

Pearson New International Edition

International_PCL_TP.indd 1 7/29/13 11:23 AM

The 8088 and 8086 Microprocessors
Programming, Interfacing, Hardware

Walter A. Triebel Avtar Singh
Fourth Edition

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this
book by such owners.

ISBN 10: 1-269-37450-8
ISBN 13: 978-1-269-37450-7

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

 Printed in the United States of America

Copyright_Pg_7_24.indd 1 7/29/13 11:28 AM

ISBN 10: 1-292-04060-2
ISBN 13: 978-1-292-04060-8

ISBN 10: 1-292-04060-2
ISBN 13: 978-1-292-04060-8

Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

1. Introduction to Microprocessors and Microcomputers

1

1Walter A. Triebel/Avtar Singh

2. Software Architecture of the 8088 and 8086 Microprocessors

29

29Walter A. Triebel/Avtar Singh

3. Assembly Language Programming

63

63Walter A. Triebel/Avtar Singh

4. Machine Language Coding and the Debug Software Development Program of the IBM PC

109

109Walter A. Triebel/Avtar Singh

5. 8088/8086 Programming—Integer Instructions and Computations

169

169Walter A. Triebel/Avtar Singh

6. 8088/8086 Programming—Control Flow Instructions and Program Structures

243

243Walter A. Triebel/Avtar Singh

7. Assembly Language Program Developments with MASM

317

317Walter A. Triebel/Avtar Singh

8. The 8088 and 8086 Microprocessors and Their Memory and Input/Output Interfaces

357

357Walter A. Triebel/Avtar Singh

9. Memory Devices, Circuits, and Subsystem Design

429

429Walter A. Triebel/Avtar Singh

10. Input/Output Interface Circuits and LSI Peripheral Devices

489

489Walter A. Triebel/Avtar Singh

11. Interrupt Interface of the 8088 and 8086 Microprocessors

605

605Walter A. Triebel/Avtar Singh

12. Hardware of the Original IBM PC Microcomputer

657

657Walter A. Triebel/Avtar Singh

13. PC Bus Interfacing, Circuit Construction, Testing, and Troubleshooting

699

699Walter A. Triebel/Avtar Singh

II

14. The 80386, 80486, and Pentium™ Processor Families: Software Architecture

745

745Walter A. Triebel/Avtar Singh

15. The 80386, 80486, and Pentium™ Processor Families: Hardware Architecture

853

853Walter A. Triebel/Avtar Singh

Bibliography

959

959Walter A. Triebel/Avtar Singh

961

961Index

Introduction to
Microprocessors and
Microcomputers

▲ INTRODUCTION

In the past two decades, most of the important advances in computer system technology
have been closely related to the development of high-performance 16-bit, 32-bit, and
64-bit microprocessor architectures and the microcomputer systems built with them. Dur-
ing this period, there has been a major change in the direction of businesses from using
larger, expensive minicomputers to smaller, lower-cost microcomputers. The IBM personal
computer (the PC, as it has become known), introduced in mid-1981, was one of the ear-
liest microcomputers that used a 16-bit microprocessor, the 8088, as its processing unit.
A few years later it was followed by another IBM personal computer, the PC/AT (per-
sonal computer advanced technology). This system was implemented using the more
powerful 80286 microprocessor.

The PC and PC/AT quickly became cornerstones of the evolutionary process
from minicomputer to microcomputer. In 1985 an even more powerful microprocessor,
the 80386DX, was introduced. The 80386DX was Intel Corporation’s first 32-bit
member of the 8086 family of microprocessors. Availability of the 80386DX quickly
lead to a new generation of high-performance PC/ATs. In the years that followed,
Intel expanded its 32-bit architecture offering with the 80486 and Pentium processor
families. These processors brought new levels of performance and capabilities to the
personal computer marketplace. Today, Pentium IV processor-based PC/AT micro-
computers represent the industry standard computer platform for the personal com-
puter industry.

From Chapter 1 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

1

Since the introduction of the original IBM PC, the microprocessor market has
matured significantly. Today, several complete families of 16- and 32-bit microprocessors
are available. They all include support products such as very large-scale integrated
(VLSI) peripheral devices, emulators, and high-level software languages. Over the same
period of time, these higher-performance microprocessors have become more widely used
in the design of new electronic equipment and computers. This text presents a detailed
study of the software and hardware architectures of Intel Corporation’s 8088 and 8086
microprocessors. An introduction to the 80286, 80386, 80486, and Pentium processors is
also included.

In this chapter we begin our study with an introduction to microprocessors and
microcomputers. The following topics are discussed:

1 The IBM and IBM-Compatible Personal Computers: Reprogrammable Micro-
computers

2 General Architecture of a Microcomputer System

3 Evolution of the Intel Microprocessor Architecture

4 Number Systems

▲ 1 THE IBM AND IBM-COMPATIBLE PERSONAL
COMPUTERS: REPROGRAMMABLE MICROCOMPUTERS

The IBM personal computer (the PC), shown in Fig. 1, was IBM’s first entry into the
microcomputer market. After its introduction in mid-1981, market acceptance of the PC
grew by leaps and bounds, and it soon became the leading personal computer architec-
ture. One of the important keys to its success is that an enormous amount of application
software became available for the machine. Today, more than 50,000 off-the-shelf soft-
ware packages are available for use with the PC, including business applications, software
languages, educational programs, games, and even alternate operating systems.

Figure 1 Original IBM personal
computer. (Courtesy of International
Business Machines Corporation)

Introduction to Microprocessors and Microcomputers

2

Another reason for the IBM PC’s success is the fact that it offers an open system
architecture. By open system, we mean that the functionality of the PC expands by simply
adding boards into the system. Some examples of add-in hardware features are additional
memory, a modem, serial communication interfaces, and a local area network interface. This
system expansion is enabled by the PC’s expansion bus—five card slots in the original PC’s
chassis. IBM defined an 8-bit expansion bus standard known as the I/O Channel and pro-
vided its specification to other manufacturers so that they could build different types of add-
in products for the PC. Just as for software, a wide variety of add-in boards quickly became
available. The result was a very flexible system that could be easily adapted to a wide vari-
ety of applications. For instance, the PC can be enhanced with add-in hardware to permit its
use as a graphics terminal, to synthesize music, and even to control industrial equipment.

The success of the PC caused IBM to introduce additional family members. IBM’s
PCXT is shown in Fig. 2 and an 80286-based PC/AT is displayed in Fig. 3. The PCXT
employed the same system architecture as that of the original PC. It was also designed
with the 8088 microprocessor, but one of the floppy disk drives was replaced with a 10M-
byte (10,000,000-byte) hard disk drive. The original PC/AT was designed with a 6-MHz
80286 microprocessor and defined a new open-system bus architecture called the industry
standard architecture (ISA), which provides a 16-bit, higher-performance I/O expansion
bus.

Today, Pentium IV processor-based PCs are the mainstay of the personal computer
marketplace. Systems that are implemented with the Pentium IV processor no longer con-
tain an ISA bus. They employ a new high-speed bus architecture known as the peripheral
component interface (PCI) bus. PCI permits connection of high-performance I/O inter-
faces, such as graphics, video, and high-speed local area network (LAN). The PCI bus
supports 32-bit and 64-bit data transfers, and its data-transfer rate is more than 10 times

Introduction to Microprocessors and Microcomputers

Figure 2 PCXT personal computer. (Courtesy of International Business
Machines Corporation)

3

Figure 3 PC/AT personal computer.
(Courtesy of International Business
Machines Corporation)

that of the ISA bus. These modern machines offer a wide variety of computing capabili-
ties, range of performance, and software base for use in business and at home.

The IBM PC or a PC compatible is an example of a reprogrammable
microcomputer—that is, one that is intended to run programs for a variety of applications.
For example, one could use the PC with a standard application package for accounting or
inventory control. In this type of application, the primary task of the microcomputer is to
analyze and process a large amount of data, known as the database. Another user could
run a word-processing software package—for example, a data input /output-intensive
task—where the user enters text information that is reorganized by the microcomputer
and then output to a diskette or printer. As a third example, a programmer uses a lan-
guage, such as C, to write programs for a scientific application. Here the primary function
of the microcomputer is to solve complex mathematical problems. The personal computer
used for each of these applications is the same; the difference is in the software applica-
tion that the microcomputer is running—that is, the microcomputer is simply repro-
grammed to run the new application.

Let us now look at what a microcomputer is and how it differs from the other
classes of computers. Evolution of the computer marketplace over the past 25 years has
taken us from very large mainframe computers to smaller minicomputers and now to even
smaller microcomputers. These three classes of computers did not originally replace each
other; they all coexisted in the marketplace. Computer users had the opportunity to select
the computer that best met their needs. The mainframe computer was used in an environ-
ment where it serviced a large number of users. For instance, a large university or insti-
tution would select a mainframe computer for its data-processing center where it would
service hundreds of users. Mainframes are still used today to satisfy very large computer
requirements.

The minicomputer had been the primary computer solution for the small, multiuser
business environment. In this environment, several users connect to the system with ter-
minals and all share the same computer system, with many of them actively working on
the computer at the same time. An important characteristic of this computer system con-
figuration is that all computational power resides at the minicomputer. The user terminals
are what are known as dumb terminals—that is, they are not self-sufficient computers. If

Introduction to Microprocessors and Microcomputers

4

the minicomputer is not working, all users are down and cannot do any work at their ter-
minals. An example of a user community that traditionally uses a minicomputer is a
department at a university or a business that has a multiuser-dedicated need, such as
application software development.

Managers in a department may select a microcomputer, such as the PC/AT, for their
personal needs, such as word processing and database management. The original IBM PC
was called a personal computer because it was initially intended to be a single-user
system—that is, the user’s personal computer. Several people could use the same com-
puter, but only one at a time. Today, the microcomputer has taken over most of the tradi-
tional minicomputer user base. High-feature, high-performance microcomputer-based
systems have replaced the minicomputer as a file server. Many users have their personal
computers attached to the file server through a local area network. However, in this more
modern computer system architecture, all users also have local computational power in
their own PCs. The file server extends the computational power and system resources,
such as memory available to the user, so if the file server is not operating, users can still
do work with their individual personal computers.

Along the evolutionary path from mainframes to microcomputers, the basic con-
cepts of computer architecture have not changed. Just like the mainframe and mini-
computer, the microcomputer is a general-purpose electronic data-processing system
intended for use in a variety of applications. The key difference is that microcomputers,
such as the PC/AT, employ the newest very large-scale integration (VLSI) circuit technol-
ogy microprocessing unit (MPU) to implement the system. Microcomputers, such as a Pen-
tium III Xeon® processor-based file server, which are designed for the high-performance
end of the microcomputer market, are physically smaller computer systems, outperform
comparable minicomputer systems, and are available at a much lower cost.

▲ 2 GENERAL ARCHITECTURE
OF A MICROCOMPUTER SYSTEM

The hardware of a microcomputer system can be divided into four functional sections: the
input unit, microprocessing unit, memory unit, and output unit. The block diagram in Fig.
4 shows this general microcomputer architecture. Each of these units has a special func-

Figure 4 General architecture of a
microcomputer system.

Introduction to Microprocessors and Microcomputers

5

tion in terms of overall system operation. Next we will look at each of these sections in
more detail.

The heart of a microcomputer is its microprocessing unit (MPU). The MPU of a
microcomputer is implemented with a VLSI device known as a microprocessor, or just
processor for short. A microprocessor is a general-purpose processing unit built into a
single integrated circuit (IC). The microprocessor used in the original IBM PC is Intel
Corporation’s 8088, shown in Fig. 5.

Earlier we indicated that the 8088 is a 16-bit microprocessor. To be more accurate,
it is the 8-bit external bus version in Intel’s 8086 family of 16-bit microprocessors. Even
though the 8088 has an 8-bit external bus, its internal architecture is 16 bits in width and
it can directly process 16-bit-wide data. For this reason, the 8088 is considered a 16-bit
microprocessor.

The 8088 MPU is the part of the microcomputer that executes instructions of the
program and processes data. It is responsible for performing all arithmetic operations and
making the logical decisions initiated by the computer’s program. In addition to arith-
metic and logic functions, the MPU controls overall system operation.

The input and output units are the means by which the MPU communicates with the
outside world. Input units, such as the keyboard on the IBM PC, allow the user to input
information or commands to the MPU; for instance, a programmer could key in the lines
of a BASIC program from the keyboard. Many other input devices are available for the
PC; two examples include a mouse, for implementing a user-friendlier input interface, and
a scanner, for reading in documents.

The most widely used output devices of a PC are the monitor and the printer.
The output unit in a microcomputer is used to give the user feedback and to produce
documented results. For example, key entries from the keyboard are echoed back to the
monitor—that is, by looking at the information displayed on the monitor, the user can
confirm that the correct entry was made. Moreover, the results produced by the MPU’s
processing can be either displayed or printed. For our earlier example of a BASIC pro-
gram, once it is entered and corrected, a listing of the statements could be printed. Alter-
nate output devices are also available for the microcomputer; for instance, many modern
PCs are equipped with an advanced audio processing and speaker system.

Figure 5 Intel Corporation’s 8088
microprocessor. (Courtesy of Intel
Corp.)

Introduction to Microprocessors and Microcomputers

6

The memory unit in a microcomputer is used to store information, such as number
or character data. By “store” we mean that memory has the ability to hold this informa-
tion for processing or for outputting at a later time. Programs that define how the com-
puter is to operate and process data also reside in memory.

In the microcomputer system, memory can be divided into two different types:
primary storage memory and secondary storage memory. Secondary storage memory is
used for long-term storage of information that is not currently being used. For example,
it can hold programs, files of data, and files of information. In the original IBM PC, the
floppy disk drives represented the secondary storage memory subsystems. It had two
51⁄4-inch drives that used double-sided, double-density floppy-diskette storage media that
could each store up to 360Kbytes (360,000 bytes) of data. This floppy diskette is an
example of a removable media—that is, to use the diskette it is inserted into the drive
and locked in place. If either the diskette is full or one with a different file or program is
needed, the diskette is simply unlocked, removed, and another diskette installed.

The IBM PCXT also employed a second type of secondary storage device called a
hard disk drive. Modern hard disk drive sizes are 5Gbytes (5000 million bytes),
10Gbytes, 20Gbytes, 40Gbytes, 60Gbytes, and 80Gbytes. Earlier we pointed out that the
original IBM PCXT was equipped with a hard disk drive that could hold just 10Mbytes
(10 million bytes); the hard disk drive of the original IBM PC/AT held only 20Mbytes.
The hard disk drive differs from the floppy disk drive in that the media is fixed, which
means that the media cannot be removed. However, being fixed is not a problem because
the storage capacity of the media is so much larger. Today, desktop PCs are equipped with
a hard disk drive in the 20Gbyte to 80Gbyte range.

Both the floppy diskette and hard disk are examples of read/write media—that is, a
file of data can be read in from or written out to the storage media in the drive. Another
secondary storage device that is very popular in personal computers today is a CD drive.
Here a removable compact disk (CD) is used as the storage media. This media has very
large storage capacity, more than 600Kbytes, but is read-only. This means you cannot
write information onto a CD for storage. For this reason, it is normally used to store large
programs or files of data that are not to be changed. Recently, a recordable CD (CD-R)
has become available, and CD-R drives allow the PC to both read from and write to this
media.

Primary storage memory is normally smaller in size and is used for the temporary
storage of active information, such as the operating system of the microcomputer, the pro-
gram that is currently being run, and the data that it is processing. In Fig. 4 we see that
primary storage memory is further subdivided into program-storage memory and data-
storage memory. The program section of memory is used to store instructions of the oper-
ating system and application programs. The data section normally contains data that are
to be processed by the programs as they are executed (e.g., text files for a word-processor
program or a database for a database-management program). However, programs can also
be loaded into data memory for execution.

Typically, primary storage memory is implemented with both read-only memory
(ROM) and random-access read/write memory (RAM) integrated circuits. The original
IBM PC had 48Kbytes of ROM and could be configured with 256Kbytes of RAM with-
out adding a memory-expansion board. Modern PC/ATs made with the Pentium IV
processors are typically equipped with 128Mbytes of RAM.

Introduction to Microprocessors and Microcomputers

7

Data, whether they represent numbers, characters, or instructions of a program, can
be stored in either ROM or RAM. In the original IBM PC, a small part of the operating
system and BASIC language are resident to the computer because they are supplied in
ROM. By using ROM, this information is made nonvolatile—that is, the information is
not lost if power is turned off. This type of memory can only be read from; it cannot be
written into. On the other hand, data that are to be processed and information that fre-
quently changes must be stored in a type of primary storage memory from which they can
be read by the microprocessor, modified through processing, and written back for storage.
This requires a type of memory that can be both read from and written into. For this rea-
son, such data are stored in RAM instead of ROM.

Earlier we pointed out that the instructions of a program could also be stored in
RAM. In fact, to run the PC operating system such as Windows 98®, it must be loaded
into the RAM of the microcomputer. Normally the operating system, supplied on CDs, is
first read from the CDs and written onto the hard disk. This is called copying of the oper-
ating system onto the hard disk. Once it is copied, the CD version of Windows 98 may
not be used again. The PC is set up so that when it is turned on, Windows 98 is automat-
ically read from the hard disk, written into the RAM, and then run.

RAM is an example of a volatile memory—that is, when power is turned off, the
data that it holds are lost. This is why Windows 98 must be reloaded from the hard disk
each time the PC is turned on.

▲ 3 EVOLUTION OF THE INTEL
MICROPROCESSOR ARCHITECTURE

Microprocessors and microcomputers generally are categorized in terms of the maximum
number of binary bits in the data they process—that is, their word length. Over time, five
standard data widths have evolved for microprocessors and microcomputers: 4-bit, 8-bit,
16-bit, 32-bit, and 64-bit.

Figure 6 illustrates the evolution of Intel’s microprocessors since their introduction
in 1972. The first microprocessor, the 4004, was designed to process data arranged as 4-
bit words. This organization is also referred to as a nibble of data.

The 4004 implemented a very low performance microcomputer by today’s stan-
dards. This low performance and limited system capability restricted its use to simpler,
special-purpose applications. A common use was in electronic calculators.

Beginning in 1974, a second generation of microprocessors was introduced. These
devices, the 8008, 8080, and 8085, were 8-bit microprocessors and were designed to
process 8-bit (1-byte-wide) data instead of 4-bit data. The 8080, identified in Fig. 6, was
introduced in 1975.

These newer 8-bit microprocessors were characterized by higher-performance oper-
ation, larger system capabilities, and greater ease of programming. They were able to pro-
vide the system requirements for many applications that could not be satisfied with the
earlier 4-bit microprocessors. These extended capabilities led to widespread acceptance of
multichip 8-bit microcomputers for special-purpose system designs. Examples of these
dedicated applications are electronic instruments, cash registers, and printers.

Introduction to Microprocessors and Microcomputers

8

1971

4004
8008

8085

8086

80286

80186

8088 80188

80C186

80386

80486

80386EX

PentiumR processor

PentiumR Pro processor

PentiumR II processor

80C188

8080

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 Year

11

27

100

200

300

Performance (MIPS)

Figure 6 Evolution of the Intel microprocessor architecture.

In the mid-1970s, many of the leading semiconductor manufacturers announced
plans for development of third-generation 16-bit microprocessors. Looking at Fig. 6, we
see that Intel’s first 16-bit microprocessor, the 8086, became available in 1979 and was
followed the next year by its 8-bit bus version, the 8088. This was the birth of Intel’s 8086
family architecture. Other family members, such as the 80286, 80186, and 80188, were
introduced in the years that followed.

These 16-bit microprocessors provided higher performance and had the ability to
satisfy a broad scope of special-purpose and general-purpose microcomputer applications.

Introduction to Microprocessors and Microcomputers

9

They all have the ability to handle 8-bit, 16-bit, and special-purpose data types, and their
powerful instruction sets are more in line with those provided by a minicomputer.

In 1985, Intel Corporation introduced its first 32-bit microprocessor, the 80386DX,
which brought true minicomputer-level performance to the microcomputer system. This
device was followed by a 16-bit external bus version, the 80386SX, in 1988. Intel’s sec-
ond generation of 32-bit microprocessors, called the 80486DX and 80486SX, became
available in 1989 and 1990, respectively. They were followed by a yet higher-performance
family, the Pentium processors, in 1993. Today, its fourth generation member—the Pen-
tium® IV processor, represents this family.

Microprocessor Performance: MIPS and iCOMP

Figure 6 illustrates the 8086 microprocessor families relative to their performance.
Here performance is measured in what are called MIPS—that is, how many million
instructions they can execute per second. Today, the number of MIPS provided by a
microprocessor is the standard most frequently used to compare performance. Notice that
performance has vastly increased with each new generation of microprocessor. For
instance, the performance identified for the 80386 corresponds to an 80386DX device
operating at 33 MHz and equals approximately 11 MIPS. With the introduction of the
80486, the level of performance capability of the architecture was raised to approximately
27 MIPS. This shows that performance of the 8086 architecture was more than doubled
with the introduction of the 33-MHz 80486DX microprocessor.

The MIPS used in this chart are known as Drystone V1.1 MIPS—that is, they are
measured by running a test program called the Drystone program, and the resulting per-
formance measurements are normalized to those of a VAX 1.1 computer (VAX 1.1 was a
minicomputer manufactured by Digital Equipment Corporation). Therefore, we say that
the 80486DX is capable of delivering up to 27 VAX MIPS of performance.

Intel Corporation provides another method, the iCOMP index, for comparison of
the performance of its 32-bit microprocessors in a personal computer environment. In the
iCOMP index chart shown in Fig. 7, a bar is used to represent a measure of the perfor-
mance for each of Intel’s MPUs. Instead of being related to the performance of a test pro-
gram, such as the Dystone program, the iCOMP rating of an MPU is based on a variety
of 16-bit and 32-bit MPU performance components important to the personal computer—
that is, the iCOMP rating encompasses performance components that represent integer
mathematics, floating-point mathematics, graphics, and video. The contribution by each of
these categories is also weighted based on an estimate of their normal occurrence in
widely used software applications. For this reason, iCOMP is a more broad-based rating
of MPU performance for the personal computer applications.

The higher the iCOMP rating, the higher the performance offered by the MPU.
Notice that the members of the 80386 family offer low performance when compared to
the newer 80486 and Pentium processor families. In fact, the slowest 80386SX MPU
shown in Fig. 7, the -20, has a performance rating of 32, whereas the fastest 80386DX,
the -33, is rated at 68. Therefore, a wide range of system-performance levels can be
achieved by selecting among the various members of the 80386, 80486, and Pentium
processor families.

Introduction to Microprocessors and Microcomputers

10

i386 SX-20 CPU

i386 SX-25 CPU

i386 SL-25 CPU

i386 DX-25 CPU

i386 SX-33 CPU

i386® DX-33 CPU

i486 SX-20 CPU

i486 SX-25 CPU

i486 DX-25 CPU

i486 SX-33 CPU

i486 DX-33 CPU

i486 DX2-50 CPU

i486 DX-50 CPU

i486 DX2-66 CPU

i486 DX4-75 CPU

Pentium®

Processor 60 MHz

Pentium®

Processor 66 MHz

Pentium®

Processor 90 MHz

Pentium®

Processor 100 MHz

Pentium®

Processor 120 MHz

Pentium®

Processor 133 MHz

i486DX® -100 CPU

120010008006004002000

32

39

41

49

56

68

78

100

122

136

166

231

249

297

319

435

510

567

735

815

1000

1110

Figure 7 iCOMP index rating chart. (Reprinted by permission of Intel Corp.
Copyright / Intel Corp. 1993.)

Transistor Density

The evolution of microprocessors is made possible by advances in semiconductor
process technology. Semiconductor-device geometry decreased from about 5 microns in
the early 1970s to submicron today. Smaller-device geometry permits integration of sev-
eral orders of magnitude more transistors into the same-size chip and at the same time has
led to higher operating speeds. Figure 8 shows that the 4004 contained about 10,000 tran-
sistors. Transistor density increased to about 30,000 with the development of the 8086 in
1978. With the introduction of the 80286, the transistor count further increased to approx-
imately 140,000, and to 275,000 transistors in the 80386DX, almost doubling the transis-
tor density. The 80486DX is the first family member with a density above the 1 million
transistor level (1,200,000 transistors), and with the Pentium processor’s complexity, den-
sity has risen to more than 3 million transistors.

Introduction to Microprocessors and Microcomputers

11

19721970

4004

1974

80808008

1976

8085

1978

8086

80186

80286

80386

80486

1980 1982 1984 1990 1992 1994 1996 1998 Year

Transistors per device (1000s)

Pentium R processor

Pentium R Pro processor

50

0

100

150

200

250

300

1000

2000

3000

5000

6000

7000

8000

Figure 8 Device complexity.

Reprogrammable and Embedded Microprocessors

Microprocessors can be classified according to the type of application for which
they have been designed. Figure 9 organizes Intel microprocessors into two application-
oriented categories: reprogrammable microprocessors and embedded microprocessors
and microcontrollers. Initially devices such as the 8080 were most widely used as
special-purpose microcomputers—a system that has been tailored to meet the needs of a

Introduction to Microprocessors and Microcomputers

12

Figure 9 Processors for embedded control and reprogrammable applications.

specific application. These special-purpose microcomputers were used in embedded con-
trol applications—applications in which the microcomputer performs a dedicated control
function.

Embedded control applications are further divided into those that involve primarily
event control and those that require data control. An example of an embedded control
application that is primarily event control is a microcomputer used for industrial process
control. Here the program of the microprocessor is used to initiate a timed sequence of
events. On the other hand, an application that focuses more on data control than event
control is a hard disk controller interface. In this case, a block of data that is to be
processed—for example, a file of data—must be quickly transferred from secondary stor-
age memory to primary storage memory.

The spectrum of embedded control applications requires a variety of system features
and performance levels. Devices developed specifically for the needs of this marketplace
have stressed low cost and high integration. In Fig. 9, we see that highly integrated 8-bit,
single-chip microcomputer devices such as the 8048 and 8051 initially replaced the ear-
lier multichip 8080 solutions. These devices were tailored to work best as event con-
trollers. For instance, the 8051 offers one-order-of-magnitude-higher performance than
the 8080, a more powerful instruction set, and special on-chip functions such as ROM,
RAM, an interval/event timer, a universal asynchronous receiver/transmitter (UART), and
programmable parallel input/output ports. Today, this type of embedded control device is
called a microcontroller.

Later, devices such as the 80C186XL, 80C188XL, and 80386EX were designed to
better meet the needs of data-control applications. They are also highly integrated, but
they have additional features, such as string instructions and direct-memory access chan-
nels, which better handle the movement of data. They are known as embedded micro-
processors.

The category of reprogrammable microprocessors represents the class of applica-
tions in which a microprocessor is used to implement a general-purpose microcomputer.
Unlike a special-purpose microcomputer, a general-purpose microcomputer is intended to
run a variety of software applications—that is, while it is in use it can be easily repro-
grammed to run a different application. Two examples of reprogrammable microcomput-
ers are the personal computer and file server. Figure 9 shows that the 8086, 8088, 80286,
80386, 80486, and Pentium processor are the Intel microprocessors intended for use in
this type of application.

Architectural compatibility is a critical need of microprocessors developed for use
in reprogrammable applications. As shown in Fig. 10, each new member of the

Introduction to Microprocessors and Microcomputers

13

8086/
8088

PentiumR
processor

80286

80386

80486

Figure 10 Code and system-level
compatibility.

8086/8088 family provides a superset of the earlier device’s architecture—that is, the fea-
tures offered by the 80386 microprocessor are a superset of the 80286 architecture, and
those of the 80286 are a superset of the original 8086/8088 architecture.

Actually, the 80286, 80386, 80486, and Pentium processors can operate in either of
two modes: the real-address mode or protected-address mode. When in real mode, they
operate like a high-performance 8086/8088. They can execute what is called the base
instruction set, which is object code compatible with the 8086/8088. For this reason,
operating systems and application programs written for the 8086 and 8088 run on the
80286, 80386, 80486, and Pentium processor architectures without modification. Further,
a number of new instructions have been added in the instruction sets of the 80286, 80386,
80486, and Pentium processors to enhance their performance and functionality. We say
that object code is upward compatible within the 8086 architecture. This means that
8086/8088 code will run on the 80286, 80386, 80486, and Pentium processors, but the
reverse is not true if any of the new instructions are in use.

Microprocessors designed for implementing general-purpose microcomputers must
offer more advanced system features than those of a microcontroller; for example, they
need to support and manage a large memory subsystem. The 80286 is capable of manag-
ing a 1Gbyte (gigabyte) address space, and the 80386 supports 64Tbytes (64 terabytes) of
memory. Moreover, a reprogrammable microcomputer, such as a personal computer, nor-
mally runs an operating system. The architectures of the 80286, 80386, 80486, and Pen-
tium processors have been enhanced with on-chip support for operating system functions
such as memory management, protection, and multitasking. These new features become
active only when the MPU is operated in the protected mode. The 80386, 80486, and Pen-
tium processors also have a special mode of operation known as virtual 8086 mode that
permits 8086/8088 code to be run in the protected mode.

Reprogrammable microcomputers, such as those based on the 8086 family, require
a variety of input/output resources. Figure 11 shows the kinds of interfaces that are typi-
cally implemented in a personal computer or a microcomputer system. A large family of
VLSI peripheral ICs (examples are floppy disk controllers, hard disk controllers, local area
network controllers, and communication controllers) is needed to support a reprogram-
mable microprocessor such as the 8086, 80286, 80386, 80486, and Pentium processor.

Introduction to Microprocessors and Microcomputers

14

Figure 11 Peripheral support for the MPU.

In
tro

d
u

ctio
n

 to
 M

icro
p

ro
cesso

rs an
d

 M
icro

co
m

p
u

ters

15

10�3 10�2 10�1 100 . 10�1 10�2 10�3

1000 100 10 1 . 1/10 1/100 1/1000

Figure 12 (a) Decimal number system symbols. (b) Digit notation and
weights.

0
1
2
3
4
5
6
7
8
9

(a)

Weights

MSD LSD

Reference digit

(b)

For this reason, these processors are designed to implement a multichip microcom-
puter system, which can easily be configured with the appropriate set of input/output
interfaces.

▲ 4 NUMBER SYSTEMS

For microprocessors and microcomputers, information such as instructions, data, and
addresses are described with numbers. The types of numbers used are not normally the deci-
mal numbers we are familiar with; instead, binary and hexadecimal numbers are used. We
must understand how numbers are expressed in these number systems and how to convert val-
ues between them. For this reason, we shall review some basic material on number systems.

Decimal Number System

First we shall use decimal numbers to develop the general characteristics of a
number system. Selecting a set of symbols to represent numerical values forms a number
system. When doing this, we can select any group of symbols. The number of symbols
used is called the base or radix of the number system.

For example, let us look at the decimal number system. Symbols 0 through 9 make
up the decimal number system. These symbols are shown in Fig. 12(a). Here we find that
10 different symbols are used, so the base of the decimal number system is 10. Each of
these symbols indicates a different numerical quantity—0 representing the smallest quan-
tity and 9 the largest quantity.

With just the 10 basic symbols of the decimal number system, we cannot form
every quantity needed in mathematics and science. For this reason, digit notation is used.
An example of a decimal number written in digit notation is

735.23

Here the same basic symbols are used to form a larger multidigit number. This number
has symbols entered into five different digit locations.

Introduction to Microprocessors and Microcomputers

16

When digit notation is in use, the value of a symbol depends on its location in the
number. The positional value of a digit is known as its weight. For instance, in the num-
ber 735.23 the symbol 3 occurs in two locations. Because the weights of the digits in
which 3 lies are different, each takes on a different positional value.

Figure 12(b) shows some digit locations of the decimal number system and the cor-
responding weights. Note that the digit just to the left of the decimal point, the units digit,
is used as the reference digit and its weight is 100 or 1.

Looking at the decimal weights, we find raising the base of the number system to a
power forms them. The power to which the base 10 is raised is the + or � exponent. The
value of this exponent is found by counting the number of digits to the units location. All
digits to the left of the units digit are considered to have a weight with a positive expo-
nent of the power of 10. As an example, let us look at the second digit to the left of the
units digit in Fig. 12(b). This location has a weight of 10+2, or multiplying out, we get
100. For this reason, it is called the hundreds digit.

Digits to the right of the reference digit have a weight with a negative exponent. For
example, let us take the second digit to the right of the units location in Fig. 12(b). This
digit has a weight of 10�2 or 1/100. This location is also known as the one-hundredths
digit.

Having introduced the weight of a digit, let us now look at how it affects the value
of a symbol in that location. The value of a symbol in a digit other than the units digit is
found by multiplying the symbol by the weight of the location. In our earlier example,
735.23, the symbol 7 is in the hundreds digit. Therefore, it represents the quantity 7 �
10+2 or 7(100) equals 700 instead of just 7. Likewise, the 3 in the one-hundredths digit
stands for 3 � 10�2 and has a value of 3/100.

Two other terms that relate to numbers and number systems are most significant
digit and least significant digit. The leftmost symbol in a number is located in the most
significant digit position. This location is indicated with the abbreviation MSD. On the
other hand, the symbol in the rightmost digit position is said to be in the least significant
digit location or LSD.

In the number we have been using as an example, the symbol in the MSD location
is 7 and its weight is 10+2. Moreover, the LSD has a weight of 10�2 and the symbol in
this location is 3.

Binary Number System

The digital electronic devices and circuits in a microcomputer system operate only
in one of two states, on or off. For this reason, binary numbers instead of decimal numbers
are used to describe their operation. The base of the binary number system is 2, and Fig.
13(a) shows that just two symbols, 0 and 1, are used to form all numbers. From an elec-
tronic circuit point of view, binary 1 normally represent a circuit input or output that is
turned on. On the other hand, a 0 represents the same input or output when it is turned off.

To make a large binary number, many 0s and 1s are grouped together. The location
of a symbol in a binary number is called a bit—a contraction for “binary digit.” As an
example, let us take the binary number

1101.0012

Introduction to Microprocessors and Microcomputers

17

Looking at this number, we find it has 7 bits. The number 2 written to the right and
slightly below tells it is a base 2 or binary number. As with decimal numbers, each bit
location has a weight, but binary weights are expressed as base 2 raised to an exponent.
In Fig. 13(b), the weights corresponding to some binary bits are shown. Note that the
weight of the reference bit is 20 equals 1.

Bits to the left of the 20 bit have weights with positive exponents, and those to the
right negative exponents. For example, the weight of the third digit left of the point is 2+2

equals 4. If a 1 occurs in this bit location, like in the number 1101.001, it stands for a dec-
imal value of 4.

In a binary number, the leftmost bit is referred to as the most significant bit (MSB)
and the rightmost bit the least significant bit (LSB). In the number 1101.001, the MSB
has a value of 1 and weight 2+3 equals 8. On the other hand, the least significant bit is 1
with a weight of 2�3 or 1⁄8.

Conversion between Decimal and Binary Numbers

All numbers can be expressed in both the decimal and binary number systems.
Figure 14 lists the decimal numbers 0 through 15 along with their equivalent binary num-
bers. Just as one can count consecutive numbers, binary numbers can be counted as 0, 1,
10, 11, and so on. From this list, we find that the binary equivalent of decimal number 0

Decimal number Binary number

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111 Figure 14 Equivalent decimal and

binary numbers.

2�3 2�2 2�1 20 . 2�1 2�2 2�3

8 4 2 1 . 1/2 1/4 1/8

Figure 13 (a) Binary number system
symbols. (b) Bit notation and weights.

0
1

(a)

Weights

MSB LSB

Reference bit

(b)

Introduction to Microprocessors and Microcomputers

18

is just binary 0. On the other hand, decimal 15 is written in binary form as 11112. As
shown, binary numbers are often written without showing the base.

For the analysis of circuit operation, information organization, and programming
digital equipment such as a microcomputer, it is important to be able to quickly convert
between decimal and binary number forms. In microcomputer systems, binary numbers
are normally treated in fixed lengths. For example, the 8088 has the ability to process
either 8-bit-wide or 16-bit-wide data. These widths are known as a byte of data and a
word of data, respectively. For instance, binary zero expressed as a byte is

Byte-wide binary 0 � 000000002

Address information in the 8088-based system is 20 bits long.
To find the decimal equivalent of a binary number, multiply the value in each bit of

the number by the weight of the corresponding bit. After this, add the products to get the
decimal number. As an example, let us find the decimal number for binary 11002. Multi-
plying bit values and weights gives

11002 � 1(2+3) � 1(2+2) � 0(2+1) � 0(20)

� 1(8) � 1(4) � 0(2) � 0(1)

� 1210

This shows that 11002 is the binary equivalent of decimal number 12. Looking in the table
of Fig. 14, we see that our result is correct. Expressing 1210 as a word-wide binary num-
ber gives

1210 � 00000000000011002

EXAMPLE 1

Evaluate the decimal equivalent of binary number 101.012.

Solution

101.012 � 1(2+2) � 0(2+1) � 1(2+0) � 0(2�1) � 1(2�2)

� 1(4) � 0(2) � 1(1) � 0(1/2) � 1(1/4)

� 410 � 110 � 0.2510

101.012 � 5.2510

The other conversion we must be able to perform is to express a decimal number in
binary form. The binary equivalent of the integer part of a decimal number is formed by
the repeated division method. Using this method, the integer decimal number is divided
by 2, the quotient brought down, and the remainder written to the right. This procedure is
repeated until the quotient is zero. Now, we use the remainders to form the binary num-
ber. The least significant bit of the binary number is the remainder that results from the

Introduction to Microprocessors and Microcomputers

19

first division or original number. Each of the remainders that follow gives the bits up to
the last remainder, which gives the most significant bit. To demonstrate this method, let
us convert the decimal number 1210 back into binary form:

2 12

2 6 → 0 LSB

2 3 → 1

2 1

0 → 1 MSB

1210 � 11002

Here we see that dividing the original number, 12, by 2 gives a quotient of 6 with
0 remainder. The quotient is brought down and the remainder written on the right. This
is the LSB of the binary number for 12. Now 6 is divided once again by 2 to give a quo-
tient of 3 and a remainder of 0. Dividing twice more, we end up with a quotient of 0 and
two more remainders that are both 1. The last remainder is the MSB of the binary answer.

At this point all remainders are known; next we must form a binary number for
1210. To do this, the remainders are used in the reverse order. Starting with the MSB
remainder and working back toward the LSB gives 11002.

EXAMPLE 2

Convert decimal number 3110 to binary form. Also, express the answer as a byte-wide
binary number.

Solution

2 31 → 1 LSB

2 15 → 1

2 7 → 1

2 3 → 1

2 1 → 1 MSB

0

3110 � 111112

Expressing as a byte-wide value by filling unused more significant bits with 0s gives

3110 � 000111112

The binary equivalent of the decimal fraction part of a decimal number is found by
a repeated multiplication method. Applying this method, the decimal fraction is multiplied
by 2, and the integer part of that product is brought out as the binary bit. This first multi-
plication gives the most significant bit of the equivalent binary number. This process is
repeated on the decimal fraction part of the new product until the fractional result becomes

Introduction to Microprocessors and Microcomputers

20

16�3 16�2 16�1 160 . 16�1 16�2

4096 256 16 1 . 1/16 1/256

Figure 15 (a) Hexadecimal number
system symbols. (b) Digit notation and
weights.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

(a)

Weights

MSD LSD

Reference digit

(b)

zero. Successive multiplications produce the less significant bits of the binary number. As
an example, let us convert decimal fraction .8125 to its equivalent binary number:

2 � .8125 → 1 MSB

2 � .625

2 � .25 → 1

2 � .5 → 0

2 � 0

.8125 � .11012

Hexadecimal Number System

The hexadecimal number system is important for describing microcomputer operation
and programming. In fact, machine language programs, addresses, and data, which are actu-
ally binary information, are normally expressed as hexadecimal numbers. Hexadecimal
numbers offer a more compact notation for representing this type of information.

The base of the hexadecimal number system is 16, and it uses numerical symbols 0
through 9 followed by letters A through F to form numbers. Letters A through F stand for
numerical values equivalent to decimal numbers 10 through 15, respectively. These sym-
bols are listed in Fig. 15(a).

To make a useful number, the basic hexadecimal symbols must be written in digit
notation. Here the weights of the separate digits are the base 16 raised to a power. Figure
15(b) gives typical hexadecimal weights. Note that the weight of the reference digit is 160

equals 1. On the other hand, the most significant digit and least significant digit locations
shown have weights of 16+3 and 16�2, respectively. Rewriting these weights in decimal
form, we get 4096 for the MSD and 1/256 for the LSD. The method used to convert
directly between decimal and hexadecimal number forms is similar to that for converting
binary numbers. Though it is not that commonly done in the study and analysis of micro-
computer systems, this process is demonstrated here through examples.

Introduction to Microprocessors and Microcomputers

21

EXAMPLE 3

What decimal number does 102A16 represent?

Solution

102A16 � 1(16+3) � 0(16+2) � 2(16+1) � A(160)

� 1(4096) � 0(256) � 2(16) � A(1)

� 4096 � 32 � 10

� 413810

EXAMPLE 4

Convert decimal number 413810 to hexadecimal form.

Solution

16 4138

16 258 → A LSB

16 16 → 2

16 1 → 0

0 → 1 MSB

413810 � 102A16

Conversion between Hexadecimal and Binary Numbers

Earlier we indicated that the importance of using hexadecimal numbers in the
study of microcomputer-based systems is that they can be used to rewrite information,
such as data or instructions, in a very compact way. For instance, a multibit binary num-
ber can be expressed with just a few hexadecimal digits. For this reason, it is most impor-
tant to learn how to directly convert between the binary and hexadecimal number forms.

Figure 16(a) lists all 4-bit binary numbers and their equivalent hexadecimal number.
Here we see that a 4-bit binary zero is the same as a one-digit hexadecimal zero. Moreover,
each binary number that follows up through 11112 is the same as one of the hexadecimal
numbers from 116 through F16. In this way, we find that 4 binary bits give a single hexa-
decimal digit. This fact is the basis for converting between binary and hexadecimal numbers.

The diagram in Figure 16(b) shows how bits of a binary number are grouped to
make digits of a hexadecimal number. From this illustration, we see that the four least sig-
nificant bits 23222120 of the word-wide binary number give the least significant hexadec-
imal digit, 160. This is followed by three more groups of 4 bits for the 161, 162, and 163

digits. The MSD 163 of the hexadecimal number is formed from the four MSBs, 215

through 212, of the binary number. In this way, a 16-bit binary number is rewritten with
just four hexadecimal digits.

Introduction to Microprocessors and Microcomputers

22

215214213212 2112102928 27262524 23222120

163 162 161 160

Figure 16 (a) Equivalent binary and hexadecimal numbers. (b) Binary bits and hexa-
decimal digits.

MSB

MSD

LSB

LSD

Bits

Digits

(b)(a)

Binary Hexadecimal
number number

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The first conversion we shall perform is to rewrite a binary number in hexadecimal
notation. To do this, we start at the rightmost bit of the binary number and separate into
groups each with 4 bits. After this, we replace each group of bits with its equivalent hexa-
decimal number.

EXAMPLE 5

Express the binary number 11111001000010102 as a hexadecimal number.

Solution

11111001000010102 � 1111 1001 0000 1010

� F 9 0 A

11111001000010102 � F90A16

An H is frequently used instead of a subscript 16 to denote that a value is a hexa-
decimal number. For instance, using this notation the solution to Example 5 could also be
written as F90AH. The byte-wide equivalent binary and hexadecimal numbers for deci-
mal numbers 0 through 15 are listed in Fig. 17.

To write a hexadecimal number in binary form, the method just used must be
reversed. That is, the value in each hexadecimal digit is simply replaced by its equivalent
4-bit number. For example, the two-digit hexadecimal number A5H is converted to an
equivalent byte-wide binary number as follows:

A5H � 1010 0101 � 101001012

Introduction to Microprocessors and Microcomputers

23

EXAMPLE 6

What is the binary equivalent of the number C31516?

Solution

C31516 � 1100 0011 0001 0101 � 11000011000101012

REVIEW PROBLEMS

Section 1
1. Which IBM personal computer employs the 8088 microprocessor?

2. What is meant by the term open system?

3. What is the expansion bus of the original IBM PC called?

4. What does PC/AT stand for?

5. What does ISA stand for?

6. Name the bus that replaced the ISA bus in modern PCs?

7. What is a reprogrammable microcomputer?

8. Name the three classes of computers.

9. What are the main similarities and differences between the minicomputer and the
microcomputer?

10. What does VLSI stand for?

Section 2
11. What are the four building blocks of a microcomputer system?

12. What is the heart of the microcomputer system called?

13. Is the 8088 an 8-bit or a 16-bit microprocessor?

Decimal number Binary number Hexadecimal number

0 00000000 00
1 00000001 01
2 00000010 02
3 00000011 03
4 00000100 04
5 00000101 05
6 00000110 06
7 00000111 07
8 00001000 08
9 00001001 09

10 00001010 0A
11 00001011 0B
12 00001100 0C
13 00001101 0D
14 00001110 0E
15 0000111º 0F

Figure 17 Equivalent decimal, byte-
wide binary, and hexadecimal
numbers.

Introduction to Microprocessors and Microcomputers

24

14. What is the primary input unit of the PC? Give two other examples of input units
available for the PC.

15. What are the primary output devices of the PC?

16. Into what two sections is the memory of a PC partitioned?

17. What is the storage capacity of the standard 51⁄4-inch floppy diskette of the original
PC? What is the storage capacity of the standard hard disk drive of the original PCXT?

18. What do ROM and RAM stand for?

19. How much ROM was provided in the original PC’s processor board? What was the
maximum amount of RAM that could be implemented on this processor board?

20. Why must Windows 98 be reloaded from the hard disk each time power is turned on?

Section 3
21. What are the standard data word lengths for which microprocessors have been developed?

22. What was the first 4-bit microprocessor introduced by Intel Corporation? Eight-bit
microprocessor? Sixteen-bit microprocessor? Thirty-two-bit microprocessor?

23. Name five 16-bit members of the 8086 family architecture.

24. What does MIPS stand for?

25. Approximately how many MIPS are delivered by the 33 MHz 80486DX?

26. What is the name of the program that is used to run the MIPS measurement test for
the data in Fig. 6?

27. What is the iCOMP rating of an 80386SX-25 MPU? An 80386DX-25 MPU?

28. Approximately how many transistors are used to implement the 8088 microprocessor?
The 80286 microprocessor? The 80386DX microprocessor? The 80486DX micro-
processor? The Pentium processor?

29. What is an embedded microcontroller?

30. Name the two groups into which embedded processors are categorized based on
applications.

31. What is the difference between a multichip microcomputer and a single-chip micro-
computer?

32. Name six 8086 family microprocessors intended for use in reprogrammable micro-
computer applications.

33. Give the names for the 80386’s two modes of operation.

34. What is meant by upward software compatibility relative to 8086 architecture micro-
processors?

35. List three advanced architectural features provided by the 80386DX microprocessor.

36. Give three types of VLSI peripheral support devices needed in a reprogrammable
microcomputer system.

Section 4
37. How are most significant bit and least significant bit abbreviated?

38. What is the weight of the second bit to the right of the binary point?

39. Find the symbols and weights of the most significant bit and least significant bit in
the number 100111.01012.

Introduction to Microprocessors and Microcomputers

25

40. Evaluate the decimal equivalent for each of the following integer binary numbers.
(a) 000001102

(b) 000101012

(c) 011111112

41. What is the decimal equivalent of the minimum and maximum byte-wide integer
binary numbers?

42. Convert the integer decimal numbers that follow to their equivalent byte-wide binary
form.
(a) 9
(b) 42
(c) 100

43. Find the word-wide binary equivalent of the decimal number 500.

44. Convert the fractional numbers that follow to their equivalent byte-wide binary form.
(a) .5
(b) 1⁄4
(c) .34375

45. Find the symbol and weight of the MSD in the hexadecimal number C8BH.

46. What is the weight of the fourth hexadecimal digit to the left of the point?

47. Convert the binary numbers that follow to hexadecimal form.
(a) 001110012

(b) 111000102

(c) 00000011101000002

48. Evaluate the binary equivalent of each of the hexadecimal numbers that follow.
(a) 6B16

(b) F316

(c) 02B0H

49. A byte of data read from memory in an 8088-based microcomputer is observed with
an instrument to be 110001102. Express the data as a hexadecimal number. What is
the decimal value of the data?

50. A memory display command is used to display the value of data held at a memory
address in a microcomputer system. If the value is A050H, what is the value of the
most significant bit? What is the value of the LSB?

51. The address output on the address bus of an 8088 microprocessor is
100000000000010110102. Express the address in hexadecimal form. What is its
equivalent decimal value?

ANSWERS TO SELECTED REVIEW PROBLEMS

Section 1
1. Original IBM PC.

3. I/O channel.

Introduction to Microprocessors and Microcomputers

▲

26

Introduction to Microprocessors and Microcomputers

5. Industry standard architecture.

7. A reprogrammable microcomputer is a general-purpose computer designed to run
programs for a wide variety of applications, for instance, accounting, word process-
ing, and languages such as BASIC.

9. The microcomputer is similar to the minicomputer in that it is designed to perform
general-purpose data processing; however, it is smaller in size, has reduced capabili-
ties, and costs less than a minicomputer.

Section 2
11. Input unit, output unit, microprocessing unit, and memory unit.

13. 16-bit.

15. Monitor and printer.

17. 360Kbytes; 10Mbytes.

19. 48Kbytes; 256Kbytes.

Section 3
21. 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit.

23. 8086, 8088, 80186, 80188, 80286.

25. 27 MIPS.

27. 39; 49.

29. A special-purpose microcomputer that performs a dedicated control function.

31. A multichip microcomputer is constructed from separate MPU, memory, and I/O
ICs. On the other hand, in a single-chip microcomputer, the MPU, memory, and I/O
functions are all integrated into one IC.

33. Real mode and protected mode.

35. Memory management, protection, and multitasking.

Section 4
37. MSB and LSB.

39. ; .

41. , .

43. 00000001111101002.

45. .

47. (a) 39H, (b) E2H, (c) 03A0H.

49. C6H, 19810.

51. 8005AH, 1,048,66610.

C and 16�2 � 25610

Max � 111111112 � 25510Min � 000000002 � 010

1 and 2�4 � 1/161 and 2�5 � 1610

27

This page intentionally left blank

Software Architecture of the
8088 and 8086
Microprocessors

▲ INTRODUCTION

This chapter begins our study of the 8088 and 8086 microprocessors and their assembly
language programming. To program either the 8088 or 8086 using assembly language, we
must understand how the microprocessor and its memory and input /output subsystems
operate from a software point of view. For this reason, in this chapter, we will examine
the software architecture of the 8088 and 8086 microprocessors. The material that follows
frequently refers only to the 8088 microprocessor, but everything that is described for the
8088 also applies to the 8086. This is because the software architecture of the 8086 is
identical to that of the 8088. The following topics are covered here:

1 Microarchitecture of the 8088/8086 Microprocessor

2 Software Model of the 8088/8086 Microprocessor

3 Memory Address Space and Data Organization

4 Data Types

5 Segment Registers and Memory Segmentation

6 Dedicated, Reserved, and General-Use Memory

7 Instruction Pointer

8 Data Registers

9 Pointer and Index Registers

10 Status Register

From Chapter 2 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

29

Software Architecture of the 8088 and 8086 Microprocessors

11 Generating a Memory Address

12 The Stack

13 Input /Output Address Space

▲ 1 MICROARCHITECTURE OF THE
8088/8086 MICROPROCESSOR

The microarchitecture of a processor is its internal architecture—that is, the circuit build-
ing blocks that implement the software and hardware architectures of the 8088/8086
microprocessors. Due to the need for additional features and higher performance, the
microarchitecture of a microprocessor family evolves over time. In fact, a new micro-
architecture is introduced for Intel’s 8086 family every few years. Each new generation of
processors (the 8088/8086, 80286, 80386, 80846, and Pentium processors) represents
significant changes in the microarchitecture of the 8086.

The microarchitectures of the 8088 and 8086 microprocessors are similar. They
both employ parallel processing—that is, they are implemented with several simultane-
ously operating processing units. Figure 1(a) illustrates the internal architecture of the
8088 and 8086 microprocessors. They contain two processing units: the bus interface unit
(BIU) and the execution unit (EU). Each unit has dedicated functions and both operate at
the same time. In essence, this parallel processing effectively makes the fetch and execu-
tion of instructions independent operations. This results in efficient use of the system bus
and higher performance for 8088/8086 microcomputer systems.

The bus interface unit is the 8088/8086’s connection to the outside world. By inter-
face, we mean the path by which it connects to external devices. The BIU is responsible
for performing all external bus operations, such as instruction fetching, reading and writ-
ing of data operands for memory, and inputting or outputting data for input /output peri-
pherals. These information transfers take place over the system bus. This bus includes an
8-bit bidirectional data bus for the 8088 (16 bits for the 8086), a 20-bit address bus, and
the signals needed to control transfers over the bus. The BIU is not only responsible for
performing bus operations, it also performs other functions related to instruction and data
acquisition. For instance, it is responsible for instruction queuing and address generation.

To implement these functions, the BIU contains the segment registers, the instruc-
tion pointer, the address generation adder, bus control logic, and an instruction queue.
Figure 1(b) shows the bus interface unit of the 8088/8086 in more detail. The BIU uses a
mechanism known as an instruction queue to implement a pipelined architecture. This
queue permits the 8088 to prefetch up to 4 bytes (6 bytes for the 8086) of instruction
code. Whenever the queue is not full—that is, it has room for at least 2 more bytes, and,
at the same time, the execution unit is not asking it to read or write data from memory—
the BIU is free to look ahead in the program by prefetching the next sequential instruc-
tions. Prefetched instructions are held in the first-in first-out (FIFO) queue. Whenever a
byte is loaded at the input end of the queue, it is automatically shifted up through the
FIFO to the empty location nearest the output. Here the code is held until the execution
unit is ready to accept it. Since instructions are normally waiting in the queue, the time
needed to fetch many instructions of the microcomputer’s program is eliminated. If the
queue is full and the EU is not requesting access to data in memory, the BIU does not

30

Software Architecture of the 8088 and 8086 Microprocessors

Figure 1 (a) Pipelined architecture of the 8088/8086 microprocessors. (Reprinted with
permission of Intel Corporation, Copyright/ Intel Corp. 1981) (b) Execution and bus inter-
face units. (Reprinted with permission of Intel Corp., Copyright / Intel Corp. 1981)

31

need to perform any bus operations. These intervals of no bus activity, which occur
between bus operations, are known as idle states.

The execution unit is responsible for decoding and executing instructions. Notice in
Fig. 1(b) that it consists of the arithmetic logic unit (ALU), status and control flags, gen-
eral-purpose registers, and temporary-operand registers. The EU accesses instructions
from the output end of the instruction queue and data from the general-purpose registers
or memory. It reads one instruction byte after the other from the output of the queue,
decodes them, generates data addresses if necessary, passes them to the BIU and requests
it to perform the read or write operations to memory or I/O, and performs the operation
specified by the instruction. The ALU performs the arithmetic, logic, and shift operations
required by an instruction. During execution of the instruction, the EU may test the sta-
tus and control flags, and updates these flags based on the results of executing the instruc-
tion. If the queue is empty, the EU waits for the next instruction byte to be fetched and
shifted to the top of the queue.

▲ 2 SOFTWARE MODEL OF THE
8088/8086 MICROPROCESSOR

The purpose of developing a software model is to aid the programmer in understanding
the operation of the microcomputer system from a software point of view. To be able to
program a microprocessor, one does not need to know all of its hardware architectural
features. For instance, we do not necessarily need to know the function of the signals at
its various pins, their electrical connections, or their electrical switching characteristics.
The function, interconnection, and operation of the internal circuits of the microprocessor
also may not need to be considered. What is important to the programmer is to know the
various registers within the device and to understand their purpose, functions, operating
capabilities, and limitations. Furthermore, it is essential that the programmer knows how
external memory and input /output peripherals are organized, how information is arranged
in registers, memory, and input /output, and how memory and I/O are addressed to obtain
instructions and data. This information represents the software architecture of the proces-
sor. Unlike the microarchitecture, the software architecture changes only slightly from
generation to generation of processor.

The software model in Fig. 2 illustrates the software architecture of the 8088 micro-
processor. Looking at this diagram, we see that it includes 13 16-bit internal registers: the
instruction pointer (IP), four data registers (AX, BX, CX, and DX), two pointer registers
(BP and SP), two index registers (SI and DI), and four segment registers (CS, DS, SS, and
ES). In addition, there is another register called the status register (SR), with nine of its
bits implemented as status and control flags.

Figure 2 shows that the 8088 architecture implements independent memory and
input /output address spaces. Notice that the memory address space is 1,048,576 bytes
(1Mbyte) in length and the I/O address space is 65,536 bytes (64Kbytes) in length. Our
concern here is what can be done with this software architecture and how to do it through
software. For this purpose, we will now begin a detailed study of the elements of the
model and their relationship to software.

Software Architecture of the 8088 and 8086 Microprocessors

32

Figure 2 Software model of the 8088/8086 microprocessor.

▲ 3 MEMORY ADDRESS SPACE
AND DATA ORGANIZATION

Now that we have introduced the idea of a software model, let us look at how informa-
tion such as numbers, characters, and instructions is stored in memory. As shown in
Fig. 3, the 8088 microcomputer supports 1Mbyte of external memory. This memory space
is organized from a software point of view as individual bytes of data stored at consecu-
tive addresses over the address range 0000016 to FFFFF16. Therefore, memory in an 8088-
based microcomputer is actually organized as 8-bit bytes, not as 16-bit words.

The 8088 can access any two consecutive bytes as a word of data. In this case, the
lower-addressed byte is the least significant byte of the word, and the higher-addressed
byte is its most significant byte. Figure 4(a) shows how a word of data is stored in mem-
ory. Notice that the storage location at the lower address, 0072416, contains the value
000000102 � 0216. The contents of the next-higher-addressed storage location, 0072516,
are 010101012 � 5516. These two bytes represent the word 01010101000000102 � 550216.

Software Architecture of the 8088 and 8086 Microprocessors

33

FFFFF

FFFFE

FFFFD
FFFFC

5
4
3
2
1
0

Figure 3 Memory address space of
the 8088/8086 microprocessor.

To permit efficient use of memory, words of data can be stored at what are called
even- or odd-addressed word boundaries. The least significant bit of the address deter-
mines the type of word boundary. If this bit is 0, the word is at an even-address bound-
ary—that is, a word at an even-address boundary corresponds to two consecutive bytes,
with the least significant byte located at an even address. For example, the word in Fig.
4(a) has its least significant byte at address 0072416. Therefore, it is stored at an even-
address boundary.

A word of data stored at an even-address boundary, such as 0000016, 0000216,
0000416, and so on, is said to be an aligned word—that is, all aligned words are located
at an address that is a multiple of 2. On the other hand, a word of data stored at an odd-
address boundary, such as 0000116, 0000316, or 0000516 and so on, is called a misaligned
word. Figure 5 shows some aligned and misaligned words of data. Here words 0, 2, 4, and
6 are examples of aligned-data words, while words 1 and 5 are misaligned words. Notice
that misaligned word 1 consists of byte 1 from aligned word 0 and byte 2 from aligned
word 2.

When expressing addresses and data in hexadecimal form, it is common to use the
letter H to specify the base. For instance, the number 00AB16 can also be written as
00ABH.

Figure 4 (a) Storing a word of data in memory. (b) An example.

Software Architecture of the 8088 and 8086 Microprocessors

34

Figure 5 Examples of aligned and
misaligned data words.

EXAMPLE 1

What is the data word shown in Fig. 4(b)? Express the result in hexadecimal form. Is it
stored at an even- or odd-addressed word boundary? Is it an aligned or misaligned word
of data?

Solution

The most significant byte of the word is stored at address 0072C16 and equals

Its least significant byte is stored at address 0072B16 and is

Together the two bytes give the word

Expressing the address of the least significant byte in binary form gives

Because the rightmost bit (LSB) is logic 1, the word is stored at an odd-address bound-
ary in memory; therefore, it is a misaligned word of data.

0072BH � 0072B16 � 000000000111001010112

11111101101010102 � FDAA16 � FDAAH

101010102 � AA16 � AAH

111111012 � FD16 � FDH

Physical
memory

Aligned
words

Word
6

Word
4

Word
2

Word
0

Byte 800008H

00007H

00006H

00005H

00004H

00003H

00002H

00001H

00000H

Address

Byte 7

Byte 6

Byte 4

Byte 5

Byte 3

Byte 2

Byte 1

Byte 0

Word
5

Word
1

Misaligned
words

Software Architecture of the 8088 and 8086 Microprocessors

35

Physical
memory

Aligned
double
words

Misaligned
double words

Double
word

4

Double
word

0

Byte 800008H

00007H

00006H

00005H

00004H

00003H

00002H

00001H

00000H

Address

Byte 7

Byte 6

Byte 4

Byte 5

Byte 3

Byte 2

Byte 1

Byte 0

Double
word

5

Double
word

2

Double
word

3

Double
word

1

Figure 6 Examples of aligned and
misaligned double words of data.

Figure 7 (a) Storing a 32-bit pointer in memory. (b) An example.

The double word is another data form that can be processed by the 8088 micro-
computer. A double word corresponds to four consecutive bytes of data stored in mem-
ory; an example of double-word data is a pointer. A pointer is a two-word address ele-
ment that is used to access data or code in memory. The word of this pointer that is stored
at the higher address is called the segment base address, and the word at the lower address
is called the offset.

Just like for words, a double word of data can be aligned or misaligned. An aligned
double word is located at an address that is a multiple of 4 (e.g., 0000016, 0000416, and
0000816). A number of aligned and misaligned double words of data are shown in Fig. 6.
Of these six examples, only double words 0 and 4 are aligned double words.

An example showing the storage of a pointer in memory is given in Fig. 7(a). Here
the higher-addressed word, which represents the segment base address, is stored starting

Software Architecture of the 8088 and 8086 Microprocessors

36

at even-address boundary 0000616. The most significant byte of this word is at address
0000716 and equals 001110112 � 3B16. Its least significant byte is at address 0000616 and
equals 010011002 � 4C16. Combining these two values, we get the segment base address,
which equals 00111011010011002 � 3B4C16.

The offset part of the pointer is the lower-addressed word. Its least significant
byte is stored at address 0000416; this location contains 011001012 � 6516. The most
significant byte is at address 0000516, which contains 000000002 � 0016. The resulting
offset is 00000000011001012 � 006516. The complete double word is 3B4C006516.
Since this double word starts at address 0000416, it is an example of an aligned double
word of data.

EXAMPLE 2

How should the pointer with segment base address equal to A00016 and offset address
55FF16 be stored at an even-address boundary starting at 0000816? Is the double word
aligned or misaligned?

Solution

Storage of the two-word pointer requires four consecutive byte locations in memory, start-
ing at address 0000816. The least-significant byte of the offset is stored at address 0000816

and is shown as FF16 in Fig. 7(b). The most significant byte of the offset, 5516, is stored
at address 0000916. These two bytes are followed by the least significant byte of the seg-
ment base address, 0016, at address 0000A16, and its most significant byte, A016, at
address 0000B16. Since the double word is stored in memory starting at address 0000816,
it is aligned.

▲ 4 DATA TYPES

The preceding section identified the fundamental data formats of the 8088 as the byte
(8 bits), word (16 bits), and double word (32 bits). It also showed how each of these ele-
ments is stored in memory. The next step is to examine the types of data that can be coded
into these formats for processing.

The 8088 microprocessor directly processes data expressed in a number of differ-
ent data types. Let us begin with the integer data type. The 8088 can process data as
either unsigned or signed integer numbers; each type of integer can be either byte-wide
or word-wide. Figure 8(a) represents an unsigned byte integer; this data type can be used
to represent decimal numbers in the range 0 through 255. The unsigned word integer is
shown in Fig. 8(b); it can be used to represent decimal numbers in the range 0 through
65,535.

Software Architecture of the 8088 and 8086 Microprocessors

37

Figure 9 (a) Signed byte integer. (b)
Signed word integer.

EXAMPLE 3

What value does the unsigned word integer 100016 represent?

Solution

First, the hexadecimal integer is converted to binary form:

Next, we find the value for the binary number:

The signed byte integer and signed word integer in Figs. 9(a) and (b) are similar to
the unsigned integer data types just introduced; however, here the most significant bit is a
sign bit. A zero in this bit position identifies a positive number. For this reason, the signed
integer byte can represent decimal numbers in the range �127 to �128, and the signed
integer word permits numbers in the range �32,767 to �32,768, respectively. For exam-
ple, the number �3 expressed as a signed integer byte is 000000112 (0316). On the other
hand, the 8088 always expresses negative numbers in 2′s-complement notation. There-
fore, �3 is coded as 111111012 (FD16).

00010000000000002 � 212 � 4096

100016 � 00010000000000002

Figure 8 (a) Unsigned byte integer.
(b) Unsigned word integer.

Software Architecture of the 8088 and 8086 Microprocessors

38

EXAMPLE 4

A signed word integer equals FEFF16 . What decimal number does it represent?

Solution

Expressing the hexadecimal number in binary form gives

Since the most significant bit is 1, the number is negative and is in 2′s complement form.
Converting to its binary equivalent by subtracting 1 from the least significant bit and then
complementing all bits gives

The 8088 can also process data that is coded as binary-coded decimal (BCD) num-
bers. Figure 10(a) lists the BCD values for decimal numbers 0 through 9. BCD data can

 � �257

FEFF16 � �00000001000000012

FEFF16 � 11111110111111112

Figure 10 (a) BCD numbers. (b) An
Unpacked BCD digit. (c) Packed BCD
digits.

Software Architecture of the 8088 and 8086 Microprocessors

39

be stored in either unpacked or packed form. For instance, the unpacked BCD byte in Fig.
10(b) shows that a single BCD digit is stored in the four least significant bits, and the
upper four bits are set to 0. Figure 10(c) shows a byte with packed BCD digits. Here two
BCD numbers are stored in a byte. The upper four bits represent the most significant digit
of a two-digit BCD number.

EXAMPLE 5

The packed BCD data stored at byte address 0100016 equal 100100012. What is the two-
digit decimal number?

Solution

Writing the value 100100012 as separate BCD digits gives

Information expressed in ASCII (American Standard Code for Information Inter-
change) can also be directly processed by the 8088 microprocessor. The chart in Fig.
11(a) shows how numbers, letters, and control characters are coded in ASCII. For
instance, the number 5 is coded as

where H denotes that the ASCII-coded number is in hexadecimal form. As shown in Fig.
11(b), ASCII data are stored as one character per byte.

EXAMPLE 6

Byte addresses 0110016 through 0110416 contain the ASCII data 01000001, 01010011,
01000011, 01001001, and 01001001, respectively. What do the data stand for?

Solution

Using the chart in Fig. 11(a), the data are converted to ASCII as follows:

(01104H) � 01001001ASCII � I

(01103H) � 01001001ASCII � I

(01102H) � 01000011ASCII � C

(01101H) � 01010011ASCII � S

(01100H) � 01000001ASCII � A

H1H0 � 01101012 � 35H

100100012 � 1001BCD0001BCD � 9110

Software Architecture of the 8088 and 8086 Microprocessors

40

Figure 11 (a) ASCII table. (b) ASCII digit.

▲ 5 SEGMENT REGISTERS AND
MEMORY SEGMENTATION

Even though the 8088 has a 1Mbyte address space, not all this memory is active at one
time. Actually, the 1Mbytes of memory are partitioned into 64Kbyte (65,536) segments.
A segment represents an independently addressable unit of memory consisting of 64K
consecutive byte-wide storage locations. Each segment is assigned a base address that
identifies its starting point—that is, its lowest address byte-storage location.

Software Architecture of the 8088 and 8086 Microprocessors

41

CS

Data
segment

Extra
segment

Stack
segment

Code
segment

SS

DS

ES

8088/8086

FFFFFH

00000H

Figure 12 Active segments of memory.

Only four of these 64Kbyte segments are active at a time: the code segment, stack
segment, data segment, and extra segment. The segments of memory that are active, as
shown in Fig. 12, are identified by the values of addresses held in the 8088’s four inter-
nal segment registers: CS (code segment), SS (stack segment), DS (data segment), and ES
(extra segment). Each of these registers contains a 16-bit base address that points to the
lowest addressed byte of the segment in memory. Four segments give a maximum of
256Kbytes of active memory. Of this, 64Kbytes are for program storage (code), 64Kbytes
are for a stack, and 128Kbytes are for data storage.

The values held in these registers are referred to as the current-segment register val-
ues; for example, the value in CS points to the first word-wide storage location in the cur-
rent code segment. Code is always fetched from memory as words, not as bytes.

Figure 13 illustrates the segmentation of memory. In this diagram, the 64Kbyte seg-
ments are identified with letters such as A, B, and C. The data segment (DS) register con-
tains the value B. Therefore, the second 64Kbyte segment of memory from the top,
labeled B, acts as the current data-storage segment. This is one of the segments in which
data that are to be processed by the microcomputer are stored. For this reason, this part

Software Architecture of the 8088 and 8086 Microprocessors

42

Figure 13 Contiguous, adjacent, dis-
jointed, and overlapping segments.
(Reprinted by permission of Intel
Corp., Copyright / Intel Corp. 1979)

of the microcomputer’s memory address space must contain read/write storage locations
that can be accessed by instructions as storage locations for source and destination
operands. CS selects segment E as the code segment. It is this segment of memory from
which instructions of the program are currently being fetched for execution. The stack
segment (SS) register contains H, thereby selecting the 64Kbyte segment labeled as H for
use as a stack. Finally, the extra segment (ES) register is loaded with value J such that
segment J of memory functions as a second 64Kbyte data storage segment.

The segment registers are said to be user accessible. This means that the program-
mer can change their contents through software. Therefore, for a program to gain access
to another part of memory, one simply has to change the value of the appropriate register
or registers. For instance, a new data space, with up to 128Kbytes, is brought in simply
by changing the values in DS and ES.

There is one restriction on the value assigned to a segment as a base address: it must
reside on a 16-byte address boundary. This is because increasing the 16-bit value in a seg-
ment register by 1 actually increases the corresponding memory address by 16; examples of
valid base addresses are 0000016, 0001016, and 0002016. Other than this restriction, segments
can be set up to be contiguous, adjacent, disjointed, or even overlapping; for example, in
Fig. 13, segments A and B are contiguous, whereas segments B and C are overlapping.

▲ 6 DEDICATED, RESERVED,
AND GENERAL-USE MEMORY

Any part of the 8088 microcomputer’s 1Mbyte address space can be implemented for the
user’s access; however, some address locations have dedicated functions and should not
be used as general memory for storage of data or instructions of a program. Let us now
look at these reserved, dedicated use, and general-use parts of memory.

Software Architecture of the 8088 and 8086 Microprocessors

43

Figure 14 shows the reserved, dedicated-use, and general-use parts of the
8088/8086’s address space. Notice that storage locations from address 0000016 to 0001316

are dedicated, and those from address 0001416 to 0007F16 are reserved. These 128 bytes
of memory are used for storage of pointers to interrupt service routines. The dedicated
part is used to store the pointers for the 8088’s internal interrupts and exceptions. On the
other hand, the reserved locations are saved to store pointers that are used by the user-
defined interrupts. As indicated earlier, a pointer is a two-word address element and
requires 4 bytes of memory. The word of this pointer at the higher address is called the
segment base address and the word at the lower address is the offset. Therefore, this sec-
tion of memory contains up to 32 pointers.

The part of the address space labeled open in Fig. 14 is general-use memory and is
where data or instructions of the program are stored. Notice that the general-use area of
memory is the range from addresses 8016 through FFFEF16.

At the high end of the memory address space is another reserved pointer area, located
from address FFFFC16 through FFFFF16. These four memory locations are reserved for use
with future products and should not be used. Intel Corporation, the original manufacturer
of the 8088, has identified the 12 storage locations from address FFFF016 through FFFFB16

as dedicated for functions such as storage of the hardware reset jump instruction. For
instance, address FFFF016 is where the 8088/8086 begins execution after receiving a reset.

▲ 7 INSTRUCTION POINTER

The register that we will consider next in the 8088’s software model shown in Fig. 2 is the
instruction pointer (IP). IP is also 16 bits in length and identifies the location of the next
word of instruction code to be fetched from the current code segment of memory. The IP
is similar to a program counter; however, it contains the offset of the next word of instruc-
tion code instead of its actual address. This is because IP and CS are both 16 bits in length,
but a 20-bit address is needed to access memory. Internal to the 8088, the offset in IP is
combined with the current value in CS to generate the address of the instruction code.
Therefore, the value of the address for the next code access is often denoted as CS:IP.

Figure 14 Dedicated-use, reserved,
and general-use memory. (Reprinted
by permission of Intel Corp.,
Copyright / Intel Corp. 1979)

Software Architecture of the 8088 and 8086 Microprocessors

44

During normal operation, the 8088 fetches instructions from the code segment of
memory, stores them in its instruction queue, and executes them one after the other. Every
time a word of code is fetched from memory, the 8088 updates the value in IP such that
it points to the first byte of the next sequential word of code—that is, IP is incremented
by 2. Actually, the 8088 prefetches up to four bytes of instruction code into its internal
code queue and holds them there waiting for execution.

After an instruction is read from the output of the instruction queue, it is decoded; if
necessary, operands are read from either the data segment of memory or internal registers.
Next, the operation specified in the instruction is performed on the operands and the result
is written back to either an internal register or a storage location in memory. The 8088 is
now ready to execute the next instruction in the code queue.

Executing an instruction that loads a new value into the CS register changes the
active code segment; thus, any 64Kbyte segment of memory can be used to store the
instruction code.

▲ 8 DATA REGISTERS

As Fig. 2 shows, the 8088 has four general-purpose data registers. During program exe-
cution, they hold temporary values of frequently used intermediate results. Software can
read, load, or modify their contents. Any of the general-purpose data registers can be used
as the source or destination of an operand during an arithmetic operation such as ADD or
a logic operation such as AND. For instance, the values of two pieces of data, A and B,
could be moved from memory into separate data registers and operations such as addition,
subtraction, and multiplication performed on them. The advantage of storing these data in
internal registers instead of memory during processing is that they can be accessed much
faster.

The four registers, known as the data registers, are shown in more detail in Fig.
15(a). Notice that they are referred to as the accumulator register (A), the base register (B),
the count register (C), and the data register (D). These names imply special functions they

Figure 15 (a) General-purpose data registers. (Reprinted by permission of
Intel Corp., Copyright / Intel Corp. 1979) (b) Dedicated register functions.
(Reprinted by permission of Intel Corp., Copyright / Intel Corp. 1979)

Software Architecture of the 8088 and 8086 Microprocessors

45

are meant to perform for the 8088 microprocessor. Figure 15(b) summarizes these opera-
tions. Notice that string and loop operations use the C register. For example, the value in
the C register is the number of bytes to be processed in a string operation. This is the rea-
son it is given the name count register. Another example of the dedicated use of data reg-
isters is that all input /output operations must use accumulator register AL or AX for data.

Each of these registers can be accessed either as a whole (16 bits) for word data oper-
ations or as two 8-bit registers for byte-wide data operations. An X after the register letter
identifies the reference of a register as a word; for instance, the 16-bit accumulator is refer-
enced as AX. Similarly, the other three word registers are referred to as BX, CX, and DX.

On the other hand, when referencing one of these registers on a byte-wide basis,
following the register name with the letter H or L, respectively, identifies the high byte
and low byte. For the A register, the most significant byte is referred to as AH and the
least significant byte as AL; the other byte-wide register pairs are BH and BL, CH and
CL, and DH and DL. When software places a new value in one byte of a register, for
instance AL, the value in the other byte (AH) does not change. This ability to process
information in either byte location permits more efficient use of the limited register
resources of the 8088 microprocessor.

Actually, some of the data registers may also store address information such as a
base address or an input/output address; for example, BX could hold a 16-bit base address.

▲ 9 POINTER AND INDEX REGISTERS

The software model in Fig. 2 has four other general-purpose registers: two pointer regis-
ters and two index registers. They store what are called offset addresses. An offset address
represents the displacement of a storage location in memory from the segment base
address in a segment register—that is, it is used as a pointer or index to select a specific
storage location within a 64Kbyte segment of memory. Software uses the value held in an
index register to reference data in memory relative to the data segment or extra segment
register, and a pointer register to access memory locations relative to the stack segment
register. Just as for the data registers, the values held in these registers can be read,
loaded, or modified through software. This is done prior to executing the instruction that
references the register for address offset. Unlike the general-purpose data registers, the
pointer and index registers are only accessed as words. To use the offset address in a reg-
ister, the instruction simply specifies the register that contains the value.

Figure 16 shows that the two pointer registers are the stack pointer (SP) and base
pointer (BP). The values in SP and BP are used as offsets from the current value of SS
during the execution of instructions that involve the stack segment of memory and permit
easy access to storage locations in the stack part of memory. The value in SP always rep-
resents the offset of the next stack location that is to be accessed. That is, combining SP
with the value in SS (SS:SP) results in an address that points to the top of the stack (TOS).

BP also represents an offset relative to the SS; however, it is used to access data within
the stack segment of memory. To do this, it is employed as the offset in an addressing mode
called the based addressing mode. One common use of BP is to reference parameters that
are passed to a subroutine by way of the stack. In this case, instructions are included in the
subroutine that use based addressing to access the values of parameters from the stack.

Software Architecture of the 8088 and 8086 Microprocessors

46

Figure 16 Pointer and index regis-
ters. (Reprinted by permission of Intel
Corp., Copyright / Intel Corp. 1979)

Figure 17 Status and control flags.
(Reprinted by permission of Intel
Corp., Copyright / Intel Corp. 1979)

The index registers are used to hold offset addresses for instructions that access data
stored in the data segment of memory and are automatically combined with the value in
the DS or ES register during address calculation. In instructions that involve the indexed
addressing, the source index (SI) register holds an offset address that identifies the loca-
tion of a source operand, and the destination index (DI) register holds an offset for a des-
tination operand.

Earlier we pointed out that any of the data registers can be used as the source or
destination of an operand during an arithmetic operation such as ADD, or a logic opera-
tion such as AND. However, for some operations, an operand that is to be processed may
be located in memory instead of the internal register. In this case, an index address is used
to identify the location of the operand in memory; for example, string instructions use the
index registers to access operands in memory. SI and DI, respectively, are the pointers to
the source and destination locations in memory.

The index registers can also be source or destination registers in arithmetic and log-
ical operations. For example, an instruction may add 2 to the offset value in SI to incre-
ment its value to point to the next word-wide storage location in memory.

▲ 10 STATUS REGISTER

The status register, also called the flags register, is another 16-bit register within the 8088.
Figure 17 shows the organization of this register in more detail. Notice that just nine of
its bits are implemented. Six of these bits represent status flags: the carry flag (CF),
parity flag (PF), auxiliary carry flag (AF), zero flag (ZF), sign flag (SF), and overflow flag
(OF). The logic state of these status flags indicate conditions that are produced as the

Software Architecture of the 8088 and 8086 Microprocessors

47

result of executing an instruction—that is, after executing an instruction, such as ADD,
specific flag bits are reset (logic 0) or set (logic 1) based on the result that is produced.

Let us first summarize the operation of these flags:

1. The carry flag (CF): CF is set if there is a carry-out or a borrow-in for the most sig-
nificant bit of the result during the execution of an instruction. Otherwise, CF is reset.

2. The parity flag (PF): PF is set if the result produced by the instruction has even
parity—that is, if it contains an even number of bits at the 1 logic level. If parity is
odd, PF is reset.

3. The auxiliary carry flag (AF): AF is set if there is a carry-out from the low nibble
into the high nibble or a borrow-in from the high nibble into the low nibble of the
lower byte in a 16-bit word. Otherwise, AF is reset.

4. The zero flag (ZF): ZF is set if the result produced by an instruction is zero. Other-
wise, ZF is reset.

5. The sign flag (SF): The MSB of the result is copied into SF. Thus, SF is set if the
result is a negative number or reset if it is positive.

6. The overflow flag (OF): When OF is set, it indicates that the signed result is out of
range. If the result is not out of range, OF remains reset.

For example, at the completion of execution of a byte-addition instruction, the carry
flag (CF) could be set to indicate that the sum of the operands caused a carry-out condition.
The auxiliary carry flag (AF) could also set due to the execution of the instruction. This
depends on whether or not a carry-out occurred from the least significant nibble to the most
significant nibble when the byte operands are added. The sign flag (SF) is also affected, and
it reflects the logic level of the MSB of the result. The overflow flag (OF) is set if there is
a carry-out of the sign bit, but no carry into the sign bit (an indication of overflow).

The 8088 provides instructions within its instruction set that are able to use these
flags to alter the sequence in which the program is executed; for instance, a jump to
another part of the program could be conditionally initiated by testing for ZF equal to
logic. This operation is called jump on zero.

The other three implemented flag bits—the direction flag (DF), the interrupt enable
flag (IF), and the trap flag (TF)—are control flags. These three flags provide control func-
tions of the 8088 as follows:

1. The trap flag (TF): If TF is set, the 8088 goes into the single-step mode of opera-
tion. When in the single-step mode, it executes an instruction and then jumps to a
special service routine that may determine the effect of executing the instruction.
This type of operation is very useful for debugging programs.

2. The interrupt flag (IF): For the 8088 to recognize maskable interrupt requests at its
interrupt (INT) input, the IF flag must be set. When IF is reset, requests at INT are
ignored and the maskable interrupt interface is disabled.

3. The direction flag (DF): The logic level of DF determines the direction in which
string operations will occur. When set, the string instruction automatically decre-
ments the address; therefore, the string data transfers proceed from high address
to low address. On the other hand, resetting DF causes the string address to be
incremented—that is, data transfers proceed from low address to high address.

Software Architecture of the 8088 and 8086 Microprocessors

48

Figure 18 Generating a physical
address. (Reprinted by permission of
Intel Corp., Copyright/Intel Corp. 1981)

The instruction set of the 8088 includes instructions for saving, loading, or manip-
ulating the flags; for instance, special instructions are provided to permit user software to
set or reset CF, DF, and IF at any point in the program (e.g., just prior to the beginning of
a string operation, DF is reset so that the string address automatically increments).

▲ 11 GENERATING A MEMORY ADDRESS

A segment base and an offset describe a logical address in the 8088 microcomputer sys-
tem. As Fig. 18 shows, both the segment base and offset are 16-bit quantities, since all
registers and memory locations used in address calculations are 16 bits long. However,
the physical address that is used to access memory is 20 bits in length. The generation of
the physical address involves combining a 16-bit offset value that is located in the instruc-
tion pointer, a base register, an index register, or a pointer register and a 16-bit segment
base value that is located in one of the segment registers.

The source of the offset value depends on which type of memory reference is tak-
ing place. It can be the base pointer (BP) register, stack pointer (SP) register, base (BX)
register, source index (SI) register, destination index (DI) register, or instruction pointer
(IP). An offset can even be formed from the contents of several of these registers. On the
other hand, the segment base value always resides in one of the segment registers: CS, DS,
SS, or ES.

For instance, when an instruction acquisition takes place, the source of the segment
base value is always the code segment (CS) register, and the source of the offset value is

Software Architecture of the 8088 and 8086 Microprocessors

49

BX

8088/8086

Memory

DS:FFFFH

DS: BX

Data
segment

DS:0000H

Highest addressed byte

Lowest addressed byte

DS

Figure 19 Boundaries of a segment.

always the instruction pointer (IP). This physical address can be denoted as CS:IP. On the
other hand, if the value of a variable is written to memory during execution of an instruc-
tion, typically the segment base value is specified by the data segment (DS) register and
the offset value by the destination index (DI) register—that is, the physical address is
given as DS:DI. A provision called the segment-override prefix is used to change the seg-
ment from which the variable is accessed; for example, a prefix could be used to make a
data access occur in which the segment base is in the ES register.

Another example is the stack address that is needed when pushing parameters onto
the stack. This physical address is formed from the values of the segment base in the stack
segment (SS) register and offset in the stack pointer (SP) register and is described as SS:SP.

Remember that the segment base address represents the starting location of the
64Kbyte segment in memory—that is, the lowest address byte in the segment. Figure 19
shows that the offset identifies the distance in bytes that the storage location of interest
resides from this starting address. Therefore, the lowest address byte in a segment has an
offset of 000016, and the highest address byte has an offset of FFFF16.

Figure 20 shows how a segment base value in a segment register and an offset value
are combined to form a physical address. The value in the segment register is shifted left
by four bit positions, with its LSBs filled with zeros. This gives a segment address, the
location where the segment starts. The offset value is then added to the 16 LSBs of the
shifted segment value. The result of this addition is the 20-bit physical address.

The example in Fig. 20 represents a segment base value of 123416 and an offset
value of 002216. First, let us express the segment base value in binary form. This gives

123416 � 00010010001101002

Software Architecture of the 8088 and 8086 Microprocessors

50

Figure 20 Physical address calcula-
tion example. (Reprinted by permis-
sion of Intel Corp., Copyright / Intel
Corp. 1979)

Shifting left four positions and filling with zeros results in the segment address

The offset in binary form is

Adding the segment address and the offset gives

This address calculation is done automatically within the 8088 microprocessor each time
a memory access is initiated.

EXAMPLE 7

What would be the offset required to map to physical address location 002C316 if the con-
tents of the corresponding segment register are 002A16?

Solution

The offset value can be obtained by shifting the contents of the segment register left by
four bit positions and then subtracting from the physical address. Shifting left gives

Now subtracting, we get the value of the offset:

Actually, many different logical addresses map to the same physical address loca-
tion in memory. Simply changing the segment base value in the segment register and its

002C316 � 02A016 � 002316

002A016

 � 12362H

 � 1236216

 000100100011010000002 � 00000000001000102 � 000100100011011000102

002216 � 00000000001000102

000100100011010000002 � 1234016

Software Architecture of the 8088 and 8086 Microprocessors

51

Figure 21 Relationship between logical and physical addresses.
(Reprinted by permission of Intel Corp., Copyright / Intel Corp. 1979)

corresponding offset does this. The diagram in Fig. 21 demonstrates this idea. Notice that
segment base 002B16 with offset 001316 maps to physical address 002C316 in memory.
However, if the segment base is changed to 002C16 with a new offset of 000316, the phys-
ical address is still 002C316. We see that the physical address 002BH:0013H is equal to
the physical address 002CH:0003H.

▲ 12 THE STACK

As indicated earlier, the stack is implemented in the memory of the 8088 microprocessor,
and it is used for temporary storage of information such as data or addresses. For
instance, when a call instruction is executed, the 8088 automatically pushes the current
values in CS and IP onto the stack. As part of the subroutine, the contents of other regis-
ters may also be saved on the stack by executing push instructions (e.g., when the instruc-
tion PUSH SI is executed, it causes the contents of SI to be pushed onto the stack). Near
the end of the subroutine, pop instructions are included to pop values from the stack back
into their corresponding internal registers (e.g., POP SI causes the value at the top of the
stack to be popped back into SI). At the end of the subroutine, a return instruction causes
the values of CS and IP to be popped off the stack and put back into the internal register
where they originally resided.

Software Architecture of the 8088 and 8086 Microprocessors

52

SP

8088/8086

Memory
(word-wide)

SS:FFFEH

SS: SP

Stack
segment

SS:0000H

Bottom of stack

Top of stack

End of stack

SS

Figure 22 Stack segment of memory.

The stack is 64Kbytes long and is organized from a software point of view as 32K
words. Figure 22 shows that the segment base value in the SS register points to the lowest
address word in the current stack. The contents of the SP and BP register offset into the
stack segment of memory.

Looking at Fig. 22, we see that SP contains an offset value that points to a storage
location in the current stack segment. The address obtained from the contents of SS and
SP (SS:SP) is the physical address of the last storage location in the stack to which data
were pushed. This memory address is known as the top of the stack. At the microcom-
puter’s startup, the value in SP is initialized to FFFE16. Combining this value with the cur-
rent value in SS gives the highest-addressed word location in the stack (SS:FFFEH)—that
is, the bottom of the stack.

The 8088 can push data and address information onto the stack from its internal
registers or a storage location in memory. Data transferred to and from the stack are word-
wide, not byte-wide. Each time a word is to be pushed onto the top of the stack, the value
in SP is first automatically decremented by two, and then the contents of the register are
written into the stack part of memory. Therefore, the stack grows down in memory from
the bottom of the stack, which corresponds to the physical address SS:FFFEH, toward the
end of the stack, which corresponds to the physical address obtained from SS and offset
000016 (SS:0000H).

When a value is popped from the top of the stack, the reverse of this sequence
occurs. The physical address defined by SS and SP points to the location of the last value
pushed onto the stack. Its contents are first popped off the stack and put into the specific
register within the 8088; then SP is automatically incremented by two. The top of the
stack then corresponds to the address of the previous value pushed onto the stack.

Software Architecture of the 8088 and 8086 Microprocessors

53

Figure 23 (a) Stack just prior to push
operation. (Reprinted by permission of
Intel Corp., Copyright / Intel Corp.
1979) (b) Stack after execution of the
PUSH AX instruction. (Reprinted by
permission of Intel Corp., Copyright/
Intel Corp. 1979)

The example in Fig. 23(a) shows how the contents of a register are pushed onto the
stack. Here we find the state of the stack prior to execution of the PUSH AX instruction.
Notice that the stack segment register contains 10516. As indicated, the bottom of the
stack resides at the physical address derived from SS and offset FFFE16. This gives the
bottom-of-stack address, ABOS, as

Furthermore, the stack pointer, which represents the offset from the beginning of the stack
specified by the contents of SS to the top of the stack, equals 000816. Therefore, the cur-
rent top of the stack is at physical address ATOS, which equals

Addresses with higher values than that of the top of the stack, 105816, contain valid stack
data. Those with lower addresses do not yet contain valid stack data. Notice that the last
value pushed to the stack in Fig. 23(a) is BBAA16.

Figure 23(b) demonstrates what happens when the PUSH AX instruction is exe-
cuted. Here we see that AX initially contains the number 123416. Notice that execution of
the push instruction causes the stack pointer to be decremented by two but does not affect
the contents of the stack segment register. Therefore, the next stack access is to the loca-
tion corresponding to address 105616. This location is where the value in AX is pushed.
Notice that the most significant byte of AX, which equals 1216, now resides in memory
address 105716, and the least significant byte of AX, which is 3416, is held in memory
address 105616.

 � 105816

A�OS � 105016 � 000816

 � 1104E16

ABOS � 105016 � FFFE16

Software Architecture of the 8088 and 8086 Microprocessors

54

Figure 24 (a) Stack just prior to pop operation. (Reprinted by permission of
Intel Corp., Copyright/Intel Corp. 1979) (b) Stack after the execution of the POP
AX and POP BX instructions. (Reprinted by permission of Intel Corp., Copyright /
Intel Corp. 1979)

Let us next look at an example in which stack data are popped from the stack back
into the registers from which they were pushed. Figure 24 illustrates this operation. In
Fig. 24(a), the stack is shown to be in the state that resulted due to our prior PUSH AX
example. That is, SP equals 000616, SS equals 10516, the address at the top of the stack
equals 105616, and the word at the top of the stack equals 123416.

Figure 24(b) shows what happens when the instructions POP AX and POP BX are
executed in that order. Execution of the first instruction causes the 8088 to read the value
from the top of the stack and put it into the AX register as 123416. Next, SP is incre-
mented to give 000816 and another read operation is initiated from the stack. This second
read corresponds to the POP BX instruction, and it causes the value BBAA16 to be loaded
into the BX register. SP is incremented once more and now equals 000A16. Therefore, the
new top of stack is at address 105A16.

In Fig. 24(b) we see that the values read out of addresses 105616 and 105816 remain
at these locations, but now reside at locations that are above the top of the stack; there-
fore, they no longer represent valid stack data. If new information is pushed to the stack,
these values are written over.

Software Architecture of the 8088 and 8086 Microprocessors

55

Any number of stacks may exist in an 8088 microcomputer. Simply changing the
value in the SS register brings in a new stack. For instance, executing the instruction
MOV SS, DX loads a new value from DX into SS. Although many stacks can exist, only
one can be active at a time.

▲ 13 INPUT/OUTPUT ADDRESS SPACE

The 8088 has separate memory and input /output (I/O) address spaces. The I/O address
space is the place where I/O interfaces, such as printer and monitor ports, are imple-
mented. Figure 25 shows a map of the 8088’s I/O address space. Notice that this address
range is from 000016 to FFFF16. This represents just 64Kbyte addresses; therefore, unlike
memory, I/O addresses are only 16 bits long. Each of these addresses corresponds to one
byte-wide I/O port.

The part of the map from address 000016 through 00FF16 is referred to as page 0.
Certain of the 8088’s I/O instructions can perform only input or output data-transfer
operations to I /O devices located in this part of the I/O address space. Other I /O instruc-
tions can input or output data for devices located anywhere in the I/O address space. I /O
data transfers can be byte-wide or word-wide. Notice that the eight locations from
address 00F816 through 00FF16 are specified as reserved by Intel Corporation and should
not be used.

REVIEW PROBLEMS

Section 1
1. Name the two internal processing units of the 8088.

2. Which processing unit of the 8088 is the interface to the outside world?

3. What are the length of the 8086’s address bus and data bus?

4. How large is the instruction queue of the 8088? The 8086?

5. List the elements of the execution unit.

Section 2
6. What is the purpose of a software model for a microprocessor?

7. What must an assembly-language programmer know about the registers within the
8088 microprocessor?

Figure 25 I/O address space.
(Reprinted by permission of Intel
Corp., Copyright / Intel Corp. 1979)

Software Architecture of the 8088 and 8086 Microprocessors

56

8. How many registers are located within the 8088?

9. How large is the 8088’s memory address space?

10. How large is the 8086’s I/O address space?

Section 3
11. What is the highest address in the 8088’s memory address space? The lowest address?

12. Is memory in the 8088 microprocessor organized as bytes, words, or double words?

13. The contents of memory location B000016 are FF16, and those at B000116 are 0016.
What is the data word stored at address B000016? Is the word aligned or misaligned?

14. What is the value of the double word stored in memory starting at address B000316

if the contents of memory locations B000316, B000416, B000516, and B000616 are
1116, 2216, 3316, and 4416, respectively? Is this an example of an aligned double word
or a misaligned double word?

15. Show how the word ABCD16 is stored in memory starting at address 0A00216. Is the
word aligned or misaligned?

16. Show how the double word 1234567816 is stored in memory starting at address
A00116. Is the double word aligned or misaligned?

Section 4
17. List five data types processed directly by the 8088.

18. Express each of the signed decimal integers that follow as either a byte- or word-
hexadecimal number (use 2’s-complement notation for negative numbers).
(a) �127
(b) �10
(c) �128
(d) �500

19. How would the integer in problem 18(d) be stored in memory starting at address
0A00016?

20. How would the decimal number �1000 be expressed for processing by the 8088?

21. Express the decimal numbers that follow as unpacked and packed BCD bytes.
(a) 29
(b) 88

22. How would the BCD number in problem 21(a) be stored in memory starting at
address 0B00016? (Assume that the least significant digit is stored at the lower
address.)

23. What statement is coded in ASCII by the following binary strings?

1001001
0100000
1010100
1011000
1000101
1001110

Software Architecture of the 8088 and 8086 Microprocessors

57

24. How would the decimal number 1234 be coded in ASCII and stored in memory start-
ing at address 0C00016? (Assume that the least significant digit is stored at the lower
addressed memory location.)

Section 5
25. How large is a memory segment in the 8088 microprocessor?

26. Which of the 8088’s internal registers are used for memory segmentation?

27. What register defines the beginning of the current code segment in memory?

28. What is the maximum amount of memory that can be active at a given time in the
8088 microprocessor?

29. How much of the 8088’s active memory is available as general-purpose data storage
memory?

Section 6
30. What is the dedicated use of the part of the 8088’s address space from 0000016

through 0007F16?

31. What is the address range of the general-use part of the memory address space?

32. Which part of the 8088’s memory address space can be used to store the instructions
of a program?

33. What is stored at address FFFF016?

Section 7
34. What is the function of the instruction pointer register?

35. Provide an overview of the fetch and the execution of an instruction by the 8088.

36. What happens to the value in IP each time the 8088 completes an instruction fetch?

Section 8
37. Make a list of the general-purpose data registers of the 8088.

38. How is the word value of a data register labeled?

39. How are the upper and lower bytes of a data register denoted?

40. Name two dedicated operations assigned to the CX register.

Section 9
41. What kind of information is stored in the pointer and index registers?

42. Name the two pointer registers.

43. For which segment register are the contents of the pointer registers used as an offset?

44. For which segment register are the contents of the index registers used as an offset?

45. What do SI and DI stand for?

46. What is the difference between SI and DI?

Section 10
47. Categorize each flag bit of the 8088 as either a control flag or a flag that monitors the

status due to execution of an instruction.

48. Describe the function of each status flag.

Software Architecture of the 8088 and 8086 Microprocessors

58

49. How does software use a status flag?

50. What does TF stand for?

51. Which flag determines whether the address for a string operation is incremented or
decremented?

52. Can the state of the flags be modified through software?

Section 11
53. What is the word length of the 8088’s physical address?

54. What two address elements are combined to form a physical address?

55. Calculate the value of each of the physical addresses that follows. Assume all num-
bers are hexadecimal numbers.
(a) 1000:1234
(b) 0100:ABCD
(c) A200:12CF
(d) B2C0:FA12

56. Find the unknown value for each of the following physical addresses. Assume all
numbers are hexadecimal numbers.
(a) A000:? � A0123
(b) ?:14DA � 235DA
(c) D765:? � DABC0
(d) ?:CD21 � 32D21

57. If the current values in the code segment register and the instruction pointer are
020016 and 01AC16, respectively, what physical address is used in the next instruction
fetch?

58. A data segment is to be located from address A000016 to AFFFF16. What value must
be loaded into DS?

59. If the data segment register contains the value found in problem 58, what value must
be loaded into DI if it is to point to a destination operand stored in memory at address
A123416?

Section 12
60. What is the function of the stack?

61. If the current values in the stack segment register and stack pointer are C00016 and
FF0016, respectively, what is the address of the current top of the stack?

62. For the base and offset addresses in problem 61, how many words of data are cur-
rently held in the stack?

63. Show how the value EE1116 from register AX would be pushed onto the top of the
stack as it exists in problem 61.

Section 13
64. For the 8088 microprocessor, are the input/output and memory address spaces com-

mon or separate?

65. How large is the 8088’s I/O address space?

66. What name is given to the part of the I/O address space from 000016 through 00FF16?

Software Architecture of the 8088 and 8086 Microprocessors

59

Section 1
1. Bus interface unit and execution unit.

3. 20 bits; 16 bits.

5. General-purpose registers, temporary operand registers, arithmetic logic unit (ALU),
and status and control flags.

Section 2
7. There purpose, function, operating capabilities, and limitations.

9. 1,048,576 (1M) bytes.

Section 3
11. FFFFF16 and 0000016.

13. 00FF16; aligned word.

15. Address Contents

0A003H CDH
0A004H ABH

aligned word.

Section 4
17. Unsigned integer, signed integer, unpacked BCD, packed BCD, and ASCII.

19.

21. (a) 00000010, 00001001; 00101001
(b) 00001000, 00001000; 10001000

23. NEXT I.

Section 5
25. 64Kbytes.

27. CS.

29. Up to 128Kbytes.

Section 6
31. 8016 through FFFEF16.

33. Control transfer to the reset power-up initialization software routine.

Section 7
35. The instruction is fetched from memory; decoded within the 8088; operands are

read from memory or internal registers; the operation specified by the instruction is
performed on the data; and results are written back to either memory or an internal
register.

Section 8
37. Accumulator (A) register, base (B) register, count (C) register, and data (D) register.

39. DH and DL.

(0A001H) � 01H

(0A000H) � F4H

Software Architecture of the 8088 and 8086 Microprocessors

ANSWERS TO SELECTED REVIEW PROBLEMS▲

60

Section 9
41. Offset address of a memory location relative to a segment base address.

43. SS

45. Source index register; destination index register.

Section 10
47. Flag Type

CF Status
PF Status
AF Status
ZF Status
SF Status
OF Status
TF Control
IF Control
DF Control

49. Instructions can be used to test the state of these flags and, based on their setting,
modify the sequence in which instructions of the program are executed.

51. DF.

Section 11
53. 20 bits.

55. (a) 11234H
(b) 0BBCDH
(c) A32CFH
(d) C2612H

57. 021AC16.

59. 123416.

Section 12
61. CFF0016.

63. FEFEH → (SP)

Section 13
65. 64 Kbytes.

(AL) � 11H → (CFEFEH)
(AH) � EEH → (CFEFFH)

Software Architecture of the 8088 and 8086 Microprocessors

61

This page intentionally left blank

Assembly Language
Programming

▲ INTRODUCTION

In this chapter we begin a detailed study of assembly language programming for the
8088/8086-based microcomputer system. This chapter introduces software and the micro-
computer program, the process used to develop an assembly language program, the
instruction set of the 8088/8086 microprocessor, and its addressing modes. The topics
covered in this chapter are as follows:

1 Software: The Microcomputer Program

2 Assembly Language Programming Development on the PC

3 The Instruction Set

4 The MOV Instruction

5 Addressing Modes

▲ 1 SOFTWARE: THE MICROCOMPUTER PROGRAM

In this section, we begin our study of 8088/8086 assembly language programming by
examining software and the microcomputer program. A microcomputer does not know
how to process data. It must be told exactly what to do, where to get data, what to do with

From Chapter 3 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

63

the data, and where to put the results when it is done. These are the jobs of the software
in a microcomputer system.

The sequence of commands used to tell a microcomputer what to do is called a
program. Each command in a program is an instruction. A program may be simple and
include just a few instructions, or it may be very complex and contain more than 100,000
instructions. When the microcomputer is operating, it fetches and executes one instruction
of the program after the other. In this way, the instructions of the program guide it step
by step through the task to be performed.

Software is a general name used to refer to a wide variety of programs that can be
run by a microcomputer. Examples are languages, operating systems, application pro-
grams, and diagnostics. All computer systems have two types of software: system soft-
ware and application software. System software represents a group of programs that
enable the microcomputer to operate and is known as the operating system (OS), such as
the Windows 98 operating system. The collection of programs installed on the micro-
computer for the user is the application software. Examples of frequently used PC-based
applications are Word, Excel, and PowerPoint

The native language of the original IBM PC is the machine language of the 8088
microprocessor. Programs must always be coded in this machine language before they can
be executed by the microprocessor. A program written in machine language is often referred
to as machine code. When expressed in machine code, an instruction is encoded using 0s
and 1s. A single machine language instruction can take up one or more bytes of code. Even
though the 8088 understands only machine code, it is almost impossible to write programs
directly in machine language. For this reason, programs are normally written in other lan-
guages, such as 8088 assembly language or a high-level language such as C.

In assembly language, each of the operations that can be performed by the 8088
microprocessor is described with alphanumeric symbols instead of with 0s and 1s. A sin-
gle assembly language statement represents each instruction in a program. This statement
must specify which operation is to be performed and what data are to be processed. For
this reason, an instruction can be divided into two parts: its operation code (opcode) and
its operands. The opcode is the part of the instruction that identifies the operation that is
to be performed. For example, typical operations are add, subtract, and move. Each
opcode is assigned a unique letter combination called a mnemonic. The mnemonics for
the earlier mentioned operations are ADD, SUB, and MOV. Operands describe the data
that are to be processed as the microprocessor carries out the operation specified by the
opcode. They identify whether the source and destination of the data are registers within
the MPU or storage locations in data memory.

An example of an instruction written in 8088 assembly language is

ADD AX, BX

This instruction says, “Add the contents of registers BX and AX together and put the sum
in register AX.” AX is called the destination operand, because it is the place where the
result ends up, and BX is called the source operand.

An example of a complete assembly language statement is

START: MOV AX, BX ;Copy BX into AX

Assembly Language Programming

64

This statement begins with the word START:. START is an address identifier for the
instruction MOV AX, BX. This type of identifier is known as a label. The instruction is
followed by ;Copy BX into AX. This part of the statement is called a comment. Thus a
general format for an assembly language statement is

LABEL: INSTRUCTION ;Comment

Programs written in assembly language are referred to as source code. An exam-
ple of a short 8088 assembly language program is shown in Fig. 1(a). The assembly lan-
guage instructions are located toward the left. Notice that the program includes instruc-

Figure 1 (a) Example of an 8088 assembly language program. (b) Assembled
version of the program.

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

N= 16 ;Bytes to be moved
BLK1ADDR= 100H ;Source block offset address
BLK2ADDR= 120H ;Destination block offset addr
DATASEGADDR= 2000H ;Data segment start address

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP (?)

STACK_SEG ENDS
CODE_SEG SEGMENT ‘CODE’
BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, O
PUSH AX

;Setup the data segment address

MOV AX, DATASEGADDR
MOV DS, AX

;Setup the source and destination offset addresses

MOV SI, BLK1ADDR
MOV DI, BLK2ADDR

;Setup the count of bytes to be moved

MOV CX, N
;Copy source block to destination block

NXTPT: MOV AH, [SI] ;Move a byte
MOV [DI], AH
INC SI ;Update pointers
INC DI
DEC CX ;Update byte counter
JNZ NXTPT ;Repeat for next byte
RET ;Return to DEBUG program

BLOCK ENDP
CODE_SEG ENDS

END BLOCK ;End of program

(a)

Assembly Language Programming

65

Figure 1 (continued)

Microsoft (R) Macro Assembler Version 5.10 5/17/92 18:10:04
BLOCK-MOVE PROGRAM Page 1-1

1
2
3 TITLE BLOCK-MOVE PROGRAM
4
5 PAGE ,132
7 COMMENT *This program moves a block of specified number of bytes
8 from one place to another place*
9
10
11 ;Define constants used in this program
12
13 = 0010 N= 16 ;Bytes to be moved
14 = 0100 BLK1ADDR= 100H ;Source block offset address
15 = 0120 BLK2ADDR= 120H ;Destination block offset addr
16 = 1020 DATASEGADDR=1020H ;Data segment start address
17
18
19 0000 STACK_SEG SEGMENT STACK ‘STACK’
20 0000 0040[DB 64 DUP(?)
21 ??
22]
23
24 0040 STACK_SEG ENDS
25
26
27 0000 CODE_SEG SEGMENT ‘CODE’
28 0000 BLOCK PROC FAR
29 ASSUME CS:CODE_SEG,SS:STACK_SEG
30
31 ;To return to DEBUG program put return address on the stack
32
33 0000 1E PUSH DS
34 0001 B8 0000 MOV AX, 0
35 0004 50 PUSH AX
36
37 ;Setup the data segment address
38
39 0005 B8 1020 MOV AX, DATASEGADDR
40 0008 8E D8 MOV DS, AX
41
42 ;Setup the source and destination offset adresses
43
44 000A BE 0100 MOV SI, BLK1ADDR
45 000D BF 0120 MOV DI, BLK2ADDR
46
47 ;Setup the count of bytes to be moved
48
49 0010 B9 0010 MOV CX, N
50
51 ;Copy source block to destination block
52
53 0013 8A 24 NXTPT:MOV AH, [SI] ;Move a byte
54 0015 88 25 MOV [DI], AH
55 0017 46 INC SI ;Update pointers
56 0018 47 INC DI
57 0019 49 DEC CX ;Update byte counter
58 001A 75 F7 JNZ NXTPT ;Repeat for next byte
59 001C CB RET ;Return to DEBUG program
60 001D BLOCK ENDP
61 001D CODE_SEG ENDS
62 END BLOCK ;End of program

(b)

Assembly Language Programming

66

Assembly Language Programming

Figure 1 (b) (continued)

tion statements with both a label and comment, instructions with a comment but no label,
instructions without either a label or comment, and even statements that are just a com-
ment. In fact, most statements do not have a label. An example of a statement without a
label or comments is

MOV DS, AX

On the other hand, most statements have a comment. For instance, the statement

INC SI ;Update pointers

has a comment, but no label. This type of documentation makes it easier for a program to
be read and debugged. The comment part of the statement does not generate any machine
code.

Assembly language programs cannot be directly run on the 8088. They must still be
translated to an equivalent machine language program for execution by the 8088. This
conversion is done automatically by running the source program through a program
known as an assembler. The machine language output produced by the assembler is called
object code.

Segments and Groups:

N a m e Length Align Combine Class

CODE_SEG 001D PARA NONE ‘CODE’
STACK_SEG 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

BLK1ADDR NUMBER 0100
BLK2ADDR NUMBER 0120
BLOCK F PROC 0000 CODE_SEG Length = 001D

DATASEGADDR NUMBER 1020

N NUMBER 0010
NXTPT L NEAR 0013 CODE_SEG

@CPU TEXT 0101h
@FILENAME TEXT block
@VERSION TEXT 510

59 Source Lines
59 Total Lines
15 Symbols

47222 + 347542 Bytes symbol space free

0 Warning Errors
0 Severe Errors

(b)

67

Assembly Language Programming

Not all of the statements in the assembly language program in Fig. 1(a) are instruc-
tion statements. There are also statements used to control the translation process of the
assembler. An example is the statement

DB 64 DUP(?)

This type of statement is known as a directive—that is, it supplies directions to the assem-
bler program.

Figure 1(b) is the listing produced by assembling the assembly language source
code in Fig. 1(a) with Microsoft’s MASM macroassembler. Reading from left to right,
this listing contains line numbers, addresses of memory locations, the machine language
instructions, the original assembly language statements, and comments. For example, line
53, which is

0013 8A 24 NXTPT: MOV AH, [SI] ;Move a byte

shows that the assembly language instruction MOV AH, [SI] is encoded as 8A24 in
machine language and that this 2-byte instruction is loaded into memory starting at
address 001316 and ending at address 001416. Note that for simplicity the machine lan-
guage instructions are expressed in hexadecimal notation, not in binary form. Use of
assembly language makes it much easier to write a program. But notice that there is still
a one-to-one relationship between assembly and machine language instructions.

EXAMPLE 1

What instruction is at line 58 of the program in Fig. 1(b)? How is this instruction
expressed in machine code?

Solution

Looking at the listing in Fig. 1(b), we find that the instruction is

JNZ NXTPT

and the machine code is

75 F7

High-level languages make writing programs even easier. The instructions of a
high-level language are English-like statements. Source programs written in this type
of language are easier to write, read, and understand. In a language such as C, high-
level commands, such as FOR, IF, and WHILE, are provided. These commands no
longer correspond to a single machine language statement. Instead, they implement
operations that may require many assembly language statements. Again, the state-

68

ments must be converted to machine code before they can be run on the 8088. The pro-
gram that converts high-level-language statements to machine code instructions is
called a compiler.

You may be asking yourself, if it is so much easier to write programs with a
high-level language, why is it important to know how to program the 8088 in its
assembly language? We just pointed out that if a program is written in a high-level
language, such as C, it must be compiled into machine code before it can be run on the
8088. The general nature with which compilers must be designed usually results in
less efficient machine code. That is, the quality of the machine code produced for the
program depends on the quality of the compiler program in use. A compiled machine
code implementation of a program that was written in a high-level language results in
many more machine language instructions than a hand-written assembly language ver-
sion of the program. This leads us to the two key benefits derived from writing pro-
grams in assembly language: first, the machine code program that results will take up
less memory space than the compiled version of the program; second, it will execute
faster.

Now we know the benefits of writing programs in assembly language, but we still
do not know when these benefits are important. To be important, they must outweigh
the additional effort necessary to write the program in assembly language instead of a
high-level language. One of the major uses of assembly language programming is in
real-time applications. By real time, we mean that the task required by the application
must be completed before any other input to the program can occur that will alter its
operation.

The device service routine that controls the operation of the PC’s hard disk drive is
a good example of the kind of program that might be written in assembly language. This
is because it is a segment of program that must closely control the microcomputer hard-
ware in real time. In this case, a program that is written in a high-level language probably
could not respond quickly enough to control the hardware, and even if it could, operations
performed with the disk subsystem would be slower. Other examples of hardware-related
operations typically performed by routines written in assembly language are communica-
tion routines such as those that drive the display and printer in a personal computer and the
input/output routine that scans the keyboard.

Assembly language is important not only for controlling the microcomputer sys-
tem’s hardware devices but also for performing pure software operations. For instance,
applications frequently require the microcomputer to search through a large table of
data in memory looking for a special string of characters, such as a person’s name.
Writing a program in a high-level language can allow the application to perform this
type of operation easily; however, for large tables of data the search will take very
long. Implementing the search routine through assembly language greatly improves
the performance of the search operation. Other examples of software operations that
may require implementation with high-performance routines derived with assembly
language are code translations, such as from ASCII to EBCDIC, table sort routines,
such as a bubble sort, and mathematical routines, such as those for floating-point
arithmetic.

Not all parts of an application require real-time performance. For this reason, it is a
common practice to mix, in the same program, routines developed through a high-level

Assembly Language Programming

69

language and routines developed with assembly language. That is, assembly language is
used to write those parts of the application that must perform real-time operations, and
high-level language is used to write those parts that are not time critical. The machine
code obtained by assembling or compiling the two types of program segments is linked
together to form the final application program.

The compiler program can also be instructed to produce a listing that shows the
equivalent assembly language statements for its machine code output. This type of output
is important for understanding how the compiler implements the application program. In
fact, programmers frequently use this type of output to tune the operation of an applica-
tion for better performance.

▲ 2 ASSEMBLY LANGUAGE PROGRAM DEVELOPMENT
ON THE PC

In this section, we will look at the process by which problems are solved using soft-
ware. An assembly language program is written to solve a specific problem. This prob-
lem is known as the application. To develop a program that implements an application,
the programmer goes through a multistep process. The chart in Fig. 2 outlines the steps
in the program-development cycle. Let us now examine each step of the development
cycle.

Describing the Problem

Figure 2 shows that the development cycle sequence begins by making a clear
description of the problem to be solved and ends with a program that when run performs
a correct solution. First the programmer must understand and describe the problem that is
to be solved. A clear, concise, and accurate description of the problem is an essential part
of the process of obtaining a correct and efficient software solution. This description may
be provided in an informal way, such as a verbal description, or in a more formal way
with a written document.

The program we used here is an example of a simple software application. Its func-
tion is to move a fixed-length block of data, called the source block, from one location in
memory to another location in memory called the destination block. For the block-move
program, a verbal or a written list of events may be used to describe this problem to the
programmer.

On the other hand, in most practical applications, the problem to be solved is quite
complex. The programmer must know what the input data are, what operations must be
performed on this information, whether or not these operations need to be performed in a
special sequence, whether or not there are time constraints on performing some of the
operations, if error conditions can occur during the process, and what results need to be
output. For this reason, most applications are described with a written document called an
application specification. The programmers study this specification before they begin to
define a software solution for the problem.

Assembly Language Programming

70

Figure 2 A general program devel-
opment cycle.

Assembly Language Programming

71

Planning the Solution

Before writing an application program, a plan must be developed to solve the prob-
lem. Figure 2 shows that this is the second step in the program-development process. The
decision to move to this step assumes that a complete and clear description of the prob-
lem to be solved has been provided.

The programmer carefully analyzes the application specification. Typically, the
problem is broken down into a series of basic operations, which when performed in a
certain sequence produce a solution to the problem. This plan defines the method by
which software solves the problem. The software plan is known as the algorithm.
Many different algorithms may be defined to solve a specific problem. However, it is
important to formulate the best algorithm so that the software efficiently performs the
application.

Usually, the algorithm is described with another document called the software spec-
ification. Also, the proposed solution may be presented in a pictorial form known as a
flowchart in the specification. A flowchart is an outline that both documents the opera-
tions that the software must perform to implement the planned solution and shows the
sequence in which they are performed. Figure 3(a) is the flowchart for a program that per-
forms a block-move operation.

The flowchart identified operations that can be implemented with assembly lan-
guage instructions. For example, the first block calls for setting up a data segment, ini-
tializing the pointers for the starting addresses of the source and destination blocks, and
specifying the count of the number of pieces of data that are to be moved. These types of
operations can be achieved by moving either immediate data, or data from a known mem-
ory location, into appropriate registers within the MPU.

A flowchart uses a set of symbols to identify both the operations required in the
solution and the sequence in which they are performed. Figure 4 lists the most com-
monly used flowcharting symbols. Note that symbols are listed for identifying the begin-
ning or end of the flowchart, input or output of data, processing functions, making a
decision operation, connecting blocks within the flowchart, and connections to other
flowcharts. The operation to be performed is written inside the symbol. The flowchart in
Fig. 3(a) illustrates the use of some of these symbols. Note that a begin/end symbol,
which contains the comment Enter block move, is used to mark the beginning of the pro-
gram and another, which reads Return to DEBUG, marks the end of the sequence.
Process function boxes are used to identify each of the tasks (initialize registers, copy
source element to destination, and increment source and destination address pointers and
decrement data element count) that are performed as part of the block-move routine.
Arrows are used to describe the sequence (flow) of these operations as the block-move
operation is performed.

The solution should be hand-tested to verify that it correctly solves the stated prob-
lem. Specifying test cases with known inputs and outputs can do this. Then, tracing
through the operation sequence defined in the flowchart for these input conditions, the
outputs are found and compared to the known test results. If the results are not the same,
the cause of the error must be found, the algorithm is modified, and the tests rerun. When
the results match, the algorithm is assumed to be correct, and the programmer is ready to
move on to the next step in the development cycle. The process is called desk checking.

Assembly Language Programming

72

The flowchart representation of the planned solution is a valuable aid to the pro-
grammer when coding the solution with assembly language instructions. When a problem
is a simple one, the flowcharting step may be bypassed. A list of the tasks and the
sequence in which they must be performed may be enough to describe the solution to
the problem. However, for complex applications, a flowchart is an important program-
development tool for obtaining an accurate and timely solution.

Coding the Solution with Assembly Language

The application program is the step-by-step sequence of computer operations that
must be performed to convert the input data to the required output results—that is, it is
the software implementation of the algorithm. The third step of the program development

Establish data
segment, source
and destination

pointers, and count
of bytes

Increment source
and destination

pointers, decrement
count

Move an element
from source to

destination block

Begin
(Enter block move)

End
(Return to DEBUG)

All elements
moved?

No

Yes

(a)

Figure 3 (a) Flowchart of a block-
move program. (b) Block-move source
program.

Assembly Language Programming

73

Figure 3 (continued)

cycle, as shown in Fig. 2, is the translation of the flowchart solution into its equivalent
assembly language program. This requires the programmer to implement the operations
described in each symbol of the flowchart with a sequence of assembly language instruc-
tions. These instruction sequences are then combined to form a handwritten assembly lan-
guage program called the source program.

Two types of statements are used in the source program. First, there are the assem-
bly language instructions. They are used to tell the microprocessor what operations are to
be performed to implement the application.

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

N= 16 ;Bytes to be moved
BLK1ADDR= 100H ;Source block offset address
BLK2ADDR= 120H ;Destination block offset addr
DATASEGADDR= 2000H ;Data segment start address

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS
CODE_SEG SEGMENT ‘CODE’
BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Setup the data segment address

MOV AX, DATASEGADDR
MOV DS, AX

;Setup the source and destination offset addresses

MOV SI, BLK1ADDR
MOV DI, BLK2ADDR

;Setup the count of bytes to be moved

MOV CX, N

;Copy source block to destination block

NXTPT: MOV AH, [SI] ;Move a byte
MOV [DI], AH
INC SI ;Update pointers
INC DI
DEC CX ;Update byte counter
JNZ NXTPT ;Repeat for next byte
RET ;Return to DEBUG program

BLOCK ENDP
CODE_SEG ENDS

END BLOCK ;End of program

(b)

Assembly Language Programming

74

The assembly language program in Fig. 3(b) implements the block-move operation
flowchart in Fig. 3(a). Comparing the flowchart to the program, it is easy to see that the
initialization block is implemented with the assembly language statements

MOV AX, DATASEGADDR
MOV DS, AX
MOV SI, BLK1ADDR
MOV DI, BLK2ADDR
MOV CX, N

The first two move instructions load a segment base address called DATASEGADDR into
the data segment register. This defines the data segment in memory where the two blocks

Figure 4 Commonly used flowchart
symbols.

Assembly Language Programming

75

of data reside. Next, two more instructions are used to load SI and DI with the start off-
set address of the source block (BLK1ADDR) and destination block (BLK2ADDR),
respectively. Finally, the count N of the number of bytes of data to be copied to the des-
tination block is loaded into count register CX.

A source program can also contain another type of statement called a directive,
which are instructions to the assembler program that is used to convert the assembly lan-
guage program into machine code. In Fig. 3(b), the statements

BLOCK PROC FAR

and

BLOCK ENDP

are examples of modular programming directives. They mark the beginning and end,
respectively, of the software procedure called BLOCK.

To do this step of the development cycle, the programmer must know the instruc-
tion set of the microprocessor, basic assembly language programming techniques, the
assembler’s instruction statement syntax, and the assembler’s directives.

Creating the Source Program

After having handwritten the assembly language program, we are ready to enter it
into the computer. This step is identified as the enter/edit source program block in the
program-development cycle diagram in Fig. 2 and is done with a program called an
editor. We will use the EDIT editor, which is available as part of the DOS operating sys-
tem. Using an editor, each of the statements of the program is typed into the computer. If
errors are made as the statements are keyed in, the corrections can either be made at the
time of entry or edited at a later time. The source program is saved in a file.

Assembling the Source Program into an Object Module

The fifth step of the flowchart in Fig. 2 is the point at which the assembly language
source program is converted to its corresponding machine language program. To do this,
we use a program called an assembler. A program originally available from Microsoft
Corporation called MASM is an example of an 8088/8086 assembler that runs in DOS on
a PC. The assembler program reads as its input the contents of the assembler source file;
it converts this program statement by statement to machine code and produces a machine-
code program as its output. This machine-code output is stored in a file called the object
module.

If during the conversion operation syntax errors are found—that is, violations in the
rules of writing the assembly language statements for the assembler—the assembler auto-
matically flags them. As shown in the flowchart in Fig. 2, before going on, the cause of
each error in the source program must be identified and corrected. The corrections are

Assembly Language Programming

76

made using the editor program. After the corrections are made, the source program must
be reassembled. This edit-assemble sequence must be repeated until the program assem-
bles with no error.

Producing a Run Module

The object module produced by the assembler cannot be run directly on the micro-
computer. As shown in Fig. 2, a LINK program must process the module to produce an
executable object module, which is known as a run module. The linker program converts
the object module to a run module by making it address compatible with the microcom-
puter on which it is to be run. For instance, if our computer is implemented with memory
at addresses 0A00016 through 0FFFF16, the executable machine-code output by the linker
will also have addresses in this range.

There is another purpose for the use of a linker: it links different object modules to
generate a single executable object module. This allows program development to be done
in modules, which are later combined to form the application program.

Verifying the Solution

Now the executable object module is ready to be run on the microcomputer. Once
again, the PC’s DOS operating system provides us with a program, which is called
DEBUG, to perform this function. DEBUG provides an environment in which we can run
the program instruction by instruction or run a group of instructions at a time, look at
intermediate results, display the contents of the registers within the microprocessor, and
so on.

For instance, we could verify the operation of our earlier block-move program by
running it for the data in the cases defined to test the algorithm. DEBUG is used to load
the run module for block-move into the PC’s memory. After loading is completed and ver-
ified, other DEBUG commands are employed to run the program for the data in the test
case. The DEBUG program permits us to trace the operation as instructions are executed
and observe each element of data as it is copied from the source to the destination block.
These results are recorded and compared to those provided with the test case. If the pro-
gram is found to perform the block-move operation correctly, the program-development
process is complete.

On the other hand, Fig. 2 shows that if errors are discovered in the logic of the solu-
tion, the cause must be determined, corrections must be made to the algorithm, and then
the assembly language source program must be corrected using the editor. The edited
source file must be reassembled, relinked, and retested by running it with DEBUG. This
loop must be repeated until it is verified that the program correctly performs the opera-
tion for which it was written.

Programs and Files Involved in the Program Development Cycle

The edit, assemble, link, and debug parts of the general program-development
cycle in Fig. 2 are performed directly on the PC. Figure 5 shows the names of the pro-

Assembly Language Programming

77

EDIT
Editor program

LINK
linker program

Other .OBJ filesLibraries

DEBUG
debug program

MASM
assembler program

PROG1.LST

PROG1.MAP

PROG1.OBJ

PROG1.ASM

PROG1.EXE

Handwritten
source program

Final debugged
run module Figure 5 The development programs

and user files.

grams and typical filenames with extensions used as inputs and outputs during this
process. For example, the EDIT program is an editor used to create and correct assembly
language source files. The program that results is shown to have the name PROG1.ASM.
This stands for program 1 assembly source code.

MASM, which stands for macroassembler, is a program that can be used to assem-
ble source files into object modules. The assembler converts the contents of the source
input file PROG1.ASM into two output files called PROG1.OBJ and PROG1.LST. The
file PROG1.OBJ contains the object code module. The PROG1.LST file provides addi-
tional information useful for debugging the application program.

Object module PROG1.OBJ can be linked to other object modules with the LINK
program. For instance, programs that are available as object modules in a math library
could be linked with another program to implement math operations. A library is a col-
lection of prewritten, assembled, and tested programs. Notice that this program produces
a run module in file PROG1.EXE and a map file called PROG1.MAP as outputs. The exe-
cutable object module, PROG1.EXE, is run with the debugger program, called DEBUG.

Assembly Language Programming

78

Figure 6 Instruction set of the 8088/8086. (Reprinted by permission of Intel Corp.
Copyright/Intel Corp. 1979)

Map file PROG1.MAP is supplied as support for the debugging operation by providing
additional information such as where the program will be located when loaded into the
microcomputer’s memory.

▲ 3 THE INSTRUCTION SET

The microprocessor’s instruction set defines the basic operations that a programmer can
specify to the device to perform. The 8088 and 8086 microprocessors have the same
instruction set; Fig. 6 contains a list of 117 basic instructions for the 8088/8086. For the
purpose of discussion, these instructions are organized into groups of functionally related
instructions. In Fig. 6, we see that these groups consist of the data transfer instructions,
arithmetic instructions, logic instructions, string manipulation instructions, control trans-
fer instructions, and processor control instructions.

Assembly Language Programming

79

Figure 6 (continued)

Assembly Language Programming

80

Figure 6 (continued)

Assembly Language Programming

81

Figure 6 (continued)

Assembly Language Programming

82

Figure 6 (continued)

Assembly Language Programming

83

Figure 6 (continued)

Note that the first instruction in the data transfer group is identified as MOV
(move). The wide range of operands and addressing modes permitted for use with these
instructions further expands the instruction set into many more executable instructions at
the machine code level. For instance, the basic MOV instruction expands into 28 differ-
ent machine-level instructions.

▲ 4 THE MOV INSTRUCTION

The move instruction is one of the instructions in the data transfer group of the 8088/8086
instruction set. The format of this instruction, as shown in Fig. 7(a), is written in general
as

MOV D, S

Assembly Language Programming

84

Figure 7

Assembly Language Programming

85

Figure 7 (continued)

Its operation is described in general as

(S) → (D)

That is, execution of the instruction transfers a byte or a word of data from a source loca-
tion to a destination location. These data locations can be internal registers of the 8088
and storage locations in memory. Figure 7(b) shows the valid source and destination vari-
ations. This large choice of source and data locations results in many different move
instructions. Looking at this list, we see that data can be moved between general-purpose
registers, between a general-purpose register and a segment register, between a general-
purpose register or segment register and memory, or between a memory location and the
accumulator.

Assembly Language Programming

86

Figure 8 Register addressing
registers and operand sizes.

Figure 7(c) shows how the instruction MOV DX,DS exists in the memory for the
assumed address 01100H. To access the instruction at address 01100H, CS and IP can
both be 100H. If DS contains 200H, execution of this instruction as shown in Figure 7(d)
will place 200H in DX, and IP will increment to 102H.

▲ 5 ADDRESSING MODES

When the 8088 executes an instruction, it performs the specified function on data. These
data, called operands, may be part of the instruction, may reside in one of the internal reg-
isters of the microprocessor, may be stored at an address in memory, or may be held at an
I/O port. To access these different types of operands, the 8088 is provided with various
addressing modes. An addressing mode is a method of specifying an operand. The
addressing modes are categorized into three types: register operand addressing, immedi-
ate operand addressing, and memory operand addressing. Let us now consider in detail
the addressing modes in each of these categories.

Register Operand Addressing Mode

With the register addressing mode, the operand to be accessed is specified as resid-
ing in an internal register of the 8088. Figure 8 lists the internal registers that can be used
as a source or destination operand. Note that only the data registers can be accessed as
either a byte or word.

An example of an instruction that uses this addressing mode is

MOV AX, BX

Assembly Language Programming

87

Figure 9 (a) Register addressing mode instruction before fetch and execu-
tion. (b) After execution.

This stands for “move the contents of BX, which is the source operand, to AX, which is
the destination operand.” Both the source and destination operands have been specified
as the word contents of internal registers of the 8088.

Let us now look at the effect of executing the register addressing mode move
instruction. In Fig. 9(a), we see the state of the 8088 just prior to fetching the instruction.
Note that the logical address formed from CS and IP (CS:IP) points to the MOV AX,BX
instruction at physical address 0100016. This instruction is fetched into the 8088’s instruc-
tion queue, where it is held waiting to be executed.

Prior to execution of this instruction, the contents of BX are ABCD16, and the con-
tents of AX represent a don’t-care state. The instruction is read from the output side of
the queue, decoded, and executed. As Fig. 9(b) shows, the result produced by executing
this instruction is that the value ABCD16 is copied into AX.

Assembly Language Programming

88

Figure 9 (continued)

EXAMPLE 2

What is the destination operand in the instruction? How large is this operand?

MOV CH, AH

Solution

The destination operand is register CH and it specifies an 8-bit operand.

Immediate Operand Addressing Mode

If an operand is part of the instruction instead of the contents of a register or mem-
ory location, it represents what is called an immediate operand and is accessed using the

Assembly Language Programming

89

Figure 10 Instruction encoded with
an immediate operand.

immediate addressing mode. Figure 10 shows that the operand, which can be 8 bits
(Imm8) or 16 bits (Imm16) in length, is encoded as part of the instruction. Since the data
are encoded directly into the instruction, immediate operands normally represent constant
data. This addressing mode can only be used to specify a source operand.

In the instruction

MOV AL, 15H

the source operand 15H (1516) is an example of a byte-wide immediate source operand.
The destination operand, which is the contents of AL, uses register addressing. Thus, this
instruction employs both the immediate and register addressing modes.

Figures 11(a) and (b) illustrate the fetch and execution of this instruction. Here we
find that the immediate operand 1516 is stored in the code segment of memory in the byte
location immediately following the opcode of the instruction. This value is fetched, along
with the opcode for MOV, into the instruction queue within the 8088. When it performs
the move operation, the source operand is fetched from the queue, not from the memory,
and no external memory operations are performed. Note that the result produced by exe-
cuting this instruction is that the immediate operand, which equals 1516, is loaded into the
lower-byte part of the accumulator (AL).

EXAMPLE 3

Write an instruction that will move the immediate value 1234H into the CX register.

Solution

The instruction must use immediate operand addressing for the source operand and reg-
ister operand addressing for the destination operation. This gives

MOV CX, 1234H

Memory Operand Addressing Modes

To reference an operand in memory, the 8088 must calculate the physical address
(PA) of the operand and then initiate a read or write operation of this storage location.
The 8088 MPU is provided with a group of addressing modes known as the memory
operand addressing modes for this purpose. Looking at Fig. 12, we see that the physi-
cal address is computed from a segment base address (SBA) and an effective address
(EA). SBA identifies the starting location of the segment in memory, and EA represents
the offset of the operand from the beginning of this segment of memory. Earlier we

Assembly Language Programming

90

showed how SBA and EA are combined within the 8088 to form the logical address
SBA:EA and how to compute the physical address from these two values.

The value of the EA can be specified in a variety of ways. One way is to encode the
effective address of the operand directly in the instruction. This represents the simplest
type of memory addressing, known as the direct addressing mode. Figure 12 shows that
an effective address can be made up from as many as three elements: the base, index, and
displacement. Using these elements, the effective address calculation is made by the gen-
eral formula

Figure 12 also identifies the registers that can be used to hold the values of the seg-
ment base, base, and index. For example, it tells us that any of the four segment regis-
ters can be the source of the segment base for the physical address calculation and that

EA � Base � Index � Displacement

Figure 11 (a) Immediate addressing mode instruction before fetch and exe-
cution. (b) After execution.

Assembly Language Programming

91

Figure 11 (continued)

Figure 12 Physical and effective
address computation for memory
operands.

the value of base for the effective address can be in either the base register (BX) or base
pointer register (BP). Figure 12 also identifies the sizes permitted for the displacement.

Not all these elements are always used in the effective address calculation. In fact,
a number of memory addressing modes are defined by using various combinations of
these elements. They are called register indirect addressing, based addressing, indexed
addressing, and based-indexed addressing. For instance, using based addressing mode,
the effective address calculation includes just a base. These addressing modes provide the

Assembly Language Programming

92

Figure 14 (a) Direct addressing mode instruction before fetch and execu-
tion. (b) After execution.

Figure 13 Specification of a direct
memory address.

programmer with different ways of computing the effective address of an operand in
memory. Next, we will examine each of the memory operand addressing modes in detail.

Direct Addressing Mode. Direct addressing mode is similar to immediate addressing in
that information is encoded directly into the instruction. However, in this case, the instruc-
tion opcode is followed by an effective address, instead of the data. As Fig. 13 shows, this
effective address is used directly as the 16-bit offset of the storage location of the operand
from the location specified by the current value in the selected segment register. The default

Assembly Language Programming

93

segment register is DS. Therefore, the 20-bit physical address of the operand in memory is
normally obtained from logical address DS:EA. But, by using a segment override prefix
(SEG) in the instruction, any of the four segment registers can be referenced.

An example of an instruction that uses direct addressing mode for its source
operand is

MOV CX,[1234H]

This stands for “move the contents of the memory location with offset 123416 in the cur-
rent data segment into internal register CX.” The offset is encoded as part of the instruc-
tion’s machine code.

In Fig. 14(a), we find that the offset is stored in the two byte locations that follow
the instruction’s opcode. As the instruction is executed, the 8088 combines 123416 with
020016 to get the physical address of the source operand as follows:

� 0323416

PA � 0200016 � 123416

Figure 14 (continued)

Assembly Language Programming

94

Figure 16 (a) Instruction using register indirect addressing mode before fetch
and execution. (b) After execution.

Then it reads the word of data starting at this address, which is BEED16, and loads it into
the CX register. This result is illustrated in Fig. 14(b).

Register Indirect Addressing Mode. Register indirect addressing mode is similar to the
direct addressing we just described in that an effective address is combined with the con-
tents of DS to obtain a physical address. However, it differs in the way the offset is speci-
fied. Figure 15 shows that this time EA resides in either a base register or an index regis-
ter within the 8088. The base register can be either base register BX or base pointer

Figure 15 Specification of an indi-
rect memory address.

Assembly Language Programming

95

register BP, and the index register can be source index register SI or destination index reg-
ister DI. Use of a segment-override prefix permits reference of another segment register.

An example of an instruction that uses register indirect addressing for its source
operand is

MOV AX,[SI]

Execution of this instruction moves the contents of the memory location that is offset
from the beginning of the current data segment by the value of EA in register SI into the
AX register.

For instance, Figs. 16(a) on the previous page and (b) show that if SI contains
123416 and DS contains 020016, the result produced by executing the instruction is that
the contents of the memory location at address

� 0323416

PA � 0200016 � 123416

Figure 16 (continued)

Assembly Language Programming

96

Figure 17 (a) Specification of a
based address. (b) Based addressing of
a structure of data.

Figure 18 (a) Instruction using based pointer addressing mode before fetch
and execution. (b) After execution.

Assembly Language Programming

97

are moved to the AX register. Notice in Fig. 16(b) that this value is BEED16. In this exam-
ple, the value 123416 that was found in the SI register must have been loaded with another
instruction prior to executing the move instruction.

The result produced by executing this instruction and that for the example for the
direct addressing mode are the same. However, they differ in the way the physical address
was generated. The direct addressing method lends itself to applications where the value
of EA is a constant. On the other hand, register indirect addressing can be used when the
value of EA is calculated and stored, for example, in SI by a previous instruction—that
is, EA is a variable. For instance, the instructions executed just before our example
instruction could have incremented the value in SI by two.

Based Addressing Mode. In the based addressing mode, the effective address of the
operand is obtained by adding a direct or indirect displacement to the contents of
either base register BX or base pointer register BP. The physical address calculation is
shown in Fig. 17(a). Looking at Fig. 17(b), we see that the value in the base register

Figure 18 (continued)

Assembly Language Programming

98

Figure 19 (a) Indexed addressing of
an array of data elements. (b) Specifi-
cation of an indexed address.

defines the beginning of a data structure, such as an array, in memory, and the displace-
ment selects an element of data within this structure. To access a different element in the
array, the programmer simply changes the value of the displacement. To access the same
element in another similar array, the programmer can change the value in the base regis-
ter so that it points to the beginning of the new array.

A move instruction that uses based addressing to specify the location of its destina-
tion operand is as follows:

MOV [BX] + 1234H, AL

This instruction uses base register BX and direct displacement 123416 to derive the EA of
the destination operand. The based addressing mode is implemented by specifying the
base register in brackets followed by a + sign and the direct displacement. The source
operand in this example is located in byte accumulator AL.

As Figs. 18(a) and (b) show, the fetch and execution of this instruction cause the
8088 to calculate the physical address of the destination operand from the contents of DS,
BX, and the direct displacement. The result is

Then it writes the contents of source operand AL into the storage location at 0423416. The
result is that ED16 is written into the destination memory location. Again, the default seg-

� 0423416

PA � 0200016 � 100016 � 123416

Assembly Language Programming

99

ment register for this physical address calculation is DS, but it can be changed to another
segment register with the segment-override prefix.

If BP is used instead of BX, the calculation of the physical address is performed
using the contents of the stack segment (SS) register instead of DS. This permits access
to data in the stack segment of memory.

Indexed Addressing Mode. Indexed addressing mode works in a manner similar to that
of the based addressing mode just described. However, as Fig. 19(a) shows, indexed
addressing mode uses the value of the displacement as a pointer to the starting point of an
array of data in memory and the contents of the specified register as an index that selects
the specific element in the array that is to be accessed. For instance, for the byte-size ele-
ment array in Fig. 19(a), the index register holds the value n. In this way, it selects data ele-
ment n in the array. Figure 19(b) shows how the physical address is obtained from the
value in a segment register, an index in the SI or DI register, and a displacement.

Figure 20 (a) Instruction using indexed addressing mode before fetch and
execution. (b) After execution.

Assembly Language Programming

100

Figure 20 (continued)

Here is an example:

MOV AL,[SI] + 2000H

The source operand has been specified using direct indexed addressing mode. Note that
the direct displacement is 2000H. As with the base register in based addressing, the index
register, which is SI, is enclosed in brackets. The effective address is calculated as

and the physical address is computed by combining the contents of DS with EA.

PA � DS:(SI) � 2000H

EA � (SI) � 2000H

Assembly Language Programming

101

Figures 20(a) and (b) show the result of executing the move instruction. First the
physical address of the source operand is calculated from the contents of DS, SI, and the
direct displacement.

Then the byte of data stored at this location, BE16, is read into the lower byte (AL) of the
accumulator register.

Based-Indexed Addressing Mode. Combining the based addressing mode and the
indexed addressing mode results in a new, more powerful mode known as based-indexed
addressing mode. This addressing mode can be used to access complex data structures
such as two-dimensional arrays. Figure 21(a) shows how it can be used to access elements
in an m � n array of data. Notice that the displacement, which is a fixed value, locates
the array in memory. The base register specifies the m coordinate of the array, and the
index register identifies the n coordinate. Simply changing the values in the base and

� 0523416

PA � 0200016 � 200016 � 123416

Figure 21 (a) Based-indexed
addressing of a two-dimensional array
of data. (b) Specification of a based-
indexed address.

Assembly Language Programming

102

Figure 22 (a) Instruction using based-indexed addressing mode before fetch
and execution. (b) After execution.

index registers permits access to any element in the array. Figure 21(b) shows the regis-
ters permitted in the based-indexed physical address computation.

Let us consider an example of a move instruction using this type of addressing.

MOV AH, [BX][SI] + 1234H

Note that the source operand is accessed using based-indexed addressing mode. There-
fore, the effective address of the source operand is obtained as

EA � (BX) � (SI) � 1234H

Assembly Language Programming

103

and the physical address of the operand is computed from the current contents of DS and
the calculated EA.

Figures 22(a) and (b) present an example of executing this instruction. Using the
contents of the various registers in the example, the address of the source operand is cal-
culated as

Execution of the instruction causes the value stored at this location in memory to be read
into AH.

� 0623416

PA � 0200016 � 100016 � 200016 � 123416

PA � DS:(BX) � (SI) � 1234H

Figure 22 (continued)

Assembly Language Programming

104

REVIEW PROBLEMS

Section 1
1. What tells a microcomputer what to do, where to get data, how to process the data,

and where to put the results when done?

2. What is the name given to a sequence of instructions used to guide a computer
through a task?

3. What does OS stand for?

4. What is the native language of the 8088?

5. How does machine language differ from assembly language?

6. What does opcode stand for? Give two examples.

7. What is an operand? Give two types.

8. In the assembly language statement

START: ADD AX, BX ;Add BX to AX

what is the label? What is the comment?

9. What is the function of an assembler? A compiler?

10. What is source code? What is object code?

11. Give two benefits derived from writing programs in assembly language instead of a
high-level language.

12. What is meant by the phrase real-time application?

13. List two hardware-related applications that require the use of assembly language pro-
gramming. Name two software-related applications.

Section 2
14. What document is produced as a result of the problem description step of the devel-

opment cycle?

15. Give a name that is used to refer to the software solution planned for a problem.
What is the name of the document used to describe this solution plan?

16. What is a flowchart?

17. Draw the flowchart symbol used to identify a subroutine.

18. What type of program is EDIT?

19. What type of program is used to produce an object module?

20. What does MASM stand for?

21. What type of program is used to produce a run module?

22. In which part of the development cycle is the EDIT program used? The MASM pro-
gram? The LINK program? The DEBUG program?

23. Assuming that the filename is PROG_A, what are typical names for the files that
result from the use of the EDIT program? The MASM program? The LINK
program?

Assembly Language Programming

105

Section 3
24. How many basic instructions are in the 8088/8086 instruction set?

25. List six groups of instructions in the 8088/8086 instruction set.

Section 4
26. Describe the operation performed by executing the move instruction.

Section 5
27. What is meant by an addressing mode?

28. Make a list of the addressing modes available on the 8088.

29. What three elements can be used to form the effective address of an operand in
memory?

30. Name the five memory operand addressing modes.

31. Identify the addressing modes used for the source and the destination operands in the
instructions that follow.

(a) MOV AL, BL
(b) MOV AX, 0FFH
(c) MOV [DI], AX
(d) MOV DI,[SI]
(e) MOV [BX] + 0400H,CX
(f) MOV [DI] + 0400H,AH
(g) MOV [BX][DI] + 0400H, AL

32. Compute the physical address for the specified operand in each of the following
instructions from problem 31. The register contents and variables are as follows:

, , , , and .
(a) Destination operand of the instruction in (c)
(b) Source operand of the instruction in (d)
(c) Destination operand of the instruction in (e)
(d) Destination operand of the instruction in (f)
(e) Destination operand of the instruction in (g)

Section 1
1. Software.

3. Operating system.

5. Instructions encoded in machine language are coded in 0s and 1s, while assembly
language instructions are written with alphanumeric symbols such as MOV, ADD, or
SUB.

7. The data that is to be processed during execution of an instruction; source operand
and destination operand.

9. An assembler is a program that is used to convert an assembly language source pro-
gram to its equivalent program in machine code. A compiler is a program that con-
verts a program written in a high-level language to equivalent machine code.

(BX) � 030016(DI) � 020016(SI) � 010016(DS) � 0B0016(CS) � 0A0016

Assembly Language Programming

ANSWERS TO SELECTED REVIEW PROBLEMS▲

106

11. It takes up less memory and executes faster.

13. Floppy disk subsystem control and communications to a printer; code translation and
table sort routines.

Section 2
15. Algorithm; software specification.

19. Assembler.

21. Linker.

23. (a) PROG_A.ASM
(b) PROG_A.LST and PROG_A.OBJ
(c) PROG_A.EXE and PROG_A.MAP

Section 3
25. Data transfer instructions, arithmetic instructions, logic instructions, string manipula-

tion instructions, control transfer instructions, and processor control instructions.

Section 5
27. An addressing mode means the method by which an operand can be specified in a

register or a memory location.

29. Base, index, and displacement.
31. Instruction Destination Source

(a) Register Register
(b) Register Immediate
(c) Register indirect Register
(d) Register Register indirect
(e) Based Register
(f) Indexed Register
(g) Based-indexed Register

Assembly Language Programming

107

This page intentionally left blank

Machine Language
Coding and the DEBUG
Software Development
Program of the PC

▲ INTRODUCTION

In this chapter, we begin by exploring how the instructions of the 8088/8086 instruction
set are encoded in machine code. This is followed by a study of the software development
environment provided for these microprocessors with the PC microcomputer. Here we
examine the DEBUG program, which is a program-execution/debug tool that operates in
the PC’s disk operating system (DOS) environment. First we examine DEBUG’s com-
mand set. Then we use these commands to load, assemble, execute, and debug programs.
The operation of many of the 8088/8086 instructions is demonstrated by executing them
with the DEBUG program. The topics discussed in this chapter are as follows:

1 Converting Assembly Language Instructions to Machine Code

2 Encoding a Complete Program in Machine Code

3 The PC and Its DEBUG Program

4 Examining and Modifying the Contents of Memory

5 Input and Output of Data

6 Hexadecimal Addition and Subtraction

7 Loading, Verifying, and Saving Machine Language Programs

From Chapter 4 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

109

8 Assembling Instructions with the Assemble Command

9 Executing Instructions and Programs with the TRACE and GO Commands

10 Debugging a Program

▲ 1 CONVERTING ASSEMBLY LANGUAGE
INSTRUCTIONS TO MACHINE CODE

To convert an assembly language program to machine code, we must convert each assem-
bly language instruction to its equivalent machine code instruction. In general, the
machine code for an instruction specifies things like what operation is to be performed,
what operand or operands are to be used, whether the operation is performed on byte or
word data, whether the operation involves operands that are located in registers or a reg-
ister and a storage location in memory, and if one of the operands is in memory, how its
address is to be generated. All of this information is encoded into the bits of the machine
code for the instruction.

The machine code instructions of the 8088 vary in the number of bytes used to
encode them. Some instructions can be encoded with just 1 byte, others can be done in
2 bytes, and many require even more. Earlier we indicated that the maximum number of
bytes an instruction might take is 6. Single-byte instructions generally specify a simpler
operation with a register or a flag bit. Complement carry (CMC) is an example of a
single-byte instruction, specified by the machine code byte 111101012, which equals
F516. That is,

The machine code for instructions can be obtained by following the formats used in
encoding the instructions of the 8088 microprocessor. Most multibyte instructions use the
general instruction format shown in Fig. 1. Exceptions to this format exist and are con-
sidered later. For now, let us describe the functions of the various bits and fields (groups
of bits) in each byte of this format.

