			Date:		
Name:			Partne	er's Name:-	
Registration No:		Regist	Registration No:		
		Instructor's Name:			
PHYSICS LAB EXP	ERIME	NT 1: C	OLLECTI	ON AND A	NALYSIS OF
1. PURPOSE:	•				· ·
		.*			•
	# 21	-			<u> </u>
II. DATA:	(·•				

Table (1.1)

h (cm)	t in seconds			
<u> </u>	d = 1.5 mm	d= 2.0mm	d=3.0mm	d=5.0 mm
30.0	73.0	41.2	18.4	6.8
10.0	43.5	23.7	10.5	3.9
4.0	26.7	15.0	6.8	2.2
1.0	13.5	7.2	3.7	1.5

Using data inTable (1.1) fill in Table (1.2) below:

Table (1.2)

d (mm)	t in seconds			
a (min)	h = 30.0 cm	h=10.0cm	h=4.0cm	h=1.0cm
	n = 30.0 cm	11 1010		7
5.0				
3.0	- 1			
2.0				
1.5				

for h = 30 cm, fill in Table 1.3 below:

Table(1.3)

t (s)	d (mm)	1/d² (mm²)
	-	

for d = 2 mm fill in Table 1.4 below:

Table(1.4)

log t	log h

III. ANALYSIS OF DATA:

Graph your results. Independent variables will be the diameter of hole and depth of water in the container. Time is the dependent variable and will depend on the previous two independent variables.

A. Plot the time (t) versus the depth (h) for each diameter (d) used. Do four graphs on one sheet, using the same set of axes, connecting points in a smooth curve for each and labeling them d_1 , d_2 , d_3 and d_4 .

B. On a second sheet of graph paper, plot the time (t) versus diameter (d) for each value of depth (h). Connect the points in a smooth curve and label the curves h_1 , h_2 , h_3 and h_4 .

C. Plot t versus $1/d^2$ for h = 30 cm

D. plot $\log t$ versus $\log h$ for d = 2 mm.

	From your graph (t) versus (h) for d = 1.5 mm, extrapolate the curve toward the origin. Does it pass through it? Would you expect it to do so?
•	What type of relationship do you see between the time and diameter? Is it direct or inverse?
	From t versus $1/d^2$ graph, find the empirical relationship between time (t) and hole diameter (d) for $h = 30$ cm.
_	From the previous relation, can you predict the time needed to empty the container if the diameter of the opening was 4 mm, 8 mm?
	From the $\log t$ versus $\log h$ graph, find the empirical relationship between time (t) and depth (h) for $d=2$ mm.

6. Can you predict the time need was 25 cm, 80 cm?	ded to empty the container if the depth of water
6	
6	

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:
PHYSICS LAB EXPERIMENT 2 : MEASU	PREMENTS AND UNCERTAINTIES
I. PURPOSE :	
<u> </u>	
II. DATA AND DATA ANALYSIS:	
A. Measurement of π Record your data in Table (2.1) below:	

Table (2.1)

Trial No	d (cm)	$ \mathbf{d} - \overline{\mathbf{d}} $ (cm)	c (cm)	c-c (cm)
1			,	jo oj (em)
2 .				
3				, .
4				
5				
Average		cm	<u>c</u> =	- Cm
Ептог	$\Delta \overline{d} = \pm$			cm
Litti	Δu = I	cm	$\Delta \overline{c} = \pm$.cm

2.	Using your average measured values of \overline{d} and \overline{c} , calculate $\overline{\pi}$.
-	
3.	Calculate the error, $\Delta \overline{\pi}$, in the measured value, $\overline{\pi}$.
	Note: $\Delta \overline{\pi} = \overline{\pi} \left[(\Delta \overline{d} / \overline{d})^2 + (\Delta \overline{c} / \overline{c})^2 \right]^{\frac{1}{2}}$ (2.1)
	•
4.	Which error contributes most to $\bar{\pi}$? (give a quantitative answer)
5.	Does the measured average value of $\bar{\pi}$ agree with the accepted value o $\bar{\pi}$ (3.14159) within the calculated experimental error.
	" (3.14139) Within the calculated experimental error.

