vehicle. (b) 
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Pulley 

(a) 

rjs) 

Ris) 

FIGURE P12.2 
Remote-controlled 
TV camera. 

K 
1 

TjS + 1 
_— 

• Y(s) 

(b) 

Figure P12.4(a) [1]. We wish to investigate the system 
when K = 1,10, and 20. (a) For the three values of K, 
determine £, <on, percent overshoot, settling time 
(with a 2 % criterion), and steady-state error for a step 
input. Record your results in a table, (b) Determine 
the sensitivity \Sr

K\ for the three values of K. (c) Select 
the best of the three values of K. (d) For the value se
lected in part (c), determine >•(/) for a disturbance 
Td(s) = 1/s when R(s) = 0. 

P12.5 An automatically guided vehicle is shown in Figure 
P12.5(a) and its control system is shown in Figure Pl2.5(b). 
The goal is to track the guide wire accurately, to be insen
sitive to changes in the gain Kl7 and to reduce the effect 
of the disturbance [15, 25]. The gain K\ is normally 
equal to 1 and Ti = 1/25 second. 
(a) Select a compensator Gc(s) so that the percent 

overshoot to a step input is less than or equal to 
10%, the settling time (with a 2 % criterion) is less 

Guidance 
magnets Air gap 

T-shaped guideway 

(a) 

FIGURE P12.3 
Maglev train 
control. 

KM + 

Desired • ( ) • 
gap - i 

Controller 

Ge{s) 
Coil current 

(b) 

Vehicle and 
levitation coil 

s-A 

(s -t 2)2 
Yis) 

Air gap 
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6 Line encoder 

Screw 

Table encoder Robot and table 

Input 
Computer 

(a) 

• Y(s) 

FIGURE P12.4 
Spray-paint robot. (b) 

than 100 ms, and the velocity constant K„ for a 
ramp input is 100. 

(b) For the compensator selected in part (a), deter
mine :he sensitivity of the system to small 

(c) 

changes in K1 by determining Sr
Ki or 5^,. 

If K, changes to 2 while Gc(s) of part (a) remains 
unchanged, find the step response of the system 
and compare selected performance figures with 
those obtained in part (a). 

(d) Determine the effect of Td(s) = \js by plotting 
y(t) when R(s) = 0. 

P12.6 A roll-wrapping machine (RWM) receives, wraps, 
and labels large paper rolls produced in a paper mill 
[9, 16]. The RWM consists of several major stations: 
positioning station, waiting station, wrapping station, 
and so forth. We will focus on the positioning station 
shown in Figure P12.6(a). The positioning station is 
the first station that sees a paper roll. This station is 
responsible for receiving and weighing the roll, mea
suring its diameter and width, determining the desired 
wrap for the roll, positioning it for downstream pro
cessing, and finally ejecting it from the station. 

Functionally, the RWM can be categorized as a 
complex operation because each functional step (e.g., 
measuring the width) involves a large number of field 
device actions and relies upon a number of accompa
nying sensors. 

The control system for accurately positioning the 
width-measuring arm is shown in Figure PI 2.6(b). The 
negative polep of the positioning arm is normally equal 
to 2, but it is subject to change because of loading and 
misalignment of the machine, (a) For /; = 2, design a 

compensator so that the complex roots are 5 - - 2 ± 
y'2\/3. (b) Plot y(t) for a step input R(s) = 1/s. (c) 
Plot y(l) for a disturbance Td(s) = 1/s, with R(s) = 0. 
(d) Repeat parts (b) and (c) when p changes to 1 and 
Gc(s) remains as designed in part (a). Compare the re
sults for the two values of the negative pole/?. 

P12.7 The function of a steel plate mill is to roll reheated 
slabs into plates of scheduled thickness and dimension 
[5, 10], The final products are of rectangular plane 
view shapes having a width of up to 3300 mm and a 
thickness of 180 mm. 

A schematic layout of the mill is shown in 
Figure P12.7(a). The mill has two major rolling 
stands, denoted No. 1 and No. 2. These are equipped 
with large rolls (up to 508 mm in diameter), which 
are driven by high-power electric motors (up to 4470 
kW). Roll gaps and forces are maintained by large 
hydraulic cylinders. 

Typical operation of the mill can be described as 
follows. Slabs coming from the reheating furnace initially 
go through the No. 1 stand, whose function is to reduce 



884 Chapter 12 Robust Control Systems 

Component bin 
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In floor / Side View 

transponder "tag" 
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Battery hay 

Steerable Steerable 
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Top View 

FIGURE P12.5 
Automatically 
guided vehicle. 

tf(.s) + 
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wire signal - -j 

•v Error 

Controller 

Ge(s) 
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(b) 

Actuator 
and wheels 
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K(.v) 

af travel 

FIGURE P12.6 
Roll-wrapping 
machine control. 

Diameter measuring arm ,. I f 

Paper roll 

Width measuring arm 

• Y(s) 

(b) 

the slabs to the required width. The slabs proceed 
through the No. 2 stand, where finishing passes are car
ried out to produce the required slab thickness. Finally, 
they go through the hot plate leveller, which gives each 
plate a smooth finish. 

One of the key systems controls the thickness of 

the plates by adjusting the rolls. The block diagram of 
this control system is shown in Figure P12.7(b). The 
plant is represented by 

G(s) = 
s(s2 + 4s + 5) 
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Furnace 

Hot plate 
leveller No. 2 stand No. 1 stand 

(a) 

R(s) 
Desired 

thickness 

Disturbance Td{s) 

U(s) 

FIGURE P12.7 
Steel-rolling mill 
control. 

>tv) 
Thickness 

(b) 

The controller is a PID with two equal real zeros, (a) 
Select the PID zeros and the gains so that the closed-
loop system has two pairs of equal roots, (b) For the 
design of part (a), obtain the step response without a 
prefilter (Gp(s) = 1). (c) Repeat part (b) for an 
appropriate prefilter. (d) For the system, determine 
the effect of a unit step disturbance by evaluating 
y(t) with r(t) = 0. 

P12.8 A motor and load with negligible friction and a volt
age-to-current amplifier Ka is used in the feedback con
trol system, shown in Figure P12.8. A designer selects a 
PID controller 

K, 
Gc(s) = KP + — +• KDs, 

where KP = 5, Kt = 500, and KD = 0.0475. 
(a) Determine the appropriate value of Ka so that the 
phase margin of the system is 30°. (b) For the gain Ka, 
plot the root locus of the system and determine the 
roots of the system for the Ka of part (a), (c) Deter
mine the maximum value of y(t) when Td{s) = \/s 
and R(s) = 0 for the Ka of part (a), (d) Determine the 
response to a step input r(t), with and without a prefilter. 

P12.9 A unity feedback system has a nominal characteris
tic equation 

q{s) = s3 + 3s2 + 3s + 6 = 0. 

The coefficients vary as follows: 

2 s a2 < 4, 1 < fll < 4, 

4 < aQ < 5. 

Determine whether the system is stable for these 
uncertain coefficients. 

P12.10 Future astronauts may drive on the moon in a pres
surized vehicle, shown in Figure P12.10(a), that would 
have a range of 620 miles and could be used for mis
sions of up to six months. Boeing Company engineers 
first analyzed the Apollo-era Lunar Roving Vehicle, 
then designed the new vehicle, incorporating improve
ments in radiation and thermal protection, shock and 
vibration control, and lubrication and sealants. 

The steering control of the moon buggy is shown 
in Figure P12.10(b). The objective of the control 
design is to achieve a step response to a steering com
mand with zero steady-stale error, an overshoot less 
than 20%, and a peak time less than 0.3 second with a 
\u(t)\ ^ 50. It is also necessary to determine the 
effect of a step disturbance T^s) = \/s when 
R(s) = 0, in order to ensure the reduction of moon 
surface effects. Using (a) a PI controller and (b) a 
PID controller, design an acceptable controller. 
Record the results for each design in a table. Com
pare the performance of each design. Use a prefilter 
Gp(s) if necessary. 

FIGURE P12.8 
PID controller for 
the motor and load 
system. 
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(a) 

FIGURE P12.10 
(a) A moon vehicle. 
(b) Steering control 
for the moon 
vehicle. 
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P12.ll A plant has a transfer function 

25 
G(s) = J.' 

We want to use a negative unity feedback with a P1D 
controller and a prefilter.The goal is to achieve a peak 
time of 1 second with ITAE-type performance. Pre
dict the system overshoot and settling time (with a 2% 
criterion) for a step input. 

P12.12 A three-dimensional cam for generating a function 
of two variables is shown in Figure P 12.12(a). Both x 
and 6 may be controlled using a position control system 
[19]. The control of x may be achieved with a DC motor 
and position feedback of the form shown in Figure 
P12.12(b), with the DC motor and load represented by 

G(s)~ 
K 

s(s + p)(s + 4) ' 

where 1 < K < 3 and 1 < p < 3. Normally K = 2.5 
and /7 = 2. Design an ITAE system with a PID 
controller so that the peak time response to a step 
input is less than 3 seconds for the worst-case 
performance. 

PI 2.13 Consider the closed-loop second-order system 

x = 

y = [2 0]x + [0]«. 

Compute the sensitivity of the closed-loop system to 
variations in the parameter K. 

0 
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R(s) 

(a) (b) 

FIGURE P12.12 (a) Three-dimensional cam. (b) x-axis control system. 

• Vis) 

ADVANCED PROBLEMS 

AP12.1 To minimize vibrational effects, a telescope is 
magnetically levitated. This method also eliminates 
friction in the azimuth magnetic drive system. The 
photodetectors for the sensing system require electri
cal connections. The system block diagram is shown in 
Figure AP12.1. Design a PID controller so that the 
velocity error constant is Ku = 100 and the maximum 
overshoot for a step input is less than 10%. 

AP12.2 One promising solution to traffic gridlock is a 
magnetic levitation (maglev) system. Vehicles are sus
pended on a guideway above the highway and guided 
by magnetic forces instead of relying on wheels or 
aerodynamic forces. Magnets provide the propulsion 
for the vehicles [7,12,17]. Ideally, maglev can offer the 
environmental and safety advantages of a high-speed 
train, the speed and low friction of an airplane, and the 
convenience of an automobile. All these shared att
ributes notwithstanding, the maglev system is truly a 
new mode of travel and will enhance the other modes 
of travel by relieving congestion and providing con
nections among them. Maglev travel would be fast, 
operating at 150 to 300 miles per hour. 

The tilt control of a maglev vehicle is illustrated 
in Figures AP12.2(a) and (b). The dynamics of the 
plant G(s) are subject to variation so that the poles 
will lie within the boxes shown in Figure API2.2(c), 
and 1 < K < 2. 

The objective is to achieve a robust system with a 
step response possessing an overshoot less than 10%, 
as well as a settling time (with a 2% criterion) less 
than 2 seconds when \u(t)\ < 100. Obtain a design 
with a PT, PD, and PID controller and compare the 
results. Use a pre filter Gp(s) if necessary. 

AP12.3 Antiskid braking systems present a challenging 
control problem, since brake/automotive system 
parameter variations can vary significantly (e.g., due 
to the brake-pad coefficient of friction changes or 
road slope variations) and environmental influences 
(e.g., due to adverse road conditions). The objective 
of the antiskid system is to regulate wheel slip to 
maximize the coefficient of friction between the tire 
and road for any given road surface [8]. As we expect, 
the braking coefficient of friction is greatest for dry 
asphalt, slightly reduced for wet asphalt, and greatly 
reduced for ice. 

One simplified model of the braking system is 
represented by a plant transfer function G(s) with a 
system as shown in Figure 12.16 with 

G(s) = 
1 Y(s) ^ 

U(s) (s + a)(s + b)' 

where normally a = 1 and b = 4. 

FIGURE AP12.1 
Magnetically 
levitated telescope 
position control 
system. 
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FIGURE AP12.2 (a) and (b) Tilt control for a maglev vehicle, (c) Plant dynamics. 
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(a) Using a PID controller, design a very robust sys
tem where, for a step input, the overshoot is less 
than 4% and the settling time (with a 2% criteri
on) is 1 second or less. The steady-state error must 
be less than 1% for a step. We expect a and b to 
vary by ±50%. 

(b) Design a system to yield the specifications of part 
(a) using an ITAE performance index. Predict the 
overshoot and settling time for this design. 

AP12.4 A robot has been designed to aid in hip-replace
ment surgery. The device, called RoBoDoc, is used to 
precisely orient and mill the femoral cavity for accep
tance of the prosthetic hip implant. Clearly, we want a 
very robust surgical tool control, because there is no 
opportunity to redrill a bone [23,30]. The control sys-
lern will be as shown in Figure 12.1 with 

G(s) = 
s2 + as + b' 

where 1 < a < 2, and 4 < h s 12. 
Select a PID controller so that the system is very 

robust. Use the s-plane root locus method. Select the 
appropriate Gp(s) and plot the response to a step input. 

AP12.5 A spacecraft with a camera is shown in Figure 
API2.5. The camera slews about 16° in a canted plane 
relative to the base. Reaction jets stabilize the base 
against the reaction torques from the slewing motors. 
The rotational speed control for the camera slewing 
has a plant transfer function 

G(s) = 

A PID controller is used in a system as shown in 
Figure 12.1, where 

Gc(s) = 
K(s + a- + /1)(5- + a - ;'l) 

Determine K and the resulting roots so that all the 
roots have t, less than or equal to 1/V2 when 
1 < a < 2 (vary a in increments of 0.25). Determine 
the root sensitivity to changes in K. 

AP12.6 Consider the system of Figure 12.1 with 

G(s) 
/ < ' , 

s(s + 10)' 

where K^ = 1 under normal conditions. Design a PID 
controller to achieve a phase margin of 50°. The con
troller is 

Gc(s) = 
K(s2 + 20s + b) 

with complex zeros. Select an appropriate prefilter. 
Determine the effect of a change of ±25% in K{ by 
developing a tabular record of the system performance. 

AP12.7 Consider the system of Figure 12.1 with 

G(s) 
A', 

S(TS + 1)' 

(.v + !)(.? + 2)(s + 4)' 

where K% = 1.5 and T « 0.001 second, which may be 
neglected. (Check this later in the design process.) 
Select a PID controller so that the settling time (with a 
2% criterion) for a step input is less than 1 second and 
the overshoot is less than 10%. Also, the effect of a 

Camera 

FIGURE AP12.5 
Spacecraft with a 

Solar panel 

Boom 
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disturbance at the outpul musl be reduced to less than 
5% of the magnitude of the disturbance. Select oi„, 
and use the ITAE design method. 

AP12.8 Consider the system of Figure 12.1 with 

G(s) = i. 

The goal is to select a PI controller using the ITAE 
design criterion while constraining the control signal 
as \u(t) s 1 for a unit step input. Determine the ap
propriate PI controller and the settling time (with a 
2% criterion) for a step input. Use a prefilter. 

AP12.9 Consider the system of Figure 12.1 with 

G(s) = 3 
s(s2 f 4s + 5) 

Design a PID controller to achieve (a) an acceleration 
constant Ka - 2, (b) a phase margin equal to 45°, and 
(c) a bandwidth greater than 2.8 rad/s. Select an 
appropriate prefilter and plot the response to a step 
input. 

AP12.10 A machine tool control system is shown in 
Figure AP12.10. The transfer function of the power 
amplifier, prime mover, moving carriage, and tool 
bit is 

G(s) = 
50 

s(s + !)(.? + 4)(s + 5) 

The goal is to have an overshoot less than 25% for a 
step input while achieving a peak time less than 3 sec
onds. Determine a suitable controller using (a) PD 
control, (b) PI control, and (c) PID control, (d) Then 
select the best controller. 

AP12.11 Consider a system with the structure shown in 
Figure 12.1 with 

K 
G(.v) = — 

s2 + 2as + a2 

where 1 < a < 3 and 2 < K ^ 4. 
Use a PID controller and design the controller 

for the worst-case condition. We desire that the set
tling time (with a 2% criterion) be less than 0.8 second 
with an ITAE performance. 

AP12.12 A system of the form shown in Figure 12.1 has 

G(s) = S + r 

(s + P)(s + qy 
where 3 s p < 5 , 0 < g < l , and 1 < r < 2. We 
will use a compensator 

GM = (s + p^is + p2) ' 

with all real poles and zeros. Select an appropriate 
compensator to achieve robust performance. 

AP 12.13 A system of the form shown in Figure 12.44 has 
a plant 

G(s) = 
{s + 2)(s + 4)(5 + 6) 

We want to attain a steady-state error for a step input. 
Select a compensator Gc(s) and gain A', using the 
pseudo-QFT method, and determine the performance 
of the system when all the poles of G(s) change by 
- 5 0 % . Describe the robust nature of the system. 
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FIGURE AP12.10 
A machine tool 
control system. 
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DESIGN PROBLEMS 

CDP12.1 Design a PID controller for the capstan-slide 

h. system of Figure CDP4.1. The percent overshoot 
should be less than 3% and the settling time should be 
(with a 2% criterion) less than 250 ms for a step input 
r(t). Determine the response to a disturbance for the 
designed system. 

DP12.1 A position control system for a large turntable 
is shown in Figure DP12.1(a), and the block diagram 
of the system is shown in Figure DPI2.1(b) [11, 14]. 
This system uses a large torque motor with Km = 15. 
The objective is to reduce the steady-state effect of a 
step change in the load disturbance to 5% of the 
magnitude of the step disturbance while maintaining 
a fast response to a step input command R(s), with 
less than 5% overshoot. Select Ki and the compen
sator when (a) Ge(s) = K and (b) Gc(s) = KP + 
KDs (a PD compensator). Plot the step response for 
the disturbance and the input for both compensators. 

Determine whether a prefilter is required to meet 
the overshoot requirement. 

DP12.2 Consider the closed-loop system depicted in 
Figure DPI 2.2. The process has a parameter K that is 
nominally K = 1. Design a controller that results in a 
percent overshoot P.O. s 15% for a unit step input 
for all K in the range 0.1 < K < 2. 

DP12.3 Many university and government laboratories 
have constructed robot hands capable of grasping and 
manipulating objects. But teaching the artificial 
devices to perform even simple tasks required formi
dable computer programming. Now, however, the 
Dexterous Hand Master (DHM) can be worn over a 
human hand to record the side-to-side and bending 
motions of finger joints. Each joint is fitted with a sen
sor that changes its signal depending on position. The 
signals from all the sensors are translated into com
puter data and used to operate robot hands [1]. 

Torque motor 
Input 

Position signal 

(a) 

Velocity sensor 

Position sensor 

R(s) 

FIGURE DP12.1 
Turntable control. 
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The DHM is shown in parts (a) and (b) of figure 
DP1.2.3. The joint angle control system is shown in 
part (c).The normal value of K,„ is 1.0. The goal is to 
design a PID controller so that the steady-state error 
for a ramp input is zero. Also, the settling time (with a 
2% criterion) must be less than 3 seconds for the ramp 
input. We want the controller to be 

Gc(s) = 
KD{s2 + 65 + 18) 

(a) Select KD and obtain the ramp response. Plot the 
root locus as KD varies, (b) If Km changes to one-half 
of its normal value and Gc(s) remains as designed in 
part (a), obtain the ramp response of the system. 
Compare the results of parts (a) and (b) and discuss 
the robustness of the system. 

DP12.4 Objects smaller than the wavelengths of visible 
light are a staple of contemporary science and tech
nology. Biologists study single molecules of protein 
or DNA; materials scientists examine atomic-scale 
flaws in crystals; microelectronics engineers lay out 
circuit patterns only a few tenths of atoms thick. 
Until recently, this minute world could be seen only 

by cumbersome, often destructive methods, such as 
electron microscopy and X-ray diffraction. It lay 
beyond the reach of any instrument as simple and direct 
as the familiar light microscope. New microscopes, 
typified by the scanning tunneling microscope (STM), 
are now available [3]. 

The precision of position control required is in 
the order of nanometers. The STM relies on piezo
electric sensors that change size when an electric 
voltage across the material is changed. The "aper
ture" in the STM is a tiny tungsten probe, its tip 
ground so fine that it may consist of only a single 
atom and measure just 0.2 nanometer in width. 
Piezoelectric controls maneuver the tip to within a 
nanometer or two of the surface of a conducting 
specimen—so close that the electron clouds of the 
atom at the probe tip and of the nearest atom of the 
specimen overlap. A feedback mechanism senses the 
variations in tunneling current and varies the voltage 
applied to a third, z-axis, control. The z-axis piezo
electric moves the probe vertically to stabilize the 
current and to maintain a constant gap between the 
microscope's tip and the surface. The control system 
is shown in Figure DP12.4(a), and the block diagram 

(a) (b) 

Rls) O 
FIGURE DP12.3 
Dexterous Hand 
Master. 
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FIGURE DP12.4 
Microscope control. 

Gap 

(b) 

is shown in Figure DP12.4(b).The process is 

17,640 
o(o = s(s2 + 59.4s + 1764)' 

and the controller is chosen to have two real, unequal 
zeros so that we have 

Ge(s) = 
KJ(T,S + 1)(T2S + 1) 

(a) Use the 1TAE design method to determine Gc(s). 
(b) Determine the step response of the system with 
and without a prefilter Gp(s). (c) Determine the 
response of the system to a disturbance when Tj(s) = 
Ijs. (d) Using the prefilter and Gc(s) of parts (a) and 
(b), determine the actual response when the process 
changes to 

G(s) = 
16,000 

s(s2 + 405 + 1600) 

DP12.5 The system described in DP12.4 is to be designed 
using the frequency response techniques described in 
Section 12.6 with 

Gc(s) = 
Kr(T,S + 1)(1-25 + 1) 

.Select the coefficients of Gc(s) so that the phase mar
gin is approximately 45°. Obtain the step response of 
the system with and without a prefilter Gp(s). 

DP12.6 The use of control theory to provide insight into 
neurophysiology has a long history. As early as the 
beginning of the last century, many investigators 
described a muscle control phenomenon caused by the 
feedback action of muscle spindles and by sensors based 
on a combination of muscle length and rate of change of 
muscle length. 

This analysis of muscle regulation has been based 
on the theory of single-input, single-output control 
systems. An example is a proposal that the stretch 
reflex is an experimental observation of a motor con
trol strategy, namely, control of individual muscle 
length by the spindles. Others later proposed the regu
lation of individual muscle stiffness (by sensors of both 
length and force) as the motor control strategy [34]. 

One model of the human standing-balance 
mechanism is shown in Figure DP12.6. Consider the 
case of a paraplegic who has lost control of his stand
ing mechanism. We propose to add an artificial con
troller to enable the person to stand and move his 
legs, (a) Design a controller when the normal values 
of the parameters are K = 10, a - 12, and b = 100, 
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FIGURE DP12.6 
Artificial control of 
standing and leg 
articulation. 

Artificial controller Muscle dynamics 
and nervous system 

in order to achieve a step response with percent over
shoot less than 10%, steady-state error less than 5%, 
and a settling time (with a 2% criterion) less than 2 
seconds. Try a controller with proportional gain, PI, 
PD, and PID. (b) When the person is fatigued, the 
parameters may change to K = 15, a —- 8, and 
b = 144. Examine the performance of this system with 
the controllers of part (a). Prepare a table contrasting 
the results of parts (a) and (b). 

DP12.7 The goal is to design an elevator control system 
so that the elevator will move from floor to floor 
rapidly and stop accurately at the selected floor 
(Figure DP12.7). The elevator will contain from one 
to three occupants. However, the weight of the eleva
tor should be greater than the weight of the occu
pants; you may assume that the elevator weighs 1000 
pounds and each occupant weighs 150 pounds. 
Design a system to accurately control the elevator to 
within one centimeter. Assume that the large DC 
motor is field-controlled. Also, assume that the time 
constant of the motor and load is one second, the 

time constant of the power amplifier driving the 
motor is one-half second, and the time constant of 
the field is negligible. We seek an overshoot less than 
6% and a settling time (with a 2% criterion) less than 
4 seconds. 

DP12.8 Patients with a cardiological illness and less than 
normal heart muscle strength can benefit from an 
assistance device. An electric ventricular assist device 
(EVAD) converts electric power into blood flow by 
moving a pusher plate against a flexible blood sac. The 
pusher plate reciprocates to eject blood in systole and 
to allow the sac to fill in diastole. The EVAD will be 
implanted in tandem or in parallel with the intact nat
ural heart as shown in Figure DP12.8(a).The EVAD is 
driven by rechargeable batteries, and the electric 
power is transmitted inductively across the skin 
through a transmission system. The batteries and the 
transmission system limit the electric energy storage 
and the transmitted peak power. Consequently, we 
desire to drive the EVAD in a fashion that minimizes 
its electric power consumption [29]. 

vlt) 
Command 

from computei 

FIGURE DP12.7 
Elevator position 
control. 
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The EVAD has a single input, the applied motor 
voltage, and a single output, the blood flow rate. The 
control system of the EVAD performs two main tasks: 
It adjusts the motor voltage to drive the pusher plate 
through its desired stroke, and it varies the EVAD's 
blood flow to meet the body's cardiac output demand. 
The blood flow controller adjusts the blood flow rate 
by varying the EVAD's beat rate. 

A model of the feedback control system is shown 
in Figure DP12.8(b). The motor, pump, and blood sac 
can be modeled by a time delay with T = 1 s. The goal 
is to achieve a step response with less than 5% steady-
state error and less than 10% overshoot. Furthermore, 
to prolong the batteries, the voltage is limited to 30 V. 
Design a controller using (a) Gc(s) = K/s, (b) a PI 
controller, and (c) a PID controller. Compare the 
results for the three controllers by recording in a table 
the percent overshoot, peak time, settling time (with 
2% criterion) and the maximum value of v(t). 

DP12.9 One arm of a space robot is shown in Figure 
DP12.9(a). The block diagram for the control of the 
arm is shown in Figure DP12.9(b). The transfer func
tion of the motor and arm is 

G(s) = 
1 

s(s + 10)' 

(a) If Gc(s) = K, determine the gain necessary for an 
overshoot of 4.5%, and plot the step response, (b) De
sign a proportional plus derivative (PD) controller 
using the ITAE method and ion = 10. Determine the 
required prefilter Gp(s). (c) Design a PI controller 
and a prefilter using the ITAE method, (d) Design a 
PID controller and a prefilter using the ITAE method 
with (on = 10. (e) Determine the effect of a unit step 
disturbance for each design. Record the maximum 
value of y(t) and the final value of y(t) for the distur
bance input, (f) Determine the overshoot, peak time, 
and settling time (with a 2% criterion) step R(s) for 
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(a) 

TAs) 

FIGURE DP12.9 
Space robot 
control. (b) 

• >'(.v) 

each design above, (g) The process is subject to varia
tion due to load changes. Find the magnitude of the 
sensitivity at to = 5, \SQ(/5)1, where 

Gc(s)C{s) 

unstable. The model of the levitation is 

T = 
1 + Gc(s)G{sY 

(h) Based on the results of parts (e), (f), and (g), select 
the best controller. 

DP12.10 A photovoltaic system is mounted on a space 
station in order to develop the power for the station. 
The photovoltaic panels should follow the sun with 
good accuracy in order to maximize the energy from 
the panels. The system uses a DC motor, so that the 
transfer function of the panel mount and the motor is 

G(s) = 
1 

s(s + 19)' 

We will select a controller Gc(s) assuming that an 
optical sensor is available to accurately track the sun's 
position, and thus H{s) — 1. 

The goal is to design Gc(s) so that (1) the percent 
overshoot to a step is less than 7% and (2) the steady-
state error to a ramp input is less than or equal to 1 %. 
Determine the best phase-lead controller. Examine 
the robustness of the system to a 10% variation in the 
motor time constant. 

DP12.11 Electromagnetic suspension systems for air-
cushioned trains are known as magnetic levitation 
(maglev) trains. One maglev train uses a supercon
ducting magnet system [17). It uses superconducting 
coils, and the levitation distance x(t) is inherently 

G(s) = 
X X(s) 

V(s) ( i n + ! ) ( > * - « ? ) ' 

where V(s) is the coil voltage; rj is the magnet time 
constant; and a>x is the natural frequency. The system 
uses a position sensor with a negligible time constant. 
A train traveling at 250 km/hr would have T\ = 0.75 s 
and o»! = 75 rad/s. Determine a controller that can 
maintain steady, accurate levitation when distur
bances occur along the railway. Use the system model 
of Figure 12.1. 

DP12.12 Consider again the Mars rover problem de
scribed in DP6.2.The system uses a PID controller, and 
a robust system is desired. The specifications are (1) 
maximum overshoot equal to 18%, (2) settling time 
(with a 2% criterion) less than 2 seconds, (3) rise time 
equal to or greater than 0.20 to limit the power require
ments, (4) phase margin greater than 65°, (5) gain 
margin greater than 8 dB, (6) maximum root sensitivity 
(magnitude of real and imaginary parts) less than 1. 
Select the best value of the gain K. 

DP12.13 A benchmark problem consists of the mass-
spring system shown in Figure DP12.13, which repre
sents a flexible structure. Let m\ = m2 = 1 and 
0.5 5 i < 2.0 [33]. It is possible to measure .v3 and 
x7 and use a controller prior to u(t). Obtain the system 
description, choose a control structure, and design a 
robust system. Determine the response of the system 
to a unit step disturbance. Assume that the output 
x2(t) is the variable to be controlled. 
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FIGURE DP12.13 
Two-mass cart 
system. 
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COMPUTER PROBLEMS 

CP12.1 Consider the system given in Figure CP12.1. The dy
namics of the sensor is unknown. However, it is known that 
it can be modeled by a first-order transfer function with 
time constant, T; and T lies between 0.05 and 0.2. Using 
MATLAB obtain step response of the closed-loop system 
for T = 0.05, 0.1, 0.15 and 0.2. Hence, comment on the 
robustness of the system. 

-U®. 
Plant 

(.9+1)(5 + 2) 

Sensor 

I 
(7i+l) 

FIGURE CP12.1 A system with an unknown sensor. 

CP12.2 Consider a unity feedback system with open-loop 
transfer function 

K 

s(s + 2) 

where K is around 1. 
(a) Obtain system sensitivity with respect to K, S^. 
(b) Draw the Bode plot of the closed-loop system. 
(c) On the same plot, plot 20 log 15̂ ,-(;'<<>) | vs co. 
(d) Comment on the sensitivity of the system to small 

variations in gain. 