Looking at Fig. 1, we see that byte 1 contains three kinds of information: the
operation code (opcode), the register direction (D) bit, and the data size (W) bit. Let us
summarize the function of each of these pieces of information.

1. Opcode field (6-bit): Specifies the operation, such as add, subtract, or move, that is
to be performed.

2. Register direction bit (D bit): Tells whether the register operand specified by REG
in byte 2 is the source or destination operand. A logic 1 in this bit position indicates
that the register operand is a destination operand, and logic 0 indicates that it is a
source operand.

3. Data size bit (W bit): Specifies whether the operation will be performed on 8-bit or
16-bit data. Logic 0 selects 8 bits and 1 selects 16 bits as the data size.

For instance, if a 16-bit value is to be added to register AX, the six most significant
bits specify the add register operation. This opcode is 000000. The next bit, D, is logic 1

CMC � 111101012 � F516

Machine Language Coding

110

Machine Language Coding

Figure 1 General instruction format. (Reprinted by permission of Intel Corp.
Copyright/Intel Corp. 1979)

to specify that a register, AX in this case, holds the destination operand. Finally, the least
significant bit, W, is logic 1 to specify a 16-bit data operation.

The second byte in Fig. 1 has three fields: the mode (MOD) field, the register
(REG) field, and the register/memory (R/M) field. These fields are used to specify which
register is used for the first operand and where the second operand is stored. The second
operand can be in either a register or a memory location.

The 3-bit REG field is used to identify the register for the first operand, which is the
one that was defined as the source or destination by the D bit in byte 1. Figure 2 shows
the encoding for each of the 8088’s registers. Here we find that the 16-bit register AX and
the 8-bit register AL are specified by the same binary code. Note that the decision
whether to use AX or AL is made based on the setting of the operation size (W) bit in
byte 1.

In our earlier example, we said that the first operand, the destination operand, is
register AX. For this case, the REG field is set to 000.

The 2-bit MOD field and 3-bit R/M field together specify the second operand.
Encoding for these two fields is shown in Figs. 3(a) and (b), respectively. MOD indicates
whether the operand is in a register or memory. Note that in the case of a second operand
in a register, the MOD field is always 11. The R/M field, along with the W bit from byte
1, selects the register.

Figure 2 Register (REG) field encod-
ing. (Reprinted by permission of Intel
Corp. Copyright / Intel Corp. 1979)

111

Machine Language Coding

Figure 3 (a) Mode (MOD) field encoding. (Reprinted by permission of Intel Corp.
Copyright/Intel Corp. 1979) (b) Register/memory (R/M) field encoding. (Reprinted by
permission of Intel Corp. Copyright/Intel Corp. 1979)

For example, if the second operand, the source operand in our earlier addition
example, is to be in BX, the MOD and R/M fields are made 11 and 011, respectively.

EXAMPLE 1

The instruction

MOV BL, AL

stands for “move the byte contents from source register AL to destination register BL.”
Using the general format in Fig. 1, show how to encode the instruction in machine code.
Assume that the 6-bit opcode for the move operation is 100010.

112

Solution

In byte 1, the first six bits specify the move operation and thus must be 100010.

The next bit, D, indicates whether the register specified by the REG part of byte 2 is a
source or destination operand. Let us say that we will encode AL in the REG field of
byte 2; therefore, D is set equal to 0 for source operand.

The last bit (W) in byte 1 must specify a byte operation. For this reason, it is also set to 0.

This leads to

In byte 2, the source operand, specified by the REG field, is AL. The corresponding code
from Fig. 2 is

Since the second operand is also a register, the MOD field is made 11. The R/M field
specifies that the destination register is BL, for which the code (from Fig. 3(b)) is 011.
This gives

Therefore, byte 2 is

Thus, the hexadecimal machine code for the instruction is given by

MOV BL, AL = 88C3H

There are a number of ways to specify the location for the second operand located
in memory. That is, any of the addressing modes supported by the 8088 microprocessor
can be used to generate its address. The addressing mode is selected with the MOD and
R/M fields.

BYTE 2 � 110000112 � C316

 R/M � 011

 MOD � 11

REG � 000

BYTE 1 � 100010002 � 8816

W � 0

D � 0

OPCODE � 100010

Machine Language Coding

113

Note in Fig. 3(b) that the addressing mode for an operand in memory is indicated
by one of the three values (00, 01, or 10) in the MOD field and an appropriate R/M code.
The different ways in which the operand’s address can be generated are shown in the
effective address calculation part of the table in Fig. 3(b). (These different address-
calculation expressions correspond to the addressing modes previously discussed.) For
instance, if the base register (BX) contains the memory address, this fact is encoded into
the instruction by making MOD = 00 and R/M = 111.

EXAMPLE 2

The instruction

ADD AX,[SI]

stands for “add the 16-bit contents of the memory location indirectly specified by SI to
the contents of AX.” Encode the instruction in machine code. The opcode for add is
000000.

Solution

To specify a 16-bit add operation with a register as the destination, the first byte of
machine code will be

The REG field bits in byte 2 are 000 to select AX as the destination register. The other
operand is in memory, and its address is specified by the contents of SI with no displace-
ment. In Figs. 3(a) and (b), we find that for indirect addressing using SI with no dis-
placement, MOD equals 00 and R/M equals 100. That is,

This gives

Thus, the machine code for the instruction is

ADD AX,[SI] = 0304H

Some of the addressing modes of the 8088 need either data or an address displace-
ment to be coded into the instruction. These types of information are encoded using addi-
tional bytes. For instance, looking at Fig. 1, we see that byte 3 is needed in the encoding

BYTE 2 � 000001002 � 0416

 R/M � 100

 MOD � 00

BYTE 1 � 000000112 � 0316

Machine Language Coding

114

of an instruction if it uses a byte-size address displacement, and both byte 3 and byte 4
are needed if the instruction uses a word-size displacement.

The size of the displacement is encoded into the MOD field. For example, if the
effective address is to be generated by the expression

where D8 stands for 8-bit displacement, MOD is set to 01 to specify memory mode with
an 8-bit displacement and R/M is set to 111 to select BX.

Bytes 3 and 4 are also used to encode byte-wide immediate operands, word-wide
immediate operands, and direct addresses. For example, in an instruction where direct
addressing is used to identify the location of an operand in memory, the MOD field must
be 00 and the R/M field, 110. The actual value of the operand’s address is coded into the
bytes that follow.

If both a 16-bit displacement and a 16-bit immediate operand are used in the same
instruction, the displacement is encoded into bytes 3 and 4, and the immediate operand is
encoded into bytes 5 and 6.

EXAMPLE 3

What is the machine code for the instruction

XOR CL,[1234H]

This instruction says “exclusive-OR the byte of data at memory address 123416 with the
byte contents of CL.” The opcode for exclusive-OR is 001100.

Solution

Using 001100 as the opcode bits, 1 to denote the register as the destination operand, and
0 to denote byte data, we get

The REG field has to specify CL, which makes it equal to 001. In this case, a direct
address has been specified for operand 2. This requires MOD = 00 and R/M = 110. Thus,

To specify the address 123416, we must use byte 3 and byte 4. The least significant byte
of the address is encoded first, followed by the most significant byte. This gives

and

BYTE 4 � 1216

BYTE 3 � 3416

BYTE 2 � 000011102 � 0E16

BYTE 1 � 001100102 � 3216

(BX) � D8

Machine Language Coding

115

Thus, the machine code form of the instruction is given by

XOR CL, 1234H = 320E3412H

EXAMPLE 4

The instruction

ADD [BX][DI]+1234H, AX

means “add the word contents of AX to the contents of the memory location specified by
based-indexed addressing mode.” The opcode for the add operation is 000000.

Solution

The add opcode 000000, a 0 for source operand, and a 1 for word data gives

The REG field in byte 2 is 000 to specify AX as the source register. Since there is a dis-
placement and it needs 16 bits for encoding, the MOD field obtained from Fig. 3(a) is 10.
The R/M field, also obtained from Fig. 3(b), is set to 001 for an effective address gener-
ated from DI and BX. This gives the second byte as

The displacement 123416 is encoded in the next two bytes, with the least significant byte
first. Therefore, the machine code that results is

ADD [BX][DI]+1234H, AX = 01813412H

As we indicated earlier, the general format in Fig. 1 cannot be used to encode all
the instructions that can be executed by the 8088. Minor modifications must be made to
this general format to encode a few instructions. In some instructions, one or more addi-
tional single-bit fields need to be added. Figure 4 shows these 1-bit fields and their func-
tions. For instance, the general format of the repeat (REP) instruction is

REP = 1111001Z

Here bit Z is 1 or 0 depending on whether the repeat operation is to be done when the
zero flag is set or when it is reset. Similarly the other two bits, S and V, in Fig. 4 are used
to encode sign extension for arithmetic instructions and to specify the source of the count
for shift or rotate instructions, respectively.

BYTE 2 � 100000012 � 8116

BYTE 1 � 000000012 � 0116

Machine Language Coding

116

Figure 4 Additional 1-bit fields and their functions. (Reprinted by permission of Intel
Corp. Copyright/Intel Corp. 1979)

Recall the instruction set summary; it shows the formats for all of the instructions
in the 8088’s instruction set. This information can be used to encode any 8088 instruction.

Instructions that involve a segment register need a 2-bit field to encode which reg-
ister is to be affected. This field is called the SR field. PUSH and POP are examples of
instructions that have an SR field. The four segment registers ES, CS, SS, and DS are
encoded according to the table in Fig. 5.

EXAMPLE 5

The instruction

MOV WORD PTR [BP][DI]+1234H, 0ABCDH

stands for “move the immediate data word ABCD16 into the memory location specified
by based-indexed addressing mode.” Express the instruction in machine code.

Solution

Since this instruction does not involve one of the registers as an operand, it does not fol-
low the general format we have been using. The instruction set of the 8088/8086 shows
that byte 1 in an immediate data to memory move is

1100011W

Figure 5 Segment register codes.

Machine Language Coding

117

In our case, we are moving word-size data; therefore, W equals 1. This gives

Again, in the instruction set of the 8088/8086, we find that byte 2 has the form

For a memory operand using a 16-bit displacement, Fig. 3(a) shows that MOD equals 10,
and for based-indexed addressing using BP and DI with a 16-bit displacement, Fig. 3(b)
shows that R/M equals 011. This gives

Byte 3 and 4 encode the displacement with its low byte first. Thus, for a displacement of
123416 we get

and

Lastly, bytes 5 and 6 encode the immediate data also with the least significant byte first.
For data word ABCD16, we get

and

Thus, the entire instruction in machine code is given by

MOV WORD PTR [BP][DI]+1234H, 0ABCDH = C7833412CDABH

EXAMPLE 6

The instruction

MOV [BP][DI]+1234H, DS

says “move the contents of the data segment register to the memory location specified by
based-indexed addressing mode.” Express the instruction in machine code.

BYTE 6 � AB16

BYTE 5 � CD16

BYTE 4 � 1216

BYTE 3 � 3416

BYTE 2 � 100000112 � 8316

BYTE 2 � (MOD)000(R/M)

BYTE 1 � 110001112 � C716

Machine Language Coding

118

Solution

The instruction of the 8088/8086 is encoded as

The MOD and R/M fields are,

and

Moreover, the value of DISP is given as 123416. Finally, Fig. 5 shows that to specify DS,
the SR field is

Therefore, the instruction is coded as

100011001001101100110100000100102 = 8C9B341216

▲ 2 ENCODING A COMPLETE PROGRAM IN MACHINE
CODE

To encode a complete assembly language program in machine code, we must individually
encode each of its instructions. We do this by using the instruction formats of the
8088/8086 and the information in the tables of Figs. 2, 3, 4, and 5. We first identify the
general machine code format for the instruction of the 8088/8086. After determining the
format, the bit fields are evaluated using the tables of Figs. 2, 3, 4, and 5. Finally, the
binary-coded instruction is expressed in hexadecimal form.

To execute a program on the PC, the machine code of the program is first stored in
the code segment of memory. The bytes of machine code are stored in sequentially
addressed locations in memory. The first byte of the program is stored at the lowest
address, and it is followed by the other bytes in the order in which they are encoded. That
is, the address is incremented by 1 after storing each byte of machine code in memory.

EXAMPLE 7

Encode the “block-move” program in Fig. 6(a) and show how it would be stored in mem-
ory starting at address 20016.

SR � 11

R/M � 011

MOD � 10

10001100(MOD)0(SR)(R/M)(DISP)

Machine Language Coding

119

Figure 6 (a) Block move program. (b) Machine coding of the block move
program. (c) Storing the machine code in memory.

Solution

To encode this program into its equivalent machine code, we use the instruction set table
in the 8088/8086. The first instruction

MOV AX, 2000H

Machine Language Coding

120

Figure 6 (continued)

is a “move immediate data to register” instruction. We find it has the form

Since the move is to register AX, Fig. 2 shows that the W bit is 1 and REG is 000. The
immediate data 200016 follows this byte with the least significant byte coded first. This
gives the machine code for the instruction as

1011100000000000001000002 = B8002016

The second instruction

MOV DS, AX

represents a “move register to segment register” operation. This instruction has the gen-
eral format

10001110(MOD)0(SR)(R/M)

1011(W)(REG)(DATA DATA IF W � 1)

Machine Language Coding

121

From Figs. 3(a) and (b), we find that for this instruction MOD = 11 and R/M is 000 for
AX. Furthermore, Fig. 5 shows that SR = 11 for data segment. This results in the code

10001110110110002 = 8ED816

for the second instruction.
The next three instructions have the same format as the first instruction. In the third

instruction, REG is 110 for SI and the data is 010016. This gives the instruction code as

1011111000000000000000012 = BE000116

The fourth instruction has REG coded as 111 (DI) and the data as 012016. This results in
the code

1011111100100000000000012 = BF200116

In the fifth instruction, REG is 001 for CX, with 001016 as the data. This gives its code as

1011100100010000000000002 = B9100016

The sixth instruction is a move of byte data from memory to a register. We find that its
general format is

Since AH is the destination and the instruction operates on bytes of data, the D and W
bits are 1 and 0, respectively, and the REG field is 100. The contents of SI are used as a
pointer to the source operand; therefore, MOD is 00 and R/M is 100. This gives the
instruction code as

10001010001001002 = 8A2416

The last MOV instruction has the same form as the previous one. However, in this case,
AH is the destination and DI is the address pointer. This makes D equal to 0 and R/M
equal to 101. Therefore, we get

10001000001001012 = 882516

The next two instructions increment registers and have the general form

For the first one, register SI is incremented. Therefore, REG equals 110. This results in
the instruction code as

010001102 = 4616

01000(REG)

100010(D)(W)(MOD)(REG)(R/M)

Machine Language Coding

122

In the second, REG equals 111 to encode DI. This gives its code as

010001112 = 4716

The two INC instructions are followed by a DEC instruction. Its general form is

To encode CX, REG equals 001, which results in the instruction code

010010012 = 4916

The next instruction is a jump to the location NXTPT. Its form is

We will not yet complete this instruction because it will be easier to determine the num-
ber of bytes to be jumped after the data have been coded for storage in memory. The final
instruction is NOP, and it is coded as

100100002 = 9016

Figure 6(b) shows the entire machine code program.
As shown in Fig. 6(c), our encoded program will be stored in memory starting from

memory address 200H. The choice of program-beginning address establishes the address
for the NXTPT label. Note that the MOV AH, [SI] instruction, which has this label, starts
at address 20E16. This location is 9 bytes back from the value in IP after fetching the JNZ
instruction. Therefore, the displacement (IP-INC8) in the JNZ instruction is �9, which is
F716 as an 8-bit hexadecimal number. Thus, the instruction is encoded as

01110101111101112 = 75F716

▲ 3 THE PC AND ITS DEBUG PROGRAM

Now that we know how to convert an assembly language program to machine code and
how this machine code is stored in memory, we are ready to enter it into the PC; execute
it; examine the results that it produces; and, if necessary, debug any errors in its opera-
tion. It is the DEBUG program, which is part of the PC’s disk operating system (DOS),
that permits us to initiate these types of operations from the keyboard of the microcom-
puter. In this section we show how to load the DEBUG program from DOS, how to use
DEBUG commands to examine or modify the contents of the MPU’s internal registers,
and how to return to DOS from DEBUG.

01110101(IP-INC8)

01001(REG)

Machine Language Coding

123

Using DEBUG, the programmer can issue commands to the microcomputer in the
PC. Assuming that the DOS has already been entered and that a disk that contains the
DEBUG program is in drive A, DEBUG is loaded by simply issuing the command

C:\DOS>a:debug (↵)

Actually, debug can be typed in using either uppercase or lowercase characters. However,
for simplicity, we will use all uppercase characters in this text.

EXAMPLE 8

Assuming that the DOS is already running and that the DEBUG program is in the DOS
directory on drive C, initiate the DEBUG program from the PC’s keyboard. What prompt
for command entry does the debugger display?

Solution

From DOS, DEBUG is brought up by entering

C:\DOS>DEBUG (↵)

Drive C is accessed to load the DEBUG program; DEBUG is then executed and its
prompt, (-) is displayed. DEBUG is now waiting to accept a command. Figure 7 shows
what is displayed on the screen.

The keyboard is the input unit of the debugger and permits the user to enter com-
mands to load data, such as the machine code of a program; examine or modify the state
of the MPU’s internal registers and memory; or execute a program. All we need to do is
type in the command and then depress the enter (↵) key. These debug commands are the
tools a programmer needs in order to enter, execute, and debug programs.

When the command entry sequence is completed, the DEBUG program decodes the
entry to determine which operation is to be performed, verifies that it is a valid command,
and—if it is valid—passes control to a routine that performs the operation. At the com-
pletion of the operation, results are displayed on the screen and the DEBUG prompt (�)
is redisplayed. The PC remains in this state until a new entry is made from the keyboard.

Six kinds of information are typically entered as part of a command: a command
letter, an address, a register name, a filename, a drive name, and data. The entire com-
mand set of DEBUG is shown in Fig. 8. This table gives the name for each command, its
function, and its general syntax. By syntax, we mean the order in which key entries must
be made to initiate the command.

C:\DOS>DEBUG Figure 7 Loading the DEBUG pro-
gram.

Machine Language Coding

124

Figure 8 DEBUG program command set.

125

Figure 9 An initial state of the 8088
microprocessor.

With the loading of DEBUG, the state of the microprocessor is initialized. The
initial state depends on the DOS version and system configuration at the time the
DEBUG command is issued. An example of the initial state is illustrated with the soft-
ware model in Fig. 9. Notice that registers AX, BX, CX, DX, BP, SI, and DI are reset to
zero; IP is initialized to 010016; CS, DS, SS, and ES are all loaded with 134216; and SP
is loaded with FFEE16. Finally, all the flags except IF are reset to zero. We can use the
register command to verify this initial state.

Let us now look at the syntax for the REGISTER (R) command. This is the debug-
ger command that allows us to examine or modify the contents of internal registers of the
MPU. Notice that the syntax for this command is given in Fig. 8 as

R [REGISTER NAME]

Here the command letter is R. It is optionally followed by a register name. Figure 10
shows what must be entered as the Register name for each of the 8088’s registers.

Machine Language Coding

126

Figure 10 Register mnemonics for
the R command.

An example of the command entry needed to examine or modify the value in reg-
ister AX is

-R AX (↵)

Notice that brackets are not included around the register name. In Fig. 8 brackets are sim-
ply used to separate the various elements of the DEBUG command. They are never
entered as part of the command. Execution of this Register command causes the current
value in AX to be displayed as

AX 0000
:_

Here we see that AX contains 000016. The examine register command is not yet complete.
Note that a colon (:) followed by the cursor is displayed. We can now either depress (↵)
to complete the command, leaving the register contents unchanged, or enter a new value
for AX following the colon and then depress (↵). Let us load AX with a new value of
00FF16. This is done by the entry

:00FF (↵)
-

EXAMPLE 9

Verify the initialized state of the 8088 by examining the contents of its registers with the
Register command.

Machine Language Coding

127

Figure 12 Notations used for
displaying the status flags.

Solution

If we enter the register command without a specific register name, the debugger causes
the state of all registers and flags to be displayed. That is, if we enter

-R (↵)

the information displayed is that shown in Fig. 11. Looking at this result, we see that all
registers are initialized as expected. To verify that all flags other than IF were reset, we
compare the flag settings that are listed to the right of the value for IP with the values in
the table of Fig. 12. Note that as expected all flags but IF are in the reset state. The last
line displays the machine code and assembly language statement of the instruction
pointed to by the current values in CS and IP (CS:IP).

EXAMPLE 10

Specify PC debug commands that will cause the value in BX to be modified to FF0016

and then verify that this new value is loaded into BX.

Solution

To modify the value in BX, all we need to do is issue the Register command with BX and
then respond to the prompt :_ by entering the value FF0016. This is done with the com-
mand sequence

-R BX (↵)
BX 0000
:FF00 (↵)
-

Figure 11 Displaying the initialized state of the MPU.

-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 CD21 INT 21

Machine Language Coding

128

Figure 13 Displayed information for
Example 10.

-R BX
BX 0000
:FF00
-R BX
BX FF00
:-
-

We can verify that FF0016 has been loaded into BX by issuing another Register command
as follows:

-R BX (↵)
BX FF00
:_ (↵)
-

The displayed information for this command sequence is shown in Fig. 13.

The way in which the Register command is used to modify flags is different than
how it is used to modify the contents of a register. If we enter the command

-R F (↵)

the flag settings are displayed as

NV UP EI PL NZ NA PO NC-

To modify flags, just type in their new states (using the notations shown in Fig. 12) and
depress the return key. For instance, to set the carry and zero flags, enter

NV UP EI PL NZ NA PO NC -CY ZR (↵)

Note that the new flag states can be entered in any order.

EXAMPLE 11

Use the Register command to set the parity flag to even parity. Verify that the flag has
been changed.

Solution

To set PF for even parity, issue the Register command for the flag register and then enter
PE as the new flag data. This is done with the command sequence

-R F (↵)
NV UP EI PL NZ NA PO NC -PE (↵)

Machine Language Coding

129

-R F
NV UP EI PL NZ NA PO NC -PE
-R F
NV UP EI PL NZ NA PE NC -
-

Figure 14 Displayed information for
Example 11.

-R AX
AX 0000
:00FF
^ Error
- Figure 15 Invalid entry.

To verify that PF has been changed to its PE state, just enter another register command
for the flag register as follows:

-R F (↵)

NV UP EI PL NZ NA PE NC- (↵)

Notice that the state of the parity flag has changed from PO to PE. Figure 14 shows these
commands, and the displayed flag status that results.

The Register command is very important for debugging programs. For instance, it
can be used to check the contents of a register or flag prior to and again just after execu-
tion of an instruction. In this way, we can tell whether or not the instruction correctly per-
formed the required operation.

If the command that was entered is identified as being invalid, an error message is
displayed. Let us look at an example of an invalid command entry. To do this, we repeat
our earlier example in which AX was loaded with 00FF16, but in keying in 00FF16, we
enter the uppercase letter O instead of zeros. The result produced by issuing this com-
mand is shown in Fig. 15. Here we see that a warning “Error” is displayed, and the sym-
bol ∧ is used to mark the starting location of the error in the command. To correct this
error, the command is simply reentered.

We will examine one more command before going on. We now know how to invoke
the DEBUG program from the DOS prompt, but we must also be able to return to the
DOS when finished using DEBUG. The debugger contains a command called QUIT (Q)
to do this. Therefore, to return to the DOS, we simply respond to the debug prompt with

Q (↵)

▲ 4 EXAMINING AND MODIFYING THE CONTENTS OF
MEMORY

In Section 3 we studied the command that permitted us to examine or modify the con-
tents of the MPU’s internal registers. Here we will continue our study of DEBUG’s com-
mand set with the commands used to examine and modify the contents of memory. The

Machine Language Coding

130

-D
1342:0100 75 07 05 00 00 00 B2 14-4C 00 2B 04 27 0C 06 74 u.......L.+.’..t
1342:0110 46 74 05 00 00 00 31 13-B2 14 99 00 31 13 31 13 Ft....1.....1.1.
1342:0120 8A 40 8B 1E F2 39 9A 88-97 63 17 8B 1E F2 39 BA .@...9...c....9.
1342:0130 61 46 E8 37 0B A0 5A 46-0A C0 74 2D 8B 1E AB 42 aF.7..ZF..t-...B
1342:0140 FE C8 75 0B 89 1E 5C 46-C6 06 5A 46 02 EB 1A 3B ..u...\F..ZF...;
1342:0150 1E 5C 46 74 14 C6 06 5A-46 00 E8 17 01 75 03 E9 .\Ft...ZF....u..
1342:0160 FC 00 3C 59 75 03 E9 27-01 E8 97 01 8A C5 74 22 ..<Yu..’......t”
1342:0170 80 3E CE 09 00 75 10 80-F9 0D 75 0B E8 55 00 74 .>...u....u..U.t
-

Figure 16 Examining the contents of 128 consecutive bytes in memory.

ability to do this is essential for debugging programs. For instance, the value at an address
in memory can be examined just before and just after the execution of an instruction that
affects this memory location. In this way, we can verify that the instruction performs the
operation correctly. This type of command also can be used to load a program into the
microcomputer’s memory. The complete command set of DEBUG was shown in Fig. 8.
Six of these commands—Dump, Enter, Fill, Move, Compare, and Search—are provided
for use in examining or modifying the contents of storage locations in memory. Let us
now look at the operations performed with each of these commands.

DUMP Command

The DUMP (D) command allows us to examine the contents of a memory location
or a block of consecutive memory locations. From Fig. 8, we see that the general syntax
for Dump is

D [ADDRESS]

If a segment register is not specified, the value of ADDRESS entered is automatically ref-
erenced to the current value in the data segment (DS) register.

Dump can also be issued without ADDRESS. This gives the command

D (↵)

Execution of this form of the command causes the 128 consecutive bytes starting at off-
set 010016 from the current value in DS to be displayed. If DS is initialized with 134216

when DEBUG is started, issuing this command gives the memory dump shown in Fig. 16.
Note that 16 bytes of data are displayed per line, and only the address of the first

byte is shown at the left. From Fig. 16 we see that the address of the first location in the
first line is denoted as 1342:0100. This corresponds to the physical address

The second byte of data displayed in the first line corresponds to the memory address
1342:0101, or 1352116, and the last byte on this line corresponds to the memory address

1342016 � 010016 � 1352016

Machine Language Coding

131

1342:010F, or 1352F16. Note that the values of the eighth and ninth bytes are separated
by a hyphen.

For all memory dumps, an ASCII version of the memory data is also displayed. It
is displayed to the right of the hexadecimal data in Fig. 16. All bytes that result in an
unprintable ASCII character are displayed as the “.” symbol.

The results shown in Fig. 16 could be obtained with several other forms of the
Dump command. One way is to enter the current value of DS, which is 134216, and an
offset of 010016 in the address field. This results in the command

D 1342:100 (↵)

Another way is to enter DS instead of its value with the offset. This gives

D DS:100 (↵)

In fact, the same results can be obtained by just issuing the command

D 100 (↵)

EXAMPLE 12

What is the physical address range of the bytes of data in the last line of data shown in
Fig. 16?

Solution

In Fig. 16, we see that the first byte is at address 1342:0170. This is the physical address

The last byte is at address 1342:017F, and its physical address is

EXAMPLE 13

What happens if we repeat the entry D (↵) after obtaining the memory dump shown in
Fig. 16?

Solution

The contents of the next 128 consecutive bytes of memory are dumped to the display. The
displayed information is shown in Fig. 17.

Frequently, we do not want to examine such a large block of memory. Instead, we
may want to look at just a few bytes or a specific-sized block. The Dump command can
also do this. This time we enter two addresses. The first address defines the starting point

1342016 � 017F16 � 1359F16

1342016 � 017016 � 1359016

Machine Language Coding

132

-D DS:200 201
1342:0200 06 CE

Figure 18 Displaying two bytes
of data.

Figure 17 Displayed information for repeat of 128-byte memory-dump command.

-D
1342:0180 0B 72 0C 3C 0A 75 08 E8-4A 00 75 03 E9 D9 00 E9 .r.<.u..J.u.....
1342:0190 BF FE E8 23 40 75 02 EB-82 80 3E CE 09 00 75 15 ...#@u....>...u.
1342:01A0 80 F9 0D 75 10 E8 2C 00-74 E2 72 18 3C 0A 75 14 ...u..,.t.r.<.u.
1342:01B0 8A C5 E8 03 40 9A 49 C5-63 17 9A B3 B8 63 17 E8 @.I.c....c..
1342:01C0 9F 0A EB C3 9A 49 C5 63-17 9A B3 B8 63 17 E8 90 I.c....c...
1342:01D0 0A E9 7D FE E8 D1 01 74-66 89 2E D7 09 8A E8 24 ..}....tf......$
1342:01E0 7F 8A CB 3C 1B 74 07 3C-1D 75 3B EB 59 90 E8 B7 ...<.t.<.u;.Y...
1342:01F0 01 74 31 52 8A F0 E8 AF-01 74 38 3C 1C 75 0E C6 .t1R.....t8<.u..
-

of the block, and the second address identifies the end of the block. For instance, if we
want to examine the two bytes of data that are at offsets equal to 200(↵) and 20116 in the
current data segment, the command is

D DS:200 201 (↵)

The result obtained by executing this command is given in Fig. 18.

EXAMPLE 14

Specify a Dump command to display the contents of the 32 bytes of memory located at
offsets 030016 through 031F16 in the current data segment.

Solution

The command needed to display the contents of this part of memory is

D 300 31F (↵)

and the information displayed is shown in Fig. 19.

Up to now, all of the data displayed with the Dump command were contained in the
data segment of memory. It is also possible to examine data that are stored in the code
segment, stack segment, or extra segment. To do this, we simply use the appropriate seg-
ment register name in the command. For instance, the command needed to dump the val-
ues in the first 16 bytes of the current code segment is

D CS:0 F (↵)

Machine Language Coding

133

Figure 19 Displayed information for Example 14.

-D 300 31F
1342:0300 59 5F C3 E8 D0 3E 74 0A-E8 BF 3E E8 5C 3E 75 F3 Y_...>t...>.\>u.
1342:0310 0C 01 C3 80 3E 25 39 00-74 4A 53 52 FF 36 AB 42 >%9.tJSR.6.B
-

-D SS:FFEE FFFD
1342:FFE0 00 00 ..
1342:FFF0 00 00 00 00 00 00 00 00-00 00 00 00 00 00
-

Figure 20 Displayed information for Example 15.

EXAMPLE 15

Use the Dump command to examine the 16 bytes of memory just below the top of the
stack.

Solution

The top of the stack is defined by the contents of the SS and SP registers (SS:SP). Earlier
we found that SP is initialized to FFEE16 when debug is loaded. Therefore, the 16 bytes
we are interested in reside at offset FFEE16 through FFFD16 from the current value in SS.
This part of the stack is viewed with the command

D SS:FFEE FFFD (↵)

The result displayed by executing this command is shown in Fig. 20.

ENTER Command

The Dump command allowed us to examine the contents of memory, but we also
need to be able to modify or enter information in memory—for instance, to load a
machine code program. It is for this purpose that the ENTER (E) command is provided in
the DEBUG program.

Figure 8 shows that the syntax of the Enter command is

E [ADDRESS] [LIST]

The address part of the E command is entered the same way we just described for the
Dump command. If no segment name is included with the offset, the DS register is
assumed. The list that follows the address is the data that get loaded into memory.

Machine Language Coding

134

-E DS:100 FF FF FF FF FF
-D DS:100 104
1342:0100 FF FF FF FF FF
-

Figure 21 Modifying five
consecutive bytes in memory and
verifying the change of data.

As an example, let us write a command that will load five consecutive byte-wide
memory locations starting at address DS:100 with the value FF16. This is done with the
command

E DS:100 FF FF FF FF FF (↵)

To verify that the new values of data have been stored in memory, let us dump the con-
tents of these locations to the display. To do this, we issue the command

D DS:100 104 (↵)

These commands and the displayed results are shown in Fig. 21. Notice that the byte stor-
age locations from address DS:100 through DS:104 now all contain the value FF16.

The Enter command can also be used in a way in which it either examines or mod-
ifies the contents of memory. If we issue the command with an address but no data, the
contents of the addressed storage location are displayed. For instance, the command

E DS:100 (↵)

causes the value at this address to be displayed as follows:

1342:0100 FF._

Notice that the value at address 1342:0100 is FF16.
At this point we have several options; for one, we can depress the return key. This

terminates the Enter command without changing the contents of the displayed memory
location and causes the debug prompt to be displayed. For another, rather than depressing
return, we can depress the spacebar. Again, the contents of the displayed memory loca-
tion remain unchanged, but this time the command is not terminated. Instead, the contents
of the next consecutive memory address are displayed. Let us assume that this was done.
Then the display reads

1342:0100 FF. FF._

Here we see that the data stored at address 1342:0101 are also FF16. A third type of entry
that could be made is to enter a new value of data and then depress the spacebar or return
key. For example, we could enter 1116 and then depress the spacebar. This gives the display

1342:0100 FF. FF.11 FF._

The value pointed to by address 1342:101 has been changed to 1116, and the contents of
address 1342:0102, FF16, are displayed. Now, depress the return key to terminate the data
entry sequence.

Machine Language Coding

135

-E DS:100
1342:0100 FF._
1342:00FF FF._
-

Figure 22 Using the “–” key to
examine the contents of the previous
memory location.

EXAMPLE 16

Start a data entry sequence by examining the contents of address DS:100 and then, with-
out entering new data, depress the “-” key. What happens?

Solution

The data-entry sequence is initiated as

E DS:100 (↵)

1342:0100 FF._

Entering “-” causes the following address and data to be displayed.

1342:00FF FF._

Notice that these are the address and contents of the storage location at the address equal
to one less than DS:100—that is, the previous byte storage location. This result is shown
in Fig. 22.

The Enter command can also be used to enter ASCII data. Do this by simply
enclosing the data entered in quotation marks. An example is the command

E DS:200 “ASCII” (↵)

This command causes the ASCII data for letters A, S, C, I, and I to be stored in memory
at addresses DS:200, DS:201, DS:202, DS:203, and DS:204, respectively. This character
data entry can be verified with the command

D DS:200 204 (↵)

Looking at the ASCII field of the data dump shown in Fig. 23 we see that the correct
ASCII data were stored into memory. Actually, either single- or double-quote marks can
be used. Therefore, the entry could also have been made as

E DS:200 ’ASCII’ (↵)

Figure 23 Loading ASCII data into memory with the Enter command.

-E DS:200 “ASCII”
-D DS:200 204
1342:0200 41 53 43 49 49 ASCII
-

Machine Language Coding

136

-F 100 11F 22
-D 100 11F
1342:0100 22 22 22 22 22 22 22 22-22 22 22 22 22 22 22 22 “”””””””””””””””
1342:0110 22 22 22 22 22 22 22 22-22 22 22 22 22 22 22 22 “”””””””””””””””
-

Figure 24 Initializing a block of memory with the Fill command.

FILL Command

Frequently, we want to fill a block of consecutive memory locations all with the same
data. For example, we may need to initialize storage locations in an area of memory with
zeros. To do this by entering the data address by address with the Enter command is very
time-consuming. It is for this type of operation that the FILL (F) command is provided.

Figure 8 shows that the general form of the Fill command is

F [STARTING ADDRESS] [ENDING ADDRESS] [LIST]

Here starting address and ending address specify the block of storage locations in mem-
ory. They are followed by a list of data. An example is the command

F 100 11F 22 (↵)

Execution of this command causes the 32 byte locations in the range 1342:100 through
1342:11F to be loaded with 2216. The fact that this change in memory contents has hap-
pened is verified with the command

D 100 11F (↵)

Figure 24 shows the result of executing these two commands.

EXAMPLE 17

Initialize all storage locations in the block of memory from DS:120 through DS:13F with
the value 3316 and the block of storage locations from DS:140 through DS:15F with the
value 4416. Verify that the contents of these ranges of memory are correctly modified.

Solution

These initialization operations can be done with the Fill commands

F 120 13F 33 (↵)

F 140 15F 44 (↵)

They are then verified with the Dump command

D 120 15F (↵)

The information displayed by the command sequence is shown in Fig. 25.

Machine Language Coding

137

-F 120 13F 33
-F 140 15F 44
-D 120 15F
1342:0120 33 33 33 33 33 33 33 33-33 33 33 33 33 33 33 33 3333333333333333
1342:0130 33 33 33 33 33 33 33 33-33 33 33 33 33 33 33 33 3333333333333333
1342:0140 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
1342:0150 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
-

Figure 25 Displayed information for Example 17.

MOVE Command

The MOVE (M) command allows us to copy a block of data from one part of mem-
ory to another part. For instance, using this command, a 32-byte block of data that resides
in memory from address DS:100 through DS:11F can be copied to the address range
DS:200 through DS:21F with a single operation.

The general form of the Move command is given in Fig. 8 as

M [STARTING ADDRESS] [ENDING ADDRESS] [DESTINATION ADDRESS]

Note that it is initiated by depressing the M key. After this, we must enter three addresses.
The first two addresses are the starting address and ending address of the source block of
data—that is, the block of data that is to be copied. The third address is the destination
starting address—that is, the starting address of the section of memory to which the block
of data is to be copied.

The command for our example, which copies a 32-byte block of data located at
address DS:100 through DS:11F to the block of memory starting at address DS:200, is

M 100 11F 200 (↵)

EXAMPLE 18

Fill each storage location in the block of memory from address DS:100 through DS:11F
with the value 1116. Then copy this block of data to a destination block starting at
DS:160. Verify that the block move is correctly done.

Solution

First, we fill the source block with 1116. using the command

F 100 11F 11 (↵)

Next, it is copied to the destination with the command

M 100 11F 160 (↵)

Finally, we dump the complete range from DS:100 to DS:17F by issuing the command

D 100 17F (↵)

The result of this memory dump is given in Fig. 26. It verifies that the block move was
successfully performed.

Machine Language Coding

138

-F 100 11F 11
-M 100 11F 160
-D 100 17F
1342:0100 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11
1342:0110 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11
1342:0120 33 33 33 33 33 33 33 33-33 33 33 33 33 33 33 33 3333333333333333
1342:0130 33 33 33 33 33 33 33 33-33 33 33 33 33 33 33 33 3333333333333333
1342:0140 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
1342:0150 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
1342:0160 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11
1342:0170 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11
-

Figure 26 Displayed information for Example 18.

COMPARE Command

Another type of memory operation we sometimes need to perform is comparing the
contents of two blocks of data to determine if they are or are not the same. This operation
can be done with the COMPARE (C) command of the DEBUG program. Fig. 8 shows that
the general form of this command is

C [STARTING ADDRESS] [ENDING ADDRESS] [DESTINATION ADDRESS]

For example, to compare a block of data located from address DS:100 through DS:11F to
an equal-size block of data starting at address DS:160, we issue the command

C 100 10F 160 (↵)

This command causes the contents of corresponding address locations in each block to be
compared to each other—that is, the contents of address DS:100 are compared to those at
address DS:160, the contents at address DS:101 are compared to those at address DS:161,
and so on. Each time unequal elements are found, the address and contents of that byte in
both blocks are displayed.

Let us assume that the contents of memory are as shown in Fig. 26 when this com-
mand is executed. Since both of these blocks contain the same information, no data are
displayed. However, if this source block is next compared to the destination block start-
ing at address DS:120 by entering the command

C 100 10F 120 (↵)

all elements in both blocks are unequal; therefore, the information shown in Fig. 27 is dis-
played.

SEARCH Command

The Search (S) command can be used to scan through a block of data in memory to
determine whether or not it contains specific value. The general form of this command as
given in Fig. 8 is

S [STARTING ADDRESS] [ENDING ADDRESS] [LIST]

Machine Language Coding

139

Figure 27 Results produced when
unequal data are found with a
Compare command.

-C 100 10F 120
1342:0100 11 33 1342:0120
1342:0101 11 33 1342:0121
1342:0102 11 33 1342:0122
1342:0103 11 33 1342:0123
1342:0104 11 33 1342:0124
1342:0105 11 33 1342:0125
1342:0106 11 33 1342:0126
1342:0106 11 33 1342:0127
1342:0108 11 33 1342:0128
1342:0109 11 33 1342:0129
1342:010A 11 33 1342:012A
1342:010B 11 33 1342:012B
1342:010C 11 33 1342:012C
1342:010D 11 33 1342:012D
1342:010E 11 33 1342:012E
1342:010F 11 33 1342:012F
-

When the command is issued, the contents of each storage location in the block of mem-
ory between the starting address and the ending address are compared to the data in the
list. The address is displayed for each memory location where a match is found.

EXAMPLE 19

Perform a search of the block of data from address DS:100 through DS:17F to determine
which memory locations contain 3316. Assume that memory is initialized as shown in
Fig. 26.

Solution

The Search command that must be issued is

S 100 17F 33 (↵)

Figure 28 shows that all addresses in the range 1342:120 through 1342:13F contain this
value of data.

▲ 5 INPUT AND OUTPUT OF DATA

The commands studied in the previous section allowed examination or modification of
information in the memory of the microcomputer, but not in its input /output address
space. To access data at input/output ports, we use the INPUT (I) and OUTPUT (O)
commands. These commands can be used to input or output data for any of the 64K byte-
wide ports in the 8088’s I /O address space. Let us now look at how these two commands
are used to read data at an input port or write data to an output port.

The general format of the input command as shown in Fig. 8 is

I [ADDRESS]

Here address identifies the byte-wide I/O port that is to be accessed. When the command
is executed, the data are read from the port and displayed. For instance, if the command

I 61 (↵)

Machine Language Coding

140

is issued, and if the result displayed on the screen is

4D

the contents of the port at I/O address 006116 are 4D16.

EXAMPLE 20

Write a command to display the byte contents of the input port at I/O address 00FE16.

Solution

To input the contents of the byte-wide port at address FE16, the command is

I FE (↵)

Figure 8 gives the general format of the output command as

O [ADDRESS] [BYTE]

Here we see that both the address of the output port and the byte of data that is to be writ-
ten to the port must be specified. An example of the command is

O 61 4F (↵)

-S 100 17F 33
1342:0120
1342:0121
1342:0122
1342:0123
1342:0124
1342:0125
1342:0126
1342:0127
1342:0128
1342:0129
1342:012A
1342:012B
1342:012C
1342:012D
1342:012E
1342:012F
1342:0130
1342:0131
1342:0132
1342:0133
1342:0134
1342:0135
1342:0136
1342:0137
1342:0138
1342:0139
1342:013A
1342:013B
1342:013C
1342:013D
1342:013E
1342:013F
-

Figure 28 Displayed information for
Example 19.

Machine Language Coding

141

This command causes the value 4F16 to be written into the byte-wide output port at
address 006116.

▲ 6 HEXADECIMAL ADDITION AND SUBTRACTION

The DEBUG program also provides the ability to add and subtract hexadecimal numbers.
Both operations are performed with a single command known as the HEXADECIMAL
(H) command. Figure 8 shows that the general format of the H command is

H [NUM1] [NUM2]

When executed, both the sum and difference of NUM1 and NUM2 are formed. These
results are displayed as follows:

Both numbers and the result are limited to four hexadecimal digits.
This hexadecimal arithmetic capability is useful when debugging programs. One

example of a use of the H command is the calculation of the physical address of an
instruction or data in memory. For instance, if the current value in the code segment reg-
ister is 0ABC16 and that in the instruction pointer is 0FFF16, the physical address is found
with the command

H ABC0 0FFF (↵)

BBBF 9BC1

Note that the sum of these two hexadecimal numbers is BBBF16, and their difference is
9BC116. The sum BBBF16 is the value of the physical address CS:IP.

The subtraction operation performed with the H command is also valuable in
address calculations. For instance, a frequently used software operation jumps a number
of bytes of instruction code backward in the code segment of memory. In this case, the
physical address of the new location can be found by subtraction. Let us start with the
physical address just found, BBBF16, and assume that we want to jump to a new location
1010 bytes back in memory. First, 1010 is expressed in hexadecimal form as A16. Then the
new address is calculated as

H BBBF A (↵)

BBC9 BBB5

Therefore, the new physical address is BBB516. Because the hexadecimal numbers are
limited to four digits, physical address calculations with the H command are limited to the
address range 0000016 through 0FFFF16.

EXAMPLE 21

Use the H command to find the negative of the number 000916.

NUM1 � NUM2 NUM1 � NUM2

Machine Language Coding

142

Solution

The negative of a hexadecimal number can be found by subtracting it from 0. Therefore,
the difference produced by the command

H 0 9 (↵)

0009 FFF7

is FFF716, and is the negative of 916 expressed in 2’s complement form.

EXAMPLE 22

If a byte of data is located at physical address 02A3416 and the data segment register con-
tains 015016, what value must be loaded into the source index register such that DS:SI
points to the byte storage location?

Solution

The offset required in SI can be found by subtracting the data segment base address from
the physical address. Using the H command, we get

H 2A34 1500 (↵)

3F34 1534

This shows that SI must be loaded with the value 153416.

▲ 7 LOADING, VERIFYING, AND SAVING MACHINE
LANGUAGE PROGRAMS

At this point, you should have learned how to use the register, memory, and I/O com-
mands of DEBUG to examine or modify the contents of the (1) processor’s internal reg-
isters, (2) data stored in memory, or (3) information at an input or output port. Let us now
look at how we can load machine code instructions and programs into the PC’s memory.

In Section 4 we found that the Enter command can be used to load either a single or
a group of memory locations with data, such as the machine code for instructions. As an
example, let us load the machine code 88C316 for the instruction MOV BL, AL. This
instruction is loaded into memory starting at address CS:100 with the Enter command

E CS:100 88 C3 (↵)

We can verify that it has been loaded correctly with the Dump command

D CS:100 101 (↵)

This command displays the data

1342:0100 88 C3

Machine Language Coding

143

-E CS:100 88 C3
-D CS:100 101
1342:0100 88 C3
-U CS:100 101
1342:0100 88C3 MOV BL,AL
-

Figure 29 Loading, verifying, and
unassembly of an instruction.

Let us now introduce another command that is important for debugging programs on
the PC. It is the UNASSEMBLE (U) command. By unassemble we mean the process of con-
verting machine code instructions to their equivalent assembly language source statements.
The U command lets us specify a range in memory, and executing the command causes the
source statements for the memory data in this range to be displayed on the screen.

Figure 8 shows that the syntax of the Unassemble command is

U [STARTING ADDRESS [ENDING ADDRESS]]

We can use this command to verify that the machine code entered for an instruction is
correct. To do this for our earlier example, we use the command

U CS:100 101 (↵)

This command causes the starting address for the instruction to be displayed, followed by
both the machine code and assembly forms of the instruction. This gives

1342:0100 88C3 MOV BL,AL

The entry sequence and displayed information for loading, verification, and unassembly
of the instruction are shown in Fig. 29.

EXAMPLE 23

Use a sequence of commands to load, verify loading, and unassemble the machine code
instruction 0304H. Load the instruction at address CS:200.

Solution

The machine code instruction is loaded into the code segment of the microcomputer’s
memory with the command

E CS:200 03 04 (↵)

Next, we can verify that it was loaded correctly with the command

D CS:200 201 (↵)

and, finally, unassemble the instruction with

U CS:200 201 (↵)

The results produced by this sequence of commands are shown in Fig. 30. Here we see
that the instruction entered is

ADD AX,[SI]

Machine Language Coding

144

Before going further, we will cover two more commands that are useful for loading
and saving programs. They are the WRITE (W) command and the LOAD (L) command.
These commands give users the ability to save data stored in memory on a diskette and to
reload memory from a diskette, respectively. We can load the machine code of a program
into memory with the E command the first time we use it, and then save it on a diskette. In
this way, the next time the program is needed it can be simply reloaded from the diskette.

Figure 8 shows that the general forms of the W and L commands are

W [STARTING ADDRESS [DRIVE STARTING SECTOR NUMBER OF SECTORS]]
L [STARTING ADDRESS [DRIVE STARTING SECTOR NUMBER OF SECTORS]]

For instance, to save the ADD instruction we just loaded at address CS:200 in Example
23, we can issue the write command

W CS:200 1 10 1 (↵)

Note that we have selected 1 (drive B) for the disk drive specification, 10 as an arbitrary
starting sector on the diskette, and an arbitrary length of 1 sector. Before the command is
issued, a formatted data diskette must be inserted into drive B. Then issuing the command
causes one sector of data starting at address CS:200 to be read from memory and written
into sector 10 on the diskette in drive B. Unlike the earlier commands we have studied,
the W command automatically references the CS register instead of the DS register. For
this reason, the command

W 200 1 10 1 (↵)

will perform the same operation.
Let us digress for a moment to examine the file specification of the W command in

more detail. The diskettes for a PC that has double-sided, double-density drives are orga-
nized into 10,001 sectors that are assigned sector numbers over the range 016 through
27F16. Each sector is capable of storing 512 bytes of data. With the file specification in a
W command, we can select any one of these sectors as the starting sector. The value of the
number of sectors should be specified based on the number of bytes of data that are to be
saved. The specification that we made earlier for our example of a write command selected
one sector (sector number 1016) and for this reason could only save up to 512 bytes of
data. The maximum value of sectors that can be specified with a write command is 8016.

The Load command can be used to reload a file of data stored on a diskette any-
where in memory. As an example, let us load the instruction that we just saved on a
diskette with a W command at a new address (CS:300). This is done with the L command

L 300 1 10 1 (↵)

The reloading of the instruction can be verified by issuing the U command

U CS:300 301 (↵)

-E CS:200 03 04
-D CS:200 201
1342:0200 03 04
-U CS:200 201
1342:0200 0304 ADD AX,[SI]
-

Figure 30 Displayed information for
Example 23.

Machine Language Coding

145

Figure 31 Machine code and source
instructions of the block move pro-
gram.

This command causes the display

1342:300 301 ADD AX,[SI]

EXAMPLE 24

Show the sequence of keyboard entries needed to enter the machine code program of Fig.
31 into memory of the PC. The program is to be loaded into memory starting at address
CS:100. Verify that the hexadecimal machine code was entered correctly, and then
unassemble the machine code to assure that it represents the source program. Save the
program in sector 100 of a formatted data diskette.

Solution

We will use the Enter command to load the program.

E CS:100 B8 00 20 8E D8 BE 0 01 BF 20 01 B9 10 0 8A 24 88 25 46

47 49 75 F7 90 (↵)

Machine Language Coding

146

-E CS:100 B8 00 20 8E D8 BE 0 01 BF 20 01 B9 10 0 8A 24 88 25 46 47 49 75 F7 90
-D CS:100 117
1342:0100 B8 00 20 8E D8 BE 00 01-BF 20 01 B9 10 00 8A 24 $
1342:0110 88 25 46 47 49 75 F7 90 .%FGIu..
-U CS:100 117
1342:0100 B80020 MOV AX,2000
1342:0105 BE0001 MOV DS,AX
1342:0105 BE0001 MOV SI,0100
1342:0108 BF2001 MOV DI,0120
1342:010B B91000 MOV CX,0010
1342:010E 8A24 MOV AH,[SI]
1342:0110 8825 MOV [DI],AH
1342:0112 46 INC SI
1342:0113 47 INC DI
1342:0114 49 DEC CX
1342:0115 75F7 JNZ 010E
1342:0117 90 NOP
-W CS:100 1 100 1

Figure 32 Displayed information for Example 24.

First, we verify that the machine code has been loaded correctly with the command

D CS:100 117 (↵)

Comparing the displayed source data in Fig. 32 to the machine code in Fig. 31, we see
that it has been loaded correctly. Now the machine code can be unassembled by the com-
mand

U CS:100 117 (↵)

Comparing the displayed source program in Fig. 32 to that in Fig. 31, it again verifies cor-
rect entry. Finally, we save the program on the data diskette with the command

W CS:100 1 100 1 (↵)

At this time, it is important to mention that using the W command to save a pro-
gram can be quite risky. For instance, if by mistake, the command is written with the
wrong disk specifications, some other program or data on the diskette may be written
over. Moreover, the diskette should not contain files that were created in any other way.
This is because the locations of these files will not be known and may accidentally be
written over by the selected file specification. Overwriting a file like this will ruin its con-
tents. Even more important, never issue the command to the hard disk (C:). This action
could destroy the installation of the operating system.

Another method of saving and loading programs is available in DEBUG, and this
alternative approach eliminates the overwrite problem. We now look at how a program
can be saved using a filename, instead of with a file specification.

By using the NAME (N) command along with the write command, a program can
be saved on the diskette under a filename. Figure 8 shows that the N command is speci-
fied as

N FILE NAME

where FILE NAME has the form

NAME.EXT

Machine Language Coding

147

Here the name of the file can be up to eight characters. On the other hand, the extension
(EXT) is from zero to three characters. Neither EXE nor COM is a valid extension. Some
examples of valid filenames are BLOCK, TEMP.1, BLOCK1.ASM, and BLK_1.R1.

As part of the process of using the filename command, the BX and CX registers
must be updated to identify the size of the program that is to be saved in the file. The size
of the program in bytes is given as

Together CX and BX specify an 8-digit hexadecimal number that identifies the number of
bytes in the file. Typically, the programs we work with are small. For this reason, the
upper four digits are always zero—that is, the content of BX is 000016. Just using CX per-
mits a file to be up to 64Kbytes long.

After the name command has been issued and the CX and BX registers have been
initialized, the write command is used to save the program on a diskette. The write com-
mand form is

W [STARTING ADDRESS]

To reload the program into memory, we begin by naming the file and then simply issuing a
load command with the address at which it is to start. To do this, the command sequence is

N FILE NAME
L [STARTING ADDRESS]

As an example, let us look at how the name command is set up to save the machine
program used in Example 24 in a file called BLK.1 on a diskette in drive A. First, the
name command

N A:BLK.1 (↵)

is entered. Looking at Fig. 32, we see that the program is stored in memory from address
CS:100 to CS:117. This gives a size of 1816 bytes. Therefore, CX and BX are initialized
as follows:

R CX (↵)

CX XXXX

:18 (↵)

R BX (↵)

BX XXXX

:0 (↵)

Now the program is saved on the diskette with the command

W CS:100 (↵)

(BX CX) � Number of bytes

Machine Language Coding

148

To reload the program into memory, we simply perform the command sequence

N A:BLK.1 (↵)

L CS:100 (↵)

In fact, the program can be loaded starting at another address by specifying that address
in the Load command.

Once saved on a diskette, the file can be changed to an executable (that is, a file
with the extension .EXE) by using the DOS rename (REN) command. To do this we must
first return to DOS with the command

Q (↵)

and then issue the command

C:\DOS> REN A:BLK.1 BLK.EXE (↵)

Programs that are in an executable file can be directly loaded when the DEBUG program
is brought up. For our example, the program command is

C:\DOS> DEBUG A:BLK.EXE (↵)

Execution of this command loads the program at address CS:100 and then displays the
DEBUG prompt. After loading, other DEBUG commands can be used to run the program.

Executable files can also be run directly in the DOS environment. This is done sim-
ply by entering the filename following the DOS prompt and then depressing the return
key. Therefore, making the following entry runs program BLK.EXE

C:\DOS>A:BLK.EXE (↵)

▲ 8 ASSEMBLING INSTRUCTIONS WITH THE ASSEMBLE
COMMAND

All the instructions we have worked with have been hand-assembled into machine code.
The DEBUG program has a command that lets us automatically assemble the instructions
of a program, one after the other, and store them in memory. It is called the ASSEMBLE
(A) command.

The general syntax of the Assemble command as given in Fig. 8 is

A [STARTING ADDRESS]

Here STARTING ADDRESS is the address at which the machine code of the first instruc-
tion of the program is to be stored. For example, to assemble the instruction ADD
[BX�SI�1234H],AX and store its machine code in memory starting at address CS:100,
we start with the command entry

A CS:100 (↵)

Machine Language Coding

149

-A CS:100
1342:0100 ADD [BX+SI+1234],AX
1342:0104
-D CS:100 103
1342:0100 01 80 34 12 ..4.
-N A:INST.1
-R CX
:4
-R BX
:0
-W CS:100
-

Figure 33 Assembling the instruction ADD [BX+SI+1234H], AX.

The response to this command input is the display of the starting address in the form

1342:0100_

The instruction to be assembled is typed in following this address, and when we depress
the (↵) key, the instruction is assembled into machine code. It is then stored in memory,
and the starting address of the next instruction is displayed. As shown in Fig. 33, for our
example, we have

1342:0100 ADD [BX+SI+1234],AX (↵)

1342:0104_

Now we either enter the next instruction or depress the (↵) key to terminate the Assem-
ble command.

Assuming that the assemble operation just performed was terminated by entering
(↵), we can view the machine code that was produced for the instruction by issuing a
Dump command. Notice that the address displayed as the starting point of the next
instruction is 1342:0104. Therefore, the machine code for the ADD instruction took up
4 bytes of memory, CS:100, CS:101, CS:102, and CS:103. The command needed to dis-
play this machine code is

D CS:100 103 (↵)

Figure 33 shows that the machine code stored for the instruction is 01803412H.
At this point, the instruction can be executed or saved on a diskette. For instance,

to save the machine code on a diskette in file INST.1, we issue the commands

N A:INST.1 (↵)

R CX (↵)

:4 (↵)

R BX (↵)

:0 (↵)

W CS:100 (↵)

Machine Language Coding

150

MOV AX,2000H -A CS:200
MOV DS,AX 1342:0200 MOV AX,2000
MOV SI,0100H 1342:0203 MOV DS,AX
MOV DI,0120H 1342:0205 MOV SI,100
MOV CX,010H 1342:0208 MOV DI,120
MOV AH,[SI] 1342:020B MOV CX,10
MOV [DI],AH 1342:020E MOV AH,[SI]
INC SI 1342:0210 MOV [DI],AH
INC DI 1342:0212 INC SI
DEC CX 1342:0213 INC DI
JNZ 20EH 1342:0214 DEC CX
NOP 1342:0215 JNZ 20E

1342:0217 NOP
(a) 1342:0218

-
(b)

-U CS:200 217
1342:0200 B80020 MOV AX,2000
1342:0203 8ED8 MOV DS,AX
1342:0205 BE0001 MOV SI,0100
1342:0208 BF2001 MOV DI,0120
1342:020B B91000 MOV CX,0010
1342:020E 8A24 MOV AH,[SI]
1342:0210 8825 MOV [DI],AH
1342:0212 46 INC SI
1342:0213 47 INC DI
1342:0214 49 DEC CX
1342:0215 75F7 JNZ 020E
1342:0217 90 NOP
-

(c)

Figure 34 (a) Block move program. (b) Assembling the program. (c) Verify-
ing the assembled program with the U command.

Now that we have shown how to assemble an instruction, view its machine code, and
save the machine code on a data diskette, let us look into how a complete program can be
assembled with the A command. For this purpose, we will use the program shown in Fig.
34(a). The same program was entered as hand-assembled machine code in Example 24.

We begin by assuming that the program is to be stored in memory starting at
address CS:200. For this reason, we invoke the line-by-line assembler with the command

A CS:200 (↵)

This gives the response

1342:0200_

Now we type in the instructions of the program as follows:

1342:0200 MOV AX,2000 (↵)

1342:0203 MOV DS,AX (↵)

1342:0205 MOV SI,100 (↵)

. . . .

. . . .

1342:0217 NOP (↵)

1342:0218 (↵)

Machine Language Coding

151

The details of the instruction entry sequence are shown in Fig. 34(b).
Now that the complete program has been entered, let us verify that it has been

assembled correctly. This can be done with an Unassemble command. Notice in Fig.
34(b) that the program resides in memory over the address range CS:200 through
CS:217. To unassemble the machine code in this part of memory, we issue the
command

U CS:200 217 (↵)

The results produced with this command are shown in Fig. 34(c). Comparing the instruc-
tions to those in Fig. 34(a) confirms that the program has been assembled correctly.

The Assemble command allows us to assemble instructions involving any of the
various addressing modes. For instance, the instruction we used in our earlier example

MOV AX, 2000H

employs immediate addressing mode for the source operand. Instructions, such as

MOV AX, [2000H]

which uses direct addressing mode for the source operand, can also be assembled into
memory.

The Assemble command also supports two pseudo-instructions that can be used
to assemble data directly into memory: data byte (DB) and data word (DW). An
example is

DB 1,2,3,’JASSI’

With this command, the byte-size representation of numbers 1, 2, and 3 and the ASCII
code for letters J, A, S, S, and I are assembled into memory.

▲ 9 EXECUTING INSTRUCTIONS AND PROGRAMS WITH
THE TRACE AND GO COMMANDS

Once the program has been entered into the PC’s memory, it is ready to be executed. The
DEBUG program allows us to execute the entire program with one GO (G) command or
to execute the program in several segments of instructions by using breakpoints in the Go
command. Moreover, by using the TRACE (T) command, the program can be stepped
through by executing one or more instructions at a time.

Let us begin by examining the operation of the Trace command in more detail. The
Trace command provides the programmer with the ability to execute one instruction at a
time. This mode of operation is also known as single-stepping the program; it is very use-
ful during the early stages of program debugging. This is because the contents of regis-
ters or memory can be viewed both before and after the execution of each instruction to
determine whether or not the correct operation was performed.

Machine Language Coding

152

Figure 8 shows the general form of the Trace command as

T [=STARTING ADDRESS] [NUMBER]

Notice that a starting address is specified as part of the command and is the address of
the instruction at which execution is to begin. Number tells how many instructions are to
be executed. The equal sign before the starting address is very important. If it is left out,
the microcomputer usually hangs up and will have to be restarted with a power-on reset.

If an instruction count is not specified in the command, just one instruction is exe-
cuted. For instance, the command

T =CS:100 (↵)

causes the instruction starting at address CS:100 to be executed. At the end of the instruc-
tion’s execution, the complete state of the MPU’s internal registers is automatically dis-
played. At this point, other DEBUG commands can be issued—for instance, to display
the contents of memory—or the next instruction can be executed.

This Trace command can also be issued as

T (↵)

In this case, the instruction pointed to by the current values of CS and IP (CS:IP) is exe-
cuted. This form of the Trace command is used to execute the next instruction.

If we want to step through several instructions, the Trace command must include
the number of instructions to be executed. This number is included after the address. For
example, to trace through three instructions, the command is issued as

T =CS:100 3 (↵)

Again, the internal state of the MPU is displayed after each instruction is executed.

EXAMPLE 25

Load the instruction stored at file specification 1 10 1 on a diskette at offset 10016 in the
current code segment. Unassemble the instruction. Then initialize AX with 111116, SI
with 123416, and the word contents of memory address 123416 to the value 222216. Next,
display the internal state of the MPU and the word contents of address 123416 to verify
their initialization. Finally, execute the instruction with the Trace command. What opera-
tion is performed by the instruction?

Solution

First, the instruction is loaded from the diskette to address CS:100 with the command

L CS:100 1 10 1 (↵)

Machine Language Coding

153

Now the machine code is unassembled to verify that the instruction has loaded correctly.

U 100 101 (↵)

Looking at the displayed information in Fig. 35, we see that it is an ADD instruction.
Next we initialize the internal registers and memory with the command sequence

R AX (↵)

AX 0000

:1111 (↵)
R SI (↵)

SI 0000

:1234 (↵)
E DS:1234 22 22 (↵)

Now the initialization is verified with the commands

R (↵)
D DS:1234 1235 (↵)

Figure 35 shows that AX, SI, and the word contents of address 123416 are correctly
initialized. Therefore, we are ready to execute the instruction. This is done with the
command

T =CS:100 (↵)

Figure 35 Displayed information for Example 25

-L CS:100 1 10 1
-U 100 101
1342:0100 0304 ADD AX,[SI]
-R AX
AX 0000
:1111
-R SI
SI 0000
:1234
-E DS:1234 22 22
-R
AX=1111 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=1234 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 0304 ADD AX,[SI]
-D DS:1234 1235
1342:1230 22 22 “”
-T =CS:100

AX=3333 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=1234 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI PL NZ NA PE NC
1342:0102 0000 ADD [BX+SI],AL DS:1234=22
-

Machine Language Coding

154

From the displayed trace information in Fig. 36, we find that the value 222216 at address
123416 was added to the value 111116 held in AX. Therefore, the new contents of AX are
333316.

The Go command is typically used to run programs that are already working or to
execute programs in the latter stages of debugging. For example, if the beginning part of
a program is already operating correctly, a Go command can be used to execute this group
of instructions and then stop execution at a point in the program where additional debug-
ging is to begin.

The table in Fig. 8 shows that the general form of the Go command is

G [=STARTING ADDRESS [BREAKPOINT ADDRESS LIST]]

The first address is the starting address of the segment of program that is to be
executed—that is, the address of the instruction at which execution is to begin. The sec-
ond address, the breakpoint address, is the address of the end of the program segment—
that is, the address of the instruction at which execution is to stop. The breakpoint address
that is specified must correspond to the first byte of an instruction. A list of up to 10
breakpoint addresses can be supplied with the command.

An example of the Go command is

G =CS:200 217 (↵)

This command loads the IP register with 020016, sets a breakpoint at address CS:217, and
then begins program execution at address CS:200. Instruction execution proceeds until
address CS:217 is accessed. When the breakpoint address is reached, program execution
is terminated, the complete internal status of the MPU is displayed, and control is
returned to DEBUG.

Sometimes we just want to execute a program without using a breakpoint. This can
also be done with the Go command. For instance, to execute a program that starts at off-
set 10016 in the current CS, we can issue the Go command without a breakpoint address
as follows:

G =CS:100 (↵)

This command will cause the program to run to completion provided there are appropri-
ate instructions in the program to initiate a normal termination, such as those needed to
return to DEBUG. In the case of a program where CS and IP are already initialized with
the correct values, we can just enter

G (↵)

However, it is recommended that the Go command always include a breakpoint address.
If a Go command is issued without a breakpoint address and the value of CS and IP are

Machine Language Coding

155

not already set up or the program is not correctly prepared for normal termination, the
microcomputer can lock up. This is because the program execution may go beyond the
end of the program into an area of memory with information that represents invalid
instructions.

EXAMPLE 26

In Section 7, we saved the block move program in file BLK.EXE on a data diskette in
drive A. Load this program into memory starting at address CS:200. Then initialize the
microcomputer by loading the DS register with 200016; fill the block of memory from
DS:100 through DS:10F with FF16, and the block of memory from DS:120 through
DS:12F with 0016. Verify that the blocks of memory were initialized correctly. Load DS
with 134216, and display the state of the MPU’s registers. Display the assembly language
version of the program from CS:200 through CS:217. Use a Go command to execute the
program through address CS:20E. What changes have occurred in the contents of the reg-
isters? Now execute down through address CS:215. What changes are found in the blocks
of data? Next execute the program down to address CS:217. What new changes are found
in the blocks of data?

Solution

The commands needed to load the program are

N A:BLK.EXE (↵)

L CS:200 (↵)

Next we initialize the DS register and memory with the commands

R DS (↵)

DS 1342

:2000 (↵)

F DS:100 10F FF (↵)

F DS:120 12F 00 (↵)

The blocks of data in memory are displayed using the commands

D DS:100 10F (↵)

D DS:120 12F (↵)

Machine Language Coding

156

-N A:BLK.EXE
-L CS:200
-R DS
DS 1342
:2000
-F DS:100 10F FF
-F DS:120 12F 00
-D DS:100 10F
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F
2000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-R DS
DS 2000
:1342
-R
AX=0000 BX=0000 CX=0020 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 0000 ADD [BX+SI],AL DS:0000=CD
-U CS:200 217
1342:0200 B80020 MOV AX,2000
1342:0203 8ED8 MOV DS,AX
1342:0205 BE0001 MOV SI,0100
1342:0208 BF2001 MOV DI,0120
1342:020B B91000 MOV CX,0010
1342:020E 8A24 MOV [DI],AH
1342:0212 46 INC SI
1342:0213 47 INC DI
1342:0214 49 DEC CX
1342:0215 75F7 JNZ 020E
1342:0217 90 NOP
-G =CS:200 20E

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC
1342:020E 8A24 MOV AH,[SI] DS:0100=FF
-G =CS:20E 215

AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ AC PE NC
1342:0215 75F7 JNZ 020E
-D DS:100 10F
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F
2000:0120 FF 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G =CS:215 217

AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC
1342:0217 90 NOP
-D DS:100 10F
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F
2000:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-

Figure 36 Displayed information for Example 26.

The displayed information is shown in Fig. 36. DS is restored with 134216 using the com-
mand

R DS (↵)

DS 2000

:1342 (↵)

and the state of the MPU’s registers is displayed with the command

R (↵)

Machine Language Coding

157

Before beginning to execute the program, we will display the source code with the command

U CS:200 217 (↵)

The displayed program is shown in Fig. 36.
Now the first segment of program is executed with the command

G =CS:200 20E (↵)

Looking at the displayed state of the MPU in Fig. 36, we see that DS was loaded with
200016, AX was loaded with 200016, SI was loaded with 010016, and CX was loaded with
001016.

Next, another Go command is used to execute the program down through address
CS:215.

G =CS:20E 215 (↵)

We can check the state of the blocks of memory with the commands

D DS:100 10F (↵)

D DS:120 12F (↵)

From the displayed information in Fig. 36, we see that FF16 was copied from the first ele-
ment of the source block to the first element of the destination block.

Now we execute through CS:217 with the command

G =CS:215 217 (↵)

and examine the blocks of data with the commands

D DS:100 10F (↵)

D DS:120 12F (↵)

We find that the complete source block has been copied to the destination block.

▲ 10 DEBUGGING A PROGRAM

In Sections 7, 8, and 4.9, we learned how to use DEBUG to load a machine code program
into the PC’s memory, assemble a program, and execute the program. However, we did
not determine if the program when run performed the operation for which it was written.
It is common to have errors in a program, and even a single error can render the program
useless. For instance, if the address to which a “jump” instruction passes control is wrong,

Machine Language Coding

158

the program may get hung up. Errors in a program are also referred to as bugs; the
process of removing them is called debugging.

The two types of errors that can be made by a programmer are the syntax error and
the execution error. A syntax error is caused by not following the rules for coding or
entering an instruction. These types of errors are typically automatically identified and
signaled to the programmer with an error message. For this reason, they are usually easy
to find and correct. For example, if a Dump command is keyed in as

D DS:100120 (↵)

an error condition exists. This is because the space between the starting and ending
address is left out. This incorrect entry is signaled by the warning “Error” in the display;
the spot where the error begins, in this case, the 1 in 120, is marked with the symbol “∧”
to identify the position of the error.

An execution error is an error in the logic behind the development of the program.
That is, the program is correctly coded and entered, but it still does not perform the oper-
ation for which it was written. Entering the program into the microcomputer and observ-
ing its operation can identify this type of error. Even when an execution error has been
identified, it is usually not easy to find the exact cause of the problem.

Our ability to debug execution errors in a program is aided by the commands of
the DEBUG program. For instance, the Trace command allows us to step through the
program by executing just one instruction at a time. We can use the display of the inter-
nal register state produced by the Trace command and the memory dump command to
determine the state of the MPU and memory prior to execution of an instruction and
again after its execution. This information tells us whether the instruction has performed
the operation planned for it. If an error is found, its cause can be identified and
corrected.

To demonstrate the process of debugging a program, let us once again use the pro-
gram that we stored in file A:BLK.EXE. We load it into the code segment at address
CS:200 with the command

N A:BLK.EXE (↵)

L 200 (↵)

Now the program resides in memory at addresses CS:200 through CS:217. The program
is displayed with the command

U 200 217 (↵)

The program that is displayed is shown in Fig. 37. This program implements a block data-
transfer operation. The block of data to be moved starts at memory address DS:100 and
is 16 bytes in length. It is to be moved to another block of storage locations starting at
address DS:120. DS equals 200016; therefore, it points to a data segment starting at phys-
ical address 2000016.

Machine Language Coding

159

Before executing the program, let us issue commands to initialize the source block
of memory locations from address 10016 through 10F16 with FF16 and the bytes in the des-
tination block starting at 12016 with 0016. To do this, we issue the command sequence

F 2000:100 10F FF (↵)

F 2000:120 12F 00 (↵)

C:\DOS>DEBUG
-N A:BLK.EXE
-L 200
-U 200 217
1342:0200 B82010 MOV AX,2000
1342:0203 8ED8 MOV DS,AX
1342:0205 BE0001 MOV SI,0100
1342:0208 BF2001 MOV DI,0120
1342:020B B91000 MOV CX,0010
1342:020E 8A24 MOV AH,[SI]
1342:0210 8825 MOV [DI],AH
1342:0212 46 INC SI
1342:0213 47 INC DI
1342:0214 49 DEC CX
1342:0215 75F7 JNZ 020E
1342:0217 90
-F 2000:100 10F FF
-F 2000:120 12F 00
-T =CS:200 5

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=1020 ES=1342 SS=1342 CS=1342 IP=0203 NV UP EI PL NZ NA PO NC
1342:0203 8ED8 MOV DS,AX

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0205 NV UP EI PL NZ NA PO NC
1342:0205 BE0001 MOV SI,0100

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0208 NV UP EI PL NZ NA PO NC
1342:0208 BF2001 MOV DI,0120

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=020B NV UP EI PL NZ NA PO NC
1342:020B B91000 MOV CX,0010

AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC
1342:020E 8A24 MOV AH,[SI] DS:0100=FF
-D DS:120 12F
2000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-T 2

AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0210 NV UP EI PL NZ NA PO NC
1342:0210 8825 MOV [DI],AH DS:0120=00

AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0212 NV UP EI PL NZ NA PO NC
1342:0212 46 INC SI
-D DS:120 12F
2000:0120 FF 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-T 3

AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0101 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0213 NV UP EI PL NZ NA PO NC
1342:0213 47 INC DI

AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=0214 NV UP EI PL NZ NA PE NC

Figure 37 Program debugging.

Machine Language Coding

160

1342:0214 49 DEC CX

AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ AC PE NC
1342:0215 75F7 JNZ 020E
-T

AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ AC PE NC
1342:020E 8A24 MOV AH,[SI] DS:0101=FF
-G =CS:20E 215

AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ NA PO NC
1342:0215 75F7 JNZ 020E
-D DS:120 12F
2000:0120 FF FF 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-T

AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC
1342:020E 8A24 MOV AH,[SI] DS:0102=FF
-G =CS:20E 217

AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC
1342:0217 90 NOP
-D DS:120 12F
2000:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-

Figure 37 (continued)

The first two instructions of the program in Fig. 37 are

MOV AX, 2000H

and

MOV DS, AX

These two instructions, when executed, load the data segment register with the value
200016. In this way they define a data segment starting at the physical address 2000016. The
next three instructions are used to load the SI, DI, and CX registers with 10016, 12016, and
1016, respectively. Let us now show how to execute these instructions and then determine
if they perform the correct function. They are executed by issuing the command

T =CS:200 5 (↵)

To determine if the instructions that were executed performed the correct operation, we
need only to look at the trace display that they produce, as shown in Fig. 37. Here we see
that the first instruction loads AX with 200016 and the second moves this value into the
DS register. Also notice in the last trace displayed for this command that SI contains
010016, DI contains 012016, and CX contains 001016.

The next two instructions copy the contents of memory location 10016 into the stor-
age location at address 12016. Let us first check the contents of the destination block with
the D command

D DS:120 12F (↵)

Machine Language Coding

161

Looking at the dump display in Fig. 37, we see that the original contents of these loca-
tions are 0016. Now the two instructions are executed with the command

T 2 (↵)

and the contents of address DS:120 are checked once again with the command

D DS:120 12F (↵)

The display dump in Fig. 37 shows that the first element of the source block was copied
to the location of the first element of the destination block. Therefore, both address 10016

and address 12016 now contain the value FF16.
The next three instructions are used to increment pointers SI and DI and decrement

block counter CX. To execute them, we issue the command

T 3 (↵)

Referring to the trace display in Fig. 37 to verify their operation, we find that the new val-
ues in SI and DI are 010116 and 012116, respectively, and CX is now 000F16.

The jump instruction is next, and it transfers control to the instruction eight bytes
back if CX did not become zero. It is executed with the command

T (↵)

Note that the result of executing this instruction is that the value in IP is changed to
020E16. This corresponds to the location of the instruction

MOV AH, [SI]

In this way we see that control has been returned to the part of the program that performs
the data-move operation.

The move operation performed by this part of the program was already checked;
however, we must still determine if it runs to completion when the count in CX decre-
ments to zero. Therefore, we will execute another complete loop with the Go
command

G =CS:20E 215 (↵)

Correct operation is verified because the trace shows that CX has been decremented by
one more and equals E. The fact that the second element has been moved can be verified
by dumping the destination block with the command

D DS:120 12F (↵)

Now we are again at address CS:215. To execute the jump instruction at this location, we
can again use the T command

T (↵)

Machine Language Coding

162

This returns control to the instruction at CS:20E. The previous two commands can be
repeated until the complete block is moved and CX equals 016. Or we can use the Go
command to execute to the address CS:217, which is the end of the program.

G =CS:20E 217 (↵)

At completion, the overall operation of the program can be verified by examining
the contents of the destination block with the command sequence

D DS:120 12F (↵)

FF16 should be displayed as the data held in each storage location of the destination block.

REVIEW PROBLEMS

Section 1
1. How many bytes are in the general machine code instruction format?

2. Encode the following instruction using the information in Figs. 1 through 4.

ADD AX,DX

Assume that the opcode for the Add operation is 000000.

3. Encode the following instructions using the information in Figs. 1 through 5 and the
instruction set of the 8088/8086.

(a) MOV [DI], DX
(b) MOV [BX][SI], BX
(c) MOV DL,[BX]+10H

4. Encode the instructions that follow using the information in Figs. 1 through 6 and the
instruction set of the 8088/8086.

(a) PUSH DS
(b) ROL BL, CL
(c) ADD AX,[1234H]

Section 2
5. How many bytes are required to encode the instruction MOV SI, 0100H?

6. How many bytes of memory are required to store the machine code for the program
in Fig. 6(a)?

Section 3
7. What purpose does the DEBUG program serve?

8. Can DEBUG be brought up by typing the command using lowercase letters?

9. If the DEBUG command R AXBX is entered to a PC, what happens?

Machine Language Coding

163

10. Write the Register command needed to change the value in CX to 1016.

11. Write the command needed to change the state of the parity flag to PE.

12. Write a command that will dump the state of the MPU’s internal registers.

Section 4
13. Write a Dump command that will display the contents of the first 16 bytes of the cur-

rent code segment.

14. Show an Enter command that can be used to examine the contents of the same 16 bytes
of memory that were displayed in problem 13.

15. Show the Enter command needed to load five consecutive bytes of memory starting
at address CS:100 of the current code segment with FF16.

16. Show how an Enter command can be used to initialize the first 32 bytes at the top of
the stack to 0016.

17. Write a sequence of commands that will fill the first six storage locations starting at
address CS:100 with 1116, the second six with 2216, the third six with 3316, the fourth
six with 4416, and the fifth six with 5516; change the contents of storage locations
CS:105 and CS:113 to FF16; display the first 30 bytes of memory starting at CS:100;
and then use a search command on this 30-byte block of memory to find those stor-
age locations that contain FF16.

Section 5
18. What DEBUG commands do I and O stand for?

19. What operation is performed by the command

I 123 (↵)

20. Write an output command that will load the byte-wide output port at I/O address
012416 with the value 5A16.

Section 6
21. What two results are produced by the hexadecimal command?

22. How large can the numbers in an H command be?

23. The difference FA16 � 5A16 is to be found. Write the H command.

Section 7
24. Show the sequence of commands needed to load the machine code instruction

320E3412H starting at address CS:100, unassemble it to verify that the correct
instruction was loaded, and save it on a data diskette at file specification 1 50 1.

25. Write commands that will reload the instruction saved on the data diskette in prob-
lem 24 into memory at offset 40016 in the current code segment and unassemble it to
verify correct loading.

Section 8
26. Show how the instruction MOV [DI], DX can be assembled into memory at address

CS:100.

Machine Language Coding

164

27. Write a sequence of commands that will first assemble the instruction ROL BL, CL
into memory starting at address CS:200, and then verify its entry by unassembling
the instruction.

Section 9
28. Show a sequence of commands that will load the instruction saved on the data

diskette in problem 24 at address CS:300; unassemble it to verify correct loading; ini-
tialize the contents of register CX to 000F16 and the contents of the word memory
location starting at DS:1234 to 00FF16; execute the instruction with the Trace com-
mand; and verify its operation by examining the contents of CX and the word of data
stored in memory starting at DS:1234.

29. Write a sequence of commands to repeat Example 26; however, this time execute the
complete program with one Go command.

Section 10
30. What is the difference between a syntax error and an execution error?

31. Give another name for an error in a program.

32. What is the name given to the process of removing errors in a program?

33. Write a sequence of commands to repeat the DEBUG demonstration presented in
Section 10, but this time use only Go commands to execute the program.

Section 1
1. 6 bytes.

3. (a) ; (b) ;
(c)

Section 2
5. 3 bytes.

Section 3
7. The DEBUG program allows us to enter a program into the PC’s memory, execute it

under control, view its operation, and modify it to fix errors.

9. Error.

11. -R F (↵)
NV UP EI PL NZ NA PO NC -PE (↵)

Section 4
13. -D CS:0000 000F (↵)
15. -E CS:100 FF FF FF FF FF (↵)
17. -F CS:100 105 11 (↵)

-F CS:106 10B 22 (↵)
-F CS:10C 111 33 (↵)
-F CS:112 117 44 (↵)
-F CS:118 11D 55 (↵)

1000101001010111000100002 � 8A5710H
10001001000110002 � 8918H10001001000101012 � 8915H

Machine Language Coding

ANSWERS TO SELECTED REVIEW PROBLEMS▲

165

-E CS:105 (↵)
CS:0105 XX.FF (↵)
-E CS:113 (↵)
-CS:0113 XX.FF (↵)
-D CS:100 11D (↵)
-S CS:100 11D FF (↵)

Section 5
19. Contents of the byte-wide input port at address 012316 is input and displayed on the

screen.

Section 6
21. The sum and difference of two hexadecimal numbers.

23. H FA 5A (↵)

Section 7
25. -L CS:400 1 50 1 (↵)

-U CS:400 403 (↵)
1342:0400 320E3412 XOR CL,[1234]
-

Section 8
27. -A CS:200 (↵)

1342:0200 ROL BL,CL (↵)
1342:0202 (↵)
-U CS:200 201 (↵)
1342:0200 D2C3 ROL BL,CL
-

Section 9
29. -N A:BLK.EXE (↵)

-L CS:200 (↵)
-R DS (↵)
DS 1342
:2000 (↵)
-F DS:100 10F FF (↵)
-F DS:120 12F 00 (↵)
-D DS:100 10F (↵)
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F (↵)
2000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-R DS (↵)
DS 2000
:1342 (↵)
-R (↵)
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 8915 MOV [DI], DX DS:0000=20CD
-U CS:200 217 (↵)
1342:0200 B80020 MOV AX, 2000

Machine Language Coding

166

1342:0203 8ED8 MOV DS, AX
1342:0205 BE0001 MOV SI, 0100
1342:0208 BF2001 MOV DI, 0120
1342:020B B91000 MOV CX, 0010
1342:020E 8A24 MOV AH, [SI]
1342:0210 8825 MOV [DI], AH
1342:0212 46 INC SI
1342:0213 47 INC DI
1342:0214 49 DEC CX
1342:0215 75F7 JNZ 020E
1342:0217 90 NOP
-G =CS:200 217 (↵)
AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC
1342:0217 90 NOP
-D DS:100 10F (↵)
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F (↵)
2000:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF

Section 10
31. Bugs.
33. -N A:BLK.EXE (↵)

-L CS:200 (↵)
-U CS:200 217 (↵)
1342:0200 B80020 MOV AX, 2000
1342:0203 8ED8 MOV DS, AX
1342:0205 BE0001 MOV SI, 0100
1342:0208 BF2001 MOV DI, 0120
1342:020B B91000 MOV CX, 0010
1342:020E 8A24 MOV AH, [SI]
1342:0210 8825 MOV [DI], AH
1342:0212 46 INC SI
1342:0213 47 INC DI
1342:0214 49 DEC CX
1342:0215 75F7 JNZ 020E
1342:0217 90 NOP
-R DS (↵)
DS 1342
:2000 (↵)
-F DS:100 10F FF (↵)
-F DS:120 12F 00 (↵)
-R DS (↵)
DS 2000
:1342 (↵)
-G =CS:200 20E (↵)
AX=2000 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC
1342:020E 8A24 MOV AH,[SI] DS:0100=FF

Machine Language Coding

167

-D DS:120 12F (↵)
2000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G 212 (↵)
AX=FF00 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0100 DI=0120
DS=2000 ES=1342 SS=1342 CS=1342 IP=0212 NV UP EI PL NZ NA PO NC
1342:0212 46 INC SI
-D DS:120 12F (↵)
2000:0120 FF 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G 215 (↵)
AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ AC PE NC
1342:0215 75F7 JNZ 020E
-G 20E (↵)
AX=FF00 BX=0000 CX=000F DX=0000 SP=FFEE BP=0000 SI=0101 DI=0121
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ AC PE NC
1342:020E 8A24 MOV AH,[SI] DS:0101=FF
-G 215 (↵)
AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122
DS=2000 ES=1342 SS=1342 CS=1342 IP=0215 NV UP EI PL NZ NA PO NC
1342:0215 75F7 JNZ 020E
-D DS:120 12F (↵)
2000:0120 FF FF 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G 20E (↵)
AX=FF00 BX=0000 CX=000E DX=0000 SP=FFEE BP=0000 SI=0102 DI=0122
DS=2000 ES=1342 SS=1342 CS=1342 IP=020E NV UP EI PL NZ NA PO NC
1342:020E 8A24 MOV AH,[SI] DS:0102=FF
-G 217 (↵)
AX=FF00 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0110 DI=0130
DS=2000 ES=1342 SS=1342 CS=1342 IP=0217 NV UP EI PL ZR NA PE NC
1342:0217 90 NOP
-D DS:120 12F (↵)
2000:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF F

Machine Language Coding

168

8088/8086
Programming—Integer
Instructions and
Computations

▲ INTRODUCTION

You may recall the software architecture of the 8088/8086 microprocessor, its instruction
set, addressing modes, and the software development tools provided by the DEBUG pro-
gram of DOS. The software architectures of the 8088 and 8086 microprocessors are
identical and learned how to encode assembly language instructions in machine lan-
guage and how to use the debugger to enter, execute, and debug programs. In this chap-
ter, we begin a detailed study of the instruction set of the 8088 and 8086 microproces-
sors by examining the data transfer, arithmetic, logic, shift, and rotate instructions. We
demonstrate the use of these instructions with a number of example programs. The fol-
lowing topics are presented in this chapter:

1 Data Transfer Instructions

2 Arithmetic Instructions

3 Logic Instructions

4 Shift Instructions

5 Rotate Instructions

From Chapter 5 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

169

▲ 1 DATA TRANSFER INSTRUCTIONS

The 8088 microprocessor has a group of data-transfer instructions that are provided to
move data either between its internal registers or between an internal register and a stor-
age location in memory. This group includes the move byte or word (MOV) instruction,
exchange byte or word (XCHG) instruction, translate byte (XLAT) instruction, load effec-
tive address (LEA) instruction, load data segment (LDS) instruction, and load extra seg-
ment (LES) instruction. These instructions are discussed in this section.

The MOV Instruction

Figure 1(b) shows the valid source and destination operand variations. Note that the
MOV instruction cannot transfer data directly between a source and a destination, which
both reside in external memory. Instead, the data must first be moved from memory into
an internal register, such as to the accumulator (AX), with one move instruction, and then
moved to the new location in memory with a second move instruction.

All transfers between general-purpose registers and memory can involve either a
byte or word of data. The fact that the instruction corresponds to byte or word data is des-
ignated by the way in which its operands are specified. For instance, AL or AH is used to
specify a byte operand, and AX, a word operand. On the other hand, data moved between
one of the general-purpose registers and a segment register or between a segment register
and a memory location must always be word-wide.

Figure 1(a) also provides additional important information. For instance, flag bits
within the 8088 are not modified by execution of a MOV instruction.

An example of a segment register to general-purpose register MOV instruction
shown in Fig. 1(c) is

MOV DX, CS

In this instruction, the code segment register is the source operand, and the data register
is the destination. It stands for “move the contents of CS into DX.” That is,

For example, if the contents of CS are 010016, execution of the instruction MOV DX, CS
as shown in Fig. 1(d) makes

(DX) � (CS) � 010016

(CS) → (DX)

8088/8086 Programming—Integer Instructions and Computations

Here we examine its allowed operands and operation more thoroughly, and demon-
strate its execution with the DEBUG program. Figure 1(a) shows that the move (MOV)
instruction transfers data from a source operand to a destination operand. Earlier we
found that the operands can be internal registers of the 8088 and storage locations in
memory.

170

Figure 1 (a) MOV data transfer instruction. (b) Allowed operands.
(c) MOV DX, CS before fetch and execution. (d) After execution.

8088/8086 Programming—Integer Instructions and Computations

171

8088/8086 Programming—Integer Instructions and Computations

Figure 1 (continued)

In all memory reference MOV instructions, the machine code for the instruction
includes an offset address relative to the beginning of current data segment. An example
of this type of instruction is

MOV [SUM], AX

In this instruction, the memory location identified by the variable SUM is specified using
direct addressing. That is, the value of the offset SUM is encoded in the two byte loca-
tions that follow its opcode.

Let us assume that the contents of DS equal 020016 and that SUM equals 121216.
Then this instruction means “move the contents of accumulator AX to the memory loca-
tion offset by 121216 from the starting location of the current data segment.” The physi-
cal address of this location is obtained as

PA � 0200016 � 121216 � 0321216

172

8088/8086 Programming—Integer Instructions and Computations

Thus, the effect of the instruction is

and

EXAMPLE 1

What is the effect of executing the instruction

MOV CX, [SOURCE_MEM]

where SOURCE_MEM equal to 2016 is a memory location offset relative to the current
data segment defined by data segment base address 1A0016?

Solution

Execution of this instruction results in the following:

In other words, CL is loaded with the contents held at memory address

and CH is loaded with the contents of memory address

EXAMPLE 2

Use the DEBUG program on the PC to verify the operation of the instruction in Example
1. Initialize the word storage location pointed to by SOURCE_MEM to the value AA5516

before executing the instruction.

Solution

First, invoke the DEBUG program by entering the command

C:\DOS>DEBUG (↵)

As Fig. 2 shows, this results in the display of the DEBUG prompt

-

1A00016 � 2016 � 116 � 1A02116

1A00016 � 2016 � 1A02016

((DS)0 � 2016 � 116) → (CH)

((DS)0 � 2016) → (CL)

(AH) → (Memory Location 0321316)

(AL) → (Memory Location 0321216)

173

C:\DOS>DEBUG
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 OF DB OF
-A
1342:0100 MOV CX,[20]
1342:0104
-R DS
DS 1342
:1A00
-E 20 55 AA
-T

AX=0000 BX=0000 CX=AA55 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1A00 ES=1342 SS=1342 CS=1342 IP=0104 NV UP EI PL NZ NA PO NC
1342:0104 FFF3 PUSH BX
-Q

C:\DOS>

Figure 2 Display sequence for Example 2.

To determine the memory locations the debugger assigns for use in entering instructions
and data, we can examine the state of the internal registers with the command

-R (↵)

Looking at the displayed information for this command in Fig. 2, we find that the con-
tents of CS and IP indicate that the starting address in the current code segment is
1342:0100 and the current data segment starts at address 1342:0000. Also note that the
initial value in CX is 0000H.

To enter the instruction from Example 1 at location 1342:0100, we use the Assem-
ble command

-A (↵)
1342:0100 MOV CX, [20] (↵)
1342:0104 (↵)

Note that we must enter the value of the offset address instead of symbol SOURCE_MEM
and that it must be enclosed in brackets to indicate that it is a direct address.

Let us now redefine the data segment so that it starts at 1A00016. As shown in Fig.
2, a Register command loads the DS register with 1A0016. This entry is

-R DS (↵)
DS 1342
:1A00 (↵)

Now we initialize the memory locations at addresses 1A00:20 and 1A00:21 to 5516 and
AA16, respectively, with the Enter command

-E 20 55 AA (↵)

8088/8086 Programming—Integer Instructions and Computations

174

MOV AX,2000H
MOV DS, AX
MOV ES, AX
MOV AX,3000H
MOV SS,AX
MOV AX,0H
MOV BX,AX
MOV CX,0AH
MOV DX,100H
MOV SI,200H
MOV DI,300H

Figure 3 Initializing the internal reg-
isters of the 8088.

Finally, to execute the instruction, a Trace command is issued

-T (↵)

The result of executing the instruction is shown in Fig. 2. Note that CX has been loaded
with AA5516.

A use of the move instruction is to load initial address and data values into the reg-
isters of the MPU. For instance, the instruction sequence in Fig. 3 uses immediate data to
initialize the values in the segment, index, and data registers. Figure 1(b) shows that the
immediate data cannot be directly loaded into a segment register. For this reason, the ini-
tial values of the segment base addresses for DS, ES, and SS are first loaded into AX and
then copied into the appropriate segment registers. The execution of the first five instruc-
tions initializes these segment registers.

The next six instructions are used to initialize the data and index registers. First, the
AX register is cleared to 000016, and then BX is also cleared by copying this value from
AX to BX. Finally, CX, DX, SI, and DI are loaded with the immediate values 000A16,
010016, 020016, and 030016, respectively.

The XCHG Instruction

In our study of the move instruction, we found that it could be used to copy the con-
tents of a register or memory location into another register or contents of a register into a
storage location in memory. In all of these cases, the original contents of the source loca-
tion are preserved and the original contents of the destination are destroyed. In some
applications we need to exchange the contents of two registers. For instance, we might
want to exchange the data in the AX and BX registers.

This could be done using multiple move instructions and storage of the data in a
temporary register, such as DX. However, to perform the exchange function more effi-
ciently, a special instruction has been provided in the instruction set of the 8088. This is
the exchange (XCHG) instruction. The forms of the XCHG instruction and its allowed
operands are shown in Fig. 4(a) and (b). Here we see that it can be used to swap data

8088/8086 Programming—Integer Instructions and Computations

175

Figure 4 (a) XCHG data transfer instruction. (b) Allowed operands.
(c) XCHG [SUM], BX before fetch and execution. (d) After execution.

8088/8086 Programming—Integer Instructions and Computations

176

Figure 4 (continued)

between two general-purpose registers or between a general-purpose register and a stor-
age location in memory. In particular, it allows for the exchange of words of data between
one of the general-purpose registers, including the pointers and index registers and the
accumulator (AX), exchange of a byte or word of data between one of the general-pur-
pose registers and a storage location in memory, or between two of the general-purpose
registers.

Let us consider an example of an exchange between two internal registers. Here is
a typical instruction:

XCHG AX, DX

8088/8086 Programming—Integer Instructions and Computations

177

Its execution by the 8088 swaps the contents of AX with that of DX. That is,

or

EXAMPLE 3

For the data shown in Fig. 4(c), what is the result of executing the following instruction?

XCHG [SUM], BX

Solution

Execution of this instruction performs the operation

In Fig. 4(c), we see that and the direct address . Therefore,
the corresponding physical address is

Note that this location contains FF16 and the address that follows contains 0016. Moreover,
BL contains AA16 and BH contains 1116.

Execution of the instruction performs the following 16-bit swap:

As shown in Fig. 4(d), we get

EXAMPLE 4

Use the DEBUG program to verify the operation of the instruction in Example 3.

Solution

The DEBUG commands needed to enter the instruction, enter the data, execute the
instruction, and verify the result of its operation are shown in Fig. 5. Here we see that

(SUM) � 11AA16

 (BX) � 00FF16

(1323416) 4 (BH)

(1323416) 4 (BL)

PA � 1200016 � 123416 � 1323416

SUM � 123416(DS) � 120016

((DS)0 � SUM) 4 (BX)

(AX) 4 (DX)

(DX original) → (AX)

(AX original) → (DX)

8088/8086 Programming—Integer Instructions and Computations

178

Figure 5 Display sequence for Example 4.

C:\DOS>DEBUG
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 OF DB OF
-A 1100:101
1100:0101 XCHG [1234],BX
1100:0105
-R BX
BX 0000
:11AA
-R DS
DS 1342
:1200
-R CS
CS 1342
:1100
-R IP
IP 0100
:101
-R
AX=0000 BX=11AA CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1200 ES=1342 SS=1342 CS=1100 IP=0101 NV UP EI PL NZ NA PO NC
1100:0101 871E3412 XCHG BX,[1234] DS:1234=0000
-E 1234 FF 00
-U 101 104
1100:0101 871E3412 XCHG BX,[1234]
-T

AX=0000 BX=00FF CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1200 ES=1342 SS=1342 CS=1100 IP=0105 NV UP EI PL NZ NA PO NC
1100:0105 8946FE MOV [BP-02],AX SS:FFFE=0000
-D 1234 1235
1200:1230 AA 11
-Q

C:\DOS>

after invoking DEBUG and displaying the initial state of the 8088’s registers, the instruc-
tion is loaded into memory with the command

-A 1100:101 (↵)
1100:0101 XCHG [1234], BX (↵)
1100:0105 (↵)
-

Next, as shown in Fig. 5, R commands are used to initialize the contents of regis-
ters BX, DS, CS, and IP to 11AA16, 120016, 110016, and 010116, respectively, and then the
updated register states are verified with another R command. Now, memory locations
DS:1234H and DS:1235H are loaded with the values FF16 and 0016, respectively, with the
E command

-E 1234 FF 00 (↵)
-

Before executing the instruction, its loading is verified with an unassemble com-
mand. We see in Fig. 5 that it has been correctly loaded. The instruction is executed by
issuing the Trace command

-T (↵)

8088/8086 Programming—Integer Instructions and Computations

179

Figure 6 XLAT data transfer instruction.

The displayed trace information in Fig. 5 shows that BX now contains 00FF16. To verify
that the memory location was loaded with data from BX, we must display the data held
at address DS:1234H and DS:1235H. This is done with the Dump command

-D 1234 1235 (↵)
1200:1230 AA 11

In this way, we see that the word contents of memory location DS:1234H have been
exchanged with the contents of the BX register.

The XLAT Instruction

The translate (XLAT) instruction has been provided in the instruction set of the
8088 to simplify implementation of the lookup-table operation. This instruction is
described in Fig. 6. When using XLAT, the contents of register BX represent the offset of
the starting address of the lookup table from the beginning of the current data segment.
Also, the contents of AL represent the offset of the element to be accessed from the
beginning of the lookup table. This 8-bit element address permits a table with up to 256
elements. The values in both of these registers must be initialized prior to execution of the
XLAT instruction.

Execution of XLAT replaces the contents of AL by the contents of the accessed
lookup table location. The physical address of this element in the table is derived as

An example of the use of this instruction is for software code conversions. Figure 7
illustrates how an ASCII-to-EBCDIC conversion can be performed with the translate
instruction. As shown, DS:BX defines the starting address where the EBCDIC table is
stored in memory. This gives the physical address

The individual EBCDIC codes are located in the table at element displacements equal to
their equivalent ASCII character values. For example, the EBCDIC code C116, which rep-
resents letter A, is positioned at displacement 4116, which equals ASCII A, from the start
of the table.

PA � (DS)0 � (BX) � 0300016 � 010016 � 0310016

PA � (DS)0 � (BX) � (AL)

8088/8086 Programming—Integer Instructions and Computations

180

Address Memory Character

(EBCDIC)

03100 00 NUL
.
.
.
.
.
.

.

.

.

.

.

.

.

03130
0300DS

F0 0
03131 F1 1

. F2 2

. F3 3

. F4 4

. F5 5

. F6 6

. F7 7

. F8 8

. F9 9

. 7A :

. 5E ;

. 4C <

. 7E =
0313E 6E >
0313F 6F ?
03140 7C @
03141 C1 A

. C2 B

. C3 C

. C4 D

. C5 E

. C6 F

. C7 G

. C8 H

. C9 I
0314A D1 J

0100BX

XX3FAX

XX6FAX

Before
execution

After
execution

Figure 7 ASCII-to-EBCDIC conversion operation.

As an illustration of XLAT, let us assume . Here 3F16 represents the
ASCII symbol question mark. Execution of XLAT replaces the contents of AL by the
contents of the memory location given by

� 0300016 � 010016 � 3F16 � 0313F16

PA � (DS)0 � (BX) � (AL)

(AL) � 3F16

8088/8086 Programming—Integer Instructions and Computations

181

Thus, the execution can be described by

This memory location contains 6F16 (EBCDIC code for question mark) and this value is
placed in AL:

LEA, LDS, and LES Instructions

An important type of data-transfer operation is loading a segment and a general-
purpose register with an address directly from memory. Special instructions are provided
in the instruction set of the 8088 to give a programmer this capability. These instructions,
described in Fig. 8, are load register with effective address (LEA), load register and data
segment register (LDS), and load register and extra segment register (LES).

Looking at Fig. 8(a), we see that these instructions provide programmers with the
ability to manipulate memory addresses by loading either a 16-bit offset address into a
general-purpose register or a 16-bit offset address into a general-purpose register together
with a 16-bit segment address into either DS or ES.

The LEA instruction is used to load a specified register with a 16-bit offset address.
An example of this instruction is

LEA SI, EA

When executed, it loads the SI register with an offset address value. The value of this off-
set is represented by the effective address EA. The value of EA can be specified by any
valid addressing mode. For instance, if the value in DI equals 1000H and that in BX is
20H, then executing the instruction

LEA SI, [DI + BX + 5H]

will load SI with the value

That is,

The other two instructions, LDS and LES, are similar to LEA except that they load
the specified register as well as the DS or ES segment register, respectively. That is, they
are able to load a complete address pointer that is stored in memory. In this way, execut-
ing a single instruction can activate a new data segment.

(SI) � 1025H

EA � 1000H � 20H � 5H � 1025H

(AL) � 6F16

(0313F16) → (AL)

8088/8086 Programming—Integer Instructions and Computations

182

Figure 8 (a) LEA, LDS, and LES data transfer instructions. (b) LDS SI,
[200H] before fetch and execution. (c) After execution.

8088/8086 Programming—Integer Instructions and Computations

183

Figure 8 (continued)

EXAMPLE 5

Assuming that the 8088 is initialized as shown in Fig. 8(b), what is the result of execut-
ing the following instruction?

LDS SI, [200H]

8088/8086 Programming—Integer Instructions and Computations

184

Solution

Execution of the instruction loads the SI register from the word location in memory
whose offset address with respect to the current data segment is 20016. Figure 8(b) shows
that the contents of DS are 120016. This gives a physical address of

It is the contents of this location and the one that follows that are loaded into SI. There-
fore, in Fig. 8(c) we find that SI contains 002016. The next two bytes—that is, the con-
tents of addresses 1220216 and 1220316—are loaded into the DS register. As shown, this
defines a new data segment address of 1300016.

EXAMPLE 6

Verify the execution of the instruction in Example 5 using the DEBUG program. The
memory and register contents are to be those shown in Fig. 8(b).

Solution

As shown in Fig. 9, DEBUG is first brought up and then REGISTER commands are used
to initialize registers IP, CS, DS, and SI with values 010016, 110016, 120016, and 000016,
respectively. Next, the instruction is assembled at address CS:100 with the command

-A CS:100 (↵)
1100:0100 LDS SI, [200] (↵)
1100:0104 (↵)

PA � 1200016 � 020016 � 1220016

Figure 9 Display sequence for Example 6.

C:\DOS>DEBUG
-R IP
IP 0100
:
-R CS
CS 1342
:1100
-R DS
DS 1342
:1200
-R SI
SI 0000
:
-A CS:100
1100:0100 LDS SI,[200]
1100:0104
-E 200 20 00 00 13
-T
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0020 DI=0000
DS=1300 ES=1342 SS=1342 CS=1100 IP=0104 NV UP EI PL NZ NA PO NC
1100:0104 CO DB C0
-Q

C:\DOS>

8088/8086 Programming—Integer Instructions and Computations

185

MOV
MOV
MOV
LES
MOV
MOV
MOV
MOV
MOV
MOV

AX, DATA_SEG_ADDR
DS,AX
SI,[INIT_TABLE]
DI,[INIT_TABLE�02H]
AX,[INIT_TABLE�06H]
SS,AX
AX,[INIT_TABLE�08H]
BX,[INIT_TABLE�0AH]
CX,[INIT_TABLE�0CH]
DX,[INIT_TABLE�0EH]

(a)

Memory

.

.

.

.

.

.
DATA_SEG_ADDR:INIT_TABLE

DATA_SEG_ADDR:0000H

DATA_SEG_ADDR:INIT_TABLE�02H

SI

DATA_SEG_ADDR:INIT_TABLE�06H

DATA_SEG_ADDR:INIT_TABLE�08H

DATA_SEG_ADDR:INIT_TABLE�0AH

DATA_SEG_ADDR:INIT_TABLE�0CH

DATA_SEG_ADDR:INIT_TABLE�0EH

Initialization
table

DI

ES

SS

AX

BX

CX

DX

(b)

Figure 10 (a) Initializing the internal registers of the 8088 from a table in memory. (b)
Table of initialization information.

Before executing the instruction, we need to initialize two words of data starting at
location DS:200 in memory. As shown in Fig. 9, this is done with an E command.

-E 200 20 00 00 13 (↵)

Then the instruction is executed with the command

-T (↵)

Looking at the displayed register contents in Fig. 9, we see that SI has been loaded with
the value 002016 and DS with the value 130016.

Earlier we showed how the segment registers, index registers, and data registers of
the MPU can be initialized with immediate data. Another way of initializing them is from
a table of data in memory. Using the LES instruction along with the MOV instruction pro-
vides an efficient method for performing register initialization from a data table. The
sequence of instructions in Fig. 10(a) loads segment registers SS and ES, index registers
SI and DI, and data registers AX, BX, CX, and DX with initial addresses and data from
a table starting at offset address INIT_TABLE in the current data segment.

8088/8086 Programming—Integer Instructions and Computations

186

Looking at the source addresses in the instructions, we can determine the location
of each of the address or data elements in the table. For example, the 16-bit base address
for register SS is held in the table at offset addresses INIT_TABLE�06H and
INIT_TABLE�07H, and the word of data for DX is held at offset addresses
INIT_TABLE�0EH and INIT_TABLE�0FH. Figure 10(b) shows that the table is
16 bytes long and spans the address range DATA_SEG_ADDR:INIT_TABLE through
DATA_SEG_ADDR:INIT_TABLE�0FH. This table of information must be loaded into
memory before the instruction sequence is executed.

First the program sets up a data segment starting at base address DATA_SEG_
ADDR. Then, the addresses or data values are fetched from the table in memory and
loaded into the appropriate registers. For instance, the third instruction reads an offset
address, which is the word content of the memory location at offset address
INIT_TABLE, into the SI register. Note that an LES instruction is used instead of MOV
instructions to load the DI and ES registers. When this instruction is executed, the word
of data for DI is loaded from table locations at offset addresses INIT_TABLE�02H and
INIT_TABLE�03H, whereas the base address for DS is loaded from INIT_TABLE�
04H and INIT_TABLE�05H.

▲ 2 ARITHMETIC INSTRUCTIONS

The instruction set of the 8088 microprocessor contains a variety of arithmetic instruc-
tions. They include instructions for the addition, subtraction, multiplication, and division
operations. These operations can be performed on numbers expressed in a variety of
numeric data formats. These formats include unsigned or signed binary bytes or words,
unpacked or packed decimal bytes, or ASCII numbers. Remember that by packed decimal
we mean that two BCD digits are packed into a byte-size register or a memory location.
Unpacked decimal numbers are stored one BCD digit per byte. The BCD numbers are
unsigned decimal numbers. ASCII numbers are expressed in ASCII code and stored one
number per byte.

The status that results from the execution of an arithmetic instruction is recorded in
the flags of the microprocessor. The flags that are affected by the arithmetic instructions
are carry flag (CF), auxiliary flag (AF), sign flag (SF), zero flag (ZF), parity flag (PF), and
overflow flag (OF).

For the purpose of discussion, we will divide the arithmetic instructions into the
subgroups shown in Fig. 11.

Addition of Binary Numbers

Before examining the instructions that are provided for performing addition, let us
review the topic of adding binary numbers. Adding binary numbers is governed by the
following rules:

0 0 1 1
� 0 � 1 � 0 � 1

0 1 1 0 & carry

8088/8086 Programming—Integer Instructions and Computations

187

Figure 11 Arithmetic instructions.

Looking at these additions, we see three different results. First, the addition gives a
sum of binary 0. On the other hand, adding 0 to a 1 results in 1. The last result is obtained
by adding 1 to 1. This gives an answer of 2, but in binary 2 is written as 10. Another way
of describing the answer to is to say that sum is 0 and a carry of 1 to the next more
significant bit. For the first three additions, there is no carry. No carry can be identified as
a binary 0. Therefore, the result of can be written as 01. This is read as “1 and a
carry of 0” or “1 and no carry.” The binary add operation is described in general as

Note that the carry is identified as Co and stands for carry-out. This type of binary addi-
tion operation is know as a half-add and is described in combinational logic by the half-
adder function in Fig. 12(a).

In 8088/8086 assembly language, binary additions are performed with 8-bit or
16-bit binary numbers. For instance, the addition of two byte-wide numbers A and B is
represented as

Here we see that the sum of two 8-bit binary numbers can have 9 bits. The ninth bit is
marked S8 and is actually the carry out from the sum on the eighth bit.

 A7A6A5A4A3A2A1A0

 � B7 B6B5B4B3 B2B1B0

 S8 S7 S6 S5S4 S3 S2 S1S0

A � B � S & Co

1 � 0

1 � 1

0 � 0

8088/8086 Programming—Integer Instructions and Computations

188

Half-adder

(a)

S

Co

Co

A

B

SBA

0000
0110
0101
1011

Full-adder

(b)

S

Co

S

Ci

B

A

BACi

0000
1100
1010
01

Co

0
0

1111 1

0
110

1001
0101
00

0
1
111

Figure 12 (a) Half-adder logic func-
tion. (b) Full-adder logic function.

Let us do an example to demonstrate this type of addition. Assume that

and

Then, their sum is

Now performing the same operation by binary addition gives

111 111 carry
10101010 N1
11101110 N2

110011000 sum

N1 � N2 � 17010 � 23810 � 40810

N2 � 23810 � 111011102

N1 � 17010 � 101010102

8088/8086 Programming—Integer Instructions and Computations

189

Figure 13 (a) Addition instructions. (b) Allowed operands for ADD and ADC
instructions. (c) Allowed operands for INC instruction.

Converting to its decimal equivalent can allow one to check this answer:

Looking at the addition performed for the third bit in this example, we see a more gen-
eral type of binary addition. In this bit, three numbers are added. The carry-in (Ci) from
the addition in the second bit is added to the sum of the A2 and B2. The result is the sum
and a carry-out. This addition is described by the expression

In combinational logic, this binary addition function is called a full-add and is represented
by the full-adder logic element shown in Fig. 12(b).

Addition Instructions: ADD, ADC, INC, AAA, and DAA

Figure 13(a) shows the form of each of the instructions in the addition subgroup;
Fig. 13(b) shows, the allowed operand variations for all but the INC instruction; and Fig.
13(c) shows the allowed operands for the INC instruction. Let us begin by looking more
closely at the add (ADD) instruction. Note in Fig. 13(b) that it can be used to add an
immediate operand to the contents of the accumulator, the contents of another register, or

Ci � A � B � S & Co

1100110002 � 1(23) � 1(24) � 1(27) � 1(28) � 8 � 16 � 128 � 256 � 40810

8088/8086 Programming—Integer Instructions and Computations

190

the contents of a storage location in memory. It also allows us to add the contents of two
registers or the contents of a register and a storage location in memory.

In general, the result of executing ADD is expressed as

That is, the contents of the source operand are added to those of the destination operand
and the sum that results is put into the location of the destination operand. The carry-out
(Co) that may occur from the addition of the most significant bit of the destination is
reflected in the carry flag (CF). Therefore, this instruction performs the half-add binary
arithmetic operation.

EXAMPLE 7

Assume that the AX and BX registers contain 110016 and 0ABC16, respectively. What is
the result of executing the instruction ADD AX, BX?

Solution

Executing the ADD instruction causes the contents of source operand BX to be added to
the contents of destination register AX. This gives

This sum ends up in destination register AX. That is,

A carry-out does not occur; therefore, the carry flag is reset.

Figures 14(a) and (b) illustrate the execution of this instruction.

EXAMPLE 8

Use the DEBUG program to verify the execution of the instruction in Example 7. Assume
that the registers are to be initialized with the values shown in Fig. 14(a).

Solution

The debug sequence for this is shown in Fig. 15. After the debug program is brought up,
the instruction is assembled into memory with the command

-A 1100:0100 (↵)
1100:0100 ADD AX, BX (↵)
1100:0102 (↵)
-

CF � 0

(AX) � 1BBC16

(BX) � (AX) � 0ABC16 � 110016 � 1BBC16

(S) � (D) → (D)

8088/8086 Programming—Integer Instructions and Computations

191

Figure 14 (a) ADD instruction before fetch and execution. (b) After
execution.

Next, as shown in Fig. 15, the AX and BX registers are loaded with the values 110016 and
0ABC16, respectively, using R commands.

-R AX (↵)
AX 0000
:1100 (↵)
-R BX (↵)
BX 0000
:0ABC (↵)

Loading of the instruction is verified with the UNASSEMBLE command

-U 1100:0100 0100 (↵)

and is shown in Fig. 15 to be correct.

8088/8086 Programming—Integer Instructions and Computations

192

Figure 14 (continued)

Figure 15 Display sequence for Example 8.

C:\DOS>DEBUG
-A 1100:0100
1100:0100 ADD AX,BX
1100:0102
-R AX
AX 0000
:1100
-R BX
BX 0000
:0ABC
-U 1100:100 100
1100:0100 01D8 ADD AX,BX
-T =1100:100

AX=1BBC BX=0ABC CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1100 IP=0102 NV UP EI PL NZ NA PO NC
1100:0102 0002 ADD [BP+SI],AL SS:0000=CD
-Q

C:\DOS>

8088/8086 Programming—Integer Instructions and Computations

193

We are now ready to execute the instruction with the TRACE command

-T =1100:0100 (↵)

From the trace dump in Fig. 15, we see that the sum of AX and BX, which equals 1BBC16,
is now held in destination register AX. Also note that no carry (NC) has occurred.

The instruction add with carry (ADC) works similarly to ADD. But in this case, the
content of the carry flag is also added— that is,

Here CF serves as both Ci and Co, and the instruction performed the operation of the full-
adder logic function. The valid operand combinations are the same as those for the ADD
instruction. ADC is primarily used for multiword add operations.

Another instruction that can be considered part of the addition subgroup of arith-
metic instructions is the increment (INC) instruction. As shown in Fig. 13(c), its operands
can be the contents of a 16-bit internal register, an 8-bit internal register, or a storage loca-
tion in memory. Execution of the INC instruction adds 1 to the specified operand. An
example of an instruction that increments the high byte of AX is

INC AH

This instruction is typically used to increment the values of a count or address.
Figure 13(a) shows how the execution of these three instructions affects the earlier

mentioned flags.

EXAMPLE 9

The original contents of AX, BL, word-size memory location SUM, and carry flag CF are
123416, AB16, 00CD16, and 016, respectively. Describe the results of executing the follow-
ing sequence of instructions:

ADD AX, [SUM]
ADC BL, 05H
INC WORD PTR [SUM]

Solution

Executing the first instruction adds the word in the accumulator and the word in the mem-
ory location pointed to by address SUM. The result is placed in the accumulator. That is,

The carry flag remains reset.

(AX) ← (AX) � (SUM) � 123416 � 00CD16 � 130116

(S) � (D) � (CF) → (D)

8088/8086 Programming—Integer Instructions and Computations

194

Figure 16 Execution results of arith-
metic instructions in Example 9.

The second instruction adds to the lower byte of the base register (BL) the imme-
diate operand 516 and the carry flag, which is 016. This gives

Since no carry is generated, CF stays reset.
The last instruction increments the contents of memory location SUM by one.

That is,

These results are summarized in Fig. 16.

EXAMPLE 10

Verify the operation of the instruction sequence in Example 9 by executing it with the
DEBUG program. A source program that includes this sequence of instructions is shown
in Fig. 17(a), and the source listing produced when the program is assembled is shown in
Fig. 17(b). A run module that was produced by linking this program is stored in file
EX510.EXE.

Solution

The DEBUG program is brought up and at the same time the run module from file
EX510.EXE is loaded with the command

C:\DOS>DEBUG A:EX510.EXE (↵)

Next, we will verify the loading of the program by unassembling it with the command

-U 0 12 (↵)

Comparing the displayed instruction sequence in Fig. 17(c) to the source listing in Fig.
17(b), we find that the program has loaded correctly.

Notice in Fig. 17(c) that the instructions for which we are interested in verifying
operation start at address 0D03:000A. For this reason, a Go command will be used to exe-
cute down to this point in the program. This command is

-G A (↵)

(SUM) ← (SUM) � 116 � 00CD16 � 116 � 00CE16

(BL) ← (BL) � imm8 � (CF) � AB16 � 516 � 016 � B016

8088/8086 Programming—Integer Instructions and Computations

195

TITLE EXAMPLE 10
PAGE ,132

STACK_SEG SEGMENT STACK ’STACK’
DB 64 DUP(?)

STACK_SEG ENDS

DATA_SEG SEGMENT
SUM DW 0CDH
DATA_SEG ENDS

CODE_SEG SEGMENT ’CODE’
EX510 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements the Example 10

MOV AX, DATA_SEG ;Establish data segment
MOV DS, AX

ADD AX, SUM
ADC BL, 05H
INC WORD PTR SUM

RET ;Return to DEBUG program
EX510 ENDP

CODE_SEG ENDS
END EX510

(a)

Figure 17 (a) Source program for Example 10. (b) Source listing produced by
assembler. (c) Debug session for execution of program EX510.EXE.

Note that in the trace information displayed for this command, CS now contains 0D0316

and IP contains 000A16; therefore, the next instruction to be executed is at address
0D03:000A. This is the ADD instruction.

Now we need to initialize registers AX, BX, and the memory location pointed to by
SUM (WORD PTR [0000]). We must also ensure that the CF status flag is set to NC (no
carry). In Fig. 17(c), we find that these operations are done with the following sequence
of commands:

-R AX (↵)
AX 0D05
:1234 (↵)
-R BX (↵)
BX 0000
:AB (↵)
-R F (↵)
NV UP EI PL NZ NA PO NC - (↵)
-E 0 CD 00 (↵)
-D 0 1 (↵)
0D03:0000 CD 00

8088/8086 Programming—Integer Instructions and Computations

196

TITLE EXAMPLE 10

PAGE ,132

0000 STACK_SEG SEGMENT STACK ’STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 DATA_SEG SEGMENT
0000 00CD SUM DW 0CDH
0002 DATA_SEG ENDS

0000 CODE_SEG SEGMENT ’CODE’
0000 EX510 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements the Example 10

0005 B8 —— R MOV AX, DATA_SEG ;Establish data segment
0008 8E D8 MOV DS, AX

000A 03 06 0000 R ADD AX, SUM
000E 80 D3 05 ADC BL, 5H
0011 FF 06 0000 R INC WORD PTR SUM

0015 CB RET ;Return to DEBUG program
0016 EX510 ENDP

0016 CODE_SEG ENDS

END EX510

Segments and groups:

N a m e Size align combine class

CODE_SEG 0016 PARA NONE ’CODE’
DATA_SEG 0002 PARA NONE
STACK_SEG. 0040 PARA STACK ’STACK’

Symbols:

N a m e Type Value Attr

EX510. F PROC 0000 CODE_SEG Length =0016
SUM. L WORD 0000 DATA_SEG

Warning Severe
Errors Errors
0 0

(b)

Figure 17 (continued)

Now we are ready to execute the ADD instruction. Issuing the Trace command
does this.

-T (↵)

From the information displayed for this command in Fig. 17(c), note that the value CD16

has been added to the original value in AX, which was 123416, and the sum that results
in AX is 130116.

8088/8086 Programming—Integer Instructions and Computations

197

C:DOS>DEBUG A:EX510.EXE
-U 0 12
0D03.0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 B8050D MOV AX,0D05
0D03:0008 8ED8 MOV DS,AX
0D03:000A 03060000 ADD AX,[0000]
0D03:000E 80D305 ADC BL,05
0D03:0011 FF060000 INC WORD PTR [0000]
-G A

AX=0D03 BX=0000 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0D05 ES-0CF3 SS=0D06 CS=0D03 IP=000A NV UP EI PL NZ NA PO NC
0D03:000A 03060000 ADD AX,[0000] DS:0000=00CD
-R AX
AX 0D05
:1234
-R BX
BX 0000
:AB
-R F
NV UP EI PL NZ NA PO NC -
-E 0 CD 00
-D 0 1
0D05:0000 CD 00
-T

AX=1301 BX=00AB CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0D05 ES=0CF3 SS=0D06 CS=0D03 IP=000E NV UP EI PL NZ AC PO NC
0D03:000E 80D305 ADC BL,05
-T

AX=1301 BX=00B0 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0D05 ES=0CF3 SS=0D06 CS=0D03 IP=0011 NV UP EI NG NZ AC PO NC
0D03:0011 FF060000 INC WORD PTR [0000] DS:0000=00CD
-T

AX=1301 BX=00B0 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0D05 ES=0CF3 SS=0D06 CS=0D03 IP=0015 NV UP EI PL NZ NA PO NC
0D03:0015 CB RETF
-D 0 1
0D05:0000 CE 00
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 17 (continued)

Next the ADC instruction is executed with another T command.

-T (↵)

It causes the immediate operand value 0516 to be added to the original contents of BL,
AB16, and the sum that is produced in BL is B016.

The last instruction is executed with one more T command, causing the SUM
(WORD PTR [0000]) to be incremented by one. This can be verified by issuing the Dump
command

-D 0 1 (↵)

8088/8086 Programming—Integer Instructions and Computations

198

Note that the value of SUM is identified as a WORD PTR. This assembler directive
means that the memory location for SUM is to be treated as a word-wide storage location.
Similarly if a byte-wide storage location, say BYTE_LOC, were to be accessed, it would
be identified as BYTE PTR [BYTE_LOC].

The addition instructions we just covered can also be used to add numbers expressed
in ASCII code, provided the binary result that is produced is converted back to its equiva-
lent ASCII representation. This eliminates the need for doing a code conversion on ASCII
data prior to processing them with addition operations. Whenever the 8088 does an addi-
tion on ASCII format data, an adjustment must be performed on the binary result to con-
vert it to the equivalent decimal number. It is specifically for this purpose that the ASCII
adjust for addition (AAA) instruction is provided in the instruction set. The AAA instruc-
tion should be executed immediately after the ADD instruction that adds ASCII data.

Assuming that AL contains the result produced by adding two ASCII coded num-
bers, executing the AAA instruction causes the contents of AL to be replaced by its equiv-
alent decimal value. If the sum is greater than nine, AL contains the LSD, and AH is incre-
mented by one. Otherwise, AL contains the sum, and AH is unchanged. Figure 13(a) shows
that the AF and CF flags can be affected. Since AAA can adjust only data that are in AL,
the destination register for ADD instructions that process ASCII numbers should be AL.

EXAMPLE 11

What is the result of executing the following instruction sequence?

ADD AL, BL
AAA

Assume that AL contains 3216 (the ASCII code for number 2), BL contains 3416 (the
ASCII code for number 4), and AH has been cleared.

Solution

Executing the ADD instruction gives

Next, the result is adjusted to give its equivalent decimal number. This is done by exe-
cuting the AAA instruction. The equivalent of adding 2 and 4 is decimal 6 with no carry.
Therefore, the result after the AAA instruction is

and both AF and CF remain cleared.

(AH) � 0016

(AL) � 0616

(AL) ← (AL) � (BL) � 3216 � 3416 � 6616

8088/8086 Programming—Integer Instructions and Computations

199

The instruction set of the 8088 includes another instruction, called decimal adjust
for addition (DAA). This instruction is used to perform an adjust operation similar to that
performed by AAA but for the addition of packed BCD numbers instead of ASCII num-
bers. Figure 13 also provides information about this instruction. Similar to AAA, DAA
performs an adjustment on the value in AL. A typical instruction sequence is

ADD AL, BL
DAA

Remember that the contents of AL and BL must be packed BCD numbers—that is, two
BCD digits packed into a byte. The adjusted result in AL is again a packed BCD byte.

32-Bit Binary Addition Program

As an example of the use of the addition instructions, let us perform a 32-bit binary
add operation on the contents of the registers. We will implement the addition

for the following data in the registers

We first initialize the registers with the data using move instructions as follows:

MOV DX, 0FEDCH
MOV CX, 0BA98H
MOV BX, 0123H
MOV AX, 4567H

Next, the 16 least significant bits of the 32-bit number are added with the instruction.

ADD CX, AX

Note that the sum from this part of the addition is in CX and the carry-out in CF.
To add the most significant 16 bits, we must account for the possibility of a carry-

in from the addition of the lower 16 bits. For this reason, the ADC instruction must be
used. Thus, the last instruction is

ADC DX, BX

Execution of this instruction produces the upper 16 bits of the 32-bit sum in register DX.

(BX,AX) � 0123456716

(DX,CX) � FEDCBA9816

(DX,CX) ← (DX,CX) � (BX,AX)

8088/8086 Programming—Integer Instructions and Computations

200

Subtraction of Binary Numbers

Now that we have examined binary addition and the instructions of the 8088/8086
instruction set that perform addition operations, let us continue by reviewing how to per-
form binary subtraction. The basic binary subtractions are as follows:

0 0 1 1
� 0 � 1 � 0 � 1

0 1 & borrow 1 0

From these subtractions, we find that subtracting binary 1 from 0 requires a borrow
from the more significant bit. When a 1 is borrowed, it is brought back to the less signif-
icant bit as , and then subtracting gives a result equal to 1. This result is expressed
as 1 and a borrow of 1. The other three subtractions are performed without a borrow, or
a borrow of 0. The subtraction operation is described in general as

Bri stands for borrow-in. This form of the binary subtract operation is referred to as a
half-subtract and symbolized by the combination logic function in Fig. 18(a).

As with addition, subtraction performed in software by the 8088/8086 micro-
processor involves byte-wide or word-wide binary numbers. The subtraction of two byte-
wide numbers is denoted as

To illustrate the subtraction process, let us do the following example:

and

Then, their difference is

11 Borrow
11101110 N1

�10101011 N2
01000011 Difference

Difference � N1 � N2 � 23810 � 17110 � 6710

N2 � 17110 � 101010112

N1 � 23810 � 111011102

 A7A6 A5 A4A3 A2 A1A0

� B7 B6 B5 B4 B3 B2 B1B0

 D7 D6 D5 D4D3 D2D1D0

A � B � D & Bri

1 � 1

8088/8086 Programming—Integer Instructions and Computations

201

Half-subtractor

(a)

D

Bri

Bri

A

B

DBA

0000
1110
0101
0011

Full-subtractor

(b)

D

Bri

D

Bro

B

A

BABro

0000
1100
1010
01

Bri

0
1

1111 1

0
010

1001
0101
00

1
1
011

Figure 18 (a) Half-subtractor logic
function. (b) Full-subtractor logic
function.

Checking the answer gives

Since A0 is less than B0, a borrow from A1 must be used to do the subtraction, resulting
in the difference D0 as 1.

Moving to the A1 bit, we find that 1 has already been borrowed to leave a 0 there.
For this reason, the subtract cannot be done without borrowing. Bringing 1 back from the
A2 bit and subtracting, we obtain the difference of 1. The rest of the bits subtract without
requiring any additional borrows.

Looking at the subtraction of B1 from A1, we notice that two borrows have been
performed. First, 1 is borrowed from the A1 bit and returned to the A0 bit. This is called
a borrow-out (Bro) for the A1 bit. Moreover, a 1 was borrowed from the A2 bit and
returned to the A1 bit so that the subtraction could be performed. This type of borrow is
referred to as a borrow-in (Bri) for the A1 bit. The subtraction performed in the A1 bit is
expressed in general as

A � B � Bro � D & Bri

010000112 � 1(20) � 1(21) � 1(26) � 1 � 2 � 64 � 6710

8088/8086 Programming—Integer Instructions and Computations

202

This binary subtract function is called a full-subtract and is represented by the full-
subtractor combination logic element shown in Fig. 18(b).

Another way of performing binary subtraction is to use the 2’s complement
method. Using this method, the difference of two binary numbers is found by an addition
process instead of directly through subtraction. The process requires that the value of the
minuend be replaced by its 2’s complement and then this value is added to the subtrahend
to produce the difference. That is, the subtraction

is performed as

Let us first review how to form the 2’s complement of a binary number. To form the
2’s complement of a number, first change all 1s in the number to 0s and all 0s to 1s; then
1 is added to the least significant bit. For instance, the 2’s complement of the minuend in
our earlier example is formed as follows:

Inverting bits and adding 1 to the LSB gives

For the earlier example, we have:

The carry from the most significant bit is ignored. This result is identical to that obtained
earlier.

Subtraction Instructions: SUB, SBB, DEC, AAS, DAS, and NEG

The instruction set of the 8088 includes an extensive set of instructions provided for
implementing subtraction. As Fig. 19(a) shows, the subtraction subgroup is similar to the
addition subgroup. It includes instructions for subtracting a source and a destination
operand, decrementing an operand, and adjusting the result of subtractions of ASCII and
BCD data. An additional instruction in this subgroup is negate.

The subtract (SUB) instruction is used to subtract the value of a source operand
from a destination operand. The result of this operation in general is given as

(D) ← (D) � (S)

� 010000112

� 111011102 � 010101012

� 111011102 � 2’s complement of 101010112

N1 � N2 � 111011102 � 101010112

2’s complement N2 � 010101002 � 12 � 010101012

N2 � 101010112

(Subtrahend) � (2’s complement of Minuend) � Difference

(Subtrahend) � (Minuend) � Difference

8088/8086 Programming—Integer Instructions and Computations

203

Figure 19 (a) Subtraction instructions. (b) Allowed operands for SUB and
SBB instructions. (c) Allowed operands for DEC instruction. (d) Allowed
operands for NEG instruction.

The borrow-in (Bri) that may occur from the subtraction of the most significant bit of the
destination is reflected in the carry flag (CF). Therefore, this instruction performs the
half-subtract binary arithmetic operation. As Fig. 19(b) shows, it can employ operand
combinations similar to the ADD instruction.

The subtract with borrow (SBB) instruction is similar to SUB; however, it also sub-
tracts the contents of the carry flag from the destination. That is,

CF serves as both Bri and Bro, and the instruction performs the operation of the full-
subtractor logic function. SBB is primarily used for multiword subtract operations.

EXAMPLE 12

Assuming that the contents of registers BX and CX are 123416 and 012316, respectively,
and the carry flag is 0, what is the result of executing the following instruction?

SBB BX, CX

(D) ← (D) � (S) � (CF)

8088/8086 Programming—Integer Instructions and Computations

204

Solution

Since the instruction implements the operation

we get

Since no borrow was needed, the carry flag remains cleared.

EXAMPLE 13

Verify the operation of the subtract instruction in Example 12 by repeating the example
using the DEBUG program.

Solution

As Fig. 20 shows, we first bring up the DEBUG program and then dump the initial state
of the 8088 with a REGISTER command. Next, we load registers BX, CX, and flag CF
with the values 123416, 012316, and NC, respectively. Note in Fig. 20 that this is done
with three more R commands.

� 111116

(BX) � 123416 � 012316 � 016

(BX) � (CX) � (CF) → (BX)

Figure 20 Display sequence for Example 13.

C:\DOS>DEBUG
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 0F DB 0F
-R BX
BX 0000
:1234
-R CX
CX 0000
:0123
-F F
NV UP EI PL NZ NA PO NC -
-A
1342:0100 SBB BX,CX
1342:0102
-R
AX=0000 BX=1234 CX=0123 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 19CB SBB BX,CX
-U 100 101
1342:0100 19CB SBB BX,CX
-T

AX=0000 BX=1111 CX=0123 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI PL NZ NA PE NC
1342:0102 B98AFF MOV CX,FF8A
-Q

C:\DOS>

8088/8086 Programming—Integer Instructions and Computations

205

Now the instruction is assembled at address CS:100 with the command

-A (↵)
1342:0100 SBB BX,CX (↵)
1342:0102 (↵)
-

Before executing the instruction, we can verify the initialization of the registers and the
entry of the instruction by issuing the commands

-R (↵)

and

-U 100 101 (↵)

Looking at Fig. 20, we find that the registers are correctly initialized and that the instruc-
tion SBB BX,CX is correctly entered.

Finally, the instruction is executed with a TRACE command. As shown in Fig. 20,
the result of executing the instruction is that the contents of CX are subtracted from the
contents of BX. The difference, which is 111116, resides in destination register BX, and
CF is still NC.

Just as the INC instruction can be used to add 1 to an operand, the decrement
(DEC) instruction can be used to subtract 1 from its operand. The allowed operands for
DEC are shown in Fig. 19(c).

In Fig. 19(d), we see that the negate (NEG) instruction can operate on operands in
a general-purpose register or a storage location in memory. Executing this instruction
causes the value of its operand to be replaced by its negative. This is actually done
through subtraction—that is, the contents of the specified operand are subtracted from
zero and the result is returned to the operand location. The subtraction is actually per-
formed by the processor hardware using 2’s-complement arithmetic. To obtain the correct
value of the carry flag that results from a NEG operation, the carry generated by the add
operation used in the 2’s-complement subtraction calculation must be complemented.

EXAMPLE 14

Assuming that register BX contains 003A16, what is the result of executing the following
instruction?

NEG BX

Solution

Executing the NEG instruction causes the 2’s-complement subtraction that follows:

� FFC616

� 000016 � FFC616

(BX) � 000016 � (BX) � 000016 � 2’s-complement of 003A16

8088/8086 Programming—Integer Instructions and Computations

206

Since no carry is generated in this add operation, the carry flag is complemented to give

EXAMPLE 15

Verify the operation of the NEG instruction in Example 14 by executing it with the
DEBUG program.

Solution

After starting the DEBUG program, we first initialize the contents of the BX register.
This is done with the command

-R BX (↵)
BX 0000
:3A (↵)
-

Next the instruction is assembled with the command

-A (↵)
1342:0100 NEG BX (↵)
1342:0102 (↵)

At this point, we can verify the initialization of BX by issuing the command

-R BX (↵)
BX 003A
: (↵)
-

To check the assembly of the instruction, unassemble it with the command

-U 100 101 (↵)
1342:0100 F7DB NEG BX
-

Now the instruction is executed with the command

-T (↵)

The information that is dumped by issuing this command is shown in Fig. 21. Here the
new contents in register BX are verified as FFC616, which is the negative of 003A16. Also
note that the carry flag is set (CY).

(CF) � 1

8088/8086 Programming—Integer Instructions and Computations

207

Figure 21 Display sequence for Example 15.

C:\DOS>DEBUG
-R BX
BX 0000
:3A
-A
1342:0100 NEG BX
1342:0102
-R BX
BX 003A
:
-U 100 101
1342:0100 F7DB NEG BX
-T

AX=0000 BX=FFC6 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI NG NZ AC PE CY
1342:0102 B98AFF MOV CX,FF8A
-Q

C:\DOS>

In our study of the addition instruction subgroup, we found that the 8088 is capa-
ble of directly adding ASCII and BCD numbers. The SUB and SBB instructions can sub-
tract numbers represented in these formats as well. Just as for addition, the results that are
obtained must be adjusted to produce the corresponding decimal numbers. In the case of
ASCII subtraction, we use the ASCII adjust for subtraction (AAS) instruction, and for
packed BCD subtraction we use the decimal adjust for subtract (DAS) instruction.

An example of an instruction sequence for direct ASCII subtraction is

SUB AL, BL
AAS

ASCII numbers must be loaded into AL and BL before the subtract instruction is exe-
cuted. Note that the destination of the subtraction should be AL. After execution of AAS,
AL contains the difference of the two numbers, and AH is unchanged if no borrow takes
place or is decremented by 1 if a borrow occurs.

32-Bit Binary Subtraction Program

As an example of the use of the subtraction instructions, let us implement a 32-bit
subtraction of two numbers X and Y that are stored in memory as

MS byte LS byte MS byte LS byte
of MS of MS of LS of LS
word word word word

The result of is to be saved in the place where X is stored in memory.X � Y

Y � (DS:103H)(DS:102H)(DS:101H)(DS:100H)

X � (DS:203H)(DS:202H)(DS:201H)(DS:200H)

8088/8086 Programming—Integer Instructions and Computations

208

First, we subtract the least significant 16 bits of the 32-bit words using the instructions

MOV AX, [200H]
SUB AX, [100H]
MOV [200H], AX

Next, the most significant words of X and Y are subtracted. In this part of the 32-bit sub-
traction, we must use the borrow that might have been generated by the subtraction of the
least significant words. Therefore, SBB is used to perform the subtraction operation. The
instructions to do this are

MOV AX, [202H]
SBB AX, [102H]
MOV [202H], AX

These instructions used direct addressing to access the data in memory. The 32-bit
subtract operation can also be done with indirect addressing with the program shown in
Fig. 22.

Multiplication and Division Instructions: MUL, DIV, IMUL, IDIV, AAM,
AAD, CBW, and CWD

The 8088 has instructions to support multiplication and division of binary and BCD
numbers. Two basic types of multiplication and division instructions, for the processing
of unsigned numbers and signed numbers, are available. To do these operations on
unsigned numbers, the instructions are MUL and DIV. On the other hand, to multiply or
divide 2’s-complement signed numbers, the instructions are IMUL and IDIV.

Figure 23(a) describes these instructions. Note in Fig. 23(b) that a single byte-wide
or word-wide operand is specified in a multiplication instruction. It is the source operand.
As shown in Fig. 23(a), the other operand, which is the destination, is assumed already to
be in AL for 8-bit multiplication or in AX for 16-bit multiplication.

The result of executing an MUL or IMUL instruction on byte data can be represented as

(AX) ← (AL) � (8-bit operand)

Figure 22 32-bit subtraction program
using indirect addressing.

8088/8086 Programming—Integer Instructions and Computations

209

Mnemonic Meaning Format Operation Flags Affected

MUL Multiply MUL S (AL) • (S8) → (AX) OF, CF
(unsigned) (AX) • (S16) → (DX),(AX) SF, ZF, AF, PF undefined

DIV Division DIV S (1) Q((AX)/(S8)) → (AL) OF, SF, ZF, AF, PF, CF
(unsigned) R((AX)/(S8)) → (AH) undefined

(2) Q((DX,AX)/(S16)) → (AX)
R((DX,AX)/(S16)) → (DX)
If Q is FF16 in case (1) or
FFFF16 in case (2), then
type 0 interrupt occurs

IMUL Integer multiply IMUL S (AL) • (S8) → (AX) OF, CF
(signed) (AX) • (S16) → (DX),(AX) SF, ZF, AF, PF undefined

IDIV Integer divide IDIV S (1) Q((AX)/(S8)) → (AL) OF, SF, ZF, AF, PF, CF
(signed) R((AX)/(S8)) → (AH) undefined

(2) Q((DX,AX)/(S16)) → (AX)
R((DX,AX)/(S16)) → (DX)
If Q is positive and exceeds
7FFF16 or if Q is negative
and becomes less than
800116, then type 0 interupt
occurs

AAM Adjust AL for AAM Q((AL)/10) → (AH) SF, ZF, PF

multiplication R((AL)/10) → (AL) OF, AF,CF undefined

AAD Adjust AX for AAD (AH) • 10 � (AL) → (AL) SF, ZF, PF
division 00 → (AH) OF, AF, CF undefined

CBW Convert byte to CBW (MSB of AL) → (All bits of AH) None
word

CWD Convert word to CWD (MSB of AX) → (All bits of DX) None

double word

(a)

(b)

Figure 23 (a) Multiplication and division arithmetic instructions. (b) Allowed
operands.

Source

Reg8

Reg16

Mem8

Mem16

That is, the resulting 16-bit product is produced in the AX register. On the other hand, for
multiplication of data words, the 32-bit result is given by

where AX contains the 16 LSBs and DX the 16 MSBs.

(DX, AX) ← (AX) � (16-bit operand)

8088/8086 Programming—Integer Instructions and Computations

210

For the division operation, again just the source operand is specified. The other
operand is either the contents of AX for 16-bit dividends or the contents of both DX and
AX for 32-bit dividends. The result of a DIV or IDIV instruction for an 8-bit divisor is
represented by

where AH contains the remainder and AL the quotient. For 16-bit division, we get

Here AX contains the quotient and DX contains the remainder.

EXAMPLE 16

The 2’s-complement signed data contents of AL equal �1 and the contents of CL are �2.
What result is produced in AX by executing the following instructions?

MUL CL

and

IMUL CL

Solution

As binary data, the contents of AL and CL are

Executing the MUL instruction gives

The second instruction multiplies the two numbers as signed numbers to generate the
signed result. That is,

 � 216 � 0002H

(AX) � �116 � �216

� FD0216

(AX) � 111111112 � 111111102 � 11111101000000102

(CL) � �2 (as 2’s complement) � 111111102 � FE16

(AL) � �1 (as 2’s complement) � 111111112 � FF16

(DX), (AX) ← (DX, AX)/(16-bit operand)

(AH), (AL) ← (AX)/(8-bit operand)

8088/8086 Programming—Integer Instructions and Computations

211

EXAMPLE 17

Verify the operation of the MUL instruction in Example 16 by performing the same oper-
ation with the DEBUG program.

Solution

First, the DEBUG program is loaded, and then registers AX and CX are initialized with
the values FF16 and FE16, respectively. These registers are loaded as follows:

-R AX (↵)
AX 0000
:FF (↵)
-R CX (↵)
CX 0000
:FE (↵)
-

Next, the instruction is loaded with the command

-A (↵)
1342:0100 MUL CL
1342:0102 (↵)
-

Before executing the instruction, let us verify the loading of AX, CX, and the instruction.
To do this, we use the commands as follows:

-R AX (↵)
AX 00FF
: (↵)
-R CX (↵)
CX 00FE
: (↵)
-U 100 101(↵)
1342:0100 F6E1 MUL CL
-

To execute the instruction, we issue the T command:

-T (↵)

The displayed result in Fig. 24 shows that AX now contains FD0216, the unsigned prod-
uct of FF16 and FE16.

As Fig. 23(a) shows, adjust instructions for BCD multiplication and division are
also provided. They are adjust AX for multiply (AAM) and adjust AX for divide (AAD).

8088/8086 Programming—Integer Instructions and Computations

212

Figure 24 Display sequence for Example 17.

C:\DOS>DEBUG
-R AX
AX 0000
:FF
-R CX
CX 0000
:FE
-A
1342:0100 MUL CL
1342:0102
-R AX
AX 00FF
:
-R CX
CX 00FE
:
-U 100 101
1342:0100 F6E1 MUL CL
-T

AX=FD02 BX=0000 CX=00FE DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 OV UP EI NG NZ AC PE CY
1342:0102 B98AFF MOV CX,FF8A
-Q

C:\DOS>

The AAM instruction assumes that the instruction just before it multiplies two unpacked
BCD numbers with their product produced in AL. The AAD instruction assumes that AH
and AL contain unpacked BCD numbers.

The division instructions can also be used to divide an 8-bit dividend in AL by an
8-bit divisor. However, to do this, the sign of the dividend must first be extended to fill
the AX register. That is, AH is filled with zeros if the number in AL is positive or with
ones if it is negative. Execution of the convert byte to word (CBW) instruction automati-
cally does this conversion. Note that the sign extension does not change the signed value
for the data. It simply allows data to be represented using more bits.

In a similar way, the 32-bit by 16-bit division instructions can be used to divide a
16-bit dividend in AX by a 16-bit divisor. In this case, the sign bit of AX must be
extended by 16 bits into the DX register. This can be done by another instruction, known
as convert word to double word (CWD). Figure 23(a) shows the operations of these two
sign-extension instructions.

Note that the CBW and CWD instructions are provided to handle operations where
the result or intermediate results of an operation cannot be held in the correct word length
for use in other arithmetic operations. Using these instructions, we can extend the value of
a byte- or word-wide signed number to its equivalent signed word or double-word value.

EXAMPLE 18

What is the result of executing the following sequence of instructions?

MOV AL, 0A1H
CBW
CWD

8088/8086 Programming—Integer Instructions and Computations

213

Solution

The first instruction loads AL with A116. This gives

Executing the second instruction extends the most significant bit of AL, 1, into all bits of
AH. The result is

or

This completes conversion of the byte in AL to a word in AX.
The last instruction loads each bit of DX with the most significant bit of AX. This

bit is also 1. Therefore, we get

Now the word in AX has been extended to a double word. That is,

EXAMPLE 19

Use an assembled version of the program in Example 18 to verify the results obtained
when it is executed.

Solution

The source program is shown in Fig. 25(a). Note that this program differs from that
described in Example 18 in that it includes the directive statements that are needed to
assemble it and some additional instructions so that it can be executed using the DEBUG
program.

The source file is assembled and linked to produce a run module stored in the file
EX519.EXE. The source listing (EX519.LST) produced by assembling the source file,
EX519.ASM, is shown in Fig. 25(b).

As Fig. 25(c) shows, the run module is loaded for execution as part of calling up
the DEBUG program. This is done with the command

C:\DOS>DEBUG A:EX519.EXE (↵)

(DX) � FFFF16

(AX) � FFA116

(DX) � 11111111111111112 � FFFF16

(AX) � 11111111101000012 � FFA116

(AH) � 111111112 � FF16

(AL) � A116 � 101000012

8088/8086 Programming—Integer Instructions and Computations

214

(a)

Figure 25 (a) Source program for Example 19. (b) Source listing produced by
assembler. (c) Debug session for execution of program EX519.EXE.

TITLE EXAMPLE 19

PAGE ,132

STACK_SEG SEGMENT STACK ’STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ’CODE’
EX519 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 19

MOV AL, 0A1H
CBW
CWD

RET ;Return to DEBUG program
EX519 ENDP

CODE_SEG ENDS

END EX519

The loading of the program can now be verified with the Unassemble command

-U 0 9 (↵)

Looking at the instructions displayed in Fig. 25(c), we see that the program is correct.
From the unassembled version of the program in Fig. 25(c), we find that the instruc-

tions in which we are interested start at address 0D03:0005. Thus, we execute the instruc-
tions prior to the MOV AL,A1 instruction by issuing the command

-G 5 (↵)

The information displayed in Fig. 25(c) shows that and
. Moreover, and points to the first instruction in which we

are interested. This instruction is executed with the command

-T (↵)

In the trace dump information in Fig. 25(c), we see that AL has been loaded with A116

and DX contains 000016.

(IP) � 000516(DX) � 000016

(AX) � 000016

8088/8086 Programming—Integer Instructions and Computations

215

TITLE EXAMPLE 19

PAGE ,132

0000 STACK_SEG SEGMENT STACK ’STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ’CODE’
0000 EX519 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements the Example 19

0005 B0 A1 MOV AL, 0A1H
0007 98 CBW
0008 99 CWD

0009 CB RET ;Return to DEBUG program
000A EX519 ENDP

000A CODE_SEG ENDS

END EX519

Segments and groups:

N a m e Size align combine class

CODE_SEG 000A PARA NONE ’CODE’
STACK_SEG. 0040 PARA STACK ’STACK’

Symbols:

N a m e Type Value Attr

EX519. F PROC 0000 CODE_SEG Length =000A

Warning Severe
Errors Errors
0 0

(b)

Figure 25 (continued)

Now the second instruction is executed with the command

-T (↵)

Again looking at the trace information, we see that AX now contains the value FFA116

and DX still contains 000016. This shows that the byte in AL has been extended to a word
in AX.

