
[Computer Engineering Department,

Hashemite University,]

By Dr. Awni Itradat

Chapter 1: Introduction to
Microprocessors & Microcomputers

 A microprocessor is a central processing unit (CPU) on a
single chip and is entirely useless on its own.

 A microcomputer is a stand-alone system* based on

 Microprocessor

 Memory components

 Interface components

 Timing and control circuits

 Power supply

 An enclosure (e.g. a cabinet or package)

*Stand-alone system : A system that is able to operate independently

3

 A silicon chip that contains a CPU. In the
world of personal computers, the terms
microprocessor and CPU are used
interchangeably. At the heart of all personal
computers and most workstations sits a
microprocessor. Microprocessors also control
the logic of almost all digital devices, from
clock radios to fuel-injection systems for
automobiles.

4

http://www.pcwebopedia.com/TERM/M/silicon.html
http://www.pcwebopedia.com/TERM/M/chip.html
http://www.pcwebopedia.com/TERM/M/CPU.html
http://www.pcwebopedia.com/TERM/M/personal_computer.html
http://www.pcwebopedia.com/TERM/M/workstation.html
http://www.pcwebopedia.com/TERM/M/digital.html
http://www.pcwebopedia.com/TERM/M/device.html
http://www.pcwebopedia.com/TERM/M/system.html

The microcomputer falls into 2
categories

1. The General-Purpose Digital
Computer

2. The Embedded Computer
◦ Dedicated to specific applications

◦ Transparent (“invisible”) to the user.
(eg. Automatic Bank Teller machine)

5

 Most important advances in computer
technology: 16-bit and 32-bit microprocessors.

 Pioneered by Intel since 1970’s and dominated
by INTEL since 1980’s:
◦ 4-bit 4004 in 1971
◦ 8-bit 8008 in 1972
◦ 8-bit 8080 and 8085 in 1974
◦ 16-bit 80286 and 8086, brains of famous IBM PC
◦ 32-bit 80286 (1982), 80386 (1985), 80486 (1989),

Pentium (1993), Pentium II (1997), Celeron and
Pentium III (1999) and Pentium 4 (2000)

◦ 64-bit Itanium (2001)
◦ Latest 64-bit Pentium 4 and Xeon (2005)

6

7

The 8088 and 8086 microprocessor:
• 8088 - 8-bit external bus, 16-bit internal

architecture.

• 8086 - 16-bit external bus, 16-bit internal
architecture.

MPU performs arithmetic operation
and logical decision

8

 Input Unit:
• Keyboard, joystick, mouse, scanner.

Output Unit:
• CRT display, LCD display, printer.

Memory Unit:
• Primary storage memory: ROM, RAM.

• Secondary storage memory: floppy-diskette,
hard disk drive, CD-ROM, CD-RW, magnetic
tape

9

1971 Intel introduces its first
microprocessor, the 4004, which
contained 2250 transistors. The 4004
was designed to process data
arranged as 4-bit words.

Beginning in 1974, a second
generation of microprocessors was
introduced. These devices, the 8008,
8080, and 8085, were 8-bit
microprocessors.

10

11

 Moore’s law is good for the last 26 years!
1971: 4004 2,250 transistors
1972: 8008 2,500 transistors
1974: 8080 5,000 transistors
1978: 8086 29,000 transistors
1982: 80286 120,000 transistors
1985: 80386 275,000 transistors
1989: 80486 DX 1,180,000 transistors
1993: Pentium 3,100,000 transistors
1997: Pentium II 7,500,000 transistors
1999: Pentium III 24,000,000 transistors
2000: Pentium IV 42,000,000 transistors
2006: Pentium D 376,000,000 transistors

12

Decimal number system
• The number of symbols used is called the base

or radix of the number system.

• Most Significant Digit (MSD) and Least
Significant Digit (LSD).

13

(a) Decimal number system symbols. (b) Digit notation and weights.

Binary number system
• 11002 = 1(2+3) +1(2+2) + 0(2+1) + 0(20)

= 1(8) + 1(4) + 0(2) + 0(1)

 = 1210

 1210 = 00000000000011002

14

(a) Binary number system symbols. (b) Bit notation and weights.

Conversion between decimal and binary
numbers

15

Example:

Evaluate the decimal equivalent of binary
number 101.012.

Solution:
• 101.012 = 1(2+2)+0(2+1) + 1(2+0) + 0(2-1) + 1(2-2)

= 1(4) + 0(2) + 1(1) + 0(1/2) + 1(1/4)

 = 5.2510

16

 Example:
Convert the decimal number 3110 to binary form.

Also, express the answer as a byte-wide binary
number.

 Solution:
2 31 → 1 LSB
2 15 → 1
2 7 → 1
2 3 → 1
2 1 → 1 MSB

0
3110 = 111112

17

 Example:
Convert the decimal fraction 0.812510 to binary

form. Also, express the answer as a byte-wide
binary number.

 Solution:
2*0.8125 → 1 MSB
2*0.625 → 1
2*0.25 → 0
2*0.5 → 1
2*0

0.812510 = .11012

18

Hexadecimal number system
• Machine language programs, addresses, and data

are normally expressed as hexadecimal number.

19

(a) Hexadecimal number system symbols. (b) Digit notation and weights.

Example:

What the decimal number 102A16 represent?

Solution:
• 102A16 = 1(16+3) +0(16+2) + 2(16+1) + A(160)

= 1(4096) + 0(256) + 2(16) + A(1)

 = 413810

20

 Example:
Convert the decimal number 413810 to

hexadecimal form.
 Solution:

16 4138
16 258 → A LSB
16 16 → 2
16 1 → 0

0 → 1 MSB

413810 = 102A16

21

Conversion between hexadecimal and
binary numbers.
• An H is frequently used instead of a subscript 16

to denote that a value is a hexadecimal number.

22

(a) Equivalent binary and hexadecimal numbers.
(b) Binary bits and hexadecimal digits.

Conversion between decimal, binary, and
hexadecimal numbers:

23

Example:

Express the binary number
11111001000010102.

Solution:
• 11111001000010102 = 1111 1001 0000 1010

= F 9 0 A

= F90A16

 = F90AH

24

Example:

What is the binary equivalent of the
number C31516?

Solution:
• C31516 = 1100 0011 0001 0101

= 11000011000101012

25

[Computer Engineering Department,

Hashemite University]

 2.1 Microarchitecture of the 8088/8086
Microprocessor

 2.2 Software Model of the 8088/8086
Microprocessor

 2.3 Memory Address Space and Data
Organization

 2.4 Data Types
 2.5 Segment Registers and Memory

Segmentation
 2.6 Dedicated, Reserved, and General-Used

Memory
 2.7 Instruction Pointer
 2.8 Data Registers

2CPE 0408330

 2.9 Pointer and Index Register

 2.10 Status Register

 2.11 Generating a Memory Address

 2.12 The Stack

 2.13 Input/output Address Space

3CPE 0408330

 8088/8086 both employ parallel processing
 8088/8086 contain two processing unit – the

bus interface unit (BIU) and execution unit
(EU)

 The bus interface unit is the path that
8088/8086 connects to external devices.

 The system bus includes an 8-bit
bidirectional data bus for 8088 (16 bits for
the 8086), a 20-bit address bus, and the
signal needed to control transfers over the
bus.

4CPE 0408330

5CPE 0408330

Pipeline architecture of the 8086/8088 microprocessors

 BIU is responsible for: Instruction fetching,
memory reading/writing and inputting/
outputting data for peripherals.

 Components in BIU
◦ Segment register
◦ The instruction pointer
◦ Address generation adder
◦ Bus control logic
◦ Instruction queue

 Components in EU
◦ Arithmetic logic unit, ALU
◦ Status and control flags
◦ General-purpose registers
◦ Temporary-operand registers

6CPE 0408330

7CPE 0408330

EU and BIU of the 8086/8088 microprocessors

8CPE 0408330

 Software model describes: available registers,
memory address space and I/O address space.

 8088 microprocessor includes 13 16-bit internal
registers.
◦ The instruction pointer, IP
◦ Four data registers, AX, BX, CX, DX
◦ Two pointer register, BP, SP
◦ Two index register, SI, DI
◦ Four segment registers, CS, DS, SS, ES

 The status register, SR, with nine of its bits
implemented for status and control flags.

 The memory address space is 1 Mbytes and the
I/O address space is 64 Kbytes in length.

9CPE 0408330

Software model of the 8088/8086 microprocessors

10CPE 0408330

 The 8088 microcomputer supports
1 Mbytes of external memory.

 The memory of an 8088-based
microcomputer is organized as 8-
bit bytes, not as 16-bit words.

Memory address
space of the
8088/8086
Microcomputer

11CPE 0408330

 The 8088 can access any two consecutive bytes
as word of data.

 Lower address byte and higher address byte.

 The two bytes represent the word

Address Memory

... ...

00725 0101 0101

00724 0000 0010 = 550216

... ...

12CPE 0408330

 Even- or odd-addressed word
If the least significant bit of the
address is 0, the word is said
to be held at an even-
addressed boundary.

 Aligned word (even-address)
or misaligned word (odd-
address).

 Words 0, 2, 4 & 6: aligned
 Words 1& 5: misaligned

13CPE 0408330

 EXAMPLE
What is the data word shown below? Express the result in

hexadecimal form. Is it stored at an even- or odd addressed word
boundary? Is it an aligned or misaligned word of data?

 Solution:
111111012 = FD16 = FDH

101010102 = AA16 = AAH

 Together the two bytes give the word
11111101101010102 = FDAA16 = FDAAH

Expressing the address of the least significant byte in binary form
gives 0072BH = 0072B16 = 000000000111001010112

 LSB = 1 the word is stored at odd-address boundary in memory.
 Therefore, it is misaligned word of data.

Address Memory
0072C 1111 1101
0072B 1010 1010

14CPE 0408330

 A double word
corresponds to four
consecutive bytes of data
stored in memory.

 Aligned double word is
located at addresses of
multiples of 4.

 Word 0 & 4: aligned only

15CPE 0408330

 A pointer is a double word. The higher address
word represents the segment base address while
the lower address word represents the offset .

Example: Segment base address = 3B4C16 =
00111011010011002

 Offset value = 006516 = 00000000011001012

16CPE 0408330

 EXAMPLE
How should the pointer with content in segment base

address equal to A00016 and content in offset address equals
55FF16 be stored at an even-address boundary starting at
0000816? Is the double word aligned or misaligned?

 Solution:
Storage of the two-word pointer requires four consecutive

byte locations in memory, starting at address 0000816. The least
significant byte of the offset is stored at address 0000816 and is
shown as FF16 in the previous figure. The most significant byte of
the offset, 5516, is stored at address 0000916. These two bytes
are followed by the least significant byte of the segment base
address, 0016, at address 0000A16, and its most significant byte,
A016, at address 0000B16. Since the double word is stored in
memory starting at address 0000816, it is aligned.

CPE 0408330 17

18CPE 0408330

 Integer data type
◦ Unsigned or signed integer

◦ Byte-wide or word-wide integer

Unsigned byte and unsigned word integer

19CPE 0408330

 The most significant bit of a signed integer is a sign
bit. A zero in this bit position identifies a positive
number.

 The range of a signed byte integer is +127 ~ -128.
The range of a signed word integer is +32767 ~ -
32768.

 The 8088 always expresses negative numbers in
2’scomplement.

signed byte and signed word integer

20CPE 0408330

 EXAMPLE
A signed word integer equals FEFF16. What decimal

number does it represent?

 Solution:
FEFF16 = 11111110111111112

• The most significant bit is 1, the number is
negative and is in 2’s complement form.
• Converting to its binary equivalent by
subtracting 1 from the least significant bit and
then complement all bits give
FEFF16 = -00000001000000012

= -257

21CPE 0408330

 The 8088 can also
process data that is
coded as binary-coded
decimal (BCD) numbers.

 BCD data can be stored in
unpacked (upper 4 bits
=0) or packed forms.

(a) BCD numbers (b) Unpacked
BCD digit (c) Packed BCD digit

22CPE 0408330

 EXAMPLE
The packed BCD data stored at byte address 0100016

equals 100100012. What is the two digit decimal number?

 Solution:
Writing the value 100100012 as

separate BCD digits gives
100100012 = 1001BCD0001BCD = 9110

23CPE 0408330

 The ASCII (American Standard Code for Information Interchange) digit
 The 8088 can process ASCII characters too.

24CPE 0408330

 EXAMPLE
Byte addresses 0110016 through 0110416 contain the

ASCII data 01000001, 01010011, 01000011, 01001001, and
01001001, respectively. What do the data stand for?

 Solution:
Using the ASCII table, the data are

converted to ASCII code:
(01100H) = 010000012 = A
(01101H) = 010100112 = S
(01102H) = 010000112 = C
(01103H) = 010010012 = I
(01104H) = 010010012 = I

25CPE 0408330

 A segment represents an independently
addressable unit of memory consisting of 64K
consecutive byte wide storage locations.

 Each segment is assigned a base address that
identifies its starting point.

 Only four segments can be active at a time:
◦ The code segment
◦ The stack segment
◦ The data segment
◦ The extra segment

 The addresses of the active segments are stored
in the four internal segment registers: CS, SS, DS,
ES.

26CPE 0408330

 Four segments give a maximum of 256Kbytes
of active memory.
◦ Code segment – 64K
◦ Stack – 64K
◦ Data storage – 128K

 The base address of a segment must reside
on a 16-byte address boundary.

 User accessible segments can be set up to be
contiguous, adjacent, disjointed, or even
overlapping.

27CPE 0408330

Contiguous, adjacent, disjointed, and overlapping segments

Contiguous—A&B or D,E&G
or J & K
Adjacent
Disjointed—C&F
Overlapping—B&C or C&D

The segments registers

are user accessible

28CPE 0408330

 The dedicated memory (0000016 ~ 0001316)
are used for storage of the pointers to
8088’s internal interrupt service routines
and exceptions.

 The reserved memory (0001416 ~ 0007F16)
are used for storage of the pointers to user-
defined interrupts.

 The 128-byte dedicated and reserved
memory can contain 32 interrupt pointers
(double word 4-bytes) (128/4).

 The general-use memory (0008016 ~
FFFEF16) stores data or instructions of the
program.

 The dedicated memory (FFFE016 ~ FFFEB16)
are used for hardware reset jump
instruction.

 The reserved memory (FFFCF16 ~ FFFFF16)
are preserved for future use.

29CPE 0408330

 The instruction pointer (IP) identifies the
location of the next word of instruction code to
be fetched from the current code segment of
memory.

 The offset in IP is combined with the current
value in CS to generate the address of the
instruction code. CS:IP forms 20-bit physical
address of next word of instruction code.

 During normal operation, the 8088 fetches
instructions from the code segment of
memory, stores them in its instruction queue
(why?), and executes them one after the other.

30CPE 0408330

 Instruction fetch sequence:
◦ 8088/8086 fetches a word of instruction code from code

segment in memory
 Increments value in IP by 2
 Word placed in the instruction queue to wait for execution
 8088 prefetches up to 4 bytes of code

 Instruction execution sequence:
◦ Instruction is read from output of instruction queue and

executed
 Operands read from data memory, internal registers
 Operation specified by the instruction performed on

operands
 Result written back to either data memory or internal register

31CPE 0408330

 The Data registers are used for temporary
storage of frequently used intermediate results.

 The contents of the data registers can be read,
loaded, or modified through software.