CP12.3 Consider the control system in Figure CP12.3, 
where 

0(s) = -V 
JsA 

The value of / is known to change slowly with time, 
although, for design purposes, the nominal value is 
chosen to be J = 10. 

(a) Design a PID compensator (denoted by Gc(s)) 
to achieve a phase margin greater than 45° and a 
bandwidth less than 5 rad/s. (b) Using the PID con
troller designed in part (a), develop an m-file script 
to generate a plot of the phase margin as J varies 
from 1 to 30. 

Yls) R(x) 

FIGURE CP12.3 
compensation. 

A feedback control system with 

CP12.4 Consider '.he system shown in Figure CP12.4. 
(a) Using MATLAB, obtain the step response of the 

system without controller. That is Gp(s) ~ 1; 
Afi = 1; K2 = K3 = 0. Hence find steady-state 
error and settling time. 

(b) Determine the values of K\, K2, and j£3; and the 
transfer function Gp(s) so that settling time is less 
than 0.5 and ITAE performance index for a step 
input is minimised. 

(c) Using MATLAB, obtain step response of the 
system with PID controller and Gp(s) designed in 
(b). Hence find steady-state error and settling 
time. 

(d) If pole of the plant at - -1 is shifted to -0.7, obtain 
steady-state error and settling time. 

(e) Compare the values of steady-state error and set
tling time obtained in (a), (c) and (d). 

Prefilter 

G,& —*® 
FIGURE CP12.4 
Design of PID 
controller. 

Controller 

K^Kz + Kf 

Plant 

(.5+-1)(.9 + 2) 
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CP12.5 Consider a plant with transfer function 

1 

(s +l)(s + p)' 

The nominal value of/; is 3. Depending on the operat
ing point, p may vary from 2 to 4. Design a PID con
troller using Pseudo-QFT method assuming p = 3 so 
that steady-state error for a step input is zero. 

Using MATLAB, obtain step response, percentage 
overshoot and settling time for, 
(a) Nominal case. 
(b) Worst case. 

CP12.6 The industrial process shown in Figure CP12.6 is 
known to have a time delay in the loop. In practice, it is 
often the case that the magnitude of system time 
delays cannot be precisely determined. The magnitude 
of the time delay may change in an unpredictable man
ner depending on the process environment. A robust 
control system should be able to operate satisfactorily 
in the presence of the system time delays. 

(a) Develop an m-file script to compute and plot 
the phase margin for the industrial process in 
Figure CP12.6 when the time delay, T, varies be
tween 0 and 5 seconds. Use the pade function 
with a second-order approximation to approxi
mate the time delay. Plot the phase margin as a 
function of the time delay. 

(b) Determine the maximum time delay allowable for 
system stability. Use the plot generated in part (a) to 
compute the maximum time delay approximately. 

CP12.7 A unity negative feedback loop has the loop 
transfer function 

a(s - 0.5) 
Gc(s)G(s) = -=r - • 

s2 + 2s + 1 
We know from the underlying physics of the problem 
that the parameter a can vary only between 
0 < a < 1. Develop an m-file script to generate the 
following plots: 

(a) The steady-state tracking error due to a negative 
unit step input (i.e., R(s) = — 1/s) versus the 
parameter a. 

(b) The maximum percent initial undershoot (or over
shoot) versus parameter a. 

(c) The gain margin versus the parameter a. 
(d) Based on the results in parts (a)-(c), comment on 

the robustness of the system to changes in para
meter a in terms of steady-state errors, stability, 
and transient time response. 

CP12.8 The Gamma-Ray Imaging Device (GRID) is a 
NASA experiment to be flown on a long-duration, 
high-altitude balloon during the coming solar maxi
mum. The GRID on a balloon is an instrument that 
will qualitatively improve hard X-ray imaging and 
carry out the first gamma-ray imaging for the study of 
solar high-energy phenomena in the next phase of 
peak solar activity. From its long-duration balloon 
platform, GRID will observe numerous hard X-ray 
bursts, coronal hard X-ray sources, "superhot" thermal 
events, and microflares [2]. Figure CP12.8(a) depicts 
the GRID payload attached to the balloon. The major 
components of the GRID experiment consist of a 5.2-
meter canister and mounting gondola, a high-altitude 
balloon, and a cable connecting the gondola and bal
loon. The instrument-sun pointing requirements of 
the experiment are 0.1 degree pointing accuracy and 
0.2 arcsecond per 4 ms pointing stability. 

An optical sun sensor provides a measure of the 
sun-instrument angle and is modeled as a first-order 
system with a DC gain and a pole at s = -500. A 
torque motor actuates the canister/gondola assembly. 
The azimuth angle control system is shown in Figure 
CP12.8(b). The PID controller is selected by the 
design team so that 

Ge(s) = 
KD(s2 + as + b) 

where a and b are to be selected. A prefilter is used 
as shown in Figure CP12.8(b). Determine the value 
of K3, a, and b so that the dominant roots have a g" of 
0.8 and the overshoot to a step input is less than 3%. 
Develop a simulation to study the control system 
performance. Use a step response to confirm the per
cent overshoot meets the specification. 

FIGURE CP12.6 
An industrial 
controlled process 
with a time delay in 
the loop. 

R(s) 
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FIGURE CP12.8 
The GRID device. 
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TERMS AND CONCEPTS 

Additive perturbation A system perturbation model 
expressed in the additive form Gu(s) = G(s) + A(s), 
where G(s) is the nominal process function, A (s) is the 
perturbation that is bounded in magnitude, and G„(s) 
is the family of perturbed process functions. 

Complementary sensitivity function The function 

Gc(s)G(s) 
T(s) = ^ , s „ , . that satisfies the relationship 

I f Gc(s)G(s) 
S(s) + T(s) = 1, where S(s) is the sensitivity func
tion. The function T(s) is the closed-loop transfer 
function. 

Internal model principle The principle that states that if 
Gc(s)G($) contains the input R(s), then the output 
y(t) will track R(s) asymptotically (in the steady-state) 
and the tracking is robust. 

Multiplicative perturbation A system perturbation model 
expressed in the multiplicative form G,„(s) = 
G(s)(l + Mis)), where G(s) is the nominal process 
function, M(s) is the perturbation that is bounded in 

magnitude, and G,„(s) is the family of perturbed 
process functions. 

PID controller A controller with three terms in which the 
output is the sum of a proportional term, an integrat
ing term, and a differentiating term, with an adjustable 
gain for each term. 

Preiilter A transfer function Gp(s) that filters the 
input signal R(s) prior to the calculation of the 
error signal. 

Process controller See PID controller. 

Robust control system A system that exhibits the desired 
performance in the presence of significant plant 
uncertainty. 

Robust stability criterion A test for robustness with re
spect to multiplicative perturbations in which stability 

is guaranteed if \M(jco)\ < 1 H :—r , for all w, 
GO*) 

where M(s) is the multiplicative perturbation. 
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Root sensitivity A measure of the sensitivity of the roots System sensitivity A measure of the system sensitivity to 
(i.e., the poles and zeros) of the system to changes in a 

parameter defined by Sr' = -——, where a is the 
da/a 

parameter and rt is the root. 

Sensitivity function The function 5(^) = [1 + Gc{s)G{s)]~l 

that satisfies the relationship S(s) V T(s) — 1, where 
T(s) is the complementary sensitivity function. 

T _ changes in a parameter defined by Sa -
dT/T 

da/a 
, where 

a is the parameter and Tis the system transfer function. 

Three-mode controller See PID controller. 

Three-term controller See PID controller. 
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PREVIEW 

A digital computer often hosts the controller algorithm in a feedback control system. 
Since the computer receives data only at specific intervals, it is necessary to develop 
a method for describing and analyzing the performance of computer control systems. 
In this chapter, we provide an introduction to the topic of digital control systems. The 
notion of a sampled-data system is presented followed by a discussion of the z-trans-
form. We may use the z-transform of a transfer function to analyze the stability and 
transient response of a system. The basics of closed-loop stability with a digital con
troller in the loop are covered with a short presentation on the role of root locus in 
the design process. This chapter concludes with the design of a digital controller for 
the Sequential Design Example: Disk Drive Read System. 

DESIRED OUTCOMES 

U p o n complet ion of Chapter 13, s tudents should: 

Q Understand the role of digital computers in control system design and application. 

G Be familiar with the z-transform and sampled-data systems. 

3 Be able to design digital controllers using root locus methods. 

Q Appreciate the issues associated with the implementation of digital controllers. 

13 

901 
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13.1 INTRODUCTION 

The use of a digital computer as a compensator (controller) device has grown dur
ing the past three decades as the price and reliability of digital computers have 
improved dramatically [1,2]. A block diagram of a single-loop digital control system 
is shown in Figure 13.1. The digital computer in this system configuration receives 
the error in digital form and performs calculations in order to provide an output in 
digital form. The computer may be programmed to provide an output so that the 
performance of the process is near or equal to the desired performance. Many com
puters are able to receive and manipulate several inputs, so a digital computer con
trol system can often be a multivariable system. 

A digital computer receives and operates on signals in digital (numerical) form, 
as contrasted to continuous signals [3]. A digital control system uses digital signals 
and a digital computer to control a process. The measurement data are converted 
from analog form to digital form by means of the analog-to-digital converter shown 
in Figure 13.1. After processing the inputs, the digital computer provides an output 
in digital form. This output is then converted to analog form by the digital-to-analog 
converter shown in Figure 13.1. 

13.2 DIGITAL COMPUTER CONTROL SYSTEM APPLICATIONS 

The total number of computer control systems installed in industry has grown over 
the past three decades [2]. Currently, there are approximately 100 million control 
systems using computers, although the computer size and power may vary signifi
cantly. If we consider only computer control systems of a relatively complex nature, 
such as chemical process control or aircraft control, the number of computer control 
systems is approximately 20 million. 

A digital computer consists of a central processing unit (CPU), input-output 
units, and a memory unit. The size and power of a computer will vary according to 
the size, speed, and power of the CPU, as well as the size, speed, and organization of 
the memory unit. Small computers, called minicomputers, have become increasingly 
common since 1980. Powerful but inexpensive computers, called microcomputers, 
which use a 16-bit word or 32-bit word, have become readily available. These sys
tems use a microprocessor as a CPU. Therefore, the nature of the control task, the 
extent of the data required in memory, and the speed of calculation required will 
dictate the selection of the computer within the range of available computers. 

FIGURE 13.1 
A block diagram of 
a computer control 
system, including 
the signal 
converters. The 
signal is indicated 
as digital or analog. 
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FIGURE 13.2 
The development of 
INTEL 
microprocessors 
measured in 
millions of 
transistors. (Source: 
INTEL.) 

30 

20 

10 -

0 * L.- t̂nr'-TM "T" 
1990 2000 

The size of computers and the cost for the active logic devices used to construct 
them have both declined exponentially. The active components per cubic centimeter 
have increased so that the actual computer can be reduced in size to the point where 
relatively inexpensive, powerful laptop computers are providing mobile high-
performance computational capability to students and professionals alike, and are, in 
many instances, replacing traditional desktop microcomputers. The speed of computers 
has also increased exponentially. The transistor density (a measure of computational per
formance) on INTEL microprocessor integrated circuits has increased exponentially 
over the last 30 years, as illustrated in Figure 13.2. In fact, according to "Moore's law," the 
transistor density doubles every year, and will probably continue to do so for the next 
twenty years. A simple calculation shows that by 2012, microprocessors will contain over 
a billion transistors with operating speeds approaching 10 GHz! In 1976, the popular 
8086 central processing units containing only 29,000 transistors and operating at 10 
MHz were introduced. Since then, significant progress in computation capability has 
been and will continue to be made. Clearly, improvements in computational capabil
ity have revolutionized the application of control theory and design in the modern 
era. With the availability of fast, low-priced, and small-sized microprocessors, much 
of the control of industrial and commercial processes is moving toward the use of 
computers within the control system. 

Digital control systems are used in many applications: for machine tools, metal-
working processes, chemical processes, aircraft control, and automobile traffic con
trol, and others [4-8]. An example of a computer control system used in the aircraft 
industry is shown in Figure 13.3. Automatic computer-controlled systems are used 
for purposes as diverse as measuring the objective refraction of the human eye and 
controlling the engine spark timing or air-fuel ratio of automobile engines. The lat
ter innovations are necessary to reduce automobile emissions and increase fuel 
economy. 

The advantages of using digital control include: improved measurement sensitivity; 
the use of digitally coded signals, digital sensors and transducers, and microprocessors; 
reduced sensitivity to signal noise; and the capability to easily reconfigure the control 
algorithm in software. Improved sensitivity results from the low-energy signals 
required by digital sensors and devices. The use of digitally coded signals permits 
the wide application of digital devices and communications. Digital sensors and trans
ducers can effectively measure, transmit, and couple signals and devices. In addition, 
many systems are inherently digital because they send out pulse signals. Examples of 
such a digital system are a radar tracking system and a space satellite. 
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FIGURE 13.3 The flight deck of the Boeing 757 and 767 features digital control electronics, 
including an engine indicating system and a crew alerting system. All systems controls are within 
reach of either pilot. The system includes an inertial reference system making use of laser 
gyroscopes and an electronic attitude director indicator. A flight-management computer system 
integrates navigation, guidance, and performance data functions. When coupled with the automatic 
flight control system (automatic pilot), the flight-management system provides accurate engine 
thrust settings and flight-path guidance during all phases of flight from immediately after takeoff to 
final approach and landing. The system can predict the speeds and altitudes that will result in the 
best fuel economy and command the airplane to follow the most fuel-efficient or the "least time" 
flight paths. (Courtesy of Boeing Airplane Co.) 

13.3 SAMPLED-DATA SYSTEMS 

Computers used in control systems are interconnected to the actuator and the 
process by means of signal converters. The output of the computer is processed by a 
digital-to-analog converter. We will assume that all the numbers that enter or leave 
the computer do so at the same fixed period T, called the sampling period. Thus, for 
example, the reference input shown in Figure 13.4 is a sequence of sample values 
r(kT).The variables r{kT),m(kT), and u(kT) are discrete signals in contrast to m(i) 
and y(t), which are continuous functions of time. 

Sampled data (or a discrete signal) are data obtained for the system variables 
only at discrete intervals and are denoted as x{kT). 

A sampler is basically a switch that closes every T seconds for one instant of 
time. Consider an ideal sampler, as shown in Figure 13.5. The input is r(i), and the 
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FIGURE 13.4 
A digital control 
system. 
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FIGURE 13.5 
An ideal sampler 
with an input r(t). 

Kt) 

Sampler 

Continuous 
signal 

/•*(/) 
Sampled 

signal 

output is r*(t), where nT is the current sample time, and the current value of r*(t) is 
r{nT). We then have r*(t) = r(nT)8(t — nT), where 8 is the impulse function. 

Let us assume that we sample a signal r(t), as shown in Figure 13.5, and obtain 
r*(t). Then, we portray the series for r*(t) as a string of impulses starting at / = 0, 
spaced at T seconds, and of amplitude r(kT). For example, consider the input signal 
r(f) shown in Figure 13.6(a). The sampled signal is shown in Figure 13.6(b) with an 
impulse represented by a vertical arrow of magnitude r(kT). 

A digital-to-analog converter serves as a device that converts the sampled sig
nal r*(t) to a continuous signal p(t). The digital-to-analog converter can usually be 
represented by a zero-order hold circuit, as shown in Figure 13.7. The zero-order 
hold takes the value r{kT) and holds it constant for kT ^ t < (k + 1)7, as shown 
in Figure 13.8 for k = 0. Thus, we use r{kT) during the sampling period. 

A sampler and zero-order hold can accurately follow the input signal if T is 
small compared to the transient changes in the signal. The response of a sampler 

FIGURE 13.6 
(a) An input signal 
r(t). (b) The sampled 
signal r*(t) = 
Z*k=0r(kT)8(t-kT). 
The vertical arrow 
represents an 
impulse. 
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FIGURE 13.7 
A sampler and 
zero-order hold 
circuit. 
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FIGURE 13.8 
The response of a 
zero-order hold to 
an impulse input 
r(kT), which equals 
unity when k = 0 
and equals zero 
when k # 0, so that 
r*(r) = r(0)S(f). 
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and zero-order hold for a ramp input is shown in Figure 13.9. Finally, the response 
of a sampler and zero-order hold for an exponentially decaying signal is shown in 
Figure 13.10 for two values of the sampling period. Clearly, the output p{t) will 
approach the input r{t) as T approaches zero, meaning that we sample frequently. 

The impulse response of a zero-order hold is shown in Figure 13.8. The transfer 
function of the zero-order hold is 

(13.1) 

The precision of the digital computer and the associated signal converters is 
limited (see Figure 13.4). Precision is the degree of exactness or discrimination with 
which a quantity is stated. The precision of the computer is limited by a finite word 
length. The precision of the analog-to-digital converter is limited by an ability to 
store its output only in digital logic composed of a finite number of binary digits. The 
converted signal m(kT) is then said to include an amplitude quantization error. 
When the quantization error and the error due to a computer's finite word size are 

FIGURE 13.9 
The response of a 
sampler and zero-
order hold for a 
ramp input r(t) = t. 
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Time 
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FIGURE 13.10 
The response of a 
sampler and zero-
order hold to an 
input r{t) = e~' for 
two values of 
sampling period T. 
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small relative to the amplitude of the signal [13,19], the system is sufficiently pre
cise, and the precision limitations can be neglected. 

13.4 THEz-TRANSFORM 

Because the output of the ideal sampler, r*(t), is a series of impulses with values 
r{kT), we have 

r*{t) = ^r(kT)8(t ~ kT), 
k=0 

for a signal for t > 0. Using the Laplace transform, we have 

« W 0 } = 1r(kT)e 
fe=0 

-ksT 

(13.2) 

(13.3) 

We now have an infinite series that involves multiples of es and its powers. We 
define 

z = esT, (13.4) 



908 Chapter 13 Digital Control Systems 

where this relationship involves a conformal mapping from the .s-plane to the z-plane. 
We then define a new transform, called the z-transform, so that 

Z{r{t)} = Z{r*{t)} = J,r(kT)z-k. 
k=0 

(13.5) 

As an example, let us determine the z-transform of the unit step function u(t) (not 
to be confused with the control signal u{t)). We obtain 

oo oo 

z{u{t)} = 2X*DZ-* = 2**. 
/c=0 k=0 

since u(kT) = 1 for fcsO. This series can be written in closed form as1 

1 z 
U(z) = 

1 - z'1 z - \ 

In general, we will define the z-transform of a function f{t) as 

Z{f(t)} = F(z) = ^f(kT)Z-k. 
k=0 

EXAMPLE 13.1 Transform of an exponential 

Let us determine the z-transform of f(t) = e~at for t > 0. Then 
00 OO 

Z{e~at} = F(z) = 5>~**V* = ^{ze+aTYk. 

Again, this series can be written in closed form as 

1 z 
F(z) = 

1 - (zeal) 

In general, we may show that 

aT\-l _ _ 0-aT' 

Z{e~atf(t)} = F{ea'z). 

(13.6) 

(13.7) 

(13.8) 

(13.9) 

(13.10) 

EXAMPLE 13.2 Transform of a sinusoid 

Let us determine the z-transform of f(t) = sin(atf) for t ^ 0. We can write sin(wf) as 

eJo>T _ e-ja)T 

Therefore, 

sin(wf) 

sin(otf) = 

2; 

ei<"T e-jwT 

2} 2/ 
(13.11) 

'Recall that the infinite geometric series may be written (1 — bx)~l = 1 + bx + (bx)2 + (bx)3 + . . . , if 
\bx\ < 1. 
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Table 13.1 z-Transforms 

x(t) X(s) X(z) 

0 otherwise 

S(t - a) = < € 

«o(0 = 

0 otherwise 

1 t = 0, 
0 

80(r - *T) = 

w(f), unit step 

1 - e~at 

sin(orf) 

cos(o>f) 

e~at sin(atf) 

e~at cos(o>r) 

t = kT,k # 0 

1 f = AT, 
0 / ?fi &r 

l/s 

1 / / 

1 
5 + a 

1 
5(5 + c) 

/ + o)2 

5 

/ + 0)2 

(s + a)2 + 
5 + a 

a>2 

„-ft 

z - 1 
Tz 

(z - iy 
z 

z - e 
-aT 

(1 - e~a')z 

(z - l)(z - e~aT) 
z sin(a;r) 

z2 - 2z cos(coT) + 1 
z(z - cos((oT)) 

z2 - 2z COS(OJT) + 1 

(ze-aT sinjcoT)) 

z2 - 2ze~aT cos(coT) + e'2"7 

z2 - ze-',T cos((oT) 

(s + ay + to2 zl - 2ze'al cos(aT) + e r,-2aT 

Then 

F(z) = -
2 A z - ei°>T z - e~ja>T 

z(e )(oT _ p-j(oT\ 

(13.12) 
2j\z2 - z(e'wT + e->aT) 

z sin(<wT) 

z2 - 2zcos(a)T) + 1" 

A table of z-transforms is given in Table 13.1 and at the MCS website. Note that 
we use the same letter to denote both the Laplace and z-transforms, distinguishing 
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Table 13.2 Properties of the z-Transform 

x(f) X(z) 
1. 
2. 
3. 

4. 

5. 
6. 

7. 

kx(t) 
*i(0 + x2{t) 

xit + T) 

tx{t) 

e-"'x(t) 
x(0), initial value 
x(oo), final value 

kX(z) 
*i(z) + X2(z) 
zX(z) - zx(0) 

dX(z) 
-Tz- dz 
X{zeaT) 

lim X(z) if the limit exists 
J—»00 

lim(z - \)X(z) if the limit exists and the system 
Z—*1 

is stable; that is, if all poles of (z - V)X(z) are 
inside the unit circle \z\ = 1 on z-plane. 

them by the argument s or z. A table of properties of the z-transform is given in 
Table 13.2. As in the case of Laplace transforms, we are ultimately interested in the 
output y(t) of the system. Therefore, we must use an inverse transform to obtain y(t) 
from Y(z). We may obtain the output by (1) expanding Y(z) in a power series, (2) 
expanding Y(z) into partial fractions and using Table 13.1 to obtain the inverse of 
each term, or (3) obtaining the inverse z-transform by an inversion integral. We will 
limit our methods to (1) and (2) in this limited discussion. 

EXAMPLE 13.3 Transfer function of an open-loop system 

Let us consider the system shown in Figure 13.11 for T = 1. The transfer function of 
the zero-order hold (Equation 13.1) is 

1 - e~sT 

Go(s) = i — r — . 

Therefore, the transfer function Y(s)/R*(s) is 

Y(s) 
— = G0(s)Gp(s) = G(s) = 

Expanding into partial fractions, we have 

1 - e -sT 

S2(S + 1) 

1 1 
G(s) = ( 1 - e~st)\ - 7 - - + 

1 1 
G(z) = Z{G(s)} = (1- z~')Z\ - r - - + 

s + 1 

(13.13) 

(13.14) 

(13.15) 

FIGURE 13.11 
An open-loop, 
sampled-data 
system (without 
feedback). 

r*{t) 
r(t) 

T= 1 

Zero-order 
hold 

G0(s) 
P(D 

Process 

I 
^ - , ( , + 1) v(/) 
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Using the entries of Table 13.1 to convert from the Laplace transform to the corre
sponding z-transform of each term, we have 

G(z) = (1 - z"1) 
Tz z 

| _ ( z - l ) 2 z - \ z~e-'r 

_ (ze~T - z + Tz) + (1 - e"T - 7V7) 

(z - l)(z - e~T) 

When T = 1, we obtain 

ze~l + 1 - 2e~l 

G(z) = 
(Z - l)(z - e~l) 

0.3678z + 0.2644 0.3678z + 0.2644 
(z - l)(z - 0.3678) z2 - 1.3678z + 0.3678' 

(13.16) 

The response of this system to a unit impulse is obtained for R(z) = 1 so 
that Y(z) = G(z)' 1. We may obtain Y(z) by dividing the denominator into the 
numerator: 

0.3678Z"1 + 0.7675z~2 + 0.9145z~3 + ... = Y(z) 
z2 - 1.3678* + 0.3678J03678z + 0.2644 

0.3678z - 0.5031 + 0.1353z - l 

+ 0.7675 - 0.1353Z"1 

+ 0.7675 - 1.0497Z"1 + 0.2823z"2 

- 1 _ A 1 0 1 2 - - 2 

(13.17) 

0.9l45z_i - 0.2823z 

This calculation yields the response at the sampling instants and can be carried as 
far as is needed for Y(z). From Equation (13.5), we have 

oo 

Y(z) = 2,y(kT)z*. 

In this case, we have obtained y(kT) as follows: y(0) = 0, y(T) = 0.3678, 
y(2T) = 0.7675, and y(3T) = 0.9145. Note that y(kT) provides the values of y{t) at 
t = kT. m 

We have determined Y(z), the z-transform of the output sampled signal. The 
z-transform of the input sampled signal is i?(z).The transfer function in the z-domain is 

Y(z) 
R(z) 

Since we determined the sampled output, we can use an output sampler to depict 
this condition, as shown in Figure 13.12; this represents the system of Figure 13.11 



912 Chapter 13 Digital Control Systems 

FIGURE 13.12 
System with 
sampled output. 

FIGURE 13.13 
Thez-transform 
transfer function in 
block diagram form. 

R(z) 
G(z) 

Viz) 

with the sampled input passing to the process. We assume that both samplers have 
the same sampling period and operate synchronously. Then 

Y{z) = G(z)R(z), (13.19) 

as required. We may represent Equation (13.19), which is a z-transform equation, by 
the block diagram of Figure 13.13. 

13.5 CLOSED-LOOP FEEDBACK SAMPLED-DATA SYSTEMS 

In this section, we consider closed-loop, sampled-data control systems. Consider the 
system shown in Figure 13.14(a). The sampled-data z-transform model of this figure 
with a sampled-output signal Y(z) is shown in Figure 13.14(b). The closed-loop 
transfer function (using block diagram reduction) is 

Y(Z) _ M _ G(z) 
R(z) {Z) 1 + G(z)' 

(13.20) 

Here, we assume that the G{z) is the z-transform of G{s) = GQ(S)GP(S), where 
GQ(s) is the zero-order hold, and Gp(s) is the process transfer function. 

FIGURE 13.14 
Feedback control 
system with unity 
feedback. G{z) is 
the z-transform 
corresponding to 
G(s), which 
represents the 
process and the 
zero-order hold. 

(a) 

+ ^ E{z) 
RC.) H ) — • G(z) •*• Y(z) 

(b) 
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FIGURE 13.15 
(a) Aibo is a 
sophisticated 
entertainment 
robot. Aibo looks 
like a Chihuahua 
and wags its tail, 
does tricks, and 
goes for walks. 
Aibo depends on a 
wide range of 
sensors, including 
touch, color CCD 
camera, range 
finder, and velocity 
sensors. A 64-bit 
RISC micro
processor and 
16MB of memory 
are built in. It has 
18 joints powered 
by 18 motors. 
Photo courtesy of 
Sony Electronics 
Inc. (b) Feedback 
control system with 
a digital controller. 
(c) Block diagram 
model. Note that 
G(z) = 
Z{G0(s)Gp(s)}. 

(a) 

Digital 
controller 

rU) 

R(z) K ) -—H Wz) — — H G{z) 
U(z) 

•*• Y(z) 

(c) 

An example of a digital control system is the robotic dog Aibo, shown in 
Figure 13.15(a).The feedback control system of one joint with a digital controller 
is shown in Figure 13.15(b). The z-transform block diagram model is shown in 
Figure 13.15(c). The closed-loop transfer function is 

Y(z) 
= T{Z) = 

G(z)D(z) 
1 + G{z)D{z)' 

(13.21) 

EXAMPLE 13.4 Response of a closed-loop system 

Now, let us consider the closed-loop system, as shown in Figure 13.16. We have 
obtained the z-transform model of this system, as shown in Figure 13.14. There
fore, we have 

Y(z) a G(z) 
R(z) 1 + G(z)' 

(13.22) 
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FIGURE 13.16 
A closed-loop, 
sampled-data 
system. 

'(?) 

-. e(t) /-"" e*(t) 

t T= 1 

Zero-order 
hold 

G0(s) 

Gp{s) 

1 
s(s + 1) 

In Example 13.3, we obtained G(z) as Equation (13.16) when T = 1 s. Substituting 
G(z) into Equation (13.22), we obtain 

Y(z) _ 0.367¾ + 0.2644 

R(z) " z2 - z + 0.6322' 

Since the input is a unit step, 

R(z) = 
z-r 

(13.23) 

(13.24) 

it follows that 

Y(z) = 
z(03678z + 0.2644) 0.367¾2 + 0.2644* 

(Z - 1)(22 - z + 0.6322) z3 ~ 2z2 + 1.6322* - 0.6322' 

Completing the division, we have 

Y(z) = 0.3678*-1 + z~
2 + lAz~3 + lAz"4 + 1.147^5.... (13.25) 

The values of y{kT) are shown in Figure 13.17, using the symbol Q The complete 
response of the sampled-data, closed-loop system is shown and contrasted to the 
response of a continuous system (when 7 = 0). The overshoot of the sampled sys
tem is 45%, in contrast to 17% for the continuous system. Furthermore, the settling 
time of the sampled system is twice as long as that of the continuous system. • 

FIGURE 13.17 
The response of a 
second-order 
system: (a) 
continuous (T = 0), 
not sampled; (b) 
sampled system, 

r = is. 
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A linear continuous feedback control system is stable if all poles of the closed-loop 
transfer function T(s) lie in the left half of the s-plane. The z-plane is related to the 
s-plane by the transformation 

7 = e
sT = e(0"+A")r^ (13.26) 

We may also write this relationship as 

and 

\z\ = e*T 

' Z = a>T. (13.27) 

In the left-hand s-plane, a < 0; therefore, the related magnitude of z varies between 
0 and 1. Thus, the imaginary axis of the s-plane corresponds to the unit circle in the 
z-plane, and the inside of the unit circle corresponds to the left half of the s-plane [15]. 

Therefore, we can state that a sampled system is stable if all the poles of the 
closed-loop transfer function T(z) lie within the unit circle of the z-plane. 