To execute the third instruction, the command is

-T (↵)

8088/8086 Programming—Integer Instructions and Computations

216

C:\DOS>DEBUG A:EX519.EXE
-U 0 9
0D03:0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 B0A1 MOV AL,A1
0D03:0007 98 CBW
0D03:0008 99 CWD
0D03:0009 CB RETF
-G 5

AX=0000 BX=0000 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0CF3 ES=0CF3 SS=0D04 CS=0D03 IP=0005 NV UP EI PL NZ NA PO NC
0D03:0005 B0A1 MOV AL,A1
-T

AX=00A1 BX=0000 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0CF3 ES=0CF3 SS=0D04 CS=0D03 IP=0007 NV UP EI PL NZ NA PO NC
0D03:0007 98 CBW
-T

AX=FFA1 BX=0000 CX=0000 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0CF3 ES=0CF3 SS=0D04 CS=0D03 IP=0008 NV UP EI PL NZ NA PO NC
0D03:0008 99 CWD
-T

AX=FFA1 BX=0000 CX=0000 DX=FFFF SP=003C BP=0000 SI=0000 DI=0000
DS=0CF3 ES=0CF3 SS=0D04 CS=0D03 IP=0009 NV UP EI PL NZ NA PO NC
0D03:0009 CB RETF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 25 (continued)

Then, looking at the trace information produced, we find that AX still contains FFA116

and the value in DX has changed to FFFF16. This shows that the word in AX has been
extended to a double word in DX and AX.

To run the program to completion, enter the command

-G (↵)

This executes the remaining instructions, which cause the control to be returned to the
DEBUG program.

▲ 3 LOGIC INSTRUCTIONS

The 8088 has instructions for performing the logic operations AND, OR, exclusive-OR,
and NOT. Figure 26(a) shows the logic symbol for each of these functions and their basic
operation is described in the truth table shown in Fig. 26(b). Note that AND function

is logic 1 only if both A and B are logic 1. On the other hand, the OR function
is logic 1 if either A or B is logic 1.F � A � B

F � A � B

8088/8086 Programming—Integer Instructions and Computations

217

The instructions of the 8088/8086 instruction set perform these basic logic operations
bit-wise on byte- and word-wide data. For example, for the byte-wide AND operation

The corresponding bits are ANDed to give the result.

As an example, let us determine the bit-wise OR of the byte-wide values

and

The result is obtained as

� 0101111116 � 5F16

� 0 � 0 1 � 0 0 � 0 1 � 0 1 � 1 0 � 1 1 � 1 0 � 1

A � B � 010110102 � 000011112

B � 0F16 � 000011112

A � 5A16 � 010110102

A7 � B7 A6 � B6 A5 � B5 A4 � B4 A3 � B3 A2 � B2 A1 � B1 A0 � B0

A7A6A5A4A3A2A1A0 � B7B6B5B4B3B2B1B0

F � A � B

(b)(a)

F � A � B

F � A

BA

000
110
101
011

B

F � A � BBA

000
110
101
111

F � ABBA

000
010
001
111

A

10
01

A

A F � A

F � A � B � ABAND

OR

NOT

XOR

B

A

F � A � B
B

A

Figure 26 (a) Logic symbols. (b) Truth tables of logic operations.

8088/8086 Programming—Integer Instructions and Computations

218

Figure 27 (a) Logic instructions. (b) Allowed operands for the AND, OR, and
XOR instructions. (c) Allowed operands for NOT instruction.

AND, OR, XOR, and NOT Instructions

As shown in Fig. 27(a), the AND, OR, and XOR instructions perform their respec-
tive logic operations bit by bit on the specified source and destination operands, the result
being represented by the final contents of the destination operand. Figure 27(b) shows the
allowed operand combinations for the AND, OR, and XOR instructions.

For example, the instruction

AND AX, BX

causes the contents of BX to be bit-wise ANDed with the contents of AX. The result is
reflected by the new contents of AX. Assuming that AX contains 123416 and BX contains
000F16, the result produced by the instruction is

This result is stored in the destination operand and gives

(AX) � 000416

� 000416

� 00000000000001002

123416 � 000F16 � 00010010001101002 � 00000000000011112

8088/8086 Programming—Integer Instructions and Computations

219

Note that the 12 most significant bits are all zeros. In this way we see how the AND
instruction is used to mask the 12 most significant bits of the destination operand.

The NOT logic instruction differs from those for AND, OR, and exclusive-OR in
that it operates on a single operand. Looking at Fig. 27(c), which shows the allowed
operands for the NOT instruction, we see that this operand can be the contents of an inter-
nal register or a location in memory.

High-level languages, such as C, allow programmers to write statements that
perform these bit-wise logic operations on variables. The C compiler implements the
operation for these statements by applying the logic instructions of the processor’s
instruction set.

EXAMPLE 20

Describe the result of executing the following sequence of instructions:

MOV AL, 01010101B
AND AL, 00011111B
OR AL, 11000000B
XOR AL, 00001111B
NOT AL

Here, B is used to specify a binary number.

Solution

The first instruction moves the immediate operand 010101012 into the AL register. This
loads the data that are to be manipulated with the logic instructions. The next instruction
performs a bit-by-bit AND operation of the contents of AL with immediate operand
000111112. This gives

This result is placed in destination register AL:

Note that this operation has masked off the three most significant bits of AL.
The third instruction performs a bit-by-bit logical OR of the present contents of AL

with immediate operand C016. This gives

This operation is equivalent to setting the two most significant bits of AL.

(AL) � 110101012 � D516

000101012 � 110000002 � 110101012

(AL) � 000101012 � 1516

010101012 � 000111112 � 000101012

8088/8086 Programming—Integer Instructions and Computations

220

The fourth instruction is an exclusive-OR operation of the contents of AL with
immediate operand 000011112. We get

Note that this operation complements the logic state of those bits in AL that are 1s in the
immediate operand.

The last instruction, NOT AL, inverts each bit of AL. Therefore, the final contents
of AL become

Figure 28 summarizes these results.

EXAMPLE 21

Use the DEBUG program to verify the operation of the program in Example 20.

Solution

After the DEBUG program is brought up, the line-by-line assembler is used to enter the
program, as shown in Fig. 29. The first instruction is executed by issuing the T command

-T (↵)

The trace dump given in Fig. 29 shows that the value 5516 has been loaded into the AL
register.

The second instruction is executed by issuing another T command:

-T (↵)

Execution of this instruction causes 1F16 to be ANDed with the value 5516 in AL. Look-
ing at the trace information displayed in Fig. 29, we see that the three most significant bits
of AL have been masked off to produce the result 1516.

The third instruction is executed in the same way:

-T (↵)

(AL) � 110110102 � 001001012 � 2516

(AL) � 110110102 � DA16

110101012 { 000011112 � 110110102

Figure 28 Execution results of pro-
gram in Example 20.

8088/8086 Programming—Integer Instructions and Computations

221

Figure 29 Display sequence for Example 21.

C:\DOS>DEBUG
-A
1342:0100 MOV AL,55
1342:0102 AND AL,1F
1342:0104 OR AL,CO
1342:0106 XOR AL,0F
1342:0108 NOT AL
1342:010A
-T

AX=0055 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI PL NZ NA PO NC
1342:0102 241F AND AL,1F
-T

AX=0015 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0104 NV UP EI PL NZ NA PO NC
1342:0104 0CC0 OR AL,CO
-T

AX=00D5 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0106 NV UP EI NG NZ NA PO NC
1342:0106 340F XOR AL,0F
-T

AX=00DA BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0108 NV UP EI NG NZ NA PO NC
1342:0108 F6D0 NOT AL
-T

AX=0025 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=010A NV UP EI NG NZ NA PO NC
1342:010A 2B04 SUB AX,[SI] DS:0000=20CD
-Q

C:\DOS>

It causes the value C016 to be ORed with the value 1F16 in AL. This gives the result D516

in AL.
A fourth T command is used to execute the XOR instruction,

-T (↵)

and the trace dump that results shows that the new value in AL is DA16.
The last instruction is a NOT instruction and its execution with the command

-T (↵)

causes the bits of DA16 to be inverted. This produces 2516 as the final result in AL.

Clearing, Setting, and Toggling Bits of an Operand

A common use of logic instructions is to mask a group of bits of a byte or word of
data. By mask, we mean to clear the bit or bits to zero. Remember that when a bit is
ANDed with another bit that is at logic 0, the result is always 0. On the other hand, if a

8088/8086 Programming—Integer Instructions and Computations

222

bit is ANDed with a bit that is at logic 1, its value remains unchanged. Thus we see that
the bits that are to be masked must be set to 0 in the mask, which is the source operand,
and those that are to remain unchanged are set to 1. For instance, in the instruction

AND AX, 000FH

the mask equals 000F16; therefore, it would mask off the upper 12 bits of the word of data
in destination AX. Let us assume that the original value in AX is FFFF16. Then executing
the instruction performs the operation

This shows that just the lower 4 bits in AX remain intact.
The OR instruction can be used to set a bit or bits in a register or a storage location

in memory to logic 1. If a bit is ORed with another bit that is 0, the value of the bit
remains unchanged; however, if it is ORed with another bit that is 1, the bit becomes 1.
For instance, let us assume that we want to set bit B4 of the byte at the offset address
CONTROL_FLAGS in the current data segment of memory to logic 1. This can be done
with the following instruction sequence:

MOV AL, [CONTROL_FLAGS]
OR AL, 10H
MOV [CONTROL_FLAGS], AL

First the value of the flags are copied into AL and the logic operation

is performed. Finally, the new byte in AL, which has bit B4 set to 1, is written back to the
memory location called CONTROL_FLAGS.

The XOR instruction can be used to reverse the logic level of a bit or bits in a reg-
ister or storage location in memory. This operation is referred to as “toggling the bit.”

▲ 4 SHIFT INSTRUCTIONS

The four shift instructions of the 8088 can perform two basic types of shift operations; the
logical shift and the arithmetic shift. Moreover, each of these operations can be performed
to the right or to the left. The shift instructions are shift logical left (SHL), shift arithmetic
left (SAL), shift logical right (SHR), and shift arithmetic right (SAR). These instructions
are used to align data, to isolate bits of a byte or word so that it can be tested, and to per-
form simple multiply and divide computations.

(AL) � XXXXXXXX2 � 000100002 � XXX1XXXX2

(AX) � 000F16

00000000000011112 � 11111111111111112 � 00000000000011112

8088/8086 Programming—Integer Instructions and Computations

223

SHL, SHR, SAL, and SAR Instructions

The operation of the logical shift instructions, SHL and SHR, is described in Fig.
30(a). Note in Fig. 30(b) that the destination operand, the data whose bits are to be
shifted, can be either the contents of an internal register or a storage location in memory.
Moreover, the source operand can be specified in two ways. If it is assigned the value of
1, a 1-bit shift will take place. For instance, as illustrated in Fig. 31(a), executing

SHL AX, 1

causes the 16-bit contents of the AX register to be shifted 1 bit position to the left. Here
we see that the vacated LSB location is filled with zero and the bit shifted out of the MSB
is saved in CF.

On the other hand, if the source operand is specified as CL instead of 1, the count
in this register represents the number of bit positions the contents of the operand are to be
shifted. This permits the count to be defined under software control and allows a range of
shifts from 1 to 255 bits.

An example of an instruction specified in this way is

SHR AX, CL

Mnemonic Meaning Format Operation Flags Affected

SAL/SHL Shift arithmetic SAL/SHL D,Count Shift the (D) left by the number CF, PF, SF, ZF
left/shift of bit positions equal to Count AF undefined
logical left and fill the vacated bits positions OF undefined if count � 1

on the right with zeros

SHR Shift logical SHR D,Count Shift the (D) right by the number CF, PF, SF, ZF
right of bit positions equal to Count AF undefined

and fill the vacated bit positions OF undefined if count � 1
on the left with zeros

SAR Shift arithmetic SAR D,Count Shift the (D) right by the number SF, ZF, PF, CF
right of bit positions equal to Count AF undefined

and fill the vacated bit positions OF undefined if count �1
on the left with the original most
significant bit

(a)

(b)

Destination Count

Register 1
Register CL
Memory 1
Memory CL

Figure 30 (a) Shift instructions. (b) Allowed operands.

8088/8086 Programming—Integer Instructions and Computations

224

Figure 31 (a) Results of executing SHL AX,1. (b) Results of executing SHR AX, CL.
(CL) � 02. (c) Results of executing SAR AX, CL. (CL) � 02.

Assuming that CL contains the value 0216, the logical shift right that occurs is as shown
in Fig. 31(b). Note that the two MSBs have been filled with zeros and the last bit shifted
out at the LSB, which is zero, is placed in the carry flag.

In an arithmetic shift to the left, the SAL operation, the vacated bits at the right of
the operand are filled with zeros, whereas in an arithmetic shift to the right, the SAR
operation, the vacated bits at the left are filled with the value of the original MSB of the
operand. Thus, in an arithmetic shift to the right, the original sign of the number is main-
tained. This operation is equivalent to division by powers of 2 as long as the bits shifted
out of the LSB are zeros.

8088/8086 Programming—Integer Instructions and Computations

225

EXAMPLE 22

Assume that CL contains 0216 and AX contains 091A16. Determine the new contents of
AX and the carry flag after the instruction

SAR AX, CL

is executed.

Solution

Figure 31(c) shows the effect of executing the instruction. Here we see that since CL con-
tains 0216, a shift right by two bit locations takes place, and the original sign bit, which is
logic 0, is extended to the two vacated bit positions. Moreover, the last bit shifted out
from the LSB location is placed in CF. This makes CF equal to 1. Therefore, the results
produced by execution of the instruction are

and

EXAMPLE 23

Verify the operation of the SAR instruction in Example 22 by executing with the DEBUG
program.

Solution

After invoking the DEBUG program, we enter the instruction by assembling it with the
command

-A (↵)
1342:0100 SAR AX, CL (↵)
1342:0102 (↵)
-

Next, registers AX and CL are loaded with data, and the carry flag is reset. This is done
with the command sequence

-R AX (↵)
AX 0000
:091A (↵)
-R CX (↵)
CX 0000
:2 (↵)
-R F (↵)
NV UP EI PL NZ NA PO NC - (↵)
-

(CF) � 12

(AX) � 024616

8088/8086 Programming—Integer Instructions and Computations

226

Note that the carry flag was already clear, so no status entry was made.
Now the instruction is executed with the T command

-T (↵)

Note in Fig. 32 that the value in AX has become 024616 and a carry (CY) has occurred.
These results are identical to those obtained in Example 22.

Isolating the Value of a Bit in an Operand

A frequent need in programming is to isolate the value of one of the bits of a word
or byte of data by shifting it into the carry flag. The shift instructions may perform this
operation on data either in a register or a storage location in memory. The instructions that
follow perform this type of operation on a byte of data stored in memory at address
CONTROL_FLAGS:

MOV AL, [CONTROL_FLAGS]
MOV CL, 04H
SHR AL, CL

The first instruction reads the value of the byte of data at address CONTROL_FLAGS
into AL. Next, a shift count of four is loaded into CL, and then the value in AL is shifted
to the right four bit positions. Since the MSBs of AL are reloaded with zeros as part of
the shift operation, the results are

and

(CF) � B3

(AL) � 0000B7B6B5B4

Figure 32 Display sequence for Example 23.

C:\DOS>DEBUG
-A
1342:0100 SAR AX,CL
1342:0102
-R AX
AX 0000
:091A
-R CX
CX 0000
:2
-R F
NV UP EI PL NZ NA PO NC -
-T

AX=0246 BX=0000 CX=0002 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI PL NZ AC PO CY
1342:0102 B98AFF MOV CX,FF8A
-Q

C:\DOS>

8088/8086 Programming—Integer Instructions and Computations

227

In this way, we see that bit B3 of CONTROL_FLAGS has been isolated by placing it in
CF. Once this bit is in CF, it can be tested by other instructions and based on this value
initiate another software operation.

▲ 5 ROTATE INSTRUCTIONS

Another group of instructions, the rotate instructions, are similar to the shift instructions
we just introduced. This group, shown in Fig. 33(a), includes the rotate left (ROL), rotate
right (ROR), rotate left through carry (RCL), and rotate right through carry (RCR)
instructions. They perform many of the same programming functions as the shift instruc-
tions, such as alignment of data and isolation of a bit of an element of data.

ROL, ROR, RCL, and RCR Instructions

As Fig. 33(b) shows, the rotate instructions are similar to the shift instructions in
several ways. They have the ability to rotate the contents of either an internal register or
a storage location in memory. Also, the rotation that takes place can be from 1 to 255 bit
positions to the left or to the right. Moreover, in the case of a multibit rotate, the number
of bit positions to be rotated is specified by the value in CL. Their difference from the
shift instructions lies in the fact that the bits moved out at either the MSB or LSB end are
not lost; instead, they are reloaded at the other end.

Figure 33 (a) Rotate instructions. (b) Allowed operands.

8088/8086 Programming—Integer Instructions and Computations

228

As an example, let us look at the operation of the ROL instruction. Execution of
ROL causes the contents of the selected operand to be rotated left the specified number
of bit positions. Each bit shifted out at the MSB end is reloaded at the LSB end. More-
over, the content of CF reflects the state of the last bit that was shifted out. For instance,
the instruction

ROL AX, 1

causes a 1-bit rotate to the left. Figure 34(a) shows the result produced by executing this
instruction. Note that the original value of bit 15 is zero. This value has been rotated into
both CF and bit 0 of AX. All other bits have been rotated one bit position to the left.

The ROR instruction operates the same way as ROL except that it causes data to be
rotated to the right instead of to the left. For example, execution of

ROR AX, CL

causes the contents of AX to be rotated right by the number of bit positions specified in
CL. Figure 34(b) illustrates the result for CL equal to four.

The other two rotate instructions, RCL and RCR, differ from ROL and ROR in that
the bits are rotated through the carry flag. Figure 35 illustrates the rotation that takes place
due to execution of the RCL instruction. Note that the value returned to bit 0 is the prior

Figure 34 Results of executing ROL AX, 1. (b) Results of executing ROR AX, CL with
.(CL) � 4

8088/8086 Programming—Integer Instructions and Computations

229

content of CF and not bit 15. The value shifted out of bit 15 goes into the carry flag. Thus,
the bits rotate through carry.

EXAMPLE 24

What is the result in BX and CF after execution of the following instruction?

RCR BX, CL

Assume that, prior to execution of the instruction, , , and
.

Solution

The original contents of BX are

Execution of the RCR instruction causes a 4-bit rotate right through carry to take place
on the data in BX. The resulting contents of BX and CF are

In this way, we see that the original content of bit 3, which was zero, resides in the carry
flag, and 10002 has been reloaded from the bit-15 end of BX.

EXAMPLE 25

Use the DEBUG program to verify the operation of the RCR instruction in Example 24.

Solution

After loading DEBUG, the instruction is assembled into memory with the command

-A (↵)
1342:0100 RCR BX, CL (↵)
1342:0102 (↵)
-

(CF) � 02

(BX) � 10000001001000112 � 812316

(BX) � 00010010001101002 � 123416

(CF) � 0
(BX) � 123416(CL) � 0416

Figure 35 Rotation caused by execution of the RCL instruction.

8088/8086 Programming—Integer Instructions and Computations

230

Next, the commands that follow load BX and CX with the initial data and clear CF:

-R BX (↵)
BX 0000
:1234 (↵)
-R CX (↵)
CX 0000
:4 (↵)
-R F (↵)
NV UP EI PL NZ NA PO NC - (↵)
-

Note that CF is already cleared (NC); therefore, no entry is made for the flag REGISTER
command.

Now we can execute the instruction with the command

-T (↵)

Looking at the trace information displayed in Fig. 36, we see that the new contents of BX
are 812316 and CF equals NC. These are the same results as obtained in Example 24.

Alignment of Data in Operands

An example of a software operation that can be performed with the rotate instruc-
tions is the disassembly of the two hexadecimal digits in a byte of data in memory so that
they can be added. The instructions in Fig. 37 perform this operation. First, the byte con-
taining the two hexadecimal digits is read into AL. Then, a copy is made in BL. Next, the
four most significant bits in BL are moved to the four least significant bit locations with
a rotate operation. This repositions the most significant hexadecimal digit of the original
byte into the least significant digit position in BL. Now, the most significant hexadecimal

Figure 36 Display sequence for Example 25.

C:\DOS>DEBUG
-A
1342:0100 RCR BX,CL
1342:0102
-R BX
BX 0000
:1234
-R CX
CX 0000
:4
-R F
NV UP EI PL NZ NA PO NC -
-T

AX=0000 BX=8123 CX=0004 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 OV UP EI PL NZ NA PO NC
1342:0102 B98AFF MOV CX,FF8A
-Q

C:\DOS>

8088/8086 Programming—Integer Instructions and Computations

231

digits in both AL and BL are masked off. This isolates one hexadecimal digit in the lower
four bits of AL and the other in the lower four bits of BL. Finally, the two digits are added
together in AL.

REVIEW PROBLEMS

Section 1
1. Explain what operation is performed by each of the instructions that follow.

(a) MOV AX, 0110H
(b) MOV DI, AX
(c) MOV BL, AL
(d) MOV [0100H], AX
(e) MOV [BX+DI], AX
(f) MOV [DI]+4, AX
(g) MOV [BX][DI] +4, AX

2. Assume that registers AX, BX, and DI are all initialized to 000016 and that all the
affected storage locations in data memory have been cleared. Determine the location
and value of the destination operand as instructions (a) through (g) in problem 1 are
executed as a sequence.

3. Write an instruction sequence that will initialize the ES register with the immediate
value 101016.

4. Write an instruction that saves the contents of the ES register in memory at address
DS:1000H.

5. Why does the instruction MOV CL, AX result in an error when it is assembled?

6. Describe the operation performed by each of the instructions that follow.

(a) XCHG AX, BX
(b) XCHG BX, DI
(c) XCHG [DATA], AX
(d) XCHG [BX+DI], AX

7. If register BX contains the value 010016, register DI contains 001016, and register DS
contains 107516, what physical memory location is swapped with AX when the
instruction in problem 6(d) is executed?

8. Assuming that , , and , what happens if
the XLAT instruction is executed?

9. Write a single instruction that loads AX from address 020016 and DS from address

(DS) � 100016(BX) � 010016(AX) � 001016

MOV AL,[HEX_DIGITS]
MOV BL,AL
MOV CL,04H
ROR BL,CL
AND AL,0FH
AND BL,0FH
ADD AL,BL

Figure 37 Program for disassembly
and addition of two hexadecimal digits
stored as a byte in memory.

8088/8086 Programming—Integer Instructions and Computations

232

020216.

Section 2
10. Find the binary sum in each of the following problems.

(a) (b)
11. Add the binary number 11000000 to 11011000. Convert the binary answer to hexa-

decimal form. Decimal form.

12. Perform the binary subtractions that follow.
(a) (b)

13. Use the 2’s-complement method to subtract the binary numbers that follow.
(a) (b)

14. Using the 2’s-complement method, subtract from .
Convert the answer to hexadecimal form. Decimal form.

15. What operation is performed by each of the following instructions?

(a) ADD AX, 00FFH
(b) ADC SI, AX
(c) INC BYTE PTR [0100H]
(d) SUB DL, BL
(e) SBB DL, [0200H]
(f) DEC BYTE PTR [DI+BX]
(g) NEG BYTE PTR [DI]+0010H
(h) MUL DX
(i) IMUL BYTE PTR [BX+SI]
(j) DIV BYTE PTR [SI]+0030H
(k) IDIV BYTE PTR [BX][SI]+0030H

16. Assume that the state of the 8088’s registers and memory just prior to the execution
of each instruction in problem 15 is as follows:

(DS:150H) � 02H

(DS:131H) � 00H

(DS:130H) � 08H

(DS:121H) � FFH

(DS:120H) � FFH

(DS:101H) � 00H

(DS:100H) � 10H

(CF) � 1

(DI) � 0200H

(SI) � 0100H

(DX) � 0040H

(CX) � 0030H

(BX) � 0020H

 (AX) � 0010H

A � 00100000B � 00010001

01111000 � 00001111 � ?00010000 � 00000111 � ?

11011100 � 01001111 � ?00011000 � 00010101 � ?

01001111 � 11011100 � ?00010101 � 00011000 � ?

8088/8086 Programming—Integer Instructions and Computations

233

What result is produced in the destination operand by executing instructions (a)
through (k)?

17. Write an instruction that will add the immediate value 111F16 and the carry flag to
the contents of the data register DX.

18. Write an instruction that will subtract the word contents of the storage location
pointed to by the base register BX and the carry flag from the accumulator.

19. Write instructions that show two different ways of incrementing the address pointer
in SI by two.

20. Assuming that and , what will be the new contents of
AX after executing the instruction DIV BL?

21. What instruction is used to adjust the result of an addition that processed packed
BCD numbers?

22. Which instruction is provided in the instruction set of the 8088 to adjust the result of
a subtraction that involved ASCII-coded numbers?

23. If AL contains A016, what happens when the instruction CBW is executed?

24. If the value in AX is 7FFF16, what happens when the instruction CWD is executed?

25. Two byte-sized BCD integers are stored at the symbolic offset addresses NUM1 and
NUM2, respectively. Write an instruction sequence to generate their difference and
store it at NUM3. The difference is to be formed by subtracting the value at NUM1
from that at NUM2. Assume that all storage locations are in the current data segment.

Section 3
26. Perform the bit-wise logical AND operation for the binary numbers that follow:

(a) (b)
27. Perform the bit-wise logical OR operation for the binary numbers that follow.

(a) (b)
28. Perform a bit-wise logical not operation on the bits of the hexadecimal number

AAAAH. Express the answer in both binary and hexadecimal notation.

29. Combine the binary numbers 11000000 and 11011000 with a bit-wise exclusive-OR
operation. Convert the binary answer to hexadecimal form.

30. Describe the operation performed by each of the following instructions.

(a) AND BYTE PTR [0300H], 0FH
(b) AND DX, [SI]
(c) OR [BX+DI], AX
(d) OR BYTE PTR [BX][DI]+10H, 0F0H

11011100 � 01001111 � ?00011000 � 00010101 � ?

01001111 � 11011100 � ?00010101 � 00011000 � ?

(BL) � 1016(AX) � 012316

(DS:221H) � 00H

(DS:220H) � 30H

(DS:211H) � 00H

(DS:210H) � 40H

(DS:201H) � 00H

(DS:200H) � 30H

(DS:151H) � 00H

8088/8086 Programming—Integer Instructions and Computations

234

(e) XOR AX, [SI+BX]
(f) NOT BYTE PTR [0300H]
(g) NOT WORD PTR [BX+DI]

31. Assume that the state of the 8088’s registers and memory just prior to execution of
each instruction in problem 30 is as follows:

What are the results produced in the destination operands after executing instructions
(a) through (g)?

32. Write an instruction that when executed will mask off all but bit 7 of the contents of
the data register.

33. Write an instruction that will mask off all but bit 7 of the word of data stored at
address DS:0100H.

34. Specify the relation between the old and new contents of AX after executing the fol-
lowing sequence of instructions.

NOT AX
ADD AX, 1

35. Write an instruction that will toggle the logic level of the most significant bit of the
value in the upper byte of the accumulator register.

36. Write an instruction sequence that will read the byte of control flags from the storage

(DS:301H) � 55H
(DS:300H) � AAH

(DS:221H) � 55H

(DS:220H) � 55H

(DS:211H) � AAH

(DS:210H) � AAH

(DS:201H) � 00H

(DS:200H) � 30H

(DS:111H) � FFH

(DS:110H) � 00H

(DS:101H) � F0H

(DS:100H) � 0FH

(DI) � 0200H

(SI) � 0100H

(DX) � AAAAH

(CX) � 0010H

(BX) � 0010H

(AX) � 5555H

8088/8086 Programming—Integer Instructions and Computations

235

location at offset address CONTROL_FLAGS in the current data segment into regis-
ter AL, mask off all but the most significant and least significant flag bits, and then
save the result back in the original storage location.

37. Describe the operation that is performed by the following instruction sequence.

MOV BL, [CONTROL_FLAGS]
AND BL, 08H
XOR BL, 08H
MOV [CONTROL_FLAGS], BL

Section 4
38. Explain the operation performed by each of the following instructions.

(a) SHL DX,CL
(b) SHL BYTE PTR [0400H], CL
(c) SHR BYTE PTR [DI], 1
(d) SHR BYTE PTR [DI+BX], CL
(e) SAR WORD PTR [BX+DI], 1
(f) SAR WORD PTR [BX][DI]+10H, CL

39. Assume that the state of 8088’s registers and memory just prior to execution of each
instruction in problem 38 is as follows:

What results are produced in the destination operands by executing instructions (a)
through (f)?

40. Write an instruction that shifts the contents of the count register left by one bit
position.

41. Write an instruction sequence that, when executed, shifts left by eight bit positions
the contents of the word-wide memory location pointed to by the address in the des-
tination index register.

42. Identify the condition under which the contents of AX would remain unchanged after
execution of the instructions that follow.

MOV CL, 4
SHL AX, CL
SHR AX, CL

(DS:401H) � 55H(DS:100H) � 0FH

(DS:400H) � AAH(CF) � 0

(DS:221H) � 55H(DI) � 0200H

(DS:220H) � AAH(SI) � 0100H

(DS:211H) � AAH(DX) � 1111H

(DS:210H) � 55H(CX) � 0105H

(DS:201H) � 44H(BX) � 0010H

(DS:200H) � 22H(AX) � 0000H

8088/8086 Programming—Integer Instructions and Computations

236

43. If the original contents of AX, CL, and CF are 800FH, 04H, and 1, respectively, what
is the content of AX and CF after executing the instruction that follows.

SAR AX, CL

44. Describe the operation performed by the instruction sequence that follows.

MOV AL, [CONTROL_FLAGS]
AND AL, 80H
SHL AL, 1

What is the result in AL after the shift is complete?

45. Write a program that will read the word of data from the offset address ASCII_DATA
in the current data segment of memory. Assume that this word storage location con-
tains two ASCII-coded characters, one character in the upper byte and the other in
the lower byte. Disassemble the two bytes and save them as separate characters in the
lower byte location of the word storage locations with offsets ASCII_CHAR_L and
ASCII_CHAR_H in the current data segment. The upper eight bits in each of these
character storage locations should be made zero. Use a SHR instruction to relocate
the most significant bits.

Section 5
46. Describe what happens as each of the instructions that follows is executed by the 8088.

(a) ROL DX, CL
(b) RCL BYTE PTR [0400H], CL
(c) ROR BYTE PTR [DI], 1
(d) ROR BYTE PTR [DI+BX], CL
(e) RCR WORD PTR [BX+DI], 1
(f) RCR WORD PTR [BX][DI]+10H, CL

47. Assume that the state of the 8088’s registers and memory just prior to execution of
each of the instructions in problem 46 is as follows:

(DS:211H) � AAH

(DS:210H) � 55H

(DS:201H) � 44H

(DS:200H) � 22H

(DS:100H) � 0FH

(CF) � 1

(DI) � 0200H

(SI) � 0100H

(DX) � 1111H

(CX) � 0105H

(BX) � 0010H

(AX) � 0000H

8088/8086 Programming—Integer Instructions and Computations

237

What results are produced in the destination operands by executing instructions (a)
through (f)?

48. Write an instruction sequence that, when executed, rotates left through carry by one
bit position the contents of the word-wide memory location pointed to by the address
in the base register.

49. Write a program that saves bit 5 of AL in BX as a word.

50. Repeat problem 45, but this time use a ROR instruction to perform the bit-shifting
operation.

ADVANCED PROBLEMS

51. Two code-conversion tables starting with offsets TABL1 and TABL2 in the current
data segment are to be accessed. Write an instruction sequence that initializes the
needed registers and then replaces the contents of memory locations MEM1 and
MEM2 (offsets in the current data segment) by the equivalent converted codes from
the respective code-conversion tables.

52. Two word-wide unsigned integers are stored at the physical memory addresses
00A0016 and 00A0216, respectively. Write an instruction sequence that computes and
stores their sum, difference, product, and quotient. Store these results at consecutive
memory locations starting at physical address 00A1016 in memory. To obtain the dif-
ference, subtract the integer at 00A0216 from the integer at 00A0016. For the division,
divide the integer at 00A0016 by the integer at 00A0216. Use the register indirect rel-
ative addressing mode to store the various results.

53. Write an instruction sequence that generates a byte-size integer in the memory location
defined as RESULT. The value of the integer is to be calculated from the logic equa-
tion

Assume that all parameters are byte-sized. NUM1, NUM2, and RESULT are the off-
set addresses of memory locations in the current data segment.

54. Implement the following operation using shift and arithmetic instructions.

Assume that all parameters are word-sized. State any assumptions made in the
calculations.

Section 1
1. (a) Value of immediate operand 0110H is moved into AX.

(b) Contents of AX are copied into DI.

7(AX) � 5(BX) � (BX)/8 → (AX)

(RESULT) � (AL) � (NUM1) � (NUM2) � (AL) � (BL)

(DS:401H) � 55H

(DS:400H) � AAH

(DS:221H) � 55H

(DS:220H) � AAH

8088/8086 Programming—Integer Instructions and Computations

ANSWERS TO SELECTED REVIEW PROBLEMS▲

238

(c) Contents of AL are copied into BL.
(d) Contents of AX are copied into memory address DS:0100H.
(e) Contents of AX are copied into the data segment memory location pointed to by

(DS)0 � (BX) � (DI).
(f) Contents of AX are copied into the data segment memory location pointed to by

(DS)0 � (DI) � 4H.
(g) Contents of AX are copied into the data segment memory location pointed to by

(DS)0 � (BX) � (DI) � 4H.
3. MOV AX, 1010H

MOV ES, AX

5. Destination operand CL is specified as a byte, and source operand AX is specified as
a word. Both must be specified with the same size.

7. .

9. LDS AX, [0200H].

Section 2
11. 1100110002, 198H, 40810.

13. (a) 000010012. (b) 011010012.

15. (a) 00FFH is added to the value in AX.
(b) Contents of AX and CF are added to the contents of SI.
(c) Contents of DS:100H are incremented by 1.
(d) Contents of BL are subtracted from the contents of DL.
(e) Contents of DS:200H and CF are subtracted from the contents of DL.
(f) Contents of the byte-wide data segment storage location pointed to by (DS)0 �

(DI) � (BX) are decremented by 1.
(g) Contents of the byte-wide data segment storage location pointed to by (DS)0 �

(DI) � 10H are replaced by its negative.
(h) Contents of word register DX are signed-multiplied by the word contents of AX.

The double-word product that results is produced in DX, AX.
(i) Contents of the byte storage location pointed to by (DS)0 � (BX) � (SI) are

multiplied by the contents of AL.
(j) Contents of AX are signed-divided by the byte contents of the data segment stor-

age location pointed to by (DS)0 � (SI) � 30H.
(k) Contents of AX are signed-divided by the byte contents of the data segment stor-

age location pointed to by (DS)0 � (BX) � (SI) � 30H.
17. ADC DX, 111FH.

19. ADD SI, 2H,

or
INC SI
INC SI

21. DAA.
23. .
25. Let us assume that the memory locations NUM1, NUM2, and NUM3 are in the same

data segment.

MOV AX, DATA_SEG ;Establish data segment

(AX) � FFA0H

10750H � 100H � 10H � 10860H

8088/8086 Programming—Integer Instructions and Computations

239

MOV DS, AX
MOV AL, [NUM2] ;Get the second BCD number
SUB AL, [NUM1] ;Subtract the binary way
DAS ;Apply BCD adjustment
MOV [NUM3], AL ;Save the result.

Note that storage locations NUM1, NUM2, and NUM3 are assumed to have been
declared as byte locations.

Section 3
27. (a) 000111012. (b) 110111112.
29. 000110002, 18H.
31. (a)

(b)
(c)
(d)
(e)
(f)
(g) ,

33. AND WORD PTR [100H],0080H.
35. XOR AH, 80H.
37. The first instruction reads the byte of data from memory location CONTROL_FLAGS

and loads it into BL. The AND instruction masks all bits but B3 to 0; the XOR instruction
toggles bit B3 of this byte. That is, if the original value of B3 equals logic 0, it is switched
to 1, or if it is logic 1, it is switched to 0. Finally, the byte of flag information is written
back to memory. This instruction sequence can be used to selectively complement one or
more bits of the control flag byte.

Section 4
39. (a) ,

(b) ,
(c) ,
(d) ,
(e) ,
(f) ,

41. MOV CL, 08H
SHL WORD PTR [DI],CL

43. .
45. MOV AX, [ASCII_DATA] ;Get the word into AX

MOV BX, AX ;and BX
MOV CL, 08H ;(CL) = bit count
SHR BX, CL ;(BX) = higher character
AND AX, 00FFH ;(AX) = lower character
MOV [ASCII_CHAR_L], AX ;Save lower character
MOV [ASCII_CHAR_H], BX ;Save higher character

Section 5
47. (a) ,

(b) , (CF) � 1(DS:400H) � 5AH
(CF) � 0(DX) � 2222H

(AX) � F800H; CF � 1

(CF) � 0(DS:220H,221H) � 02ADH
(CF) � 1(DS:210H,211H) � D52AH

(CF) � 1(DS:210H) � 02H
(CF) � 0(DS:200H) � 11H
(CF) � 1(DS:400H) � 40H

(CF) � 0(DX) � 2220H

(DS:211H) � 55H(DS:210H) � 55H
(DS:300H) � 55H
(AX) � AA55H
(DS:220H) � F5H
(DS:210H) � FFFFH
(DX) � A00AH
(DS:300H) � 0AH

8088/8086 Programming—Integer Instructions and Computations

240

(c) ,
(d) ,
(e) ,
(f) ,

49. MOV BL, AL ;Move bit 5 to bit 0 position
MOV CL, 5
SHR BX, CL
AND BX, 1 ;Mask the other bit

Advanced Problems
51. MOV AX, DATA_SEG ;Establish the data segment

MOV DS, AX
MOV AL, [MEM1] ;Get the given code at MEM1
MOV BX, TABL1
XLAT ;Translate
MOV [MEM1], AL ;Save new code at MEM1
MOV AL, [MEM2] ;Repeat for the second code at MEM2
MOV BX, TABL2
XLAT
MOV [MEM2], AL

53. ;(RESULT) = (AL) • (NUM1) + (AL) • () + (BL)
NOT [NUM2] ;(NUM2) ← ()
MOV CL, AL

AND CL, [NUM2] ;(CL) ← (AL) • ()

OR CL, BL ;(CL) ← (AL) • () + (BL)

AND AL, [NUM1] ;(AL) ← (AL) • ()

OR AL, CL

MOV [RESULT], AL ;(RESULT)=(AL)•(NUM1)+(AL)•()+(BL)NUM2

NUM2

NUM2

NUM2

NUM2
NUM2

(CF) � 0(DS:220H,221H) � AAADH
(CF) � 1(DS:210H,211H) � D52AH

(CF) � 1(DS:210H) � AAH
(CF) � 0(DS:200H) � 11H

8088/8086 Programming—Integer Instructions and Computations

241

This page intentionally left blank

8088/8086
Programming—Control
Flow Instructions and
Program Structures

▲ INTRODUCTION

You may recall the instructions that can be executed by the 8088 and 8086 microproces-
sors. That chapter focused on instructions that performed integer computations and
demonstrated their use with simple straight-line programs. In this chapter, we introduce
the rest of the instruction set and at the same time cover some more complicated pro-
gramming techniques. The instructions introduced here enable program control flow—that
is, the ability to alter the sequence in which instructions of a program execute. The fol-
lowing topics are discussed in this chapter:

1 Flag-Control Instructions

2 Compare Instruction

3 Control Flow and the Jump Instructions

4 Subroutines and Subroutine-Handling Instructions

5 Loops and Loop-Handling Instructions

6 Strings and String-Handling Instructions

▲ 1 FLAG-CONTROL INSTRUCTIONS

The 8088 microprocessor has a set of flags that either monitors the state of executing
instructions or controls options available in its operation. The instruction set includes
a group of instructions that, when executed, directly affect the state of the flags. These

From Chapter 6 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

243

8088/8086 Programming—Control Flow Instructions

instructions, shown in Fig. 1(a), are load AH from flags (LAHF), store AH into flags
(SAHF), clear carry (CLC), set carry (STC), complement carry (CMC), clear interrupt
(CLI), and set interrupt (STI). A few more instructions exist that can directly affect the
flags; however, we will not cover them until later in the chapter when we introduce the
subroutine and string instructions.

Figure 1(a) shows that the first two instructions, LAHF and SAHF, can be used
either to read the flags or to change them, respectively. Notice that the data transfer that
takes place is always between the AH register and the flag register. Figure 1(b) shows the
format of the flag information in AH. Notice that bits 1, 3, and 5 are undefined. For
instance, we may want to start an operation with certain flags set or reset. Assume that we
want to preset all flags to logic 1. To do this, we can first load AH with FF16 and then exe-
cute the SAHF instruction.

EXAMPLE 1

Write an instruction sequence to save the current contents of the 8088’s flags in the mem-
ory location at offset MEM1 of the current data segment and then reload the flags with
the contents of the storage location at offset MEM2.

Solution

To save the current flags, we must first load them into the AH register and then move
them to the location MEM1. The instructions that do this are

LAHF
MOV [MEM1], AH

Figure 1 (a) Flag-control instructions. (b) Format of the flags in AH register for the
LAHF and SAHF instructions.

244

8088/8086 Programming—Control Flow Instructions

Similarly, to load the flags with the contents of MEM2, we must first copy the contents
of MEM2 into AH and then store the contents of AH into the flags. The instructions for
this are

MOV AH, [MEM2]
SAHF

The entire instruction sequence is shown in Fig. 2.

EXAMPLE 2

Use the DEBUG program to enter the instruction sequence in Example 1 starting at mem-
ory address 0011016. Assign memory addresses 0015016 and 0015116 to symbols MEM1
and MEM2, respectively. Then initialize the contents of MEMl and MEM2 to FF16 and
0116, respectively. Verify the operation of the instructions by executing them one after the
other with the TRACE command.

Solution

As Fig. 3 shows, the DEBUG program is called up with the DOS command

C:\DOS>DEBUG (↵)

Now we are ready to assemble the program into memory. This is done by using the
ASSEMBLE command as follows:

-A 0:0110 (↵)
0000:0110 LAHF (↵)
0000:0111 MOV [0150], AH (↵)
0000:0115 MOV AH, [0151] (↵)
0000:0119 SAHF (↵)

Now the contents of MEM1 and MEM2 are initialized with the ENTER command

-E 0:0150 FF 01 (↵)

Figure 2 Instruction sequence for
saving the contents of the flag register
in a memory and loading it from
another memory.

245

C:\DOS>DEBUG
-A 0:0110
0000:0110 LAHF
0000:0111 MOV [0150],AH
0000:0115 MOV AH,[0151]
0000:0119 SAHF
0000:011A
-E 0:150 FF 01
-R CS
CS 1342
:0
-R IP
IP 0100
:0110
-R DS
DS 1342
:0
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0000 ES=1342 SS=1342 CS=0000 IP=0110 NV UP EI PL NZ NA PO NC
0000:0110 9F LAHF
-T

AX=0200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0000 ES=1342 SS=1342 CS=0000 IP=0111 NV UP EI PL NZ NA PO NC
0000:0111 88265001 MOV [0150],AH DS:0150=FF
-T

AX=0200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0000 ES=1342 SS=1342 CS=0000 IP=0115 NV UP EI PL NZ NA PO NC
0000:0115 8A265101 MOV AH,[0151] DS:0151=01
-D 150 151
0000:0150 02 01
-T

AX=0100 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0000 ES=1342 SS=1342 CS=0000 IP=0119 NV UP EI PL NZ NA PO NC
0000:0119 9E SAHF
-T

AX=0100 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0000 ES=1342 SS=1342 CS=0000 IP=011A NV UP EI PL NZ NA PO CY
0000:011A 00F0 ADD AL,DH
-Q

C:\DOS>

Figure 3 Display sequence for Example 2.

Next, the registers CS and IP must be initialized with the values 000016 and 011016 to pro-
vide access to the program. Also, the DS register must be initialized to permit access to
the data memory locations. This is done with the commands

-R CS (↵)
CS 1342
:0
-R IP (↵)
IP 0100
:0110 (↵)
-R DS (↵)
DS 1342
:0 (↵)

Before going further, let us verify the initialization of the internal registers. Displaying
their state with the R command does this:

-R (↵)

8088/8086 Programming—Control Flow Instructions

246

The information displayed in Fig. 3 shows that all three registers have been correctly ini-
tialized.

Now we are ready to step through the execution of the program. The first instruc-
tion is executed with the command

-T (↵)

Note from the displayed trace information in Fig. 3 that the contents of the status regis-
ter, 0216, have been copied into the AH register.

The second instruction is executed by issuing another T command

-T (↵)

This instruction causes the status, now in AH, to be saved in memory at address
0000:0150. The fact that this operation has occurred is verified with the D command

-D 150 151 (↵)

In Fig. 3, we see that the data held at address 0000:0150 is displayed by this command as
0216. This verifies that status was saved at MEM1.

The third instruction is now executed with the command

-T (↵)

Its function is to copy the new status from MEM2 (0000:0151) into the AH register. From
the data displayed in the earlier D command, we see that this value is 0116. Looking at the
displayed information for the third instruction, we find that 0116 has been copied into AH.

The last instruction is executed with another T command and, as shown by its trace
information in Fig. 3, it has caused the carry flag to set. That is, CF is displayed with the
value CY.

The next three instructions, CLC, STC, and CMC, as shown in Fig. 1(a), are used
to manipulate the carry flag and permit CF to be cleared, set, or complemented, respec-
tively. For example, if CF is 1 and the CMC instruction is executed, it becomes 0.

The last two instructions are used to manipulate the interrupt flag. Executing the
clear interrupt (CLI) instruction sets IF to logic 0 and disables the interrupt interface. On
the other hand, executing the STI instruction sets IF to 1, and the microprocessor is
enabled to accept interrupts from that point on.

EXAMPLE 3

Of the three carry flag instructions CLC, STC, and CMC, only one is really an indepen-
dent instruction—that is, the operation that it provides cannot be performed by a series of
the other two instructions. Determine which one of the carry instructions is the indepen-
dent instruction.

8088/8086 Programming—Control Flow Instructions

247

Solution

Let us begin with the CLC instruction. The clear-carry operation can be performed by an
STC instruction followed by a CMC instruction. Therefore, CLC is not an independent
instruction. The operation of the set-carry (STC) instruction is equivalent to the operation
performed by a CLC instruction, followed by a CMC instruction. Thus, STC is also not
an independent instruction. On the other hand, the operation performed by the last
instruction, complement carry (CMC), cannot be expressed in terms of the CLC and STC
instructions. Therefore, it is the independent instruction.

EXAMPLE 4

Verify the operation of the following instructions that affect the carry flag,

CLC
STC
CMC

by executing them with the DEBUG program. Start with CF set to one (CY).

Solution

After bringing up the DEBUG program, we enter the instructions with the Assemble
command as

-A (↵)
1342:0100 CLC (↵)
1342:0101 STC (↵)
1342:0102 CMC (↵)
1342:0103 (↵)
-

Next, the carry flag is initialized to CY with the R command

-R F (↵)
NV UP EI PL NZ NA PO NC -CY (↵)

and the updated status is displayed with another R command to verify that CF is set to the
CY state. Figure 4 shows these commands and the results they produce.

Now the first instruction is executed with the Trace command

-T (↵)

Looking at the displayed state information in Fig. 4, we see that CF has been cleared and
its new state is NC.

The other two instructions are also executed with two more T commands and, as
shown in Fig. 4, the STC instruction sets CF (CY in the state dump), and CMC inverts
CF (NC in the state dump).

8088/8086 Programming—Control Flow Instructions

248

Figure 4 Display sequence for Example 4.

C:\DOS>DEBUG
-A
1342:0100 CLC
1342:0101 STC
1342:0102 CMC
1342:0103
-R F
NV UP EI PL NZ NA PO NC -CY
-R F
NV UP EI PL NZ NA PO CY -
-T

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0101 NV UP EI PL NZ NA PO NC
1342:0101 F9 STC
-T

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0102 NV UP EI PL NZ NA PO CY
1342:0102 F5 CMC
-T

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0103 NV UP EI PL NZ NA PO NC
1342:0103 8AFF MOV BH,BH
-Q
C:\DOS>

▲ 2 COMPARE INSTRUCTION

An instruction is included in the instruction set of the 8088 that can be used to compare
two 8-bit or 16-bit numbers. It is the compare (CMP) instruction shown in Fig. 5(a). The
compare operation enables us to determine the relationship between two numbers—that
is, whether they are equal or unequal, and when they are unequal, which one is larger.
Figure 5(b) shows that the operands for this instruction can reside in a storage location in
memory, a register within the MPU, or be part of the instruction. For instance, a byte-

Figure 5 (a) Compare instruction. (b) Allowed operands.

8088/8086 Programming—Control Flow Instructions

249

wide number in a register such as BL can be compared to a second byte-wide number that
is supplied as immediate data.

The result of the comparison is reflected by changes in six of the status flags of the
8088. Note in Fig. 5(a) that it affects the overflow flag, sign flag, zero flag, auxiliary carry
flag, parity flag, and carry flag. The new logic state of these flags can be used by the
instructions that follow to make a decision whether or not to alter the sequence in which
the program executes.

The process of comparison performed by the CMP instruction is basically a subtrac-
tion operation. The source operand is subtracted from the destination operand. However, the
result of this subtraction is not saved. Instead, based on the result of the subtraction opera-
tion, the appropriate flags are set or reset. The importance of the flags lies in the fact that they
lead us to an understanding of the relationship between the two numbers. For instance, if 5 is
compared to 7 by subtracting 5 from 7, the ZF and CF both become logic 0. These condi-
tions indicate that a smaller number was compared to a larger one. On the other hand, if 7 is
compared to 5, we are comparing a larger number to a smaller number. This comparison
results in ZF and CF equal to 0 and 1, respectively. Finally, if two equal numbers—for
instance, 5 and 5—are compared, ZF is set to 1 and CF cleared to 0 to indicate the equal con-
dition.

For example, let us assume that the destination operand equals 100110012 �
�10310 and that the source operand equals 000110112 � �2710. Subtracting the source
operand from the destination operand, we get

In the process of subtraction, we get the status that follows:

1. A borrow is needed from bit 4 to bit 3; therefore, the auxiliary carry flag, AF, is set.

2. There is no borrow to bit 7. Thus, carry flag, CF, is reset.

3. Even though there is no borrow to bit 7, there is a borrow from bit 7 to bit 6. This
is an indication of the overflow condition. Therefore, the OF flag is set.

4. There is an even number of 1s in the result; therefore, this sets the parity flag, PF.

5. Bit 7 of the result is zero, so the sign flag, SF, is reset.

6. The result that is produced is nonzero, which resets the zero flag, ZF.

Note that the 8-bit result of binary subtraction is not what the subtraction of the
signed numbers should produce. The overflow flag having been set indicates this condition.

EXAMPLE 5

Describe what happens to the status flags as the sequence of instructions that follows is
executed.

MOV AX, 1234H
MOV BX, 0ABCDH
CMP AX, BX

Assume that flags ZF, SF, CF, AF, OF, and PF are all initially reset.

 011111102 � �12610

 �000110112 � � (�2710)
 100110012 � �10310

8088/8086 Programming—Control Flow Instructions

250

Solution

The first instruction loads AX with 123416. No status flags are affected by the execution
of a MOV instruction.

The second instruction puts ABCD16 into the BX register. Again, status is not
affected. Thus, after execution of these two move instructions, the contents of AX and
BX are

and

The third instruction is a 16-bit comparison with AX representing the destination
and BX the source. Therefore, the contents of BX are subtracted from that of AX:

The flags are either set or reset based on the result of this subtraction. Note that the result
is nonzero and positive. This makes ZF and SF equal to zero. Moreover, the overflow con-
dition has not occurred. Therefore, OF is also at logic 0. The carry and auxiliary carry
conditions occur and make CF and AF equal 1. Finally, the result has odd parity; there-
fore, PF is 0. Figure 6 summarizes these results.

EXAMPLE 6

Verify the execution of the instruction sequence in Example 5. Use DEBUG to load and
run the instruction sequence provided in run module EX66.EXE.

Solution

A source program that contains the instruction sequence executed in Example 5 is shown
in Fig. 7(a). This program was assembled and linked to form a run module file
EX66.EXE. The source listing produced by the assembler is shown in Fig. 7(b).

(AX) � (BX) � 00010010001101002 � 10101011110011012 � 01100110011001112

(BX) � ABCD16 � 10101011110011012

(AX) � 123416 � 00010010001101002

Figure 6 Effect on flags of executing
instructions.

8088/8086 Programming—Control Flow Instructions

251

Figure 7 (a) Source program for Example (b) Source listing produced by
assembler. (c) Execution of the program with the DEBUG program.

TITLE EXAMPLE 6

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX66 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 6

MOV AX, 1234H
MOV BX, 0ABCDH
CMP AX, BX

RET ;Return to DEBUG program
EX66 ENDP

CODE_SEG ENDS

END EX66

(a)

To execute this program, we bring up the DEBUG program and load the file from
a data diskette in drive A with the DOS command

C:\DOS>DEBUG A:EX66:EXE (↵)

To verify its loading, the following Unassemble command can be used:

-U 0 D (↵)

As Fig. 7(c) shows, the instructions of the source program are correctly displayed.
First, we execute the instructions up to the CMP instruction. This is done with the

Go command

-G B (↵)

Note in Fig. 7(c) that AX has been loaded with 123416 and BX with the value ABCD16.
Next, the compare instruction is executed with the command

-T (↵)

By comparing the state information before and after execution of the CMP instruction, we
find that auxiliary carry flag and carry flag are the only flags that have changed states, and
they have both been set. Their new states are identified as AC and CY, respectively. These
results are identical to those found in Example 5.

8088/8086 Programming—Control Flow Instructions

252

Figure 7 (continued)

TITLE EXAMPLE 6

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX66 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 6

0005 B8 1234 MOV AX, 1234H
0008 BB ABCD MOV BX, 0ABCDH
000B 3B C3 CMP AX, BX

000D CB RET ;Return to DEBUG program
000E EX66 ENDP

000E CODE_SEG ENDS

END EX66

Segments and groups:

N a m e Size align combine class
CODE_SEG 000E PARA NONE ‘CODE’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

EX66 F PROC 0000 CODE_SEG Length =000E

Warning Severe
Errors Errors
0 0

(b)

▲ 3 CONTROL FLOW AND THE JUMP INSTRUCTIONS

Earlier we pointed out that control flow relates to altering the execution path of instruc-
tions in a program. For example, a control flow decision may cause a sequence of
instructions to be repeated or a group of instructions to not be executed at all. The jump
instruction is provided in the 8088/8086 instruction set for implementing control flow
operations. In the 8088 architecture, the code segment register and instruction pointer
keep track of the next instruction to be fetched for execution. Thus, to initiate a change in
control flow, a jump instruction must change the contents of these registers. In this way,
execution continues at an address other than that of the next sequential instruction. That
is, a jump occurs to another part of the program.

8088/8086 Programming—Control Flow Instructions

253

C:\DOS>DEBUG A:EX6EXE
-U 0 D
0F50:00000 1E PUSH DS
0F50:0001 B80000 MOV AX, 0000
0F50:0004 50 PUSH AX
0F50:0005 B83412 MOV AX,1234
0F50:0008 BBCDAB MOV BX,ABCD
0F50:000B 3BC3 CMP AX,BX
0F50:000D CB RETF
-G B

AX=1234 BX=ABCD CX=000E DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0F40 ES=0F40 SS=0F51 CS=0F50 IP=000B NV UP EI PL NZ NA PO NC
0F50:000B 3BC3 CMP AX,BX
-T

AX=1234 BX=ABCD CX=000E DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0F40 ES=0F40 SS=0F51 CS=0F50 IP=000D NV UP EI PL NZ AC PO CY
0F50:000D CB RETF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 7 (continued)

Unconditional and Conditional Jump

The 8088 microprocessor allows two different types of jump operations. They are
the unconditional jump and the conditional jump. In an unconditional jump, no status
requirements are imposed for the jump to occur. That is, as the instruction is executed, the
jump always takes place to change the execution sequence.

The unconditional jump concept is illustrated in Fig. 8(a). Note that when the
instruction JMP AA in part I is executed, program control is passed to a point in part III,
identified by the label AA. Execution resumes with the instruction corresponding to AA.
In this way, the instructions in part II of the program are bypassed—that is, they are
jumped over. Some high-level languages have a GOTO statement. This is an example of
a high-level language program construct that performs an unconditional jump operation.

On the other hand, for a conditional jump instruction, status conditions that exist
at the time the jump instruction is executed decide whether or not the jump will occur.
If the condition or conditions are met, the jump takes place; otherwise, execution con-
tinues with the next sequential instruction of the program. The conditions that can be ref-
erenced by a conditional jump instruction are status flags such as carry (CF), zero (ZF),
and sign (SF) flags.

Looking at Fig. 8(b), we see that execution of the conditional jump instruction Jcc
AA in part I causes a test to be initiated. If the conditions of the test are not met, the NO
path is taken and execution continues with the next sequential instruction. This corre-
sponds to the first instruction in part II. However, if the result of the conditional test is
YES, a jump is initiated to the segment of program identified as part III, and the instruc-
tions in part II are bypassed.

8088/8086 Programming—Control Flow Instructions

254

Figure 8 (a) Unconditional jump program sequence. (b) Conditional jump
program sequence.

This type of software operation is referred to as making a branch—that is, a point
in the program where a choice is made between two paths of execution. If the conditions
specified by the jump instruction are met, program control is passed to the part of the pro-
gram identified by the label. On the other hand, if they are not met, the next sequential
instruction is executed.

The branch is a frequently used program structure and is sometime referred to as an
IF-THEN-ELSE structure. By this, we mean that IF the conditions specified in the jump
instruction are met, THEN control continues with the execution of the statement follow-
ing the IF, ELSE program control is passed to the point identified by the label in the jump
instruction.

8088/8086 Programming—Control Flow Instructions

255

Typically, program execution is not intended to return to the next sequential instruc-
tion after the unconditional or conditional jump instruction. Therefore, no return linkage
is saved when the jump takes place.

Unconditional Jump Instruction

Figure 9(a) shows the unconditional jump instruction of the 8088, together with its
valid operand combinations in Fig. 9(b). There are two basic kinds of unconditional
jumps. The first, called an intrasegment jump, is limited to addresses within the current
code segment. This type of jump is achieved by just modifying the value in IP. The sec-
ond kind of jump, the intersegment jump, permits jumps from one code segment to
another. Implementation of this type of jump requires modification of the contents of both
CS and IP.

Jump instructions specified with a Short-label, Near-label, Memptr16, or Regptr16
operand represent intrasegment jumps. The Short-label and Near-label operands specify
the jump relative to the address of the jump instruction itself. For example, in a Short-label
jump instruction, an 8-bit number is coded as an immediate operand to specify the signed
displacement of the next instruction to be executed from the location of the jump instruc-
tion. When the jump instruction is executed, IP is reloaded with a new value equal to the
updated value in IP, which is (IP) + 2, plus the signed displacement. The new value of IP
and current value in CS give the address of the next instruction to be fetched and executed.
With an 8-bit displacement, the Short-label operand can only be used to initiate a jump in
the range from �126 to +129 bytes from the location of the jump instruction.

On the other hand, the Near-label operand specifies a new value for IP with 16-bit
immediate operand. This size of offset corresponds to the complete range of the current
code segment. The value of the offset is automatically added to IP upon execution of the

Figure 9 (a) Unconditional jump instruction. (b) Allowed operands.

8088/8086 Programming—Control Flow Instructions

256

instruction. In this way, program control is passed to the location identified by the new IP.
Consider the following example of an unconditional jump instruction:

JMP 1234H

It means jump to address 1234H. However, the value of the address encoded in the
instruction is not 1234H. Instead, it is the difference between the incremented value in IP
and 123416. This offset is encoded as either an 8-bit constant (Short label) or a 16-bit con-
stant (Near label), depending on the size of the difference.

The jump-to address can also be specified indirectly by the contents of a memory
location or the contents of a register, corresponding to the Memptr16 and Regptr16
operands, respectively. Just as for the Near-label operand, they both permit a jump to any
address in the current code segment.

For example,

JMP BX

uses the contents of register BX for the offset in the current code segment—that is, the
value in BX is copied into IP.

EXAMPLE 7

Verify the operation of the instruction JMP BX using the DEBUG program. Let the con-
tents of BX be 001016.

Solution

As shown in Fig. 10, DEBUG is invoked, and then the Assemble command is used to
load the instruction:

-A (↵)
1342:0100 JMP BX (↵)
1342:0102 (↵)

Next, BX is initialized with the command

-R BX (↵)
BX 0000
:10 (↵)

Let us check the value in IP before executing the JMP instruction. This is done with
another R command as

-R (↵)

Looking at the state information displayed in Fig. 10, we see that IP contains 010016 and
BX contains 001016.

8088/8086 Programming—Control Flow Instructions

257

Figure 10 Display sequence for Example 7.

C:\DOS>DEBUG
-A
1342:0100 JMP BX
1342:0102
-R BX
BX 0000
:10
-R
AX=0000 BX=0010 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 FFE3 JMP BX
-T

AX=0000 BX=0010 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0010 NV UP EI PL NZ NA PO NC
1342:0010 8B09 MOV CX,[BX+DI] DS:0010=098B
-Q

C:\DOS>

Executing the instruction with the command

-T (↵)

and then looking at Fig. 10, we see that the value in IP has become 1016. Therefore, the
address at which execution picks up is 1342:0010.

To specify an operand as a pointer to memory, the various addressing modes of the
8088 can be used. For instance,

JMP [BX]

uses the contents of BX as the offset address of the memory location that contains the
value of IP (Memptr16 operand). This offset is loaded into IP, where it is used together
with the current contents of CS to compute the “jump-to” address.

EXAMPLE 8

Use the DEBUG program to observe the operation of the instruction

JMP [BX]

Assume that the pointer held in BX is 100016 and the value held at memory location
DS: 1000 is 20016. What is the address of the next instruction to be executed?

Solution

Figure 11 shows that first the DEBUG program is brought up and then an Assemble com-
mand is used to load the instruction. That is,

-A (↵)
1342:0100 JMP [BX] (↵)
1342:0102 (↵)

8088/8086 Programming—Control Flow Instructions

258

Next, BX is loaded with the pointer address using the R command

-R BX (↵)
BX 0000
:1000 (↵)

and the memory location is initialized with the command

-E 1000 00 02 (↵)

As shown in Fig. 11, the loading of memory location DS:1000 and the BX register are
next verified with D and R commands, respectively.

Now the instruction is executed with the command

-T (↵)

Note from the state information displayed in Fig. 11 that the new value in IP is 020016.
This value was loaded from memory location 1342:1000. Therefore, program execution
continues with the instruction at address 1342:0200.

The intersegment unconditional jump instructions correspond to the Far-label and
Memptr32 operands that are shown in Fig. 9(b). Far-label uses a 32-bit immediate
operand to specify the jump-to address. The first 16 bits of this 32-bit pointer are loaded
into IP and are an offset address relative to the contents of the code-segment register. The
next 16 bits are loaded into the CS register and define the new code segment.

An indirect way to specify the offset and code-segment address for an intersegment
jump is by using the Memptr32 operand. This time, four consecutive memory bytes start-
ing at the specified address contain the offset address and the new code segment address,

Figure 11 Display sequence for Example 8.

C:\DOS>DEBUG
-A
1342:0100 JMP BX
1342:0102
-R BX
BX 0000
:1000
-E 1000 00 02
-D 1000 1001
1342:1000 00 02
-R
AX=0000 BX=1000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0100 NV UP EI PL NZ NA PO NC
1342:0100 FF27 JMP (BX) DS:1000=0200
-T

AX=0000 BX=1000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=1342 ES=1342 SS=1342 CS=1342 IP=0200 NV UP EI PL NZ NA PO NC
1342:0200 4D DEC BP
-Q

C:\DOS>

8088/8086 Programming—Control Flow Instructions

259

respectively. Just like the Memptr16 operand, the Memptr32 operand may be specified
using any one of the various addressing modes of the 8088.

An example is the instruction

JMP DWORD PTR [DI]

It uses the contents of DS and DI to calculate the address of the memory location that
contains the first word of the pointer that identifies the location to which the jump will
take place. The two-word pointer starting at this address is read into IP and CS to pass
control to the new point in the program.

Conditional Jump Instruction

The second type of jump instruction performs conditional jump operations. Figure
12(a) shows a general form of this instruction; Fig. 12(b) is a list of each of the condi-
tional jump instructions in the 8088’s instruction set. Note that each of these instructions
tests for the presence or absence of certain status conditions.

For instance, the jump on carry (JC) instruction makes a test to determine if carry
flag (CF) is set. Depending on the result of the test, the jump to the location specified by
its operand either takes place or does not. If CF equals 0, the test fails and execution con-
tinues with the instruction at the address following the JC instruction. On the other hand,
if CF equals 1, the test condition is satisfied and the jump is performed.

Note that for some of the instructions in Fig. 12(b), two different mnemonics can
be used. This feature can be used to improve program readability. That is, for each occur-
rence of the instruction in the program, it can be identified with the mnemonic that best
describes its function.

For instance, the instruction jump on parity (JP) or jump on parity even (JPE) both
test parity flag (PF) for logic 1. Since PF is set to one if the result from a computation has
even parity, this instruction can initiate a jump based on the occurrence of even parity.
The reverse instruction JNP/JPO is also provided. It can be used to initiate a jump based
on the occurrence of a result with odd instead of even parity.

In a similar manner, the instructions jump if equal (JE) and jump if zero (JZ) serve
the same function. Either notation can be used in a program to determine if the result of
a computation was zero.

All other conditional jump instructions work in a similar way except that they test
different conditions to decide whether or not the jump is to take place. Examples of these
conditions are: the contents of CX are zero, an overflow has occurred, or the result is
negative.

To distinguish between comparisons of signed and unsigned numbers by jump
instructions, two different names, which seem to imply the same, have been devised.
They are above and below, for comparison of unsigned numbers, and less and greater, for
comparison of signed numbers. For instance, the number ABCD16 is above the number
123416 if they are considered to be unsigned numbers. On the other hand, if they are
treated as signed numbers, ABCD16 is negative and 123416 is positive. Therefore,
ABCD16 is less than 123416.

8088/8086 Programming—Control Flow Instructions

260

Figure 12 (a) Conditional jump instruction. (b) Types of conditional jump
instructions.

8088/8086 Programming—Control Flow Instructions

261

Branch Program Structure—IF-THEN-ELSE

The high-level language IF-THEN-ELSE construct is expressed in general by the
program structure

IF <condition>
THEN

statement;
ELSE

statement;

Note that if the condition tested for is satisfied, the statement associated with THEN is
executed. Otherwise, the statement corresponding to ELSE is performed. Let us now look
at some simple examples of how the compiler may use the conditional jump instruction
to implement this software branch program structure.

One example is a branch that is made based on the flag settings that result after the
contents of two registers are compared to each other. Figure 13 shows a program struc-
ture that implements this software operation. This program tests to confirm whether or not
two values are equal.

First, the CMP instruction subtracts the value in BX from that in AX and adjusts the
flags based on the result. Next, the jump on equal instruction tests the zero flag to see if
it is 1. If ZF is 1, it means that the contents of AX and BX are equal and a jump is made
to the ELSE path in the program identified by the label EQUAL. Otherwise, if ZF is 0,
which means that the contents of AX and BX are not equal, the THEN path is taken and
the instruction following the JE instruction is executed.

Similar instruction sequences can be used to initiate branch operations for other
conditions. For instance, by using the instruction JA ABOVE, the branch is taken to the
ELSE path if the unsigned number in AX is larger than that in BX.

Another common use of a conditional jump is to branch based on the setting of a
specific bit in a register. When this is done, a logic operation is normally used to mask off
the values of all of the other bits in the register. For example, we may want to mask off
all bits of the value in AL other than bit 2 and then make a conditional jump if the
unmasked bit is logic 1.

EQUAL:

CMP
JE

AX, BX
EQUAL

; Next instruction if (AX) ≠ (BX)

; Next instruction if (AX) = (BX)

.

.

.

.

Figure 13 IF-THEN branch program
structure using a flag-condition test.

8088/8086 Programming—Control Flow Instructions

262

This operation can be done with the instruction sequence in Fig. 14. First, the con-
tents of AL are ANDed with 0416 to give

Now the content of AL is 0 if bit 2 is 0 and the resulting value in the ZF is 1. On the other
hand, if bit 2 is 1, the content of AL is nonzero and ZF is 0. Remember, we want to make
the jump to the ELSE path when bit 2 is 1. Therefore, the conditional test is made with a
jump on not zero instruction. When ZF is 1, the THEN path is taken and the next instruc-
tion is executed, but if ZF is 0, the JNZ instruction passes control to the ELSE path and
the instruction identified by the label BIT2_ONE.

Let us look at how to perform this exact same branch operation in another way.
Instead of masking off all of the bits in AL, we could simply shift bit 2 into the carry flag
and then make a conditional jump if CF equals 1. The program structure in Fig. 15 uses
this method to test for logic 1 in bit 2 of AL. Notice that this implementation takes one
extra instruction.

The Loop Program Structure—REPEAT-UNTIL and WHILE-DO

In many practical applications, we frequently need to repeat a part of the program
many times—that is, a group of instructions may need to be executed over an over again
until a condition is met. This type of control flow program structure is known as a loop.

(AL) � XXXXXXXX2 � 000001002 � 00000X002

BIT2_ONE:

AND
JNZ

AL, 04H
BIT2_ONE

; Next instruction if B2 of AL = 0

; Next instruction if B2 of AL = 1

.

.

.

.
Figure 14 IF-THEN branch program
structure using a register-bit test.

BIT2_ONE:

MOV
SHR
JC

CL,03H
AL, CL
BIT2_ONE

; Next instruction if B2 of AL = 0

; Next instruction if B2 of AL = 1

.

.

.

.
Figure 15 IF-THEN branch program
structure using an alternative register-
bit test.

8088/8086 Programming—Control Flow Instructions

263

The high-level language REPEAT-UNTIL construct is an example of a typical loop
operation and is expressed in general by the program structure

REPEAT
Statement 1;
Statement 2;

.

.
Statement N;

UNTIL <condition>

Note that after statements 1 through N are performed, a conditional test is performed by
the UNTIL statement. If this condition is not satisfied, control flow is returned to
REPEAT and the operations performed by the statements are repeated. On the other hand,
if the condition is satisfied, the loop operation is complete and control is passed to the
statement following UNTIL. Since the conditional test is made at the end of the loop, it
is known as a post-test. The statements in a loop that employ a post-test are always per-
formed at least one time. A high-level language DO statement with a fixed number of iter-
ations implements a REPEAT-UNTIL program structure. This type of loop operation may
be used to repeat a computation a fixed number of times.

Figures 16(a) and (b) show a typical assembly language implementation of a
REPEAT-UNTIL loop program structure. Here we see that the sequence of instructions
from label AGAIN to the conditional jump instruction JNZ represents the loop. Note that
the label for the instruction that is to be jumped to is located before the jump instruction
that makes the conditional test. In this way, if the test result is true, program control
returns to AGAIN and the segments of the program repeat. This continues until the con-
dition specified by NZ is false.

Before initiating the program sequence, a parameter must be assigned to keep
track of how many times the sequence of instructions has been repeated. This parameter,
called the count, is tested each time the sequence is performed to verify whether or not
it is to be repeated again. Note that register CL, which is used for the conditional test, is
initialized with the value COUNT by a MOV instruction prior to entering the loop. For
example, to repeat a part of a program 10 times, we begin by loading the count register
CL with COUNT equal to 0A16. Then the operation of instructions 1 through n of the
loop is performed. Next, the value in CL is decremented by 1 to indicate that the instruc-
tions in the loop are done; and after decrementing CL, ZF is tested with the JNZ instruc-
tion to see if it has reached 0. That is, the question “Should I repeat again?” is asked
with software. If ZF is 0, which means that , the answer is yes, repeat again,
and program control is returned to the instruction labeled AGAIN and the loop instruc-
tion sequence repeats. This continues until the value in CL reaches zero to identify that
the loop is done. When this happens, the answer to the conditional test is no, do not
repeat again, and the jump is not taken. Instead, the instruction following JNZ AGAIN
is executed.

FOR is a C language statement that can implement a REPEAT-UNTIL program
structure. However, the FOR loop performs both a pretest and a post-test. That is, a test
of the UNTIL condition is made prior to entry of the loop—the pretest. If the condition

(CL) � 0

8088/8086 Programming—Control Flow Instructions

264

Figure 16 (a) REPEAT-UNTIL program sequence. (b) Typical REPEAT-
UNTIL instruction sequence.

8088/8086 Programming—Control Flow Instructions

265

is already satisfied, no iterations of the FOR loop are performed. Once the FOR loop is
initiated, all remaining tests are performed at the end of the loop—the post-test. This type
of loop is normally performed a fixed number of times.

Figure 17(a) shows another loop structure. It differs in that the conditional test used
to decide whether or not the loop will repeat is made at entry of the loop instruction
sequence. This type of loop operation is known as a WHILE loop, or sometimes as a
WHILE-DO loop. Its program structure is expressed in general as

WHILE <expression>
Statement 1;
Statement 2;

.

.
Statement N;

Note that statements 1 through N are performed only if the conditional test performed by
the WHILE statement is satisfied. For instance, it may search through a document char-
acter by character looking for the first occurrence of the ASCII code for a specific char-
acter. Since it uses a pretest, the loop may not be performed any times. However, once ini-
tiated the loop repeats until the condition is not satisfied. For this reason, the loop may
repeat an unspecified number of times.

Figure 17(b) shows a typical WHILE-DO instruction sequence. To implement this
loop, we use a conditional jump instruction to perform the pretest and unconditional jump
instruction to initiate the repeat. Here the loop repeats while the conditional test finds the
contents of CL not equal to zero— . When CL equals 0, , the loop is com-
plete and control flow passes to the instruction with label NEXT.

The no operation (NOP) instruction is sometimes used in conjunction with loop
routines. As its name implies, it performs no operation—that is, its execution does not
change the contents of registers or affect the flags. However, a period of time is needed to
perform the NOP function. In some practical applications—for instance, a time-delay
loop—the duration it takes to execute NOP is used to extend the time-delay interval.

Applications Using the Loop and Branch Software Structures

As a practical application of the use of a conditional jump operation, let us write a
program known as a block-move program. The purpose of this program is to move a block
of N consecutive bytes of data starting at offset address BLK1ADDR in memory to
another block of memory locations starting at offset address BLK2ADDR. We will
assume that both blocks are in the same data segment, whose starting point is defined by
the data segment value DATASEGADDR.

The flowchart in Fig. 18(a) outlines the steps followed to solve this problem. It
has four distinct operations. The first operation is initialization. Initialization involves
establishing the initial address of the data segment. Loading the DS register with the
value DATASEGADDR does this. Furthermore, source index register SI and destination
index register DI are initialized with offset addresses BLK1ADDR and BLK2ADDR,
respectively. In this way, they point to the beginning of the source block and the begin-

ZF � 0ZF � 0

8088/8086 Programming—Control Flow Instructions

266

Figure 17 (a) WHILE-DO program sequence. (b) Typical WHILE-DO
instruction sequence.

8088/8086 Programming—Control Flow Instructions

267

Figure 18 (a) Block transfer flow-
chart. (b) Program.

8088/8086 Programming—Control Flow Instructions

268

ning of the destination block, respectively. To keep track of the count of bytes transferred,
register CX is initialized with N, the number of bytes to be moved. This leads us to the
following assembly language statements:

MOV AX, DATASEGADDR
MOV DS, AX
MOV SI, BLK1ADDR
MOV DI, BLK2ADDR
MOV CX, N

Note that DS cannot be directly loaded by immediate data with a MOV instruction.
Therefore, the segment address is first loaded into AX and then moved to DS. SI, DI, and
CX load directly with immediate data.

The next operation that must be performed is the actual movement of data from the
source block of memory to the destination block. The offset addresses are already loaded
into SI and DI; therefore, move instructions that employ indirect addressing are used to
accomplish the data-transfer operation. Remember that the 8088 does not allow direct
memory-to-memory moves. For this reason, AX is used as a temporary storage location
for data. The source byte is moved into AX with one instruction, and then another instruc-
tion moves it from AX to the destination location. Thus, the data move is accomplished
by the following instructions:

NXTPT: -MOV AH, [SI]
MOV [DI], AH

Note that for a byte move, only the higher eight bits of AX are used. Therefore, the
operand is specified as AH instead of AX.

Now the pointers in SI and DI must be updated so that they are ready for the next
byte-move operation. Also, the counter must be decremented so that it corresponds to the
number of bytes that remain to be moved. These updates are done by the following
sequence of instructions:

INC SI
INC DI
DEC CX

The test operation involves determining whether or not all the data points have been
moved. The contents of CX represent this condition. When its value is not 0, there still
are points to be moved, whereas a value of 0 indicates that the block move is complete.
This 0 condition is reflected by 1 in ZF. The instruction needed to perform this test is

JNZ NXTPT

Here NXTPT is a label that corresponds to the first instruction in the data move opera-
tion. The last instruction in the program is a halt (HLT) instruction to indicate the end of
the block move operation. Figure 18(b) shows the entire program.

8088/8086 Programming—Control Flow Instructions

269

EXAMPLE 9

The program

CMP AX, BX
JC DIFF2

DIFF1: MOV DX, AX
SUB DX, BX ;(DX) = (AX) — (BX)
JMP DONE

DIFF2: MOV DX, BX
SUB DX, AX ;(DX) = (BX) — (AX)

DONE: ----

implements an instruction sequence that calculates the absolute difference between the
contents of AX and BX and places it in DX. Use the run module produced by assembling
and linking the source program in Fig. 19(a) to verify the operation of the program for the
two cases that follow:

 (b) (AX) � 2, (BX) � 6

 (a) (AX) � 6, (BX) � 2

Figure 19 (a) Source program for Example 9. (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

TITLE EXAMPLE 9

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX69 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 9

CMP AX, BX
JC DIFF2

DIFF1: MOV DX, AX
SUB DX, BX ;(DX) = (AX) � (BX)
JMP DONE

DIFF2: MOV DX, BX
SUB DX, AX ;(DX) = (BX) � (AX)

DONE: NOP

RET ;Return to DEBUG program
EX69 ENDP

CODE_SEG ENDS

END EX69

(a)

8088/8086 Programming—Control Flow Instructions

270

Solution

The source program in Fig. 19(a) was assembled and linked to produce run module
EX69.EXE. Figure 19(b) shows the source listing produced as part of the assembly process.

As shown in Fig. 19(c), the run module is loaded as part of calling up the DEBUG
program by issuing the DOS command

C:\DOS>DEBUG A:EX69.EXE (↵)

Figure 19 (continued)

TITLE EXAMPLE 9

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX69 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 6

0005 3B C3 CMP AX, BX
0007 72 07 JC DIFF2
0009 8B D0 DIFF1: MOV DX, AX
000B 2B D3 SUB DX, BX ;(DX) = (AX) - (BX)
000D EB 05 90 JMP DONE
0010 8B D3 DIFF2: MOV DX, BX
0012 2B D0 SUB DX, AX ;(DX) = (BX) - (AX)
0014 90 DONE: NOP

0015 CB RET ;Return to DEBUG program
0016 EX69 ENDP

0016 CODE_SEG ENDS

END EX69

Segments and groups:

N a m e Size align combine class

CODE_SEG 0016 PARA NONE ‘CODE’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

DIFF1. L NEAR 0009 CODE_SEG
DIFF2. L NEAR 0010 CODE_SEG
DONE L NEAR 0014 CODE_SEG
EX69 F PROC 0000 CODE_SEG Length =0016

Warning Severe
Errors Errors
0 0

(b)

8088/8086 Programming—Control Flow Instructions

271

C:\DOS>DEBUG A:EX69.EXE
-U 0 15
0D03:0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 3BC3 CMP AX,BX
0D03:0007 7207 JB 0010
0D03:0009 8BD0 MOV DX,AX
0D03:000B 2BD3 SUB DX,BX
0D03:000D EB05 JMP 0014
0D03:000F 90 NOP
0D03:0010 8BD3 MOV DX,BX
0D03:0012 2BD0 SUB DX,AX
0D03:0014 90 NOP
0D03:0015 CB RETF
-G 5

AX=0000 BX=0000 CX=0016 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0005 NV UP EI PL NZ NA PO NC
0D03:0005 3BC3 CMP AX,BX
-R AX
AX 0000
:6
-R BX
BX 0000
:2
-T

AX=0006 BX=0002 CX=0016 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0007 NV UP EI PL NZ NA PO NC
0D03:0007 7207 JB 0010
-G 14

AX=0006 BX=0002 CX=0016 DX=0004 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0014 NV UP EI PL NZ NA PO NC
0D03:0014 90 NOP
-G

Program terminated normally
-R
AX=0006 BX=0002 CX=0016 DX=0004 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0014 NV UP EI PL NZ NA PO NC
0D03:0014 90 NOP
-R IP
IP 0014
:0
-G 5

AX=0000 BX=0002 CX=0016 DX=0004 SP=0038 BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0005 NV UP EI PL NZ NA PO NC
0D03:0005 3BC3 CMP AX,BX
-R AX
AX 0000
:2
-R BX
BX 0002
:6
-T

AX=0002 BX=0006 CX=0016 DX=0004 SP=0038 BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0007 NV UP EI NG NZ AC PE CY
0D03:0007 7207 JB 0010
-G 14

AX=0002 BX=0006 CX=0016 DX=0004 SP=0038 BP=0000 SI=0000 DI=0000
DS=0DD6 ES=0DD6 SS=0DE8 CS=0D03 IP=0014 NV UP EI PL NZ NA PO NC
0D03:0014 90 NOP
-G

Program terminated NORMALLY
-Q

C:\DOS>

(c)

Figure 19 (continued)

8088/8086 Programming—Control Flow Instructions

272

Next, the loading of the program is verified with the Unassemble command

-U 0 15 (↵)

Note in Fig. 19(c) that the CMP instruction, which is the first instruction of the sequence
that generates the absolute difference, is located at address 0D03:0005. Let us execute
down to this statement with the Go command

-G 5 (↵)

Now we will load AX and BX with the case (a) data. This is done with the R commands

-R AX (↵)
AX 0000
:6 (↵)
-R BX (↵)
BX 0000
:2 (↵)

Next, execute the compare instruction with the command

-T (↵)

Note in the trace information display in Fig. 19(c) that the carry flag is reset (NC). There-
fore, no jump will take place when the JB instruction is executed.

The rest of the program can be executed by inputting the command

-G 14 (↵)

From Fig. 19(c), we find that DX contains 4. Executing the SUB instruction at
0D03:000B produced this result. Before executing the program for the case (b) data, the
command

-G (↵)

is issued. This command causes the program to terminate normally.
The R command shows that the value in IP must be reset to zero, and then we can

execute down to the CMP instruction. This is done with the commands

-R IP (↵)
IP 0014
:0 (↵)

and

-G 5 (↵)

8088/8086 Programming—Control Flow Instructions

273

Note in Fig. 19(c) that IP again contains 000516 and points to the CMP instruction. Next,
the data for case (b) are loaded with R commands. This gives

-R AX (↵)
AX 0000
:2 (↵)
-R BX (↵)
BX 0002
:6 (↵)

Now a T command is used to execute the CMP instruction. Notice that CY is set this
time. Therefore, control is passed to the instruction at 0D03:0010.

A Go command is now used to execute down to the instruction at 0D03:0014. This
command is

-G 14 (↵)

Note that DX again contains 4; however, this time it was calculated with the SUB instruc-
tion at 0D03:0012.

▲ 4 SUBROUTINES AND SUBROUTINE-HANDLING
INSTRUCTIONS

A subroutine is a special segment of program that can be called for execution from any
point in a program. Figure 20(a) illustrates the concept of a subroutine. Here we see a
program structure where one part of the program is called the main program. In addition
to this, we find a group of instructions attached to the main program, known as a subrou-
tine. The subroutine is written to provide a function that must be performed at various
points in the main program. Instead of including this piece of code in the main program
each time the function is needed, it is put into the program just once as a subroutine. An
assembly language subroutine is also referred to as a procedure.

Wherever the function must be performed, a single instruction is inserted into the
main body of the program to “call” the subroutine. Remember that the logical address CS:IP
identifies the next instruction to be fetched for execution. Thus, to branch to a subroutine
that starts elsewhere in memory, the value in either IP or CS and IP must be modified.

After executing the subroutine, we want to return control to the instruction that
immediately follows the one called the subroutine. To facilitate this return operation,
return linkage is saved when the call takes place. That is, the original value of IP or IP
and CS must be preserved. A return instruction is included at the end of the subroutine to
initiate the return sequence to the main program environment. In this way, program exe-
cution resumes in the main program at the point where it left off due to the occurrence of
the subroutine call.

The instructions provided to transfer control from the main program to a subroutine
and return control back to the main program are called subroutine-handling instructions.
Let us now examine the instructions provided for this purpose.

8088/8086 Programming—Control Flow Instructions

274

Figure 20 (a) Subroutine concept. (b) Subroutine call instruction. (c) Allowed
operands.

CALL and RET Instructions

There are two basic instructions in the instruction set of the 8088 for subroutine
handling: the call (CALL) and return (RET) instructions. Together they provide the
mechanism for calling a subroutine into operation and returning control back to the main
program at its completion. We will first discuss these two instructions and later introduce
other instructions that can be used in conjunction with subroutines.

Just like the JMP instruction, CALL allows implementation of two types of opera-
tions: the intrasegment call and the intersegment call. The CALL instruction is shown in
Fig. 20(b), and its allowed operand variations are shown in Fig. 20(c).

8088/8086 Programming—Control Flow Instructions

275

It is the operand that initiates either an intersegment or an intrasegment call. The
operands Near-proc, Memptr16, and Regptr16 all specify intrasegment calls to a subrou-
tine. In all three cases, execution of the instruction causes the contents of IP to be saved
on the stack. Then the stack pointer (SP) is decremented by two. The saved value of IP is
the offset address of the instruction that immediately follows the CALL instruction. After
saving this return address, a new 16-bit value, which is specified by the instruction’s
operand and corresponds to the storage location of the first instruction in the subroutine,
is loaded into IP.

The types of operands represent different ways of specifying a new value of IP.
Using a Near-proc operand, a subroutine located in the same code segment can be called.
An example is

CALL 1234H

Here 1234H identifies the starting address of the subroutine. It is encoded as the differ-
ence between 1234H and the updated value of IP—that is, the IP for the instruction fol-
lowing the CALL instruction.

The Memptr16 and Regptr16 operands provide indirect subroutine addressing by
specifying a memory location or an internal register, respectively, as the source of a new
value for IP. The value specified is the actual offset that is loaded into IP. An example of
a Regptr16 operand is

CALL BX

When this instruction is executed, the contents of BX are loaded into IP and execution
continues with the subroutine starting at the physical address derived from the current CS
and the new value of IP.

By using various addressing modes of the 8088, an operand that resides in memory
is used as the call to offset address. This represents a Memptr16 type of operand. For
instance, the instruction

CALL [BX]

has its subroutine offset address at the memory location whose physical address is derived
from the contents of DS and BX. The value stored at this memory location is loaded into
IP. Again the current contents of CS and the new value in IP point to the first instruction
of the subroutine.

Note that in both intrasegment call examples the subroutine is located within the
same code segment as the call instruction. The other type of CALL instruction, the inter-
segment call, permits the subroutine to reside in another code segment. It corresponds to
the Far-proc and Memptr32 operands. These operands specify both a new offset address
for IP and a new segment address for CS. In both cases, execution of the call instruction
causes the contents of the CS and IP registers to be saved on the stack, and then new val-
ues are loaded into IP and CS. The saved values of CS and IP permit return to the main
program from a different code segment.

8088/8086 Programming—Control Flow Instructions

276

Figure 21 (a) Return instruction. (b) Allowed operands.

Far-proc represents a 32-bit immediate operand that is stored in the four bytes that fol-
low the opcode of the call instruction in program memory. These two words are loaded
directly from code segment memory into IP and CS with execution of the CALL instruction.

On the other hand, when the operand is Memptr32, the pointer for the subroutine is
stored as four consecutive bytes in data memory. The location of the first byte of the
pointer can be specified indirectly by one of the 8088’s memory addressing modes. An
example is

CALL DWORD PTR [DI]

Here the physical address of the first byte of the 4-byte pointer in memory is derived from
the contents of DS and DI.

Every subroutine must end by executing an instruction that returns control to the
main program. This is the return (RET) instruction. It is described in Fig. 21(a) and (b).
Note that its execution causes the value of IP or both the values of IP and CS that were
saved on the stack to be returned back to their corresponding registers and the stack pointer
to be adjusted appropriately. In general, an intrasegment return results from an intraseg-
ment call and an intersegment return results from an intersegment call. In this way, pro-
gram control is returned to the instruction that immediately follows the call instruction in
program memory.

There is an additional option with the return instruction. It is that a 2-byte constant
can be included with the return instruction. This constant gets added to the stack pointer
after restoring the return address. The purpose of this stack pointer displacement is to pro-
vide a simple means by which the parameters that were saved on the stack before the call
to the subroutine was initiated can be discarded. For instance, the instruction

RET 2

when executed adds 2 to SP. This discards one word parameter as part of the return
sequence.

8088/8086 Programming—Control Flow Instructions

277

Figure 22 (a) Source program for Example 10. (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

TITLE EXAMPLE 10

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX610 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 10

CALL SUM
RET

SUM PROC NEAR
MOV DX, AX
ADD DX, BX ; (DX) = (AX) + (BX)
RET

SUM ENDP

EX610 ENDP
CODE_SEG ENDS

END EX610

(a)

EXAMPLE 10

The source program in Fig. 22(a) can be used to demonstrate the use of the call and return
instructions to implement a subroutine. This program was assembled and linked to pro-
duce a run module in file EX610.EXE. Its source listing is provided in Fig. 22(b). Trace
the operation of the program by executing it with DEBUG for data and

.

Solution

We begin by calling up DEBUG and loading the program with the DOS command

C:\DOS>DEBUG A:EX610.EXE (↵)

The loading of the program is now verified with the Unassemble command

-U 0 D (↵)

Figure 22(c) shows that the program correctly loaded. Moreover, the CALL instruction is
located at offset 000516 of the current code segment. The command

-G 5 (↵)

(BX) � 4
(AX) � 2

8088/8086 Programming—Control Flow Instructions

278

Figure 22 (continued)

TITLE EXAMPLE 10

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX610 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 10

0005 E8 0009 R CALL SUM
0008 CB RET

0009 SUM PROC NEAR
0009 8B D0 MOV DX, AX
000B 03 D3 ADD DX, BX ; (DX) = (AX) + (BX)
000D C3 RET
000E 90 SUM ENDP

000E EX610 ENDP
000E CODE_SEG ENDS

END EX610

Segments and groups:

N a m e Size align combine class

CODE_SEG 000E PARA NONE ‘CODE’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

EX610. F PROC 0000 CODE_SEG Length =000E
SUM N PROC 0000 CODE_SEG Length =0005

Warning Severe
Errors Errors
0 0

(b)

executes the program down to the CALL instruction. The state information displayed in
Fig. 22(c) shows that , , and . Now let us
load the AX and BX registers with R commands:

-R AX (↵)
AX 0000
:2 (↵)
-R BX (↵)
BX 0000
:4 (↵)

(SP) � 003C16(IP) � 000516(CS) � 0D0316

8088/8086 Programming—Control Flow Instructions

279

Figure 22 (continued)

C:\DOS>DEBUG A:EX610.EXE
-U 0 D
0D03:0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 E80100 CALL 0009
0D03:0008 CB RETF
0D03:0009 8BD0 MOV DX,AX
0D03:000B 03D3 ADD DX,BX
0D03:000D C3 RET
-G 5

AX=0000 BX=0000 CX=000E DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0F41 ES=0F41 SS=0F52 CS=0D03 IP=0005 NV UP EI PL NZ NA PO NC
0D03:0005 E80100 CALL 0009
-R AX
AX 0000
:2
-R BX
BX 0000
:4
-T

AX=0002 BX=0004 CX=000E DX=0000 SP=003A BP=0000 SI=0000 DI=0000
DS=0F41 ES=0F41 SS=0F52 CS=0D03 IP=0009 NV UP EI PL NZ NA PO NC
0D03:0009 8BD0 MOV DX,AX
-D SS:3A 3B
0F52:0030 08 00
-T

AX=0002 BX=0004 CX=000E DX=0002 SP=003A BP=0000 SI=0000 DI=0000
DS=0F41 ES=0F41 SS=0F52 CS=0D03 IP=000B NV UP EI PL NZ NA PO NC
0D03:000B 03D3 ADD DX,BX
-T

AX=0002 BX=0004 CX=000E DX=0006 SP=003A BP=0000 SI=0000 DI=0000
DS=0F41 ES=0F41 SS=0F52 CS=0D03 IP=000D NV UP EI PL NZ NA PE NC
0D03:000D C3 RET
-T

AX=0002 BX=0004 CX=000E DX=0006 SP=003C BP=0000 SI=0000 DI=0000
DS=0F41 ES=0F41 SS=0F52 CS=0D03 IP=0008 NV UP EI PL NZ NA PE NC
0D03:0008 CB RETF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Next, the CALL instruction is executed with the T command

-T (↵)

and looking at the displayed state information in Fig. 22(c) shows that CS still contains
0D0316, IP has been loaded with 000916, and SP has been decremented to 003A16. This
information tells us that the next instruction to be executed is the move instruction at
address 0D03:0009, and a word of data has been pushed to the stack.

Before executing another instruction, let us look at what got pushed onto the stack.
Issuing the memory dump command does this:

-D SS:3A 3B (↵)

8088/8086 Programming—Control Flow Instructions

280

Note from Fig. 22(c) that the value 000816 has been pushed onto the stack. This is
the address offset of the RETF instruction that follows the CALL instruction and is the
address of the instruction to which control is to be returned at the completion of
the subroutine.

Two more T commands are used to execute the move and add instructions of the
subroutine. From the state information displayed in Fig. 22(c), we see that their execution
causes the value 216 in AX to be copied into DX and then the value 416 in BX to be added
to the value in DX. This results in the value 616 in DX.

Now the RET instruction is executed by issuing another T command. Figure 22(c)
shows that execution of this instruction causes the value 000816 to be popped off the stack
and put back into the IP register. Therefore, the next instruction to be executed is the one
located at address 0D03:0008; this is the RETF instruction. Moreover, note that as the
word is popped from the stack back into IP, the value in SP is incremented by two. After
this, the program is run to completion by issuing a Go command.

PUSH and POP Instructions

Upon entering a subroutine, it is usually necessary to save the contents of certain
registers or some other main program parameters. Pushing them onto the stack saves
these values. Typically, these data correspond to registers and memory locations that are
used by the subroutine. In this way, their original contents are kept intact in the stack seg-
ment of memory during the execution of the subroutine. Before a return to the main pro-
gram takes place, the saved registers and main program parameters are restored. Popping
the saved values from the stack back into their original locations does this. Thus, a typi-
cal structure of a subroutine is that shown in Fig. 23.

The instruction that is used to save parameters on the stack is the push (PUSH)
instruction, and that used to retrieve them is the pop (POP) instruction. Note in Fig. 24(a)
and (b) that the standard PUSH and POP instructions can be written with a general-
purpose register, a segment register (excluding CS), or a storage location in memory as
their operand.

Figure 23 Structure of a subroutine.

8088/8086 Programming—Control Flow Instructions

281

Figure 24 (a) PUSH and POP instructions. (b) Allowed operands.

Execution of a PUSH instruction causes the data corresponding to the operand to be
pushed onto the top of the stack. For instance, if the instruction is

PUSH AX

the result is as follows:

This shows that the two bytes of AX are saved in the stack part of memory and the stack
pointer is decremented by two so that it points to the new top of the stack.

On the other hand, if the instruction is

POP AX

its execution results in

In this manner, the saved contents of AX are restored in the register.

 (SP) ← (SP) � 2

 (AH) ← ((SP) � 1)

 (AL) ← ((SP))

 (SP) ← (SP) � 2

 ((SP) � 2) ← (AL)

 ((SP) � 1) ← (AH)

8088/8086 Programming—Control Flow Instructions

282

EXAMPLE 11

Write a procedure named SQUARE that squares the contents of BL and places the result
in BX. Assume that this procedure is called from the main program, which is located in
the same code segment.

Solution

The beginning of the procedure is defined with the directive statement

SQUARE PROC NEAR

To square the number in BL, we use the 8-bit signed multiply instruction, IMUL. This
instruction requires the use of register AX for its operation. Therefore, at entry of the pro-
cedure, we must save the value currently held in AX. Pushing its contents to the stack
with the instruction does this

PUSH AX

Now we load AX with the contents of BL using the instruction

MOV AL, BL

To square the contents of AL, we use the instruction

IMUL BL

which multiplies the contents of AL with the contents of BL and places the result in AX.
The result is the square of the original contents of BL. To place the result in BX, use the
instruction

MOV BX, AX

This completes the square operation; but before returning to the main part of the program,
the original contents of AX that are saved on the stack are restored with the pop instruction

POP AX

Then a return instruction is used to pass control back to the main program:

RET

The procedure must be terminated with the end procedure directive statement that follows:

SQUARE ENDP

Figure 25 shows the complete instruction sequence.

8088/8086 Programming—Control Flow Instructions

283

Figure 25 Program for Example 11

EXAMPLE 12

Figure 26(a) displays a source program that can be used to demonstrate the execution of
the procedure written in Example 11. The source listing produced when this program was
assembled is given in Fig. 26(b), and the run module produced when it was linked is
stored in file EX612.EXE. Use the DEBUG program to load this run module and verify
its operation.

Solution

The DEBUG program and run module can be loaded with the command

C:\DOS>DEBUG A:EX612.EXE (↵)

After loading is completed, the instructions of the program are unassembled with the
command

-U 0 18 (↵)

The displayed information in Fig. 26(c) shows that the program did load correctly.
The instruction sequence in Fig. 26(c) shows that the part of the program whose

operation is of interest starts with the CALL instruction at address 0DEC:000C. Now we
execute down to this point in the program with the Go command

-G C (↵)

Note that BL contains the number 12H, which will be squared by the subroutine.
Now, the call instruction is executed with the command

-T (↵)

Note from the displayed information for this command in Fig. 26(c) that the value held in
IP has been changed to 001016. Therefore, control has been passed to address
0DEC:0010, which is the first instruction of procedure SQUARE. Moreover, note that
stack pointer (SP) has been decremented to the value 003A16. The new top of the stack is

8088/8086 Programming—Control Flow Instructions

284

Figure 26 (a) Source program for Example 12. (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

TITLE EXAMPLE 12

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

DATA_SEG SEGMENT
TOTAL DW 1234H
DATA_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX612 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Setup the data segment

MOV AX, DATA_SEG
MOV DS, AX

;Following code implements Example 12

MOV BL,12H ;BL contents = the number to be squared
CALL SQUARE ;Call the procedure to square BL contents
RET ;Return to DEBUG program

EX612 ENDP

;Subroutine: SQUARE
;Description: (BX) = square of (BL)

SQUARE PROC NEAR
PUSH AX ;Save the register to be used
MOV AL,BL ;Place the number in AL
IMUL BL ;Multiply with itself
MOV BX,AX ;Save the result
POP AX ;Restore the register used
RET

SQUARE ENDP

CODE_SEG ENDS

END EX612

(a)

at address 0DE7:003A. The word held at the top of the stack can be examined with the
command

-D SS:3A 3B (↵)

Note in Fig. 26(c) that its value is 000F16. The instruction sequence in Fig. 26(c) shows
that this is the address of the RETF instruction. This is the instruction to which control is
to be returned at the completion of the procedure.

Next, the PUSH AX instruction is executed with the command

-T (↵)

8088/8086 Programming—Control Flow Instructions

285

and again, looking at the displayed state information, we find that SP has been decre-
mented to the value 003816. Displaying the word at the top of the stack with the command

-D SS:38 39 (↵)

we find that it is the same as the contents of AX. This confirms that the original contents
of AX are saved on the stack.

Now we execute down to the POP AX instruction with the command

-G 17 (↵)

Figure 26 (continued)

TITLE EXAMPLE 12

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 0040[DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 DATA_SEG SEGMENT
0000 1234 TOTAL DW 1234H
0002 DATA_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX612 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Setup the data segment

0005 B8 —— R MOV AX, DATA_SEG
0008 8E D8 MOV DS, AX

;Following code implements Example 12

000A B3 12 MOV BL,12H ;BL contents = the number
to be squared
000C E8 0010 R CALL SQUARE ;Call the procedure to
square BL contents
000F CB RET ;Return to DEBUG program
0010 EX612 ENDP

;Subroutine: SQUARE
;Description: (BX) = square of (BL)

0010 SQUARE PROC NEAR
0010 50 PUSH AX ;Save the register to be
used
0011 8A C3 MOV AL,BL ;Place the number in AL
0013 F6 EB IMUL BL ;Multiply with itself
0015 8B D8 MOV BX,AX ;Save the result
0017 5* POP AX ;Restore the register used
0018 C3 RET
0019 SQUARE ENDP

0019 CODE_SEG ENDS

END EX612

(b)

8088/8086 Programming—Control Flow Instructions

286

Figure 26 (continued)

Segments and Groups:

N a m e Length Align Combine Class

CODE_SEG 0019 PARA NONE ‘CODE’
DATA_SEG 0002 PARA NONE
STACK_SEG 0040 PARA STACK ‘STACK

Symbols:

N a m e Type Value Attr

EX612 F PROC 0000 CODE_SEG Length = 0010
SQUARE N PROC 0010 CODE_SEG Length = 0009

TOTAL L WORD 0000 DATA_SEG

@CPU TEXT 0101h
@FILENAME TEXT EX612
@VERSION TEXT 510

53 Source Lines
53 Total Lines
13 Symbols

48016 + 440523 Bytes symbol space free

0 Warning Errors
0 Severe Errors

(b)

Looking at the displayed state information in Fig. 26(c), we find that the square of the
contents of BL has been formed in BX.

Next, the pop instruction is executed with the command

-T (↵)

and the displayed information shows that the original contents of AX popped off the stack
and were put back into AX. Moreover, the value in SP increments to 003A16 so that once
again the return address is at the top of the stack.

Finally, the RET instruction is executed with the command

-T (↵)

As Fig. 26(c) shows, this causes the value 001016 to be popped from the top of the stack
back into IP. Therefore, IP now equals 000F16. In this way, we see that control flow
returns to the instruction at address 0DEC:000F of the main program.

At times, we also want to save the contents of the flag register, and if we save them,
we will later have to restore them. These operations can be accomplished with push flags
(PUSHF) and pop flags (POPF) instructions, respectively, as shown in Fig. 27. Note that
PUSHF saves the contents of the flag register on the top of the stack. On the other hand,
POPF returns the flags from the top of the stack to the flag register.

8088/8086 Programming—Control Flow Instructions

287

Figure 27 Push flags and pop flags instructions.

C:\DOS>DEBUG A:EX612.EXE
-U 0 18
0DEC:0000 1E PUSH DS
0DEC:0001 B80000 MOV AX,0000
0DEC:0004 50 PUSH AX
0DEC:0005 B8EB0D MOV AX,0DEB
0DEC:0008 8ED8 MOV DS,AX
0DEC:000A B312 MOV BL,12
0DEC:000C E80100 CALL 0010
0DEC:000F CB RETF
0DEC:0010 50 PUSH AX
0DEC:0011 8AC3 MOV AL,BL
0DEC:0013 F6EB IMUL BL
0DEC:0015 8BD8 MOV BX,AX
0DEC:0017 58 POP AX
0DEC:0018 C3 RET
-G C

AX=0DEB BX=0012 CX=0069 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=000C NV UP EI PL NZ NA PO NC
0DEC:000c E80100 CALL 0010
-T

AX=0DEB BX=0012 CX=0069 DX=0000 SP=003A BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=0010 NV UP EI PL NZ NA PO NC
0DEC:0010 50 PUSH AX
-D SS:3A 3B
0DE7:0030 OF 00
-T

AX=0DEB BX=0012 CX=0069 DX=0000 SP=0038 BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=0011 NV UP EI PL NZ NA PO NC
0DEC:0011 8AC3 MOV AL,BL
-D SS:38 39
0DE7:0030 EB 0D
-G 17

AX=0144 BX=0144 CX=0069 DX=0000 SP=0038 BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=0017 OV UP EI PL NZ NA PE CY
0DEC:0017 58 POP AX
-T

AX=0DEB BX=0144 CX=0069 DX=0000 SP=003A BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=0018 OV UP EI PL NZ NA PE CY
0DEC:0018 C3 RET
-T

AX=0DEB BX=0144 CX=0069 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0DEB ES=0DD7 SS=0DE7 CS=0DEC IP=000F OV UP EI PL NZ NA PE CY
0DEC:000F CB RETF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 26 (continued)

8088/8086 Programming—Control Flow Instructions

288

▲ 5 LOOPS AND LOOP-HANDLING INSTRUCTIONS

The 8088 microprocessor has three instructions specifically designed for implementing
loop operations. These instructions can be used in place of certain conditional jump
instructions and give the programmer a simpler way of writing loop sequences. The loop
instructions are listed in Fig. 28.

The first instruction, loop (LOOP), works with respect to the contents of the CX
register. CX must be preloaded with a count that represents the number of times the loop
is to repeat. Whenever LOOP is executed, the contents of CX are first decremented by
one and then checked to determine if they are equal to zero. If equal to zero, the loop is
complete and the instruction following LOOP is executed; otherwise, control is returned
to the instruction at the label specified in the loop instruction. In this way, we see that
LOOP is a single instruction that functions the same as a decrement CX instruction fol-
lowed by a JNZ instruction.

For example, the LOOP instruction sequence shown in Fig. 29(a) causes the part of
the program from label NEXT through the instruction LOOP to repeat a number of times
equal to the value stored in CX. For example, if CX contains 000A16, the sequence of
instructions included in the loop executes 10 times.

Figure 29(b) shows a practical implementation of a loop. Here we find the block
move program developed in Section 3 is rewritten using the LOOP instruction. Compar-
ing this program with the one in Fig. 18(b), we see that the instruction LOOP NXTPT has
replaced both the DEC and JNZ instructions.

Figure 28 Loop instructions.

8088/8086 Programming—Control Flow Instructions

289

Figure 29 (a) Typical loop routine structure. (b) Block-move program
employing the LOOP instruction.

EXAMPLE 13

The source program in Fig. 30(a) demonstrates the use of the LOOP instruction to imple-
ment a software loop operation. This program was assembled and linked to produce run
module EX613.EXE. The source listing is shown in Fig. 30(b). Observe the operation of
the loop by executing the program using DEBUG.

Solution

Looking at Fig. 30(c), we see that the run module is loaded with the DOS command

C:\DOS>DEBUG A:EX613.EXE (↵)

Now the loading of the program is verified by unassembling it with the command

-U 0 F (↵)

By comparing the instruction sequence displayed in Fig. 30(c) with the listing in Fig.
30(b), we find that the program has loaded correctly.

Also in Fig. 30(c), the instruction sequence of the loop whose operation is to be
observed is located from address 0D03:000B through 0D03:000D. A Go command that
executes the instructions down to address 0D03:000B is

-G B (↵)

8088/8086 Programming—Control Flow Instructions

290

TITLE EXAMPLE 13

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX613 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 13

MOV CX, 5H
MOV DX, 0H

AGAIN: NOP
INC DX
LOOP AGAIN

RET ;Return to DEBUG program
EX613 ENDP
CODE_SEG ENDS

END EX613

(a)

Figure 30 (a) Source program for Example 13. (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

Again, looking at Fig. 30(c), we see that these instructions initialize the count in CX to
000516 and the contents of DX to 000016.

Now another Go command executes the loop down to address 0D03:000D.

-G D (↵)

The displayed information shows that the pass count in DX has incremented by 1 to indi-
cate that the first pass through the loop is about to be completed.

Next the LOOP instruction is executed with the Trace command

-T (↵)

From Fig. 30(c), we find that the loop count CX has decremented by one, meaning that
the first pass through the loop is complete, and the value in IP has been changed to
000B16. Therefore, control has returned to the NOP instruction that represents the begin-
ning of the loop.

Now that we have observed the basic loop operation, let us execute the loop to com-
pletion with the command

-G F (↵)

8088/8086 Programming—Control Flow Instructions

291

The displayed information for this command in Fig. 30(c) shows us that at completion of
the program, the loop count in CX has been decremented to 000016 and the pass count in
DX has been incremented to 000516.

The other two loop instructions in Fig. 28 operate in a similar way except that they
check for two conditions. For instance, the instruction loop while equal (LOOPE)/loop
while zero (LOOPZ) checks the contents of both CX and the zero flag (ZF). Each time the
loop instruction is executed, CX decrements by 1 without affecting the flags, its contents
are checked for 0, and the state of ZF that results from execution of the previous instruc-
tion is tested for 1. If CX is not equal to 0 and ZF equals 1, a jump is initiated to the loca-

TITLE EXAMPLE 13

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX613 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 13

0005 B9 0005 MOV CX, 5H
0008 BA 0000 MOV DX, 0H
000B 90 AGAIN: NOP
000C 42 INC DX
000D E2 FC LOOP AGAIN

000F CB RET ;Return to DEBUG program
0010 EX613 ENDP
0010 CODE_SEG ENDS

END EX613

Segments and groups:

N a m e Size align combine class

CODE_SEG 0010 PARA NONE ‘CODE’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

AGAIN. L NEAR 000B CODE_SEG
EX613. F PROC 0000 CODE_SEG Length =0010

Warning Severe
Errors Errors
0 0

(b)

Figure 30 (continued)

8088/8086 Programming—Control Flow Instructions

292

C:\DOS>DEBUG A:EX613.EXE
-U 0 F
0D03:0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 B90500 MOV CX,0005
0D03:0008 BA0000 MOV DX,0000
0D03:000B 90 NOP
0D03:000C 42 INC DX
ODO3:000D E2FC LOOP 000B
0D03:000F CB RETF
-G B

AX=0000 BX=0000 CX=0005 DX=0000 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD7 ES=0DD7 SS-0DE8 CS=0D03 IP=000B NV UP EI PL NZ NA PO NC
0D03:000B 90 NOP
-G D

AX=0000 BX=0000 CX=0005 DX=0001 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD7 ES=0DD7 SS=0DE8 CX=0D03 IP=000D NV UP EI PL NZ NA PO NC
0D03:000D E2FC LOOP 000B
-T

AX=0000 BX=0000 CX=0004 DX=0001 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD7 ES=0DD7 SS=0DE8 CS=0D03 IP=000B NV UP EI PL NZ NA PO NC
0D03:000B 90 NOP
-G F

AX=0000 BX=0000 CX=0000 DX=0005 SP=003C BP=0000 SI=0000 DI=0000
DS=0DD7 ES=0DD7 SS=0DE8 CS=0D03 IP=000F NV UP EI PL NZ NA PE NC
0D03:000F CB
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 30 (continued)

tion specified with the Short-label operand and the loop continues. If either CX or ZF is 0,
the loop is complete, and the instruction following the loop instruction is executed.

Instruction loop while not equal (LOOPNE)/loop while not zero (LOOPNZ) works
in a similar way to the LOOPE/LOOPZ instruction. The difference is that it checks ZF
and CX looking for ZF equal to 0 together with CX not equal to 0. If these conditions are
met, the jump back to the location specified with the Short-label operand is performed
and the loop continues.

EXAMPLE 14

Explain what happens as the following sequence of instructions is executed.

MOV DL, 05H
MOV AX, 0A00H
MOV DS, AX
MOV SI, 0H
MOV CX, 0FH

AGAIN: INC SI
CMP [SI], DL
LOOPNE AGAIN

8088/8086 Programming—Control Flow Instructions

293

Solution

The first five instructions are for initializing internal registers. Data register DL is loaded
with 0516; data segment register DS is loaded via AX with the value 0A0016; source index
register SI is loaded with 000016; and count register CX is loaded with 0F16 (1510). After
initialization, a data segment is set up at physical address 0A00016, and SI points to the
memory location at offset 000016 in this data segment. DL contains the data 510 and the
CX register contains the loop count 1510.

The part of the program that starts at the label AGAIN and ends with the LOOPNE
instruction is a software loop. The first instruction in the loop increments the value in SI
by 1. Therefore, the first time through the loop SI points to the memory address 0A00116.
The next instruction compares the contents of this memory location with the contents of
DL, 510. If the data held at 0A00116 are 510, the zero flag is set; otherwise, it is reset. The
LOOPNE instruction then decrements CX (making it E16) and then checks for or

. If neither of these two conditions is satisfied, program control is returned to the
instruction with the label AGAIN. This causes the comparison to be repeated for the
examination of the contents of the next byte in memory. On the other hand, if either con-
dition is satisfied, the loop is complete. In this way, we see that the loop is repeated until
either a number 510 is found or all locations in the address range 0A00116 through
0A00F16 are tested and found not to contain 510.

EXAMPLE 15

Figure 31(a) shows the source version of the program that is written in Example 14. This
program was assembled and linked to produce run module EX615.EXE. The source list-
ing that resulted from the assembly process is shown in Fig. 31(b). Verify the operation
of the program by executing it with Go commands.

Solution

As Fig. 31(c) shows, the run module is loaded with the command

C:\DOS>DEBUG A:EX615.EXE (↵)

The program loaded is verified with the command

-U 0 17 (↵)

Comparing the sequence of instructions displayed in Fig. 31(c) with those in the source
listing shown in Fig. 31(b), we find that the program has loaded correctly.

Note that the loop that performs the memory-compare operation starts at address
0D03:0012. Let us begin by executing down to this point with the Go command

-G 12 (↵)

ZF � 1
CX � 0

8088/8086 Programming—Control Flow Instructions

294

TITLE EXAMPLE 15

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX615 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 15

MOV DL, 5H
MOV AX, 0A00H
MOV DS, AX
MOV SI, OH
MOV CX, 0FH

AGAIN: INC SI
CMP [SI], DL
LOOPNE AGAIN

RET ;Return to DEBUG program
EX615 ENDP
CODE_SEG ENDS

END EX615

(a)

Figure 31 (a) Source program for Example 15 (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

The state information displayed in Fig. 31(c) shows that DL is loaded with 0516, AX with
0A0016, DS with 0A0016, SI with 000016, and CX with 000F16.

Next, the table of data as follows is loaded with the E command

-E A00:0 4, 6, 3, 9, 5, 6, D, F, 9 (↵)

The nine values in this list are loaded into consecutive byte-wide memory locations over
the range 0A00:0000 through 0A00:0008. The compare routine also checks the storage
locations from 0A00:0009 through 0A00:000F. Let us dump the data held in this part of
memory to verify that it has been initialized correctly. In Fig. 31(c), we see that this is
done with the command

-D A00:0 F (↵)

and, looking at the displayed data, we find that it has loaded correctly.
Now the loop is executed with the command

-G 17 (↵)

8088/8086 Programming—Control Flow Instructions

295

In the display dump for this command in Fig. 31(c), we find that SI has incremented to the
value 000416; therefore, the loop was run only four times. The fourth time through the loop
SI equals four and the memory location pointed to by SI, the address 0A00:0005, contains
the value 5. This value is equal to the value in DL; therefore, the instruction CMP [SI],DL
results in a difference of zero, and the zero flag is set. Notice in Fig. 31(c) that this flag is
identified as ZR in the display dump. For this reason, execution of the LOOPNZ instruc-
tion causes the loop to be terminated, and control is passed to the RETF instruction.

TITLE EXAMPLE 15

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX615 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 15

0005 B2 05 MOV DL, 5H
0007 B8 0A00 MOV AX, 0A00H
000A 8E D8 MOV DS, AX
000C BE 0000 MOV SI, OH
000F B9 000F MOV CX, 0FH
0012 46 AGAIN: INC SI
0013 38 14 CMP [SI], DL
0015 E0 FB LOOPNE AGAIN

0017 CB RET ;Return to DEBUG program
0018 EX615 ENDP
0018 CODE_SEG ENDS

END EX615

Segments and groups:

N a m e Size align combine class

CODE_SEG 0018 PARA NONE ‘CODE’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

AGAIN. L NEAR 0012 CODE_SEG
EX615. F PROC 0000 CODE_SEG Length =0018

Warning Severe
Errors Errors
0 0

(b)

Figure 31 (continued)

8088/8086 Programming—Control Flow Instructions

296

▲ 6 STRINGS AND STRING-HANDLING INSTRUCTIONS

The 8088 microprocessor is equipped with special instructions to handle string opera-
tions. By string we mean a series of data words (or bytes) that reside in consecutive mem-
ory locations. The string instructions of the 8088 permit a programmer to implement
operations such as to move data from one block of memory to a block elsewhere in mem-
ory. A second type of operation that is easily performed is scanning a string of data ele-
ments stored in memory to look for a specific value. Other examples are comparing the
elements of two strings in order to determine whether they are the same or different, and
initializing a group of consecutive memory locations. Complex operations such as these
require several nonstring instructions to be implemented.

There are five basic string instructions in the instruction set of the 8088. These
instructions, as listed in Fig. 32, are move byte or word string (MOVSB/MOVSW),
compare string (CMPSB/CMPSW), scan string (SCASB/SCASW), load string (LODSB/
LODSW), and store string (STOSB/STOSW). They are called the basic string instruc-
tions because each defines an operation for one element of a string. Thus, these operations
must be repeated to handle a string of more than one element. Let us first look at the oper-
ations these instructions perform.

C:\DOS>DEBUG A:EX615.EXE
-U 0 17
0D03:0000 1E PUSH DS
0D03:0001 B80000 MOV AX,0000
0D03:0004 50 PUSH AX
0D03:0005 B205 MOV DL,05
0D03:0007 B8000A MOV AX,0A00
0D03:000A 8ED8 MOV DS,AX
0D03:000C BE0000 MOV SI,0000
0D03:000F B90F00 MOV CX,000F
0D03:0012 46 INC SI
0D03:0013 3814 CMP [SI],DL
0D03:0015 E0FB LOOPNZ 0012
0D03:0017 CB RETF
-G 12

AX=0A00 BX=0000 CX=000F DX=0005 SP=003C BP=0000 SI=0000 DI=0000
DS=0A00 ES=0DD7 SS=0DE9 CS=0D03 IP=0012 NV UP EI PL NZ NA PO NC
0D03:0012 46 INC SI
-E A00:0 4,6,3,9,5,6,D,F,9
-D A00:0 F
0A00:0000 04 06 03 09 05 06 0D 0F-09 75 09 80 7C 02 54 75 u..|.Tu
-G 17

AX=0A00 BX=0000 CX=000B DX=0005 SP=003C BP=0000 SI=0004 DI=0000
DS=0A00 ES=0DD7 SS=0DE9 CS=0D03 IP=0017 NV UP EI PL ZR NA PE NC
0D03:0017 CB RETF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 31 (continued)

8088/8086 Programming—Control Flow Instructions

297

Figure 32 Basic string instructions.

Move String—MOVSB, MOVSW

The instructions MOVSB and MOVSW perform the same basic operation. An ele-
ment of the string specified by the source index (SI) register with respect to the current
data segment (DS) register is moved to the location specified by the destination index
(DI) register with respect to the current extra segment (ES) register. The move can be per-
formed on a byte or a word of data. After the move is complete, the contents of both SI
and DI are automatically incremented or decremented by 1 for a byte move and by 2 for
a word move. The address pointers in SI and DI increment or decrement, depending on
how the direction flag (DF) is set.

For example, the instruction

MOVSB

can be used to move a byte.
Figure 33 shows an example of a program that uses MOVSB. This program is a modi-

fied version of the block-move program shown in Fig. 29(b). Note that the two MOV instruc-
tions that perform the data transfer and two INC instructions that update the pointer have been
replaced with one move-string byte instruction. We have also made DS equal to ES.

Figure 33 Block-move program
using the move-string instruction.

8088/8086 Programming—Control Flow Instructions

298

Compare String and Scan String—CMPSB/CMPSW and SCASB/SCASW

The compare-strings instruction can be used to compare two elements in the same
or different strings: it subtracts the destination operand from the source operand and
adjusts the flags accordingly. The result of subtraction is not saved; therefore, the opera-
tion does not affect the operands in any way.

An example of a compare strings instruction for bytes of data is

CMPSB

Again, the address in SI points to the source element with respect to the current value in
DS, and the destination element is specified by the contents of DI relative to the contents
of ES. When executed, the operands are compared, the flags are adjusted, and both SI and
DI are updated so that they point to the next elements in their respective strings.

The scan-string instruction is similar to compare strings; however, it compares the
byte or word element of the destination string at the physical address derived from DI and
ES to the contents of AL or AX, respectively. The flags are adjusted based on this result
and DI incremented or decremented.

A program using the SCASB instruction that implements a string scan operation
similar to that described in Example 14 is shown in Fig. 34. Note that we have made DS
equal to ES.

Load and Store String—LODSB/LODSW and STOSB/STOSW

The last two instructions in Fig. 32, load string and store string, are specifically pro-
vided to move string elements between the accumulator and memory. LODSB loads a
byte from a string in memory into AL. The address in SI is used relative to DS to deter-
mine the address of the memory location of the string element; SI is incremented by 1
after loading. Similarly, the instruction LODSW indicates that the word-string element at
the physical address derived from DS and SI is to be loaded into AX. Then the index in
SI is automatically incremented by 2.

On the other hand, STOSB stores a byte from AL into a string location in memory.
This time the contents of ES and DI are used to form the address of the storage location
in memory. For example, the program in Fig. 35 loads the block of memory locations
from 0A00016 through 0A00F16 with number 5.

Figure 34 Block scan operation
using the SCASB instruction.

8088/8086 Programming—Control Flow Instructions

299

Figure 35 Initializing a block of
memory with a store string operation.

Repeat String—REP

In most applications, the basic string operations must be repeated in order to
process arrays of data. Inserting a repeat prefix before the instruction that is to be repeated
does this. The repeat prefixes of the 8088 are shown in Fig. 36.

The first prefix, REP, causes the basic string operation to be repeated until the con-
tents of register CX become equal to 0. Each time the instruction is executed, it causes
CX to be tested for 0. If CX is found not to be 0, it is decremented by 1 and the basic
string operation is repeated. On the other hand, if it is 0, the repeat string operation is
done and the next instruction in the program is executed. The repeat count must be loaded
into CX prior to executing the repeat string instruction. As indicated in Fig. 36, the REP
prefix is used with the MOVS and STOS instructions. Figure 37 is the memory load rou-
tine of Fig. 35 modified by using the REP prefix.

The prefixes REPE and REPZ stand for the same function. They are meant for
use with the CMPS and SCAS instructions. With REPE/REPZ, the basic compare or scan
operation repeats as long as both the count in CX is not equal to 0 and ZF is 1. The
first condition, CX not equal to 0, indicates that the end of the string has not yet been
reached, and the second condition, ZF = 1, indicates that the elements that were compared
are equal.

The last prefix, REPNE/REPNZ, works similarly as the REPE/REPZ, except that
now the operation is repeated as long as CX is not equal to 0 and ZF is 0. That is, the
comparison or scanning is performed as long as the string elements are unequal and the
end of the string is not yet reached.

Figure 36 Prefixes for use with the
basic string operations.

8088/8086 Programming—Control Flow Instructions

300

Figure 37 Initializing a block of
memroy by repeating the STOSB
instruction.

Autoindexing for String Instructions

Earlier we pointed out that during the execution of a string instruction, the address
indices in SI and DI are either automatically incremented or decremented. Moreover, we
indicated that the decision to increment or decrement is made based on the setting of the
direction flag (DF). The 8088 provides two instructions, clear direction flag (CLD) and set
direction flag (STD), to permit selection between the autoincrement and autodecrement
modes of operation, as shown in Fig. 38. When CLD is executed, DF is set to 0. This
selects autoincrement mode, and each time a string operation is performed, SI and/or DI
are incremented by 1 if byte data are processed and by 2 if word data are processed.

EXAMPLE 16

Describe what happens as the following sequence of instructions is executed:

CLD
MOV AX, DATA_SEGMENT
MOV DS, AX
MOV AX, EXTRA_SEGMENT
MOV ES, AX
MOV CX, 20H
MOV SI, OFFSET MASTER
MOV DI, OFFSET COPY
REPZMOVSB

Solution

The first instruction clears the direction flag and selects autoincrement mode of opera-
tion for string addressing. The next two instructions initialize DS with the value
DATA_SEGMENT. It is followed by two instructions that load ES with the value
EXTRA_SEGMENT. Then the number of repeats, 2016, is loaded into CX. The next two

Figure 38 Instructions for selecting
autoincrementing and autodecrement-
ing in string instructions.

8088/8086 Programming—Control Flow Instructions

301

instructions load SI and DI with offset addresses MASTER and COPY, which point to
the beginning of the source and destination strings, respectively. Now we are ready to
perform the string operation. Execution of REPZMOVSB moves a block of 32 consecu-
tive bytes from the block of memory locations starting at offset MASTER in the current
data segment (DS) to a block of locations starting at offset COPY in the current extra
segment (ES).

EXAMPLE 17

The source program in Fig. 39(a) implements the block move operation shown in Exam-
ple 16. This program was assembled and linked to produce a run module called
EX617.EXE. The source listing that was produced during the assembly process is shown
in Fig. 39(b). Execute the program using DEBUG and verify its operation.

Figure 39 (a) Source program for Example 17. (b) Source listing produced by
assembler. (c) Execution of the program with DEBUG.

TITLE EXAMPLE 17

PAGE ,132

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

DATA_SEG SEGMENT ‘DATA’
MASTER DB 32 DUP(?)
COPY DB 32 DUP(?)
DATA_SEG ENDS

CODE_SEG SEGMENT ‘CODE’
EX617 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG, ES:DATA_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Following code implements Example 17

MOV AX, DATA_SEG ;Set up data setment
MOV DS, AX
MOV ES, AX ;Set up extra segment

CLD
MOV CX, 20H
MOV SI, OFFSET MASTER
MOV DI, OFFSET COPY

REP MOVSB

RET ;Return to DEBUG program
EX617 ENDP
CODE_SEG ENDS

END EX617

(a)

8088/8086 Programming—Control Flow Instructions

302

TITLE EXAMPLE 17

PAGE ,132

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 40 [DB 64 DUP(?)

??
]

0040 STACK_SEG ENDS

0000 DATA_SEG SEGMENT ‘DATA’
0000 20 [MASTER DB 32 DUP(?)

??
]

0020 20 [COPY DB 32 DUP(?)
??

]

0040 DATA_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 EX617 PROC FAR

ASSUME CS:CODE_SEG, SS:STACK_SEG, DS:DATA_SEG, ES:DATA_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX, 0
0004 50 PUSH AX

;Following code implements Example 17

0005 B8 —— R MOV AX, DATA_SEG ;Set up data segment
0008 8E D8 MOV DS, AX
000A 8E C0 MOV ES, AX ;Set up data segment

000C FC CLD
000D B9 0020 MOV CX, 20H
0010 BE 0000 MOV SI, OFFSET MASTER
0013 BF 0020 R MOV DI, OFFSET COPY
0016 F3/ A4 REP MOVSB

0018 CB RET ;Return to DEBUG program
0019 EX617 ENDP
0019 CODE_SEG ENDS

END EX617

Segments and groups:

N a m e Size align combine class

CODE_SEG 0019 PARA NONE ‘CODE’
DATA_SEG 0040 PARA NONE ‘DATA’
STACK_SEG. 0040 PARA STACK ‘STACK’

Symbols:

N a m e Type Value Attr

COPY L BYTE 0020 DATA_SEG Length =0020
EX617. F PROC 0000 CODE_SEG Length =0019
MASTER L BYTE 0000 DATA_SEG Length =0020

Warning Severe
Errors Errors
0 0

(b)

Figure 39 (continued)

8088/8086 Programming—Control Flow Instructions

303

C:\DOS>DEBUG A:EX617.EXE
-U 0 18
0DE7:0000 1E PUSH DS
0DE7:0001 B80000 MOV AX,0000
0DE7:0004 50 PUSH AX
0DE7:0005 B8E90D MOV AX,0DE9
0DE7:0008 8ED8 MOV DS,AX
0DE7:000A 8EC0 MOV ES,AX
0DE7:000C FC CLD
0DE7:000D B92000 MOV CX,0020
0DE7:0010 BE0000 MOV SI,0000
0DE7:0013 BF2000 MOV DI,0020
0DE7:0016 F3 REPZ
0DE7:0017 A4 MOVSB
0DE7:0018 CB RETF
-G 16

AX=0DE9 BX=0000 CX=0020 DX=0000 SP=003C BP=0000 SI=0000 DI=0020
DS=0DE9 ES=0DE9 SS=0DED CS=0DE7 IP=0016 NV UP EI PL NZ NA PO NC
0DE7:0016 F3 REPZ
0DE7:0017 A4 MOVSB
-F DS:0 1F FF
-F DS:20 3F 00
-D DS:0 3F
0DE9:0000 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
0DE9:0010 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
0DE9:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0DE9:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G 18

AX=0DE9 BX=0000 CX=0000 DX=0000 SP=003C BP=0000 SI=0020 DI=0040
DS=0DE9 ES=0DE9 SS=0DED CS=0DE7 IP=0018 NV UP EI PL NZ NA PO NC
0DE7:0018 CB RETF
-D DS:0 3F
0DE9:0000 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
0DE9:0010 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
0DE9:0020 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
0DE9:0030 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-G

Program terminated normally
-Q

C:\DOS>

(c)

Figure 39 (continued)

Solution

The program is loaded with the DEBUG command

C:\DOS>DEBUG A:EX617.EXE (↵)

and verified by the Unassemble command

-U 0 18 (↵)

Comparing the displayed instruction sequence in Fig. 39(c) with the source listing in Fig.
39(b), we find that the program has loaded correctly.

First, execute down to the REPZ instruction with the Go command

-G 16 (↵)

8088/8086 Programming—Control Flow Instructions

304

Looking at the displayed state information in Fig. 39(c), we see that CX has been loaded
with 002016, SI with 000016, and DI with 002016.

Now the storage locations in the 32-byte source block that starts at address DS:0000
are initialized with the value FF16 using the Fill command

-F DS:0 1F FF (↵)

and each of the 32 bytes of the destination block, which start at DS:0020, are loaded with
the value 0016 with the Fill command

-F DS:20 3F 00 (↵)

Now a memory dump command is used to verify the initialization of memory

-D DS:0 3F (↵)

The displayed information in Fig. 39(c) shows that memory has been initialized correctly.
Now execute the string move operation with the command

-G 18 (↵)

Again looking at the display in Fig. 39(c), we see that the repeat count in CX has been
decremented to zero and that the source and destination pointers have incremented to

and . Therefore, the string move instruction has executed
32 times and the source and destination addresses have been correctly incremented to
complete the block transfer. The block transfer operation is verified by repeating the Dump
command

-D DS:0 3F (↵)

Note that both the source and destination blocks now contain FF16.

REVIEW PROBLEMS

Section 1
1. Explain what happens when the instruction sequence that follows is executed.

LAHF
MOV [BX+DI], AH

2. What operation is performed by the instruction sequence that follows?

MOV AH, [BX+SI]
SAHF

(DI) � 004016(SI) � 002016

8088/8086 Programming—Control Flow Instructions

305

3. What instruction should be executed to ensure that the carry flag is in the set state?
The reset state?

4. Which instruction when executed disables the interrupt interface?

5. Write an instruction sequence to configure the 8088 as follows: interrupts not
accepted; save the original contents of flags SF, ZF, AF, PF, and CF at the address
0A00016; and then clear CF.

Section 2
6. Describe the difference in operation and the effect on status flags due to the execu-

tion of the subtract words and compare words instructions.

7. Describe the operation performed by each of the instructions that follow.

(a) CMP [0100H], AL
(b) CMP AX, [SI]
(c) CMP WORD PTR [DI], 1234H

8. What is the state of the 8088’s flags after executing the instructions in parts (a)
through (c) of problem 7? Assume that the following initial state exists before exe-
cuting the instructions.

9. What happens to the ZF and CF status flags as the following sequence of instructions
is executed? Assume that they are both initially cleared.

MOV BX, 1111H
MOV AX, 0BBBBH
CMP BX, AX

Section 3
10. What is the key difference between the unconditional jump instruction and condi-

tional jump instruction?

11. Which registers have their contents changed during an intrasegment jump? Interseg-
ment jump?

12. How large is a Short-label displacement? Near-label displacement? Memptr16 operand?

13. Is a Far-label used to initiate an intrasegment jump or an intersegment jump?

 (DS:301H) � 12H

 (DS:300H) � 34H

 (DS:201H) � 01H

 (DS:200H) � F0H

 (DS:100H) � F0H

 (DI) � 0300H

 (SI) � 0200H

 (AX) � 8001H

8088/8086 Programming—Control Flow Instructions

306

14. Identify the type of jump, the type of operand, and operation performed by each of
the instructions that follow.

(a) JMP 10H
(b) JMP 1000H
(c) JMP WORD PTR [SI]

15. If the state of the 8088 is as follows before executing each instruction in problem 14,
to what address is program control passed?

16. Which flags are tested by the various conditional jump instructions?

17. What flag condition is tested for by the instruction JNS?

18. What flag conditions are tested for by the instruction JA?

19. Identify the type of jump, the type of operand, and operation performed by each of
the instructions that follow.

(a) JNC 10H
(b) JNP 1000H
(c) JO DWORD PTR [BX]

20. What value must be loaded into BX such that execution of the instruction JMP BX
transfers control to the memory location offset from the beginning of the current code
segment by 25610?

21. The program that follows implements what is known as a delay loop.

MOV CX, 1000H
DLY: DEC CX

NOP
JNZ DLY

NXT: --- ---

(a) How many times does the JNZ DLY instruction get executed?
(b) Change the program so that JNZ DLY is executed 17 times.
(c) Change the program so that JNZ DLY is executed 232 times.

22. Given a number N in the range , write a program that computes its factorial
and saves the result in memory location FACT. ()

23. Write a program that compares the elements of two arrays, A(I) and B(I). Each array
contains 100 16-bit signed numbers. Compare the corresponding elements of the two
arrays until either two elements are found to be unequal or all elements of the arrays
have been compared and found to be equal. Assume that the arrays start in the cur-

N! � 1*2*3*4*.....*N
0�N�5

 (DS:101H) � 10H

 (DS:100H) � 00H

 (SI) � 0100H

 (IP) � 0300H

 (CS) � 1075H

8088/8086 Programming—Control Flow Instructions

307

rent data segment at offset addresses A00016 and B00016, respectively. If the two
arrays are found to be unequal, save the address of the first unequal element of A(I)
in the memory location with offset address FOUND in the current data segment; oth-
erwise, write all 0s into this location.

Section 4
24. What is a subroutine? What other name is used to identify a subroutine?

25. Describe the difference between a jump and call instruction.

26. Why are intersegment and intrasegment call instructions provided in the 8088/8086
instruction set?

27. What is saved on the stack when a call instruction with a Memptr16 operand is exe-
cuted? A Memptr32 operand?

28. Identify the type of call, the type of operand, and operation performed by each of the
instructions that follow.

(a) CALL 1000H
(b) CALL WORD PTR [100H]
(c) CALL DWORD PTR [BX + SI]

29. The state of the 8088 is as follows:

To what address is program control passed after executing each instruction in prob-
lem 28?

30. What function is performed by the RET instruction?

31. Describe the operation performed by each of the instructions that follow.

(a) PUSH DS
(b) PUSH [SI]
(c) POP DI
(d) POP [BX + DI]
(e) POPF

 (DS:203H) � 10H

 (DS:202H) � 00H

 (DS:201H) � 01H

 (DS:200H) � 00H

 (DS:101H) � 10H

 (DS:100H) � 00H

 (SI) � 0100H

 (BX) � 0100H

 (IP) � 0300H

 (CS) � 1075H

8088/8086 Programming—Control Flow Instructions

308

32. What operation is performed by the following sequence of instructions?

PUSH AX
PUSH BX
POP AX
POP BX

33. When must PUSHF and POPF instructions be included in a subroutine?

34. Write a segment of main program and show its subroutine structure to perform the
following operations. The program is to check the three most significant bits in reg-
ister DX and, depending on their setting, execute one of three subroutines: SUBA,
SUBB, or SUBC. The subroutines are selected as follows:
(a) If bit 15 of DX is set, initiate SUBA.
(b) If bit 14 of DX is set and bit 15 is not set, initiate SUBB.
(c) If bit 13 of DX is set and bits 14 and 15 are not set, initiate SUBC.

If a subroutine is executed, the corresponding bit(s) of DX should be cleared and then
control returned to the main program. After returning from the subroutine, the main
program is repeated.

Section 5
35. Which flags are tested by the various conditional loop instructions?

36. What two conditions can terminate the operation performed by the instruction
LOOPNE?

37. How large a jump can be employed in a loop instruction?

38. What is the maximum number of repeats that can be implemented with a loop
instruction?

39. Using loop instructions, implement the program in problem 22.

40. Using loop instructions, implement the program in problem 23.

Section 6
41. What determines whether the SI and DI registers show an increment or a decrement

during a string operation?

42. Which segment register is used to form the destination address for a string instruction?

43. Write equivalent instruction sequences using string instructions for each of the following:

(a) MOV AL, [SI] (c) MOV AL, [DI]
MOV [DI], AL CMP AL, [SI]
INC SI DEC SI
INC DI DEC DI

(b) MOV AX, [SI]
INC SI
INC SI

44. Use string instructions to implement the program in problem 23.

8088/8086 Programming—Control Flow Instructions

309

ADVANCED PROBLEMS

45. Given an array A(I) of 100 16-bit signed numbers stored in memory starting at
address A00016, write a program to generate two arrays from the given array such that
one array P(J) consists of all the positive numbers and the other N(K) contains all the
negative numbers. Store the array of positive numbers in memory starting at offset
address B00016 and the array of negative numbers starting at offset address C00016.

46. Given a 16-bit binary number in DX, write a program that converts it to its equiva-
lent BCD number in DX. If the result is bigger than 16 bits, place all 1s in DX.

47. Given an array A(I) with 100 16-bit signed integer numbers, write a program to gen-
erate a new array B(I) as follows:

,

,

and , for all other Is

48. Write a subroutine that converts a given 16-bit BCD number to its equivalent binary
number. The BCD number is in register DX. Replace it with the equivalent binary
number.

49. Given an array A(I) of 100 16-bit signed integer numbers, write a program to gener-
ate a new array B(I) so that

and

For the calculation of B(I), the values of , A(I), and are to be
passed to a subroutine in registers AX, BX, and CX and the subroutine returns the
result B(I) in register AX.

50. Write a program to convert a table of 100 ASCII characters that are stored starting at
offset address ASCII_CHAR into their equivalent table of EBCDIC characters and
store them at offset address EBCDIC_CHAR. The translation is to be done using an
ASCII_TO_EBCDIC conversion table starting at offset address ASCII_TO_EBCDIC.
Assume that all three tables are located in different segments of memory.

Section 1
1. Executing the first instruction causes the contents of the status register to be copied

into AH. The second instruction causes the value of the flags to be saved in memory
location (DS)0 � (BX) � (DI).

3. STC; CLC.
5. CLI ;Disable interrupts

MOV AX, 0H ;Establish data segment

A(I � 1)A(I � 1)

B(I) � 1/4 [A(I � 1) � 5A(I) � 9A(I � 1)], for all other Is

B(I) � A(I), for I � 1 and 100

A(I � 2)

B(I) � median value of A(I � 2), A(I � 1), A(I), A(I � 1)

B(I) � A(I), for I � 1, 2, 99, and 100

8088/8086 Programming—Control Flow Instructions

ANSWERS TO SELECTED REVIEW PROBLEMS▲

310

MOV DS, AX
MOV BX, 0A000H ;Establish destination pointer
LAHF ;Get flags
MOV [BX], AH ;and save at 0A000H
CLC ;Clear CF

Section 2
7. (a) The byte of data in AL is compared with the byte of data in memory at address

DS:100H by subtraction, and the status flags are set or reset to reflect the result.
(b) The word contents of the data storage memory location pointed to by (DS)0 +

(SI) are compared with the contents of AX by subtraction, and the status flags are
set or reset to reflect the results.

(c) The immediate data 1234H are compared with the word contents of the memory
location pointed to by (DS)0 + (DI) by subtraction, and the status flags are set or
reset to reflect the results.

9. Instruction (ZF) (CF)

Initial state 0 0
After MOV BX, 1111H 0 0
After MOV AX, 0BBBBH 0 0
After CMP BX, AX 0 1

Section 3
11. IP; CS and IP.

13. Intersegment.

15. (a) 1075H:10H
(b) 1075H:1000H
(c) 1075H:1000H

17. .

19. (a) Intrasegment; short-label; if the carry flag is reset, a jump is performed by load-
ing IP with 10H.

(b) Intrasegment; near-label; if PF is not set, a jump is performed by loading IP with
100016.

(c) Intersegment; memptr32; if the overflow flag is set, a jump is performed by load-
ing the two words of the 32-bit pointer addressed by the value (DS)0 � (BX)
into IP and CS, respectively.

21. (a) .
(b) ;Implement the loop with the counter = 17

MOV CX, 11H
DLY: DEC CX

JNZ DLY
NXT: --- ---

(c) ;Set up a nested loop with 16-bit inner and 16-bit outer
;counters. Load these counters so that the JNZ
;instruction is encountered 232 times.

MOV AX, 0FFFFH
DLY1: MOV CX, 0H
DLY2: DEC CX

100016 � 212 � 4096 times

(SF) � 0

8088/8086 Programming—Control Flow Instructions

311

JNZ DLY2
DEC AX
JNZ DLY1

NXT: ---

23. MOV CX, 64H ;Set up array counter
MOV SI, 0A000H ;Set up source array pointer
MOV DI, 0B000H ;Set up destination array

;pointer
GO_ON: MOV AX, [SI]

CMP AX, [DI] ;Compare the next element
JNE MIS_MATCH ;Skip on a mismatch
ADD SI, 2 ;Update pointers and counter
ADD DI, 2
DEC CX
JNZ GO_ON ;Repeat for the next element
MOV [FOUND], 0H ;If arrays are identical, save

;a zero
JMP DONE

MIS_MATCH: MOV [FOUND], SI ;Else, save the mismatch address
DONE: --- ---

Section 4
25. The call instruction saves the value in the instruction pointer, or in both the instruc-

tion pointer and code segment register, in addition to performing the jump operation.

27. IP; IP and CS.

29. (a) 1075H:1000H
(b) 1075H:0100H
(c) 1000H:0100H

31. (a) The value in the DS register is pushed onto the top of the stack, and the stack
pointer is decremented by 2.

(b) The word of data in memory location (DS)0 � (SI) is pushed onto the top of the
stack, and SP is decremented by 2.

(c) The word at the top of the stack is popped into the DI register, and SP is incre-
mented by 2.

(d) The word at the top of the stack is popped into the memory location pointed to
by (DS)0 � (BX) � (DI), and SP is incremented by 2.

(e) The word at the top of the stack is popped into the status register, and SP is incre-
mented by 2.

33. When the contents of the flags must be preserved for the instruction that follows the
subroutine.

Section 5
35. ZF.

37. .
39. MOV AL, 1H

MOV CL, N
JCXZ DONE ;N = 0 case

Jump size � �126 to �129

8088/8086 Programming—Control Flow Instructions

312

LOOPZ DONE ;N = 1 case
INC CL ;Restore N

AGAIN: MUL CL
LOOP AGAIN

DONE: MOV [FACT], AL

Section 6
41. DF.

43. (a) CLD
MOV ES, DS
MOVSB

(b) CLD
LODSW

(c) STD
CMPSB

Advanced Problems
45. MOV CX, 64H ;Set up the counter

MOV AX, 0H ;Set up the data segment
MOV DS, AX
MOV BX, 0A000H ;Pointer for the given array
MOV SI, 0B000H ;Pointer for the +ve array
MOV DI, 0C000H ;Pointer for the -ve array

AGAIN: MOV AX, [BX] ;Get the next source element
CMP AX, 0H ;Skip if positive
JGE POSTV

NEGTV: MOV [DI], AX ;Else place in -ve array
INC DI
INC DI
JMP NXT ;Skip

POSTV: MOV [SI], AX ;Place in the +ve array
INC SI
INC SI

NXT: DEC CX ;Repeat for all elements
JNZ AGAIN
HLT

47. ;Assume that all arrays are in the same data segment
MOV AX, DATASEG ;Set up data segment
MOV DS, AX
MOV ES, AX
MOV SI, OFFSET_ARRAYA ;Set up pointer to array A
MOV DI, OFFSET_ARRAYB ;Set up pointer to array B
MOV CX, 62H
MOV AX, [SI] ;Initialize A(I-2) and B(1)
MOV ARRAYC, AX
MOV [DI], AX
ADD SI, 2
ADD DI, 2
MOV AX, [SI] ;Initialize A(I-1) and B(2)

8088/8086 Programming—Control Flow Instructions

313

MOV ARRAYC+1, AX
MOV [DI], AX
ADD SI, 2
ADD DI, 2
MOV AX, [SI] ;Initialize A(I)
MOV ARRAYC+2, AX
ADD SI, 2
MOV AX, [SI] ;Initialize A(I+1)
MOV ARRAYC+3, AX
ADD SI, 2
MOV AX, [SI] ;Initialize A(I+2)
MOV ARRAYC+4, AX
ADD SI, 2

NEXT: CALL SORT ;Sort the 5 element array
MOV AX, ARRAYC+2 ;Save the median
MOV [DI], AX
ADD DI, 2
MOV AX, ARRAYC+1 ;Shift the old elements
MOV ARRAYC, AX
MOV AX, ARRAYC+2
MOV ARRAYC+1, AX
MOV AX, ARRAYC+3
MOV ARRAY+2, AX
MOV AX, ARRAYC+4
MOV ARRAYC+3, AX
MOV AX, [SI] ;Add the new element
MOV ARRAY+4, AX
ADD SI, 2
LOOP NEXT ;Repeat
SUB SI, 4 ;The last two elements of array B
MOV AX, [SI]
MOV [DI], AX
ADD SI, 2
ADD DI, 2
MOV AX, [SI]
MOV [DI], AX

DONE: --- ---
;SORT subroutine
SORT: PUSHF ;Save registers and flags

PUSH AX
PUSH BX
PUSH DX
MOV SI, OFFSET_ARRAYC
MOV BX, OFFSET_ARRAYC+4

AA: MOV DI, SI
ADD DI, 02H

BB: MOV AX, [SI]
CMP AX, [DI]
JLE CC
MOV DX, [DI]

8088/8086 Programming—Control Flow Instructions

314

MOV [SI], DX
MOV [DI], AX

CC: INC DI
INC DI
CMP DI, BX
JBE BB
INC SI
INC SI
CMP SI, BX
JB AA
POP DX ;Restore registers and flags
POP BX
POP AX
POPF
RET

49. ;Assume that the offset of A[I] is AI1ADDR
;and the offset of B[I] is BI1ADDR

MOV AX, DATA_SEG ;Initialize data segment
MOV DS, AX
MOV CX, 62H
MOV SI, AI1ADDR ;Source array pointer
MOV DI, BI1ADDR ;Destination array pointer
MOV AX, [SI]
MOV [DI], AX ;B[1] = A[1]

MORE: MOV AX, [SI] ;Store A[I] into AX
ADD SI, 2 ;Increment pointer
MOV BX, [SI] ;Store A[I+1] into BX
ADD SI, 2
MOV CX, [SI] ;Store A[I+2] into CX
ADD SI, 2
CALL ARITH ;Call arithmetic subroutine
MOV [DI], AX
SUB SI, 4
ADD DI, 2
LOOP MORE ;Loop back for next element
ADD SI, 4

DONE: MOV AX, [SI] ;B[100] = A[100]
MOV [DI], AX
HLT

;Subroutine for arithmetic
;(AX) ← [(AX) - 5(BX) + 9(CX)]/4
ARITH: PUSHF ;Save flags and registers in stack

PUSH BX
PUSH CX
PUSH DX
PUSH DI
MOV DX, CX ;(DX) ← (CX)
MOV DI, CX
MOV CL, 3

8088/8086 Programming—Control Flow Instructions

315

SAL DX, CL
ADD DX, DI
MOV CL, 2 ;(AX) ← 5(BX)
MOV DI, BX
SAL BX, CL
ADD BX, DI
SUB AX, BX ;(AX) ← [(AX) - 5(BX) + 9(CX)]/4
ADD AX, DX
SAR AX, CL
POP DI ;Restore flags and registers
POP DX
POP CX
POP BX
POPF
RET ;Return

8088/8086 Programming—Control Flow Instructions

316

Assembly Language
Program Development
with MASM

▲ INTRODUCTION

Recall that a line-by-line assembler is included in the DEBUG program; however, this
assembler is not practical to use when writing larger programs. Other assembly language-
development tools, such as Microsoft’s macroassembler (MASM) and the linker (LINK)
programs, are available for DOS. These are the kind of software-development tools that are
used to develop larger application programs. In this chapter, we will learn how to use
MASM, LINK, and DEBUG to develop and debug assembly language programs for prac-
tical applications. The topics covered in the chapter are as follows:

1 Statement Syntax for a Source Program

2 Assembler Directives

3 Creating a Source File with an Editor

4 Assembling and Linking Programs

5 Loading and Executing a Run Module

From Chapter 7 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

317

Assembly Language Program Development with MASM

▲ 1 STATEMENT SYNTAX FOR A SOURCE PROGRAM

The source program is a series of assembly language and directive statements that solve
a specific problem. The assembly language statements tell the microprocessor the opera-
tions to be performed. On the other hand, the directive statements instruct the assembler
program on how the program is to be assembled. Here we have a detailed study of the
rules that must be used when writing assembly language and directive statements for the
MASM macroassembler.