 The four data registers are:
◦ Accumulator register, A
◦ Base register, B
◦ Counter register, C
◦ Data register, D

 Each register can be accessed either as a whole
(16 bits) for word data or as 8-bit data for byte-
wide operation.

32CPE 0408330

Accumulator

BL

AX

AH AL

BX

CH CL

CX

DH DL

DX

15 8 7 0
H L

Base

Count

Data

BH

General-purpose data registers of 8088 microprocessor

33CPE 0408330

 Uses:
◦ Hold data such as source or destination

operands for most operations—ADD, AND, SHL
(faster access)

◦ Hold address pointer for accessing memory

 Some also have dedicated special uses
◦ C—count for loop, repeat string, shift, and

rotate operations

◦ B—Table look-up translations, base address

◦ D—indirect I/O and string I/O

34CPE 0408330

Register Operations

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, translate,
decimal arithmetic

AH Byte multiply, byte divide

BX Translate

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect I/O

Dedicated register functions

35CPE 0408330

 The pointer registers and index registers are used to
store offset addresses.

 Values held in the index registers are used to
reference data relative to the data segment or extra
segment.

 The pointer registers are used to store offset
addresses of memory location relative to the stack
segment register.

 Combining SP with the value in SS (SS:SP) results in a
20-bit address that points to the top of the stack
(TOS).

 BP is used to access data within the stack segment
of memory. It is commonly used to reference
subroutine parameters.

36CPE 0408330

 The index register are used to hold offset addresses for
instructions that access data in the data segment.

 The source index register (SI) is used for a source operand,
and the destination index (DI) is used for a destination
operand.
◦ DS:SI—points to source operand in data segment
◦ DS:DI—points to destination operand in data segment

 Also used to access information in the extra segment (ES)
 The four registers must always be used for 16-bit

operations.

37CPE 0408330

 The status register, also called the flags
register, indicate conditions that are
produced as the result of executing an
instruction.

 Only nine bits of the register are
implemented. Six of these bits represent
status flags and the other three bits
represent control flags

 The 8088 provides instructions within its
instruction set that are able to use these
flags to alter the sequence in which the
program is executed.

38CPE 0408330

 Status and control bits maintained in the
flags register

 Generally Set and Tested Individually

 9 1-bit flags in 8086; 7 are unused

39CPE 0408330

 Status flags indicate current processor
status.

CF Carry Flag Arithmetic Carry/Borrow

OF Overflow Flag Arithmetic Overflow

ZF Zero Flag Zero Result; Equal Compare

SF Sign Flag Negative Result; Non-Equal
Compare

PF Parity Flag Even Number of ―1‖ bits

AF Auxiliary Carry Used with BCD Arithmetic

Odd parity

40CPE 0408330

 Control flags influence the 8086 during
execution phase

DF Direction Flag Auto-Increment/Decrement

used for ―string operations‖

IF Interrupt Flag Enables Interrupts allows
―fetch-execute‖ to be
interrupted. Used to
enable/disable external
maskable interrupt requests

TF Trap Flag Allows Single-Step for
debugging; causes interrupt
after each op

41CPE 0408330

 A logical address in the 8088 microcomputer system is
described by a segment base and an offset.

 The physical addresses that are used to access memory are
20 bits in length.

 The generation of the physical address involves combining a
16-bit offset value that is located in the instruction pointer,
a base pointer, an index register, or a pointer register and a
16-bit segment base value that is located in one of the
segment register.

 Segment base address (CS, DS, ES, SS) are 16 bit quantities.

 Offsets (IP, SI, DI, BX, DX, SP, BP, etc.) are 16 bit quantities.

42CPE 0408330

Generating a physical address

Physical Address: actual address
used for accessing memory: 20-
bits in length Formed by:

Shifting the value of the 16-
bit segment base address left
4 bit positions
Filling the vacated four LSBs
with 0s
Adding the 16-bit offset

43CPE 0408330

Boundary of a segment

• Four active segments CS, DS, ES, and SS
Each 64-k bytes in size maximum
of 256K-bytes of active memory
64K-bytes for code
64K-bytes for stack
128K-bytes for data (data and extra)
Starting address of a data segment
DS:0H lowest addressed byte
Ending address of a data segment
DS:FFFFH highest addressed
byte
Address of an element of data in a data
segment

DS:BX address of byte, word, or
double word element of data in the data
segment

44CPE 0408330

Example:
Segment base address = 1234H
Offset = 0022H

1234H = 0001 0010 0011 01002

0022H = 0000 0000 0010 00102

Shifting base address,
000100100011010000002 = 12340H

Adding segment address and offset
000100100011010000002 +
00000000001000102 =
= 000100100011011000102

= 12362H

45CPE 0408330

 EXAMPLE
What would be the offset required to map to physical

address location 002C316 if the contents of the corresponding
segment register are 002A16?

 Solution:
The offset value can be obtained by

shifting the contents of the segment of the
segment register left by four bit positions and
then subtracting from the physical address.
Shifting left give

002A016

Now subtracting, we get the value of the offset:
002C316 – 002A016 = 002316

46CPE 0408330

 Different logical addresses can be mapped to the
same physical address location in memory.

Examples:
2BH:13H = 002B0H+0013H =
002C3H
2CH:3H = 002C0H + 0003H =
002C3H
These logical addresses are
called ―aliases‖

47CPE 0408330

Software model of the 8088/8086 microprocessors

48CPE 0408330

 The stack is implemented for temporary storage of
information such as data or addresses.

 The stack is 64KBytes long and is organized from a
software point of view as 32K words.

 The contents of the SP and BP registers are used as
offsets into the stack segment memory while the
segment base value is in the SS register.

 Push instructions (PUSH) and pop instructions (POP)
 Top of the stack (TOS) and bottom of the stack (BOS)
 The 8088 can push word-wide data and address

information onto the stack from registers or memory.
 Many stacks can exist but only one is active at a time.

49CPE 0408330

Stack segment of memory

Organization of stack:
SS:0000H end of stack (lowest
addressed word)
SS:FFFEH bottom of stack (highest
addressed word)

SS:SP top of stack (last stack
location to which data was pushed
Stack grows down from higher to
lower address
Used by call, push, pop, and return
operations
Examples
PUSH SI causes the current content
of the SI register to be pushed onto the
―top of the stack‖
POP SI causes the value at the ―top
of the stack‖ to be popped back into
the SI register

50CPE 0408330

Stack status prior to execution of the
instruction PUSH AX:
AX = 1234H
SS = 0105H
AEOS = SS:00 01050H = end of stack
SP = 0008H
ABOS = 0105016 + FFFE16

= SS:FFFEH 1104EH
ATOS = 0105016 + 000816

=SS:SP 01058H = current top of stack
BBAAH = Last value pushed to stack
Addresses < 01058H = invalid stack data
Addresses >= 01058H = valid stack data
In response to the execution of PUSH AX
instruction:
1. SP 0006H decremented by 2
ATOP 01056H
2. Memory write to stack segment
AL = 34H 01056H
AH = 12H 01057H
•How many free spaces ?
•When the stack get full ?

51CPE 0408330

• EXAMPLE: Pop operation
Status of the stack prior to execution of the
instruction POP AX:
AX = XXXXH
SS = 0105H
SP = 0006H
ATOS = SS:SP 01056H
1234H = Last value pushed to stack
Addresses < 01056H = invalid stack data
Addresses >= 01056H = valid stack data
In response to the execution of POP AX
instruction
1. Memory read to AX
01056H = 34H AL
01057H = 12H AH
2. SP 0008H incremented by 2
ATOP 01058H
In response to the execution of POP BX
instruction
1. Memory read to BX
01058H = AAH BL
01059H = BBH BH
2. SP 000AH incremented by 2:
ATOP 0105AH

52CPE 0408330

 The 8088 has separate memory and input/output
(I/O) address space.

 The I/O address space is the place where I/O
interfaces, such as printer and terminal ports, are
implemented.

 The I/O address range is from 000016 to FFFF16.
This represents 64KByte addresses.

 The I/O addresses are 16 bits long. Each of these
addresses corresponds to one byte-wide I/O port.

 Certain I/O instructions can only perform
operations to addresses 000016 thru 00FF16 (page
0).

 Ports F8H through FF reserved

53CPE 0408330

I/O address space

Solve the following problems from Chapter 2
from the course textbook:

3, 9, 14, 19, 26, 32, 34, 37, 45, 49, 55, 60, 65

54CPE 0408330

If SS = C000, SP = FF00

1)How many data words currently in the stack

2)How the value EE11 will be pushed in the

stack

[Computer Engineering Department,

Hashemite University]

 3.1 Software: The Microcomputer
Program

 3.2 Assembly Language Programming
Development on the PC

 3.3 The Instruction Set

 3.4 The MOV Instruction

 3.5 Addressing Modes

2CPE 0408330

 A program is a sequence of commands that tell the
microprocessor what to do.

 Each command is called ―instruction‖.
 An instruction can be divided into two parts:

◦ Operation code (opcode) – one- to five-letter mnemonic
 Operands: Identify whether the elements of data to be

processed are in registers or memory.

ADD AX, BX

 Source operand– location of one operand to be processed
 Destination operand—location of the other operand to be

processed and the location of the result
 Format of an assembly statement:

LABEL: INSTRUCTION ; COMMENT

3CPE 0408330

Opcode Destination Operand Source Operand

 Label—address identifier for the statement
 Instruction—the operation to be performed
 Comment—documents the purpose of the statement
 Example:

START: MOV AX, BX ; COPY BX into AX
 Other examples:

INC SI ;Update pointer
ADD AX, BX

◦ Few instructions have a label—usually marks a point to jump
◦ Not all instructions need a comment

 What is the ―MOV part of the instruction called?
 What is the BX part of the instruction called?
 What is the AX part of the instruction called?

4CPE 0408330

 Assembly language program
◦ Assembly language program (.asm) file—known as ―source

code‖
◦ Converted to machine code by a process called ―assembling‖
◦ Assembling performed by a software program — an ―8088/8086

assembler‖
◦ ―Machine (object) code‖ that can be run on a PC is output in the

executable (.exe) file
◦ ―Source listing‖ output in (.lst) file—printed and used during

execution and debugging of program

 DEBUG—part of ―disk operating system (DOS)‖ of the PC
◦ Permits programs to be assembled and disassembled
◦ Line-by-line assembler
◦ Also permits program to be run and tested

 MASM—Microsoft 80x86 macroassembler
◦ Allows a complete program to be assembled in one step

5CPE 0408330

 Assembly source program

6CPE 0408330

TITLE BLOCK-MOVE PROGRAM
PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

N = 16 ;Bytes to be moved
BLK1ADDR= 100H ;Source block offset address
BLK2ADDR= 120H ;Destination block offset addr
DATASEGADDR= 2000H ;Data segment start address

STACK_SEG SEGMENT STACK 'STACK'
DB 64 DUP(?)
STACK_SEG ENDS

CODE_SEG SEGMENT 'CODE'
BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

 Assembly source program (continued)

7CPE 0408330

;To return to DEBUG program put return address on the stack
PUSH DS
MOV AX, 0
PUSH AX

;Set up the data segment address
MOV AX, DATASEGADDR
MOV DS, AX

;Set up the source and destination offset addresses
MOV SI, BLK1ADDR
MOV DI, BLK2ADDR

;Set up the count of bytes to be moved
MOV CX, N

;Copy source block to destination block
NXTPT: MOV AH, [SI] ;Move a byte

MOV [DI], AH
INC SI ;Update pointers
INC DI
DEC CX ;Update byte counter
JNZ NXTPT ;Repeat for next byte
RET ;Return to DEBUG program

BLOCK ENDP
CODE_SEG ENDS
END BLOCK ;End of program

 Assembly language must be converted by an
assembler to an equivalent machine language
program for execution by the 8088.

 A directive is a statement that is used to
control the translation process of the
assembler.
e.g. DB 64 DUP(?)

◦ Defines and leaves un-initialized a block of 64 bytes
in memory for use as a stack

 The machine language output produced by
the assembler is called object code.

8CPE 0408330

 Listing of an assembled program

9CPE 0408330

 Listing of the assembled program

e.g. 0013 8A 24 NXTPT: MOV AH, [SI] ; Move a

byte

 Where:
◦ 0013 = offset address (IP) of first byte of code in the CS

◦ 8A24 = machine code of the instruction

◦ NXTPT: = Label

◦ MOV = instruction mnemonic

◦ AH = destination operand

◦ [SI] = source operand in memory

10CPE 0408330

 Listing of an assembled program

11CPE 0408330

• Other information provided in the listing
• Size of code segment and stack

• What is the size of the code
segment?
• At what offset address does it
begin? End?

• Names, types, and values of constants
and variables

• At what line of the program is the
symbol ―N‖ define?
• What value is it assigned?
• What is the offset address of the
instruction that uses N?

• # lines and symbols used in the program
• Why is the value of N given as
0010?

• # errors that occurred during assembly

 Assembly language versus high-level language

 It is easier to write program with high-level language.

 Program written in assembly language usually takes
up less memory space and executes much faster.

 Device service routines are usually written in assembly
language.

 Assembly language is used to write those parts of the
application that must perform real-time operations,
and high-level language is used to write those parts
that are not time critical.

12CPE 0408330

CPE 0408330 13

 Describing the problem

 Planning the solution

 Coding the solution with assembly language

 Creating the source program

 Assembling the source program into an object
module

 Producing a run module

 Verifying the solution

 Programs and files involved in the program
development cycle

14CPE 0408330

Program development cycle

15CPE 0408330

 Describing the problem
◦ Most applications are described with a written

document called an application
specification.

 Planning the solution
◦ A flowchart is an outline that both documents

the operations that must be performed
by software to implement the planned
solution and shows the sequence in
which they are performed.

16CPE 0408330

Flow chart of a block-move program

17CPE 0408330

Commonly used flowchart
symbols

18CPE 0408330

 Coding the solution with assembly
language
◦ Two types of statements are used in the source

program:
 The assembly language instructions are used to tell the

microprocessor what operations are to be performed
to implement the application.

 A directive is the instruction to the assembler

program used to convert the assembly
language program into machine code.

19CPE 0408330

 Coding the solution with assembly language

◦ The assembly language instructions

[Example]

MOV AX, DATASEGMENT

MOV DS, AX

MOV SI, BLK1ADDR

MOV DI, BLK2ADDR

MOV CX, N

◦ The directive

[Example]

BLOCK PROC FAR

or

BLOCK ENDP

20CPE 0408330

 Creating the source program
◦ The EDIT editor

◦ The Notepad editor in Windows

◦ The Microsoft PWB (Programmer’s Work Bench)

 Assembling the source program into
an object module
◦ The Microsoft MASM assembler

◦ The Microsoft PWB (Programmer’s Work Bench)

 Used for writing and compiling code

◦ The assembler source file and the object
module

21CPE 0408330

 Producing a run module
◦ The object module must be processed by the LINK

program to produce an executable run module.

 Verifying the solution

 Programs and files involved in the program
development cycle
◦ PROG1.ASM (Editor)

◦ PROG1.OBJ (Assembler)

◦ PROG1.LST (Assembler)

◦ PROG1.EXE (Linker)

◦ PROG1.MAP (Linker)

22CPE 0408330

The development programs
and users files

23CPE 0408330

 The instruction set of a microprocessor defines the basic
operations that a programmer can specify to the device to
perform

 Instruction set groups
◦ Data transfer instructions (moving data between registers

and/or memory locations).

