

تقدم لجنة ElCoM الاكاديمية

ريبورتات لمختبر : الفيزياء العامة العملية

Collection and Analysis of Data

*Data

h(cm)	t(sec)				
	d = 1.5 mm	d = 2.0 mm	d = 3.0 mm	d = 5.0 mm	
30.0	73.0	41.2	18.4	6.8	
10.0	43.5	23.7	10.5	3.9	
4.0	26.7	15.0	6.8	2.2	
1.0	13.5	7.2	3.7	1.5	

Table (1)

Using data in table (1) to fill table (2) below:

d(mm)	t(sec)				
	h = 30.0 cm	h = 10.0 cm	h = 4.0 cm	$\mathbf{h} = \mathbf{cm}$	
5.0	6.8	3.9	2.2	1.5	
3.0	18.4	10.5	6.8	3.7	
2.0	41.2	23.7	15.0	7.2	
1.5	73.0	43.5	26.7	13.5	

Table (2)

For h = 30.0 cm, fill table (3) below:

t (sec)	d (mm)	1/d ² (mm ⁻²)
6.8	5.0	0.04
18.4	3.0	0.11
41.2	2.0	0.25
73.0	1.5	0.44

Table (3)

For $\underline{\mathbf{d}} = \underline{\mathbf{2.0}} \mathbf{mm}$, fill table (4) below:

t (sec)	h (cm)	Log t	Log h
41.2	30.0	1.61	1.47
23.7	10.0	1.37	1.00
15.0	4.0	1.17	0.60
7.2	1.0	0.85	0.00

*Analysis of Data:

Graph your results. **Independent** variables will be the diameter of the hole and depth of water in the container. Time is the **dependent** variable and will depend on the previous two independent variables.

- A. Plot the time (t) versus the depth (h) for each diameter (d) used. Do four graphs on one sheet, using the same set of axes, connecting points in a smooth curve for each and labeling them d_1 , d_2 , d_3 and d_4 .
- B. On a second sheet of graph paper, plot the time (t) versus diameter (d) for each value of depth (h). Connect the points in a smooth curve and label the curves h₁, h₂, h₃ and h₄.
- C. Plot t versus $1/d^2$ for h = 30.0 cm.
- **D.** Plot log t versus log h for d = 2 mm.

*Conclusions

 From your graph (t) versus (h) for d = 1.5 mm, extrapolate the curve toward the origin. Does it pass through it? Would you expect it to do so?

Yes, I do, because from the graph we can see that the relation between (H)&(T) is direct relationship which means that if we extended the the curve towards the origin (water height becomes equal to zero) so the output of the time would also be a zero.

- What type of relationship do you see between the time and diameter? Is it direct or inverse?
 Inverse relationship.
- 3. From t versus $1/d^2$ graph, find the empirical relationship between time (t) and hole diameter (d) for h = 30 cm.

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta t}{\Delta(\frac{1}{d^2})} = \frac{73 - 6.2}{0.44 - 0.04} = 165.5 \ (s.mm^2)$$

Empirical Relationship (general equation):

$$y = mx + b$$

y = t (y-axis) m = 165.5 (slope) x = $1/d^2$ (x-axis) b = zero (y-intercept)

$$t(d) = 165.5 \times \left(\frac{1}{d^2}\right)$$

- 4. From the previous relation, can you predict the time needed to empty the container if the diameter of the opening was 4 mm, 8mm?
 Of course, (معادلة الـ Empirical Relation) :
 t(4) = 10.34375 (sec)
 t(8) = 2.5859375 (sec)
- From the log t versus log h graph, find the empirical relationship between time (t) and depth (h) for d = 2 mm.

$$Slope = \frac{\Delta \log(t)}{\Delta \log(h)} = \frac{1.61 - 1.37}{1.47 - 1.00} = 0.51$$

The general equation of Empirical Realtion :

$$y = m x + b$$

y = log(t) [y-axis]

x = log(h) [x-axis]

m = 0.51 (slope)

b = 0.85 (y-intercept)

 $log(t) = log(h) \times 0.51 + 0.85$ simplify: $log(t) = log(h^{0.51}) + 0.85$ $log(t) - log(h^{0.51}) = 0.85$ $log\left(\frac{t}{h^{0.51}}\right) = 0.85$ $10^{log\left(\frac{t}{h^{0.51}}\right)} = 10^{0.85}$ $\frac{t}{h^{0.51}} = 7$ $t = h^{0.51}(7)$ 6. Can you predict the time needed to empty the container if the depth of water was 25 cm, 80 cm?

Yes, Time at h = 25cm is equal to 36.14 sec Time at h = 80cm is equal to 65.41 sec

Mohammed Abadi \heartsuit