Assembly Language Statement Syntax

A source program must be written using the syntax understood by the assembler
program. By syntax we mean the rules according to which statements must be written.
The general format of an assembly language statement is

LABEL: OPCODE OPERAND(S) ;COMMENT(S)

Note that it contains four separate fields: the label field, opcode field, operand field, and
comment field. An example is the instruction

START: MOV CX,10 ;Load a count of 10 into register CX

Here START is in the label field; MOV (for “move operation”) is the opcode field; the
operands are CX and the decimal number 10; and the comment field tells us that execu-
tion of the instruction loads a count of 10 into register CX. Note that the label field ends
with a colon (:) and the comment field begins with a semicolon (;).

Not all of the fields may be present in an instruction. In fact, the only part of the
format that is always required is the opcode. For instance, the instruction

MOV CX, 10 ;Initialize the count in CX

has nothing in the label field. Other instructions may not need anything in the operand
field. An example is the instruction

CLC ;Clear the carry flag

One rule that must be followed when writing assembly language statements for
MASM is that the fields must be separated by at least one blank space and, if no label is
used, the opcode field must be preceded by at least one space.

Let us now look at each field of an assembly language source statement in more
detail. We begin with the label field. It is used to give a symbolic name to an assembly
language statement. When a symbolic name is given to an assembly language state-
ment, other instructions in the program can reference the statement by simply referring

318

Assembly Language Program Development with MASM

to this symbol instead of the actual memory address where the instruction is stored.
Consider the example,

.

.
JMP START
.
.
.

START: MOV CX, 10 ; Initialize the count in CX
.
.

Here execution of the jump instruction causes program execution to pass to the point in
the program corresponding to label START—that is, the MOV instruction that is located
further down in the program.

The label is an arbitrarily selected string of alphanumeric characters followed by a
colon (:). Some examples of valid labels are START, LOOPA, SUBROUTINE_A, and
COUNT_ROUTINE. As in our earlier example, the names used for labels are typically
selected to help document what is happening at that point of the program.

There are some limitations on the selection of labels. For instance, the assembler
recognizes only the first 31 characters of the label; moreover, the first character of the
label must be a letter.

Another restriction is that reserved symbols, such as those used to refer to the inter-
nal registers of the processor (AH, AL, AX, etc.), cannot be used. Still another restriction
is that a label cannot include embedded blanks. This is the reason that the earlier exam-
ple COUNT_ROUTINE has an underscore character (_) separating the two words. Use of
the underscore makes the assembler view the character string as a single label.

Each of the basic operations that can be performed by the microprocessor is identi-
fied with a three- to six-letter mnemonic, which is called its operation code (opcode). For
example, the mnemonics for the add, subtract, and move operations are ADD, SUB, and
MOV, respectively. It is these mnemonics that are entered into the opcode field during the
writing of the assembly language statements.

The entries in the operand field tell where the data to be processed is located and
how it is to be accessed. An instruction may have zero, one, or two operands. For exam-
ple, the move instruction that follows has two operands:

MOV AX, BX

Here the two operands are the accumulator (AX) register and the base (BX) register. Note
that a comma separates the operands. Furthermore, assembly language instructions are
written with the destination operand first. Therefore, BX is the source operand (the “move
from” location) and AX is the destination operand (the “move to” location). In this way,
we see that the operation performed by the instruction is to move the value held in BX into
AX. The notations used to identify the processor’s internal registers are shown in Fig. 1.

A number of addressing modes are provided for the 8088/8086 processor to help us
in specifying the location of operands. Examples using each of the addressing modes are

319

Figure 1 Symbols used for specify-
ing register operands.

Addressing mode Operand Example Segment

Register Destination MOV AX,15H –

Immediate Source MOV AL,15H –

Direct Destination MOV 15H,AX Data

Register indirect Source MOV AX,[SI] Data
MOV AX,[BP] Stack
MOV AX,[DI] Data
MOV AX,[BX] Data

Based Destination MOV [BX]+DISP,AL Data
MOV [BP]+DISP,AL Stack

Indexed Source MOV AL,[SI] Data
MOV AL,[DI] Data

Based indexed Destination MOV [BX] [SI]+DISP,AH Data
MOV [BX] [DI]+DISP,AH Data
MOV [BP] [SI]+DISP,AH Stack
MOV[BP] [DI]+DISP,AH Stack

Figure 2 Examples using the addressing modes.

provided in Fig. 2. For example, the instruction that specifies an immediate data operand
simply includes the value of the piece of data or a symbol representing the value in the
operand location. On the other hand, if the operand is a direct address, it is specified
enclosing the value of the memory address or its symbol in brackets.

Assembly Language Program Development with MASM

320

The comment field can be used to describe the operation performed by the instruc-
tion. It is preceded by a semicolon (;). For instance, in the instruction

MOV AX, BX ;Copy BX into AX

the comment tells us that execution of the instruction causes the value in source register
BX to be copied into the destination register AX.

The assembler program ignores comments when it assembles a program. Com-
ments are produced only in the source listing. This does not mean that comments are not
important. In fact, they are very important, because they document the operation of the
source program. If a program were picked up a long time after it was written—for
instance, for a software update—the comments would permit the programmer to quickly
understand its operation.

Directive Statement Syntax

The syntax used to write directive statements for MASM is essentially the same as
that for an assembly language statement. The general format is

LABEL: DIRECTIVE OPERAND(S) ;COMMENT(S)

Note that the only difference is that the instruction opcode is replaced with a directive. It
tells the assembler which type of operation is to be performed. For example, the directive
DB stands for define byte, and if a statement is written as

DB 0FFH ;Allocate a byte location initialized to FFH

it causes the next byte location in memory to be loaded with the value FF16. This type of
command can be used to initialize memory locations with data.

Another difference between the directive statement and an assembly language
statement is that directives frequently have more than two operands. For instance, the
statement

DB 0FFH, 0FFH, 0FFH, 0FFH, 0FFH

causes the assembler to load the next five consecutive bytes in memory with the value
FF16.

Constants in a Statement

Constants in an instruction or directive, such as an immediate value of data or an
address, can be expressed in any one of many data types. Some examples are the binary,
decimal, hexadecimal, octal, and character data types. The first four types of data are

Assembly Language Program Development with MASM

321

defined by ending the number with letter B, D, H, and Q, respectively. For example, dec-
imal number 9 is expressed in these data forms as follows:

1001B
9D
9H
11Q

One exception is that decimal numbers do not have to be followed by a D. Therefore, 9D
can also be written simply as 9.

Another variation is that the first digit of a hexadecimal number must always be one
of the numbers in the range 0 through 9. For this reason, hexadecimal A must be written
as 0AH instead of AH.

Typically, data and addresses are expressed in hexadecimal form, and the count for
shift, rotate, and string instructions is more commonly expressed in decimal form.

EXAMPLE 1

The repeat count in CX for a string instruction is to be equal to decimal 255. Assume that
the instruction that is to load the count has the form

MOV CX, XX

where XX stands for the count, which is an immediate operand that is to be loaded into
CX. Show how the instruction should be written.

Solution

Using decimal notation for XX, we write the instruction as

MOV CX, 255D

or just

MOV CX, 255

In hexadecimal, 255 is represented by FF. Therefore, the instruction becomes

MOV CX, 0FFH

The numbers used as operands in assembly language and directive statements can
also be signed (positive or negative) numbers. For decimal numbers, this is done by pre-

Assembly Language Program Development with MASM

322

ceding them with a + or � sign. For example, an immediate count of �10 that is to be
loaded into the CX register with a MOV instruction can be written as

MOV CX, �10

However, for negative numbers expressed in binary, hexadecimal, or octal form, the 2’s
complement of the number must be used.

EXAMPLE 2

The count in a move instruction that is to load CX is to be �10. Write the instruction and
express the immediate operand in binary form.

Solution

The binary form of 1010 is 010102. Forming the 2’s complement by complementing each
bit and adding 1, we get

Therefore, the instruction is written as

MOV CX, 10110B

Character data can also be used as an operand. For instance, a string search opera-
tion may be used to search through a block of ASCII data in memory looking for a spe-
cific ASCII character, such as the letter A. When ASCII data are used as an operand, the
character or string of characters must be enclosed within double quotes. For example, if
the number 1 is to be expressed as character data, instead of numeric data, it is written as
“1”. In a string-compare operation, the data in memory are compared to the contents of
the AL register. Therefore, the character being searched for must be loaded into this reg-
ister. For instance, to load the ASCII value of 1 into AL, we use the instruction

MOV AL, “1”

A second kind of operand specifies a storage location in memory. Such operands
are written using the memory-addressing modes of the microprocessor as shown in Fig.
2. For instance, to specify that an operand is held in a storage location that is the tenth
byte from the beginning of a source block of data located in the current data segment, we
can use register indirect addressing through source-index register SI. In this way, the loca-
tion of the operand is specified as

10[SI] or [SI] � 10 or [SI � 10]

�1
10101

10110

Assembly Language Program Development with MASM

323

Before using this operand, SI must be loaded with an offset that points to the beginning
of the source-data block in memory.

Certain instructions require operands that are a memory address instead of data.
Two examples are the JMP instruction and the CALL instruction. Labels can be used to
identify these addresses. For instance, in the instruction

JMP AGAIN

AGAIN is a label that specifies the “jump to” address. Attributes may also be assigned to
the label. An attribute specifies whether or not a given label is a near, far, external, or
internal label.

Operand Expressions Using the Arithmetic,
Relational, and Logical Operators

The operands we have used to this point have all been constants, variables, or
labels. However, it is also possible to have an expression as an operand. For example, the
instruction

MOV AH, A+2

has an expression for its source operand—that is, the source operand is written as the sum
of variable A and the number 2.

Figure 3 lists the arithmetic, relational, and logical operators that can be used to
form operand expressions for use with the assembler. Expressions that are used for
operands are evaluated as part of the assembly process. As the source program is assem-
bled into an object module, the numeric values for the terms in the operand expressions
are combined using the specified operators. The expression is then replaced with the
resulting operand value in the final object code.

In Fig. 3, the operators are listed in the order of their precedence—that is, the order
in which the assembler performs operations as it evaluates an expression. For instance, if
the expression for an operand is

when the assembler evaluates this expression, the multiplication is performed first, the
division second, and the addition third.

Using parentheses can change the order of precedence. When parentheses are in
use, whatever is enclosed within them is evaluated first. For example, if we modify the
example we just used as follows,

the multiplication still takes place first, but now the addition and then the division follow
it. Use of the set of parentheses has changed the order of precedence.

(A � B * 2) / D

A � B * 2 / D

Assembly Language Program Development with MASM

324

Figure 3 Arithmetic, relational, and logical operators.

Figure 3 shows a simple expression using each of the operators and describes the
function that the assembler performs for them. For example, the operand expression

A SHL n

causes the assembler to shift the value of A to the left by “n” bits.

Assembly Language Program Development with MASM

325

EXAMPLE 3

If and , find the value the assembler assigns to the source operand for the
instruction

Solution

The expression is evaluated as

and using hexadecimal notation, we get the instruction

MOV BH, 0FH

All the examples we have considered so far have used arithmetic operators. Let us
now take an example of a relational operator. Figure 3 shows that there are six relational
operators: equal (EQ), not equal (NE), less than (LT), greater than (GT), less than or
equal (LE), and greater than or equal (GE). The example expression given for equal is

When the assembler evaluates this relational expression, it determines whether or not the
value of A equals that of B. If they are equal, the operand is made FFFF16; if they are
unequal, the operand is made 000016.

This is true about all relational operators. If by evaluating a relational expression we
find that the conditions it specifies are satisfied, the operand expression is replaced with
FFFF16; if the conditions are not met, the expression 000016 replaces it.

EXAMPLE 4

If , , and , find the value used for the source operand in the
expression

MOV AX, A LE (B � C)

Solution

Substituting into the expression, we get

234 LE 234

234 LE (345 � 111)

C � 111B � 345A � 234

A EQ B

 � 15

 � (30) / (2)

 (8 * 4 � 2) / (5 � 3) � (32 � 2)/(2)

MOV BH, (A * 4 � 2)/(B � 3)

B � 5A � 8

Assembly Language Program Development with MASM

326

Figure 4 Value-returning and attribute operators.

Since the relational operator is satisfied, the instruction is equivalent to

MOV AX, 0FFFFH

The logical operators shown in Fig. 3 are similar to the arithmetic and relational opera-
tors; with these operators, the assembler performs the appropriate sequence of logic oper-
ations and then assigns the result to the operand.

Value-Returning and Attribute Operators

Two other types of operators are available for use with operands: the value-return-
ing operators and the attribute operators. The operators in each group, along with an
example expression and description of their function, are given in Fig. 4.

Assembly Language Program Development with MASM

327

The value-returning operators return the attribute (segment, offset, or type) value of
a variable or label operand. For instance, assuming that the variable A is in a data seg-
ment, the instructions

MOV AX, SEG A
MOV SI, OFFSET A
MOV CL, TYPE A

when assembled cause the 16-bit segment value for A to replace SEG A, the 16-bit off-
set for variable A to replace OFFSET A, and the type number of the variable A to replace
TYPE A, respectively. Assuming that A is a data byte, the value 1 will be assigned to
TYPE A.

The attribute operators give the programmer the ability to change the attributes of
an operand or label. For example, operands that use the BX, SI, or DI registers to hold the
offset to their storage locations in memory are automatically referenced with respect to
the contents of the DS register. An example is the instruction

MOV AX, [SI]

We can use the segment override attribute operator to select another segment register. For
instance, to select the extra segment register, the instruction is written as

MOV AX, ES:[SI]

▲ 2 ASSEMBLER DIRECTIVES

The primary function of an assembler program is to convert the assembly language
instructions of the source program to their corresponding machine instructions. However,
practical assembly language source programs do not consist of assembly language state-
ments only; they also contain what are called directive statements. In this section, we will
examine what a directive is, what directives are available in MASM, and how to use them
in an assembly language source program.

The Directive

In Section 1, we introduced the syntax of a directive statement and found that it dif-
fers from the assembly language instruction statement in that it is a direction that tells the
assembler how to assemble the source program instead of an instruction to be processed
by the microprocessor. That is, directives are statements written in the source program but
are meant only for use by the assembler program. The assembler program follows these
directions during the assembling of the program, but does not produce any machine code
for them.

Figure 5 presents a partial list of the directives provided in MASM. Notice that they
are grouped into categories based on the type of operation they specify to the assembler.
These categories are the data directives, conditional directives, macro directives, and
listing directives. Note that each category contains a number of different directives. Here

Assembly Language Program Development with MASM

328

Type Directives

Data ASSUME ENDS NAME
COMMENT EQU ORG
DB or BYTE �(Equal PROC
DD or DWORD Sign) PUBLIC
DQ or GWORD EVEN .RADIX
DT or TBYTE EXTRN RECORD
DW or WORD GROUP SEGMENT
END INCLUDE STRUC
ENDP LABEL

Conditional ELSE IFDEF IFNB
ENDIF IFDIF IFNDEF
IF IFE IF1
IFB IFIDN IF2

Macro ENDM IRPC PURGE
EXITM LOCAL REPT
IRP MACRO

Listing .CREF PAGE TITLE
.LALL .SALL .XALL
.LFCOND .SFCOND .XCREF
.LIST SUBTTL .XLIST
%OUT .TFCOND

Figure 5 Assembler directives.

Directive Meaning Function

EQU Equate Assign a permanet value to a symbol

= Equal to Set or redefine the value of a symbol

DB or BYTE Define byte Define or initialize byte size variables or locations

DW or WORD Define word Define or initialize word size (2 byte) variables or
locations

DD or DWORD Define double word Define or initialize double word size (4 byte)
variables or locations

Figure 6 Commonly used data directives.

we will consider only the most frequently used subset of the directives in these categories.
For information on those directives not covered here, the reader should consult the man-
ual provided with the MASM macroassembler.

Data Directives

The primary purpose of the directives in the data group is to define values for con-
stants, variables, and labels. They can also perform other functions, such as assigning a
size to a variable and reserving storage locations in memory. Figure 6 lists the most com-
monly used directives for handling these types of data operations.

Assembly Language Program Development with MASM

329

The first two data directives in Fig. 6 are equate and equal to. In a statement, they
are written as EQU and =, respectively. Both of these directives can be used to assign a
constant value to a symbol. For example, the symbol AA can be set equal to 010016 with
the statement

AA EQU 0100H

The value of the operand can also be assigned using the arithmetic, relational, or logic
expressions discussed in Section 1. An example that uses an arithmetic expression to
define an operand is

BB EQU AA+5H

In this statement, the symbol BB is assigned the value of symbol AA plus 5. These two
operations can also be done using the = directive. This gives the statements

AA = 0100H
BB = AA+5H

Once these values are assigned to AA and BB, they can be referenced elsewhere in the
program by just using symbols.

The difference between the EQU and = directives lies in the fact that the value
assigned to the symbol using EQU cannot be changed, whereas when = is used to define
the symbol, its value can be changed anywhere in the program.

AA EQU 0100H
BB EQU AA+5H

.

.

.
BB EQU AA+10H ;This is illegal

Here AA is set equal to 010016 and BB to 010516; the value of BB cannot be changed with
the third EQU statement. On the other hand, if we use = directives as follows,

AA = 0100H
BB = AA+5H

.

.

.
BB = AA+10H ;This is legal

BB is assigned the new value of as the third = directive is processed by the
assembler.

The other three directives given in Fig. 6 are define byte (DB), define word (DW),
and define double word (DD). The purpose of these directives is to define the size of vari-
ables as being byte, word, or double word in length, allocate space for them, and assign

AA � 10H

Assembly Language Program Development with MASM

330

them initial values. If the initial value of a variable is not known, the DB, DW, or DD
statement simply allocates a byte, word, or double word of memory to the variable name.

An example of the DB directive is

CC DB 7

Here, variable CC is defined as byte size and assigned the value It is important to note
that the value assigned with a DB, DW, or DD statement must not be larger than the max-
imum number that can be stored in the specified-size storage location. For instance, for a
byte-size variable, the maximum decimal value is 255 for an unsigned number and +127
or �128 for a signed number.

Here is another example:

EE DB ?

In this case, a byte of memory is allocated to the variable EE, but no value is assigned to
it. Note that the use of a ? as the operand means that an initial value is not to be assigned.

Look at another example:

MESSAGE DB “JASBIR”

Here each character in the string JASBIR is allocated a byte in memory, and these bytes
are initialized with the ASCII code for the corresponding character. This is the way
ASCII data are assigned to a name.

If we need to initialize a large block of storage locations with the same value, the
assembler provides a way of using the byte, word, or double-word directive to repeat a
value. An example is the statement

TABLE_A DB 10 DUP(?), 5 DUP(7)

This statement causes the assembler to allocate 15 bytes of memory for TABLE_A. The
first ten bytes of this block of memory are left uninitialized, and the next five bytes are all
initialized with the value 7. Note that use of duplicate (DUP) tells the assembler to dupli-
cate the value enclosed in parentheses a number of times equal to the number that pre-
cedes DUP.

If each element of the table were to be initialized to a different value, the DB com-
mand would be written in a different way. For example, the command

TABLE_B DB 0,1,2,3,4,5,6,7,8,9

sets up a table called TABLE_B and assigns to its ten storage locations the decimal val-
ues 0 through 9.

Segment-Control Directives

Memory of the 8088/8086-based microcomputer is partitioned into three kinds of
segments: the code segment, data segments, and stack segment. The code segment is
where machine-code instructions are stored, the data segments are for storage of data, and

Assembly Language Program Development with MASM

331

Figure 8 Align-type attributes.

Directive Function

SEGMENT Defines the beginning of a segment and specifies its kind, at what type of address
boundary it is to be stored in memory, and how it is to be positioned with respect to other
similar segments in memory

ENDS Specifies the end of a segment

ASSUME Specifies the segment address register for a given segment

Figure 7 Segment directives.

the stack segment is for a temporary storage location called the stack. Using the segment-
control directives in Fig. 7, the statements of a source program can be partitioned and
assigned to a specific memory segment. These directives can be used to specify the begin-
ning and end of a segment in a source program and assign to them attributes such as a
start address, the kind of segment, and how the segment is to be combined with other seg-
ments of the same name.

A segment (SEGMENT) directive identifies the beginning of a segment and its
end is marked by the end of segment (ENDS) directive. Here is an example of a segment
definition:

SEGA SEGMENT PARA PUBLIC ‘CODE’
MOV AX, BX
.
.

SEGA ENDS

As shown, the information between the two directive statements is the instructions of the
assembly language program.

In this example, SEGA is the name given to the segment. The directive SEGMENT
is followed by the operand PARA PUBLIC ‘CODE.’ Here PARA (paragraph) defines
that this segment is to be aligned in memory on a 16-byte address boundary. This part of
the operand is called the align-type attribute. The other align-type attributes that can also
be used are given in Fig. 8 with a brief description of their function.

PUBLIC, which follows PARA in the operand of the example SEGMENT directive,
defines what is called a combine-type attribute. It specifies that this segment is to be con-

Assembly Language Program Development with MASM

332

Figure 9 Combine-type attributes.

Figure 10 Class attributes.

catenated with all other segments that are assigned the name SEGA to generate one phys-
ical segment called SEGA. Other combine-type attributes are given in Fig. 9.

The last part of the operand in the SEGMENT statement is ‘CODE,’ which is an
example of a class attribute. It specifies that the segment is a code segment. Figure 10
shows other segment classes.

At the end of the group of statements to be assigned to the code segment there must
be an ENDS directive. Figure 7 shows that this statement is used to mark the end of the
segment. ENDS must also be preceded by the segment name, which is SEGA in our
example.

The third directive in Fig. 7, assume (ASSUME), is used to assign the segment reg-
isters that hold the base addresses to the program segments. For instance, with the state-
ment

ASSUME CS:SEGA, DS:SEGB, SS:SEGC

we specify that register CS holds the base address for segment SEGA, register DS holds
the base address for segment SEGB, and register SS holds the base address for segment
SEGC. The ASSUME directive is written at the beginning of a code segment just after the
SEGMENT directive.

Figure 11 shows the general structure of a code segment definition using the seg-
ment control directive.

Modular Programming Directives

For the purpose of development, large programs are broken down into small seg-
ments called modules. Typically, each module implements a specific function and has its

Assembly Language Program Development with MASM

333

Figure 11 Example using segment-
control directives.

Directive Function

proc-name PROC [NEAR] Defines the beginning of a near-proc procedure

proc-name PROC FAR Defines the beginning of a far-proc procedure

proc-name ENDP Defines the end of a procedure

PUBLIC Symbol[.......] The defined symbols can be referenced from other modules

EXTRN name:type[....] The specified symbols are defined in other modules and are to
be used in this module

Figure 12 Modular programming directives.

own code segment and data segment. However, it is common that during the execution
of a module, a part of some other module may need to be called for execution or that
data that resides in another module may need to be accessed for processing. To support
capabilities such that a section of code in one module can be executed from another
module or for data to be passed between modules, MASM provides modular program-
ming directives. The most frequently used modular programming directives are listed in
Fig. 12.

A section of a program that can be called for execution from other modules is called
a procedure. Similar to the definition of a segment of a program, the beginning and end
of a procedure must be marked with directive statements. The procedure (PROC) direc-
tive marks the beginning of the procedure, and the end of procedure (ENDP) directive
marks its end.

There are two kinds of procedures: a near procedure and a far procedure. When-
ever a procedure is called, the return address has to be saved on the stack. After complet-
ing the code in the called procedure, this address is used to return execution back to the
point of its initiation. When a near procedure is called into operation, only the code off-
set address (contents of IP) is saved on the stack. Therefore, a near procedure can only be
called from the same code segment. On the other hand, when a far procedure is called,
both the contents of the code segment (CS) register and the code offset (IP) register are
saved on the stack. For this reason, a far procedure can be called from any code segment.
Depending on the kind of procedure, the return (RET) instruction at the end of the pro-
cedure restores either IP or both IP and CS from the stack.

If a procedure can be called from other modules, its name must be made public by
using the PUBLIC directive. This is done before entering the procedure. Thus, the struc-
ture for defining a procedure with name SUB_NEAR will be

Assembly Language Program Development with MASM

334

PUBLIC SUB_NEAR
SUB_NEAR PROC

.

.

.
RET

SUB_NEAR ENDP

In this example the PROC does not have either the NEAR or FAR attribute in its operand
field. When no attribute is specified as an operand, NEAR is assumed as the default
attribute by the assembler. In this way, we see that this procedure can be called only from
other modules in the same code segment.

The structure of a far procedure that can be called from modules in other segments is

PUBLIC SUB_FAR
SUB_FAR PROC FAR

.

.

.
RET

SUB_FAR ENDP

If a procedure in another module is to be called from the current module, its name
must be declared external in the current procedure by using the external reference (EXTRN)
directive. It is also important to know whether this call is to a module in the same code seg-
ment or in a different code segment. Depending on the code segments, the name of the pro-
cedure must be assigned either a NEAR or FAR attribute as part of the EXTRN statement.

The example in Fig. 13 illustrates the use of the EXTRN directive. Here we see that
an external call is made from module 2 to the procedure SUB that resides in module 1.
Therefore, the procedure SUB is defined as PUBLIC in module 1. Note that the two mod-
ules have different code segments, CSEG1 and CSEG2. Thus, the external call in module 2
is to a far procedure. Therefore, the PROC directive for SUB in module 1 and the external
label definition of SUB in module 2 have the FAR attribute attached to them.

Directives for Memory Usage Control

If the machine code generated by the assembler must reside in a specific part of the
memory address space, an origin (ORG) directive can be used to specify the starting point
of that memory area. Fig. 14 shows that the operand in the ORG statement can be an
expression. The value that results from this expression is the address at which the
machine code is to begin loading. For example, the statement

ORG 100H

simply tells the assembler that the machine code for subsequent instructions is to be
placed in memory starting at address 10016. This directive statement is normally located
at the beginning of the program.

Assembly Language Program Development with MASM

335

Directive Function

ORG [expression] Specifies the memory address starting from which the machine code must be placed

END [expression] Specifies the end of the source program

Figure 14 ORG and END directives.

If specific memory locations must be skipped—for example, because they are in a
read-only area of memory—one can use ORG directives as follows:

ORG 100H
ORG $+200H

in which case memory locations 10016 to 2FF16 are skipped and the machine code of the
program starts at address 30016.

The End-of-Program Directive

The end (END) directive, also shown in Fig. 14, tells the assembler when to stop
assembling. It must always be included at the end of the source program. Optionally, we
can specify the starting point of the program with an expression in the operand field of
the END statement. For instance, an END statement can be written as

END PROG_BLOCK

where PROG_BLOCK identifies the beginning address of the program.

Figure 13 An example showing the use of the EXTRN directive.

Assembly Language Program Development with MASM

336

Directive Function

PAGE operand_1 operand_2 Selects the number of lines printed per page and the maximum
number of characters printed per line in the listing

TITLE text Prints “text” on the second line of each page of the listing

SUBTTL text Prints “text” on the third line of each page of the listing

Figure 15 Listing control directives.

Directive for Program Listing Control

The last group of directives we will consider is called the listing control directives.
The most widely used ones in this group are shown in Fig. 15. The purpose of the listing
control directives is to give the programmer some options related to the way in which
source program listings are produced by the assembler. For instance, we may want to set
up the print output such that a certain number of lines are printed per page, or we may
want to title the pages of the listing with the name of the program.

The page (PAGE) directive lets us set the page width and length of the source list-
ing produced as part of the assembly process. For example, if the PAGE directive

PAGE 50 100

is encountered at the beginning of a source program, then each printed page will have 50
lines and up to 100 characters in a line. The first operand, which specifies the number of
lines per page, can be any number from 10 through 255. The second operand, which spec-
ifies the maximum number of characters per line, can range from 60 to 132. The default
values for these parameters are 66 lines per page and 80 characters per line. The default
parameters are selected if no operand is included with the directive.

Chapter and page numbers are printed at the top of each page in a source listing.
They are in the form

[chapter number]-[page number]

As the assembler produces the source listing, the page number automatically increments
each time a full page of listing information is generated. On the other hand, the chapter
number does not change as the listing is generated. The only way to change the chapter
number is by using the directive

PAGE +

When this form of the PAGE directive is processed by the assembler, it increments the
chapter count and at the same time resets the page number to 1.

The second directive in Fig. 15 is title (TITLE). When TITLE is included in a
program, it causes the text in the operand field to be printed on the second line of each

Assembly Language Program Development with MASM

337

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

N= 16 ;Bytes to be moved
BLK1ADDR= 100H ;Source block offset address
BLK2ADDR= 120H ;Destination block offset addr
DATASEGADDR= 2000H ;Data segment start address

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS
CODE_SEG SEGMENT ‘CODE’
BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

;To return to DEBUG program put return address on the stack

PUSH DS
MOV AX, 0
PUSH AX

;Setup the data segment address

MOV AX, DATASEGADDR
MOV DS, AX

;Setup the source and destination offset addresses

MOV SI, BLK1ADDR
MOV DI, BLK2ADDR

;Setup the count of bytes to be moved

MOV CX, N

;Copy source block to destination block

NXTPT: MOV AH, [SI] ;Move a byte
MOV [DI], AH
INC SI ;Update pointers
INC DI
DEC CX ;Update byte counter
JNZ NXTPT ;Repeat for next byte
RET ;Return to DEBUG program

BLOCK ENDP
CODE_SEG ENDS

END BLOCK ;End of program

Figure 16 Example source program.

page of the source listing. Similarly, the third directive, subtitle (SUBTTL), prints the text
included in the directive statement on the third line of each page.

Example of a Source Program Using Directives

In order to have our first experience in using directives in a source program, let us
again look at the source code of the block move program. Remember that this program is
written to copy a block of data from a location in memory known as the source block to
another block location called the destination block. This source is repeated in Fig. 16. In
the sections that follow, we will use this program to explore various aspects of the program

Assembly Language Program Development with MASM

338

development process, such as creating a source file, assembling, linking, and debugging.
For now we will just examine the directives used in the program.

The program starts with a TITLE directive statement. The text “BLOCK-MOVE
PROGRAM” included in this statement will be printed on the second line of each page
of the source listing. This text should be limited to 60 characters. The second and third
statements in the program are also directives. The third statement is a comment directive
and is used to place descriptive comments in the program. Note that it begins with
COMMENT and is followed by the text enclosed within the delimiter asterisk (*). This
comment gives a brief description of the function of the program.

There is another way of including comments in a program. This is by using a semi-
colon (;) followed by the text of the comment. The next line in the program is an exam-
ple of this type of comment. It indicates that the next part of the program is used to define
variables that are used in the program. Four “equal to” (=) directive statements follow the
comment. Notice that they equate N to the value 1610, BLK1ADDR to the value 10016,
BLK2ADDR to the value 12016, and DATASEGADDR to the value 200016.

There are two segments in the program: the stack segment and the code segment.
The next three directive statements define the stack segment. They are

STACK_SEG SEGMENT STACK ‘STACK’
DB 64 DUP(?)

STACK_SEG ENDS

In the first statement, the stack segment is assigned the name STACK_SEG; the second
statement allocates a block of 64 bytes of memory for use as stack and leaves this area
uninitialized. The third statement defines the end of the stack.

The code segment is defined between the statements

CODE_SEG SEGMENT ‘CODE’

and

CODE_SEG ENDS

Here CODE_SEG is the name we have used for the code segment. At the beginning of
the code segment an ASSUME directive is used to specify the base registers for the code
and stack segments. Notice that CS is the base register for the code segment, and SS is
the base register for the stack segment. The instruction statements and comments that
form the assembly language program follow this directive.

We also find an END directive at the end of the program. It identifies the end of the
program, and BLOCK in this statement defines the starting address of the source pro-
gram. Processing of this statement tells the assembler that the assembly is complete.

A PROC directive is included at the beginning of the source program, and the
ENDP directive is included at the end of the program. This makes the program segment
a procedure that can be used as a module in a larger program.

Assembly Language Program Development with MASM

339

▲ 3 CREATING A SOURCE FILE WITH AN EDITOR

Now that we have introduced assembly language syntax, the directives, and an example
of an assembly language program, let us continue by looking at how the source-program
file is created on a PC. Source-program files are generated using a program called an
editor. Many editors are available for this purpose. In this section we will use an editor
program called EDIT, provided in the DOS of the PC. We will assume that the reader is
already familiar with the DOS commands and the use of the EDIT program. For this rea-
son, we will only briefly describe how EDIT is used to create a source-program file. For
additional details, the reader should consult the appropriate DOS manual.

EDIT is a menu-driven text editor. That is, a simple key sequence is entered to dis-
play a menu of operations that can be performed. The user selects the desired operation
from the menu and then depresses the return key. At this point, a dialog box is displayed
that describes the operation to be performed. The user fills out the appropriate informa-
tion by typing it in at the keyboard and then presses the return key to initiate the defined
operation. These operations can also be initiated using a mouse.

Figure 17 shows the sequence of events that take place when a source program file
is created with EDIT. As an example, we will enter instructions of the block move pro-
gram in Fig. 16 and save it as the file BLOCK.ASM on a diskette in drive A. The
sequence begins with a command to load and run the editor program. This command is

C:>EDIT A:BLOCK.ASM (↵)

In this command, it is assumed that we are logged onto drive C and the path is set to the
directory that contains the EDIT program. The EDIT program first checks to see if the file
BLOCK.ASM already exists on the diskette in drive A. If it does, the file is read from the
diskette, loaded into memory, and displayed on the screen. This would be the case if an
existing source program were to be corrected or changed.

Looking at the flowchart, we see that the next step is to make the changes in the
program. Then, the program should be carefully examined to verify that no additional
errors were made during the edit process. The last step is to save the modified program in
either the old file or as a file with a new name. Note that a backup file is not automati-
cally made as part of the file-save process of EDIT.

Let us assume that the file BLOCK.ASM does not already exist and go through the
sequence of events that must take place to create the source program. In this case, the
same command can be used to bring up the editor. However, when it comes up, no pro-
gram can be loaded, so the screen remains blank. The lines of the program are simply
typed in one after the other. The TAB key is used to make the appropriate indents in the
statements. For instance, to enter the instruction MOV AX, DATASEGADDR of the pro-
gram in Fig. 16, the user depresses the TAB key once for a single indent and then types
in the word “MOV.” Another TAB is needed to indent again and then the operands
AX, DATASEGADDR are entered. The instruction is now complete, so the user depresses
the return key to position the cursor for entry of the next instruction. This sequence is
repeated until the whole block-move program has been entered. Note that when entering
the instruction with the label NXTPT:, the user enters the label at the left margin and then
depresses TAB to indent to the position for MOV.

Assembly Language Program Development with MASM

340

C:\ _

EDIT A: BLOCK.SRC

Type the program line by line
.
.
.

MOV AX, DATASEGADDR
MOV DS, AX

.

.

.
etc.

Alt-F

Menu to save or print the file
NEW
OPEN

.

.

.
etc.

X

Loaded file not saved. Save it now
<Yes> <No> <Cancel> <Help>

Figure 17 Flowchart for creating and
editing of source files with EDIT.

If errors are made as the instructions of the block-move program are entered, the
user can use the arrow keys to reposition the cursor to the spot that needs to be changed.
Next the delete key (for characters to the right of the cursor) or backspace key (for char-
acters to the left of the cursor) is used to remove the incorrect characters. Then, the cor-
rect character or characters are typed. This process is repeated until all corrections are
made. Actually, the editing capability of EDIT is more versatile than just described. Com-
mands are provided to move, copy, delete, find, or find and replace a character, string of
characters, or block of text. For instance, we may need to change the name of an operand

Assembly Language Program Development with MASM

341

at all places it occurs in a large program. Instead of having to go through the program
instruction by instruction to find each occurrence of the operand, this operation can be
done with a single find-and-replace command.

Assuming that all corrections have been made, we are now ready to save the pro-
gram. At the top of the EDIT screen is a menu bar with four menus: File, Edit, Search,
and Options. The save operations are located under the File menu. To select this menu,
hold down the ALT key and depress the F key (or click on File with the mouse). This
causes a pop-down menu that lists the file commands to appear at the top of the screen.
When the menu appears, the New command is highlighted. Use the arrow-down (↓) key
to move the highlighted area down to the Save As operation. Now depress the return (↵)
key to initiate the file-save operation. This displays the Save As dialog box. If a file that
already existed is being edited, the file’s name will automatically be filled into the dia-
log box. If the filename is to remain the same, simply depress the return key to save the
file; if the name is to be changed, type in the new drive designator and filename infor-
mation before depressing the return key. Since we have assumed that BLOCK.ASM is a
new file, its name must be keyed into the spot for the filename and then the return key
depressed.

At this moment, the source program has been created, verified, and saved, but we
are still in the EDIT program. We are ready to exit EDIT. EXIT is another operation that
is in the File menu. To exit EDIT, depress ALT and then F to display the File pop-down
menu. Use the (↓) key to select Exit (or type X) and then depress the return key. The EDIT
program terminates and the DOS prompt reappears on the screen. We have described the
use of EDIT using keyboard entries to select editor operations. However, if a mouse is
available, moving the mouse cursor to select the operation and then clicking on it can do
these operations more conveniently.

▲ 4 ASSEMBLING AND LINKING PROGRAMS

We have studied the steps involved in writing a program, the assembly language syntax
and directive statements provided in the MASM, the structure of an assembly language
program, and how to create a source program using the EDIT editor. Now is the time to
learn how to bring up MASM, use it to assemble a source-program file into an object-
code file, and examine the other outputs produced by the assembler.

Earlier we said that an assembler is the program used to convert a file that contains
an assembly language source program to its equivalent file of 8088/8086 machine code.
Figure 18 shows that the input to the assembler program is the assembly language source
program. This is the program that is to be assembled. The assembler program reads the
source file and translates it into an object module file and a source listing file.

Source Listing

When the block-move source program shown in Fig. 16 is assembled with
MASM, the source listing shown in Fig. 19 can be produced as an output. The leftmost
column in the source listing contains the starting offset address of a machine-language
instruction from the beginning of the current code segment. For instance, at an offset of
000716, we find the instruction MOV AX, DATASEGADDR. This information is fol-

Assembly Language Program Development with MASM

342

Source
program

Assembler
program

Object
module

Source
listing Figure 18 Assembling a source pro-

gram.

lowed by the bytes of machine code for the instruction, which are equal to B8 2000. The
original source-code instructions and the comments are also shown in the listing.

A symbol table is also produced as part of the source listing. It is a list of all of the
symbols used in the program. The symbol table for our example program is shown at the
end of the source listing in Fig. 19. In this table, each symbol is listed along with its type,
value, and attribute. The types of symbols are label, variable, number, and procedure. For
example, in our example the symbol BLK1ADDR is a number and its value is 010016. For
this symbol, no attribute is indicated. On the other hand, for the symbol NXTPT, which
is a near-label with value 001316, the attribute is CODE_SEG.

If the assembler program identifies syntax errors in the source file while it is being
assembled, the locations of the errors are marked in the source listing file with an error
number and error message. The total number of errors is given at the end of the assem-
bly listing. Looking at this information in the source listing for our example in Fig. 19,
we find that no errors occurred.

Figure 20 shows the listing produced when four syntax errors are found during the
assembly process. Notice how the errors are marked in the source listing. For instance, in the
line of the source listing identified by cblock.asm(54), we find error number A2008. This
error message stands for a syntax error. The error made is that the mnemonic of the instruc-
tion is spelled wrong. It should read DEC CX instead of DCR CX. The source program must
first be edited to correct this error and the other three errors, and then be reassembled.

EXAMPLE 5

What is the meaning of the error code at line 46, identified as cblock.asm(46) in the
source listing of Fig. 20?

Solution

Figure 20 shows the error number as A2006. This error means that a symbol was not
defined. The undefined symbol is N.

The source listing is a valuable aid in correcting errors in the program. Since syntax errors
are marked in the source listing, they can be found and corrected easily. Both the source

Assembly Language Program Development with MASM

343

Figure 19 Source listing produced by assembling the block-move program.

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

=0010 N = 16 ;Bytes to be moved
=0100 BLK1ADDR= 100H ;Source block offset address
=0120 BLK2ADDR= 120H ;Destination block offset addr
=2000 DATASEGADDR= 2000H ;Data segment start address

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 0040[DB 64DUP(?)

00
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX,0
0004 50 PUSH AX

;Set up the data segment address

0007 B8 2000 MOV AX,DATASEGADDR
0008 8E D8 MOV DS,AX

;Set up the source and destination offset addresses

000A BE 0100 MOV SI,BLK1ADDR
000D BF 0120 MOV DI,BLK2ADDR

;Set up the count of bytes to be moved

0010 B9 0010 MOV CX,N

;Copy source block to destination block

and corresponding machine code are provided in the source listing. It also serves as a
valuable tool for identifying and correcting logical errors in the writing of the program.

Object Module

The most important output produced by the assembler is the object-code file. The
contents of this file are called the object module. The object module is a machine-language
version of the program. Even through the object module is the machine code for the source
program, it is still not an executable file that can be directly run on the microcomputer.
That is, in its current state it cannot be loaded with the DEBUG program and run on the
microprocessor in the PC. To convert an object module to an executable machine-code file
(run module), we must process it with the linker. The LINK program performs the link
operation for object code.

Assembly Language Program Development with MASM

344

0013 8A 24 NXTPT: MOV AH,[SI] ;Move a byte
0015 88 25 MOV [DI],AH
0017 46 INC SI ;Update pointers
0018 47 INC DI
0019 49 DEC CX ;Update byte counter

001A 75 F7 JNZ NXTPT ;Repeat for next byte
001C CB RET ;Return to DEBUG program
001D BLOCK ENDP
001D CODE_SEG ENDS

END BLOCK ;End of program

Segments and Groups:

N a m e Size Length Align Combine Class

CODE_SEG 16 Bit 001D Para Private‘CODE’
STACK_SEG. 16 Bit 0040 Para Stack ‘STACK’

Procedures, parameters and locals:

N a m e Type Value Attr

BLOCK. P Far 0000 CODE_SEG Length= 001D Public
NXTPT. L Near 0013 CODE_SEG

Symbols:

N a m e Type Value Attr

BLK1ADDR Number 0100h
BLK2ADDR Number 0120h
DATASEGADDR. Number 2000h
N. Number 0010h

0 Warnings
0 Errors

Figure 19 (continued)

The Link Program and Modular Programming

Let us now look into an important idea behind the use of the LINK program—
that is, modular programming. The program we have been using as an example in this
chapter is quite simple. For this reason, it can be contained easily in a single source
file. However, most practical application programs are very large. For example, a
source program may contain 2,000 assembly language statements. When assembled,
this can result in as much as 4,000 to 6,000 bytes of machine code. For development
purposes, programs of this size are frequently broken down into a number of parts
called modules and different programmers may work on the individual modules. Each
module is written independently, and then all modules are combined together to form
a single executable run module as illustrated in Fig. 21. Note that the LINK program
is the software tool used to combine the modules together. Its inputs are the object
code for modules 1, 2, and 3. Execution of the linker combines these programs into a
single run module.

The technique of writing larger programs as a series of modules has several bene-
fits. First, since several programmers can work on the project simultaneously, the program
is completed in a shorter period of time. Another benefit is that the smaller sizes of the

Assembly Language Program Development with MASM

345

Figure 20 Source listing for assembly of a file with syntax errors.

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes
from one place to another place*

;Define constants used in this program

N = 16 ;Bytes to be moved
cblock.asm(13):error A2008: syntax error:N
=0100 BLK1ADDR= 100H ;Source block offset address
=0120 BLK2ADDR= 120H ;Destination block offset addr
=2000 DATASEGADDR= 2000H ;Data segment start address

0000 STACK_SEG SEGMENT STACK ‘STACK’
0000 0040[DB 64DUP(?)

00
]

0040 STACK_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’
0000 BLOCK PROC FAR

ASSUME CS:CODE_SEG,SS:STACK_SEG

;To return to DEBUG program put return address on the stack

0000 1E PUSH DS
0001 B8 0000 MOV AX,0
0004 50 PUSH AX

;Set up the data segment address

0005 B8 2000 MOV AX,DATASEGADDR
0008 8E D8 MOV DS,AX

;Set up the source and destination offset addresses
cblock.asm(39):error A2008:syntax error:up

000A BE 0100 MOV SI,BLK1ADDR
000D BF 0120 MOV DI,BLK2ADDR

;Set up the count of bytes to be moved

MOV CX,N
cblock.asm(46):error A2006:undefined symbol:N

modules require less time to edit and assemble. For instance, if we were not using mod-
ular programming, to make a change in just one statement, the complete program would
have to be edited, reassembled, and relinked. When using modular programming, only the
module containing the statement that needs to be changed can be edited and reassembled.
Then the new object module is relinked with the rest of the old object modules to gener-
ate a new run module.

A third benefit derived from modular programming is that it makes it easier to reuse
old software. For instance, a new software design may need some functions for which
modules have already been written as part of an old design. If these modules were part of
a single large program, we would need to edit them out carefully and transfer them to the
new source file. However, if these segments of program exist as separate modules, we
may need to do no additional editing to integrate them into the new application.

Assembly Language Program Development with MASM

346

;Copy source block to destination block

001B 8A 24 NXTPT: MOV AH,[SI] ;Move a byte
001D 88 25 MOV [DI],AH

001F 46 INC SI ;Update pointers
0020 47 INC DI

DCR CX ;Update byte counter
cblock.asm(54):error A2008:syntax error:cx
0021 75 F8 JNZ NXTPT ;Repeat for next byte
0023 CB RET ;Return to DEBUG program
0024 BLOCK ENDP
0024 CODE_SEG ENDS

END BLOCK ;End of program

Segments and Groups:

N a m e Size Length Align Combine Class

CODE_SEG 16 Bit 0024 Para Private’CODE’
STACK_SEG. 16 Bit 0040 Para Stack ‘STACK’

Procedures, parameters and locals:

N a m e Type Value Attr

BLOCK. P Far 0000 CODE_SEG Length= 0024 Public
NXTPT. L Near 001B CODE_SEG

Symbols:

N a m e Type Value Attr

BLK1ADDR Number 0100h
BLK2ADDR Number 0120h
DATASEGADDR. Number 2000h

0 Warnings
4 Errors

Figure 20 (continued)

Initiating the Assembly and Linking Processes

To assemble and link a program, we must first ensure that there is a path to the
directories that contain the assembler and linker programs. Assuming that the source pro-
gram is on a diskette, insert the diskette into drive A. The source file diskette should not
be write-protected. Select drive A to be the drive to initiate the command for assembling
and linking. Now the command used to initiate both assembly and linking of files with the
MASM version 6.11 is given as

ML [options] file name [[options] file name]... [/link link-options]

In this command, filename(s) is (are) the file(s) to be assembled and linked. The options
allow one to specify assembly variations, and the link options are for specifying link vari-
ations. There are a number of assembly options, a few of which are considered here. The
option /Fl is used to generate a listing file as part of the assembly process. Similarly /Fm
is used to generate a map file as part of the linking process. If no options are specified,
the linker generates just the object file and the executable file.

Assembly Language Program Development with MASM

347

A:\>ML/Fl/Fm BLOCK ASM
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved

Assembling:BLOCK ASM

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.obj]: BLOCK.obj
Run File [BLOCK.exe]: “BLOCK.exe”
List File [nul,map]: “BLOCK.map”/m
Libraries [.lib]:
Definitions File [nul.def]:

A:\>

Figure 22 Display sequence for initiating assembly of a program.

Figure 21 Linking object modules.

For instance, the command

C:\MASM611>ML BLOCK.ASM (↵)

generates BLOCK.OBJ (the object file) and BLOCK.EXE (the executable file) from the
source file BLOCK.ASM. Similarly, the command

C:\MASM611>ML /Fl /Fm BLOCK.ASM (↵)

generates files BLOCK.OBJ, BLOCK.LST, BLOCK.EXE, and BLOCK.MAP. Figure 22
shows the display sequence used to initiate the assembly process. Figure 19 shows the
source listing produced by this assembly command.

There is an option, /Zm, that enables MASM5.10 compatibility. Inclusion of this
option allows MASM6.11 to assemble programs that were written according to the rules
of MASM version 5.10. This option is useful because it allows a programmer to use older
programs with the new version of the assembler.

Figure 23 shows the map file generated by the above command.

Assembly Language Program Development with MASM

348

Figure 23 Link map file.

Start Stop Length Name Class
00000H 0003FH 00040H STACK_SEG STACK
00040H 0005CH 0001DH CODE_SEG CODE

Program entry point at 0004:0000

Figure 24 Display sequence to initiate linking of object files.

A:\>LINK

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules[.obj]: BLOCK
Run File [BLOCK.exe]:
List File [nul.map]: BLOCK
Libraries [.lib]
Definitions File [nul.def]:

A:\>

There is also an option /C that initiates the assembly process, but without the linker.
This option may be used to generate object files, which can be linked separately using the
link command. The command

C:\MASM611>LINK (↵)

invokes the linker, which further asks the user to supply the names of the object modules.
Figure 24 shows this link process for linking object modules together.

▲ 5 LOADING AND EXECUTING A RUN MODULE

Recall how to bring up the DEBUG program; how to use its commands; and how to load,
execute, and debug the operation of a program. At that time, we loaded the machine code
for the program and data with memory-modify commands. Up to this point in this chap-
ter, we have learned how to form a source program using assembly language and assem-
bler directive statements and how to assemble and link the program into object and run
modules. Here we will load and execute the run module BLOCK.EXE that was produced
in Section 4 for the source program BLOCK.ASM.

You may recall the steps required when we do not have to run module when the
DEBUG program is loaded. We bring up the debugger by typing in DEBUG and depress-
ing (↵). Now that we do have a run module, we will bring up the debugger in a different
way and load the run module at the same time. Issuing the command that follows does this:

C:\DOS>DEBUG A:BLOCK.EXE (↵)

In response to this command, both the DEBUG program and the run module
BLOCK.EXE are loaded into the PC’s memory. As Fig. 25 shows, after loading, the
debug prompt “-” is displayed. Next, the register status is dumped with an R command.
Note that DS is initialized with the value 11C516.

Assembly Language Program Development with MASM

349

Let us now verify that the program has loaded correctly by using the command

-U CS:000 01C (↵)

Comparing the program displayed in Fig. 25 to the source program in Fig. 16, we see that
they are essentially the same. Therefore, the program has been loaded correctly.

Now we will execute the first eight instructions of the program and verify the oper-
ation they perform. To do this, we issue the command

-G =CS:000 013 (↵)

The information displayed at the completion of this command is also shown in Fig. 25.
Here we find that the registers have been initialized as follows: DS contains 200016, AX
contains 200016, SI contains 010016, DI contains 012016, and CX contains 001016.

Figure 25 Loading and executing the run module BLOCK.EXE.

C:\DOS>DEBUG A:BLOCK.EXE
-R
AX=0000 BX=0000 CX=005D DX=0000 SP=0040 BP=0000 SI=0000 DI=0000
DS=11C5 ES=11C5 SS=11D5 CS=11D9 IP=0000 NV UP EI PL NZ NA PO NC
11D9:0000 1E PUSH DS
-U CS:0 1C
11D9:0000 1E PUSH DS
11D9:0001 B80000 MOV AX,0000
11D9:0004 50 PUSH AX
11D9:0005 B80020 MOV AX,2000
11D9:0008 8ED8 MOV DS,AX
11D9:000A BE0001 MOV SI,0100
11D9:000D BF2001 MOV DI,0120
11D9:0010 B91000 MOV CX,0010
11D9:0013 8A24 MOV AH,[SI]
11D9:0015 8825 MOV [DI],AH
11D9:0017 46 INC SI
11D9:0018 47 INC DI
11D9:0019 49 DEC CX
11D9:001A 75F7 JNZ 0013
11D9:001C CB RETF
-G =CS:0 13

AX=2000 BX=0000 CX=0010 DX=0000 SP=003C BP=0000 SI=0100 DI=0120
DS=2000 ES=11C5 SS=11D5 CS=11D9 IP=0013 NV UP EI PL NZ NA PO NC
11D9:0013 8A24 MOV AH,[SI] DS:0100=50
-F DS:100 10F FF
-F DS:120 12F 00
= -G =CS:13 1A

AX=FF20 BX=0000 CX=000F DX=0000 SP=003C BP=0000 SI=0101 DI=0121
DS=2000 ES=11C5 SS=11D5 CS=11D9 IP=001A NV UP EI PL NZ AC PE NC
11D9:001A 75F7 JNZ 0013
-D DS:100 10F
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F
2000:0120 FF 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G

Program terminated normally
-D DS:100 10F
2000:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-D DS:120 12F
2000:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
-Q

C:\DOS>

Assembly Language Program Development with MASM

350

The Fill command is used to initialize the bytes of data in the source and destination
blocks. The storage locations in the source block are loaded with FF16 with the command

-F DS:100 10F FF (↵)

and the storage locations in the destination block are loaded with 0016 with the command

-F DS:120 12F 00 (↵)

Next, we execute down through the program to the JNZ instruction, address 001A16:

-G =CS:013 01A (↵)

To check the state of the data blocks, we use the commands

-D DS:100 10F (↵)
-D DS:120 12F (↵)

Looking at the displayed blocks of data in Fig. 25, we see that the source block is
unchanged and that FF16 has been copied into the first element of the destination block.

Finally, the program is run to completion with the command

-G (↵)

By once more looking at the two blocks of data with the commands

D DS:100 10F (↵)
D DS:120 12F (↵)

we find that the contents of the source block have been copied into the destination block.
DEBUG is used to run a program when we must either debug the operation of the

program or want to understand its execution step by step. If we only want to run a program
instead of observing its operation, we can use another method. The run module (.EXE file)
can be executed at the DOS prompt by simply entering its name followed by (↵). This will
cause the program to be loaded and then executed to completion. For instance, to execute
the run module BLOCK.EXE that resides on a diskette in drive A, we enter

C:\DOS>A:BLOCK (↵)

REVIEW PROBLEMS

Section 1
1. What kind of application program is MASM?

2. What are the two types of statements in a source program?

3. What is the function of an assembly language instruction?

Assembly Language Program Development with MASM

351

4. What is the function of a directive?

5. What are the four elements of an assembly language statement?

6. What part of the instruction format is always required?

7. What are the two limitations on format when writing source statements for the
MASM?

8. What is the function of a label?

9. What is the maximum number of characters in a label that the MASM will recognize?

10. What is the function of the opcode?

11. What is the function of operands?

12. In the instruction statement

SUB_A: MOV CL, 0FFH

what is the source operand and destination operand?

13. What is the purpose of the comment field? How does an assembler process comments?

14. Give two differences between an assembly language statement and a directive statement.

15. Write the instruction MOV AX, [32728D] with the source operand expressed both in
binary and hexadecimal forms.

16. Rewrite the jump instruction JMP +25D with the operand expressed both in binary
and hexadecimal forms.

17. Repeat Example 4 with the values , , and .

Section 2
18. Give another name for a directive.

19. List the names of the directive categories.

20. What is the function of the data directive?

21. What happens when the statements

SRC_BLOCK = 0100H
DEST_BLOCK = SRC_BLOCK + 20H

are processed by MASM?

22. Describe the difference between the EQU and = directive.

23. What does the statement

SEG_ADDR DW 1234H

do when processed by the assembler?

24. What happens when the statement

BLOCK_1 DB 128 DUP(?)

is processed by the assembler?

C � 111B � 234A � 345

Assembly Language Program Development with MASM

352

25. Write a data directive statement to define INIT_COUNT as word size and assign it
the value F00016.

26. Write a data directive statement to allocate a block of 16 words in memory called
SOURCE_BLOCK, but do not initialize them with data.

27. Write a directive statement that will initialize the block of memory storage locations allo-
cated in problem 26 with the data values 0000H, 1000H, 2000H, 3000H, 4000H, 5000H,
6000H, 7000H, 8000H, 9000H, A000H, B000H, C000H, D000H, E000H, and F000H.

28. What does the statement

DATA_SEG SEGMENT BYTE MEMORY ‘DATA’

mean?

29. Show how the segment-control directives are used to define a segment called
DATA_SEG that is aligned on a word-address boundary, overlaps other segments
with the same name, and is a data segment.

30. What is the name of the smaller segments in which modular programming techniques
specify that programs should be developed?

31. What is a procedure?

32. Show the general structure of a far procedure called BLOCK that is to be accessible
from other modules.

33. What is the function of an ORG directive?

34. Write an origin statement that causes machine code to be loaded at offset 1000H of
the current code segment.

35. Write a page statement that will set up the printout for 55 lines per page and 80 char-
acters per line and a title statement that will title pages of the source listing with
“BLOCK-MOVE PROGRAM.”

Section 3
36. What type of program is EDIT?

37. List the basic editing operations that can be performed using EDIT.

38. What are the names of the four menus in the EDIT menu bar?

39. How could a backup copy of the program in file BLOCK.ASM be created from the
file menu?

Section 4
40. What is the input to the assembler program?

41. What are the outputs of the assembler? Give a brief description of each.

42. What is the cause of the first error statement in the source listing shown in Fig. 20?

43. What is the cause of the error A2008 that is located at the line identified as
cblock.asm(39) in the source listing shown in Fig. 20?

44. Can the output of the assembler be directly executed by the 8088 microprocessor in
the PC?

45. Give three benefits of modular programming.

Assembly Language Program Development with MASM

353

46. What is the input to the LINK program?

47. What are the outputs of the LINK program? Give a brief description of each.

48. What name does the command entry

C:\MASM611>ML /Fl / BLOCK.ASM

assign to each of the input and output files?
49. If three object modules called MAIN.OBJ, SUB1.OBJ, and SUB2.OBJ are to be

combined with LINK, write the response that must be made to the linker’s prompt.
Assume that all three files are on a diskette in drive A.

Section 5
50. Write a DOS command that will load run module LAB.EXE while bringing up the

DEBUG program. Assume that the run module file is on a diskette in drive B.

Section 1
1. Macroassembler.

3. Assembly language instructions tell the MPU what operations to perform.

5. Label, opcode, operand(s), and comment(s).

7. (a) Fields must be separated by at least one blank space.
(b) Statements that do not have a label must have at least one blank space before the

opcode.

9. 31.

11. Operands tell where the data to be processed resides and how it is to be accessed.

13. Document what is done by the instruction or a group of instructions; the assembler
ignores comments.

15. MOV AX,[0111111111011000B]; MOV AX,[7FD8H].

17. MOV AX,0.

Section 2
19. Data directives, conditional directives, macro directives, listing directives.

21. The symbol SRC_BLOCK is given 0100H as its value, and symbol DEST_BLOCK
is given 0120H as its value.

23. The variable SEG_ADDR is allocated word-size memory and is assigned the value
123416.

25. INIT_COUNT DW 0F000H.

27. SOURCE_BLOCK DW 0000H,1000H,2000H,3000H,4000H,5000H,
6000H,7000H,8000H,9000H,A000H,B000H,C000H,D000H,E000H,F000H.

29. DATA_SEG SEGMENT WORD COMMON ’DATA’
.
.

DATA_SEG ENDS

Assembly Language Program Development with MASM

ANSWERS TO SELECTED REVIEW PROBLEMS▲

354

31. A section of program that performs a specific function and can be called for execu-
tion from other modules.

33. An ORG statement specifies where the machine code generated by the assembler for
subsequent instructions will reside in memory.

35. PAGE 55 80
TITLE BLOCK-MOVE PROGRAM

Section 3
37. Move, copy, delete, find, and find and replace.

39. Use Save As operations to save the file under the filenames BLOCK.ASM and
BLOCK.BAK. When the file BLOCK.ASM is edited at a later time, an original copy
will be preserved during the edit process in the file BLOCK.BAK.

Section 4
41. Object module: machine language version of the source program.

Source listing: listing that includes memory address, machine code, source state-
ments, and a symbol table.

of the statement.

45. (a) Since separate programmers can work on the individual modules, the complete
program can be written in a shorter period of time.

(b) Because of the smaller size of modules, they can be edited and assembled in less
time.

(c) It is easier to reuse old software.

47. Run module: executable machine code version of the source program.

Link map: table showing the start address, stop address, and length of each memory
segment employed by the program that was linked.

49. Object Modules[.OBJ]:A:MAIN.OBJ�A:SUB1.OBJ�A:SUB2.OBJ

Assembly Language Program Development with MASM

43. In Fig. 20, this error is in the comment and the cause is a missing “;” at the start

355

This page intentionally left blank

The 8088 and 8086
Microprocessors and
Their Memory and
Input/Output Interfaces

▲ INTRODUCTION

You may already have studied the 8088 and 8086 microprocessors from a software point
of view. You may have found that the 8088 and 8086 are identical from the software point
of view. This is not true of the hardware architectures of the 8088 and 8086 microcom-
puter systems. Now we begin examining the 8088 and 8086 microcomputer from the
hardware point of view. In this chapter, we cover the 8088/8086’s signal interfaces, mem-
ory interfaces, input/output interfaces, and bus cycles. This chapter includes the following
topics:

1 8088 and 8086 Microprocessors

2 Minimum-Mode and Maximum-Mode Systems

3 Minimum-Mode Interface Signals

4 Maximum-Mode Interface Signals

5 Electrical Characteristics

6 System Clock

7 Bus Cycle and Time States

8 Hardware Organization of the Memory Address Space

9 Address Bus Status Codes

From Chapter 8 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

357

The 8088 and 8086 Microprocessors

10 Memory Control Signals

11 Read and Write Bus Cycles

12 Memory Interface Circuits

13 Programmable Logic Arrays

14 Types of Input/Output

15 Isolated Input/Output Interface

16 Input/Output Data Transfers

17 Input/Output Instructions

18 Input/Output Bus Cycles

▲ 1 8088 AND 8086 MICROPROCESSORS

The 8086, announced in 1978, was the first 16-bit microprocessor introduced by Intel
Corporation. A second member of the 8086 family, the 8088 microprocessor, followed it
in 1979. The 8088 is fully software compatible with its predecessor, the 8086. The dif-
ference between these two devices is in their hardware architecture. Just like the 8086, the
8088 is internally a 16-bit MPU. However, externally the 8086 has a 16-bit data bus, and
the 8088 has an 8-bit data bus. This is the key hardware difference. Both devices have the
ability to address up to 1Mbyte of memory via their 20-bit address buses. Moreover, they
can address up to 64K of byte-wide input/output ports.

The 8088 and 8086 are both manufactured using high-performance metal-oxide
semiconductor (HMOS) technology, and the circuitry on their chips is equivalent to
approximately 29,000 transistors. They are housed in a 40-pin dual in-line package. This
package can be mounted into a socket that is soldered to the circuit board or have its leads
inserted through holes in the board and soldered. The signals pinned out to each lead are
shown in Figs. 1(a) and (b), respectively. Many of their pins have multiple functions. For
example, in the pin layout diagram of the 8088, we see that address bus lines A0 through
A7 and data bus lines D0 through D7 are multiplexed. For this reason, these leads are
labeled AD0 through AD7. By multiplexed we mean that the same physical pin carries an
address bit at one time and the data bit at another time.

EXAMPLE 1

At what pin location on the 8088’s package is address bit A16 output? With what other
signal is it multiplexed? What function does this pin serve on the 8086?

Solution

Looking at Fig. 1(a), we find that the signal A16 is located at pin 38 on the 8088 and that
it is multiplexed with signal S3. Figure 1(b) shows us that pin 38 serves the same func-
tions on the 8086.

358

The 8088 and 8086 Microprocessors

Figure 1 (a) Pin layout of the 8088 microprocessor. (Reprinted with permission of Intel
Corporation, © 1981) (b) Pin layout of the 8086 microprocessor. (Reprinted with per-
mission of Intel Corporation, © 1979)

▲ 2 MINIMUM-MODE AND MAXIMUM-MODE SYSTEMS

The 8088 and 8086 microprocessors can be configured to work in either of two modes:
the minimum mode or the maximum mode. The minimum mode is selected by applying
logic 1 to the MN/ input lead. Minimum mode 8088/8086 systems are typically
smaller and contain a single microprocessor. Connecting MN/ to logic 0 selects the
maximum mode of operation. This configures the 8088/8086 system for use in larger sys-
tems and with multiple processors. This mode-selection feature lets the 8088 or 8086 bet-
ter meet the needs of a wide variety of system requirements.

Depending on the mode of operation selected, the assignments for a number of the
pins on the microprocessor package are changed. As Fig. 1(a) shows, the pin functions of
the 8088 specified in parentheses pertain to a maximum-mode system.

MX
MX

359

Figure 2 (a) Signals common to both minimum and maximum modes. (b) Unique min-
imum-mode signals. (c) Unique maximum-mode signals.

The signals of the 8088 microprocessor common to both modes of operation, those
unique to minimum mode and those unique to maximum mode, are listed in Figs. 2(a),
(b), and (c), respectively. Here we find the name, function, and type for each signal. For
example, the signal is in the common group. It functions as a read control output and
is used to signal memory or I/O devices when the 8088’s system bus is set up to read in
data. Moreover, note that the signals hold request (HOLD) and hold acknowledge
(HLDA) are produced only in the minimum-mode system. If the 8088 is set up for max-
imum mode, they are replaced by the request/grant bus access control lines 0 and

1.RQ/GT
RQ/GT

RD

The 8088 and 8086 Microprocessors

360

EXAMPLE 2

Which pins provide different signal functions in the minimum-mode 8088 and minimum-
mode 8086?

Solution

Comparing the pin layouts of the 8088 and 8086 in Fig. 1, we find the following:

1. Pins 2 through 8 on the 8088 are address lines A14 through A8, but on the 8086 they
are address/data lines AD14 through AD8.

2. Pin 28 on the 8088 is the output and on the 8086 it is the output.

3. Pin 34 of the 8088 is the output, and on the 8086 this pin supplies the /S7

output.

▲ 3 MINIMUM-MODE INTERFACE SIGNALS

When minimum mode operation is selected, the 8088 or 8086 itself provides all the con-
trol signals needed to implement the memory and I/O interfaces. Figures 3(a) and (b)
show block diagrams of a minimum-mode configuration of the 8088 and 8086, respec-
tively. The minimum-mode signals can be divided into the following basic groups:
address/data bus, status, control, interrupt, and DMA.

Address/Data Bus

Let us first look at the address/data bus. In an 8088-based microcomputer system,
these lines serve two functions. As an address bus, they are used to carry address infor-
mation to the memory and I/O ports. The address bus is 20 bits long and consists of sig-
nal lines A0 through A19. Of these, A19 represents the MSB and A0 the LSB. A 20-bit
address gives the 8088 a 1Mbyte memory address space. However, only address lines A0

through A15 are used when accessing I/O. This gives the 8088 an independent I/O address
space that is 64Kbytes in length.

The eight data bus lines D0 through D7 are actually multiplexed with address lines
A0 through A7, respectively. For this reason, they are denoted as AD0 through AD7. Data
line D7 is the MSB in the byte of data and D0 the LSB. When acting as a data bus, they
carry read/write data for memory, input/output data for I/O devices, and interrupt-type
codes from an interrupt controller.

Looking at Fig. 3(b), we see that the 8086 has 16 data bus lines instead of 8 as in
the 8088. Data lines are multiplexed with address lines A0 through A15 and are therefore
denoted as AD0 through AD15.

BHESSO

M/IOIO/M

The 8088 and 8086 Microprocessors

361

Figure 3 (a) Block diagram of the minimum-mode 8088 MPU. (b) Block dia-
gram of the minimum-mode 8086 MPU.

The 8088 and 8086 Microprocessors

362

Figure 4 Address bus status codes.
(Reprinted with permission of Intel
Corporation, © 1979)

Status Signals

The four most significant address lines, A19 through A16 of both the 8088 and 8086
are also multiplexed, but in this case with status signals S6 through S3. These status bits
are output on the bus at the same time that data are transferred over the other bus lines.
Bits S4 and S3 together form a 2-bit binary code that identifies which of the internal seg-
ment registers was used to generate the physical address that was output on the address
bus during the current bus cycle. These four codes and the registers they represent are
shown in Fig. 4. Note that the code S4S3 � 00 identifies the extra segment register as the
source of the segment address.

Status line S5 reflects the status of another internal characteristic of the MPU. It is the
logic level of the internal interrupt enable flag. The status bit S6 is always at the 0 logic level.

Control Signals

The control signals are provided to support the memory and I/O interfaces of the
8088 and 8086. They control functions such as when the bus carries a valid address,
which direction data are transferred over the bus, when valid write data are on the bus,
and when to put read data on the system bus. For example, address latch enable (ALE) is
a pulse to logic 1 that signals external circuitry when a valid address is on the bus. This
address can be latched in external circuitry on the 1-to-0 edge of the pulse at ALE.

Using the (IO/memory) line, (data transmit/receive) line, and
(status output) line, the 8088 signals which type of bus cycle is in progress and in which
direction data are to be transferred over the bus. The logic level of tells external cir-
cuitry whether a memory or I/O transfer is taking place over the bus. Logic 0 at this out-
put signals a memory operation, and logic 1 signals an I/O operation. The direction of
data transfer over the bus is signaled by the logic level output at . When this line is
logic 1 during the data transfer part of a bus cycle, the bus is in the transmit mode. There-
fore, data are either written into memory or output to an I/O device. On the other hand,
logic 0 at signals that the bus is in the receive mode. This corresponds to reading
data from memory or input of data from an input port.

Comparing Figs. 3(a) and 3(b), we find two differences between the minimum-mode
8088 and 8086 microprocessors. First, the 8086’s memory/IO control () signal is the
complement of the equivalent signal of the 8088. Second, the 8088’s status signal is
replaced by bank high enable () on the 8086. Logic 0 on this line is used as a mem-
ory enable signal for the most significant byte half of the data bus, D8 through D15. This
line also carries status bit S7.

BHE
SSO
M/IO

DT/R

DT/R

IO/M

SSODT/RIO/M

The 8088 and 8086 Microprocessors

363

The signals read () and write () indicate that a read bus cycle or a write bus
cycle, respectively, is in progress. The MPU switches to logic 0 to signal external
devices that valid write or output data are on the bus. On the other hand, indicates that
the MPU is performing a read of data off the bus. During read operations, one other con-
trol signal, (data enable), is also supplied. It enables external devices to supply data
to the microprocessor.

One other control signal involved with the memory and I/O interface, the READY
signal, can be used to insert wait states into the bus cycle so that it is extended by a num-
ber of clock periods. This signal is provided by way of an external clock generator device
and can be supplied by the memory or I/O subsystem to signal the MPU when it is ready
to permit the data transfer to be completed.

Interrupt Signals

The key interrupt interface signals are interrupt request (INTR) and interrupt
acknowledge (). INTR is an input to the 8088 and 8086 that can be used by an
external device to signal that it needs to be serviced. This input is sampled during the final
clock period of each instruction acquisition cycle. Logic 1 at INTR represents an active
interrupt request. When the MPU recognizes an interrupt request, it indicates this fact to
external circuits with pulses to logic 0 at the output.

The input is also related to the external interrupt interface. For example, exe-
cution of a WAIT instruction causes the 8088 or 8086 to check the logic level at the
input. If logic 1 is found at this input, the MPU suspends operation and goes into what is
known as the idle state. The MPU no longer executes instructions; instead, it repeatedly
checks the logic level of the input waiting for its transition back to logic 0. As

switches to 0, execution resumes with the next instruction in the program. This
feature can be used to synchronize the operation of the MPU to an event in external
hardware.

There are two more inputs in the interrupt interface: nonmaskable interrupt
(NMI) and reset (RESET). On the 0-to-1 transition of NMI, control is passed to a non-
maskable interrupt service routine at completion of execution of the current instruc-
tion. NMI is the interrupt request with highest priority and cannot be masked by soft-
ware. The RESET input is used to provide a hardware reset for the MPU. Switching
RESET to logic 0 initializes the internal registers of the MPU and initiates a reset ser-
vice routine.

DMA Interface Signals

The direct memory access (DMA) interface of the 8088/8086 minimum-mode
microcomputer system consists of the HOLD and HLDA signals. When an external
device wants to take control of the system bus, it signals this fact to the MPU by switch-
ing HOLD to the 1 logic level. For example, when the HOLD input of the 8088 becomes
active, it enters the hold state at the completion of the current bus cycle. When in the
hold state, signal lines AD0 through AD7, A8 through A15, A16/S3 through A19/S6, ,SSO

TEST
TEST

TEST
TEST

INTA

INTA

DEN

RD
WR

WRRD

The 8088 and 8086 Microprocessors

364

, , , , , and INTR are all put into the high-Z state. The 8088 sig-
nals external devices that it is in this state by switching its HLDA output to the 1 logic
level.

▲ 4 MAXIMUM-MODE INTERFACE SIGNALS

When the 8088 or 8086 microprocessor is set for the maximum-mode configuration, it
produces signals for implementing a multiprocessor/coprocessor system environment. By
multiprocessor environment we mean that multiple microprocessors exist in the system
and that each processor executes its own program. Usually in this type of system envi-
ronment, some system resources are common to all processors. They are called global
resources. There are also other resources that are assigned to specific processors. These
dedicated resources are known as local or private resources.

In the maximum-mode system, facilities are provided for implementing allocation
of global resources and passing bus control to other microprocessors sharing the system
bus.

8288 Bus Controller: Bus Commands and Control Signals

Looking at the maximum-mode block diagram in Fig. 5(a), we see that the 8088
does not directly provide all the signals that are required to control the memory, I/O, and
interrupt interfaces. Specifically, the , , , , , and signals
are no longer produced by the 8088. Instead, it outputs a status code on three signals
lines, 0, 1, and 2, prior to the initiation of each bus cycle. This 3-bit bus status code
identifies which type of bus cycle is to follow. 2 1 0 are input to the external bus con-
troller device, the 8288, which decodes them to identify the type of MPU bus cycle. The
block diagram and pin layout of the 8288 are shown in Figs. 6(a) and (b), respectively. In
response, the bus controller generates the appropriately timed command and control
signals.

Figure 7 shows the relationship between the bus status codes and the types of bus
cycles. Also shown are the output signals generated to tell external circuitry which type
of bus cycle is taking place. These output signals are memory read command (),
memory write command (), advanced memory write command (), I/O read
command (), I/O write command (), advanced I/O write command (),
and interrupt acknowledge ().

The 8288 produces one or two of these seven command signals for each bus cycle.
For instance, when the 8088 outputs the code 2 1 0 � 001, it indicates that an I/O read
cycle is to be performed. In turn, the 8288 makes its output switch to logic 0. On
the other hand, if the code 111 is output by the 8088, it is signaling that no bus activity is
to take place; the 8288 produces no command signals.

The other control outputs produced by the 8288 consist of DEN, , and ALE.
These three signals provide the same functions as those described for the minimum mode.
Figure 5(b) shows that the 8288 bus controller connects to the 8086 in the same way as
the 8088, and it also produces the same output signals.

DT/R

IORC
SSS

INTA
AIOWCIOWCIORC

AMWCMWTC
MRDC

SSS
SSS

INTAALEDENDT/RIO/MWR

DENWRRDDT/RIO/M

The 8088 and 8086 Microprocessors

365

Figure 5 (a) 8088 maximum-mode block diagram. (b) 8086 maximum-mode block dia-
gram.

EXAMPLE 3

If the bus status code 2 1 0 equals 101, what type of bus activity is taking place? Which
command output is produced by the 8288?

Solution

Looking at the table in Fig. 7, we see that bus status code 101 identifies a read memory bus
cycle and causes the output of the bus controller to be switched to logic 0.MRDC

SSS

The 8088 and 8086 Microprocessors

366

Figure 5 (continued)

Lock Signal

To implement a multiprocessor system, a signal called lock () is provided
on the 8088 and 8086. This signal is meant to be output (logic 0) whenever the proces-
sor wants to lock out the other processors from using the bus. This would be the case
when a shared resource is accessed. The signal is compatible with the Multibus,
an industry standard for interfacing microprocessor systems in a multiprocessor
environment.

LOCK

LOCK

The 8088 and 8086 Microprocessors

367

Figure 6 (a) Block diagram of the 8288. (Reprinted with permission of Intel
Corporation, © 1979) (b) Pin layout. (Reprinted with permission of Intel Cor-
poration, © 1979)

Figure 7 Bus status codes. (Reprinted with permission of Intel Corporation, © 1979)

Queue Status Signals

Two other signals produced by the 8088 and 8086, in the maximum-mode micro-
computer system, are queue status outputs QS0 and QS1 that form a 2-bit queue status
code, QS1QS0. This code tells the external circuitry what type of information was
removed from the instruction queue during the previous clock cycle. Figure 8 shows the
four different queue status codes. Note that QS1QS0 � 01 indicates that the first byte of
an instruction was taken off the queue. As shown, the fetch of the next byte of the instruc-
tion is identified by the code 11. Whenever the queue is reset due to a transfer of control,
the reinitialization code 10 is output.

The 8088 and 8086 Microprocessors

368

Figure 8 Queue status codes.
(Reprinted with permission of Intel
Corporation, © 1979)

Local Bus Control Signals

In a maximum-mode configuration, the minimum-mode HOLD and HLDA inter-
face of the 8088/8086 is also changed. These two signals are replaced by request/grant
lines / 0 and / 1. They provide a prioritized bus access mechanism for access-
ing the local bus.

▲ 5 ELECTRICAL CHARACTERISTICS

In the preceding sections, the pin layout and minimum- and maximum-mode interface
signals of the 8088 and 8086 microprocessors were introduced. Here we will first look at
the power supply ratings of these processors and then their input and output electrical
characteristics.

Looking at Fig. 1(a), we find that power is applied between pin 40 (Vcc) and pins
1(GND) and 20(GND). Pins 1 and 20 should be connected together. The nominal value
of Vcc is specified as �5 V dc with a tolerance of �10%. This means that the 8088 or
8086 will operate correctly as long as the difference in voltage between Vcc and GND is
greater than 4.5 V dc and less than 5.5 V dc. At room temperature (25°C), both the 8088
and 8086 draw a maximum of 340 mA from the supply.

Let us now look at the dc I/O characteristics of the microprocessor—that is, its
input and output logic levels. These ratings tell the minimum and maximum voltages for
the 0 and 1 logic states for which the circuit will operate correctly. Different values are
specified for the inputs and outputs.

Figure 9 shows the I/O voltage specifications for the 8088. Notice that the mini-
mum logic 1 (high-level) voltage at an output (VOH) is 2.4 V. This voltage is specified for
a test condition that identifies the amount of current being sourced by the output (IOH) as
�400 μA. All processors must be tested during manufacturing to ensure that under this
test condition the voltages at all outputs will remain above the value of VOHmin.

GTRQGTRQ

The 8088 and 8086 Microprocessors

369

Figure 10 Block diagram of the 8284 clock generator. (Reprinted with per-
mission of Intel Corporation, © 1979)

Figure 9 I/O voltage levels.

Input voltage levels are specified in a similar way; except here the ratings identify
the range of voltage that will be correctly identified as a logic 0 or a logic 1 at an input.
For instance, voltages in the range VILmin � �0.5 V to VILmax � �0.8 V represent a valid
logic 0 (lower level) at an input of the 8088.

The I/O voltage levels of the 8086 microprocessor are identical to those for the
8088 as shown in Fig. 9. However, there is one difference in the test conditions. For the
8086, VOL is measured at 2.5 mA instead of 2.0 mA.

▲ 6 SYSTEM CLOCK

The time base for synchronization of the internal and external operations of the micro-
processor in a microcomputer system is provided by the clock (CLK) input signal. At pre-
sent, the 8088 is available in two different speeds. The standard part operates at 5 MHz and
the 8088-2 operates at 8 MHz. On the other hand, the 8086 microprocessor is manufactured
in three speeds: the 5-MHz 8086, the 8-MHz 8086-2, and the 10-MHz 8086-1. The 8284
clock generator and driver IC generates CLK. Figure 10 is a block diagram of this device.

The 8088 and 8086 Microprocessors

370

Figure 11 Connecting the 8284 to
the 8088. (Reprinted with permission
of Intel Corporation, © 1979)

The standard way in which this clock chip is used with the 8088 is to connect either
a 15- or 24-MHz crystal between its X1 and X2 inputs. This circuit connection is shown
in Fig. 11. Note that a series capacitor CL is also required. Its typical value when used
with the 15-MHz crystal is 12 pF. The fundamental crystal frequency is divided by 3
within the 8284 to give either a 5- or 8-MHz clock signal. This signal is internally
buffered and output at CLK. The CLK output of the 8284 can be directly connected to the
CLK input of the 8088. The 8284 connects to the 8086 in exactly the same way.

Figure 12 shows the waveform of CLK. Here we see that the signal is specified at
metal oxide semiconductor (MOS)-compatible voltage levels and not transistor transistor
logic (TTL) levels. Its minimum and maximum low logic levels are VLmin � �0.5 V and
VLmax � 0.6 V, respectively. Moreover, the minimum and maximum high logic levels are
VHmin � 3.9 V and VHmax � Vcc � 1 V, respectively. The period of the clock signal of a
5-MHz 8088 can range from a minimum of 200 ns to a maximum of 500 ns, and the max-
imum rise and fall times of its edges equal 10 ns.

Figure 10 shows two more clock outputs on the 8284: the peripheral clock (PCLK)
and oscillator clock (OSC). These signals are provided to drive peripheral ICs. The clock
signal output at PCLK is half the frequency of CLK. For instance, if an 8088 is operated
at 5 MHz, PCLK is 2.5 MHz. Also, it is at TTL-compatible levels rather than MOS lev-
els. On the other hand, the OSC output is at the crystal frequency, which is three times
that of CLK. Figure 13 illustrates these relationships.

The 8284 can also be driven from an external clock source. The external clock sig-
nal is applied to the external frequency input (EFI). Input is provided for clock
source selection. When it is strapped to the 0 logic level, the crystal between X1 and X2

is used. On the other hand, applying logic 1 to selects EFI as the source of the clock.
The clock sync (CSYNC) input can be used for external synchronization in systems that
employ multiple clocks.

F/C

F/C

Figure 12 CLK voltage and timing
characteristics for a 5-MHz processor.
(Reprinted with permission of Intel
Corporation, © 1979)

The 8088 and 8086 Microprocessors

371

Figure 13 Relationship between CLK and PCLK. (Reprinted with permission
of Intel Corporation, © 1979)

EXAMPLE 4

If the CLK input of an 8086 MPU is to be driven by a 9-MHz signal, what speed version
of the 8086 must be used and what frequency crystal must be attached to the 8284?

Solution

The 8086-1 is the version of the 8086 that can be run at 9 MHz. To create the 9-MHz
clock, a 27-MHz crystal must be used on the 8284.

▲ 7 BUS CYCLE AND TIME STATES

A bus cycle defines the basic operation that a microprocessor performs to communicate
with external devices. Examples of bus cycles are the memory read, memory write,
input/output read, and input/output write. As shown in Fig. 14(a), a bus cycle corresponds
to a sequence of events that start with an address being output on the system bus followed
by a read or write data transfer. During these operations, the MPU produces a series of
control signals to control the direction and timing of the bus.

The bus cycle of the 8088 and 8086 microprocessors consists of at least four clock
periods. These four time states are called T1, T2, T3, and T4. During T1, the MPU puts an
address on the bus. For a write memory cycle, data are put on the bus during state T2 and
maintained through T3 and T4. When a read cycle is to be performed, the bus is first put
in the high-Z state during T2 and then the data to be read must be available on the bus
during T3 and T4. These four clock states give a bus cycle duration of 125 ns � 4 �
500 ns in an 8-MHz 8088 system.

If no bus cycles are required, the microprocessor performs what are known as idle
states. During these states, no bus activity takes place. Each idle state is one clock period
long, and any number of them can be inserted between bus cycles. Figure 14(b) shows
two bus cycles separated by idle states. Idle states are performed if the instruction queue
inside the microprocessor is full and it does not need to read or write operands from
memory.

Wait states can also be inserted into a bus cycle. This is done in response to a
request by an event in external hardware instead of an internal event such as a full queue.

The 8088 and 8086 Microprocessors

372

Figure 14 (a) Bus cycle clock periods. (Reprinted with permission of Intel
Corporation, © 1979) (b) Bus cycle with idle states. (Reprinted with permis-
sion of Intel Corporation, © 1979) (c) Bus cycle with wait states. (Reprinted
with permission of Intel Corporation, © 1979)

In fact, the READY input of the MPU is provided specifically for this purpose. Figure
14(c) shows that logic 0 at this input indicates that the current bus cycle should not be
completed. As long as READY is held at the 0 level, wait states are inserted between
states T3 and T4 of the current bus cycle, and the data that were on the bus during T3 are
maintained. The bus cycle is not completed until the external hardware returns READY
back to the 1 logic level. This extends the duration of the bus cycle, thereby permitting
the use of slower memory and I/O devices in the system.

EXAMPLE 5

What is the duration of the bus cycle in the 8088-based microcomputer if the clock is
8 MHz and two wait states are inserted?

Solution

The duration of the bus cycle in an 8-MHz system is given in general by

tcyc � 500 ns � N �125 ns

The 8088 and 8086 Microprocessors

373

Figure 15 (a) memory bank of the 8088. (b) High and low memory
banks of the 8086. (Reprinted with permission of Intel Corporation, © 1979)

1M � 8

In this expression N stands for the number of wait states. For a bus cycle with two wait
states, we get

tcyc � 500 ns � 2 � 125 ns � 500 ns � 250 ns

� 750 ns

▲ 8 HARDWARE ORGANIZATION OF THE MEMORY
ADDRESS SPACE

From a hardware point of view, the memory address spaces of the 8088- and 8086-based
microcomputers are organized differently. Figure 15(a) shows that the 8088’s memory
subsystem is implemented as a single memory bank. Looking at the block dia-
gram in Fig. 15(a), we see that these byte-wide storage locations are assigned to consec-
utive addresses over the range from 0000016 through FFFFF16. During memory opera-
tions, a 20-bit address is applied to the memory bank over address lines A0 through A19.
It is this address that selects the storage location that is to be accessed. Bytes of data are
transferred between the 8088 and memory over data bus lines D0 through D7.

On the other hand, the 8086’s 1Mbyte memory address space, as shown in Fig.
15(b), is implemented as two independent 512Kbyte banks: the low (even) bank and the
high (odd) bank. Data bytes associated with an even address (0000016, 0000216, etc.)
reside in the low bank, and those with odd addresses (0000116, 0000316, etc.) reside in the
high bank.

1M � 8

The 8088 and 8086 Microprocessors

374

Figure 16 (a) Byte transfer by the
8088. (b) Word transfer by the 8088.

The diagram in Fig. 15(b) shows that for the 8086 address bits, A1 through A19

select the storage location that is to be accessed. They are applied to both banks in paral-
lel. A0 and bank high enable () are used as bank-select signals. Logic 0 at A0 identi-
fies an even-addressed byte of data and causes the low bank of memory to be enabled. On
the other hand, equal to 0 enables the high bank to access an odd-addressed byte of
data. Each of the memory banks provides half of the 8086’s 16-bit data bus. Notice that
the lower bank transfers bytes of data over data lines D0 through D7, while data transfers
for a high bank use D8 through D15.

We just saw that the memory subsystem of the 8088-based microcomputer system
is actually organized as 8-bit bytes, not as 16-bit words. However, the contents of any two
consecutive byte storage locations can be accessed as a word. The lower-addressed byte
is the least significant byte of the word, and the higher-addressed byte is its most signifi-
cant byte. Let us now look at how a byte and a word of data are read from memory.

Figure 16(a) shows how a byte-memory operation is performed to the storage
location at address X. As shown in the diagram, the address is supplied to the memory

BHE

BHE

The 8088 and 8086 Microprocessors

375

bank over lines A0 through A19, and the byte of data is written into or read from storage
location X over lines D0 through D7. D7 carries the MSB of the byte of data, and D0 car-
ries the LSB. This shows that a byte of data is accessed by the 8088 in one bus cycle. A
memory cycle for an 8088 running at 5 MHz with no wait states takes 800 ns.

When a word of data is to be transferred between the 8088 and memory, we must
perform two accesses of memory, reading or writing a byte in each access. Figure 16(b)
illustrates how the word storage location starting at address X is accessed. Two bus cycles
are required to access a word of data. During the first bus cycle, the least significant byte
of the word, located at address X, is accessed. Again the address is applied to the mem-
ory bank over A0 through A19, and the byte of data is transferred to or from storage loca-
tion X over D0 through D7.

Next, the 8088 automatically increments the address so that it now points to byte
address X � 1. This address points to the next consecutive byte storage location in mem-
ory, which corresponds to the most significant byte of the word of data at X. Now a sec-
ond memory bus cycle is initiated. During this second cycle, data are written into or read
from the storage location at address X � 1. Since word accesses of memory take two bus
cycles instead of one, it takes 1.6 ms to access a word of data when the 8088 is operating
at a 5-MHz clock rate with no wait states.

The 8086 microprocessor performs byte and word data transfers differently from
the 8088. Let us next examine the data transfers that can take place in an 8086-based
microcomputer.

Figure 17(a) shows that when a byte-memory operation is performed to address X, an
even-addressed storage location in the low bank is accessed. Therefore, A0 is set to logic
0 to enable the low bank of memory and to logic 1 to disable the high bank. As
shown in the block diagram, data are transferred to or from the lower bank over data bus
lines D0 through D7. Line D7 carries the MSB of the byte, and D0 the LSB.

On the other hand, to access a byte of data at an odd address such as X � 1 in Fig.
17(b), A0 is set to logic 1 and to logic 0. This enables the high bank of memory and
disables the low bank. Data are transferred between the 8086 and the high bank over bus
lines D8 through D15. Here D15 represents the MSB and D8 the LSB.

Whenever an even-addressed word of data is accessed, both the high and low banks
are accessed at the same time. Figure 17(c) illustrates how a word at even address X is
accessed. Note that both A0 and equal 0; therefore, both banks are enabled. In this
case, bytes of data are transferred from or to both banks at the same time. This 16-bit
word is transferred over the complete data bus D0 through D15. The bytes of an even-
addressed word are said to be aligned and can be transferred with a memory operation
that takes just one bus cycle.

A word at an odd-addressed boundary is said to be unaligned. That is, the least sig-
nificant byte is at the lower address location in the high memory bank. This is demon-
strated in Fig. 17(d). Here we see that the odd byte of the word is located at address X �
1 and the even byte at address X � 2.

Two bus cycles are required to access an unaligned word. During the first bus cycle,
the odd byte of the word, which is located at address X � 1 in the high bank, is accessed.
This is accompanied by select signals A0 � 1 and and a data transfer over D8

through D15. Even though the data transfer uses data lines D8 through D15, to the proces-
sor it is the low byte of the addressed data word.

BHE � 0

BHE

BHE

BHE

The 8088 and 8086 Microprocessors

376

Figure 17 (a) Even-address byte transfer by the 8086. (Reprinted with per-
mission of Intel Corporation, © 1979) (b) Odd-address byte transfer by the
8086. (Reprinted with permission of Intel Corporation, © 1979) (c) Even-
address word transfer by the 8086. (Reprinted with permission of Intel Corpo-
ration, © 1979) (d) Odd-address word transfer by the 8086. (Reprinted with
permission of Intel Corporation, © 1979)

The 8088 and 8086 Microprocessors

377

Next, the 8086 automatically increments the address so that A0 � 0. This represents
the next address in memory, which is even. Then a second memory bus cycle is initiated.
During this second cycle, the even byte located at X � 2 in the low bank is accessed.
The data transfer takes place over bus lines D0 through D7. This transfer is accompanied
by A0 � 0 and . To the processor, this is the high byte of the word of data.

EXAMPLE 6

Is the word at memory address 0123116 of an 8086-based microcomputer aligned or mis-
aligned? How many bus cycles are required to read it from memory?

Solution

The first byte of the word is the second byte at the aligned-word address 0123016. There-
fore, the word is misaligned and requires two bus cycles to be read from memory.

▲ 9 ADDRESS BUS STATUS CODES

Whenever a memory bus cycle is in progress, an address bus status code S4S3 is output
by the processor. The status code is multiplexed with address bits A17 and A16. This two-
bit code is output at the same time the data are carried over the data lines.

Bits S4 and S3 together form a 2-bit binary code that identifies which one of the four
segment registers was used to generate the physical address that was output during the
address period in the current bus cycle. The four address bus status codes are listed in
Fig. 4. Here we find that code S4S3 � 00 identifies the extra segment register, 01 identi-
fies the stack segment register, 10 identifies the code segment register, and 11 identifies
the data segment register.

These status codes are output in both the minimum and the maximum modes. The
codes can be examined by external circuitry. For example, they can be decoded with
external circuitry to enable separate 1Mbyte address spaces for ES, SS, CS, and DS. In
this way, the memory address reach of the microprocessor can be expanded to 4Mbytes.

▲ 10 MEMORY CONTROL SIGNALS

Earlier in the chapter we saw that similar control signals are produced in the maximum
and minimum mode. Moreover, we found that in the minimum mode, the 8088 and 8086
microprocessors produce all the control signals. But in the maximum mode, the 8288 bus
controller produces them. Here we will look more closely at each of these signals and
their functions with respect to memory interface operation.

Minimum-Mode Memory Control Signals

In the 8088 microcomputer system shown in Fig. 18, which is configured for
the minimum mode of operation, we find that the control signals provided to support the

BHE � 1

The 8088 and 8086 Microprocessors

378

Figure 18 Minimum-mode 8088 memory interface.

interface to the memory subsystem are ALE, , , , , and . These
control signals are required to tell the memory subsystem when the bus is carrying a valid
address, in which direction data are to be transferred over the bus, when valid write data
are on the bus, and when to put read data on the bus. For example, address latch enable
(ALE) signals external circuitry that a valid address is on the bus. It is a pulse to the 1
logic level and is used to latch the address in external circuitry.

The input-output/memory () and data transmit/receive () lines signal
external circuitry whether a memory or I/O bus cycle is in progress and whether the 8088
will transmit or receive data over the bus. During all memory bus cycles, is held at
the 0 logic level. The 8088 switches to logic 1 during the data transfer part of the
bus cycle, the bus is in the transmit mode, and data are written into memory. On the other
hand, it sets to logic 0 to signal that the bus is in the receive mode, which corre-
sponds to reading of memory.

The signals read () and write () identify that a read or write bus cycle,
respectively, is in progress. The 8088 switches to logic 0 to signal memory that a
write cycle is taking place over the bus. On the other hand, is switched to logic 0
whenever a read cycle is in progress. During all memory operations, the 8088 produces
one other control signal, data enable (). Logic 0 at this output is used to enable the
data bus.

Status line is also part of the minimum-mode memory interface. The logic level
that is output on this line during read bus cycles identifies whether a code or data access is
in progress. is set to logic 0 whenever instruction code is read from memory.

The control signals for the 8086’s minimum-mode memory interface differ in three
ways. First, the 8088’s signal is replaced by the memory/input-output () sig-
nal. Whenever a memory bus cycle is in progress, the output is switched to logic 1.
Second, the signal is removed from the interface. Third, a new signal, bank high
enable (), has been added to the interface. is used as a select input for the highBHEBHE

SSO
M/IO

M/IOIO/M

SSO

SSO

DEN

RD
WR

WRRD

DT/R

DT/R
IO/M

DT/RIO/M

DENWRRDDT/RIO/M

The 8088 and 8086 Microprocessors

379

Figure 19 Maximum-mode 8088 memory interface.

bank of memory in the 8086’s memory subsystem. That is, logic 0 is output on this line
during the address part of all the bus cycles in which data in the high-bank part of mem-
ory is to be accessed.

Maximum-Mode Memory Control Signals

When the 8088 is configured to work in the maximum mode, it does not directly
provide all the control signals to support the memory interface. Instead, an external bus
controller, the 8288, provides memory commands and control signals. Figure 19 shows an
8088 connected in this way.

Specifically, the , , , , ALE, and signal lines on the 8088
are changed. They are replaced with multiprocessor lock () signal, a bus status
code (2 1 0), and a queue status code (QS1QS0). The 8088 still does produce the signal

, which provides the same function as it did in minimum mode.
The 3-bit bus status code 2 1 0 is output prior to the initiation of each bus cycle.

It identifies which type of bus cycle is to follow. This code is input to the 8288 bus con-
troller. Here it is decoded to identify which type of bus cycle command signals must be
generated.

Figure 20 shows the relationship between the bus status codes and the types of bus
cycles produced. Also shown in this chart are the names of the corresponding command
signals that are generated at the outputs of the 8288. For instance, the input code 2 1

0 equal to 100 indicates that an instruction fetch bus cycle is to take place. Since the
instruction fetch is a memory read, the 8288 makes the memory read command ()
output switch to logic 0.

Another bus command provided for the memory subsystem is 2 1 0 equal to 110.SSS

MRDC

SSS

SSS
RD

SSS
LOCK

SSODENDT/RIO/MWR

The 8088 and 8086 Microprocessors

380

Figure 20 Memory bus cycle status codes produced in maximum mode.
(Reprinted with permission of Intel Corporation, © 1979)

This represents a memory write cycle and it causes both the memory write command
() and advanced memory write command () outputs to switch to the 0
logic level.

The other control outputs produced by the 8288 are DEN, , and ALE. These
signals provide the same functions as those produced by the corresponding pins on the 8088
in the minimum system mode.

The two status signals, QS0 and QS1, form an instruction queue code. This code
tells the external circuitry what type of information was removed from the queue during
the previous clock cycle. Figure 8 shows the four different queue statuses. For instance,
QS1QS0 = 01 indicates that the first byte of an instruction was taken from the queue. The
next byte of the instruction that is fetched is identified by queue status code 11. When-
ever the queue is reset (e.g., due to a transfer of control) the reinitialization code 10 is out-
put. Similarly, if no queue operation occurred, status code 00 is output.

The bus priority lock () signal, as shown in the interface, can be used as an
input to a bus arbiter. The bus arbiter is used to lock other processors off the system bus
during accesses of common system resources such as global memory in a multiprocessor
system. The READY signal is used to interface slow memory devices.

All of the memory control signals we just described for the 8088-based microcom-
puter system serve the same function in the maximum-mode 8086 microcomputer. How-
ever, there is one additional control signal in the 8086’s memory interface, the . The

performs the same function as it did in the minimum-mode system. That is, it is
used as an enable input to the high bank of memory.

▲ 11 READ AND WRITE BUS CYCLES

In the preceding section we introduced the status and control signals associated with the
memory interface. Here we continue by studying the sequence in which they occur dur-

BHE
BHE

LOCK

DT/R

AMWCMWTC

The 8088 and 8086 Microprocessors

381

Figure 21 Minimum-mode memory read bus cycle of the 8088. (Reprinted
with permission of Intel Corporation, © 1979)

ing the read and write bus cycles of memory.

Read Cycle

Figure 21 shows the memory interface signals of a minimum-mode 8088 system.
Here their occurrence is illustrated relative to the four time states T1, T2, T3, and T4 of the
8088’s bus cycle. Let us trace the events that occur as data or instructions are read from
memory.

The read bus cycle begins with state T1. During this period, the 8088 outputs the
20-bit address of the memory location to be accessed on its multiplexed address/data bus
AD0 through AD7, A8 through A15, and multiplexed lines A16/S3 through A19/S6. Note
that at the same time a pulse is also produced at ALE. The trailing edge or the high level
of this pulse should be used to latch the address in external circuitry.

Also we see that at the start of T1, signals and are set to the 0 logicDT/RIO/M

The 8088 and 8086 Microprocessors

382

level. This indicates to circuitry in the memory subsystem that a memory cycle is in
progress and that the 8088 is going to receive data from the bus. Status is also out-
put at this time. Note that all three of these signals are maintained at these logic levels
throughout all four periods of the bus cycle.

Beginning with state T2, status bits S3 through S6 are output on the upper four
address bus lines A16 through A19. Remember that bits S3 and S4 identify to external cir-
cuitry which segment register was used to generate the address just output. This status
information is maintained through periods T3 and T4. The part of the address output on
address bus lines A8 through A15 is maintained through states T2, T3, and T4. On the other
hand, address/data bus lines AD0 through AD7 are put in the high-Z state during T2.

Late in period T2, is switched to logic 0. This indicates to the memory subsys-
tem that a read cycle is in progress. is switched to logic 0 to enable external circuitry
to allow the data to move from memory onto the microprocessor’s data bus.

As shown in the waveforms, input data are read by the 8088 during T3. The mem-
ory must provide valid data during T3 and maintain it until after the processor terminates
the read operation. As Fig. 21 shows, it is in T4 that the 8088 switches to the inactive
1 logic level to terminate the read operation. returns to its inactive logic level late
during T4 to disable the external circuitry, which allows data to move from memory to the
processor. The read cycle is now complete.

A timing diagram for the 8086’s memory read cycle is given in Fig. 22(a). Com-
paring these waveforms to those of the 8088 in Fig. 21, we find just four differences;

DEN
RD

DEN
RD

SSO

Figure 22 (a) Minimum-mode memory read bus cycle of the 8086.
(Reprinted with permission of Intel Corporation, © 1979) (b) Maximum-mode
memory read bus cycle of the 8086. (Reprinted with permission of Intel Cor-
poration, © 1979)

The 8088 and 8086 Microprocessors

383

is output along with the address during T1; the data read by the 8086 during T3 can
be carried over all 16 data bus lines; , which replaces , is switched to logic 1
at the beginning of T1 and is held at this level for the duration of the bus cycle; and the

status signal is not produced.
Figure 22(b) shows a read cycle of 8-bit data in a maximum-mode 8086-based

microcomputer system. These waveforms are similar to those given for the minimum-
mode read cycle in Fig. 22(a). Comparing these two timing diagrams, we see that the
address and data transfers that take place are identical. In fact, the only difference found
in the maximum-mode waveforms is that a bus cycle status code, 2 1 0, is output just
prior to the beginning of the bus cycle. This status information is decoded by the 8288 to
produce control signals ALE, , , and DEN.

Write Cycle

Figure 23(a) illustrates the write bus cycle timing of the 8088 in minimum mode. It
is similar to that given for a read cycle in Fig. 21. Looking at the write cycle waveforms,
we find that during T1 the address is output and latched with the ALE pulse. This is iden-
tical to the read cycle. Moreover, is set to logic 0 to indicate that a memory cycle
is in progress and status information is output at . However, this time isDT/RSSO

IO/M

DT/RMRDC

SSS

SSO

IO/MM/IO
BHE

Figure 22 (continued)

The 8088 and 8086 Microprocessors

384

Figure 23 (a) Minimum-mode memory write bus cycle of the 8088.
(Reprinted with permission of Intel Corporation, © 1979) (b) Maximum-mode
memory write bus cycle of the 8086. (Reprinted with permission of Intel Cor-
poration, © 1979)

switched to logic 1. This signals external circuits that the 8088 is going to transmit data
over the bus.

As T2 starts, the 8088 switches to logic 0. This tells the memory subsystem that
a write operation is to follow over the bus. The 8088 puts the data on the bus late in T2

and maintains the data valid through T4. The writing of data into memory starts as
becomes 0, and continues as it changes to 1 early in T4. enables the external cir-
cuitry to provide a path for data from the processor to the memory. This completes the
write cycle.

Just as we described for the read bus cycle, the write cycle of the 8086 differs from
that of the 8088 in four ways; again, is not produced; is output along with the
address; data are carried over all 16 data bus lines; and finally, is the complementM/IO

BHESSO

DEN
WR

WR

The 8088 and 8086 Microprocessors

385

Figure 23 (continued)

of the 8088’s signal. The waveforms in Fig. 23(b) illustrate a write cycle of word
data in a maximum-mode 8086 system.

▲ 12 MEMORY INTERFACE CIRCUITS

This section describes the memory interface circuits of an 8086-based microcomputer
system. The 8086 system was selected instead of an 8088 microcomputer because it is
more complex. Figure 24 shows a memory interface diagram for a maximum-mode 8086-
based microcomputer system. Here we find that the interface includes the 8288 bus con-
troller, address bus latches and an address decoder, data bus transceiver/buffers, and bank
read and write control logic. The 8088 microcomputer is simpler in that the interface does
not require bank write control logic because its address space is organized as a single
bank.

Looking at Fig. 24, we see that bus status code signals 2, 1, and 0, which are out-
puts of the 8086, are supplied directly to the 8288 bus controller. Here they are decoded
to produce the command and control signals needed to coordinate data transfers over the
bus. Figure 20 highlights the status codes that relate to the memory interface. For exam-
ple, the code 2 1 0 � 101 indicates that a data memory read bus cycle is in progress.
This code makes the command output of the bus control logic switch to logic 0.MRDC

SSS

SSS

IO/M

The 8088 and 8086 Microprocessors

386

Figure 24 Memory interface block diagram.

Note in Fig. 24 that is applied to the bank read control logic.
Next let us look at how the address bus is latched, buffered, and decoded. Looking

at Fig. 24, we see that address lines A0 through A19 are latched along with control sig-
nal in the address bus latch. The latched address lines A17L through A19L are
decoded to produce chip enable outputs 0 through 7. Notice that the 8288 bus con-
troller produces the address latch enable (ALE) control signal from 2 1 0. ALE is
applied to the CLK input of the latches and strobes the bits of the address and bank high
enable signal into the address bus latches. The address latch devices buffer these signals.
Latched address lines A1L through A16L and 0 through 7 are applied directly to the
memory subsystem.

During read bus cycles, the output of the bus control logic enables the bytes
of data at the outputs of the memory subsystem onto data bus lines D0 through D15. Dur-
ing read operations from memory, the bank read control logic determines whether the
data are read from one of the two memory banks or from both. This depends on whether

MRDC

CECE

SSS
CECE

BHE

MRDC

The 8088 and 8086 Microprocessors

387

a byte- or word-data transfer is taking place over the bus.
Similarly during write bus cycles, the output of the bus control logic

enables bytes of data from the data bus D0 through D15 to be written into the memory. The
bank write control logic determines to which memory bank the data are written.

Note in Fig. 24 that in the bank write control logic the latched bank high enable
signal and address line A0L are gated with the memory write command signal

to produce a separate write enable signal for each bank. These signals are
denoted as U and L. For example, if a word of data is to be written to memory over
data bus lines D0 through D15, both U and L are switched to their active 0 logic
level. Similarly the memory read control logic uses , A0L, and to generate

U and L signals for bank read control.
The bus transceivers control the direction of data transfer between the MPU and

memory subsystem. In Fig. 24, we see that the operation of the transceivers is controlled
by the DT/ and DEN outputs of the bus controller. DEN is applied to the EN input of
the transceivers and enables them for operation. This happens during all read and write
bus cycles. DT/ selects the direction of data transfer through the devices. Note that it is
supplied to the DIR input of the data bus transceivers. When a read cycle is in progress,
DT/ is set to 0 and data are passed from the memory subsystem to the MPU. On the
other hand, when a write cycle is taking place, DT/ is switched to logic 1 and data are
carried from the MPU to the memory subsystem.

Address Bus Latches and Buffers

The 74F373 is an example of an octal latch device that can be used to implement
the address latch section of the 8086’s memory interface circuit. A block diagram of this
device is shown in Fig. 25(a) and its internal circuitry is shown in Fig. 25(b). Note that it
accepts eight inputs: 1D through 8D. As long as the clock (C) input is at logic 1, the out-
puts of the D-type flip-flops follow the logic level of the data applied to their corre-
sponding inputs. When C is switched to logic 0, the current contents of the D-type flip-
flops are latched. The latched information in the flip-flops is not output at data outputs 1Q
through 8Q unless the output-control () input of the buffers that follow the latches is
at logic 0. If is at logic 1, the outputs are in the high-impedance state. Figure 25(c)
summarizes this operation.

In the 8086 microcomputer system, the 20 address lines (AD0–AD15, A16–A19)
and the bank high enable signal are normally latched in the address bus latch. The
circuit configuration shown in Fig. 26 can be used to latch these signals. Fixing at
the 0 logic level permanently enables latched outputs A0L through A19L and .
Moreover, the address information is latched at the outputs as the ALE signal from the
bus controller returns to logic 0—that is, when the CLK input of all devices is switched
to logic 0.

In general, it is important to minimize the propagation delay of the address signals
as they go through the bus interface circuit. The switching property of the 74F373 latches
that determine this delay for the circuit of Fig. 26 is called enable-to-output propagation
delay and has a maximum value of 13 ns. By selecting fast latches—that is, latches with

BHEL
OC

BHE

OC
OC

R
R

R

R

RDRD
BHELMRDC

WRWR
WRWR

MWTC
BHEL

MWTC

The 8088 and 8086 Microprocessors

388

Figure 25 (a) Block diagram of an octal D-type latch. (b) Circuit diagram of the
74F373. (Courtesy of Texas Instruments Incorporated) (c) Operation of the 74F373.
(Courtesy of Texas Instruments Incorporated).

The 8088 and 8086 Microprocessors

389

Figure 26 Address latch circuit.

a shorter propagation delay time—a maximum amount of the 8086’s bus cycle time is
preserved for the access time of the memory devices. In this way slower, lower cost mem-
ory ICs can be used. These latches also provide buffering for the 8086’s address lines.
The outputs of the latch can sink a maximum of 24 mA.

Bank Write and Bank Read Control Logic

The memory of the 8086 microcomputer is organized in upper and lower banks. It
requires separate write and read control signals for the two banks. The logic circuit in
Fig. 27 shows how the bank write control signals, U for the upper bank and L for
the lower bank can be generated from the bus controller signals , the address bus
latch signals A0L and . Two OR gates are used for this purpose.

Similar to the bank write control logic circuit, the bank read control logic circuit
can be designed to generate U, the read for the upper bank of memory, and L, the
read for the lower bank. Figure 28 illustrates such a circuit. Note that the circuit uses the

signal from the bus controller.

Data Bus Transceivers

MRDC

RDRD

BHEL
WRTC

WRWR

The 8088 and 8086 Microprocessors

390

A0L

7432

7432

BHEL

MWTC
WRU

WRL

Figure 27 Bank write control logic.

A0L

7432

7432

BHEL

MRDC
RDU

RDL

Figure 28 Bank read control logic.

The data bus transceiver block of the bus interface circuit can be implemented with
74F245 octal bus transceiver ICs. Figure 29(a) shows a block diagram of this device.
Note that its bidirectional input/output lines are called A1 through A8 and B1 through B8.
Looking at the circuit diagram in Fig. 29(b), we see that the input is used to enable
the buffer for operation. On the other hand, the logic level at the direction (DIR) input
selects the direction in which data are transferred through the device. For instance, logic
0 at this input sets the transceiver to pass data from the B lines to the A lines. Switching
DIR to logic 1 reverses the direction of data transfer.

Figure 30 shows a circuit that implements the data bus transceiver block of the bus
interface circuit using the 74F245. For the 16-bit data bus of the 8086 microcomputer,
two devices are required. Here the DIR input is driven by the signal data transmit/receive
(), and is supplied by data bus enable (DEN). These signals are outputs of theGDT/R

G

The 8088 and 8086 Microprocessors

391

Figure 29 (a) Block diagram of the
74F245 octal bidirectional bus trans-
ceiver. (b) Circuit diagram of the
74F245. (Courtesy of Texas Instru-
ments Incorporated)

8288 bus controller.
Another key function of the data bus transceiver circuit is to buffer the data bus

lines. This capability is defined by how much current the devices can sink at their outputs.
The IOL rating of the 74F245 is 64 mA.

Address Decoders

The 8088 and 8086 Microprocessors

392

Figure 30 Data bus transceiver circuit.

Figure 31 Address bus configuration with address decoding.

As shown in Fig. 31, the address decoder in the 8086 microcomputer system is
located at the output side of the address latch. A typical device used to perform this
decode function is the 74F139 dual 2-line to 4-line decoder. Figures 32(a) and (b) show a
block diagram and circuit diagram for this device, respectively. When the enable ()
input is at its active 0 logic level, the output corresponding to the code at the BA inputs
switches to the 0 logic level. For instance, when , output Y1 is logic 0. The table
in Fig. 32(c) summarizes the operation of the 74F139.

The circuit in Fig. 33 employs the address decoder configuration shown in Fig. 31.

BA � 01

G

The 8088 and 8086 Microprocessors

393

Figure 32 (a) Block diagram of the 74F139 2-line to 4-line decoder/
demultiplexer. (b) Circuit diagram of the 74F139. (Courtesy of Texas Instru-
ments Incorporated) (c) Operation of the 74F139 decoder. (Courtesy of Texas
Instruments Incorporated)

The 8088 and 8086 Microprocessors

394

Figure 33 Address decoder circuit.

Note that address lines A17L and A18L are applied to the A and B inputs of the 74F139
decoder. The address line A19L is used to enable one of the decoders and 19L, obtained
using an inverter, enables the second decoder of the 74F139. Each decoder generates four
chip enable (CE) outputs. Thus both decoders of the 74F139 together produce the eight
outputs 0 through 7.

The block diagram of another commonly used decoder, the 74F138, is shown in
Fig. 34(a). The 74F138 is similar to the 74F139, except that it is a single three-line to
eight-line decoder. The circuit used in this device is shown in Fig. 34(b). Note that it can
be used to produce eight outputs. The table in Fig. 34(c) describes the operation of
the 74F138. Here we find that when enabled, only the output that corresponds to the code
at the CBA inputs switches to the active 0 logic level.

The circuit in Fig. 35 uses the 74F138 to generate chip enable signals 0 throughCE

CE

CECE

A

The 8088 and 8086 Microprocessors

395

Figure 34 (a) Block diagram of 74F138. (b) 74F138 circuit diagram.
(Courtesy of Texas Instruments Incorporated) (c) Operation of the 74F138.
(Courtesy of Texas Instruments Incorporated)

The 8088 and 8086 Microprocessors

396

Figure 35 Address decoder circuit
using 74F138.

7 by decoding address lines A17L, A18L, and A19L. Connecting the enable inputs to
�5V and ground permanently enables the decoder. The advantage of using the

74F138 over the 74F139 for decoding is that it does not require an extra inverter to gen-
erate eight chip enable signals.

▲ 13 PROGRAMMABLE LOGIC ARRAYS

In the last section we found that basic logic devices such as latches, transceivers, and
decoders are required in the bus interface section of the 8086 microcomputer system. We
showed that these functions were performed with standard logic devices such as the 74F373
octal transparent latch, 74F245 octal bus transceiver, and 74F139 two-line to four-line
decoder, respectively. Today programmable logic array (PLA) devices are becoming very
important in the design of microcomputer systems. For example, address and control signal
decoding in the memory interface in Fig. 24 can be implemented with PLAs, instead of with
separate logic ICs. Unlike the earlier mentioned devices, PLAs do not implement a specific
logic function. Instead, they are general-purpose logic devices that have the ability to per-
form a wide variety of specialized logic functions. A PLA contains a general-purpose AND-
OR-NOT array of logic gate circuits. The user has the ability to interconnect the inputs to
the AND gates of this array. The definition of these inputs determines the logic function that
is implemented. The process used to connect or disconnect inputs of the AND gate array is
known as programming, which leads to the name programmable logic array.

CE

The 8088 and 8086 Microprocessors

397

Figure 36 Block diagram of a PLA.
(Reprinted with the permission of Wal-
ter A. Triebel)

PLAs, GALs, and EPLDs

A variety of different types of PLA devices are available. Early devices were all
manufactured with the bipolar semiconductor process. These devices are referred to as
PALs and remain in use today. Bipolar devices are programmed with an interconnect pat-
tern by burning out fuse links within the device. In the initial state, all of these fuse links
are intact. During programming, unwanted links are open-circuited by injecting a current
through the fuse to burn it out. For this reason, once a device is programmed it cannot
be reused. If a design modification is required in the pattern, a new device must be
programmed and substituted for the original device. Since PALs are made with an older
bipolar technology, they are limited to simpler functions and characterized by slower
operating speeds and high power consumption.

Newer PLA devices are manufactured with the CMOS process. With this process,
very complex, high-speed, low-power devices can be made. Two kinds of CMOS PLAs
are in wide use today: the GAL and the EPLD. These devices differ in the type of CMOS
technology used in their design. GALs are designed using electrically erasable read-only
memory (E2ROM) technology. The input/output operation of this device is determined
by the programming of cells. These electrically programmable cells are also electrically
erasable. For this reason, a GAL can be used for one application, erased, and then re-
programmed for another application. EPLDs are similar to GALs in that they can be
programmed, erased, and reused; however, the erase mechanism is different. They are
manufactured with electrically programmable read only memory (EPROM) technology.
That is, they employ EPROM cells instead of E2ROM cells. Therefore, to be erased an
EPLD must be exposed to ultraviolet light. GALs and EPLDs are currently the most
rapidly growing segments of the PLA marketplace.

Block Diagram of a PLA

The block diagram in Fig. 36 represents a typical PLA. Looking at this diagram, we
see that it has 16 input leads, marked I0 through I15. There are eight output leads, labeled

The 8088 and 8086 Microprocessors

398

F0 through F7. This PLA is equipped with three-state outputs. For this reason, it has a
chip-enable control lead. In the block diagram, this control input is marked . The logic
level of determines if the outputs are enabled or disabled.

When a PLA is used to implement random logic functions, the inputs represent
Boolean variables, and the outputs are used to provide eight separate random logic func-
tions. The internal AND-OR-NOT array is programmed to define a sum-of-product equa-
tion for each of these outputs in terms of the inputs and their complements. In this way,
we see that the logic levels applied at inputs I0 through I15 and the programming of the
AND array determine what logic levels are produced at outputs F0 through F7. Therefore,
the capacity of a PLA is measured by three properties: the number of inputs, the number
of outputs, and the number of product terms (P-terms).

CE
CE

Figure 37 (a) Basic PLA architecture. (b) Implementing the logic function F �

.(AB � AB)

The 8088 and 8086 Microprocessors

399

Figure 38 (a) Typical PLA architecture. (Courtesy of Texas Instruments Incorporated)
(b) PLA with output latch. (Courtesy of Texas Instruments Incorporated)

Architecture of a PLA

We just pointed out that the circuitry of a PLA is a general purpose AND-OR-NOT
array. Figure 37(a) shows this architecture. Here we see that the input buffers supply
input signals A and B and their complements and . Programmable connections in the
AND array permit any combination of these inputs to be combined to form a product
term. The product term outputs of the AND array are supplied to fixed inputs of the
OR array. The output of the OR gate produces a sum-of-products function. Finally, the
inverter complements this function.

The circuit in Fig. 37(b) shows how the function is implemented
with the AND-OR-NOT array. Notice that an X marked into the AND array means that the
fuse is left intact, and no marking means that it has been blown to form an open circuit. For
this reason, the upper AND gate is connected to A and and produces the product term
A . The second AND gate from the top connects to and B to produce the product term

B. The bottom AND gate is marked with an X to indicate that it is not in use. Gates like
this that are not to be active should have all of their input fuse links left intact.

Figure 38(a) shows the circuit structure that is most widely used in PLAs. It differs
from the circuit shown in Fig. 37(a) in two ways. First, the inverter has a programmable

A
AB

B

F � (AB � AB)

BA

The 8088 and 8086 Microprocessors

400

three-state control and can be used to isolate the logic function from the output. Second,
the buffered output is fed back to form another set of inputs to the AND array. This new
output configuration permits the output pin to be programmed to work as a standard out-
put, standard input, or logic-controlled input/output. For instance, if the upper AND gate,
which is the control gate for the output buffer, is set up to permanently enable the inverter,
and the fuse links for its inputs that are fed back from the outputs are all blown open, the
output functions as a standard output.

PLAs are also available in which the outputs are latched with registers. Figure 38(b)
shows a circuit for this type of device. Here we see that the output of the OR gate is applied
to the D input of a clocked D-type flip-flop. In this way, the logic level produced by the
AND-OR array is not presented at the output until a pulse is first applied at the CLOCK
input. Furthermore, the feedback input is produced from the complemented output of the
flip-flop, not the output of the inverter. This configuration is known as a PLA with regis-
tered outputs and is designed to simplify implementation of state machine designs.

Standard PAL™ Devices

Now that we have introduced the types of PLAs, block diagram of the PLA, and
internal architecture of the PLA, let us continue by examining a few of the widely used
PAL devices. A PAL, or a programmable array logic, is a PLA in which the OR array is
fixed; only the AND array is programmable.

The 16L8 is a widely used PAL IC. Its internal circuitry and pin numbering are
shown in Fig. 39(a). This device is housed in a 20-pin package, as shown in Fig. 39(b).
Looking at this diagram, we see that it employs the PLA architecture illustrated in Fig.
38(a). Note that it has 10 dedicated input pins. All of these pins are labeled I. There are
also two dedicated outputs, which are labeled with the letter O, and six programmable I/O
lines, which are labeled I/O. Using the programmable I/O lines, the number of input lines
can be expanded to as many as 16 inputs or the number of outputs can be increased to as
many as eight lines.

All the 16L8’s inputs are buffered and produce both the original form of the signal
and its complement. The outputs of the buffer are applied to the inputs of the AND array.
This array is capable of producing 64 product terms. Note that the AND gates are
arranged into eight groups of eight. The outputs of seven gates in each of these groups are
used as inputs to an OR gate, and the eighth output is used to produce an enable signal
for the corresponding three-state output buffer. In this way, we see that the 16L8 is capa-
ble of producing up to seven product terms for each output, and the product terms can be
formed using any combination of the 16 inputs.

The 16L8 is manufactured with bipolar technology. It operates from a �5V �10%
dc power supply and draws a maximum of 180 mA. Moreover, all its inputs and outputs
are at TTL-compatible voltage levels. This device exhibits high-speed input-output prop-
agation delays. In fact, the maximum I-to-O propagation delay is rated as 7 ns.

Another widely used PAL is the 20L8 device. Looking at the circuitry of this device
in Fig. 40(a), we see that it is similar to that of the 16L8 just described. However, the
20L8 has a maximum of 20 inputs, eight outputs, and 64 P-terms. The device’s 24-pin
package is shown in Fig. 40(b).

The 16R8 is also a popular 20-pin PLA. The circuit diagram and pin layout for this

The 8088 and 8086 Microprocessors

401

Figure 39 (a) 16L8 circuit diagram. (Courtesy of Texas Instruments Incorporated) (b)
16L8 pin layout. (Courtesy of Texas Instruments Incorporated)

The 8088 and 8086 Microprocessors

402

Figure 40 (a) 20L8 circuit diagram. (Courtesy of Texas Instruments Incorporated) (b)
20L8 pin layout. (Courtesy of Texas Instruments Incorporated)

The 8088 and 8086 Microprocessors

403

Figure 41 (a) 16R8 circuit diagram. (Courtesy of Texas Instruments Incorporated) (b)
16R8 pin layout. (Courtesy of Texas Instruments Incorporated)

The 8088 and 8086 Microprocessors

404

device are shown in Figs. 41(a) and (b), respectively. From Fig. 41(a), we find that its
eight fixed I inputs and AND-OR array are essentially the same as those of the 16L8.
There is one change. The outputs of eight AND gates, instead of seven, are supplied to
the inputs of each OR gate.

A number of changes have been made at the output side of the 16R8. Note that the
outputs of the OR gates are first latched in D-type flip-flops with the CLK signal. They
are then buffered and supplied to the eight Q outputs. Another change is that the enable
signals for the output inverters are no longer programmable. Now the logic level of the

control input enables all three-state outputs.
The last change is in the part of the circuit that produces the feedback inputs. In the

16R8, these eight input signals are derived from the complementary output of the corre-
sponding latch instead of the output of the buffer. For this reason, the output leads can no
longer be programmed to work as direct inputs.

The 20R8 is the register output version of the 20L8 PAL. Its circuit diagram and pin
layout are given in Figs. 42(a) and (b), respectively.

Expanding PLA Capacity

Some applications have requirements that exceed the capacity of a single PLA IC. For
instance, a 16L8 device has the ability to supply a maximum of 16 inputs, 8 outputs, and
64 product terms. Connecting several devices together can expand capacity. Let us now look
at the way in which PLAs are interconnected to expand the number of inputs and outputs.

If a single PLA does not have enough outputs, two or more devices can be con-
nected together into the configuration of Fig. 43(a). Here we see that the inputs I0 through
I15 on the two devices are individually connected in parallel. This connection does not
change the number of inputs.

On the other hand, the eight outputs of the two PLAs are separately used to form
the upper and lower bytes of a 16-bit output word. The bits of this word are denoted as
O0 through O15. So with this connection, we have doubled the number of outputs.

When data are applied to the inputs, PLA 1 outputs the eight least significant bits
of data. At the same instant PLA 2 outputs the eight most significant bits. These outputs
can be used to represent individual logic functions.

Another limitation on the application of PLAs is the number of inputs. The maxi-
mum number of inputs on a single 16L8 is 16. However, additional ICs can be connected
to expand the capacity of inputs. Figure 43(b) shows how one additional input is added.
This permits a 17-bit input denoted as I0 through I16. The new bit I16 is supplied through
inverters to the inputs on the two PLAs. At the output side of the PLAs, outputs O0

through O7 of the two devices are individually connected in parallel. To implement this
connection, PLA devices with open-collector or three-state outputs must be used.

When I16 is logic 0, on PLA 1 is logic 0. This enables the device for operation,
and the output functions coded for input I0 through I15 are output at O0 through O7. At the
same instant, on PLA 2 is logic 1 and it remains disabled. Making the logic level of
I16 equal to 1 disables PLA 1 and enables PLA 2. Now the input at I0 through I15 causes
the output function defined by PLA 2 to be output at O0 through O7. Actually, this con-
nection doubles the number of product terms as well as increases the number of inputs.

CE

CE

CE

OE

The 8088 and 8086 Microprocessors

405

Figure 42 (a) 20R8 circuit diagram. (Courtesy of Texas Instruments Incorporated) (b)
20R8 pin layout. (Courtesy of Texas Instruments Incorporated)

The 8088 and 8086 Microprocessors

406

Figure 43 (a) Expanding output word length. (Reprinted with the permission
of Walter A. Triebel) (b) Expanding input word length. (Reprinted with the
permission of Walter A. Triebel)

▲ 14 TYPES OF INPUT/OUTPUT

The input/output system of the microprocessor allows peripherals to provide data or
receive results of processing the data. This is done using I/O ports. The 8088 and 8086
microcomputers can employ two different types of input/output (I/O): isolated I/O and
memory-mapped I/O. These I/O methods differ in how I/O ports are mapped into the
8088/8086’s address spaces. Some microcomputer systems employ both kinds of I/O—
that is, some peripheral ICs are treated as isolated I/O devices and others as memory-
mapped I/O devices. Let us now look at each of these types of I/O.

Isolated Input/Output

The 8088 and 8086 Microprocessors

407

When using isolated I/O in a microcomputer system, the I/O devices are treated
separate from memory. This is achieved because the software and hardware architectures
of the 8088/8086 support separate memory and I/O address spaces. Figure 44 illustrates
these memory and I/O address spaces.

You may recall discussions about 8088/8086 address spaces from a software point
of view. We found that information in memory or at I/O ports is organized as bytes of
data; that the memory address space contains 1M consecutive byte addresses in the range
0000016 through FFFFF16; and that the I/O address space contains 64K consecutive byte
addresses in the range 000016 through FFFF16.

Figure 45(a) shows a more detailed map of this I/O address space. Here we find that
the bytes of data in two consecutive I/O addresses could be accessed as word-wide data.
For instance, I/O addresses 000016, 000116, 000216, and 000316 can be treated as inde-
pendent byte-wide I/O ports, ports 0, 1, 2, and 3, or ports 0 and 1 may be considered
together as word-wide port 0.

Note that the part of the I/O address space in Fig. 45(a) from address 000016

through 00FF16 is referred to as page 0. Certain I/O instructions can only perform oper-
ations to ports in this part of the address range. Other I/O instructions can input or output
data for ports anywhere in the I/O address space.

This isolated method of I/O offers some advantages. First, the complete 1Mbyte
memory address space is available for use with memory. Second, special instructions
have been provided in the instruction set of the 8088/8086 to perform isolated I/O input
and output operations. These instructions have been tailored to maximize I/O perfor-
mance. A disadvantage of this type of I/O is that all input and output data transfers must
take place between the AL or AX register and the I/O port.

Memory-Mapped Input/Output

I/O devices can be placed in the memory address space of the microcomputer as
well as in the independent I/O address space. In this case, the MPU looks at the I/O port
as though it is a storage location in memory. For this reason, the method is known as

Figure 44 8088/8086 memory and
I/O address spaces.

The 8088 and 8086 Microprocessors

408

FFFFF16

E0FFF16

I/O ports

I/O ports

Port 3

Port 2

Port 1

Port 0

Port 4095

Memory
address
space

E000316

I/O
addresses

E000216

E000116
E000016

0000116

0000016

Port 1
(16-bit port)

Port 0
(16-bit port)

(b)

(a)

Figure 45 (a) Isolated I/O ports. (b) Memory-mapped I/O ports.

The 8088 and 8086 Microprocessors

409

memory-mapped I/O.
In a microcomputer system with memory-mapped I/O, some of the memory address

space is dedicated to I/O ports. For example, in Fig. 45(b) the 4096 memory addresses in the
range from E000016 through E0FFF16 are assigned to I/O devices. Here the contents of
address E000016 represent byte-wide I/O port 0, and the contents of addresses E000016

and E000116 correspond to word-wide port 0.
When I/O is configured in this way, instructions that affect data in memory are used

instead of the special input/output instructions. This is an advantage in that many more
instructions and addressing modes are available to perform I/O operations. For instance,
the contents of a memory-mapped I/O port can be directly ANDed with a value in an
internal register. In addition, I/O transfers can now take place between an I/O port and an
internal register other than just AL or AX. However, this also leads to a disadvantage.
That is, the memory instructions tend to execute slower than those specifically designed
for isolated I/O. Therefore, a memory-mapped I/O routine may take longer to perform
than an equivalent program using the input/output instructions.

Another disadvantage of using this method is that part of the memory address space
is lost. For instance, in Fig. 45(b) addresses in the range from E000016 through E0FFF16,
allocated to I/O, cannot be used to implement memory.

▲ 15 ISOLATED INPUT/OUTPUT INTERFACE

The isolated input/output interface of the 8088 and 8086 microcomputers permits them to
communicate with the outside world. The way in which the MPU deals with input/output
circuitry is similar to the way in which it interfaces with memory circuitry. That is,
input/output data transfers also take place over the multiplexed address/data bus. This
parallel bus permits easy interface to LSI peripherals such as parallel I /O expanders,
interval timers, and serial communication controllers. Through this I /O interface, the
MPU can input or output data in bit, byte, or word (for the 8086) formats. Let us continue
by looking at how an isolated I /O interface is implemented for minimum- and maximum-
mode 8088 and 8086 microcomputer systems.

Minimum-Mode Interface

Let us begin by looking at the isolated I/O interface for a minimum-mode 8088 sys-
tem. Figure 46(a) shows this minimum-mode interface. Here we find the 8088, interface
circuitry, and I/O ports for devices 0 through N. I/O devices 0 through N can represent
input devices such as a keyboard, output devices such as a printer, or input/output devices
such as an asynchronous serial communications port. An example of a typical I/O device
used in the I/O subsystem is a programmable peripheral interface (PPI) IC, such as the
82C55A. This type of device is used to implement parallel input and output ports. The
circuits in the interface section must perform functions such as select the I/O port, latch
output data, sample input data, synchronize data transfers, and translate between TTL
voltage levels and those required to operate the I/O devices.

The data path between the 8088 and I/O interface circuits is the multiplexed
address/data bus. Unlike the memory interface, this time just the 16 least significant lines

The 8088 and 8086 Microprocessors

410

Figure 46 (a) Minimum-mode 8088 system I/O interface. (b) Minimum-
mode 8086 system I/O interface.

of the bus, AD0 through AD7 and A8 through A15, are in use. This interface also involves
the control signals that we discussed as part of the memory interface—that is ALE, ,

, , , , and .
Figure 46(b) shows the isolated I/O interface of a minimum-mode 8086-based

microcomputer system. Looking at this diagram, we find that the interface differs from
that of the 8088 microcomputer in several ways. First, the complete data bus AD0 through
AD15 is used for input and output data transfers; second, the control signal is the
complement of the equivalent signal in the 8088’s interface; and third, status signal

is replaced by .BHESSO
IO/M

M/IO

DENDT/RIO/MWRRD
SSO

The 8088 and 8086 Microprocessors

411

Figure 47 (a) Maximum-mode 8088 system I/O interface. (b) Maximum-
mode 8086 system I/O interface.

The 8088 and 8086 Microprocessors

412

Maximum-Mode Interface

When the 8088 is strapped to operate in the maximum mode (connected
to ground), the interface to the I/O circuitry changes. Figure 47(a) illustrates this
configuration.

As in the maximum-mode memory interface, the 8288 bus controller produces the
control signals for the I/O subsystem. The 8288 decodes bus command status codes out-
put by the 8088 at 2 1 0. These codes tell which type of bus cycle is in progress. If the
code corresponds to an I/O read bus cycle, the 8288 generates the I/O read command
output () and for an I/O write cycle it generates I/O write command outputs ()
and (). The 8288 also produces the control signals ALE, , and DEN. The
address and data transfer path between 8088 and maximum-mode I/O interface remains
address/data bus lines AD0 through AD7 and A8 through A15.

Figure 47(b) shows the maximum-mode isolated I/O interface of an 8086 micro-
processor system. There are only two differences between this interface diagram and that
for the 8088 microprocessor. As in the minimum mode, the full 16-bit data bus is the path
for data transfers, and the signal , which is not supplied by the 8088, is included in
the interface.

The table in Fig. 48 shows the bus command status codes together with the command
signals that they produce. Those for I/O bus cycles are highlighted. The MPU indicates that
data are to be input (read I/O port) by code 2 1 0 � 001. This code causes the bus con-
troller to produce control output I/O read command (). There is one other code that
represents an output bus cycle, the write I/O port code 2 1 0 � 010. It produces two out-
put command signals: I/O write cycle () and advanced I/O write cycle ().
These command signals are used to enable data from the I/O ports onto the system bus dur-
ing an input operation and from the MPU to the I/O ports during an output operation.

▲ 16 INPUT/OUTPUT DATA TRANSFERS

AIOWCIOWC
SSS

IORC
SSS

BHE

DT/RAIOWC
IOWCIORC

SSS

MN/MX

Figure 48 I/O bus cycle status codes. (Reprinted with permission of Intel
Corporation, Copyright/Intel Corp. 1979)

The 8088 and 8086 Microprocessors

413

Figure 49 Input/output instructions.

Input/output data transfers in the 8088 and 8086 microcomputers can be either byte-wide
or word-wide. The port that is accessed for input or output of data is selected by an I/O
address. This address is specified as part of the instruction that performs the I/O operation.

I/O addresses are 16 bits in length and are output by the 8088 to the I/O interface
over bus lines AD0 through AD7 and A8 through A15. AD0 represents the LSB and A15

the MSB. The most significant address lines, A16 through A19, are held at the 0 logic level
during the address period (T1) of all I/O bus cycles. Since 16 address lines are used to
address I/O ports, the 8088’s I/O address space consists of 64K byte-wide I/O ports.

The 8088 signals to external circuitry that the address on the bus is for an I/O port
instead of a memory location by switching the control line to the 1 logic level. This
signal is held at the 1 level during the complete input or output bus cycle. For this reason,
it can be used to enable the address latch or address decoder in external I/O circuitry.

Data transfers between the 8088 and I/O devices are performed over the data bus.
Data transfers to byte-wide I/O ports always require one bus cycle. Byte data transfers to
a port are performed over bus lines D0 through D7. Word transfers also take place over the
data bus, D0 through D7. However, this type of operation is performed as two consecutive
byte-wide data transfers and takes two bus cycles.

For the 8086 microcomputer, I/O addresses are output on address/data bus lines
AD0 through AD15. The logic levels of signals A0 and determine whether data are
input/output for an odd-addressed byte-wide port, even-addressed byte-wide port, or a
word-wide port. For example, if A0 , an odd-addressed byte-wide I/O port is
accessed. Byte data transfers to a port at an even address are performed over bus lines D0

through D7 and those to an odd-addressed port are performed over D8 through D15. Data
transfers to byte-wide I/O ports always take place in one bus cycle.

Word data transfers between the 8086 and I/O devices are accompanied by the code
A0 � 00 and are performed over the complete data bus, D0 through D15. A word trans-
fer can require either one or two bus cycles. To ensure that just one bus cycle is required for
the word data transfer, word-wide I/O ports should be aligned at even-address boundaries.

▲ 17 INPUT/OUTPUT INSTRUCTIONS

Input/output operations are performed by the 8088 and 8086 microprocessors that employ
isolated I/O using special input and output instructions together with the I/O port address-
ing modes. These instructions, in (IN) and out (OUT), are listed in Fig. 49. Their
mnemonics and formats are provided together with a brief description of their operations.

BHE

BHE � 10

BHE

IO/M

The 8088 and 8086 Microprocessors

414

Note that there are two different forms of IN and OUT instructions: the direct I/O
instructions and variable I/O instructions. Either of these two types of instructions can be
used to transfer a byte or word of data. All data transfers take place between an I/O device
and the MPU’s accumulator register. For this reason, this method of performing I/O is known
as accumulator I/O. Byte transfers involve the AL register, and word transfers the AX regis-
ter. In fact, specifying AL as the source or destination register in an I/O instruction indicates
that it corresponds to a byte transfer. That is, byte-wide or word-word input/output is
selected by specifying the accumulator (Acc) in the instruction as AL or AX, respectively.

In a direct I/O instruction, the address of the I/O port is specified as part of the
instruction. Eight bits are provided for this direct address. For this reason, its value is lim-
ited to the address range from 010 equals 0016 to 25510 equals FF16. This range is referred
to as page 0 in the I/O address space.

An example is the instruction

IN AL, 0FEH

As Fig. 49 shows, execution of this instruction causes the contents of the byte-wide I/O
port at address FE16 of the I/O address space to be input to the AL register. This data
transfer takes place in one input bus cycle.

EXAMPLE 7

Write a sequence of instructions that will output the data FF16 to a byte-wide output port
at address AB16 of the I/O address space.

Solution

First, the AL register is loaded with FF16 as an immediate operand in the instruction

MOV AL, 0FFH

Now the data in AL can be output to the byte-wide output port with the instruction

OUT 0ABH, AL

The difference between the direct and variable I/O instructions lies in the way in
which the address of the I/O port is specified. We just saw that for direct I/O instructions
an 8-bit address is specified as part of the instruction. On the other hand, the variable I/O
instructions use a 16-bit address that resides in the DX register within the MPU. The value
in DX is not an offset. It is the actual address that is to be output on AD0 through AD7 and
A8 through A15 during the I/O bus cycle. Since this address is a full 16 bits in length, vari-
able I/O instructions can access ports located anywhere in the 64K-byte I/O address space.

When using either type of I/O instruction, the data must be loaded into or removed
from the AL or AX register before another input or output operation can be performed.
In the case of variable I/O instructions, the DX register must be loaded with the address.
This requires execution of additional instructions. For instance, the instruction sequence

MOV DX, 0A000H
IN AL, DX

The 8088 and 8086 Microprocessors

415

MOV BL, AL

inputs the contents of the byte-wide input port at A00016 of the I/O address space into AL
and then saves it in BL.

EXAMPLE 8

Write a series of instructions that will output FF16 to an output port located at address
B00016 of the I/O address space.

Solution

The DX register must first be loaded with the address of the output port. This is done with
the instruction

MOV DX, 0B000H

Next, the data that are to be output must be loaded into AL with the instruction

MOV AL, 0FFH

Finally, the data are output with the instruction

OUT DX, AL

EXAMPLE 9

Data are to be read in from two byte-wide input ports at addresses AA16 and A916 and
then output as a word to a word-wide output port at address B00016. Write a sequence of
instructions to perform this input /output operation.

Solution

We can first read in the byte from the port at address AA16 into AL and move it to AH.
This is done with the instructions

IN AL, 0AAH
MOV AH, AL

Now the other byte, which is at port A916, can be read into AL by the instruction

IN AL, 0A9H

The word is now held in AX. To write out the word of data, we load DX with the address
B00016 and use a variable output instruction. This leads to the following:

MOV DX, 0B000H
OUT DX, AX

The 8088 and 8086 Microprocessors

416

▲ 18 INPUT/OUTPUT BUS CYCLES

In Section 15, we found that the isolated I/O interface signals for the minimum-mode
8088 and 8086 microcomputer systems are essentially the same as those involved in
the memory interface. In fact, the function, logic levels, and timing of all signals other
than () are identical to those already described for the memory interface in
Section 11.

Waveforms for the 8088’s I/O input (I/O read) bus cycle and I/O output (I/O write)
bus cycle are shown in Figs. 50 and 51, respectively. Looking at the input and output bus
cycle waveforms, we see that the timing of does not change. The 8088 switches it
to logic 1 to indicate that an I/O bus cycle is in progress. It is maintained at the 1 logic
level for the duration of the I/O bus cycle. As in memory cycles, the address is output
together with ALE during clock period T1. For the input bus cycle, is switched to
logic 0 to signal the I/O interface circuitry when to put the data onto the bus and the 8088
reads data off the bus during period T3.

On the other hand, for the output bus cycle in Fig. 51, the 8088 puts write data on
the bus late in T2 and maintains it during the rest of the bus cycle. This time switchesWR

DEN

IO/M

M/IOIO/M

Figure 50 Input bus cycle of the 8088.

The 8088 and 8086 Microprocessors

417

Figure 52 Input bus cycle of the 8086.

Figure 51 Output bus cycle of the 8088.

The 8088 and 8086 Microprocessors

418

to logic 0 to signal the I/O system that valid data are on the bus.
The waveforms of the 8086’s input and output bus cycles are shown in Figs. 52 and

53, respectively. Let us just look at the differences between the input cycle of the 8086
and that of the 8088. Comparing the waveforms in Fig. 52 to those in Fig. 50, we see that
the 8086 outputs the signal along with the address in T-state T1. Remember
that for the 8086 microprocessor this signal is used along with A0 to select the byte-wide
or the word-wide port. Next, the 8086’s data transfer path to the I/O interface is the 16-
bit address/data bus, not 8 bits as in the 8088 system. Therefore, data transfers, which
take place during T3, can take place over the lower 8 data bus lines, upper 8 data bus lines,
or all 16 data bus lines. Third, the 8086 outputs logic 0 on the line, while the 8088
outputs logic 1 on the line. That is, the control signal of the 8086 is the com-
plement of that of the 8088. Finally, the 8086 does not produce an output signal like
the one in the 8088.

REVIEW PROBLEMS

Section 1
1. Name the technology used to fabricate the 8088 and 8086 microprocessors.

2. What is the transistor count of the 8088?

3. Which pin is used as the NMI input on the 8088?

4. Which pin provides the /S7 output signals on the 8086?

5. How much memory can the 8088 and 8086 directly address?

6. How large is the I/O address space of the 8088 and 8086?

BHE

SSO
M/IOIO/M

M/IO

BHE

Figure 53 Output bus cycle of the 8086.

The 8088 and 8086 Microprocessors

419

Section 2
7. How is minimum or maximum mode of operation selected?

8. Describe the difference between the minimum-mode 8088 system and maximum-
mode 8088 system.

9. What output function is performed by pin 29 of the 8088 when in the minimum
mode? Maximum mode?

10. Is the signal an input or output of the 8086?

11. Name one signal that is supplied by the 8088 but not by the 8086.

12. Are the signals QS0 and QS1 produced in the minimum mode or maximum
mode?

Section 3
13. What are the word lengths of the 8088’s address bus and data bus? The 8086’s

address bus and data bus?

14. Does the 8088 have a multiplexed address/data bus or independent address and data
buses?

15. What mnemonic is used to identify the least significant bit of the 8088’s address
bus? The most significant bit of the 8088’s data bus?

16. What does status code S4S3 � 01 mean in terms of the memory segment being
accessed?

17. Which output is used to signal external circuitry that a byte of data is available on
the upper half of the 8086’s data bus?

18. What does the logic level on signal to external circuitry in an 8086 micro-
computer?

19. Which output is used to signal external circuitry in an 8088-based microcomputer
that valid data is on the bus during a write cycle?

20. What signal does a minimum-mode 8088 respond with when it acknowledges an
active interrupt request?

21. Which signals implement the DMA interface in a minimum-mode 8088 or 8086
microcomputer system?

22. List the signals of the 8088 that are put in the high-Z state in response to a DMA
request.

Section 4
23. Identify the signal lines of the 8088 that are different for the minimum-mode and

maximum-mode interfaces.