◦ Arithmetic instructions (ADD,SUB,DIV,MUL,INC,DEC)

◦ Logic instructions (AND,OR,XOR,ROL,NOT)

◦ String manipulation instructions (REP,MOVS,LODS,STDS)

◦ Control transfer instructions (JMP,RET,LOOP)

◦ Processor control instructions (CLC,CMC,STC,HLT,)

24CPE 0408330

 In assembly language each instruction is
represented by a ―mnemonic‖ that describes its
operation and is called its ―operation code
(opcode)‖
◦ MOV = move data transfer

◦ ADD = add arithmetic

◦ JMP = unconditional jump control transfer

 Operands: Identify whether the elements of data
to be processed are in registers or memory
◦ Source operand– location of one operand to be processed

◦ Destination operand—location of the other operand to be
processed and the location of the result

25CPE 0408330

 Data transfer instructions

26CPE 0408330

 Data transfer instructions

27CPE 0408330

 Arithmetic instructions

28CPE 0408330

 Arithmetic instructions

29CPE 0408330

 Logic instructions

30CPE 0408330

 String manipulation instructions

31CPE 0408330

 Control transfer instructions

32CPE 0408330

 Control transfer instructions

33CPE 0408330

 Control transfer instructions

34CPE 0408330

 Process control instructions

35CPE 0408330

 The move (MOV) instruction is used to transfer a
byte or a word of data from a source operand to a
destination operand.

 e.g. MOV DX, CS

MOV [SUM], AX

36CPE 0408330

• Note that the MOV instruction
cannot transfer data directly
between external memory.

Allowed operands for MOV instruction

 MOV DX, CS

37CPE 0408330

Before execution

 MOV DX, CS

38CPE 0408330

After execution

 Addressing mode is a method of
specifying an operand & categorized
into three types:
◦ Register operand addressing mode

◦ Immediate operand addressing mode

◦ Memory operand addressing mode

 Direct addressing mode

 Register indirect addressing mode

 Based addressing mode

 Indexed addressing mode

 Based-indexed addressing mode

39CPE 0408330

 Register operand addressing mode:

The operand to be accessed is specified as residing in
an internal register of 8088.

e.g. MOV AX, BX

 Only the data registers can

be accessed as bytes or words
◦ Ex. AL,AH bytes

◦ AX word

 Index and pointer registers

as words
◦ Ex. SI word pointer

 Segment registers only as words
◦ Ex. DS word pointer

40CPE 0408330

 Register operand addressing mode

41CPE 0408330

Before execution

• Example
MOV AX,BX

Source = BX word data
Destination = AX word data
Operation: (BX) (AX)

• State before fetch and
execution
CS:IP = 0100:0000 = 01000H
Move instruction code = 8BC3H
(01000H) = 8BH
(01001H) = C3H
(BX) = ABCDH
(AX) = XXXX don’t care state

 Register operand addressing mode

42CPE 0408330
After execution

• Example (continued)
• State after execution
CS:IP = 0100:0002 = 01002H
01002H points to next
sequential instruction
(BX) = ABCDH
(AX) = ABCDH Value in BX
copied into AX

 Immediate operand addressing mode
◦ Operand is coded as part of the instruction

◦ Applies only to the source operand

◦ Destination operand uses register addressing mode

 Types
◦ Imm8 = 8-bit immediate operand

◦ Imm16 = 16-bit immediate operand

◦ General instruction structure and operation

MOV Rx,ImmX

ImmX (Rx)

43CPE 0408330
Before execution

 Immediate operand addressing mode

44CPE 0408330
Before execution

• Example
MOV AL,15H

Source = Imm8 immediate
byte data
Destination = AL Byte of
data
. Operation: (Imm8) (AL)

• State before fetch and
execution
CS:IP = 0100:0000 = 01000H
Move instruction code =
B015H
(01000H) = B0H
(01001H) = 15H Immediate
data
What about MOV AL,1515H ?

Immediate data

 Immediate operand addressing mode

45CPE 0408330
After execution

• Example (continued)
• State after execution
(AH) = XX don’t care state

What about MOV AL,1515H ?

 Memory addressing modes

To reference an operand in memory, the 8088 must
calculate the physical address (PA) of the operand and then
initiate a read or write operation to this storage location.

Physical Address (PA) = Segment Base Address (SBA) + Effective Address (EA)

46CPE 0408330

EA = Base + Index + Displacement

Physical and effective address computation for memory operands

Where:
SBA = Segment base address
EA = Effective address (offset)
• Components of a effective address

• Base base registers BX or BP
• Index index register SI or DI
• Displacement 8 or 16-bit displacement
• Not all elements are used in all
computations—results in a variety of
addressing modes

Memory addressing modes

Memory
addressing mode

Example Base Index Disp.

Direct MOV CX,[1234]

Indirect MOV AX,[SI]

Based MOV [BX]+ 1234H,AL

Indexed MOV AL,[SI]+1234H

Based-Index MOV AH, [BX][SI]+1234H

Effective address (EA)

EA = Base + Index + Displacement

PA = SBA + EA

CPE 0408330 47

 Memory addressing modes - Direct addressing mode

48CPE 0408330

The default segment register is DS

Computation of a direct
memory address

e.g. MOV AX, [1234H]

• Similar to immediate addressing in
that information coded directly into the
instruction
• Immediate information is the effective
address called the direct address
• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:[DA] immediate 8-bit or
16 bit displacement
[DA]: Displacement Address

• Segment base address is DS by
default

PA = DS:[DA]
• Segment override prefix (SEG) is
required to enable use of another
segment register

PA = SEG:ES:[DA]

 Memory addressing modes - Direct addressing mode

49CPE 0408330

Before execution

• Example
MOV CX,[1234H]

• State before fetch and execution

• Instruction
CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B0E
(01003H,01002) = DA = 1234H
• Source operand—direct addressing
DS = 0200H
DA = 1234H
PA = DS:DA = 0200H:1234H
= 02000H+1234H = 03234H
(03235H,03234H) = BEEDH
• Destination operand--register
addressing
(CX) = XXXX don’t care state

Direct address

 Memory addressing modes - Direct addressing mode

50CPE 0408330

After execution

• Example (continued)
• State after execution
Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next
Sequential instruction
• Source operand
(03235H,03234H) = BEEDH
unchanged
• Destination operand
(CX) = BEEDH

 Memory addressing modes - Register indirect addressing mode

51

PA = Segment Base : Direct Address

The default segment register is DS
Computation of an indirect memory

address

e.g. MOV AX, [SI]

• Similar to direct addressing in that
the affective address is combined with
the contents of DS to obtain the
physical address
• Effective address resides in either a
base or index register
• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:[Rx] 16-bit offset
• Segment base address is DS by
default for BX, SI, and DI
• Segment base address is SS by
default for BP
PA = DS:[Rx]
• Segment override prefix (SEG) is
required to enable use of another
segment register
PA = SEG:ES:[Rx]

 Memory addressing modes - Register indirect addressing mode

PA = 0200016 + 123416 = 0323416

52CPE 0408330
Before execution

• Example
MOV AX,[SI]

• State before fetch and execution Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B04H
• Source operand-register indirect addressing
DS = 0200H
SI = 1234H
PA = DS:SI = 0200H:1234H
= 02000H + 1234H
= 03234H
(03235H,03234H) = BEEDH
• Destination operand-register operand
addressing
(AX) = XXXX don’t care state

 Memory addressing modes - Register indirect addressing mode

PA = 0200016 + 123416 = 0323416

53CPE 0408330

After execution

• Example (continued)
• State after execution Instruction
CS:IP = 0100:0002 = 01002H
01002H points to next sequential
instruction
• Source operand
(03235H,03234H) = BEEDH
unchanged
• Destination operand
(AX) = BEEDH

 Memory addressing modes - Based addressing mode

54CPE 0408330

e.g. MOV [BX]+1234H, AL

• Effective address formed from contents of a base
register and a displacement
• Base register is either BX or BP (stack)

• Direct/indirect displacement is 8-bit or 16bit
• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:[BX or BP] + DA
• Accessing a data structure

• Based addressing makes it easy to access
elements of data in an array
• Address in base register points to start of the
array
• Displacement selects the element within the
array
• Value of the displacement is simply changed
to access another element in the array
• Program changes value in base register to
select another array

 Memory addressing modes - Based addressing mode

PA = 0200016 + 100016 + 123416 = 0423416

55CPE 0408330

Before execution

• Example
MOV [BX] +1234H,AL

• State before fetch and execution Instruction
CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8887H
(01002H,01003H) = Direct displacement =
1234H
• Destination operand—based addressing
DS = 0200H, BX = 1000H, DA = 1234H
PA = DS:DS+DA = 0200H:1000H+1234H
= 02000H+1000H+1234H
= 04234H
(04234H) = XXH
• Source operand—register operand
addressing

(AL) = ED

 Memory addressing modes - Based addressing mode

PA = 0200016 + 100016 + 123416 = 0423416

56CPE 0408330

After execution

• Example (continued)
• State after execution Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next sequential
instruction
• Destination operand
(04234H) = EDH
• Source operand
(AL) = EDH unchanged

Note: if BP is used instead of BX, the
calculation of PA is performed using SS
instead of DS.

 Memory addressing modes - Indexed addressing mode

57CPE 0408330

PA = Segment Base : Index + Displacement

Computation of an indexed address

e.g. MOV AL, [SI]+1234H

• Similar to based addressing, it makes accessing
elements of data in an array easy
• Displacement points to the beginning of array in
memory
• Index register selects element within the array
• Program simply changes the value of the
displacement to access another array
• Program changes (re-computes) value in index
register to select another element in the array
• Effective address formed from direct
displacement and contents of an index register
• Direct displacement is 8-bit or 16-bit
• Index register is either SI source operand or
DI destination operand
• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA: DA + [SI or DI]

 Memory addressing modes - Indexed addressing mode

PA = 0200016 + 200016 + 123416 = 0523416

58CPE 0408330

Before execution

• Example
MOV AL,[SI] +1234H

• State before fetch and execution Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8A84H
(01002H,01003H) = Direct displacement = 1234H
• Source operand—indexed addressing
DS = 0200H
SI = 2000H
DA = 1234H
PA = DS:SI+DA = 0200H:2000H+1234H
= 02000H+2000H+1234H
= 05234H
(05234H) = BEH
• Destination operand—register operand addressing
(AL) = XX don’t care state

 Memory addressing modes - Indexed addressing mode

PA = 0200016 + 200016 + 123416 = 0523416

59CPE 0408330

After execution

• Example (continued)
• State after execution Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next
sequential instruction
• Source operand
(05234H) = BEH unchanged
• Destination operand

(AL) = BEH

 Memory addressing modes - Based-indexed addressing mode

60CPE 0408330

Computation of an indexed address

e.g. MOV AH, [BX][SI]+1234H

• Combines the functions of based and indexed addressing

modes
• Enables easy access to two-dimensional arrays of data
• Displacement points to the beginning of array in memory
• Base register selects the row (m) of elements
• Index register selects element in a column (n)
• Program simply changes the value of the displacement to
access another array
• Program changes (re-computes) value in base register to
select another row of elements
• Program changes (re-computes) the value of the index
register to select the element in another column
• Effective address formed from direct displacement and
contents of a base register and an index register
• Direct displacement is 8-bit or 16bit
• Base register either BX or BP (stack)
• Index register is either SI source operand or DI
destination operand
• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:DA + [BX or BP] + [SI or DI]

 Memory addressing modes - Based-indexed addressing mode
PA = 0200016 + 100016 + 200016 + 123416 = 0623416

61CPE 0408330

Before execution

• Example
MOV AH,[BX][SI] +1234H

• State before fetch and execution Instruction
CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8AA0H
(01002H,01003H) = Direct displacement = 1234H
• Source operand-based-indexed addressing
DA = 1234H, DS = 0200H, BX = 1000H,
SI = 2000H
PA = DS:DA +BX +SI
= 0200H:1234H + 1000H + 2000H
= 02000H+1234H +1000H + 2000H
= 06234H
(06234H) = BEH
• Destination operand—register operand
addressing
(AH) = XX don’t care state

 Memory addressing modes - Based-indexed addressing mode
PA = 0200016 + 100016 + 200016 + 123416 = 0623416

62CPE 0408330

After execution

• Example (continued)
• State after execution Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next sequential
instruction
• Source operand
(06234H) = BEH unchanged
• Destination operand
(AH) = BEH

Solve the following problems from Chapter 3
from the course textbook:

5, 10, 23, 25, 26, 29, 31

63CPE 0408330

[Computer Engineering Department,

Hashemite University]

 4.1 Converting Assembly Language
Instructions to Machine Code

 4.2 Encoding a Complete Program in
Machine Code

 4.3 The PC and Its DEBUG Program

 4.4 Examining and Modifying the
Contents of Memory

 4.5 Input and Output of Data

2CPE 0408330

 4.6 Hexadecimal Addition and
Subtraction

 4.7 Loading, Verifying and Saving
Machine Language Program

 4.8 Assembling Instructions with the
Assemble Command

 4.9 Executing Instructions and Programs
with the TRACE and GO command

 4.10 Debugging a Program

3CPE 0408330

 Part of the 80x86 instruction set architecture (ISA)
◦ What is the machine instruction length (fixed, variable, hybrid)?
◦ What are the sizes of the fields—varying sizes?
◦ What are the functions of the fields?