EXAMPLE 13.5 Stability of a closed-loop system 

Let us consider the system shown in Figure 13.18 when 7 = 1 and 

K 

w = s(s + iy 
Recalling Equation (13.16), we note that 

K(0361Sz + 0.2644) 
G(z) = 

K(az + b) 

z2 ~ 1.3678z + 0.3678 z2 - (1 + a)z + a 

(13.28) 

(13.29) 

where a = 0.3678 and b = 0.2644. 
The poles of the closed-loop transfer function T(z) are the roots of the equation 

1 + G(z) = 0. We call q(z) = 1 + G(z) = 0 the characteristic equation. Therefore, 
we obtain 

q{z) = 1 + G{z) = zl - (1 + a)z + a + Kaz + Kb = 0. (13.30) 

When K = 1, we have 

q{z) = z2 ~ z + 0.6322 
= (z - 0.50 + /0.6182)(z - 0.50 - /0.6182) = 0. (13.31) 

FIGURE 13.18 
A closed-loop 
sampled system. 

rit) ^C^-
e*(l) 

Zero-order 
hold 

GfXs) 

Process 

GJs) +• \(t) 
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Therefore, the system is stable because the roots lie within the unit circle. When 
K = 10, we have 

q(z) = z2 + 2.310z + 3.012 

= (Z + 1.155 + /1.295)(2 + 1.155 - /1.295), (13.32) 

and the system is unstable because both roots lie outside the unit circle. This sys
tem is stable for 0 < K < 2.39. The locus of the roots as K varies is discussed in 
Section 13.8. 

We notice that a second-order sampled system can be unstable with increasing 
gain where a second-order continuous system is stable for all values of gain (assum
ing both the poles of the open-loop system lie in the left half j-plane). • 

13.6 PERFORMANCE OF A SAMPLED-DATA, SECOND-ORDER SYSTEM 

Let us consider the performance of a sampled second-order system with a zero-
order hold, as shown in Figure 13.18, when the process is 

We then obtain G{z) for the arbitrary sampling period Tas 

rf\ K{{z " E)[T ~ T{z ' 1 ) ] + T{z ~ 1 ) 2 } m™ 
G{Z) = (z - l)(z - E) ' ( 1 3 3 4 ) 

where E = e~T/r. The stability of the system is analyzed by considering the charac
teristic equation 

q{z) = z2 + z{K[T - r(l - E)] - ( 1 + E)} + K[r(l - E) - TE] + E = 0. 
(13.35) 

Because the polynomial q(z) is a quadratic and has real coefficients, the necessary 
and sufficient conditions for q(z) to have all its roots within the unit circle are 

1̂ (0)1 < 1, q(l) > 0, and q{-\) > 0. 

These stability conditions for a second-order system can be established by mapping 
the z-plane characteristic equation into the s-plane and checking for positive coeffi
cients of q(s). Using these conditions, we establish the necessary conditions from 
Equation (13.35) as 

* T < 1-E-ME- ( 1 3 3 6 ) 

2(1 + E) 
Kr < ( r / r ) ( l i E) - 2(1 - EY < 1 3 3 7 ) 

and K > 0, T > 0. For this system, we can calculate the maximum gain permissible 
for a stable system. The maximum gain allowable is given in Table 13.3 for several 
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Table 13.3 Maximum Gain for a Second-Order Sampled System 

T/T 0 0.1 0.5 1 

Maximum Kr 20.4 4.0 2.32 1.45 

values of T/T. If the computer system has sufficient speed of computation and data 
handling, it is possible to set T/T = 0.1 and obtain system characteristics approach
ing those of a continuous (nonsampled) system. 

The maximum overshoot of the second-order system for a unit step input is 
shown in Figure 13.19. 

The performance criterion, integral squared error, can be written as 

/- i e\t) dt. (13.38) 

The loci of this criterion are given in Figure 13.20 for constant values of I. For a 
given value of T/T, we can determine the minimum value of I and the required 

FIGURE 13.19 
The maximum 
overshoot |y| for a 
second-order 
sampled system for 
a unit step input. 
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FIGURE 13.20 
The loci of integral 
squared error for a 
second-order 
sampled system for 
constant values of I. 
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FIGURE 13.21 
The steady-state 
error of a second-
order sampled 
system for a unit 
ramp input 
r{t) = t, t > 0. 

KT 

value of KT. The optimal curve shown in Figure 13.20 indicates the required KT for 
a specified T/r that minimizes I. For example, when T/T = 0.75, we require KT = 1 
in order to minimize the performance criterion I. 

The steady-state error for a unit ramp input r(t) = t is shown in Figure 13.21. 
For a given T/T, we can reduce the steady-state error, but then the system yields a 
greater overshoot and settling time for a step input. 

EXAMPLE 13.6 Design of a sampled system 

Let us consider a closed-loop sampled system as shown in Figure 13.18 when 

K 
GM s(0.1s + 1)(0.005^ + 1) 

(13.39) 

and we need to select T and K for suitable performance. As an approximation, we 
neglect the effects of the time constant T2 = 0.005 s, because it is only 5% of the pri
mary time constant T2 = 0.1. Then we can use Figures 13.19,13.20, and 13.21 to se
lect K and T. Limiting the overshoot to 30% for the step input, we select 
T/T = 0.25, yielding KT = 1.4. For these values, the steady-state error for a unit 
ramp input is approximately 0.6 (see Figure 13.21). 

Because r = 0.1, we then set T = 0.025 s and K = 14. The sampling rate is 
then required to be 40 samples per second. 

The overshoot to the step input and the steady-state error for a ramp input may 
be reduced if we set T/T to 0.1. The overshoot to a step input will be 25% for 
KT = 1.6. Using Figure 13.21, we estimate that the steady-state error for a unit 
ramp input is 0.55 for KT = 1.6. • 

13.7 CLOSED-LOOP SYSTEMS WITH DIGITAL COMPUTER COMPENSATION 

A closed-loop, sampled system with a digital computer used to improve the perfor
mance is shown in Figure 13.15. The closed-loop transfer function is 

Y(z) 

R(z) 
= T(z) = 

G(z)D(z) 
1 + G(z)D(zY 

(13.40) 
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The transfer function of the computer is represented by 

E(z) 
D(z). (13.41) 

In our prior calculations, D(z) was represented simply by a gain K. As an illus
tration of the power of the computer as a compensator, we will consider again the 
second-order system with a zero-order hold and process 

GJs) = 
1 

whenT = 1. 

Then (see Equation 13.16) 

G{z) = 

If we select 

D(z) = 

s(s + 1) 

0.3678(z + 0.7189) 

(z - l)(z - 0.3678)1 

K(z - 0.3678) 

z + r 

(13.42) 

(13.43) 

we cancel the pole of G(z) at z = 0.3678 and have to set two parameters, r and K. If 
we select 

D(z) = 
1.359(̂  - 0.3678) 

z + 0.240 

we have 

G(z)D(z) = 
0.50(z + 0.7189) 

(z - l)(z + 0.240)' 

(13.44) 

(13.45) 

If we calculate the response of the system to a unit step, we find that the output 
is equal to the input at the fourth sampling instant and thereafter. The responses for 
both the uncompensated and the compensated system are shown in Figure 13.22. 

FIGURE 13.22 
The response of a 
sampled-data 
second-order 
system to a unit 
step input. 
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FIGURE 13.23 
The continuous 
system model of a 
sampled system. 

Rls) 
. 

Controller 

Gc(s) Gp(s) 

The overshoot of the compensated system is 4%, whereas the overshoot of the 
uncompensated system is 45%. It is beyond the objective of this book to discuss all 
the extensive methods for the analytical selection of the parameters of D(z)\ other 
texts [2-4] can provide further information. However, we will consider two meth
ods of compensator design: (1) the Gc(s)-to-D(z) conversion method (in the fol
lowing paragraphs) and (2) the root locus z-plane method (in Section 13.8). 

One method for determining D(z) first determines a controller Gc(s) for a 
given process Gp(s) for the system shown in Figure 13.23. Then, the controller is 
converted to D(z) for the given sampling period T. The methods described in 
Chapter 10 are used to determine Gc(s). This design method is called the 
Gc(s)-to-D(z) conversion method. It converts the Gc(s) of Figure 13.23 to D(z) of 
Figure 13.15 [7]. 

We consider a first-order compensator 

Gc(s) = K s + a 
s + b 

and a digital controller 

D{z) = C 
A 

z - B 

(13.46) 

(13.47) 

We determine the z-transform corresponding to Gc{s) and set it equal to D(z) as 

Z{Gc(s)} = D(z). (13.48) 

Then the relationship between the two transfer functions is A = e~aT, B = e~bT, 
and when s = 0, we require that 

C l - B - K b -
(13.49) 

EXAMPLE 13.7 Design to meet a phase margin specification 

Consider a system with a process 

1740 
Gp(s) = 

s(0.25s + 1)* 
(13.50) 

We will attempt to design Gc(s) so that we achieve a phase margin of 45° with a 
crossover frequency coc = 125 rad/s. Using the Bode diagram of Gp(s), we find that 
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the phase margin is 2°. Using the method of Section 10.4, we find that the required 
pole-zero ratio is a = 6.25. It is specified that wc = 125, so we note that 
u)c = {ab)xl2. Therefore, a = 50 and b = 312. The lead compensator is then 

Gc(s) = 
K(s + 50) 
5 + 312 ' 

(13.51) 

We select K in order to yield \GGc(jo))\ = 1 when co = coc = 125 rad/s. Then we 
find that K = 5.6. The compensator Gc(s) is to be realized by D(z), so we solve 
the relationships with a selected sampling period. Setting T = 0.001 s, we have 

_ ,,-0.05 _ _ „-0.312 _ 
A = e-u.v> = 0 9 5 ; B = e-».5u = 0 7 3 j a n d c = 4 8 5 

Then we have 

D{z) = 
4.85(z - 0.95) 

z - 0.73 * 
(13.52) 

Of course, if we select another value for the sampling period, then the coefficients of 
D(z) would differ. • 

In general, we select a small sampling period so that the design based on the 
continuous system will accurately carry over to the z-plane. However, we should not 
select too small a T, or the computation requirements may be more than necessary. 
In general, we use a sampling period T ~ 1/(10/B), where fB = a)B/(2ir), and o>B is 
the bandwidth of the closed-loop continuous system. 

The bandwidth of the system designed in Example 13.7 is o>B = 180 rad/s or 
fB = 28.6 Hz. Thus we select a period T = 0.003 s. Note that T = 0.001 s was used 
in Example 13.7. 

13.8 THE ROOT LOCUS OF DIGITAL CONTROL SYSTEMS 

Let us consider the transfer function of the system shown in Figure 13.24. Recall 
that G(s) = GQ(S)GP(S). The closed-loop transfer function is 

Y(z) KG(z)D(z) 

R(z) 1 + KG(z)D(z)' 
(13.53) 

FIGURE 13.24 
Closed-loop system 
with a digital 
controller. 

• Yis) 
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Table 13.4 Root Locus in the z-Plane 

1. The root locus starts at the poles and progresses to the zeros. 
2. The root locus lies on a section of the real axis to the left of an odd number of poles and 

zeros. 
3. The root locus is symmetrical with respect to the horizontal real axis. 
4. The root locus may break away from the real axis and may reenter the real axis. The 

breakaway and entry points are determined from the equation 
N(z) 

dF(a) 
with z = er. Then obtain the solution of — = 0. 

da 
5. Plot the locus of roots that satisfy 

1 + KG(z)D(z) = 0, 
or 

\KG(z)D(z)\ = 1 
and 

/G(z)D(z) = 180° ± £360°, £ = 0,1,2,... 

The characteristic equation is 

1 + KG(z)D{z) = 0, 

which is analogous to the characteristic equation for the .s-plane analysis of KG(s). 
Thus, we can plot the root locus for the characteristic equation of the sampled sys
tem as K varies. The rules for obtaining the root locus are summarized in Table 13.4. 

EXAMPLE 13.8 Root locus of a second-order system 

Consider the system shown in Figure 13.24 with D(z) = 1 and Gp{s) = 1/s2. Then 
we obtain 

Let T = \fl and plot the root locus. We now have 

K(z + 1) 
KG(z) = 

(z - 1)2 ' 

and the poles and zeros are shown on the z-plane in Figure 13.25. The characteristic 
equation is 

K(z + 1) 

(z - If 
l + KG{z) = i + -r-'—r? = °-

Let z = v and solve for K to obtain 

(a - 1)2 



FIGURE 13.25 
Root locus for 
Example 13.8. 
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A.' increasing 

Root locus 

Then obtain the derivative dF(a)/da = 0 and calculate the roots as crj = —3 and 
cr2 = 1. The locus leaves the two poles at <x2 = 1 and reenters at (T\ = —3, as shown 
in Figure 13.25. The unit circle is also shown in Figure 13.25. The system always has 
two roots outside the unit circle and is always unstable for all K > 0. • 

We now turn to the design of a digital controller D(z) to achieve a specified 
response utilizing a root locus method. We will select a controller 

D(z) = z — a 
z-b' 

We then use z - a to cancel one pole at G(z) that lies on the positive real axis of the 
z-plane. Then we select z — b so that the locus of the compensated system will give 
a set of complex roots at a desired point within the unit circle on the z-plane. 

EXAMPLE 13.9 Design of a digital compensator 

Let us design a compensator D(z) that will result in a stable system when Gp{s) is as 
described in Example 13.8. With D(z) = 1, we have an unstable system. Select 

D{z) = z - a 
z - b 

so that 

KG{z)D{z) = 

If we set a = 1 and b = 0.2, we have 

KG{z)D(z) = 

K(z + \)(z - a) 
(z - l)2(z - b) • 

K(z + 1) 
(z - l)(z - 0.2)-

Using the equation for -F(cr), we obtain the entry point as z — -2.56, as shown in 
Figure 13.26. The root locus is on the unit circle at K = 0.8. Thus, the system is stable 
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FIGURE 13.26 
Root locus for 
Example 13.9. 

Unit circle 

* • Re(z} 

Breakaway 
point at 
z = 0.55 

Root locus 

for K < 0.8. If we select K = 0.25, we find that the step response has an overshoot 
of 20% and a settling time (with a 2% criterion) equal to 8.5 seconds. 

If the system performance were inadequate, we would improve the root locus 
by selecting a = 1 and b = -0.98 so that 

KG(z)D(z) = 
K(z + 1) K 

(z - l)(z + 0.98) z - 1" 

Then the root locus would lie on the real axis of the z-plane. When K = 1, the root 
of the characteristic equation is at the origin, and T(z) = l/z = z"1- Then the 
response of the sampled system (at the sampling instants) is the input step delayed 
by one sampling period. • 

We can draw lines of constant £ on the z-plane. The mapping between the 
s-plane and the z-plane is obtained by the relation z — esT. The lines of constant £ 
on the s-plane are radial lines with 

— = -tan 6 = -tan(sin_1 £) = -
Vl - I1' 

Since s = a + jco, we have 

where 

z = e* Tei<oT, 

a = — V w 2 



FIGURE 13.27 
Curves of constant 
l on thez-plane. 
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The plot of these lines for constant £ is shown in Figure 13.27 for a range of T. 
A common value of £ for many design specifications is £ = 1/V2. Then we have 
a- = — o) and 

= f>~mTpJmr = p'vT 

where 6 = coT. 

13.9 IMPLEMENTATION OF DIGITAL CONTROLLERS 

We will consider the PID controller with an s-domain transfer function 

(13.54) 

We can determine a digital implementation of this controller by using a discrete 
approximation for the derivative and integration. For the time derivative, we use 
the backward difference rule 

u{kT) = 
dx 
~dt 

= ~{x(kT) - x[(k - 1)2¾. 
l=kT 1 

(13.55) 

The z-transform of Equation (13.55) is then 

l-z~l 

U(z) = 
T 

x(z) = ^ i j r w . 

The integration of x(i) can be represented by the forward-rectangular integration at 
t = kT as 

u{kT) = u[(k - \)T] + Tx(kT), (13.56) 
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where u(kT) is the output of the integrator at t = kT. The z-transform of Equation 
(13.56) is 

U(z) = z-lU{z) + TX(z), 

and the transfer function is then 

U(z) ^ Tz 
X(z) z-Y 

Hence, the z-domain transfer function of the PID controller is 

(13.57) 

The complete difference equation algorithm that provides the PID controller is 
obtained by adding the three terms to obtain [we use x{kT) = x(k)) 

u{k) = Kpx(k) + K,[u(k - 1 ) + Tx(k)] + (KD/T)[x(k) - x(k - 1)] 

= [KP + KjT + (KD/T)]x(k) - KDTx(k - 1 ) + K,u(k - 1). (13.58) 

Equation (13.58) can be implemented using a digital computer or microprocessor. 
Of course, we can obtain a PI or PD controller by setting an appropriate gain equal 
to zero. 

13.10 DESIGN EXAMPLES 

In this section we present two illustrative examples. In the first example, two con
trollers are designed to control the motor and lead screw of a movable worktable. 
Using a zero-order hold formulation, a proportional controller and a lead compen
sator are obtained and their performance compared. In the second example, a control 
system is designed control an aircraft control surface as part of a fly-by-wire system. 
Using root locus methods, the design process focuses on the design of a digital con
troller to meet settling time and percent overshoot performance specifications. 

EXAMPLE 13.10 Worktable motion control system 

An important positioning system in manufacturing systems is a worktable motion 
control system. The system controls the motion of a worktable at a certain loca
tion [21]. We assume that the table is activated in each axis by a motor and lead 
screw, as shown in Figure 13.28(a). We consider the x-axis and examine the motion 
control for a feedback system, as shown in Figure 13.28(b). The goal is to obtain a 
fast response with a rapid rise time and settling time to a step command while not 
exceeding an overshoot of 5%. 

The specifications are then (1) a percent overshoot equal to 5% and (2) a mini
mum settling time (with a 2% criterion) and rise time. Rise time is defined as the 
time to reach the magnitude of the command and is illustrated in Figure 5.7 by 7}?. 
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Actual 
\{t) position 

1 • 

FIGURE 13.28 
A table motion 
control system: 
(a) actuator and 
table; (b) block 
diagram. 

C0(s) 

Zero-order 
hold 

K 
F" 

Gp(s) 
Process 

1 
s(s + 10)(5 + 20) 

• • A'(.s) 

(b) 

To configure the system, we choose a power amplifier and motor so that the sys
tem is described by Figure 13.29. Obtaining the transfer function of the motor and 
power amplifier, we have 

GP(S) = 
1 

s(s + 10)(,v + 20)" 
(13.59) 

We will initially use a continuous system and design Gc(s) as described in Section 
13.8. We then obtain D(z) from Gc(s). First, we select the controller as a simple gain 
K in order to determine the response that can be achieved without a compensator. 
Plotting the root locus, we find that when K = 700, the dominant complex roots 
have a damping ratio of 0.707, and we expect a 5% overshoot. Then, using a simula
tion, we find that the overshoot is 5%, the rise time is 0.48 second, and the settling 
time (with a 2% criterion) is 1.12 seconds. These values are recorded as item 1 in 
Table 13.5. 

The next step is to introduce a lead compensator, so that 

Gc{s) 
K(s + a) 

s + b 
(13.60) 

FIGURE 13.29 
Model of the wheel 
control for a work 
table. 

f 

Controller 

Gc(s) 

Power 
amplifier 

1 
5 + 20 

Motor 

1 
s(s + 10) 

} ( V I 

Wheel 
position 
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Table 13.5 Performance for Two Controllers 

Compensator Gc(s) K 
Percent 
Overshoot 

Settling Time 
(seconds) 

Rise Time 
(seconds) 

\.K 
2.K(s + ll)/(s + 62) 

700 
8000 

5.0 
5.0 

1.12 
0.60 

0.40 
0.25 

We will select the zero at s = —11 so that the complex roots near the origin 
dominate. Using the method of Section 10.5, we find that we require the pole at 
s = -62. Evaluating the gain at the roots, we find that K — 8000. Then the step 
response has a rise time of 0.25 second and a settling time (with a 2% criterion) of 
0.60 second. This is an improved response, and we finalize this system as acceptable. 

It now remains to select the sampling period and then use the method of 
Section 13.7 to obtain D(z). The rise time of the compensated continuous system is 
0.25 second. Then we require T <5C TR in order to obtain a system response predict
ed by the design of the continuous system. Let us select T = 0.01 s. We have 

Gc(s) = 
8000(.9 + 11) 

5 + 62 

Then 

where 

D(z) = C 
z- A 

We now have 

z-B' 

A = e~nT = 0.8958 and B = e~62T = 0.5379. 

A(1 - B) 8000(11)(0.462) 
C = K b{\ - A) 62(0.1042) = 6293. 

Using this D(z), we expect a response very similar to that obtained for the continu
ous system model. • 

EXAMPLE 13.11 Fly-by-wire aircraft control surface 

Increasing constraints on weight, performance, fuel consumption, and reliability cre
ated a need for a new type of flight control system known as fly-by-wire. This 
approach implies that particular system components are interconnected electrically 
rather than mechanically and that they operate under the supervision of a computer 
responsible for monitoring, controlling, and coordinating the tasks. The fly-by-wire 
principle allows for the implementation of totally digital and highly redundant con
trol systems reaching a remarkable level of reliability and performance [24]. 

Operational characteristics of a flight control system depend on the dynamic 
stiffness of an actuator, which represents its ability to maintain the position of the 
control surface in spite of the disturbing effects of random external forces. One 
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Control surface 

Desired angle 

Measured angle of 
surface, 6(s) 

fHt) 

(a) 

FIGURE 13.30 
(a) Fly-by-wire 
aircraft control 
surface system and 
(b) block diagram. 
The sampling 
period is 0.1 
second. 

T = 0.1 second 

R(s) * Q cT D(z) y, Zero-order 
hold 

Process 
dynamics 

•*• Angle. 0{s) 

(b) 

flight actuator system consists of a special type of DC motor, driven by a power 
amplifier, which drives a hydraulic pump that is connected to either side of a 
hydraulic cylinder. The piston of the hydraulic cylinder is directly connected to a con
trol surface of an aircraft through some appropriate mechanical linkage, as shown in 
Figure 13.30. The elements of the design process emphasized in this example are 
highlighted in Figure 13.31. 

The process model is given by 

GM = 
1 

s(s + 1)' 

The zero-order hold is modeled by 

1 - e sT 

GM = 

Combining the process and the zero-order hold in series yields 

1 - e-$T 

G(s) = G0(s)Gp(s) = 
s2(s + 1)' 

(13.61) 

(13.62) 

(13.63) 



930 Chapter 13 Digital Control Systems 

FIGURE 13.31 
Elements of the 
control system 
design process 
emphasized in this 
fly-by-wire aircraft 
control surface 
example. 

• Topics emphasized in this example 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

T3c 
ES auuaii uic sjrsicui luiuiguiiiiiuu 

I 
Obtain a mode] of the process, the 

actuator, and the sensor 

i 
Describe a controller and select key 

parameters to be adjusted 

~r 
Optimize the parameters and 

analyze the performance 

1 

Design a controller D(z) 
so that the control surface 
angle tracks the desired 

angle. 

Control surface angle 6(t). 

Design specifications: 
DS1: P.O. < 5% 
DS2: Ts< 1 s 

See Figure 13.30. 

See Equation (13.63). 

See Equation (13.65). 

See Figures 13.32-13.35. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

The control goal is to design a compensator, D(z), so that the control surface angle 
Y(s) = d(s) tracks the desired angle, denoted by R(s). We state the control goal as 

Control Goal 
Design a controller D(z) so that the control surface angle tracks the desired angle. 

The variable to be controlled is the control surface angle 6(t): 

Variable to Be Controlled 
Control surface angle 6(t). 

The design specifications are as follows: 

Design Specifications 
DS1 Percent overshoot less than 5% to a unit step input. 
DS2 Settling time less than 1 second to a unit step input. 
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We begin the design process by determining G{z) from G{s). Expanding G(s) in 
Equation (13.63) in partial fractions yields 

G(s) = (1 - e-*r), 2 

and 

,-r 
G(z) = Z{G(s)} = ze~' - z + Tz + 1 - e~' - Te -T ,-r 

(z - l)(z - e~T) 

where Z{ • } represents the z-transform. Choosing T = 0.1, we have 

0.004837z + 0.004679 
G(z) = 

(z - l)(z - 0.9048) " 
(13.64) 

For a simple compensator, D(z) — K, the root locus is shown in Figure 13.32. 
For stability we require K < 21. Note that the stability region for discrete-time sys
tems is inside the unit circle in the complex plane. Recall that for continuous-time 
systems, the stability region is the left half-plane. 

Using an iterative approach we discover that as K —»21, the step response is 
very oscillatory, and the percent overshoot is too large; conversely, as K gets smaller, 
the settling time gets too long, although the percent overshoot decreases. In any case 
the design specifications cannot be satisfied with a simple proportional controller, 
D(z) — K. We need to utilize a more sophisticated controller. 

FIGURE 13.32 
Root locus for 
D{z) = K. 
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We have the freedom to select the controller type. As with control design for 
continuous-time systems, the choice of compensator is always a challenge and prob
lem-dependent. Here we choose a compensator with the general structure 

D(z) = K^ZT- (13.65) 

Therefore, the key tuning parameters are the compensation parameters: 

Select Key Tuning Parameters 
K, a, and b. 

For continuous systems we know that a design rule-of-thumb formula for the settling 
time is 

S i< 
where we use a 2% bound to define settling. This design rule-of-thumb is valid for 
second-order systems with no zeros. So to meet the Ts requirement, we want 

-Refo) = fa > y, (13.66) 

where sb i = 1,2 are the dominant complex-conjugate poles. In the definition of the 
desired region of the z-plane for placing the dominant poles, we use the transform 

z = g*r = e(-f8„±/«»,V(i-f2))r - e-£»,?e±MrV(i-e)m 

Computing the magnitude of z yields 

r0= \z\ = eHo>»T. 

To meet the settling time specification, we need the z-plane poles to be inside the 
circle defined by 

r0 = e~4T^, (13.67) 

where we have used the result in Equation (13.66). 
Consider the settling time requirement Ts < 1 s. In our case T = 0.1 s. From 

Equation (13.67) we determine that the dominant z-plane poles should lie inside 
the circle defined by 

ro = e«*n = 0.67. 

As shown previously we can draw lines of constant £ on the z-plane. The lines of 
constant £ on the s-plane are radial lines with 

/-
(7 = — co tan(sin_ £) = , to. 

V I -f 

Then, with s = cr + jco and using the transform z = esT, we have 

Z = e-™Te>&T. (13.68) 
For a given £, we can plot Re(z) vs Im(z) for z given in Equation (13.68). 

If we were working with a second-order transfer function in the ^-domain, we 
would need to have the damping ratio associated with the dominant roots be greater 



FIGURE 13 33 
Root locus for 
D(z) = K with the 
stability and 
performance 
regions shown. 
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than t, S: 0.69. When £ >: 0.69, the percent overshoot for a second-order system 
(with no zeros) will be less than 5%. The curves of constant £ on the z-plane will 
define the region in the z-plane where we need to place the dominant z-plane poles 
to meet the percent overshoot specification. 

The root locus in Figure 13.32 is repeated in Figure 13.33 with the stability and 
desired performance regions included. We can see that the root locus does not lie in 
the intersection of the stability and performance regions. The question is how to 
select the controller parameters K, a, and b so that the root locus lies in the desired 
regions. 

One approach to the design is to choose a such that the pole of G{z) at 
z = 0.9048 is cancelled. Then we must select b so that the root locus lies in the 
desired region. For example, when a = -0.9048 and b = 0.25, the compensated 
root locus appears as shown in Figure 13.34. The root locus lies inside the perfor
mance region, as desired. 

A valid value of K is K = 70. Thus the compensator is 

D{z) = 70 
s - 0.9048 
s + 0.25 ' 

The closed-loop step response is shown in Figure 13.35. Notice that the per
cent overshoot specification {P.O. ^ 5%) is satisfied, and the system response 
settles in less than 10 samples (10 samples = 1 second because the sampling time 
is 0.1 second). • 
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FIGURE 13.34 
Compensated root 
locus. 
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13.11 DIGITAL CONTROL SYSTEMS USING CONTROL DESIGN SOFTWARE 

The process of designing and analyzing sampled-data systems is enhanced with the use 
of interactive computer tools. Many of the control design functions for continuous-time 
control design have equivalent counterparts for sampled-data systems. Discrete-time 
transfer function model objects are obtained with the tf function, similar to continuous 
time models discussed in Chapter 2. Figure 13.36 illustrates the use of tf. Model conver
sion can be accomplished with the functions c2d and d2c, shown in Figure 13.36. The 
function c2d converts continuous-time systems to discrete-time systems; the function 
d2c converts discrete-time systems to continuous-time systems. For example, consider 
the process transfer function 

GM = 
1 

s(s + 1)' 

as shown in Figure 13.16. For a sampling period of T — 1 s, we know from Equation 
(13.16) that 

G{z) = 
0.3678^ + 0.7189) 0.3679z + 0.2644 

(z - l)(z - 0.3680) z2 - 1.368^ + 0.3680' 

We can use an m-file script to obtain the G(z), as shown in Figure 13.37. 

(13.69) 

(a) 

Discrete-time 
transfer function 

object 

1 
1 

sy 

$i?M. 

s=tf(nurr 

Ts = sample time 

1 I 
,den,Ts) 

G00 = sysd GJs) = sysc 
Sampling time 

(b) 

. 

Convert to discrete-time 
assuming a zero-order hold. 

[sysd]=c2d(sysc,T,'zoh') 

FIGURE 13.36 
(a) The tf function. 
(b) The c2d 
function, (c) The 
d2c function. 

(c) 

Gp(s) = sysc G(z) = sysd Sampling time 
Convert to continuous-time 
assuming a zero-order hold. 

[sysc]=d2c(sysd,T,'zoh') 
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FIGURE 13.37 
Using the c2d 
function to convert 
G(s) = G0(s)Gp(s) 
to G(z). 