24. What status outputs of the 8088 are inputs to the 8288?

25. What maximum-mode control signals are generated by the 8288?

26. What function does the signal serve in a maximum-mode 8088 micro-
computer system?

27. What status code is output by the 8088 to the 8288 if a memory read bus cycle is

LOCK

M/IO

M/IO

The 8088 and 8086 Microprocessors

420

taking place?

28. What command output becomes active if the status inputs of the 8288 are 1002?

29. If the 8088 executes a jump instruction, what queue status code would be output?

30. What signals are provided for local bus control in a maximum-mode 8088 system?

Section 5
31. What is the range of power supply voltage over which the 8088 is guaranteed to

work correctly?

32. What is the maximum value of voltage that is considered a valid logic 0 at bit D0 of
the 8088’s data bus? Assume that the output is sinking 2 mA.

33. What is the minimum value of voltage that would represent a valid logic 1 at the
INTR input of the 8088?

34. At what value current is VOLmax measured on the 8086?

Section 6
35. At what speeds are 8088s generally available?

36. What frequency crystal must be connected between the X1 and X2 inputs of the
clock generator if an 8088-2 is to run at full speed?

37. What clock outputs are produced by the 8284? What would be their frequencies if
a 30-MHz crystal were used?

38. What are the logic levels of the clock waveforms applied to the 8088?

Section 7
39. How many clock states are in an 8088 bus cycle that has no wait states? How are

these states denoted?

40. What is the duration of the bus cycle for a 5-MHz 8088 that is running at full speed
and with no wait states?

41. What is an idle state?

42. What is a wait state?

43. If an 8086 running at 10 MHz performs bus cycles with two wait states, what is the
duration of the bus cycle?

Section 8
44. How is the memory of an 8088 microcomputer organized from a hardware point of

view? An 8086 microcomputer?

45. Give an overview of how a byte of data is read from memory address B000316 of an
8088-based microcomputer, and list the memory control signals along with their
active logic levels that occur during the memory read bus cycle.

46. Give an overview of how a word of data is written to memory starting at address
A000016 of an 8088-based microcomputer, and list the memory control signals
together with their active logic levels that occur during the memory write cycle.

47. In which bank of memory in an 8086-based microcomputer are odd-addressed bytes
of data stored? What bank select signal is used to enable this bank of memory?

The 8088 and 8086 Microprocessors

421

48. Over which of the 8086’s data bus lines are even-addressed bytes of data transferred
and which bank select signal is active?

49. List the memory control signals together with their active logic levels that occur
when a word of data is written to memory address A000016 in a minimum-mode
8086 microcomputer system.

50. List the memory control signals together with their active logic levels that occur
when a byte of data is written to memory address B000316 in a minimum-mode
8086 microcomputer. Over which data lines is the byte of data transferred?

Section 9
51. In a maximum-mode 8088 microcomputer, what code is output on S4S3 when an

instruction-fetch bus cycle is in progress?

52. What is the value of S4S3 if the operand of a pop instruction is being read from
memory? Assume the microcomputer employs the 8088 in the maximum mode.

Section 10
53. Which of the 8088’s memory control signals is the complement of the correspond-

ing signal on the 8086?

54. What memory control output of the 8088 is not provided on the 8086? What signal
replaces it on the 8086?

55. In a maximum-mode 8088-based microcomputer, what memory bus status code is
output when a word of instruction code is fetched from memory? Which memory
control output(s) is (are) produced by the 8288?

56. In maximum mode, what memory bus status code is output when a destination
operand is written to memory? Which memory control output(s) is (are) produced
by the 8288?

57. When the instruction PUSH AX is executed, what address bus status code and
memory bus cycle code are output by the 8088 in a maximum-mode microcomputer
system? Which command signals are output by the 8288?

Section 11
58. How many clock states are in a read bus cycle that has no wait states? What would

be the duration of this bus cycle if the 8086 were operating at 10 MHz?

59. What happens in the T1 part of the 8088’s memory read or write bus cycle?

60. Describe the bus activity that takes place as an 8088, in minimum mode, writes a
byte of data into memory address B001016.

61. Which two signals can be used to determine that the current bus cycle is a write
cycle?

62. Which signal can be used to identify the start of a bus cycle?

Section 12
63. Give an overview of the function of each block in the memory interface diagram

shown in Fig. 24.

64. When the instruction PUSH AX is executed, what bus status code is output by the

The 8088 and 8086 Microprocessors

422

8086 in maximum mode, what are the logic levels of A0 and , and what
read/write control signals are produced by the bus controller?

65. What type of basic logic devices is provided by the 74F373?

66. Specify the logic levels of , , , and A0L when the 8086 in Fig.
24 reads a word of data from address 12340H.

67. Make a truth table, using the circuits in Figs. 27 and 28, to specify the logic levels
of U, L, U, L, , , , and A0L when the processor
(a) reads a byte from address 01234H
(b) writes a byte to address 01235H
(c) reads a word from address 01234H
(d) writes a word to address 01234H

68. What logic devices are provided by the 74F245?

69. In the circuit of Fig. 30, what logic levels must be applied to the and
inputs to cause data on the system data bus to be transferred to the microprocessor
data bus?

70. Make a drawing like that shown in Fig. 30 to illustrate the data bus transceiver cir-
cuit needed in an 8088-based microcomputer system.

71. How many address lines must be decoded to generate five chip select signals?

72. Name an IC that implements a two-line to four-line decoder logic function.

73. If the inputs to a 74F138 decoder are G1 � 1, 2A � 0, G2B � 0, and
, which output is active?

74. Make a drawing for a minimum-mode 8088-based microcomputer for which a
74F138 decoder is used to generate and from the , , and

signals.

Section 13
75. What does PLA stand for?

76. List three properties that measure the capacity of a PLA.

77. What is the programming mechanism used in the PAL called?

78. What does PAL stand for? Give the key difference between a PAL and a PLA.

79. Redraw the circuit shown in Fig. 37(b) to illustrate how it can implement the logic
function .

80. How many dedicated inputs, dedicated outputs, programmable input/outputs, and
product terms are supported on the 16L8 PAL?

81. What is the maximum number of inputs on a 20L8 PAL? The maximum number of
outputs?

82. How do the outputs of the 16R8 differ from those of the 16L8?

83. Use a 16L8 to decode address lines A17L through A19L to generate 0 through
7.

Section 14
84. Name the two types of input/output.

85. What type of I/O is in use when peripheral devices are mapped to the 8088’s I/O
address space?

CECE

F � (A B � AB)

IO/M
WRRDMEMWMEMR

CBA � 101G

DT/RDEN

MWTCMRDCBHELWRWRRDRD

MRDCMWRCBHEL

BHE

The 8088 and 8086 Microprocessors

423

86. Which type of I/O has the disadvantage that part of the address space must be given
up to implement I/O ports?

87. Which type of I/O has the disadvantage that all I/O data transfers must take place
through the AL or AX register?

Section 15
88. What are the functions of the 8088’s address and data bus lines relative to an iso-

lated I/O operation?

89. In a minimum-mode 8088 microcomputer, which signal indicates to external
circuitry that the current bus cycle is for the I/O interface and not the memory
interface?

90. List the differences between the 8088’s minimum-mode I/O interface in Fig. 46(a)
and that of the 8086 in Fig. 46(b).

91. What is the logic relationship between the signals and ?

92. In a maximum-mode system, which device produces the input (read), output (write),
and bus control signals for the I/O interface?

93. Briefly describe the function of each block in the I/O interface circuit in Fig. 47(a).

94. In a maximum-mode 8086 microcomputer, what status code identifies an input bus
cycle?

95. In the maximum-mode I/O interface shown in Fig. 47(a), what are the logic levels
of , , and during an output bus cycle?

Section 16
96. How many bits are in the 8088’s I/O address?

97. What is the range of byte addresses in the 8088’s I/O address space?

98. What is the size of the 8086’s I/O address space in terms of word-wide I/O ports?

99. In an 8086-based microcomputer system, what are the logic levels of A0 and
when a byte of data is being written to I/O address A00016? If a word of data is
being written to address A00016?

100. In an 8088 microcomputer system, how many bus cycles are required to output a
word of data to I/O address A00016? In an 8086 microcomputer system?

Section 17
101. Describe the operation performed by the instruction IN AX, 1AH.

102. Write an instruction sequence to perform the same operation as that of the instruc-
tion in problem 101, but this time use variable or indirect I/O.

103. Describe the operation performed by the instruction OUT 2AH, AL.

104. Write an instruction sequence that outputs the byte of data 0F16 to an output port at
address 100016.

105. Write a sequence of instructions that inputs the byte of data from input ports at I/O

BHE

AIOWCIOWCIORC

M/IOIO/M

The 8088 and 8086 Microprocessors

424

addresses A00016 and B00016, adds these values together, and saves the sum in
memory location IO_SUM.

106. Write a sequence of instructions that will input the contents of the input port at I/O
address B016 and jump to the beginning of a service routine identified by the label
ACTIVE_INPUT if the least significant bit of the data is 1.

Section 18
107. In the 8088’s input bus cycle, during which T state do the , ALE, , and

control signals become active?

108. During which T state in the 8088’s input bus cycle is the address output on the bus?
Are data read from the bus by the MPU?

109. If an 8088 is running at 5 MHz, what is the duration of the output bus operation per-
formed by executing the instruction OUT 0C0H, AX?

110. If an 8086 running at 10 MHz inserts two wait states into all I/O bus cycles, what
is the duration of a bus cycle in which a byte of data is being output?

111. If the 8086 in problem 110 outputs a word of data to a word-wide port at I/O
address 1A116, what is the duration of the bus cycle?

Section 1
1. HMOS.

3. 17.

5. 1Mbyte.

Section 2
7. The logic level of input MN/ determines the mode. Logic 1 puts the MPU in

minimum mode, and logic 0 puts it in maximum mode.

9. , .

11. .

Section 3
13. 20-bit, 8-bit; 20-bit, 16-bit.

15. A0, D7.

17. .

19. .

21. HOLD, HLDA.

Section 4
23. HOLD, HLDA, , IO/ , DT/ , , ALE, and in minimum mode are

, , , , , QS0, and QS1, respectively, in the maximum mode.

25. , , , , , , , MCE/PDEN, DEN, DT/ ,
and ALE.

RINTAAIORCIOWCIORCAMWCMWTCMRDC

S0S1S2LOCKRQ/GT1,0

INTADENRMWR

WR

BHE

SSO

LOCKWR

MX

DEN
RDIO/M

The 8088 and 8086 Microprocessors

ANSWERS TO SELECTED REVIEW PROBLEMS▲

425

27. .

29. .

Section 5
31. �4.5 V to �5.5 V.

33. �2.0 V.

Section 6
35. 5 MHz and 8 MHz.

37. CLK, PCLK, and OSC; 10 MHz, 5 MHz, and 30 MHz.

Section 7
39. 4; T1, T2, T3, and T4.

41. An idle state is a period of no bus activity that occurs because the prefetch queue is
full and the instruction currently being executed does not require bus activity.

43. 600 ns.

Section 8
45. Address B000316 is applied over the lines A0 through A19 of the address bus, and a

byte of data is fetched over data bus lines D0 through D7. Only one bus cycle is
required to read a byte from memory. Control signals in minimum mode at the time
of the read are , , , , DT/ , and .

47. High bank, .

49. , , , , , and .

Section 9
51. .

Section 10
53. IO/ .

55. .

57. and ; and .

Section 11
59. Address is output on A0 through A19, ALE pulse is output, and IO/ , , and

DT/ are set to the appropriate logic levels.

61. , DT/ .

Section 12
63. The 8288 bus controller produces the appropriately timed command and control sig-

nals needed to coordinate transfers over the data bus.
The address bus latch is used to latch and buffer the address bits.
The address decoder decodes the higher order address bits to produce chip-enable

signals.
The bank write control logic determines which memory bank is selected during a

write bus cycle.

RWR

R
DENM

AMWCMWTCS2S1S0 � 110S4S3 � 01

S2S1S0 � 100; MRDC

M

S4S3 � 10

DEN � 0DT/R � 1M/IO � 1WR � 0A0 � 0BHE � 0

BHE

DEN � 0R � 0IO/M � 0RD � 0WR � 1A0 � 1

QS1QS0 � 102

S2S1S0 � 1012

The 8088 and 8086 Microprocessors

426

The bank read control logic determines which memory bank is selected during a
read bus cycle.

The data bus transceiver/buffer controls the direction of data transfers between the
MPU and memory subsystem and supplies buffering for the data bus lines.

65. D-type latches.
67.

Operation

(a) Byte read 1 0 1 1 1 0 1 0
from address
01234H

(b) Byte write 1 1 0 1 0 1 0 1
to address
01235H

(c) Word read 0 0 1 1 0 0 1 0
from address
01234H

(d) Word write 0 0 1 1 0 1 0 0
to address
01234H

69. , .

71.Three address lines decode to generate eight chip selects. Therefore, three of them
need not be used.

73. .

Section 13
75.Programmable logic array.

77.Fuse links.

81.20 inputs; 8 outputs.

Section 14
85.Isolated I/O.

87.Isolated I/O.

Section 15
89.IO/ .

91.M/ is the complement of IO/ .

93.The bus controller decodes I/O bus commands to produce the input /output and bus
control signals for the I/O interface. The I/O interface circuitry provides for address-
ing of I/O devices as well as the path for data transfer between the MPU and the
addressed I/O device.

95. , , .AIOWC � 0IOWC � 0IORC � 1

MIO

M

Y5 � 0

DT/R � 0DEN � 0

A0LMWRCMRDCBHELWRLWRURDLRDU

The 8088 and 8086 Microprocessors

427

Section 16
97. 000016 through FFFF16.

99. and ; and .

Section 17
101. Execution of this input instruction causes accumulator AX to be loaded with the

contents of the word-wide input port at address 1AH.

103. Execution of this output instruction causes the value in the lower byte of the accu-
mulator (AL) to be loaded into the byte-wide output port at address 2AH.

105. MOV DX, 0A000H ;Input data from port at A000H
IN AL, DX
MOV BL, AL ;Save it in BL
MOV DX, 0B000H ;Input data from port at B000H
IN AL, DX
ADD BL, AL ;Add the two pieces of data
MOV [IO_SUM],BL ;Save result in the memory location

Section 18
107. and ALE in T1, and and in T2.

109. With zero wait states, the 8088 needs to perform two output bus cycles. They
require 8 T-states, which at 5 MHz equals 1.6 �s.

111. To write a word of data to an odd address, the 8086 requires two bus cycles. Since
each bus cycle has two wait states, it takes 12 T-states to perform the output opera-
tion. With a 10-MHz clock, the output operation takes 1200 ns.

DENRDIO/M

BHE � 0A0 � 0BHE � 1A0 � 0

The 8088 and 8086 Microprocessors

428

Memory Devices, Circuits,
and Subsystem Design

▲ INTRODUCTION

In this chapter, we study microcomputer hardware by examining the devices, circuits,
and techniques used in the design of memory subsystems. For this purpose, this chapter
explores the following topics:

1 Program and Data Storage Memory

2 Read-Only Memory

3 Random Access Read/Write Memories

4 Parity, the Parity Bit, and Parity-Checker/Generator Circuit

5 FLASH Memory

6 Wait-State Circuitry

7 8088/8086 Microcomputer System Memory Circuitry

From Chapter 9 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

429

▲ 1 PROGRAM AND DATA STORAGE MEMORY

Memory provides the ability to store and retrieve digital information and is one of the key
elements of a microcomputer system. By digital information, we mean that instructions
and data are encoded with 0s and 1s and then saved in memory. The ability to store infor-
mation is made possible by the part of the microcomputer system known as the memory
unit. You may recall that the memory unit of the microcomputer is partitioned into a
primary storage section and secondary storage section. Figure 1 illustrates this subdivi-
sion of the memory unit.

Secondary storage memory is used for storage of data, information, and programs that
are not in use. This part of the memory unit can be slow speed, but it requires very large
storage capacity. For this reason, it is normally implemented with magnetic storage devices,
such as the floppy disk and hard disk drive. Hard disk drives used in today’s personal com-
puters have the ability to store 10 gigabytes (Gbyte) to 80Gbytes of information.

The other part, primary storage memory, is used for working information, such as
the instructions of the program currently being run and data that it is processing. This
section normally requires high-speed operation but does not normally require very large
storage capacity. Therefore, it is implemented with semiconductor memory devices.
Most modern personal computers have 128 megabytes (128Mbytes) of primary storage
memory.

Figure 1 shows that the primary storage memory is further partitioned into program
storage memory and data storage memory. The program storage part of the memory sub-
system is used to hold information such as the instructions of the program. That is, when
a program is executed by the microcomputer, it is read one byte or word at a time from
the program storage part of the memory subsystem. These programs can be either per-
manently stored in memory, which makes them always available for execution, or tem-
porarily loaded into memory before execution. The program storage memory section does
not normally contain only instructions, it can also store other fixed information such as
constant data and lookup tables.

The program storage memory in a personal computer is implemented exactly this
way. It has a fixed part of program memory that contains the basic input/output system

Program
storage
memory

Data
storage
memory

Primary storage memory

Secondary
storage
memory

Memory unit

MPU
Figure 1 Partitioning of the
microcomputer’s memory unit.

Memory Devices, Circuits, and Subsystem Design

430

Memory Devices, Circuits, and Subsystem Design

(BIOS). These programs are permanently held in a read-only memory device mounted on
the main processor board. Programs held this way in ROM are called firmware because of
their permanent nature. The typically size of a BIOS ROM used in a PC today is 2 megabits
(MB), which equal 256Kbytes.

The much larger part of the program storage memory in a PC is built with dynamic
random access read/write memory devices (DRAMS). They may be either mounted on
the main processor board or on an add-in memory module or board. Use of DRAMs
allows this part of the program storage memory to be either read from or written into. Its
purpose is again to store programs that are to be executed, but in this case they are loaded
into memory only when needed. Programs are normally read in from the secondary stor-
age device, stored in the program storage part of memory, and then run. When the pro-
gram is terminated, the part of the program memory where it resides is given back to the
operating system for reuse. Moreover, if power is turned off, the contents of the RAM-
based part of the program storage memory are lost. Due to the temporary nature of these
programs, they are referred to as software.

Earlier we indicated that the primary storage memory of a microcomputer is typi-
cally 128Mbytes. This number represented the total of the DRAM part of the memory
subsystem and is given as the size of memory because the ROM BIOS is almost negligi-
ble when compared to the amount of DRAM. In the PC, a major part of primary storage
is available for use as program storage memory.

In other microcomputer applications, such as an electronic game or telephone, the
complete program storage memory is implemented with ROM devices.

Information that frequently changes is stored in the data storage part of the
microcomputer’s memory subsystem. For instance, the data to be processed by the micro-
computer is held in the data storage part of the primary storage memory. When a pro-
gram is run by the microcomputer, the values of the data can change repeatedly. For
this reason, data storage memory must be implemented with RAM. In a PC, the data
does not automatically reside in the data storage part of memory. Just like software, it
is read into memory from a secondary storage device, such as the hard disk. Any part
of the PCs DRAM can be assigned for data storage. The operating system software
does this.

When a program is run, data are modified while in DRAM and writing them to the
disk saves the new values. Data does not have to be numeric in form; they can also be
alphanumeric characters, codes, and graphical patterns. For instance, when running a
word processor application, the data are alphanumeric and graphical information.

▲ 2 READ-ONLY MEMORY

We begin our study of semiconductor memory devices with the read-only memory
(ROM). ROM is one type of semiconductor memory device. It is most widely used in
microcomputer systems for storage of the program that determines overall system opera-
tion. The information stored within a ROM integrated circuit is permanent—or
nonvolatile. This means that when the power supply of the device is turned off, the stored
information is not lost.

431

Memory Devices, Circuits, and Subsystem Design

ROM, PROM, and EPROM

For some ROM devices, information (the microcomputer program) must be built
in during manufacturing, and for others the data must be electrically entered. The
process of entering the data into a ROM is called programming. As the name ROM
implies, once entered into the device this information can be read only. For this reason,
these devices are used primarily in applications where the stored information would not
change frequently.

Three types of ROM devices are in wide use today: the mask-programmable read-
only memory (ROM), the one-time-programmable read-only memory (PROM), and the
erasable programmable read-only memory (EPROM). Let us continue by looking more
closely into the first type of device, the mask-programmable read-only memory. This
device has its data pattern programmed as part of the manufacturing process and is known
as mask programming. Once the device is programmed, its contents can never be
changed. Because of this fact and the cost for making the programming masks, ROMs are
used mainly in high-volume applications where the data will not change.

The other two types of read-only memories, the PROM and EPROM, differ from
the ROM in that the user electrically enters the bit pattern for the data. Programming is
usually done with an instrument known as an EPROM programmer. Both the PROM and
EPROM are programmed in the same way. Once a PROM is programmed, its contents
cannot be changed. This is the reason they are sometimes called one-time programmable
PROMs. On the other hand, exposing an EPROM to ultraviolet light erases the informa-
tion it holds. That is, the programmed bit pattern is cleared out to restore the device to its
unprogrammed state. In this way, the device can be used over and over again simply by
erasing and reprogramming. PROMs and EPROMs are most often used during the design
of a product, for early production, when the code of the microcomputer may need fre-
quent changes, and for production in low-volume applications that do not warrant making
a mask programmed device.

Figure 2(a) shows a typical EPROM programmer unit. Programming units like this
usually have the ability to verify that an EPROM is erased, program it with new data, ver-
ify correct programming, and read the information out of a programmed EPROM. An
erasing unit such as that shown in Fig. 2(b) can be used to erase a number of EPROM ICs
at one time.

Block Diagram of a Read-Only Memory

Figure 3 shows a block diagram of a typical read-only memory. Here we see that
the device has three sets of signal lines: the address inputs, data outputs, and control
inputs. This block diagram is valid for a ROM, PROM, or EPROM. Let us now look at
the function of each of these sets of signal lines.

The address bus is used to input the signals that select between the storage locations
within the ROM device. In Fig. 3 we find that this bus consists of 11 address lines, A0

through A10. The bits in the address are arranged so that A10 is the MSB and A0 is the
LSB. With an 11-bit address, the memory device has unique byte-storage
locations. The individual storage locations correspond to consecutive addresses over the
range through .111111111112 � 7FF16000000000002 � 00016

211 � 2048

432

(a)

(b)

Earlier we pointed out that information is stored inside a ROM, PROM, or
EPROM as either a binary 0 or binary 1. Actually, 8 bits of data are stored at every
address. Therefore, the organization of the ROM is described as . The total
storage capacity of the ROM is identified as the number of bits of information it can
hold. We know 2048 bytes corresponds to 16,384 bits; therefore, the device we are
describing is actually a 16K bit or 16KB ROM.

2048 � 8

Figure 2 (a) EPROM programming unit. (Data I /O, Inc.) (b) EPROM erasing
unit. (Ultra-Violet Products, Inc.)

Memory Devices, Circuits, and Subsystem Design

433

A0–A10

CE

Address bus

ROM O0–O7

Data bus

OE

Control bus Figure 3 Block diagram of a ROM.

By applying the address of a storage location to the address inputs of the ROM, the
byte of data held at the addressed location is read out onto the data lines. The block dia-
gram in Fig. 3 shows that the data bus consists of eight lines labeled as O0 through O7.
Here O7 represents the MSB and O0 the LSB. For instance, applying the address

will cause the byte of data held in this storage
location to be output as O7O6O5O4O3O2O1O0.

EXAMPLE 1

Suppose the block diagram in Fig. 3 had 15 address lines and eight data lines. How many
bytes of information can be stored in the ROM? What is its total storage capacity?

Solution

With 8 data lines, the number of bytes is equal to the number of locations, which is

This gives a total storage of

The control bus represents the control signals required to enable or disable the
ROM, PROM, or the EPROM device. The block diagram in Fig. 3 identifies two control
inputs: output enable () and chip enable (). For example, logic 0 at enables the
three state outputs, O0 through O7, of the device. If is switched to the 1 logic level,
these outputs are disabled (put in the high-Z state). Moreover, must be at logic 0 for
the device to be active. Logic 1 at puts the device in a low-power standby mode.
When in this state, the data outputs are in the high-Z state independent of the logic level
of . In this way we see that both and must be at their active 0 logic levels for
the device to be ready for operation.

CEOEOE

CE
CE

OE
OECEOE

32,768 � 8 � 262,144 bits

215 � 32,768 bytes

A10 . . . A1A0 � 100000000002 � 40016

Memory Devices, Circuits, and Subsystem Design

434

8088/8086
MPU

Address bus A0−A10

A0−A10

D0−D7

O0−O7

Control bus

Memory
interface
circuits

Data bus

CS CE

OEMEMR

Figure 4 Read-only memory interface.

Read Operation

It is the role of the MPU and its memory interface circuitry to provide the address
and control input signals and to read the output data at the appropriate times during the
memory-read bus cycle. The block diagram in Fig. 4 shows a typical read-only memory
interface. For a microprocessor to read a byte of data from the device, it must apply a
binary address to inputs A0 through A10 of the EPROM. This address gets decoded inside
the device to select the storage location of the byte of data that is to be read. Remember
that the microprocessor must switch and to logic 0 to enable the device and its
outputs. Once done, the byte of data is made available at O0 through O7 and the micro-
processor can read the data over its data bus.

Standard EPROM ICs

A large number of standard EPROM ICs are available today. Figure 5 lists the part
numbers, bit densities, and byte capacities of nine popular devices. They range in size
from the 16KB density () 2716 device, to the 4MB () 27C040 device.
Higher-density devices, such as the 27C256 through 27C020, are now popular for system
designs. In fact, many manufacturers have already discontinued some of the older
devices, such as the 2716 and 2732. Let us now look at some of these EPROMs in more
detail.

The 27C256 is an EPROM IC manufactured with the CMOS technology. Look-
ing at Fig. 5, we find that it is a 256KB device, and its storage array is organized as

bits. Figure 6 shows the pin layout of the 27C256. Here we see that it has32K � 8

512K � 82K � 8

OECE

Memory Devices, Circuits, and Subsystem Design

435

EPROM

2716
2732

27C64
27C128
27C256
27C512
27C010
27C020
27C040

Density
(bits)

16K
32K
64K

128K
256K
512K

1M
2M
4M

Capacity
(bytes)

2K × 8
4K × 8
8K × 8

16K × 8
32K × 8
64K × 8

128K × 8
256K × 8
512K × 8 Figure 5 Standard EPROM devices.

15 address inputs, labeled A0 through A14, eight data outputs, identified as O0 through O7,
and two control signals and .

From our earlier description of the read operation, it appears that after the inputs of
the EPROM are set up, the output is available immediately; however, in practice this is
not true. A short delay exists between address inputs and data outputs. This leads us to
three important timing properties defined for the read cycle of an EPROM: access time
(tACC), chip-enable time, (tCE), and chip-deselect time (tDF). The values of these timing
properties are provided in the read-cycle switching characteristics shown in Fig. 7(a) and
identified in the switching waveforms shown in Fig. 7(b).

Access time tells us how long it takes to access data stored in an EPROM. Here we
assume that both and are already at their active 0 levels, and then the address is
applied to the inputs of the EPROM. In this case, the delay tACC occurs before the data
stored at the addressed location are stable at the outputs. The microprocessor must wait
at least this long before reading the data; otherwise, invalid results may be obtained.
Figure 7(a) shows that the standard EPROMs are available with a variety of access time
ratings. The maximum values of access time are given as 170 ns, 200 ns, and 250 ns. The
speed of the device is selected to match that of the MPU. If the access time of the fastest
standard device is too long for the MPU, wait-state circuitry needs to be added to the
interface. In this way, wait states can be inserted to slow down the memory read bus
cycle.

Chip-enable time is similar to access time. In fact, for most EPROMs they are equal
in value. They differ in how the device is set up initially. This time the address is applied
and is switched to 0, then the read operation is initiated by making active. There-
fore, tCE represents the chip-enable-to-output delay instead of the address-to-output delay.
Looking at Fig. 7(a), we see that the maximum values of tCE are also 170 ns, 200 ns, and
250 ns.

Chip-deselect time is the opposite of access or chip-enable time. It represents the
amount of time the device takes for the data outputs to return to the high-Z state after
becomes inactive—that is, the recovery time of the outputs. Figure 7(a) shows that the
maximum values for this timing property are 55 ns, 55 ns, and 60 ns.

In an erased EPROM, all storage cells hold logic 1. The device is put into the pro-
gramming mode by switching on the Vpp power supply. Once in this mode, the address of
the storage location to be programmed is applied to the address inputs, and the byte of

OE

CEOE

OECE

OECE

Memory Devices, Circuits, and Subsystem Design

436

Figure 6 Pin layouts of standard EPROMs.

M
em

o
ry D

evices, C
ircu

its, an
d

 Su
b

system
 D

esig
n

437

Output hold from addresses, CE or
OE change—whichever is first

Address to output delay
CE to output delay
OE to output delay
OE high to output high-Z

ParameterSymbol
tACC

tCE

tOE

tDF
(2)

tOH
(2)

Min

0

Max
120
120
60
30

Min

0

Max
135
135
65
35

Min

0

Max
150
150
70
45

Min

0

Max
170
170
75
55

Min

0

Max
200
200
75
55

Min

0

Max
250
250
100
60

ns
ns
ns
ns
ns

UnitVersions

VCC ± 5%

VCC ± 10%

27C256-120V05 27C256-135V05

27C256-135V10

27C256-150V05

27C256-150V10

27C256-1
P27C256-1
N27C256-1

27C256-2
P27C256-2
N27C256-2
27C256-20

P27C256-20
N27C256-20

27C256
P27C256
N27C256

27C256-25
P27C256-25
N27C256-25

Notes:
1. A.C. characteristics tested at VIH = 2.4 V and VIL = 0.45 V.
 Timing measurements made at VOL = 0.8 V and VOH = 2.0 V.
2. Guaranteed and sampled.
3. Package Prefixes: No Prefix = CERDIP; N = PLCC; P = Plastic DIP.

(a)

Figure 7 (a) EPROM device timing characteristics. (Reprinted by permission of Intel
Corporation; Copyright Intel Corp. 1989) (b) EPROM switching waveforms. (Reprinted
by permission of Intel Corporation; Copyright Intel Corp. 1989)

M
em

o
ry D

evices, C
ircu

its, an
d

 Su
b

system
 D

esig
n

438

VIH

VIL

Addresses

VIH

VIL

CE

VIH

VIL

OE

VIH

VIL

Output

tACC

tOE
(3)

tCE
(3)

tOH

tDF
(2)

Address
valid

High-Z High-ZValid
output

(b)

Figure 7 (continued)

data to be loaded into this location is supplied as inputs to the data leads. Note that the
data outputs act as inputs when the EPROM is set up for programming mode of opera-
tion. Next the input is pulsed to load the data. Actually, a complex series of program
and verify operations are performed to program each storage location in an EPROM. The
two widely used programming sequences are the Quick-Pulse Programming Algorithm
and the Intelligent Programming Algorithm. Flowcharts for these programming algo-
rithms are given in Figs. 8(a) and (b), respectively.

Figure 9 presents another group of important electrical characteristics for the
27C256 EPROM. They are the device’s dc electrical operating characteristics. CMOS
EPROMs are designed to provide TTL-compatible input and output logic levels. Here we
find the output logic level ratings are and . Also pro-
vided is the operating current rating of the device, identified as . This shows
that if the device is operating at 5 V, it will consume 150 mW of power.

Figure 6 also shows the pin layouts for the 2716 through 27C512 EPROM
devices. In this diagram, we find that both the 27C256 and 27C512 are available in a
28-pin package. A comparison of the pin configuration of the 27C512 with that of
the 27C256 shows that the only differences between the two pinouts are that pin 1 on
the 27C512 becomes the new address input A15, and Vpp, which was at pin 1 on the
27C256, becomes a second function performed by pin 22 on the 27C512.

Expanding EPROM Word Length and Word Capacity

In many applications, the microcomputer system requirements for EPROM are
greater than what is available in a single device. There are two basic reasons for expand-

ICC � 30 mA
VOLmax � 0.45 VVOHmin � 3.5 V

CE

Memory Devices, Circuits, and Subsystem Design

439

Figure 8 (a) Quick-Pulse
Programming Algorithm flowchart.
(Reprinted by permission of Intel
Corporation; Copyright Intel Corp.
1989) (b) Intelligent Programming
Algorithm flowchart. (Reprinted by
permission of Intel Corporation;
Copyright Intel Corp. 1989)

ing EPROM capacity: first, the byte-wide length is not large enough; and second, the total
storage capacity is not enough bytes. Both of these expansion needs can be satisfied by
interconnecting a number of ICs.

For instance, the 8086 microprocessor has a 16-bit data bus. Therefore, its program
memory subsystem needs to be implemented with two 27C256 EPROMs connected, as
shown in Fig. 10(a). Notice that the individual address inputs, chip enable lines, and out-
put enable lines on the two devices are connected in parallel. On the other hand, the eight
data outputs of each device are used to supply eight lines of the MPU’s 16-bit data bus.
This circuit configuration has a total storage capacity equal to 32K words or 512KB.

Figure 10(b) shows how two 27C256s can be interconnected to expand the number
of bytes of storage. Here the individual address inputs, data outputs, and output enable
lines of the two devices are connected in parallel. However, the inputs of the individ-
ual devices remain independent and can be supplied by different chip enable outputs,

CE

Memory Devices, Circuits, and Subsystem Design

440

identified as 0 and 1, of an address decoder circuit. In this way, only one of the two
devices is enabled at one time. This configuration results in a total storage capacity of
64Kbytes or 512KB. When several EPROMs are used in an 8088-based microcomputer,
they are connected in this way. To double the word capacity of the circuit in Fig. 10(a),
this same connection must be made for each of the EPROMs.

CSCS

Figure 8 (continued)

Memory Devices, Circuits, and Subsystem Design

441

Symbol
ILI

ILO

IPP1

ISB1

ISB2

ICC1

Notes:
1. Minimum D.C. input voltage is –0.5V. During

transitions, the inputs may undershoot to –2.0V
for periods less than 20 ns. Maximum D.C. voltage
on output pins is VCC + 0.5V which may overshoot
to VCC + 2V for periods less than 20 ns.

2. Operating temperature is for commercial product
 defined by this specification. Extended temperature

options are available in EXPRESS and Military
version.

3. Typical limits are at VCC = 5V, TA = +25°C.
4. CE is VCC ± 0.2V. All other inputs can have any

value within spec.

VIL

VIH

VOL

VOH

IOS

VPP

Parameter

Input load current

Output leakage current

VPP read current

VCC current standby

VCC current active

Input low voltage
 (± 10% supply) (TTL)

Input low voltage
 (CMOS)

Output low voltage

Output high voltage

Output short circuit current

VPP read voltage

Input high voltage
 (± 10% supply) (TTL)

Input high voltage
 (CMOS)

5

8

4

5, 8

6

7

Notes Min Typ(3) Max Unit Test Conditions

–0.5

–0.2

2.0

0.7 VCC

3.5

VCC – 0.7

0.01 1.0

± 10

200

1.0

100

30

0.8

0.8

VCC + 0.5

VCC + 0.2

0.45

100

VCC

μA

μA

μA

mA

μA

mA

V

V

V

V

mA

V

VIN = 0V to VCC

VOUT = 0V to VCC

VPP = VCC

CE = VIH

CE = VCC

CE = VIL
f = 5 MHz

IOL = 2.1 mA

IOH = –2.5 mA

5. Maximum Active power usage is the sum IPP + ICC.
The maximum current value is with outputs O0 to
O7 unloaded.

6. Output shorted for no more than one second. No
more than one output shorted at a time. IOS is
sampled but not 100% tested.

7. VPP may be one diode voltage drop below VCC. It
may be connected directly to VCC. Also, VCC must
be applied simultaneously or before VPP and
removed simultaneously or after VPP.

8. VIL, VIH levels at TTL inputs.

TTL

CMOS

▲ 3 RANDOM ACCESS READ/WRITE MEMORIES

The memory section of a microcomputer system is normally formed from both read-only
memories and random access read/write memories (RAM). Earlier we pointed out that
the ROM is used to store permanent information such as the microcomputer’s hardware
control program. RAM is similar to ROM in that its storage location can be accessed in
a random order, but it is different from ROM in two important ways. First, data stored in

Figure 9 DC electrical characteristics of the 27C256. (Reprinted by permis-
sion of Intel Corporation; Copyright Intel Corp. 1989)

Memory Devices, Circuits, and Subsystem Design

442

(a)

EPROM 1

CE

27C256
32K X 8

OE

EPROM 0

CE

27C256
32K X 8

CS

MEMR

OE

D9

D8

D15

D1

D0

D7

A0

A1

A2

A14

Figure 10 (a) Expanding word length. (b) Expanding word capacity.

Memory Devices, Circuits, and Subsystem Design

443

A0–A12

Address bus

SRAM I/O0–I/O7

Data bus

CE, OE, WE

Control bus

Figure 11 Block diagram of a static
RAM.

RAM is not permanent in nature—that is, it can be altered. RAM can be used to save data
by writing to it, and later the data can be read back for additional processing. Because of
its read and write features, RAM finds wide use where data and programs need to be
placed in memory only temporarily. For this reason, it is normally used to store data and
application programs for execution. The second difference is that RAM is volatile—that
is, if power is removed from RAM, the stored data are lost.

Static and Dynamic RAMs

Two types of RAMs are in wide use today: the static RAM (SRAM) and dynamic
RAM (DRAM). For a static RAM, data, once entered, remain valid as long as the power
supply is not turned off. On the other hand, to retain data in a DRAM, it is not sufficient
just to maintain the power supply. For this type of device, we must both keep the power
supply turned on and periodically restore the data in each storage location. This added
requirement is necessary because the storage elements in a DRAM are capacitive nodes.
If the storage nodes are not recharged within a specific interval of time, data are lost. This
recharging process is known as refreshing the DRAM.

Block Diagram of a Static RAM

Figure 11 shows a block diagram of a typical static RAM IC. By comparing this
diagram with the one shown for a ROM in Fig. 3, we see that they are similar in many
ways. For example, they both have address lines, data lines, and control lines. These sig-
nal buses perform similar functions when the RAM is operated. Because of the RAMs
read/write capability, data lines, however, act as both inputs and outputs. For this reason,
they are identified as a bidirectional bus.

A variety of static RAM ICs are currently available. They differ both in density and
organization. The most commonly used densities in system designs are the 64KB and
256KB devices. The structure of the data bus determines the organization of the SRAMs
storage array. Figure 11 shows an 8-bit data bus. This type of organization is known as a
byte-wide SRAM. Devices are also manufactured with by 1 and by 4 data I/O organiza-
tions. The 64KB density results in three standard device organizations: ,

, and .
The address bus on the SRAM in Fig. 11 consists of the lines labeled A0 through

A12. This 13-bit address is what is needed to select between the 8K individual storage
locations in an SRAM IC. The and devices require a 14-
bit and 16-bit address, respectively.

64K � 116K � 48K � 8-bit

8K � 816K � 4
64K � 1

Memory Devices, Circuits, and Subsystem Design

444

To either read from or write to SRAM, the device must first be chip enabled. Just like
for a ROM, this is done by switching the input of the SRAM to logic 0. Earlier we indi-
cated that data lines I/O0 through I/O7 in Fig. 11 are bidirectional. This means that they act
as inputs when writing data into the SRAM or as outputs when reading data from the SRAM.
The setting of a new control signal, the write enable () input, determines how the data
lines operate. During all write operations to a storage location within the SRAM, the appro-
priate inputs must be switched to the 0 logic level. This configures the data lines as
inputs. On the other hand, if data are to be read from a storage location, is left at the 1
logic level. When reading data from the SRAM, output enable () must be active. Apply-
ing the active memory signal, logic 0, at this input, enables the device’s three-state outputs.

A Static RAM System

Three-state data bus lines of SRAM devices allow for the parallel connection
needed to expand data memory using multiple devices. For example, Fig. 12 shows how
four 8K × 8-bit SRAMs are interconnected to form a 16K × 16-bit memory system. In
this circuit, the separate inputs of the SRAM ICs in bank 0 are wired together and
connected to a common chip-select input 0. The same type of connection is used for
the SRAMs in bank 1 using chip-select input 1. These inputs are activated by the chip-
select output of the address decoder circuit and must be logic 0 to select a bank of
SRAMs for operation. The inputs of the individual SRAMs are connected in parallel.
The combined output-enable input that results is driven by the output of the mem-
ory interface circuit and enables the outputs of all SRAMs during all memory-read bus
cycles. Similarly, the write enables of all SRAMs are supplied from to write to
the selected bank. Note that the memory system allows only word writes and reads.

Standard Static RAM ICs

Figure 13 lists a number of standard static RAM ICs. Here we find their part num-
bers, densities, and organizations. For example, the 4361, 4363, and 4364 are all 64KB
density devices; however, they are each organized differently. The 4361 is a 64K × 1-bit
device, the 4363 is a 16K × 4-bit device, and the 4364 is an 8K × 8-bit device.

The pin layouts of the 4364 and 43256A ICs are given in Figs. 14(a) and (b), respec-
tively. Looking at the 4364 we see that it is almost identical to the block diagram shown in
Fig. 11. The one difference is that it has two chip-enable lines instead of one. They are
labeled 1 and CE2. Note that logic 0 activates one, and logic 1 activates the other. Both of
these chip-enable inputs must be at their active logic levels to enable the device for operation.

EXAMPLE 2

How does the 43256A SRAM differ from the block diagram in Fig. 11?

Solution

It has two additional address inputs, A13 and A14, and the chip-enable input is labeled
instead of .CE

CS

CE

MEMW

MEMR
OE

CS
CS

CE

OE
WE

WE

WE

CE

Memory Devices, Circuits, and Subsystem Design

445

BANK 0

CE

SRAM 0
8K X 8

WE (Low Byte)

OE

A0−A12

A13− •

A0

A1

A12

BANK 0

CE

SRAM 1
8K X 8

WE
(High Byte)

OE

A0−A12

BANK 1

CE

SRAM 2
8K X 8

WE

(Low Byte)

MEMW

Address
Decoder

OE

A0−A12

MEMR

BANK 1

CE

SRAM 3
8K X 8

WE
(High Byte)

OE

A0−A12

D0

D1

D15

CS0CS0

CS1CS1

13
16

8

8

13

13

1313

16

8

8

Figure 12 16K 16-bit SRAM circuit.�

Memory Devices, Circuits, and Subsystem Design

446

Figure 14 (a) 4364 pin layout. (b) 43256A pin layout.

SRAM

4361
4363
4364
43254

43256A
431000A

Density
(bits)

64K
64K
64K

256K
256K

1M

Organization

64K × 1
16K × 4
8K × 8

64K × 4
32K × 8

128K × 8 Figure 13 Standard SRAM devices.

As Fig. 15 shows, the 4364 is available in four speeds. For example, the
minimum read cycle and write cycle time for the 4364-10 is 100 ns. Figure 16 is a
list of the 4364’s dc electrical characteristics. Note (1) shows that the 100 ns device
draws a maximum of 45 mA when operating at maximum frequency (minimum
cycle time).

Memory Devices, Circuits, and Subsystem Design

447

Figure 15 Speed selections for the
4364 SRAM.

SRAM Read and Write Cycle Operation

Figure 17 illustrates the waveforms for a typical write cycle. Let us trace the events
that take place during the write cycle. Here we see that all critical timing is referenced to
the point at which the address becomes valid. Note that the minimum duration of the
write cycle is identified as tWC. This is the 100-ns write cycle time of the 4364-10. The
address must remain stable for this complete interval of time.

Next, 1 and CE2 become active and must remain active until the end of the write
cycle. The duration of these pulses are identified as to end of write time (tCW1) and
CE2 to end of write time (tCW2). As the waveforms show, we are assuming here that they
begin at any time after the occurrence of the address but before the leading edge of .
The minimum value for both of these times is 80 ns. On the other hand, is shown not
to occur until the interval tAS elapses. This is the address-setup time and represents the
minimum amount of time the address inputs must be stable before can be switched
to logic 0. For the 4364, however, this parameter is equal to 0 ns. The width of the write
enable pulse is identified as tWP, and its minimum value equals 60 ns.

Data applied to the DIN data inputs are written into the device synchronous with the
trailing edge of . Note that the data must be valid for an interval equal to tDW before
this edge. This interval, called data valid to end of write, has a minimum value of 40 ns
for the 4364-10. Moreover, it is shown to remain valid for an interval of time equal to tDH

after this edge. This data-hold time, however, just like address-setup time, equals 0 ns for
the 4364. Finally, a short recovery period takes place after returns to logic 1 before
the write cycle is complete. This interval is identified as tWR in the waveforms, and its
minimum value equals 5 ns.

The read cycle of a static RAM, such as the 4364, is similar to that of a ROM.
Figure 18 gives waveforms of a read operation.

Standard Dynamic RAM ICs

Dynamic RAMs are available in higher densities than static RAMs. Currently, the
most widely used DRAMs are the 64K-bit, 256K-bit, 1M-bit, and 4M-bit devices. Figure
19 lists a number of popular DRAM ICs. Here we find the 2164B, organized as 64K 1
bit; the 21256, organized as 256K 1 bit; the 21464, organized as 64K 4 bits; the
421000, organized as 1M 1 bit; and the 424256, organized as 256K 4 bits. Pin layouts
for the 2164B, 21256, and 421000 are shown in Figs. 20(a), (b), and (c), respectively.

Some other benefits of using DRAMs over SRAMs are that they cost less, consume
less power, and their 16- and 18-pin packages take up less space. For these reasons, DRAMs
are normally used in applications that require a large amount of memory. For example, most
systems that support at least 1Mbyte of data memory are designed using DRAMs.

��
��

�

WE

WE

WE

WE
WE

CE1

CE

Memory Devices, Circuits, and Subsystem Design

448

VI/O = 0 V to VCC

CE1 = VIH or
CE2 = VIL or
OE = VIH or
WE = VIL

Input leakage
current

Limits

Parameter Symbol Min Typ Max Unit Test Conditions

ILI 1 μA VIN = 0 V to VCC

Output leakage
current

ILO 1 μA

Operating supply
current

ICCA1 (1) mA CE1 = VIL,
CE2 = VIH,
II/O = 0,
Min cycle

ICCA2 10 mA CE1 = VIL,
CE2 = VIH,
II/O = 0,
DC current

ICCA3 5 mA CE1 ≤ 0.2 V,
CE2 ≥ VCC – 0.2 V,
VIL ≤ 0.2 V,
VIH ≥ VCC – 0.2 V,
f = 1 MHz, II/O = 0

5

3

Standby supply
current

ISB (2) mA

CE1 ≥ VCC–0.2 V
CE2 ≥ VCC–0.2 V

ISB1 (3) mA

CE1 ≥ VIH or
CE2 = VIL

ISB2 (3) mA CE2 ≤ 0.2 V

Output voltage,
low

VOL 0.4 V IOL = 2.1 mA

Output voltage,
high

VOH 2.4 V IOH = –1.0 mA

Notes:
(1) μPD4364-10/10L: 45 mA max

μPD4364-12/12L/12LL: 40 mA max
μPD4364-15/15L/15LL: 40 mA max
μPD4364-20/20L/20LL: 35 mA max

(2) μPD4364-xx: 5 mA max
μPD4364-xxL: 3 mA max
μPD4364-xxLL: 3 mA max

(3) μPD4364-xx: 2 mA max
μPD4364-xxL: 100 μA max
μPD4364-xxLL: 50 μA max

Figure 16 DC electrical characteristics of the 4364.

Memory Devices, Circuits, and Subsystem Design

449

CE1

Address

Data invalid

High-Z

tWC

tAW

tCW1

tCW2

tWPtAS tWR

tDW tDH

Data undefined

tWHZ tOW

CE2

WE

DIN

DOUT

Notes:
1. A write occurs during the overlap of a low CE1 and a high CE2 and a low WE.
2. CE1 or WE [or CE2] must be high [low] during any address transaction.
3. If OE is high the I/O pins remain in a high-impedance state.

Figure 17 Write-cycle timing diagram.

The 2164B is one of the older NMOS DRAM devices. Figure 21 presents a block
diagram of the device. Looking at the block diagram, we find that it has eight address
inputs, A0 through A7, a data input and a data output marked D and Q, respectively, and
three control inputs, row-address strobe (), column-address strobe (), and
read/write ().

The storage array within the 2164B is capable of storing 65,536 (64K) individual
bits of data. To address this many storage locations, we need a 16-bit address; however,

W
CASRAS

Memory Devices, Circuits, and Subsystem Design

450

DRAM

2164B
21256
21464

421000
424256
44100
44400
44160

416800
416400
416160

Density
(bits)

64K
256K
256K

1M
1M
4M
4M
4M

16M
16M
16M

Organization

64K × 1
256K × 1

64K × 4
1M × 1

256K × 4
4M × 1
1M × 4

256K × 16
8M × 2
4M × 4
1M × 16 Figure 19 Standard DRAM devices.

this device’s package has just 16 pins. For this reason, the 16-bit address is divided into
two separate parts: an 8-bit row address and an 8-bit column address. These two parts of
the address are time-multiplexed into the device over a single set of address lines, A0

through A7. First the row address is applied to A0 through A7. Then is pulsed to
logic 0 to latch it into the device. Next, the column address is applied and strobes to
logic 0. This 16-bit address selects which one of the 64K storage locations is to be
accessed.

Data are either written into or read from the addressed storage location in DRAMs.
Write data are applied to the D input and read data are output at Q. The logic levels of
control signals , , and tell the DRAM whether a read or write data transfer is
taking place and control the three-state outputs. For example, during a write operation,
the logic level at D is latched into the addressed storage location at the falling edge of
either or . If is switched to logic 0 by an active signal before , anCASMWTCWWCAS

CASRASW

CAS
RAS

Figure 18 Read-cycle timing
diagram.

Memory Devices, Circuits, and Subsystem Design

451

Figure 20 (a) 2164B pin layout. (b) 21256 pin layout. (c) 421000 pin layout.

Memory Devices, Circuits, and Subsystem Design

452

Figure 21 Block diagram of the
2164B DRAM.

early write cycle is performed. During this type of write cycle, the outputs are maintained
in the high-Z state throughout the complete bus cycle. The fact that the output is put in
the high-Z state during the write operation allows the D input and Q output of the DRAM
to be tied together. The Q output is also in the high-Z state whenever is logic 1. This
is the connection and mode of operation normally used when attaching DRAMs to the
bidirectional data bus of a microprocessor. Figure 22 shows how 16 2164B devices are
connected to make up a 64K 16-bit DRAM array.

The 2164B also has the ability to perform what are called page-mode accesses. If
is left at logic 0 after the row address is latched inside the device, the address is

maintained within the device. Then, by simply supplying successive column addresses,
data cells along the selected row are accessed. This permits faster access of memory by
eliminating the time needed to set up and strobe additional row addresses.

Earlier we pointed out that the key difference between the DRAM and SRAM is
that the storage cells in the DRAM need to be periodically refreshed; otherwise, they lose
their data. To maintain the integrity of the data in a DRAM, each of the rows of the stor-
age array must typically be refreshed periodically, such as every 2 ms. All the storage
cells in an array are refreshed by simply cycling through the row addresses. As long as

is held at logic 1 during the refresh cycle, no data are output.
External circuitry is required to perform the address multiplexing, / gen-

eration, and refresh operations for a DRAM subsystem. DRAM-refresh controller ICs are
available to permit easy implementation of these functions.

Battery Backup for the RAM Subsystem

Even though RAM ICs are volatile, in some equipment it is necessary to make all
or part of the RAM memory subsystem nonvolatile (e.g., an electronic cash register). In
this application, a power failure could result in the loss of irreplaceable information about
the operation of the business.

To satisfy the nonvolatile requirement, additional circuitry can be included in the
RAM subsystem. These circuits must sense the occurrence of a power failure and auto-
matically switch the memory subsystem over to a backup battery. An orderly transition
must take place from system power to battery power. Therefore, when a loss of power is
detected, the power-fail circuit must permit the completion of any read or write cycle that

CASRAS
CAS

RAS

�

CAS

Memory Devices, Circuits, and Subsystem Design

453

A8 /A0
A9/A1
A10/A2
A11/A3
A12/A4
A13/A5
A14/A6
A15/A7

D0

D1

D15

WR0

WR1

CAS

DRAM 15
64K X 1

CAS

RASRAS

W

A

D

Q

Q

Q1

Q15

Q0

Q

CAS

DRAM 1
64K X 1

DRAM 7

DRAM 8

RAS

W

A

D

CAS

DRAM 0
64K X 1

RAS

W

A

D

8

8

8

8

Figure 22 64K 16-bit DRAM circuit.�

Memory Devices, Circuits, and Subsystem Design

454

Figure 23 Data-storage memory interface with parity-checker generator.

is in progress and then lock the memory against the occurrence of additional read/write
operations. The memory subsystem remains in this state until power is restored. In this
way, the RAM subsystem can be made at least temporarily nonvolatile.

▲ 4 PARITY, THE PARITY BIT, AND PARITY-CHECKER/
GENERATOR CIRCUIT

In microcomputer systems, the data exchanges that take place between the MPU and the
memory must be done without error. However, problems such as noise, transient signals,
or even bad memory bits can produce errors in the transfer of data and instructions. For
instance, the storage location for 1 bit in a large DRAM array may be bad and stuck at
the 0 logic level. This will not present a problem if the logic level of the data written to
the storage location is 0, but if it is 1, the value will always be read as 0. To improve the
reliability of information transfer between the MPU and memory, a parity bit can be
added to each byte of data. To implement data transfers with parity, a parity-checker/
generator circuit is required.

Figure 23 shows a parity-checker/generator circuit added to the memory interface
of a microcomputer system. Note that the data passed between the MPU and memory
subsystem is applied in parallel to the parity-checker/generator circuit. Assuming that the
microprocessor has an 8-bit data bus, data words read from or written to memory by the

Memory Devices, Circuits, and Subsystem Design

455

MPU over the data bus are still byte-wide, but the data stored in memory is 9 bits long.
The data in memory consists of 8 bits of data and 1 parity bit. Assuming that the mem-
ory array is constructed with 256K 1-bit DRAMs, then the memory array for a mem-
ory subsystem with parity would have nine DRAM ICs instead of eight. The extra DRAM
is needed for storage of the parity bit for each byte of data stored in the other eight
DRAM devices.

The parity-checker/generator circuit can be set up to produce either even parity or
odd parity. The 9-bit word of data stored in memory has even parity if it contains an even
number of bits that are at the 1 logic level and odd parity if the number of bits at logic 1
is odd.

Let us assume that the circuit in Fig. 23 is used to generate and check for even par-
ity. If the byte of data written to memory over the MPU’s data bus is FFH, the binary data
is 111111112. This byte has 8 bits at logic 1—that is, it already has even parity. There-
fore, the parity-checker/generator circuit, which operates in the parity generate mode, out-
puts logic 0 on the parity bit line (PB), and the 9 bits of data stored in memory is
0111111112. On the other hand, if the byte written to memory is 7FH, the binary word
are 011111112. Since only 7 bits are at logic 1, parity is odd. In this case, the parity-
checker/generator circuit makes the parity bit logic 1, and the 9 bits of data saved in mem-
ory is 1011111112. Notice that the data held in memory has even parity. In this way, we
see that during all data memory write cycles, the parity-checker/generator circuit simply
checks the data that are to be stored in memory and generates a parity bit. The parity bit
is attached to the original 8 bits of data to make it 9 bits. The 9 bits of data stored in mem-
ory have even parity.

The parity-checker/generator works differently when data are read from memory.
Now the circuit must perform its parity-check function. Note that the 8 bits of data from
the addressed storage location in memory are sent directly to the MPU. However, at the
same time, this byte and the parity bit are applied to the inputs of the parity-checker/gen-
erator circuit. This circuit checks to determine whether there is an even or odd number of
logic 1s in the word with parity. Again we will assume that the circuit is set up to check
for even parity. If the 9 bits of data read from memory are found to have an even number
of bits at the 1 logic level, parity is correct. The parity-checker/generator signals this fact
to the MPU by making the parity error () output inactive logic 1. This signal is nor-
mally sent to the MPU to identify whether or not a memory parity error has occurred. If
an odd number of bits are found to be logic 1, a parity error has been detected and is
set to 0 to tell the MPU of the error condition. Once alerted to the error, the MPU can do
any one of a number of things under software control to recover. For instance, it could
simply repeat the memory-read cycle to see if it takes place correctly the next time.

The 74AS280 device implements a parity-checker/generator function similar to that
just described. Figure 24(a) shows a block diagram of the device. Note that it has nine
data-input lines, which are labeled A through I. In the memory interface, lines A through H
are attached to data bus lines D0 through D7, respectively, and during a read operation the
parity bit output of the memory array, DPB, is applied to the I input.

The function table in Fig. 24(b) describes the operation of the 74AS280. It shows
how the ΣEVEN and ΣODD outputs respond to an even or odd number of data inputs at logic
1. Note that if there are 0, 2, 4, or 8 inputs at logic 1, the ΣEVEN output switches to logic
1 and ΣODD to logic 0. This output response signals the even parity condition.

PE

PE

�

Memory Devices, Circuits, and Subsystem Design

456

(a)

(4)

(2)

(1)

(13)

(12)

(11)

(10)

(5)
∑even

∑odd
(6)

(9)

(8)
A

B

E 74AS280

F

G

H

D

C

I

NUMBER OF INPUTS A
THRU I THAT ARE HIGH

0,2,4,6,8
1,3,5,7,9

∑ EVEN ∑ ODD

OUTPUTS

H
L

(b)

L
H

∑ EVEN

∑ ODD

74AS280

A

DPB

D7

D6

D5

D4

D3

D2

D1

D0

To/from
memory

To/from MPU B
C
D

I

DPB

E
F
G
H

D0
D1
D2
D3
D4
D5
D6
D7

PE

MEMR

(c)

Figure 24 (a) Block diagram of the 74AS280. (Texas Instruments Incorpo-
rated) (b) Function table. (Texas Instruments Incorporated) (c) Even-parity
checker/generator connection.

Memory Devices, Circuits, and Subsystem Design

457

In practical applications, the ΣEVEN and ΣODD outputs are used to produce the par-
ity bit and parity error signal lines. Figure 24(c) is an even parity-checker/generator con-
figuration. Note that ΣODD is used as the parity bit (DPB) output that gets applied to the
data input of the parity bit DRAM in the memory array. During a write operation
is 0, which makes the I input 0, and therefore the parity of the byte depends only on data
bits D0 through D7, which are applied to the A through H inputs of the 74AS280. As long
as the input at A through H has an even number of bits at logic 1 during a memory write
cycle, ΣODD, which is DPB, is at logic 0 and the 9 bits of data written to memory retain an
even number of bits that are 1, or even parity. On the other hand, if the incoming byte at
A through H has an odd number of bits that are logic 1, ΣODD switches to logic 1. The
logic 1 at DPB along with the odd number of 1s in the original byte again give the 9 bits
of data stored in memory an even parity.

Let us next look at what happens in the parity-checker/generator circuit during a
memory-read cycle for the data-storage memory subsystem. When the MPU is reading a
byte of data from memory, the 74AS280 performs the parity-check operation. In response
to the MPU’s read request, the memory array outputs 9 bits of data. They are applied to
inputs A through I of the parity-checker/generator circuit. The 74AS280 checks the par-
ity and adjusts the logic levels of ΣEVEN and ΣODD to represent this parity. If parity is even
as expected, ΣEVEN, which represents the parity error () signal, is at logic 1. This tells
the MPU that a valid data transfer is taking place. However, if the data at A through I has
an odd number of bits at logic 1, ΣEVEN switches to logic 0 and informs the MPU that a
parity error has occurred.

In a 16-bit microcomputer system, such as that built with the 8086 MPU, there are
normally two 8-bit banks of DRAM ICs in the data-storage memory array. In this case, a
parity bit DRAM is added to each bank. Therefore, parity is implemented separately for
each of the two bytes of a data word stored in memory. This is important because the
8086 can read either bytes or words of data from memory. For this reason, two parity-
checker/generator circuits are also required, one for the upper eight lines of the data bus
and one for the lower eight lines. Gating them together combines the parity error outputs
of the two circuits and the resulting parity error signal is supplied to the MPU. In this
way, the MPU is notified of a parity error if it occurs in an even-addressed byte data trans-
fer, odd-addressed byte data transfer, or in either or both bytes of a 16-bit data transfer.

▲ 5 FLASH MEMORY

Another memory technology important to the study of microcomputer systems is what is
known as FLASH memory. FLASH memory devices are similar to EPROMs in many
ways, but are different in several very important ways. In fact, FLASH memories act just
like EPROMs: they are nonvolatile, are read just like an EPROM, and program with an
EPROM-like algorithm.

The key difference between a FLASH memory and an EPROM is that its memory
cells are erased electrically, instead of by exposure to ultraviolet light. That is, the storage
array of a FLASH memory can be both electrically erased and reprogrammed with new
data. Unlike RAMs, they are not byte erasable and writeable. When an erase operation is
performed on a FLASH memory, either the complete memory array or a large block of
storage locations, not just one byte, is erased. Moreover, the erase process is complex and

PE

MEMR

Memory Devices, Circuits, and Subsystem Design

458

A0–A17

CE

Address bus

FLASH D0–D7

Data bus

Control inputs

OE

WE Figure 25 Block diagram of a
FLASH memory.

can take as long as several seconds. This erase operation can be followed by a write
operation—a programming cycle—that loads new data into the storage location. This
write operation also takes a long time when compared to the write cycle times of a RAM.

Even through FLASH memories are writeable, like EPROMs they find their widest
use in microcomputer systems for storage of firmware. However, their limited erase/
rewrite capability enables their use in applications where data must be rewritten, though
not frequently. Some examples: implementation of a nonvolatile writeable lookup table,
in-system programming for code updates, and solid state drives. An example of the use
of FLASH memory as a lookup table is the storage of a directory of phone numbers in a
cellular phone.

Block Diagram of a FLASH Memory

Earlier we pointed out that FLASH memories operate in a way very similar to an
EPROM. Figure 25 shows a block diagram of a typical FLASH memory device. Let us
compare this block diagram to that of the ROM in Fig. 3. Address lines A0 through A17,
chip enable (), and output enable () serve the exact same function for both devices.
That is, the address picks the storage location that is to be accessed, enables the
device for operation, and enables the data to the outputs during read cycles.

We also see that they differ in two ways. First, the data bus is identified as bidirec-
tional, because the FLASH memory can be used in an application where it is written into
as well as read from. Second, another control input, write enable (), is provided. This
signal must be at its active 0 logic level during all write operations to the device. In fact,
this block diagram is exactly the same as that given for SRAM in Fig. 11.

Bulk-Erase, Boot Block, and FlashFile FLASH Memories

FLASH memory devices are available with several different memory array archi-
tectures. These architectures relate to how the device is organized for the purpose of eras-
ing. Earlier we pointed out that when an erase operation is performed to a FLASH mem-
ory device, either all or a large block of memory storage locations are erased. The three
standard FLASH memory array architectures, bulk-erase, boot block, and FlashFile, are
shown in Fig. 26. In a bulk-erase device, the complete storage array is arranged as a sin-
gle block. Whenever an erase operation is performed, the contents of all storage locations

WE

OE
CE

OECE

Memory Devices, Circuits, and Subsystem Design

459

Block n

Block n – 1

Block n – 2

Block 2

Block 1

FlashFileTM

•
•
•
•
•
•

•
•
•
•
•
•

Boot block

•
•

Bulk-erase

•
•
•
•
•
•

Boot block

Parameter block
Parameter block

Main block

Figure 26 FLASH memory array architectures.

are cleared. This is the architecture used in the design of the earliest FLASH memory
devices.

More modern FLASH memory devices employ either the boot block or FlashFile
architecture for their memory array. They add granularity to the programming process. Now
the complete memory array does not have to be erased. Instead, each of the independent
blocks of storage locations erases separately. Note that the blocks on a boot block device
are asymmetrical is size. There is one small block known as the boot block. This block is
intended for storage of the boot code for the system. Two small blocks that are called
parameter blocks follow it. Their intended use is for storage of certain system parameters,
for instance, a system configuration table or lookup time. Finally, there are a number of
much larger blocks of memory identified as main blocks, where the firmware code is stored.

Boot block devices are intended for use in a variety of applications that require
smaller memory capacity and benefit from the asymmetrical blocking. One such applica-
tion is known as in-system programming. In this type of application, the boot code used
to start up the microcomputer is held in the boot block part of the FLASH memory. When
the system is powered on, a memory-loading program is copied from the boot area of
FLASH into RAM. Then, program execution is transferred to this program; the firmware
that is to be loaded into the FLASH memory is downloaded from a communication line
or external storage device such as a drive; the firmware is written into the main blocks of
the FLASH memory devices; and finally the program is executed out of FLASH. In this
way, we see that the FLASH memory devices are not loaded with the microcomputer’s
program in advance; instead, they are programmed while in the system.

Memory Devices, Circuits, and Subsystem Design

460

FLASH

28F256
28F512
28F010
28F020

Density
(bits)

256K
512K

1M
2M

Capacity
(bytes)

32K × 8
64K × 8

128K × 8
256K × 8 Figure 27 Standard bulk-erase

FLASH memory devices.

FlashFile architecture FLASH memory devices differ from boot block devices in
that the memory array is organized into equal-sized blocks. For this reason, it is said to
be symmetrically blocked. This type of organization is primarily used in the design of
high-density devices. High-density flash devices are used in applications that require a
large amount of code or data to be stored (e.g., a FLASH memory drive).

Standard Bulk-Erase FLASH Memories

Bulk-erase FLASH memories are the oldest type of FLASH devices and are avail-
able in densities similar to those of EPROMs. Figure 27 lists the part number, bit density,
and storage capacity of some of the popular devices. Note that the part numbers of
FLASH devices are similar to those used for the EPROMs described earlier. The differ-
ences are that the 7 in the EPROM part number is replaced by an 8, representing FLASH,
and instead of a C, which is used to identify that the circuitry of the EPROM is made with
a CMOS process, an F identifies FLASH technology. Remember the 2MB EPROM was
labeled 27C020; therefore, the 2MB FLASH memory is labeled as 28F020. This device
is organized as 256K byte-wide storage locations.

Since FLASH memories are electrically erased, they do not need to be manufac-
tured in a windowed package. For this reason, and the trend toward the use of surface-
mount packaging, the most popular package for housing FLASH memory ICs is the plas-
tic leaded chip carrier, or PLCC as it is commonly known. Figure 28(a) shows the PLCC
pin layout of the 28F020. All of the devices listed in Fig. 27 are manufactured in this
same-size package and with compatible pin layouts.

Looking at the signals identified in the pin layout, we find that the device is exactly
the same as the block diagram in Fig. 25. To select between its 256K byte-wide storage
locations, it has 18 address inputs, A0 through A17, and to support byte-wide data-read
and -write transfers, it has an 8-bit data bus, DQ0 through DQ7. Finally, to enable the chip
and its outputs and distinguish between read- and write-data transfers, it has control lines

, , and , respectively. As Fig. 28(b) shows, the device is available with read
access times ranging from 70 ns for the 28F020-70 to 150 ns for the 28F020-150.

The power supply voltage and current requirements depend on whether the FLASH
memory is performing a read, erase, or write operation. During read mode of operation,
the 28F020 is powered by 5V between the Vcc and Vss pins, and it draws a maxi-
mum current of 30 mA. On the other hand, when either an erase or write cycle is taking
place, 12V must also be applied to the Vpp power supply input.

The 28F256, 28F512, 28F010, and 28F020 employ a bulk-erase storage array. For
this reason, when an erase operation is performed to the device, all bytes in the storage

�5%

�10%

WEOECE

Memory Devices, Circuits, and Subsystem Design

461

DQ7

5
6
7
8
9
10
11
12
13

4 3 2 1 32 31 30

14 15 16 17 18 19 20

29
28
27
26
25
24
23
22
21

CE#
A10

OE#
A11

A9

A8

A13

A14

DQ0

A0

A1

A2

A3

A4

A5

A6

A7

A
17

W
E

#
V

C
C

V
P

P

A
16

A
15

A
12

D
Q

6

D
Q

5

D
Q

4

D
Q

3

V
S

S

D
Q

2

D
Q

1

N28F020
32-LEAD PLCC
0.450" X 0.550"

TOP VIEW

(a)

Figure 28 (a) Pin layout of the
28F020. (Reprinted by permission of
Intel Corporation, Copyright Intel
Corp. 1995) (b) Standard speed
selections for the 28F020.

array are restored to FF16, which represents the erased state. The method employed to
erase the 28F020 FLASH memory IC is known as the quick-erase algorithm. A flowchart
that outlines the sequence of events that must take place to erase a 28F020 is given in Fig.
29. This programming sequence can be performed either with a FLASH memory-pro-
gramming instrument or by the software of the microprocessor to which the FLASH
device is attached. Let us next look more closely at how a 28F020 is erased.

To change the contents of a memory array—that is, either erase the storage array
or write bytes of data into the array—commands must be written to the FLASH mem-
ory device. Unlike an EPROM, a FLASH memory has an internal command register.
Figure 30 lists the commands that can be issued to the 28F020. Note that they include
a read (read memory), set up and erase (set up erase/erase), and erase verification
(erase verify) commands. These three are used as part of the quick-erase algorithm
process. The command register can be accessed only when +12V is applied to the Vpp

pin of the 28F020.
Figure 29 also includes a table of the bus operation and command activity that takes

place during an erase operation of the 28F020. From the bus operation and command
columns, we see that as part of the erase process, the microprocessor (or programming
instrument) must issue a set up erase/erase command, followed by an erase verify
command, and then a read command to the FLASH device. It does this by executing a

Part number

70 ns
90 ns

120 ns
150 ns

Access time

(b)

28F020-70
28F020-90
28F020-120
28F020-150

Memory Devices, Circuits, and Subsystem Design

462

Start
erasure

Data
=00H?

Program all
bytes to 00H

Apply
VPPH

ADDR = 00H
PLSCNT = 0

Write erase
setup cmd

Write
erase cmd

Time out 10 ms

Write erase
verify cmd

Time out 6 μs

Read data
from device

Data
=FFH?

Last
address

?

Write
read cmd

Apply
VPPL

Erasure
completed

Apply
VPPL

Erase
error

Inc
PLSCNT
=3000?

Increment
address

Y

N

N

N

YY

Y

N

Entire memory must = 00H
before erasure

Bus
operation Command Comments

Use quick-pulse
programming algorithm

Wait for VPP ramp to VPPH

Initialize addresses and
pulse-count

Data = 20H

Data = 20H

Duration of erase operation
(tWHWH2)

Addr = byte to verify;
Data = A0H; stops erase
operation
tWHGL

Read byte to verify erasure

Compare output to FFH
increment pulse-count

Data = 00H, resets the
register for read operations

Wait for VPP ramp to VPPL

Standby

Write

Write

Standby

Write

Standby

Read

Standby

Write

Standby

Setup
erase

Erase

Erase
verify

Read

Figure 29 Quick-erase algorithm of the 28F020. (Reprinted by permission of
Intel Corporation, Copyright Intel Corp. 1995)

Memory Devices, Circuits, and Subsystem Design

463

Command

Read memory

Read intelligent identifier codes

Setup erase/erase

Erase verify

Setup program/program

Program verify

Reset

1

3

2

2

2

2

2

Write

Write

Write

Write

Write

Write

Write

X

X

X

EA

X

X

X

00H

90H

20H

A0H

40H

C0H

FFH

Read

Write

Read

Write

Read

Write

X

X

PA

X

X

20H

EVD

PD

PVD

FFH

Bus
Cycles
Req’d

First Bus Cycle Second Bus Cycle

Operation Address Data Operation Address Data

Figure 30 28F020 command definitions. (Reprinted by permission of Intel
Corporation, Copyright Intel Corp. 1995)

FLASH memory programming control program that causes the write of the command to
the FLASH memory device at the appropriate time. Actually, all storage locations in the
memory array must always be programmed with 0016 before initiating the erase process.

Figure 29 shows that two consecutive set up erase/erase commands are used in the
quick-erase sequence. The first one prepares the 28F020 to be erased, and the second ini-
tiates the erase process. Figure 30 shows that this sequence is identified as two write
cycles. During both of these bus cycles, a value of data equal to 2016 is written to any
address in the address range of the FLASH device being erased. Once these commands
have been issued, a state-machine within the device automatically initiates and directs the
erase process through completion.

The next step in the quick-erase process is to determine whether or not the device
has erased completely. This is done with the erase verify command. Figure 30 shows that
this operation requires a write cycle followed by a read cycle. During the write cycle, the
data bus carries the erase verify command, A016, and the address bus carries the address
of the storage location that is to be tested, EA. The read cycle that follows is used to
transfer the data from the storage location corresponding to EA to the MPU. This data is
identified as EVD in Fig. 30. The flowchart shows that the MPU must verify that the
value of data read out of FLASH is FF16. This erase verify step is repeated for every stor-
age location in the 28F020. If any storage location does not verify erasure by reading
back FF16, the complete erase process is immediately repeated.

After complete erasure has been verified, the software must issue a read command
to the device. From Fig. 30, we find that it requires a single write bus cycle and is accom-
panied by any address that corresponds to the FLASH device being erased and a com-
mand data value of 0016. Issuing this command puts the device into the read mode and
readies it for read operation. Figure 31 outlines the quick-pulse programming algorithm
of the 28F020. This process is similar to that just described for erasing devices; however,
it uses the set up and program (set up program/program), program verification (program
verify), and read (read memory) commands.

Memory Devices, Circuits, and Subsystem Design

464

Bus
operation Command Comments

Initialize pulse-count

Data = 40H

Duration of program
operation (tWHWH1)

Read byte to verify
programming

Compare data output to
data expected

Data = 00H, resets the
register for read operations

Wait for VPP ramp to VPPL

Write

Standby

Read

Standby

Write

Standby

Setup
program

Read

Wait for VPP ramp to VPPHStandby

Valid address/dataWrite Program

Data = C0H; stops program
operation

Write Program
verify

tWHGLStandby

Start
programming

Apply
VPPH

PLSCNT = 0

Write setup
program cmd

Write program
cmd (A/D)

Time out 10 μs

Write program
verify cmd

Time out 6 μs

Read data
from device

Verify
data

Last
address

?

Write
read cmd

Apply
VPPL

Programming
completed

Apply
VPPL

Program
error

Inc
PLSCNT

=25?

Increment
address

N

N

YY

Y

N

Figure 31 Quick-pulse programming algorithm of the 28F020. (Reprinted by
permission of Intel Corporation, Copyright Intel Corp. 1995)

Standard Boot Block FLASH Memories

Earlier we pointed out that boot block FLASH memories are designed for use in
embedded microprocessor application. These newer devices are available in higher densi-
ties than bulk-erase devices. Fig. 32 shows the pin layouts for three compatible standard
densities: the 2MB, 4MB, and 8MB devices. Notice that the corresponding devices are
identified with the part numbers 28F002, 28F004, and 28F008, respectively. These
devices have different densities but have a common set of operating features and capabil-
ities. The pinout information given is for a 40-pin thin small outline package (TSOP).

Memory Devices, Circuits, and Subsystem Design

465

28F002

28F004
40-Lead TSOP

10 mm × 20 mm
Top view

A16 1A16 A17A1740
A15 2A15 GNDGND39
A14 3A14 NCNC38
A13 4A13 NCNC37
A12 5A12 A10A1036
A11 6A11 DQ7DQ735
A9 7A9 DQ6DQ634
A8 8A8 DQ5DQ533

WE# 9WE# DQ4DQ432
RP# 10RP# VCCVCC31
VPP 11VPP VCCVCC30

WP# 12WP# NCNC29
A18 13NC DQ3DQ328
A7 14A7 DQ2DQ227
A6 15A6 DQ1DQ126
A5 16A5 DQ0DQ025
A4 17A4 OE#OE#24
A3 18A3 GNDGND23
A2 19A2 CE#CE#22
A1 20A1 A0A021

28F002

A17
GND
NC

A10
DQ7
DQ6
DQ5
DQ4
VCC
VCC
NC
DQ3
DQ2
DQ1
DQ0
OE#
GND
CE#
A0

28F00828F008

A16
A15
A14
A13
A12
A11
A9
A8

WE#
RP#
VPP

WP#
A18
A7
A6
A5
A4
A3
A2
A1

A19

290530–3

Figure 32 Pin-layout comparison of the TSOP 28F002, 28F004, and 28F008
ICs.

These devices offer a number of new architectural features when compared to the
bulk-erase devices just described. One of the most important of these new features is what
is known as SmartVoltage. This capability enables the device to be programmed with
either a 5-V or 12-V value of Vpp. In fact, the device can be installed into a circuit using
either value of Vpp. This is because the device has the ability to automatically detect and
adjust its programming operation to the value of the programming supply voltage in use.
These devices are available with either of two read voltage, Vcc supply ratings: Smart 5,
which operates off a 5V Vcc, and Smart 3, which operates off a 3V Vcc.

A second important difference is that devices are available at each of these three
densities that can be organized with either an 8-bit or 16-bit bus. A block diagram of such
a device is shown in Fig. 33(a). This device is identified as a 28F004/28F400. The
28F004 device is available in the 40-pin TSOP package and only operates in the 8-bit data
bus mode. The 28F400 device has 16 data lines, D0 through D15, and can be configured
to operate with either an 8-bit or 16-bit data bus. This is done with the input. Logic
0 at selects byte-wide mode of operation and logic 1 chooses word-wide operation.
To permit the extra data lines, the 28F400 is housed in a 56-lead TSOP.

Remember that the storage array of a boot block device is arranged as multiple
asymmetrically sized, independently erasable blocks. In fact, the 28F004 has one
16Kbyte boot block, two 8Kbyte parameter blocks, three 128Kbyte main blocks, and a
fourth main block that is only 96Kbytes. Two different organizations of these blocks are
available, as shown in Fig. 33(b). The configuration on the left is known as the top boot
(T), and that on the right is known as the bottom boot (B). Note that they differ in how
the blocks are assigned to the address space. That is, the T version has the 16Kbyte boot
block at the top of the address space (highest address), followed by the parameter blocks,
and then the main blocks. The address space of the B version is a mirror image; therefore,
the 16Kbyte boot block starts at the bottom of the address space (lowest address).

Another new feature introduced with the boot block architecture is that of a hard-
ware-lockable block. In the 28F004/28F400, the 16Kbyte boot block section can be

BYTE
BYTE

Memory Devices, Circuits, and Subsystem Design

466

WE

OE

CE

WP

RP (F400 only)

BYTE (F400 only)

(a)

(b)

A0–A18(17)

Address bus

28F004/400 D0–D7(15)

Data bus

8K-byte Parameter block

8K-byte Parameter block

16K-byte Boot block

96K-byte Main block

128K-byte Main block

28F004-T

128K-byte Main block

128K-byte Main block
00000H

20000H
1FFFFH

7C000H
7BFFFH
7A000H
79FFFH
78000H
77FFFH

60000H
5FFFFH

40000H
3FFFFH

7FFFFH

8K-byte Parameter block

8K-byte Parameter block

16K-byte Boot block

128K-byte Main block

128K-byte Main block

28F004-B

128K-byte Main block

96K-byte Main block

00000H

20000H
1FFFFH

08000H
07FFFH
06000H
05FFFH
04000H
03FFFH

60000H
5FFFFH

40000H
3FFFFH

7FFFFH

Note:
Address = A[18:0]

locked. If external hardware applies logic 0 to the write protect () input, the boot
block is locked. Any attempt to erase or program this block when it is locked results in
an error condition. Therefore, we say that the boot block is write protected. In an in-system
programming application, the boot block part of the storage array typically would con-
tain the part of the microcomputer program (boot program) that is used to load the sys-
tem software into FLASH memory. For this reason, it would be locked and should
remain that way.

Looking at Fig. 33(a), we find one more new input on the 28F004/28F400, the
reset /deep power-down () input. This input must be at logic 1 to enable normal read,RP

WP

Figure 33 (a) Block diagram of the 28F004/28F400. (Reprinted by permis-
sion of Intel Corporation, Copyright Intel Corp. 1995) (b) Top and Bottom boot
block organization of the 28F004. (Reprinted by permission of Intel Corpora-
tion, Copyright Intel Corp. 1995)

Memory Devices, Circuits, and Subsystem Design

467

erase, and program operations. During read operations, the device can draw as much as
60 mA of current. If the device is not in use, it can be put into the deep power-down mode
to conserve power. To do this, external circuitry must switch to logic 0. In this mode,
it draws just 0.2 µA.

The last difference we will describe is that the 28F004/28F400 is equipped with
what is known as automatic erase and write. No longer do we need to implement the
complex quick-erase and quick-pulse programming algorithms in software as done for the
28F020. Instead, the 28F004/28F400 uses a command user interface (CUI), status regis-
ter, and write-state machine to initiate an internally implemented and highly automated
method of erasing and programming the blocks of the storage array.

Let us now look briefly at how an erase operation is performed. The command bus
definitions of the 28F004/28F400 are shown in Fig. 34(a), the bit definitions of its status
register are given in Fig. 34(b), and its erase cycle flowchart in Fig. 34(c). Here we see
that all that needs to be done to initiate an erase operation is to write to the device a com-
mand bus definition that includes an erase setup command and an erase confirm com-
mand. These commands contain an address that identifies the block to be erased. In
response to these commands, the write state machine drives a sequence that automatically
programs all of the bits in this block to logic 0, verifies that they have been programmed,
erases all of the bits in the block, and then verifies that each bit in the block has been
erased. While it is performing this process, the write state machine status bit (WSMS) of
the status register is reset to 0 to say that the device is busy. The microcomputer’s soft-
ware can simply poll this bit to see if it is still busy. When WSMS is read as logic 1
(ready), the erase operation is complete and all the bits in the erased block are at the 1
logic level. In this way, we see that the new programming software only has to initiate the
automatic erase process and then poll the status register to determine when the erase oper-
ation is finished.

Standard FLASHFile FLASH Memories

The highest-density FLASH memories available today are those designed with the
FLASHFile architecture. As pointed out earlier, they use a symmetrically sized, indepen-
dently erasable organization for blocking of their storage array. Two popular devices, the
8MB 28F008S5 and the 16MB 28F016SA/SV, are intended for use in large-code storage
applications and to implement solid-state mass-storage devices such as the FLASH card
and FLASH drive.

A block diagram of the 28F016SA/SV FLASHFile memory device is shown in
Fig. 35(a) and its pin layout for a shrink small outline package (SSOP) is given in Fig.
35(b). Comparing this device to the 28F004/28F400 in Fig. 33(a), we find many simi-
larities. For instance, both devices have an address bus, data bus, and control signals

, , , , and , and they serve similar functions relative to device oper-
ation. One difference is that there are now two chip-enable inputs, labeled 0 and
1, instead of just one. Both of these inputs must be at logic 0 to enable the device for
operation.

Another change found on the 28F016SA/SV is the addition of the ready/busy
() output. This output has been provided to further reduce the software overheadRY/ BY

CECE
BYTERPWPWEOE

RP

Memory Devices, Circuits, and Subsystem Design

468

on the MPU during the erase and programming processes. When this output is 0, it sig-
nals that the on-chip write-state machine of the FLASH memory is busy performing an
operation. Logic 1 means that it is ready to start a new operation. For the boot block
devices we introduced earlier, the busy condition had to be determined through software
by polling the WSMS bit of the status register. One approach for the 28F016SA/SV is
that software could poll as an input waiting for the FLASH device to be ready. On
the other hand, this signal could be used as an interrupt input to the MPU. In this way, no
software and MPU overhead is needed to recognize when the FLASH memory is ready
to perform another operation. This is the default mode of operation and is known as level
mode.

RY/ BY

Command

Read array

Intelligent identifier

Read status register

Clear status register

Word/byte write

Alternate word/byte write

Block erase/confirm

Erase suspend/resume

8

1

2,4

3

6,7

6,7

5

Write

Write

Write

Write

Write

Write

Write

Write

X

X

X

X

WA

WA

BA

X

FFH

90H

70H

50H

40H

10H

20H

B0H

First Bus Cycle Second Bus Cycle

Oper Addr Data

Notes

Read

Read

Write

Write

Write

Write

IA

X

WA

WA

BA

X

IID

SRD

WD

WD

D0H

D0H

Oper Addr Data

Address
BA = Block Address
IA = Identifier Address
WA = Write Address
X = Don’t Care

Data
SRD = Status Register Data
IID = Identifier Data
WD = Write Data

Notes:
1. Bus operations are defined in Tables 4 and 5.
2. IA = Identifier Address: A0 = 0 for manufacturer code, A0 = 1 for device code.
3. SRD—Data read from Status Register.
4. IID = Intelligent Identifier Data. Following the Intelligent Identifier command, two Read
 operations access manufacturer and device codes.
5. BA = Address within the block being erased.
6. WA = Address to be written. WD = Data to be written at location WD.
7. Either 40H or 10H commands is valid.
8. When writing commands to the device, the upper data bus [DQ8–DQ15] = X (28F400 only)
 which is either VIL or VIH, to minimize current draw.

(a)

Figure 34 (a) 28F004 command bus definitions. (Reprinted by permission of
Intel Corporation, Copyright Intel Corp. 1995) (b) Status register bit definitions.
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1995) (c)
Erase operation flowchart and bus activity. (Reprinted by permission of Intel
Corporation, Copyright Intel Corp. 1995)

Memory Devices, Circuits, and Subsystem Design

469

WSMS ESS ES DWS VPPS R R R

SR.7 = WRITE STATE MACHINE STATUS
(WSMS)
1 = Ready
0 = Busy

SR.6 = ERASE-SUSPEND STATUS (ESS)
1 = Erase Suspended
0 = Erase in Progress/Completed

SR.5 = ERASE STATUS
1 = Error in Block Erasure
0 = Successful Block Erase

SR.4 = PROGRAM STATUS
1 = Error in Byte/Word Program
0 = Successful Byte/Word Program

SR.3 = VPP STATUS
1 = VPP Low Detect, Operation Abort
0 = VPP OK

Write State Machine bit must first be checked to
determine Byte/Word program or Block Erase
completion before the Program or Erase Status bits are
checked for success.

When Erase Suspend is issued, WSM halts execution
and sets both WSMS and ESS bits to “1.” ESS bit
remains set to “1” until an Erase Resume command is
issued.

When this bit is set to “1,” WSM has applied the
maximum number of erase pulses to the block and is still
unable to successfully verify block erasure.

When this bit is set to “1,” WSM has attempted but failed
to program a byte or word.

The VPP Status bit, unlike an A/D converter, does not
provide continuous indication of VPP level. The WSM
interrogates VPP level only after the Byte Write or Erase
command sequences have been entered, and informs
the system if VPP has not been switched on. The VPP
Status bit is not guaranteed to report accurate feedback
bewteen VPPLK and VPPH.

SR.2–SR.0 = RESERVED FOR FUTURE
ENHANCEMENTS

These bits are reserved for future use and should be
masked out when polling the Status Register.

7 6 5 4 3 2 1 0

(b)

Notes:

Figure 34 (continued)

The function of the output can be configured for a number of different
modes of operation under software control. Writing a device configuration code to the
28F016SA/SV does this. For instance, it can be set to produce a pulse on write or a pulse
on erase or even be disabled.

The last signal line in the block diagram that is new is the input. Note that this
input is implemented only on the 28F016SA IC. Logic 1 at this input selects 3.3V oper-
ation for Vcc, and logic 0 indicates that a 5V supply is in use. Since the 28F016SV is a
SmartVoltage device, this input is not needed.

Figure 35(c) illustrates the blocking of the 28F016SA/SV configured for byte-
wide mode of operation. Here we find that the 16MB address space is partitioned into 32
independent 64K byte blocks. Note that block 0 is in the address range from 00000016

through 00FFFF16 and block 31 corresponds to the range 1F000016 through 1FFFFF16. If

3/5

RY/ BY

Memory Devices, Circuits, and Subsystem Design

470

SR.7 =

Write 20H
block address

Start

Write D0H and
block address

Read status
register

Suspend
Erase

Full status
check if desired

Block erase
complete

Suspend Erase
Loop

Yes

No

0

1

Bus
Operation

Command Comments

Data = 20H
Addr = Within block to be erased

Repeat for subsequent block erasures.
Full Status Check can be done after each block erase,

or after a sequence of block erasures.
Write FFH after the last operation to reset device to read

array mode.

Data = D0H
Addr = Within block to be erased

Status register data
toggle CE# or OE#
to update status register

Check SR.7
1 = WSM ready
0 = WSM busy

Erase setup

Erase
confirm

Write

Write

Read

Standby

(c)

Figure 34 (continued)

the device is strapped for word-mode operation with logic 1 at the input, there are
still 32 blocks, but they are now 32K words in size.

Just as for the 28F004/28F400, the 28F016SA/SV supports block locking. How-
ever, in these devices, the 32 blocks are independently programmable as locked or
unlocked. In fact, there is a separate block status register for each of the 32 blocks. This
block status register contains both control and status bits related to a corresponding block.
The block-lock status (BLS) bit, bit 6 in this register, is an example of a control bit. When
it is set to logic 1 under software control, the corresponding block is configured as
unlocked and write and erase operations is permitted. Changing it to logic 0 locks the
block so that it cannot be written into or erased. Bit 7, block status (BS), is an example
of a status bit that can be read by the MPU. Logic 1 in this bit means that the block is
ready, and logic 0 signals that it is busy. When the write-protect () input is active
(logic 0), write and erase operations are not permitted to those blocks marked as locked
with an 0 in the BLS bit in their corresponding block status register.

Finally, the internal algorithms and hardware of the 28F016SA/SV have been
expanded to improve programming performance. For instance, two 256-byte (128-word)
write buffers have been added into the architecture to enable paged data writes. Moreover,
the programming algorithm has been enhanced to support queuing of commands and
overlapping of erase and write operations. Therefore, additional commands can be sent to
a device while it is still executing a prior command. They are held in the queue until
processed. The overlapping write/erase capability enables the devices to erase one block
while writing data to another. All these features result in easier and faster programming
for the 28F016SA/SV.

WP

BYTE

Memory Devices, Circuits, and Subsystem Design

471

(b)

RP (SA only)

BYTE

(a)

3/5
1F0000
1EFFFF

64K-byte block 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1E0000
1DFFFF

1D0000
1CFFFF

1C0000
1BFFFF

1B0000
1AFFFF

1A0000
19FFFF

190000
18FFFF

180000
17FFFF

170000
16FFFF

160000
15FFFF

150000
14FFFF

140000
13FFFF

130000
12FFFF

120000
11FFFF

110000
10FFFF

100000
0FFFFF

0F0000
0EFFFF

0E0000
0DFFFF

0D0000
0CFFFF

0C0000
0BFFFF

0B0000
0AFFFF

0A0000
09FFFF

090000
08FFFF

080000
07FFFF

070000
06FFFF

060000
05FFFF

050000
04FFFF

040000
03FFFF

030000
02FFFF

020000
01FFFF

010000
00FFFF

1FFFFF

000000

(c)

WE
OE

CE0

WP

CE1
RY/BY

A0–A20

Address bus

28F016SA/SV

D0–D15

Data bus

CE0# 1
A12 2
A13 3
A14 4
A15 5

3/5 # 6
CE 1 # 7

NC 8
A20 9
A19 10
A18 11
A17 12
A16 13
VCC 14

GND 15
DQ6 16

DQ14 17
DQ7 18

DQ15 19
RY/BY# 20

OE# 21
WE# 22
WP# 23

DQ13 24
DQ5 25

DQ12 26
DQ4 27

28

56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29

VPP
R/P#
A11
A10
A9
A1
A2
A3
A4
A5
A6
A7
GND
A8

DQ9
DQ1
DQ8
DQ0
A0
BYTE#
NC
NC
DQ2
DQ10
DQ3
DQ11
GNDVCC

VCC

VPP
R/P#
A11
A10
A9
A1
A2
A3
A4
A5
A6
A7
GND
A8

DQ9
DQ1
DQ8
DQ0
A0
BYTE#
NC
NC
DQ2
DQ10
DQ3
DQ11
GND

VCC

28F016SV28F016SV

CE0#
A12
A13
A14
A15

NC
CE 1 #

NC
A20
A19
A18
A17
A16
VCC

GND
DQ6

DQ14
DQ7

DQ15
RY/BY#

OE#
WE#
WP#

DQ13
DQ5

DQ12
DQ4
VCC

DT28F016SA
56-Lead SSOP
Standard pinout

1.8mm × 16mm × 23.7mm
Top view

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

64K-byte block

Figure 35 (a) Block diagram of the 28F016SA/SV FlashFile memory. (b) Pin layout.
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1995) (c) Byte-wide
mode memory map. (Reprinted by permission of Intel Corporation, Copyright Intel Corp.
1995)

Memory Devices, Circuits, and Subsystem Design

472

(a)

CS0

CS1

MRDC
MWTC

READY

RESET

CLK

Wait-state
generator

(b)

PRD

Q

CLK
DFF

READY

D-type
flip-flop

RS

CS0

CS1

CLR

MRDC
MWTC

RESET

CLK

Select wait states

Data input

Q

R

+5 V

Shift register
1234567 0

Figure 36 (a) Wait-state generator circuit block diagram. (b) Typical wait-
state generator circuit.

▲ 6 WAIT-STATE CIRCUITRY

Depending on the access time of the memory devices used and the clock rate of the MPU,
a number of wait states may need to be inserted into external memory read and write
operations. In relation to 8088/8086 bus cycles, you may recall we found that the mem-
ory subsystem signals the MPU whether or not wait states are needed in a bus cycle with
the logic level applied to its input.

The circuit that implements this function for a microcomputer system is known as
a wait-state generator. Figure 36(a) shows a block diagram of this type of circuit. Note
that the circuit has six inputs and just one output. The two inputs located at the top of the
circuit, 0 and 1, are outputs of the memory chip-select logic. They could representCSCS

READY

Memory Devices, Circuits, and Subsystem Design

473

the chip selects for the program storage and data-storage memory subsystems, respec-
tively, and tell the circuit whether or not these parts of the memory subsystem are being
accessed. The two middle inputs are the memory read command () and memory
write command () outputs of the bus controller. They indicate that a read or write
operation is taking place to the memory subsystem. The last two inputs are the system
reset (RESET) signal and system clock (CLK) signals. The output is READY.

The circuit in Fig. 36(b) can be used to implement a wait-state generator for an
8088/8086-based microcomputer system. To design this circuit, we must select the appro-
priate D-type flip-flop, shift register, and gates.

Let us look briefly at how this wait-state generator circuit works. The READY out-
put is returned directly to the READY input of the MPU. Logic 1 at this output tells the
MPU that the current read/write operation is to be completed. Logic 0 means that the
memory bus cycle must be extended by inserting wait states.

Whenever an external memory bus cycle is initiated, the D-type flip-flop is used to
start the wait-state generation circuit. Before either 0, 1, or RESET becomes active,
the output of the flip-flop is held at logic 1 and signals that wait states are not needed.
The Q output, logic 0, is applied to the input of the shift register. Logic 0 at
holds it in the reset state and holds outputs 0 through 7 all at logic 0.

Whenever a read or write operation takes place to a storage location in the exter-
nal memory’s address range, a logic 0 is produced at either 0 or 1 and a logic 0 is
produced at either or . The active chip-select input makes the D input of
the flip-flop logic 1 and the transition to logic 0 by the read/write command signal
causes the flip-flop to set. This makes the Q output switch to logic 1 and to logic 0.
Now READY tells the MPU to start inserting wait states into the current memory bus
cycle. The Q output makes both the and data input of the shift register logic 1.
Therefore, it is released and the logic 1 at the data input shifts up through the register
synchronous with clock pulses from the MPU’s system clock. When the select wait-state
output becomes logic 1, it makes the input of the flip-flop active, thereby resetting the
Q output to logic 0 and to logic 1. Thus, the READY output returns to logic 1 and ter-
minates the insertion of wait states, and the MPU completes the bus cycle. The number
of wait states inserted depends on how many clock periods READY remains at logic 0.
Simply attaching the select wait-state line to a different output of the shift register can
change this. For instance, the connection shown in Fig. 36(b) represents operation with
two wait states.

▲ 7 8088/8086 MICROCOMPUTER SYSTEM
MEMORY CIRCUITRY

Here we will show how the memory interface circuits and memory subsystem are inter-
connected in a simple microcomputer system, shown in Fig. 37(a). We will use the infor-
mation we have acquired to analyze the memory circuits of this microcomputer system.

Q
RS

CLR

Q

MWTCMRDC
CSCS

CLRCLR
Q

CSCS

MWTC
MRDC

Memory Devices, Circuits, and Subsystem Design

474

VCC

VCC
CLK MN/MX

READY IO/M
RESET

8088
MPU

RD

DT/R

GND

8284A
Clock
generator

RES

DEN

AD0-AD7

A8-A19

ALE STB

T

Transceiver

Latches

GND

(a)

CSy

A0 − A9 D0 − D7

2142 RAM (2)

OD

CSX

WR

OE

OE

Address/data

Control
Signal
Generation

Circuit

Address

Data

WE OE

CE

A0 − A10 D0 − D7

2716-2 PROM
CE

IOW
IOR

MEMR

MEMW

Chip Select
Logic

/
2

Figure 37 (a) Minimum-mode 8088 system memory interface. (Reprinted with permis-
sion of Intel Corporation, Copyright/Intel Corp. 1981) (b) Minimum-mode 8086 system
memory interface. (Reprinted with permission of Intel Corporation, Copyright/Intel Corp.
1979) (c) Maximum-mode 8088 system memory interface. (Reprinted with permission of
Intel Corporation, Copyright/Intel Corp. 1981)

M
em

o
ry D

evices, C
ircu

its, an
d

 Su
b

system
 D

esig
n

475

VCC

Vcc

CLK

RDY

WAIT
STATE

GENERATOR

MN/MX

READY
RESET

8086

GND

8284A CLOCK
GENERATOR

RES

AD0-AD15

A18-A19

(b)

2

CSy

2142 RAM (4)

OD

CSX

MI/IO

DT/R

DEN

BHE

RD

GND

WR

Control
Signal

Generation

Circuit

ADDR

WE OE

2K × 8 2K × 8

2716-2 PROM (2)
(2)

1K × 8
(2)

1K × 8

BHE

IOW
IOR

MEMR

MEMW

ADDR/DATA

G
CLK

LATCH

ALE

G
DIR

TRANSCEIVER
(2)

DATA

Chip
Select
Logic

A0 − A9 D0 − D7 A0 − A10 D0 − D7

Figure 37 (continued)

M
em

o
ry D

evices, C
ircu

its, an
d

 Su
b

system
 D

esig
n

476

VCC

VCC

GND
CLK

CLK

8288
Bus
controller

N.C.

N.C.

MN/MX

READY

RESET

8088
MPU

GND

8284A
Clock
generator

RES

AD0−AD7

A8−A19

STB

Latches

T

Transceiver

GND

(c)

CSy

D0 − D7

2142 RAM (2)

2

OD

CSX

OE

OE

Address/data
Address

Data

WE OE

CE

A0 − A10A0 − A9 D0 − D7

2716-2 PROM
Chip Select

Logic

CE

S1
S2

S0
S1
S2

S0

MRDC
MWTC

AMWC

IORC
IOWC

AIOWCDT/R
ALE

DEN

INTA

MEMR

INTA

MEMW

IOR
IOW

Figure 37 (continued)

M
em

o
ry D

evices, C
ircu

its, an
d

 Su
b

system
 D

esig
n

477

Program Storage Memory

Earlier we found that program storage memory is used to store fixed information
such as instructions of the program or tables of data. This part of the microcomputer’s
memory subsystem is typically implemented with nonvolatile memory devices, such as
the ROM, PROM, EPROM, or FLASH memory. EPROM devices, such as the 2716,
2764, and 27C256, are organized with a byte-wide output; therefore, a single device is
required to supply the 8-bit data bus of the 8088. They need to be arranged to provide a
word-wide output when used in an 8086 system.

Figure 37(a) shows how a 2716 is connected to the demultiplexed system bus of a
minimum-mode 8088-based microcomputer. This device supplies 2Kbytes of program
storage memory. To select one of the 2K storage locations within the 2716, 11 bits of
address are applied to address inputs A0 through A10 of the EPROM. If A0 through A10

of the 8088’s address bus supply these inputs, the address range corresponding to pro-
gram memory is from

to

assuming that generates the chip select signal x. Data outputs
D0 through D7 of the EPROM are applied to data bus lines D0 through D7, respectively,
of the 8088’s system data bus. Data held at the addressed storage location are enabled
onto the data bus by the control signal (memory read), which is applied to the
(output enable) input of the EPROM.

In most applications, attaching several EPROM devices to the system bus expands
the capacity of program storage memory. In this case, high-order bits of the 8088’s
address are decoded to produce chip-select signals. For instance, two address bits, A11

and A12, can be decoded to provide four chip-select signals. Each of these chip-selects is
applied to the (chip-enable) input of one EPROM. When an address is on the bus, just
one of the outputs of the decoder becomes active and enables the corresponding EPROM
for operation. By using four 2716s, the program storage memory is increased to 8Kbytes.

Now that we have explained how EPROMs are attached to the 8088’s system bus, let
us trace through the operation of the circuit for a bus cycle in which a byte of code is
fetched from program storage memory. During an instruction acquisition bus cycle, the
instruction fetch sequence of the 8088 causes the instruction to be read from memory byte
by byte. The values in CS and IP are combined within the 8088 to give the address of a
storage location in the address range of the program storage memory. This address is out-
put on A0 through A19 and latched into the address latches synchronously with the signal
ALE. Bits A0 through A10 of the system address bus are applied to the address inputs of
the 2716. This part of the address selects the byte of code to be output. When the 8088
switches to logic 0 and to logic 0, the control signal generation circuit switches

to logic 0. Logic 0 at enables the outputs of the 2716 and the byte of data
at the addressed storage location is output onto system data bus lines D0 through D7. Early

MEMRMEMR
IO/MRD

CE

OEMEMR

CSA19 . . . A11 � 0 . . . 0

A10A9 . . . A0 � 111111111112 � 007FF16

A10A9 . . . A0 � 000000000002 � 0000016

Memory Devices, Circuits, and Subsystem Design

478

in the read bus cycle, the 8088 switches to logic 0 to signal the bus transceiver that
data are to be input to the microprocessor, and later in the bus cycle is switched to
logic 0 to enable the transceiver for operation. Now the byte of data is passed from the sys-
tem data bus onto the multiplexed address/data bus from which it is read by the MPU.

The circuit in Fig. 37(b) shows a similar circuit for a minimum-mode 8086 micro-
computer system. Note that because of the 16-bit data bus, two octal transceivers and two
EPROMs are required.

Figure 37(c) shows the program storage memory implementation for a maximum-
mode 8088 microcomputer system. Let us look at how this circuit differs from the
minimum-mode circuit of Fig. 37(a). The key difference in this circuit is that the 8288
bus controller is used to produce the control signals for the memory interface. Remember
that in maximum mode the code output on status lines through identifies the type of
bus cycle that is in progress. During all read operations of program memory, the 8088
outputs the instruction fetch memory bus status code, , to the 8288. In
response to this input, the bus controller produces the memory read command ()
output, which is used as the input of the 2716 EPROM and enables it for data output.

In the maximum-mode circuit, the 8288, rather than the 8088, produces the control
signals for the address latches and data bus transceiver. Notice that three address latches
are again used, but this time the ALE output of the 8288 is used to strobe the memory
address into these latches. ALE is applied to the STB inputs of all three latch devices in
parallel. The direction of data transfer through the data bus transceiver is set by the
output of the bus controller and the DEN output is used to generate the input of the
transceiver. Since DEN, not , is produced by the 8288, an inverter is constructed
from the NAND gate that drives of the transceiver.

Data Storage Memory

Information that frequently changes is stored in the data storage part of the micro-
computer’s memory subsystem (e.g., application programs and data). This part of the
memory subsystem is normally implemented with random access read/write memory
(RAM). If the amount of memory required in the microcomputer is small, for instance,
less than 32Kbytes, the memory subsystem will usually be designed with static RAMs.
On the other hand, systems that require a larger amount of data storage memory normally
use dynamic RAMs (DRAMs), which provide larger storage capacity in the same size
package. DRAMs require refresh support circuits. This additional circuitry is not war-
ranted if storage requirements are small.

A 1Kbyte random access read/write memory is also supplied in the minimum-mode
8088-based microcomputer circuit in Fig. 37(a). This part of the memory subsystem is
implemented with two 2142 static RAM ICs. Each 2142 contains 1K, 4-bit storage loca-
tions; therefore, they both supply storage for just 4 bits of the byte. The storage location
to be accessed is selected by a 10-bit address, which is applied to both RAMs in parallel
over address lines A0 through A9. Data are read from or written into the selected storage
location over data bus lines D0 through D7. Of course, through software, the 8088 can
read data from memory either as bytes, words, or double words. The logic level of

(memory write), which is applied to the write enable () input of both RAMsWEMEMW

OE
DEN

OE
DT/R

OE
MRDC

S2S1S0 � 101

S2S0

DEN
DT/R

Memory Devices, Circuits, and Subsystem Design

479

Figure 38 (a) Devices to be used
in the system design of Example 3.
(b) Memory map of the system to be
designed. (c) Memory organization for
the system design. (d) Address range
analysis for the
design of chip select signals 0, 1,

2, and 3. (e) Chip-select logic.CSCS
CSCS

in parallel, signals whether a read or write bus cycle is in progress. is applied
to the OD (output disable) input of both RAMs in parallel. When a write cycle is in
progress, is at logic 1, which disables the outputs of the RAMs. Now the data lines
act as inputs.

Just as for program storage memory, simply attaching additional banks of static
RAMs to the system bus can expand data storage memory. Once again, high-order
address bits can be decoded to produce chip-select signals. Each chip-select output is
applied to the chip-enable input of both RAMs in a bank and, when active, enables that
bank of RAMs for operation.

Let us assume that the value of a byte-wide data operand is to be updated in mem-
ory. In this case, the 8088 must perform a write bus cycle to the address of the operand’s
storage location. First, the address of the operand is formed and output on the multiplexed
address/data bus. When the address is stable, a pulse at ALE is used to latch it into the
address latches. Bits A0 through A9 of the system address bus are applied to the address
inputs of the 2142s. This part of the address selects the storage location into which the
byte of data is to be written. Next the 8088 switches to logic 1 to signal the octal
transceivers that data are to be output to memory. Later in the bus cycle, is switchedDEN

DT/R

RD

MEMR

Memory Devices, Circuits, and Subsystem Design

480

Figure 38 (continued)

to logic 0 to enable the data bus transceiver for operation. Now the byte of data is output
on the multiplexed address/data bus and passed through the transceiver to the system data
bus and data inputs of the RAMs. Finally, the byte of data is written into the addressed
storage location synchronously with the occurrence of the control signal.

The data storage memory circuitry of a minimum-mode 8086 system is also shown
in Fig. 37(b). Here we see that two banks of RAM ICs are required.

Figure 37(c) shows the data storage memory circuit of a maximum-mode 8088
microcomputer. Similar to our description of the program storage memory part of this cir-
cuit, the difference between the maximum-mode and minimum-mode data storage mem-
ory circuits lies in the fact that the 8288 bus controller produces the control signals for the
memory and bus interface logic devices. When the 8088 is accessing data storage mem-
ory, it outputs either the read memory (101) or write memory (110) bus status code. These
codes are decoded by the 8288 to produce appropriate memory control signals. For
instance, the status code 110 (write memory) causes the memory write command
() and advanced memory write command () outputs to become active dur-
ing all write bus cycles. Figure 37(c) shows that or is used to drive the

input of the 2142 SRAMs. When is at its active 0 logic level, the inputMWTCWE
MEMWMWTC

AMWCMWTC

MEMW

Memory Devices, Circuits, and Subsystem Design

481

A0−A13A0−A13 A0−A13

SRAM1 SRAM2

MEMR
I/O1−
I/O4

MEMW

CS0

VCC

OE

WE

CE1

CE2

MEMR

MEMW

CS0

VCC

14 14

4 4 8

A0−A13

I/O1−
I/O4

OE

WE D0−D7

CE1

CE2

A0−A13A0−A13 A0−A13

SRAM3 SRAM4

MEMR
I/O1−
I/O4

MEMW

CS1

VCC

OE

WE

CE1

CE2

MEMR

MEMW

CS1

VCC

14 14

4 4 8

A0−A13

I/O1−
I/O4

OE

WE D0−D7

CE1

CE2

A0−A13

MEMR

CS2

14

8

A0−A13

O0−Ο7OE D0−D7

CE

EPROM1

A0−A13

MEMR

CS3

14

8

A0−A13

O0−Ο7OE D0−D7

CE

EPROM2

(c)

Figure 38 (continued)

482

A19

0000016 = 0000 0000 0000 0000 0000

03FFF16 = 0000 0011 1111 1111 1111

A0

CS0

0400016 = 0000 0100 0000 0000 0000

07FFF16 = 0000 0111 1111 1111 1111

CS1

F800016 = 1111 1000 0000 0000 0000

FBFFF16 = 1111 1011 1111 1111 1111

CS2

FC00016 = 1111 1100 0000 0000 0000

FFFFF16 = 1111 1111 1111 1111 1111

CS3

(d) Figure 38 (continued)

buffers of the SRAMs are enabled for operation. On the other hand, during read bus
cycles, or is used to enable the outputs of the SRAMs.

EXAMPLE 3

Design a memory system consisting of 32Kbytes of R/W memory and 32Kbytes of ROM
memory. Use SRAM devices to implement R/W memory and EPROM devices to imple-
ment ROM memory. The memory devices to be used are shown in Fig. 38(a). R/W mem-
ory is to reside over the address range 0000016 through 07FFF16 and the address range of
ROM memory is to be F800016 through FFFFF16. Assume that the 8088 microprocessor
system bus signals that follow are available for use: A0 through A19, D0 through D7,

, and .

Solution

First let us determine the number of SRAM devices needed to implement the R/W mem-
ory. Since each device provides 214 4 or 16K 4 of storage, the number of SRAM
devices needed to implement 32Kbytes of storage is

To provide an 8-bit data bus, two SRAMs must be connected in parallel. Two pairs con-
nected in this way are then placed in series to implement the R/W address range, and each

No. of SRAM devices � 32Kbyte/(16K � 4) � 4

��

MEMWMEMR

MEMRMRDC

Memory Devices, Circuits, and Subsystem Design

483

Figure 38 (continued)

pair implements 16Kbytes. The first pair, SRAM1 and SRAM2, implements the address
range 0000016 through 03FFF16, and the second pair, SRAM3 and SRAM4, implements
addresses 0400016 through 07FFF16. The memory map in Fig. 38(b) shows the device
allocation for this implementation.

Next let us determine the number of EPROM devices that are needed to implement
the ROM memory. In this case, each device provides 214 × 8 or 16Kbytes of storage. To
implement 32Kbytes of storage, the number of EPROM devices needed is

These two devices must be connected in series to implement the ROM address range
and each device implements 16Kbytes of storage. As shown in the memory map in
Fig. 38(b), the first device, EPROM1, implements the address range F800016 through
FBFFF16. The second device, EPROM2, implements the address range FC00016 through
FFFFF16.

No. of EPROM devices � 32Kbyte/16Kbyte � 2

Memory Devices, Circuits, and Subsystem Design

484

The memory organization based on the preceding allocation of devices is shown
in Fig. 38(c). Notice that we have used the various 8088 system bus signals
(, , and) to draw the circuit diagram. For example, the

signal is applied to the input of all four SRAMs in parallel, but it is not con-
nected to the EPROMs.

The four chip select signals, , , , and , that are used in the circuit need
to be produced for the appropriate address ranges. To design the circuit for generating the
chip-select signals, we first analyze the address ranges as shown in Fig. 38(d) to determine
the address bits that should be used. For instance, to generate the range represented by
SRAM1 and SRAM2, should be active for . Similarly
the other address ranges tell us which address bits are needed to produce the other chip-
select signals. This information is used in Fig. 38(e) to design the chip-select logic circuit
with 74F138 three-line to eight-line decoders.

REVIEW PROBLEMS

Section 1
1. Which part of the primary storage memory is used to store instructions of the pro-

gram and fixed information such as constant data and lookup tables? Data that
changes frequently?

2. What does BIOS stand for?

3. What term is used to refer to programs stored in ROM?

4. Can DRAMs be used to construct a program storage memory?

Section 2
5. What is meant by the term nonvolatile memory?

6. What does PROM stand for? EPROM?

7. What must an EPROM be exposed to in order to erase its stored data?

8. If the block diagram in Fig. 3 has address lines A0 through A16 and data lines D0

through D7, what are its bit density and byte capacity?

9. Summarize the read cycle of an EPROM. Assume that both and are active
before the address is applied.

10. Which standard EPROM stores 64K 8-bit words?

11. What is the difference between a 27C64A and a 27C64A-1?

12. What are the values of VCC and Vpp for the intelligent programming algorithm?

13. What is the duration of the programming pulses used for the intelligent programming
algorithm?

Section 3
14. What do SRAM and DRAM stand for?

15. Are RAM ICs examples of nonvolatile or volatile memory devices?

OECE

A19A18A17A16A15A14 � 0000002CS0

CS3CS2CS1CS0

WEMEMW
MEMWMEMRA0 � A19, D0 � D7

Memory Devices, Circuits, and Subsystem Design

485

16. What must be done to maintain valid data in a DRAM device?

17. Find the total storage capacity of the circuit similar to Fig. 12 if the memory devices
are 43256As.

18. List the minimum values of each of the write cycle parameters that follow for the
4364-10 SRAM: tWC, tCW1, tCW2, tWP, tDW, and tWR.

19. Give two benefits of DRAMs over SRAMs.

20. Name the two parts of a DRAM address.

21. Show how the circuit in Fig. 22 can be expanded to 128K 16 bits.

22. Give a disadvantage of the use of DRAMs in an application that does not require a
large amount of memory.

Section 4
23. What type of circuit can be added to the data storage memory interface to improve

the reliability of data transfers over the data bus?

24. If in Fig. 23 the data read from memory is 1001001002 , what is its parity? Repeat
the same if the data is 0111100002?

25. If the input to a 74AS280 parity-checker/generator circuit that is set up for odd par-
ity checking and generation is , what are its outputs?

26. What changes must be made to the circuit in Fig. 24(c) to convert it to an odd parity
configuration?

27. Make a drawing similar to that shown in Fig 24(c) that can be used as the parity-
checker/generator in the data storage memory subsystem of an 8086 microcomputer
system. Assume that parity checking is performed independently for the upper and
lower banks of the memory array and that the parity error outputs for the two banks
are combined to form a single parity error signal.

Section 5
28. What is the key difference between a FLASH memory and an EPROM?

29. What is the key difference between the bulk-erase architecture and the boot block or
FlashFile architectures?

30. What is the key difference between the boot block architecture and the FlashFile
architecture?

31. What architecture is used in the 28F010 FLASH memory IC?

32. What power supply voltage must be applied to a 28F010 device when it is being
erased or written into?

33. Give the names of two boot block FLASH devices.

34. What value Vcc power supply voltages can be applied to a Smart 5 boot block
FLASH IC? What value Vpp power supply voltages?

35. Name the three types of blocks used in the storage array of the 28F004. How many
of each is provided? What are their sizes?

36. Name two FlashFile FLASH memory devices.

37. What is the function of the output of the 28F016SA/SV?RY/ BY

IH . . . A � 1111111112

�

Memory Devices, Circuits, and Subsystem Design

486

Section 6
38. What function does a wait-state generator circuit perform?

39. What output signal does the wait-state generator produce?

40. Does the circuit in Fig. 36(b) produce the same number of wait states for the mem-
ory subsystems corresponding to both chip selects?

41. What is the maximum number of wait states that can be produced with the circuit in
Fig. 36(b)?

Section 7
42. Make a diagram showing how 2764 EPROMs can be connected to form a 16Kbyte

program storage memory subsystem. Also show a 16Kword program memory sub-
system.

43. If we assume that the high-order address bits in the circuits formed in problem 42 are
all logic 0, what is the address range of the program memory subsystems?

44. How many 2142 static RAMs would be needed in the memory array of the circuit in
Fig. 37(a) if the capacity of data storage memory were to be expanded to 64Kbytes?

45. How many 2716 EPROMs would be needed in the program memory array in the cir-
cuit of Fig. 37(a) to expand its capacity to 96K bits? If 2732s were used instead of
2716s, how many devices are needed to implement the 96K-bit program memory?

46. Repeat the design in Example 3 for the 8086 microprocessor system bus signals A0

through A19, D0 through D15, , , and . Use the same memory and
device specifications.

Section 1
1. Program-storage memory; data-storage memory.

3. Firmware.

Section 2
5. When the power supply for the memory device is turned off, its data contents are not

lost.

7. Ultraviolet light.

9. We are assuming that external decode logic has already produced active signals for
and . Next, the address is applied to the A inputs of the EPROM and decoded

within the device to select the storage location to be accessed. After a delay equal to
tACC, the data at this storage location are available at the D outputs.

11. The access time of the 27C64 is 250 ns and that of the 27C64-1 is 150 ns. That is,
the 27C64-1 is a faster device.

13. 1 ms.

Section 3
15. Volatile.

17. .32K � 32 bits (1MB)

OECE

BHEMEMWMEMR

Memory Devices, Circuits, and Subsystem Design

ANSWERS TO SELECTED REVIEW PROBLEMS▲

487

Memory Devices, Circuits, and Subsystem Design

19. Higher density and lower power.

Section 4
23. Parity-checker/generator circuit.

25. ; .

Section 5
29. The storage array in the bulk-erase device is a single block, whereas the memory array in

both the boot block and FlashFile is organized as multiple independently erasable blocks.

31. Bulk erase.

33. 28F002 and 28F004.
35. Type Quantity Sizes

Boot block 1 16Kbyte
Parameter block 2 8Kbyte
Main block 4 (1) 96Kbyte, (3) 128Kbyte

37. Logic 0 at the output signals that the on-chip write state machine is busy per-
forming an operation. Logic 1 means that it is ready to start another operation.

Section 6
39. READY.

41. Seven.

Section 7
43. Byte addresses 00000H through 03FFFH; word addresses 00000H through 03FFEH.

45. 6;3.

RY/BY

�ODD � 1�EVEN � 0

488

Input/Output Interface
Circuits and LSI
Peripheral Devices

▲ INTRODUCTION

In this chapter we study input/output by examining circuits and large-scale-integrated
peripheral ICs that are used to implement input/output subsystems for the microcomputer
systems. The following topics are covered here:

1 Core and Special-Purpose I/O Interfaces

2 Byte-Wide Output Ports Using Isolated I/O

3 Byte-Wide Input Ports Using Isolated I/O

4 Input/Output Handshaking and a Parallel Printer Interface

5 82C55A Programmable Peripheral Interface

6 82C55A Implementation of Parallel Input/Output Ports

7 Memory-Mapped Input/Output Ports

8 82C54 Programmable Interval Timer

9 82C37A Programmable Direct Memory Access Controller

10 Serial Communications Interface

From Chapter 10 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

489

11 Programmable Communication Interface Controllers

12 Keyboard and Display Interface

13 8279 Programmable Keyboard/Display Controller

▲ 1 CORE AND SPECIAL-PURPOSE I/O INTERFACES

The input/output unit provides the microcomputer with the means for communicating
with the outside world. For instance, the PC keyboard permits the user to input infor-
mation such as programs or data for an application. The display outputs information
about the program or application for the user to read. These examples represent one type
of input/output function, which we will call special-purpose I/O interfaces. Other exam-
ples of special-purpose I/O interfaces are parallel printer interfaces, serial communica-
tion interfaces, and local area network interfaces. They are referred to as special-purpose
interfaces because not all microcomputer systems employ each of these types.

The original PC is capable of supporting a variety of input/output interfaces. In fact
all the interfaces just mentioned are available for the PC. Since they are special-purpose
interfaces, they are all implemented in the original PC as add-on cards. That is, to support
a keyboard and display interface on the PC, a special keyboard/display controller card is
inserted into a slot of the PC and then the keyboard and display are attached to the card
with cables connected at connectors.

In microcomputer circuit design, various other types of circuits is also classified as
input/output circuitry. Parallel input/output ports, interval timers, and direct memory
access control are examples of interfaces that are also considered to be part of the I/O
subsystem. These I/O functions are employed by most microcomputer systems. For this
reason, we will refer to them as core input/output interfaces.

The core I/O functions are not as visible to the user of the microcomputer; however,
they are just as important to overall microcomputer function. The circuitry of the original
PC contains all core microcomputer functions. For example, parallel I/O is the method
used to read the settings of the DIP switches on the processor board. Also an interval time
is used as part of the DRAM refresh process and to keep track of the time of day. The cir-
cuitry for these core I/O functions is built right on the PC’s main processor board. They
are also included as part of the MPU IC in some highly integrated processors, such as the
80C188XL and 80C186XL.

In the sections that follow, we explore the circuits and operations of both the core
and special-purpose input/output functions.

▲ 2 BYTE-WIDE OUTPUT PORTS USING ISOLATED I/O

We start with circuits that can be used to implement parallel output ports in a microcom-
puter system employing isolated I/O. Figure 1(a) shows such a circuit for an 8088-based
microcomputer, which provides eight byte-wide output ports that are implemented using
74F374 octal latches. In this circuit, the ports are labeled port 0 through port 7. These eight
ports give a total of 64 parallel output lines, which are labeled O0 through O63.

Input/Output Interface Circuits and LSI Peripheral Devices

490

Figure 1 (a) Sixty-four-line parallel output circuit for an 8088-based microcomputer.
(b) I /O address decoding for ports 0 through 7. (c) Sixty-four-line parallel output circuit
for an 8086-based microcomputer.

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

491

Figure 1 (continued)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

492

Looking at the circuit, we see that the 8088’s address/data bus is demultiplexed just
as was done for the memory interface. Note that two 74F373 octal latches are used to
form a 16-bit address latch. These devices latch the address A0 through A15 synchro-
nously with the ALE pulse. The latched address outputs are labeled A0L through A15L.
Remember that address lines A16 through A19 are not involved in the I/O interface. For
this reason, they are not shown in the circuit diagram.

Address/data bus lines AD0 through AD7 are also applied to one side of the 74F245
bus transceiver. At the other side of the transceiver, data bus lines D0 through D7 are
shown connecting to the input side of the output latches. It is over these lines that the
8088 writes data into the output ports.

Address lines A0L and A15L provide two of the three enable inputs of the 74F138
input/output address decoder. These signals are applied to enable inputs and G1,
respectively. The decoder requires one more enable signal at its input, which is sup-
plied by the complement of . The enable inputs must be to enable
the decoder for operation. The condition corresponds to an even address, and

represents the fact that an I/O bus cycle is in progress. The third condition,
, is an additional requirement that A15L be at logic 1 during all data transfers for

this section of parallel output ports.
Note that three address lines, A3LA2LA1L, are applied to select inputs CBA of the

74F138 3 line-to-8 line decoder. When the decoder is enabled, the P output correspond-
ing to these select inputs switches to logic 0. Logic 0 at this output enables the sig-
nal to the clock (CLK) input of the corresponding output latch. In this way, just one of
the eight ports is selected for operation.

When valid output data are on D0 through D7, the 8088 switches to logic 0.
This change in logic level causes the selected 74F374 device to latch in the data from the
bus. The 0 logic level at their inputs of the latches permanently enables the outputs.
Therefore, the latched data appear at the appropriate port outputs.

The 74F245 in the circuit allows the data being output to pass from the 8088 to the
output ports. Enabling the 74F245’s DIR and inputs with the and signals,
which are at logic 1 and 0, respectively, accomplishes this.

Note in Fig. 1(a) that not all address bits are used in the I/O address decoding. Here
only latched address bits A0L, A1L, A2L, A3L, and A15L are decoded. Figure 1(b) shows the
addresses that select each of the I/O ports. Unused bits are shown as don’t-care states. By
assigning various logic combinations to the unused bits, the same port can be selected by
different addresses. In this way, we see that many addresses will decode to select each of
the I/O ports. For instance, if all don’t-care address bits are made 0, the address of port 0
is

However, if these bits are all made equal to 1 instead of 0, the address is

and it still decodes to enable port 0. In fact, every I/O address in the range from 800016

through FFF016 that has its lower four bits equal to 00002 decodes to enable port 0. Some
other examples are 8FF016 and F00016.

11111111111100002 � FFF016

10000000000000002 � 800016

DENDT/RG

OE

WR

WR

G1 � 1
G2A � 0

G2B � 0
G2BG2AG1 � 001IO/M

G2A

G2B

Input/Output Interface Circuits and LSI Peripheral Devices

493

Input/Output Interface Circuits and LSI Peripheral Devices

EXAMPLE 1

To which output port in Fig. 1(a) are data written when the address put on the bus during
an output bus cycle is 800216?

Solution

Expressing the address in binary form, we get

That is,

and

Moreover, whenever an output bus cycle is in progress, is logic 1. Therefore, the
enable inputs of the 74F138 decoder are

These inputs enable the decoder for operation. At the same time, its select inputs are sup-
plied with the code 001. This input causes output P1 to switch to logic 0:

The gate at the CLK input of port 1 has as its inputs P1 and . When valid output data
are on the bus, switches to logic 0. Since P1 is also 0, the CLK input of the 74F374
for port 1 switches to logic 0. At the end of the pulse, the clock switches from 0 to
1, a positive transition. This causes the data on D0 through D7 to be latched and become
available at output lines O8 through O15 of port 1.

EXAMPLE 2

Write a series of instructions that will output the byte contents of the memory address
DATA to output port 0 in the circuit of Fig. 1(a).

WR
WR

WR

P1 � 0

 G1 � A15L � 1

G2A � IO/M � 0

G2B � A0L � 0

IO/M

A3LA2LAIL � 001

A0L � 0

A15L � 1

A15 . . . A0 � A15L . . . A0L � 10000000000000102

494

Input/Output Interface Circuits and LSI Peripheral Devices

Solution

To write a byte to output port 0, the address that must be output on the 8088’s address
bus is

Assuming that the don’t-care bits are all made logic 0, we get

The instruction sequence needed to output the contents of memory address DATA to port
0 is

MOV DX, 8000H
MOV AL, [DATA]
OUT DX, AL

Figure 1(c) shows a similar output circuit for an 8086-based microcomputer system.
Here again, 64 output lines are implemented as 8 byte-wide parallel ports, port 0 through
port 7. Comparing this circuit to that for an 8088-based microcomputer in Fig. 1(a), we
find just one difference, that the control signal is applied directly to the input
of the 74F138 input/output address decoder. Since is the complement of the 8088’s

signal, it does not have to be inverted.

Time-Delay Loop and Blinking an LED at an Output Port

The circuit in Fig. 2 has an LED attached to output O7 of parallel port 0. This cir-
cuit is identical to that shown in Fig. 1(a). Therefore, the port address as found in Exam-
ple 2 is 8000H, and the LED corresponds to bit 7 of the byte of data that is written to port
0. For the LED to turn on, O7 must be switched to logic 0, and it will remain on until this
output is switched back to 1. The 74F374 is not an inverting latch; therefore, to make O7

logic 0, we simply write 0 to that bit of the octal latch. To make the LED blink, we must
write a program that first makes O7 logic 0 to turn on the LED, delays for a short period
of time, and then switches O7 back to 1 to turn off the LED. This piece of program can
run as a loop to make the LED continuously blink.

Let us begin by writing the sequence of instructions needed to initialize O7 to logic
0. This is done as follows:

MOV DX, 8000H ;Initialize address of port 0
MOV AL, 00H ;Load data with bit 7 as logic 0

ON_OFF: OUT DX, AL ;Output the data to port 0

After the out operation is performed, the LED will be turned on.

IO/M
M/IO

G2AM/IO

 � 800016

A15A14 . . . A0 � 10000000000000002

A15A14 . . . A0 � 1XXXXXXXXXXX00002

495

8088
MPU

ALE

DIR

74F245
Data bus

transceiver

G

WR

DEN

DT/R

IO/M

AD0 − AD7

A15L

A0L

AD0 - AD7, A8 - A15

D0 - D7

A1L − A3L

A0L - A15L

CBA
74F138
Input/
output
address
decoder

G2B

G2A

G1

P0

P1

P7

CLK

CLK

74F373
(2)

Address
latch

OE

OE

74F374
Port 0 R1

VCC

LED

O1

O7

MN/MX
VCC

Figure 2 Driving an LED connected to an output port.

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

496

Next we must delay for a short period of time so as to maintain the data written to
the LED. This can be done with a software loop. The following instruction sequence pro-
duces such a delay:

MOV CX, 0FFFFH ;Load delay count of FFFFH
HERE: LOOP HERE ;Time delay loop

First the count register is loaded with FFFF16. Then the loop instruction is executed
repeatedly. With each occurrence of the loop, the count in CX is decremented by 1. After
65,335 repeats of the loop, the count in CX is 000016 and the loop operation is complete.
These executions perform no software function for the program other than to use time,
which is the duration of the time delay. By using FFFF16 as the count, the maximum delay
is obtained. Loading a smaller number in CX shortens the duration of the delay.

Next the value in bit 7 of AL is complemented to 1 and then a jump is performed
to return to the output operation that writes the data to the output port:

XOR AL, 80H ;Complement bit 7 of AL
JMP ON_OFF ;Repeat to output the new bit 7

By performing an exclusive-OR operation on the value in AL with the value 8016, the
most significant bit is complemented to 1. The jump instruction returns control to the
OUT instruction. Now the new value in AL, with MSB equal to 1, is output to port 0, and
the LED turns off. After this, the time delay repeats, the value in AL is complemented
back to 0016, and the LED turns back on. In this way, we see that the LED blinks repeat-
edly with an equal period of on and off time that is set by the count in CX.

▲ 3 BYTE-WIDE INPUT PORTS USING ISOLATED I/O

In Section 2, we showed circuits that implemented eight byte-wide output ports for the
8088- and 8086-microcomputer systems. These circuits used the 74F374 octal latch to
provide the output ports. Here we will examine a similar circuit that implements input
ports for the microcomputer system.

The circuit in Fig. 3 provides eight byte-wide input ports for an 8088-based micro-
computer system employing isolated I/O. Just like in the output circuit in Fig. 1(a), the
ports are labeled port 0 through port 7; however, this time the 64 parallel port lines are
inputs, I0 through I63. Note that eight 74F244 octal buffers are used to implement the
ports. The outputs of the buffers are applied to the data bus for input to the MPU. These
buffers have three-state outputs.

When an input bus cycle is in progress, the I/O address selects the port whose data
are to be input. First A0 through A15 is latched into the 74F373 address latches. This
address is accompanied by logic 1 on the control line. Note that is inverted
and applied to the input of the I/O address decoder. If during the bus cycle address
bit and , the address decoder is enabled for operation. Then the code
A3LA2LA1L is decoded to produce an active logic level at one of the decoder’s outputs. For
instance, an input of switches the P1 output to logic 0. P1 is gated with

to produce the enable input for the port 1 buffer. If both and P1 are logic 0,
the input for port 1 is switched to logic 0 and the outputs of the 74F244 are enabled.G

IO/MGRD
A3LA2LA1L � 001

A15L � 1A0L � 0
G2A

IO/MIO/M

Input/Output Interface Circuits and LSI Peripheral Devices

497

Figure 3 Sixty-four-line parallel input circuit for an 8088-based microcomputer.

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

498

In this case, the logic levels at inputs I8 through I15 are passed onto data bus lines D0

through D7, respectively. This byte of data is carried through the enabled data bus trans-
ceiver to the data bus of the 8088. As part of the input operation, the 8088 reads this byte
of data into the AL register.

EXAMPLE 3

What is the I/O address of port 7 in the circuit of Fig. 3? Assume all unused address bits
are at logic 0.

Solution

For the I/O address decoder to be enabled, address bits A15 and A0 must be

and

To select port 7, the address applied to the CBA inputs of the decoder must be

Using 0s for the unused bits gives the address

EXAMPLE 4

For the circuit of Fig. 3, write an instruction sequence that inputs the byte contents of
input port 7 to the memory location DATA_7.

Solution

In Example 3 we found that the address of port 7 is 800E16. This address is loaded into
the DX register with the instruction

MOV DX, 800EH

Now the contents of this port are input to the AL register by executing the instruction

IN AL, DX

Finally, the byte of data is copied to memory location DATA_7 with the instruction

MOV DATA_7, AL

 � 800E16

A15L . . . A1LA0L � 10000000000011102

A3LA2LA1L � 111

A0 � 0

A15 � 1

Input/Output Interface Circuits and LSI Peripheral Devices

499

In practical applications, it is sometimes necessary within an I/O service routine to
repeatedly read the value at an input line and test this value for a specific logic level. For
instance, input I3 at port 0 in Fig. 3 can be checked to determine if it is at the 1 logic level.
Normally, the I /O routine does not continue until the input under test switches to the
appropriate logic level. This technique is known as polling an input. This polling tech-
nique can be used to synchronize the execution of an I/O routine to an event in external
hardware.

Let us now look at how a polling software routine is written. The first step in the
polling operation is to read the contents of the input port. For instance, the instructions
needed to read the contents of port 0 in the circuit of Fig. 3 are

MOV DX, 8000H
POLL_I3: IN AL, DX

A label has been added to identify the beginning of the polling routine. After executing
these instructions, the byte contents of port 0 are held in the AL register. Let us assume
that input I3 at this port is the line that is being polled. Therefore, all other bits in AL are
masked off with the instruction

AND AL, 08H

After this instruction is executed, the contents of AL will be either 00H or 08H. Moreover
the zero flag is 1 if AL contains 00H or else it is 0. The state of the zero flag can be tested
with a jump-on-zero instruction:

JZ POLL_I3

If zero flag is 1, a jump is initiated to POLL_I3, and the sequence repeats. On the other
hand, if it is 0, the jump is not made; instead, the instruction following the jump instruc-
tion is executed. That is, the polling loop repeats until input I3 is tested and found to be
logic 1.

Polling the Setting of a Switch

Figure 4, which is similar to Fig. 3, shows a switch connected to input 7 of input port 0.
Note that when the switch is open, input I7 is pulled to �5 V (logic 1) through pull-up
resistor R1. When the switch is closed, I7 is connected to ground (logic 0). It is a common
practice to poll a switch like this with software waiting for it to close.

The instruction sequence that follows will poll the switch at I7:

MOV DX, 8000H
POLL_I7: IN AL, DX

SHL AL, 1
JC POLL_I7

CONTINUE:

Input/Output Interface Circuits and LSI Peripheral Devices

500

8088
MPU

ALE

DIR

74F245
Data bus

transceiver

G

RD

DEN

DT/R

MN/MX

IO/M

AD0 − AD7

A15L

A0L

AD0 − AD7, A8 − A15

D0 − D7

A1L − A3L CBA
74F138
Input/
output
address
decoder

G2B

G2A

G1

P0

P1

P7

CLK
74F373

(2)
Address

latch
OE

74F244
Port 0

VCC

R1

ON OFF

I1

I7

I0G

A0L − A15L

VCC

Figure 4 Reading the setting of a switch connected to an input port.

501

First, DX is loaded with the address of port 0. Then the contents of port 0 are input to the
AL register. Since the logic level at I7 is in bit 7 of the byte of data in AL, a shift left by
one bit position will put this logic level into CF. Now a jump-on-carry instruction is exe-
cuted to test CF. If CF is 1, the switch is not yet closed. In this case, control is returned
to the IN instruction and the poll sequence repeats. On the other hand, if the switch is
closed, bit 7 in AL is 0 and this value is shifted into CF. When the JC instruction detects
this condition, the polling operation is complete, and the instruction following JC is
executed.

▲ 4 INPUT/OUTPUT HANDSHAKING AND A PARALLEL
PRINTER INTERFACE

In some applications, the microcomputer must synchronize the input or output of infor-
mation to a peripheral device. Two examples of interfaces that may require a synchro-
nized data transfer are a serial communications interface and a parallel printer interface.
Sometimes it is necessary as part of the I/O synchronization process first to poll an input
from an I/O device and, after receiving the appropriate level at the poll input, to acknowl-
edge this fact to the device with an output. This type of synchronization is achieved by
implementing what is known as handshaking as part of the input/output interface.

Figure 5(a) shows a conceptual view of the interface between the printer and a
parallel printer port. There are three general types of signals at the printer interface:
data, control, and status. The data lines are the parallel paths used to transfer data to the
printer. Transfers of data over this bus are synchronized with an appropriate sequence of
control signals. However, data transfers can only take place if the printer is ready to
accept data. Printer readiness is indicated through the parallel interface by a set of signals
called status lines. This interface handshake sequence is summarized by the flowchart
shown in Fig. 5(b).

The printer is attached to the microcomputer system at a connector known as the
parallel printer port. On a PC, a 25-pin connector is used to attach the printer. Figure 5(c)
shows the actual signals supplied at the pins of this connector. Note that there are five sta-
tus signals available at the interface, and they are called Ack, Busy, Paper Empty, Select,
and Error. In a particular implementation only some of these signals may be used. For
instance, to send a character to the printer, the software may test only the Busy signal. If
it is inactive, it may be a sufficient indication to proceed with the transfer.

Figure 6(a) shows a detailed block diagram of a simple parallel printer interface.
Here we find eight data-output lines, D0 through D7, control signal strobe (), and sta-
tus signal busy (BUSY). The MPU outputs data representing the character to be printed
through the parallel printer interface. Character data are latched at the outputs of the par-
allel interface and are carried to the data inputs of the printer over data lines D0 through
D7. The output of the parallel printer interface is used to signal the printer that new
character data are available. Whenever the printer is already busy printing a character, it
signals this fact to the MPU with the BUSY input of the parallel printer interface. This
handshake signal sequence is illustrated in Fig. 6(b).

Let us now look at the sequence of events that take place at the parallel printer
interface when data are output to the printer. Figure 6(c) is a flowchart of a subroutine

STB

STB

Input/Output Interface Circuits and LSI Peripheral Devices

502

(b)

False

True

Status

Send data

Send control

Figure 5 (a) Parallel printer interface. (b) Flowchart showing the data trans-
fer in a parallel printer interface. (c) Parallel printer port pin assignments and
types of interface signals.

Input/Output Interface Circuits and LSI Peripheral Devices

503

Figure 6 (a) I/O interface that employs handshaking. (b) Handshake signals. (c) Hand-
shake sequence flowchart. (d) Handshaking printer interface circuit.

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

504

ALE

8088

MPU

CLK

CLKCBA

DIR

74F373
I/O

Address
latch

74F373
Port 0

Printer

BUSY

74F244
Port 2

74F373
Port 1

74F245
Data bus

transceiver

74F138
I/O

address
latch

AD0−AD7, AD8−A15

A0L−A15L

D0−D7

A15L

P0

O0
O1
O2
O3
O4
O5
O6
O7

D0
D1
D2
D3
D4
D5
D6
D7

P1

P2

P0

A1L−A3L

A0L

OE

OE

STBCLK

OE

G I15

I1

I2

O15

O8

O9

VCC

G2B

G2A

G1

G

IO/M

DT/R

DEN

MN/MX RD

WR

(d)

Figure 6 (continued)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

505

that performs a parallel printer interface character-transfer operation. First the BUSY
input of the parallel printer interface is tested. Note that this is done with a polling oper-
ation. That is, the MPU tests the logic level of BUSY repeatedly until it is found to be
at the not-busy logic level. Busy means that the printer is currently printing a character.
On the other hand, not busy signals that the printer is ready to receive another character
for printing. After finding a not-busy condition, a count of the number of characters in
the printer buffer (microprocessor memory) is read; a byte of character data is read from
the printer buffer; the character is output to the parallel interface; and then a pulse is pro-
duced at . This pulse tells the printer to read the character off the data bus lines. The
printer is again printing a character and signals this fact at BUSY. The handshake
sequence is now complete. Now the count that represents the number of characters in the
buffer is decremented and checked to see if the buffer is empty. If empty, the print oper-
ation is complete. Otherwise, the character transfer sequence is repeated for the next
character.

The circuit in Fig. 6(d) implements the parallel printer interface in Fig. 6(a).

EXAMPLE 5

What are the addresses of the ports that provide the data lines, strobe output, and busy
input in the circuit shown in Fig. 6(d)? Assume that all unused address bits are 0s.

Solution

The I/O addresses that enable port 0 for the data lines, port 1 for the strobe output, and
port 2 for the busy input are found as follows:

EXAMPLE 6

Write a program that will implement the sequence in Fig. 6(c) for the circuit in Fig. 6(d).
Character data are held in memory starting at address PRNT_BUFF, and the number of
characters held in the buffer is identified by the count at address CHAR_COUNT. Use the
port addresses from Example 5.

Solution

First, the character counter and the character pointer are set up with the instructions

MOV CL, CHAR_COUNT ;(CL) = character count
MOV SI, PRNT_BUFF ;(SI) = character pointer

Address of port 2 � 10000000000001002 � 800416

Address of port 1 � 10000000000000102 � 800216

Address of port 0 � 10000000000000002 � 800016

STB

Input/Output Interface Circuits and LSI Peripheral Devices

506

Next, the BUSY input is checked with the instructions

POLL_BUSY: MOV DX, 8004H ;Keep polling till busy = 0
IN AL, DX
AND AL, 01H
JNZ POLL_BUSY

The character is copied into AL, and then it is output to port 0:

MOV AL, [SI] ;Get the next character
MOV DX, 8000H
OUT DX, AL ;and output it to port 0

Now, a strobe pulse is generated at port 1 with the instructions

MOV AL, 00H ; = 0
MOV DX, 8002H
OUT DX, AL
MOV BX, 0FH ;Delay for duration

STROBE: DEC BX
JNZ STROBE
MOV AL, 01H ; = 1
OUT DX, AL

At this point, the value of PRNT_BUFF must be incremented, and the value of
CHAR_COUNT must be decremented:

INC SI ;Update character counter
DEC CL ;and pointer

Finally, a check is made to see if the printer buffer is empty. If it is not empty, we need
to repeat the prior instruction sequence. To do this, we execute the instruction

JNZ POLL_BUSY ;Repeat till all characters
;have been transferred

DONE: -

The program comes to the DONE label after all characters are transferred to the printer.

▲ 5 82C55A PROGRAMMABLE PERIPHERAL INTERFACE

The 82C55A is an LSI peripheral designed to permit easy implementation of parallel I/O
in the 8088- and 8086-microcomputer systems. It provides a flexible parallel interface,
which includes features such as single-bit, 4-bit, and byte-wide input and output ports;

STB

STB

STB

Input/Output Interface Circuits and LSI Peripheral Devices

507

level-sensitive inputs; latched outputs; strobed inputs or outputs; and strobed bidirectional
input/outputs. These features are selected under software control.

A block diagram of the 82C55A is shown in Fig. 7(a) and its pin layout appears in
Fig. 7(b). The left side of the block represents the microprocessor’s interface. It includes
an 8-bit bidirectional data bus D0 through D7. Over these lines, commands, status infor-
mation, and data are transferred between the MPU and 82C55A. These data are trans-
ferred whenever the MPU performs an input or output bus cycle to an address of a regis-
ter within the device. Timing of the data transfers to the 82C55A is controlled by the
read/write control (and) signals.

The source or destination register within the 82C55A is selected by a 2-bit register
select code. The MPU must apply this code to the register-select inputs A0 and A1 of the
82C55A. The port A, port B, and port C registers correspond to codes ,

= 01, and , respectively.
Two other signals are shown on the microprocessor interface side of the block dia-

gram. They are the reset (RESET) and chip-select () inputs. must be logic 0 dur-
ing all read or write operations to the 82C55A. It enables the 82C55A’s microprocessor
interface circuitry for an input or output operation.

On the other hand, RESET is used to initialize the device. Switching it to logic 0 at
power-up causes the internal registers of the 82C55A to be cleared. Initialization config-
ures all I/O ports for input mode of operation.

The other side of the block corresponds to three byte-wide I/O ports, called port A,
port B, and port C, and represent I/O lines PA0 through PA7, PB0 through PB7, and PC0

through PC7, respectively. These ports can be configured for input or output operation.
This gives us a total of 24 I/O lines.

We already mentioned that the operating characteristics of the 82C55A could be
configured under software control. It contains an 8-bit internal control register for this
purpose. The group A and group B control blocks in Fig. 7(a) represent this register. Logic
0 or 1 can be written to the bit positions in this register to configure the individual ports
for input or output operation and to enable one of its three modes of operation. The con-
trol register is write only and its contents can be modified using microprocessor instruc-
tions. A write bus cycle to the 82C55A with register-select code , and an
appropriate control word is used to modify the control registers.

The circuit in Fig. 8 is an example of how the 82C55A can be interfaced to a micro-
processor. Here we see that address lines A0 and A1 of the microprocessor drive the
82C55A’s register-select inputs A1 and A0, respectively. The input of the 82C55A is
supplied from the output of the address decoder circuit whose inputs are address lines A2

through A15 and . To access either a port or the control register of the 82C55A,
must be active. Then the code A1A0 selects the port or control register to be accessed. The
select codes are shown in Fig. 8.

For instance, to access port A, A1A0 � 00, A15 � A14 � 1, A13 � A12 � . . . � A2 �
0, which gives the port A address as

Similarly, it can be determined that the address of port B equals C00116, that of port C is
C00216, and the address of the control register is C00316.

1100 002 � C00016

CSIO/M

CS

A1A0 � 11

CSCS

A1A0 � 10A1A0
A1A0 � 00

WRRD

Input/Output Interface Circuits and LSI Peripheral Devices

508

Figure 7 (a) Block diagram of the 82C55A. (Reprinted by permission of Intel Corpora-
tion. Copyright/Intel Corp. 1980) (b) Pin layout. (Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1980)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

509

D7 − D0D7 − D0

Port ARDRD

CS

WRWR

A1

A0

RESETRESET

Control Reg.

8255

A0

A1

Port B

Port C

Microprocessor
Interface

IO/M

A14

A15

A13

A2

To Select
Port A
Port B
Port C
Control Reg

A1A0,CS
00 , 0
01 , 0
10 , 0
11 , 0

From
the
micro-
processor
address
bus

Figure 8 Addressing an 82C55A using the microprocessor interface signals.

The bits of the control register and their control functions are shown in Fig. 9. Here
we see that bits D0 through D2 correspond to the group B control block in the diagram of
Fig. 7(a). Bit D0 configures the lower four lines of port C for input or output operation.
Notice that logic 1 at D0 selects input operation, and logic 0 selects output operation. The
next bit, D1, configures port B as an 8-bit-wide input or output port. Again, logic 1 selects
input operation, and logic 0 selects output operation.

The D2 bit is the mode-select bit for port B and the lower 4 bits of port C. It per-
mits selection of one of two different modes of operation, called mode 0 and mode 1.
Logic 0 in bit D2 selects mode 0, whereas logic 1 selects mode 1. These modes are dis-
cussed in detail in subsequent sections.

The next 4 bits in the control register, D3 through D6, correspond to the group A
control block in Fig. 7(a). Bits D3 and D4 of the control register are used to configure the
operation of the upper half of port C and all of port A, respectively. These bits work in
the same way as D0 and D1 to configure the lower half of port C and port B. However,
there are now two mode-select bits, D5 and D6, instead of just one. They are used to select
between three modes of operation, mode 0, mode 1, and mode 2.

Input/Output Interface Circuits and LSI Peripheral Devices

510

Figure 9 Control-word bit functions.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1980)

The last control register bit, D7, is the mode-set flag. It must be at logic 1 (active)
whenever the mode of operation is to be changed.