 80x86‘s register-memory architectures is hybrid length
◦ Multiple instruction sizes, but all have byte wide lengths—

 1 to 6 bytes in length for 8088/8086
 Up to 17 bytes for 80386, 80486, and Pentium

◦ Advantages of hybrid length
 Allows for many addressing modes
 Allows full size (32-bit) immediate data and addresses

◦ Disadvantage of variable length
 Requires more complicated decoding hardware—speed of decoding is

critical in modern application

 Load-store architectures normally fixed length—PowerPC
(32-bit), SPARC (32-bit), MIP (32-bit), Itanium (128-bits, 3
instructions)

4CPE 0408330

 General instruction format for machine
code:

5CPE 0408330

 Byte 1 specification:
◦ Opcode field (6-bits)

 Specifies the operation to be performed

◦ Register direction bit (D-bit)

 1 – the register operand is a destination operand

 0 – the register operand is a source operand

◦ Data size bit (W-bit)

 1 – 16-bit data size

 0 – 8-bit data size

6CPE 0408330

 Byte 2 specification

◦ Mode (MOD) field (2-bits)—specifies the type of the
second operand

7CPE 0408330

MOD field and R/M field encoding

 Byte 2 specification
◦ Mode (MOD) field (2-bits):
 Memory mode: 00, 01,10—Register to

memory move operation
 00 = no immediate displacement (register

used for addressing)
 01 = 8-bit displacement (imm8) follows (8-

bit offset address)
 10 = 16-bit displacement (imm16) follows

(16-bit offset address)
◦ Register mode: 11—register to register

move operation
 11 = register specified as the second operand

8CPE 0408330

Register (REG) field encoding

 Byte 2 specification

◦ Register (REG) field (3-bit)

 Identifies the register for the first operand

 W (1-bit)—data size word/byte for all registers

 Byte = 0

 Word =1

◦ Register/Memory (R/M) field (3-bit)

9CPE 0408330

Register (REG) field encoding

 Byte 2 specification

◦ Register/Memory (R/M) field (3-bit)—specifies the second

operand as a register or a storage location in memory

 Dependent on MOD field

 Mod = 11, R/M selects a register:

 R/M = 000 Accumulator register

 R/M= 001 = Count register

 R/M = 010 = Data Register

10CPE 0408330

 Byte 2 specification
◦ MOD = 00,10, or 10 selects an addressing mode for the second

operand that is a storage location in memory, which may be the
source or destination
 Dependent on MOD field

 Mod = 00, R/M:
 R/M = 100 effective address computed as EA = (SI)
 R/M= 000 = effective address computed as EA = (BX)+(SI)
 R/M = 110 = effective address is coded in the instruction as a

direct address EA = direct address
= imm8 or imm16

S
S
S
S

s

11CPE 0408330

 EXAMPLE

Encode the instruction in machine code

MOV BL, AL

 Reg-Reg instruction has two encodings:

 Encoding (1) REG is source
 D-bit is 0: this means REG specifies source
 R/W specifies destination register

 Encoding (2) REG is destination
 D-bit is 1: this means REG specifies destination
 R/W specifies source

12CPE 0408330

 EXAMPLE
Encode the instruction in machine code

MOV BL, AL

 Solution:
Byte 1: OPCODE = 100010 (for MOV),

D = 0 (source), W = 0 (8-bit)
 This leads to BYTE 1 = 100010002 = 8816

 In byte 2 the source operand, specified by REG, is
AL

REG = 000, MOD = 11, R/M = 011
 Therefore, BYTE 2 = 110000112 = C316

MOV BL, AL = 88C316

13CPE 0408330

 EXAMPLE
Encode the instruction in machine code

MOV BL, AL

 Solution:
Byte 1: OPCODE = 100010 (for MOV),

D = 1 (destination), W = 0 (8-bit)
 This leads to BYTE 1 = 100010102 = 8A16

 In byte 2 the source operand, specified by REG, is AL
REG = 011, MOD = 11, R/M = 000

 Therefore, BYTE 2 = 1101 10002 = C316

MOV BL, AL = 8AD816

14CPE 0408330

CPE 0408330 15

 EXAMPLE
Encode the instruction in machine code

ADD AX, [SI]

 Solution:
OPCODE = 000000 (for ADD), D = 1 (dest.),
W = 1 (16-bit)

 This leads to BYTE 1 = 000000112 = 0316

 In byte 2 the destination operand, specified by
REG, is AX

REG = 000, MOD = 00, R/M = 100
 Therefore, BYTE 2 = 000001002 = 0416

ADD AX, [SI] = 030416

16CPE 0408330

CPE 0408330 17

 EXAMPLE
Encode the instruction in machine code

XOR CL, [1234H]

 Solution:
OPCODE = 001100 (for XOR), D = 1 (dest.), W = 0 (8-

bit)
 This leads to BYTE 1 = 001100102 = 3216

 In byte 2 the destination operand, specified by REG, is CL
REG = 001, MOD = 00, R/M = 110

 Therefore, BYTE 2 = 000011102 = 0E16

BYTE 3 = 3416

BYTE 4 = 1216

XOR CL, [1234H]= 320E341216

18CPE 0408330

CPE 0408330 19

 EXAMPLE
Encode the instruction in machine code

ADD [BX][DI]+1234H, AX

 Solution:
OPCODE = 000000 (for ADD), D = 0 (source), W = 1

(16-bit)
 This leads to BYTE 1 = 000000012 = 0116

 In byte 2 the destination operand, specified by REG, is AX
REG = 000, MOD = 10, R/M = 001

 Therefore, BYTE 2 = 100000012 = 8116

BYTE 3 = 3416

BYTE 4 = 1216

ADD [BX][DI]+1234H, AX = 0181341216

20CPE 0408330

CPE 0408330 21

 Additional one-bit field and their functions

 Instructions that involve a segment
register (SR-field)

22CPE 0408330

 EXAMPLE
Encode the instruction in machine code

MOV WORD PTR [BP][DI]+1234H, 0ABCDH

 Solution:
This example does not follow the general format

 From Fig. 3-6 in the text, MOV -> 1100011W, and W
= 1 for word-size data

 BYTE 1 = 110001112 = C716

 BYTE 2 = (MOD)000(R/M) = 100000112 = 8316

 BYTE 3 = 3416 BYTE 4 = 1216

 BYTE 5 = CD16 BYTE 6 = AB16

MOV WORD PTR [BP][DI]+1234H, 0ABCDH
= C7833412CDAB16

23CPE 0408330

CPE 0408330 24

 EXAMPLE
Encode the instruction in machine code

MOV [BP][DI]+1234H, DS

 Solution:
This example does not follow the general format

 From Fig. 3-6 in the text, MOV -> 10001100, and the
instruction is 10001100(MOD)0(SR)(R/M)(DISP)

 From Fig. 4-5 in the text, we find that for DS, the SR
= 11

 Therefore, the instruction is coded as
MOV [BP][DI]+1234H, DS

= 100011001001101100110100000100102
= 8C9B341216

25CPE 0408330

CPE 0408330 26

 Steps in encoding a complete assembly
program:
◦ Identify the general machine code format (Fig. 3-6)

◦ Evaluate the bit fields (Fig. 4-2,4-3,4-4,4-5)

◦ Express the binary-code instruction in hexadecimal
form

 To execute the program, the machine code of
the program must be stored in the code
segment of memory.

 The first byte of the program is stored at the
lowest address.

27CPE 0408330

 EXAMPLE
Encode the ―block move‖ program in Fig. 4-6(a) and show how it would be

stored in memory starting at address 20016.

 Solution:
MOV AX, 2000H ;LOAD AX REGISTER
MOV DS, AX ;LOAD DATA SEGMENT ADDRESS
MOV SI, 100H ;LOAD SOURCE BLOCK POINTER
MOV DI, 120H ;LOAD DESTINATION BLOCK POINTER
MOV CX, 10H ;LOAD REPEAT COUNTER

NXTPT: MOV AH, [SI] ;MOVE SOURCE BLOCK ELEMENT TO AH
MOV [DI], AH ;MOVE ELEMENT FROM AH TO DEST. BLOCK
INC SI ;INCREMENT SOURCE BLOCK POINTER
INC DI ;INCREMENT DESTINATION BLOCK POINTER
DEC CX ;DECREMENT REPEAT COUNTER
JNZ NXTPT ;JUMP TO NXTPT IF CX NOT EQUAL TO ZERO
NOP ;NO OPERATION

28CPE 0408330

29CPE 0408330

30CPE 0408330

 Using DEBUG, the programmer can issue
commands to the microcomputer.

 Loading the DEBUG program

C:\DEBUG

 Six kinds of information are entered as part
of a command:
◦ A command letter
◦ An address
◦ A register name
◦ A file name
◦ A drive name
◦ Data

31CPE 0408330

-R AX

-D DS:100

-N A:BLK.1

-F 100 11F 22

 The DEBUG program command set:
◦ Register: R [register name]
◦ Quit: Q
◦ Dump: D[address]
◦ Enter: E address [list]
◦ Fill: F st. address end address list
◦ Move: M st. addr. end addr. dest. Addr.
◦ Compare: C st. addr. end addr. dest. Addr.
◦ Search: S st. address end address list
◦ Input: I address
◦ Output: O address, byte
◦ Hex Add/Subtract: H num1,num2
◦ Assemble: A [starting address]
◦ Unassemble: U [starting address ending address]
◦ Name: N file name]
◦ Write: W [st. addr. [drive st. sector no. of sectors]]
◦ Load: L [st. addr. [drive st. sector no. of sectors]]
◦ Trace: T [=address] [number]
◦ Go: G [= starting address [breakpoint address …]]

32CPE 0408330

 An initial state when with the loading of DEBUG

33CPE 0408330

Status register (Flags) =

0000 0000 0100 0000

Interrupt flag = 1

interrupt enable

 Syntax for the REGISTER (R) command

R [REGISTER NAME]

 e.g.

34CPE 0408330

-R AX (↵)

AX 0000
:_

:00FF (↵)
_

;This alter the content of AX

If [REGISTER NAME] is empty display the values of all registers

 EXAMPLE

Verify the initialized state of the 8088 by examining
the contents of its registers with the Register command.

 Solution:

35CPE 0408330

-R (↵)

 Register mnemonics for the R command

36CPE 0408330

 Status flag notations

37CPE 0408330

 EXAMPLE

Issue commands to the DEBUG program on the PC
that causes the value in BX to be modified to FF0016 and
then verify that this new value is loaded into BX.

 Solution:

38CPE 0408330

-R BX (↵)
BX 0000
:FF00 (↵)
-R BX (↵)
BX FF00
:_ (↵)
_

 EXAMPLE

Use the Register command to set the parity flag to
even parity. Verify that the flag has been changed.

 Solution:

39CPE 0408330

-R F (↵)
NV UP EI PL NZ NA PO NC -PE (↵)
-R F (↵)
NV UP EI PL NZ NA PE NC - (↵)

 The commands provided for use in
examining and modifying the memory:
◦ DUMP

◦ ENTER

◦ FILL

◦ MOVE

◦ COMPARE

◦ SERACH

40CPE 0408330

 DUMP Command (D)

The DUMP command allows us to examine the
contents of a memory location or a block of consecutive
memory location.

D [ADDRESS]

 e.g.

41

-D (↵)
-D 1342:100 (↵)
-D DS:100 (↵)
-D 100 (↵)

Command Meaning

- D Display 128 bytes
starting from DS:0100

- D 1373:200 Display 128 bytes
starting from 1373:200

- D 1F0 Display 128 bytes
starting from DS:1F0

- D 200 300 Display memory
locations from DS:200 to
DS:300

- D CS:200 212 Display memory
locations from CS:200 to
CS:212

 DUMP Command (D)

42CPE 0408330

Address of the first
byte of data

ASCII version of the
memory data

16 bytes of data per line,
128 bytes per dump

 EXAMPLE

Issue a dump command to display the contents of
the 32 bytes of memory located at offset 030016 through
031F16 in the current data segment.

 Solution:

43CPE 0408330

-D 300 31F (↵)

 EXAMPLE

Use the Dump command to examine the 16 bytes
of memory just below the top of the stack.

 Solution:

44CPE 0408330

-D SS:FFEE FFFD (↵)

 ENTER Command (E)

E ADDRESS [LIST]

e.g.

45CPE 0408330

-E DS:100 (↵)
-1342:0100 FF. _ (Space bar to continue)
-1342:0100 FF. FF._

-E DS:100 (↵)
-1342:0100 FF. _ (↵) (Return to end)

-E DS:100 FF FF FF FF FF (↵)

Used to browse

group of locations

and enter a

values for specific

one

 EXAMPLE

Start a data entry sequence by examining the contents of
address DS:100 and then, without entering new data, depress
the ―-‖ key. What happen?

 Solution:

Entering ―-‖ causes the display of previous byte storage location.

46CPE 0408330

-E DS:100 (↵)
1342:0100 FF. _

 EXAMPLE

Enter ASCII data to the memory.

 Solution:

47CPE 0408330

-E DS:200 ―ASCII‖ (↵)
or
-E DS:200 ‗ASCII‘ (↵)

 FILL Command (F)

The FILL command fills a block of
consecutive memory locations all with the
same data.

F STARTING_ADDRESS ENDING_ADDRESS LIST

 e.g.

48CPE 0408330

-F 100 11F 22 (↵)

Issue two fill commands to fill memory locations with different values

 EXAMPLE

Initialize all storage locations in the block of memory
from DS:120 through DS:13F with the value 3316 and the block
of storage locations from DS:140 to DS:15F with the value
4416.

 Solution:

49CPE 0408330

-F 120 13F 33 (↵)
-F 140 15F 44 (↵)

 MOVE Command (M)

The MOVE command allows us to copy a block
of data from one part of memory to another
part. Note that the source locations is not affected

M START_ADDRESS END_ADDRESS DEST_ADDRESS

 e.g.

50

-M 100 11F 200 (↵)

Source starting address (100)

Destination starting address (11F)

Destination starting address (200)

CPE 0408330

 EXAMPLE

Fill each storage location in the block of memory from address

DS:100 through DS:11F with the value 1116. Then copy this

block of data to a destination block starting at DS:160.

 Solution:

51CPE 0408330

-F 100 11F 11 (↵)
-M 100 11F 160 (↵)

 COMPARE Command (C)

The COMPARE command allows us to compare
the contents of two blocks of data to
determine if they are the same or not.

C START_ADDRESS END_ADDRESS DEST_ADDRESS

 e.g.

52CPE 0408330

-C 100 10F 120 (↵)

If the two locations are equal don’t display anything.

If the two locations are different display each location with it’s content

 COMPARE Command (C)

53CPE 0408330

Results produced when unequal data are found with a COMPARE command

DS:100

DS:10F

DS:120

 SEARCH Command (S)

The SEARCH command can be used to scan
through a block of data in memory to
determine whether or not it contains specific
data.

S START_ADDRESS END_ADDRESS LIST

 e.g.

54CPE 0408330

-S 100 17F 33 (↵)

 SEARCH Command (S)

55CPE 0408330

 INPUT Command (I)

The INPUT command read data from an input
port of the 64K byte-wide ports of 8088 I/O.

I ADDRESS

 e.g.

 The contents of the port at I/O address 006116

are 4D16

56

-I 61 (↵)
4D

CPE 0408330

 OUTPUT Command (O)

The OUTPUT command write data to an output
port of the 64K byte-wide ports of 8088 I/O.

O ADDRESS BYTE

 e.g.

 This command causes the value 4F16 to be
written into the byte-wide output port at
address 006116

57CPE 0408330

-O 61 4F (↵)

 HEXADECIMAL Command (H)

The HEXADECIMAL command provides the
ability to add and subtract hexadecimal
numbers.

H NUM1 NUM2

 e.g.

58CPE 0408330

-H ABC0 0FFF (↵)
BBBF 9BC1

-H BBBF A (↵)
BBC9 BBB5

*Both number and results are limited to four hexadecimal
digits.

 EXAMPLE
Use the H command to find the negative of the

number 000916.

 Solution:

 FFF716 is the negative of 916 expressed in 2‘s
complement form.

59CPE 0408330

-H 0 9 (↵)
0009 FFF7

 EXAMPLE
If a byte of data is located at physical address

02A3416 and the data segment register contains 015016,
what value must be loaded into the source index register
such that DS:SI points to the byte storage location?

 Solution:

 This shows that SI must be loaded with the value 153416.

60CPE 0408330

-H 2A34 1500 (↵)
3F34 1534

 An example to load an instruction

MOV BL, AL

 The machine code is 88C316

61CPE 0408330

-E CS:100 88 C3 (↵)
-D CS:100 101 (↵)
1342:0100 88 C3

 UNASSEMBLE Command (U)

The UNASSEMBLE command converts machine
code instructions to their equivalent assembly
language source statement.

U [STARTING_ADDRESS [ENDING_ADDRESS]]

 e.g.

62CPE 0408330

-U CS:100 101 (↵)
1342:0100 88C3 MOV BL, AL

Hexadecimal Instruction

Why CS not DS ?

 EXAMPLE
Use a sequence of commands to load, verify loading, and
unassemble the machine code instruction 0304H. Load the
instruction at address CS:200.

 Solution:

63CPE 0408330

-E CS:200 03 04 (↵)
-D CS:200 201 (↵)
-U CS:200 201 (↵)
ADD AX, [SI]

Why CS not DS ?

 WRITE Command (W)

The WRITE command gives the ability to
save data stored in memory on a diskette.

W [START_ADDRESS [DRIVE START_SECTOR NUM_SECTOR]]

 e.g.

64CPE 0408330

-W CS:200 1 10 1 (↵)
-W 200 1 10 1 (↵)

Drive B 1 Sector = 512 Byte

* Be caution in saving program in a disk, especially the hard drive.