% This script converts the transfer function 
% Gp(s) = 1/s(s+1) to a discrete-time system 
% with a sampling period of T=1 sec. 
% 
num=[1]; den=[1 1 0]; sysc=tf(num,den); 
T=1;«« 

Sampling time 

[sysd]=c2d(sysc,T,'zoh'); 

t_ 

Zero-order hold 

Output 

Transfer function: 

0.3679 z + 0.2642 

zA2-1.368 Z +0.3679 

Sampling time: 1 

The functions step, impulse, and Isim are used for simulation of sampled-data 
systems. The unit step response is generated by step. The step function format is 
shown in Figure 13.38. The unit impulse response is generated by the function 
impulse, and the response to an arbitrary input is obtained by the Isim function. The 
impulse and Isim functions are shown in Figure 13.39 and 13.40, respectively. These 
sampled-data system simulation functions operate in essentially the same manner as 
their counterparts for continuous-time (unsampled) systems. The output is y(kT) 
and is shown as y(kT) held constant for the period T. 

We now consider again Example 13.4 and approach the problem of obtaining a 
step response without utilizing long division. 

EXAMPLE 13.12 Unit step response 

In Example 13.4, we considered the problem of computing the step response of a 
closed-loop sampled-data system. In that example, the response,y(kT), was computed 
using long division. We can compute the response y(kT) using the step function, 

FIGURE 13.38 
The step function 
generates the 
output y{kT) for a 
step input. 

/?(:) = 
(z- I) 

Step 
input System 

G(z) 

Output 
• • Y(z) tz. 

y = output response 
T = simulation time 

vector 

t 

[y T] 

G(z) = sys 

=step(s 

T should be in the form 
Tt:Ts:Tf, where Ts is 

the sample time. 

I 
/s,T) 
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FIGURE 13.39 
The impulse 
function generates 
the output y(kT) for 
an impulse input. 
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FIGURE 13.40 
The Isim function 
generates the 
output y{kT) for an 
arbitrary input. 

Uiz) 

-*-T 

Arbitrary 
input 

System 
G(z) 

Output 
• Y(z) A JLn >T 

y = output response 
T = simulation time 

vector 

G(z) = sys 

1 -f 
[y,T]=lsim(sys,u) 

u: input should be 
sampled at the same 

rate as sys 

shown in Figure 13.38. With the closed-loop transfer function given by 

Y{z) 0.3678z + 0.2644 

R{z) z2 - z + 0.6322 

the associated closed-loop step response is shown in Figure 13.41. The discrete step 
response shown in this figure is also shown in Figure 13.17. To determine the actual 
continuous response y(t), we use the m-file script as shown in Figure 13.42. The zero-
order hold is modeled by the transfer function 

G0(s) = 
1 - e ,-sT 

In the m-file script in Figure 13.42, we approximate the e~s7 term using the pade 
function with a second-order approximation and a sampling time of 1 second. 
We then compute an approximation for GQ(S) based on the Pade approximation 
of e~$r. • 
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FIGURE 13.41 
The discrete 
response, y(/c7), of a 
sampled second-
order system to a 
unit step. 

1.4 

1.2 

I 0.6 

0.4 

0.2 

0 
0 

% This script generates the unit step response, y(kT), 
% for the sampled data system given in Example 13.4. 
% 
num=[1];den=[1 1 0]; 
sysc=tf(num,den); 
sysd=c2d(sysc,1 ,'zoh'); 
sys=feedback(sysd,[1]); 
T=[0:1:20];step(sys,T) 

Y(z) 0.3678; + 0.2644 

R(Z) Z2~z + 0.6322 

10 

No. of Samples 

15 20 

The subject of digital computer compensation was discussed in Section 13.7. In 
the next example, we consider again the subject utilizing control design software. 

EXAMPLE 13.13 Root locus of a digital control system 

Recall from Equation (13.16) that the process was given by 

0.3678(z + 0.7189) 
G(z) = 

The compensator is selected to be 

(z - l)(z - 0.3680)" 

K(z - 0.3678) 

z + 0.2400 : 
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% This script computes the continuous-time unit 
% step response for the system in Example 13.4 
% 
numg=[1]; deng=[1 1 0]; sysg=tf(numg,deng); •«-
% 
[nd,dd]=pade(1,2); sysp=tf(nd,dd); 
sysi=tf([l 1,11,0]); 
sysl =series(1 -sysp,sysi); 
% 
syso=series(sys1 ,sysg); 
sys=feedback(syso,[1]); 
t=[0:0.1:20]; 
step(sys,t) 

FIGURE 13.42 The continuous response y{t) to a unit step for the system of Figure 13.16. 

with the parameter K as a variable yet to be determined. When 

G{z)D(z) = K 
0.3678(z + 0.7189) 

(z - 1)0 + 0.2400)' 
(13.70) 

we have the problem in a form for which the root locus method is directly applic
able. The riocus function works for discrete-time systems in the same way as for 
continuous-time systems. Using a m-file script, the root locus associated with 
Equation (13.70) is easily generated, as shown in Figure 13.43. Remember that the 
stability region is defined by the unit circle in the complex plane. The function 
rlocfind can be used with the discrete-time system root locus in exactly the same 
way as for continuous-time systems to determine the value of the system gain asso
ciated with any point on the locus. Using rlocfind, we determine that K = 4.639 
places the roots on the unit circle. • 
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% This script generates the root locus for 
% the sampled data system 
% 
% K(0.3678)(z+0.7189) 
% 

(z-1 )(2+0.2400) % 
% 
num=[0.3678 0.2644]; den=[1.0000 -0.7600 -0.2400]; sys=tf(num,den 
rlocus(sys);hold on 
x=[-1:0.1:1];y=sqrt(1-x.A2); 
p!ot(x,y,'--,,x,-y,,»') Plot unit circle. 

FIGURE 13.43 
The Hocus function 
for sampled data 
systems. 
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13.12 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

In this chapter, we will design a digital controller for the disk drive system. As the 
disk rotates, the sensor head reads the patterns used to provide the reference error 
information. This error information pattern is read intermittently as the head reads 
the stored data, and then the pattern in turn. Because the disk is rotating at a con
stant speed, the time T between position-error readings is a constant. This sampling 
period is typically 100 ̂ ts to 1 ms [25]. Thus, we have sampled error information. We 
may also use a digital controller, as shown in Figure 13.44, to achieve a satisfactory 
system response. In this section, we will design D(z). 

First, we determine 

G(z) = Z[G0(s)GJs)]. 

Since 

Gp(s) = 
s(s + 20)' 

(13.71) 



Section 13.12 Sequential Design Example: Disk Drive Read System 941 

FIGURE 13.44 
Feedback control 
system with a 
digital controller. 
Note that G{z) = 
Z[G0(s)Gp(s)). 

->) a'-> 1 
1 

D(z) G(z) • Yiz) 

we have 

G0(s)GJs) = 
1 - e~s -sT 

s s(s + 20) 

We note that for s = 20 and T » 1 ms, eTsT is equal to 0.98. Then we see that 
the pole at s = -20 in Equation (13.71) has an insignificant effect. Therefore, we 
could approximate 

GM 

Then we need 

G(z) = Z 

0.25 

sT 1 - e~sl 0.25 

= (1 - z-1)(0.25)Z 

= (1 - ^)(0.25) 

s2 

Tz 

(z - 1)2 

0.257 0.25 X 10"3 

z - 1 z - 1 

We need to select the digital controller D(z) so that the desired response is achieved 
for a step input. If we set D(z) = K, then we have 

D{z)G{z) = 
#(0.25 X 10_j) 

z - l 

The root locus for this system is shown in Figure 13.45. When K = 4000, 

1 
D(z)G{z) = 

z-r 
Therefore, the closed-loop transfer function is 

D(z)G(z) 
T(z) = 

1 
1 + D{z)G{z) z 

We expect a rapid response for the system. The percent overshoot to a step 
input is 0%, and the settling time is 2 ms. 
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Unit 
circle 

FIGURE 13.45 
Root locus. 

- A 

Root when A' = 4()()() 

13.13 SUMMARY 

The use of a digital computer as the compensation device for a closed-loop con
trol system has grown during the past two decades as the price and reliability of 
computers have improved dramatically. A computer can be used to complete 
many calculations during the sampling interval T and to provide an output sig
nal that is used to drive an actuator of a process. Computer control is used today 
for chemical processes, aircraft control, machine tools, and many common 
processes. 

The z-transform can be used to analyze the stability and response of a sampled 
system and to design appropriate systems incorporating a computer. Computer con
trol systems have become increasingly common as low-cost computers have become 
readily available. 

EXERCISES 

E13.1 State whether the following signals are discrete or 
continuous: 

(a) Elevation contours on a map. 
(b) Temperature in a room. 
(c) Digital clock display. 
(d) The score of a basketball game. 
(e) The output of a loudspeaker. 

E13.2 Find z transform of 

(a) «*. 
(b) aK~l. 
(c) KaK. 

E13.3 Find inverse z transform of 

(a) 

(b) 

(c) 

3z2 + 2z + 1 

z2 + 3z + 2 ' 
2z 

(z2 - 3z + 2)(z - 4) 

(2z - If 
E13.4 Solve the difference equation 

x(k) - 3x(k - 2 ) + 2x(k -2) = 4k. 

Given x(k) = 0, k < 0 

E13.5 The space shuttle, with its robotic arm, is shown in 
Figure E13.5(a). An astronaut controls the robotic arm 
and gripper by using a window and the TV cameras [9]. 
Discuss the use of digital control for this system and 
sketch a block diagram for the system, including a 
computer for display generation and control. 
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TV camera 
and lights 

TV camera 

rv 
camera 

(a) 

FIGURE E13.5 
(a) Space shuttle 
and robotic arm. 
(b) Astronaut 
control of the arm. (b) 

Line eonvevor 

FIGURE E13.6 
Automobile 
spraypaint system. 

E13.6 Computer control of a robot to spraypaint an auto
mobile is shown by the system in Figure E13.6 [l].The 
system is of the type shown in Figure 13.24, where 

(a) Sampling time T = 2 ms. 
(b) Sampling time T = 8 ms. 

KGJs) = 
20 

5(5/2 + 1)' 

and we want a phase margin of 45°. A compensator for 
this system was obtained in Section 10.8. Obtain the 
D(z) required when T = 0.001 s. 

E13.7 Consider the ideal sampler and ZOH shown in 
Figure E13.7. If x(t) = 10 sin (314/), draw the graph of 
x*(t) and p(t) for t = 0 to 25 ms. 

Idea] 
Sampler 
Sampling time = T 

FIGURE E13.7 Ideal Sampler and ZOH. 
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x(i) 

T=\s 

1-e" 
5 + 2 

y{KT) 

FIGURE E13.8 A system with ideal sampler and ZOH. 

E13.8 Obtain the transfer function 

shown in Figure E13.8. 

Y(z) 
for the system 

E13.9 (a) Determine y(kT) fork — 0 to 3 when 

Z + 1 
Y{z) = 

Z2-l 

(b) Determine the closed form solution for y(kT) as a 
function of k. 

E13.10 A system has G(z) as described by Equation 
(13.34) with T = 0.01 s and T = 0.008 s. (a) Find K 
so that the overshoot is less than 40%. (b) Determine 

the steady-state error in response to a unit ramp 
input, (c) Determine K to minimize the integral 
squared error. 

E13.ll A system has a process transfer function 

GM = 
100 

100 

(a) Determine G(z) for Gp(s) preceded by a zero-order 
hold with T = 0.05 s. (b) Determine whether the digi
tal system is stable, (c) Plot the impulse response of 
G(z) for the first 15 samples, (d) Plot the response for a 
sine wave input with the same frequency as the natural 
frequency of the system. 

E13.12 Consider the closed-loop system shown in Figure 
E13.12.Find, 

(a) 

(b) 

Y(z) 
E(z)' 
Y(z) 
U(zY 

FIGURE E13.12 
A closed-loop 
system. 

T=ls 
Z.O.H. 

s+\ Y(z) 

E13.13 The characteristic equation of a sampled system is 

z2 + (K - 2)z + 0.75 - 0. 

Find the range of K so that the system is stable. 

Answer :0.25 < K < 3.75 

E13.14 The overall transfer function of a system, 

z 
T(z) = 

(z - 0.5)(z - 0.9) 

(a) Find the impulse response of the system. 
(b) Find the step response of the system. 
(c) Is the system stable? 

E13.15 Consider the open-loop sampled-data system 
shown in Figure E13.15. Determine the transfer func
tion G(z) when the sampling time is T = 1 s. 

E13.16 Consider the open-loop sampled-data system 
shown in Figure E13.16. Determine the transfer 
function G(z) and when the sampling time T = 0.5 s. 

FIGURE E13.15 
An open-loop 
sampled-data 
system with 
sampling time 
7 = 1s. 

FIGURE E13.16 
An open-loop 
sampled-data 
system with 
sampling time 

r=o.5s. 

/-(/) 
T= 1 

/ • ( / i 

r = o.5 

r*(t) 

r*(t) 

Zero-order 
hold 

G0(s) 

Zero-order 
hold 

G0(s) 

Gp(s) 

1 
(s + 1)(5 + 4) 

Gp(s) 

3 
s(s + 2) 

*> 
W • • V(7) 
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PROBLEMS 

P13.1 Consider the system given in Figure P13.1. 

(a) Find the overall transfer function T(z). 
(b) Is the system stable if T = 0.1s? 
(c) Is the system stable if T = Is? 
(d) Comment on the results obtained in (b) and (c). 

-K-

i i Sampling 
Period T 

\-e-ST 

s 
5 

S(S+1) 

FIGURE P13.1 Effect of sampling period on stability. 

P13.2 The transfer function of a lead network is 

(s + 10) 

* « = GVTm 
Obtain an equivalent digital controller D(z). 

P13.3 A unit ramp r(t) = t, t > 0, is used as an input to 
a process where G(s) = l/($ + 1), as shown in 
Figure P13.3. Determine the output y(kT) for the first 
four sampling instants. 

lit) y, v'V) 
G(s) •*• v(r) 

FIGURE P13.3 Sampling system. 

P13.4 A closed-loop system has a hold circuit and process as 
shown in Figure 13.18. Determine G(z) when T = 1 and 

G„(S) = 
s + 2' 

P13.5 For the system in Problem P13.4, let r(t) be a unit 
step input and calculate the response of the system by 
synthetic division. 

P13.6 For the output of the system in Problem P13.4, 
find the initial and final values of the output directly 
from Y(z). 

P13.7 A closed-loop system is shown in Figure 13.18. This 
system represents the pitch control of an aircraft. The 
process transfer function is Gp(s) = K/[s(0.5s + 1)]. 
Select a gain K and sampling period T so that the 
overshoot is limited to 0.3 for a unit step input and the 
steady-state error for a unit ramp input is less than 1.0. 

P13.8 Consider the computer-compensated system shown 
in Figure 13.24 when T = 1 and 

KGJs) = 
K 

Select the parameters K and r of D(z) when 

z - 0.3678 
*>(*) = 

z + r 

Select within the range 1 < K < 2 and 0 < r < 1. 
Determine the response of the compensated sys

tem and compare it with the uncompensated system. 

P13.9 A suspended, mobile, remote-controlled system to 
bring three-dimensional mobility to professional NFL 
football is shown in Figure P13.9. The camera can be 
moved over the field as well as up and down.The motor 
control on each pulley is represented by Figure 13.18 with 

Gp(s) = 
10 

S(S + 1)(.5/10 + 1)' 

We wish to achieve a phase margin of 45° using Gc(s). 
Select a suitable crossover frequency and sampling 
period to obtain D(z). Use the Gc(s)-to-D(z) conver
sion method. 

Motor and 
pulley 

FIGURE P13.9 Mobile camera for football field. 

P13.10 Consider a system as shown in Figure 13.15 with a 
zero-order hold, a process 

GJs) = 
s(s + 10)' 

s(s + 10)' 

and T = 0.1 s. 

(a) Let D(z) = K and determine the transfer 
function G(z)D(z). (b) Determine the characteris
tic equation of the closed-loop system, (c) Calculate 
the maximum value of K for a stable system. 
(d) Determine K such that the overshoot is less than 
30%. (e) Calculate the closed-loop transfer function 
T(z) for K of part (d) and plot the step response. 
(f) Determine the location of the closed-loop roots 
and the overshoot if K is one-half of the value deter
mined in part (c). (g) Plot the step response for the 
K of part (f). 
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P13.ll (a) For the system described in Problem 13.10, 
design a lag compensator Gc(s) using the meth
ods of Chapter 10 to achieve an overshoot less 
than 30% and a steady-state error less than 0.01 
for a ramp input. Assume a continuous nonsam-
pled system with Gp(s). 

(b) Determine a suitable D(z) to satisfy the require
ments of part (a) with a sampling period T = 0.1 s. 
Assume a zero-order hold and sampler, and use the 
Gc(s)-to-D(z) conversion method. 

(c) Plot the step response of the system with the con
tinuous-time compensator Gc(s) of part (a) and 
of the digital system with the D{z) of part (b). 
Compare the results. 

(d) Repeat part (b) for T = 0.01 s and then repeat 
part (c). 

(e) Plot the ramp response for D(z) with T — 0.1 s 
and compare it with the continuous-system re
sponse. 

P13.12 The transfer function of a plant and a zero-order 
hold (Figure 13.18) is 

K(z + 0.2) 

(a) Plot the root locus, (b) Determine the range of 
gain K for a stable system. 

P13.13 The space station orientation controller described 
in Exercise E7.6 is implemented with a sampler and 
hold and has the transfer function (Figure 13.18) 

K(z2 + 1.12062 - 0.0364) 

~ zz - 1.7358z2 + 0.8711z - 0.1353' 

(a) Plot the root locus, (b) Determine the value of K 
so that two of the roots of the characteristic equation 
are equal, (c) Determine all the roots of the character
istic equation for the gain of part (b). 

P13.14 A sampled-data system with a sampling period 
T = 0.05s (Figure 13.18) is 

0(z) = 
K(z2 + 10.3614Z2 + 9.758z + 0.8353) 

z4 - 3.7123z3 + 5.1644z2 - 3.195z + 0.7408' 

(a) Plot the root locus, (b) Determine K when the two 
real poles break away from the real axis, (c) Calculate 
the maximum K for stability. 

P13.15 A closed-loop system with a sampler and hold, as 
shown in Figure 13.18, has a process transfer function 

OM = 20 
5 - 5' 

Calculate and plot y(kT) for 0 < T < 0.6 when 
T = 0.1 s. The input signal is a unit step. 

P13.16 A closed-loop system as shown in Figure 13.18 has 

Gp(s) = 1 
s(s + 3) 

Calculate and plot y(kT) for 0 s k < 8 when T = 1 s 
and the input is a unit step. 

P13.17 A closed-loop system, as shown in Figure 13.18, has 

GM = 
K 

s(s + 0.5) 

and T = 1 s. Plot the root locus for K > 0, and de
termine the gain K that results in the two roots of the 
characteristic equation on the z-circle (at the stability 
limit). 

P13.18 A unity feedback system, as shown in Figure 13.18, 
has 

Gp(s) = 
K 

s(s + 1)' 

If the system is continuous (T = 0), then K = 1 
yields a step response with an overshoot of 16% and a 
settling time (with a 2% criterion) of 8 seconds. Plot 
the response for 0 < T < 1.2, varying T by incre
ments of 0.2 when K = 1. Complete a table recording 
overshoot and settling time versus T. 

ADVANCED PROBLEMS 

AP13.1 A closed-loop system, as shown in Figure 13.18, 
has a process 

KQ + as) 
Gp(s) = ^ ', 

where a is adjustable to achieve a suitable response. 
Plot the root locus when a — 10. Determine the range 
of K for stability when T = 1 s. 

AP13.2 A manufacturer uses an adhesive to form a seam 
along the edge of the material, as shown in Figure 
AP13.2. It is critical that the glue be applied evenly to 

avoid flaws; however, the speed at which the material 
passes beneath the dispensing head is not constant. 
The glue needs to be dispensed at a rate proportional 
to the varying speed of the material. The controller 
adjusts the valve that dispenses the glue [12]. 

The system can be represented by the block 
diagram shown in Figure 13.15, where Gp(s) = 
2/(0.03s + 1) with a zero-order hold G0(s). 
Use a controller 

D(Z) 
KT 

1 - z 

KTz 
z - 1 
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c_ Valve 
control 
motor 

AP13.3 A system of the form shown in Figure 13.15 has 
D{z) = K and 

Gp(s) = 
8 

Conveyer 
motor 

s(s + 8) 

When T = 0.04, find a suitable K for a rapid step 
response with an overshoot less than 10%. 

AP13.4 A system of the form shown in Figure 13.18 has 

Determine the range of sampling period T for which 
the system is stable. Select a sampling period T so that 
the system is stable and provides a rapid response. 

AP13.5 Consider the closed-loop sampled-data system 
shown in Figure AP13.5. Determine the acceptable 
range of the parameter K for closed-loop stability. 

FIGURE AP13.2 A glue control system. 

that represents an integral controller. Determine 
G(z)D(z) for T = 30 ms, and plot the root locus. Select 
an appropriate gain K and plot the step response. 

FIGURE AP13.5 
A closed-loop 
sampled-data 
system with 
sampling time 
7=0.1 s. 

R(s) 
T=0.1 

Zero-order 
hold 

Goto 

G„(s) 

I 

s(s + 3) > Vis) 

3 5 DESIGN PROBLEMS 

CDP13.1 Design a digital controller for the system using 
the second-order model of the motor-capstan-slide 
as described in CDP2.1 and CDP4.1. Use a sampling 
period of T - 1 ms and select a suitable D(z) for the 
system shown in Figure 13.15. Determine the response 
of the designed system to a step input r{t). 

DP13.1 A temperature system, as shown in Figure 13.15, 
has a process transfer function 

GPis) = 
0.8 

3s + 1 

and a sampling period T of 0.5 second. 
(a) Using D{z) = K, select a gain K so that 

the system is stable, (b) The system may be slow 
and overdamped, and thus we seek to design a lead 
network using the method of Section 10.5. Deter
mine a suitable controller Gc(s) and then calculate 

D(z). (c) Verify the design obtained in part (b) by 
plotting the step response of the system for the 
selected D(z). 

DP13.2 A disk drive read-write head-positioning system 
has a system as shown in Figure 13.15 [11).The process 
transfer function is 

GJs) = 
s2 + 0.85s + 

Accurate control using a digital compensator is required. 
Let T - 10 ms and design a compensator, D(z), using 
(a) the Gc(s)-to-D(z) conversion method and (b) the 
root locus method. 

DP13.3 Vehicle traction control, which includes antiskid 
braking and antispin acceleration, can enhance vehi
cle performance and handling. The objective of this 
control is to maximize tire traction by preventing the 
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Disturbance 

FIGURE DP13.3 
Vehicle fraction 
control system. 

Controller 

K %< 
*\ 

z+ 1 
(z - l)(z - 0.5) 

Yiz) 
Slip 

wheels from locking during braking and from spinning 
during acceleration. 

Wheel slip, the difference between the vehicle 
speed and the wheel speed (normalized by the vehi
cle speed for braking and the wheel speed for accel
eration), is chosen as the controlled variable for most 
of the traction-control algorithm because of its 
strong influence on the tractive force between the 
tire and the road [20]. 

A model for one wheel is shown in Figure DP13.3 
when y is the wheel slip. The goal is to minimize the 
slip when a disturbance occurs due to road condi
tions. Design a controller D(z) so that the £ of the sys
tem is 1/ V 2, and determine the resulting K. Assume 
T - 0.1 s. Plot the resulting step response, and find 
the overshoot and settling time (with a 2 % criterion). 

DP13.4 A machine-tool system has the form shown in 
Figure 13.28 with [10] 

Gp(s) = 
0.1 

s(s + 0.1)' 

The sampling rate is chosen as T = 1 s. We desire the 
step response to have an overshoot of 16% or less and 

a settling time (with a 2% criterion) of 12 seconds or 
less. Also, the error to a unit ramp input, r(t) = t, 
must be less than or equal to 1. Design a D(z) to 
achieve these specifications. 

DP13.5 Plastic extrusion is a well-established method 
widely used in the polymer processing industry [12]. 
Such extruders typically consist of a large barrel divid
ed into several temperature zones, with a hopper at 
one end and a die at the other. Polymer is fed into the 
barrel in raw and solid form from the hopper and is 
pushed forward by a powerful screw. Simultaneously, 
it is gradually heated while passing through the vari
ous temperature zones set in gradually increasing 
temperatures. The heat produced by the heaters in 
the barrel, together with the heat released from the 
friction between the raw polymer and the surfaces of 
the barrel and the screw, eventually causes the melt
ing of the polymer, which is then pushed by the screw 
out from the die, to be processed further for various 
purposes. 

The output variables are the outflow from the die 
and the polymer temperature. The main controlling 
variable is the screw speed, since the response of the 
process to it is rapid. 

Polymer 

Heated barrel 

Die 

Screw 

(a) 

FIGURE DP13.5 
Control system for 
an extruder. 

Temperature *\)~~ ° *" 
setting —A 

Zero-order 
hold 

(b) 

K 
s(s + 2) 

Y{5) 

w Actual 
temperature 
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The control system for the output polymer tem
perature is shown in Figure DPI3.5. Select a gain K and 
a sampling period T to obtain a step overshoot of 10% 
while reducing the steady-state error for a ramp input. 

DP13.6 A sampled-data system closed-loop block dia
gram is shown in Figure DP13.6. Design D{z) to such 

that the closed-loop system response to a unit step 
response has a percent overshoot P.O. £ 15% and a 
settling time Ts s 20 s. 

FIGURE DP13.6 
A closed-loop 
sampled-data 
system with 
sampling time 
"T=1s. 

/?(i) 

Zero-order 
hold 

G0(s) 

Gp(s) 

0.5 
s(s + 0.01) Y(s) 

COMPUTER PROBLEMS 

CP13.1 (a) Using MATLAB, obtain the step response of 
the system given in Figure CP13.1(a). 
(b) Using MATLAB, obtain the step response of the 

system given in Figure CP13.1(b) 
(i) i f ? = 0.1s; (it) if r — Is. 

(c) Compare the step responses obtained in (a), b(i) 
and b(ii). 

R(s) 

s(s+2) 
—• 

R(z) 
ZOH 

5(5 + 2) 

y(z) 

(a) 

(b) 

FIGURE CP13.1 Comparison of continuous time system 
and discrete time system. 

CP13.2 Convert the following continuous-time transfer 
functions to sampled-data systems using the c2d func
tion. Assume a sample period of 1 second and a zero-
order hold GQ(s). 

(a) Gp(s) = -s 

(b) Gp(s) = 

(c) Gp(s) = 

(d) Gp(s) = 

^ + 2 

5 + 4 
s + 3 

1 
s(s + 8) 

CP13.3 The closed-loop transfer function of a sampled-
data system is given by 

. Y(z) _ L7(Z + 0.46) 
{Z) R(z) z2 + z +0.5' 

(a) Compute the unit step response of the system 
using the step function, (b) Determine the continu
ous-time transfer function equivalent of T(z) using 
the d2c function and assume a sampling period of 
T - 0.1 s. (c) Compute the unit step response of the 
continuous (nonsampled) system using the step func
tion, and compare the plot with part (a). 

CP13.4 Plot the root locus for the system 

G(z)D(z) - K z2 - z + 0.1 

Find the range of K for stability. 

CP13.5 Consider the feedback system in Figure CP13.5. 
Obtain the root locus and determine the range of K 
for stability. 

CP13.6 Consider the sampled data system with the loop 
transfer function 

G(z)D(z) - K 
Z2 + 3z + 3.75 

z2 - 0.2z - 1.9' 

(a) Plot the root locus using the rlocus function. 
(b) From the root locus, determine the range of K for 

stability. Use the rlocfind function. 
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FIGURE CP13.5 
Control system with 
a digital controller. 

Controller 

z-0.2 
z-0.8 

Process 

z + 1 
2 - 1 

•+>Y(z) 

CP13.7 An industrial grinding process is given by the 
transfer function [17] 

The objective is to use a digital computer to improve 
the performance, where the transfer function of the 
computer is represented by D(z). The design specifi
cations are (1) phase margin greater than 45°, and (2) 
settling time (with a 2% criterion) less than 1 second. 

(a) Design a controller 

Gc(s) = K '-
s + b 

to meet the design specifications, (b) Assuming a 
sampling time of T = 0.02 s, convert Gc(s) to D(z)-
(c) Simulate the continuous-time, closed-loop system 
with a unit step input, (d) Simulate the sampled-data, 
closed-loop system with a unit step input, (e) Com
pare the results in parts (c) and (d) and comment. 

TERMS AND CONCEPTS 

Amplitude quantization error The sampled signal avail
able only with a limited precision. The error between 
the actual signal and the sampled signal. 

Backward difference rule A computational method of 
approximating the time derivative of a function given 

x(kT) - xUk - 1)T) 
by x{kT) « ~ -, where t = kT, 

Tis the sample time, and k = 1,2, — 

Digital computer compensator A system that uses a digi
tal computer as the compensator element. 

Digital control system A control system using digital sig
nals and a digital computer to control a process. 

Forward rectangular integration A computational 
method of approximating the integration of a function 
given by x(kT) « x((k - \)T) + Tx((k - 1)7), 
where t = kT, Tis the sample time, and k = 1,2, 

Microcomputer A small personal computer (PC) based 
on a microprocessor. 

Minicomputer A stand-alone computer with size and 
performance between a microcomputer and a large 
mainframe. The term is not commonly used today, and 
computers in this class are now often known as mid-
range servers. 

PID controller A controller with three terms in 
which the output is the sum of a proportional 
term, an integrating term, and a differentiating 

term, with an adjustable gain for each term, given by 
K2Ts z - 1 

Precision The degree of exactness or discrimination with 
which a quantity is stated. 

Sampled data Data obtained for the system variables 
only at discrete intervals. Data obtained once every 
sampling period. 

Sampled-data system A system where part of the system 
acts on sampled data (sampled variables). 

Sampling period The period when all the numbers leave 
or enter the computer. The period for which the sam
pled variable is held constant. 

Stability of a sampled-data system The stable condition 
exists when all the poles of the closed-loop transfer 
function T(z) are within the unit circle on the z-plane. 

z-plane The plane with the vertical axis equal to the 
imaginary part of z and the horizontal axis equal to 
the real part of z-

z-transform A conformal mapping from the s-plane to 
the z-plane by the relation z = esT. A transform from 
the .y-domain to the z-domain. 