Mode 0 selects what is called simple I/O operation. By simple I/O, we mean that
the lines of the port can be configured as level-sensitive inputs or latched outputs. To set
all ports for this mode of operation, load bit D7 of the control register with logic 1, bits

, and . Logic 1 at D7 represents an active mode set flag. Now port A
and port B can be configured as 8-bit input or output ports, and port C can be configured
for operation as two independent 4-bit input or output ports. Setting or resetting bits D4,
D3, D1, and D0 does this. Figure 10 summarizes the port pins and the functions they can
perform in mode 0.

For example, if is written to the control register, the 1 in D7 acti-
vates the mode-set flag. Mode 0 operation is selected for all three ports because bits D6,
D5, and D2 are logic 0. At the same time, the zeros in D4, D3, D1, and D0 set up all port
lines to work as outputs. Figure 11(a) illustrates this configuration.

By writing different binary combinations into bit locations D4, D3, D1, and D0, any
one of 16 different mode 0 I/O configurations can be obtained. The control word and I/O
setup for the rest of these combinations are shown in Fig. 11(b) through (p).

8016 � 100000002

D2 � 0D6D5 � 00

Input/Output Interface Circuits and LSI Peripheral Devices

511

Figure 10 Mode 0 port pin
functions.

EXAMPLE 7

What is the mode and I/O configuration for ports A, B, and C of an 82C55A after its con-
trol register is loaded with 8216?

Solution

Expressing the control register contents in binary form, we get

Since D7 is 1, the modes of operation of the ports are selected by the control word. The
three least significant bits of the control word configure port B and the lower four bits of
port C:

Lower four bits of port C are outputs.

Port B is an input port.

Mode 0 operation for both port B
and the lower four bits of port C.

D2 � 0

D1 � 1

D0 � 0

D7D6D5D4D3D2D1D0 � 100000102

Input/Output Interface Circuits and LSI Peripheral Devices

512

Figure 11 (a-p) Mode 0 control words and corresponding input/output configurations.
(Reprinted by permission of Intel Corp. Copyright/Intel Corp. 1980)

The next four bits configure the upper part of port C and port A:

Upper four bits of port C are outputs.

Port A is an output port.

Mode 0 operation for both port
A and the upper part of port C.

Figure 11(c) shows this mode 0 I/O configuration.

Mode 1 operation represents what is known as strobed I/O. The ports of the
82C55A are put into this mode of operation by setting to activate the mode-set
flag and setting and .D2 � 1D6D5 � 01

D7 � 1

D6D5 � 00

D4 � 0

D3 � 0

Input/Output Interface Circuits and LSI Peripheral Devices

513

Figure 11 (continued)

Input/Output Interface Circuits and LSI Peripheral Devices

514

Figure 11 (continued)

In this way, the A and B ports are configured as two independent byte-wide I/O
ports, each of which has a 4-bit control/data port associated with it. The control/data
ports are formed from the lower and upper nibbles of port C, respectively. Figure 12 lists
the mode 1 functions of each pin at ports A, B, and C.

When configured in this way, data applied to an input port must be strobed in with
a signal produced in external hardware. An output port in mode 1 is provided with hand-
shake signals that indicate when new data are available at its outputs and when an exter-
nal device has read these values.

As an example, let us assume for the moment that the control register of an
82C55A is loaded with . This configures port A as a
mode 1 input port. Figure 13(a) shows the function of the signal lines for this example.
Note that PA7 through PA0 form an 8-bit input port. On the other hand, the function of
the upper port C lines are reconfigured to provide the port A control/data lines. The PC4

line becomes strobe input (), which is used to strobe data at PA7 through PA0 intoSTBA

D7D6D5D4D3D2D1D0 � 10111XXX

Input/Output Interface Circuits and LSI Peripheral Devices

515

Figure 12 Mode 1 port pin
functions.

Figure 13 (a) Mode 1, port A input configuration. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1980) (b) Mode 1, port A output configuration.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1980)

the input latch. Moreover, PC5 becomes input buffer full (IBFA). Logic 1 at this output
indicates to external circuitry that a word has already been strobed into the latch.

The third control signal is at PC3 and is labeled interrupt request (INTRA). It
switches to logic 1 when making , and an internal signal interrupt
enable . INTEA is set to logic 0 or 1 under software control by using the bit(INTEA) � 1

IBFA � 1STBA � 1

Input/Output Interface Circuits and LSI Peripheral Devices

516

set/reset feature of the 82C55A. This feature will be discussed later. Looking at Fig.
13(a), we see that logic 1 in INTEA enables the logic level of IBFA to the INTRA output.
This signal can be applied to an interrupt input of the MPU to signal it that new data are
available at the input port. The corresponding interrupt-service routine reads the data,
which clears INTRA and IBFA. The timing diagram in Fig. 14(a) summarizes these events
for an input port configured in mode 1.

As another example, let us assume that the contents of the control register are
changed to . This I/O configuration is shown in Fig.
13(b). Note that port A is now configured for output operation instead of input operation.
PA7 through PA0 make up the 8-bit output port. The control line at PC7 is output buffer
full (). When data have been written into the output port, switches to the 0
logic level. In this way, it signals external circuitry that new data are available at the out-
put lines.

OBFAOBFA

D7D6D5D4D3D2D1D0 � 10100XXX

Figure 14 (a) Timing diagram for an input port in mode 1 configuration. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1980) (b) Timing diagram for an
output port in mode 1 configuration. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1980)

Input/Output Interface Circuits and LSI Peripheral Devices

517

Figure 15 (a) Mode 1, port B input configuration. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1980) (b) Mode 1, port B output configuration.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1980)

Signal line PC6 becomes acknowledge (), which is an input. An external
device reads the data and signals the 82C55A that it has accepted the data provided at
the output port by switching to logic 0. When the is received by the
82C55A, it in turn deactivates the output. The last signal at the control port is
the interrupt request (INTRA) output, which is produced at the PC3 lead. This output is
switched to logic 1 when the input becomes inactive. It is used to signal the MPU
with an interrupt that indicates that an external device has accepted the data from the out-
puts. To produce the INTRA, the interrupt enable (INTEA) bit must equal 1. Again
INTEA must be set using the bit set/reset feature to write a 1 to PC6. The timing diagram
in Fig. 14(b) summarizes these events for an output port configured in mode 1.

EXAMPLE 8

Figures 15(a) and (b) show how port B can be configured for mode 1 operation. Describe
what happens in Fig. 15(a) when the input is pulsed to logic 0. Assume that INTEB

is already set to 1.

Solution

As is pulsed, the byte of data at PB7 through PB0 is latched into the port B register.
This causes the IBFB output to switch to 1. Since INTEB is 1, INTRB switches to logic 1.

The last mode of operation, mode 2, represents what is known as strobed bidirec-
tional I/O. The key difference is that now the port works as either inputs or outputs and
control signals are provided for both functions. Only port A can be configured to work in
this way. The I/O port and control signal pins are shown in Fig. 16.

To set up this mode, the control register is set to D7D6D5D4D3D2D1D0 �
11XXXXXX. The I/O configuration that results is shown in Fig. 17. Here we find
that PA7 through PA0 operate as an 8-bit bidirectional port instead of a unidirectional

STBB

STBB

ACKA

OBFA

ACKA � 0ACKA

ACKA

Input/Output Interface Circuits and LSI Peripheral Devices

518

port. Its control signals are at PC7, at PC6, at PC4, IBFA at PC5, and
INTRA at PC3. Their functions are similar to those already discussed for mode 1. One
difference is that INTRA is produced by either gating with INTE1 or IBFA with
INTE2.

In our discussion of mode 1, we mentioned that the bit set/reset feature could be
used to set or reset the INTE bits. For instance, to enable INTRA for port A as output, PC4

OBFA

STBAACKAOBFA

MODE 2

Pin

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

GROUP A ONLY

PB0
PB1
PB2
PB3

MODE 0
OR MODE 1
ONLYPB4

PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

I/O or INTRB
I/O or OBFB or IBFB

I/O or ACKB or STBB
INTRA

STBA

IBFA

ACKA

OBFA
Figure 16 Mode 2 port pin
functions.

Figure 17 Mode 2 input/output con-
figuration. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1980)

Input/Output Interface Circuits and LSI Peripheral Devices

519

Figure 18 Bit set/reset format.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1980)

should be set to make INTE2 (dotted box next to PC4 in Fig. 17) logic 1. The bit
set/reset feature also allows the individual bits of port C to be set or reset. To do this,
we write logic 0 to bit D7 of the control register. This resets the bit set/reset flag. The
logic level that is to be latched at a port C line is included as bit D0 of the control word.
This value is latched at the I/O line of port C, which corresponds to the three-bit code
at D3D2D1.

The relationship between the set/reset control word and input/output lines is
illustrated in Fig. 18. For instance, writing D7D6D5D4D3D2D1D0 � 000011112 into the
control register of the 82C55A selects bit 7 and sets it to 1. Therefore, output PC7 at port
C is switched to the 1 logic level.

EXAMPLE 9

The interrupt-control flag INTEA for output port A in mode 1 is controlled by PC6. Using
the set/reset feature of the 82C55A, what command code must be written to the control
register of the 82C55A to set it to enable the control flag?

Solution

To use the set/reset feature, D7 must be logic 0. Moreover, INTEA is to be set; therefore,
D0 must be logic 1. Finally, to select PC6, the code at bits D3D2D1 must be 110. The rest
of the bits are don’t-care states. This gives us the control word

Replacing the don’t-care states with the 0 logic level, we get

We have just described and given examples of each of the modes of operation that
can be assigned to the ports of the 82C55A. It is also possible to configure the A and
B ports with different modes. For example, Fig. 19(a) shows the control word and port

D7D6D5D4D3D2D1D0 � 000011012 � 0D16

D7D6D5D4D3D2D1D0 � 0XXX11012

Input/Output Interface Circuits and LSI Peripheral Devices

520

Figure 19 (a) Combined mode 2 and mode 0 (input) control word and I/O
configuration. (Reprinted by permission of Intel Corporation. Copyright/Intel
Corp. 1980) (b) Combined mode 2 and mode 1 (output) control word and I/O
configuration. (Reprinted by permission of Intel Corporation. Copyright/Intel
Corp. 1980)

Input/Output Interface Circuits and LSI Peripheral Devices

521

configuration of an 82C55A set up for bidirectional mode 2 operation of port A and input
mode 0 operation of port B. It should also be noted that in all modes, unused pins of port
C are still available as general-purpose inputs or outputs.

EXAMPLE 10

What control word must be written into the control register of the 82C55A such that port
A is configured for bidirectional operation and port B is set up with mode 1 outputs?

Solution

To configure the operating mode of the ports of the 82C55A, D7 must be 1:

Port A is set up for bidirectional operation by making D6 logic 1. In this case, D5 through
D3 are don’t-care states:

Mode 1 is selected for port B by logic 1 in bit D2 and output operation by logic 0 in D1.
Since mode 1 operation has been selected, D0 is a don’t-care state:

This gives the control word

Assuming logic 0 for the don’t-care states, we get

This configuration is shown in Fig. 19(b).

EXAMPLE 11

Write the sequence of instructions needed to load the control register of an 82C55A with
the control word formed in Example 10. Assume that the control register of the 82C55A
resides at address 0F16 of the I/O address space.

D7D6D5D4D3D2D1D0 � 110001002 � C416

D7D6D5D4D3D2D1D0 � 11XXX10X2

D0 � X

D1 � 0

D2 � 1

D5D4D3 � XXX

 D6 � 1

D7 � 1

Input/Output Interface Circuits and LSI Peripheral Devices

522

INTRBIBFBINTEBINTRAINTEAIBFAI/OI/O

D0D1D2D3D4D5D6D7

Input configuration

Group A Group B

INTRBOBFBINTEBINTRAINTEAOBFA I/OI/O

D0D1D2D3D6D7 D4D5

Output configurations

Group A Group B

(a)

INTRAINTE1OBFA

D0D1D2D3D6D7 D4D5

Group A Group B

(b)

IBFA INTE2

(Defined by mode 0 or mode 1 selection)

Figure 20 (a) Mode 1 status infor-
mation for port C. (Reprinted by per-
mission of Intel Corporation.
Copyright/Intel Corp. 1980) (b) Mode
2 status information for port C.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1980)

Solution

First we must load AL with C416. This is the value of the control word that is to be writ-
ten to the control register at address 0F16. The move instruction used to load AL is

MOV AL, 0C4H

These data are output to the control register with the OUT instruction

OUT 0FH, AL

Because the I/O address of the control register is less than FF16, this instruction uses
direct I/O.

In our descriptions of mode 1 and mode 2 operations, we found that when the
82C55A is configured for either of these modes, most of the pins of port C perform I/O
control functions. For instance, Fig. 12 shows that in mode 1 PC3 works as the INTRA

output. The MPU can be programmed to read the control information from port C
through software. This is known as reading the status of port C. The format of the status
information input by reading port C of an 82C55A operating in mode 1 is shown in Fig.
20(a). Note that if the ports are configured for input operation, the status byte contains the
values of the IBF and INTR outputs and the INTE flag for both ports. Once read by the
MPU, these bits can be tested with other software to control the flow of the program.

Input/Output Interface Circuits and LSI Peripheral Devices

523

By using a software handshake sequence that tests the status bits to change the pro-
gram sequence, hardware signals such as interrupts can be saved. For instance, if port A
is used as an input in mode 1, the processor can read (poll) the status register and check
bit D3 for INTRA. If D3 is 1, INTRA is active and the processor is signaled to read the data
from port A of the 82C55A. In this way, the INTRA output may not be connected to the
processor and one interrupt request input is saved.

If the ports are configured as outputs, the status byte contains the values of outputs
and INTR and the INTE flag for each port. Figure 20(b) shows the status byte for-

mat for an 82C55A configured for mode 2 operation.

▲ 6 82C55A IMPLEMENTATION OF PARALLEL
INPUT/OUTPUT PORTS

In Sections 2 and 3, we showed how parallel input and output ports can be implemented
for the 8088- and 8086-microcomputer systems using logic devices such as the 74F244
octal buffer and 74F373 octal latch, respectively. Even though logic ICs can be used to
implement parallel input and output ports, the 82C55A PPI can be used to design a more
versatile parallel I/O interface. This is because its ports can be configured either as inputs
or outputs under software control. Here we will show how the 82C55A is used to design
isolated parallel I/O interfaces for 8088- and 8086-based microcomputers.

The circuit in Fig. 21 shows how PPI devices can be connected to the bus of the
8088 to implement parallel input/output ports. This circuit configuration is for a minimum-
mode 8088 microcomputer. Here we find a group of eight 82C55A devices connected to
the data bus. A 74F138 address decoder is used to select one of the devices at a time for
input and output data transfers. The ports are located at even-address boundaries. Each of
these PPI devices provides up to three byte-wide ports. In the circuit, they are labeled port
A, port B, and port C. These ports can be individually configured as inputs or outputs
through software. Therefore, this circuit is capable of implementing up to 192 I/O lines.

Let us look more closely at the connection of the 82C55As. Starting with the
inputs of the 74F138 address decoder, we see that its enable inputs are 2B �A0 and

. A0 is logic 0 whenever the 8088 outputs an even address on the bus. More-
over, is switched to logic 1 whenever an I/O bus cycle is in progress. This logic
level is inverted and applies logic 0 to the input. For this reason, the decoder is
enabled for all I/O bus cycles to an even address.

When the 74F138 decoder is enabled, the code at its A0 through A2 inputs causes
one of the eight 82C55A PPIs attached to its outputs to get enabled for operation. Bits A5

through A3 of the I/O address are applied to these inputs of the decoder. It responds by
switching the output corresponding to this 3-bit code to the 0 logic level. Decoder outputs
O0 through O7 are applied to the chip select () inputs of the PPIs. For instance,

switches output O0 to logic 0. This enables the first 82C55A, numbered 0
in Fig. 21.

At the same time a PPI chip is selected, the 2-bit code A2A1 at its inputs A1A0 selects
the port for which data are input or output. For example, indicates that port A
is to be accessed. Input/output data transfers take place over data bus lines D0 through D7.
The timing of these read/write transfers is controlled by signals and .WRRD

A2A1 � 00

A5A4A3 � 000
CS

G2A

IO/M
G2A � IO/M

G

OBF

Input/Output Interface Circuits and LSI Peripheral Devices

524

C
on

tr
ol

 b
us

A
dr

es
s

bu
s

A
0−

A
15

D
at

a
bu

s
D

0−
D

7

IO/M

RD

WR

A2

A1

A0

+5V

A

74F138

82C55A

To other
even
address
peripherals

B

C

G2B

G2A

D0−D7 D0−D7

G1

A0
A1

CS

O7

O0

A5

A4

A3

RD
WR

0
2

4
6

8
10

12
14

Port A

Port C

Port B

Figure 21 82C55A parallel I/O ports in an 8088-based microcomputer.

EXAMPLE 12

What must be the address bus inputs of the circuit in Fig. 21 if port C of PPI 14 is to be
accessed?

Solution

To enable PPI 14, the 74F138 must be enabled for operation and its O7 output switched
to logic 0. This requires enable input and chip select code . This in
turn requires from the bus that

and

A5A4A3 � 111 to select PPI 14

A0 � 0 to enable 74F138

CBA � 111G2B � 0

Input/Output Interface Circuits and LSI Peripheral Devices

525

Port C of PPI 14 is selected with , which from the bus requires that

The rest of the address bits are don’t-care states.

EXAMPLE 13

Assume that, in Fig. 21, PPI 14 is configured so that port A is an output port, both ports B
and C are input ports, and all three ports are set up for mode 0 operation. Write a program
that will input the data at ports B and C, find the difference (port C) � (port B), and out-
put this difference to port A.

Solution

From the circuit diagram in Fig. 21, we find that the addresses of the three I/O ports of
PPI 14 are

The data at ports B and C can be input with the instruction sequence

IN AL, 3AH ;Read port B
MOV BL, AL ;Save data from port B
IN AL, 3CH ;Read port C

Now the data from port B are subtracted from the data from port C with the instruction

SUB AL, BL ;Subtract B from C

Finally, the difference is output to port A with the instruction

OUT 38H, AL ;Write to port A

Figure 22 gives a similar circuit that implements parallel input/output ports for a
minimum-mode 8086-based microcomputer system. Let us now look at the differences
between this circuit and the 8088 microcomputer circuit shown in Fig. 21. In Fig. 22, we
find that the I/O circuit has two groups of eight 82C55A devices; one connected to the
lower eight data bus lines, and the other to the upper eight data bus lines. Each of these
groups is capable of implementing up to 192 I/O lines to give a total I/O capability of 384
I/O lines.

Port C address � 001111002 � 3C16

Port B address � 001110102 � 3A16

Port A address � 001110002 � 3816

A2A1 � 10

A1A0 � 10

Input/Output Interface Circuits and LSI Peripheral Devices

526

M/IO

RD

WR

A2

A1

A0

+5V or
address bit

A

74F138

82C55A

To other
even
address
peripheral

B

C

G2B

G2A

D0−D7 D0−D7

G1

A0
A1

CS

O7

O0

A5

A4

A3

RD
WR

0
2

4
6

8
10

12
14

M/IO

BHE

RD

WR

A2

A1

+5V or
address bit

A

74F138

82C55A

To other
odd
address
peripheral

B

C

G2B

G2A

D8−D15 D0−D7

G1

A0
A1

CS

O7

O0

A5

A4

A3

RD
WR

1
3

5
7

9
11

13
15

C
on

tr
ol

 b
us

A
dr

es
s

bu
s

A
0−

A
15

D
at

a
bu

s
D

0−
D

15

Port A

Port C

Port B

Port A

Port C

Port B

Figure 22 82C55A parallel I/O ports at even- and odd-address boundaries in an 8086-
based microcomputer.

Input/Output Interface Circuits and LSI Peripheral Devices

527

Each of the groups of 82C55As has its own 74F138 I/O address decoder. As in
the 8088 microcomputer circuit, the address decoder is used to select devices in a group
one at a time. The ports in the upper group are connected at odd-address boundaries and
those in the lower group are at even-address boundaries. Let us first look more closely at
the connection of the upper group of the 82C55As. Starting with the inputs of the 74F138
decoder, we see that its input is driven by control signal , the input is sup-
plied by control signal , and the G1 input is permanently enabled by fixing it at the
1 logic level. is logic 0 whenever the 8086 outputs an odd address on the bus. More-
over, is switched to logic 0 whenever an I/O bus cycle is in progress. In this way,
we see that the upper decoder is enabled for I/O bus cycles that access a byte of data at
an odd I/O address. Actually, it is also enabled during all word-wide I/O data accesses.

The code on address lines A3 through A5 selects one of the eight 82C55As for oper-
ation. When the upper 74F138 is enabled, the address code applied at the CBA inputs
causes the corresponding output to switch to logic 0. This output is used as a chip-select
() input to one of the 82C55As and enables it for input/output operation. The port that
is accessed in the enabled PPI is selected by the code on lines A1 and A2 of the I/O
address. Finally, the I/O data transfer takes place over data bus lines D8 through D15.

The connection of the lower group of PPIs in Fig. 22 is similar to that shown in Fig.
21. The only difference is that no inverter is required in the connection of the sig-
nal to the input of the 74F138 decoder. This bank is enabled for all byte-wide data
accesses to an even address as well as for all word-wide data accesses.

▲ 7 MEMORY-MAPPED INPUT/OUTPUT PORTS

The memory-mapped I/O interface of a minimum-mode 8088 system is essentially the
same as that employed in the accumulator I/O circuit of Fig. 21. Figure 23 shows the
equivalent memory-mapped circuit. Ports are still selected by decoding an address on the
address bus, and data are transferred between the 8088 and I/O device over the data bus.
One difference is that now the full 20-bit address is available for addressing I/O. There-
fore, memory-mapped I/O devices can reside anywhere in the 1Mbyte memory address
space of the 8088.

Another difference is that during I/O operations memory read and write bus cycles
are initiated instead of I/O bus cycles. This is because memory instructions, not input/
output instructions, are used to perform the data transfers. Furthermore, stays at the
0 logic level throughout the bus cycle. This indicates that a memory operation, not an I/O
operation, is in progress.

Since memory-mapped I/O devices reside in the memory address space and are
accessed with read and write cycles, additional I/O address latch, address buffer, data bus
transceiver, and address decoder circuitry are not needed. The circuitry provided for the
memory interface can be used to access memory-mapped ports.

The key difference between the circuits in Figs. 21 and 23 is that is no longer
inverted. Instead, it is applied directly to the input of the decoder. Another difference
is that the G1 input of the decoder is not fixed at the 1 logic level; instead, it is supplied
by address line A10. The I/O circuits are accessed whenever is equal to logic 0, A10

is equal to logic 1, and A0 equals 0.
IO/M

G2A

IO/M

IO/M

G2A

M/IO

CS

M/IO
BHE

M/IO
G2ABHEG2B

Input/Output Interface Circuits and LSI Peripheral Devices

528

C
on

tr
ol

 b
us

A
dr

es
s

bu
s

A
0−

A
19

D
at

a
bu

s
D

0−
D

7

IO/M

RD

WR

A2

A1

A0

A10

A

74F138

82C55A

To other
even
address
peripheral

B

C

G2B

G2A

D0−D7 D0−D7

G1

A0
A1

CS

O7

O0

A5

A4

A3

RD
WR

0
2

4
6

8
10

12
14

Port A

Port C

Port B

Figure 23 Memory-mapped 82C55A parallel I/O ports in an 8088-based micro-
computer.

EXAMPLE 14

Which I/O port in Fig. 23 is selected for operation when the memory address output on
the bus is 0040216?

Solution

We begin by converting the address to binary form. This gives

In this address, bits . Therefore, the 74F138 address decoder is
enabled whenever , which is the case during memory operations.IO/M � 0

A10 � 1 and A0 � 0

A19 . . . A1A0 � 000000000100000000102

Input/Output Interface Circuits and LSI Peripheral Devices

529

A memory-mapped I/O operation takes place at the port selected by A5A4A3 �
000. This input code switches decoder output O0 to logic 0 and chip selects PPI 0 for
operation. That is,

makes

and selects PPI 0.
The address bits applied to the port select inputs of the PPI are A2A1 = 01. These

inputs cause port B to be accessed. Thus, the address 0040216 selects port B on PPI 0 for
memory-mapped I/O.

EXAMPLE 15

Write the sequence of instructions needed to initialize the control register of PPI 0 in the
circuit of Fig. 23 so that port A is an output port, ports B and C are input ports, and all
three ports are configured for mode 0 operation.

Solution

Referring to Fig. 9, we find that the control byte required to provide this configuration
is

From the circuit diagram, the memory address of the control register for PPI 0 is found
to be . Since PPI 0 is memory mapped, the follow-
ing move instructions can be used to initialize the control register:

MOV AX, 0 ;Create data segment at 00000H
MOV DS, AX
MOV AL, 8BH ;Load AL with control byte
MOV [406H], AL ;Write control byte to PPI 0 control register

000000000100000001102 � 0040616

Mode set flag active

Mode 0

Port A as output

Upper half of port C as input

Mode 0

Port B as input

Lower half of port C as input

1 0 0 0 1 0 1 12 � 8B16

O0 � 0

A5A4A3 � 000

Input/Output Interface Circuits and LSI Peripheral Devices

530

EXAMPLE 16

Assume that PPI 0 in Fig. 23 is configured as described in Example 15. Write a program
that will input the contents of ports B and C, AND them together, and output the results
to port A.

Solution

From the circuit diagram, we find that the addresses of the three I/O ports on PPI 0 are

Now we set up a data segment at 0000016 and input the data from ports B and C:

MOV AX, 0 ;Create data segment at 00000H
MOV DS, AX
MOV BL, [402H] ;Read port B
MOV AL, [404H] ;Read port C

Next, the contents of AL and BL must be ANDed and the result output to port A. This is
done with the instructions

AND AL, BL ;AND data at ports B and C
MOV [400H], AL ;Write to port A

Figure 24 shows a memory-mapped parallel I/O interface circuit for an 8086-based
microcomputer system. Just like the accumulator-mapped circuit in Fig. 22, this circuit is
capable of implementing up to 384 parallel I/O lines.

▲ 8 82C54 PROGRAMMABLE INTERVAL TIMER

The 82C54 is an LSI peripheral designed to permit easy implementation of timer and
counter functions in a microcomputer system. It contains three independent 16-bit coun-
ters that can be programmed to operate in a variety of ways to implement timing func-
tions. For instance, they can be set up to work as a one-shot pulse generator, square-wave
generator, or rate generator.

Block Diagram of the 82C54

Let us begin our study of the 82C54 by looking at the signal interfaces shown in
its block diagram of Fig. 25(a). The actual pin location for each of these signals is given

Port C address � 0040416

Port B address � 0040216

Port A address � 0040016

Input/Output Interface Circuits and LSI Peripheral Devices

531

M/IO

RD

WR

A2

A1

A0

A10

A

74F138

82C55A

To other
even
address
peripheral

B

C

G2B

G2A

D0−D7 D0−D7

G1

A0
A1

CS

O7

O0

A5

A4

A3

RD
WR

0
2

4
6

8
10

12
14

M/IO

BHE

RD

WR

A2

A1

A

74F138

82C55A

Port A

Port C

Port B

To other
odd
address
peripheral

B

C

G2B

G2A

D8−D15 D0−D7

G1

A0
A1

CS

O7

O0

A5

A10

A4

A3

RD
WR

1
3

5
7

9
11

13
15

C
on

tr
ol

 b
us

A
dr

es
s

bu
s

A
0−

A
19

D
at

a
bu

s
D

0−
D

15

Port A

Port C

Port B

Figure 24 Memory-mapped 82C55A parallel I/O ports in an 8086-based microcom-
puter.

Input/Output Interface Circuits and LSI Peripheral Devices

532

Figure 25 (a) Block diagram of the
82C54 interval timer. (b) Pin layout.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

in Fig. 25(b). In a microcomputer system, the 82C54 is treated as a peripheral device.
Moreover, it can be memory-mapped into the memory address space or I/O-mapped into
the I/O address space. The microprocessor interface of the 82C54 allows the MPU to read
from or write into its internal registers. In this way, it can be configured in various modes
of operation.

Now we will look at the signals of the microprocessor interface. The microproces-
sor interface includes an 8-bit bidirectional data bus, D0 through D7. It is over these lines
that data are transferred between the MPU and 82C54. Register address inputs A0 and A1

are used to select the register to be accessed, and control signals read () and write ()
indicate whether it is to be read from or written into, respectively. A chip-select ()
input is also provided to enable the 82C54’s microprocessor interface. This input allows
the designer to locate the device at a specific memory or I/O address.

CS
WRRD

Input/Output Interface Circuits and LSI Peripheral Devices

533

Figure 26 Internal architecture of the
82C54. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1987)

At the other side of the block in Fig. 25(a), we find three signals for each counter.
For instance, counter 0 has two inputs that are labeled CLK0 and GATE0. Pulses applied
to the clock input are used to decrement counter 0. The gate input is used to enable or dis-
able the counter. GATE0 must be switched to logic 1 to enable counter 0 for operation.
For example, in the square-wave mode of operation, the counter is to run continuously;
therefore, GATE0 is fixed at the 1 logic level, and a continuous clock signal is applied to
CLK0. The 82C54 is rated for a maximum clock frequency of 10 MHz. Counter 0 also
has an output line that is labeled OUT0. The counter produces either a clock or a pulse at
OUT0, depending on the mode of operation selected. For instance, when configured for
the square-wave mode of operation, this output is a clock signal.

Architecture of the 82C54

Figure 26 shows the internal architecture of the 82C54. Here we find the data bus
buffer, read/write logic, control word register, and three counters. The data bus buffer and
read/write control logic represent the microprocessor interface we just described.

The control word register section actually contains three 8-bit registers used to con-
figure the operation of counters 0, 1, and 2. The format of a control word is shown in Fig.
27. Here we find that the two most significant bits are a code that assigns the control word
to a counter. For instance, making these bits 01 selects counter 1. Bits D1 through D3 are
a 3-bit mode-select code, M2M1M0, which selects one of six modes of counter operation.
The least significant bit D0 is labeled BCD and selects either binary or BCD mode of
counting. For instance, if this bit is set to logic 0, the counter acts as a 16-bit binary

Input/Output Interface Circuits and LSI Peripheral Devices

534

counter. Finally, the 2-bit code RW/W1 RW/W0 is used to set the sequence in which bytes
are read from or loaded into the 16-bit count registers.

EXAMPLE 17

An 82C54 receives the control word 100100002. What configuration is set up for the timer?

Solution

Since the SC bits are 10, the rest of the bits are for setting up the configuration of
counter 2. Following the format in Fig. 27, we find that 01 in the RW/W bits sets
counter 2 for the read/write sequence identified as the least significant byte only. This

Figure 27 Control word format of
the 82C54. (Reprinted by permission
of Intel Corporation. Copyright/Intel
Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

535

Figure 28 Accessing the registers of
the 82C54. (Reprinted by permission
of Intel Corporation. Copyright/Intel
Corp. 1987)

means that the next write operation performed to counter 2 will load the data into the least
significant byte of its count register. Next the mode code is 000, and this selects mode 0
operation for this counter. The last bit, BCD, is also set to 0 and selects binary counting.

The three counters shown in Fig. 26 are each 16 bits in length and operate as down
counters. That is, when enabled by an active gate input, the clock decrements the count. Each
counter contains a 16-bit count register that must be loaded as part of the initialization cycle.
The value held in the count register can be read at any time through software.

To read from or write to the counters of the 82C54 or load its control word register,
the microprocessor needs to execute instructions. Figure 28 shows the bus-control infor-
mation needed to access each register. For example, to write to the control register, the
register address lines must be and the control lines must be ,
, and .

EXAMPLE 18

Write an instruction sequence to set up the three counters of the 82C54 in Fig. 29 as fol-
lows:

Solution

First, we need to determine the base address of the 82C54. The base address, which is
also the address of counter 0, is determined with A1A0 set to 00. In Fig. 29 we find that
to select the 82C54, must be logic 0. This requires that

A15A14 . . . A7A6A5 . . . A2 � 000000000100002

CS

Counter 2: Binary counter operating in mode 4 with an initial value of 1FFFH.

Counter 1: BCD counter operating in mode 2 with an initial value of 0100H.

Counter 0: Binary counter operating in mode 0 with an initial value of 1234H.

CS � 0
RD � 1WR � 0A1A0 � 11

Input/Output Interface Circuits and LSI Peripheral Devices

536

D7 − D0D7 − D0

RDIOR

CS

WRIOW

A0

A1

A0

A1

82C54
Microprocessor
signals

A15

A14

A7

A5

A6

A2

IOR
IOW

Figure 29 Microprocessor interface for the 82C54.

Combining this part of the address with the 00 at A1A0, gives the base address as

Since the base address of the 82C54 is 40H, and to select the mode register requires
, its address is 43H. Similarly, the three counters 0, 1, and 2 are at addresses

40H, 41H, and 42H, respectively. Let us first determine the mode words for the three
counters. Following the bit definitions in Fig. 27, we get

Mode word for counter 2 � 101110002 � B816

Mode word for counter 1 � 010101012 � 5516

Mode word for counter 0 � 001100002 � 3016

A1A0 � 11

00000000010000002 � 40H

Input/Output Interface Circuits and LSI Peripheral Devices

537

The following instruction sequence can be used to set up the 82C54 with the desired
mode words and counts:

MOV AL, 30H ;Set up counter 0 mode
OUT 43H, AL
MOV AL, 55H ;Set up counter 1 mode
OUT 43H, AL
MOV AL, 0B8H ;Set up counter 2 mode
OUT 43H, AL
MOV AL, 1234H ;Initialize counter 0 with 1234H
OUT 40H, AL
MOV AL, 12H
OUT 40H, AL
MOV AL, 0100H ;Initialize counter 1 with 0100H
OUT 41H, AL
MOV AL, 01H
OUT 41H, AL
MOV AL, 1FFFH ;Initialize counter 2 with 1FFFH
OUT 42H, AL
MOV AL, 1FH
OUT 42H, AL

Earlier we pointed out that the contents of a count register could be read at any
time. Let us now look at how this is done in software. One approach is simply to read the
contents of the corresponding register with an input instruction. Figure 28 shows that to
read the contents of count register 0, the control inputs must be , , and

, and the register address code must be . To ensure that a valid count
is read out of count register 0, the counter must be inhibited before the read operation
takes place. The easiest way to do this is to switch the GATE0 input to logic 0 before per-
forming the read operation. The count is read as two separate bytes, low byte followed by
the high byte.

The contents of the count registers can also be read without first inhibiting the
counter. That is, the count can be read on the fly. To do this in software, a command must
first be issued to the mode register to capture the current value of the counter into a tem-
porary internal storage register. Figure 27 shows that setting bits D5 and D4 of the mode
byte to 00 specifies the latch mode of operation. Once this mode byte has been written to
the 82C54, the contents of the temporary storage register for the counter can be read just
as before.

EXAMPLE 19

Write an instruction sequence to read the contents of counter 2 on the fly. The count
is to be loaded into the AX register. Assume that the 82C54 is located at I/O address
40H.

A1A0 � 00WR � 1
RD � 0CS � 0

Input/Output Interface Circuits and LSI Peripheral Devices

538

Figure 30 Read-back command for-
mat. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1990)

Solution

First, we latch the contents of counter 2 and then read this value from the temporary stor-
age register. This is done with the following sequence of instructions:

MOV AL, 1000XXXXB ;Latch counter 2,
;XXXX must be as per the mode and
;counter type

OUT 43H, AL
IN AL, 42H ;Read the low byte
MOV BL, AL
IN AL, 42H ;Read the high byte
MOV AH, AL
MOV AL, BL ;(AX) = counter 2 value

Another mode of operation, read-back mode, permits a programmer to capture the
current count values and status information of all three counters with a single command.
In Fig. 27 we see that a read-back command has bits D6 and D7 both set to 1. The read-
back command format is shown in more detail in Fig. 30. Note that bits D1 (CNT 0), D2

(CNT 1), and D3 (CNT 2) are made logic 1 to select the counters, logic 0 in bit D4 means
that status information will be latched, and logic 0 in D5 means that the counts will be
latched. For instance, to capture the values in all three counters, the read-back command
is . This command must be written into the control word register of
the 82C54. Figure 31 shows some other examples of read-back commands. Note that both
count and status information can be latched with a single command.

Our read-back command example, DE16, only latches the values of the three coun-
ters. The programmer must next read these values by issuing read commands for the indi-
vidual counters. Once the value of a counter or status is latched, it must be read before a
new value can be captured.

Figure 31 gives an example of a command that latches only the status for counters
1 and 2. This command is coded as

Figure 32 shows the format of the status information latched with this command. Here
we find that bits D0 through D5 contain the mode-control information that was written
into the counter. These bits are identical to the six least significant bits of the control

111011002 � EC16

110111102 � DE16

Input/Output Interface Circuits and LSI Peripheral Devices

539

Figure 32 Status byte format.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1990)

Figure 31 Read-back command examples. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1990)

word in Fig. 27. In addition to this information, the status byte contains the logic state of
the counter’s output pin in bit position D7 and the value of the null count flip-flop in bit
position D6. The programmer reads latched status information by issuing a read-counter
command to the 82C54.

The first command in Fig. 31, , captures both the count and sta-
tus information for counter 0. When both count and status information is captured with a
read-back command, two read-counter commands are required to return the information
to the MPU. During the first read operation, the value of the count is read, and the status
information is transferred during the second read operation.

Operating Modes of 82C54 Counters

As indicated earlier, each of the 82C54’s counters can be configured to operate in
one of six modes. Figure 33 shows waveforms that summarize operation for each mode.
Note that mode 0 operation is known as interrupt on terminal count and mode 1 is called
programmable one-shot. The GATE input of a counter takes on different functions,
depending on which mode of operation is selected. Figure 34 summarizes the effect of the
gate input. For instance, in mode 0, GATE disables counting when set to logic 0 and
enables counting when set to 1. Let us now discuss each of these modes of operation in
more detail.

The interrupt on terminal count mode of operation is used to generate an interrupt
to the microprocessor after a certain interval of time has elapsed. As shown in the wave-
forms for mode 0 operation in Fig. 33, a count of n � 4 is written into the count regis-
ter synchronously with the pulse at . After the write operation is complete, the countWR

110000102 � C216

Input/Output Interface Circuits and LSI Peripheral Devices

540

Figure 33 Operating modes of the 82C54. (Reprinted by permission of Intel Corpora-
tion. Copyright/Intel Corp. 1987)

is loaded into the counter on the next clock pulse and the count is decremented by 1 for
each clock pulse that follows. When the count reaches 0, the terminal count, a 0-to-1 tran-
sition occurs at OUTPUT. This occurs after n � 1 (five) clock pulses. This signal can be
used as the interrupt input to the microprocessor.

Earlier we found in Fig. 34 that GATE must be at logic 1 to enable the counter for
interrupt on terminal count mode of operation. Figure 33 also shows waveforms for the
case in which GATE is switched to logic 0. Here we see that the value of the count is 4
when GATE is switched to logic 0. It holds at this value until GATE returns to 1.

EXAMPLE 20

The counter of Fig. 35 is programmed to operate in mode 0. Assuming that the decimal
value 100 is written into the counter, compute the time delay (TD) that occurs until the
positive transition takes place at the counter 0 output. The counter is configured for BCD
counting. Assume the relationship between the GATE0 and the CLK0 signal as shown in
the figure.

Input/Output Interface Circuits and LSI Peripheral Devices

541

Figure 34 Effect of the GATE input
for each mode. (Reprinted by permis-
sion of Intel Corporation.
Copyright/Intel Corp. 1987)

Figure 35 Mode 0 configuration.

Input/Output Interface Circuits and LSI Peripheral Devices

542

Solution

Once loaded, counter 0 needs to count down for 100 pulses at the clock input. During this
period, the counter is disabled by logic 0 at the GATE0 input for two clock periods.
Therefore, the time delay is calculated as

Mode 1 operation implements what is known as a programmable one-shot. As Fig.
33 shows, when set for this mode of operation, the counter produces a single pulse at its
output. The waveforms show that an initial count, which in this example is the number 4,
is written into the counter synchronous with a pulse at . When GATE, called TRIG-
GER in the waveshapes, switches from logic 0 to 1, OUTPUT switches to logic 0 on the
next pulse at CLOCK and the count begins to decrement with each successive clock
pulse. The pulse is completed as OUTPUT returns to logic 1 when the terminal count, 0,
is reached. In this way, we see that the duration of the pulse is determined by the value
loaded into the counter.

The pulse generator produced with an 82C54 counter is what is called a
retriggerable one-shot. By retriggerable we mean that if, after an output pulse has been
started, another rising edge is experienced at TRIGGER, the count is reloaded and restart-
ing the count operation extends the pulse width. The lower one-shot waveform in Fig. 33
shows this type of operation. Note that after the count is decremented to 2, a second ris-
ing edge occurs at TRIGGER. On the next clock pulse, the value 4 is reloaded into the
counter to extend the pulse width to 7 clock cycles.

EXAMPLE 21

Counter 1 of an 82C54 is programmed to operate in mode 1 and is loaded with the deci-
mal value 10. The gate and clock inputs are as shown in Fig. 36. How long is the output
pulse? Assume that the counter is configured for BCD counting.

Solution

The GATE1 input in Fig. 36 shows that the counter is operated as a nonretriggerable one-
shot. Therefore, the pulse width is given by

� 8.38 �s

� (10)(1/1.19318) MHz

T � (counter contents) (clock period)

WR

 � 86.3 �s

 � (100 � 1 � 2)(1/1.19318) �s

TD � (n � 1 � d)(TCLK0)

Input/Output Interface Circuits and LSI Peripheral Devices

543

Figure 37 Mode 2 configuration.

Figure 36 Mode 1 configuration.

When set for mode 2, rate generator operation, the counter within the 82C54 is set
to operate as a divide-by-N counter. Here N stands for the value of the count loaded into
the counter. Figure 37 shows counter 1 of an 82C54 set up in this way. Note that the gate
input is fixed at the 1 logic level. As the table in Fig. 34 shows, this enables the counting
operation. Looking at the waveforms for mode 2 operation in Fig. 33, we see that OUT-
PUT is at logic 1 until the count decrements to 1. Then OUTPUT switches to the active
0 logic level for just one clock pulse width. In this way, we see that there is one clock
pulse at the output for every N clock pulses at the input. This is why it is called a divide-
by-N counter.

EXAMPLE 22

Counter 1 of the 82C54, shown in Fig. 37, is programmed to operate in mode 2 and is
loaded with decimal number 18. Describe the signal produced at OUT1. Assume that the
counter is configured for BCD counting.

Solution

In mode 2 the output goes low for one period of the input clock after the counter contents
decrement to 0. Therefore,

and

 T � 18 � T2 � 15.094 �s

T2 � 1/1.19318 MHz � 838 ns

Input/Output Interface Circuits and LSI Peripheral Devices

544

Figure 38 Mode 3 configuration.

Mode 3 sets the counter of the 82C54 to operate as a square-wave rate generator.
In this mode, the output of the counter is a square wave with 50 percent duty cycle when-
ever the counter is loaded with an even number. That is, the output is at the 1 logic level
for exactly the same amount of time that it is at the 0 logic level. As shown in Fig. 33, the
count decrements by two with each pulse at the clock input. When the count reaches 0,
the output switches logic levels, the original count (n � 4) is reloaded, and the count
sequence repeats. Transitions of the output take place with respect to the negative edge of
the input clock. The period of the symmetrical square wave at the output equals the num-
ber loaded into the counter multiplied by the period of the input clock.

If an odd number (N) is loaded into the counter instead of an even number, the time
for which the output is high depends on (, and the time for which the output is
low depends on (.

EXAMPLE 23

The counter in Fig. 38 is programmed to operate in mode 3 and is loaded with the deci-
mal value 15. Determine the characteristics of the square wave at OUT1. Assume that the
counter is configured for BCD counting.

Solution

Selecting mode 4 operation for a counter configures the counter to work as a
software-triggered strobed counter. When in this mode, the counter automatically begins
to decrement one clock pulse after it is loaded with the initial value through software.
Again, it decrements at a rate set by the clock input signal. At the moment the terminal

 � 12.57 �s

T � T1 � T2 � 6.704 �s � 5.866 �s

 � 5.866 �s

T2 � TCLK1(N � 1)/2 � 838 ns � [(15 � 1)/2]

 � 6.704 �s

T1 � TCLK1(N � 1)/2 � 838 ns � [(15 � 1)/2]

TCLK1 � 1/1.19318 MHz � 838 ns

N � 1)/2
N � 1)/2

Input/Output Interface Circuits and LSI Peripheral Devices

545

Figure 39 Mode 4 configuration.

count is reached, the counter generates a single strobe pulse with duration equal to one
clock pulse at its output. That is, a strobe pulse is produced at the output after n � 1 clock
pulses. Here n again stands for the value of the count loaded into the counter. This output
pulse can be used to perform a timed operation. Figure 33 shows waveforms illustrating
this mode of operation initiated by writing the value 4 into a counter. For instance, if
CLOCK is 1.19318 MHz, the strobe occurs 4.19 μs after the count 4 is written into the
counter. In the table of Fig. 34, we find that the gate input needs to be at logic 1 for the
counter to operate.

This mode of operation can be used to implement a long-duration interval timer or
a free-running timer. In either application, the strobe at the output can be used as an inter-
rupt input to a microprocessor. In response to this pulse, an interrupt service routine can
be used to reload the timer and restart the timing cycle. Frequently, the service routine
also counts the strobes as they come in by decrementing the contents of a register. Soft-
ware can test the value in this register to determine if the timer has timed out a certain
number of times; for instance, to determine if the contents of the register have decre-
mented to 0. When it reaches 0, a specific operation, such as a jump or call, can be initi-
ated. In this way, we see that software has been used to extend the interval of time at
which a function occurs beyond the maximum duration of the 16-bit counter within the
82C54.

EXAMPLE 24

Counter 1 of Fig. 39 is programmed to operate in mode 4. What value must be loaded into
the counter to produce a strobe signal 10 μs after the counter is loaded?

Input/Output Interface Circuits and LSI Peripheral Devices

546

Solution

The strobe pulse occurs after counting down the counter to zero. The number of input
clock periods required for a period of 10 μs is given by

Thus, the counter should be loaded with the number n � 0B16 to produce a strobe pulse
10 μs after loading.

The last mode of 82C54 counter operation, mode 5, is called the hardware-
triggered strobe. This mode is similar to mode 4 except that now counting is initiated by
a signal at the gate input—that is, it is hardware triggered instead of software triggered.
As shown in the waveforms of Fig. 33 and the table in Fig. 34, a rising edge at GATE
starts the countdown process. Just as for software-triggered strobed operation, the strobe
pulse is output after the count is decremented to 0. But in this case, OUTPUT switches to
logic 0 N clock pulses after GATE becomes active.

▲ 9 82C37A PROGRAMMABLE DIRECT MEMORY
ACCESS CONTROLLER

The 82C37A is the LSI controller IC that is widely used to implement the direct memory
access (DMA) function in 8088- and 8086-based microcomputer systems. DMA capabil-
ity permits devices, such as peripherals, to perform high-speed data transfers between
either two sections of memory or between memory and an I/O device. In a microcom-
puter system, the memory or I/O bus cycles initiated as part of a DMA transfer are not
performed by the MPU; instead, they are performed by a device known as a DMA con-
troller, such as the 82C37A. The DMA mode of operation is frequently used when blocks
or packets of data are to be transferred. For instance, disk controllers, local area network
controllers, and communication controllers are devices that normally process data as
blocks or packets. A single 82C37A supports up to four peripheral devices for DMA
operation.

Microprocessor Interface of the 82C37A

A block diagram that shows the interface signals of the 82C37A DMA controller is
given in Fig. 40(a). The pin layout in Fig. 40(b) identifies the pins at which these signals
are available. Let us now look briefly at the operation of the microprocessor interface of
the 82C37A.

In a microcomputer system, the 82C37A acts as a peripheral controller device, and
its operation must be initialized through software. This is done by reading from or writ-

� 1210 � C16 � 000011002

� 10 �s/(1/1.19318 MHz)

N � T/TCLK

Input/Output Interface Circuits and LSI Peripheral Devices

547

VCC VSS

DREQ0−DREQ3

DACK0−DACK3

DMA handshake
signals

READY

IOW

IOR

MEMW

MEMR

AEN

ADSTB

A0−A3

A4−A7

DB0−DB7

Microprocessor
interface

RESET

CLK

EOP

HLDA

HRQ

82C37A

CS

(a)

Figure 40 (a) Block diagram of the 82C37A DMA controller. (b) Pin layout.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1987)

ing into the bits of its internal registers. These data transfers take place through its micro-
processor interface. Figure 41 shows how the 8088 connects to the 82C37A’s micro-
processor interface.

Whenever the 82C37A is not in use by a peripheral device for DMA operation, it is
in a state known as the idle state. When in this state, the microprocessor can issue com-
mands to the DMA controller and read from or write to its internal registers. Data bus
lines DB0 through DB7 form the path over which these data transfers take place. Which
register is accessed is determined by a 4-bit register address that is applied to address
inputs A0 through A3. As Fig. 41 shows, address lines A0 through A3 of the micro-
processor directly supply these inputs.

During the data-transfer bus cycle, other bits of the address are decoded in exter-
nal circuitry to produce a chip-select () input for the 82C37A. When in the idle state,
the 82C37A continuously samples this input, waiting for it to become active. Logic 0 at
this input enables the microprocessor interface. The microprocessor tells the 82C37A
whether an input or output bus cycle is in progress with the signal or , respec-
tively. In this way, we see that the 82C37A maps into the I/O address space of the 8088
microcomputer.

IOWIOR

CS

Input/Output Interface Circuits and LSI Peripheral Devices

548

DMA Interface of the 82C37A

Now that we have described how a microprocessor talks to the registers of the
82C37A, let us continue by looking at how peripheral devices initiate DMA service. The
82C37A contains four independent DMA channels, channels 0 through 3. Typically, each
of these channels is dedicated to a specific peripheral device. Figure 42 shows that the
device has four DMA request inputs, denoted as DREQ0 through DREQ3. These DREQ
inputs correspond to channels 0 through 3, respectively. In the idle state, the 82C37A
continuously tests these inputs to see if one is active. When a peripheral device wants to
perform DMA operations, it makes a request for service at its DREQ input by switching it
to logic 1.

In response to the active DMA request, the DMA controller switches the hold request
(HRQ) output to logic 1. Normally, this output is supplied to the HOLD input of the 8088
and signals the microprocessor that the DMA controller needs to take control of the system
bus. When the 8088 is ready to give up control of the bus, it puts its bus signals into the
high-impedance state and signals this fact to the 82C37A by switching the HLDA (hold-
acknowledge) output to logic 1. HLDA of the 8088 is applied to the HLDA input of the
82C37A and signals that the system bus is now available for use by the DMA controller.

When the 82C37A has control of the system bus, it tells the requesting peripheral
device that it is ready by outputting a DMA-acknowledge (DACK) signal. Note in Fig. 42
that each of the four DMA request inputs, DREQ0 through DREQ3, has a corresponding
DMA-acknowledge output, DACK0 through DACK3. Once this DMA-request/acknowl-
edge handshake sequence is complete, the peripheral device gets direct access to the sys-
tem bus and memory under control of the 82C37A.

During DMA bus cycles, the DMA controller, not the MPU, drives the system bus.
The 82C37A generates the address and all control signals needed to perform the memory
or I/O data transfers. At the beginning of all DMA bus cycles, a 16-bit address is output
on lines A0 through A7 and DB0 through DB7. The upper 8 bits of the address, available

AD0−AD7

A4−A15

A0−A3

A0−A3

CS

DB0−DB7

IOR

IOW

D0−D7

A8−A15

ALE

RD

WR

Address
Latch

Decoder

82C37A

Control
logic

IO/M

8088

Figure 41 Microprocessor interface of 82C37A to the 8088.

Input/Output Interface Circuits and LSI Peripheral Devices

549

A8−A19

AD0−AD7

ALE
RD
WR

DEN
IO/M
DT/R

HOLD

HLDA

HRQ

Latch/
transceiver/
control
logic

8237A
HLDA

DRQ3

DRQ0
DACK3

DACK0

8088

Address bus

Data bus

Control bus

Latch/logic

Memory

I/O
device
0

I/O
device
3

AEN
A

D
ST

B

A
/D

B

M
E

M
R

/W

IO
R

/W

Figure 42 DMA interface to I/O devices.

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

550

on the data bus lines, appear at the same time that address strobe (ADSTB) becomes
active. Thus, ADSTB is intended to be used to strobe the most significant byte of the
address into an external address latch. This 16-bit address gives the 82C37A the ability to
directly address up to 64Kbytes of storage locations. The address enable (AEN) output
signal is active during the complete DMA bus cycle and can be used to both enable the
address latch and disable other devices connected to the bus.

Let us assume for now that an I/O peripheral device is to transfer data to memory—
that is, the I/O device wants to write data to memory. In this case, the 82C37A uses the

output to signal the I/O device to put the data onto data bus lines DB0 through DB7.
At the same time, it asserts to signal that the data available on the bus are to be
written into memory. In this case, the data are transferred directly from the I/O device to
memory and do not go through the 82C37A.

In a similar way, DMA transfers of data can take place from memory to an I/O
device. In this case, the I/O device reads data from memory and outputs it to the periph-
eral. For this data transfer, the 82C37A activates the and control signals.

The 82C37A performs both the memory-to-I/O and I/O-to-memory DMA bus
cycles in just four clock periods. The duration of these clock periods is determined by the
frequency of the clock signal applied to the CLOCK input. For instance, at 5 MHz the
clock period is 200 ns and the bus cycle takes 800 ns.

The 82C37A is also capable of performing memory-to-memory DMA transfers.
In such a data transfer, both the and signals are utilized. Unlike the I/O-
to-memory operation, this memory-to-memory data transfer takes eight clock cycles.
This is because it is actually performed as a separate four-clock read bus cycle from the
source memory location to a temporary register within the 82C37A and then another four-
clock write bus cycle from the temporary register to the destination memory location. At
5 MHz, a memory-to-memory DMA cycle takes 1.6 μs.

The READY input is used to accommodate slow memory or I/O devices. READY
must go active, logic 1, before the 82C37A will complete a memory or I/O bus cycle. As
long as READY is at logic 0, wait states are inserted to extend the duration of the current
bus cycle.

Internal Architecture of the 82C37A

Figure 43 is a block diagram of the internal architecture of the 82C37A DMA con-
troller. Here we find the following functional blocks: the timing and control, the priority
encoder and rotating priority logic, the command control, and 12 different types of regis-
ters. Let us now look briefly at the functions performed by each of these sections of cir-
cuitry and registers.

The timing and control part of the 82C37A generates the timing and control signals
needed by the external bus interface. For instance, it accepts as inputs the READY and

signals and produces output signals such as ADSTB and AEN. These signals are syn-
chronized to the clock signal that is input to the controller. The highest-speed version of
the 82C37A available today operates at a maximum clock rate of 5 MHz.

If multiple requests for DMA service are received by the 82C37A, they are
accepted on a priority basis. One of two priority schemes can be selected for the 82C37A

CS

MEMWMEMR

IOWMEMR

MEMW
IOR

Input/Output Interface Circuits and LSI Peripheral Devices

551

Figure 43 Internal architecture of the 82C37A. (Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

552

Figure 44 Internal registers of the
82C37A. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1987)

under software control: fixed priority and rotating priority. The fixed-priority mode
assigns priority to the channels in descending numeric order. That is, channel 0 has the
highest priority and channel 3 the lowest priority. Rotating priority starts with the prior-
ity levels initially the same way as in fixed priority. However, after a DMA request for a
specific level gets serviced, priority is rotated such that the previously active channel is
reassigned to the lowest priority level. For instance, assuming that channel 1, which was
initially at priority level 1, was just serviced, then DREQ2 is now at the highest priority
level and DREQ1 rotates to the lowest level. The priority logic circuitry shown in Fig. 43
resolves priority for simultaneous DMA requests from peripheral devices based on the
programmed priority scheme.

The command control circuit decodes the register commands applied to the
82C37A through the microprocessor interface. In this way it determines which register is
to be accessed and what type of operation is to be performed. Moreover, it is used to
decode the programmed operating modes of the device during DMA operation.

Looking at the block diagram in Fig. 43, we find that the 82C37A has 12 different
types of internal registers. Some examples are the current address register, current count
register, command register, mask register, and status register. Figure 44 lists the names for
all the internal registers, along with their size and how many are provided in the 82C37A.
Note that there are actually four current address registers and they are all 16 bits long.
That is, there is one current address register for each of the four DMA channels. We will
now describe the function served by each of these registers in terms of overall operation
of the 82C37A DMA controller. Figure 45 summarizes the address information for the
internal registers.

Each DMA channel has two address registers: the base address register and the
current address register. The base address register holds the starting address for the DMA
operation, and the current address register contains the address of the next storage loca-
tion to be accessed. Writing a value to the base address register automatically loads the
same value into the current address register. In this way, we see that initially the current
address register points to the starting I/O or memory address.

These registers must be loaded with appropriate values prior to initiating a DMA
cycle. To load a new 16-bit address into the base register, we must write two separate
bytes, one after the other, to the address of the register. The 82C37A has an internal flip-
flop called the first/last flip-flop. This flip-flop identifies which byte of the address is
being written into the register. As the table in Fig. 45 shows, if the beginning state of the
internal flip-flop (FF) is logic 0, then software must write the low byte of the address
word to the register. On the other hand, if it is logic 1, the high byte must be written to

Input/Output Interface Circuits and LSI Peripheral Devices

553

Figure 45 Accessing the registers of the 82C37A.

Input/Output Interface Circuits and LSI Peripheral Devices

554

the register. For example, to write the address 123416 into the base address register and
the current address register for channel 0 of a DMA controller located at base I/O address
DMA (where DMA is � F0H and it is decided by how the for the 82C37A must be
generated), the following instructions may be executed:

MOV AL, 34H ;Write low byte
OUT DMA+0, AL
MOV AL, 12H ;Write high byte
OUT DMA+0, AL

This routine assumes that the internal flip-flop was initially set to 0. Looking at Fig. 45,
we find that a command can be issued to the 82C37A to clear the internal flip-flop. This
is done by initiating an output bus cycle to address .

If we read the contents of the register at address , the value obtained is
the contents of the current address register for channel 0. Once loaded, the value in the
base address register cannot be read out of the device.

The 82C37A also has two word-count registers for each of its DMA channels: the
base count register and the current count register. In Fig. 44, we find that these registers
are also 16 bits in length, and Fig. 45 identifies their address as 116, relative to the base
address DMA for channel 0. The number of bytes of data to be transferred during a DMA
operation is specified by the value in the base word-count register. Actually, the number
of bytes transferred is always one more than the value programmed into this register. This
is because the end of a DMA cycle is detected by the rollover of the current word count
from 000016 to FFFF16. At any time during the DMA cycle, the value in the current word-
count register tells how many bytes remain to be transferred.

The count registers are programmed in the same way as just described for the
address registers. For instance, to program a count of 0FFF16 into the base and current
count registers for channel 1 of a DMA controller located at address DMA (where DMA
≤ F0H), the following instructions can be executed:

MOV AL, 0FFH ;Write low byte
OUT DMA+3, AL
MOV AL, 0FH ;Write high byte
OUT DMA+3, AL

Again we have assumed that the internal flip-flop was initially cleared.
Figure 44 shows that the 82C37A has a single 8-bit command register. The bits in

this register are used to control operating modes that apply to all channels of the DMA
controller. Figure 46 identifies the function of each of its control bits. Note that the set-
tings of the bits are used to select or deselect operating features such as memory-to-
memory DMA transfer and the priority scheme. For instance, when bit 0 is set to logic
1, the memory-to-memory mode of DMA transfer is enabled, and when it is logic 0,
DMA transfers take place between I/O and memory. Moreover, setting bit 4 to logic 0
selects the fixed priority scheme for all four channels or logic 1 in this location selects
rotating priority. Looking at Fig. 45, we see that the command register is loaded by out-
putting the command code to the register at address 816, relative to the base address for
the 82C37A.

DMA � 016

DMA � C16

CS

Input/Output Interface Circuits and LSI Peripheral Devices

555

EXAMPLE 25

If the command register of an 82C37A is loaded with 0116, how does the controller operate?

Solution

Representing the command word as a binary number, we get

Referring to Fig. 46, we find that the DMA operation can be described as follows:

Channels have fixed priority, channel 0 having the highest
priority and channel 3 the lowest priority

The mode registers are also used to configure operational features of the 82C37A.
Figure 44 shows that there is a separate mode register for each of the four DMA chan-
nels and that each is six bits in length. Their bits are used to select various operational
features for the individual DMA channels. A mode register command, shown in Fig. 47,

Bit 7 � 0 � DACK is an active low (logic 0) signal

Bit 6 � 0 � DREQ is an active high (logic 1) signal

Bit 5 � 0 � Write operation occurs late in the DMA bus cycle

Bit 4 � 0 �

Bit 3 � 0 � 82C37A operates with normal timing

Bit 2 � 0 � 82C37A is enabled

Bit 1 � 0 � Channel 0 address increments/decrements normally

Bit 0 � 1 � Memory-to-memory transfers are disabled

0116 � 000000012

Figure 46 Command register format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

556

Figure 47 Mode register format.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

has two least significant bits that are a 2-bit code, which identifies the channel to which the
mode command byte applies. For instance, in a mode register command written for channel
1, these bits must be made 01. Bits 2 and 3 specify whether the channel is to perform data
write, data read, or verify bus cycles. For example, if these bits are set to 01, the channel
will only perform write-data transfers (DMA data transfers from an I/O device to memory).

The next two bits of the mode register affect how the values in the current address
and current count registers are updated at the end of a DMA cycle and DMA data trans-
fer, respectively. Bit 4 enables or disables the autoinitialization function. When auto-
initialization is enabled, the current address and current count registers are automatically
reloaded from the base address and base count registers, respectively, at the end of a
DMA operation. In this way, the channel is prepared for the next DMA transfer. The set-
ting of bit 5 determines whether the value in the current address register is automatically
incremented or decremented at completion of each DMA data transfer.

The two most significant bits of the mode register select one of four possible modes
of DMA operation for the channel: demand mode, single mode, block mode, and cascade
mode. These modes allow for either one byte of data to be transferred at a time or a block
of bytes. For example, when in the demand transfer mode, once the DMA cycle is initi-
ated, bytes are continuously transferred as long as the DREQ signal remains active and
the terminal count (TC) is not reached. By reaching the terminal count, we mean that the
value in the current word-count register, which automatically decrements after each data
transfer, rolls over from 000016 to FFFF16.

Block-transfer mode is similar to demand-transfer mode in that once the DMA cycle
is initiated, data are continuously transferred until the terminal count is reached. However,
they differ in that when in the demand mode, the return of DREQ to its inactive state halts
the data transfer sequence. But when in block-transfer mode, DREQ can be released at any
time after the DMA cycle begins, and the block transfer will still run to completion.

In the single-transfer mode, the channel is set up such that it performs just one data
transfer at a time. At the completion of the transfer, the current word count is decre-
mented and the current address either incremented or decremented (based on the selected
option). Moreover, an autoinitialization, if enabled, will not occur unless the terminal
count has been reached at the completion of the current data transfer. If the DREQ input

Input/Output Interface Circuits and LSI Peripheral Devices

557

becomes inactive before the completion of the current data transfer, another data transfer
will not take place until DREQ once more becomes active. On the other hand, if DREQ
remains active during the complete data transfer cycle, the HRQ output of the 82C37A is
switched to its inactive 0 logic level to allow the microprocessor to gain control of the
system bus for one bus cycle before another single transfer takes place. This mode of
operation is typically used when it is necessary to not lock the microprocessor off the bus
for the complete duration of the DMA operation.

EXAMPLE 26

Specify the mode byte for DMA channel 2 if it is to transfer data from an input periph-
eral device to a memory buffer starting at address A00016 and ending at AFFF16. Ensure
that the microprocessor is not completely locked off the bus during the DMA cycle.
Moreover, at the end of each DMA cycle, the channel is to be reinitialized so that the
same buffer is filled when the next DMA operation is initiated.

Solution

For DMA channel 2, bit 1 and bit 0 must be loaded with 102:

Transfer of data from an I/O device to memory represents a write bus cycle. Therefore,
bit 3 and bit 2 must be set to 01:

Selecting autoinitialization will set up the channel to automatically reset so that it points
to the beginning of the memory buffer at completion of the current DMA cycle. Making
bit 4 equal to 1 enables this feature:

The address that points to the memory buffer must increment after each data transfer.
Therefore, bit 5 must be set to 0:

Finally, to ensure that the 8088 is not locked off the bus during the complete DMA cycle,
we will select the single-transfer mode of operation. Making bits B7 and B6 equal to 01
does this:

Thus, the mode register byte is

B7B6B5B4B3B2B1B0 � 010101102 � 5616

B7B6 � 01

B5 � 0

B4 � 1

B3B2 � 01

B1B0 � 10

Input/Output Interface Circuits and LSI Peripheral Devices

558

Figure 48 Request register format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Up to now, we have discussed how DMA cycles can be initiated by a hardware
request at a DREQ input. However, the 82C37A is also able to respond to software-initiated
requests for DMA service. The request register has been provided for this purpose. Figure
44 shows that the request register has just four bits, one for each of the DMA channels.
When the request bit for a channel is set, DMA operation is started, and when reset, the
DMA cycle is stopped. Any channel used for software-initiated DMA must be programmed
for block-transfer mode of operation.

The bits in the request register can be set or reset by issuing software commands to
the 82C37A. The format of a request register command is shown in Fig. 48. For instance,
if a command is issued to the address of the request register with bits 0 and 1 equal to 01
and with bit 2 at logic 1, a block-mode DMA cycle is initiated for channel 1. Figure 45
shows that the request register is located at register address 916, relative to the base
address for the 82C37A.

A 4-bit mask register is also provided within the 82C37A. One bit is provided in
this register for each of the DMA channels. When a mask bit is set, the DREQ input for
the corresponding channel is disabled. Therefore, hardware requests to the channel are
ignored. That is, the channel is masked out. On the other hand, if the mask bit is cleared,
the DREQ input is enabled and an external device can activate its channel.

The format of a software command that can be used to set or reset a single bit in
the mask register is shown in Fig. 49(a). For example, to enable the DREQ input for chan-
nel 2, the command is issued with bits 1 and 0 set to 10 to select channel 2, and with bit
2 equal to 0 to clear the mask bit. Therefore, the software command byte would be 0216.
The table in Fig. 45 shows that this command byte must be issued to the 82C37A with
register address A16, relative to the base address for the 82C37A.

Figure 49 (a) Single-channel mask-register command format. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1987) (b) Four-channel
mask-register command format. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

559

Figure 50 Status register. (Reprinted
by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

A second mask register command is shown in Fig. 49(b). This command can be
used to load all 4 bits of the register at once. In Fig. 45, we find that this command is
issued to relative register address F16 instead of A16. For instance, to mask out channel 2
while enabling channels 0, 1, and 3, the command code is 0416. Either of these two meth-
ods can be used to mask or enable the DREQ input for a channel.

At system initialization, it is a common practice to clear the mask register. Looking
at Fig. 45, we see that a special command is provided to perform this operation. Execut-
ing an output cycle to the register with relative address E16 clears the mask register.

The 82C37A has a status register that contains information about the operating
state of its four DMA channels. Figure 50 shows the bits of the status register and defines
their functions. Here we find that the four least significant bits identify whether or not
channels 0 through 3 have reached their terminal count. When the DMA cycle for a chan-
nel reaches the terminal count, this fact is recorded by setting the corresponding TC bit
to the 1 logic level. The four most significant bits of the register tell if a request is pend-
ing for the corresponding channel. For instance, if a DMA request has been issued for
channel 0 either through hardware or software, bit 4 is set to 1. The 8088 can read the
contents of the status register through software. This is done by initiating an input bus
cycle for register address 816, relative to the base address for the 82C37A.

Earlier we pointed out that during memory-to-memory DMA transfers, the data
read from the source address are held in a register known as the temporary register, and
then a write cycle is initiated to write the data to the destination address. At the comple-
tion of the DMA cycle, this register contains the last byte that was transferred. The value
in this register can be read by the microprocessor.

EXAMPLE 27

Write an instruction sequence to issue a master clear to the 82C37A and then enable all
its DMA channels. Assume that the device is located at base I/O address DMA � F0H.

Solution

Figure 45 shows that a special software command is provided to perform a master reset
of the 82C37A’s registers. Since the contents of the data bus are a don’t-care state when
executing the master clear command, it is performed by simply writing into the register
at relative address D16. For instance, the instruction

OUT DMA+0DH, AL

Input/Output Interface Circuits and LSI Peripheral Devices

560

can be used. To enable the DMA request inputs, all 4 bits of the mask register must be
cleared. The clear-mask register command is issued by performing a write to the register
at relative address E16. Again, the data put on the bus during the write cycle are a don’t-
care state. Therefore, the command can be performed with the instruction

OUT DMA+0EH, AL

DMA Interface for the 8088-Based Microcomputer
Using the 82C37A

Figure 51 shows how the 82C37A is connected to the 8088 microprocessor to form
a simplified DMA interface. Here we see that both the 8088 MPU and the 82C37A
DMA controller drive the same three system buses, address bus, data bus, and control
bus. Let us now look at how each of these devices attaches to the system bus. The 8088’s
multiplexed address/data bus is demultiplexed using three 74F373 latches to form inde-
pendent system address and data buses. The address bus is 20 bits in length, and these
lines are identified as A0 through A19. On the other hand, the data bus is byte-wide, with
lines D0 through D7. Note that the ALE output of the 8088 is used as the CLK input to
the latches.

Looking at the 82C37A, we find that the lower byte of its address, identified by A0

through A3 and A4 through A7, is supplied directly to the system address bus. On the
other hand, the most significant byte of its address, A8 through A15, is demultiplexed from
data bus lines DB0 through DB7 by another 74F373 latch. This latch is enabled by the
AEN output of the DMA controller, and the address is loaded into the latch with the sig-
nal ADSTB. DB0 through DB7 are also directly attached to the system data bus.

Finally, let us look at how the system control bus signals are derived. The IO/ ,
, and control outputs of the microprocessor are gated together to produce the sig-

nals , , , and . These signals are combined to form the system
control bus. Note that these same four signals are generated as outputs of the 82C37A and
are also supplied to the control bus.

Now that we have shown how the independent address, data, and control signals of
the 8088 and 82C37A are combined to form the system address, data, and control buses,
let us continue by looking at how the DMA request/acknowledge interface is imple-
mented. I/O devices request DMA service by activating one of the 82C37A’s DMA
request inputs, DREQ0 through DREQ3. When the 82C37A receives a valid DMA request
on one of these lines, it sends a hold request to the HOLD input of the 8088. It does this
by setting the HRQ output to logic 1. After the 8088 gives up control of the system buses,
it acknowledges this fact to the 82C37A by switching its HLDA output to the 1 logic
level. This signal is received by the DMA controller at its HLDA input and tells it that the
system buses are available. The 82C37A is now ready to take over control of the system
buses, and it signals this fact to the device that is requesting service by activating its
DMA-acknowledge (DACK) line.

During the DMA operation, the 82C37A generates all of the bus signals that are
needed to access I/O devices and the memory. It also generates the AEN signal, which is

IOWIORMEMWMEMR
WRRD

M

Input/Output Interface Circuits and LSI Peripheral Devices

561

used to disable the microprocessor’s connection to the system bus. AEN does this by dis-
abling the control bus decoder and the latches for the address bus. The microprocessor’s
connection to the data bus is also disabled in response to the hold request received on its
HOLD input. Remember that logic 1 at HOLD puts the data bus lines in the high-Z state.
Thus, during a DMA operation, the 82C37A is in complete control of the address bus,
control bus, and data bus.

▲ 10 SERIAL COMMUNICATIONS INTERFACE

Another type of I/O interface that is widely used in microcomputer systems is known as
a serial communication port. This is the type of interface that is commonly used to con-

Address bus

Data bus

 Handshake with device
requesting serviceAEN

Control
bus

8284
RDY

READY

8088
MPU

AD0−
 AD7 ALE

A8−
 A19

RESET

CLK

HLDA

HOLD

RD

WR

74F373
(3)

CLK

OE

AEN

AEN

Control
bus

decoder
IO/M

RST CLK

OE
IOW

IOW
CS

OE
CLK

IOR

IOR

MEMW

MEMW

MEMR

MEMR

RESET

AEN ADSTB

DB0−DB7

A0−A3

A8−A15

A4−A7

DREQ
0−3

DACK
0−3

8237A

74F373

CLK

HLDA

HRQ

Address
decoder

Figure 51 8088-based microcomputer with 82C37A DMA interface.

Input/Output Interface Circuits and LSI Peripheral Devices

562

nect peripheral units, such as CRT terminals, modems, and printers, to a microcomputer.
It permits data to be transferred between two units using just two data lines. One line is
used for transmitting data and the other for receiving data. For instance, data input at the
keyboard of a terminal are passed to the MPU part of the microcomputer through this
type of interface. Let us now look into the two different types of serial interfaces that are
implemented in microcomputer systems.

Synchronous and Asynchronous Data Communications

Two types of serial data communications are widely used in microcomputer sys-
tems: asynchronous communications and synchronous communications. By synchronous,
we mean that the receiver and transmitter sections of the two pieces of equipment com-
municating with each other must run synchronously. For this reason, as shown in Fig.
52(a), the interface includes a Clock line as well as Transmit data, Receive data, and Sig-
nal common lines. It is the clock signal that synchronizes both the transmission and
reception of data.

The format used for synchronous communication of data is shown in Fig. 52(b). To
initiate synchronous transmission, the transmitter first sends out synchronization charac-
ters to the receiver. The receiver reads the synchronization bit pattern and compares it to
a known sync pattern. Once they are identified as being the same, the receiver begins to
read character data off the data line. Transfer of data continues until the complete block
of data is received. If large blocks of data are being sent, the synchronization characters

Figure 52 (a) Synchronous communications interface. (b) Synchronous data-
transmission format.

Input/Output Interface Circuits and LSI Peripheral Devices

563

System 1

Transmit data

Receive data

Signal common System 2

(a)

(b)

MSB

DataParity
bit

Stop
bit

(MARK)

Start
bit

(SPACE)

LSB

Figure 53 (a) Asynchronous communications interface. (b) Asynchronous
data-transmission format.

may be periodically resent to assure that synchronization is maintained. The synchronous
type of communications is typically used in applications where high-speed data transfer
is required.

The asynchronous method of communications eliminates the need for the Clock
signal. As shown in Fig. 53(a), the simplest form of an asynchronous communication
interface could consist of a Receive data, Transmit data, and Signal common communi-
cation lines. In this case, the data to be transmitted are sent out one character at a time,
and at the receiver examining synchronization bits that are included at the beginning and
end of each character performs end of the communication line synchronization.

The format of a typical asynchronous character is shown in Fig. 53(b). Here we see
that the synchronization bit at the beginning of the character is called the start bit, and
that at the end of the character the stop bit. Depending on the communications scheme, 1,
11⁄2, or 2 stop bits can be used. The bits of the character are embedded between the start
and stop bits. Notice that the start bit is either input or output first. The LSB of the char-
acter, the rest of the character’s bits, a parity bit, and the stop bits follow it in the serial
bit stream. For instance, 7-bit ASCII can be used and parity added as an eighth bit
for higher reliability in transmission. The duration of each bit in the format is called a
bit time.

The fact that a 0 or 1 logic level is being transferred over the communication line is
identified by whether the voltage level on the line corresponds to that of a space or a
mark, respectively. The start bit is always to the mark level. It synchronizes the receiver
to the transmitter and signals that the unit receiving data should start assembling the char-

Input/Output Interface Circuits and LSI Peripheral Devices

564

acter. Stop bits are to the space level. The nontransmitting line is always at the space logic
level. This scheme assures that the receiving unit sees a transition of logic level at the start
bit of the next character.

Simplex, Half-Duplex, and Full-Duplex Communication Links

Applications require different types of asynchronous links to be implemented. For
instance, the communication link needed to connect a printer to a microcomputer just
needs to support communications in one direction. That is, the printer is an output-only
device; therefore, the MPU needs only to transmit data to the printer. Data are not trans-
mitted back. In this case, as shown in Fig. 54(a), a single unidirectional communication
line can be used to connect the printer and microcomputer together. This type of
connection is known as a simplex communication link.

Other devices, such as the CRT terminal with keyboard shown in Fig. 54(b), need
to both transmit data to and receive data from the MPU. That is, they must both input and
output data. Setting up a half-duplex communication link can also satisfy this requirement
with a single communication line. In a half-duplex link, data are transmitted and received
over the same line; therefore, transmission and reception of data cannot take place at the
same time.

If higher-performance communication is required, separate transmit and receive
lines can be used to connect the peripheral and microcomputer. When this is done, data
can be transferred in both directions at the same time. This type of link, illustrated in Fig.
54(c), is called a full-duplex communication link.

Figure 54 (a) Simplex
communication link. (b) Half-duplex
communication link. (c) Full-duplex
communication link.

Input/Output Interface Circuits and LSI Peripheral Devices

565

Baud Rate and the Baud-Rate Generator

The rate at which data transfers take place over the receive and transmit lines is
known as the baud rate. By baud rate we mean the number of bits of data transferred per
second. For instance, some of the common data transfer rates are 300 baud, 1200 baud,
and 9600 baud. They correspond to 300 bits/second (bps), 1200 bps, and 9600 bps,
respectively. Baud rate is set by a part of the serial communication interface called the
baud-rate generator.

The baud rate at which data are transferred determines the bit time—that is, the
amount of time each bit of data is on the communication line. At 300 baud, the bit time
is found to be

EXAMPLE 28

The data transfer across an asynchronous serial data communications line is observed and
the bit time is measured as 0.833 ms. What is the baud rate?

Solution

Baud rate is calculated from the bit time as

The RS-232C Interface

The RS-232C interface is a standard hardware interface for implementing asyn-
chronous serial data communication ports on devices such as printers, CRT terminals,
keyboards, and modems. The Electronic Industries Association (EIA) defines the pin
definitions and electrical characteristics of this interface. The aim behind publishing
standards, such as the RS-232C, is to assure compatibility between equipment made by
different manufacturers.

Peripherals that connect to a microcomputer can be located within the systems or
anywhere from several feet to many feet way. For instance, in large systems it is common
to have the microcomputer part of the system in a separate room from the terminals and
printers. This leads us to the main advantage of using a serial interface to connect peri-
pherals to a microcomputer, which is that as few as three signal lines can be used to con-
nect the peripheral to the MPU: a receive-data line, a transmit-data line, and signal common.
This results in a large savings in wiring costs, and the small number of lines that need to
be put in place also leads to higher reliability.

The RS-232C standard defines a 25-pin interface. Figure 55 lists each pin and its
function. Note that the three signals that we mentioned earlier, transmit data (TxD),
receive data (RxD), and signal ground, are located at pins 2, 3, and 7, respectively. Pins
are also provided for additional control functions. For instance, pins 4 and 5 are the
request-to-send and clear-to-send control signals.

Baud rate � 1/tBT � 1/0.833 ms � 1200 bps

tBT � 1/300 bps � 3.33 ms

Input/Output Interface Circuits and LSI Peripheral Devices

566

Figure 55 RS-232C interface pins and functions.

How the signals of the RS-232C interface are used in a device depends on whether
it is configured as what is known as a Data Terminal Equipment (DTE) or a Data Com-
munications Equipment (DCE). An example of a DTE is a PC, and that of a DCE is a
modem. The direction for signals in a DTE and a DCE device are reversed. That is, sig-
nal lines that are outputs on a DTE device are inputs on a DCE and vice versa. This
enables one to use a cable that makes direct connections between the pins of the DTE and
a DCE. For instance, if pin 2 on a DTE is an output, it connects directly to pin 2 on the
DCE, which acts as an input.

To make a DTE device communicate to a DTE device requires a cable that makes
the pin-to-pin connections shown in Fig. 56. Note that when both devices are configured
as DTEs, the data transmitted by one is received by the other and vice versa. It therefore
requires a special cable in which the TxD pin of one is connected to the RxD pin of the
other device and vice versa.

The control pins are provided to set up a handshake sequence for initiating com-
munication between serial devices. These signals have the meanings expressed in their
names; for instance, request to send (RTS) is used to send a request from a DTE device

Input/Output Interface Circuits and LSI Peripheral Devices

567

DTE

RxD

TxD

DTR

DSR

RTS

CTS

GND

TxD

RxD

DSR

DTR

CTS

RTS

GND

DTE

Figure 56 A DTE-to-DTE serial communication connection.

to a DCE or another DTE device to get clearance to send data. In many systems only
three signals TxD, RxD, and common are used to provide serial communication. In such a
set up no handshake sequence is used to initiate communication.

The RS-232C interface is specified to operate correctly over a distance of up to
100 feet. To satisfy this distance specification, a bus driver is used on the transmit line and
a bus receiver is used on the receive line. RS-232C drivers and receivers are available as
standard ICs. These buffers do both the voltage-level translation needed to convert the TTL-
compatible signals to the mark (logic 1) and space (logic 0) voltage levels defined for the
RS-232C interface. The voltage level for a mark can range from �5V to �15V at the trans-
mitting end and �3V or less at the receiving end. Similarly, a voltage level from �5V to
�15V at the transmitting end and �3V or more at the receiving end is considered a space.

The RS-232C data communication rate is specified as baud rate. Earlier we pointed
out that this is a measure of the bits transferred through the communication interface per
second (bps). For example, a common rate of 9600 baud means 9600 bits are transmitted
or received in one second. In general, the receive and transmit baud rates do not need to
be the same; however, in most simpler systems they are set to the same value.

▲ 11 PROGRAMMABLE COMMUNICATION INTERFACE
CONTROLLERS

Because serial communication interfaces are so widely used in modern electronic equip-
ment, special LSI peripheral devices have been developed to permit easy implementation
of these types of interfaces. For instance, an RS-232C port is the type of interface needed

Input/Output Interface Circuits and LSI Peripheral Devices

568

to connect a CRT terminal or a modem to a microcomputer. To support connection of
these two peripheral devices, the microcomputer would need two independent RS-232C
I/O ports. This function is normally implemented with a programmable communication
controller known as a universal synchronous/asynchronous receiver transmitter (USART).
As the name implies, a USART is capable of implementing either an asynchronous or
synchronous communication interface. Here we will concentrate on its use in implement-
ing an asynchronous communication interface.

The programmability of the USART provides for a very flexible asynchronous com-
munication interface. Typically, it contains a full-duplex receiver and transmitter, which
can be configured through software for communication of data using formats with charac-
ter lengths between 5 and 8 bits, with even or odd parity, and with 1, 11⁄2, or 2 stop bits.

A USART has the ability to automatically check characters during data reception to
detect the occurrence of parity, framing, and overrun errors. A framing error means that
after the detection of the beginning of a character with a start bit the appropriate number
of stop bits were not detected. This means that the character that was transmitted was not
received correctly and should be resent. An overrun error means that the prior character
that was received was not read out of the USART’s receive data register by the micro-
processor before another character was received. Therefore, the first character was lost
and should be retransmitted.

8251A USART

A block diagram showing the internal architecture of the 8251A is shown in Fig.
57(a) and its pin layout in Fig. 57(b). From this diagram we find that it includes four key
sections: the bus interface section, which consists of the data bus buffer and read/write
control logic blocks; the transmit section, which consists of the transmit buffer and trans-
mit control blocks; the receive section, which consists of the receive buffer and receive-
control blocks; and the modem-control section. Let us now look at each of these sections
in more detail.

A UART cannot stand alone in a communication system; its operation must typi-
cally be controlled by a microprocessor. The bus interface section is used to connect the
8251A to a microprocessor such as the 8086. Note that the interface includes an 8-bit
bidirectional data bus D0 through D7 driven by the data bus buffer. It is over these lines
that the microprocessor transfers commands to the 8251A, reads its status register, and
inputs or outputs character data.

Data transfers over the bus are controlled by the signals C/ (control/data),
(read), (write), and (chip select), all inputs to the read/write control logic section.
Typically, the 8251A is located at a specific address in the microcomputer’s I/O or mem-
ory address space. When the microprocessor is to access registers within the 8251A, it
puts this address on the address bus. The address is decoded by external circuitry and
must produce logic 0 at the input for a read or write bus cycle to take place to the
8251A.

The other three control signals, C/ , , and , tell the 8251A what type of data
transfer is to take place over the bus. Figure 58 shows the various types of read/write
operations that can occur. For example, the first state in the table, , , and

, corresponds to a character data transfer from the 8251A to the microprocessor.WR � 1
RD � 0C/D � 0

WRRDD

CS

CSWR
RDD

Input/Output Interface Circuits and LSI Peripheral Devices

569

Figure 57 (a) Block diagram of the 8251A. (Reprinted by permission of Intel Corpora-
tion. Copyright/Intel Corp. 1987) (b) Pin layout. (Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

570

Figure 58 Read/write operations.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

Note that in general signals that the microprocessor is reading data from the
8251A, indicates that data are being written into the 8251A, and the logic level
of C/ indicates whether character data, control information, or status information is on
the data bus.

EXAMPLE 29

What type of data transfer is taking place over the bus if the control signals are at
, , , and

Solution

Looking at the table in Fig. 58, we see that means that the 8251A’s data bus has
been enabled for operation. Since C/ is 1 and is 0, status information is being read
from the 8251A.

The receiver section is responsible for reading the serial bit stream of data at the
RxD (receive-data) input and converting it to parallel form. When a mark voltage level is
detected on this line, indicating a start bit, the receiver enables a counter. As the counter
increments to a value equal to one-half a bit time, the logic level at the RxD line is sam-
pled again. If it is still at the mark level, a valid start pulse has been detected. Then RxD

is examined every time the counter increments through another bit time. This continues
until a complete character is assembled and the stop bit is read. After this, the complete
character is transferred into the receive-data register.

During reception of a character, the receiver automatically checks the character data
for parity, framing, or overrun errors. If one of these conditions occurs, it is flagged by
setting a bit in the status register. Then the RxRDY (receiver ready) output is switched to
the 1 logic level. This signal is sent to the microprocessor to tell it that a character is
available and should be read from the receive-data register. RxRDY is automatically reset
to logic 0 when the MPU reads the contents of the receive-data register.

The 8251A does not have a built-in baud-rate generator. For this reason, the clock
signal that is used to set the baud rate must be externally generated and applied to the RxC

input of the receiver. Through software the 8251A can be set up to internally divide the
clock signal input at RxC by 1, 16, or 64 to obtain the desired baud rate.

RDD
CS � 0

WR � 1?RD � 0C/D � 1CS � 0

D
WR � 0

RD � 0

Input/Output Interface Circuits and LSI Peripheral Devices

571

Figure 59 Receiver and transmitter
driven at the same baud rate.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

The transmitter does the opposite of the receiver section. It receives parallel char-
acter data from the MPU over the data bus. The character is then automatically framed
with the start bit, appropriate parity bit, and the correct number of stop bits and put into
the transmit data buffer register. Finally, it is shifted out of this register to produce a bit-
serial output on the TxD line. When the transmit data buffer register is empty, the TxRDY

output switches to logic 1. This signal can be returned to the MPU to tell it that another
character should be output to the transmitter section. When the MPU writes another char-
acter out to the transmitter buffer register, the TxRDY output resets.

Data are output on the transmit line at the baud rate set by the external transmitter
clock signal that is input at TxC. In most applications, the transmitter and receiver oper-
ate at the same baud rate. Therefore, the same baud-rate generator supplies both RxC and
TxC. The circuit in Fig. 59 shows this type of system configuration.

The 8251A UART, just like the other peripheral ICs discussed earlier in the chapter,
can be configured for various modes of operation through software. Its operation is con-
trolled through the setting of bits in three internal control registers: the mode-control reg-
ister, command register, and the status register. For instance, the way in which the 8251A’s
receiver and transmitter works is determined by the contents of the mode control register.

Figure 60 shows the organization of the mode control register and the function of
each of its bits. Note that the two least significant bits B1 and B2 determine whether the
device operates as an asynchronous or synchronous communication controller and in
asynchronous mode how the external baud rate clock is divided within the 8251A. For
example, if these two bits are 11, it is set for asynchronous operation with divide-by-64
for the baud-rate input. The two bits that follow these, L1 and L2, set the length of the
character. For instance, when information is being transmitted and received as 7-bit
ASCII characters, these bits should be loaded with 10.

The next two bits, PEN and EP, determine whether parity is in use and, if so,
whether it is even parity or odd parity. Looking at Fig. 60, we see that PEN enables or
disables parity. To enable parity, it is set to 1. Furthermore, when parity is enabled,

Input/Output Interface Circuits and LSI Peripheral Devices

572

Figure 60 Mode instruction format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

logic 0 in EP selects odd parity, or logic 1 in this position selects even parity. To disable
parity, all we need to do is reset PEN.

We will assume that the 8251A is working in the asynchronous mode; therefore,
bits S1 and S2 determine the number of stop bits. Note that if 11 is loaded into these bit
positions, the character is transmitted with 2 stop bits.

EXAMPLE 30

What value must be written into the mode-control register in order to configure the 8251A
such that it works as an asynchronous communications controller with the baud rate clock
internally divided by 16? Character size is to be 8 bits; parity is odd; and one stop bit
is used.

Solution

From Fig. 60, we find that B2B1 must be set to 10 in order to select asynchronous opera-
tion with divide-by-16 for the external baud clock input.

To select a character length of 8 bits, the next 2 bits are both made logic 1. This gives

To set up odd parity, EP and PEN must be made equal to 0 and 1, respectively.

Finally, S2S1 are set to 01 for one stop bit.

S2S1 � 01

EP PEN � 01

L2L1 � 11

B2B1 � 10

Input/Output Interface Circuits and LSI Peripheral Devices

573

Figure 61 Command instruction for-
mat. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

Therefore, the complete control word is

Once the configuration for asynchronous communications has been set up in the
mode control register, the microprocessor controls the operation of the serial interface by
issuing commands to the command register within the 8251A. The format of the com-
mand instruction byte and the function of each of its bits is shown in Fig. 61. Let us look
at the function of just a few of its bits.

TxEN and RxEN are enable bits for the transmitter and receiver. Since both the
receiver and transmitter can operate simultaneously, these two bits can both be set. RxEN

is actually an enable signal to the RxRDY signal. It does not turn the receiver section on
and off. The receiver runs at all times, but if RxEN is set to 0, the 8251A does not signal
the MPU that a character has been received by switching RxRDY to logic 1. The same is
true for TxEN. It enables the TxRDY signal.

The 8251A USART has a status register that contains information related to its cur-
rent state. The status register of the 8251A is shown in Fig. 62. Bits parity error (PE),
overflow error (OE), and frame error (FE) are error flags for the receiver. If the incoming
character is found to have a parity error, the PE (parity error) bit gets set. On the other
hand, if an overrun or framing error condition occurs, the OE (overrun error) or FE (fram-

 � 5E16

D7D6 D0 � 010111102

Input/Output Interface Circuits and LSI Peripheral Devices

574

Figure 62 Status register. (Reprinted
by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

ing error) flag is set, respectively. Before reading a character from the receive data regis-
ter, the MPU should always verify that valid data has been received by examining these
error bits. If an error is identified, a command can be issued to the command register to
write a 1 into the ER bit. This causes all three of the error flags in the status register to be
reset. Then a software routine can be initiated to cause the character to be retransmitted.

Let us look at just one more bit of the command register. The IR bit, which stands
for internal reset, allows the 8251A to be initialized under software control. To initialize
the device, the MPU simply writes a 1 into the IR bit.

Before the 8251A can be used to receive or transmit characters, its mode control and
command registers must be initialized. The flowchart in Fig. 63 shows the sequence that
must be followed when initializing the device. Let us just briefly trace through the
sequence of events needed to set up the controller for asynchronous operation.

As the microcomputer powers up, it should issue a hardware reset to the 8251A.
Switching its RESET input to logic 1 does this. After this, a load-mode instruction must
be issued to write the new configuration byte into the mode-control register. Assuming
that the 8251A is in the I/O address space of the 8088, the command byte formed in
Example 30 can be written to the command register with the instruction sequence

MOV DX, MODE_REG_ADDR
MOV AL, 5EH
OUT DX, AL

where MODE_REG_ADDR is a variable equal to the address of the mode register of the
8251A.

Input/Output Interface Circuits and LSI Peripheral Devices

575

Figure 63 8251A initialization flow-
chart. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1987)

Since bits B2B1 of this register are not 00, asynchronous mode of operation is
selected. Therefore, we go down the branch in the flowchart to the load command instruc-
tion. Execution of another OUT instruction can load the command register with its initial
value. For instance, this command could enable the transmitter and receiver by setting the
TxEN and RxEN bits, respectively. During its operation the status register can be read by
the microprocessor to determine if the device has received the next byte, if it is ready to
send the next byte, or if any problem occurred in the transmission such as a parity error.

EXAMPLE 31

The circuit in Fig. 64(a) implements serial I/O for the 8088 microprocessor using an
8251A. Write a program that continuously reads serial characters from the RS-232C
interface, complements the received characters with software, and sends them back
through the RS-232C interface. Each character is received and transmitted as an 8-bit
character using 2 stop bits and no parity.

Solution

We must first determine the addresses for the registers in the 8251A that can be accessed
from the microprocessor interface. Chip select () is enabled for I/O read or write oper-
ations to addresses for which

A7A6A5A4A3A2A1 � 1000000

CS

Input/Output Interface Circuits and LSI Peripheral Devices

576

D0 − D7

IOR

IOW

A0

A

D0 − D7 TxC

RxC

TxD

RxD

RD

CS CTS

Reset

WR

C/D

8

8251Microprocessor Signals

Baud
Clock = 19.2kHz
 RS232 Signals

1488

+12V

−12V

TxD

1489

+12V

−12V

RxD

Common

A1

A2

A3

A4

A5

A6

A7

Reset
(a)

Figure 64 (a) Implementation of serial I/O using the 8251A. (b) Addresses for the 8251A
registers. (c) Mode word. (d) Command word. (e) Flowchart for initialization, receive
operation, and transmit operation. (f) Program for the implementation of initialization,
receive operation, and transmit operation.

Control/Status
Data

x x x x x x x x 1
x x x x x x x x 1

0 0 0 0 0 0 1 = xx81H
0 0 0 0 0 0 0 = xx80H

I/O Address
A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1A0

8251A Register

(b)

S2 S1 EP

No. of stop bits = 2

No parity bit

Baud Rate Factor = 16

= EEH

Character length = 8 bit

PEN L2 L1 B2 B1

1 0 1 01 11 1

(c)

Input/Output Interface Circuits and LSI Peripheral Devices

577

Figure 64 (continued)

Bit A0 of the address bus is used to select between the data and control (or status) regis-
ters. As shown in Fig. 64(b), the addresses for the data and the control (or status) regis-
ter are XX80H and XX81H, respectively

Next we must determine the mode word to select an 8-bit character with 2 stop bits
and no parity. As shown in Fig. 64(c), the mode word is EEH. Here we have used a baud-
rate factor of 16, which means that the baud rate is given as

To enable the transmitter as well as receiver operation of the 8251A, the required
command word as shown in Fig. 64(d) is equal to 15H. Note that error reset has also been
implemented by making the ER bit equal 1.

The flowchart of Fig. 64(e) shows how we can write software to implement initial-
ization, the receive operation, and transmit operation. The program written to perform this
sequence is shown in Fig. 64(f).

Initialization involves writing the mode word followed by the command word to the
control register of the 8251A. It is important to note that this is done after the device has
been reset. Since the control register’s I/O address is 81H, the two words are output to this
address using appropriate instructions.

The receive operation starts by reading the contents of the status register at address
81H and checking if the LSB, RxRDY, is at logic 1. If it is not 1, the routine keeps read-
ing and checking until it does become 1. Next we read the data register at 80H for the
receive data. The byte of data received is complemented and then saved for transmission.

The transmit operation also starts by reading the status register at address 81H and
checking if bit 1, TxRDY, is logic 1. If it is not, we again keep reading and checking until it
becomes 1. Next, the byte of data that was saved for transmission is written to the data regis-
ter at address 81H. This causes it to be transmitted at the serial interface. The receive and trans-
mit operations are repeated by jumping back to the point where the receive operation begins.

8250/16450 UART

The 8250 and 16450 are pin-for-pin and functionally equivalent universal asynchro-
nous receiver transmitter ICs. These devices are newer than the 8251A UART and implement

Baud rate � Baud-rate clock/16 � 19,200/16 � 1200 bps

Input/Output Interface Circuits and LSI Peripheral Devices

578

a more versatile serial I/O operation. For instance, they have a built-in programmable baud-
rate generator, double buffering on communication data registers, and enhanced status and
interrupt signaling. The common pin layout for these devices is shown in Fig. 65(a).

The connection of the 8250/16450 to implement a simple RS-232C serial commu-
nications interface is shown in Fig. 65(b). Looking at the microprocessor interface, we

Write Mode Word

Write Command
Word

Read Status

Read and
complement
the received byte

Data Received
?

Read Status

Transmit the
complemented byte

Reset

Transmitter
available

(e)

NO

NO

Yes

Yes

8251A
 Initialization

8251A
Receive
operation

8251A
Transmit
operation?

Figure 64 (continued)

INIT8251: MOV AL, 0EEH ;Write the mode word
OUT 81H, AL
MOV AL, 15H ;Write the command word
OUT 81H, AL

CHKRW: IN AL, 81H ;Check if a character is received
ROR AL, 1
ROR AL, 1
JNC CHKRX
IN AL, 80H ;Read the received character
NOT AL ;Complement the received character
MOV BL,AL ;Save it for later

CHKTX: IN AL, 81H ;Check if transmitter is available
ROR AL, 1
JNC CHKTX
MOV AL, BL ;Transmit the complemented character
OUT 80H, AL
JMP CHKRX ;Repeat the process

(f)

Input/Output Interface Circuits and LSI Peripheral Devices

579

Figure 65 (a) Pin layout of the
8250/16450 UART. (Courtesy of
National Semiconductor Corporation)
(b) 8250/16450 RS-232C interface.
(Courtesy of National Semiconductor
Corporation)

find chip-select inputs CS0, CS1, and . To enable the interface, these inputs must be at
logic 1, 1, and 0, respectively, at the same time that address strobe () is logic 0.
Therefore, the interface in Fig. 65(b) is enabled whenever logic 0 is applied to from
the MPU’s bus.

Let us next look at how data are read from or written into the registers of the
8250/16450. Data transfers between the MPU and communication controller take place
over data bus lines D0 through D7. The MPU signals the peripheral whether a data input
or output operation is to occur with the logic level at the data-input strobe () and
data-output strobe () inputs. Note that when data are output during a memory
write or output bus cycle, the MPU notifies the 8250/16450 with logic 0 on the
or signal line, which is applied to the input.DOSTRI/OW

MEMW
DOSTR

DISTR

CS2

ADS
CS2

Input/Output Interface Circuits and LSI Peripheral Devices

580

During the read or write bus cycle, the register that is accessed is determined by the
code at register select inputs A0, A1, and A2. Figure 65(b) shows that these inputs are
attached to address lines A0 through A2, respectively. The registers selected by the various
register-select codes are shown in Fig. 66. Note that the setting of the divisor latch bit
(DLAB), which is in the line-control register, is also involved in the selection of the regis-
ter. For example, to write to the line-control register, the code at A2A1A0 must be 0112.
Moreover, to read the receive buffer register, the DLAB bit in the line-control register must
first be set to 0 and then a read performed with register-select code A2A1A0 equal to 0002.

The function of the various bits of the 8250/16450’s registers is summarized in the
table of Fig. 67(a). Note that the receive buffer register (RBR) and transmitter hold regis-
ter (THR) correspond to the read and write functions of register 0. However, as mentioned
earlier, to perform these read or write operations the divisor latch bit (DLAB), which is bit
7 of the line control register (LCR), must have already been set to 0. From the table, we
find that other bits of LCR are used to define the serial character data structure. For
instance, Fig. 67(b) shows how the word-length select bits, bit 0 (WLS0) and bit 1 (WLS1)
of LCR, select the number of bits in the serial character. Bit 2, number of stop bits (STB),
selects the number of stop bits. If it is set to logic 0, one stop bit is generated for all trans-
mitted data. On the other hand, if bit 2 is set to 1, one and a half stop bits are produced if
character length is set to 5 bits and 2 stop bits are supplied if character length is 6 or more
bits. The next 2 bits, bit 3 parity enable (PEN) and bit 4 even parity select (EPS), are used
to select parity. First parity is enabled by making bit 3 logic 1 and then even or odd parity
is selected by making bit 4 logic 1 or 0, respectively. The LCR can be loaded with the
appropriate configuration information under software control.

Figure 65(b) shows that the baud-rate generator is operated off a 3.072-MHz crys-
tal. This crystal frequency can be divided within the 8250/16450 to produce a variety of
data communication baud rates. The divisor values that produce standard baud rates are
shown in Fig. 68. For example, to set the asynchronous data communication rate to 300
baud, a divisor equal to 640 must be used. The 16-bit divider must be loaded under soft-
ware control into the divisor latch registers, DLL and DLM. Figure 67(a) shows that the
eight least significant bits of the divisor are in DLL and the eight most significant bits in
DLM.

Figure 66 Register-select codes.
(Courtesy of National Semiconductor
Corporation)

Input/Output Interface Circuits and LSI Peripheral Devices

581

Figure 67 (a) Register bit functions. (Courtesy of National Semiconductor Corporation)
(b) Word-length select bits. (Courtesy of National Semiconductor Corporation)

Input/Output Interface Circuits and LSI Peripheral Devices

582

EXAMPLE 32

What count must be loaded into the divisor latch registers to set the data communication
rate to 2400 baud? What register-select code must be applied to the 8250/16450 when
writing the bytes of the divider count into the DLL and DLM registers?

Solution

Looking at Fig. 68, we find that the divisor for 2400 baud is 80. When writing the byte
into DLL, the address must make

and the value that is written is

For DLM, the address must make

and the value is

Let us now turn our attention to the right side of the 8250/16450 in Fig. 65(b). Here
the RS-232C serial communication interface is implemented. We find that the transmit
data are output in serial form over the serial output (SOUT) line, and receive data are input
over the serial input (SIN) line. Handshaking for the asynchronous serial interface is

DLM � 0 � 00H

A2A1A0 � 0012 with DLAB � 1

DLL � 80 � 50H

A2A1A0 � 0002 with DLAB � 1

Figure 68 Baud rates and
corresponding divisors. (Courtesy of
National Semiconductor Corporation)

Input/Output Interface Circuits and LSI Peripheral Devices

583

LATCH

BUFFER

C
on

tr
ol

 b
us

D
at

a
bu

s

A
dd

re
ss

 b
us

D0−07

D0-D15

21
18

A1−A3
A0−A2

MR

CS0
CS1

D0−07

A4−A19

ADDRESS
DECODER

+5

+5V

35

13
12

22
19
25

20 40

DISTR
DOSTR

DISTR
DOSTR
ADS

SIN

INTRPT
CSOUT

DDIS

SOUT

NC

3.072 MHz
17

16

15

32

31

34

33

9

XTAL2

XTAL1

RCLK

14
CS2

CTS
DSR
DCO

RI

OUT2

OUT1
RTS

DTR

RS-232
CONNECTOR

70
1

8
6

5

2

3

7
129

23
24
30

39

10

11

37
36

38

BAUDOUT

GND
(VSS)

+5V
(VCC)

Figure 69 RS-232C interface with EIA drivers.

implemented with the request to send () and data terminal ready () outputs and
the data set ready (), data carrier detect (), clear to send (), and ring indi-
cator (RI) inputs.

The serial interface input/output signals are buffered by EIA drivers for compati-
bility with RS-232C voltage levels and drive currents. For example, a MC1488 driver IC
can be used to buffer the output lines. It contains four TTL level to RS-232C drivers, each
of which is actually a NAND gate. The MC1488 requires �12V, �12V, and ground sup-
ply connections to provide the mark and space transmission-voltage levels. The gates of
a MC1489 RS-232C to TTL level driver can buffer the input lines of the interface. This
IC contains four inverting buffers with tristate outputs and is operated from a single �5V
supply. Figure 69 shows an RS-232C interface including the EIA driver circuitry.

▲ 12 KEYBOARD AND DISPLAY INTERFACE

The keyboard and display are important input and output devices in microcomputer sys-
tems such as the PC. Different types of keyboards and displays are used in many other

CTSDCDDSR
DTRRTS

Input/Output Interface Circuits and LSI Peripheral Devices

584

types of digital electronic systems. For instance, all calculators and hand-held computers
have both a keyboard and a display; also many electronic test instruments have a display.

The circuit diagram in Fig. 70 shows how a keyboard is most frequently interfaced
to a microcomputer. Note that the switches in the keyboard are arranged in an array. The
size of the array is described in terms of the number of rows and the number of columns.
In our example, the keyboard array has four rows, labeled R0 through R3, and four
columns, labeled C0 through C3. A row and a column uniquely define the location of the
switch for any key in the array. For instance, the 0 key is located at the junction of R0 and
C0, whereas the 1 key is located at R0 and C1.

Now that we know how the keys of the keyboard are arranged, let us look at how
the microcomputer services them. In most applications, the microcomputer scans the key-
board array. That is, it strobes one row of the keyboard after the other by sending out a
short-duration pulse, to the 0 logic level, on the row line. During each row strobe, all col-
umn lines are examined by reading them in parallel. Typically, the column lines are pulled
up to the 1 logic level; therefore, if a switch is closed, a logic 0 will be read on the cor-
responding column line. If no switches are closed, all 1s will be read when the column
lines are examined.

For instance, if the 2 key is depressed when the microcomputer is scanning R0, the
column code read-back will be . Since the microcomputer knows
which row it is scanning (R0) and which column the strobe was returned on (C2), it can
determine that the number 2 key was depressed. The microcomputer does not necessarily
store the row and column codes in the form that we have shown. It is more common to
just maintain the binary equivalent of the row or column. In our example, the microcom-
puter would internally store the row number as and the column number as

. This is a more compact representation of the row and column information.
Several other issues arise when designing keyboards for microcomputer systems.

One is that when a key in the keyboard is depressed, its contacts bounce for a short period
of time. Depending on the keyboard sampling method, this could result in incorrect read-
ing of the keyboard input. This problem is overcome by a technique known as keyboard
debouncing. Debouncing is achieved by resampling the column lines a second time, about
10 ms later, to assure that the same column line is at the 0 logic level. If so, it is then
accepted as a valid input. This technique can be implemented either in hardware or
software.

Another problem occurs in keyboard sampling when more than one key is
depressed at a time. In this case, the column code read by the microcomputer would have
more than 1 bit that is logic 0. For instance, if the 0 and 2 keys were depressed, the col-
umn code read back during the scan of R0 would be . Typically, two
keys are not actually depressed at the same time. It is more common that the second key
is depressed while the first one is still being held down and that the column code show-
ing two key closures would show up in the second test that is made for debouncing.

Several different techniques are used to overcome this problem. One is called two-
key lockout. With this method, the occurrence of a second key during the debounce scan
causes both keys to be locked out, and neither is accepted by the microcomputer. If the
second key that was depressed is released before the first key is released, the first key
entry is accepted and the second key is ignored. On the other hand, if the first key is
released before the second key, only the second key is accepted.

C3C2C1C0 � 1010

C2 � 10
R0 � 00

C3C2C1C0 � 1011

Input/Output Interface Circuits and LSI Peripheral Devices

585

Figure 70 Keyboard interfaced to a microcomputer.

T
T

T
T

TTT

TTT

TTT

TTTAddress
decode

Keyboard
array

82C55A
PPI

CLR÷×−

Address
latch

ALE

8086
MPU

AD0−AD15

+5 V

D0 −D7

A1A0

PC3

PC2

PC1

PC0

PA0
R0

R1

R2

R3

0 1 2 3

4 5 6 7

8 9 . +

PA1

PA2

PA3

M/IO

RD

WR

RD

CS

WR

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

586

A second method of solving this problem is that known as N-key rollover. In this
case, more than one key can be depressed at a time and be accepted by the microcom-
puter. The microcomputer keeps track of the order in which they are depressed and as
long as the switch closures are still present at another keyboard scan 10 ms later, they are
accepted. That is, in the case of multiple key depressions, the key entries are accepted in
the order in which their switches are closed.

Figure 71 shows a display interface used in many microcomputer systems. Here we
are using a four-digit, seven-segment numeric display. Note that segment lines a through
g of all digits of the display are driven in parallel by outputs of the microcomputer. It is
over these lines that the microcomputer outputs signals to tell the display which segments
are to be lighted to form numbers in its digits. The way in which the segments of a seven-
segment display digit are labeled is shown in Fig. 72. For instance, to form the number 1,
a code is output to light only segments b and c.

The other set of lines in the display interface correspond to the digits of the display.
These lines, labeled D0 through D3, correspond to digits 0, 1, 2, and 3, respectively. It is
with these signals that the microcomputer tells the display in which digit the number cor-
responding to the code on lines a through g should be displayed.

The way in which the display is driven by the microcomputer is said to be
multiplexed. That is, data are not permanently displayed; instead, they are output to one
digit after the other in time. This scanning sequence is repeated frequently so the user
cannot recognize the fact that the display is not permanently lighted.

The scanning of the digits of the display is similar to the scanning we have just
described for the rows of the keyboard. A digit-drive signal is output to one digit of the
display after the other in time and during each digit-drive pulse the seven-segment code
for the number to be displayed in that digit is output on segment lines a through g. In fact,
in most systems the digit-drive signals for the display and row-drive signals of the key-
board are supplied by the same set of outputs.

▲ 13 8279 PROGRAMMABLE
KEYBOARD/DISPLAY CONTROLLER

Here we will introduce an LSI device, the 8279 programmable keyboard/display inter-
face, which can be used to implement keyboard and display interfaces similar to those
described in the previous section. Use of the 8279 makes the design of a keyboard/display
interface circuit quite simple. This device can drive an 8 � 8 keyboard switch array and
a 16-digit, eight-segment display. Moreover, it can be configured through software to sup-
port key debouncing, two-key lockout, or N-key rollover modes of operation, and either
left or right data entry to the display.

A block diagram of the device is shown in Fig. 73(a) and its pin layout in Fig.
73(b). From this diagram we see that there are four signal sections: the MPU interface,
the key data inputs, the display data outputs, and the scan lines used by both the keyboard
and display. Let us first look at the function of each of these interfaces.

The bus interface of the 8279 is similar to that found on the other peripherals we
have considered up to this point. It consists of the eight data bus lines DB0 through DB7.
These are the lines over which the MPU outputs data to the display, inputs key codes,
issues commands to the controller, and reads status information from the controller. Other

Input/Output Interface Circuits and LSI Peripheral Devices

587

Figure 71 Display interfaced to a microcomputer.

Address
decoder

82C55A
PPI

Address
latch

ALE

8086
MPU

AD0−AD15

D0 −D7

A1A0

PC0

PC1

PC2

PC3

PA0−PA6

a−g

D3

D2

D1

D0

M/IO

RD

WR

RD

CS

WR

8 8 8 8

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

588

Figure 72 Seven-segment display
labeling.

signals found at the interface are the read (), write (), chip-select (), and address
buffer (A0) control signals. They are the signals that control the data bus transfers taking
place between the microprocessor and 8279.

A new signal introduced with this interface is interrupt request (IRQ), an output
that gets returned to an interrupt input of the microcomputer. This signal is provided so
that the 8279 can tell the MPU it contains key codes that should be read.

The scan lines are used as row-drive signals for the keyboard and digit-drive signals
for the display. There are just four of these lines, SL0 through SL3. However, they can be
configured for two different modes of operation through software. In applications that
require a small keyboard and display (four or less rows and digits), they can be used in
what is known as the decoded mode. Scan output waveforms for this mode of operation
are shown in Fig. 74(a). Note that a pulse to the 0 logic level is produced at one output
after the other in time.

The second mode of operation, called encoded mode, allows use of a keyboard
matrix with up to eight rows and a display with up to 16 digits. When this mode of oper-
ation is enabled through software, the binary-coded waveforms shown in Fig. 74(b) are
output on the SL lines. These signals must be decoded with an external decoder circuit to
produce the digit and column drive signals.

Even though 16 digit-drive signals are produced, only 8 row-drive signals can be
used for the keyboard because the key code that is stored when a key depression has been
sensed has just 3 bits allocated to identify the row. Figure 75 shows this kind of circuit
configuration.

The key data lines include the eight return lines, RL0 through RL7. These lines
receive inputs from the column outputs of the keyboard array. They are not tested all at
once as we described earlier. Looking at the waveforms in Fig. 76, we see that the RL
lines are examined one after the other during each 640-μs row pulse.

If logic 0 is detected at a return line, the number of the column is coded as a 3-bit
binary number and combined with the 3-bit row number to make a 6-bit key code. This
key code input is first debounced and then loaded into an 8 � 8 key code FIFO within the
8279. Once the FIFO contains a key code, the IRQ output is automatically set to logic 1.
This signal can be used to tell the MPU that a keyboard input should be read from the
8279. There are two other signal inputs in this section: shift (SHIFT) and control/strobed

CSWRRD

Input/Output Interface Circuits and LSI Peripheral Devices

589

Figure 73 (a) Block diagram of the 8279. (Reprinted by permission of Intel Corpora-
tion. Copyright/Intel Corp. 1987) (b) Pin layout. (Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

(CNTL/STB). The logic levels at these two inputs are also stored as part of the key code
when a switch closure is detected. The format of the complete key code byte stored in
FIFO is shown in Fig. 77.

A status register is provided within the 8279 that contains flags indicating the sta-
tus of the key code FIFO. The bits of the status register and their meanings are shown in
Fig. 78. Note that the three least significant bits, labeled NNN, identify the number of

Input/Output Interface Circuits and LSI Peripheral Devices

590

Figure 74 (a) Decoded-mode
scan line signals. (Reprinted by
permission of Intel Corporation.
Copyright/Intel Corp. 1987)
(b) Encoded-mode scan line signals.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

key codes currently held in the FIFO. The next bit, F, indicates whether or not the FIFO
is full. The two bits that follow it, U and O, represent two FIFO error conditions. O,
which stands for overrun, indicates that an attempt was made to enter another key code
into the FIFO, but it was already full. This condition could occur if the microprocessor
does not respond quickly enough to the IRQ signal by reading key codes out of the FIFO.
The other error condition, underrun (U), means that the microprocessor attempted to read
the contents of the FIFO when it was empty. The microprocessor can read the contents
of the status register under software control.

The display data lines include two 4-bit output ports, A0 through A3 and B0 through
B3, that are used as display segment drive lines. Segment data that are output on these
lines are held in a dedicated display RAM area within the 8279. This RAM is organized

and must be loaded with segment data by the microprocessor. Figure 76 shows
that during each 640-μs scan time the segment data for one of the digits are output at the
A and B ports.

The operation of the 8279 must be configured through software. Eight command
words are provided for this purpose. These control words are loaded into the device by per-
forming write (output) operations to the device with buffer address bit A0 set to logic 1.
Let us now look briefly at the function of each of these control words.

The first command (command word 0) is used to set the mode of operation for the
keyboard and display. The general format of this word is shown in Fig. 79(a). Here we
see that the three most significant bits are always reset. These 3 bits are a code by which
the 8279 identifies which command is being issued by the microprocessor. The next 2
bits, labeled DD, are used to set the mode of operation for the display. The table in Fig.
79(b) shows the options available. After power-up reset, these bits are set to 01. From

16 � 8

Input/Output Interface Circuits and LSI Peripheral Devices

591

Figure 75 System configuration using the 8086 and 8279. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1987)

In
p

u
t/O

u
tp

u
t In

terface C
ircu

its an
d

 LSI Perip
h

eral D
evices

592

Figure 76 Keyboard and display signal timing. (Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

the table we see that this configures the display for 16 digits with left entry. By left entry
we mean that characters are entered into the display starting from the left.

The three least significant bits of the command word (KKK) set the scan mode of
the keyboard and display. They are used to configure the operation of the keyboard
according to the table in Fig. 79(c). The default code at power-up is 000 and selects
encoded scan operation with two-key lockout.

EXAMPLE 33

What should be the value of command word 0 if the display is to be set for eight 8-segment
digits with right entry and the keyboard for decoded scan with N-key rollover?

Figure 77 Key code byte format.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987)

Input/Output Interface Circuits and LSI Peripheral Devices

593

Figure 79 (a) Command word 0 for-
mat. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1987) (b) Display mode select codes.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)
(c) Keyboard select codes. (Reprinted
by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

Figure 78 Status register. (Reprinted
by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

Figure 80 Command word 1 format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

594

Solution

The three MSBs of the command word are always 0. The next 2 bits, DD, must be set to
10 for eight 8-segment digits with right entry. Finally, the three LSBs are set to 011 for
decoded keyboard scan with N-key rollover. This gives

Command word 1 is used to set the frequency of operation of the 8279. It is
designed to run at 100 kHz; however, in most applications a much higher frequency sig-
nal is available to supply its CLK input. For this reason, a 5-bit programmable prescaler
is provided within the 8279 to divide down the input frequency. The format of this com-
mand word is shown in Fig. 80.

For instance, in a 5-MHz 8086-based microcomputer system, the PCLK output of
the 8284 clock driver IC can be used for the 8279’s clock input. PCLK is one-half the fre-
quency of the oscillator, or 2.5 MHz. In this case the divider P must be

Twenty-five expressed as a 5-bit binary number is

P � 110012

P � 2.5 MHz/100 kHz � 25

� 1316

� 000100112

Command word 0 � 000DDKKK

Figure 81 (a) Command word 6 format. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1987) (b) CD coding. (Reprinted by per-
mission of Intel Corporation. Copyright/Intel Corp. 1987)

Figure 82 Command word 7 format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

595

Therefore, the value of command word 1 written to the 8279 is

Let us skip now to command word 6 because it is also used for initialization of the
8279. It is used to initialize the complete display memory, the FIFO status, and the inter-
rupt-request output line. The format of this word is given in Fig. 81(a). The three CD bits
are used to control initialization of the display RAM. Figure 81(b) shows what values can
be used in these locations. The CF bit is provided for clearing the FIFO status and reset-
ting the IRQ line. To perform the reset operation, a 1 must be written to CF. The last bit,
clear all (CA), can be used to initiate both the CD and CF functions.

EXAMPLE 34

What clear operations are performed if the value of command word 6 written to the 8279
is D216?

Solution

First, we express the command word in binary form. This gives

Note that the three CD bits are 100. This combination causes display memory to be
cleared. The CF bit is also set, and this causes the FIFO status and IRQ output to be reset.

As Fig. 82 shows, only one bit of command word 7 is functional. This bit is labeled
E and is an enable signal for what is called the special-error mode. When this mode is
enabled and the keyboard has N-key rollover selected, a multiple-key depression causes
the S/E flag of the FIFO status register to be set. This flag can be read by the micro-
processor through software.

Command word 6 � D216 � 110100102

� 3916

Command word 1 � 001PPPPP2 � 001110012

Figure 83 Command word 2 format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Figure 84 Command word 4 format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

596

The rest of the command codes are related to accessing the key code FIFO and dis-
play RAM. The key code FIFO is read only. However, before the microprocessor can
access it, a read FIFO command must be issued to the 8279. This is command word 2 and
has the format shown in Fig. 83. When the 8279 is set up for keyboard scanning, the AI
and AAA bits are don’t-care states. Then all that needs to be done is to issue the com-
mand to the 8279 and initiate read (input) cycles to the address of the
8279. For each read bus cycle, the key code at the top of the FIFO is read into the MPU.

The display RAM can be either read from or written into by the MPU. Just like for
the FIFO, a command must be sent to the 8279 before reading or writing can be initiated.
For instance, when the microprocessor wants to send new data to the display, it must first
issue command word 4. This command has the format shown in Fig. 84. Here the AAAA
in the four least significant bit locations is the address of the first location to be accessed.
For instance, if 00002 is put into these bits of the command, the first write operation will
be to the first location in display RAM. Moreover, if the AI bit is set in the command,
autoincrement addressing is enabled. In this way, the display RAM address pointer is
automatically incremented after the write operation is complete and a write cycle can be
initiated to address 00012 of display RAM without first issuing another write command.

The MPU can also read the contents of the display RAM in a similar way. This
requires that command word 3 be issued to the 8279. Figure 85 shows the format of this
read display RAM command.

REVIEW PROBLEMS

Section 1
1. Give three examples of the special-purpose input/output interfaces of a micro-

computer.

2. List three core input/output interfaces commonly used in microcomputer systems.

Section 2
3. What is the address of port 7 in the circuit shown in Fig. 1(a)?

4. What are the inputs of the I/O address decoder in Fig. 1(a) when the I/O address on
the bus is 800A16? Which output is active? Which output port does this enable?

5. What operation does the instruction sequence that follows perform for the circuit in
Fig. 1(a)?

MOV AL, 0FFH
MOV DX, 8004H
OUT DX, AL

010000002 � 4016

Figure 85 Command word 3 format.
(Reprinted by permission of Intel Cor-
poration. Copyright/Intel Corp. 1987)

Input/Output Interface Circuits and LSI Peripheral Devices

597

6. Write a sequence of instructions to output the word contents of the memory location
called DATA to output ports 0 and 1 in the circuit shown in Fig. 1(a).

Section 3
7. Which input port in the circuit shown in Fig. 3 is selected for operation if the I/O

address output on the bus is 800816 ?

8. What operation is performed to the circuit in Fig. 3 when the instruction sequence
that follows is executed?

MOV DX, 8000H
IN AL, DX
AND AL, 0FH
MOV [LOW_NIBBLE], AL

9. Write a sequence of instructions to read in the contents of ports 1 and 2 in the circuit
shown in Fig. 3 and save them at consecutive memory addresses A000016 and
A000116 in memory.

10. Write an instruction sequence that polls input I63 in the circuit shown in Fig. 3,
checking for it to switch to logic 0.

Section 4
11. Name a method that can be used to synchronize the input or output of information to

a peripheral device.

12. List the control signals in the parallel printer interface circuit shown in Fig. 6(a).
Identify whether they are an input or output of the printer and briefly describe their
functions.

13. What type of device provides the data lines for the printer interface circuit shown in
Fig. 6(d)?

14. Give an overview of what happens in the circuit shown in Fig. 6(d) when a write bus
cycle of byte-wide data is performed to I/O address 800016.

15. Show what push and pop instructions are needed in the program written in Exam-
ple 6 to preserve the contents of registers used by it so that it can be used as a
subroutine.

Section 5
16. What kind of input/output interface does a PPI implement?

17. How many I/O lines are available on the 82C55A?

18. What are the signal names of the I/O port lines of the 82C55A?

19. Describe the mode 0, mode 1, and mode 2 I/O operations of the 82C55A.

20. What function do the lines of port B of the 82C55A serve when port A is configured
for mode 2 operation?

21. How is an 82C55A configured if its control register contains 9BH?

22. If the value A416 is written to the control register of an 82C55A, what is the mode
and I/O configuration of port A? Port B?

Input/Output Interface Circuits and LSI Peripheral Devices

598

23. If ports A, B, and C of an 82C55A are to be configured for mode 0 operation, where
the A and B ports are inputs and C is an output port, what is the control word?

24. What value must be written to the control register of the 82C55A to configure the
device such that both port A and port B are configured for mode 1 input operation?

25. If the control register of the 82C55A in problem 23 is at I/O address 100016, write an
instruction sequence that will load the control word.

26. Assume that the control register of an 82C55A resides at memory address 0010016.
Write an instruction sequence to load it with the control word formed in problem 23.

27. What control word must be written to the control register of an 82C55A shown in
Fig. 15(a) to enable the INTRB output? INTEB corresponds to bit PC4 of port C.

28. If the value 0316 is written to the control register of an 82C55A set for mode 2 oper-
ation, what bit at port C is affected by the bit set/reset operation? Is it set to 1 or
cleared to 0?

29. Assume that the control register of an 82C55A is at I/O address 010016. Write an
instruction sequence to load it with the bit set /reset value given in problem 28.

Section 6
30. If I/O address 003E16 is applied to the circuit in Fig. 21 during a byte-write cycle and

the data output on the bus is 9816, which 82C55A is being accessed? Are data being
written into port A, port B, port C, or the control register of this device?

31. If the instruction that follows is executed, what operation to the I/O interface circuit
in Fig. 21 is performed?

IN AL, 08H

32. What are the addresses of the A, B, and C ports of PPI 2 in the circuit shown in
Fig. 22?

33. Assume that PPI 2 in Fig. 22 is configured as defined in problem 23. Write a program
that will input the data at ports A and B, add these values together, and output the
sum to port C.

Section 7
34. Distinguish between memory-mapped I/O and isolated I/O.

35. What address inputs must be applied to the circuit in Fig. 23 in order to access port
B of device 4? Assuming that all unused bits are 0, what would be the memory
address?

36. Write an instruction that will load the control register of the port identified in prob-
lem 35 with the value 9816.

37. Repeat problem 33 for the circuit in Fig. 24.

Section 8
38. What are the inputs and outputs of counter 2 of an 82C54?

39. Write a control word for counter 1 that selects the following options: load least sig-
nificant byte only, mode 5 of operation, and binary counting.

Input/Output Interface Circuits and LSI Peripheral Devices

599

40. What are the logic levels of inputs , , , A1, and A0 when the byte in prob-
lem 39 is written to an 82C54?

41. Write an instruction sequence that loads the control word in problem 39 into an
82C54, starting at address 0100016 of the memory address space. A1A0 of the micro-
processor are directly connected to A1A0 of the 82C54.

42. Write an instruction sequence that loads the value 1216 into the least significant byte
of the count register for counter 2 of an 82C54, starting at memory address 0100016.
A1A0 of the microprocessor are directly connected to A1A0 of the 82C54.

43. Repeat Example 19 for the 82C54 located at memory address 0100016, but this time
just read the least significant byte of the counter. A1A0 of the microprocessor are
directly connected to A1A0 of the 82C54.

44. What is the maximum time delay that can be generated with the timer in Fig. 35?
What would be the maximum time delay if the clock frequency were increased to
2 MHz? Assume that it is configured for binary counting.

45. What is the resolution of pulses generated with the 82C54 in Fig. 35? What will be
the resolution if the clock frequency is increased to 2 MHz?

46. Find the pulse width of the one-shot in Fig. 36 if the counter is loaded with the value
100016. Assume that the counter is configured for binary count operation.

47. What count must be loaded into the square-wave generator in Fig. 38 in order to pro-
duce a 25-KHz output?

48. If the counter in Fig. 39 is loaded with the value 12016, how long of a delay occurs
before the strobe pulse is output?

Section 9
49. Are signal lines and of the 82C37A used in the microprocessor

interface?

50. Summarize the 82C37A’s DMA request/acknowledge handshake sequence.

51. What is the total number of user-accessible registers in the 82C37A?

52. Write an instruction sequence that reads the value of the address from the current
address register for channel 0 into the AX register. Assume that the 82C37A has the
base address 10H.

53. Assuming that an 82C37A is located at I/O address 1000H, write an instruction
sequence to perform a master clear operation.

54. Write an instruction sequence that writes the command word 0016 into the command
register of an 82C37A located at address 2000H in the I/O address space.

55. Write an instruction sequence that loads the mode register for channel 2 with the
mode byte obtained in Example 26. Assume that the 82C37A is located at I/O
address F0H.

56. What must be output to the mask register in order to disable all of the DRQ inputs?

57. Write an instruction sequence that reads the contents of the status register into the AL
register. Assume the 82C37A is located at I/O address 5000H.

MEMWMEMR

WRRDCS

Input/Output Interface Circuits and LSI Peripheral Devices

600

Section 10
58. Name a signal line that distinguishes an asynchronous communication interface from

that of a synchronous communication interface.

59. Define a simplex, a half-duplex, and a full-duplex communication link.

60. For an RS-232C interface, what voltage range defines a mark at the transmit end of
a serial communication line?

Section 11
61. To write a byte of data to the 8251A, what logic levels must the microprocessor apply

to control inputs , , , and ?

62. The mode-control register of an 8251A contains 111111112. What are the asynchro-
nous character length, type of parity, and the number of stop bits?

63. Write an instruction sequence to load the control word obtained in problem 62 into a
memory-mapped 8251A with the control register located at address MODE.

64. Describe the difference between a mode instruction and a command instruction used
in 8251A initialization.

Section 12
65. Referring to Fig. 70, what is the maximum number of keys that can be supported

using all 24 I/O lines of an appropriately configured 82C55A?

66. In the circuit shown in Fig. 70, what row and column code would identify the 9 key?

67. What codes would need to be output on the digital and segment lines of the circuit in
Fig. 71 to display the number 7 in digit 1?

Section 13
68. Specify the mode of operation for the keyboard and display when an 8279 is config-

ured with command word 0 equal to 3F16.

69. Determine the clock frequency applied to the input of an 8279 if it needs command
word 1 equal to 1E16 to operate.

70. Summarize the function of each command word of the 8279.

Section 1
1. Keyboard interface, display interface, and parallel printer interface.

Section 2
3. with .

5. Sets all outputs at port 2 (O16–O23) to logic 1.

Section 3
7. Port 4.
9. MOV AX, 0A000H ;Set up the segment to start at A0000H

MOV DS, AX

X � 0A15LA14L. A4LA3LA2LA1LA0L � 1X.X11102 � 800E16

CSWRRDC/D

Input/Output Interface Circuits and LSI Peripheral Devices

ANSWERS TO SELECTED REVIEW PROBLEMS▲

601

MOV DX, 8002H ;Input from port 1
IN AL, DX
MOV [0000H], AL ;Save the input at A0000H
MOV DX, 8004H ;Input from port 2
IN AL, DX
MOV [0001H], AL ;Save the input at A0001H

Section 4
11. Handshaking.

13. 74F373 octal latch.
15. PUSH DX ;Save all registers to be used

PUSH AX
PUSH CX
PUSH SI
PUSH BX
. ;Program of Example 6 starts here
.
.
. ;Program of Example 6 ends here

POP BX ;Restore the saved registers
POP SI
POP CX
POP AX
POP DX
RET ;Return from the subroutine

Section 5
17. 24.

19. Mode 0 selects simple I/O operation. This means that the lines of the port can be con-
figured as level-sensitive inputs or latched outputs. Port A and port B can be config-
ured as 8-bit input or output ports, and port C can be configured for operation as two
independent 4-bit input or output ports.

Mode 1 operation represents what is known as strobed I/O. In this mode, ports
A and B are configured as two independent byte-wide I/O ports, each of which has a
4-bit control port associated with it. The control ports are formed from port C’s lower
and upper nibbles, respectively. When configured in this way, data applied to an input
port must be strobed in with a signal produced in external hardware. An output port
is provided with handshake signals that indicate when new data are available at its
outputs and when an external device has read these values.

Mode 2 represents strobed bidirectional I/O. The key difference is that now the
port works as either input or output and control signals are provided for both func-
tions. Only port A can be configured to work in this way.

21. Lower 4 lines of port C are inputs
Port B lines are inputs
Mode 0 operation for both port B and the lower 4 lines of port C
Upper 4 lines of port C are inputs
Port A lines are inputsD4 � 1

D3 � 1
D2 � 0
D1 � 1
D0 � 1

Input/Output Interface Circuits and LSI Peripheral Devices

602

Mode 0 operation for both port A and the upper 4 lines of port C
Mode being set

23. .
25. MOV DX, 1000H ;Load the control register with 92H

MOV AL, 92H
OUT DX, AL

27. To enable INTRB, the INTE B bit must be set to 1. This is done with a bit set/reset
operation that sets bit PC4 to 1. This command is

29. MOV AL, 03H ;Load the control register with 03H
MOV DX, 100H
OUT DX, AL

Section 6
31. The value at the inputs of port A of PPI 2 is read into AL.
33. IN AL, 08H ;Read port A

MOV BL, AL ;Save in BL
IN AL, 0AH ;Read port B
ADD AL, BL ;Add the two numbers
OUT 0CH, AL ;Output to port C

Section 7
35. To access port B on PPI 4

, , and

.
37. MOV BL, [0408H] ;Read port A

MOV AL, [040AH] ;Read port B
ADD AL, BL ;Add the two readings
MOV [040CH], AL ;Write to port C

Section 8
39. .
41. MOV DX, 1003H ;Select the I/O location

MOV AL, 5AH ;Get the control word
MOV [DX], AL ;Write it

43. MOV AL, 10000000B ;Latch counter 2
MOV DX, 1003H
MOV [DX], AL
MOV DX, 1002H
MOV AL, [DX] ;Read the least significant byte

45. 838 ns; 500 ns.

47.

Section 9
49. No.

51. 27.
53. MOV DX, 100DH ;Master clear for 82C37A

OUT DX, AL

N � 4810 � 3016.

Control word D7D6D5D4D3D2D1D0 � 010110102 � 5AH

This gives the address � XXXXXXXXXX0100102 � 0001216 with Xs � 0

A5A4A3 � 010A2A1 � 01A0 � 0

D7 � D0 � 0XXX1001

Control word bits � D7D6D5D4D3D2D1D0 � 100100102 � 92H

D7 � 1
D6D5 � 00

Input/Output Interface Circuits and LSI Peripheral Devices

603

55. MOV AL, 56H ;Load channel 2 mode register
OUT FBH, AL

57. MOV DX, 5008H ;Read status register of 82C37A
IN AL, DX

Section 10
59. Simplex: capability to transmit in one direction only.

Half-duplex: capability to transmit in both directions but at different times.
Full-duplex: capability to transmit in both directions at the same time.

Section 11
61. , , , and .
63. MOV AL, FFH

MOV MODE, AL

Section 12
65. .

67. , .

Section 13
69. .

CLK � (100 kHz) (30) � 3 MHz
P � 30

abcdefg � 1110000D3D2D1D0 � 1101

12 rows � 12 columns � 144 keys

CS � 0WR � 0RD � 1C/D � 0

Input/Output Interface Circuits and LSI Peripheral Devices

604

Interrupt Interface of
the 8088 and 8086
Microprocessors

� INTRODUCTION

In this chapter we discuss a special input interface, the interrupt interface. The topics pre-
sented in this chapter are as follows:

1 Interrupt Mechanism, Types, and Priority

2 Interrupt Vector Table

3 Interrupt Instructions

4 Enabling/Disabling of Interrupts

5 External Hardware-Interrupt Interface Signals

6 External Hardware-Interrupt Sequence

7 82C59A Programmable Interrupt Controller

8 Interrupt Interface Circuits Using the 82C59A

9 Software Interrupts

10 Nonmaskable Interrupt

11 Reset

12 Internal Interrupt Functions

From Chapter 11 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

605

� 1 INTERRUPT MECHANISM, TYPES, AND PRIORITY

Interrupts provide a mechanism for quickly changing program environment. Transfer of
program control is initiated by the occurrence of either an event internal to the micro-
processor or an event in its external hardware. For instance, when an interrupt signal
occurs in external hardware indicating that an external device, such as a printer, requires
service, the MPU must suspend what it is doing in the main part of the program and pass
control to a special routine that performs the function required by the device. The section
of program to which control is passed is called the interrupt-service routine. In the case
of our example of a printer, the routine is usually called the printer driver, which is the
piece of software that when executed drives the printer output interface.

As Fig. 1 shows, interrupts supply a well-defined context-switching mechanism
for changing program environments. Here we see that interrupt 32 occurs as instruction
N of the program is being executed. When the MPU terminates execution of the main
program in response to interrupt 32, it first saves information that identifies the instruc-
tion following the one where the interrupt occurred, instruction , and then picksN � 1

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 1 Interrupt program context switching mechanism.

606

Interrupt Interface of the 8088 and 8086 Microprocessors

up execution with the first instruction in the service routine. After this routine has run to
completion, program control is returned to the point where the MPU originally left the
main program, instruction , and then execution resumes.

The 8088 and 8086 microcomputers are capable of implementing any combination
of up to 256 interrupts. As Fig. 2 shows, they are divided into five groups: external hard-
ware interrupts, nonmaskable interrupt, software interrupts, internal interrupts, and
reset. The user defines the function of the external hardware, software, and nonmaskable
interrupts. For instance, hardware interrupts are often assigned to devices such as the key-
board, printer, and timers. On the other hand, the functions of the internal interrupts and
reset are not user defined. They perform dedicated system functions.

Hardware, software, and internal interrupts are serviced on a priority basis. Priority
is achieved in two ways. First, the interrupt-processing sequence implemented in the
8088/8086 tests for the occurrence of the various groups based on the hierarchy shown in
Fig. 2. Thus, we see that internal interrupts are the highest-priority group, and the exter-
nal hardware interrupts are the lowest-priority group.

Second, each of the interrupts is given a different priority level by assigning it a type
number. Type 0 identifies the highest-priority interrupt, and type 255 identifies the lowest-
priority interrupt. Actually, a few of the type numbers are not available for use with
software or hardware interrupts. This is because they are reserved for special interrupt
functions of the 8088/8086, such as internal interrupts. For instance, within the internal
interrupt group, the interrupt known as divide error is assigned to type number 0. There-
fore, it has the highest priority of the internal interrupts. Another internal interrupt, called
overflow, is assigned the type number 4. Overflow is the lowest-priority internal interrupt.

The importance of priority lies in the fact that, if an interrupt-service routine has
been initiated to perform a function assigned to a specific priority level, only devices with
higher priority are allowed to interrupt the active service routine. Lower-priority devices
will have to wait until the current routine is completed before their request for service can
be acknowledged. For hardware interrupts, this priority scheme is implemented in external
hardware. For this reason, the user normally assigns tasks that must not be interrupted fre-
quently to higher-priority levels and those that can be interrupted to lower-priority levels.

An example of a high-priority service routine that should not be interrupted is that
for a power failure. Once initiated, this routine should be quickly run to completion to
assure that the microcomputer goes through an orderly power-down. A keyboard should
also be assigned to a high-priority interrupt. This will assure that the keyboard buffer does
not get full and lock out additional entries. On the other hand, devices such as the floppy
disk or hard disk controller are typically assigned to a lower priority level.

We just pointed out that once an interrupt service routine is initiated, it could be
interrupted only by a function that corresponds to a higher-priority level. For example, if a

N � 1

Figure 2 Types of interrupts and their
priority.

607

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 3 Interrupt vector table of the
8088/8086. (Reprinted by permission
of Intel Corporation. Copyright/Intel
Corp. 1979)

type 50 external hardware interrupt is in progress, it can be interrupted by any software
interrupt, the nonmaskable interrupt, all internal interrupts, or any external hardware inter-
rupt with type number less than 50. That is, external hardware interrupts with priority
levels equal to 50 or greater are masked out.

� 2 INTERRUPT VECTOR TABLE

An address pointer table is used to link the interrupt type numbers to the locations of
their service routines in the program-storage memory. Figure 3 shows a map of the
pointer table in the memory of the 8088 or 8086 microcomputer. Looking at this table,
we see that it contains 256 address pointers (vectors), which are identified as vector 0
through vector 255. That is, one pointer corresponds to each of the interrupt types 0
through 255. These address pointers identify the starting location of their service routines
in program memory. The contents of this table may be either held as firmware in
EPROMs or loaded into RAM as part of the system initialization routine.

Note in Fig. 3 that the pointer table is located at the low-address end of the mem-
ory address space. It starts at address 0000016 and ends at 003FE16. This represents the
first 1Kbytes of memory.

Each of the 256 pointers requires two words (4 bytes) of memory and is always stored
at an even-address boundary. The higher-addressed word of the two-word vector is called the
base address. It identifies the program memory segment in which the service routine resides.

608

Interrupt Interface of the 8088 and 8086 Microprocessors

For this reason, it is loaded into the code segment (CS) register within the MPU. The lower-
addressed word of the vector is the offset of the first instruction of the service routine from
the beginning of the code segment defined by the base address loaded into CS. This offset is
loaded into the instruction pointer (IP) register. For example, the offset and base address for
type number 255, IP255 and CS255, are stored at word addresses 003FC16 and 003FE16,
respectively. When loaded into the MPU, it points to the instruction at CS255:IP255.

Looking more closely at the table in Fig. 3, we find that the first 31 pointers either
have dedicated functions or are reserved. For instance, pointers 0, 1, 3, and 4 are used by
the 8088’s and 8086’s internal interrupts: divide error, single step, breakpoint, and
overflow. Pointer 2 is used to identify the starting location of the nonmaskable interrupt’s
service routine. The next 27 pointers, 5 through 31, represent a reserved portion of the
pointer table and should not be used. The remainder of the table, the 224 pointers in the
address range 0008016 through 003FF16, is available to the user for storage of software or
hardware interrupt vectors. These pointers correspond to type numbers 32 through 255. In
the case of external hardware interrupts, each type number (priority level) is associated
with an interrupt input in the external interrupt interface circuitry.

EXAMPLE 1

At what address are CS50 and IP50 stored in memory?

Solution

Each vector requires four consecutive bytes of memory for storage. Therefore, its address
can be found by multiplying the type number by 4. Since CS50 and IP50 represent the
words of the type 50 interrupt pointer, we get

Converting to binary form gives

and expressing it as a hexadecimal number results in

Therefore, IP50 is stored at 000C816 and CS50 at 000CA16.

� 3 INTERRUPT INSTRUCTIONS

A number of instructions are provided in the instruction set of the 8088 and 8086 micro-
processors for use with interrupt processing. Figure 4 lists these instructions, with brief
descriptions of their functions.

For instance, the first two instructions, STI and CLI, permit manipulation of the
interrupt flag through software. STI stands for set interrupt enable flag. Execution of this

Address � C816

Address � 110010002

Address � 4 � 50 � 200

609

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 4 Interrupt instructions.

instruction enables the external interrupt request (INTR) input for operation—that is, it
sets interrupt flag (IF). On the other hand, execution of CLI (clear interrupt enable f lag)
disables the external interrupt input by resetting IF.

The next instruction listed in Fig. 4 is the software-interrupt instruction INT n. It is
used to initiate a vectored call of a subroutine. Executing the instruction causes program
control to be transferred to the subroutine pointed to by the vector for the number n spec-
ified in the instruction.

The operation outlined in Fig. 4 describes the effect of executing the INT instruction.
For example, execution of the instruction INT 50 initiates execution of a subroutine whose
starting point is identified by vector 50 in the pointer table of Fig. 3. First, the MPU saves the
old flags on the stack, clears TF and IF, and saves the old program context, CS and IP, on the
stack. Then it reads the values of IP50 and CS50 from addresses 000C816 and 000CA16,
respectively, in memory, loads them into the IP and CS registers, calculates the physical
address CS50:IP50, and starts to fetch instruction from this new location in program memory.

An interrupt-return (IRET) instruction must be included at the end of each interrupt-
service routine. It is required to pass control back to the point in the program where exe-
cution was terminated due to the occurrence of the interrupt. As shown in Fig. 4, when
executed, IRET causes the old values of IP, CS, and flags to be popped from the stack back
into the internal registers of the MPU. This restores the original program environment.

INTO is the interrupt-on-overflow instruction. This instruction must be included
after arithmetic instructions that can result in an overflow condition, such as divide. It
tests the overflow flag, and if the flag is found to be set, a type 4 internal interrupt is ini-
tiated. This condition causes program control to be passed to an overflow service routine

610

Interrupt Interface of the 8088 and 8086 Microprocessors

located at the starting address identified by the vector IP4 at 0001016 and CS4 at 0001216

of the pointer table in Fig. 3.
The last two instructions associated with the interrupt interface are halt (HLT) and

wait (WAIT). They produce similar responses by the 8088/8086 and permit the operation
of the MPU to be synchronized to an event in external hardware. For instance, when HLT
is executed, the MPU suspends operation and enters the idle state. It no longer executes
instructions; instead, it remains idle waiting for the occurrence of an external hardware
interrupt or reset interrupt. With the occurrence of either of these events, the MPU resumes
execution with the corresponding service routine.

If the WAIT instruction is used instead of the HLT instruction, the MPU checks
the logic level of the input prior to going into the idle state. Only if is at
logic 1 will the MPU go into the idle state. While in the idle state, the MPU continues
to check the logic level at , looking for its transition to the 0 logic level. As
switches to 0, execution resumes with the next sequential instruction in the program.

� 4 ENABLING/DISABLING OF INTERRUPTS

An interrupt-enable flag bit is provided within the 8088 and 8086 MPUs. Earlier we
found that it is identified as IF. It affects only the external hardware-interrupt interface,
not software interrupts, the nonmaskable interrupt, or internal interrupts. The ability to
initiate an external hardware interrupt at the INTR input is enabled by setting IF or
masked out by resetting it. Executing the STI instruction or the CLI instruction, respec-
tively, does this through software.

During the initiation sequence of a service routine for an external hardware inter-
rupt, the MPU automatically clears IF. This masks out the occurrence of any additional
external hardware interrupts. In some applications, it may be necessary to permit other
interrupts to interrupt the active service routine. If this is the case, the interrupt flag bit
can be set with an STI instruction in the service routine to reenable the INTR input.
Otherwise, the external hardware-interrupt interface is reenabled by the IRET instruction
at the end of the service routine.

� 5 EXTERNAL HARDWARE-INTERRUPT
INTERFACE SIGNALS

Up to this point, we have introduced the types of interrupts supported by the 8088/8086,
its pointer table, interrupt instructions, and enabling/disabling interrupts. Let us now look
at the signals of the external hardware interrupt interface of the 8088 and 8086 micro-
computer systems.

Minimum-Mode Interrupt Interface

We will begin with an 8088 microcomputer configured for the minimum mode. The
interrupt interface for this system is illustrated in Fig. 5(a). Here we see that it includes
the multiplexed address/data bus and dedicated interrupt signal lines INTR and . We
also see that external circuitry is required to interface the interrupt inputs, INT32 through

INTA

TESTTEST

TESTTEST

611

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 5 (a) Minimum-mode 8088 system external hardware-interrupt
interface. (b) Minimum-mode 8086 system external hardware-interrupt interface.

INT255, to the 8088’s interrupt interface. This interface circuitry must identify which of
the pending active interrupts has the highest priority and then pass its type number to the
microprocessor.

In this circuit we see that the key interrupt interface signals are interrupt request
(INTR) and interrupt acknowledge (). The input at the INTR line signals the 8088
that an external device is requesting service. The 8088 samples this input during the last
clock period of each instruction execution cycle. Logic 1 represents an active interrupt
request. INTR is level triggered; therefore, its active 1 level must be maintained until
tested by the 8088. If it is not maintained, the request for service may not be recognized.
Moreover, the logic 1 at INTR must be removed before the service routine runs to com-
pletion; otherwise, the same interrupt may get acknowledged a second time.

INTA

612

Interrupt Interface of the 8088 and 8086 Microprocessors

When an interrupt request has been recognized by the 8088, it signals this fact to
external circuitry. It does this with pulses to logic 0 at its output. Actually, there are
two pulses produced at during the interrupt acknowledge bus cycle. The first pulse
signals external circuitry that the interrupt request has been acknowledged and to prepare
to send its type number to the 8088. The second pulse tells the external circuitry to put
the type number on the data bus.