B. Determination of Density

Record your data in Table (2.2) below:

		Table (2.2)		
Trial No	h (cm)	$ h - \overline{h} (cm)$	d (cm)	$ d-\overline{d} (c\underline{m})$
1				
2				
3				
4				-
5				
Average	<u>h</u> =	cm	<u>d</u> =	cm
Error	$\Delta \overline{h} = \pm$	cm	$\Delta \overline{\underline{d}} = \pm$	cm
mass	m =	g	$\Delta m = \pm$	g

1. Calculate the error,	$\Delta \overline{h}$, in the average measured length and enter the re	sult in
Table (2.2).		

2. Calculate the error, $\Delta \overline{d}$, in the average measured diameter and enter the result in Table (2.2).

3. Take Δm to be half the smallest division of the balance used .

4. Using your average measured values of \overline{h} , \overline{d} , $\overline{\pi}$ determined in part A, and the measured value of mass m, calculate $\overline{\rho}$.

5. Calculate the error, $\Delta \overline{\rho}$, in the average	value for the	measured density,	$\overline{\rho}$
			1	

Note:
$$\Delta \overline{\rho} = \overline{\rho} \left[\left(\frac{\Delta m}{m} \right)^2 + \left(\frac{\Delta \overline{h}}{h} \right)^2 + \left(\frac{2\Delta \overline{d}}{\overline{d}} \right)^2 + \left(\frac{\Delta \overline{\pi}}{\overline{\pi}} \right)^2 \right]^{\frac{1}{2}}$$
 (2.2)

and use for $\overline{\pi}$ and $\Delta \overline{\pi}$, the values determined in part A.

6. Which error in m,
$$\overline{h}$$
, \overline{d} , or $\overline{\pi}$ contributes most to $\overline{\rho}$? (give a quantitative answer)

7. Using your calculations in (6), which error in m, $\overline{h}, \overline{d}$, or $\overline{\pi}$ contributes the least to $\overline{\rho}$?

8. Compare the measured value of $\bar{\rho} \pm \Delta \bar{\rho}$ with the accepted value of ρ .

Registration No:————————————————————————————————————	
Physics Section:————————————————————————————————————	
PHYSICS LAB EXPERIMENT 3: VECTORS (FORCE T I. PURPOSE: II. DATA AND DATA ANALYSIS: II. Record the experimentally measured value of the resultant of in step one of the procedure (magnitude and direction). Procedure (magnitude and direction). II. DATA AND DATA ANALYSIS: II. Determine the resultant of the two forces in step one of the procedure (magnitude and direction). Procedure (magnitude and direction). Procedure (magnitude and direction).	
II. DATA AND DATA ANALYSIS: 1 Record the experimentally measured value of the resultant of in step one of the procedure (magnitude and direction). 2 Determine the resultant of the two forces in step one of the prographically. How does it compare with the measured value? Again determine the resultant of the two forces in step one by	e:
II. DATA AND DATA ANALYSIS: 1- Record the experimentally measured value of the resultant in step one of the procedure (magnitude and direction). 2- Determine the resultant of the two forces in step one of the prographically. How does it compare with the measured value? - Again determine the resultant of the two forces in step one by	ABLE)
II. DATA AND DATA ANALYSIS: 1- Record the experimentally measured value of the resultant of in step one of the procedure (magnitude and direction). 2- Determine the resultant of the two forces in step one of the pregraphically. How does it compare with the measured value? - Again determine the resultant of the two forces in step one by	
II. DATA AND DATA ANALYSIS: 1- Record the experimentally measured value of the resultant of in step one of the procedure (magnitude and direction). 2- Determine the resultant of the two forces in step one of the prographically. How does it compare with the measured value? 3- Again determine the resultant of the two forces in step one by	-
graphically. How does it compare with the measured value? - Again determine the resultant of the two forces in step one by	of the two forc e
- Again determine the resultant of the two forces in step one by of components . How does it compare with the measured value	rocedure
	the method
<i>,</i>	

Determine the	e resultant of tusing the polyg	he three f o	orces in ste	p two of the it with th	ne procedu e measure	re d va
		1				
Again, use the forces in step	e method of co two of the pro	omponents ocedure. Co	to determi	ne the res	ultant for t ental findi	he t ngs
:						
•					. es	
•						
		,				
]+						
State the maj	ior source(s) c	of inaccura	cy in the ex	kperimenta	al results?	