 LOAD Command (L)

The LOAD command gives the ability to
reload memory from a diskette.

L [START_ADDRESS [DRIVE START_SECTOR NUM_SECTOR]]

 e.g.

 e.g.

65CPE 0408330

-L CS:300 1 10 1 (↵)

• The reloading of the instruction can be verified by U command

-U CS:300 301 (↵)
1342:300 301 ADD AX, [SI]

 EXAMPLE
Enter the machine code of the block move program.

The program is to be loaded into memory starting at
address CS:100. Verify, unassemble, and save the code.

 Solution:

66CPE 0408330

-E CS:100 B8 00 20 8E D8 BE
00 01 BF 20 01 B9 10
00 8A 24 88 25 46 (↵)
-D CS:100 117(↵)
-U CS:100 117(↵)
-W CS:100 1 100 1 (↵)

67CPE 0408330

 NAME Command (N)

The NAME command, along with the WRITE
command, gives the ability to save a program on
the diskette under a file name.

N FILE NAME

◦ The BX, CX registers must be updated to identify the size
of the program that is to be saved in the file.

(BX CX) = number of bytes

Because of programs are small set BX = 0000H
◦ After BX, CX registers have been initialized, the write

command is used to saved the program.

◦ To reload the program, the command sequence is

N FILE NAME

L [STARTING ADDRESS]

68CPE 0408330

 EXAMPLE
Save a machine code program into a file.

 Solution:

69CPE 0408330

-N A:BLK.1 (↵) ; Give a file name in disk A
-R CX (↵) ; Give a program size of 1816 bytes
CX XXXX
:18
-R BX (↵)
BX XXXX
:0 (↵)
W CS:100 (↵) ; Save the program in disk A

 EXAMPLE
Reload a program into memory.

 Solution:

70CPE 0408330

-N A:BLK.1 (↵) ; Give a file name in disk A
-L CS:100 (↵) ; Load the program name BLK.1 in disk A

C:\DOS>REN A:BLK.1 BLK.EXE (↵) ; Rename the file

C:\DOS>DEBUG A:BLK.EXE (↵) ; Load the program directly into
memory

C:\DOS>A:BLK.EXE (↵) ; Run the program

 ASSEMBLE Command (A)
The ASSEMBLE command let us automatically
assemble the instructions of a program.

A [STARTING_ADDRESS]

 e.g.

71CPE 0408330

-A CS:100 (↵)
1342:0100 _
1342:0100 ADD [BX+SI+1234], AX
(↵)
1342:0104 _
-D CS:100 103 (↵)

The program will be saved in memory

starting from this location

Your instruction

 EXAMPLE
Assemble a complete program with the ASSEMBLE

command.

 Solution:

72CPE 0408330

-A CS:200 (↵)
0B35:0200 MOV AX, 2000 (↵)
0B35:0203 MOV DS, AX (↵)
0B35:0205 MOV SI, 100 (↵)
. . . .
. . . .
0B35:0217 NOP (↵)
0B35:0218 (↵)

 Assemble a program with ASSEMBLE command

73CPE 0408330

 Unassemble a program with UNASSEMBLE
command (the reverse operation of assemble)

74CPE 0408330

 TRACE Command (T)

The TRACE command provides the programmer with

the ability to execute the program one instruction at a
time.

T [=STARTING_ADDRESS] [NUMBER]

 e.g.

75CPE 0408330

-T =CS:100 (↵) // executes one instruction

-T (↵) // executes one instruction starting at

CS:IP

-T =CS:100 3 (↵) // executes three instructions

Important

The address of the first

instruction

 EXAMPLE
Load and trace a program.

 Solution:

76CPE 0408330

-L CS:100 1 10 1 (↵) // or -A CS:100 (↵)
-U 100 101 (↵)
-R AX (↵)
AX 0000
:1111 (↵)
-R SI (↵)
SI 0000
:1234 (↵)
-E DS:1234 22 22 (↵)
-T =CS:100 (↵)

77CPE 0408330

 GO Command (G)
The GO command is typically used to run

programs that are already working or to execute
programs in the later stages or debugging.

G [=STARTING_ADDRESS [BREAKPOINT_ADDRESS_LIST]]

 e.g.

78CPE 0408330

-G =CS:200 217 (↵)

-G =CS:100 (↵)

-G (↵) // start execution from CS:IP

The list of addresses that the execution will stop on them and display internal

registers information (maximum 10 breakpoints)

 EXAMPLE
Use GO command to execute a program and examine

the result.

 Solution:

79CPE 0408330

-N A:BLK.EXE (↵) ; Define the program file to be loaded
-L CS:200 (↵) ; Load the program at CS:200
-R DS (↵)
DS 1342
:2000 (↵) ; Define the data segment address
-F DS:100 10F FF (↵) ; Fill memory with FF
-F DS:120 12F 00 (↵) ; Fill memory with 00
-R DS (↵)
DS 2000
:1342 ; Store data segment with 134216

 Solution (continued) :

80CPE 0408330

-R (↵) ; Show data register status
-U CS:200 217 (↵) ; Unassemble the program
-G =CS:200 20E (↵) ; Execute the program to CS:20E
-G =CS:20E 215 (↵) ; Execute the program to CS:215
-D DS:100 10F (↵) ; Display memory at DS:100
-D DS:120 12F (↵) ; Display memory at DS:120
-G =CS:215 217 (↵) ; Execute the program to CS:217
-D DS:100 10F (↵) ; Display memory at DS:100
-D DS:120 12F (↵) ; Display memory at DS:120

81CPE 0408330

82CPE 0408330

83CPE 0408330

 Errors in a program are also referred to as bugs;
the process of removing them is called
debugging.

 Two types of errors
◦ Syntax error
◦ Execution error

 A syntax error is an error caused by not
following the rules for coding or entering an
instruction. These types of errors are typically
identified by the microcomputer and signalled to
user with an error message

 In the DEBUG environment, the TRACE command
is usually used to debug execution errors.

84CPE 0408330

 Review of the DEBUG commands
◦ Register: R [register name]
◦ Quit: Q
◦ Dump: D[address]
◦ Enter: E address [list]
◦ Fill: F st. address end address list
◦ Move: M st. addr. end addr. dest. Addr.
◦ Compare: C st. addr. end addr. dest. Addr.
◦ Search: S st. address end address list
◦ Input: I address
◦ Output: O address, byte
◦ Hex Add/Subtract: H num1,num2
◦ Assemble: A [starting address]
◦ Unassemble: U [starting address ending address]
◦ Name: N file name]
◦ Write: W [st. addr. [drive st. sector no. of sectors]]
◦ Load: L [st. addr. [drive st. sector no. of sectors]]
◦ Trace: T [=address] [number]
◦ Go: G [= starting address [breakpoint address …]]

85CPE 0408330

Solve the following problems from Chapter 4
from the course textbook:

2, 5, 10, 15, 20, 23, 24, 26, 28, 30

86CPE 0408330

[Computer Engineering Department,

Hashemite University]

 5.1 Data-Transfer Instructions

 5.2 Arithmetic Instructions

 5.3 Logic Instructions

 5.4 Shift Instructions

 5.5 Rotate Instructions

2CPE 0408330

 The data-transfer functions provide the
ability to move data either between its
internal registers or between an internal
register and a storage location in
memory.

 The data-transfer functions include
◦ MOV (Move byte or word)
◦ XCHG (Exchange byte or word)
◦ XLAT (Translate byte)
◦ LEA (Load effective address)
◦ LDS (Load data segment)
◦ LES (Load extra segment)

3CPE 0408330

 The MOVE Instruction

4CPE 0408330

• Used to move (copy) data between:
• Registers
• Register and memory
• Immediate operand to a register or
memory

• General format:
MOV D,S

• Operation: Copies the content of the
source to the destination
(S) (D)
• Source contents unchanged
• Flags unaffected
• Allowed operands
Register
Memory
Accumulator (AH,AL,AX)
Immediate operand (Source only)
Segment register (Seg-reg)
• Examples:
MOV [SUM],AX
(AL) (address SUM)
(AH) (address SUM+1)

Allowed operands for MOV instruction

 The MOVE Instruction

e.g. MOV DX, CS

MOV [SUM], AX

 Note that the MOV instruction cannot transfer
data directly between external memory.

5CPE 0408330

6CPE 0408330

MOV DX, CS

Before execution

Source = CS word data
Destination = DX word data
Operation: (CS) (DX)
• State before fetch and execution
CS:IP = 0100:0100 = 01100H
Move instruction code = 8CCAH
(01100H) = 8CH
(01101H) = CAH
(CS) = 0100H
(DX) = XXXX don’t care state

7CPE 0408330

MOV DX, CS

After execution

• State after execution
CS:IP = 0100:0102 = 01102H
01002H points to next
sequential instruction
(CS) = 0100H
(DX) = 0100H Value in CS
copied into DX
Value in CS unchanged

8CPE 0408330

 EXAMPLE
What is the effect of executing the instruction

MOV CX, [SOURCE_MEM]
Where SOURCE_MEM equal to 2016 is a memory
location offset relative to the current data segment
starting at 1A0016.

 Solution:
((DS)0+2016) → (CL)

((DS)0+2016+116) → (CH)
Therefore CL is loaded with the contents held at

memory address
1A00016 + 2016 = 1A02016

and CH is loaded with the contents of memory address
1A00016 + 2016 +116 = 1A02116

9CPE 0408330

 EXAMPLE

Use the DEBUG to verify

MOV CX,[20]

DS = 1A00, (DS:20) = AA55H

(1A00:20) (CX)

 Solution:

10CPE 0408330

• Example—Initialization of internal registers
with immediate data and address information
• DS, ES, and SS registers initialized from
immediate data via AX
IMM16 (AX)
(AX) (DS) & (ES) = 2000H
IMM16 (AX)
(AX) (SS) = 3000H
• Data registers initialized
IMM16 (AX) =0000H
(AX) (BX) =0000H
IMM16 (CX) = 000AH and (DX) =
0100H
• Index register initialized from immediate
operations
IMM16 (SI) = 0200H and (DI) = 0300H

DS,ES to 2000H

SS to 3000H

AX, BX to 0H

CX to 0A

SI to 200

DI to 300

11CPE 0408330

• Used to exchange the data between
two data registers or a data register
and memory
• General format:

XCHG D,S
• Operation: Swaps the content of the
source and destination
• Both source and destination change
(S) (D)
(D) (S)
• Flags unaffected
• Special accumulator destination
version executes faster
• Examples:

XCHG AX,DX
(Original value in AX) (DX)
(Original value in DX) (AX)

Allowed operands for XCHG instruction

12CPE 0408330

XCHG [SUM],BX

Note: SUM = 1234

Before execution

Source = BX word data
Destination = memory offset
SUM word data
Operation: (SUM) (BX)

(BX) (SUM)
What is the general logical address
of the destination operand?
• State before fetch and execution
CS:IP = 1100:0101 = 11101H
Move instruction code = 871E3412H
(01104H,01103H) = 1234H = SUM
(DS) = 1200H
(BX) = 11AA
(DS:SUM) = (1200:1234) = 00FFH

13CPE 0408330

XCHG [SUM],BX

After execution

• State after execution
CS:IP = 1100:0105 = 11105H
11005H points to next
sequential instruction
• Register updated
(BX) = 00FFH
• Memory updated
(1200:1234) = AAH
(1200:1235) = 11H

14CPE 0408330

 EXAMPLE

Use the DEBUG to verify the previous example.

 Solution:

15CPE 0408330

 Solution (cont’d):

 The XLAT Instruction

16CPE 0408330

• Translate instruction
• Used to look up a byte-wide value in a table in memory and copy that

value in the AL register
• General format:

XLAT
• Operation: Copies the content of the element pointed to in the source

table in memory to the AL register
((AL)+(BX) +(DS)0) (AL)

Where:
(DS)0 = Points to the active data segment
(BX) = Offset to the first element in the table
(AL) = Displacement to the element of the table that is to be accessed*
*8-bit value limits table size to 256 elements

17CPE 0408330

• Application: ASCII to EBCDIC Translation
• Fixed EBCDIC table coded into
memory starting at offset in BX
• Individual EBCDIC codes placed in
table at displacement (AL) equal to the
value of their equivalent ASCII character
• A = 41H in ASCII, A = C1H in EBCDIC
• Place the value C1H in memory at
address (41H+(BX) +(DS)0), etc.
• Example
XLAT
(DS) = 0300H
(BX) = 0100H
(AL) = 3FH 6FH = ? (Question mark)

18CPE 0408330

• The LEA, LDS, and LES Instructions

• Load effective address instruction
• Used to load an address pointer offset from memory into a register.
• General format:

LEA Reg16,EA
• Operation:

EA (Reg16)
• Source unaffected:
• Flags unaffected

19CPE 0408330

• Load full pointer
• Used to load a full address pointer from memory into a segment
register and a register
• Segment base address
• Offset
• General format and operation for LDS

LDS Reg16,EA
(EA) (Reg16)
(EA+2) (DS)

• LES operates the same, except initializes ES

20CPE 0408330

• Example
LDS SI,[200H]

Source = pointer to DS:200H 32 bits
Destination = SI word pointer offset
DS word pointer SBA
Operation: (DS:200H) (SI)
(DS:202H) (DS)
• State before fetch and execution
CS:IP = 1100:0100 = 11100H
LDS instruction code = C5360002H
(11102H,11103H) = (EA) = 0200H
(DS) = 1200H
(SI) = XXXX don’t care state
(DS:EA) = 12200H = 0020H = Offset
(DS:EA+2) = 12202H = 1300H = SBA

Before execution

21CPE 0408330

• Example
• State after execution
CS:IP = 1100:0104 = 11104H
01004H points to next
sequential instruction
(DS) = 1300H defines a new
data segment
(SI) = 0020H defines new
offset into DS

After execution

22CPE 0408330

 EXAMPLE

Verify the following instruction using DEBUG program.

LDS SI, [200H]

 Solution:

23CPE 0408330

 EXAMPLE

Initializing the internal registers of the 8088 from a table

in memory.

 Solution:

MOV AX, [INIT_TABLE]
MOV SS, AX
LDS SI, [INIT_TABLE+02H]
LES DI, [INIT_TABLE+06H]
MOV AX, [INIT_TABLE+0AH]
MOV BX, [INIT_TABLE+0CH]
MOV CX, [INIT_TABLE+0EH]
MOV DX, [INIT_TABLE+10H]

• DS loaded via AX with immediate value using move
instructions
DATA_SEG_ADDR (AX) (DS)
• Index register SI loaded with move from table
(INIT_TABLE,INIT_TABLE+1) SI
• DI and ES are loaded with load full pointer instruction
(INIT_TABLE+2,INIT_TABLE+3) DI
(INIT_TABLE+4,INIT_TABLE+5) ES
• SS loaded from table via AX using move instructions
(INIT_TABLE+6,INIT_TABLE+7) AX (SS)
• Data registers loaded from table with move instructions
(INIT_TABLE+8,INIT_TABLE+9) AX
(INIT_TABLE+A,INIT_TABLE+B) BX
(INIT_TABLE+C,INIT_TABLE+D) CX
(INIT_TABLE+E,INIT_TABLE+F) DX

LES DI,[INIT_TABLE+2]

24CPE 0408330

 The arithmetic instructions include
◦ Addition

◦ Subtraction

◦ Multiplication

◦ Division

 Data formats
◦ Unsigned binary bytes

◦ Signed binary bytes

◦ Unsigned binary words

◦ Signed binary words

◦ Unpacked decimal bytes

◦ Packed decimal bytes

◦ ASCII numbers

BCD and ASCII Arithmetic: The microprocessor allows arithmetic

manipulation of both BCD (Binary Coded Decimal) and ASCII data.