Note that the lower eight lines of the address/data bus, AD0 through AD7, are also
part of the interrupt interface. During the second cycle in the interrupt acknowledge bus
cycle, external circuitry must put an 8-bit type number on bus lines AD0 through AD7.
The 8088 reads this number off the bus to identify which external device is requesting
service. It uses the type number to generate the address of the interrupt’s vector in the
pointer table and to read the new values of CS and IP into the corresponding internal
registers. CS and IP values from the interrupt vector table are transferred to the 8088 over
the data bus. Before loading CS and IP with new values, their old values and the values
of the internal flags are automatically pushed to the stack part of memory.

Figure 5(b) shows the interrupt interface of a minimum-mode 8086 microcomputer
system. Comparing this diagram to Fig. 5(a), we find that the only difference is that the
data path between the MPU and interrupt interface is now 16 bits in length.

Maximum-Mode Interrupt Interface

Figure 6(a) shows the maximum-mode interrupt interface of the 8088 microcom-
puter. The primary difference between this interrupt interface and that shown for the min-
imum mode in Fig. 5(a) is that the 8288 bus controller has been added. In the maximum-
mode system, it is the bus controller that produces the and ALE signals. Whenever
the 8088 outputs an interrupt-acknowledge bus status code, the 8288 generates pulses at
its output to signal external circuitry that the 8088 has acknowledged an interrupt
request. This interrupt-acknowledge bus status code, , is highlighted in Fig.
7.

A second change in Fig. 6(a) is that the 8088 provides a new signal for the interrupt
interface. This output, labeled , is called the bus priority lock signal. is
applied as an input to a bus arbiter. In response to this signal, the arbitration logic ensures
that no other device can take over control of the system bus until the interrupt-acknowledge
bus cycle is complete.

Figure 6(b) illustrates the interrupt interface of a maximum-mode 8086 microcom-
puter system. Again, the only difference between this circuit and that of the 8088 micro-
computer is that the complete 16-bit data bus is used to transfer data between the MPU
and interrupt interface circuits.

� 6 EXTERNAL HARDWARE-INTERRUPT SEQUENCE

In the preceding section we showed the interrupt interfaces for the external hardware
interrupts in minimum-mode and maximum-mode 8088 and 8086 microcomputer sys-
tems. We will continue by describing in detail the events that take place during the inter-
rupt request, interrupt-acknowledge bus cycle, and device service routine. The events that

LOCKLOCK

S2S1S0 � 000
INTA

INTA

INTA
INTA

613

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 6 (a) Maximum-mode 8088 system external hardware interrupt
interface. (b) Maximum-mode 8086 system external hardware interrupt interface.

Figure 7 Interrupt bus status code. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1979)

614

Interrupt Interface of the 8088 and 8086 Microprocessors

take place in the external hardware interrupt service sequence are identical for an 8088-
based or 8086-based microcomputer system. Here we will describe this sequence for the
8088 microcomputer.

The interrupt sequence begins when an external device requests service by activat-
ing one of the interrupt inputs, INT32 through INT255, of the 8088’s external interrupt
interface circuit in Fig. 5. For example, if the INT50 input is switched to the 1 logic level,
it signals the microprocessor that the device associated with priority level 50 wants to be
serviced.

The external interface circuitry evaluates the priority of this input. If there is no
other interrupt already in progress or if this interrupt is of higher priority than the one
presently active, the external circuitry issues a request for service to the MPU.

Let us assume that INT50 is the only active interrupt request input. In this case, the
external circuitry switches INTR to logic 1. This tells the 8088 that an interrupt is pend-
ing for service. To ensure that it is recognized, the external circuitry must maintain INTR
active until an interrupt-acknowledge pulse is issued by the 8088.

Figure 8 is a flow diagram that outlines the events taking place when the 8088
processes an interrupt. The 8088 tests for an active interrupt request during the last T state
of the current instruction. Note that it tests first for the occurrence of an internal interrupt,
then the occurrence of the nonmaskable interrupt, and finally checks the logic level of
INTR to determine if an external hardware interrupt has occurred.

If INTR is logic 1, a request for service is recognized. Before the 8088 initiates the
interrupt-acknowledge sequence, it checks the setting of IF. If IF is logic 0, external inter-
rupts are masked out and the request is ignored. In this case, the next sequential instruc-
tion is executed. On the other hand, if IF is at logic 1, external hardware interrupts are
enabled and the service routine is initiated.

Let us assume that IF is set to permit interrupts to occur when INTR is tested as 1.
The 8088 responds by initiating the interrupt-acknowledge bus cycles. This bus cycle
sequence is illustrated in Fig. 9. During T1 of the first bus cycle, we see that a pulse is
output on ALE along with putting the address/data bus in the high-Z state. The address/
data bus stays at high-Z for the rest of the bus cycle. During periods T2 and T3, is
switched to logic 0. This signals external circuitry that the request for service is granted.
In response to this pulse, the logic 1 at INTR can be removed.

The signal identified as is produced only in maximum-mode systems.
Notice that is switched to logic 0 during T2 of the first INTA bus cycle and is
maintained at this level until T2 of the second INTA bus cycle. During this time, the 8088
is prevented from accepting any HOLD request. The output is used in external
logic to lock other devices off the system bus, thereby ensuring that the interrupt
acknowledge sequence continues through to completion without interruption.

During the second interrupt-acknowledge bus cycle, a similar signal sequence
occurs. However, this interrupt-acknowledge pulse tells the external circuitry to put the
type number of the active interrupt on the data bus. External circuitry gates one of the
interrupt codes through , identified as vector type in Fig. 9, onto
data bus lines AD0 through AD7. This code must be valid during periods T3 and T4 of the
second interrupt-acknowledge bus cycle.

The 8088 sets up its bus control signals for an input data transfer to read the type
number off the data bus. and are set to logic 0 to enable the external data busDENDT/R

255 � FF1632 � 2016

LOCK

LOCK
LOCK

INTA

615

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 8 Interrupt processing sequence of the 8088 and 8086 micro-
processors. (Reprinted by permission of Intel Corporation. Copyright/Intel
Corp. 1979)

616

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 9 Interrupt-acknowledge bus cycle. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1979)

circuitry and set it for input of data. Also, is set to 1, indicating that data are to be
input from the interrupt interface. During this input operation, the byte interrupt code is
read off the data bus. For the case of INT50, the code would be . This
completes the interrupt-request /acknowledge handshake part of the interrupt sequence.

Looking at Fig. 8, we see that the 8088 next saves the contents of the flag register
by pushing it to the stack. This requires two write cycles and two bytes of stack. Then it
clears IF. This disables external hardware interrupts from any other peripheral requesting
service. Actually, the TF flag is also cleared. This disables the single-step mode of oper-
ation if it happens to be active. Now the 8088 automatically pushes the contents of CS
and IP onto the stack. This requires four write bus cycles to take place over the data bus
and uses four bytes of memory on the stack. The current value of the stack pointer is
decremented by two as each of these values is placed onto the top of the stack.

Now the 8088 knows the type number associated with the external device that is
requesting service. It must next call the service routine by fetching the interrupt vector
that defines its starting point in the memory. The type number is internally multiplied by
four, and this result is used as the address of the first word of the interrupt vector in the
pointer table. Two-word read operations (four bus cycles) are performed to read the two-
word vector from the memory. The first word, the lower-addressed word, is loaded into
IP. The second, higher-addressed word is loaded into CS. For instance, the vector for
INT50 would be read from addresses 000C816 and 000CA16.

The service routine is now initiated. That is, execution resumes with the first
instruction of the service routine. It is located at the address generated from the new value
in CS and IP. Figure 10 shows the structure of a typical interrupt-service routine. The ser-
vice routine includes PUSH instructions to save the contents of those internal registers
that it will use. In this way, their original contents are saved in the stack during execution
of the routine.

At the end of the service routine, the original program environment must be
restored. This is done by first popping the contents of the appropriate registers from the
stack by executing POP instructions. An IRET instruction must be executed as the last

001100102 � 3216

IO/M

617

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 10 Structure of an interrupt-
service routine.

instruction of the service routine. This instruction reenables the interrupt interface and
causes the old contents of the flags, CS, and IP, to be popped from the stack back into the
internal registers of the 8088. The original program environment has now been completely
restored and execution resumes at the point in the program where it was interrupted.

Earlier we pointed out that the events that take place during the external hardware
interrupt service sequence of the 8086 microcomputer are identical to those of the 8088
microcomputer. However, because the 8086 has a 16-bit data bus, slight changes are
found in the external bus cycles that are produced as part of the program context switch
sequence. For example, as the interrupt’s program environment is initiated, three-word
write cycles, instead of 6-byte write cycles, are required to save the old values of the
flags, instruction pointer register, and code-segment register on the stack. Moreover, when
the new values of CS and IP are fetched from the address pointer table in memory, just
two bus cycles take place. Because five instead of ten bus cycles take place, the new pro-
gram environment is entered faster by the 8086 microcomputer.

The same is true when the original program environment is restored at the comple-
tion of the service routine. Remember that this is done by popping the old flags, old CS,
and old IP from the stack back into the MPU with an IRET instruction. This operation is
performed with three-word read cycles by the 8086 and 6-byte read cycles by the 8088.

EXAMPLE 2

The circuit in Fig. 11(a) is used to count interrupt requests. The interrupting device
interrupts the microprocessor each time the interrupt-request input signal transitions
from 0 to 1. The corresponding interrupt type number generated by the 74LS244 is 60H.

a. Describe the operation of the hardware for an active request at the interrupt-request
input.

b. What is the value of the type number sent to the microprocessor?

c. Assume that the original values in the segment registers are
and ; the main program is located at offsets of 200H from the beginning
of the original code segment; the count is held at an offset of 100H from the beginning
of the current data segment; the interrupt-service routine starts at offset 1000H from
the beginning of another code segment that begins at address 2000H:0000H; and the
stack starts at an offset of 500H from the beginning of the current stack segment. Make
a map showing the organization of the memory address space.

(SS) � 4000H
(CS) � (DS) � 1000H

618

Interrupt Interface of the 8088 and 8086 Microprocessors

AD7 − AD0

INTR

INTAMN/MX

8088

+5V

74LS74

74LS244

Q

CLR D

Interrupt Request

Interrupt Type Numbers
= 01100000,
AD7 � AD0 � 2y4 2y3 2y2 2y1
1y4 1y3 1y2 1y1

Interrupting Device

+5V

+5V

CLK

2G

1G

8
2Y4 − 2Y1
1Y4 − 1Y1

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

(a)

Figure 11 (a) Circuit for Example 2. (b) Memory organization. (c) Flowcharts for the
main program and the interrupt-service routines. (d) Main program and interrupt-service
routines.

d. Write the main program and the service routine for the circuit so that the positive
transitions at INTR are counted as a decimal number.

Solution

a. Analysis of the circuit in Fig. 11(a) shows that a positive transition at the CLK input
of the flip-flop (interrupt request) makes the Q output of the flip-flop logic 1 and
presents a positive level signal at the INTR input of the 8088. When the 8088 rec-
ognizes this as an interrupt request, it responds by generating the signal. The
logic 0 output on this line clears the flip-flop and enables the 74LS244 buffer to pre-
sent the type number to the 8088. This number is read off the data bus by the 8088
and is used to initiate the interrupt-service routine.

b. From the inputs and outputs of the 74LS244, we see that the type number is

c. The memory organization in Fig. 11(b) shows where the various pieces of program
and data are located. Here we see that the type 60H vector is located in the inter-
rupt vector table at address . Note that the byte-wide memory
location used for Count is at address 1000H:0100H. This part of the memory
address space is identified as the program data area in the memory map. The main
part of the program, entered after reset, starts at address 2000H:1000H. On the other
hand, the service routine is located at address 2000H:1000H in a separate code seg-
ment. For this reason, the vector held at 180H of the interrupt-vector table is

60H � 4 � 180H

AD7 . . . AD1AD0 � 60H

AD7 . . . AD1AD0 � 2Y42Y32Y22Y1 1Y41Y31Y21Y1 � 011000002

INTA

619

Interrupt Interface of the 8088 and 8086 Microprocessors

00180H

00000H

1000H
2000H00182H

1000H: 0000H

1000H: 0100H

1000H: 0200H

Type 60H
vector

Count

Program
data
area

Main program

Stack

Interrupt
service
routine

Interrupt
vector
table

RESET

2000H: 1000H

4000H: 0000H

4000H: 0500H TOS

INTR

(b)

Figure 11 (continued)

620

Interrupt Interface of the 8088 and 8086 Microprocessors

Set up data
segment, stack segment,
and stack pointer

Set up the
interrupt
vector

Enable
interrupts

Wait for
interrupt

Main Program

Save
processor
status

Increment the
count

Restore
processor
status

Return

SRVRTN

(c)

Figure 11 (continued)

;Main Program, START = 1000H:0200H

START: MOV AX,1000H ;Setup data segment at 1000H:0000H
MOV DS,AX
MOV AX,4000H ;Setup stack segment at 4000H:0000H
MOV SS,AX
MOV SP,0500H ;TOS is at 4000H;0500H
MOV AX,0000H ;Segment for interrupt vector table
MOV ES,AX
MOV AX,0000H ;Service routine offset
MOV [ES:180H],AX
MOV AX,2000H ;Service routine segment
MOV [ES:182H],AX
STI ;Enable interrupts

HERE: JMP HERE ;Wait for interrupt

;Interrupt Service Routine, SRVRTN = 2000H:1000H

SRVRTN: PUSH AX ;Save register to be used
MOV AL,[0100H] ;Get the count
INC AL ;Increment the count
DAA ;Decimal asdjust the count
MOV [0100H],AL ;Save the updated count
POP AX ;Restore the register used
IRET ;Return from the interrupt

(d)

621

Interrupt Interface of the 8088 and 8086 Microprocessors

and . Finally, the stack begins at 4000H:0000H with
the current top of the stack located at 4000H:0500H.

d. The flowcharts in Fig. 11(c) show how the main program and interrupt-service rou-
tines are to function. The corresponding software is given in Fig. 11(d).

� 7 82C59A PROGRAMMABLE
INTERRUPT CONTROLLER

The 82C59A is an LSI peripheral IC that is designed to simplify the implementation of
the interrupt interface in the 8088- and 8086-based microcomputer systems. This device
is known as a programmable interrupt controller or PIC. It is manufactured using the
CMOS technology.

The operation of the PIC is programmable under software control, and it can be
configured for a wide variety of applications. Some of its programmable features are the
ability to accept level-sensitive or edge-triggered inputs, the ability to be easily cascaded
to expand from 8 to 64 interrupt inputs, and the ability to be configured to implement a
wide variety of priority schemes.

Block Diagram of the 82C59A

Let us begin our study of the PIC with its block diagram in Fig. 12(a). We just men-
tioned that the 82C59A is treated as a peripheral in the microcomputer. Therefore, its
operation must be initialized by the microprocessor. The host processor interface is pro-
vided for this purpose. This interface consists of eight data bus lines, D0 through D7, and
control signals read (), write (), and chip select (). The data bus is the path over
which data are transferred between the MPU and 82C59A. These data can be command
words, status information, or interrupt-type numbers. Control input must be at logic 0
to enable the host processor interface. Moreover, and signal the 82C59A whether
data are to be written into or read from its internal registers.

Two other signals, INT and , are identified as part of the host processor inter-
face. Together, these two signals provide the handshake mechanism by which the 82C59A
can signal the MPU of a request for service and receive an acknowledgment that the
request has been accepted. INT is the interrupt request output of the 82C59A. It is applied
directly to the INTR input of the 8088 or 8086. Logic 1 is produced at this output when-
ever the interrupt controller receives a valid request from an interrupting device.

On the other hand, is an input of the 82C59A. It is connected to the
output of the 8088 or 8086. The MPU pulses this input of the 82C59A to logic 0 twice
during the interrupt-acknowledge bus cycle, thereby signaling the 82C59A that the inter-
rupt request has been acknowledged and that it should output the type number of the
highest-priority active interrupt on data bus lines D0 through D7 so that it can be read by
the MPU. The last signal line involved in the host processor interface is the A0 input. An
address line of the microprocessor, such as A0 , normally supplies this input. The logic
level at this input is involved in the selection of the internal register that is accessed dur-
ing read and write operations.

INTAINTA

INTA

RDWR
CS

CSWRRD

(IP) � 1000H(CS) � 2000H

622

Interrupt Interface of the 8088 and 8086 Microprocessors

At the other side of the block in Fig. 12(a), we find the eight interrupt inputs of the
PIC, labeled IR0 through IR7. It is through these inputs that external devices issue a request
for service. One of the software options of the 82C59A permits these inputs to be configured
for level-sensitive or edge-triggered operation. When configured for level-sensitive opera-
tion, logic 1 is the active level of the IR inputs. In this case, the request for service must be
removed before the service routine runs to completion. Otherwise, the interrupt will be
requested a second time and the service routine initiated again. Moreover, if the input returns
to logic 0 before it is acknowledged by the MPU, the request for service will be missed.

Some external devices produce a short-duration pulse instead of a fixed logic level
for use as an interrupt-request signal. If the MPU is busy servicing a higher-priority inter-
rupt when the pulse is produced, the request for service could be completely missed if the
82C59A is in level-sensitive mode. To overcome this problem, the edge-triggered mode
of operation is used.

Inputs of the 82C59A that are set up for edge-triggered operation become active on
the transition from the inactive 0 logic level to the active 1 logic level. This represents
what is known as a positive edge-triggered input. The fact that this transition has occurred
at an IR line is latched internal to the 82C59A. If the IR input remains at the 1 logic level
even after the service routine is completed, the interrupt is not reinitiated. Instead, it is
locked out. To be recognized a second time, the input must first return to the 0 logic level
and then be switched back to 1. The advantage of edge-triggered operation is that if the

Figure 12 (a) Block diagram of the 82C59A. (b) Pin layout. (Reprinted by permission
of Intel Corporation. Copyright/Intel Corp. 1979)

623

Interrupt Interface of the 8088 and 8086 Microprocessors

request at the IR input is removed before the MPU acknowledges service of the interrupt,
its request is kept latched internal to the 82C59A until it can be serviced.

The last group of signals on the PIC implements what is known as the cascade inter-
face. As shown in Fig. 12(a), it includes bidirectional cascading bus lines CAS0 through
CAS2 and a multifunction control line labeled . The primary use of these signals is
in cascaded systems where a number of 82C59A ICs are interconnected in a master/slave
configuration to expand the number of IR inputs from 8 to as high as 64. One of these
82C59A devices is configured as the master and all others are set up as slaves.

In a cascaded system, the CAS lines of all 82C59As are connected together to pro-
vide a private bus between the master and slave devices. In response to the first pulse
during the interrupt-acknowledge bus cycle, the master PIC outputs a 3-bit code on the CAS
lines. This code identifies the highest-priority slave that is to be serviced. It is this device
that is to be acknowledged for service. All slaves read this code off the private cascading
bus and compare it to their internal ID code. A match condition at one slave tells the PIC
that it has the highest-priority input. In response, it must put the type number of its highest-
priority active input on the data bus during the second interrupt-acknowledge bus cycle.

When the PIC is configured through software for the cascaded mode, the
line is used as an input. This corresponds to its (slave program) function. The logic
level applied at tells the device whether it is to operate as a master or slave. Logic 1
at this input designates master mode, and logic 0 designates slave mode.

If the PIC is configured for single mode instead of cascade mode, takes on
another function. In this case, it becomes an enable output that can be used to control the
direction of data transfer through the bus transceiver that buffers the data bus.

Figure 12(b) presents a pin layout of the 82C59A.

Internal Architecture of the 82C59A

Now that we have introduced the input /output signals of the 82C59A, let us look at
its internal architecture. Figure 13 is a block diagram of the PIC’s internal circuitry. Here
we find eight functional parts: the data bus buffer, read/write logic, control logic, in-ser-
vice register, interrupt-request register, priority resolver, interrupt-mask register, and
cascade buffer/comparator.

We will begin with the function of the data bus buffer and read/write logic sections.
It is these parts of the 82C59A that let the MPU have access to the internal registers.
Moreover, they provide the path over which interrupt-type numbers are passed to the
microprocessor. The data bus buffer is an 8-bit bidirectional three-state buffer that inter-
faces the internal circuitry of the 82C59A to the data bus of the MPU. The direction, tim-
ing, and source or destination for data transfers through the buffer are under control of the
outputs of the read/write logic block. These outputs are generated in response to control
inputs , , A0, and .

The interrupt-request register, in-service register, priority resolver, and interrupt-
mask register are the key internal blocks of the 82C59A. The interrupt-mask register (IMR)
can be used to enable or mask out individually the interrupt request inputs. It contains eight
bits, identified by M0 through M7. These bits correspond to interrupt-request inputs IR0

through IR7, respectively. Logic 0 in a mask register bit position enables the corresponding

CSWRRD

SP/EN

SP
SP

SP/EN

INTA

SP/EN

624

Interrupt Interface of the 8088 and 8086 Microprocessors

interrupt input and logic 1 masks it out. The register can be read from or written into
through software control.

On the other hand, the interrupt-request register (IRR) stores the current status of
the interrupt-request inputs. It also contains one bit position for each of the IR inputs. The
values in these bit positions reflect whether the interrupt inputs are active or inactive.

The priority resolver determines which of the active interrupt inputs has the highest
priority. This section can be configured to work using a number of different priority
schemes through software. Following the selected scheme, it identifies which of the active
interrupts has the highest priority and signals the control logic that an interrupt is active.
In response, the control logic causes the INT signal to be issued to the 8088 or 8086
microprocessor.

The in-service register differs in that it stores the interrupt level that is presently
being serviced. During the first pulse of an interrupt-acknowledge bus cycle, the
level of the highest active interrupt is strobed into ISR. Loading of ISR occurs in response
to output signals of the control logic section. This register cannot be written into by the
microprocessor; however, its contents may be read as status.

The cascade buffer/comparator section provides the interface between master and
slave 82C59As. As we mentioned earlier, this interface permits easy expansion of the

INTA

Figure 13 Internal architecture of the 82C59A. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1979)

625

Interrupt Interface of the 8088 and 8086 Microprocessors

interrupt interface using a master/slave configuration. Each slave has an ID code that is
stored in this section.

Programming the 82C59A

The way in which the 82C59A operates is determined by how the device is pro-
grammed. Two types of command words are provided for this purpose: the initialization
command words (ICW) and the operational command words (OCW). ICW commands are
used to load the internal control registers of the 82C59A to define the basic configuration
or mode in which it is used. There are four such command words, identified as ICW1,
ICW2, ICW3, and ICW4. On the other hand, the three OCW commands, OCW1, OCW2,
and OCW3, permit the 8088 or 8086 microprocessor to initiate variations in the basic
operating modes defined by the ICW commands.

Depending on whether the 82C59A is I/O-mapped or memory-mapped, the MPU
issues commands to the 82C59A by initiating output or write cycles. Executing either the
OUT instruction or MOV instruction, respectively, can do this. The address put on the
system bus during the output bus cycle must be decoded with external circuitry to chip-
select the peripheral. When an address assigned to the 82C59A is on the bus, the output
of the decoder must produce logic 0 at the input. This signal enables the read/write
logic within the PIC, and data applied at D0 through D7 are written into the command reg-
ister within the control logic section synchronously with a write strobe at .

The interrupt-request input (INTR) of the 8088 or 8086 must be disabled whenever
commands are being issued to the 82C59A. Clearing the interrupt-enable flag by exe-
cuting the CLI instruction can do this. After completion of the command sequence, the
interrupt input must be reenabled. To do this, the microprocessor must execute the STI
instruction.

The flow diagram in Fig. 14 shows the sequence of events that must take place to
initialize the 82C59A with ICW commands. The cycle begins with the MPU outputting
initialization command word ICW1 to the address of the 82C59A.

The moment that ICW1 is written into the control logic section of the 82C59A, cer-
tain internal setup conditions automatically occur. First, the internal sequence logic is set
up so that the 82C59A will accept the remaining ICWs as designated by ICW1. It turns
out that if the least significant bit of ICW1 is logic 1, command word ICW4 is required in
the initialization sequence. Moreover, if the next least significant bit of ICW1 is logic 0,
the command word ICW3 is also required.

In addition to this, writing ICW1 to the 82C59A clears ISR and IMR. Also, three
operation command word bits, special mask mode (SMM) in OCW3, interrupt-request
register (IRR) in OCW3, and end of interrupt (EOI) in OCW2, are cleared to logic 0. Fur-
thermore, the fully nested masked mode of interrupt operation is entered with an initial
priority assignment so that IR0 is the highest-priority input and IR7 the lowest-priority
input. Finally, the edge-sensitive latches associated with the IR inputs are all cleared.

If the LSB of ICW1 was initialized to logic 0, one additional event occurs: all bits
of the control register associated with ICW4 are cleared.

Figure 14 shows that once the MPU starts initialization of the 82C59A by writing
ICW1 into the control register, it must continue the sequence by writing ICW2 and then,
optionally, ICW3 and ICW4 in that order. Note that it is not possible to modify just one

WR

CS

626

Interrupt Interface of the 8088 and 8086 Microprocessors

of the initialization command registers. Instead, all words that are required to define the
device’s operating mode must be written into the 82C59A.

We found that all four words need not always be used to initialize the 82C59A.
However, for its use in an 8088 or 8086 microcomputer system, words ICW1, ICW2, and
ICW4 are always required. ICW3 is optional and is needed only if the 82C59A is to func-
tion in the cascade mode.

Initialization Command Words

Now that we have introduced the initialization sequence of the 82C59A, let us look
more closely at the functions controlled by each of the initialization command words. We
will begin with ICW1. Its format and bit functions are identified in Fig. 15(a). Note that
address bit A0 is included as a ninth bit and it must be logic 0. This corresponds to an
even address for writing ICW1.

Here we find that the logic level of the LSB D0 of the initialization word indicates to
the 82C59A whether or not ICW4 will be included in the programming sequence. As we
mentioned earlier, logic 1 at D0 (IC4) specifies that it is needed. The next bit, D1 (SNGL),

Figure 14 Initialization sequence of
the 82C59A. (Reprinted by permission
of Intel Corporation. Copyright/Intel
Corp. 1979)

627

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 15 (a) ICW1 format. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp.
1979) (b) ICW2 format. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp.
1979) (c) ICW3 format. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp. 1979)
(d) ICW4 format. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp. 1979)

628

Interrupt Interface of the 8088 and 8086 Microprocessors

selects between the single device and multidevice cascaded mode of operation. When D1 is
set to logic 0, the internal circuitry of the 82C59A is configured for cascaded mode. Select-
ing this state also sets up the initialization sequence such that ICW3 must be issued as part
of the initialization cycle. Bit D2 has functions specified for it in Fig. 15(a); however, it can
be ignored when the 82C59A is being connected to the 8088/8086 and is a don’t-care state.
D3, labeled LTIM, defines whether the eight IR inputs operate in the level-sensitive or edge-
triggered mode. Logic 1 in D3 selects level-triggered operation, and logic 0 selects edge-
triggered operation. Finally, bit D4 is fixed at the 1 logic level and the three MSBs, D5

through D7, are not required in 8088- or 8086-based systems.

EXAMPLE 3

What value should be written into ICW1 in order to configure the 82C59A so that ICW4

is needed in the initialization sequence, the system is going to use multiple 82C59As, and
its inputs are to be level sensitive? Assume that all unused bits are to be logic 0.

Solution

Since ICW4 is to be initialized, D0 must be logic 1.

For cascaded mode of operation, D1 must be 0.

And for level-sensitive inputs, D3 must be 1.

Bits D2 and D5 through D7 are don’t-care states and are all made logic 0.

Moreover, D4 must be fixed at the 1 logic level.

This gives the complete command word

The second initialization word, ICW2, has a single function in the 8088 or 8086
microcomputer. As Fig. 15(b) shows, its five most significant bits, D7 through D3, define
a fixed binary code, T7 through T3, which is used as the most significant bits of its type

D7D6D5D4D3D2D1D0 � 000110012 � 1916

D4 � 1

D2 � D5 � D6 � D7 � 0

D3 � 1

D1 � 0

D0 � 1

629

Interrupt Interface of the 8088 and 8086 Microprocessors

number. Whenever the 82C59A puts the 3-bit interrupt type number corresponding to its
active input onto the bus, it is automatically combined with the value T7 through T3 to
form an 8-bit type number. The three least significant bits of ICW2 are not used. Note that
logic 1 must be applied to the A0 input when this command word is put on the bus.

EXAMPLE 4

What should be programmed into register ICW2 if the type numbers output on the bus by
the device are to range from F016 through F716?

Solution

To set the 82C59A up so that type numbers are in the range of F016 through F716, its
device code bits must be

The lower three bits are don’t-care states and all can be 0s. This gives the command word

The information of initialization word ICW3 is required by only those 82C59As con-
figured for the cascaded mode of operation. Figure 15(c) shows its bits. Note that ICW3 is
used for different functions, depending on whether the device is a master or slave. If it is a
master, bits D0 through D7 of the word are labeled S0 through S7. These bits correspond to
IR inputs IR0 through IR7, respectively. They identify whether or not the corresponding IR
input is supplied by either the INT output of a slave or directly by an external device. Logic
1 loaded in an S position indicates that a slave supplies the corresponding IR input.

On the other hand, ICW3 for a slave is used to load the device with a 3-bit identi-
fication code ID2ID1ID0. This number must correspond to the IR input of the master to
which the slave’s INT output is wired. The ID code is required within the slave so that
it can be compared to the cascading code output by the master on CAS0 through CAS2.

EXAMPLE 5

Assume that a master PIC is to be configured so that its IR0 through IR3 inputs are to
accept inputs directly from external devices, but IR4 through IR7 are to be supplied by
the INT outputs of slaves. What code should be used for the initialization command
word ICW3?

Solution

For IR0 through IR3 to be configured to allow direct inputs from external devices, bits D0

through D3 of ICW3 must be logic 0:

D3D2D1D0 � 00002

D7D6D5D4D3D2D1D0 � 111100002 � F016

D7D6D5D4D3 � 111102

630

Interrupt Interface of the 8088 and 8086 Microprocessors

The other IR inputs of the master are to be supplied by INT outputs of slaves. Therefore,
their control bits must be all 1:

This gives the complete command word

The fourth control word, ICW4, shown in Fig. 15(d), is used to configure the
device for use with the 8088 or 8086 and selects various features that are available in its
operation. The LSB D0, called microprocessor mode (µPM), must be set to logic 1
whenever the device is connected to the 8088. The next bit, D1, is labeled AEOI for
automatic end of interrupt. If this mode is enabled by writing logic 1 into the bit loca-
tion, the EOI (end-of-interrupt) command does not have to be issued as part of the ser-
vice routine.

Of the next two bits in ICW4, BUF is used to specify whether or not the 82C59A is to
be used in a system where the data bus is buffered with a bidirectional bus transceiver.
When buffered mode is selected, the line is configured as . As indicated earlier,

is a control output that can be used to control the direction of data transfer through the
bus transceiver. It switches to logic 0 whenever data are transferred from the 82C59A to the
MPU.

If buffered mode is not selected, the line is configured to work as the master/
slave mode select input. In this case, logic 1 at the input selects master mode opera-
tion and logic 0 selects slave mode.

Assume that the buffered mode was selected; then the input is no longer avail-
able to select between the master and slave modes of operation. Instead, the MS bit of
ICW4 defines whether the 82C59A is a master or slave device.

Bit D4 is used to enable or disable another operational option of the 82C59A. This
option is known as the special fully nested mode. This function is used only in conjunc-
tion with the cascaded mode. Moreover, it is enabled only for the master 82C59A, not for
the slaves. Setting the SFNM bit to logic 1 does this.

The 82C59A is put into the fully nested mode of operation as command word ICW1

is loaded. When an interrupt is initiated in a cascaded system that is configured in this
way, the occurrence of another interrupt at the slave corresponding to the original inter-
rupt is masked out even if it is of higher priority. This is because the bit in ISR of the mas-
ter 82C59A that corresponds to the slave is already set; therefore, the master 82C59A
ignores all interrupts of equal or lower priority.

This problem is overcome by enabling the special fully nested mode of operation at
the master. In this mode, the master will respond to those interrupts that are at lower or
higher priority than the active level.

The last three bits of ICW4, D5 through D7, must be logic 0.

Operational Command Words

Once the appropriate ICW commands have been issued to the 82C59A, it is ready to
operate in the fully nested mode. Three operational command words are also provided for
controlling the operation of the 82C59A. These commands permit further modifications to be

SP

SP
SP/EN

EN
ENSP/EN

D7D6D5D4D3D2D1D0 � 111100002 � F016

D7D6D5D4 � 11112

631

Interrupt Interface of the 8088 and 8086 Microprocessors

made to the operation of the interrupt interface after it has been initialized. Unlike the initial-
ization sequence, which requires that the ICWs be output in a special sequence after power-
up, the OCWs can be issued under program control whenever needed and in any order.

The first operational command word, OCW1, is used to access the contents of the
interrupt-mask register (IMR). A read operation can be performed to the register to deter-
mine the present setting of the mask. Moreover, write operations can be performed to set
or reset its bits. This permits selective masking of the interrupt inputs. Note in Fig. 16(a)
that bits D0 through D7 of command word OCW1 are identified as mask bits M0 through
M7, respectively. In hardware, these bits correspond to interrupt inputs IR0 through IR7,
respectively. Setting a bit to logic 1 masks out the associated interrupt input. On the other
hand, clearing it to logic 0 enables the interrupt input.

For instance, writing F016 = 111100002 into the register causes inputs IR0 through
IR3 to be unmasked and IR4 through IR7 to be masked. Input A0 must be logic 1 when-
ever the OCW1 command is issued. In other words, the MPU address to access OCW1 is
an odd address.

EXAMPLE 6

What should be the OCW1 code if interrupt inputs IR0 through IR3 are to be masked and
IR4 through IR7 are to be unmasked?

Solution

For IR0 through IR3 to be masked, their corresponding bits in the mask register must be
made logic 1:

On the other hand, for IR4 through IR7 to be unmasked, D4 through D7 must be logic 0:

Therefore, the complete word for OCW1 is

The second operational command word, OCW2, selects the appropriate priority
scheme and assigns an IR level for those schemes that require a specific interrupt level.
The format of OCW2 is given in Fig. 16(b). Here we see that the three LSBs define the
interrupt level. For example, using L2L1L0 = 0002 in these locations specifies interrupt
level 0, which corresponds to input IR0.

The other three active bits of the word D7, D6, and D5 are called rotation (R),
specific level (SL), and end of interrupt (EOI), respectively. They are used to select a pri-
ority scheme according to the table in Fig. 16(b). For instance, if these bits are all logic
1, the priority scheme known as rotate on specific EOI command is enabled. Since this
scheme requires a specific interrupt, its value must be included in L2L1L0. Input A0 must
be logic 0 whenever this command is issued to the 82C59A.

D7D6D5D4D3D2D1D0 � 000011112 � 0F16

D7D6D5D4 � 00002

D3D2D1D0 � 11112

632

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 16 (a) OCW1 format. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1979) (b) OCW2 format. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1979) (c) OCW3 format. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1979)

633

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 17 Poll word format.
(Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1979)

EXAMPLE 7

What OCW2 must be issued to the 82C59A if the priority scheme rotate on nonspecific
EOI command is to be selected?

Solution

To enable the rotate on nonspecific EOI command priority scheme, bits D7 through D5

must be set to 101. Since a specific level does not have to be specified, the rest of the bits
in the command word can be 0. This gives OCW2 as

The last control word, OCW3, which is shown in Fig. 16(c), permits reading of the
contents of the ISR or IRR registers through software, issue of the poll command, and
enable/disable of the special mask mode. Bit D1, called read register (RR), is set to 1 to
initiate reading of either the in-service register (ISR) or interrupt-request register (IRR). At
the same time, bit D0, labeled RIS, selects between ISR and IRR. Logic 0 in RIS selects
IRR and logic 1 selects ISR. In response to this command, the 82C59A makes the contents
of the selected register available on the data bus so that they can be read by the MPU.

If the next bit, D2, in OCW3 is logic 1, a poll command is issued to the 82C59A.
The result of issuing a poll command is that the next pulse to the 82C59A is inter-
preted as an interrupt acknowledge. In turn, the 82C59A causes the ISR register to be
loaded with the value of the highest-priority active interrupt. After this, a poll word is
automatically put on the data bus. The MPU must read it off the bus.

Figure 17 illustrates the format of the poll word. Looking at this word, we see that
the MSB is labeled I for interrupt. The logic level of this bit indicates to the MPU whether
or not an interrupt input was active. Logic 1 means that an interrupt is active. The three
LSBs, W2, W1, and W0, identify the priority level of the highest-priority active interrupt
input. This poll word can be decoded through software, and when an interrupt is found to
be active, a branch is initiated to the starting point of its service routine. The poll com-
mand represents a software method of identifying whether or not an interrupt has
occurred; therefore, the INTR input of the 8088 or 8086 should be disabled.

D5 and D6 are the remaining bits of OCW3 for which functions are defined. They
are used to enable or disable the special mask mode. ESMM (enable special mask mode)
must be logic 1 to permit changing of the status of the special mask mode with the SMM
(special mask mode) bit. Logic 1 at SMM enables the special mask mode of operation. If
the 82C59A is initially configured for the fully nested mode of operation, only interrupts
of higher priority are allowed to interrupt an active service routine. However, by enabling

RD

D7D6D5D4D3D2D1D0 � 101000002 � A016

634

Interrupt Interface of the 8088 and 8086 Microprocessors

the special mask mode, interrupts of higher or lower priority are enabled, but those of
equal priority remain masked out.

EXAMPLE 8

Write a program that will initialize an 82C59A with the initialization command words
ICW1, ICW2, and ICW3 derived in Examples 3, 4, and 5, respectively and ICW4 is equal
to 1F16. Assume that the 82C59A resides at address A00016 in the memory address space.

Solution

Since the 82C59A resides in the memory address space, we can use a series of move
instructions to write the initialization command words into its registers. Note that the
memory address for an ICW is A00016 if , and it is A00116 if . However,
before doing this, we must first disable interrupts. This is done with the instruction

CLI ;Disable interrupts

Next we will create a data segment starting at address 0000016:

MOV AX, 0 ;Create a data segment at 00000H
MOV DS, AX

Now we are ready to write the command words to the 82C59A:

MOV AL, 19H ;Load ICW1
MOV [0A000H], AL ;Write ICW1 to 82C59A
MOV AL, 0F0H ;Load ICW2
MOV [0A001H], AL ;Write ICW2 to 82C59A
MOV AL, 0F0H ;Load ICW3
MOV [0A001H], AL ;Write ICW3 to 82C59A
MOV AL, 1FH ;Load ICW4
MOV [0A001H], AL ;Write ICW4 to 82C59A

Initialization is now complete and the interrupts can be enabled with the interrupt instruction

STI ;Enable interrupts

� 8 INTERRUPT INTERFACE CIRCUITS
USING THE 82C59A

Now that we have introduced the 82C59A programmable interrupt controller, let us look
at how it is used to implement the interrupt interface in 8088- and 8086-based micro-
computer systems.

Figure 18(a) includes an interrupt interface circuit for a minimum-mode micro-
computer system that is made with the 82C59A. Let us begin by looking at how the

A0 � 1A0 � 0

635

In
terru

p
t In

terface o
f th

e 8
0

8
8

 an
d

 8
0

8
6

 M
icro

p
ro

cesso
rs

(a)

RES

CLK

READY

RESET

Control
signal

generation
logic

8088
CPU

8284A
Clock

generator

RDY

INTR

GND

Vcc

Vcc

Vcc

RD

WR

MN/MX

INTA

DEN

ALE

AD
0
−AD

7

A
8
−A

19

IOR

IOW

MEMR

MEMW

DT/R

IO/M

CLK
GND OE

74F373
Address

latch

DIR

G Data bus
transceiver

74F245

82C59A
interrupt
control

Address

DATA

ADDR/DATA

INTA

EN RAM PROM Chip select logic

A
0

INT

IRO-7

WR

WE OD OE

RD

CS

CSs CSs

Figure 18 (a) Minimum-mode interrupt interface for the 8088 microcomputer using the
82C59A. (Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1979) (b)
Minimum-mode interrupt interface for the 8086 microcomputer using cascaded 82C59As.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1979) (c) Master/slave
connection. (Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1979)

636

In
terru

p
t In

terface o
f th

e 8
0

8
8

 an
d

 8
0

8
6

 M
icro

p
ro

cesso
rs

(b)

MN/MX
CLK

CAS bus

8

8

Data bus

Address bus

INTA

INTR

INT INT
INT

ALE

DEN

A
dd

re
ss

/D
at

a

DT/R

OE

IR0−IR7IR0−IR7

6
IR2−IR7

Address
latch

74F373

82C59A
Master

82C59A
Slave

82C59A
Slave

IR0
IR1

8086

8284

Vcc

G DIR

Data
bus

transceiver
74F245

Figure 18 (continued)

637

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 18 (continued)

82C59A interfaces to the MPU. Note that data bus lines D0 through D7 of the 82C59A
are connected directly to the 8088’s multiplexed address /data bus. It is over these lines
that the 8088 initializes the internal registers of the 82C59A, reads the contents of these
registers, and reads the type number of the active interrupt input during the interrupt-
acknowledge bus cycle. In this circuit, the registers of the 82C59A are assigned to
unique I/O addresses.

During input or output bus cycles to one of these addresses, bits of the demulti-
plexed address are decoded to generate the for the 82C59A. When this input is at its
active, logic 0, level, the 82C59A’s microprocessor interface is enabled for operation. The
logic level of address bit A0 selects a specific register within the PIC.

The control signal generation logic section produces the signals that identify whether
an input or output data transfer is taking place. Note that the 8088’s , , and
control signals are decoded by this circuit to generate four control signals , ,

, and . Control signals and are supplied to the and
inputs of the 82C59A, respectively. Logic 0 at one of these outputs tells the 82C59A
whether an input or output bus operation is taking place.

Next we will trace the sequence of events that takes place as an external device
requests service through the interrupt interface circuit. The external interrupt request
inputs are identified as IR0 through IR7 in the circuit of Fig. 18(a). Whenever an interrupt
input becomes active, and either no other interrupt is active or the priority level of the new
interrupt is higher than that of the already active interrupt, the 82C59A switches its INT
output to logic 1. This output is returned to the INTR input of the 8088. In this way, it
signals the MPU that an external device needs to be serviced.

As long as the interrupt flag within the 8088 is set to 1, the interrupt interface is
enabled. Assuming that IF is 1 when an IR input becomes active, the interrupt request is

WRRDIOWIORMEMWMEMR
IOWIOR
IO/MWRRD

CS

(c)

638

Interrupt Interface of the 8088 and 8086 Microprocessors

accepted and the interrupt-acknowledge bus cycle sequence is initiated. During the first
interrupt-acknowledge bus cycle, the 8088 outputs a pulse at its output. is
applied directly to the input of the 82C59A and when logic 0, it signals that the
active interrupt request will be serviced.

As the second interrupt-acknowledge bus cycle is executed, another pulse is output
at . This pulse signals the 82C59A to output the type number of its highest-priority
active interrupt onto the data bus. The 8088 reads this number off the bus and initiates a
vectored transfer of program control to the starting point of the corresponding service
routine in program memory.

For applications that require more than eight interrupt-request inputs, several
82C59As are connected into a master-slave configuration. The circuit in Fig. 18(b) shows
how three devices are connected to construct a master-slave interrupt interface for a min-
imum-mode 8086 microcomputer system. Each of these devices must reside at unique
addresses in the I/O or memory address space. In this way, during read or write bus cycles
to the interrupt interface, the address output on the bus can be decoded to produce a chip-
enable signal to select the appropriate device for operation.

Figure 18(c) shows a master/slave connection in more detail. Here we find that the
rightmost device is identified as the master and the devices to the left as slave A and slave
B. At the interrupt-request side of the devices, we find that slaves A and B are cascaded
to the master 82C59A by attaching their INT outputs to the M3 (IR3) and M6 (IR6) inputs,
respectively. This means that the identification code for slave A is 3 and that of slave B is
6. Moreover, the CAS lines on all three 82C59As are tied in parallel. Using the CAS
lines, the master signals the slaves to tell them whose interrupt request has been acknowl-
edged.

Whenever a slave signals the master that an interrupt input is active, the master
determines whether or not its priority is higher than that of any already active interrupt.
If the new interrupt is of higher priority, the master controller switches INTR to logic 1.
This signals the MPU that an external device needs to be serviced. If the interrupt flag
within the MPU is set to 1, the interrupt interface is enabled and the interrupt request will
be accepted. Therefore, the MPU initiates the interrupt-acknowledge bus cycle sequence.
As the first pulse is output at , the master 82C59A is signaled to output the 3-bit
cascade code of the slave device whose interrupt request is being acknowledged on the
CAS bus. All slaves read this code and compare it to their own internal code. In this way,
the slave corresponding to the code is signaled to output the type number of its highest-
priority active interrupt onto the data bus during the second interrupt-acknowledge bus
cycle. The MPU reads this number off the bus and uses it to pass program control to the
beginning of the corresponding interrupt service routine.

Figure 19 illustrates an interrupt interface implemented for a maximum-mode 8088
microcomputer system.

EXAMPLE 9

Analyze the circuit in Fig. 20(a) and write an appropriate main program and a service
routine that counts as a decimal number the positive edges of the clock signal applied to
the IR0 input of the 82C59A.

INTA

INTA

INTA
INTAINTA

639

In
terru

p
t In

terface o
f th

e 8
0

8
8

 an
d

 8
0

8
6

 M
icro

p
ro

cesso
rs

RES

CLK MN/MX

READY

RESET

CLK

8288
Bus

controller
8088
CPU

8284A
CLOCK

GENERATOR

RDY

INTR

GND

Vcc

Vcc

AD
0
−AD

7

A
8
−A

19

S
0

GND

S
1

S
2

S
0

S
1

S
2

MRDC

MWTC

AMWC N.C.

IORC

INTA

IOWC

AIOWCDEN
DT/R
ALE

N.C.

CLK
GND OE

74F373
Address

latch

DIR

G Data bus
transceiver

74F245

82C59A
interrupt
control

Address

Data

ADDR/DATA

INTA

EN RAM PROM Chip select logic

A
0

INT

IRO-7

WR

WE OD OE

RD

CS

CSs CSs

Figure 19 Maximum-mode interrupt interface for the 8088 microcomputer using the
82C59A. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp. 1979)

640

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 20 (a) Circuit for Example 9. (b) Software organization. (c) Flowcharts for the
main program and service routine.

A15

A6
A7
A8

A3
A4
A5

7402 74138

82C59A

System bus
clock

7430

M/IO

A0

A1

D0−D7

INTR
RD
WR

INTA

A1
A2

E3

E2

E1

A9
A10
A11
A12
A13
A14

O0 CS

8
A0

DB0−DB7

INT
IR0

RD
WR
INTA

(a)

RESET
FFFFFH

0FFFFH

0FF00H

SRV72

Type 72
vector

START

INTR

01000H COUNT

RAM

ROM

00120H

00000H

Dedicated
memory

Stack

Interrupt
service
routine

Main
program

Data

Interrupt
vector table

(b)

SRV72Main Program

Set up data
seg, stack
seg and

stack pointer

Save
processor

status

Set up the
interrupt
vector

Increment
the count

Initialize
82C59A

Restore
processor

status

Wait for
interrupt

(c)

Enable
interrupts

Return

641

Interrupt Interface of the 8088 and 8086 Microprocessors

Solution

The microprocessor addresses to which the 82C59A in the circuit shown in Fig. 20(a)
responds depend on how the signal for the 82C59A is generated as well as the logic
level of address bit A1, connected to input A0. Note that the A0 address line of the micro-
processor is not used in the circuit and therefore it is a don’t-care bit. Thus, if A0 is taken
as 0, the 82C59A responds to

These two I /O addresses are FF00H and FF02H, respectively. The address FF00H is for
the ICW1 and FF02H is for the ICW2, ICW3, ICW4, and OCW1 command words. Let us
now determine the ICWs and OCWs for the 82C59A.

Because the signal is used in the circuit diagram, the 82C59A interface is for
the 8086 microprocessor, there is only one 82C59A in the system, and the interrupt input
is an edge, we are led to the following ICW1:

Let us assume that we will use interrupt type 72 to service an interrupt generated by an
edge presented to the IR0. This leads to the following ICW2:

For a single 82C59A, ICW3 is not needed. To determine ICW4, let us assume that we will
use auto EOI and nonbuffered mode of operation. This leads to the following ICW4:

For OCWs, we will use only OCW1 to mask all other interrupts but IR0. This gives OCW1 as

Figure 20(b) shows the memory organization for the software. Let us understand the infor-
mation presented in this memory organization. In the interrupt-vector table we need to set
up the type 72 vector. The type 72 vector is located at . At address
120H we need to place the offset of the service routine and at address 122H the code seg-
ment value of the service routine.

In the data area we need a location to keep a decimal count of the edges of the input
clock. Let us assume that it is location 01000H. The stack segment starts at 0FF00H and
ends at 0FFFFH. The start address of the main program is denoted as START, and that of
the service routine is denoted as SRV72.

4 � 72 � 288 � 120H

OCW1 � 111111102 � FEH

ICW4 � 000000112 � 03H

ICW2 � 010010002 � 48H

ICW1 � 000100112 � 13H

M/ IO

� 11111111000000102 for A1 � 1, M/ IO � 0

� 11111111000000002 for A1 � 0, M/ IO � 0 and

A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1A0

CS

642

Interrupt Interface of the 8088 and 8086 Microprocessors

The flowcharts in Fig. 20(c) are for the main program and the service routine.
The main program initializes the microprocessor and the 82C59A. First we establish
various segments for data and stack. This can be done using the following instruc-
tions:

;MAIN PROGRAM
CLI ;Start with interrupts disabled

START: MOV AX, 0 ;Extra segment at 00000H
MOV ES, AX
MOV AX, 1000H ;Data segment at 01000H
MOV DS, AX
MOV AX, 0FF00H ;Stack segment at 0FF00H
MOV SS, AX
MOV SP, 100H ;Top of stack at 10000H

Next we can set up the IP and CS for the type 72 vector in the interrupt vector table. This
can be accomplished using the following instructions:

MOV AX, OFFSET SRV72 ;Get offset for the service routine
MOV [ES:120H], AX ;Set up the IP
MOV AX, SEG SRV72 ;Get code segment for the service routine
MOV [ES:122H], AX ;Set up the CS

Having set up the interrupt-type vector, let us proceed now to initialize the 82C59A.
Using the analyzed information, the following instructions can be executed:

MOV DX, 0FF00H ;ICW1 address
MOV AL, 13H ;Edge trig input, single 82C59A
OUT DX, AL
MOV DX, 0FF02H ;ICW2,ICW4,OCW1 address
MOV AL, 48H ;ICW2, type 72
OUT DX, AL
MOV AL, 03H ;ICW4, AEOI, nonbuff mode
OUT DX, AL
MOV AL, 0FEH ;OCW1, mask all but IR0
OUT DX, AL
STI ;Enable the interrupts

Now the processor is ready to accept interrupts. We can write an endless loop to wait for
the interrupt to occur. In a real situation we may be doing some other operation in which
the interrupt will be received and serviced. For simplicity let us use the following instruc-
tion to wait for the interrupt:

HERE: JMP HERE ;Wait for an interrupt

643

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 20(c) shows the flowchart for the interrupt-service routine as well. The operations
shown in the flowchart can be implemented using the following instructions:

SRV72: PUSH AX ;Save register to be used
MOV AL, [COUNT] ;Get the count
INC AL ;Increment the count
DAA ;Decimal adjust the count
MOV [COUNT], AL ;Save the new count
POP AX ;Restore the register used
IRET ;Return from interrupt

� 9 SOFTWARE INTERRUPTS

The 8088 and 8086 microcomputer systems are capable of implementing up to 256
software interrupts. They differ from the external hardware interrupts in that their service
routines are initiated in response to the execution of a software interrupt instruction, not
an event in external hardware.

The INT n instruction is used to initiate a software interrupt. Earlier in this chapter
we indicated that n represents the type number associated with the service routine. The
software interrupt service routine vectors are also located in the memory locations in the
vector table. These locations are shown in Fig. 3. Our earlier example was INT 50. It has
a type number of 50, and causes a vector in program control to the service routine whose
starting address is defined by the values of IP50 and CS50 stored at addresses 000C816 and
000CA16, respectively.

The mechanism by which a software interrupt is initiated is similar to that described
for the external hardware interrupts. However, no external interrupt-acknowledge bus
cycles are initiated. Instead, control is passed to the start of the service routine immedi-
ately upon completion of execution of the interrupt instruction. As usual, first the old
flags are automatically saved on the stack; then IF and TF are cleared; next the old CS
and old IP are pushed onto the stack; now the new CS and new IP are read from memory
and loaded into the MPU’s registers; finally program execution resumes at CSNEW:IPNEW.

If necessary, the contents of other internal registers can be saved on the stack by
including the appropriate PUSH instructions at the beginning of the service routine. Toward
the end of the service routine, POP instructions are inserted to restore these registers.
Finally, an IRET instruction is used at the end of the routine to return to the original pro-
gram environment. In this way, we see that the program structure of a software-interrupt
service routine is identical to that shown in Fig. 10.

Software interrupts are of higher priority than the external interrupts and are not
masked out by IF. The software interrupts are actually vectored subroutine calls. A com-
mon use of these software routines is as emulation routines for more complex functions.
For instance, INT 50 could define a floating-point addition instruction and INT 51 a
floating-point subtraction instruction. These emulation routines are written using assembly
language instructions, are assembled into machine code, and then are stored in the main
memory of the 8088 microcomputer system. Other examples of their use are for supervisor
calls from an operating system and for testing external hardware interrupt service routines.

644

Interrupt Interface of the 8088 and 8086 Microprocessors

� 10 NONMASKABLE INTERRUPT

The nonmaskable interrupt (NMI) is another interrupt that is initiated from external
hardware. However, it differs from the other external hardware interrupts in several
ways. First, as its name implies, it cannot be masked out with the interrupt flag. Second,
requests for service by this interrupt are signaled to the 8088 or 8086 microprocessor by
applying logic 1 at the NMI input, not the INTR input. Third, the NMI input is posi-
tive edge-triggered. Therefore, a request for service is automatically latched internal to
the MPU.

On the 0 to 1 transition of the NMI input, the NMI flip-flop within the MPU is
set. If the contents of the NMI latch are sampled as being active for two consecutive
clock cycles, it is recognized and at completion of the current instruction the non-
maskable interrupt sequence is initiated. Just as with the other interrupts we have stud-
ied, initiation of NMI causes the current flags, current CS, and current IP to be pushed
onto the stack. Moreover, the interrupt-enable flag is cleared to disable all external
hardware interrupts, and the trap flag is cleared to disable the single-step mode of
operation. Next the MPU fetches the words of the NMI vector from memory and loads
them into IP and CS. Finally, execution resumes with the first instruction of the NMI
service routine.

As Fig. 3 shows, NMI has a dedicated type number. It automatically vectors from
the type 2 vector location in the pointer table. This vector is stored in memory at word
addresses 000816 and 000A16.

Typically, the NMI is assigned to hardware events that must be responded to immedi-
ately. Two examples are the detection of a power failure and detection of a memory-read error.

� 11 RESET

The RESET input of the 8088 and 8086 microprocessors provides a hardware means for
initializing the microcomputer. This is typically done at power-up to provide an orderly
startup of the system. However, some systems, such as a personal computer, also allow
for a warm start—that is, a software-initiated reset.

Figure 21(a) shows that the reset interface of the 8088 includes part of the 8284
clock generator device. The 8284 contains circuitry that makes it easy to implement the
hardware reset function. This circuit is used to detect an active reset input and synchro-
nize the application and removal of the RESET signal with the clock. Note that the
input (pin 11) of the clock generator is attached to an RC circuit. The signal at is
applied to the input of an internal Schmitt trigger circuit. If the voltage across the capac-
itor is below the 1-logic-level threshold of the Schmitt trigger, the RESET output (pin 10)
stays at logic 1. This output is supplied to the RESET input at pin 21 of the 8088. It can
also be applied in parallel to reset inputs on LSI and VLSI peripheral devices in the
microcomputer system. In this way, they are also initialized at power-on. Figure 21(a)
provides the system reset signal line for this purpose.

At power-on, of the 8284 is shorted to ground through the capacitor. This rep-
resents logic 0 at the input of the Schmitt trigger and causes the RESET output to switch
to its active 1 logic level. At the RESET input of the 8088, this signal is synchronized to

RES

RES
RES

645

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 21 (a) Reset interface of the
8088. (Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1979) (b) Reset timing sequence.
(Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1979)

the 0-to-1 edge of CLK to create an internal reset signal. This is shown in the waveforms
of Fig. 21(b). RESET must be held at logic 1 for a minimum of four clock cycles; oth-
erwise, it will not be recognized.

When RESET is recognized as active, the 8088 terminates operation, puts its buses
in the high-Z state, and switches the control signals to their inactive states. Figure 22(a)
summarizes these signal states. Here we see that in a minimum-mode system, signals AD0

through AD7, A8 through A15, and A16/ 3 through A19/ 6, are immediately put in the high-
Z state. On the other hand, signal lines , IO/ , DT/ , , , , and are
first forced to logic 1 for one clock interval and then are put in the high-Z state syn-
chronously with the positive edge of the next clock pulse. Moreover, signal lines ALE and
HLDA are forced to their inactive 0 logic level. The 8088 remains in this state until the
RESET input is returned to logic 0.

The hardware of the reset interface in an 8086 microcomputer system is identical
to that just shown for the 8088 microprocessor. In fact, the reset and clock inputs, found
at pins 21 and 19 of the 8088, respectively, in Fig. 21(a), are at these same pins on the
8086. Moreover, the waveforms given in Fig. 21(b) also describe the timing sequence that

INTARDWRDENRMSSO
SS

646

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 22 (a) Bus and control signal
status of the 8088 during system reset.
(Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1979) (b) Bus and control signal status
of the 8086 during system reset.
(Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1979)

occurs when the reset input of the 8086 is activated. Remember that the 8086 produces
some different signals than the 8088. For example, it has a output instead of an
output. Figure 22(b) shows the state of the 8086’s bus and control signals during reset.

In the maximum-mode system, the 8088 and 8086 respond in a similar way to an
active reset request. However, this time the 2 1 0 outputs, which are inputs to the 8288
bus controller, are also forced to logic 1 and then put into the high-Z state. These inputs

SSS

SSOBHE

647

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 23 Internal state of the
8088/8086 after reset. (Reprinted by
permission of Intel Corporation.
Copyright/Intel Corp. 1979)

of the 8288 have internal pullup resistors. Therefore, with the signal lines in the high-Z
state, the input to the bus controller is . In response, its control outputs are
set to , , , and all its command outputs are switched to the
1 logic level. Moreover, outputs QS0 and QS1 of the MPU are both held at logic 0 and the

/ 0, and / 1 lines are held at logic 1.
Return of the reset signal to logic 0 is also synchronized to CLK by the 8284. When

the MPU recognizes the return to logic 0 at the RESET input, it initiates its internal ini-
tialization routine. At completion of initialization, the flags are all cleared, the instruction
pointer is set to 000016, the CS register is set to FFFF16, the DS, SS, and ES registers are
set to 000016, and the instruction queue is emptied. The table in Fig. 23 summarizes this
state.

Since the flags were all cleared as part of initialization, external hardware inter-
rupts are disabled. Moreover, the code segment register contains FFFF16 and the instruc-
tion pointer contains 000016. Therefore, program execution begins at address FFFF016

after reset. This storage location can contain an instruction that will cause a jump to the
startup program that is used to initialize the rest of the microcomputer system’s
resources, such as I/O ports, the interrupt flag, and data memory. This startup program
is known as a boot-strap program. After system-level initialization is complete, another
jump can be performed to the starting point of the microcomputer’s operating system or
application program.

� 12 INTERNAL INTERRUPT FUNCTIONS

Earlier we indicated that four of the 256 interrupts of the 8088 and 8086 are dedicated to
internal interrupt functions. Internal interrupts differ from external hardware interrupts in
that they occur due to the result of executing an instruction, not an event that takes place
in external hardware. That is, an internal interrupt is initiated because of a condition
detected before, during, or after execution of an instruction. In this case, a routine must
be initiated to service the internal condition before resuming execution of the same or
next instruction of the program.

Looking at Fig. 8, we find that internal interrupts are not masked out with the inter-
rupt-enable flag. For this reason, occurrence of any one of them is automatically detected
by the MPU and causes an interrupt of program execution and a vectored transfer of pro-
gram control to a corresponding service routine. During the control transfer sequence, no
interrupt acknowledge bus cycles are produced.

GTRQGTRQ

DT/R � 1DEN � 0ALE � 0
S2S1S0 � 111

648

Interrupt Interface of the 8088 and 8086 Microprocessors

Figure 24 identifies the internal interrupts of the 8088 and 8086 microprocessors. Here
we find divide error, overflow error, single step, and breakpoint. Each of these functions is
assigned a unique type number. Notice that they are the highest-priority type numbers.

Let us now look at each of these internal functions in more detail.

Divide Error

The divide error function represents an error condition that can occur in the execu-
tion of the division instructions. If the quotient that results from a DIV (divide) instruc-
tion or an IDIV (integer divide) instruction is larger than the specified destination, a
divide error has occurred. This condition causes automatic initiation of a type 0 interrupt
and passes control to a service routine whose starting point is defined by the values of IP0

and CS0 at addresses 0000016 and 0000216, respectively, in the pointer table.

Overflow Error

The overflow error is an error condition similar to that of divide error. However, it
can result from the execution of any arithmetic instruction. Whenever an overflow occurs,
the overflow flag gets set. Unlike divide error, the transfer of program control to a service
routine is not automatic at occurrence of the overflow condition. Instead, the INTO (inter-
rupt on overflow) instruction must be executed to test the overflow flag (OF) and deter-
mine if the overflow service routine should be initiated. If the overflow flag is tested and
found to be set, a type 4 interrupt service routine is initiated. Its vector consists of IP4 and
CS4, which are stored at 0001016 and 0001216, respectively, in memory. The routine

Figure 24 Internal interrupt vector
locations.

649

Interrupt Interface of the 8088 and 8086 Microprocessors

pointed to by this vector is written to service the overflow condition. For instance, it could
cause a message to be displayed to specify that an overflow has occurred.

Single Step

The single-step function relates to an operating option of the 8088 or 8086. If the
trap flag (TF) bit in the flags register is set, the single-step mode of operation is enabled.
This flag bit can be set or reset under software control.

When TF is set, the MPU initiates a type 1 interrupt to the service routine defined
by IP1 and CS1 at addresses 0000416 and 0000616, respectively, at the completion of exe-
cution of every instruction of the user program. This permits implementation of the single-
step mode of operation so that the program can be executed one instruction at a time. For
instance, the service routine could include a WAIT instruction. In this way, a transition to
logic 0 at the input of the 8088 or 8086 could be used as the mechanism for step-
ping through a program one instruction at a time. This single-step operation can be used
as a valuable software debugging tool.

Breakpoint Interrupt

The breakpoint function can also be used to implement a software diagnostic tool.
A breakpoint interrupt is initiated by execution of the breakpoint instruction (one-byte
instruction with). This instruction can be inserted at strategic
points in a program that is being debugged to cause execution to be stopped automati-
cally. Breakpoint interrupt can be used in a way similar to that of the single-step option.
The breakpoint service routine can stop execution of the main program, permit the pro-
grammer to examine the contents of registers and memory, and allow for the resumption
of execution of the program down to the next breakpoint.

REVIEW PROBLEMS

Section 1
1. What are the five groups of interrupts supported on the 8088 and 8086 MPUs?

2. What name is given to the special software routine to which control is passed when
an interrupt occurs?

3. List in order the interrupt groups; start with the lowest priority and end with the
highest priority.

4. What is the range of type numbers assigned to the interrupts in the 8088 and 8086
microcomputer systems?

5. Is the interrupt assigned to type 21 at a higher or lower priority than the interrupt
assigned to type 35?

Section 2
6. Where are the interrupt pointers held?

7. How many bytes of memory does an interrupt vector take up?

code � 110011002 � CC16

TEST

650

Interrupt Interface of the 8088 and 8086 Microprocessors

8. What two elements make up an interrupt vector?

9. Which interrupt function’s service routine is specified by CS4:IP4?

10. The breakpoint routine in an 8086 microcomputer system starts at address AA00016

in the code segment located at address A000016. Specify how the breakpoint vector
will be stored in the interrupt-vector table.

11. At what addresses is the interrupt vector for type 40 stored in memory?

Section 3
12. What does STI stand for?

13. Which type of instruction does INTO normally follow? Which flag does it test?

14. What happens when the instruction HLT is executed?

Section 4
15. Explain how the CLI and STI instructions can be used to mask out external hardware

interrupts during the execution of an uninterruptable subroutine.

16. How can the interrupt interface be reenabled during the execution of an interrupt ser-
vice routine?

Section 5
17. What does stand for?

18. Is the INTR input of the 8088 edge triggered or level triggered?

19. Explain the function of the INTR and signals in the circuit diagram shown in
Fig. 6(a).

20. Which device produces in a minimum-mode 8088 microcomputer system? In
a maximum-mode 8088 microcomputer system?

21. Over which signal lines does external circuitry send the type number of the active
interrupt to the 8086?

22. What bus status code is assigned to interrupt acknowledge?

Section 6
23. Give an overview of the events in the order they take place during the interrupt-

request, interrupt-acknowledge, and interrupt-vector-fetch cycles of an 8088 micro-
computer system.

24. If an 8086-based microcomputer is running at 10 MHz with two wait states, how long
does it take to perform the interrupt-acknowledge bus cycle sequence?

25. How long does it take the 8086 in problem 24 to push the values of the old flags, old
CS, and old IP to the stack? How much stack space does this information take?

26. How long does it take the 8086 in problem 24 to fetch its vector CSNEW:IPNEW from
memory?

Section 7
27. Specify the value of ICW1 needed to configure an 82C59A as follows: ICW4 not

needed, single-device interface, and edge-triggered inputs.

INTA

INTA

INTA

651

Interrupt Interface of the 8088 and 8086 Microprocessors

28. Specify the value of ICW2 if the type numbers produced by the 82C59A are to be in
the range 7016 through 7716.

29. Specify the value of ICW4 such that the 82C59A is configured for use in an 8086 sys-
tem, with normal EOI, buffered-mode master, and special fully nested-mode disabled.

30. Write a program that initializes an 82C59A with the initialization command words
derived in problems 27, 28, and 29. Assume that the 82C59A resides at address
0A00016 in the memory address space and that the contents of DS are 000016.

31. Write an instruction that, when executed, reads the contents of OCW1 and places it in
the AL register. Assume that the software in problem 30 has configured the 82C59A.

32. What priority scheme is enabled if OCW2 equals 6716?

33. Write an instruction sequence that when executed toggles the state of the read regis-
ter bit in OCW3. Assume that the 82C59A is located at memory address 0A00016 and
that the contents of DS are 000016.

Section 8
34. The circuit in Fig. 18(a) can accept how many interrupt inputs?

35. The circuit in Fig. 18(b) can accept how many interrupt inputs?

36. Summarize the interrupt-request /acknowledge handshake sequence for an interrupt
initiated at an input to slave B in the circuit in Fig. 18(c).

37. What is the maximum number of interrupt inputs that can be achieved by expanding
the number of slaves in the master-slave configuration in Fig. 18(c)?

Section 9
38. Give another name for a software interrupt.

39. If the instruction INT 80 is to pass control to a subroutine at address A010016 in the
code segment starting at address A000016, what vector should be loaded into the
interrupt vector table?

40. At what address would the vector for the instruction INT 80 be stored in memory?

Section 10
41. What type number and interrupt vector table addresses are assigned to NMI?

42. What are the key differences between NMI and the other external-hardware-initiated
interrupts?

43. Give a common use of the NMI input.

Section 11
44. What is the active logic level of the RESET input of the 8088?

45. To which signal must the application of the RESET input be synchronized?

46. What device is normally used to generate the signal for the RESET input of the
8088?

47. List the states of the address/data bus lines and control signals , ALE, ,
, , and in a minimum-mode 8086 system when reset is at its active

level.
WRRDDT/ R

DENBHE

652

Interrupt Interface of the 8088 and 8086 Microprocessors

48. What is the address from where the first instruction is fetched by the MPU after the
reset has been applied?

49. Write a reset subroutine that initializes the block of memory locations from address
0A00016 to 0A0FF16 to 0H. The initialization routine is at address 0100016.

Section 12
50. List the internal interrupts serviced by the 8088.

51. Which vector numbers are allocated to internal interrupts?

52. What mode of operation is enabled with the trap flag? Which pointer holds the entry
point for this service routine?

53. If the starting point of the service routine for problem 52 is defined by
:0200H, at what addresses in memory are the values of CS and IP

held? At what physical address does the service routine start?

Section 1
1. External hardware interrupts, software interrupts, internal interrupts, nonmaskable

interrupt, and reset.

3. External hardware interrupts, nonmaskable interrupt, software interrupts, internal
interrupts, and reset.

5. Higher priority.

Section 2
7. 4 bytes.

9. Overflow.

11. , and .

Section 3
13. Arithmetic; overflow flag.

Section 4
15. ;This is an uninterruptible subroutine

CLI ;Disable interrupts at entry point
.
. ;Body of subroutine
.
.

STI ;Enable interrupts
RET ;Return to calling program

Section 5
17. Interrupt acknowledge.

19. INTR is the interrupt request signal that must be applied to the 8088 MPU by exter-
nal interrupt interface circuitry to request service for an interrupt-driven device.
When the MPU has acknowledged this request, it outputs an interrupt acknowledge

(CS40) � (Location A2H)(IP40) � (Location A0H)

CS:IP � A000H

ANSWERS TO SELECTED REVIEW PROBLEMS▲

653

Interrupt Interface of the 8088 and 8086 Microprocessors

bus status code on , and the 8288 bus controller decodes this code to produce
the signal. is the signal used to tell the external device that its request
for service has been granted.

21. D0 through D7.

Section 6
23. When the 8088 microprocessor recognizes an interrupt request, it checks whether the

interrupts are enabled. It does this by checking the IF. If IF is set, an interrupt-acknowl-
edge cycle is initiated. During this cycle, the and signals are asserted.
This tells the external interrupt hardware that the interrupt request has been accepted.
Following the acknowledge bus cycle, the 8088 initiates a cycle to read the interrupt
vector type. During this cycle the signal is again asserted to get the vector type
presented by the external interrupt hardware. Finally, the interrupt vector words corre-
sponding to the type number are fetched from memory and loaded into IP and CS.

25. 1.8 �s for three write cycles; 6 bytes.

Section 7
27. ICW4 not needed

Single-device
Edge-triggered

and assuming that all other bits are logic 0 gives
.

29. Use with the 8086/8088
Normal end of interrupt
Buffered mode master
Disable special fully nested mode

and assuming that the rest of the bits are logic 0, we get
.

31. MOV AL, [0A001H]

33. MOV AL, [0A001H] ;Read OCW3
MOV [OCW3], AL ;Copy in memory
NOT AL ;Extract RR bit
AND AL, 2H ;Toggle RR bit
OR [OCW3], AL ;New OCW3
MOV AL, [OCW3] ;Prepare to output OCW3
MOV [0A001H], AL ;Update OCW3

Section 8
35. 22.

37. 64.

Section 9
39. and .

Section 10
41. Type number 2; IP2 is at location 08H and CS2 is at location 0AH.

43. Initiate a power failure service routine.

IP80 � 0100HCS80 � A000H

ICW4 � 000011012 � 0D16

D4 � 0
D3D2 � 11
D1 � 0
D0 � 1

ICW1 � 000000102 � 0216

D3 � 0
D1 � 1
D0 � 0

INTA

LOCKINTA

INTAINTA
S2S1S0

654

Interrupt Interface of the 8088 and 8086 Microprocessors

Section 11
45. CLK.

47.

then High-Z

then High-Z
then High-Z
then High-Z

49. RESET: MOV AX, 0 ;Set up the data segment
MOV DS, AX
MOV CX, 100H ;Set up the count of bytes
MOV DI, 0A000H ;Point to the first byte

NXT: MOV [DI], 0 ;Write 0 in the next byte
INC DI ;Update pointer, counter
DEC CX
JNZ NXT ;Repeat for 100H bytes
RET ;Return

Section 12
51. Vectors 0 through 4.

53. CS1 is held at 00006H and IP1 is held at 00004H; A0200H.

WR � 1
RD � 1
DT/R � 1

DEN � 1
ALE � 0
BHE � High-Z
A16 through A19 � High-Z
AD0 through AD15 � High-Z

655

This page intentionally left blank

Hardware of the Original
IBM PC Microcomputer

� INTRODUCTION

By now, you may have learned about the 8088 and 8086 microprocessors, their memory,
input /output, and interrupt interfaces. we now turn our attention to a microcomputer sys-
tem designed using this hardware. The microcomputer we will study in this chapter is the
one found in the original IBM PC, the first 8088-based personal computer manufactured
by IBM Corporation. The material covered in this chapter is organized as follows:

1 Architecture of the Original IBM PC System Processor Board

2 System Processor Circuitry

3 Wait-State Logic and NMI Circuitry

4 Input /Output and Memory Chip-Select Circuitry

5 Memory Circuitry

6 Direct Memory Access Circuitry

7 Timer Circuitry

8 Input /Output Circuitry

9 Input /Output Channel Interface

From Chapter 12 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

657

� 1 ARCHITECTURE OF THE ORIGINAL IBM PC SYSTEM
PROCESSOR BOARD

The IBM PC is a practical application of the 8088 microprocessor and its peripheral chip
set as a general-purpose microcomputer. A block diagram of the system processor board
(main circuit board) of the original PC is shown in Fig. 1(a). This diagram identifies the
major functional elements of the PC: MPU, PIC, DMA, PIT, PPI, ROM, and RAM. We
will describe the circuitry used in each of these blocks in detail in the sections of this
chapter that follow; however, let us begin with an overview of the architecture of the PC’s
microcomputer system.

The heart of the PC’s system processor board is the 8088 microprocessor unit
(MPU). It is here that instructions of the program are fetched and executed. To interface
to the peripherals and other circuitry such as memory, the 8088 microprocessor gener-
ates address, data, status, and control signals. Together these signals form what is called
the local bus in Fig. 1(a). Note that the local address and data bus lines are both buffered
and demultiplexed to provide a separate 20-bit system address bus and 8-bit system data
bus.

At the same time, the bus controller decodes the status and control lines of the local
bus to generate the system control bus. This control bus consists of memory and I/O read
and write control signals. The bus controller also produces the signals that control the
direction of data transfer through the data bus buffers—that is, the signals needed to make
the data bus lines work as inputs to the microprocessor during memory and I/O read oper-
ations and as outputs during write operations.

The operation of the microprocessor and other devices in a microcomputer system
must be synchronized. The circuitry in the clock generator block of the PC in Fig. 1(a)
generates clock signals for this purpose. The clock generator section also produces a
power-on reset signal needed for initialization of the microprocessor and peripherals at
power-up. Moreover, the clock generator section works in conjunction with the wait-state
logic to synchronize the MPU to slow peripheral devices. In Fig. 1(a), we see that the
wait-state logic circuitry monitors the system control bus signals and generates a wait sig-
nal for input to the clock generator. In turn, the clock generator synchronizes the wait
input to the system clock to produce a ready signal at its output. This ready signal is input
to the 8088 MPU and provides the ability to automatically extend bus cycles that are per-
formed to slow devices by inserting wait states.

The memory subsystem of the PC system processor board we are studying in this
chapter has 256Kbytes of dynamic R/W memory (RAM) and 48Kbytes of read-only
memory (ROM). Fig. 1(b) shows a memory map for the PC’s memory. From the map, we
find that the RAM address ranges from 0000016 through 3FFFF16. This part of the mem-
ory subsystem can be implemented using 64K � 1-bit or 256K � 1-bit dynamic RAMs
and is used to store operating system routines, application programs, and data to be
processed. These programs and data are typically loaded into RAM from a mass storage
device such as a diskette or hard disk.

Furthermore, the memory map shows that ROM is located in the address range from
F400016 to FFFFF16. This part of the memory subsystem contains the basic system ROM
of the PC. Included in these ROMs are fixed programs such as the BASIC interpreter,
power-on system procedures, and I /O device drivers, or BIOS as they are better known.

Hardware of the Original IBM PC Microcomputer

658

H
ard

w
are o

f th
e O

rig
in

al IB
M

 PC
 M

icro
co

m
p

u
ter

Figure 1 (a) Original IBM PC microcomputer block diagram. (b) Memory map. (c) PC
system processor board peripheral addresses. (d) 8255A I /O map. (e) Interrupts. (Parts b,
c, d, and e, courtesy of International Business Machines Corporation)

659

Figure 1 (continued)

Hardware of the Original IBM PC Microcomputer

660

Figure 1 (continued)

The chip-select logic section, shown in the block diagram of Fig. 1(a), is used to
select and enable the appropriate peripheral or memory devices whenever a bus cycle
takes place over the system bus. To select a device in the I/O address space, such as the
DMA controller, timer, or PPI, it decodes the address on the system bus to generate a
chip-select (CS) signal for the corresponding I/O device. This chip-select signal is applied
to the I/O device to enable it to operate. The memory chip selects are produced in a sim-
ilar way by decoding the memory address on the system address bus.

The LSI peripherals included on the PC system processor board are the 8237A direct
memory access (DMA) controller, 8253 programmable interval timer (PIT), 8255A pro-
grammable peripheral interface (PPI), and 8259A programmable interrupt controller
(PIC). Note that each of these devices is identified with a separate block in Fig. 1(a). These
peripherals are all located in the 8088’s I/O address space, and their registers are accessed
through software using the address ranges given in Fig. 1(c). For instance, the four regis-
ters within the PIT are located at addresses 004016, 004116, 004216, and 004316.

Hardware of the Original IBM PC Microcomputer

661

Figure 1 (continued)

To support high-speed memory and I /O data transfers, the 8237A direct memory
access controller is provided on the PC system board. This DMA chip contains four DMA
channels, DMA channel 0 through DMA channel 3. One channel, DMA 0, is used to
refresh the dynamic R/W memory (DRAM), and the other three channels are available
for use with peripheral devices. For instance, DMA 2 is used to support floppy disk drive
data transfers.

Hardware of the Original IBM PC Microcomputer

662

Hardware of the Original IBM PC Microcomputer

Figure 1 (continued)

663

Figure 1 (continued)

The 8253-based timer circuitry is used to generate time-related functions and sig-
nals in the PC. There are three 16-bit counters in the 8253, and they are driven by a
1.19-MHz clock signal. Timer 0 is used to generate an interrupt to the microprocessor
approximately every 55 ms. The system uses this timing function to keep track of time of
the day. On the other hand, timer 1 is used to produce a DMA request every 15.12 to
initiate refresh of the dynamic RAM. The last timer has multiple functions. It is used to
generate programmable tones when driving the speaker and a record tone for use when
sending data to the cassette for storage on tape.

The parallel I /O section of the PC’s microcomputer, identified as PPI in Fig. 1(a),
is implemented with the 8255A programmable peripheral interface controller. This device
is configured through software to provide two 8-bit input ports and one 8-bit output port.
Figure 1(d) gives the functions of the individual I/O lines of the PPI. Here we see that
these I /O lines are used to input data from the keyboard (keyboard scan code), output
tones to the speaker (speaker data), and read in the state of memory and system configu-
ration switches (SW1-1 through SW1-8). Through the PPI’s ports, the microcomputer
also controls the cassette motor and enables or disables I/O channel check. Note in Fig.
1(d) that switch inputs SW1-3 and SW1-4 are used to tell the MPU how much RAM is
implemented on the system processor board. In the lower part of this table, we find that
for a system with 64Kbytes or 256Kbytes they are both set to the 1 position.

The circuitry in the nonmaskable interrupt (NMI) logic block allows nonmaskable
interrupt requests derived from three sources to be applied to the microprocessor. As
Fig. 1(a) shows, these interrupt sources are the numeric coprocessor interrupt request (N
P NPI), R/W memory parity check (), and I/O channel check (). If any of
these inputs are active, the NMI logic outputs a request for service to the 8088 over the
NMI signal line.

In addition to the nonmaskable interrupt interface, the PC architecture provides for
requests for service to the MPU by interrupts at another interrupt input called interrupt

I/O CH CKPCK

Hardware of the Original IBM PC Microcomputer

ms

664

Hardware of the Original IBM PC Microcomputer

request (INTR). Note in Fig. 1(a) that this signal is supplied to the 8088 by the output of
the interrupt controller (PIC) block. The 8259A LSI interrupt controller used in the PC
provides for eight additional prioritized interrupt inputs. The inputs of the interrupt con-
troller are supplied by peripherals such as the timer, keyboard, diskette drive, printer, and
communication devices. Figure 1(e) gives interrupt priority assignments for these devices.
For example, the timer (actually just timer 2 of the 8253) is at priority level 0.

The I/O channel, which is a collection of address, data, control, and power lines, is
provided to support expansion of the PC system. The chassis of the PC has five 62-pin
I/O channel card slots. In this way, the system configuration can be expanded by adding
special function card slots, such as boards to control a monochrome or color display,
floppy disk drives, a hard disk drive, expanded memory, or to attach a printer. Figure 1(b),
shows that I/O channel expanded RAM resides in the part of the memory address space
from 4000016 through 9FFFF16.

� 2 SYSTEM PROCESSOR CIRCUITRY

Figure 2 illustrates the system processor circuitry section of the IBM PC. It consists of
the 8088 microprocessor, the 8284A clock generator, the 8288 bus controller, and the
8259A programmable interrupt controller. Here we will examine the operation of each of
these sections of circuitry.

Clock Generator Circuitry

In Section 1, we pointed out that the clock generator circuitry serves three functions
in terms of overall microcomputer system operation: clock signal generation, reset signal
generation, and ready signal generation. Let us now explore the operation of the circuit
for each of these functions in more depth.

The first function performed by the clock generator circuitry is the generation of the
various clock signals needed to drive the 8088 microprocessor (U3) and other circuits
within the PC. As Fig. 2 shows, the 8284A clock generator/driver (U11) has a 14.31818-
MHz crystal (Y1) connected between its X1 and X2 pins. This crystal causes the oscillator
circuitry within the 8284A to run and generate three clock output signals: the oscillator
clock (OSC) at 14.31818 MHz, the TTL peripheral clock (PCLK) at 2.385 MHz, and 8088
microprocessor clock (CLK88) at 4.77 MHz. Note in Fig. 2 that the CLK88 output at pin
8 of the 8284A is connected to the CLK input of the 8088 at pin 19. In this way, we see
that the 8088 in the IBM PC runs at 4.77 MHz.

The second purpose served by the clock generator circuitry is to generate a power-
on reset signal for the system. When power is first turned on, the power supply section of
the PC tells the clock generator that power is not yet stable by setting its power good
(PWR GOOD) output to logic 0. Looking at Fig. 2, we find that this signal is applied to
the input at pin 11 of the 8284A. Logic 0 at represents an active input to the
power-on reset circuit within the 8284A; therefore, the RESET output at pin 10 switches
to its active level, logic 1, to signal that a reset operation is to take place. Note that the
RESET output of the 8284A is applied directly to the RESET input at pin 21 of the 8088.
When this input is at the 1 logic level, reset of the MPU is initiated.

RESRES

665

Figure 2 System processor circuitry. (Courtesy of International Business Machines
Corporation)

H
ard

w
are o

f th
e O

rig
in

al IB
M

 PC
 M

icro
co

m
p

u
ter

666

As the voltage of the power supply builds up and becomes stable, the power supply
switches PWR GOOD to logic 1. In response to this change in input, the RESET output
of the 8284A returns to its inactive 0 logic level and the power-on reset is complete.

The last function served by the clock generator circuitry is to provide for synchro-
nization of the 8088’s bus operations with its memory and I/O peripherals. This synchro-
nization is required to support the use of slow memory or peripheral devices on the system
bus and is achieved by inserting wait states into the bus cycle to extend its duration. Let
us now look at how and for what devices wait states are inserted into bus cycles of the
IBM PC microcomputer.

The READY input at pin 22 of the 8088 is the signal that determines whether or not
wait states are inserted into a bus cycle. If this input is at the 1 logic level when the
processor samples it, bus cycles are run to completion without inserting wait states. How-
ever, if its logic level is 0 when sampled, wait states are inserted into the current bus cycle
until READY returns to 1. In Fig. 2, we see that the READY input of the 8088 is directly
supplied by the READY output (pin 5) of the 8284A. The logic level of this output is
determined by inputs and /WAIT. Whenever input is logic
0, the READY output is switched to logic 0. This means that wait states are automatically
inserted whenever DMA transfer bus cycles are performed. On the other hand, logic 1 at
the /WAIT input also causes READY to switch to logic 0. This signals that a slow
memory or I /O device is being accessed, and wait states are needed to extend the bus
cycle. In the circuit under discussion, both I /O and DMA data transfers have one wait
state inserted into each bus cycle.

Microprocessor, System Data Bus, and Bus Controller

The 8088 microprocessor (U3) used in the PC is rated to operate at a maximum
clock rate of 5 MHz. However, we just found that the CLK88 signal that is applied to its
CLK input actually runs it at 4.77 MHz. At power-up, the RESET input of the 8088 is
activated by the 8284A to initiate a power-on reset of the MPU. This reset operation
causes the status, DS, SS, ES, and IP registers within the 8088 to be cleared, the instruc-
tion queue to be emptied, and the code segment register to be initialized to FFFF16. When
RESET returns to its inactive level, the 8088 begins to fetch instructions from program
memory starting at address FFFF016. The instruction at this location passes control to the
PC’s power-up program, which causes the rest of the system resources to be initialized,
diagnostic tests to be run on the hardware, and the operating system loaded from diskette
or hard disk. At this point, the microcomputer is up and running. Let us now look at how
it accesses memory and I/O devices.

Earlier we pointed out that the microcomputer of the IBM PC is architected to have
both a multiplexed local bus and a demultiplexed system bus. In general, memory and I/O
peripherals are attached to the 8088 microprocessor at the system bus. However, there are
some exceptions; both the 8259A interrupt controller and 8087 numeric coprocessor are
attached directly to the local bus.

Figure 2 shows that the local bus includes the 8088’s multiplexed address data bus
lines AD0 through AD7, address lines A8 through A19, and maximum-mode status lines
through . Note that the local bus lines are connected to the 8259A programmable inter-
rupt controller (U2) and the socket for the 8087 numeric coprocessor (XU4).

S2

S0

RDY

DMA WAITRDYDMA WAIT

Hardware of the Original IBM PC Microcomputer

667

Let us now turn our attention to how the local bus lines are demultiplexed and
decoded to form the system bus. Looking at Fig. 2, we see that the upper address lines are
latched using 74LS373 devices U9 and U10 to give system address bus lines A8 through
A19. Another 74LS373 latch (U7) is used to demultiplex low address signals A0 through
A7 from the data signals to complete the system address bus. Finally, the separate system
data bus lines, D0 through D7, are implemented with the 74LS245 bus transceiver U8.
These latches and transceivers also buffer the address and data bus lines to increase the
drive capability at the system bus.

The 8288 bus controller U5 monitors the codes output on the 8088’s status lines
through . Based on these codes, it produces appropriate system bus control signals. For
example, in Fig. 2 we see that the address latch enable (ALE) signal is output at pin 5 of
the 8288 and supplied to the system bus. To ensure that address information is latched at
the appropriate time when demultiplexing the local bus, ALE is also applied to the enable
input (G) of all three 74LS373 latches. The 8288 also produces the DEN and sig-
nals that are used to control operation of the 74LS245 system data bus transceiver. Logic
1 at DEN (pin 16) signals when a data transfer can take place over the data bus; therefore,
it is inverted and applied to the enable input () of the transceiver. On the other hand, the
logic level of (pin 4) identifies whether data are to be input or output over the sys-
tem bus. For this reason, it is applied to the direction (DIR) input of the 74LS245.

The 8288 also produces I /O and memory read and write control signals. The out-
puts and are used to identify I /O read and write operations, respectively. More-
over, or is output to tell that a memory read or write operation is in
progress, respectively. These signals are made available on the system bus.

Address enable inputs AEN BRD and are active during all DMA cycles.
These signals are applied to enable inputs and CEN, respectively, of the 8288 and
disable it when DMA transfers are to take place over the system bus. When disabled, the
8288 stops producing the I /O and memory read/write control signals. Signal AEN BRD
is also used to disable the address latches and data transceiver so that the system address
lines float when the 8237A DMA controller is to use the system bus.

Interrupt Controller

As Fig. 2 shows, an external hardware interrupt interface is implemented for the
IBM PC with the 8259A programmable interrupt controller device U2. It monitors the
state of interrupt request lines IRQ0 through IRQ7 to determine if any external device is
requesting service. Figure 1(c) lists the functions of the priority 0 through priority 7 inter-
rupts. For example, in this list we find that the IRQ0 input is used to service the 8253
timer, and IRQ1 is dedicated to servicing the keyboard.

If an interrupt request input becomes active, the PIC switches its interrupt request
(INT) output to the 1 logic level. Note in Fig. 2 that the INT output at pin 17 of the
8259A is supplied to the INTR input at pin 18 of the 8088. At completion of execution
of the current instruction, the 8088 samples the logic level of its INTR input. Assuming
that it is active, the 8088 responds to the request for service by outputting the interrupt
acknowledge status code to the 8288 bus controller. In turn, the 8288 outputs logic 0 on
interrupt acknowledge (), pin 14 of U5. This signal is sent to the input at pinINTAINTA

AEN
AEN

MEMWMEMR
IOWIOR

DT/R
G

DT/R

S2

S0

Hardware of the Original IBM PC Microcomputer

668

26 of the interrupt controller. Upon receiving this signal, the 8259A generates an active 0
level at , which, in conjunction with the data enable (DEN) output of the 8288, is
used to float the system data bus lines. Now the interrupt controller outputs the type num-
ber of the active interrupt over the local data bus to the 8088. The MPU uses the type
number to fetch the vector of the service routine for the interrupt from memory, loads it
into CS and IP, and then executes the service routine.

The operating configuration of the 8259A needs to be initialized at power-on of the
system. This initialization is achieved by writing to the 8259A’s internal registers over the
local bus. Earlier we pointed out that the peripherals in the PC are located in the I/O
address space. For this reason, I/O instructions are used to access the registers of the PIC.
This is why its read () and write () inputs are supplied by the I/O read () and
I/O write () control signals, respectively. Moreover, when inputting data from or
outputting data to the 8259A, the address of the register, which is either 2016 or 2116, is
output on the address bus. This address is decoded in the chip-select logic circuit to pro-
duce chip-select signal . This signal is applied to the input of the 8259A and
enables its microprocessor interface.

In the remaining sections of this chapter, we will trace the operation of each of
these segments of circuitry in detail.

� 3 WAIT-STATE LOGIC AND NMI CIRCUITRY

The control logic circuitry shown in Fig. 3 provides several functions in terms of overall
system operation. It consists of the wait-state control circuit needed to extend memory
and I/O bus cycles, the wait-state and hold-acknowledge logic used to grant the 8237A
DMA controller access to the system bus, and the circuitry that generates the nonmask-
able interrupt request.

Wait-State Logic Circuitry

The wait-state logic circuitry is used to insert one wait state into all I/O channel,
I/O, and DMA bus cycles. The circuit prouduces two wait-state control signals, /WAIT
and . /WAIT is applied to the input of the 8284A clock genera-
tor (see Fig. 2). Logic 1 at this input makes the READY output of the 8284A switch to
logic 0. This output is applied to the READY input of the 8088 and initiates a wait state
for the current bus cycle. On the other hand, signal switches to logic 0
whenever a DMA bus cycle is initiated. It is applied to the RDY1 input of the 8284A and,
when at logic 0, it causes the READY output to switch to logic 0. In this way, it extends
the DMA bus cycle by inserting wait states. Let us now examine just how the signal

/WAIT is produced.
(I/O channel ready) is one signal that can insert wait states into the

processor’s bus cycle. Cards located in the slots of the I/O channel interface use
. Figure 3 shows that this signal is applied to the preset (PR) input of the

74S74 flip-flop U82. As long as is logic 0, the flip-flop is set and its Q output,
signal /WAIT, is held at logic 1, and wait states are inserted into the current bus cycle.

Let us now look at how /WAIT is produced for an I/O read, I/O write, or
memory refresh cycle. Note in Fig. 3 that the CLR input at pin 1 of D-type flip-flop

RDY
RDY

I/O CH RDY
I/O CH RDY

I/O CH RDY
RDY

DMA WAIT

AEN1RDYDMA WAIT
RDY

CSINTR CS

XIOW
XIORWRRD

SP/EN

Hardware of the Original IBM PC Microcomputer

669

Figure 3 Wait-state logic and NMI circuitry. (Courtesy of International Business
Machines Corporation)

U98 is tied to the RESET input through inverter U51. This signal clears the flip-flop at
power-up and initializes its Q2 output to logic 1. As long as the I/O CH RDY input is
logic 1, flip-flop U82 will set whenever a 0-to-1 transition occurs at its CLK input (pin
11). This causes its Q output to switch to logic 1 and its output to switch to logic 0.

is now logic 1 and signals the 8088 that a wait state is to be inserted into the
current bus cycle.

We will now look at what inputs cause an active transition at CLK. CLK is pro-
duced by the signals (I/O read), (I /O write), (DMA acknowl-
edge channel 0), (memory read), and AEN BRD (DMA cycle in progress) with
a logic circuit formed from gates U83, U84, and U64. If any input of NAND gate U64

switches to logic 0, a 0-to-1 transition is produced at CLK and flip-flop U82 sets. In this
way, we see that if either an I/O read () or I /O write () cycle is ini-
tiated, a wait state is generated. Moreover, a wait state is initiated if a memory read
() occurs when a memory refresh is not in progress ()
and a DMA cycle is in progress ().AEN BRD � 1

DACK 0 BRD � 1XMEMR � 0

XIOW � 0XIOR � 0

XMEMR
DACK 0 BRDXIOWXIOR

RDY/WAIT
Q

Hardware of the Original IBM PC Microcomputer

670

Hardware of the Original IBM PC Microcomputer

Now that we see how the wait state is inserted, let us look at how it is terminated
so that only one wait state is inserted into the bus cycle. Since the logic 1 at /WAIT
is also the data input (pin 12) of the 74LS175 flip-flop U98, the next pulse at the CLK
input (pin 9) causes its outputs to set. Therefore, output Q2 switches to the 0 logic level.
This logic 0 is returned to the CLR input at pin 13 of flip-flop U82 and causes it to reset.

/WAIT returns to logic 0, signaling ready, and the bus cycle proceeds to completion
after only one wait state.

Hold/Hold Acknowledge Circuitry

The 8088 in the PC is configured to operate in the maximum mode. When config-
ured this way, there is no hold/hold acknowledge interface directly usable by the 8237A
DMA controller. The signal we mentioned earlier is coupled with a HOLDA
signal produced in the control circuitry shown in Fig. 3 to implement a simulated DMA
interface in the PC. Let us look at how DMA requests produce the and
HOLDA signals.

Peripheral devices issue a request for DMA service through the 8237A DMA con-
troller. The 8237A signals the 8088 that it wants control of the system bus to perform
DMA transfers by outputting the signal (hold request DMA). In Fig. 3, we
find that this signal is an input to NAND gate U52. Whenever is at its inactive
1 logic level, the output at pin 3 of U52 is logic 0. This signal is applied to the CLR input
of the 74LS74 flip-flop U67 and holds it cleared. Therefore, HOLDA is at its inactive 0
logic level. The output at pin 3 of U52 is also applied to one input of NAND gate U5. Here
it is combined with status code . If the status output is 1112 and , the
output of U5 switches to 0 and signals that the 8088’s bus is in the passive state and DMA
is permitted to take over control of the bus. On the next pulse at the CLK input, flip-flop
3 in latch U98 sets, and its Q3 output switches to the 1 level. Q3 is applied to the data input
of the 74LS74 flip-flop U67, and on the next pulse at CLK88, its Q output, HOLDA,
becomes active. This output remains latched at the 1 logic level until the DMA request is
removed. HOLDA is sent to the HLDA input of the 8237A (see Fig. 7) and signals that
the 8088 has given up control of the system bus.

At the same time, the logic 1 at HOLDA is returned to the Q0 input (pin 4) of
74LS175 latch U98. On the next pulse at CLK, signals AEN BRD and become
active and signal that a DMA cycle is in progress. These signals are used to disable and
tri-state the 8288 bus controller and system bus address latches (see Fig. 2), thereby iso-
lating the 8088 microprocessor from the system bus. also disables the decoder that
generates peripheral chip selects for the I /O address space [see Fig. 4(a)]. AEN BRD is
returned to the Q1 input at pin 5 of latch U98, and on the next pulse at CLK the

signal becomes active. The logic 0 at is sent to the 8284A,
where it deactivates the READY input to insert wait states. Finally, AEN BRD and the
complement of are gated together by the 74S08 AND gate U97 followed by
a NOT to produce the signal . (In Fig. 7, we will see how this signal is used
to enable the DMA address circuitry. In the DMA circuitry section, we will find that it is
used to enable the 8237A to produce its own address and I /O or memory read/write con-
trol signals.)

DMA AEN
DMA WAIT

DMA WAITDMA WAIT

AEN

AEN

LOCK � 1S2S1S0

HRQ DMA
HRQ DMA

DMA WAIT

DMA WAIT

RDY

RDY

671

Nonmaskable Interrupt Circuitry

In Section 1, we indicated that there are three sources for applying a nonmaskable
interrupt to the 8088 microprocessor: the 8087 numeric coprocessor, memory parity
check, and I /O channel check. In Fig. 3, the signal mnemonics used to represent these
three inputs are N P NPI, , and , respectively. These signals are combined
in the NMI control logic circuitry to produce the nonmaskable interrupt request (NMI)
signal. This output is applied directly to the NMI input at pin 17 of the 8088 (see Fig. 2).
Let us now look at the operation of the NMI interrupt request control circuit.

The NMI control logic circuitry in Fig. 3 includes a nonmaskable interrupt control
register. This register is implemented with the 74LS74 D-type flip-flop U96. At reset of
the PC, the NMI interface is automatically disabled. Note in Fig. 3 that the RESET sig-
nal is input to a 74LS04 inverter, and the output at pin 2 of this inverter is applied to the
clear (CLR) input of the NMI control register flip-flop. Clearing the flip-flop causes its
ALLOW NMI output to switch to logic 0. This output is used as the enable input of the
74S08 AND gate (U97) that controls the NMI output. As long as ALLOW NMI is logic
0, the NMI output is held at its inactive 0 logic level, and the NMI interface is disabled.

We now look at how the NMI interface gets turned on. Looking at Fig. 3, we find
that the data input (pin 12) of the 74LS74 flip-flop is supplied by XD7 of the data bus,
and its clock input (CLK) at pin 11 is supplied by a chip-select signal identified as

(write NMI register). As part of the initialization software of the PC, the
NMI control register gets set by executing an instruction that writes a byte with its most
significant bit (XD7) set to logic 1 to any I /O address in the range 00A016 through
00BF16. All these addresses decode to produce the chip-select signal at
CLK; therefore, the 1 at XD7 is loaded into the flip-flop and ALLOW NMI switches to
logic 1. This supplies the enable input for the 74S08 AND gate to the NMI output. The
NMI interface is now enabled and waiting for one of the NMI interrupt functions to occur.

Now that the NMI interface is enabled, let us look at how the numeric coprocessor,
parity check, or I /O channel check interrupt requests are handled. Figure 3 shows that the
inputs for each of these three functions are combined with the 74LS10 NAND gate U84.
If any combination of the NAND gate inputs is logic 0, the output at pin 8 switches to
logic 1. This represents an active NMI request. As long as the NMI interface is enabled,
this logic 1 is passed to the NMI output and on to the NMI input of the 8088.

Actually, each NMI interrupt input also has an enable signal that allows it to be
individually enabled or disabled. For instance, Fig. 3 shows that N P NPI is combined
with the signal N P INSTL SW by the 74S00 NAND gate U81. For the numeric
coprocessor interrupt to be active, the N P INSTL SW input must be logic 1. N P INSTL
SW stands for numerics processor install switch, which is the switch represented by the
contacts marked 2-15 on SW1 in Fig. 9. Only when this switch is off (open) is the
numeric coprocessor interrupt input enabled.

The parity check nonmaskable interrupt input can also be enabled or disabled; how-
ever, this part of the circuit is not shown in Fig. 3. To enable , a logic 0 must be writ-
ten to bit 4 of output port PB of the 8255A U36 (see Fig. 9). This produces the signal

(enable RAM parity check), which is used to enable the parity check cir-
cuits that produce in the RAM circuit (see Fig. 7).PCK
ENB RAM PCK

PCK

WR NMI REG

WR NMI REG

I/O CH CKPCK

Hardware of the Original IBM PC Microcomputer

672

Looking at Fig. 3, we see that to enable the NMI input for (I /O chan-
nel check) logic 0 must be applied to the input. This signal is directly
supplied by bit 5 of output port PB on the 8255A device U36 (see Fig. 9). This bit is set
to logic 0 through software at power-up.

Up to this point, we have shown how the NMI input is enabled, disabled, or made
active. However, since there are three possible sources for the NMI input, another ques-
tion that must be answered is, how does the 8088 know which of the three interrupt inputs
caused the request for service? It turns out that the signals PCK and I /O CH CK are
returned to input ports on the 8255A device U36 (see Fig. 9). For instance, I /O CH CK is
applied to input bit 6 on port PC of the 8255A. Therefore, the service routine for NMI can
read these inputs through software, determine which has caused the request, and then
branch to the part of the service routine that corresponds to the active input.

� 4 INPUT/OUTPUT AND MEMORY
CHIP-SELECT CIRCUITRY

In the previous section, we found that the chip-select signal is used as
an enable input for the NMI control register. Besides the NMI control register chip-select
signal, chip selects are needed in the ROM, RAM, DMA, PPI, interval timer, and inter-
rupt controller sections of the PC’s system processor board circuitry. The I /O and mem-
ory chip-select circuit shown in Fig. 4(a) generates these chip selects. Two types of chip-
select signals are produced, I/O chip selects and memory chip selects, and decoding of
addresses generates them both. Let us now look at the operation of the circuits that
produce these I /O and memory chip-select outputs.

I/O Chip Selects

Earlier we found that in the architecture of the PC, LSI peripheral devices, such as
the DMA controller, interrupt controller, programmable interval timer, and programmable
peripheral interface controller, are located in the I /O address space of the 8088 micro-
processor. I /O chip select decoding for these devices takes place in the circuit shown in
Fig. 4(a), which is formed from devices U66, U50, and U51. Let us begin by looking at the
operation of this segment of circuitry in detail.

To access a register within one of the peripheral devices, an I /O instruction must be
executed to read from or write to the register. The address output on address lines A0

through A9 during the I /O bus cycle is used to both chip-select the peripheral device and
select the appropriate register. Note in Fig. 4(a) that address bits XA8 and XA9 are applied
to enable inputs G2B and G2A, respectively, of the 74LS138 three-line to eight-line
decoder device (U66). When these inputs are both at logic 0 and is at logic 1, the
decoder is enabled for operation. At the same time, address lines XA5 through XA7 apply
a 3-bit code to the ABC inputs of the decoder. When U66 is enabled, the Y output corre-
sponding to the code XA7XA6XA5 is switched to its active 0 logic level. These Y signals
produce I /O chip select outputs (DMA chip select), (interrupt request
chip select), (timer/counter chip select), (parallel peripheral interface chipPPI CST/C CS

INTR CSDMA CS

AEN

WRT NMI REG

ENABLE I/O CK
I/O CH CK

Hardware of the Original IBM PC Microcomputer

673

Hardware of the Original IBM PC Microcomputer

Figure 4 (a) Peripheral/memory chip-select circuitry. (Courtesy of International Busi-
ness Machines Corporation) (b) Peripheral address decoding. (c) ROM address decoding.
(d) RAM address decoding.

674

select), WRT NMI (NMI register chip select), and WRT DMA PG (DMA
page register chip select).

For instance, if XA7XA6XA5 � 001, output Y1 switches to logic 0 and produces the
chip-select output INTR at pin 14. In Fig. 2, we find that this signal is applied to the

input at pin 1 of the 8259A interrupt controller and enables its microprocessor inter-
face for operation. At the same time, appropriate lower-order address bits are applied
directly to the register select inputs of the peripherals to select the register that is to be
accessed. For the 8259A in Fig. 2, we find that only one address bit, XA0 is used, and this
signal is applied to register select input A0 at pin 27.

To produce an I /O chip-select signal, address bits XA0 to XA4 are not used and,
therefore, the individual I /O chip select signals produced actually correspond to a range
of addresses. The address range for each chip-select output is shown in Fig. 4(b). For
instance, any address in the range 002016 through 003F16 decodes to produce the INTR

chip-select signal.
The signal is at its active 0 logic level only during DMA bus cycles. When
is at logic 0, decoder U66 is disabled. Thus, only the addresses output by the micro-

processor will produce I /O chip-select signals. This is identified as a condition required
for the occurrence of all chip selects in Fig. 4(b). Looking at the circuit in Fig. 4(a), we
also find that the NMI control register and DMA page register chip selects are gated with
the I /O write control signal by NOR gates in IC U50. Therefore, as shown in Fig.
4(b), for these two chip selects to take place, an additional condition must be satisfied—
that is, they are only produced if an I /O write (output) bus cycle is taking place.

XIOW

AEN
AEN

CS

CS
CS

REGREG

Hardware of the Original IBM PC Microcomputer

Figure 4 (continued)

675

Since the upper address lines XA10 through XA15 are not used in the I /O chip-select
address decoder circuit, they represent don’t-care states. Therefore, more than one range
of addresses may be used to access each peripheral. For instance, any address in the
ranges 002016 through FC2016, 002116 through FC2116, and 002216 through FC2216 will
also decode to produce the signal .

Memory Chip Selects

The system processor board of the PC contains both read only memory (ROM) and
random access read/write memory (RAM). The ROM part of memory is used to store
embedded system software such as the BIOS, power-up diagnostics, and BASIC inter-
preter. On the other hand, programs that are typically loaded from disk, such as the oper-
ating system and application programs, are stored in the RAM. Here we will look only at
the chip-select signals produced for enabling the memory devices. These chip-select sig-
nals are also generated in the I /O and memory chip-select circuit shown in Fig. 4(a).

Let us begin by examining the circuitry that produces the chip selects needed by
ROM. The output signals produced for ROM in the circuit shown in Fig. 4(a) are ROM
address select () and chip selects through . Note that combin-
ing the upper four address bits, A16 through A19, with NAND gate U64 generates the sig-
nal . If all three of these bits are at logic 1, the output at pin 6,

, switches to its active 0 logic level. This signal has two functions.
First, it is used to enable the ROM chip select decoder U46 and, second, it is supplied to
the ROM array (see Fig. 5) where it is used to control the direction of data transfer
through the ROM data bus transceiver.

The chip-select outputs for the EPROMs, labeled through in Fig. 4(a), are
produced by the 74LS138 three-line to eight-line decoder U46. Note that

is applied to the G2B chip-enable input of the decoder. This enable sig-
nal ensures that the decoder decodes addresses in the range F000016 through FFFFF16.
Two other enable signals, and RESET , are also applied to the decoder.

ensures that the decoder is enabled only during memory read operations.
Note that address lines A13 through A15 are applied to the ABC inputs of the

decoder. This 3-bit code is decoded to generate the individual chip selects, through
. As Fig. 4(a) shows, chip selects and are not used. However, the other six,
through , are each used to enable an individual EPROM device in the ROM array

(see Fig. 5).
For example, if the input to the ROM address decoder is A14A13A12 � 010, chip-

select output is active, and a read operation is performed from one of the 8Kbyte
storage locations in the EPROM device that is located in the address range F400016

through F5FFF16. The actual storage location in the EPROM device accessed is selected
by the lower 13 address bits, which are applied directly to all the EPROM devices in par-
allel. The memory address range that corresponds to each ROM chip-select output is
given in Fig. 4(c). This chart shows that there are a total of 64K addresses decoded by the
ROM address decoder circuitry.

We will now look at the circuitry used to produce the chip select, row address
select, and column address select signals for the RAM array circuit. In Fig. 4(a), the

CS2

CS7CS2

CS1CS0CS7

CS0

XMEMR
DRVXMEMR

ROM ADDR SEL

CS7CS0

ROM ADDR SEL
ROM ADDR SEL

CS7CS0ROM ADDR SEL

INTR CS

Hardware of the Original IBM PC Microcomputer

676

chip-select outputs used to control the operation of RAM are (RAM
address select) and ADDR SEL (address select). The 74LS138 decoder U48 produces

. Looking at the circuit diagram, we find that if A19 is logic 0 and
is logic 1, the decoder is enabled for operation. Moreover, as long as

address bit A18 is also logic 0, output Y0 of the decoder, which is the same as
, switches to logic 0. In this way, we see that goes

active whenever the 8088 outputs an address in the range 0000016 through 3FFFF16. This
is the full address range of RAM that resides on the system processor board. Note that
this is applied to the G2A input of the 74LS138 CAS decoder (U47) and
to input G2B of the 74LS138 RAS decoder (U65). It is also used in the RAM array circuit
(see Fig. 6), where it controls the data bus transceiver.

The ADDR SEL signal is generated from and by NAND gate
U81 and delay line TD1. If either the memory read or write control input signal is at its
active 0 logic level, the output at pin 6 of the NAND gate U81 switches to logic 1, and
ADDR SEL becomes active after the time delay set by TD1 elapses. ADDR SEL is sup-
plied to the RAS/CAS address selector in the RAM array circuit (see Fig. 6), where it is
used to select between the RAS and CAS parts of the address.

Note that the output at pin 6 of NAND gate U81, which was used to produce
ADDR SEL, is also the RAS (row address select) signal. RAS is applied to the G1 enable
input of the 74S138 RAS decoder (U65). The other chip-select inputs of this decoder are
supplied by the signals and DACK 0 and must be logic 0 and logic 1,
respectively, to enable the device for operation.

Now when U65 is enabled, the code at the ABC input is decoded to produce the cor-
responding RAS output. Note that the C input of the decoder is fixed at the 1 logic level
and the other two inputs, A and B, are supplied by address bits A16 and A17, respectively.
For instance, if these two address bits are both logic 0, the input code is 100, and output
Y4 switches to the 0 logic level and generates the signal . After a short delay, which
is set by TD1, the signal is output at pin 8 of U81. This signal is applied to the G2B

input of the CAS decoder U47. Here the other decoder enable inputs are supplied by
and . When enabled, the address at the AB inputs

causes the corresponding column address select output to occur. Assuming that A16 and
A17 are still both 0, switches to its active 0 logic level. In this way, we see that each
RAS chip select is followed after a short delay by the corresponding CAS chip select.
Figure 4(d) summarizes the address decoding for the RAM address chip selects.

During DRAM refresh, DACK0 becomes active, which along with the RAS signal
is used to generate the , , , and signals. These signals are gener-
ated independent of the RAS decoder outputs and are used to refresh the DRAM devices
in the RAM array.

� 5 MEMORY CIRCUITRY

Earlier we found that the system processor board of the PC is equipped with 48Kbytes
of ROM and either 64K or 256Kbytes of RAM. The ROM array is implemented using
EPROM devices and provides for nonvolatile storage of fixed information, such as the
BIOS of the PC. On the other hand, RAM is volatile and is used for temporary storage of
information such as application programs. This part of the memory subsystem can be

RAS3RAS2RAS1RAS0

CAS0

DACK 0 BRDRAM ADDR SEL

CAS
RAS0

RAM ADDR SEL

XMEMRXMEMW

RAM ADDR SEL

RAM ADDR SELRAM ADDR SEL

DACK 0 BRD
RAM ADDR SEL

RAM ADDR SEL

Hardware of the Original IBM PC Microcomputer

677

implemented with either 64K-bit or 256K-bit dynamic RAM chips. In the previous sec-
tion, we showed how the ROM and RAM chip-select signals are generated. Here we will
study how the EPROM devices are arranged to form the ROM array and how the DRAM
devices are arranged to form the RAM array. We will also study how the memory arrays
use the chip-select signals and interface to the system bus.

ROM Array Circuitry

Let us begin by briefly examining the architecture of the ROM array of the PC.
Figure 5 illustrates the circuitry of the ROM array. Looking at this circuit diagram, we find
that it is implemented with six 8K � 8-bit EPROMs. These devices are labeled XU28

through XU33. Note that each of these EPROMs is enabled by one of the ROM chip-select
signals, through , which are generated by the ROM address decoder. For instance,

enables EPROM XU28. Figure 4(c) shows that this chip-select output is at its active 0CS2

CS7CS2

Hardware of the Original IBM PC Microcomputer

Figure 5 ROM circuitry. (Courtesy of International Business Machines Cor-
poration)

678

logic level for all memory addresses in the range F400016 through F5FFF16. Therefore,
EPROM XU28 holds the information corresponding to these 8K addresses.

Now that we know how the individual EPROMs are selected, let us look at how a
storage location within an EPROM is accessed and its data returned to the MPU. The
address outputs on the lower 13 address lines of the system address bus, A0 through A12,
are used to select the specific byte of data within an EPROM. These address inputs are
first buffered with 74LS244 octal buffers U15 and U16 and then applied to the address
inputs of all six EPROMs in parallel. Note that control signal AEN BRD must be at the
0 logic level for the address buffer to be enabled for operation.

The byte of code held at the addressed storage location in the chip-selected EPROM
is output on data lines D0 through D7 for return to the MPU. These data outputs are inter-
faced to the 8088’s system data bus by the 74LS245 bus transceiver U13. During a read
bus cycle, data must be transferred from the outputs of the ROM array to the system data
bus lines D0 through D7.

The direction of data transfer through the data bus transceiver is set by the logic
level at its data direction (DIR) input. Figure 5 shows that the logic level at DIR is deter-
mined by the operation of the control logic formed from transceiver U14 and three NOR
gates of IC U27. The and outputs of U14, along with chip-select signal

and address bit XA9, are inputs to the NOR gate circuit. In response to
these inputs, the circuit switches DIR to logic 0 during all read bus cycles to storage loca-
tions in the address range of the ROM array and for all I /O read cycles from an address
where XA9 is logic 0. Logic 0 at DIR sets the direction of data transfer through U13 to be
from memory to the 8088’s system bus. That is, data are being read from the ROM array.

RAM Array Circuitry

Figure 6(a) shows the circuitry of the RAM array. This circuit shows only two of
the four banks of RAM ICs provided for on the system processor board of the PC. These
banks are identified as bank 0 and bank 1. The circuitry for the other two banks, bank 2
and bank 3, is shown in Fig. 6(b). In each bank, eight 64K � 1-bit dynamic RAMs
(DRAMs) are used for data storage, and a ninth DRAM is included to hold parity bits for
each of the 64K storage locations. Figure 6(a) shows that the DRAMs in bank 0 are
labeled U37 through U45. Device U37 is used to store the parity bit, and U38 through U45

store the bits of the byte of data. The data storage capacity of bank 0 is 64Kbytes, and all
four banks together give the system processor board a maximum storage capacity of
256Kbytes.

Let us now examine how a byte of data is read from DRAMs in bank 0. Address
lines A0 through A15 are applied to inputs of the 74LS158 data selectors U62 and U79.
These devices are used to multiplex the 16-bit memory address into a byte-wide row
address and a byte-wide column address. The multiplexed address outputs of the data
selectors are called MA0 through MA7 and are applied to address inputs A0 through A7 of
all DRAMs in parallel. The select signal ADDR SEL, which is applied to the select (S)
input of both data selectors, is used to select whether the RAS or CAS byte of the address
is output on the MA lines.

We have assumed that the storage location to be accessed is located in bank 0. In
this case, the RAS and CAS address bytes are output from the address multiplexer

ROM ADDR SEL
MEMWIOR

Hardware of the Original IBM PC Microcomputer

679

synchronously with the occurrence of the active and strobe signals, respec-
tively. ADDR SEL initially sets the multiplexer to output the RAS address byte on the
MA line. When RAS0 switches to logic 0, it signals all DRAMs in bank 0 to accept the
row address off of the MA lines. Next, ADDR SEL switches the logic level and causes
the column address to be output from the multiplexer. It is accompanied by , which
is applied to the inputs of all DRAMs in bank 0. Logic 0 at causes them to
accept the column address from the MA lines. At this point, the complete address of the
storage location that is to be accessed has been supplied to RAM in bank 0.

We are also assuming that a read bus cycle is taking place. For this reason, the
input is logic 1 and signals all DRAMs that a read operation is to take place.

Therefore, each device outputs a bit of data held in the storage location corresponding to
the selected row and column address. The byte of data is passed over data lines MD0

through MD7 to the 74LS245 bus transceiver U12. Here a 0 logic level at sets
the transceiver to pass data from the MA lines to system data bus lines D0 through D7 dur-

XMEMR

XMEMW

CASCAS
CAS0

CAS0RAS0

Hardware of the Original IBM PC Microcomputer

Figure 6 (a) RAM circuitry. (Courtesy of International Business Machines Corporation)
(b) RAM banks 2 and 3. (Courtesy of International Business Machines Corporation)

680

Hardware of the Original IBM PC Microcomputer

ing all read cycles. Moreover, the signal enables the transceiver for
operation during all bus cycles to the RAM array.

In our description of the read cycle, we did not consider the effect of the parity
generator/checker circuitry that is included in the RAM array of the PC. Parity is a tech-
nique that is used to improve the reliability of data storage in a RAM subsystem. When-
ever data are written into or read from the DRAMs in Fig. 6(a), the byte of data on
lines MD0 through MD7 is also applied to inputs A through H of the 74S280 parity
generator/checker device U94. The I input during a write operation is at logic 0 as it is
the inverse of , which is 1. Therefore, including a ninth bit at logic 0 does not
change the parity of the byte being written. If the byte has even parity (contains an even
number of bits at the 1 logic level), the �EVEN output (pin 6) of U94 switches to logic 1.
However, if parity is odd, �EVEN switches to logic 0. During write bus cycles, this parity
bit output is supplied to the DIN/DOUT pin of the parity bit DRAM over the MDP line
and is stored in DRAM along with the byte of data.

On the other hand, during read operations the parity bit that is read out of the
parity-bit DRAM on the MDP line and is gated by AND gate U97 to the ninth input (I) of

XMEMR

RAM ADDR SEL

Figure 6 (continued)

681

Hardware of the Original IBM PC Microcomputer

the 74S280 parity generator/checker. If the 9-bit word read from memory has odd parity
(an extra 1 is added to even parity words as the parity bit), the �ODD output (pin 5) of U94

switches to logic 1 to indicate that parity is correct. �ODD is sent through NOR gate U27

to the data input at pin 2 of the 74LS74 parity check interrupt latch U96. As long as no
parity error has occurred, the output of the latch remains at its inactive 1 logic level.
However, if �ODD signals that a parity error has been detected by switching to logic 0, the
parity error interrupt latch sets, and the logic 0 that results at issues a nonmaskable
interrupt request to the MPU. The NMI service routine must test the logic level of PCK
through the 8255A I /O interface to determine if the source of the NMI is PCK. More-
over, at completion of the parity error interrupt service routine, issuing the signal

through the 8255A I /O interface clears the parity error interrupt latch.

� 6 DIRECT MEMORY ACCESS CIRCUITRY

The 8088-based system processor board of the IBM PC supports the direct memory
access (DMA) mode of operation for both its memory and I /O address spaces. This DMA
capability permits high-speed data transfers to take place between two sections of mem-
ory or an I /O device and memory. The bus cycles initiated for these DMA transfers are
not under control of the 8088 MPU; instead, a special VLSI device known as a DMA con-
troller performs them. The DMA circuitry in the PC implements this function using the
8237A-5 DMA controller IC. Looking at the circuit drawing in Fig. 7, we find that the
8237A is labeled U35. This device provides four independent DMA channels for the PC.

Even though the 8237A performs the actual DMA bus cycles by itself, the 8088
controls overall operation of the device. There are 16 registers within the 8237A that
determine how and when the four DMA channels work. Since the microprocessor inter-
face of the 8237A is I /O mapped, the 8088 communicates with these registers by execut-
ing I /O instructions. For instance, the 8237A must be configured with operating features
such as autoinitialization, address increment or decrement, and fixed or rotating channel
priority. These options are selected by loading the command and mode registers within
the 8237A through a software initialization routine. Moreover, before a DMA transfer can
be performed, the 8088 must send the 8237A information related to the operation that is
to take place. This information could include a source base address, destination base
address, count of the words of data to be moved, and an operating mode. The modes of
DMA operation available with the 8237A are demand transfer mode, single transfer
mode, block transfer mode, and cascade mode. Finally, the 8088 can obtain status infor-
mation about the current DMA bus cycle by reading the contents of registers. For exam-
ple, it can read the values in the current address register and current count register to
determine which data have been transferred.

Let us now look briefly at the signals and operation of the microprocessor interface
of the 8237A. In Fig. 7, we find that the microprocessor interface of the 8237A is enabled
by the signal , which is applied to its input at pin 11. Figure 4(b) shows that

is active whenever an I /O address in the range 000016 through 001F16 is output
on the system address bus. The specific register to be accessed is selected using the four
least significant address lines, XA0 through XA3. Data are read from or written into the
selected register over system data bus lines XD0 through XD7. The 8088 signals the

DMA CS
CSDMA CS

ENB RAM PCK

PCK

PCK

682

Hardware of the Original IBM PC Microcomputer

Figure 7 Direct memory access circuitry. (Courtesy of International Business Machines
Corporation)

8237A whether data are to be input or output over the bus with the control signal
or , respectively.

Earlier we pointed out that the four DMA channels of the PC are identified as DMA
channels 0 through 3. Moreover, we found that channel 0 is dedicated to RAM refresh
and that channel 2 is used by the floppy disk subsystem. Use of a DMA channel is initi-
ated by a request from hardware. In Fig. 7, the signals DRQ0 through DRQ3 are the hard-
ware request inputs for DMA channels 0 through 3, respectively. DRQ0 is generated by
timer 1 of the 8253 programmable interval timer (see Fig. 8) and is used to initiate a
DMA 0 refresh cycle for RAM every 15.12 �s. The other three DMA request lines are
supplied from the I /O channel and are available for use by other I /O channel devices.

For a DMA request to be active, the corresponding DRQ input must be switched
to the 1 logic level. Let us assume that a DRQ input has become active, the DMA
request input for the active channel is not masked out within the 8237A, and a higher-
priority channel is not already active. Then the response of the 8237A to the active DMA
request is that it requests to take over control of the system bus by switching its hold

XIOW
XIOR

683

Hardware of the Original IBM PC Microcomputer

request (HRQ) output to logic 1 and then waits in this state until the 8088 signals that it
has given up the bus by returning a logic 1 on the hold acknowledge (HLDA) input of
the 8237A.

The simulated hold/hold acknowledge handshake that takes place between the
8237A and 8088 is performed by the wait-state control logic circuitry that is shown in
Fig. 3. The HRQ signal that is output at pin 10 of the 8237A is applied to the
input of the wait state control logic circuit. The operation of this circuitry was described
in detail in Section 2. For this reason, here we will just give an overview of the events that
take place in the hold acknowledge handshake sequence.

In response to logic 0 at the input, the circuit first waits until the 8088
signals that its bus is in the passive state (no bus activity is taking place) and then
switches the HOLDA output to logic 1. This signal is returned to the HLDA input at pin
7 of the 8237A, where it signals that the 8088 has given up control of the system bus.

Next, the control logic switches signal AEN BRD and to their active logic
levels. These signals are used to tri-state the outputs of the 8288 bus controller, data bus
transceiver, and system bus address latches. With these outputs floating, the MPU is iso-
lated from devices connected to the system bus. Additionally these signals disable the
decoder that produces chip selects for the peripherals located on the system processor
board.

One clock later, the signal becomes active. This signal is returned
through the ready/wait logic of the 8284A to the READY input of the 8088 and ensures
that the 8088 does not initiate a new bus cycle. The signal is now produced
by the control logic and sent to the DMA address logic (see Fig. 7). Logic 0 at this input
enables the address buffers for operation. is also applied to the DIR input of
transceiver U14 (see Fig. 5) and isolates the I /O and memory read/write control signals
from the system bus so that the DMA controller itself can provide them.

At this point, the 8237A is free to take control of the system bus; therefore, it out-
puts the DMA acknowledge (to) signal corresponding to the device
requesting DMA service. is output as to the refresh control cir-
cuitry. Logic 0 on this line signals the wait-state circuit and RAM chip-select decoder that
DMA refresh bus cycles are to be initiated. The other three DACK outputs are supplied
to the I /O channel.

Now that the 8237A has taken control of the system data bus, let us look at how
a block of data is transferred from memory to a device in the I /O address space. To per-
form this operation, the DMA controller first outputs a 16-bit address on address lines
A0 through A7 and data lines DB0 through DB7. Address bit A8 through A15, output on
the data lines, are output in conjunction with a pulse on the address strobe (ADSTB)
line at pin 8 of the 8237A. This pulse is used to latch the address into the 74LS373
latch, U18. The four most significant bits of the 20-bit address are not produced by the
8237A; instead, three DMA page registers within the 74LS670 register file device, U19,
generate them. The processor at power up initializes the page registers on time. Once
initialized, they provide the upper four bits of the address. The device contains four reg-
isters; only three of them are used for channels 1, 2, and 3. To access a page register
I /O addresses 8116 to 8316 can be used for channels 1, 2, and 3, respectively. These
addresses activate the required signal along with the two bits XA1

and XA0 to select the desired page register. The DACK2 and DACK3 signals are used
WRT DMA PG REG

DACK 0 BRDDACK0

DACK3DACK0

DMA AEN

DMA AEN

DMA WAIT

AEN

HRQ DMA

HRQ DMA

684

Hardware of the Original IBM PC Microcomputer

to read the appropriate four bits from a page register and feed to the four upper address
lines of the address bus.

A valid 20-bit source address is now available on system address bus lines A0

through A19. Next, the memory read () and I /O write () control signals
become active, and the data held at the addressed storage location are read over system
data bus lines XD0 through XD7 to the I /O device. This completes the first data transfer.

We will assume that during the DMA bus cycle the source or destination address is
automatically incremented by the 8237A. In this way, its current value points to the next
data element to be read from memory or written to memory. Moreover, at completion of
the DMA bus cycle, the count in the current word register is decremented by 1. The new
count stands for the number of data transfers that still remain to be performed.

This basic DMA transfer operation is automatically repeated by the 8237A until the
current word register count rolls over from 000016 to FFFF16. At this moment, the DMA
operation is complete and the end of process () output is switched to logic 0. EOP is
used to tell external circuitry that the DMA operation has run to completion. In Fig. 7, we
see that is inverted to produce the terminal count (T/C) signal for the I /O channel.
In response to T/C, the requesting device removes its DMA request signal, and the 8237A
responds by returning control of the system bus to the 8088.

� 7 TIMER CIRCUITRY

Figure 8 shows the timer circuitry of the IBM PC. This circuitry controls four basic sys-
tem functions: time-of-day clock, DRAM refresh, speaker, and cassette. In the PC, the
timers are implemented with the 8253-5 programmable interval timer IC. This device is
labeled U34 in Fig. 8. The 8253 provides three independent, programmable, 16-bit coun-
ters for use in the microcomputer system. Here we will first look at how the 8253 is inter-
faced to the 8088 microprocessor and then at how it implements each of the four system
functions.

Microprocessor Interface and Clock Inputs

The 8088 MPU communicates with the 8253’s internal control registers through
the microprocessor interface. Figure 1(c) shows that the control registers of the 8253 are
located in the range 004016 through 004316 of the PC’s I /O address space. Using I /O
instructions, we can access the 8253’s internal registers to configure the mode of opera-
tion for the individual timers and read or load their counters. For example, an input oper-
ation from I /O address 004016 reads the current count in counter 0. On the other hand, an
output operation to the same address loads an initial value into the count register for
counter 0. The same type of operations can be performed to the registers for counters 1
and 2 by using address 004116 or 004216, respectively. Moreover, the mode of operation
for the counters is set up by writing a byte-wide control word to address 004316. How-
ever, the contents of the mode control register cannot be read through software.

Let us now look at how the 8088 performs data transfers to the 8253 over the sys-
tem bus. The microprocessor interface of the 8253 is enabled by the signal , whichT/C CS

EOP

EOP

IOWMEMR

685

Hardware of the Original IBM PC Microcomputer

is tied to its (chip-select) input at pin 21. Figure 4(b) shows that this signal is at its 0
active logic level whenever an I /O address in the range 004016 through 005F16 is output
on the system address bus. The internal control register that is to be accessed is selected
by a code that is applied to register select inputs A0 and A1 over system address bus lines
XA0 and XA1. Figure 8 shows that system data bus lines XD0 through XD7 connect to the
data lines D0 through D7 of the 8253. The 8088 tells the PIT whether data are to be read
from or written into the selected register over these lines with logic 0 at (I /O read)
or (I /O write), respectively.

The signal that is applied to the CLK inputs of the timers is derived from the
2.38-MHz PCLK (peripheral clock) signal. Note that PCLK is first divided by 2 using
the 74LS175 D-type flip-flop U26. This generates a 1.19-MHz clock for input to the
timers. This signal drives clock inputs CLK0, CLK1, and CLK2 in parallel. Note in Fig.
8 that the first two of these clock signals are permanently enabled to the counter by
having �5 V connected directly to the GATE0 and GATE1 inputs, respectively. How-
ever, CLK2 is enabled to the counter with signal TIM 2 GATE SPK. This signal must

XIOW
XIOR

CS

Figure 8 Timer circuitry. (Courtesy of International Business Machines Corporation)

686

Hardware of the Original IBM PC Microcomputer

be switched to logic 1 (see Fig. 9) under software control to enable the clock input for
counter 2.

Outputs of the PIT

In Fig. 8, the three outputs of the 8253 timer are labeled OUT0, OUT1, and OUT2.
OUT0 is produced by timer 0 and is set up to occur at a regular time interval equal to
54.936 ms. This output is applied to the timer interrupt request input (IRQ0) of the 8259A
interrupt controller, where it represents the time-of-day interrupt.

Timer output OUT1 is generated by timer 1 and also occurs at a regular interval,
every 15.12 �s. In Fig. 8, we find that this signal is applied to the CLK input (pin 11) of
the 74LS74 flip-flop U67 and causes the DRQ0 output to set. Logic 1 at this output sends
a request for service to the 8237A DMA controller and asks it to perform a refresh oper-
ation for the dynamic RAM subsystem. When the DMA controller has taken control of
the system bus and is ready to perform the refresh cycle, it acknowledges this fact by out-
putting the refresh acknowledge () signal. Logic 0 on this line clears flip-
flop U67, thereby removing the refresh request.

The output of the third timer, OUT2, is used three ways in the PC. First, it is sent
as the signal T/C2 OUT to input 5 on port C of the 8255A PIC (see Fig. 9). In this way,
its logic level can be read through software. Second, it is used as an enable signal for
speaker data in the speaker interface. When the speaker is to be used, the 8088 must write
logic 1 to bit 0 of port B on the 8255A PIC (see Fig. 9). This produces the signal TIM 2
GATE SPK, which enables the clock for timer 2. Pulses are now produced at OUT2.
When a tone is to be produced by the speaker, the 8088 outputs the signal SPKR DATA
at pin 1 of port B of the 8255A (see Fig. 9). Logic 1 at input SPKR DATA enables the
pulses output at OUT2 to the 75477 driver U95. The output of this driver is supplied to the
speaker. Modifying the count in timer 2 changes the frequency of the tone produced by
the speaker.

The last use of counter 2 is to supply the record tone for the cassette interface. As
shown in Fig. 8, the PC’s cassette interface is through connector J6. Data that are to be
recorded on the tape are output on the DATA OUT line at pin 5 of J6. In Fig. 8, we find
that the data to be recorded on the cassette are output from the OUT2 pin of the 8253
timer and are supplied through inverter U63 to a voltage divider. Jumper P4 is used to
select the voltage level for the DATA OUT signal. For instance, if a jumper is installed
from A to C, DATA OUT is set for a 0.68-V high signal level and 0 V as the low level.

Data played back from the cassette enter the microcomputer at the DATA IN input
at pin 6 of connector J6. DATA IN is passed through a set of contacts on DIP relay K1 to
the input of an amplifier made with the MC1741 device, U1. Since it is a high-gain ampli-
fier, the low-level signals read from the tape are saturated to produce a TTL-level signal
at output CASS DATA IN. This signal is applied to input 4 at port B of the 8255A (see
Fig. 9), where it can be read by the 8088 using IN instructions.

The motor of the cassette player is also turned on or off through circuitry shown in
Fig. 8. When the MOTOR OFF input is switched to logic 0, DIP relay K1 is activated.
This connects the DATA IN signal to the input of the amplifier circuit formed from the
MC1741 device U1. At the same time, the motor control (MOTOR CNTRL) outputs at

DACK 0 BRD

687

Hardware of the Original IBM PC Microcomputer

pins 1 and 3 of J6 are connected through a relay contact and the motor turns on. MOTOR
OFF is provided by output 3 at port B of the 8255A PIC (see Fig. 9).

� 8 INPUT/OUTPUT CIRCUITRY

Figure 9 shows the I /O circuitry of the IBM PC. Three basic types of functions are per-
formed through this I /O interface. First, using this circuitry, the 8088 inputs data from the
keyboard and outputs data to the cassette and speaker. Second, through this circuitry, the
microprocessor reads the setting of DIP switches to determine system configuration infor-
mation such as the size of the system memory, number of floppy-disk drives, type of mon-
itor used on the system, and whether or not an 8087 numeric coprocessor is installed.
Finally, certain I /O ports are used for special functions, such as clearing the parity check
flip-flop and reading the state of the parity check flip-flop through software. The I /O
circuitry of the PC system processor board is designed using the 8255A-5 programma-
ble peripheral interface (PPI) IC. In this section, we will look at how the 8255A is inter-
faced to the 8088 MPU and at the different input /output operations that take place
through its ports.

8255A Programmable Peripheral Interface

The 8255A PPI that implements the I /O circuitry is labeled U36 in Fig. 9. It has
three 8-bit ports for implementing inputs or outputs. In the PC, ports PA and PC are con-
figured to operate as inputs, and the lines of port PB are set up to work as outputs. Figure
1(d) shows that ports PA, PB, and PC reside at the I /O addresses 006016, 006116, and
006216, respectively.

Figure 1(d) also identifies the function of each pin at PA, PB, and PC. Here we find
that input port PA is used to both read the configuration switches of SW1 and communi-
cate with the keyboard. On the other hand, output port PB controls the cassette and
speaker. It also supplies enable signals for RAM parity check, I /O channel check, and
reading of the configuration switches or keyboard. Finally, we find that the input port PC
is used to read the I /O channel RAM switches (SW2), parity check signal, I /O channel
check signal, terminal count status from timer 2, and cassette data.

The operation of the ports of the 8255A are configurable under software control.
Writing a configuration byte to the command/mode control register within the device
does this. In Fig. 1(d) shows that the command/mode register is located at address
006316. When configured by the initialization software of the PC, it is loaded with the
value 9916. This configuration code selects mode 0 operation for all three ports.

Loading of the control register, as well as inputting of data from ports PA and PC
or outputting of data to port PB, is performed through the 8255A’s microprocessor inter-
face. In Fig. 9, the microprocessor interface is activated by the (PPI chip-select)
signal, which is applied to the input at pin 6 of the 8255A. Figure 4(b) shows that
this signal is at its active (logic 0) level whenever an I /O address in the range 006016

through 007F16 is output on the system address bus. However, remember that just four
of these addresses, 006016 through 006316, are used by the 8255A interface. Note that the
data bus inputs of the 8255A are tied to lines XD0 through XD7 of the system data

CS
PPI CS

688

H
ard

w
are o

f th
e O

rig
in

al IB
M

 PC
 M

icro
co

m
p

u
ter

Figure 9 I/O circuitry. (Courtesy of International Business Machines Corporation)

689

Hardware of the Original IBM PC Microcomputer

bus. It is over these lines that the configuration information or input /output data are car-
ried. The 8088 signals the PPI that data are to be read from or written into a register with
signals and , respectively, while the register to be accessed is determined by
the register select code on address lines XA0 and XA1.

Inputting System Configuration DIP Switch Settings

Let us now look at how the settings of the system configuration DIP switches are
input to the 8088 microprocessor. Looking at Fig. 9, we see that input port PA, at I /O
address 006016, is connected to configuration switch SW1 through the 74LS244 buffer
(U23). To read the state of these switches, the keyboard data path must be disabled and the
switch path enabled. Writing a 1 to bit PB7 of the output port does this. This output is
inverted and then applied to the enable inputs of buffer U23. Logic 0 at these inputs
enables the buffer and causes the switch setting to pass through to port PA. Now the
instruction

IN AL, 60H

can be used to read the contents of port PA. The byte of data read in can be decoded based
on the table in Fig. 1(d) to determine the number of floppy disk drives, type of display,
presence or absence of an 8087, and amount of RAM on the system board.

EXAMPLE 1

The system configuration byte read from input port PA is 7D16. Describe the PC config-
uration for these switch settings.

Solution

Expressing the switch setting byte in binary form, we get

Referring to the table in Fig. 1(d), we find that

indicates that the system has floppy-disk drive(s)

indicates that an 8087 is not installed

indicates that the system processor board has 256K of memory

indicates that the system has a monochrome monitor

indicates that the system has two floppy drivesPA7PA6 � 01

PA5PA4 � 11

PA3PA2 � 11

PA1 � 0

PA0 � 1

PA7PA6PA5PA4PA3PA2PA1PA0 � 7D16 � 011111012

XIOWXIOR

690

Hardware of the Original IBM PC Microcomputer

Scanning the Keyboard

The keyboard of the PC is also interfaced to the 8088 through port PA of the
8255A. Figure 9 shows that the keyboard attaches to the system processor board at con-
nector KB0. The keyboard interface circuit includes devices U82, U26, and U24. At com-
pletion of the power-on reset service routine, output PB7 of the 8255A is switched to logic
0. This disables reading of configuration switch SW1 and enables the keyboard data path
and interrupt.

We will now examine how the 8088 determines that a key on the keyboard has been
depressed. The keyboard of the PC generates a keyscan code whenever one of its keys is
depressed. Bits of the keyscan code are input to the system processor board in serial form
at the KBD DATA pin of the keyboard connector synchronously with pulses at KBD
CLK. Note in Fig. 9 that KBD DATA is applied directly to the data input (DI) of the
74LS322 serial-in, parallel-out shift register (U24). On the other hand, KBD CLK is input
to the data input at pin 4 of one of the two D-type flip-flops in the 74LS175 device, U26.
This flip-flop circuit divides the clock by 4 before outputting it at pin 6. The clock pro-
duced at pin 6 of U26 is applied to the clock input of the 74S74 keyboard interrupt request
flip-flop U82, as well as the CLOCK input of the 74LS322 shift register. CLOCK is used
by the shift register to clock in bits of the serial keyscan code from DI. When a byte of
data has been received, the QH output at pin 12 of the shift register switches to logic 1.
QH is returned to the data input of the 74S74 flip-flop U82, and when logic 1 is clocked
into the device, the keyboard interrupt request signal KBD IRQ becomes active. At the
same moment that the interrupt signal is generated, the KBD DATA line is driven to logic
0 by the output at pin 8 of buffer U80 and the shift register is disabled.

In response to the IRQ1 interrupt request, the 8088 initiates a keyscan-code service
routine. This routine reads the keyscan code by inputting the contents of the shift register
through port PA. After reading the code, it drives output PB7 to logic 1 to clear the
keyboard interrupt request flip-flop and keyscan shift register. Next, the service routine
drives PB7 back to logic 0. This reenables the keyboard interface to accept another char-
acter from the keyboard.

Port C Input and Output Functions

The switch configuration identified as SW2 in Fig. 9 represents what is called the I/O
channel RAM switches. The five connected switches are used to identify the amount of
read/write memory provided through the I/O channel. The settings of these switches are
also read through the 8255A PPI. Once the settings are read from the switches, the total
amount of memory can be determined by multiplying the binary value of the switch settings
by 32Kbytes.

Looking at the hardware in Fig. 9, we find that the settings of the five switches are
returned to the 8088 over just four input lines, PC0 through PC3. To read the settings of
switches SW2-1 through SW2-4, logic 1 must first be written to output PB2 and then
input the contents of port PC. The four least significant bits of this byte are the switch set-
tings. Logic 1 in a bit position indicates that the corresponding switch is in the OFF posi-
tion (open circuit). Switch SW2-5 is read by switching PB2 to logic 0 and once again

691

Hardware of the Original IBM PC Microcomputer

Figure 10 (a) I/O channel interface. (Courtesy of International Business Machines Cor-
poration) (b) Signal mnemonics, names, and functions.

692

Hardware of the Original IBM PC Microcomputer

reading the contents of port PC. In this byte, the content of the least significant bit repre-
sents the setting of SW2-5. These two bytes can be combined through software to give a
single byte that contains all five switch settings.

The four most significant bit lines of port PC are supplied by signals generated else-
where on the system processor board. PC5 through PC7 allow the 8088 to read the state
of the RAM parity check (PCK), I /O channel check (I /O CH CK), and timer terminal
count (T/C2 OUT) signals through software. On the other hand, CASS DATA IN, which
is available at PC4, is the data input line from the cassette interface.

� 9 INPUT/OUTPUT CHANNEL INTERFACE

The input /output channel is the system expansion bus of the IBM personal computer. The
chassis of the PC has five 62-pin I /O channel card slots. Earlier we pointed out that using
these slots, special function adapter cards, such as boards to control a monochrome or
color monitor, floppy disk drives, a hard disk drive, expanded memory, or a printer, can
be added to the system to expand its configuration.

Figure 10(a) shows the electrical interface implemented with the I /O channel. In all,
62 signals are provided in each I /O channel slot. They include an 8-bit data bus, a 20-bit
address bus, six interrupts, memory and I /O read/write controls, clock and timing signals,
a channel check signal, and power and ground pins.

The table in Fig. 10(b) lists the mnemonic and name for each of the I /O channel
signals. For instance, here we see that the signal AEN stands for address enable. This
table also identifies whether the signal is an input (I), output (O), or input /output (I /O).
Notice that input /output channel ready (I /O CH RDY) is an input signal; input /output
write command () is an example of an output; and data bus lines D0 through D7 are
the only signals that are capable of operating as inputs or outputs.

REVIEW PROBLEMS

Section 1
1. Name the three system buses of the original PC.

2. What three functions are performed by the clock generator block shown in Fig. 1?

3. What I /O addresses are dedicated to the PPI?

4. What I /O addresses are assigned to the registers of the DMA controller? To the DMA
page registers?

5. What functions are assigned to timer 0? Timer 1? Timer 2?

6. Is port PA of the PPI configured for the input or output mode of operation? Port PB?
Port PC?

7. Over which PPI lines are the state of the memory and system configuration switches
input to the microprocessor?

8. Which output port of the PPI is used to turn ON/OFF the cassette motor?

9. Which output port of the PPI is used to output data to the speaker?

10. What are the three sources of the NMI signal?

IOW

693

11. What is assigned to the lowest-priority interrupt request?

12. What I /O device is assigned to priority level 5?

13. How much I /O channel expansion RAM is supported in the PC?

Section 2
14. What is the frequency of CLK88? PCLK?

15. At what frequency does the 8087 in the PC run?

16. What are the input and output signals of the 8284A’s reset circuitry?

17. To what pin of the 8087 is RESET applied?

18. What are the input and output signals of the 8284A’s wait-state logic?

19. What does logic 0 at mean? Logic 0 at /WAIT?

20. Which devices are attached to the local bus of the 8088?

21. What devices are used to demultiplex the local bus into the system address bus and
system data bus?

22. What device is used to produce the system control bus signals?

23. At what pins of the 8288 are signals and output?

24. Give an overview of the interrupt request/acknowledge cycle that takes place between
the 8259A and 8088.

Section 3
25. What is the source of the signal I /O CH RDY? To what logic level must it be

switched to initiate a wait state?

26. What types of bus cycles cause the /WAIT output to switch to the 1 logic level?
What input signal represents each of the bus cycles?

27. Give an overview of the operation of the hold/hold acknowledge circuitry.

28. Give an overview of how the NMI interface is enabled for operation.

29. Write an instruction sequence to disable NMI.

30. Can the parity check interrupt request be individually enabled/disabled? Explain.

31. How does the 8088 determine which of the NMI sources has initiated the request for
service?

Section 4
32. Trace through the operation of the I /O chip-select circuitry when an I /O write takes

place to address A016.

33. Which I /O chip selects can occur during either an input or output bus cycle to an
address in the range 000016 through 007F16?

34. What are the outputs of the ROM chip-select circuitry?

35. Trace through the operation of the ROM address decoder as address FA00016 is
applied to the input.

36. At what logic level must address bits A18 and A19 be for the output
to switch to its active 0 logic level?

37. What output is produced by U65 if the address input is 1010016?

38. What output is produced by U47 if the address input is 2020016?CAS

RAS

RAM ADDR SEL

RDY

MEMRMEMW

RDYDMA WAIT

Hardware of the Original IBM PC Microcomputer

694

Hardware of the Original IBM PC Microcomputer

Section 5
39. Trace through the operation of the ROM circuitry in Fig. 5 as a read cycle is

performed to address F400016.

40. Give an overview of the operation of the RAM circuitry in Fig. 6(a) as a byte of data
is written to the DRAMs in bank 0.

Section 6
41. What are the sources of DMA requests for channels 1, 2, and 3?

42. Give an overview of the DMA request /acknowledge handshake sequence.

43. What must be loaded into the DMA page registers to implement DMA operation as
follows: channel 1 DMA memory address range A000016 through AFFFF16, channel
2 DMA address range B000016 through BFFFF16, and channel 3 DMA address range
C000016 through CFFFF16? Write an instruction sequence to initialize the 74LS670
device.

Section 7
44. What is the frequency of the timer interrupt produced by the 8253 timer? The refresh

request signal?

45. What is the divisor loaded into counter 1?

46. Give an overview of how timer 2 is used to drive the speaker.

47. Draw the waveform of the signal applied to the speaker if the signal at OUT 2 is a
square waveform of 3 kHz and SPKR DATA is a square waveform of 100 Hz.

Section 8
48. Write an instruction sequence to read SW1 through the 8255A in Fig. 9.

49. What is the function of signal KBD IRQ?

50. Write a simple keyboard interrupt service routine.

Section 9
51. What is the purpose of the I /O channel slots in the system processor board? How

many are provided?

52. Which I /O channel connector pin is used to supply the signal I /O CH RDY to the
system processor board? Is it active low or active high?

Section 1
1. System address bus, system data bus, and system control bus.

3. 060H, 061H, 062H, and 063H.

5. Timer 0—to keep track of the time of the day, generate an interrupt to the micro-
processor every 55 ms.

Timer 1—to produce a DMA request every 15.12 �s to initiate a refresh cycle of
DRAM.

Timer 2—has multiple functions, such as to generate programmable tones for the
speaker and a record tone for the cassette.

ANSWERS TO SELECTED REVIEW PROBLEMS▲

695

7. PA0 through PA7 and PC0 through PC3.

9. Port B (PB1).

11. Printer

13. 384Kbytes.

Section 2
15. 4.77 MHz.

17. Pin 21.

19. Logic 0 at means wait states are required. Logic 0 at
means data are ready and CPU can complete the cycle, thus wait states are not
required.