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:
PHYSICS LAB EXPERIMENT 4:	KINEMATICS OF RECTILINEAR MOTION
I. PURPOSE:	

II. MEASUREMENTS:

1. Measure the distances x_1 , x_2 , x_3 etc. and record your measurements taken directly from the ticker timer tape in the second column of Table 4.1, and then complete entering the rest of the required derived quantities in Table 4.1 below:

t _i (s)	x _i (cm)	differences (cm) $\Delta x_i = (x_{i+1} - x_i)$	Average Speed (cm/s) $\overline{v}_i = \Delta x_i / \Delta t$	differences (cm/s) $\Delta v_i = v_{i+1} - v_i$	Acceleration (cm /s ²) $\bar{a}_i = \Delta v_i / \Delta t$
0	(cm)				
		$\Delta x_i = (x_{i+1} - x_i)$	$\overline{\mathbf{v}}_{\mathbf{i}} = \Delta \mathbf{x}_{\mathbf{i}} / \Delta \mathbf{t}$	$\Delta v_i = v_{i+1} - v_i$	$\overline{a}_i = \Delta v_i / \Delta t$
		, 187		and the state of t	
0.05			1		
0.1	· ·		7.		
0.15		٠,			
0.2			3 44		
0.25			,		
0.3					
0.35			,		
0.4	·				
0.45					9.1
0.5	•				•
0,55					
0.6					San I as
0.65					
0.7			and the second		
***		anna ann an a	yklonoloisi lilyyn ymwyn saintau.		
0.8		Committee of the contract of t			
-		m. 111.144.141.141.141.141.141.141.141.14	746 28 CM 20 A 28 CM		
0.9					
0.95		,			
1.0	ne w				

2. Complete entering the rest of the required derived quantities in Table 4.2 below:

Table (4.2)

Total Time t _i (s)	Distance on Tape x; (cm)	Average Speed ⊽ (cm/s)
$t_2 = 0.2$	$x_2 =$	$\overline{v}_{2-10} =$
$t_3 = 0.3$	x ₃ =	·
$t_4 = 0.4$	x ₄ =	⊽ ₃₋₉ =
$t_5 = 0.5$	x ₅ =	
$t_6 = 0.6 = t_m$	x ₆ =	<u>v</u> ₄₋₈ =
$t_7 = 0.7$	x ₇ =	
$t_8 = 0.8$	x ₈ =	v ₅₋₇ =
$t_9 = 0.9$	x ₉ =	
$t_{10} = 1.0$	x ₁₀ =	

III. DATA AND DATA ANALYSIS:

highest?	Where it	was lowe	st? Can	you find	where the	e your spec accelerati	on
(a) great	est (b) sm	allest?					
.							
.				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

•	
	2. Plot a histogram of average speed $\bar{\mathbf{v}}$ against time t. Fig.4.2 shows a histogram of the data in the sample table.
	Can you see regions where v is increansing? Decreasing? Constant?
	3. Calculate the average speed during some long and shorter time interva
	3. Calculate the average speed during some long and shorter time interval with the same midpoint $t_m = t_6 = 0.6$ s. Record your results in Table (4 Do your computed value of \overline{v} appear to be approaching a limiting value of you tell what is the instantaneous speed at the midpoint $t_6 = 0.6$ s?
	with the same midpoint $t_m = t_6 = 0.6$ s. Record your results in Table (4 Do your computed value of \overline{v} appear to be approaching a limiting value.
· 7	with the same midpoint $t_m = t_6 = 0.6$ s. Record your results in Table (4 Do your computed value of \overline{v} appear to be approaching a limiting value.
	with the same midpoint $t_m = t_6 = 0.6$ s. Record your results in Table (4 Do your computed value of \overline{v} appear to be approaching a limiting value.