8086

ASCII Code for 0,1, ..,9: 30H, 31H, …, 39H

Note: ASCII = Unpacked + 30H

 Arithmetic operations are performed on
numbers expressed in ASCII format , but we
want the final result in decimal. (this saves
conversions!)
◦ Result must be in AL

 After the arithmetic operation, an adjustment
must be performed on the result to convert it
to the equivalent decimal result.

 This is main principle for all ASCCI adjust
operations.

CPE 0408330 26

27CPE 0408330

 Variety of arithmetic instruction provided to
support integer addition—core instructions
are

◦ ADD Addition

◦ ADC Add with carry

◦ INC Increment

 Addition Instruction—ADD

◦ ADD format and operation:

ADD D,S

(S) +(D) (D)

◦ Add values in two registers

ADD AX,BX

(AX) + (BX) (AX)

◦ Add a value in memory and a value in a register

ADD [DI],AX

(DS:DI) + (AX) (DS:DI)

◦ Add an immediate operand to a value in a
register or memory

ADD AX,100H

(AX) + IMM16 (AX)

 Flags updated based on result

◦ CF, OF, SF, ZF, AF, PF

(a) Addition Instructions. (b) Allowed operands for ADD and
ADC (c) Allowed operands for INC

28CPE 0408330

 EXAMPLE

Assume that the AX and BX registers contain 110016 and

0ABC16, respectively. What is the result of executing the
instruction ADD AX, BX?

 Solution:

(BX)+(AX) = 0ABC16 + 110016=1BBC16

The sum ends up in destination register AX.
That is

(AX) = 1BBC16

CF = 0

29CPE 0408330

• State before fetch and
execution
CS:IP = 1100:0100 = 11100H
ADD machine code = 03C3H
(AX) = 1100H
(BX) = 0ABCH
(DS) = 1200H
(1200:0000) = 12000H = XXXX

Before execution

30CPE 0408330

• State after execution
CS:IP = 1100:0102 = 11102H
11102H points to next sequential
instruction
• Operation performed
(AX) + (BX) (AX)
(1100H) + (0ABCH) 1BBCH
(AX) = 1BBCH
= 00011011101111002

(BX) = unchanged
• Impact on flags
• CF = 0 (no carry resulted)
• ZF = 0 (not zero)
• SF = 0 (positive)
• PF = 0 (odd parity)—parity flag is
only based on the bits of the least
significant byte

After execution

31CPE 0408330

 EXAMPLE

Verify the previous example using DEBUG program.

Solution:

32CPE 0408330

 EXAMPLE

The original contents of AX, BL, word-size memory

location SUM, and carry flag (CF) are 123416, AB16, 00CD16,
and 016, respectively. Describe the results of executing the
following sequence of instruction?

ADD AX, [SUM]

ADC BL, 05H

INC WORD PTR [SUM]

 Solution:

(AX)←(AX)+(SUM) = 123416 + 00CD16 =130116

(BL)←(BL)+imm8+(CF) = AB16 + 516+016 = B016

(SUM)←(SUM)+ 116 = 00CD16 + 116 = 00CE16

33CPE 0408330

 EXAMPLE

What is the result of executing the following instruction

sequence?

ADD AL, BL

AAA

Assuming that AL contains 3216 (ASCII code for 2) and BL contains
3416 (ASCII code 4), and that AH has been cleared.

 Solution:

(AL)←(AL)+(BL)= 3216+ 3416=6616

The result after the AAA instruction is

(AL) = 0616

(AH) = 0016

with both AF and CF remain cleared

Important: Any adjustment operation will be performed on AL therefore the result

must be always placed in AL before executing the adjustment operation

CPE 0408330 34

Code Registers

MOV AL, '2' AL = 32H

MOV BL, '3' BL = 33H

ADD AL, BL AL = 65H

AAA AL = 05

Code Registers

MOV AL, ‘9' AL = 39H

MOV BL, ‘9' BL = 39H

ADD AL, BL AL = 72H

AAA AX = 01H AL=08H

If low nibble of AL <= 9

• Clear the high nibble of AL

• AF = 0

• CF = 0

If low nibble of AL > 9 or AF = 1

Clear the high nibble of AL

• AL = AL + 6

• AH = AH + 1

• AF = 1

• CF = 1

Code Registers

MOV AL, ‘5' AL = 35H

MOV BL, ‘6' BL = 36H

ADD AL, BL AL = 6BH

AAA AX = 01H AL=01H

If low nibble of AL > 9 or AF = 1

Clear the high nibble of AL

• AL = AL + 6

• AH = AH + 1

• AF = 1

• CF = 1

35CPE 0408330

 EXAMPLE

Perform a 32-bit binary add operation on the contents of the
processor’s register.

 Solution:

(DX,CX) ← (DX,CX)+(BX,AX)
(DX,CX) = FEDCBA9816

(BX,AX) = 0123456716

MOV DX, FEDCH
MOV CX, BA98H
MOV BX, 0123H
MOV AX, 4567H
ADD CX, AX

ADC DX, BX ; Add with carry

36CPE 0408330

 Variety of arithmetic instruction
provided to support integer
subtraction—core instructions
are

• SUB Subtract

• SBB Subtract with borrow

• DEC Decrement

• NEG Negative

(a) Subtraction Instructions. (b) Allowed operands for SUB and SBB (c)
Allowed operands for DEC (d) Allowed operands for NEG

37CPE 0408330

 Subtract Instruction—SUB

◦ SUB format and operation:

SUB D,S

(D) - (S) (D)

◦ Subtract values in two registers

SUB AX,BX

(AX) - (BX) (AX)

◦ Subtract a value in memory and a
value in a register

SUB [DI],AX

(DS:DI) - (AX) (DS:DI)

◦ Subtract an immediate operand
from a value in a register or
memory

SUB AX,100H

(AX) - IMM16 (AX)

 Flags updated based on result

◦ CF, OF, SF, ZF, AF, PF

(a) Subtraction Instructions. (b) Allowed operands for SUB and SBB (c)
Allowed operands for DEC (d) Allowed operands for NEG

38CPE 0408330

 Subtract with borrow
instruction—SBB
◦ SBB format and operation:

SBB D,S

(D) - (S) - (CF) (D)

◦ Used for extended subtractions

◦ Subtracts two registers and carry
(borrow)

SBB AX,BX

◦ Example:

SBB BX,CX

(BX) = 1234H

(CX) = 0123H

(CF) = 0

(BX) - (CX) - (CF) (BX)

1234H - 0123H - 0H =
1111H

(BX) = 1111H

◦ What about CF? CF=0

If we execute instead:

SBB CX, BX

The result will be:

CX= EEEF

CF= 1

SF=1

PF=0

39CPE 0408330

 Negate instruction—NEG (2’s
complement)

◦ NEG format and operation

NEG D

(0) - (D) (D)

(1) (CF)

◦ Example:

NEG BX

(BX) =003AH

(0) - (BX) (BX)

0000H – 003AH=

0000H + FFC6H (2’s
complement) = FFC6H

(BX) =FFC6H ; CF =1

 Since no carry is generated in this add
operation, the carry flag is
complemented to give CF =1.

40CPE 0408330

 Decrement instruction—
DEC

◦ DEC format and operation

DEC D

(D) - 1 (D)

◦ Used to decrement pointer—
addresses

 Example

DEC SI

(SI) = 0FFFH

(SI) - 1 SI

0FFFH - 1 = 0FFEH

(SI) = 0FFEH

CPE 0408330 41

Code Registers

MOV AL, ‘3' AL = 33H

MOV BL, ‘2' BL = 32H

SUB AL, BL AL = 01H

AAS AL = 01

Code Registers

MOV AL, ‘2' AL = 32H

MOV BL, ‘3' BL = 33H

SUB AL, BL AH= 0 AL=FFH

AAS AH = FFH AL=09H
Answer= -(10)+9=-1

If low nibble of AL <= 9

• Clear the high nibble of AL

(no need)

• AF = 0

• CF = 0

if low nibble of AL > 9 or AF = 1

Clear the high nibble of AL

• AL = AL - 6

• AH = AH - 1

• AF = 1

• CF = 1

Code Registers

MOV AL, ‘1' AL = 31H

MOV BL, ‘9' BL = 39H

SUB AL, BL AH= 0 AL=F8H

AAS AH = FFH AL=02H
Answer= -(10)+2=-8

if low nibble of AL > 9 or AF = 1

Clear the high nibble of AL

• AL = AL - 6

• AH = AH - 1

• AF = 1

• CF = 1

42CPE 0408330

 EXAMPLE

Perform a 32-bit binary subtraction for variable X
and Y.

 Solution:

MOV SI, 200H ; Initialize pointer for X

MOV DI, 100H ; Initialize pointer for Y

MOV AX, [SI] ; Subtract LS words

SUB AX, [DI]

MOV [SI],AX ; Save the LS word of result

MOV AX, [SI]+2 ; Subtract MS words

SBB AX, [DI]+2

MOV [SI]+2, AX ; Save the MS word of result

43CPE 0408330

 Integer multiply instructions—
MUL and IMUL
◦ Multiply two unsigned or signed byte

or word operands

 General format and operation
◦ MUL S = Unsigned integer multiply

◦ IMUL S = Signed integer multiply

(AL) X (S8) (AX)

product gives 16 bit result

(AX) X (S16) (DX), (AX)

16- bit product gives 32 bit result

◦ Source operand (S) can be an 8-bit or
16-bit value in a register or memory

◦ AX assumed to be destination for 16
bit result

◦ DX,AX assumed destination for 32 bit
result

◦ Only CF and OF flags updated; other
undefined(a) Multiplication and Division Instructions. (b) Allowed operands

44CPE 0408330

 EXAMPLE

The 2’s-complement signed data contents of AL are –1 and
that of CL are –2. What result is produced in AX by executing the
following instruction?

MUL CL and IMUL CL

 Solution:

(AL) = -1 (as 2’s complement) = 111111112 = FF16

(CL) = -2 (as 2’s complement) = 111111102 = FE16

Executing the MUL instruction gives

(AX) =
111111112x111111102=11111101000000102=FD0216

Executing the IMUL instruction gives

(AX) = -116 x -216 = 216 = 000216

If the operation is MUL CX multiply CX by AX and store the higher order word of

the result in DX and the low order word of the result in AX

45CPE 0408330

 In general:
1- The multiplication may take one of two forms

- Multiply AL by 8-bit operand result will be 16-bit saved in AX.

- Multiply AX by 16-bit operand result will be 32 but saved in DX,AX.

2- To perform unsigned multiplication convert the two numbers
into binary and perform the multiplication.

3- To perform signed multiplication
- If both operands are positive or both are negative ignore the sign and

multiply the numbers normally

- If one operand is positive and the other is negative multiply the
numbers and perform 2’s complement for the result

45

46CPE 0408330

 EXAMPLE

Verify the previous example using DEBUG program.

Solution:

47CPE 0408330

 Integer divide instructions—DIV
and IDIV

◦ Divide unsigned– DIV S

◦ Operations:

(AX) / (S8) (AL) =quotient

(AH) = remainder
 16 bit dividend in AX divided by 8-bit

divisor in a register or memory,

 Quotient of result produced in AL

 Remainder of result produced in AH

(DX,AX) / (S16) (AX) =quotient

(DX) = remainder
 32 bit dividend in DX,AX divided by 16-

bit divisor in a register or memory

 Quotient of result produced in AX

 Remainder of result produced in DX

◦ Divide error (Type 0) interrupt
may occur.

(a) Multiplication and Division Instructions. (b) Allowed operands

CPE 0408330 48

UNSINGED DIV Registers (in Hex)

MOV AX, 14 AH = 00 , AL =0E

MOV BL, 3 BL = 03

DIV BL AH = 02 , AL =04

MOV AX, 14 AH = 00 , AL =0E

MOV BL, -3 BL = FD

DIV BL Operation = 14/253
AH = 0E, AL =00

MOV AX, -14 AH = FF , AL =F2

MOV BL, 3 BL = 03

DIV BL Operation = 65522/3
ERROR : INT0
(Divide overflow)

MOV AX, -14 AH = FF , AL =F2

MOV BL, -3 BL = FD

DIV BL ERROR : INT0
(Divide overflow)

SIGNED DIV Registers (in Hex)

MOV AX, 14 AH = 00 , AL =0E

MOV BL, 3 BL = 03

IDIV BL AH = 02 , AL =04

MOV AX, 14 AH = 00 , AL =0E

MOV BL, -3 BL = FD

IDIV BL AH = 02 , AL =FC

MOV AX, -14 AH = FF , AL =F2

MOV BL, 3 BL = 03

IDIV BL AH =FE , AL =FC

MOV AX, -14 AH = FF , AL =F2

MOV BL, -3 BL = FD

IDIV BL AH = FE , AL =04

SIGNED DIV:

The sign for the remainder == sign of the dividend

49CPE 0408330

 Used to sign extension signed numbers for
division

 Operations
◦ CBW = convert byte to word

(MSB of AL) (all bits of AH)

◦ CWD = convert word to double word

(MSB of AX) (all bits of DX)

 Application:
◦ To divide two signed 8-bit numbers, the value of the

dividend must be sign extended in AX
 Load into AL

 Use CBW to sign extend to 16 bits

50CPE 0408330

 In general:
1- The division may take one of two forms

- Divide AX by 8-bit operand The division is performed between AX/ 8-
bit operand. AL will contain the quotient of the result and AH will contain
the remainder of the result. IF quotient is FF then interrupt occurs.

- Divide DX,AX by 16-bit operand The division is performed between
DX,AX/ 16-bit operand. AX will contain the quotient of the result and DX
will contain the remainder of the result. IF quotient is FFFF then interrupt
occurs.

2- The way in which you perform either a singed or unsigned division is
similar to the mechanism used in the multiplication instruction

3- The sign for the remainder is always similar to the sign of the dividend
ex. -26 / 8 Quotient=-3 and Remainder = -2

50

51CPE 0408330

 EXAMPLE

What is the result of executing
the following instructions?

MOV AL, 0A1H
CBW
CWD

 Solution:

(AL) = A116 = 101000012

Executing the CBW instruction
extends the MSB of AL

(AH) = 111111112 = FF16 or
(AX) = 11111111101000012

Executing CWD instruction, we get
(DX) = 11111111111111112 =

FFFF16

That is,
(AX) = FFA116 (DX) = FFFF16

52CPE 0408330

 Variety of logic instructions provided to
support logical computations
◦ AND Logical AND

◦ OR Logical inclusive-OR

◦ XOR Logical exclusive-OR

◦ NOT Logical NOT

 Logical AND Instruction—AND
◦ AND format and operation:

AND D,S

(S) AND (D) (D)

◦ Logical AND of values in two registers

AND AX,BX

(AX) AND (BX) (AX)

◦ Logical AND of a value in memory and a value in a
register

AND [DI],AX

(DS:DI) AND (AX) (DS:DI)

◦ Logical AND of an immediate operand with a
value in a register or memory

AND AX,100H

(AX) AND IMM16 (AX)

◦ Flags updated based on result

 CF, OF, SF, ZF, PF

 AF undefined

(a) Logic Instructions. (b) Allowed operands for AND, OR,
and XOR (c) Allowed operands for NOT

53CPE 0408330

 EXAMPLE
Describe the results of executing the following instructions?