Zero-order hold A mathematical model of a sample and 
data hold operation whose input-output transfer func

tion is represented by G0($) - 1 - e 
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A P P E N D I X 

MATLAB Basics 

A.1 INTRODUCTION 

MATLAB is an interactive program for scientific and engineering calculations. The 
MATLAB family of programs includes the base program plus a variety of 
toolboxes, a collection of special files called m-files that extend the functionality of 
the base program [1-8]. Together, the base program plus the Control System Tool
box provide the capability to use MATLAB for control system design and analysis. 
Whenever MATLAB is referenced in this book, it means the base program plus the 
Control System Toolbox. 

Most of the statements, functions, and commands are computer-platform-inde
pendent. Regardless of what particular computer system you use, your interaction 
with MATLAB is basically the same. This appendix concentrates on this computer 
platform-independent interaction. A typical session will utilize a variety of objects 
that allow you to interact with the program: (1) statements and variables, (2) matri
ces, (3) graphics, and (4) scripts. MATLAB interprets and acts on input in the form 
of one or more of these objects. The goal in this appendix is to introduce each of the 
four objects in preparation for our ultimate goal of using MATLAB for control sys
tem design and analysis. 

The manner in which MATLAB interacts with a specific computer system is 
computer-platform-dependent. Examples of computer-dependent functions include 
installation, the file structure, hard-copy generation of the graphics, the invoking 
and exiting of a session, and memory allocation. Questions related to platform-de
pendent issues are not addressed here. This does not mean that they are not impor
tant, but rather that there are better sources of information such as the MATLAB 
User's Guide or the local resident expert. 

The remainder of this appendix consists of four sections corresponding to the 
four objects already listed. In the first section, we present the basics of statements 
and variables. Following that is the subject of matrices. The third section presents an 
introduction to graphics, and the fourth section is a discussion on the important 
topic of scripts and m-files. All the figures in this appendix can be constructed using 
the m-files found at the MCS website. 

A.2 STATEMENTS AND VARIABLES 

Statements have the form shown in Figure A. 1. MATLAB uses the assignment so that 
equals ("—") implies the assignment of the expression to the variable. The command 

A 

c2*# 
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Command prompt 

»variable=expression 

FIGURE A.1 MATLAB 
statement form. 

»A=[1 2; 4 6] < ret > 

A = 
1 2 
4 6 

Carriage return 

FIGURE A.2 Entering and displaying a 
matrix A. 

prompt is two right arrows," » ."A typical statement is shown in Figure A.2, where 
we are entering a 2 X 2 matrix to which we attach the variable name A. The statement 
is executed after the carriage return (or enter key) is pressed. The carriage return is 
not explicitly denoted in the remaining examples in this appendix. 

The matrix A is automatically displayed after the statement is executed follow
ing the carriage return. If the statement is followed by a semicolon (;), the output 
matrix A is suppressed, as seen in Figure A.3. The assignment of the variable A has 
been carried out even though the output is suppressed by the semicolon. It is often 
the case that your MATLAB sessions will include intermediate calculations for 
which the output is of little interest. Use the semicolon whenever you have a need 
to reduce the amount of output. Output management has the added benefit of in
creasing the execution speed of the calculations since displaying screen output 
takes time. 

The usual mathematical operators can be used in expressions. The common op
erators are shown in Table A.1.. The order of the arithmetic operations can be al
tered by using parentheses. 

The example in Figure A.4 illustrates that MATLAB can be used in a "calculator" 
mode. When the variable name and "=" are omitted from an expression, the result is 
assigned to the generic variable ans. MATLAB has available most of the trigonomet
ric and elementary math functions of a common scientific calculator. Type help elfun 
at the command prompt to view a complete list of available trigonometric and ele
mentary math functions; the more common ones are summarized in Table A.2. 

»A=[1 2;4 6]; •«—i 
» 
»A=[1 2;4 6] -«— 

A = 
1 2 
4 6 

Semicolon suppresses 
the output. 

No semicolon displays 
the output. 

i 

Table A.1 Mathematical 
Operators 

+ 
-
* 
/ 
A 

Addition 
Subtraction 
Multiplication 
Division 
Power 

FIGURE A.3 Using semicolons to suppress the 
output. 

FIGURE A.4 
Using the calculator 
mode. 

»12.4/6.9 

ans = 
1.7971 
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Table A.2 Common Mathematical Functions 
sin(x) 
sinh(x) 
asin(x) 
asinh(x) 
cos(x) 
cosh(x) 
acos(x) 
acosh(x) 
tan(x) 
tanh(x) 
atan(x) 
atan2(y,x) 
atanh(x) 
sec(x) 
sech(x) 
asec(x) 
asech(x) 
csc(x) 
csch(x) 
acsc(x) 
acsch(x) 
cot(x) 
coth(x) 
acot(x) 

Sine 
Hyperbolic sine 
Inverse sine 
Inverse hyperbolic sine 
Cosine 
Hyperbolic cosine 
Inverse cosine 
Inverse hyperbolic cosine 
Tangent 
Hyperbolic tangent 
Inverse tangent 
Four quadrant inverse tangent 
Inverse hyperbolic tangent 
Secant 
Hyperbolic secant 
Inverse secant 
Inverse hyperbolic secant 
Cosecant 
Hyperbolic cosecant 
Inverse cosecant 
Inverse hyperbolic cosecant 
Cotangent 
Hyperbolic cotangent 
Inverse cotangent 

acoth(x) 
exp(x) 
log(x) 
loglO(x) 
log2(x) 
pow2(x) 
sqrt(x) 
nextpow2(x) 
abs(x) 
angle(x) 
complex(x,y) 
conj(x) 
imag(x) 
real(x) 
unwrap(x) 
isreal(x) 
cplxpair(x) 
fix(x) 
floor(x) 
ceil(x) 
round(x) 
mod(x,y) 
rem(x,y) 

Inverse hyperbolic cotangent 
Exponential 
Natural logarithm 
Common (base 10) logarithm 
Base 2 logarithm and dissect floating point number 
Dase 2 power and scale floating point number 
Square root 
Next higher power of 2 
Absolute value 
Phase angle 
Construct complex data from real and imaginary parts 
Complex conjugate 
Complex imaginary part 
Complex real part 
Unwrap phase angle 
True for real array 
Sort numbers into complex conjugate pairs 
Round towards zero 
Round towards minus infinity 
Round towards plus infinity 
Round towards nearest integer 
Modulus (signed remainder after division) 
Remainder after division 

Variable names begin with a letter and are followed by any number of letters 
and numbers (including underscores). Keep the name length fo N characters, since 
MATLAB remembers only the first N characters, where N = namelengthmax. It is 
a good practice to use variable names that describe the quantity they represent. For 
example, we might use the variable name vel to represent the quantity aircraft ve
locity. Generally, we do not use extremely long variable names even though they 
may be legal MATLAB names. 

Since MATLAB is ease sensitive, the variables M and m are not the same. By 
case, we mean upper- and lowercase, as illustrated in Figure A.5. The variables M 
and m are recognized as different quantities. 

MATLAB has several predefined variables, including pi, Inf NaN, i, and;'. Three ex
amples are shown in Figure A.6. NaN stands for Not-a-Number and results from unde
fined operations. Inf represents +00, and pi represents IT. The variable i = V -1 is 
used to represent complex numbers. The variable j = V - 1 can be used for complex 
arithmetic by those who prefer it over i. These predefined variables can be inadvertent
ly overwritten. Of course, they can also be purposely overwritten in order to free the 
variable name for other uses. For instance, you might want to use / as an integer and re
serve j for complex arithmetic. Be safe and leave these predefined variables alone, as 

FIGURE A.5 »M=[1 2]; 
Variables are case »m=[3 5 7]; 
sensitive. 
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FIGURE A.6 
Three predefined 
variables /, Inf, and 
NaN. 

»z=-3+4*i 

z = 

3.0000 + 4.0000i 

» l n f 

ans = 

Inf 

» 0 / 0 

Warning: Divide by zero 

ans = 

NaN 

FIGURE A.7 Using the who function to 
display variables. 

there are plenty of alternative names that can be used. Predefined variables can be reset 
to their default values by using clear name (e.g., clear/?/). 

The matrix A and the variable ans, in Figures A.3 and A.4, respectively, are 
stored in the workspace. Variables in the workspace are automatically saved for 
later use in your session. The who function gives a list of the variables in the work
space, as shown in Fig. A.7. MATT ,AB has a host of built-in functions. Refer to the 
MATLAB User's Guide for a complete list or use the MATLAB help browser. Each 
function will be described as the need arises. 

The whos function lists the variables in the workspace and gives additional in
formation regarding variable dimension, type, and memory allocation. Figure A.8 
gives an example of the whos function. The memory allocation information given by 
the whos function can be interpreted as follows: Each element of the 2 X 2 matrix 
A requires 8 bytes of memory for a total of 32 bytes, the 1 X 1 variable ans requires 
8 bytes, and so forth. All the variables in the workspace use a total of 96 bytes. 

Variables can be removed from the workspace with the clear function. Using 
the function clear, by itself, removes all items (variables and functions) from the 
workspace; clear variables removes all variables from the workspace; clear 
namel name!... removes the variables nameJ, name2, and so forth. The procedure 
for removing the matrix A from the workspace is shown in Figure A.9. 

FIGURE A.8 
Using the whos 
function to display 
variables. 

» w h o s 

Name 

A 

M 

ans 

m 

z 

Size 

2x2 

1x2 

1x1 

1x3 

1x1 

Bytes 

32 

16 

8 

24 

16 

Class 

double 

double 

double 

double 

double 

Attributes 

complex 
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FIGURE A.9 
Removing the 
matrix A from the 
workspace. 

»c lear A 

» w h o 

Your variables are: 

M ans m 

Computations in MATLAB are performed in double precision. However, the 
screen output can be displayed in several formats. The default output format con
tains four digits past the decimal point for nonintegers.This can be changed by using 
the format function shown in Figure A.10. Once a particular format has been speci
fied, it remains in effect until altered by a different format input. The output format 
does not affect internal MATLAB computations. On the other hand, the number of 
digits displayed does not necessarily reflect the number of significant digits of the 
number. This is problem-dependent, and only the user can know the true accuracy 
of the numbers input and displayed by MATLAB. Other display formats (not shown 
in Figure A.10) include format long g (best of fixed or floating point format with 15 
digits after the decimal point), format short g (same as format long g but with 4 dig
its after the decimal point), format hex (hexidccimal format), format bank (fixed 
format for dollars and cents), format rat (ratio of small integers) and format (same 
as format short). 

Since MATLAB is case sensitive, the functions who and WHO are not the same 
functions. The first function, who, is a built-in function, and typing who lists the vari
ables in the workspace. On the other hand, typing the uppercase WHO results in the 
error message shown in Figure A.ll . Case sensitivity applies to all functions. 

FIGURE A.10 
Output format 
control illustrates 
the four forms of 
output. 

» p i 
ans = 

3.1416 -«- 4-digit scaled fixed point 

»format long; pi 
ans = 

3.141592653589793-«- 15-digit scaled fixed point 

»format short e; pi 
ans = 

3.1416e+00 - * — 4-digit scaled floating point 

»format long e; pi 
ans = T 

3.141592653589793e+000 

15-digit scaled floating point 
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FIGURE A.11 
Function names are 
case sensitive. 

» W H O 
??? Undefined 
function or variable 'WHO'. 

» W h o 
??? Undefined function or 
variable 'Who'. 

A.3 MATRICES 

MATLAB is short for matrix laboratory. Although we will not emphasize the ma
trix routines underlying our calculations, we will learn how to use the interactive ca
pability to assist us in the control system design and analysis. We begin by 
introducing the basic concepts associated with manipulating matrices and vectors. 

The basic computational unit is the matrix. Vectors and scalars can be viewed as 
special cases of matrices. A typical matrix expression is enclosed in square brackets, 
[ • ]. The column elements are separated by blanks or commas, and the rows are sep
arated by semicolons or carriage returns. Suppose we want to input the matrix 

1 

log(-l) 
asin(0.8) 

- 4 / 
sin(7r/2) 
acos(0.8) 

V2 
COS(77/3) 

exp(0.8) 

One way to input A is shown in Figure A.12. The input style in Figure A.12 is not 
unique. 

Matrices can be input across multiple lines by using a carriage return following 
the semicolon or in place of the semicolon. This practice is useful for entering large 
matrices. Different combinations of spaces and commas can be used to separate the 
columns, and different combinations of semicolons and carriage returns can be used 
to separate the rows, as illustrated in Figure A.12. 

FIGURE A.12 
Complex and real 
matrix input with 
automatic 
dimension and type 
adjustment. 

» A = [ 1 , -4*j, sqrt(2); < 
log(-1) sin(pi/2) cos(pi/3) <«— 
asin(0.5), acos(0.8) exp(0.8)] 

3 X 3 complex matrix 

A = 
1.0000 
0 + 3.1416i 
0.5236 

»A=[1 2;4 5] 
A = 

1 2 
4 5 

0 - 4.00001 
1.0000 
0.6435 

— Carriage return 

1..1142 
0.5000 
2.2255 

2 x 2 real matrix 
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No dimension statements or type statements are necessary when using matri
ces; memory is allocated automatically. Notice in the example in Figure A. 12 that 
the size of the matrix A is automatically adjusted when the input matrix is rede
fined. Also notice that the matrix elements can contain trigonometric and elemen
tary math functions, as well as complex numbers. 

The important basic matrix operations are addition and subtraction, multiplica
tion, transpose, powers, and the so-called array operations, which are element-to-el-
ement operations. The mathematical operators given in Table A.l apply to matrices. 
We will not discuss matrix division, but be aware that MATLAB has a left- and 
right-matrix division capability. 

Matrix operations require that the matrix dimensions be compatible. For matrix 
addition and subtraction, this means that the matrices must have the same dimen
sions. If A is an n X m matrix and B is a p X r matrix, then A ± B is permitted only 
if n = p and m ~ r. Matrix multiplication, given by A * B, is permitted only if 
m = p. Matrix-vector multiplication is a special case of matrix multiplication. Sup
pose b is a vector of length p. Multiplication of the vector b by the matrix A, where A 
is an n X m matrix, is allowed if m = p. Thus, y = A * b is the n X 1 vector solution 
of A * b. Examples of three basic matrix-vector operations are given in Figure A.13. 

The matrix transpose is formed with the apostrophe ('). We can use the matrix 
transpose and multiplication operation to create a vector inner product in the fol
lowing manner. Suppose w and v are m X 1 vectors. Then the inner product (also 
known as the dot product) is given by w' * v. The inner product of two vectors is a 
scalar. The outer product of two vectors can similarly be computed as w * v'. The 
outer product of two m X 1 vectors is an m X m matrix of rank 1. Examples of 
inner and outer products are given in Figure A. 14. 

The basic matrix operations can be modified for element-by-element operations 
by preceding the operator with a period. The modified matrix operations are known 

FIGURE A.13 
Three basic matrix 
operations: 
addition, 
multiplication, and 

e. 

»A= [1 3; 5 9]; B=[4-7; 10 0]; 
» A + B < 
ans = 

5 -4 
15 9 

»b=[1;5]; 
» A * b -4— 
ans = 

16 
50 

» A ' •*-
ans = 

1 5 
3 9 

Matrix addition 

Matrix multiplication 

Matrix transpose 
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»x=[5;pi;sin(pi/2)];y=[exp(-0.5);-13;pjA2]; 

ans = 
-27.9384 

ans = 
3.0327 -65.0000 49.3480 
1.9055 -40.8407 31.0063 
0.6065 -13.0000 9.8696 

Inner product 

Outer product 

FIGURE A.14 Inner and outer products of two vectors. 

Table A.3 Mathematical 
Array Operators 

+ 
-
.* 
./ 
A 

Addition 
Subtraction 
Mult ip l icat ion 
Divis ion 
Power 

as array operations. The commonly used array operators arc given in Table A.3. Ma
trix addition and subtraction are already element-by-element operations and do not 
require the additional period preceding the operator. However, array multiplication, 
division, and power do require the preceding dot, as shown in Table A.3. 

Consider A and B as 2 X 2 matrices given by 

« n 

«21 

«12 

«22 
B hi 

*21 

£>12 

* 2 2 

Then, using the array multiplication operator, we have 

A.*B = «11*11 

«21*21 

«12*12 

«22*22 

The elements of A .* B are the products of the corresponding elements of A and B. 
A numerical example of two array operations is given in Figure A.15. 

FIGURE A.15 
Array operations. 

»A=[1;2;3];B=[-6;7;10]; 
»A . *B * 
ans= 

-6 
14 
30 

» A . A 2 
ans = 

1 
4 
9 

Arra> multiplication 

Array raised to a power 
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FIGURE A.16 
The colon notation. 

Starting value 
I I 

) c=[xi:dx:xf] 

t 
Increment 

Final value 

Before proceeding to the important topic of graphics, we need to introduce the 
notion of subscripting using colon notation. The colon notation, shown in Figure A.16, 
allows us to generate a row vector containing the numbers from a given starting value, 
Xj, to a final value, xf, with a specified increment, dx. 

We can easily generate vectors using the colon notation, and as we shall soon 
see, this is quite useful for developing x-y plots. Suppose our objective is to generate 
a plot of v = x sin(x) versus x for x = 0, 0.1, 0.2,..., 1.0. Our first step is to gener
ate a table of x-y data. We can generate a vector containing the values of x at which 
the values of y(x) are desired using the colon notation, as illustrated in Figure A. 17. 
Given the desired x vector, the vector y(x) is computed using the multiplication 
array operation. Creating a plot of y = x sin(x) versus # is a simple step once the 
table of x-y data is generated. 

A.4 GRAPHICS 

Graphics plays an important role in both the design and analysis of control systems. 
An important component of an interactive control system design and analysis tool 
is an effective graphical capability. A complete solution to the control system design 
and analysis will eventually require a detailed look at a multitude of data types in 
many formats. The objective of this section is to acquaint the reader with the basic 

FIGURE A.17 
Generating vectors 
using the colon 
notation. 

»x=[0:0.1 
» [ x y] i 

:1]';y=x.*sin(x); 
i 

ans = 
0 0 

0.1000 0.0100 
0.2000 0.0397 
0.3000 0.0887 
0.4000 0.1558 
0.5000 0.2397 
0.6000 0.3388 
0.7000 0.4510 
0.8000 0.5739 
0.9000 0.7050 
1.0000 0.8415 

Starting value Final value 
Increment 

x=[0:0.1:1]' 
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Table A.4 Plot Formats 

plot(x,y) Plots the vector x versus the vector y. 
semilogx(x,y) Plots the vector x versus the vector y. 

The x-axis is log10; the y-axis is linear. 
semi logy (x,y) Plots the vector x versus the vector y. 

The x-axis is linear; the y-axis is logt0. 
loglog(x,y) Plots the vector x versus the vector y. 

Creates a plot with log10 scales on both axes. 

x-y plotting capability of MATLAB. More advanced graphics topics are addressed 
in the chapter sections on MATLAB. 

MATLAB uses a graph display to present plots. The graph display is activated 
automatically when a plot is generated using any function that generates a plot (e.g., 
the plot function). The plot function opens a graph display, called a FIGURE win
dow. You can also create a new figure window with the figure function. Multiple fig
ure windows can exist in a single MATLAB session; the function figure (n) makes n 
the current figure. The plot in the graph display is cleared by the elf function at the 
command prompt. The shg function brings the current figure window forward. 

There are two basic groups of graphics functions. The first group, shown in 
Table A.4, specifies the type of plot. The list of available plot types includes the x-y 
plot, semilog plots, and log plots. The second group of functions, shown in Table A.5, 
allows us to customize the plots by adding titles, axis labels, and text to the plots and 
to change the scales and display multiple plots in subwindows. 

The standard x-y plot is created using the plot function.The x-y data in Figure A.17 
are plotted using the plot function, as shown in Figure A.18. The axis scales and line 
types are automatically chosen. The axes are labeled with the xlabel and ylabel func
tions; the title is applied with the title function. The legend function puts a legend on 
the current figure. A grid can be placed on the plot by using the grid on function. A 
basic x-y plot is generated with the combination of functions plot, legend, xlabel, yla
bel, title, and grid on. 

Multiple lines can be placed on the graph by using the plot function with multi
ple arguments, as shown in Figure A.19. The default line types can also be altered. 
The available line types are shown in Table A.6. The line types will be automatically 

Table A.5 Functions for Customized Plots 

title('text') Puts 'text' at the top of the plot 
legend (stringl, String2,...) Puts a legend on current plot using specified strings as labels 
xlabel('text') Labels the x-axis with 'text' 
ylabel('text') Labels the y-axis with 'text' 
text(p1 ,p2, 'text') Adds 'text' to location (pl,p2), where (p1 ,p2) is 

in units from the current plot 
subplot Subdivides the graphics window 
grid on Adds grid lines to the current figure 
grid off Removes grid lines from the current figure 
grid Toggles the grid state 
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Table A.6 Commands for Line 
Types for Customized Plots 

Solid line 
Dashed line 

: Dotted line 
-. Dashdot line 

chosen unless specified by the user. The use of the text function and the changing of 
line types are illustrated in Figure A.19. 

The other graphics functions—loglog, semilogx, and semilogy—are used in a 
fashion similar to that of plot. To obtain an x-y plot where the x-axis is a linear scale 
and the y-axis is a log10 scale, you would use the semilogy function in place of the 
plot function. The customizing features listed in Table A.5 can also be utilized with 
the loglog, semilogx, and semilogy functions. 

The graph display can be subdivided into smaller subwindows. The function 
subplot(m,n,p) subdivides the graph display into an m X n grid of smaller subwin
dows. The integer/? specifies the window, numbered left to right, top to bottom, as illus
trated in Figure A.20, where the graphics window is subdivided into four subwindows. 

»x=[0:0.1:1]'; 
»y=x.*sin(x); 
»plot(x,y) 
»title('Plot of x sin(x) vs x ') 
»xlabel('x') 
»ylabel('y') 
»g r i d on 

» x=[0:0.1:1]'; 
» y1=x.*sin(x);y2=sin(x); 
» plot(x,y1,,--',x,y2,1-.') -«— 

Dashed line for yl 
Dashed-dot line for y2 

» texl(0.1,0.85,'y_1 = x sin(x) —') 
»text(0.1,0.80,'y_2 = sin(x) .\_.\J) 
» xlabel('x'), ylabel('y_1 and y_2'), grid on 

(a) 

0.8 

0.6 

oT 

0.2 

0 

- 4 
t 
I 

ylabe 

i 

1 

Plot of • 

J 

^ 

v S in(x, 

Grid 

VS X -4 

1 
i / 

/ 
' / 

Title 

0 0.2 0.4 0.6 0.8 1 
x •*-

x label 

(b) 

FIGURE A.18 (a) MATLAB commands, (b) A basic x-y 
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(b) 

FIGURE A. 19 (a) MATLAB commands, (b) A basic x-y 
plot with multiple lines. 
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FIGURE A.20 
Using subplot to 
create a 2 x 2 
partition of the 
graph display. 

1 

1 SL bplot(2,2,1),plot(x,y1 ;~',x,y2,'-:) 

1 
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H 
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0 0.5 
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0.6 
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0.2 
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.,<? 
.0* * 

y -' t 
Sy' * • _ - . - i 

1 0 0.5 

subplot(2,2,3),plot(x,y11'-*px,y2,1-.') 1 

1 

subplot(2,2,4),piot(x,y1,'--',x,y2,'-.') 

A.5 SCRIPTS 

Up to this point, all of our interaction with MATLAB has been at the command 
prompt. We entered statements and functions at the command prompt, and 
MATLAB interpreted our input and took the appropriate action. This is the 
preferable mode of operation whenever the work sessions are short and non-
repetitive. However, the real power of MATLAB for control system design and 
analysis derives from its ability to execute a long sequence of commands stored 
in a file. These files are called m-files, since the filename has the form 
filename, m. A script is one type of m-file. The Control System Toolbox is a col
lection of m-files designed specifically for control applications. In addition to the 
preexisting m-files delivered with MATLAB and the toolboxes, we can develop 
our own scripts for our applications. Scripts are ordinary ASCII text files and are 
created using a text editor. 

A script is a sequence of ordinary statements and functions used at the com
mand prompt level. A script is invoked at the command prompt level by typing in 
the filename or by using the pull-down menu. Scripts can also invoke other scripts. 
When the script is invoked, MATLAB executes the statements and functions in the 
file without waiting for input at the command prompt. The script operates on vari
ables in the workspace. 

Suppose we want to plot the function y{t) — sin at, where a is a variable that 
we want to vary. Using a text editor, we write a script that we call plotdata.m, as 
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»alpha=50; 
»plotdata 

plotdata.m 

% This is a script to plot the function y=sin(alpha*t). 
/o 

% The value of alpha must exist in the workspace prior 
% to invoking the script. 
% 
t=[0:0.01:1]; 
y=sin(alpha't); 
Plot(t.y) 

FIGURE A.21 xlabel(Time (sec)') 
A simple script to ylabel('y(t) = sin(\alpha t)') 
plot the function q r j d o n 

y(t) = sin at. 

shown in Figure A.21, then input a value of a at the command prompt, placing a in 
the workspace. Then we execute the script by typing in plotdata at the command 
prompt; the script plotdata.m will use the most recent value of a in the workspace. 
After executing the script, we can enter another value of a at the command prompt 
and execute the script again. 

Your scripts should be well documented with comments, which begin with a 
%. Put a header in the script; make sure the header includes several descriptive 
comments regarding the function of the script, and then use the help function to 
display the header comments and describe the script to the user, as illustrated in 
Figure A.22. 

Use plotdata.m to develop an interactive capability with a as a variable, as 
shown in Figure A.23. At the command prompt, input a value of a = 10 followed by 
the script filename, which in this case is plotdata. The graph of y{t) = sin at is auto
matically generated. You can now go back to the command prompt, enter a value of 
a = 50, and run the script again to obtain the updated plot. 

A limited subset of TeX1 characters are available to allow you to annotate plots 
with symbols and mathematical characters. Table A.7 shows the available symbols. 
Figure A.21 illustrates the use of '\alpha' to generate the a character in the y-axis 
label. The 'V character preceeds all TeX sequences. Also, you can modify the charac
ters with the following modifiers: 

J \bf— bold font 
2 \it—italics font 

3 \rm—normal font 

3 Vfontname—specify the name of the font family to use 

3 \fontsize—specify the font size 

'TeX is a trademark of the American Mathematical Society. 

file://'/alpha'
file:///fontsize


Appendix A MATLAB Basics 

FIGURE A.22 
Using the help 
function. 

» h e l p plotdata 

This is a script to plot the function y=sin(alpha*t). 

The value of alpha must exist in the workspace prior 
to invoking the script. 

Command prompt 

»alpha=10; plotdata 

Script filename 

»alpha=50; plotdata 

FIGURE A.23 
An interactive 
session using a 
script to plot 
the function 
y(t) = sin at. 

Graph display 

0.5 
Time (sec) 

Subscripts and superscripts are obtained with "_" and "A", respectively. For exam
ple, ylabel('y_l and y_2') generates the y-axis label shown in Figure A. 19. 

The graphics capability of MATLAB extends beyond the introductory material 
presented here. A table of MATLAB functions used in this book is provided in 
Table A.8. 



Section A.5 Scripts 

Table A.7 TeX Symbols and Mathematics Characters 
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\mu 

Character 
Sequence 

\alpha 

\beta 

\gamma 

\delta 

\epsilon 

\zeta 

\eta 

\theta 

\vartheta 

\iota 

\kappa 

Mambda 

Symbol 

a 

3 

7 

8 

6 

t 
»1 

e 
•a 
i 

K 

\ 

Character 
Sequence 

\upsilon 

\phi 

\chi 

\psi 

\omega 

\Gamma 

VDelta 

\Theta 

\Lambda 

\Xi 

\Pi 

\Sigma 

Symbol 

V 

<P 

X 

* 

(O 

r 
6. 