	From your (v,t) graph lead of the instantaneous p. How does it agree with the value obtained in part B-3.?
	Calculate the instantaneous speed at t_m by measuring the slope of the (x graph. Does the value obtained for the instantaneous speed at $t = t_m = 0.6$ agree with your previous two values obtained in B-3 and B-5?
7.	Measure the area under your (v, t) graph between two times t_i and t_f of your choice, what does this area represent?
	y
8.	Now measure directly on the paper strip the distance actually moved d the time interval from t_i to t_f . Compare with the answer you got in B-7.
9	. Using your computed data of the average acceleration a in Table (4.1) smooth graph of instantaneous acceleration (a) against the time t. How was your early guess as to the times of the greatest and the smallest accelerations?
٠,	

.

D. Further Exploration - Acceleration Due To Gravity

- 1. Calculate the acceleration due to gravity g and estimate the error in your result.
- 2. How does your result compare with the accepted value of $g = 9.8 \text{ m/sec}^2$?

e	Calculate the specific heat capacity (C_2) of the metal using the following equation: Heat gained (by calorimeter + water) = Heat lost (by metal)
-	
· <u>-</u>	
-	
4. Ca	alculate ΔC_2 and express your final result as : $C_2 \pm \Delta C_2$.
4. Ca	alculate Δ C_2 and express your final result as : $C_2 \pm \Delta$ C_2 .
4. Ca	alculate Δ C_2 and express your final result as : $C_2 \pm \Delta$ C_2 .
4. C:	alculate Δ C_2 and express your final result as : $C_2 \pm \Delta$ C_2 .
4. Ca	alculate Δ C_2 and express your final result as : $C_2 \pm \Delta$ C_2 .
- - - -	alculate Δ C_2 and express your final result as : $C_2 \pm \Delta$ C_2 .

					•
•			. •.		
•	;				
	, <u>"</u>		·.		*E'3
	• .	•	F.	*i	
	•	- 2.44 <u>0</u> (1.64)			
•		o Therefore May			
		:			

Partner's Name: Registration No: Instructor's Name:
Name:
Instructor's Ivames
ORCE AND MOTION
•

II. DATA AND DATA ANALYSIS

A. Acceleration and Added Mass with Constant Driving Force

1-Enter your computed values of v versus t in Table (5.1) below:

1-Enter your compa						4	-/	
			ole (5.1		;		3-×2	
Added mass ma	Time t		0.15		0.35	0.45	0.55	0.65
m = 0	(s) v(cm/s)	q	18.2	27.4	36.5	46.2	54.7	63:3
m = 100	v(cm/s)	4.8		14.2		23.8		32:3
m = 200	v(cm/s)	1	1					
m = 300	v(cm/s)				-			
m = 400	v(cm/s)							
							-	

,			
Calcul	ate the slope of each	graph and determine calculated values in T	e the acceleration (a able (5.2) below:
		Table (5.2)	
	Added mass m _a	Acceleration a (cm/s ²)	1/a (s²/cm)
	(g) 0		,
	100		
	200		
	300		
	400		
	t a graph of added madel in clusion can you make bends on its total mas	ass to cart m _a versus about the way the acces?	I/a. From the graph eleration of the cart

- B. Acceleration and Driving Force with Constant Mass of Accelerating System
- 1. As in the analysis of part A compute the velocity v for each recorded tape, and enter your data in Table (5.3) below:

Table (5.3)

								-
	T m:	0.05	0.15	0.25	0.35	0.45	0.55	0.65
Total hanging mass m _h (g)	Time t (s)	0.03	0.15	0.23				
20	v(cm/s)				ж			
40	v(cm/s)							
60	v(cm/s)							
80	v(cm/s)							
100	v(cm/s)			7				

. Use your table to plo each value of the to graphs?	ot, on the same sheet of otal hanging mass. Wh	f paper, graphs of at do you cond	of v against t, followed from you
		Ţ.	