MOV AL, 01010101B
AND AL, 00011111B
OR AL, 11000000B
XOR AL, 00001111B
NOT AL

 Solution:
(AL)=010101012 ⋅ 000111112= 000101012=1516

Executing the OR instruction, we get
(AL)= 000101012 +110000002= 110101012=D516

Executing the XOR instruction, we get
(AL)= 110101012 ⊕ 000011112= 110110102=DA16

Executing the NOT instruction, we get

(AL)= (NOT)110110102 = 001001012=2516

54CPE 0408330

 EXAMPLE

Verify the previous example using DEBUG program.

 Solution:

55CPE 0408330

 Application– Masking bits with the logic instructions
• Mask—to clear a bit or bits of a byte or word to 0

• AND operation can be used to perform the mask
operation:
• 1 AND 0 0; 0 and 0 0

• bit or bits are masked by ANDing with 0
• 1 AND 1 1; 0 AND 1 0

• ANDing a bit or bits with 1 results in no change
• Example: Masking the upper 12 bits of a value in a
register

AND AX,000FH
(AX) =FFFF
IMM16 AND (AX) (AX)
000FH AND FFFFH = 00000000000011112 AND 11111111111111112

= 00000000000011112

= 000FH

56CPE 0408330

• OR operation can be used to set a bit or bits of a byte or word to 1

• X OR 0 X; result is unchanged

• X or 1 1; result is always 1

• Example: Setting a control flag in a byte memory location to 1

MOV AL,[CONTROL_FLAGS]
OR AL, 10H ; 00010000 sets fifth bit –b4
MOV [CONTROL_FLAGS],AL

• Executing the above instructions, we get

(AL) = XXXXXXXX2 OR 000100002 = XXX1XXXX2

Setting

57

 Variety of shift instructions
provided

◦ SAL/SHL Shift arithmetic left/shift
logical left

◦ SHR Shift logical right

◦ SAR Shift arithmetic right

 Perform a variety of shift left and
shift right operations on the bits of
a destination data operand

 Basic shift instructions—SAL/SHL,
SHR, SAR

◦ Destination may be in either a
register or a storage location in
memory

◦ Shift count may be:

1= one bit shift

CL = 1 to 255 bit shift

 Flags updated based on result

◦ CF, SF, ZF, PF

◦ AF undefined

◦ OF undefined if Count ≠ 1

(a) Shift Instructions. (b) Allowed operands

Every shift operation is equivalent to :

* multiplication by 2 for Shift left

* dividing by 2 for Logical Shift right

58CPE 0408330

 Typical instruction—count of 1

SHL AX,1

 Before execution

Dest = (AX) = 1234H

= 00010010001101002

Count = 1

CF = X

 Operation:
◦ The value in all bits of AX are shifted left one bit

position

◦ Emptied LSB is filled with 0

◦ Value shifted out of MSB goes to carry flag

 After execution

Dest = (AX) = 2468H

= 00100100011010002

CF = 0

 Conclusion:
◦ MSB has been isolated in CF and can be acted upon

by control flow instruction– conditional jump

◦ Result has been multiplied by 2

59CPE 0408330

 Typical instruction—count in CL

SHR AX,CL

 Before execution

Dest = (AX) = 1234H = 466010

= 00010010001101002

Count = (CL) = 02H

CF = X

 Operation:
◦ The value in all bits of AX are shifted right two bit

positions

◦ Emptied MSBs are filled with 0s

◦ Value shifted out of LSB goes to carry flag

 After execution

Dest = (AX) = 048DH = 116510

= 00000100100011012

CF = 0

 Conclusion
◦ Bit 1 has been isolated in CF and can be acted upon

by control flow instruction– conditional jump

◦ Result has been divided by 4

60CPE 0408330

 Typical instruction—count in CL

SAR AX,CL

 Before execution—arithmetic implies signed
numbers

Dest = (AX) = 091AH

= 00001001000110102 = +2330

Count = CL = 02H

CF = X

 Operation:
◦ The value in all bits of AX are shifted right two bit

positions

◦ Emptied MSB is filled with the value of the sign bit

◦ Values shifted out of LSB go to carry flag

 After execution

Dest = (AX) = 0246H

= 00000010010001102 = +582

CF = 1

 Conclusion
◦ Bit 1 has been isolated in CF and can be acted upon by

control flow instruction– conditional jump

◦ Result has been signed extended

◦ Result value has been divided by 4 and rounded to
integer: 4 X +582 = +2328

61CPE 0408330

 EXAMPLE

Assume that CL contains 0216 and AX contains 091A16.

Determine the new contents of AX and the carry flag after the instruction
SAR AX, CL is executed.

 Solution:

Initial (AX)=00001001000110102

shift AX right twice: (AX)=00000010010001102=024616

and the carry flag is (CF)=12

62CPE 0408330

 EXAMPLE

Verify the previous example using DEBUG program.

 Solution:

(AX)=00000010010001102=024616

and the carry flag is (CF)=12

63CPE 0408330

 EXAMPLE

Isolate the bit B3 of the byte at the offset address

CONTROL_FLAGS.

 Solution:

MOV AL, [CONTROL_FLAGS]

MOV CL, 04H
SHR AL, CL

Executing the instructions, we get
(AL)=0000B7B6B5B4

and

(CF)=B3

64CPE 0408330

 Variety of rotate instructions
provided:
◦ ROL Rotate left

◦ ROR Rotate right

◦ RCL Rotate left through carry

◦ RCR Rotate right through carry

 Perform a variety of rotate left and
rotate right operations on the bits
of a destination data operand
◦ Overview of function

◦ Destination may be in either a register or a
storage location in memory

◦ Rotate count may be:

1= one bit rotate

CL = 1 to 255 bit rotate

◦ Flags updated based on result

 CF

 OF undefined if Count ≠ 1

 Used to rearrange information

(a) Rotate Instructions. (b) Allowed operands

65CPE 0408330

 Typical instruction—count of 1

ROL AX,1

 Before execution
Dest = (AX) = 1234H

= 0001 0010 0011 01002

Count = 1

CF = 0

 Operation
◦ The value in all bits of AX are shifted left

one bit position

◦ Value rotated out of the MSB is reloaded at
LSB

◦ Value rotated out of MSB is copied to carry
flag

 After execution
Dest = (AX) = 2468H

= 0010 0100 0110 10002

CF = 0

66CPE 0408330

 Typical instruction—count in CL

ROR AX,CL

 Before execution
Dest = (AX) = 1234H

= 00010010001101002

Count = 04H

CF = 0

 Operation
◦ The value in all bits of AX are rotated right

four bit positions

◦ Values rotated out of the LSB are reloaded
at MSB

◦ Values rotated out of MSB copied to carry
flag

 After execution
Dest = (AX) = 4123H

= 01000001001000112

CF = 0

 Conclusion:
◦ Note that the position of hex characters in

AX have be rearranged

67CPE 0408330

 • Typical instruction—count in CL

RCL BX,CL

 Before execution
Dest = (BX) = 1234H

= 00010010001101002

Count = (CL) = 04H

CF = 0

 Operation
◦ The value in all bits of AX are rotated left

four bit positions

◦ Emptied MSBs are rotated through the
carry bit back into the LSB

◦ First rotate loads prior value of CF at the
LSB

◦ Last value rotated out of MSB retained in
carry flag

 After execution
Dest = (BX) = 2340H

= 00100011010000002

CF = 1

68CPE 0408330

 EXAMPLE

What is the result in BX and CF after execution of the following

instructions?
RCR BX, CL

Assume that, prior to execution of the instruction, (CL)=0416,
(BX)=123416, and (CF)=0

 Solution:
The original contents of BX are

(BX) = 00010010001101002 = 123416

Execution of the RCR command causes a 4-bit rotate right through
carry to take place on the data in BX, the results are

(BX) = 10000001001000112 = 812316

(CF) = 02

69CPE 0408330

 EXAMPLE

Verify the previous example using DEBUG program.

 Solution:

70CPE 0408330

 EXAMPLE

Disassembly and addition of 2 hexadecimal digits stored as a

byte in memory.

 Solution:

1st Instruction Loads AL with byte
containing two hex digits
2nd Instruction Copies byte to BL
3rd Instruction Loads rotate count
4th instruction Aligns upper hex digit of BL
with lower digit in AL
5th Instruction Masks off upper hex digit in AL
6th Instruction Masks off upper four bits of BL
7th Instruction Adds two hex digits

Solve the following problems from Chapter 5
from the course textbook:

1, 10, 26, 38, 47

71CPE 0408330

[Computer Engineering Department,

Hashemite University]

 6.1 Flag-Control Instructions
 6.2 Compare Instructions
 6.3 Control Flow and Jump Instructions
 6.4 Subroutines and Subroutine-

Handling Instructions
 6.5 The Loop and the Loop-Handling

Instructions
 6.6 String and String-Handling

Instructions

2CPE 0408330

 The flag-control instructions, when
executed, directly affect the state of the
flags. These instructions include:
 LAHF (Load AH from flags)

 SAHF (Store AH into flags)

 CLC (Clear carry)

 STC (Set carry)

 CMC (Complement carry)

 CLI (Clear interrupt)

 STI (Set interrupt)

3CPE 0408330

4CPE 0408330

• Variety of flag control instructions provide support
for loading, saving, and modifying content of the
flags register
• LAHF/SAHF Load/store control flags
• CLC/STC/CMC Modify carry flag
• CLI/STI Modify interrupt flag
• Modifying the carry flag—CLC/STC/CMC
• Used to initialize the carry flag
• Clear carry flag

CLC
0 (CF)

• Set carry flag
STC
1 (CF)

• Complement carry flag
CMC

(CF*) (CF) * stands for over bar (NOT)
• Modifying the interrupt flag—CLI/STI
• Used to turn on/off external hardware interrupts
• Clear interrupt flag

CLI
0 (IF) Disable interrupts

• Set interrupt flag
STI
1 (IF) Enable interrupts

5CPE 0408330

• Debug flag notation
• CF CY = 1, NC = 0
• Example—Execution of
carry flag modification
instructions
CY=1 initial sate
CLC ;Clear carry flag
STC ;Set carry flag
CMC ;Complement carry flag

6CPE 0408330

• Format of the flags in the AH register
• All loads and stores of flags take place through
the AH register

• B0 = CF
• B2 = PF
• B4 = AF
• B6 = ZF
• B7 = SF

• Load the AH register with the content of the
flags registers

LAHF
(Flags) (AH)
Flags unchanged

• Store the content of AH into the flags register
SAHF
(AH) (Flags)
SF,ZF,AF,PF,CF updated

• Application: saving a copy of the flags in
memory and initializing with new values from
memory

7CPE 0408330

 EXAMPLE

Write an instruction sequence to save the current contents

of the 8088’s flags in the memory location at offset MEM1 of the
current data segment and then reload the flags with the
contents of the storage location at offset MEM2.

 Solution:

LAHF ; Load AH from flags

MOV [MEM1], AH ; Move content of AH to MEM1

MOV AH, [MEM2] ; Load AH from MEM2

SAHF ; Store content of AH into flags

8CPE 0408330

 EXAMPLE

9CPE 0408330

 EXAMPLE

10CPE 0408330

 EXAMPLE

Of the three carry flag instructions CLC, STC, and CMC, only
one is really independent instruction. That is, the operation that it
provides cannot be performed by a series of the other two
instructions. Determine which one of the carry instruction is the
independent instruction.

 Solution:

CLC ⇔ STC followed by a CMC
STC ⇔ CLC followed by a CMC
Therefore, only CMC is the independent instruction.

11CPE 0408330

 EXAMPLE

Verify the operation of the following instructions that

affect the carry flag,

CLC

STC

CMC

by executing them with the DEBUG program. Start with CF flag set
to 1 (CY).

12CPE 0408330

 Solution:

13CPE 0408330

• Compare instruction
• Used to compare two values of data and
update the state of the flags to reflect
their relationship

• General format:
CMP D,S

• Operation: Compares the content of the
source to the destination; updates flags based
on result
(D) - (S) Flags updated to reflect relationship
• Source and destination contents unchanged
• Allowed operand variations:

• Values in two registers
• Values in a memory location and a
register
• Immediate source operand and a value
in a register or memory

• Allows SW to perform conditional control
flow—typically testing of a flag by jump
instruction

• ZF = 1 D = S = Equal
• ZF = 0, CF = 1 D < S = Unequal, less
than
• ZF = 0, CF = 0 D > S = Unequal,
greater than

14CPE 0408330

 EXAMPLE

Describe what happens to the status flags as the sequence

of instructions that follows is executed.

MOV AX, 1234H

MOV BX, ABCDH

CMP AX, BX

 Solution:

(AX) = 123416= 00010010001101002

(BX) = ABCD16 = 10101011110011012

(AX) – (BX) = 00010010001101002- 10101011110011012

= 0110 0110 0110 01112

Therefore, ZF = 0, SF = 0, OF = 0, PF = 0, CF = 1, AF = 1

15CPE 0408330

 EXAMPLE

16CPE 0408330

•Control flow: alternate the execution path of instructions
in the program
•What are the pointers that keep track of the instructions being
executed ?
•How it is possible to alternate the sequence of instructions being
executed ?

 Unconditional jump instruction

 Conditional jump instruction
 Branching structure – IF-THEN
 Loop program structure – REPEAT- UNTIL and WHILE-DO
 Applications using the loop and branch software structures

 Intra-segment jump: modify IP
◦ Short-label specify 8-bit signed displacement (relative to

the jump instruction)

◦ Near-label specify IP with 16-bit immediate operand

◦ Memptr-16 and Regptr-16 are same as Near-label but IP
is specified as content of memory or register.

 Inter-segment jump: modify IP and CS
◦ Far-label: uses 32-bit immediate operand to specify IP

and CS

◦ Memptr-32: uses 4 byte memory locations to specify IP
and CS.

CPE 0408330 17

18CPE 0408330

• Jump operation alters the
execution path of the
instructions in the program—
flow control
• Unconditional Jump

• Always takes place
• No status requirements are
imposed

• Example (part a)
• JMP AA instructions in Part
I executed
• Control passed to next
instruction identified by AA
in Part III
• Instructions in Part II
skipped

19CPE 0408330

• Conditional jump
• May or may not take place
• Status conditions must be
satisfied

• Example (part b)
• Jcc AA instruction in Part 1
executed
• Conditional relationship specified
by cc is evaluated
• If conditions met, jump takes
place and control is passed to next
instruction identified by AA in Part
III
• Otherwise, execution continues
sequentially with first instruction in
Part II

• Condition cc specifies a relationship
of status
flags such as CF, PF, ZF, etc.

No return linkage is saved when the

JUMP is performed

20CPE 0408330

Unconditional jump instruction:
• Implements the unconditional jump operation
needed by:

• Branch program control flow structures
• Loop program control flow structures

• General format:
JMP Operand

• Types of unconditional jumps
• Intrasegment—branch to address is
located in the current code segment
• Only IP changes value
• short-label

• 8-bit signed displacement coded
into the instruction
• Immediate addressing
• Range equal –126 to +129
• New address computed as:

(Current IP) + short-label (IP)
Jump to address = (Current CS) + (New IP)

• near-label
• 16-bit signed displacement coded in
the instruction

• Example
JMP 1234H

CS:100 lab ADD BX,1234

CS:104 INC AX

CS:106 JMP lab

CS:108 NEG BX

21CPE 0408330

 EXAMPLE

Verify the operation of the instruction JMP BX using the

DEBUG program. Let the contents of BX be 001016.