0 

A 

0 

n 
S 

Character 
Sequence 

\sim 

\leq 

\infty 

\clubsuit 

\diamondsuit 

\heartsuit 

\spadesuit 

Ueftrightarrow 

\leftarrow 

\uparrow 

\rightarrow 

\downarrow 

Symbol 

~ 

=s 

00 

* 

• 

V 

* 

<-» 

<-

t 
-» 

i 

& \Upsilon Y \circ ° 

\nu 

\xi 

V 

t 
\pi 

\rho 

\sigma 

\varsigma 

\tau 

\equiv 

Mm 

\otimes 

\cap 

Tf 

P 

CT 

£ 
T 

= 

3 

® 

n 

\Phi 

\Psi 

\Omega 

\forall 

\exist 

\ni 

\cong 

\approx 

\Re 

\oplus 

\cup 

* 

\fr 

a 
V 

3 

3 

S 

= 

91 

e 
u 

\pm 

\geq 

\propto 

\parlial 

\bullet 

\div 

\neq 

\aleph 

\wp 

\oslash 

\supseteq 

1+
 

^ 

(X 

d 

• 

+ 

* 

K 

P 

0 

D 

\supset 

\int 

D 

\ 

\subseteq 

tin 

C 

3 

\subset 

\o 

C 

o 

file:///alpha
file:///beta
file:///gamma
file:///delta
file:///epsilon
file:///zeta
file:///theta
file:///vartheta
file:///iota
file:///kappa
file:///upsilon
file:///omega
file:///Gamma
file:///Theta
file:///Lambda
file:///Sigma
file:///infty
file:///clubsuit
file:///diamondsuit
file:///heartsuit
file:///spadesuit
file:///leftarrow
file:///uparrow
file:///rightarrow
file:///downarrow
file:///Upsilon
file:///circ
file:///sigma
file:///varsigma
file:///equiv
file:///otimes
file:///Omega
file:///forall
file:///exist
file:///cong
file:///approx
file:///oplus
file:///propto
file:///parlial
file:///bullet
file:///aleph
file:///oslash
file:///supseteq
file:///supset
file:///subseteq
file:///subset
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Table A.8 MATLAB Functions 

Function Name Function Description 
abs 
acos 
ans 
asin 
atan 
atan2 
axis 
bode 
c2d 

clear 
elf 
conj 
conv 
cos 
ctrb 
diary 
d2c 

eig 
end 
exp 
expm 
eye 
feedback 
for 
format 
grid on 
help 
hold on 
i 
imag 
impulse 
inf 
J 
legend 
linspace 
load 
log 
Iog10 
loglog 
logspace 
Isim 

margin 

max 
mesh 
meshgrid 
min 
minreal 

Computes the absolute value 
Computes the arccosine 
Variable created for expressions 
Computes the arcsine 
Computes the arctangent (2 quadrant) 
Computes the arctangent (4 quadrant) 
Specifies the manual axis scaling on plots 
Generates Bode frequency response plots 
Converts a continuous-time state variable system representation to a 

discrete-time system representation 
Clears the workspace 
Clears the graph window 
Computes the complex conjugate 
Multiplies two polynomials (convolution) 
Computes the cosine 
Computes the controllability matrix 
Saves the session in a disk file 
Converts a discrete-time state variable system representation to a 

continuous-time system representation 
Computes the eigenvalues and eigenvectors 
Terminates control structures 
Computes the exponential with base e 
Computes the matrix exponential with base e 
Generates an identity matrix 
Computes the feedback interconnection of two systems 
Generates a loop 
Sets the output display format 
Adds a grid to the current graph 
Prints a list of HELP topics 
Holds the current graph on the screen 
V^ 
Computes the imaginary part of a complex number 
Computes the unit impulse response of a system 
Represents infinity 

Puts a legend on the current plot 
Generates linearly spaced vectors 
Loads variables saved in a file 
Computes the natural logarithm 
Computes the logarithm base 10 
Generates log-log plots 
Generates logarithmically spaced vectors 
Computes the time response of a system to an arbitrary input and initial 

conditions 
Computes the gain margin, phase margin, and associated crossover 

frequencies from frequency response data 
Determines the maximum value 
Creates three-dimensional mesh surfaces 
Generates arrays for use with the mesh function 
Determines the minimum value 
Transfer function pole-zero cancellation 

Table A.8 continued 
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Table A.8 Continued 

Function Name Function Description 
NaN 
ngrid 
nichols 
num2str 
nyquist 
obsv 
ones 
pade 
parallel 
plot 
pole 
poly 
polyval 
printsys 

pzmap 
rank 
real 
residue 
rlocfind 
rlocus 
roots 
semilogx 

semilogy 

series 
shg 
sin 
sqrt 
ss 
step 
subplot 
tan 
text 
title 
tf 
who 
whos 
xlabel 
ylabel 
zero 
zeros 

Representation for Not-a-Number 
Draws grid lines on a Nichols chart 
Computes a Nichols frequency response plot 
Converts numbers to strings 
Calculates the Nyquist frequency response 
Computes the observability matrix 
Generates a matrix of integers where all the integers are 1 
Computes an nth-order Pade approximation to a time delay 
Computes a parallel system connection 
Generates a linear plot 
Computes the poles of a system 
Computes a polynomial from roots 
Evaluates a polynomial 
Prints state variable and transfer function representations of linear 
systems in a pretty form 

Plots the pole-zero map of a linear system 
Calculates the rank of a matrix 
Computes the real part of a complex number 
Computes a partial fraction expansion 
Finds the gain associated with a given set of roots on a root locus plot 
Computes the root locus 
Determines the roots of a polynomial 
Generates an x-y plot using semilog scales with the x-axis log10 and the 
y-axis linear 

Generates an x-y plot using semilog scales with the y-axis Iog10 and the 
x-axis linear 

Computes a series system connection 
Shows graph window 
Computes the sine 
Computes the square root 
Creates a state-space model object 
Calculates the unit step response of a system 
Splits the graph window into subwindows 
Computes the tangent 
Adds text to the current graph 
Adds a title to the current graph 
Creates a transfer function model object 
Lists the variables currently in memory 
Lists the current variables and sizes 
Adds a label to the x-axis of the current graph 
Adds a label to the y-axis of the current graph 
Computes the zeros of a system 
Generates a matrix of zeros 
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MATLAB BASICS: PROBLEMS 

A.l Consider the two matrices 

4 
A = 

B = 

2TT 

6) 10 + V 2 ; 

6j -13TT 

ir 16 

Using MATLAB, compute the following: 

(a) A + B (b) AB 
(c) A2 

(e) B1 

(g) A2 + B2 -- AB 

(d) A' 
(f) /?'A' 

A.2 Consider the following set of linear algebraic equations: 

5x + 6y + lOz = 4, 

~3x + Uz = 10, 

-ly + 21* = 0. 

Determine the values of x,y, and z so that the set of al
gebraic equations is satisfied. (Hint: Write the equa
tions in matrix vector form.) 

A.3 Generate a plot of 

y(x) = e~°-5x sin cox, 

where w = lOrad/s, andO s x < 10. Utilize the colon 
notation to generate the x vector in increments of 0.1. 

A.4 Develop a MATLAB script to plot the function 

4 4 
y(x) = —cos cox + — cos 3«;c. 

where co is a variable input at the command prompt. 
Label the x-axis with time(sec) and the y-axis with 
y(x) = (4/77-) * cos((ox) + (4/977-) * cos(3a«). Include 
a descriptive header in the script, and verify that the 
help function will display the header. Choose 
0) = 1,3,10 rad/s and test the script. 

A.5 Consider the function 

y(x) = 10 + 5e~x cos(wx + 0.5). 

Develop a script to co-plot y(x) for the three values of 
ft) = 1,3,10 rad/s with 0 ^ x ^ 5 seconds. The final 
plot should have the following attributes: 

Title 
x-axis label 
y-axis label 
Line type 

Grid 

y(x) = 10 + 5 exp(-x) * cos(«« f 0.5) 
Time (sec) 
y(x) 
w = 1: solid line 
ft) - 3: dashed line 
&; = 10: dotted line 
grid on 



APPENDIX_ 

MathScript Basics 

B.1 INTRODUCTION 

LabVIEW is short for Laboratory Virtual Instrument Engineering Workbench. It is 
a flexible graphical development environment from National Instruments, Inc. En
gineers and scientists in research, development, production, test, and service indus
tries as diverse as automotive, semiconductor, aerospace, electronics, chemical, 
telecommunications, and pharmaceutical use LabVIEW, especially in the area of 
testing and measurements, industrial automation, and data analysis. Users of Lab
VIEW are familiar with the use of the graphical programming language to create 
programs relying on graphic symbols to describe programming actions. An important 
new development introduced in LabVIEW 8.0 or higher is the MathScript environ
ment. LabVIEW MathScript is a text-based command line environment using m-files 
and command line prompts. It is assumed here that the reader has LabVIEW 8 in
stalled and knows how to access the LabVIEW Getting Started window. This appen
dix only provides an introduction to MathScript. Readers should refer to Learning 
with LabVIEW1 for a more complete introduction to LabVIEW and MathScript. 

In this appendix, we discuss the MathScript Interactive Window. The essentials 
of creating user-defined functions and scripts, of saving and loading data files, and of 
using the MathScript Node are presented. With the MathScript Interactive Window, 
students will be able to interact with LabVIEW through a command prompt. 

B.2 WHAT IS MATHSCRIPT? 

MathScript is a high-level, text-based programming language with an easily ac
cessible syntax and ample functionality to address programming tasks related to 
signal processing, analysis, and mathematics. MathScript includes more than 500 
built-in functions. There are linear algebra functions, curve fitting function, digi
tal filters, functions for solving differential equations, and probability and statis
tics functions. And since MathScript employs a commonly used syntax, it follows 
that you can work with many of your previously developed mathematical compu
tation scripts, or any of those openly available in engineering textbooks or on the 
Internet. 

Bishop, R. H.. Learning with LabVIEW. Prentice Hall Publishing, 2007. 

B 

971 
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The fundamental math-oriented data types in MathScript are matrices with 
built-in operators for generating data and accessing elements. You can extend Math-
Script by defining your own custom functions. You can find more information on 
MathScript at http://ni.com/mathscript including lists of built-in MathScript func
tions and links to online examples. 

B.3 ACCESSING THE MATHSCRIPT INTERACTIVE WINDOW 

The interactive interface is provided by the MathScript Interactive Window. You can 
access the interactive window from the Getting Started window or any VI by selecting 
Tools»MathScript "Window..., as illustrated in Figure B.l.The MathScript Interactive 
Window is a user interface comprised of a Command Window (the user command in
puts), an Output Window echoing the inputs and showing the resulting outputs, a Script 
Editor window (for loading, saving, compiling, and running scripts), a Variables window 
(showing variables, dimensions, and type), and a Command History window providing 
a historical account of commands and interactions with MathScript. A new MathScript 
Interactive Window is shown in Figure B.2 with the various components highlighted. 

As you work, the Output Window updates to show your inputs and the subse
quent results. The Command History window tracks your commands. The history 
view is very useful because there you can access and reuse your previously executed 
commands by double clicking a previous command to execute it again. You can also 
navigate up and down through the previous commands (which will appear in the 
Command Window) by using the "q " and '£ " keys. In the Script Editor window, you 
can enter and execute groups of commands and then save the commands in a file 
(called a script) for use in a later LabVIEW session. 

Select MathScript Window 

0 Gelling Stort .d 

< * . ! » * - H * . . . 

(
Measurement a Automation t*ptarer.. 

InRiumontattxi 

Swjrfy 

ywName. . 

Convert ?U; y-f 

Source Crxtid 

U8Men**r... 
9«redVfrirf4-

FoJrtsonOtsk... 

Prep*e £xar0c VU tor Hi Example FfloV... 
Remote Panel Connection Manager .. 
W-bPubbhhflToot... 

Advanced 
QpQOnffi.. 

M Array A u t o / W 5 * v. 

j f * " ) _ ' . • - • ' . .•: • •:-. , - , , • .• 

«»i OrtWrOrderExafnpW.w 

| | PrecScowthAnayiOone.vi 

Si CbSM QWW* R«M«erwr<.M 

fl£ Cbiter Lfc*undte Dwno.vi 

• CVctef BunoV Ormo.vi 

NewTolahVUW? 

'>••••: Started -& lebflEW 

tabviCWFunoanwtab 

Gude to LafaVKW Dooiwnlarjoo 

labVTEWHe*. 

Upgrading LabVKW? 

LabVIEW Protects 

ChanoK ID Exttbnj VI* and Furvflont 

New Palette Orejrcabon 

uw of Al Hew reacure* 

wd> Resources 

Z - . . J . ••:--!>--j-.--• 

Ttalprfl CouriM 

labVIEWZone 

txamplcf 

^ FndCamplM.. 

3 UniHtaSHTronl Panel 

Edt yjw. Operate loob y/intfaw * t > 

U3ptAp. ^esuremertft. Automatic*! Exctaec.. 

JCTOL ActiveX 

Find VIS on Obk... 

Prepare Examote Vis tor N\ EMirple Finder... 

Remote Panel Connection Manager,,. 

Web Pubkhhg Tool. 

(b) 

FIGURE B.1 Accessing the MathScript Interactive Window from (a) the Getting Started window, or (b) the Tools 
pull-down menu on the front panel or block diagram. 

http://ni.com/mathscript
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MathScript Interactive 
Window -

Variables Script Editor 

i E l labVICW M/,i l .s. . i P i 

Output 
Window 

FIGURE B.2 
The basic 
components of the Command 
MathScript W i n d o w 

Interactive Window. 

Command History 

vm*Xart4mu*t» .CmwWi trt>*_ 

-
• oecrtcaJI**!? 

Co*rmat*i WVvtow 

Preview-
Pane 

Clearing the Command History Window 

The commands entered in previous sessions using the MathScript Interactive Win
dow will reappear in subsequent sessions. In the Command History window you will 
find a header that shows the day and time that you entered the commands. This fea
ture allows you to easily discern when the commands were entered. If the Com
mand History window gets too full and you want to clear it out, you can right-click 
the Command History window and select Clear History from the shortcut menu. 
This process is illustrated in Figure B.3. 

Clearing the Output Window 

In a manner similar to the clearing the Command History window you can clear the 
Output Window. To accomplish this task, right-click the Output Window and select 
Clear from the shortcut menu, as shown in Figure B.3. You also can use the Math-
Script function clc to clear the Output Window by typing in clc in the Command 
Window. 

Copying Output Window Data 

You can copy data from the Output Window and paste it in the Script Editor win
dow or a text editor. Right-click the Output Window and select Copy Data from the 
shortcut menu to copy the contents of the Output Window to the clipboard. You 
also can highlight text in the Output Window and select Edit»Copy or press the 
<Ctrl-C> keys to copy the selected text to the clipboard. 

Viewing Data in a Variety of Formats 

In the MathScript Interactive Window you can view the variables in a variety of for
mats, as shown in Figure B.4. Depending on the variable type, the available formats 
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l labVIEW MathScript 

Right-click on • 
Output Window 

and select 
Clear 

Use the clc 
function in the 

Command Window 

Be E * Ve* Hep 

Output WWw 

Connected t o MathScr ipt 
> > t - C 0 : D . l : 1 0 ) ; 

>>x-cos(t) 

> > y » s i n ( t ) 

>>plot(x.s>) 

Command Vrtridbw 

- do 

Copy Data 
dear 

,-.:.0:1 

vaUHet '• Script | H«"V 
Command Htfor/ 
t-fftttlllOJJ 
srttt) 
*(t); 
y*ft>; % 
•&- Tie, Jan24,2006 <:28fW~% 

' % 
X-COS«); 
y-MO; 

! nW(,,,) 

. . v ; 

OearHstoy Right-click on 
Command History 
and select 
Clear History 

FIGURE B.3 Clearing the Command History and the Output Window. 

I lebVIEW MathScript 

FIGURE B.4 
Showing the data 
type in various 
formats. 

Define time 
interval and 

compute 
y = sin(t) 

fit tit Vfc« H i , 

Otfput Window 

Connected to MathScript 
» t - t 0 : 0 . 1 ' 1 0 ) : 

Comiia-dWndo* 

n&opNtal fm? 

Dt«0snd7 

o.re-
0,5- . 

0.2S- / 
0- • 

•C.2S-
-05-

•0.7S-

• 1 -

\ / 
10 20 30 « 60 70 80 90 100 

Select y 

In pull-down 
menu choose 
variable type 

Graph of 
the data in 
variable y 

include: numeric, string, graph, XY graph, sound, surface, and picture. You can edit 
a variable in the Preview Pane when the display type is Numeric or String. Selecting 
Sound plays the data as a sound, but works for one-dimensional variables only. The 
remaining display types show the data as graphs of one sort or another: Graph dis
plays the data on a waveform graph, XY Graph displays the data on an XY graph, 
Surface displays the data on a 3D surface graph, and Picture displays the data on an 
intensity graph. 
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Open a new MathScript Interactive Window from the Getting Started window 
by selecting Tools»MathScript Window..., as illustrated in Figure B.l. In the Com
mand Window input the time from t = 0 seconds to t = 10 seconds in increments of 
0.1 seconds, as follows: 

t = [0:0.1:10]; 

Then, compute the y = cos(?)as follows: 

y = cos(r); 

Notice that in the Variables window the two variables t and y appear, as illustrated in 
Figure B.5a. Select the variable y and note that in the Preview Pane the variable ap
pears in the numeric format. Now, in the pull-down menu above the Preview Pane, se
lect Graph. The data will now be shown in graphical form, as illustrated in Figure B.5b. 
The graph can be undocked from the Preview Pane for re-sizing and customization. To 
undock the graph, right-click on the graph and select Undock Window. The window 
can now be re-sized and the plot can be customized interactively and printed. 

As an alternative to using the Preview Pane, you can also obtain a plot of the v 
versus t programmatically using the plot command: 

plot(t,y) 

Select the Numeric to show data 
values in numeric format 

(a) 

• *" 

Select the Graph to show data in graph format 

(b) 

FIGURE B.5 (a) Entering the time, computing y = cos(f) and viewing the variable y in numerical form. 
(b) Viewing the variable y in graphical form. 
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FIGURE B.6 
Obtaining a plot of 
the cosine function 
using the plot 
command. 

Gag-
He U «•> H« 

Conosctad to HalhScript 
>>f 10.0.1:101; 

Plot window 
appears with 
y - cos(l) 

'Ihe process is illustrated in Figure B.6. A new window appears that presents the 
graph of y versus t. Following the same procedure, see if you can obtain a plot of 
y = cos(v t) where v = 4 rad/sec. 

B.4 MATHSCRIPT HELP 

You can display several types of help content for MathScript by calling different 
help commands from the Command Window. Table B. 1 lists the help commands you 
can call and the type of help these commands display in the Output Window. 

As illustrated in Figure B.7, entering help classes in the Command Window 
launches the Lab VIEW Help showing all classes of functions and commands that Math-
Script supports. Examples of the classes of functions are basic and matnxops. Entering 
help basic in the Command Window results in a list of the members of the basic 

Table B.1 Help Commands for MathScript 

Command Description of Help Provided 
help 
help classes 

help cdt 
classes 

help class 

help 
function 

Provides an overview of the MathScript window. 
Provides a list of all classes of MathScript functions and topics as well as a 
short description of each class. 
Provides a list of the additional classes of functions that are installed with the 
LabVIEW Control Design Toolkit. 
Provides a list of the names and short descriptions of all functions in a par
ticular MathScript class. 
Example: help basic 
Provides reference help for a particular MathScript function or topic, in 
eluding its name, syntax, description, inputs and outputs, examples to type in 
the Command Window, and related functions or topics. 
Example: help abs 
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FIGURE B.7 Accessing the help for MathScript classes, members, and functions. 

class, including abs (i.e., the absolute value), conj (i.e., the complex conjugate func
tion), and exp (i.e., the exponential function). Then, entering help abs in the Com
mand Window will result in an output that contains a description of the abs 
function, including examples of its usage and related topics. 

B.5 SYNTAX 

The syntax associated with MathScript is straightforward. Most students with some 
experience programming a text-based language will be comfortable with the pro
gramming constructs in MathScript. If you need help getting started with Math-
Script, you can access help by selecting Help » Search the LabVIEW Help from the 
MathScript Interactive Window and typing mathscript in the search window. 

Eleven basic MathScript syntax guidelines are: 
1. Scalar operations: MathScript is ideally suited for quick mathematical operations, 

such as addition, subtraction, multiplication, and division. For example, consider the 
addition of two scalar numbers, 16 and 3. This is a simple operation that you might 
perform on a calculator. This can be accomplished using the MathScript command: 

»16+3 
ans= 

19 

In MathScript, if you perform any calculation or function without assigning the result 
to a variable, the default variable ans is used. If you want to assign the value of the 
addition of two scalars to the variable x, enter the following command: 
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» x = 1 6 + 3 

x= 

19 

In the same manner, you can add two scalar variables y and z by entering the follow
ing commands: 

Semicolon eliminates output display 

No semicolon leads to output display 

Using disp leads to output even with the semicolon 

Notice that in the previous example a semicolon was used for the first two lines, and 
no output was displayed. In MathScript, if you end a command line with a semicolon, 
the MathScript Interactive Window does not display the output for that command. 
Some functions display output even if you end the command line with a semicolon. 
For example, the disp function displays an output even if followed by a semicolon. 

You use the symbol'- ' for subtraction, the symbol'/ ' for division, and the symbol 
'*' for multiplication, as illustrated below: 

»16-3 
ans= 

Subtraction 

13 

» 1 6 / 3 

ans= 

Division 

5.3333 

»16*3 -4-
ans= 

48 

Multiplication 

2. Creating matrices and vectors: To create row or column vectors and matrices, use 
white space or commas to separate elements, and use semicolons to separate rows. 
Consider for example, the matrix A (a column vector), 

A = CIS. 

3 

In MathScript syntax, you would form the matrix as 

A = [1; 2; 3] 

Consider for example, the matrix B (a row vector) 

B = [1 - 2 7]. 
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In MathScript syntax, you would form the matrix as 

B = [1, -2,7]orB = [1 - 2 7] 

As a final example, consider the matrix C (a 3 X 3 matrix) 

0 

979 

- 1 
C = C4 

1 

2 
10 2S. 
0 6 

In MathScript syntax, you would form the matrix as 

C = [-1 2 0; 410 - 2 ; 10 6] or C = [-1,2, 0; 4,10,-2; 1, 0,6] 

3. Creating vectors using the colon operator: There are several ways to create a one-
dimensional array of equally spaced elements. For example, you will often need to cre
ate a vector of elements representing time. To create a one-dimensional array equally 
spaced and incremented by 1, use the MathScript syntax 

» t = 
t = 

= 1:10 

1 2 3 4 5 6 7 8 9 10 

To create a one-dimensional array equally spaced and incremented by 0.5, use the 
MathScript syntax 

» t = 1:0.5:10 
t = 

1 1.5 2 
6 6.5 7 7.5 

2.5 

8 

3 
8.5 

3.5 
9 

4 

9.5 

4.5 

10 
5 5.5 

4. Accessing individual elements of a vector or matrix: You may want to access specific 
elements or subsets of a vector or matrix. Consider the 3 x 3 matrix C: 

- 1 2 0 
C = C4 10 -IS. 

1 0 6 

In MathScript syntax, you can access the element in the second row and third column 
of the matrix C, as follows: 

»C=[-1 2 0;4 10-2;1 0 6] 
C= 

- 1 2 0 
4 10 -2 
1 0 6 

»C(2,3) +• 
ans= 

-2 

C(2,3) denotes the second row of 
the third column 
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You can assign this value to a new variable by entering the following command: 

»F=C(2,3) 

F= 

-2 

You can also access an entire row or an entire column of a matrix using the colon op
erator. In MathScript syntax, if you want to access the entire second row of matrix C, 
enter the following command: 

. - p /n .\ ^ 

ans= 

4 10 -2 

The second row of C 

In the same way, if you wish to access the entire third column of matrix C, enter the 
following command: 

»C(:,3) «-
ans= 

0 
-2 
6 

The third row of C 

Suppose you want to extract the 2 x 2 submatrix from C consisting of rows 2 and 3 and 
columns 1 and 2. You use brackets to specify groups of rows and columns to access a 
subset of data as follows: 

»C([2 3], [1 2]) « 
ans= 

10 
0 

A submatrix of C 

5. Calling functions in MathScript: You can call MathScript functions from the Com
mand Window. Consider the creation of a vector of a certain number of elements that 
are equally distributed in a given interval. To accomplish this in MathScript syntax, you 
can use the built-in function linspace. Using the command help l inspace you find that 
this function uses the syntax 

linspace(a, b, n) 

where a specifies the start of the interval, b specifies the end of the interval, and n 
identifies the number of elements. Thus, to create a vector of n = 13 numbers equally 
distributed between a — 1 and b = 10, use the following command: 
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» G = linspace (1, 10, 13) 

G= 

1 1.75 2.5 3.25 

7.75 8.5 9.25 10 

4 4.75 5.5 6.25 7 

If you do not specify a value for n, the linspace command will automatically return a vec
tor of 100 elements. To select a subset of G that consists of all elements after a specified 
index location, you can use the syntax described in guideline 4 and the end function to 
specify the end of the vector. For example, the following command will return all elements 
of G from the fifth element to the final element: 

»H=G(5: end(G)) 

H = 

4 4.75 5.5 6.25 7 7.75 8.5 9.25 10 

The function linspace is an example of a built-in MathScript function. Calling user-defined 
functions are discussed further in Section B.4.1. 

6. Assigning data types to variables: MathScript variables adapt to data types. For 
example, if 

a = sin (3* pi/2) 

then a is a double-precision floating-point number. If 

a = 'temperature' 

then a is a string. 
7. Using complex numbers: You can use either i or/ to represent the imaginary unit equal 

to the square root of —1. If you assign values to either i or/ in your scripts, then those 
variable names are no longer complex numbers. For example, if you let y = 4 + /, then 
y is a complex number with real part equal to 4 and imaginary part equal to +/. If how
ever, you assign / = 3, and then compute y = 4 + /, the result is y = 7, a real number. 

8. Matrix operations: Many of the same mathematical functions used on scalars can also 
be applied to matrices and vectors. Consider adding two matrices K and L, where 

- 1 2 0 1 0 0 
K = C 4 10 - 2 5 a n d L - C 0 1 05. 

1 0 6 0 0 1 

To add the two matrices K and L, element by element, enter the following MathScript 
command: 

» K + L 

ans = 

0 

4 

1 

2 

11 

0 

0 

-2 

7 
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In a similar fashion, you can also multiply two matrices K and L, as follows: 

» K * L 

ans -

-1 

4 

1 

2 

10 

0 

0 

-2 

6 

Consider the 3 x 1 matrix M (column vector) and the 1 X 3 matrix N (row vector) 

1 
M = G S a n d N - [0 1 2]. 

3 

Then, the product M *N is the 3 X 3 matrix 

» M * N 

ans = 

0 

0 
0 

1 

2 
3 

2 

4 
6 

and the product N*M is a scalar 

» N * M 

ans -

8 

To multiply two matrices, they must be of compatible dimensions. For example, suppose 
a matrix M is of dimension m X n, and a second matrix N is of dimension n X p. Then 
you can multiply M X N resulting in an m X p matrix. In the example above, the 3 X 1 
matrix iVI (column vector) was multiplied with the 1 x 3 matrix N (row vector) result
ing in a 3 X 3 matrix. You cannot multiply N X M unless m - p. In the example 
above, the 1 X 3 matrix N (row vector) was multiplied with the 3 X 1 matrix M 
(column vector) resulting in a 1 X 1 matrix (a scalar), so in this case, in = p — 1. 

When working with vectors and matrices in MathScript, it is often useful to per
form mathematical operations element-wise. For example, consider the two vectors 

- 1 2 
M = C4 SandN = C-2S. 

0 1 

In light of our previous discussion, it is not possible to compute M * N since the dimen
sions are not compatible. However, you can multiply the vectors element-wise using the 
syntax '.*' for the multiplication operator, as follows: 

-1*2 - 2 
M.*N = C4*(-2)S - C-8S. 

0*1 0 
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By definition, matrix addition and subtraction occurs element-wise. However, it is also 
possible to perform division element-wise. For M and N as above, we find that element-
wise division yields 

-1/2 -0.5 
M./N = C4/(-2)5 = C - 2 S. 

0/1 0 

Element-wise operations are useful in plotting functions. For example, suppose that 
you wanted to plot y = /sin(/) for t = [0:0.1:10]. This would be achieved via the 
commands 

t=[0:0.1:10]; 
y=t .* sin(t); -4 
plot(ty) 

Element-wise multiplication using .* 

9. Logical expressions: MathScript can evaluate logical expressions such as EQUAL, 
NOT EQUAL, AND, and OR. To perform an equality comparison, use the statement 

a = = b 

If a is equal to b, MathScript will return a 1 (indicating True); if a and b are not equal, 
MathScript will return a 0 (indicating False). To perform an inequality comparison, use 
the statement 

a ~ = b 
If a is not equal to b, MathScript will return a 1 (indicating True); if a and b are equal, 
MathScript will return a 0 (indicating False). 

In otheT scenarios, you may want to use MathScript to evaluate compound logical 
expressions, such as when at least one expression of many is True (OR), or when all of 
your expressions are True (AND). The compound logical expression AND is executed 
using the '&' command. The compound logical expression OR is executed using the ' |' 
command. 

10. Control flow constructs: Table B.2 provides the MathScript syntax for commonly used 
programming constructs. 

11. Adding comments: To add comments to your scripts, precede each line of documenta
tion with a % character. For example, consider a script that has two inputs, x and y, and 
computes the addition of x and y as the output variable z. 

r Comments 

The script shown above has three comments, all preceded by the % character. In the 
next section, we will discuss more details on how to use comments to provide help doc
umentation. 

Some considerations that have a bearing on your usage of MathScript follow: 

1. You cannot define variables that begin with an underscore, white space, or digit. For 
example, you can name a variable time, but you cannot name a variable 4time or _time. 

2. MathScript variables are case sensitive. The variables X and x are not the same variables. 

% In this script, the inputs are x 
% and the output is z. 
% z is the addition of x and y 
z = x + y; 

andy 
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Table B.2 MathScript syntax for commonly used constructs 

Construct Grammar Example 

Case-Switch 
Statement 

For Loop 

If-Else 
Statement 

Range 

While Loop 

switch 
expression 
case expression 
statement-list 
[case 
expression 
statement-list] 

[otherwise 
statement-list] 
end 

for expression 
statement-list 
end 

if expression 
statement-list 
[elseif 
expression 
statement-list] 

[else 
statement-list] 
end 

start:[step:]end 

while 
expression 
statement-list 
end 

switch mode 
case 'start ' 
a = 0; 
case 'end' 
a = - 1 ; 
otherwise 
a = a + 1; 
end 
When a case in a case-switch statement executes, Lab VIEW does not 
select the next case automatically.Therefore, you do not need to 
use break statements as in C. 

for k = 1:10 
a = sin(2*pi*k/10) 
end 

if b = = 1 
c = 3 
else 
c = 4 
end 

t = 0:0.1:10 or t = [0:0.1:10] 
t returns an array of numbers 0 < t ^ 10 with a step size of 0.1 
If you do not specify a step size, Lab VIEW uses a step size of 1. 
while k < 10 
a = cos(2*pi*k/10) 
k = k + 1; 
end 

cia 

Key MathScript Functions 

MathScript offers more than 500 textual functions for math, signal processing, 
and analysis. These are in addition to the more than 600 graphical functions for 
signal processing, analysis, and math that are available as Vis within Lab VIEW. 
Table B.3 lists many of the key areas with supporting MathScript functions. For 
a comprehensive function list, visit the National Instruments website at 
http://www.ni.com/mathscript or see the online help. 

B.6 DEFINING FUNCTIONS AND CREATING SCRIPTS 

You can define functions and create scripts to use in the MathScript Interactive Win
dow. Functions and scripts can be created in the Script Editor window on the Math-
Script Interactive Window (see Figure B.2). You can also use your favorite text editor 
to create functions and scripts. Once your function or script is complete, you should 
save it for use later. The filename for a function must be the same as the name of the 
function and must have a lowercase .m extension. For example, the filename for a 

http://www.ni.com/mathscript
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Table B.3 MathScript Function Classes 

Function Classes Brief Description 

Control Design and Analysis 

Plots 
(2D and 3D) 
Digital Signal Processing 
(DSP) 

Approximation 
(Curve Fitting & Interpolation) 
Ordinary Differential Equation 
(ODE) Solvers 

Polynomial Operations 

Linear Algebra 

Matrix Operations 

Vector Operations 

Probability and Statistics 

Optimization 

Advanced Functions 

Basic 

Trigonometric 

Boolean and Bit Operations 

Data Acquisition/Generation 
Other 

Classical and state-space control design and analysis functions. Dynamic 
characteristics, root locus, frequency response, Bode, Nyquist, Nichols, model 
contstruction, connection, reduction and more. 