- 3. Determine the acceleration (a) of the system in each case by calculating the slopes.
- 4. Enter your data for hanging weight (m_h g) [where (g), the acceleration due to gravity is 980 cm/sec²] and corresponding acceleration in Table 5.4 below:

Table 5.4

Table	
Hanging weight m _h g (dyne)	Acceleration a (cm/s ²)
N. Control of the con	
The second secon	

5. Plot a graph of the hanging weight (mhg) against the corresponding acceleration (a).

Calculate the slope of your graph.	

7. What does the slope of your graph represent? Does it pass through the origin? why? or why not? Explain.

* LAB REPORT FOR EXPERIMENT 6 *

	£ 1 30	Date:
Na	me;	Partner's Name:
Reg	gistration No:	Registration No:
Phy	sics Section:	Instructor's Name:
PH	YSICS LAB EXPERIMENT 6 : CO	LLISION IN TWO DIMENSIONS
I. P	URPOSE:	1.4.
	(1)	
	;	
II. A	NALYSIS OF DATA AND CONCL	USIONS:
1.	used to represent the momenta of the sheet represents the momen collision, measure the length P_0P_{01} apper. The vectors P_0P_1 and T_0T_1 represents	the equal, the velocity vectors can be the spheres. Thus, the vector P_0P_{01} on tum of the projectile sphere before and record it on your working sheet of ent respectively the momenta of the ere after collision, measure P_0P_1 and
2.	Graphically add the two moment	um vectors P_0P_1 and T_0T_1 on your omentum vector of the target sphere at
3.	How does the vector sum of the two spheres compare with the initerror in your result.	final momenta P_0P_1 and T_0T_1 of the tial momentum P_0P_{01} ? Estimate the
	<u> </u>	

	Date.
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:
PHYSICS LAB EXPERIMENT 9: 7	THE LAWS OF GASES
I. PURPOSE :	

II. DATA AND DATA ANALYSIS:

A. Boyle's Law

1. Enter the data in Table (9.1) below:

Table (9.1)

	eadings m)	L = B-X (mm)	h = Y-X (mm)	1/L (mm ⁻¹)
X	Y			
	ø			
		4		
				,
B=		mm		
Average	Room Ter	np. =	°C	

. Calcula	te the pressur	e of the entrapped gas	P in each case, using the relation PL and enter their values in
$P = (P_i)$	9.2) below:		
Ì		Table (9.2)	PL (mmHg. mm)
292 k	L (mm)	$P = P_a + h \pmod{Hg}$	PL (IIIIII Ig . IIIII)
, , .			
		•	·
	· ·	·	
.			
1			
	9	•	
Plot a sec What do y	cond graph b you conclude	etween L as independe from such a curve?	ent variable and $P = (P_a + h)$.
lot a thir ou conclu	d graph bety	ween L as independents graph?	t variable against PL . What

- 1. Enter your data in Table (9.3) below.
- 2. Calculate the volume of the gas $(V_1 = V_{w2} V_{w1})$, and $V_2 = V_{w2}$ at temperatures $(T_1 \text{ and } T_2)$ and enter their values in the same table.

Table (9.3)

$V_{wl} =$	· cm³
V _{w2} =	cm ³
V ₁ =	cm ³
V ₂ =	cm ³

3. Now set up the temperature-volume gas scale by plotting T as independent variable against V. Join the two data points by a straight line and extrapolate to zero volume. Find the temperature when V=0.