 Solution:

22CPE 0408330

 EXAMPLE

Use the DEBUG program to observe the operation of the

instruction JMP [BX].

 Solution:

23CPE 0408330

• Intersegment—branch to address is located in another code segment
• Both CS and IP change values
• far-label

• 32-bit immediate operand coded into the instruction
• New address computed as:

• 1st 16 bits (IP)
• 2nd 16 bits (CS)

Jump to address = (New CS):(New IP)
• memptr32

• 32-bit value specified in memory
• Memory indirect addressing

• Example
JMP DWORD PTR [DI]

• Operation:

(DS:DI) new IP
(DS:DI +2) new CS
Jump to address = (New CS):(New IP)

24

• Condition jump instruction
• Implements the conditional jump operation
• General format:

Jcc Operand
• cc = one of the supported conditional relationships
• Supports the same operand types as
unconditional jump
• Operation: Flags tested for conditions defined by cc
and:
If cc test True:

IP, or IP and CS are updated with new value
• Jump is taken
• Execution resumes at jump to target address
If cc test False:

IP, or IP and CS are unchanged
• Jump is not taken

• Execution continues with the next sequential
instruction

• Examples of conditional tests:
JC = jump on carry CF = 1
JPE/JP = jump on parity even PF =1
JE/JZ = jump on equal ZF = 1

same
same

These instructions are associated with the

compare instruction usually

25CPE 0408330

• Example—IF-THEN-ELSE: comparing
values

• One of the most widely used flow
control program structure
• Implemented with CMP, JE, and
JMP instructions
• Operation:

• AX compared to BX to
update flags
• JE tests for ZF = 1
• If (AX) ≠ (BX); ZF = 0 ELSE
path—next sequential
instruction is executed
• If (AX) = (BX); ZF =1 THEN
path—instruction pointed to
by EQUAL executes
• JMP instruction used in ELSE
path to bypass the THEN path.

26CPE 0408330

• Example—IF-THEN-ELSE using a
register bit test
• Conditional test is made with
JNZ instruction and branch taken
if

ZF =0
• Generation of test condition
(AL) = xxxxxxx AND 00000100
= 00000x00
if bit 2 = 1 ZF =0 (not zero)
if bit 2 = 0 ZF =1
Therefore, jump to BIT2_ONE only
takes place if bit 2 of AL equals 1
• Same operation can be performed
by shifting bit 2 to the CF and then
testing with JC

CF =1

27CPE 0408330

• Example—Repeat-Until program
structure

• Allows a part of a program to be
conditionally repeated over an over
• Employs post test—conditional test
at end of sequence; always performs
one iteration
• Important parameters:

• Initial count count register
• Terminal count zero or other
value

• Program flow of control:
• Initialize count

MOV CL,COUNT
• Perform body of loop operation
AGAIN: --- --- first of multiple
instructions
• Decrement count

DEC CL
• Conditional test for completion

JNZ AGAIN

Repeat Until structure

Post test

28CPE 0408330

• Example—While-Do program structure
• Allows a part of a program to be
conditionally repeated over an over
• Employs pre-test—at entry of loop;
may perform no iterations
• Important parameters

• Initial count count register
• Terminal count zero or other
value

• Program flow/control:
• Initialize count

MOV CL,COUNT
• Pre-test

AGAIN: JZ NEXT
• Perform body of loop operation
--- --- first of multiple
instructions
• Decrement count

DEC CL
• Unconditional return to start of
loop

JMP AGAIN

While do structure

Pre test

29CPE 0408330

 EXAMPLE

Implement an instruction sequence that calculates the

absolute difference between the contents of AX and BX and
places it in DX.

 Solution:

CMP AX, BX

JC DIFF2

DIFF1: MOV DX, AX

SUB DX, BX ; (DX)=(AX)-(BX)

JMP DONE

DIFF2: MOV DX, BX

SUB DX, AX ; (DX)=(BX)-(AX)

DONE: NOP

30CPE 0408330

• Subroutine—special segment of program that can be called
for execution from any point in a program (like function)
• A subroutine is also known as a procedure.
• Program structure that implements HLL ―functions‖ and
―procedures‖
• Written to perform an operation (function/procedure) that
must be performed at various points in a program
• Written as a subroutine and only included once in the
program
• A return instruction must be included at the end of the
subroutine to initiate the return sequence to the main program
environment.
• CALL and RET instructions
• PUSH and POP instructions

31CPE 0408330

• Example:
• Instruction in Main part of program
calls ―Subroutine A‖
• Program flow of control transferred to
first instruction of Subroutine A
• Instructions of Subroutine A execute
sequentially
• Return initiated by last instruction of
Subroutine A
• Same sequence repeated when the
subroutine is called again later in the
program

• Instructions:
• Call instruction—initiates the
subroutine from the main part of
program
• Return instruction—initiates return of
control to the main program at
completion of the subroutine
• Push and pop instructions used to save
register content and pass parameters

The subroutine may be called and executed more than one time, but it is written one time

32CPE 0408330

• Call Instruction
• Implements two types of calls:

• Intrasegment call
• Intersegment call

• Intrasegment call—starting address of
subroutine is located in the current code
segment
• Only IP changes value

• near-proc
• 16-bit offset coded in the
instruction
• Example

CALL 1234H
• Operation:

1. IP of next instruction saved
on top of stack
2. SP is decremented by 2
3. New value from call
instruction is loaded into IP
4. Instruction fetch restarts with
first instruction of subroutine
Current CS:New IP

33CPE 0408330

• regptr16
• 16-bit value of IP specified as the content of a register
• Register addressing
• Example:

CALL BX
• Operation:
• Same as near-proc except

(BX) New IP

• memptr16
• 16-bit value of IP specified as the content of a storage
location in memory
• Memory addressing modes—register addressing
• Example

CALL [BX]
• Same as near-proc except

(DS:BX) New IP

34CPE 0408330

• Intersegment—start address of the subroutine points to another
code segment

• Both CS and IP change values

• far-proc
• 32-bit immediate operand coded into the instruction
• New address computed as:

• 1st 16 bits New IP
• 2nd 16 bits New CS

Subroutine starts at = New CS:New IP

• memptr32
• 32-bit value specified in memory
• Memory addressing modes—register indirect addressing
• Example

CALL DWORD PTR [DI]
• Operation:

(DS:DI) New IP
(DS:DI +2) New CS
Starting address of subroutine = New CS:New IP

35CPE 0408330

• Return instruction
• Every subroutine must end with a
return instruction
• Initiates return of execution to
the instruction in the main
program following that which
called the subroutine
• Example:

RET
• Causes the value of IP
(intrasegment return) or both IP
and CS (intersegment return) to be
popped from the stack and put
back into the IP and CS registers
• Increments SP by 2/4

36CPE 0408330

 EXAMPLE
TITLE EXAMPLE 6.10

PAGE ,132
STACK_SEG S SEGMENT STACK 'STACK'

DB 64 DUP(?)
STACK_SEG ENDS
CODE_SEG SEGMENT 'CODE'
EX610 PROC FAR
ASSUME CS:CODE_SEG, SS:STACK_SEG
;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 6.10
CALL SUM
RET

SUM PROC NEAR
MOV DX, AX
ADD DX, BX ; (DX)=(AX)+(BX)
RET

SUM ENDP
EX610 ENDP
CODE_SEG ENDS
END EX610

37CPE 0408330

 EXAMPLE

38CPE 0408330

 EXAMPLE

39CPE 0408330

 EXAMPLE

40CPE 0408330

• Elements of a subroutine
• Save of information to stack—PUSH
• Main body of subroutine—Multiple instructions
• Restore of information from stack—POP
• Return to main program—RET

• Save of information
• Must save content of registers/memory locations to
be used or other program parameters (FLAGS)
• PUSH, PUSHF

• Main body
• Retrieve input parameters passed from main program
via stack—stack pointer indirect address
• Performs the algorithm/function/operation required
of the subroutine
• Prepare output parameters/results for return to main
body via stack—stack pointer indirect addressing

• Restore information
• Register/memory location contents saved on stack at
entry of subroutine must be restored before return to
main program—POP, POPF

41

• Push instruction
• General format:

PUSH S
• Saves a value on the stack—content of:
• Register/segment register
• Memory
• Example:

PUSH AX
(AH) ((SP)-1)
(AL) ((SP)-2)
(SP)-2 (SP) = New top of stack

• • Pop instruction
• General format:

POP D
• Restores a value on the stack—content
to: register, segment register, memory
• Example:

POP AX
((SP)) AL
((SP)+1) AH
((SP)+2) SP =Old top of stack

42CPE 0408330

 EXAMPLE

Write a procedure named SQUARE that squares the contents

of BL and places the result in BX

 Solution:

;Subroutine: SQUARE
;Description: (BX)=square of (BL)
SQUARE PROC NEAR

PUSH AX ; Save the register to be used
MOV AX, BX ; Place the number in AL
IMUL BL ; Multiply with itself
MOV BX, AX ; Save the result
POP AX ; Restore the register used
RET

SQUARE ENDP

43CPE 0408330

• Push flags instruction
• General formats:

PUSHF
• Saves flags onto the stack
• Operation
(FLAGS) ((SP))
(SP)-2 (SP) = New top of
stack

• Pop flags instruction
• General formats:

POPF
• Restores flags from the stack
((SP)) FLAGS
(SP)+2 (SP) =Old top of stack

44

• Loop—segment of program that is repeatedly executed
• Can be implemented with compare, conditional jump, and decrement
instructions

• Loop instructions:
• Special instructions that efficiently perform basic loop operations
• Replace the multiple instructions with a single instruction
• LOOP—loop while not zero (while CX is not zero)

• CX ≠ 0 — repeat while count not zero
Equivalent to Dec CX followed by JNZ

• LOOPE/LOOPZ– loop while equal
• CX ≠ 0 — repeat while count not zero, and
• ZF = 1—result of prior instruction was equal

• LOOPNE/LOOPNZ—loop while not equal
• CX ≠ 0 — repeat while count not zero, and
• ZF = 0—result from prior instruction was not equal

NOTE All LOOPS instructions does not affect the flag register

45CPE 0408330

46CPE 0408330

• Structure of a loop
• Initialization of the count in CX
• Body—instruction sequence that is to be
repeated; short label identifying beginning
• Loop instruction– determines if loop is
complete or if the body is to repeat
• Example
1. Initialize data segment, source and
destination block pointers, and loop count
2. Body of program is executed—source
element read, written to destination, and
then both pointers incremented by 1
3. Loop test

a. Contents of CX decremented by 1
b. Contents of CX check for zero
c. If CX = 0, loop is complete and next
sequential instruction (HLT) is executed
d. If CX ≠ 0, loop of code is repeated
by returning control to the instruction
corresponding to the Short-Label
(NXTPT:) operand

47CPE 0408330

 EXAMPLE

Given the following sequence of

instructions, explain what happens as they are
executed.

MOV DL, 05
MOV AX, 0A00H
MOV DS, AX
MOV SI, 0
MOV CX, 0FH

AGAIN: INC SI
CMP [SI], DL
LOOPNE AGAIN

48CPE 0408330

 EXAMPLE

49CPE 0408330

 EXAMPLE

50CPE 0408330

• String—series of bytes or words of data that reside at consecutive memory
addresses

• String instructions
• Special instructions that efficiently perform basic string operations
• Replaces multiple instructions with a single instruction

• Examples
• Move string
• Compare string
• Scan string
• Load string
• Store string
• Repeated string

• Typical string operations
• Move a string of data elements from one part of memory to another—block move
• Scan through a string of data elements in memory looking for a specific value
• Compare the elements of two strings of data elements in memory to determine if
they are the same or different
• Initialize a group of consecutive storage locations in memory

51CPE 0408330

52CPE 0408330

• Move string instruction
• Used to move an element of data between a source and destination
location in memory:
• General format:

MOVSB—move string byte
MOVSW—move string word

• Operation: Copies the content of the source to the destination;
autoincrements/decrements both the source and destination addresses
((DS)0+(SI)) ((ES)0+(DI))
(SI) ±1 or 2 (SI)
(DI) ±1 or 2 (DI)
• Direction flag determines increment/decrement
DF = 0 autoincrement
DF = 1 autodecrement

53CPE 0408330

• Application example— The
block-move program using
the move-string instruction:

1. Initialize DS & ES to
same value
2. Load SI and DI with
block starting addresses
3. Load CX with the count
of elements in the string
4. Set DF for
autoincrement
5. Loop on string move to
copy N elements

• MOVSB and LOOP replaces
multiple move and
increment/decrement
instructions

Reset

54CPE 0408330

• Compare string instruction
• Used to compare the destination element of data in memory to the
source element in memory and reflect the result of the comparison in
the flags
• General format:

CMPSB,SW—compare string byte, word
• Operation: Compares the content of the destination to the source;
updates the flags; autoincrements/decrements both the source and
destination addresses

((DS)0+(SI)) - ((ES)0+(DI))
update status flags

(SI) ± 1 or 2 (SI)
(DI) ± 1 or 2 (DI)

• Scan string instruction—SCAS
• Same operation as CMPS except destination is compared to a value in
the accumulator (A) register

(AL,AX) - ((ES)0+(DI))

55CPE 0408330

• Application example—block
scan:

1. Initialize DS & ES to same
value
2. Load AL with search value;
DI with block starting address;
and CX with the count of
elements in the string; clear
DF
3. Loop on scan string until
the first element equal to 05H
is found

56CPE 0408330

• Load string instruction
• Used to load a source element of data from memory into the accumulator
register.
• General format:

LODSB,SW—load string byte, word
• Operation: Loads the content of the source element in the accumulator;
autoincrements/decrements the source addresses

((DS)0+(SI)) (AL or AX)
update status flags

(SI) ± 1 or 2 (SI)
• Store string instruction—STOS
• Same operation as LODS except value in accumulator is stored in
destination is memory

(AL,AX) ((ES)0+(DI))

57CPE 0408330

• Application example—
initializing a block of memory
with a store string instruction:

1. Initialize DS & ES to same
value
2. Load AL with initialization
value; DI with block starting
address, CX with the count of
elements in the string; and
clear DF
3. Loop on store string until
all element of the string are
initialized to 05H

How many times will this loop execute ?

58CPE 0408330

• Repeat string—in most applications the basic string operations are
repeated

• Requires addition of loop or compare & conditional jump instructions
• Repeat prefix provided to make coding of repeated sting more
efficient
• Repeat prefixes

• REP
• CX ≠ 0 — repeat while not end of string
• Used with: MOVS and STOS

• REPE/REPZ
• CX ≠ 0—repeat while not end of string,
and

ZF = 1—strings are equal
• Used with: CMPS and SCAS

• REPNE/REPNZ—Used with: CMPS and SCAS
• CX ≠ 0—repeat while not end of string,
and

ZF = 0—strings are not equal
• Used with: CMPS and SCAS

59CPE 0408330

60CPE 0408330

• General format:
REPXXXX

Where: XXXX = one of string
instructions
• Examples:

REPMOVB
REPESCAS
REPNESCAS

• Application example initializing a block of
memory:

1. Initialize DS & ES to same value
2. Load AL with initialization value; DI
with block starting address, and CX with
the count of elements in the string
4. Clear the direction flag for
autoincrement mode
4. Repeat store string until all elements
of the string are initialized to 05H

61CPE 0408330

 EXAMPLE

62CPE 0408330

 EXAMPLE

Solve the following problems from Chapter 6
from the course textbook:

1, 8, 14, 28, 39, 43

63CPE 0408330