Standard x-y plot; mesh plot; 3D plot; surface plot; subplots; stairstep plot; 
logarithmic plots; stem plot and more. 

Signal synthesis; Butterworth, Chebyshev, Parks-McClellan, windowed FIR, 
elliptic (Cauer), lattice and other filter designs; FFT (1D/2D); inverse FFT 
(1D72D); Hubert transform; Hamming, Hanning, Kaiser-Bessel and other 
windows; pole/zero plotting and others. 

Cubic spline, cubic Hermite and linear interpolation; exponential, linear and 
power fit; rational approximation and others. 

Adams-Moulton, Runge-Kutta, Rosenbrock and other continuous ordinary 
differential equation (ODE) solvers. 

Convolution; deconvolution; polynomial fit; piecewise polynomial; partial 
fraction expansion and others. 

LU, QR, QZ, Cholesky, Schur decomposition; SVD; determinant; inverse; 
transpose; orthogonalization; solutions to special matrices;Taylor series; real 
and complex eigenvalues and eigenvectors; polynomial eigenvalue and more. 

Hankel, Hilbert, Rosser, Vandermonde special matrices; inverse; 
multiplication; division; unary operations and others. 

Cross product; curl and angular velocity; gradient; Kronecker tensor product 
and more. 

Mean; median; Poisson, Rayleigh, chi-squared, Weibull,T, gamma 
distributions; covariance; variance; standard deviation; cross correlation; 
histogram; numerous types of white noise distributions and other functions. 

Quasi-Newton, quadratic, Simplex methods and more. 

Bessel, spherical Bessel, Psi, Airy, Legendre, Jacobi functions; trapezoidal, 
elliptic exponential integral functions and more. 

Absolute value; Cartesian to polar and spherical and other coordinate 
conversions; least common multiple; modulo; exponentials; logarithmic 
functions; complex conjugates and more. 

Standard cosine, sine and tangent; inverse hyperbolic cosine, cotangent, 
cosecant, secant, sine and tangent; hyperbolic cosine cotangent, cosecant, 
secant, sine and tangent; exponential; natural logarithm and more. 

AND, OR, NOT and other logic operations; bitwise shift, bitwise OR and 
other bitwise operations. 

Perform analog and digital I/O using National Instruments devices. 

Programming primitives such as if, for and while loops; unsigned and signed 
datatype conversions; file I/O; benchmarking and other timing functions; 
various set and string operations and more. 

user-defined starlight2 function must be starlight.m. Use unique names for all func
tions and scripts and save them in a directory that you specified in the Path section of 
the File»MathScript Preferences dialog box. 

2The name starlight does not represent a real function. It is used here for illustrative purposes only. 
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User-Defined Functions 

MathScript offers more than 500 textual functions for math, signal processing, and 
analysis. But what if you have a special purpose function that you want to add to 
your personal library? This function may be particular to your area of study or re
search, and is one that you need to call as part of a larger program. With MathScript 
it is simple to create a function once you understand the basic syntax. 

A MathScript function definition must use the following syntax: 

function outputs = f unctionjiame{inputs) 
% documentation 
script 

An example of a user-defined function definition utilizing the proper syntax is 

function ave = compute_average(x, y) 
% compute_average determines the average of the two inputs x and y. 
ave = (x + y)/2; 

Begin each function definition with the term function. The outputs lists the output 
variables of the function. If the function has more than one output variable, enclose 
the variables in square brackets and separate the variables with white space or com
mas. The function_name is the name of the function you want to define and is the 
name that you use when calling the function. The inputs lists the input variables to the 
function. Use commas to separate the input variables. The documentation is the set of 
comments that you want MathScript to return for the function when you execute the 
help command. Comments are preceded with a % character. You can place comments 
anywhere in the function; however, Lab VIEW returns only the first comment block in 
the Output Window to provide the help to the user. All other comment blocks are for 
internal documentation. The script defines the executable body of the function. 

Checking the help on the function compute_average.m and then executing the 
function with x = 2 and y = 4 as inputs yields 

»help compute average 
compute_average determines the average of the two inputs x and y. 

»x = 2; y = 4; compute_average(x, y) 
ans = 

3 

Note that there is a MathScript function named mean that can also be used to com
pute the average of two inputs, as follows: 

»mean([2 4]) 
ans = 

3 

Functions can be edited in the Script Editor window and saved for later use. In Figure 
B.8, the buttons Load Script, Save Script As, Save & Compile Script As and Run 
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Script are shown. You can compile a function when you save it to decrease the run
time compilation time. Selecting Load Script will open a window to browse for the 
desired function (or script) to load into MathScript. Similarly, selecting Save Script 
As will open a browser to navigate to the desired folder to save the function. 

In Figure B.8, the function compute_average is used to compute the average 
of two arrays. Notice that the function computes the average element-wise. If 
compute_average had inadvertently been named mean, then Lab VIEW would ex
ecute the user-defined function instead of the built-in function. Generally it is not a 
good idea to redefine Lab VIEW functions, and students should avoid doing so. If 
you define a function with the same name as a built-in MathScript function, Lab-
VIEW executes the function you defined instead of the original MathScript func
tion. When you execute the help command, Lab VIEW returns help content for the 
function you defined and not the help content for the original MathScript function. 

Other examples of valid function syntax for the starlight function include: 

function starlight 
function a = starlight 
function [a b] = starlight 
function starlight (g) 
function a = starlight (g) 
function [a b] = starlight (g) 
function starlight (g, h) 
function a = starlight (g, h) 
function [a b] = starlight (g, h) 

% No inputs and no outputs 
% No inputs and one output 
% No inputs and two outputs 
% One input and no outputs 
% One input and one output 
% One input and two outputs 
% No inputs and two outputs 
% One input and two outputs 
% Two inputs and two outputs 

There are several restrictions on the use of functions. First, if you define multiple 
functions in one MathScript file, all functions following the first are subfunctions 
and are accessible only to the main function. A function can call only those func
tions that you define below it. Second, you cannot call functions recursively. For ex
ample, the function starlight cannot call starlight. And third, Lab VIEW also does 
not allow circular recursive function calls. For example, the function starlight cannot 
call the function bar if bar calls starlight. 

Scripts 

A script is a sequence of MathScript commands that you want to perform to accom
plish a task. For convenience and reusability, once you have created a script, you can 
save it and load it into another session of LabVIEW at a later time. Also, often you 
can use a script designed for a different task as a starting point for the development 
of a new script. Since the scripts themselves are saved as common ascii text and ed
itable with any text editor (including the one found in the MathScript Interactive 
Window), it is easy to do this. The MathScript functions as well as the user-defined 
functions can be employed in scripts. 

Continuing the example above, suppose that we used a script to compute the 
average of two numbers. The compute_average function could be used within the 
script. Once saved, the script can subsequently be loaded into MathScript for use in 
another session. A script using the compute_average function is shown in Figure B.9. 
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Select Load to browse for a 
function to load in MathScript 

Select Save to browse for a 
directory to save the function 

X 

Running the function 
for x = [14] and y = [2 61 

yields the average [1.5 5] 

X ; -L 
fk lit m n * 

»X.U «]! 

»T-(S «li 

Script Editor 

The function 
compute_average.m 

ooj««*Ml«EWM,le«t»«._««r»)«« U»;«.C*»#«1 

FIGURE B.8 Loading and saving functions. 

B.7 SAVING AND LOADING DATA FILES AND SCRIPTS 

In MathScript you can save and load data files in the MathScript Interactive Win
dow. A data file contains numerical values for variables. Being able to save and load 
djata gives you the flexibility to save important data output from a MathScript ses
sion for use in external programs. There are two ways to save data files. The first 

l3ub<IE«U«t*cil>t 

Select Run 

Results of 
executing script 

are displayed 

n> &x *•» H*> 

QjOutVfodo-
» x - U 41 : 

rV «--

Cwxr-riW^'**-. 

Script that uses the 
co mpute_ave rage 
function 

•" eo««»*vttwOMtoi«ul..««»^»i^lM^UaKJ SSSfJ _ . . . [ 

FIGURE B.9 Editing, saving, and running a script to compute the average of two arrays element-wise. 
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method saves the data for all the variables in the workspace, and the second method 
allows you to select the variables to save to a file. 

To save all the variables in the workspace, select File»Save Data in the Math-
Script Interactive Window. You also can right-click the Variable List on the Vari
ables window and select Save Data from the shortcut menu. In the file dialog box, 
navigate to the directory in which you want to save the data file. Enter a name for 
the data file in the File name field and click the OK button to save the data file. 

The second method allows you to select the variables to save. In this case, in the 
Command Window, enter the command save filename varl, var2, ...., varn, where 
filename is the name of the file to store the data and varl, var2,... varn are the vari
ables that you want to save. In this case, the data will be saved in filename in the 
LabVIEW Data directory in the path specified in File»MathScript Preferences 
In Figure B.10 the process of saving data is illustrated. In Figure B.lOa, all the vari
ables are saved in the file save_all.mlv after navigating to the folder LabVIEW Data. 
In Figure B.lOb, the variable x is saved in the file save_x.mlv. 

You also can load existing data files into your MathScript session. In the Math-
Script Interactive Window, select File»Load Data or right-click the Variable List on 

. j i . * 

(a) 

Location of 
saved data 

(b) 

Save select variables 
In this case, save the 
variable x in the file 

save x.nilv 

••~JM 

_ » « 5 JoW Hmr, 

3HSJS) 

Select Save Data to save ali variables 

Navigate to desired folder 

SmaMalhSeripKlaU 

£ = = = = ^ . . . ^ 

Q i.Micv. u. .r.v. . , . 

OJM.Vr%Mm 

» « . [ 1 »1: 
T-H «11 

Mfftjr.ml* 

»1««: 

Stvefr i_J LabVIEWDala 

MjRewrt iJlMutoSav* 

JClobM 

Deifctoo 

'J 
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., «. 
« » « l « t « I « « « w . " . » l « U»9.UK 1. 

Select OK when done 
Enter desired file name 

FIGURE B.10 Saving data files, (a) Saving all the variables in the workspace, (b) Saving select variables. 
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SLabVllWUolhScrlpt 

FIGURE B.11 Loading data from a previous MathScript session. 

the Variables window and select Load Data from the shortcut menu to load the data 
file you want, as illustrated in Figure B.l 1. Note that you must save data files before 
you can load them into the MathScript Interactive Window. 

Being able to save scripts is an important feature giving you the capability to de
velop a library of scripts that you can readily access in future MathScript sessions. To 
save a script that you have created in the Script Editor window, select 
File»Save Script As, as illustrated in Figure B.12a. You can also save your script by 
clicking the Save button on the Script Editor window of the MathScript Interactive 
Window, as illustrated in Figure B.12b. In both cases, a file dialog box will appear for 
you to navigate to the directory in which you want to save the script. Enter a name 
for the script in the File name field. The name must have a lowercase .m extension if 
you want LabVIEW to run the script (in this example, we use the name average_ 
example.m). Click the OK button to save the script. 

You can compile a script by selecting FiIe»Saye & Compile Script or by clicking 
on the Save & Compile Script As button in the MathScript Interactive Window. This will 
save and compile the script to decrease the run-time compilation time. You can load ex
isting scripts into the MathScript Interactive Window. This will be useful upon returning 
to a MathScript session or if you want to use a script in the current session that was de
veloped in a previous session. To load an existing script, select File»Load Script or click 
the Load button on the Script page on the MathScript Interactive Window. 

Figure B.13 illustrates the process of loading scripts. In the example, the script 
compute_average.m is loaded into a MathScript session, and then using the Run 
Script As button, the script is executed. 
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FIGURE B.12 (a) Saving a script using the FiIe»Save Script As pull-down menu, (b) Saving a 
script using the Save Script As button on the MathScript Interactive Window. 

FIGURE B.13 
(a) Loading a script 
using the 
File»Load Script 
pull-down menu. 
(b) Loading a script 
using the Load 
Script button on 
the MathScript 
Interactive Window. 

MyRsow CilYAUtoSMe 
Documrtt , j M < » j * p g 

JPrcbes 

OeikIM _£)cerp<e_<rm«>B. 

Hy Oocurerts 

Select Load 

F * B * « ' con»te.*v«get{ r~*~i 
MyNeiwwrfc FiotolJ^w ! Cutfom Pattern f m l Z 3 Q ^ J 

oo»»l»WWltWt«ria«|««jiw*9«."> inr.S.G****! 

(b) 

Select desired file 



992 Appendix B MathScript Basics 

MATHSCRIPT BASICS: PROBLEMS 

B.1 Write a script to generate a 3 X 2 matrix M of ran
dom numbers using the rand function. Use the help 
command for syntax help on the rand function. Verify 
that each time you run the script the matrix M changes. 

B.2 In the MathScript Interactive Window, create a script 
that generates a time vector over the interval 0 to 10 
with a step size of 0.5 and creates a second vector, y, 
according to the equation 

y = e"'(0.5 sin 0.1/ - 0.25 cos 0.2r). 

Add the plot function to generate a graph of y versus t. 
Type the script in the Script Editor window and, when 
done, use the Save button in the Script Editor to save 
the script. Clear the script from the Script Editor win
dow, and then Load the script back into the Script Edi
tor and select Run. 

B.3 Create a plot of the cosine function, y = cos(f), 
where t varies from 0 to p , with an increment of p /20. 

B.4 Open the MathScript Interactive Window. In the 
Command Window, create the matrices A and B: 

1 - 2 

A - C 0 35andB = B\ ~^ JR 

Is it possible to perform the following math opera
tions on the matrices? If so, what is the result? 
(a) A * B 
(b) B*A 
(c) A + B 
(d) A + B' (where B' is the transpose of B) 
(e) A / B 

B.5 Using MathScript, generate a plot of a sine wave of 
frequency v - 10 rad/sec. Use the linspace function 
to generate the time vector starting at t = 0 and end
ing at t = 10.1 .abel the x-axis as Time (sec). Label the 
y-axis as sin(w*t). Add the following title to the plot: 
Sine wave with frequency w 5 10 rad/sec. 

B.6 The rand function generates uniformly distributed 
random numbers between 0 and l.This means that the 
average of all of the random values generated by the 
rand function should approach 0.5 as the number of 
random numbers increases. Using the rand function, 
generate random vectors of length 5,100,500, and 1000. 
Confirm that as the number of elements increases, the 
average of the random numbers approaches 0.5. Gen
erate a plot of the average of the random numbers as a 
function of the number of random numbers. Use both 
rand and mean functions in your script. 
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or not stable without 
consideration of other system 
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of stability, 356,406 

Acceleration error constant, Ka 

The constant evaluated as 
lim[j,2G(5)l. The sready-
s-*0 
state error for a parabolic 
input, r(t) = At1/!, is equal 
toA/Ka, 298 

Acceleration input, steady-state 
error, 297-298 

Accelerometer, 71,83 
Ackermann's formula, 756, 

767-768,772,777-778, 
809-810,816 

Across-variable, 43,45 
Actuator, The device that 

causes the process to provide 
the output; the device that 
provides the motive power 
to the process, 62,142 

Additive perturbation, A system 
perturbation model 
expressed in the additive 
form Ga{s) = G(s) + A(s). 
where G(s) is the nominal 
plant, A(s) is the perturba
tion that is bounded in 
magnitude, and Ca(s) is 
the family of perturbed 
plants, 834,899 

Agricultural systems, 13 
Aircraft, and computer-aided 

design, 19 
unmanned, 15 

Aircraft autopilot, 853 
Aircraft attitude control, 319 
Airplane control, 266,474-475, 

482,747-748 
All-pass network, A nonmini-

mum phase system that 

passes all frequencies with 
equal gain, 513-514,566 

Alternative signal flow graph, and 
block diagram models, 
165-170 

Amplidyne, 127 
Amplifier, feedback, 219 
Amplitude quantization error, 

906-907, 950 
Analogous variables, 47 
Analog-to-digital converter, 

902,906 
Analysis of robustness, 834-836 
Angle of departure, The angle at 

which a locus leaves a com
plex pole in the s-plane, 
422-423,426,441^143,491 

Angle of the asymptotes, The 
angle that the asymptote 
makes with respect to the real 
axis,4>A, 415,418,491 

Armature-controlled motor, 
64-65,69,81,94,117,127,137, 
139 

Array operations in MathScript, 
979 

Array operations in MATLAB, 
959-960 

Artificial hand, 11,14,36 
Assumptions, Statements that 

reflect situations and condi
tions that are taken for grant
ed and without proof. 
In control systems, assump
tions are often employed to 
simplify the physical dynami
cal models of systems under 
consideration to make the 
control design problem more 
tractable, 42,83-84,142 

Asymptote, The path the root 
locus follows as the parame
ter becomes very large and 
approaches infinity, 415 

of root locus, 415 

Asymptote centroid, The center 
of the linear asymptotes, 
aA, 416 

Asymptotic approximation for a 
Bode diagram, 502 

Automatic control, history of, 4-8 
Automatic fluid dispenser, 

200,202 
Automatic test system, 795-797 

Automation, The control of an 
industrial process by 
automatic means, 6,39 

Automobile steering control 
system, 9 

Automobiles, hybrid fuel 
vehicles, 21, 40 

Auxiliary polynomial, The equa
tion that immediately 
precedes the zero entry in 
the Routh array, 365,496 

Avemar ferry hydrofoil, 736 
Axis shift, 369 

Backward difference rule, A 
computational method of 
approximating the time 
derivative of a function 
given by x(kT) -

x(kT) - x((k l ) r ) 

T 
where t = kT,T is the sample 
time, and k = 1,2,..., 
925,950 

Bandwidth, The frequency at 
which the frequency response 
has declined 3 dB from its 
low-frequency value, 520, 
566,596,665 

Bellman, R., 7 
Biological control system, 14 
Black, H.S., 5-6,8,130,830 
Block diagram, Unidirectional, 

operational block that 
represents the transfer 
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functions of the elements of 
the system, 71,72 

Block diagram models, 71-76, 
107-116 

alternative signal-flow graphs, 
165-170 

signal-flow graphs, 154-165 
Block diagram transformations, 

73-74 
Bobbin drive, 356 
Bode,H.W., 500,830 
Bode plot, The logarithm of 

magnitude of the transfer 
function is plotted versus the 
logarithm of o>, the frequen
cy. The phase, cj>, of the trans
fer function is separately 
plotted versus the logarithm 
of the frequency, 500-501, 
541,567 

asymptotic approximation, 
502 

Boring machine system, 232 
Bounded response, 356 
Branch on signal-flow graph, 76 
Break frequency, The frequency 

at which the asymptotic ap
proximation of the frequen
cy response for a pole (or 
zero) changes slope, 502, 
505,566 

Breakaway point. The point on 
the real axis where the locus 
departs from the real axis of 
the 5-plane, 418-420,491 

Bridge,Tacoma Narrows, 357-359 

Camera control, 308-312,341 
Canonical form, A fundamental 

or basic form of the state 
variable model representa
tion, including phase variable 
canonical form, input feedfor
ward canonical form, 
diagonal canonical form, 
and Jordan canonical 
form, 211 

Capek, Karel, 10 
Cascade compensation network, 

A compensator network 
placed in cascade or series 

with the system process, 
671-675,755 

Cauchy's theorem. If a contour 
encircles Z zeros and P poles 
of F( s), the corresponding 
contour encircles the origin of 
the F(s)-plane N = Z - P 
times clockwise, 568, 
571-575,665 

Characteristic equation, The 
relation formed by equating to 
zero the denominator of a 
transfer function, 52,142,387 

Circles, constant, 596 
Closed-loop feedback control 

system, A system that uses a 
measurement of the output 
and compares it with the 
desired output, 3,39,214 

Closed-loop sampled-data 
system, 912 

Closed-loop transfer function, 
A ratio of the output signal to 
the input signal for an inter
connection of systems when 
all the feedback or feed-
foward loops have been 
closed or otherwise accounted 
for. Generally obtained by 
block diagram or signal flow 
graph reduction, 74,142, 
387 388 

Command following. An impor
tant aspect of control system 
design wherein a nonzero ref
erence input is tracked, 779, 
826 

Compensation, The alteration or 
adjustment of a control 
system to provide a suitable 
performance, 668 

using a phase-lag network on 
the Bode diagram, 691 

using a phase-lag network on 
the s-plane, 692 

using a phase-lead network on 
the Bode diagram, 675 

using a phase-lead network on 
the s-plane, 681 

using analytical methods, 
700 

using integration networks, 688 
using state-variable feedback, 

757 
Compensator, An additional 

component or circuit that is 
inserted into the system 
to equalize or compensate 
for the performance 
deficiency, 477,668,755.757 

Compensator design, full-state 
feedback and observer, 773 

Complementary sensitivity 
function, The function 

C(s) = „ , , ^ . , that 
w 1 + Gc(s)G(s) 

satisfies the relationship 
S(s) + C(s) = 1, where 5(5) 
is the sensitivity function. The 
function C(s) = T(s) is the 
closed-loop transfer function, 
216,834,899 

Complexity, A measure of the 
structure, intricateness, or be
havior of a system that char
acterizes the relationships and 
interactions between various 
components, 16,39,276 

in cost of feedback, 231 
Complexity of design. The intri

cate pattern of interwoven 
parts and knowledge 
required, 16 

Components, The parts, subsys
tems, or subassemblies that 
comprise a total system, 276 

in cost of feedback, 231 
Computer control systems, 

901,902 
for electric power plant, 13 

Computer-aided design, 19 
Computer-aided engineering 

(CAE), 21 
Conditionally stable system, 475 
Conformal mapping, A contour 

mapping that retains the 
angles on the s-plane on the 
F(s)-plane, 570,655 

Congress, 14 
Constant M circles, 597 
Constant N circles, 597 
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Continuous design problem, 38, 
139,208,270,349,402,485, 
561,659,747,821,891,947 

Contour map, A contour or 
trajectory in one plane is 
mapped into another plane 
by a relation F(s), 569 

Contours in the s-plane, 569 
Control engineering, 2,8-9 
Control system. An interconnec

tion of components forming a 
system configuration that will 
provide a desired response, 
2,39 

characteristics using m-files, 

246 
design, 17 
modern examples, 8-16 

Controllability, 757-763 
Controllability matrix, A linear 

system is (completely) 
controllable if and only if the 
controllability matrix 
Pc = [B AB A 2 B. A"B] 
has full rank, where A is an 
nxn matrix; for single-input, 
single-output linear systems, 
the system is controllable if 
and only if the determinant of 
the nxn controllability matrix 
Pc is nonzero, 758,826 

Controllable system, A system 
with unconstrained control 
input u that transfers any initial 
state x(0) to any other state 
x(r), 758,826 

conv function, 105,968 
Convolution integral, 280 
Corner frequency. See Break 

frequency 
Cost of feedback, 231-232 
Coulomb damper, 45 
Critical damping, The case where 

damping is on the boundary 
between underdamped and 
overdamped, 54,142 

Critically damped system, 103 

Damped oscillation. An oscilla
tion in which the amplitude 
decreases with time, 56,142 

Dampers, 45 
Damping ratio, A measure of 

damping; a dimensionless 
number for the second-order 
characteristic equation, 54, 
142,292 

estimation of, 292 
DC motor, An electric actuator 

that uses an input voltage as a 
control variable, 142 

armature controlled, 64,81 
field controlled, 63 

Deadbeat response, 755 
Decade, A factor of ten in fre

quency (e.g., the range of 
frequencies from 1 rad/sec 
to 10 rad/sec is one decade), 
502,566 

of frequencies, 502 
Decibel (dB), The units of the 

logarithmic gain, 566 
Decoupled state variable format, 

166 
Design, The process of con

ceiving or inventing the 
forms, parts, and details of a 
system to achieve a rea
soned purpose, 16-17,39 

Design of a control system, The 
arrangement or the plan of the 
system structure and the selec
tion of suitable components 
and parameters, 755 

robot control, 396 
in the time domain, 757 
using a phase-lag network on 

the Bode diagram, 696 
using a phase-lag network on 

the s-plane, 691 
using a phase-lead network on 

the Bode diagram, 675 
using a phase-lead network on 

the s-plane, 681 
using integration networks, 

688 
using state-feedback, 756 

Design specifications, 278 
Detectable, A system in which 

the states that are unobserv-
able are naturally .stable., 
761,826 

Diagonal canonical form, 
A decoupled canonical form 
displaying the n distinct 
system poles on the diagonal 
of the state variable represen
tation A matrix, 166,211 

Differential equations, An equa
tion including differentials of 
a function, 42,143 

Differential operator, 50 
Differentiating circuit, 68 
Digital computer compensator, 

A system that uses a digital 
computer as the compensator 
element, 918-921 

Digital control system, A con
trol system using digital 
signals and a digital 
computer to control a 
process, 901-950 

Digital control systems using con
trol design software, 935 

Digital controllers, implementa
tion of, 925 

Digital to analog converter, 905 
Direct system, 213. See also 

Open-loop control system 
Discrete-time approximation, 

An approximation used to 
obtain the time response 
of a system based on the 
division of the time into 
small increments A ; , 211 

Disk drive read system. See 
Sequential design example 

Disturbance rejection property, 
221-224 

Disturbance signal. An unwanted 
input signal that affects the sys
tem's output signal, 
220-225,276 

Dominant roots, The roots of 
the characteristic equation 
that represent or 
dominate the closed-loop 
transient response, 288,353, 
427,491,521,566 

Dynamics of physical systems, 41 

Electric power industry, 13 
Electric traction motor, 93-95 
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Electrohydraulic actuator, 66, 
69,129 

Engineering design, The process 
of designing a technical 
system, 16-17,40 

English channel tunnel boring 
system, 232 

Engraving machine. 523-526, 
537-538 

Epidemic disease, model of, 
167-168,372 

Equilibrium state, 167 
Error, steady-state, 228 
Error constants, acceleration, 

296 
ramp, 297 
step, 295 

Error signal, The difference 
between the desired output, 
R{s), and the actual output 
Y(s); therefore E(s) = 
R(s) - Y(s), 110,143,276 

Estimation error. The difference 
between the actual state and 
the estimated state 
e(r) = x(t) - x(t), 769,826 

Euler's method, A first-order 
explicit integration method 
utilized to obtain numerical 
solutions of differential 
equations, 211 

Evans, W.R., 408 
Examples of control systems, 8 
Exponential matrix function, 150 
Extender, 135,206,742 

Federal Reserve Board, 14 
Feedback, 3 

amplifier, 219 
control system, 3,9-11, 

720-726 
cost of, 231-232 
full-state control design, 763 
negative, 3,6 
positive, 32 
of state variables, 782,784 

Feedback control system, and 
disturbance signals, 220-225 

feedback function, 111-113,968 
Feedback signal, A measure of 

the output of the system used 

as feedback to control the 
system, 3,40,110 

Feedback systems, history of, 4 
Final value. The value that the 

output achieves after all the 
transient constituents of the 
response have faded. Also 
referred to as the steady-state 
value, 54 

of response of y(t), 54 
Final value theorem, The theo

rem that states that lim y(t) 
t—*co 

= lim 5Y(5), where Y(s) is 

the Laplace transform of 
y ( 0 , 54 

Flow graph. See Signal-flow graph 
Flyball governor, A mechanical 

device for controlling the speed 
of a steam engine, 4-5,40 

Forward rectangular integration, 
A computational method of 
approximating the integra
tion of a function given by 
x(kT)**x({k-l)T) 
+ Tx((k-1)T), where 

t = kT, T is the sample time, 
and k = 1,2,. . . , 925,950 

Fourier transform. The transfor
mation of a function of time, 
/ ( f ) into the frequency 
domain, 496 

Fourier transform pair, A pair of 
functions, one in the time 
domain, denoted by f(t), and 
the other in the frequency 
domain, denoted by F{j<»), 
related by the Fourier trans
form as F(j<a) = 9{f(t)}, 
where *& denotes the 
Fourier transform, 495-496, 
566 

Frequency response, The steady-
state response of a system 
to a sinusoidal input 
signal, 494,566 

closed-loop, 594 
measurements, 517-519 
plots, 497-501,566 
using control design software, 

534 

Full-state feedback control law, 
A control law of the form 
u = —Kx where x is the state 
of the system assumed known 
at all times, 26,757 

Fundamental matrix, 151. See 
also Transition matrix 

Future evolution of control 
systems, 24 

Gain margin, 622-623,632,665 
The reciprocal of the gain 

Gc(s)G(s) at the frequency at 
which the phase angle reaches 
180°, 588-589 

Gap, The void between what is 
intended (or visualized) as the 
product or device and the actu
al, practical form of the final 
design, 16 

Gear train, 67,70 
Graphical evaluation of residues 

of F(s), 53 
Graphics in MATLAB, 953, 

961-964 
Gun controllers, 7 
Gyroscope, 205 

Hand, robotic, 11,14,36 
Helicopter control, 472- 473,480 
Help, 976 
High-fidelity simulations, 90 
History of automatic control, 4 
Home appliances, 24 

Homogeneity, The property of a 
linear system in which the 
system response, y( / ) , to an 
input u{t) leads to the 
response fly(t), when the 
input is f3u(t), 47-48,143 

Hubble telescope, 315-319 
Hurwitz, Routh- stability 

criterion, 360-368,373, 
382-384,406 

Hybrid fuel vehicles, 21,40 
Hydraulic actuator, 66,69,129, 

812 

Impulse signal, 278 
Index of performance, 303,783 
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Input feedforward canonical 
form, A canonical form 
described by n feedback 
loops involving the an coeffi
cients of the rt-th order de
nominator polynomial of the 
transfer function and feed
forward loops obtained by 
feeding forward the input 
signal, 161-162,211 

Input signals, 278 
Instability, An attribute of a 

system that describes a 
tendency of the system to 
depart from the equilibrium 
condition when initially 
displaced, 276 

in cost of feedback, 231 
Insulin delivery system, 27-28 
Integral of absolute magnitude of 

error, 304 
Integral of sq u are of error, 303 
Integral of time multiplied by 

absolute error, 304 
optimum coefficients of T(s) 

for, 308,312 
Integral of time multiplied by error 

squared, 304 
Integral operator, 52 
Integrating filter, 68 
Integration network, A network 

that acts, in part, like an 
integrator, 674 

Interactive Window, 972 
Internal model design, A method 

of tracking reference inputs 
with guaranteed steady-state 
tracking errors, 793-794,826 