4. Run an experiment where you can use your gas thermometer to measure the temperature of tap water.

Name:		To the Company
Registration 1	No:	Registration No:
Physics Section	on:	nstructor's Name:
PHYSICS LA	B EXPERIMENT 10: T	HE FALLING SPHERE VISCOMETE
I. PURPOSE	:	
· ·		·
	•	
	ND DATA ANALYSIS hàt a small sphere falls	•
A. To show t	hat a small sphere falls	s with constant terminal velocity and h in Table 10.1 below:
A. To show t	hat a small sphere falls	s with constant terminal velocity
A. To show t	hat a small sphere falls	s with constant terminal velocity and h in Table 10.1 below:
A. To show t	hat a small sphere falls ir measured values of ta Tabl	s with constant terminal velocity and h in Table 10.1 below:
A. To show t	hat a small sphere falls ir measured values of ta Tabl	s with constant terminal velocity and h in Table 10.1 below:
A. To show t	hat a small sphere falls ir measured values of ta Tabl	s with constant terminal velocity and h in Table 10.1 below:
A. To show to 1. Enter you 2. Using your dependent your	hat a small sphere falls or measured values of t a Table h (cm) data in Table (10.1), playariable) against the values	and h in Table 10.1 below: e (10.1) Time of fall (s) tot a graph with values of h in cm (as

B. Determination of the Viscosity Coefficient

Table (10.2)

	• • • •		
Diameter d (mm)	Time of fall t	$V_{T} = h / t$ (cm/s)	. V _c (cm/s)
	-'		
			·.
			•
]≒ ∴	°C		
h=	cm		

1. From the results of Table (10.2) construct a new table showing values of V_c in (cm/s) for the corresponding values of d in (cm) and record them in Table (10.3) below:

Table (10.3)

d (cm)	d^2 (cm ²)	V_c (cm/s)

2. Plot a graph with values of d^2 versus corresponding values of \boldsymbol{V}_c .

3.	Calculate the value of the slop	e.
4.	What is the relation of the slo	pe to η?
5.	of viscosity at the temperature	lues of ρ , ρ_0 and g to calculate η the coefficient.
6.	Using uncertainties in the m	easured quantities, calculate the error Δη
	*	·
	,	

egistration No:structor's Name:
structor's Name:
T CAPACITY OF METALS

II. DATA AND DATA ANALYSIS:

1. Enter the data in Table (11.1) below:

Table (11.1)

Specific heat capacity of calorimeter C ₁	= 0.22	cal/g°C
Specific heat capacity of water C _w	= 1	cal/g°C
Mass of calorimeter M ₁	=	g
Mass of calorimeter + water	=	g
Mass of water M _w	=	g ·
Temp. of calorimeter. +water T ₁	=	· °C ·
Temp. of metal T ₂	=	· °C
Final Equilibrium Temp. T _f	= ,	°C ,
Mass of metal M ₂	=	g

	5.	In an elastic collision, the total kinetic energy (½mv²) is the same before and after the collision. Calculate the kinetic energy before and after the collision and compare the two values.
:		
÷		<u>. </u>
:		
	6.	Is the collision elastic?
	7.	For an elastic collision between two equal masses where the target mass is initially at rest, the angle between the final momenta vectors P_0P_1 and
		T_0T_1 is 90°. Measure the angle and compare its value with 90°.

. •

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:
PHYSICS LAB EXPERIMENT 7:	ROTATIONAL MOTION
I. PURPOSE :	

II. DATA AND DATA ANALYSIS:

- A. Acceleration and Moment of Inertia with Constant Applied Torque.
 1. Enter your computed data of v versus t in Table 7.1 shown below:

Table 7.1

	Added mass to the turntable					
	- 7.	M = 0 g $M = 100$ g $M = 200$ g			200	
	M =	U g	M =	100 g	M = 1	200 g
Time (s)	V	$\omega = v/R$	v	$\omega = v/R$	V	$\omega = v/R$
	cm/s	rad/s	cm/s	rad/s	cm/s	rad/s
0.05						,
0.15			,			al al
0.25						
0.35				· .		
0.45						
0.55						
0.65						
Radius of	the turntab	le (R) =		(m	

For each value of the added mass, plot a graph of $\,\omega$ versus $\,t.\,$ Plot them 2. all on the same sheet of graph paper. Label each graph with the corresponding value of the added mass for identification. What conclusions can you draw from your graphs about the angular acceleration of the empty and loaded turntable under a constant applied torque? From your graphs determine the angular acceleration (α) of the turntable in each case, and enter your data in Table 7.2 below: Table 7.2 Added mass M Angular Acceleration \(\alpha \) Moment of Ineria I (g) (rad/s^2) (g.cm²)0 100 200 5. Calculate the moment of inertia (I) of the turntable with and without the added masses using the following equation: $I = mR \left(\frac{g}{\alpha} - R\right)$ where m is the mass of the falling weight and R is the radius of the turning. wheel 6. From your table, how does the moment of inertia of the turntable (I) changes with the added mass?

B. Acceleration and Torque with Constant Moment of Inertia:

1. Compute the translational and angular velocities v and ω, for each recorded tape, and enter your data in Table 7.3 below:

Table 7.3

	Total Hanging Mass					
	m =	50 g	m =	100 g	m =	150 g
Time (s)	v cm/s	$\omega = v/R$ rad/s	v cm/s	$\omega = v/R$ rad/s	v cm/s	$\omega = v/R$ rad/s
0.05						
0.15						
0.25						
0.35			-			
0.45			, e			
0.55						
0.65						

2. Use Table 7.3 to plot, on the same sheet of paper, the graphs of ω versus t.

3. What do you conclude from your graphs?

4. Determine the angular acceleration (α) in each case.

5. Enter your results in Table 7.4 below:

Table (7.4)

Total Hanging Mass m (g)	Angular Acceleration α (rad/s ²)	Torque (τ) = Rm(g-αR) (dyne.cm)
50		
100		
150	8	

•	<i>ą</i> •	 •
		•
,		
 · .	*	

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:
	ENT 8: SIMPLE HARMONIC MOTION: THE SIMPLE PENDULUM
I. PURPOSE :	
II. DATA AND DATA ANAL	YSIS:
1. Compute the average of the precord them in Table 8.1.	period for each length of the pendulum and
2. Fill in the average periods \overline{T} a	and the lengths L in table 8.2.

Table 8.1

L1= cm	L _{2=cm}	L₃= cm	$L_{4=}$ cm	$L_{5} = cm$	$L_{6} = cm$
	. (00 ()	4/20 (-)	(20.4)	. (00 (-)	+ (20 (a)
t /20 (s)	t /20 (s)	t /20 (s)	t /20 (s)	t /20 (s)	t /20 (s)
				-	-
				·	
			-		
1			-		
			• ,		
$\overline{T}_1 = s$	$\overline{T}_2 = s$	$\overline{T}_3 = s$	$\overline{T}_4 = s$	$\overline{T}_5 = S$	$\bar{T}_6 = s$
	t /20 (s)	t/20 (s) t/20 (s)	t/20 (s) t/20 (s) t/20 (s)	t/20 (s) t/20 (s) t/20 (s) t/20 (s)	

Table 8.2

L (cm)	T̄ (s)	$\overline{T}^2(s^2)$
	,	
. •		
5		

3.	Compute the square of the average period for each length and record it in Table 8.2. Use your data in Table 8.1 to plot T versus L. What conclusion can you-
4.	obtain from your graph?
_	
_	And the second s
5.	Now plot \overline{T}^2 versus L using Table 8.2. What kind of relationship do yo
	obtain?
	1 1 und in A chave
6.	Compute the slope of your graph plotted in 4 above.
_	
7.	Using the value of the slope you obtained calculate g, the acceleration of
7.	Using the value of the slope you obtained calculate g, the acceleration of gravity.
7.	Using the value of the slope you obtained calculate g, the acceleration of gravity.
7.	Using the value of the slope you obtained calculate g, the acceleration of gravity.
7.	Using the value of the slope you obtained calculate g, the acceleration of gravity.
7.	Using the value of the slope you obtained calculate g, the acceleration of gravity.
	gravity.
	Using the value of the slope you obtained calculate g, the acceleration of gravity. Estimate the error in g.
	gravity.
	gravity.
	gravity.
	gravity.