Internal model principle, The 
principle that states that if 
Gc(s)G(s) contains the input 
R(s), then the output y(t) 
will track r(t) asymptotically 
(in the steady-state) and the 
tracking is robust, 793,899 

Internal Revenue Service, 14 
Inverse Laplace transform, 50, 

52,54-55 
Inverted pendulum, 169,766, 

775,778,818,820 
ISE, 303,344 

ITAE, 304 
optimal coefficients of T(s), 

308,312 
ITSE, 304 

Jordan canonical form, A block 
diagonal canonical form for 
systems that do not possess dis
tinct system poles, 166,211 

Kalman state-space decomposi
tion, A partition of the state 
space that illuminates the 
states that are controllable 
and unobservable, uncontrol
lable and unobservable, con
trollable and observable, and 
uncontrollable and 
observable, 758,761,826 

Kirchhoff voltage laws, 147 

Laboratory robot, 98-99 
Lag network. See Phase lag 

network 
Laplace transform, A transfor

mation of a function / ( / ) 
from the time domain into the 
complex frequency domain 
F(s), 42,50-57,143,145 

Laplace transform pair, A pair 
of functions, one in the time 
domain, denoted by f(t), and 
the other in the frequency 
domain, denoted by F(s), re
lated by the Laplace trans
form as F(s) - %{f(t)}, 
where i£ denotes the 
Laplace transform, 
51,495-496,566 

Laser manipulator control 
system, 447-448 

Lead network. See Phase lead 
network 

Lead-lag network, A network 
with the characteristics of 
both a lead network and a lag 
network, 700 

Linear approximation, An ap
proximate model that results 
in a linear relationship be
tween the output and the 
input of the device, 49,143 

Linear approximations of physical 
systems, 47-50 

Linear quadratic regulator, An 
optimal controller designed 
to minimize the quadratic 
performance index 

J = (xrQx + iirRu) dt, 

where Q and R are design 
parameters, 791,826 

Linear systems, 47-48,143 
simplification of, 312,332 

Linearized, Made linear or 
placed in a linear form; 
Taylor series approximations 
are commonly employed to 
obtain linear models of 
physical systems, 42,143 

Locus, A path or trajectory that 
is traced out as a parameter is 
changed, 408,491 

Logarithmic (decibel) measure, 
A measure of the gain margin 
defined as 20 log10( l/d), 

where — = 

d \GH(j*>)\ 
when the phase shift is 
-180°, 588,665 

Logarithmic magnitude, The 
logarithm of the magnitude 
of the transfer function 
201og10|G|, 503-506,522, 
550-551,566 

Logarithmic plot, 500-501 - See 
also Bode plot 

Logarithmic sensitivity, A mea
sure of the sensitivity of the 
system performance to specific 
parameter changes, given by 

BT(s)/T(s) 
#(*) = -, where 

dK/K 
T(s) is the system transfer 
function and K is the parame
ter of interest, 437, 491-492 

Log-magnitude-phase diagram, 
589 

Loop on signal-flow graph, 77 
Loss of gain, A reduction in 

the amplitude of the ratio of 
the output signal to the 
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input signal through a 
system, usually measured 
in decibels, 276 

in cost of feedback, 231 
Low-fidelity simulations, 90 
Low-pass filter, 99-102 
Isim function, 192,193,329,331, 

332,825,936,968 
Lunar landing vehicle, 734 

M circles, 597 
Magnetic levitation, 131,742,896 
Magnetic tape transport, 474 
Manual control system, 10 
Mapping of contours in the 

s-plane, 569 
Margin, gain, 588-589,622-623, 

632,665 
phase, 589,593,622-623,632, 

666,920-921 
margin function, 621,754,968 
Marginally stable, A system is 

marginally stable if and only 
if the zero input response 
remains bounded as t —* oo, 
359,406 

Mars rover, 235,403,486,896 
Mason, 76 
Mason loop rule, A rule that 

enables the user to obtain a 
transfer function by tracing 
paths and loops within a 
system, 143 

Mason's signal-flow gain formula, 
77,88,128,156,172 

Mathematical models, Descrip
tions of the behavior of a 
system using mathematics, 
42,143 

Mathematical models of systems, 
41-120 

MathScript, 971-992 
Functions and scripts, 984 

MATLAB, 953 
basics, 953-970 
Bode plot, 534 
control system characteristics, 

246 
functions, 966,968-969 
graphics, 953,961-964 
mathematical functions, 955 

plots, 962 
scripts, 953,964-967 
simulation of systems, 102 
and state variables, 189 
symbols, 967 
and system performance, 329 

Matrices for MathScript, 978-980 
Matrices for MATLAB, 959-960 
Matrix exponential function, An 

important matrix function, 
defined as eXl = I + At + 
{At)2/2\ + --- + (At)k/k\ + ---, 
that plays a role in the solution 
of linear constant coefficient 
differential equations, 150, 
211 

Maximum overshoot, 283 
Maximum value of the frequency 

response, A pair of 
complex poles will result 
in a maximum value for 
the frequency response 
occurring at the resonant 
frequency, 508,519,566 

Maxwell, J. C , 5,8 
Mechatronic systems, 20-24 
Metallurgical industry, 13 
Microcomputer, A small personal 

computer (PC) based on a mi
croprocessor, 902,950 

Micro-electromechanical systems 
(MEMS), 21 

Minicomputer, A stand-alone 
computer with size and perfor
mance between a microcom
puter and a large mainframe. 
The term is not commonly 
used today, and computers in 
this class are now often known 
as mid-range servers, 902,950 

Minimum phase, All the zeros of 
a transfer function lie in the 
left-hand side of the s-plane, 
511,566 

Minorsky,N., 121 
Mobile robot, 298 
Model creation, Simulink, 985 
Model of, D C motor, 62 

epidemic disease, 167-168,372 
hydraulic actuator, 66,69, 

129,812 

inverted pendulum and cart, 
169,766,775,778,818,820 

Motor, DC, 142 
Multiloop reduction, 113 
Multiple loop feedback system, 75 
Multiplicative perturbation, 

A system perturbation model 
expressed in the multiplica
tive form 
Gm(s) = G{s)[l + M(s)], 
where G(s) is the nominal 
plant, M(s) is the perturba
tion that is bounded in mag
nitude, and Gm(s) is the 
family of perturbed plants, 
834,835,899 

Multivariable control system, 
A system with more than one 
input variable and more than 
one output variable, 3,40 

N circles, 597 
Natural frequency, The frequency 

of natural oscillation that oc
curs for two complex poles 
when the damping equals 
zero, 54,143,566 

Necessary condition, A condi
tion or statement that must 
be satisfied to achieve a de
sired effect or result. For ex
ample, for a linear system it is 
necessary that the input 
Ui(t) + u2(t) results in the 
response Vj(f) + y2(t), where 
the input « i (0 results in the 
response y^t) and the input 
«2(0 results in the response 
v2(/), 47.143 

Negative feedback, The output 
signal is fed back so that it 
subtracts from the input 
signal, 3,40 

ngrid function, 621,624,969 
Nichols chart, A chart display

ing the curves for the 
relationship between the 
open-loop and closed-loop 
frequency response, 
597-601,621,624-626,632, 
665,870 
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nichols function, 621,624,969 
Nodes of signal flow graph, 77 
Noise, 214-216,220-225,231, 

239,241,256-259,269-275 
Nomenclature, 45 
Nonminimum phase, Transfer 

functions with zeros in the 
right-hand .v-plane, 510-511, 
513-514,566 

Nonunity feedback systems, 
300-303 

Nuclear reactor controls, 32,200 
Number of separate loci, Equal to 

the number of poles of the 
transfer function assuming that 
the number of poles is greater 
than the number of zeros of 
the transfer function, 415 

Numerical experiments, 90 
Nyquist, H., 568 
Nyquist contour, 575 
Nyquist criterion, A feedback 

control system is stable if, and 
only if, for the contour in the 
Gc(s)G(s) plane the number 
of counterclockwise encir
clements of the ( - 1 , 0 ) point 
is equal to the number of 
poles of Gc(s)G(s) with posi
tive real parts, 567,568, 
575-586,601,632,665-666 

nyquist function, 621,969 
Nyquist stability criterion, A 

feedback system is stable if, 
and only if, the contour in the 
Gc(s)G(s) plane does not en
circle the ( - 1 , 0 ) point when 
the number of poles of 
Gc(s)G(s) in the right-hand 
s-plane is zero., 567,568, 
575-586,601,632,665-666 

Observability, 757-763 
Observability matrix, A linear 

system is (completely) observ
able if and only if the observ
ability matrix P„ = [ C 7 ( C A ) r 

(CA2)r . . . (CA")7 ']7 'hasfull 
rank, where A is an nxn 
matrix; for single-input, 

single-output linear systems, 
the system is observable if and 
only if the determinant of the 
nxn observability matrix P„ is 
nonzero, 761,827 

Observable system, A system 
with an output that possesses 
a component due to each 
state variable, 760 

Observer, A dynamic system 
used to estimate the state of 
another dynamic system 
given knowledge of the sys
tem inputs and measurements 
of the system outputs, 827 

Observer design, 769-772 
Octave of frequencies, 503,520 
Open-loop control system, A 

system that utilizes a device 
to control the process with
out using feedback, 2 -3 , 
40,218 

Operational amplifier. 729,878 
Operators, differential and 

integral, 50 
Optimal coefficients of T(s) for 

1TAE, 308,312 
Optimal control system, A sys

tem whose parameters are 
adjusted so that the perfor
mance index reaches an 
extremum value, 781 -791, 
827 

Optimization, The adjustment of 
the parameters to achieve the 
most favorable or advanta
geous design, 17,40 

Optimize parameters, 17 
Output equation, The algebraic 

equation that relates the state 
vector, x, and the inputs, u, to 
the outputs, y, through the rela
tionship y = Cx + Du, 149, 
211 

Overdamped, The case where the 
damping ratio is t, > 1, 
103,143 

Overshoot, The amount the 
system output response 
proceeds beyond the desired 
response, 249 

Pade approximation of a time 
delay, 604-606,621 

pade function, 621,626,898,969 
Parabolic input signal, 279 
parallel function, 110,113,969 
Parameter design, A method of 

selecting one or two parame
ters using the root locus 
method, 432,492 

Parameter variations and system 
sensitivity, 217 

Parkinson, D. B., 7 
Path on signal-flow graph, 77 
Peak time, The time for a system 

to respond to a step input 
and rise to a peak response, 
283,353 

Pendulum oscillator, 49 
Percent overshoot, 283,353 

for a second-order system, 286 
Performance index, A quantitative 

measure of the performance of 
a system, 303-312,353 

Performance of a control 
system, 277 

Performance specifications in the 
frequency domain, 519,682 

Phase-lag compensation, A 
widely-used compensator 
that possesses one zero and 
one pole with the pole closer 
to the origin of the s-plane. 
This compensator reduces 
the steady- state tracking er
rors, 674 

Phase-lag network, A network 
that provides a negative 
phase angle and a significant 
attenuation over the 
frequency range of 
interest, 674-675,755 

Phasc-Icad compensation, 
A widely-used compensator 
that possesses one zero and 
one pole with the zero closer 
to the origin of the s-plane. 
This compensator increases 
the system bandwidth and 
improves the dynamic 
response, 670-673,729 
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Phase-lead network, A network 
that provides a positive 
phase angle over the 
frequency range of 
interest, 671 

Phase lock loop (detector), 397 
Phase margin, The phase angle 

through which the GrG{jco) 
locus must be rotated so that 
the unity magnitude point 
passes through the ( — 1,0) 
point in the GcG(jco) plane, 
589,593,622-623,632,666 

Phase variahle canonical form, 
A canonical form described 
by n feedback loops 
involving the an coefficients 
of the rc-th order denomina
tor polynomial of the 
transfer function and tn 
feedforward loops involving 
the b„, coefficients of the 
m-th order numerator 
polynomial of the transfer 
function, 158,211 

Phase variables. The state 
variables associated with the 
phase variable canonical 
form, 158 

Physical state variables, 
147-148 

Physical variables, The state 
variables representing the 
physical variables of the 
system. 165-166,211 

PID controller, A widely used 
controller used in industry of 
the form Gc{s) = Kp + 

1- KnS, where Kn is the 
s v 

proportional gain, Kt is the 
integral gain, and Kn is 
the derivative gain, 
444-447,492,899,950 

in frequency domain, 620-621 
Plant, 12, See Process 
Plotting using MATLAB, 116, 

962,969 
Polar plot, A plot of the real 

versus the imaginary part of 
GcG(jco), 497,566 

Pole placement, A design 
methodology wherein the 
objective is to place the 
eigenvalues of the closed-
loop system in desired 
regions of the complex 
plane, 758,827 

Poles, The roots of the denomi
nator polynomial (i.e., the 
roots of the characteristic 
equation) of the transfer 
function, 52-53,143 

Pole-zero map, 106-108 
Political feedback model, 15 
poly function, 104,388,824,969 
poly val function, 105,969 
Polzunov, I., 5 
Pontryagin, L. S., 7-8 
Position error constant, Kp 

The constant evaluated as 

lim GcG(s). The steady-state 
s—»0 

error for a step input (of 
magnitude A) is equal to 
A/(l + Kp), 296,353 

Positive feedback. The output 
signal is fed back so that it 
adds to the input signal, 
40,75 

Potentiometer, 70 
Power plants, 12 
Precision, The degree of 

exactness or discrimiation 
with which a quantity is 
stated, 906,950 

Prefilter, A transfer function 
Gp(s) that filters the input sig
nal R(s) prior to the calcula
tion of the error signal, 
702-705,755,899 

Principle of superposition. The 
law that states that if two in
puts are scaled and summed 
and routed through a linear, 
time-invariant system, then 
the output will be identical to 
the sum of outputs due to the 
individual scaled inputs when 
routed through the same 
system, 47,143 

Principle of the argument, 572. 
See also Cauchy's theorem 

Printer belt drive, 183-189 

Process, The device, plant, or 
system under control, 40 

Process controller. See PID 
controller 

Productivity, The ratio of physi
cal output to physical input of 
an industrial process, 6,40 

Proportional plus deriviative (PD) 
controller, A two-term con
troller of the form 
Gr(s) = Kp + KDs, where Kp 

is the proportional gain and 
KD is the derivative gain, 
445,492,755 

Proportional plus integral (PI) 
controller, A two-term 
controller of the form 

Gc{s) = Kp + — , where Kp 

is the proportional gain and 
K/ is the integral gain, 445, 
492,689,755 

Pseudo-quantitative feedback 
system, 870-871 

pzmap function, 106-107,141, 
969 

Rack and pinion, 67,71 
Ramp input, optimum coefficients 

of 7 » , 312 
steady-state error, 297 
test signal equation, 279 

Reference input, The input to a 
control system often repre
senting the desired output. 
denoted by R(s), 110,143, 
779-781 

Regulator problem, 764 
Regulatory bodies, 14 
Relative stability, The property 

that is measured by the rela
tive real part of each root or 
pair of roots of the character
istic equation, 356,368,406 

by the Nyquist criterion, 
586-593 

by the Routh-Hurwitz criterion, 
368 

Remote manipulators, 205,738 
Remotely operated vehicle, 

607-610,607-629 
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Residues, The constants A:, asso
ciated with the partial frac
tion expansion of the output 
Y(s), when the output is 
written in a residue-pole 
format, 53,55,56,143 

Resonant frequency, The fre
quency, o)r, at which the maxi
mum value of the frequency 
response of a complex pair of 
poles is attained, 507-508, 
566 

Rise time, The time for a system 
to respond to a step input and 
attain a response equal to the 
magnitude of the input, 283, 
353 

Risk, Uncertainties embodied in 
the unintended consequences 
of the design, 16 

Robot, A programmable 
computer integrated with a 
reprogrammable, multifunc
tional manipulator used for a 
variety of tasks, 10-11,40 

design of laboratory, 98 
mobile, steering control, 331 

Robot control system, 448-452 
Robust control, A system that 

exhibits the desired 
performance in the 
presence of significant 
plant uncertainty, 
8,828-900 

using control design software, 
871-875 

Robust PID control, 844-850 
Robust stability criterion, A 

test for robustness with 
respect to multiplicative 
perturbations in which 
stability is guaranteed if 

1 
\M(jco)\ < 1 + for 

G{fa) 
all co, where M(s) is the mul
tiplicative perturbation, 
834-835,899 

Root contours, The family of loci 
that depict the effect of vary
ing two parameters on the 
roots of the characteristic 
equation, 436,492 

Root locus, The locus or path of 
the roots traced out on the 
5-plane as a parameter is 
changed, 408-412,492,632, 
921-925 

angle of departure, 422 
asymptote, 415 
breakaway point, 418 
concept, 408-412 
of digital control systems, 921 
and sensitivity, 437-444 
steps in sketching, 424 
using control design software, 

458-463 
in the z-plane, 922-923 

Root locus procedure, The 
method for determining 
the locus of roots of the 
characteristic equation 
1 + KP(s) = 0 as K varies 
from 0 to infinity, 4 1 3 ^ 3 1 

parameter design, 431-436, 
492 

Root locus segments on the real 
axis, The root locus lying in 
a section of the real axis to the 
left of an odd number of poles 
and zeros, 414,416,492 

Root sensitivity, The sensitivity 
of the roots as a parameter 
changes from its normal 
value; or the incremental 
change in the root divided by 
the proportional change of 
the parameter, 437,492, 
830,900 

roots function, 107,383,387-388, 

969 
Rotor winder system, 707-711 
Routh-Hurwitz criterion, A cri

terion for determining the 
stability of a system by exam
ining the characteristic equa
tion of the transfer function, 
360-368,373,382-384,406 

Routh-Hurwitz stability, 355 

Sampled data, Data obtained for 
the system variables only at 
discrete intervals; data 
obtained once every sampling 
period, 904,950 

Sampled data system, A system 
where part of the system acts 
on sampled data (sampled 
variables), 904-907,950 

Sampling period, The period 
when all the numbers leave or 
enter the computer; the period 
for which the sampled variable 
is held constant, 904,950 

Saving and loading data files, 988 
Script Editor window, MathScript, 

972 
Scripts, 953,964 

comments, 965 
defined, 964 
header, 965 
invoking, 964 
TeX characters, use of, 965, 

967 
Second order system response, 

effects of third pole and zero, 
287-293 

Second-order system, perfor
mance of, 281-287 

Self-balancing scale, 427 
Semiconductors, 12 
Sensitivity. See also System 

sensitivity 
of control systems to parameter 

variations, 217-220 
of roots of control systems, 437 

Sensitivity function, Tine func
tion S{s) = 
[1 + Gc{s)G(s)]~l that satis
fies the relationship 
S{s) + C{s) = 1, where C(s) 
is the complementary sensi
tivity function, 216,221,224, 
243,256,834,900 

Separation principle. The full-
state feedback law and the ob
server can be designed 
independently and when 
connected will function as 
an integrated control system 
in the desired manner (i.e., 
stable), 763,774,827, 

Sequential design example, 
28-30,117-119,192-196, 
251-255,333-337,390-393, 
463-465,629-632,726-728, 
810-812,876-878,940-941 
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Series connection, 109 
series function, 109,112,113, 

969 
Settling time. The time required 

for the system output to 
settle within a certain 
percentage of the input 
amplitude, 284 

Ship stabilization, 261,736 
Signal-flow graph, A diagram 

that consists of nodes con
nected by several directed 
branches and that is a graphi
cal representation of a set of 
linear relations, 76-82 

and block diagram models, 

154-165 
models, 76 

Simplification of linear systems, 
312 

Simulation, A model of a system 
used to investigate the 
behavior of a system by 
utilizing actual input 
signals, 90,102-116,143 

Social feedback model, 15 
Space shuttle, 554-555,647-649, 

942-943 
Space station, 176-182 
Space telescope, 853-856 
Spacecraft, 122,141,176- 182 
Specifications, Statements that 

explicitly state what the de
vice or product is to be and is 
to do; a set of prescribed per
formance criteria, 16,40 

Speed control system, 221-223, 
226-228,246-248,263,266, 
270,271 

for automobiles, 263 
lor power generator, 

473-474 
for steel rolling mill, 221 

s-plane, The complex plane 
where, given the complex num
ber s = ex +- /a), the x-axis (or 
horizontal axis) is the .s-axis, 
and the _y-axis (or vertical axis) 
is the y'w-axis, 143 

Spring-mass-damper system, 
103-106 

Stability, A performance 
measure of a system; a 
system is stable if all the 
poles of the transfer function 
have negative real parts, 
356,406 

in the frequency-domain, 
567-666 

of linear feedback systems. 
355^106 

of state variable systems, 
370-373 

for unstable process, 388 
using the Nyquist criterion, 

575 
using the Routh-Hurwitz 

criterion, 360-368,373, 
382-384 

Stabilizable, A system in which 
the states that are not control
lable are naturally stable, 
758,827 

Stabilizing controller, A con
troller that stabilizes the 
closed-loop system, 775, 
827 

Stable system, A dynamic sys
tem with a bounded system 
response to a bounded 
input, 356,406 

State differential equation, The 
differential equation for the 
state vector: x = Ax + Bu, 
149-154,211 

State of a system, A set of num
bers such that the knowledge 
of these numbers and the 
input function will, with the 
equations describing the dy
namics, provide the future 
state of the system, 
145-148,211 

State transition matrix, <J> (f) > 
The matrix exponential func
tion that describes the un
forced response of the 
system, 151,211 

State variable models, 143 
State variable system design using 

control design software, 
804-810 

State variables. The set of 
variables that describe the 
system, 144 211 

of a dynamic system, 145-148 
State vector, The vector matrix 

containing all n state vari
ables, x\, * 2 , - . . , xH, 149,211 

State-space representation, A 
time-domain model com
prised of the state differential 
equation, x = Ax + Bu, and 
the output equation, 
y = Cx + Du, 150, 
190-192,211 

State-variable feedback. When 
the control signal for the 
process is a direct function of 
all the state variables, 206, 
211,827 

Steady state. The value that the 
output achieves after all 
the transient constituents 
of the response have faded. 
Also referred to as the final 
value, 54,143 

of response of y(t), 54 
Steady-state error, The error 

when the time period is large 
and the transient response 
has decayed, leaving the con
tinuous response, 228-231 

of feedback control system, 
295 

Steady-state response, The 
constituent of the system 
response that exists a long 
time following any signal 
initiation, 278,353 

Steel rolling mill, 13,221,602-604, 
659,662,883,885 

Steering control system, of auto
mobile, 9,561 

of mobile robot, 298 
of ship, 651 

Step input, 295-297 
optimum coefficients of T(s), 

308 
steady-state error, 295 
test signal equation, 278 

Submarine control system, 200, 
202-203 
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Superposition, principle of, 47 
Symbols, in MATLAB, 967 

used in book, 45 
Syntax, 977 
Synthesis, The process by which 

new physical configurations 
are created. The combining of 
separate elements or devices to 
form a coherent whole, 17,40 

sys function, 106,109-110 
System, An interconnection of 

elements and devices for a 
desired purpose, 2 

System sensitivity, See also 
Sensitivity 

The proportional change of the 
transfer function of a system 
to a proportional change 
in the system parameter, 900 

Systems with uncertain 
parameters, 836 

Tables, of differential equations 
for elements, 44 

of Laplace transform pairs, 51 
through- and across-variables 

for physical systems, 43 
of transfer function plots, 

633-640 
of transfer functions, 68-71 

Tachometer, 70 
Tacoma Narrows Bridge, 357-359 
Taylor series, A power series 

defined by g(x) = 

2' 
m=0 

Kxo) 
ml 

(x - XQ)'". For 

m < oo series is an approxi
mation which is used to 
linearize functions and 
system models, 48-49,143 

Test input signal, An input sig
nal used as a standard test of 
a system's ability to respond 
adequately, 278-281,353 

Thermal heating system, 71 
Three-term controller. See PID 

controller 
Through-variable, 42-43,45 
Time constant, The time interval 

necessary for a system to 

change from one state to 
another by a specified per
centage. For a first order sys
tem, the time constant is the 
time it takes the output to 
manifest a 63.2% change due 
to a step input, 58,143 

Time delay, A pure time, delay, 
T, so that events occurring at 
time t at one point in the sys
tem occur at another point in 
the system at a later time, 
(t + T), 601-606,666 

Time domain, The mathematical 
domain that incorporates the 
time response and the descrip
tion of a system in terms of 
time, 4 145,211 

design, 757 
Time-domain specifications, 329 
Time response, by a discrete-time 

evaluation, 171 
and state transition matrix, 

172-175 
Time-varying control system, A 

system for which one or more 
parameters may vary with 
time, 145 

Tracked vehicle turning control, 
373-375,384-387 

Tradeoff, The need to make a 
judgment about how much 
compromise is made between 
conflicting criteria, 1,16,40 

Transfer function in the frequency 
domain, The ratio of the 
output to the input signal 
where the input is a sinusoid, 
expressed as G(jaj), 500, 
566 

Transfer function(s), The ratio 
of the Laplace transform of 
the output variable to the 
Laplace transform of the 
input variable, 57,143 

of complex system, 82 
of DC motor, 62 
of dynamic elements and 

networks, 68-71 
of hydraulic actuator, 66 
of interacting system, 79 

of linear systems, 57 
in m-file script, 106 
minimum phase and nonmini-

mum phase, 511 
of multiple-loop system, 81 
table of dynamic elements and 

networks, 68-71 
Transient response, The con

stituent of the system re
sponse that disappears with 
time, 225,276,278,354 

relationship to the root loca
tion, 293 

of a second-order system, 282 
Transition matrix, <t>(t). The ma

trix exponential function that 
describes the unforced 
response of the system, 
151,211 

evaluation by signal flow graph 
methods, 173 

Twin-T network, 510 
Type number, The number, N, of 

poles of the transfer function, 
Gc(s)G(s), at the origin. 
Gc(s)G(s) is the forward path 
transfer function, 206,298, 
354 

Uncertain parameters, 836 
Underdamped, The case where 

the damping ratio is £ < 1, 
46,103,143 

Unit impulse, A test input con
sisting of an impulse of infi
nite amplitude and zero 
width, and having an area of 
unity; used to determine the 
impulse response, 354 

Unity feedback, A feedback 
control system wherein the 
gain of the feedback loop is 
one, 110,143 

Unmanned aerial vehicles 
(UAVs), 15 

Unstable system, 357 

Variables for physical systems, 43 
Velocity error constant, Kv, The 

constant evaluated as limit 
for a type one system. The 
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steady state error for a ramp 
input for a type one system is 
equal to A/Kv, 297,354 

Velocity input, 297 
Vertical takeoff aircraft (VTOL), 

394,646,824 
Viscous damper, 45 
Vyshnegradskii, I.A., 5 

Water clock, 4 
Water level control, 4-5,33, 

86-93,136 

Watt. James, 4,8 
Welding control, 367-368 
Wind power, 22-23 
Worktable motion control, 

928-934 

X-Y plotter, 711-713 

Zero-order hold, A mathemati
cal model of a sample and 
data hold operation whose 

1018 
input-output transfer function 
is represented by 

Ge(s) = l~ * , 906-950 

Zeros, The roots of the numera
tor polynomial of the transfer 
function, 52-53,143 

Z-plane root locus, 922-923 
Z-transform, 907-912,950 



Design Process 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

(1) Establishment of goals, 
variables to be controlled, 
and specifications. 

JCSluDIISn ine System Luunguiauun 

y 

Obtain a model of the process, the 
actuator, and the sensor 

~r 
Describe a controller and select key 

parameters to be adjusted 

T 

Optimize the parameters and 
analyze the performance 

_ i i 

(2) System definition 
and modeling. 

(3) Control system design, 
simulation, and analysis. 

If the performance does not meet the 
specifications, then iterate the configuration. 

If the performance meets the specifications, 
then finalize the design. 

EXAMPLES 
• Insulin delivery control system (Section 1.8) 
Q Fluid flow modeling (Section 2.8) 
• Space station orientation modeling (Section 3.8) 
Q Blood pressure control during anesthesia (Section 4.8) 
Q Attitude control of an airplane (Section 5.9) 
• Robot-controlled motorcycle (Section 6.5) 
• Automobile velocity control (Section 7.7) 
• Control of one leg of a six-legged robot (Section 8.6) 
a Hot ingot robot control (Section 9.8) 
Q Milling machine control system (Section 10.12) 
• Diesel electric locomotive control (Section 11.9) 
• Digital audio tape controller (Section 12.8) 
• Fly-by-wire aircraft control surface (Section 13.10) 

27 
83 
176 
237 
319 
375 
452 
526 
610 
714 
798 
861 
928 



Selected Tables and Formulas for Design 

A second-order R{s} ^ ^ ~ 
closed-loop — T 
system I— 

UNIT STEP RESPONSE 

Overshoot 

s(s + 2^,,) 
• > Yw) 

^ 

CLOSED-LOOP MAGNITUDE PLOT 

-• Z)\ogMpM 

'/; Time 

Rise time Pea^ t*me Settling time 

J Settling time (to within 2% of the final value) 

0),. C0n 

J Maximum magnitude (f s 0.7) 

J Percent overshoot 

M„ 1 + e -ivP/l-f and pto. = io&r^'Vw2 

J Time-to-peak J Resonant frequency {£ :£ 0.7) 

r = 
1
 P *„Vi - f2 

J Rise time (time to rise from 10% to 

90% of final value) 

^ = 
2,16f + 0.60 

&),. = w„Vl - 2£2 

J Bandwidth (0.3 < f < 0.8) 

a>fi = (-1.19« + 1.85K 

(0.3 < £ < 0.8) 

P1D Controller: < « * ) = = Kr + KDs + 
* i 

s 
U + Zi)(S 

s 
+ 22) 

TABLE PAGE 
5.5 Summary of Steady-State Errors 298 
5.6 The Optimum Coefficients of T(s) Based on the ITAE Criterion for a Step Input 308 
5.7 The Optimum Coefficients of T(s) Based on the ITAE Criterion for a Ramp Input 312 

10.2 Coefficients and Response Measures of a Deadbeat System 706 
10.7 A Summary of the Characterislics of Phase-Lead and Phase-Lag Compensation Networks 729 
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