21. 74LS373 latches and 74LS245 bus transceiver.

23. and .

Section 3
25. I/O channel cards; 0.

27. When a DMA request (DRQ0 through DRQ3) goes active (logic 1), 8237A outputs
logic 0 at . This signal is input to NAND gate U52 in the wait state logic
circuit and causes logic 1 at its output. This output drives the CLR input of 74LS74
flip-flop U67, which produces HOLDA, and releases the cleared flip-flop for oper-
ation. The output of NAND gate U52 is also used as an input to NAND gate U5.
When the 8088 outputs the status code (passive state) and

, the output of U5 switches to 0. This output is inverted to logic 1 at pin
8 of U83.

On the next pulse at CLK, the logic 1 applied to input D3 of flip-flop U98 is latched
at output Q3. Next, this output is latched into the 74LS74 flip-flop U67 synchronously
with a pulse at CLK88 to make HOLDA logic 1. HOLDA is sent to the HLDA input
of 8237A and signals that the 8088 has given up control of the system bus.

29. MOV AL, 80H ;Disable NMI
OUT 0A0H, AL

31. Since the signals PCK and I/O CH CK are connected to PC7 and PC6 of the 8255A,
respectively, the 8088 can read port C to determine which NMI source is requesting
service.

PC7 PC6 NMI source

0 0 N P NPI
0 1 I/O CH CK
1 0 PCK

Section 4
33. DMA controller chip select (), interrupt controller chip select (), inter-

val timer chip select (), and parallel peripheral interface chip select ().

35. Expressing the address in binary form, we get

�11111010000000000000
A19A18A17A16A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1A0

PPI CST/C CS
INTR CSDMA CS

LOCK � 1
S2S1S0 � 111

HRQ DMA

MEMW � pin 8MEMR � pin 7

RDY/WAITDMA WAIT

Hardware of the Original IBM PC Microcomputer

696

As the address FA000H is applied at the input of the ROM address decoder circuitry,
address bits A16 through A19, which are all 1, drive the inputs of NAND gate U64.
This input condition makes the output at pin 6 becomes logic 0.
This signal, along with (logic 0) and (logic 1), enables the
74LS138 three-line-to-eight-line decoder U46. The inputs of this decoder are

. Therefore, output switches to its active 0 level. enables
EPROM XU31 in the ROM array, and the signal controls the data
direction through the 74LS245 bus transceiver U13.

37. .

Section 5
39. For the address F400016 we have , , and the rest of

the address bits are 0. Since , is at its
active 0 logic level. This output enables the 74LS138 decoder, U46. Since

, is active. selects XU28 in the ROM array and data are
read from the first storage location of the EPROM chip. Also,
directs the data from ROM to the 8088 via the 74LS245 bus transceiver U13.

Section 6
41. DMA requests for channels 1, 2, and 3 are the I/O channel devices (boards plugged

into the I/O channel).
43. DMA Page Register Contents

1 0AH
2 0BH
3 0CH

Instruction sequence:
MOV AL, 0AH ;Init. channel 1 page register
OUT 81H, AL
MOV AL, 0BH ;Init. channel 2 page register
OUT 82H, AL
MOV AL, 0CH ;Init. channel 3 page register
OUT 83H, AL

Section 7
45. .

Section 8
49. KBD IRQ is an output that is used as an interrupt to the MPU and, when active, it

signals that a keyscan code needs to be read.

Section 9
51. I/O channel slots provide the system interface to add-on cards. Five 62-pin card slots

are provided on the system board.

Counter 1 divisor � 1.1 M/18.2 � 60,440

ROM ADDR SEL
CS2CS2A15A14A13 � 010

ROM ADDR SELA16 through A19 � 1111
A14 � 1A16 through A19 � 1111

RAS1

ROM ADDR SEL
CS5CS5A15A14A13 � 101

RESET DRVXMEMR
ROM ADDR SEL

Hardware of the Original IBM PC Microcomputer

697

This page intentionally left blank

PC Bus Interfacing, Circuit
Construction, Testing,
and Troubleshooting

▲ INTRODUCTION

In this chapter, we study microcomputer electronics with circuits built using the PC’s I/O
channel bus signals. This study includes the analysis, design, building, testing, and trou-
bleshooting of a variety of bus interface, input/output, and peripheral circuits. The fol-
lowing subjects are covered in this chapter:

1 PC Bus-Based Interfacing

2 The PC�LAB Laboratory Test Unit

3 Experimenting with the On-Board Circuitry of the PC�LAB

4 Building, Testing, and Troubleshooting Interface Circuits

5 Observing Microcomputer Bus Activity with a Digital Logic Analyzer

▲ 1 PC BUS-BASED INTERFACING

In this section, we examine some of the hardware that can be used to experiment with
external circuitry in the PC bus-based laboratory environment. That is, we will now work
with circuitry that is not already available as part of the PC’s main processor board;
instead, the circuits will be constructed external to the PC. This includes prebuilt circuits
readily available on PC add-on boards, such as a serial communication interface, a paral-
lel I/O expansion module, an analog-to-digital (A-to-D) converter, and a digital-to-analog

From Chapter 13 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

699

Figure 1 (a) Breadboard card. (b) Solderless breadboard card.

(D-to-A) converter, or custom circuits that are hand-built on special prototyping boards.
We call an experimental circuit that is built to test out a function a prototype.

The I/O channel expansion bus is where additional circuits are added into the PC’s
microcomputer. A variety of methods can be used to implement these circuits. That is, a
wide range of hardware is available for building experimental circuits. Figures 1(a) and
(b) show two examples. These cards are known as breadboards—that is, a card meant for
prototyping circuits. The breadboard card in Fig. 1(a) requires the circuit to be con-
structed on the board by inserting the leads of the devices through the holes; then the
leads of the devices are soldered to permanently connect them. Similar boards are avail-
able where the devices are interconnected by wire wrapping instead of with solder. On the
other hand, the module shown in Fig. 1(b) is what is known as a solderless breadboard.
Here the components are plugged in and interconnected with jumper wires. Therefore, it
is more practical in that the breadboard can be reused many times.

Prototyping modules are plugged directly into the PC’s bus slots. However, this
does not permit easy access to the circuits on the board for testing. One solution to this
problem is the board-extender card shown in Fig. 2. The board extender is plugged into
the slot in the PC’s main processor board, and the card with the experimental circuitry is
plugged into the top of the extender card. In this way, the circuitry to be tested becomes
more accessible because it is located above the PC’s case.

The PC add-on prototyping cards we just discussed are widely used in industry;
however, they require the PC’s cover to be left off and the testing of circuits to take place
in close contact to the other circuitry within the PC. In an educational environment, it is
beneficial to have the complete experimental environment external to the PC. Moving the
breadboard outside permits easier access to the circuits for testing and modification and
limits the risk of damage to the PC.

(a)

700

Figure 1 (continued)

(b)

701

The PC�LAB shown in Fig.3 implements this type of laboratory environment. It
is a bench-top laboratory test unit. The illustration in Fig. 4 shows that the PC�LAB uses
a bus interface module that is installed inside the PC. This interface board buffers all the
bus signals. Cables carry the signals of the I/O channel expansion bus over to the PC��
LAB breadboard unit. If the PC�LAB is installed on a PC/AT compatible microcom-
puter, the signals of the complete ISA bus are available for use in breadboarding circuits.
This unit has a large solderless breadboarding area for easy construction of circuits and
connectors of a single I/O channel slot (ISA slot when installed on a PC/AT) for using
prebuilt add-on boards. This type of system offers a better solution for an educational
microcomputer laboratory and will be used here for discussion.

▲ 2 THE PCµLAB LABORATORY TEST UNIT

In the previous section we showed how the PC�LAB attaches to the personal computer.
Here we examine the features it offers for experimentation in the laboratory. Earlier we
indicated that it has a breadboard area for building circuitry and an I/O channel slot for
plugging in a prebuilt board. It also has basic I/O devices such as switches, LEDs, a
speaker, and some internal I/O interface circuitry. This built-in I/O circuitry permits
exploration of simple parallel I/O techniques, such as reading switches as inputs, lighting
LEDs as outputs, polling a switch input, and generating tones at the speaker, without hav-
ing to build any circuitry.

Figure 2 Extender card.

702

The layout of the PC�LAB is shown in detail in Fig. 5. We will begin by identify-
ing the input /output devices. On the right side we find both a block of eight switches,
labeled 0 through 7, and a row of eight red LEDs, 0 through 7. The switches can be used
to supply inputs, and the LEDs can be used to produce outputs for either the built-in cir-
cuits or circuitry constructed on the breadboard area. The INT/EXT switch determines

Figure 3 PC�LAB. (Reprinted with the permission of Microcomputer
Directions Inc. P.O. Box 15127, Fremont, CA 94539)

Figure 4 PC�LAB system
configuration.

703

the use of these I/O devices. When it is in the INT (internal) position, they are connected
directly to the on-board circuits. However, moving the switch to the EXT (external) posi-
tion makes them available for connection to circuits implemented on the breadboard area.

All the signals of the PC’s I/O channel expansion bus are made available at the con-
nectors at the top of the front panel. Here we find that the signals are supplied at the PC
slot and a receptacle connector. The slot is the connectors into which prebuilt boards are
inserted. Figure 6 shows the PC�LAB with an add-on card inserted for testing. The
receptacle connector is provided to permit connection of the bus signals to circuits built
on the breadboard. For ease of use, mnemonics for all signals are labeled next to the con-
nector. The table in Fig. 7 identifies the signal name for each of these mnemonics and
whether it is an input or output. Remember that when the PC�LAB is attached to a
PC/AT compatible microcomputer, the signals for the complete ISA bus are available.
The signals listed at C and D pins in Fig. 7 are only active when the PC�LAB is installed
on a PC/AT to implement an ISA bus environment. Those at A and B pins are active for
both the I/O channel bus of the PC and ISA bus of the PC/AT.

Figure 5 PC�LAB layout. (Reprinted with the permission of Microcomputer
Directions Inc. P.O. Box 15127, Fremont, CA 94539)

704

Let us next look at the breadboarding area. This area permits the experimenter to
build and test custom circuits. Figure 8 shows a circuit constructed on the breadboard area
of the PC�LAB.

Looking at Fig. 5, we see that the breadboard area is implemented with two solder-
less breadboards. For this reason, it permits installation of two rows of ICs. A drawing of
the electrical connection of the wire insertion clips is shown in the PC�LAB circuit lay-
out master of Fig. 9. Notice that the column of five vertical clips from a device pin is
internally attached. One is used up when the IC is inserted and the other four are for use
in making jumper wire connections to other circuits. The jumpers must be made with the
appropriate rated wire (26 AWG—American wire gauge).

At both the top and bottom of the board are two horizontal rows of attached wire
insertion clips. These four rows of clips are provided for power supply distribution. Two
rows are intended to implement the �5V power supply bus, and the other two are used as
the common ground bus. The power supply for the circuit can be picked up with jumpers
from the I/O channel connector (ISA bus connector) or at the separate power supply ter-
minal strip. Notice in Fig. 7 that �5 V is available at contacts B3 and B29 of the I/O chan-
nel connectors.

Figure 6 PC�LAB with add-on card. (Reprinted with the permission of
Microcomputer Directions Inc. P.O. Box 15127, Fremont, CA 94539)

705

Pin

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31

Name

I/O CH CK
D7
D6
D5
D4
D3
D2
D1
D0

I/O CH RDY
AEN
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

Type

I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Pin

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

Name

GND
RESET DRV

+5 V
IRQ2
–5 V

DRQ2
–12 V

RESERVED
+12 V
GND

SMEMW
SMEMR

IOW
IOR

DACK3
DRQ3
DACK1
DRQ1

REFRESH
CLOCK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3

DACK2
T/C
ALE
+5 V
OSC
GND

Type

O

I

I

O
O
O
O
O
I
O
I
O
O
I
I
I
I
I
O
O
O

O

Pin

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18

Name

SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17

MEMR
MEMW
SD08
SD09
SD10
SD11
SD12
SD13
SD14
SD15

Type

O
O
O
O
O
O
O
O
O
O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Pin

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18

Name

MEM CS 16
IO CS 16

IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
DACK0
DRQ0
DACK5
DRQ5
DACK6
DRQ6
DACK7
DRQ7
+5 V

MASTER
GND

Type

I
I
I
I
I
I
I
O
I
O
I
O
I
O
I

I

Figure 7 ISA bus interface signals.

706

EXAMPLE 1

Which contacts of the I/O channel interface connectors can be used as ground points?

Solution

Figure 7 shows that ground (GND) is provided by contacts B1, B10, and B31 of the I/O
channel interface connectors.

Earlier we pointed out that the switches, LEDs, and speaker supply inputs and
outputs for the on-board circuitry and can also be connected to circuits built on the bread-
board. In both cases, I/O addresses are output over the address bus part of the I/O chan-
nel interface, A0 through A15, and data are input or output over the data bus lines, D0

through D15.

Figure 8 Breadboard circuit. (Reprinted with the permission of Microcomputer
Directions Inc. P.O. Box 15127, Fremont, CA 94539)

707

IOCHK/
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0
IOCHRDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0

GND
RESET

+5V
IRQ2
–5V

DRQ2
–12V

NC
+12V
GND

MEMW/
MEMR/

IOW/
IOR/

DACK3/
DRQ3

DACK1/
DRQ1

REFRESH/
CLOCK

IRQ7
IRQ6
IRQ5
IRQ4
IRQ3

DACK2/
TC

ALE
+5V

OSC
GND

SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17
MEMR/
MEMW/
SD8
SD9
SD10
SD11
SD12
SD13
SD14
SD15

MEMCS16/
IOCS16/

IRQ10
IRQ11
IRQ12
IRQ13
IRQ14

DACK0/
DRQ0

DACK5/
DRQ5

DACK6/
DRQ6

DACK7/
DRQ7

+5V
MASTER/

GND

7 6 5 4 3 2 1 0

J7

SWs Outputs

7 6 5 4 3 2 1 0

J6

LEDs Ext Input

7

6

5

4

3

2

1

0

LE
D

 P
or

t
(3

1E
)

S
W

 P
or

t
(3

1D
)

S1

7
6

5
4

3
2

1
0

S
W

318
319
31A
31B
31C

J5

D
ev

ic
e

S
el

ec
ts

S
2

E
X

T

IN
T

S
pk

r
po

rt
(3

1F
)

J8

Spkr In

J3

+5V

L
o

g
ic

 P
ro

b
e

J4

GND

C
o

n
t

Te
st

H

L
H

iZ

P

Figure 9 Circuit layout master. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539)

708

EXAMPLE 2

At what contacts of the I/O channel connector are data bus lines D0 through D7 available?

Solution

Figure 7 shows that the data bus lines are supplied at contact A2 through A9 of the con-
nector.

The PC�LAB also has built-in circuit test capability. It has both a continuity tester
and a logic probe. Looking at Fig. 5, we see that the probes for the continuity tester are
inserted into the female connectors identified as CT. The continuity tester is useful for
debugging circuit connections—that is, it can be used to verify whether or not two points
of a circuit are wired together. This is done by attaching one of the probes to the first
point in the circuit and then touching the other probe to the second point. If they are con-
nected, the buzzer sounds. Care must be taken to assure that the power is not applied to
the circuit under test while continuity tests are being made; otherwise, the tester circuits
may be damaged.

The purpose of the logic probe is not to verify circuit connections; instead, it is used
to determine the logic level of signals at various test points in a circuit. The probe used to
input the signal from the circuit is inserted into the LP connector. Then, the probe is
touched to the test point in the circuit. Based on the logic level of this signal, the red,
green, or amber LED lights. Here red stands for logic 1, green is logic 0, and amber is the
high-Z state. The table in Fig. 10 shows the voltage levels corresponding to these three
states. The second red LED, marked P, identifies that the signal at the test point is puls-
ing. By pulsing, we mean a signal, such as a square wave, that is repeatedly switching
back and forth between the 0 and 1 logic levels.

▲ 3 EXPERIMENTING WITH THE ON-BOARD CIRCUITRY
OF THE PCµLAB

The on-board circuitry of the PC�LAB implements simple parallel input/output inter-
faces. Having this circuitry built into the experimental board allows us to examine some
basic I/O techniques without having to take the time to construct the circuitry. These
interface circuits provide users with the ability to input the settings of the switches, light
the LEDs, or sound a tone at the speaker. Earlier we pointed out that this circuitry
becomes active when the INT/EXT switch is set to the INT position. In this section, we
describe the design and operation of the internal (on-board) circuits. The operation of
these circuits is illustrated using several input and output examples.

Figure 10 Logic state voltage levels.

709

I/O Address Decoding

Let us begin our study of the on-board circuitry with the address decoder circuit
shown in Fig. 11(a). Here we find that a 74LS688 parity generator/checker IC (U10), a
74LS138 3-line to 8-line decoder IC (U11), and a 74LS32 quad-OR gate IC (U12) per-
form the address decode function. They accept as inputs address bits A0 through A9 and
the address-enable (AEN) control signal. These inputs are directly picked up from the
I/O channel connector of the ISA expansion bus. As Fig. 11(b) shows, they correspond
to the signals available at contacts A22 through A30 and A11 of the on-board ISA bus con-
nector.

At the other side of the circuit, we find three I/O-select outputs. They are labeled
, , and and stand for I/O read address X31DH, I/O write

address X31EH, and I/O write address X31FH, respectively. These signals are used to
select between the on-board I/O devices: switches, LEDs, or speaker. For instance, Fig.
11(c) shows that output is used to enable input of the state of the switch set-
tings.

Figure 11(b) shows that the address bits available at the I/O channel connectors of
the ISA bus interface are A0 through A23. However, just the lower 16 address lines A0

through A15 are used in I/O addressing, and many of these address bits are not used in the
on-board address decoder circuit. For this reason, the unused address bits are considered
don’t-care states. Therefore, the decoded address is

Since many address bits are don’t-care states, the outputs of the decoder do not corre-
spond to unique addresses. Instead, a large number of I/O addresses decode to produce
each chip select output.

Next we will look at how the higher-order address bits are decoded by the 74LS688
comparator. Looking at Fig. 11(a), we see that inputs P0 through P7 of the comparator are
supplied by address signals A3 through A9 and AEN. This gives

On the other hand, the Q inputs are set at fixed logic levels and represent

The circuit within the 74LS688 compares the address information at the P inputs to the
fixed code at the Q inputs, and if they are equal, it switches the output to logic 0.
This means that the address on the bus corresponds to an on-board I/O device. This out-
put is applied to the G2A input of the 74LS138 decoder and enables it for operation. In
this way, we see that all addresses with

map to the PC�LAB’s on-board I/O address space.

A15 . . . A0 � XXXXXX1100011A2A1A0 along with AEN � 0

P � Q

Q7Q6 . . . Q0 � 011000112

P7P6 . . . P0 � AENA9A8A7A6A5A4A3

A15 . . . A0 � XXXXXXA9A8A7A6A5A4A3A2A1A0

IORX31D

IOWX31FIOWX31EIORX31D

710

Figure 11 (a) Address decoder circuit. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539) (b) ISA bus interface
signals. (c) Output signals.

711

A1 B1 GND
D7 A2 B2 RESET DRV
D6 A3 B3 +5 V
D5 A4 B4 IRQ2
D4 A5 B5 –5 V
D3 A6 B6 DRQ2
D2 A7 B7 –12 V
D1 A8 B8 RESERVED
D0 A9 B9 +12 V

I/O CH RDY A10 B10 GND
AEN A11 B11
A19 A12 B12
A18 A13 B13
A17 A14 B14
A16 A15 B15
A15 A16 B16 DRQ3
A14 A17 B17
A13 A18 B18 DRQ1
A12 A19 B19
A11 A20 B20 CLOCK
A10 A21 B21 IRQ7
A9 A22 B22 IRQ6
A8 A23 B23 IRQ5
A7 A24 B24 IRQ4
A6 A25 B25 IRQ3
A5 A26 B26
A4 A27 B27 T/C
A3 A28 B25 ALE
A2 A29 B29 +5 V
A1 A30 B30 OSC
A0 A31 B31 GND

C1 D1
LA23 C2 D2
LA22 C3 D3 IRQ10
LA21 C4 D4 IRQ11
LA20 C5 D5 IRQ12
LA19 C6 D6 IRQ13
LA18 C7 D7 IRQ14
LA17 C8 D8

C9 D9 DRQ0
C10 D10

SD08 C11 D11 DRQ5
SD09 C12 D12
SD10 C13 D13 DRQ6
SD11 C14 D14
SD12 C15 D15 DRQ7
SD13 C16 D16 +5 V
SD14 C17 D17
SD15 C18 D18 GND

MASTER

DACK7

DACK6

DACK5MEMW
MEMR

DACK0

IO CS16
MEM CS16SBHE

DACK2

REFRESH

DACK1

DACK3
IOR
IOW

SMEMR
SMEMW

I/O CH CK

IORX31D

IOWX31E

IOWX31F

I/O device

Switches

LEDs

Speaker

Type

Input

Output

Output

Device-Select Signal Address

031DH

031EH

031FH

(c)

Figure 11 (continued)

(b)

712

Once the 74LS138 decoder is enabled, the code on address lines A0 through A2 is
used to produce the appropriate output. The circuit diagram in Fig. 11(a) shows that the
codes that produce the enable signals for the switches, LEDs, and speaker are

This results in the device addresses as listed in Fig. 11(c). For example, reading of the
switches is enabled by any address that is of the form

.

Some examples of valid addresses are 031D16, F31D16, FF1D16, and 0F1D16. All these
addresses make the Y5 output of the decoder circuit switch to logic 0. Notice that this out-
put is gated with the I/O channel expansion bus signal by OR gate U12A. In this way,
the output can be active only during input (I/O read) bus cycles.

EXAMPLE 3

Which output chip select does the I/O address F71F16 produce when applied to the input
of the circuit in Fig. 11(a)? What type of bus cycle must be in progress to produce this
chip-select output?

Solution

First the address expressed in binary form is

Considering the lower 10 bits, we get

Tracing the circuit, we find that this address-bit combination makes the Y7 output of U11

equal to logic 0. Y7 is gated with bus signal to produce the output.
Therefore, is at its active 0 logic level as long as an output bus cycle is taking
place.

Switch Input Circuit

Figure 12 shows the interface of switches S0 through S7 to the data bus. Note that
one contact from each of the eight switches is connected to ground (0 V). The other
contact on each switch is supplied to one of the resistors in resistor pack R20, and the
other end of each resistor connects to Vcc (�5 V). The connections between the resistors

IOWX31F
IOWX31FIOW

A9 . . . A0 � 11000111112 � 31F16

F71F16 � 11110111000111112

IORX31D
IOR

A15 . . . A0 � XXXXXX11000111012 provided AEN � 0

A2A1A0 � 1112 and active IOW produces IOWX31F

A2A1A0 � 1102 and active IOW produces IOWX31E

A2A1A0 � 1012 and active IOR produces IORX31D

713

and the switch contacts are supplied as inputs to the data bus through the 74LS240 invert-
ing buffers of IC U16. For instance, S0 is supplied from input A4 of buffer U16A to output
Y4 and onto data bus line D0. Similarly, the state of switch 7 is passed through the inverter
at input A1 of U16B to data bus line D7. Because inverting buffers are used in the circuit,
logic 0 is applied to the data bus whenever a switch is open, and logic 1 is put on the data
bus if a switch is closed.

The circuit diagram shows that the switch input buffer is enabled by the signal
. Earlier we showed that this signal is at its active 0 logic level whenever an

input bus cycle is performed to address 031D16. But, remember that the complete I/O
address is not decoded; therefore, many other addresses also decode to enable this buffer.

The state of the switches can be read with an INPUT command. For instance, the
DEBUG command

I 31D (↵)

causes the settings of all eight switches to be displayed as a hexadecimal byte. In this
byte, the most significant bit represents the S7 state and the least significant bit S0.
Remember that a bit at logic 1 means a closed switch and logic 0 an open switch.

IORX31D

Figure 12 Switch input interface circuit. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539)

IORX31D

714

Let us now look at how to read the status of the switches into the accumulator of
the MPU. This is done by simply executing an IN instruction. Therefore, after executing
the instruction sequence

MOV DX, 31DH
IN AL, DX

the switch setting is held in AL.
In practical applications, it is common to want to determine the setting of a single

switch. Additional processing of the byte in AL does this. For instance, to find the setting
of S7, we can use the instruction

AND AL, 80H

Execution of this instruction ANDs the contents of AL with the value 8016. Therefore, the
result in AL will be 100000002 if switch 7 is closed or 000000002 if it is open. That is,
the zero flag (ZF) is 1 if S7 is open and 0 if it is closed.

EXAMPLE 4

Write a program that polls S0 waiting for it to be closed. Use a shift instruction to isolate
and determine the setting of switch 0. Use a valid address other than 31D16 to read the
setting of the switches.

Solution

The settings of the switches are input to AL with the instructions

MOV DX, 0FF1DH
POLL: IN AL, DX

Here we have used FF1D16 as the I/O address for the switch port. Now the setting of
switch 0, which is in the bit 0 position, is shifted into the carry flag (CF) with the
instruction

SHR AL, 1

Finally, the setting of the switch is tested for 0 (open) by checking the carry flag with the
instruction

JNC POLL

If CF is 0, the switch is open and the poll loop is repeated. But if the switch is closed, CF
is 1, the poll loop is complete, and the instruction following JNC is executed.

715

LED Output Circuit

Let us next look at the output circuit that drives the LEDs. Figure 13 shows the
drive circuitry for LEDs 0 through 7. Here we see that the anode side of the individual
LEDs are all connected in parallel and supplied by �5 V. On the other hand, the cathode
sides of the LEDs are wired through separate resistors of resistor pack R19 to the outputs
of the 74LS240 LED drive buffer (U14). For example, the cathode of LED 0 connects
through the uppermost 330-� resistor to the Y1 output of IC U14A. The inputs to the
inverting buffer are supplied by the outputs of the 74LS374 LED port latch (U13).

To light an LED, an output bus cycle must be performed to load logic 1 into the cor-
responding bit of the LED port latch. As identified earlier, the I/O address accompanying
this data and must decode to produce logic 0 at . Note that this signal is
used to clock the data on data bus lines D0 through D7 into the 74LS374 latch. The
74LS240 buffer inverts the bits at the output of this latch. Logic 0 at any output of the
buffer provides a path to ground for the corresponding LED, and thus turns it on.

To try out the LEDs on the PC�LAB, we can turn them all on by issuing a single
OUT command from DEBUG:

O 31E FF (↵)

They can be turned off with the command

O 31E 00 (↵)

EXAMPLE 5

Write a program that blinks LED 7 on the LED port of the PC�LAB.

Solution

To turn on LED 7, 8016 must be output to the LED port latch, and it is turned off by out-
putting 0016. Therefore, we begin with the instructions

MOV DX, 31EH
MOV AL, 80H

ON_OFF: OUT DX, AL

Next we need to delay for a period of time before turning the LED off. To do this,
a count is loaded into CX and a time delay is implemented using a LOOP instruction.

MOV CX, 0FFFFH
HERE: LOOP HERE

The duration of the time delay can be adjusted by simply changing the value loaded
into CX.

IOWX31EIOW

716

Figure 13 LED output interface circuit. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539)

717

After the time delay has elapsed, the value in bit 7 of AL is inverted with the
instruction

XOR AL, 80H

The new contents of AL equal 0016. This value will cause LED 7 to turn off. Finally, a
JMP instruction returns program control to ON_OFF.

JMP ON_OFF

and the loop repeats. Figure 14 illustrates the complete program.

Speaker-Drive Circuit

The speaker-drive circuit of Fig. 15 is an output interface. It is implemented with
74LS74 data latch device, U9, and the 75477 speaker driver, U5. The tone to be sounded
at the speaker can be generated under software control.

Figure 14 LED blink program.

SD0
2

3

5 7

EXT

INT

7474 75477

D1 2A 2Y
S2Q1

PR

VCC

VCC

VCC

CLR

U9A U54

1

C1

6

R1633Ω

0.1μf

S
5

C

I0WX31F CLK
SPKR

Figure 15 Speaker-drive circuit. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539)

718

Let us begin by studying how a tone signal can be generated by the MPU and sent
to the speaker. Applying a square wave to the speaker produces a tone. This signal is out-
put over data bus line D0 to the D1 input at pin 2 of U9A. Looking at the circuit diagram,
we find that the tone is passed from the Q1 output at pin 5 of U9 through the EXT/INT
switch to the 2A input at pin 7 of U5. It is then output at pin 6 (2Y) of U5 and sent through
resistor R16 to the speaker. The other end of the speaker’s coil is connected to �Vcc.

The square wave can be generated with a program similar to the one we used to
blink LED 7. However, the data is output on data bus line D0 rather than D7, and it must
be accompanied by address 31F16 instead of 31E16. This gives the program

MOV DX, 31FH
MOV AL, 01H

ON_OFF: OUT DX, AL
MOV CX, 0FFFFH

HERE: LOOP HERE
XOR AL, 01H
JMP ON_OFF

Varying the frequency of the square wave can change the pitch of the tone. Adjusting the
duration of the time delay does this—that is, changing the count that is loaded into CX.
The lower the count, the higher is the pitch.

▲ 4 BUILDING, TESTING, AND TROUBLESHOOTING
INTERFACE CIRCUITS

In the previous section, we examined the on-board circuits of the PC�LAB. Here we turn
our attention to circuits that can be built on the breadboard area of the PC�LAB. First, we
look at how circuits are constructed, then we consider how their operation is tested, and
finally, we explore troubleshooting techniques that can be used if the circuit does not work.

Building a Circuit

Earlier we showed that the breadboard area is where custom circuits can be built and
that it allows for mounting two rows of ICs. Assuming that a schematic diagram of the cir-
cuit to be built is already available, the first step in the process of building the circuit is to
make a layout diagram to show how the circuit will be constructed on the breadboard. This
drawing can be made on a circuit layout master similar to the one shown in Fig. 9.

Figure 16(a) is the diagram for a circuit that implements a parallel output port
to drive LED 0. This is the circuit we will use to illustrate the method used to bread-
board a circuit. Note that the circuit uses a 74LS138 3-line to 8-line decoder, a 7400
quad 2-input NAND gate, and a 74LS374 octal latch. The 74LS240 inverting buffer,
330-� resistor, and LED 0 are supplied by the on-board circuitry of the PC�LAB by
using input 0 of receptacle J6. We begin by marking the IC pin numbers for each of the
inputs and outputs onto the circuit diagram. For instance, from the pin layout of the
74LS138 in Fig. 17, we find that its A, B, and C inputs are at pins 1, 2, and 3, respec-
tively. Moreover, the Y7 output is identified as pin 7. This is done for each IC to give the
circuit shown in Fig. 16(b).

719

Figure 16 (a) LED drive circuit. (Reprinted with the permission of Micro-
computer Directions Inc. P.O. Box 15127, Fremont, CA 94539) (b) Schematic
with pin numbers marked. (Reprinted with the permission of Microcomputer
Directions Inc. P.O. Box 15127, Fremont, CA 94539) (c) Completed layout
master. (Reprinted with the permission of Microcomputer Directions Inc. P.O.
Box 15127, Fremont, CA 94539)

720

Figure 16 (continued)

721

Now we are ready to make the drawing that shows how the circuits will be laid out
on the PC�LAB’s breadboard area. To do this, we simply draw the ICs and pin connec-
tions onto one of the circuit layout masters. Figure 16(c) shows the layout for our test cir-
cuit. Looking at this diagram, we see that �5 V is picked up by inserting a jumper
between connector J3 and one of the power bus lines of the breadboard. Ground is sup-
plied in a similar way, from connector J4 to another power bus line. Then �5 V and GND
are jumpered from IC to IC. For instance, pin 14 of the 7400 is connected to �5 V and
pin 7 to GND. This completes the power distribution for the circuit.

Let us next look at how the inputs and outputs of the circuit are provided. At the out-
put side, a jumper is used to connect the Q0 output of the 74LS374 to the 0 input of con-
nector J6. The data input at pin 3 of the 74LS374 latch is picked up with a jumper to data
bus line D0 at pin A9 of the I/O channel connector of the ISA bus. The output of the
74LS138 decoder (pin 7) that supplies the clock to the latch is jumpered to pin 11 of the
74LS374 IC. Notice that the AEN input is inverted with a NAND gate. Connecting pins 1
and 2 of the 7400 IC and then applying AEN to pin 1 forms the inverter. The inverted out-
put at pin 3 of the 7400 IC is supplied to the G1 input at pin 6 of the 74LS138 decoder IC.

EXAMPLE 6

Use the circuit diagram layout in Fig. 16(c) to identify which pins of the I/O channel con-
nector are used to supply the address signals to the A, B, and C inputs of the 74LS138
decoder.

Figure 17 Pin layouts for the
74LS138, 7400, 74LS374, and
74LS240.

722

Solution

In the circuit diagram, we find that the A, B, and C inputs of the decoder are attached to
address lines A0, A1, and A2, respectively. These signals are picked up at pins A31, A30,
and A29 of the I/O channel connector.

The layout drawing in Fig. 16(c) is our plan for constructing the circuit. This draw-
ing and the schematic diagram marked with pin numbers serve as valuable tools when
testing and troubleshooting circuits. Figure 18 shows the breadboard of this example cir-
cuit.

Testing the Operation of a Circuit

Now that the circuit has been constructed, we are ready to check out its operation.
The process of checking out how an electronic circuit works is called testing. To test a cir-
cuit, we must first know the events that should take place when it is functioning correctly.
Usually this means that it will produce certain outputs. These outputs may be a visual
event, such as lighting an LED; an audible event, such as sounding a tone; a mechanical
event, such as positioning a mechanism; or simply a signal waveshape that can be observed
with an instrument. For instance, the function of our example circuit in Fig. 16(a) is to light
an LED.

To test the operation of our example circuit, we can simply turn on the LED or even
better make it blink. However, to do this, the LED output interface must be driven with
software. In this way, we see that to test microcomputer interface circuits, they must be
driven with software. In fact, they are normally driven by a special piece of software that
is specifically written to exercise the interface. This segment of program is sometimes
referred to as a diagnostic program.

The diagnostic routine does not have to be complex. For instance, to turn on LED
0 in our breadboard circuit, we can simply execute the instructions

MOV DX, 0007H
MOV AL, 01H
OUT DX, AL

Note that the I/O address 000716 along with active and inactive AEN produce an
active low pulse at output Y7 of the decoder. This pulse is used to clock the data into the
octal latch to make the Q0 output become logic 1. A software routine that will blink LED
0 is as follows:

MOV DX, 0007H
MOV AL, 01H

ON_OFF: OUT DX, AL
MOV CX, 0FFFFH

HERE: LOOP HERE
XOR AL, 01H
JMP ON_OFF

IOW

723

The operation of a circuit that produces an electrical output can be tested with
instrumentation. For instance, if the circuit we just constructed did not include an LED at
the output, we would need to observe the signal at the Q0 output (pin 2) of the 74LS374
latch. Accessories, such as IC test clips, are available to provide easy attachment of
instruments to the pins of an IC. Figure 18 shows some IC test clips. This type of clip is
spring loaded and snaps tightly over the top of the IC. Instruments are connected to its
pins instead of to those of the IC. For our example of the 74LS374 IC, a 20-pin IC test
clip would be attached and then the probe of the instrument clipped onto pin 2 at the top
of the test clip.

Various instruments are available to test the electrical signals in a circuit. Figures
19(a), (b), and (c) show three examples, the logic probe, multimeter, and oscilloscope,
respectively. The logic probe is a hand-held instrument that can be used to observe the
logic level at a test point in a microcomputer interface circuit. As we pointed out earlier,
a logic probe is built into the PC�LAB. This instrument has the ability to tell whether the
signal tested is in the 0, 1, or high-Z logic state, or if it is pulsating. The probe is simply
touched to the point in the circuit where the signal is to be observed and the logic level is
signaled by one of the LEDs.

In microcomputer interface circuits, the multimeter is useful for measuring static
voltage levels. For instance, it can be used to verify that �5 V is applied to each of the
ICs. A multimeter can also be used to measure the logic levels at inputs and outputs, but
they must be stable voltages, not pulsating signals. In this case, the meter displays the
amount of voltage at the test point and from this value we can determine whether the sig-
nal is at logic 0, at logic 1, or in the high-Z state.

Figure 18 IC test clips.

724

Most multimeters also have the ability to measure resistance, AC voltage, and AC
and DC current. For instance, it could be used to find the amount of current the circuit
draws from the Vcc supply.

We just mentioned that the logic probe could tell if the signal at a point under test
is pulsating. However, in this case, a better instrument for observing the operation of the
circuit is an oscilloscope (or scope as it is better known). The scope is the most widely
used instrument for observing periodic signals. That is, signals, such as a square wave,
that have a repeating pattern.

The scope displays the exact waveform of the pulsating signal on its screen. This
type of representation gives us much more information. For instance, we can find the
value of the high-voltage (logic 1), the value of the low-voltage (logic 0), how long the
signal is at the 0 and 1 logic levels, and the shape of the signal as it transitions back and
forth between 0 and 1.

(a)

(b) (c)

Figure 19 (a) Logic probe. (b) Digital multimeter. (c) Oscilloscope.

725

Figure 20(a) shows the shape of the signal produced at the Q0 output at pin 2 of the
74LS374 when the diagnostic program that blinks LED 0 is running. The display of the
waveform allows us to measure the period (T) of the square wave and calculate its fre-
quency using

Most scopes have the ability to display several signals on the screen at the same
time—that is, they have several signal channels. The most common scope in use is the
dual-trace scope, which has the ability to display two signals simultaneously. Figure
20(b) shows both the output square-wave and clock input signals of our test circuit. In this
example, the scope has been set up to synchronize the display of the square-wave output,
applied to channel 1, to the clock input at channel 2. For this reason, the waveforms rep-
resent their true relationship in time. Note that a clock pulse is associated with the load-
ing of each logic 0 and logic 1 into the Q0 output of the latch. This mode of operation is
known as using an external sync. That is, the sweep of the scope is initiated by an exter-
nal signal, which in this case is the clock input.

Troubleshooting Microcomputer Interface Circuitry

In the testing of the operation of a circuit, we may find that it does not work. That
is, it does not perform the function for which it was designed. In this case, we must iden-
tify the cause of the malfunction and then correct the problem. The process of finding the
cause of a malfunction is called troubleshooting, and the process of correcting the prob-
lem is known as repair. Here we look at some causes of malfunctions in circuits and then
outline methods that can be used to troubleshoot microcomputer interface circuits.

The cause of problems found in malfunctioning circuits depends on the type of
circuit being tested. In general, electronic circuits fall into several categories. A first
example is a breadboard of a new circuit design. In this case, the circuit may be working
correctly, but not perform the function for which it was designed. That is, the malfunction
may simply be due to the fact that a mistake was made in the design. This may be the
most complicated type of failure to find and resolve.

The breadboard of a circuit we use in our laboratory exercises for this text is a sec-
ond example. Here the circuit is known to operate correctly. For this reason, the most
common causes for a circuit not to work are that a wiring mistake was made when the
breadboard was built, or the software that was written to exercise the hardware has a bug.

A third example is a circuit in an existing electronic system, such as the PC, that
has failed. In this case, we know that the system worked correctly in the past, but now
malfunctions. Therefore, the cause of the problem may not be a mistake in the design, a
wiring error, or incorrect software; instead, it is likely due to the failure of a component.

The final example is a circuit board, such as the main processor board of the PC that
has just been built on a manufacturing line. Here a wide variety of potential causes exits
for the malfunction. For instance, a lead of a component may not be correctly soldered, a
lead of a device may be short-circuited to a pin on another device with excess solder, the
wrong component may have been inserted, or a component may have been installed in
reverse orientation.

f � 1/T

726

(a)

(b)

Figure 20 (a) Q0 output waveform. (b) Clock input and square wave output.

727

Thus, there are many causes for a circuit to malfunction. In fact, most of the causes
we just stated can affect any of the circuits. For instance, a short circuit could occur
between the pins of two devices on the PC’s main processor board. This short may have
been accidentally created when the system was opened to install an interface board,
change the system-configuration DIP switches, or replace another failing subsystem, such
as a disk drive. As another example, it is also possible that a bad IC gets installed when
building a breadboard of a circuit or even during the manufacturing of a printed circuit
board. Finally, an open circuit may occur in a copper trace on the main processor circuit
board of the PC, even though the board had been working correctly for a long time. For
instance, using too much force when inserting an interface board into the expansion bus
connector may have made a crack.

Having looked at some of the causes of circuit failures, let us continue by explor-
ing troubleshooting methods. We assume that the circuit is known to have worked previ-
ously. This would be the case in troubleshooting a circuit built for one of our laboratory
exercises or when repairing an electronic system such as a PC. We will begin with a gen-
eral procedure that can be used to troubleshoot microcomputer interface circuits.

Figure 21 shows a general flowchart for testing and troubleshooting a microcom-
puter interface circuit. Here we will assume that a circuit breadboard and diagnostic soft-
ware exist. Therefore, the first step is to test the operation of the interface. This is done
by exercising the hardware by running the program and observing its operation visually
or with instrumentation. If the hardware correctly performs its intended operation, the
flowchart’s Y path shows that we are done. On the other hand, if it does not work, the N
path is taken. That is, we need to troubleshoot the circuit. It is important to remember
that circuits may not work due to problems in software or hardware or both software and
hardware.

Figure 21 shows that the first step in the troubleshooting part of the process is to
identify and describe the symptoms of the failure. It is important to make a clear and con-
cise description of the problem before beginning to examine the software or hardware.
For example, in the case of the test circuit in Fig. 16(a), running the diagnostic program
blinks LED 0. The failure symptom may be that the LED just remains off or it may turn
on, but not blink.

Now we must decide whether or not software can be ruled out as a cause of the
problem. For example, in a laboratory exercise where the program is given, software
should not be the cause of the malfunction. Also, in the case of an application program
running on a PC, which is known to have no bugs, software may be ruled out. In cases
where correct software operation cannot be assumed, the operation of the program should
be analyzed before testing the circuitry. That is, as shown in Fig. 21, software debugging
is the next step. If the program is found to be correct, the N path is followed in the flow-
chart and then hardware troubleshooting begins.

When bugs are found in the program, they must be corrected; then the Y path is
taken. Here we see that the interface circuit is retested to verify whether the software fixes
make it work correctly. If the interface circuit does operate correctly, troubleshooting is
complete.

Let us assume that the interface still does not function correctly. Then Fig. 21 shows
that hardware troubleshooting must begin. After the hardware problems are identified and
corrected, the interface circuit is once again tested.

728

Figure 21 General test/troubleshoot flowchart.

729

Now that we have covered the general test and troubleshooting procedure, we con-
tinue by looking more closely at the software-debug part of the process. The flowchart in
Fig. 22 identifies the steps in the software-debug process. Note that first the programming
of any VLSI peripheral ICs in the circuit must be verified to be correct. The programming
sequence and command values can be reviewed if they are programmed as part of the pro-
gram. In fact, software can be added to read back the contents of the registers (if possi-
ble) after programming to verify that they have been updated. Our example circuit in Fig.
16(a) has no peripheral ICs, so this step is not required.

Next, the addresses corresponding to I/O devices or memory locations and data that
are to be transferred over the bus must be checked. This will verify that the correct data
are transferred and that they will go to the correct place in the circuit. In the square-wave
program we wrote earlier to blink LED 0, the address of the LED latch, 000716, is loaded
into DX and the initial data to be output to the latch, 0116, are loaded into AL. Both of
these values are correct for the circuit under test.

Figure 22 Software-debug flowchart.

730

Finally, the flowchart in Fig. 22 shows that the last step in the software-debug
process is to check the algorithm and its software implementation. This can be done by
rechecking the flowchart to confirm that it provides a valid solution to the problem, and
then comparing the instruction sequence against the flowchart to assure that it imple-
ments this algorithm. The algorithm is next desk checked. That is, the operations of the
instructions of the program are traced through to verify correct operation for a known
test case.

If software is not the cause of the problem, attention must be turned to the hardware.
Figure 23 outlines a general hardware-troubleshooting procedure. For now we will assume
that the circuit undergoing troubleshooting is a breadboard built on the PC�LAB.

Figure 23 Hardware-debug
flowchart.

731

The first step identified in the flowchart is to make a thorough visual inspection of
the circuit to assure that it is correctly constructed. This includes verifying that the correct
IC pin numbers are marked into the schematic diagram, the circuit diagram layout does
correctly implement the circuit in the schematic, and that all jumper connections are con-
sistent with those identified in the layout diagram. Second, the mechanical connections of
the circuit should be checked to verify that they make good electrical connections—that is,
that the pins of the ICs are making contact with the contacts of the solderless breadboard
and that the wire connections provide continuity between the pins of the various ICs. The
continuity tester of the PC�LAB can be used to check out these connections.

If the circuit connections are correct, the flowchart shows that the next step is to
check out the power supply. That is, we should verify that �5 V is applied between the
Vcc and GND pins of each IC. Here we are normally interested in knowing the exact
amount of voltage. For this reason, the voltage measurements are usually taken with a
multimeter. Since the �Vcc supply of TTL ICs is rated at �5 V ±5%, power supply mea-
surements between �5.25 V and �4.75 V are satisfactory.

After the circuit connections and power supply have been ruled out as the source of
the malfunction, we are ready to begin checking the operation of the circuit. To be suc-
cessful at this, we must understand the operation, signal flow through the circuit, and
wave shapes expected at select test points. Typically, operation is traced by observing sig-
nals starting from the output and working back toward the input in an attempt to identify
the point in the circuit up to which correct signals exist. For instance, in our breadboard
circuit, we can begin by examining the waveform applied to the LED with an oscillo-
scope. This spot is identified as test point 1 (TP1) in the schematic shown in Fig. 24 and
corresponds to pin 8 of resistor pack R19. Assuming a symmetrical square wave is not
observed, the probe of the scope can be moved to pin 18 of the 74LS240 IC, test point 2
(TP2). If a square wave is not present there either, the next test point should be the input
of the inverter at pin 2 of the 74LS240 (TP3). Assuming that the square-wave signal is
again not found, the output at pin 2 of the 74LS374 data latch, TP4, should be checked.
This completes tracing of the data path from LED 0 to the data bus.

If a square wave is not observed at any test point in the data path from data bus line
SD0 to LED 0, the problem may be in the chip-select decoder circuit. Earlier we found
that this circuit produces the clock that loads the data into the 74LS374 latch. Notice that
the clock is applied to pin 11 on U2, identified as TP5. This signal is not a symmetrical
square wave; instead, it is a repeating pulse that would appear as an asymmetrical square
wave on the screen of a scope. Assuming that a pulse is not observed, this would be the
reason data are not being loaded from the data bus into the latch. In this case, the signal
path of the latching pulse must be traced back to pin 7 of the 74LS138, TP6, in an attempt
to locate the pulse.

Let us assume that no clock pulse is observed at pin 7 of the 74LS138 IC. Then we
should continue by checking for signals and at inputs and G1, respectively.
There should be active low pulses on both and , identified as TP7 and TP8 in
the circuit diagram shown in Fig. 24. If that is the case, the only signals that remain to be
checked are address lines SA0, SA1, SA2, and SA15 connected to A, B, C, and and
denoted as TP9, TP10, TP11, and TP12, respectively. To do this, the sweep of the scope
can be synchronized with at and the logic levels that exist at inputs A, B, C, and

observed during this pulse. Assuming that code CBA equals 110 and , outputG2A � 0G2B

G2AIOW

G2B

AENIOW
G2AAENIOW

732

should be a pulse similar to that at . Since no pulse was found at pin 7, we have
found the source of the problem. The 74LS138 IC is bad and must be replaced.

After the bad IC is replaced, the operation is again observed. If LED 0 blinks,
troubleshooting is complete. Otherwise, troubleshooting resumes by verifying that the
clock pulse is produced at pin 7 of the 74LS138 and is passed to the clock input of
the 74LS374 data latch.

If an oscilloscope is not available, many of the test measurements during the
troubleshooting process we just outlined can be made with the logic probe of the
PC�LAB. For instance, the signals at inputs G1, , and of the 74LS138 address
decoder can be tested. However, the logic probe is not as versatile as the oscilloscope.
With the scope, we could verify the logic level of the address inputs to the address
decoder. This type of synchronous measurement at the time when is 0 cannot be
made with a logic probe.

Another useful instrument in troubleshooting microcomputer interface circuits is a
logic pulser. The logic pulser can be set to output either a one-shot pulse or a square
wave. This instrument can be used to inject a pulse or square wave into the input of a
device in the circuit. Figure 25 shows a typical logic pulser.

IOW

G2BG2A

G2AY7

Figure 24 Breadboarded circuit schematic with test points.

733

Let us now look briefly at how a logic pulser can be used when troubleshooting the
circuit in Fig. 24. The pulser would be set to pulse mode of operation and then the pulse
injected at test point 2. As long as the connection through the resistor pack is good, LED
0 should blink. Assuming that this part of the circuit works correctly, the pulser’s probe
can next be touched to test point 3. Again, the LED should blink. This verifies whether or
not the 74LS240 inverter operates correctly. Just as with the oscilloscope, the logic pulser
is used to check out the circuit step by step.

Hardware troubleshooting of circuit boards in a manufacturing environment can be
quite different. A visual inspection is still performed, but it should look for different
things. For instance, the quality of solder joints is checked to determine whether they
have enough solder, are of the correct shape, and that there are no solder shorts between
pins of ICs and other components.

After a board has passed visual inspection, it is ready for circuit test. In this case,
the board is not tested with instruments circuit by circuit as we just described; instead, it
is checked out with an automatic test system. The tester is programmed to perform a
series of tests on the circuit board. The system provides information on tests that have
passed and failed to guide the repair process. In this way, the board is tested and repaired
step by step until it is completely functional.

Troubleshooting an electronic system, such as a PC, that has been working is also
different. In this case, we will assume that the symptoms of the problem have been iden-
tified, that the software is functional, and that we are investigating a hardware problem.
Actually, the servicing of a PC is normally a system-level repair—that is, the failing sub-
assembly (main processor board, add-on card, power supply, floppy-disk drive, keyboard,
or monitor) is identified and replaced.

The hardware troubleshooting procedure outlined in Fig. 23 still applies to a sys-
tem-level repair. Therefore, the first step is a visual inspection; however, the inspection
performed is different than that used when examining a breadboard or circuit board that
just came off of the manufacturing line and includes a number of mechanical checks. For
example, the system should be checked to verify that all cables are securely connected,
the setting of the DIP switches and jumpers should be checked to assure that the system

Figure 25 Logic pulser.

734

configuration is correct, and the surface of the circuit boards can be examined for over-
heated or burned components. An example of a mechanical check is to touch the compo-
nents to see if any are abnormally hot (but be careful with this because some devices can
get very hot). Moreover, to assure that the problem is not due to dirty connector contacts,
the cables and add-on boards are removed, their contacts are cleaned, and then are
reseated into the connector.

Next we must begin to check the circuits and subassemblies. If the PC does not come
up at all when the power switch is turned on, the first step should be to check the power
supply voltages. However, if it boots up and loads the DOS operating system, diagnostic
software, such as QAPlus™ by DiagSoft, Inc., can be used to analyze the function of the
system. The diagnostic disk is inserted into the floppy-disk drive and the diagnostic program
is initiated from the keyboard. This program can exercise each of the PC’s subassemblies,
and it displays information indicating whether they have passed or failed the diagnostic tests.

Let us assume that the hard disk controller in a PC has failed the diagnostic test.
The normal system-level repair procedure is to replace the complete controller with
another one to quickly get the system back up running. The bad board is usually returned
to a circuit-board repair location for IC-level troubleshooting and repair. Some diagnostic
programs permit IC-level troubleshooting of the dynamic memory subsystem. In the case
of a memory failure, the diagnostic program can identify the bad IC. Since the DRAMs
in some PCs are socket mounted, the repair may be made by replacing the failing device.

▲ 5 OBSERVING MICROCOMPUTER BUS ACTIVITY WITH
A DIGITAL LOGIC ANALYZER

Up to this point, we observed signal waveforms in the microcomputer with an oscilloscope.
However, this instrument permits viewing of only a limited number of periodic signals at a
time. The address, data, and control buses in a microcomputer have many lines. For instance,
the data bus alone is eight bits wide in an 8088-based PC. When the microcomputer is
running, the data bus could be returning read data or instruction code to the MPU, sending
write data to memory, or be in the high-Z state if no bus activity is taking place. Moreover,
the data being transferred is rarely the same; therefore, data bus activity is not periodic.

To observe the operation of the data bus signals, we need to see the logic states of
all eight data bits and some of the read/write control signals at the same time. This is not
possible with a scope. It is for this type of measurement that an instrument known as a
digital logic analyzer was developed. Let us now look briefly at what a logic analyzer is
and what it is used for in testing microcomputer systems.

The logic analyzer is a modern digital test instrument that is very useful for testing
and troubleshooting microcomputer systems. With it, nonperiodic signals, such as those of
the address bus, data bus, and control bus, can be measured and their waveforms viewed.
Figure 26 shows a typical logic analyzer. Today, this type of instrument is available with 8,
16, or 32 channels. This means that they are capable of simultaneously sampling and dis-
playing the waveshapes of up to 8, 16, or 32 signals. The probe is a pod that has a clip for
input to each channel. They are attached to the signals that are to be observed. For exam-
ple, the data lines D0 through D7 and control signals, such as , , DT/ , IO/ ,
, READY, S3, and S4, can be sampled to monitor transfers over the data bus.

DENMRWRRD

735

Figure 26 Digital logic analyzer. (Hewlett-Packard Co.)

The logic analyzer operates differently than an oscilloscope. The oscilloscope
immediately displays the voltage of the signal applied at its input. On the other hand, the
logic analyzer samples the voltage at all inputs at a very high rate. This information is
stored in memory as a logic 0 or logic 1, and not as a specific voltage level. The wave-
form of the signal can then be displayed on the screen using the stored data. The user of
the instrument has the ability to start the sampling based on the occurrence of a specific
event or events indicated by a combination of the logic values of the signals being moni-
tored and continue until the trace buffer memory is full. Moreover, most logic analyzers
permit the stored information to be displayed in a variety of ways.

Sample waveforms taken from our test circuit in Fig. 16(a) are shown in Fig. 27(a).
This display shows the address, data transfer, and address decoder output produced when
the LED blink diagnostic routine runs. Here we see a timing diagram that clearly illus-
trates the relationship between the address, decoder output, and the data transfer to the
latch. Notice that whenever address decoder output switches from logic 0 to
logic 1, the byte of data on the data bus, 000000012, is latched into the 74LS374 device
and makes Q0 switch to logic 1. Figure 27(b) shows the signals when the Q0 output
switches from logic 1 back to 0. Both transitions at Q0 are shown with a single timing dia-
gram in Fig. 27(c). Remember that the logic analyzer cannot display signals the way they
really would look if observed with an oscilloscope. Since it saves only the logic level (0
or 1) of the signals in memory, waveshapes are shown with sharp transitions between
these logic levels. When observed with a scope, the waveshapes may show rise and fall
times between the 0 and 1 levels, and possibly ringing, overshoots, and undershoots,
around the 0 and 1 logic levels.

IOW0007H

736

A logic analyzer can also be set up to collect only code or data transfers over the
data bus. Once this information is stored in memory, it can be disassembled into assem-
bly language instructions and displayed on the screen. For example, the logic analyzer
was used to disassemble a series of instructions shown in Fig. 28. This capability permits
us to monitor the execution of instructions by the MPU and compare the instruction exe-
cution sequence to events observed in the hardware.

(a)

(b)

Figure 27 (a) Timing diagram for 0 to 1 transition at Q0. (b) Timing diagram
for 1 to 0 transition at Q0. (c) Timing diagram showing both transitions at Q0.

737

Figure 27 (continued)

(c)

Figure 28 Disassembling code with a logic analyzer. (Hewlett-Packard Co.)

738

REVIEW PROBLEMS

Section 1
1. What is an experimental circuit board built to test an electronic function called?

2. What is a breadboard card?

3. What kind of breadboard does not require devices to be soldered in place but rather
that they are plugged in?

4. What is the purpose of an extender card?

5. List the parts of the PC�LAB.

Section 2
6. List three types of I/O devices that are built into the PC�LAB.

7. How are the on-board I/O devices set up for use with circuits built on the breadboard
area?

8. How many ISA expansion slots are provided on the PC�LAB?

9. What size wire jumpers must be used to interconnect circuits on the breadboard
area?

10. Which wire insertion clips are intended for use as the �5 V and GND for power dis-
tribution on the solderless breadboard?

11. At which contacts of the I/O channel connector are address lines A0 through A19

available?

12. What is the purpose of the PC�LAB’s continuity tester? How does it signal continuity?

13. Identify how the PC�LAB’s logic probe signals the 0, 1, and high-Z logic states.

14. How does the logic probe identify that the signal at a test point is switching between
the 0 and 1 logic levels?

Section 3
15. Which ICs are used in the I/O address decoder circuit of the PC�LAB?

16. Which output of the I/O address decoder circuit is used to enable data output to the
LEDs?

17. Which I/O address bits are don’t-care states?

18. Does the I/O address 771E16 activate an output of the I/O address decoder circuit? If
so, which output signal is activated?

19. Why are the I/O select outputs of the I/O address decoder circuit produced only dur-
ing I/O bus cycles?

20. If switches S0 through S3 are closed and switches S4 through S7 are open, what value
will be transferred over the data bus when the switches are read with an IN instruction?

21. Does the command

I FF1D (↵)

read the state of the on-board switches?

739

22. Write an instruction sequence that will read the state of the switches and mask off all
switch settings but S0 and S1. If both switches are read as closed, a jump is initiated
to a service routine called SERVE_3.

23. What operation is performed by the instruction sequence that follows?

MOV DX, 31DH
POLL: IN AL, DX

MOV CL, 8
SHR AL, CL
JC POLL

24. Which LED is driven with data from data bus line D0? From D7?

25. What does the command O FF1E 0F accomplish?

26. Write a program that will scan the LEDs on the PC�LAB. That is, first light LED 0
for a period of time, next turn off LED 0 and turn on LED 1, and so on until LED 7
is lighted. The scan sequence should repeat continuously.

27. Describe the operation performed by the following instruction sequence.

MOV DX, 31EH
MOV AL, 0H

BIN: OUT DX, AL
MOV CX, 0FFFFH

DELAY: DEC CX
JNZ DELAY
INC AL
JMP BIN

28. What IC is used to drive the speaker?

29. Which instruction in the tone-generation program given in the section on the speaker-
drive circuit needs to be changed to double the frequency of the tone? Write the new
instruction.

Section 4
30. Write an instruction that reads the switch setting into AL in Fig. 29.

31. Mark the pin numbers into the circuit shown in Fig. 29, and then make a layout draw-
ing on a circuit diagram master.

32. What is a program written specifically to test the operation of a microcomputer cir-
cuit called?

33. What accessory is attached to the top of an IC to make it easier to connect the probe
of an instrument?

34. Name three instruments that can be used to test the operation of a microcomputer
interface circuit.

35. What information does a logic probe provide about the signal at a test point in a
circuit?

740

36. When used to measure voltage, what information does a multimeter tell about the
signal at a test point?

37. What information does an oscilloscope provide about the signal at a test point?

38. What is meant by periodic signal?

39. What process is used for determining the cause of a hardware malfunction in a circuit?

40. If a breadboard of a circuit does not work when tested with a diagnostic program that
was just written and never checked on working hardware, should hardware trou-
bleshooting or software debug take place next?

41. Assume that a diagnostic program is available that has been checked out and verified
to correctly test the interface. If a new PC interface module is tested and fails when
checked out with this diagnostic program, is the next step software debug or hard-
ware troubleshooting?

42. List three items that should be checked as part of the software-debug process.

43. List three visual inspections that can be made as part of the hardware troubleshooting
process used to determine why a circuit built on the breadboard area of the PC�LAB
does not work.

44. During the hardware troubleshooting process of a breadboard circuit, what should be
checked next if the circuit is found to be correctly constructed?

45. Assume that the circuit in Fig. 29 is being driven by a software routine that polls the
state of switch 0 and that this program is known to operate correctly. What type of
signal would you expect to see at test point 1 when the switch is closed? When open?
At test point 2? At test point 3?

Figure 29 Switch input interface circuit.

741

46. The results found at test points 1 and 2 of problem 45 when troubleshooting the
circuit are as follows:

Test Point Switch Open Switch Closed

1 1 0
2 1 1

What do you think is the problem with the circuit?

Section 5
47. List three key groups of signals of the microcomputer system that are, in general,

nonperiodic.

48. What instrument is usually used to observe nonperiodic signals in a microcomputer?

49. Compare an oscilloscope and a logic analyzer.

Section 1
1. Prototype circuit.

3. Solderless breadboard.

5. Bus interface module, I/O expansion bus cables, breadboard unit.

Section 2
7. The INT/EXT switch must be set to the EXT position.

9. 26 AWG.

11. A31 through A12.

13. Logic 0 lights the green LED; logic 1 lights the red LED; and the high-Z level lights
the amber LED.

Section 3
15. 74LS688, 74LS138, and 74LS32.

17. A10 through A15.

19. The select outputs of the 74LS138 are gated with either or in 74LS32 OR
gates. These signals are active only during an I/O cycle.

21. Yes.

23. The setting of switch 7 is polled waiting for it to close.

25. Lights LEDs 0 through 3.

27. The LEDs are lit in a binary counting pattern.

29. Change MOV CX, FFFFH to MOV CX, 7FFFH.

Section 4
33. IC test clip.

35. Whether the test point is at the 0, 1, or high-Z logic state, or if it is pulsating.

37. Amount of voltage, duration of the signal, and the signal waveshape.

IOWIOR

ANSWERS TO SELECTED REVIEW PROBLEMS▲

742

39. Troubleshooting.

41. Hardware troubleshooting.

43. (i) Check to verify that correct pin numbers are marked into the schematic diagram.
(ii) Verify that the circuit layout diagram correctly implements the schematic.

(iii) Check that the ICs and jumpers are correctly installed to implement the circuit.

45. Test Point Switch Open Switch Closed

1 1 0
2 1 0
3 Pulse Pulse

Section 5
47. Address bus, data bus, and control-bus signals.

49. Oscilloscope Logic analyzer
(i) Requires periodic signal (i) Can display periodic or

to display nonperiodic signals
(ii) Small number of channels (ii) Large number of channels

(iii) Displays actual voltage values (iii) Displays logic values
(iv) Generally does not store (iv) Stores signals for

the signals for display display
(v) Simple trigger condition (v) Trigger signal can be a

using a single signal combination of a number of signals

743

This page intentionally left blank

The 80386, 80486,
and Pentium Processor
Families: Software
Architecture

▲ INTRODUCTION

In this chapter, we study the software architecture of the 80386, 80486, and Pentium
processor families. The 80386 supports three modes of software operation: the real-
address mode (real mode), the protected-address mode (protected mode), and virtual 8086
mode. We will explore each of these modes in the chapter. After first introducing the 80386
microprocessor, we examine its real-address-mode software architecture and assembly lan-
guage instruction set. This is followed by a detailed study of the 80386’s protected-address
mode of operation and system control instruction set; the material on the 80386 completes
with a description of the virtual 8086 mode. The chapter closes with sections that describe
the differences between the software architecture of the 80386, 80486, and Pentium
processor families. This includes introductions to the floating-point and multimedia archi-
tectures and instruction sets. The following topics are covered in the chapter:

1 80386 Microprocessor Family

2 Internal Architecture of the 80386DX Microprocessor

3 Real-Address-Mode Software Model of the 80386DX

4 Real-Address-Mode Instruction Set of the 80386DX

5 Protected-Address-Mode Software Architecture of the 80386DX

6 Descriptor and Page Table Entries of the 80386DX

7 Protected-Mode System-Control Instruction Set of the 80386DX

From Chapter 15 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

745

The 80386, 80486, and Pentium Processor Families

8 Multitasking and Protection

9 Virtual 8086 Mode

10 80486 Microprocessor Family

11 80486DX Floating-Point Architecture and Instructions

12 Pentium Processor Family

13 Multimedia Architecture and Instructions

▲ 1 80386 MICROPROCESSOR FAMILY

The 80386 family of microprocessors, announced by Intel Corporation in 1985, represent
the first 32-bit members of Intel’s popular microprocessor architecture. The 80386DX
MPU, the first entry in the 80386 family, was the sixth member of the 8086 family of
microprocessors. This device is the high-performance member of the 80386 family of
MPUs. The 80386DX is a full 32-bit processor—that is, it has both 32-bit internal regis-
ters and a 32-bit external data bus. Several years later Intel brought the 80386SX micro-
processor to market. This device, with its 32-bit internal registers and 16-bit data bus, pro-
vides a lower performance MPU for the 80386-based microcomputer system. In this
chapter, we will primarily study the 80386DX MPU. However, both the 80386DX and
80386SX devices operate essentially the same way from a software point of view.

The chart in Fig. 1 is called the iCOMP™ index. A bar is used in this chart to rep-
resent a measure of the performance for each of Intel’s MPUs. Intel Corporation provides
this index so that the relative performance of its microprocessors can be compared. Note
that the members of the 80386 family offer low performance when compared to the newer
80486 and Pentium processor families. In fact, the slowest 80386SX MPU shown in Fig.
1, the -20, has a performance rating of 32, while the fastest 80386DX, the -33, is rated at
68. In this way, we see that by selecting between the various members of the 80386 fam-
ily, we can achieve a wide range of system performance levels.

We already learned that from the software point of view the 80386DX offers sev-
eral modes of operation: real-address mode, protected-address mode, and virtual 8086
mode. The real mode is for compatibility with the large existing 8086/8088 software base;
the protected mode offers an advanced software architecture with enhanced system-level
features such as memory management, multitasking, and protection; and the virtual 8086
mode provides 8086 real-mode compatibility while operating in the protected mode. The
virtual 8086 mode was not supported by the protected mode of the 80286 microprocessor.

▲ 2 INTERNAL ARCHITECTURE OF
THE 80386DX MICROPROCESSOR

As part of the evolutionary process from the original 8086 to the 80386, the internal
architecture of the 8086 family of microprocessors has changed considerably. All mem-
bers of the 8086 family employ what is called parallel processing. That is, they are imple-
mented with multiple, simultaneously operating processing units. Each unit has a dedi-
cated function and each operates at the same time. The more parallel processing, the
higher is the microprocessor’s performance.

746

The 80386, 80486, and Pentium Processor Families

i386 SX-20 CPU

i386 SX-25 CPU

i386 SL-25 CPU

i386 DX-25 CPU

i386 SX-33 CPU

i386® DX-33 CPU

i486 SX-20 CPU

i486 SX-25 CPU

i486 DX-25 CPU

i486 SX-33 CPU

i486 DX-33 CPU

i486 DX2-50 CPU

i486 DX-50 CPU

i486 DX2-66 CPU

i486 DX4-75 CPU

Pentium®

Processor 60 MHz

Pentium®

Processor 66 MHz

Pentium®

Processor 90 MHz

Pentium®

Processor 100 MHz

Pentium®

Processor 120 MHz

Pentium®

Processor 133 MHz

i486DX® -100 CPU

120010008006004002000

32

39

41

49

56

68

78

100

122

136

166

231

249

297

319

435

510

567

735

815

1000

1110

Figure 1 iCOMP™ Index rating chart. (Reprinted by permission of Intel Corporation.
Copyright / Intel Corp. 1993)

Recall the internal architecture of the 8086 and 80286 microprocessors. The 8086
microprocessor contains just two processing units: the bus interface unit and execution
unit. In the 80286 microprocessor, the internal architecture was further partitioned into
four independent processing elements: the bus unit, the instruction unit, the execution
unit, and the address unit. This additional parallel processing provided an important con-
tribution to the higher level of performance achieved with the 80286 architecture.

Figure 2 illustrates the 80386DX’s internal architecture. Here we see that to
enhance performance, more parallel processing elements are provided. Note that now
there are six functional units: the execution unit, the segment unit, the page unit, the bus
unit, the prefetch unit, and the decode unit. Let us now look more closely at each of the
processing units of the 80386DX.

747

The 80386, 80486, and Pentium Processor Families

Figure 2 Internal architecture of the 80386DX MPU. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1987)

The bus unit is the 80386DX’s interface to the outside world. By interface, we mean
the path by which it connects to external devices. The bus interface provides a 32-bit data
bus, a 32-bit address bus, and the signals needed to control transfers over the bus. In fact,
8-bit, 16-bit, and 32-bit data transfers are supported. These buses are demultiplexed like
those of the 80286. That is, the 80386DX has separate pins for its address and data bus
lines. This demultiplexing of address and data results in higher performance and easier
hardware design. Expanding the data bus width to 32 bits further improves the perfor-
mance of the 80386DX’s hardware architecture as compared to that of either the 8086 or
80286.

The bus unit is responsible for performing all external bus operations. This pro-
cessing unit contains the latches and drivers for the address bus, transceivers for the
data bus, and control logic for signaling whether a memory, input /output, or interrupt-
acknowledge bus cycle is being performed. Looking at Fig. 2, we find that for data
accesses, the address of the storage location to be accessed is input from the paging
unit, and for code accesses, the prefetch unit provides the address.

The prefetch unit implements a mechanism known as an instruction stream queue.
This queue permits the 80386DX to prefetch up to 16 bytes of instruction code. When-
ever the queue is not full—that is, it has room for at least four more bytes, and at the same
time, the execution unit is not asking it to read or write data from memory—the prefetch
unit supplies addresses to the bus interface unit and signals it to look ahead in the pro-
gram by fetching the next sequential instructions. Prefetched instructions are held in the
FIFO queue for use by the instruction decoder. Whenever bytes are loaded at the input
end of the queue, they are automatically shifted up through the FIFO to the empty loca-
tions near the output. With its 32-bit data bus, the 80386DX fetches 4 bytes of instruction
code in a single memory cycle. Through this prefetch mechanism, the fetch time for most
instructions is hidden.

If the queue in the prefetch unit is full and the execution unit is not requesting
access to data in memory, the bus interface unit does not need to perform any bus cycle.

748

The 80386, 80486, and Pentium Processor Families

These intervals of no bus activity, which occur between bus cycles, are known as idle
states.

The prefetch unit prioritizes bus activity. Highest priority is given to operand
accesses for the execution unit. However, if the bus unit is already in the process of fetch-
ing instruction code when the execution unit requests it to read or write operands from
memory or I/O, the current instruction fetch is first completed before the operand
read/write cycle is initiated.

Figure 2 shows that the decode unit accesses the output end of the prefetch unit’s
instruction queue. It reads machine-code instructions from the output side of the prefetch
queue and decodes them into the microcode instruction format used by the execution unit.
That is, it off-loads the responsibility for instruction decoding from the execution unit.
The instruction queue within the 80386DX’s instruction unit permits three fully decoded
instructions to be held waiting for use by the execution unit. Once again, the result is
improved performance for the MPU.

The execution unit includes the arithmetic/logic unit (ALU), the 80386DX’s regis-
ters, special multiply, divide, and shift hardware, and a control ROM. By registers, we
mean the 80386DX’s general-purpose registers, such as EAX, EBX, and ECX. The con-
trol ROM contains the microcode sequences that define the operation performed by each
of the 80386DX’s machine-code instructions. The execution unit reads decoded instruc-
tions from the instruction queue and performs the operations that they specify. It is the
ALU that performs the arithmetic, logic, and shift operations required by an instruction.
If necessary, during the execution of an instruction, it requests the segment and page units
to generate operand addresses and the bus interface unit to perform read or write bus
cycles to access data in memory or I/O devices. The extra hardware provided to perform
multiply, divide, shift, and rotate operations improves the performance of instructions that
employ these operations.

The segment and page units provide the memory management and protection
services for the 80386DX. They off-load the responsibility for address generation,
address translation, and segment checking from the bus interface unit, thereby further
boosting the performance of the MPU. The segment unit implements the segmenta-
tion model of the 80386DX’s memory management. That is, it contains dedicated
hardware for performing high-speed address calculations, logical-to-linear address
translation, and protection checks. For instance, when in the real mode, the execution
unit requests the segment unit to obtain the address of the next instruction to be
fetched by adding an appended version of the current contents of the code segment
(CS) register with the value in the instruction pointer (IP) register to obtain the 20-bit
physical address to be output on the address bus. This address is passed on to the
bus unit.

For protected mode, the segment unit performs the logical-to-linear address transla-
tion and various protection checks needed when performing bus cycles. It contains the
segment registers and the 6-word � 64-bit cache that is used to hold the current descrip-
tors within the 80386DX.

The page unit implements the protected mode paging model of the 80386DX’s
memory management. It contains the translation lookaside buffer that stores recently used
page directory and page table entries. When paging is enabled, the linear address pro-
duced by the segment unit is used as the input of the page unit. Here the linear address is

749

The 80386, 80486, and Pentium Processor Families

translated into the physical address of the memory or I/O location to be accessed. This
physical memory or I/O address is output to the bus interface unit.

▲ 3 REAL-ADDRESS-MODE SOFTWARE MODEL OF THE
80386DX

Let us begin our study of the 80386DX microprocessor with its real-address-mode soft-
ware model and operation. Just like the 80286 microprocessor, 80386DX comes up in the
real mode after it is reset. The 80386DX will remain in this mode unless it is switched to
protected mode by the software. In real mode, the 80386DX operates as a very high per-
formance 8086. For instance, the original 16-MHz 80386DX provides more than 10 times
higher performance than the standard 5-MHz 8086.

When in the real mode, the 80386DX can be used to execute the base instruction
set of the 8086/8088 architecture. Similar to the 80286, object code for the base instruc-
tions of the 80386DX is identical to that of the 8086/8088. In this way, we see that object
code compatibility is maintained between the 8086/8088 and 80386 family of micro-
processors. This means that the operating systems and programs written for the 8086 and
8088 can be run directly on the 80386DX without modification.

As for the 80286, a number of new instructions have been added to the instruction
set of the 80386DX to enhance its performance and functionality. In fact, the exact same
instructions that were added to the 80286 to make the 80286’s extended instruction set are
also available in the 80386DX’s instruction set. For instance, instructions have been
added to push or pop the complete register set, perform string input /output, and check the
boundaries of data array accesses. However, the real-mode instruction set has been further
enhanced in the 80386DX. For example, it has a group of instructions that are provided
to perform bit test and set operations. The object code of the 80386DX is also upward
compatible within the 8086 architecture—that is, the 8086/8088’s object code will run on
the real-mode 80386DX. But, the reverse is not true. For instance, if the bit test and set
instructions are employed in the writing of a program, it will not run on the 8086 or the
8088 MPU.

The real-mode software model of the 80386DX is shown in Fig. 3. This register
model is very different from those of the 8088, 8086, and 80286. Here we have high-
lighted the 17 internal registers that are used in real-mode application programming. Nine
of them—the data registers (EAX, EBX, ECX, and EDX), the pointer registers (EBP and
ESP), the index registers (ESI and EDI), and the flag register (FLAGS)—are identical to
the corresponding registers in the 8086’s software model except that they are now all
32 bits in length. On the other hand, the segment registers (CS, DS, SS, and ES) and
instruction pointer (IP) are both identical and still 16 bits in length. From a software point
of view, all these registers serve functions similar to those they performed in the
8088/8086. For instance, CS and IP together point to the next instruction to be fetched.

Several new registers are found in the real-mode 80386DX’s software model. For
instance, it has two more data segment registers, FS and GS. These registers are not
implemented in either the 8088/8086 or the 80286 microprocessors. Another new register
is called control register zero (CR0). The five least significant bits of this register are
called the machine status word (MSW) and are identical to the MSW of the 80286. The

750

The 80386, 80486, and Pentium Processor Families

Figure 3 Real-mode software model of the 80386 microprocessor.

751

The 80386, 80486, and Pentium Processor Families

only bit in CR0 that is active in the real mode is bit 0, which is the protection enable (PE)
bit. PE is the bit used to switch the 80386DX from real to protected mode. At reset, PE
is set to 0 and selects real-mode operation. The software model of the 80386SX is exactly
the same as that shown in Fig. 3.

Looking at the software model in Fig. 3, we see that the 80386DX microcom-
puter’s real-mode address space is identical to that of the 8086 and 80286 microcom-
puter. Again, it is partitioned into a 1Mbyte memory address space and a separate
64Kbyte input /output address space. The memory address space is from address 0000016

to FFFFF16 and the I /0 addresses space is from address 000016 to FFFF16. Since the
80386DX has six segment registers, not four as in the 8086 and 80286, six 64Kbyte seg-
ments of the memory address space are active at a time and give a maximum of
384Kbytes of active memory; 64Kbytes of the active memory are allocated for code,
64Kbytes for stack, and 256Kbytes for data storage. Figures 4(a) and (b) show that the
real-mode 80386DX memory and I/O address spaces are partitioned into general-use
and reserved areas in the same way as for the 8086 or 80286 microcomputer. Memory

Figure 4 (a) Dedicated and general
use of memory in the real mode.
(Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1979) (b) I/O address space. (Reprinted
by permission of Intel Corporation.
Copyright/ Intel Corp. 1979)

752

The 80386, 80486, and Pentium Processor Families

in an 80386SX-based microcomputer system is organized in the same way from a soft-
ware point of view.

Finally, the real-mode 80386DX generates physical addresses in the same manner
as the 8086 or 80286. That is, the 16-bit contents of a segment register, such as CS, are
shifted left by four bit positions, the four least significant bits are filled with 0s, and then
it is added to a 16-bit offset, such as the value in IP, to form the 20-bit physical memory
address. Note that the IP register is shown to be larger that 16 bits in the software model,
but only the lower 16 bits are active when the 80386DX is in real mode.

▲ 4 REAL-ADDRESS-MODE INSTRUCTION SET OF THE
80386DX

Figure 5 shows the evolution of the instruction set for the 8086 architecture. The instruc-
tion set of the 8086 and 8088 microprocessors, called the base instruction set, is a subset
of the 80386DX’s real-address-mode instruction set.

This base instruction set was enhanced in the 80286 microprocessor with a group
of instructions known as the extended instruction set. All these instructions are also avail-
able in the real-mode instruction set of the 80386DX.

The last group of instructions, identified in Fig. 5 as the 80386 specific instruction
set, was first implemented with the 80386DX microprocessor. In this way, we see that the
80386DX’s real-mode instruction set is a superset of the 8086 and 80286 microprocessor
instruction sets. The 80386SX microprocessor executes the exact same instruction set as

8086 80286

Protected mode Protected mode

System control
instruction set

System control
instruction set

80386

Base
instruction

 set

Base +
extended

instruction
 set

Base + extended
+ 80386 specific

instruction set

Real mode Real modeReal mode

Figure 5 Evolution of the 8086 family instruction set.

753

The 80386, 80486, and Pentium Processor Families

the 80386DX. We will now continue by examining the instructions of the 80386 specific
instruction set.

80386 Specific Instruction Set

The enhancements to the 80386DX’s real-mode instruction set, highlighted in Fig.
6(a), represent the 80386 specific instruction set. For example, it includes instructions to
directly load a pointer into the FS, GS, and SS registers. Moreover, it contains additional
forms of existing instructions that have been added to perform the identical operations in
a more general way, on data in special registers, or on a double word of data. First, we
will look briefly at some of the instructions with expanded functions.

Figure 6(b) shows that the MOV instructions can be written with a control register
(CR), debug register (DR), or test register (TR) as its source or destination operand. As
an example, let us look at what function the instruction

MOV EAX, CR0

performs. Execution of this instruction causes the value of the flags in CR0 to be copied
into the EAX register. Looking at Fig. 6(b), we see that the string instructions have been
expanded to support double-word (32-bit) operands. The instruction mnemonics for the
double-word string operations are MOVSD, CMPSD, SCASD, LODSD, STOSD, INSD,
and OUTSD. In all seven cases, the basic operation performed by the instruction is the
same as described earlier for the 8088 processor; however, a double-word data transfer
takes place. The same is true for the shift, convert, compare, jump, push, and pop instruc-
tions in Fig. 6(b)—they simply perform their normal operation on double-word operands.
One exception is that the 80386DX limits the count for shift instructions to a count of 32,
instead of 256 as on the 8086 or 80286. Let us next look at the instructions that are imple-
mented for the first time on the 80386DX MPU.

Sign-Extend and Zero-Extend Move Instructions:
MOVSX and MOVZX

In Fig. 6(b), we find that a number of special-purpose move instructions have been
added in the instruction set of the 80386DX. The first two instructions, move with sign-
extend (MOVSX) and move with zero-extend (MOVZX), are used to sign extend or zero
extend, respectively, a source operand as it is moved to the destination operand location.
The source operand is either a byte or a word of data in a register or a storage location in
memory, whereas the destination operand is either a 16- or 32-bit register.

For example, the instruction

MOVSX EBX, AX

is used to copy the 16-bit value in AX into EBX. As the copy is performed, the value in
the sign bit, bit 15 of AX, is extended into the 16 higher-order bits of EBX. For example,
if AX contains FFFF16, the sign bit is logic 1. Therefore, after execution of the MOVSX

754

The 80386, 80486, and Pentium Processor Families

Figure 6 (a) 80386 specific instructions set. (b) Instructions of the 80386
specific instruction set.

755

The 80386, 80486, and Pentium Processor Families

instruction, the value that results in EBX is FFFFFFFF16. The MOVZX instruction per-
forms a similar function to the MOVSX instruction except that it extends the value moved
to the destination operand location with 0s.

EXAMPLE 1

Explain the operation performed by the instruction

MOVZX CX, BYTE PTR [DATA_BYTE]

if the value of data at memory address DATA_BYTE is FF16.

Solution

When the MOVZX instruction is executed, the value FF16 is copied into the lower byte of
CX and the upper 8 bits are filled with 0s. This gives

Load Full Pointer Instructions: LSS, LFS, and LGS

The base instruction set of the 8086 includes two load full pointer instructions,
LDS and LES. Three additional instructions of this type are performed by the 80386DX.
Looking at Fig. 6(b), we find that they are LSS, LFS, and LGS. Note that executing the
load register and SS (LSS) instruction causes both the register specified in the instruction
and the stack segment register to be loaded from the source operand. For example, the
instruction

LSS ESP, [STACK_POINTER]

causes the first 32 bits starting at memory address STACK_POINTER to be loaded into
the 32-bit register ESP and the next 16 bits into the SS register. The other two instruc-
tions, load register and FS (LFS) and load register and GS (LGS), perform a function
similar to LSS. However, they load the specified register and the FS or GS register,
respectively.

EXAMPLE 2

Write an instruction that will load the 48-bit pointer starting at memory address
DATA_G_ADDRESS into the ESI and GS registers.

Solution

This operation is performed with the instruction

LGS ESI, [DATA_G_ADDRESS]

(CX) � 00FF16

756

The 80386, 80486, and Pentium Processor Families

Bit Test and Bit Scan Instructions: BT, BTR, BTS, BTC, BSF, and BSR

The bit test and bit scan instructions of the 80386DX enable a programmer to test
the logic value of a bit in either a register or a storage location in memory. Let us begin
by examining the bit test instructions. They are used to test the state of a single bit in a
register or memory location. When the instruction is executed, the value of the tested bit
is saved in the carry flag. Instructions are provided that can also reset, set, or complement
the contents of the tested bit during the execution of the instruction.

In Fig. 6(b), we see that the bit test (BT) instruction has two operands. The first
operand identifies the register or memory location that contains the bit that is to be tested.
The second operand contains an index that selects the bit that is to be tested. Note that the
index may be either an immediate operand or the value in a register. When this instruc-
tion is executed, the state of the tested bit is simply copied into the carry flag.

Once the state of the bit is saved in CF, it can be tested through software. For
instance, a conditional jump instruction could be used to test the value in CF, and if CF
equals 1, program control could be passed to a service routine. On the other hand, if CF
equals 0, the value of the index could be incremented, a jump performed back to the BT
instruction, and the next bit in the operand tested.

Another example is the instruction

BTR EAX, EDI

Execution of this instruction causes the bit in 32-bit register EAX that is selected by the
index in EDI to be tested. The value of the tested bit is first saved in the carry flag and
then it is reset in the register EAX.

EXAMPLE 3

Describe the operation that is performed by the instruction

BTC BX, 7

Assume that register BX contains the value 03F016.

Solution

Let us first express the value in BX in binary form. This gives

Execution of the bit test and complement instruction causes the value of bit 7 to be first
tested and then complemented. Since this bit is logic 1, CF is set to 1. This gives

 (BX) � 00000011011100002 � 037016

 (CF) � 1

(BX) � 00000011111100002

757

The 80386, 80486, and Pentium Processor Families

Figure 7 SET instruction conditions.

The bit scan forward (BSF) and bit scan reverse (BSR) instructions are used to
scan through the bits of a register or storage location in memory to determine whether or
not they are all 0. For example, by executing the instruction

BSF ESI, EDX

the bits of 32-bit register EDX are tested one after the other, starting from bit 0. If all bits
are found to be 0, the ZF is cleared. On the other hand, if the contents of EDX are not
zero, ZF is set to 1 and the index value of the first bit tested as 1 is copied into ESI.

Byte Set on Condition: SETcc

The byte set on condition (SETcc) instruction can be used to test for various states
of the flags. In Fig. 6(b), we see that the general form of the instruction is denoted as

SETcc D

Here the cc part of the mnemonic stands for a general-flag relationship and must be
replaced with a specific relationship when writing the instruction. Figure 7 is a list of
the mnemonics that can be used to replace cc and their corresponding flag relationship.

758

The 80386, 80486, and Pentium Processor Families

For instance, replacing cc by A gives the mnemonic SETA. This stands for set byte if
above and tests the flags to determine if

If these conditions are satisfied, a byte of 1s is written to the register or memory location
specified as the destination operand. On the other hand, if the conditions are not valid, a
byte of 0s is written to the destination operand.

An example is the instruction

SETE AL

Looking at Fig. 7, we find that execution of this instruction causes the ZF to be tested. If
ZF equals 1, 111111112 is written into AL; otherwise, it is loaded with 000000002.

EXAMPLE 4

Write an instruction that will load memory location EVEN_PARITY with the value FF16

if the result produced by the last instruction had even parity.

Solution

As shown in Fig. 7, the instruction that tests for PF equal to 1 and sets the byte destina-
tion operand at memory address EVEN_PARITY to FF16 is

SETPE BYTE PTR [EVEN_PARITY]

▲ 5 PROTECTED-ADDRESS-MODE SOFTWARE
ARCHITECTURE OF THE 80386DX

Having completed our study of the real-mode software operation and instruction set of the
80386DX microprocessor, we are now ready to turn our attention to its protected-address
mode (protected mode) of operation. Earlier we indicated that whenever the 80386DX
microprocessor is reset, it comes up in real mode. Moreover, we indicated that the PE bit
of control register zero (CR0) is used to switch the 80386DX into the protected mode under
software control. When configured for protected-mode operation, the 80386DX provides
an advanced software architecture that supports memory management, virtual addressing,
paging, protection, and multitasking. In this section we examine the 80386DX’s protected-
mode register model, virtual-memory address space, and memory management.

Protected-Mode Register Model

Figure 8 shows the protected-mode register set of the 80386DX microprocessor.
Looking at this diagram, we see that its application register model is a superset of the
real-mode register set shown in Fig. 3. Comparing these two diagrams, we find four

(CF) � 0 � (ZF) � 0

759

Figure 8 Protected-mode register
model.

The 80386, 80486, and Pentium Processor Families

760

Figure 9 Global descriptor table mechanism.

new registers in the protected-mode model: the global descriptor table register (GDTR),
interrupt descriptor table register (IDTR), local descriptor table register (LDTR), and
task register (TR). Furthermore, the functions of a few registers have been extended. For
example, the instruction pointer, now called EIP, is 32 bits in length; more bits of the flag
register (EFLAGS) are active; and all four control registers, CR0 through CR3, are func-
tional. Let us next discuss the purpose of each new and extended register and how they
are used in the segmented memory-protected-mode operation of the microprocessor.

Global Descriptor Table Register. As shown in Fig. 9, the contents of the global
descriptor table register define a table in the 80386DX’s physical memory address space
called the global descriptor table (GDT). This global descriptor table is one important
element of the 80386DX’s memory management system.

GDTR is a 48-bit register located inside the 80386DX. The lower 2 bytes of this
register, identified as LIMIT in Fig. 9, specify the size in bytes of the GDT. The value of
LIMIT is one less than the actual size of the table. For instance, if LIMIT equals 00FF16,
the table is 256 bytes in length. Since LIMIT has 16 bits, the GDT can be up to 65,536
bytes long. The upper 4 bytes of the GDTR, labeled BASE in Fig. 9, locate the beginning
of the GDT in physical memory. This 32-bit base address allows the table to be positioned
anywhere in the 80386DX’s 4Gbyte linear address space.

The 80386, 80486, and Pentium Processor Families

761

The 80386, 80486, and Pentium Processor Families

EXAMPLE 5

If the limit and base in the global descriptor table register are 0FFF16 and 0010000016,
respectively, what is the beginning address of the descriptor table, size of the table in
bytes, and the ending address of the table?

Solution

The starting address of the global descriptor table in physical memory is given by the
BASE. Therefore,

The limit is the offset to the end of the table. This gives

Finally, the size of the table is equal to the decimal value of LIMIT plus 1:

The GDT provides a mechanism for defining the characteristics of the 80386DX’s
global memory address space. Global memory is a general system resource shared by
many or all software tasks. That is, storage locations in global memory are accessible by
any task that runs on the microprocessor.

This table contains what are called system segment descriptors. These descriptors
identify the characteristics of the segments of global memory. For instance, a segment
descriptor provides information about the size, starting point, and access rights of a global
memory segment. Each descriptor is 8 bytes long; thus, our earlier example of a 256-byte
table provides storage space for just 32 descriptors. Remember that the size of the global
descriptor table can be expanded by simply changing the value of LIMIT in the GDTR
under software control. If the table is increased to its maximum size of 65,536 bytes, it
can hold up to 8192 descriptors.

EXAMPLE 6

How many descriptors can be stored in the global descriptor table defined in Example 5?

Solution

Each descriptor takes up 8 bytes; therefore, a 4096-byte table can hold

4096/8 � 512 descriptors

GDTSIZE � FFF16 � 12 � 4096 bytes

GDTEND � 0010000016 � 0FFF16 � 00100FFF16

GDTSTART � 0010000016

762

The 80386, 80486, and Pentium Processor Families

Figure 10 Interrupt descriptor table mechanism.

The value of the BASE and LIMIT must be loaded into the GDTR before the
80386DX is switched from the real mode of operation to the protected mode. Special
instructions are provided for this purpose in the system control instruction set of the
80386DX. These instructions will be introduced later in this chapter. Once the 80386DX
is in protected mode, the location of the table is typically not changed.

Interrupt Descriptor Table Register. Just like the global descriptor table register, the
interrupt descriptor table register (IDTR) defines a table in physical memory. However,
this table contains what are called interrupt descriptors, not segment descriptors. For this
reason, it is known as the interrupt descriptor table (IDT). This register and table of
descriptors provide the mechanism by which the microprocessor passes program control
to interrupt and exception service routines.

As shown in Fig. 10, just like the GDTR, the IDTR is 48 bits in length. Again, the
lower two bytes of the register (LIMIT) define the table size. That is, the size of the
table equals LIMIT+1 bytes. Since two bytes define the size, the IDT can also be up to
65,536 bytes long. But the 80386DX only supports up to 256 interrupts and exceptions;
therefore, the size of the IDT should not be set to support more than 256 interrupts. The
upper 4 bytes of IDTR (BASE) identify the starting address of the IDT in physical
memory.

763

The 80386, 80486, and Pentium Processor Families

The types of descriptors used in the IDT are called interrupt gates. These gates pro-
vide a means for passing program control to the beginning of an interrupt service routine.
Each gate is 8 bytes long and contains both attributes and a starting address for the ser-
vice routine.

EXAMPLE 7

What is the maximum value that should be assigned to LIMIT in the IDTR of 80386DX?

Solution

The maximum number of interrupt descriptors that can be used in an 80386DX micro-
computer system is 256. Therefore, the maximum table size in bytes is

Thus,

This table can also be located anywhere in the linear address space addressable with
the 80386DX’s 32-bit address. Just like the GDTR, the IDTR needs to be loaded before
the 80386DX enters protected mode. Special instructions are provided for loading and
saving the contents of the IDTR. Once the location of the table is set, it is typically not
changed after entering protected mode.

EXAMPLE 8

What is the address range of the last descriptor in the interrupt descriptor table defined by
base address 0001100016 and limit 01FF16?

Solution

From the values of the base and limit, we find that the table is located in the address range
defined by

and

The last descriptor in this table takes up the 8 bytes of memory from address 000111F816

through 000111FF16.

IDTEND � 000111FF16

IDTSTART � 0001100016

LIMIT � 0FFF16

IDTSIZE � 810 � 256 � 4096 bytes

764

The 80386, 80486, and Pentium Processor Families

Local Descriptor Table Register. The local descriptor table register (LDTR) is also
part of the 80386DX’s memory management support mechanism. As Fig. 11(a) shows,
each task can have access to its own private descriptor table in addition to the global
descriptor table. This private table is called the local descriptor table (LDT) and defines
a local memory address space for use by the task. The LDT holds segment descriptors
that provide access to code and data in segments of memory that are reserved for the cur-
rent task. Since each task can have its own segment of local memory, the protected-mode
software system may contain many local descriptor tables. For this reason, we have iden-
tified LDT0 through LDTN in Fig. 11(a).

Figure 11(b) shows us that the contents of the 16-bit LDTR do not directly define
the local descriptor table. Instead, it holds a selector that points to an LDT descriptor in
the GDT. Whenever a selector is loaded into the LDTR, the corresponding descriptor is
transparently read from global memory and loaded into the local descriptor table cache
within the 80386DX. It is this descriptor that defines the local descriptor table. As shown
in Fig. 11(b), the 32-bit BASE value identifies the starting point of the table in physical
memory, and the value of the 16-bit LIMIT determines the size of the table. Loading of
this descriptor into the cache creates the LDT for the current task. That is, every time a
selector is loaded into the LDTR, a local descriptor-table descriptor is cached and a new
LDT is activated.

Control Registers. The protected-mode model includes the four system-control regis-
ters, identified as CR0 through CR3 in Fig. 8. Figure 12 shows these registers in more
detail. Note that the lower 5 bits of CR0 are system-control flags. These bits make up
what is known as the machine status word (MSW). The most significant bit of CR0 and
registers CR2 and CR3 are used by the 80386DX’s paging mechanism.

Let us continue by examining the machine status word bits of CR0. They contain
information about the 80386DX’s protected-mode configuration and status. The four bits
labeled PE, MP, EM, and R are control bits that define the protected-mode system con-
figuration. The fifth bit, TS, is a status bit. These bits can be examined or modified
through software.

The protected-mode enable (PE) bit determines if the 80386DX is in the real or
protected mode. At reset, PE is cleared. This enables real-mode of operation. To enter
protected mode, we simply switch PE to 1 through software. Once in protected mode, the
80386DX cannot be switched back to real mode under software control by clearing the
PE bit. The only way to return to real mode is by initiating hardware reset.

The math present (MP) bit is set to 1 to indicate that a numeric coprocessor is pre-
sent in the microcomputer system. On the other hand, if the system is to be configured so
that a software emulator is used to perform numeric operations, the emulate (EM) bit is
set to 1. Only one of these two bits can be set at a time. Finally, the extension-type (R) bit
is used to indicate whether an 80287 or 80387 numeric coprocessor is in use. Logic 1 in
R indicates that an 80387 is installed. The last bit in the MSW, task switch (TS), auto-
matically gets set whenever the 80386DX switches from one task to another. It can be
cleared under software control.

The protected-mode software architecture of the 80386DX also supports paged
memory operation. Switching the PG bit in CR0 to logic 1 turns on paging. Now address-
ing of physical memory is implemented with an address translation mechanism that con-

765

The 80386, 80486, and Pentium Processor Families

Figure 11 (a) Task with global and local descriptor table. (b) Loading the
local descriptor table register to define a local descriptor table.

766

The 80386, 80486, and Pentium Processor Families

Figure 12 Control registers. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1986)

sists of a page directory and page table, which are both held in physical memory. Figure
12 shows that CR3 contains the page directory base register (PDBR). This register holds a
20-bit page directory base address that points to the beginning of the page directory. A
page-fault error occurs during the page-translation process if the page is not present in
memory. In this case, the 80386DX saves the address at which the page fault occurred in
register CR2. This address is denoted as page-fault linear address in Fig. 12.

Task Register. The task register (TR) is a key element in the protected-mode task
switching mechanism of the 80386DX microprocessor. This register holds a 16-bit index
value called a selector. The initial selector must be loaded into TR under software control.
This starts the initial task. After this is done, the selector is changed automatically when-
ever the 80386DX executes an instruction that performs a task switch.

As shown in Fig. 13, the selector in TR is used to locate a descriptor in the
global descriptor table. Note that when a selector is loaded into TR, the corresponding
task state segment (TSS) descriptor automatically gets read from memory and loaded into

Figure 13 Task register and the task-switching mechanism.

767

The 80386, 80486, and Pentium Processor Families

the on-chip task descriptor cache. This descriptor defines a block of memory called the
task state segment (TSS). It does this by providing the starting address (BASE) and the
size (LIMIT) of the segment. Every task has its own TSS. The TSS holds the information
needed to initiate the task, such as initial values for the user-accessible registers.

EXAMPLE 9

What is the maximum size of a TSS? Where can it be located in the linear address space?

Solution

Since the value of LIMIT is 16 bits in length, the TSS can be as long as 64Kbytes. More-
over, the base is 32 bits in length. Therefore, the TSS can be located anywhere in the
80386DX’s 4Gbyte address space.

EXAMPLE 10

Assume that the base address of the global descriptor table is 0001100016 and the selec-
tor in the task register is 210816. In what address range is the TSS descriptor stored?

Solution

The beginning address of the TSS descriptor is

Since the descriptor is 8 bytes long, it ends at

Registers with Changed Functionality. Earlier we pointed out that the function of a
few of the registers common to both the real-mode and protected-mode register models
changes as the 80386DX is switched into the protected mode of operation. For instance,
the segment registers are now called the segment selector registers, and instead of hold-
ing a base address they are loaded with what is known as a selector. The selector does not
directly specify a storage location in memory. Instead, it selects a descriptor that defines
the size and characteristics of a segment of memory.

The format of a selector is shown in Fig. 14. Here we see that the two least sig-
nificant bits are labeled RPL, which stands for requested privilege level. These bits con-
tain 00 � 0, 01 � 1, 10 � 2, or 11 � 3 and assign a request protection level to the
selector. The next bit, identified as task indicator (TI) in Fig. 14, selects the table to be
used when accessing a segment descriptor. Remember that in protected mode two
descriptor tables are active at a time, the global descriptor table and a local descriptor
table. Looking at Fig. 14, we find that if TI is 0, the selector corresponds to a descriptor

TSS_DESCRIPTOREND � 0001310F16

 � 0001310816

 TSS_DESCRIPTORSTART � 0001100016 � 210816

768

The 80386, 80486, and Pentium Processor Families

Figure 14 Selector format.
(Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1986)

in the global descriptor table. Finally, the 13 most significant bits contain an index that is
used as a pointer to a specific descriptor entry in the table selected by the TI bit.

EXAMPLE 11

Assume that the base address of the LDT is 0012000016 and the GDT base address is
0010000016. If the value of the selector loaded into the CS register is 100716, what is the
request privilege level? Is the segment descriptor in the GDT or LDT? What is the
address of the segment descriptor?

Solution

Expressing the selector value in binary form, we get

Since the two least significant bits are both 1,

The next bit, bit 2, is also 1. This means that the segment descriptor is in the LDT. Finally,
the value in the 13 most significant bits must be scaled by 8 to give the offset of the
descriptor from the base address of the table. Therefore,

and the address of the segment descriptor is

 � 0012100016

 DESCRIPTORADDRESS � 0012000016 � 100016

 � 100016

 OFFSET � 00010000000002 � 810 � 51210 � 810 � 409610

RPL � 3

(CS) � 00010000000001112

769

The 80386, 80486, and Pentium Processor Families

Figure 15 Protected-mode flag register. (Reprinted by permission of Intel
Corp. Copyright / Intel Corp. 1986)

Another register whose function changes when the 80386DX is switched to pro-
tected mode is the flag register. As Fig. 8 shows, the flag register is now identified as
EFLAGS and expands to 32 bits in length. The functions of the bits in EFLAGS are given
in Fig. 15. Comparing this illustration to the 8086 flag register, we see that five additional
bits are implemented. These bits are only active when the 80386DX is in protected mode.
They are the 2-bit input/output privilege level (IOPL) code, the nested task (NT) flag, the
resume (RF) flag, and the virtual 8086 mode (VM) flag.

Note in Fig. 15 that each of these flags is identified as a system flag. That is, they
represent protected-mode system operations. For example, the IOPL bits are used to
assign a maximum privilege level to input /output. If 00 is loaded into IOPL, I/O can only
be performed when the 80386DX is in the highest privilege level, level 0. On the other
hand, if IOPL is 11, I/O is assigned to the lowest privilege level, level 3.

The NT flag identifies whether or not the current task is a nested task—that is, if it
was called from another task. This bit is automatically set whenever a nested task is ini-
tiated and can only be reset through software.

Protected-Mode Memory Management and Address Translation

Up to this point in the section, we have introduced the register set of the protected-
mode software model for the 80386DX microprocessor. However, the software model of a
microprocessor also includes its memory structure. Because of the memory-management
capability of the 80386DX, the organization of protected-mode memory appears quite
complex. Here we will examine how the memory-management unit (MMU) of the
80386DX implements the address space and how it translates virtual (logical) addresses
to physical addresses. We begin here with what are called the segmented- and paged-
models of memory.

770

The 80386, 80486, and Pentium Processor Families

Figure 16 Protected-mode memory
pointer.

Virtual Address and Virtual Address Space. The protected-mode memory manage-
ment unit employs memory pointers that are 48 bits in length and consist of two parts, the
selector and the offset. This 48-bit memory pointer is called a virtual address and is used
to specify the memory locations of instructions or data. As shown in Fig. 16, the selector
is 16 bits in length and the offset is 32 bits long. Earlier we pointed out that one source
of selectors is the segment selector registers within the 80386DX. For instance, if code is
being accessed in memory, the active segment selector is held in CS. This part of the
pointer selects a unique segment of the 80386DX’s virtual address space.

The offset is held in one of the 80386DX’s other user-accessible registers. For our
example of a code access, the offset would be in the EIP register. This part of the pointer
is the displacement of the memory location that is to be accessed within the selected seg-
ment of memory. In our example, it points to the first byte of the double word of instruc-
tion code to be fetched for execution. Since the offset is 32 bits in length, segment size
can be as large as 4Gbytes. We say as large as 4Gbytes because segment size is actually
variable and can be defined to be as small as 1 byte to as large as 4Gbytes.

Figure 17 shows that the 16-bit selector breaks down into a 13-bit index, table select
bit, and two bits used for a request privilege level. The two RPL bits are not used in the
selection of the memory segment. That is, just 14 of its 16 bits are employed in address-
ing memory. Therefore, the virtual address space consists of 214 (16,384 � 16K) unique
segments of memory, each of which has a maximum size of 4Gbytes. These segments are
the basic elements into which the memory management unit of the 80386DX organizes
the virtual address space.

Another way of looking at the size of the virtual address space is that by combin-
ing the 14-bit segment selector with the 32-bit offset we get a 46-bit virtual address.
Therefore, the 80386DX’s virtual address space contains 246 equals 64Tbytes (terabytes)
unique addresses.

Segmented Partitioning of the Virtual Address Space. The memory-management
unit of the 80386DX implements both a segmented model and a paged model of virtual
memory. In the segmented model, the 80386DX’s 64Tbyte virtual address space is parti-
tioned into a 32Tbyte global memory address space and a 32Tbyte local memory address

Figure 17 Segment selector format.

771

The 80386, 80486, and Pentium Processor Families

Figure 18 Partitioning the virtual
address space.

space. This partitioning is illustrated in Fig. 18. The TI bit of the selector shown in Fig.
17 is used to select between the global or local descriptor tables that define the virtual
address space. Each of these address spaces may contain as many as 8,192 segments of
memory. This assumes that every descriptor in both the global descriptor table and local
descriptor table is in use and set for maximum size. These descriptors define the attrib-
utes of the corresponding segments. However, in practical system applications not all the
descriptors are normally in use. Let us now look briefly at how software uses global and
local segments of memory.

In the multiprocessing software environment of the 80386DX, an application is
expressed as a collection of tasks. By task we mean a group of program routines that
together perform a specific function. When the 80386DX initiates a task, it can activate
both global and local segments of memory. Figure 19 illustrates this idea. Note that tasks
1, 2, and 3 each have a reserved segment of the local address space. This part of memory
stores data or code that can only be accessed by the corresponding task. That is, task 2
cannot access any of the information in the local address space of task 1. On the other
hand, all the tasks are shown to share the same segment of the global address space. This
segment typically contains operating system resources and data that are to be shared by
all or many tasks.

Physical Address Space and Virtual-to-Physical Address Translation. We have just
found that the virtual address space available to the programmer is 64Tbytes in length.
However, the 32-bit protected-mode address bus of the 80386DX supports only a 4Gbyte

772

The 80386, 80486, and Pentium Processor Families

Figure 19 Global and local memory for a task. (Reprinted by permission of
Intel Corporation. Copyright/ Intel Corp. 1987)

physical address space. Just a small amount of the information in virtual memory can
reside in physical memory at a time. For this reason systems that employ a virtual address
space that is larger than the implemented physical memory are equipped with a secondary
storage device such as a hard disk. The segments not currently in use are stored on disk.

If a program accesses a segment of memory not present in physical memory and
space is available in physical memory, the segment is simply read from the hard disk and
copied in physical memory. On the other hand, if the physical memory address space is
full, another segment must first be sent out to the hard disk to make room for the new
information. The memory-manager part of the operating system controls the allocation
and deallocation of physical memory and the swapping of data between the hard disk and
physical memory of the microcomputer. In this way, the memory address space of the
microcomputer appears much larger than the physical memory in the microcomputer.

The segmentation and paging memory management units of the 80386DX provide
the mechanism by which 48-bit virtual addresses are mapped into the 32-bit physical
addresses needed by hardware. They employ a memory-based lookup table address-
translation process. The diagram in Fig. 20 illustrates this address translation in general.
Note that first a segment translation is performed on the virtual (logical) address. Then,
if paging is disabled, the linear address produced is equal to the physical address. How-
ever, if paging is enabled, the linear address goes through a second translation process,
known as page translation, to produce the physical address.

As part of the translation process, the MMU determines whether or not the corre-
sponding segment or page of the virtual address space currently exists in physical mem-
ory. If the segment or page already resides in memory, the operation is performed on the

773

The 80386, 80486, and Pentium Processor Families

Figure 20 Virtual-to-physical address
translation. (Reprinted by permission
of Intel Corporation. Copyright/ Intel
Corp. 1986)

information. However, if the segment or page is not present, it signals this condition as an
error. Once this condition is identified, the memory-manager software initiates loading of
the segment or page from the external storage device to physical memory. This operation
is called a swap. That is, an old segment or page gets swapped out to disk to make room
in physical memory, and then the new segment or page is swapped into this space. Even
though a swap has taken place, it appears to the program that all segments or pages are
available in physical memory.

Segmentation Virtual-to-Physical Address Translation. Let us now look more
closely at the address-translation process. We begin by assuming that paging is turned off.
In this case, the address-translation sequence that takes place is the one highlighted in
Fig. 21(a). Figure 21(b) describes the operations that take place during the segment trans-
lation process. Earlier we found that the 80386DX’s segment selector registers, CS, DS,
ES, FS, GS, and SS, provide the segment selectors used to index into either the global
descriptor table or the local descriptor table. Whenever a selector value is loaded into a
segment register, the descriptor pointed to by the index in the table selected by the TI bit
is automatically fetched from memory and loaded into the corresponding segment
descriptor cache register. It is the contents of this descriptor, not the selector that defines
the location, size and characteristics of the segment of memory.

Note in Fig. 22 that the 80386DX has one 64-bit internal segment descriptor cache
register for each segment selector register. These cache registers are not accessible by the
programmer. Instead, they are transparently loaded with a complete descriptor whenever

774

The 80386, 80486, and Pentium Processor Families

Figure 21 (a) Virtual-to-linear address translation. (Reprinted by permission
of Intel Corporation. Copyright/ Intel Corp. 1986) (b) Translating a virtual
address into a physical (linear) address.

775

The 80386, 80486, and Pentium Processor Families

Figure 22 Segment selector registers and the segment descriptor cache registers.

an instruction is executed that loads a new selector into a segment register. For instance,
if an operand were to be accessed from a new data segment, a local memory data segment
selector would be first loaded into DS with the instruction

MOV DS, AX

As this instruction is executed, the selector in AX is loaded into DS and then the corre-
sponding descriptor in the local descriptor table is read from memory and loaded into the
data segment descriptor cache register. The MMU looks at the information in the descrip-
tor and performs checks to determine whether or not it is valid.

In this way, we see that the segment descriptors held in the cache dynamically
change as a task is performed. At any one time, the memory-management unit permits
just six segments of memory to be active. These segments correspond to the six segment
selector registers, CS, DS, ES, FS, GS, and SS, and can reside in either local or global
memory. Once the descriptors are cached, subsequent references to them are performed
without any overhead for loading of the descriptor.

In Fig. 22, we find that this data segment descriptor has three parts: 12 bits of
access rights information, a 32-bit segment base address, and a 20-bit segment limit. The
value of the 32-bit base address identifies the beginning of the data segment that is to be
accessed. The loading of the data segment descriptor cache completes the table lookup
that maps the 16-bit selector to its equivalent 32-bit data segment base address.

The location of the operand in this data segment is determined by the offset part of
the virtual address. For example, let us assume that the next instruction to be executed
needs to access an operand in this data segment and that the instruction uses based-
addressing mode to specify the operand. Then the EBX register holds the offset of the
operand from the base address of the data segment. Figure 21(a) shows that the base
address is directly added to the offset to produce the 32-bit physical address of the
operand. This addition completes the translation of the 48-bit virtual address into the 32-
bit linear address. As Fig. 21(a) shows, when paging is disabled, PG � 0, the linear
address is the physical address of the storage location to be accessed in memory.

776

The 80386, 80486, and Pentium Processor Families

EXAMPLE 12

Assume that, in Fig. 21(b), the virtual address is made up of a segment selector equal to
010016, offset equal to 0000200016, and that paging is disabled. If the segment base
address read in from the descriptor is 0003000016, what is the physical address of the
operand?

Solution

The virtual address is given as

This virtual address translates to the physical address

Paged Partitioning of the Virtual Address Space and Virtual-to-Physical Address
Translation. The paging memory management unit works beneath the segmentation
memory management unit and when enabled it organizes the 80386DX’s address space
in a different way. Earlier we pointed out that when paging is not in use, the 4Gbyte
physical address space is organized into segments that can be any size from 1 byte to
4Gbytes. However, when paging is turned on, the paging unit arranges the physical
address space into 1,048,496 pages that are each 4,096 bytes long. Figure 23 shows how
the physical address space may be organized in this way. The fixed-size blocks of paged
memory are a disadvantage in that 4K addresses are allocated by the memory manager
even though it may not all be used. This creation of unused sections of memory is called
fragmentation. Fragmentation results in less efficient use of memory. However, paging
greatly simplifies the implementation of the memory-manager software. Let us continue
by looking at what happens to the address translation process when paging is enabled.

 � 0003200016

 � 0003000016 � 0000200016

 Linear address � Base address � Offset

Virtual address � 0100:0000200016

Figure 23 Paged organization of the
physical address space.

777

The 80386, 80486, and Pentium Processor Families

Figure 24 Paged translation of a
linear address to a physical address.
(Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1986)

In Fig. 24, we see that the linear address produced by the segment-translation
process is no longer used as the physical address. Instead, it undergoes a second transla-
tion called the page translation. Figure 25 shows the format of a linear address. Note that
it is composed of three elements: a 12-bit offset field, a 10-bit page field, and a 10-bit
directory field.

The diagram in Fig. 26 illustrates how a linear address is translated into its equiva-
lent physical address. Earlier we found that the location of the page directory table in
memory is identified by the address in the page directory base register (PDBR) in CR3.
These 20 bits are actually the MSBs of the base address. The 12 lower bits are assumed
to start at 00016 at the beginning of the directory and range to FFF16 at its end. Therefore,
the page directory contains 4Kbyte memory locations and is organized as 1K, 32-bit
addresses. These addresses each point to a separate page table, which is also in physical
memory.

Note that the 10-bit directory field of the linear address is the offset from the value
in PDBR that selects one of the 1K, 32-bit page directory entries in the page directory
table. This pointer is cached inside the 80386DX in what is called the translation look-

Figure 25 Linear address format.

778

The 80386, 80486, and Pentium Processor Families

Figure 26 Translating a linear address to a physical address.

aside buffer. Its value is used as the base address of a page table in memory. As with the
page directory, each page table is also 4Kbytes long and contains 1K, 32-bit addresses.
However, these addresses are called page frame addresses. Each page frame address
points to a 4K frame of data storage locations in physical memory.

Next, the 10-bit page field of the linear address selects one of the 1K, 32-bit page
table entries from the page table. This table entry is also cached in the translation looka-
side buffer. In Fig. 26, we see that it is another base address and selects a 4Kbyte page
frame in memory. This frame of memory locations is used for storage of data. The 12-bit
offset part of the linear address identifies the location of the operand in the active page
frame.

The 80386DX’s translation lookaside buffer is actually capable of maintaining 32
sets of table entries. In this way, we see that 128K-bytes of paged memory is always
directly accessible. Operands in this part of memory can be accessed without first read-
ing new entries from the page tables. If an operand to be accessed is not in one of these
pages, overhead is required to first read the page table entry into the translation look-
aside buffer.

779

The 80386, 80486, and Pentium Processor Families

▲ 6 DESCRIPTOR AND PAGE TABLE ENTRIES OF THE
80386DX

In the previous section of this chapter, we frequently used the terms descriptor and page
table entry. We talked about the descriptor as an element of the global descriptor, local
descriptor, and interrupt descriptor tables. Actually, the 80386DX supports several kinds
of descriptors, and they all serve different functions relative to overall system operation.
Some examples are the segment descriptor, system segment descriptor, local descriptor
table descriptor, call gate descriptor, task state segment descriptor, and task gate descrip-
tor. We also discussed page table entries in our description of the 80386DX’s page trans-
lation of virtual addresses. There are only two types of page table entries: the page direc-
tory entry and the page table entry. Let us now explore the structure of descriptors and
page table entries.

Descriptors are the elements by which the on-chip memory manager hardware man-
ages the segmentation of the 80386DX’s 64Tbyte virtual memory address space. One
descriptor exists for each segment of memory in the virtual address space. Descriptors are
assigned to the local descriptor table, global descriptor table, task state segment, call gate,
task gate, and interrupts. The contents of a descriptor provide mapping from virtual
addresses to linear addresses for code, data, stack, and the task state segments and then
assign attributes to the segment.

Each descriptor is 8 bytes long and contains three kinds of information. Earlier we
identified the 20-bit LIMIT field and showed that its value defines the size of the segment
or the table. Moreover, we found that the 32-bit BASE value provides the beginning
address for the segment or the table in the 64Gbyte linear address space. The third ele-
ment of a descriptor, called the access rights byte, is different for each type of descriptor.
Let us now look at the format of two types of descriptors: the segment descriptor and sys-
tem segment descriptor.

The segment descriptor is the type of descriptor used to describe code, data, and
stack segments. Figure 27(a) shows the general structure of a segment descriptor. Here we
see that the two lowest-addressed bytes, bytes 0 and 1, hold the 16 least significant bits
of the limit; the next three bytes contain the 24 least significant bits of the base address;
byte 5 is the access rights byte; the lower 4 bits of byte 6 are the four most significant bits
of the limit; the upper 4 bits include the granularity (G) and the programmer available
(AVL) bits; and byte 7 contains the eight most significant bits of the 32-bit base. Segment
descriptors are only found in the local and global descriptor tables.

Figure 28 shows how a descriptor is loaded from the local descriptor table in
global memory to define a code segment in local memory. Note that the LDTR descrip-
tor defines a local descriptor table between addresses 0090000016 and 0090FFFF16. The
value 100516, held in the code segment selector register, causes the descriptor at offset
100016 in the local descriptor table to be cached into the code segment descriptor cache.
In this way, a 1Mbyte code segment is activated starting at address 0060000016 in local
memory.

The bits of the access rights byte define the operating characteristics of a segment.
For example, they contain information about a segment such as whether the descriptor has
been accessed, if it is a code or data segment descriptor, its privilege level, if it is read-

780

The 80386, 80486, and Pentium Processor Families

Figure 27 (a) Segment descriptor format. (b) Access byte bit definitions. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1987)

able or writeable, and if it is currently loaded into internal memory. Let us next look at
the function of each of these bits in detail.

Figure 27(b) lists the function of each bit in the access rights byte. Note that if bit
0 is logic 1, the descriptor has been accessed. A descriptor is marked this way to indicate
that its value has been cached on the 80386DX. The memory-manager software checks
this information to find out if the segment is already in physical memory. Bit 4 identifies
whether the descriptor represents a code/data segment or is a control descriptor. Let us
assume that this bit is 1 to identify a segment descriptor. Then, the type bits, bits 1
through 3, determine whether the descriptor describes a code segment or a data segment.
For instance, 000 means that it is a read/write data segment that grows upward from the
base to the limit. The DPL bits, bits 5 and 6, assign a descriptor privilege level to the seg-
ment. For example, 00 selects the most privileged level, level 0. Finally, the present bit
indicates whether or not the segment is currently loaded into physical memory. The oper-

781

Figure 28 Creating a code segment.

The 80386, 80486, and Pentium Processor Families

ating system software to determine if the segment should be loaded from a secondary stor-
age device such as a hard disk can test this bit. For example, if the access rights byte has
logic 1 in bit 7, the data segment is already available in physical memory and does not
have to be loaded from an external device. Figure 29(a) shows the general form of a code
segment descriptor, and Fig. 29(b) shows a general data/stack segment descriptor.

782

Figure 29 (a) Code segment
descriptor access byte configuration.
(Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1987) (b) Data or stack segment access
byte configuration. (Reprinted by
permission of Intel Corporation.
Copyright/ Intel Corp. 1987)

EXAMPLE 13

The access rights byte of a segment descriptor contains FE16. What type of segment
descriptor does it describe, and what are its characteristics?

Solution

Expressing the access rights byte in binary form, we get

Since bit 4 is 1, the access rights byte is for a code/data segment descriptor. This segment
has the characteristics that follow:

 A � 0 � segment has not been accessed

 R � 1 � readable code segment

 C � 1 � conforming code segment

 E � 1 � executable code segment

 DPL � 11 � privilege level 3

 P � 1 � segment is mapped into physical memory

FE16 � 111111102

The 80386, 80486, and Pentium Processor Families

783

The 80386, 80486, and Pentium Processor Families

Figure 30 System segment descriptor format and field definitions.

An example of a system segment descriptor is the descriptor used to define the
local descriptor table. This descriptor is located in the GDT. Looking at Fig. 30, we
find that the format of a system segment descriptor is similar to the segment descrip-
tor we just discussed. However, the type field of the access rights byte takes on new
functions.

EXAMPLE 14

If a system segment descriptor has an access rights byte equal to 8216, what type of
descriptor does it represent? What is its privilege level? Is the descriptor present?

784

The 80386, 80486, and Pentium Processor Families

Figure 31 Directory or page table entry format.

Solution

First, we express the access rights byte in binary form. This gives

Now we see that the bits that describe the type of the descriptor are given as

The privilege level is given by

and since

the descriptor is present in physical memory.

Now that we have discussed the format and use of descriptors, let us continue with
page table entries. Figure 31 shows the format of either a page directory or page table
entry. Here we see that the 20 most significant bits are either the base address of the page
table if the entry is in the page directory table or the base address of the page frame if the
entry is in the page table. Note that only bits 12 through 31 of the base address are sup-
plied by the entry. The 12 least significant bits are assumed to be equal to 0. In this way,
we see that page tables and page frames are always located on a 4Kbyte address bound-
ary. In Fig. 26, we found that these entries are cached into the translation lookaside buffer.

The 12 lower bits of the entry supply protection characteristics or statistical infor-
mation about the use of the page table or page frame. For example, the user/supervisor
(U/S) and read/write (R/W) bits implement a two-level page protection mechanism. Set-
ting U/S to 1 selects user-level protection. User is the low privilege level and is the same
as protection level 3 of the segmentation model. That is, user is the protection level
assigned to pages of memory that are accessible by application software. On the other
hand, making U/S equal to 0 assigns supervisor-level protection to the table or frame.
Supervisor corresponds to levels 0, 1, and 2 of the segmentation model and is the level
assigned to operating system resources. The read/write (R/W) bit is used to make a user-

P � 1

DPL � 00 � privilege level 0

TYPE � 0010 � local descriptor table descriptor

8216 � 100000102

785

The 80386, 80486, and Pentium Processor Families

Figure 32 User- and supervisor- level
access rights.

level table or frame read-only or read/write. Logic 1 in R/W selects read-only operation.
Figure 32 summarizes the access characteristics for each setting of U/S and R/W.

Protection characteristics assigned by a page directory entry are applied to all page
frames defined by the entries in the page table. On the other hand, the attributes assigned
to a page table entry apply only to the page frame that it defines. Since two sets of pro-
tection characteristics exist for all page frames, the page-protection mechanism of the
80386DX is designed always to enforce the higher-privileged (more restricting) of the
two protection rights.

EXAMPLE 15

If the page directory entry for the active page frame is F100000716 and its page table
entry is 0100000516, is the frame assigned to the user or supervisor? What access is per-
mitted to the frame from user mode and from supervisor mode?

Solution

First, the page directory entry is expressed in binary form. This gives

Therefore, the page protection bits are

This assigns user-mode and read/write accesses to the complete page frame.
Next, the page table entry for the frame is expressed in binary form as

Here we find that

This defines the page frame as a user-mode, read-only page. Since the page frame attrib-
utes are the more restrictive, they apply. Figure 32 shows that user software (application
software) can only read data in this frame. On the other hand, supervisor software (oper-
ating system software) can either read data from or write data into the frame.

U/S R/W � 10

0100000516 � 000000010000000000000000000001012

U/S R/W � 11

F100000716 � 111100010000000000000000000001112

786

The 80386, 80486, and Pentium Processor Families

Figure 33 Protected-mode instruction
set.

The other implemented bits in the directory and page table entry shown in Fig. 31
provide statistical information about the table or frame usage. For instance, the present
(P) bit identifies whether or not the entry can be used for page address translation. P equal
to logic 1 indicates that the entry is valid and is available for use in address translation.
On the other hand, if P equals 0, the entry is either undefined or not present in physical
memory. If an attempt is made to access a page table or page frame that has its P bit
marked 0, a page fault results. This page fault needs to be serviced by the operating sys-
tem.

The 80386DX also records the fact that a page table or page frame has been
accessed. Just before a read or write is performed to any address in a table or frame, the
accessed (A) bit of the entry is set to 1. This marks it as having been accessed. For page
frame accesses, it also records whether the access was for a read or write operation. The
dirty (D) bit is defined only for a page table entry, and it gets set if a write is performed
to any address in the corresponding page frame. In a virtual demand paged memory sys-
tem, the operating system can check the state of these bits to determine if a page in phys-
ical memory needs to be updated on the virtual storage device (hard disk) when a new
page is swapped into its physical memory address space. The last 3 bits are labeled AVL
and are available for use by the programmer.

▲ 7 PROTECTED-MODE SYSTEM-CONTROL
INSTRUCTION SET OF THE 80386DX

Recall the instruction set of the 8086/8088 microprocessor. The instruction set represents
the base instruction set of the 8086 architecture. In protected mode, the 80386DX exe-
cutes all the instructions available in the real mode. Moreover, it is enhanced with a num-
ber of additional instructions that either apply only to protected-mode operation or are
used in the real mode to prepare the 80386DX for entry into the protected mode. As Fig.
33 shows, these instructions are known as the system control instruction set.

Figure 34 lists the instructions of the system control instruction set. Here we find
the format of each instruction along with a description of its operation. Moreover, the
mode or modes in which the instruction is available are identified. Let us now look at the
operation of some of these instructions in detail.

787

The 80386, 80486, and Pentium Processor Families

Figure 34 Protected-mode system control instruction set.

Figure 34 shows that the first six instructions can be executed in both the real and
protected mode. They provide programmers with the ability to load (L) or store (S) the
contents of the global descriptor table (GDT) register, interrupt descriptor table (IDT)
register, and machine status word (MSW) part of CR0. Note that the instruction load
global descriptor table register (LGDT) is used to load the GDTR from memory.
Operand S specifies the location of the 6 bytes of memory that hold the limit and base

788

The 80386, 80486, and Pentium Processor Families

values needed to specify the size and beginning address of the GDT. The first word of
memory contains the limit, and the next 4 bytes contain the base. For instance, executing
the instruction

LGDT [INIT_GDTR]

loads the GDTR with the base and limit stored at address INIT_GDTR to create a global
descriptor table in memory. This instruction is meant to be used during system initializa-
tion and before switching the 80386DX to the protected mode.

Once loaded, the current contents of the GDTR can be saved in memory by exe-
cuting the store global descriptor table (SGDT) instruction. An example is the instruction

SGDT [SAVE_GDTR]

The instructions LIDT and SIDT perform similar operations for the interrupt descriptor
table register. The IDTR is also set up during initialization.

The instructions load machine status word (LMSW) and store machine status word
(SMSW) allow the contents of the machine status word (MSW) to be loaded and stored
respectively. These are the instructions that are used to switch the 80386DX from real to
protected mode. To do this, we must set the least significant bit in the MSW to 1. This
can be done by first reading the contents of the machine status word, modifying the LSB
(PE), and then writing the modified value back into the MSW part of CR0. The instruc-
tion sequence that follows will switch an 80386DX operating in real mode to the pro-
tected mode:

SMSW AX ;Read from the MSW
OR AX, 1 ;Set the PE bit
LMSW AX ;Write to the MSW

The next four instructions in Fig. 34 are also used to initialize or save the contents
of protected-mode registers. However, they can be used only when the 80386DX is in the
protected mode. To load and to save the contents of the LDTR, we have the instructions
LLDT and SLDT, respectively. Moreover, for loading and saving the contents of the TR,
the equivalent instructions are LTR and STR.

The rest of the instructions in Fig. 34 are for accessing the contents of descriptors.
For instance, to read a descriptor’s access rights byte, the load access rights byte (LAR)
instruction is executed. An example is the instruction

LAR AX, [LDIS_1]

Execution of this instruction causes the access rights byte of the specified local descrip-
tor to be loaded into AH. To read the segment limit of a descriptor, we use the load seg-
ment limit (LSL) instruction. For instance, to copy the segment limit for the specified
local descriptor into register EBX, the instruction

LSL EBX, [LDIS_1]

is executed. In both cases, ZF is set to 1 if the operation is performed correctly.

789

The 80386, 80486, and Pentium Processor Families

The instruction adjust RPL field of selector (ARPL) can be used to increase the
RPL field of a selector in memory or a register, destination (D), to match the protection
level of the selector in a register, source (S). If an RPL-level increase takes place, ZF is
set to 1. Finally, the instructions VERR and VERW are provided to test the accessibility
of a segment for a read or write operation, respectively. If the descriptor permits the type
of access tested for by executing the instruction, ZF is set to 1.

▲ 8 MULTITASKING AND PROTECTION

We say that the 80386DX microprocessor implements a multitasking software architec-
ture. By this we mean that it contains on-chip hardware that both permits multiple tasks
to exist in a software system and allows them to be scheduled for execution in a time-
shared manner. That is, program control is switched from one task to another after a fixed
interval of time elapses. For instance, the tasks can be executed in a round-robin fashion.
This means that the most recently executed task is returned to the end of the list of tasks
being executed. Even though the processes are executed in a time-shared fashion, an
80386DX microcomputer has the performance to make it appear to the user that they are
all running simultaneously.

Earlier we defined a task as a collection of program routines that performs a spe-
cific function. This function is also called a process. Software systems typically need to
perform many processes. In the protected-mode 80386DX-based microcomputer, each
process is identified as an independent task. The 80386DX provides an efficient mecha-
nism, called the task-switching mechanism, for switching between tasks. For instance, an
80386DX running at 16 MHz can perform a task switch operation in just 19μs.

We also indicated earlier that when a task is called into operation it could have both
global and local memory resources. The local memory address space is divided between
tasks. This means that each task normally has its own private segments of local memory.
Segments in global memory can be shared by all tasks. Therefore, a task can have access
to any of the segments in global memory. As Fig. 35 shows, task A has both a private
address space and a global address space available for its use.

Protection and the Protection Model

Safeguards can be built into the protected-mode software system to deny unautho-
rized or incorrect accesses of a task’s memory resources. The concept of safeguarding
memory is known as protection. The 80386DX includes on-chip hardware that imple-
ments a protection mechanism. This mechanism is designed to put restrictions on the
access of local and system resources by a task and to isolate tasks from each other in a
multitasking environment.

Segmentation, paging, and descriptors are the key elements of the 80386DX’s pro-
tection mechanism. We already identified that when using a segmented memory model,
a segment is the smallest element of the virtual memory address space that has unique
protection attributes. The access rights information and limit fields in the segment’s
descriptor define these attributes. As Fig. 36(a) shows, the on-chip protection hardware
performs a number of checks during all memory accesses. Figure 36(b) is a list of the

790

The 80386, 80486, and Pentium Processor Families

Figure 35 Virtual address space of a
task. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1987)

protection checks and restrictions imposed on software by the 80386DX. For example,
when a data-storage location in memory is written to, the type field in the access rights
byte of the segment is tested to assure that its attributes are consistent with the register
cache being loaded, and the offset is checked to verify that it is within the limit of the
segment.

Let us just review the attributes that can be assigned to a segment with the access
rights information in its descriptor. Figure 37 shows the format of a data segment descrip-
tor and an executable (code) segment descriptor. The P bit defines whether a segment of
memory is present in physical memory. Assuming that a segment is present, bit 4 of the
type field makes it either a code segment or data segment. Note that this bit is 0 if the
descriptor is for a data segment and it is 1 for code segments. Segment attributes such as
readable, writeable, conforming, expand up or down, and accessed are assigned by other
bits in the type field. Finally, a privilege level is assigned with the DPL field.

Earlier we showed that whenever a segment is accessed, the base address and limit
are cached inside the 80386DX. In Fig. 36(a), we find that the access rights information
is also loaded into the cache register. However, before loading the descriptor the MMU
verifies that the selected segment is currently present in physical memory, it is at a privi-
lege level accessible from the privilege level of the current program, the type is consistent
with the target segment selector register (, DS, ES, FS, GS, or

), and the reference into the segment does not exceed the address limit
of the segment. If a violation is detected, an error condition is signaled. The memory-
manager software can determine the cause, correct the problem, and then reinitiate the
operation.

SS � data segment
CS � code segment

791

The 80386, 80486, and Pentium Processor Families

Figure 36 (a) Testing the access rights of a descriptor. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1982) (b) Protection
checks and restrictions.

Let us now look at some examples of memory accesses that result in protection vio-
lations. For example, if the selector loaded into the CS register points to a descriptor that
defines a data segment, the type check leads to a protection violation. Another example
of an invalid memory access is an attempt to read an operand from a code segment that
is not marked as readable. Finally, any attempt to access a byte of data at an offset greater
than LIMIT, a word at an offset equal to or greater than LIMIT, or a double word at an
offset equal to or greater than LIMIT�2 extends beyond the end of the data segment and
results in a protection violation.

The 80386DX’s protection model provides four possible privilege levels for
each task—levels 0, 1, 2, and 3 — which are illustrated by concentric circles as in

792

The 80386, 80486, and Pentium Processor Families

Figure 37 Data segment and executable (code) segment descriptors.
(Reprinted by permission of Intel Corporation. Copyright/ Intel Corp. 1986)

Fig. 38. Here level 0 is the most privileged level and level 3 is the least privileged
level.

System and application software are typically partitioned in the manner shown in
Fig. 38. The kernel represents application-independent software that provides micro-
processor-oriented functions such as I/O control, task sequencing, and memory manage-
ment. For this reason, it is kept at the most privileged level, level 0. Level 1 contains
processes that provide system services such as file accessing. Level 2 is used to imple-
ment custom routines to support special-purpose system operations. Finally, the least
privileged level, level 3, is the level at which user applications are run. This example also
demonstrates how privilege levels are used to isolate system-level software (operating
system software in levels 0 through 2) from the user’s application software (level 3).
Tasks at a less privileged level can use programs from the more privileged levels but can-
not modify the contents of these routines in any way. In this way, applications are per-
mitted to use system software routines from the three higher privilege levels without
affecting their integrity.

Earlier we indicated that protection restrictions are put on the instruction set. An
example of this is that the system control instructions can only be executed in a code seg-
ment at protection level 0. We also pointed out that each task is assigned its own local
descriptor table. Therefore, as long as none of the descriptors in a task’s local-descriptor-
table references code or data available to another task, it is isolated from all other tasks.
That is, it has been assigned a unique part of the virtual address space. For example, in
Fig. 38 multiple applications running at level 3 are isolated from each other by assigning
them different local resources. This shows that segments, privilege levels, and the local
descriptor table provide protection for both code and data within a task. These types of

793

The 80386, 80486, and Pentium Processor Families

protection result in improved software reliability because errors in one application will
not affect the operating system or other applications.

Let us now look more closely at how the privilege level is assigned to a code or data
segment. Remember that when a task is running, it has access to both local and global
code segments, local and global data segments, and stack segments. A privilege level is
assigned to each of these segments through the access rights information in its descriptor.
A segment may be assigned to any privilege level simply by entering the number for the
level into the DPL bits.

To provide more flexibility, input/output has two levels of privilege. First, the I/O
drivers, which are normally system resources, are assigned to a privilege level. For the
software system of Fig. 38, we indicate that the I/O control routines are part of the ker-
nel and are at level 0.

The IN, INS, OUT, OUTS, CLI, and STI instructions are what are called trusted
instructions because the protection model of the 80386DX puts additional restrictions on
their use in protected mode. They can only be executed at a privilege level equal to or
more privileged than the input/output privilege level (IOPL) code. IOPL supplies the sec-
ond level of I/O privilege. Remember that the IOPL bits exist in the protected-mode flag
register. These bits must be loaded with the value of the privilege level to be assigned to

Figure 38 Protection model.

794

The 80386, 80486, and Pentium Processor Families

input /output instructions through software. The value of IOPL may change from task to
task. Assigning the I/O instructions to a level higher than 3 restricts applications from
directly performing I/O. Therefore, to perform an I/O operation, the application must
request service by an I/O driver through the operating system.

Accessing Code and Data through the Protection Model

During the running of a task, the 80386DX may need to either pass control to pro-
gram routines at another privilege level or access data in a segment at a different privilege
level. Accesses to code or data in segments at a different privilege level are governed by
strict rules. These rules are designed to protect the code or data at the more privileged
level from contamination by the less privileged routine.

Before looking at how accesses are made for routines or data at the same or differ-
ent privilege levels, let us first look at some terminology used to identify privilege levels.
We have already been using the terms descriptor privilege level (DPL) and I/O privilege
level (IOPL). However, when discussing the protection mechanisms by which processes
access data or code, two new terms come into play: current privilege level (CPL) and
requested privilege level (RPL). CPL is defined as the privilege level of the code or data
segment currently being accessed by a task. For example, the CPL of an executing task is
the DPL of the access rights byte in the descriptor cache for the CS register. This value
normally equals the DPL of the code segment. RPL is the privilege level of the new selec-
tor loaded into a segment register. For instance, in the case of code, it is the privilege level
of the code segment that contains the routine being called. That is, RPL is the DPL of the
code segment to which control is to be passed.

As a task in an application runs, it may require access to program routines that
reside in segments at any of the four privilege levels. Therefore, the current privilege
level of the task changes dynamically with the programs it executes because the CPL
of the task is normally switched to the DPL of the code segment currently being
accessed.

The protection rules of the 80386DX determine what code or data a program can
access. Before looking at how control is passed to code at different protection levels, let
us first look at how data segments are accessed by code at the current privilege level.
Figure 39 illustrates the protection-level checks that are made for a data access. The
general rule is that code can access only data that are at the same or a less privileged
level. For instance, if the current privilege level of a task is 1, it can access operands
that are in data segments with DPL equal to 1, 2, or 3. Whenever a new selector is loaded
into the DS, ES, FS, or GS register, the DPL of the target data segment is checked to
make sure that it is equal to or less privileged than the most privileged of either CPL or
RPL. As long as DPL satisfies this condition, the descriptor is cached inside the
80386DX, and the data access takes place.

One exception to this rule is when the SS register is loaded. In this case, the DPL
must always equal the CPL. That is, the active stack (one is required for each privilege
level) is always at the CPL.

795

The 80386, 80486, and Pentium Processor Families

Figure 39 Privilege-level checks for a data access. (Reprinted by permission of
Intel Corporation. Copyright/ Intel Corp. 1986)

EXAMPLE 16

Assuming that, in Fig. 39, , , and , will the data access take
place?

Solution

DPL of the target segment is 2, and this value is less privileged than , which is
the more privileged of CPL and RPL. Therefore, the protection criterion is satisfied and
the access will take place.

Different rules apply to how control is passed between code at the same privilege
level and between code at different privilege levels. To transfer program control to
another instruction in the same code segment, we can simply use a near jump or call
instruction. In either case, only a limit check is made to ensure that the destination of the
jump or call does not exceed the limit of the current code segment.

To pass control to code in another segment that is at the same or a different privi-
lege level, a far jump or far call instruction is used. For this transfer of program control,
both type and limit checks are performed and privilege-level rules are applied. Figure 40
shows the privilege checks made by the 80386DX. There are two conditions under which
the transfer in program control will take place. First, if CPL equals the DPL, the two seg-
ments are at the same protection level and the transfer occurs. Second, if the CPL repre-
sents a more privileged level than DPL but the conforming code (C) bit in the type field
of the new segment is set, the routine is executed at the CPL.

The general rule that applies when control is passed to code in a segment that is at
a different privilege level is that the new code segment must be at a more privileged level.

CPL � 0

RPL � 2CPL � 0DPL � 2

796

The 80386, 80486, and Pentium Processor Families

Figure 40 Privilege-level checks when directly passing program control to a
program in another segment. (Reprinted by permission of Intel Corporation.
Copyright/ Intel Corp. 1986)

A special kind of descriptor, a gate descriptor, comes into play to implement the change
in privilege level. An attempt to transfer control to a routine in a code segment at a higher
privilege level is still initiated with either a far call or far jump instruction. This time the
instruction does not directly specify the location of the destination code; instead, it refer-
ences a gate descriptor. In this case the 80386DX goes through a much more complex
program control-transfer mechanism.

The structure of a gate descriptor is shown in Fig. 41. Note that there are four types
of gate descriptors: the call gate, task gate, interrupt gate, and trap gate. The call gate
implements an indirect transfer of control within a task from code at the CPL to code at
a higher privilege level. It does this by defining a valid entry point into the more privi-
leged segment. The contents of a call gate are the virtual address of the entry point: the
destination selector and the destination offset. In Fig. 41, we see that the destination
selector identifies the code segment that contains the program to which control is to be
redirected. The destination offset points to the instruction in this segment where execution
is to resume. Call gates can reside in either the GDT or a LDT.

Figure 42 illustrates the operation of the call gate mechanism. Here we see that the
call instruction includes an offset and a selector. When the instruction is executed, this
selector is loaded into CS and points to the call gate. In turn, the call gate causes its des-
tination selector to be loaded into CS. This leads to the caching of the descriptor for the
called code segment (executable segment descriptor). The executable segment descriptor
provides the base address for the executable segment (code segment) of memory. Note
that the offset in the call gate descriptor locates the entry point of the procedure in the
executable segment.

Whenever the task’s current privilege level is changed, a new stack is activated. As
part of the program context-switching sequence, the old ESP and SS are saved on the new
stack along with any parameters and the old EIP and CS. This information is needed to
preserve linkage for return to the old program environment.

797

The 80386, 80486, and Pentium Processor Families

Now the procedure at the higher privilege level begins to execute. At the end of the
routine, a RET instruction must be included to return program control back to the calling
program. Execution of RET causes the old values of EIP, CS, the parameters, ESP, and
SS to be popped from the stack. This restores the original program environment. Now
program execution resumes with the instruction following the call instruction in the lower
privileged code segment. Figure 43 shows the privilege checks performed when program
control transfer is initiated through a call gate. For the call to be successful, the DPL of
the gate must be the same as the CPL, and the RPL of the called code must be higher than
the CPL.

Task Switching and the Task State Segment Table

Earlier we identified the task as the key program element of the 80386DX’s multi-
tasking software architecture and indicated that another important feature of this archi-
tecture is the high-performance task-switching mechanism. A task can be invoked either

Figure 41 Gate descriptor format. (Reprinted by permission of Intel Corpo-
ration. Copyright/ Intel Corp. 1987)

798

The 80386, 80486, and Pentium Processor Families

Figure 42 Call gate operation.
(Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1986)

Figure 43 Privilege-level checks for
program control transfer with a call
gate. (Reprinted by permission of Intel
Corporation. Copyright / Intel Corp.
1986)

directly or indirectly by executing either the intersegment jump or intersegment call
instruction. When a jump instruction is used to initiate a task switch, no return linkage to
the prior task is supported. On the other hand, if a call is used to switch to the new task
instead of a jump, back linkage information is saved automatically. This information per-
mits a return to be performed to the instruction that follows the calling instruction in the
old task at completion of the new task.

799

The 80386, 80486, and Pentium Processor Families

Figure 44 TSS descriptor format. (Reprinted by permission of Intel Cor-
poration. Copyright/ Intel Corp. 1986)

Each task that is to be performed by the 80386DX is assigned a unique selector
called a task state selector. This selector is an index to a corresponding task state segment
descriptor (TSS) in the global descriptor table. The format of a task state segment
descriptor is given in Fig. 44.

If a jump or call instruction has a task state selector as its operand, a direct entry is
performed to the task. As Fig. 45 shows, when a call instruction is executed, the selector
is loaded into the 80386DX’s task register (TR). Then the corresponding task state seg-
ment descriptor is read from the GDT and loaded into the task register cache. This only
happens if the criteria specified by the access rights information of the descriptor are sat-
isfied. That is, the descriptor is present (P � 1), the task is not busy (B � 0), and pro-
tection is not violated (CPL must be equal to DPL). Looking at Fig. 45, we see that, once
loaded, the base address and limit specified in the descriptor define the starting point and
size of the task’s task state segment (TSS). This TSS contains all the information needed
to either start or stop a task.

Before explaining the rest of the task-switch sequence, let us first look more
closely at what is contained in the task state segment. Figure 45 show a typical TSS.
Its minimum size is 104 bytes. For this reason, the minimum limit that can be speci-
fied in a TSS descriptor is 0006716. Note that the segment contains information such
as the state of the microprocessor (general registers, segment selectors, instruction
pointer, and flags) needed to initiate the task, a back-link selector to the TSS of the
task that was active when this task was called, the local descriptor table register selec-
tor, a stack selector and pointer for privilege levels 0, 1, and 2, and an I/O permission
bit map.

Now we will continue with the procedure that invokes a task. Let us assume that a
task was already active when a new task was called. Then the new task is what is called
a nested task and it causes the NT bit of the flag word to be set to 1. In this case, the cur-
rent task is first suspended and the state of the 80386DX’s user-accessible registers is
saved in the old TSS. Next, the B bit in the new task’s descriptor is marked busy; the TS
bit in the machine status word is set to indicate that a task is active; the state information
from the new task’s TSS is loaded into the MPU; and the selector for the old TSS is saved
as the back-link selector in the new task state segment. The task switch operation is now
complete and execution resumes with the instruction identified by the new contents of the
code segment selector (CS) and instruction pointer (IP).

The old program context is preserved by saving the selector for the old TSS as the
back-link selector in the new TSS. By executing a return instruction at the end of the new

800

The 80386, 80486, and Pentium Processor Families

Figure 45 Task state segment table. (Reprinted by permission of Intel Cor-
poration. Copyright/ Intel Corp. 1987)

801

The 80386, 80486, and Pentium Processor Families

Figure 46 Task gate descriptor format. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp. 1986)

Figure 47 Task switch through a task gate. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp. 1987)

task, the back-link selector for the old TSS is automatically reloaded into TR. This acti-
vates the old TSS and restores the prior program environment. Now program execution
resumes at the point where it left off in the old task.

The indirect method of invoking a task is by jumping to or calling a task gate. This
is the method used to transfer control to a task at an RPL that is higher than the CPL.
Figure 46 shows the format of a task gate. This time the instruction includes a selector
that points to the task gate, which is in either the LDT or the GDT, instead of a task state
selector. The TSS selector held in this gate is loaded into TR to select the TSS and initi-
ate the task. Figure 47 illustrates a task initiated through a task gate.

Let us consider an example to illustrate the principle of task switching. The table in
Fig. 48 contains TSS descriptors SELECT0 through SELECT3. These descriptors contain
access rights and selectors for tasks 0 through 3, respectively. To invoke the task corre-
sponding to selector SELECT2 in the data segment where these selectors are stored, we
can use the following procedure. First, the data segment register is loaded with the

802

The 80386, 80486, and Pentium Processor Families

Figure 48 Task gate descriptors.

address SELECTOR_DATA_SEG_START to point to the segment that contains the selec-
tors. This is done with the instructions

MOV AX, SELECTOR_DATA_SEG_START
MOV DS, AX

Since each selector is 8 bytes long, SELECT2 is offset from the beginning of the segment
by 16 bytes. Let us load the offset into register EBX:

MOV EBX, 0FH

At this point we can use SELECT2 to implement an intersegment jump with the instruction

JMP DWORD PTR [EBX]

Execution of this instruction switches program control to the task specified by the selec-
tor in descriptor SELECT2. In this case, no program linkage is preserved. On the other
hand, by calling the task with the instruction

CALL DWORD PTR [EBX]

the linkage is maintained.

▲ 9 VIRTUAL 8086 MODE

8086 and 8088 application programs, such as those written for the PC’s DOS operating
system, can be directly run on the 80386DX in real mode. A protected-mode operating
system, such as UNIX, can also run DOS applications without change. This is done

803

The 80386, 80486, and Pentium Processor Families

through what is called virtual 8086 mode. When in this mode, the 80386DX supports an
8086 microprocessor programming model and can directly run programs written for the
8086. That is, it creates a virtual 8086 machine for executing programs.

In this kind of application, the 80386DX is switched back and forth between pro-
tected mode and virtual 8086 mode. The UNIX operating system and UNIX applications
are run in protected mode, and when the DOS operating system and a DOS application
are to run, the 80386DX is switched to the virtual 8086 mode. A program known as a vir-
tual 8086 monitor controls this mode switching.

The virtual mode (VM) bit in the extended flag register selects virtual 8086 mode
of operation. VM must be switched to 1 to enable virtual 8086 mode of operation. Actu-
ally, the VM bit in EFLAGS is not directly switched to 1 by software because virtual
8086 mode is normally entered as a protected-mode task. Therefore, the copy of
EFLAGS in the TSS for the task would include VM equal to 1. These EFLAGS are
loaded as part of the task switching process. In turn, the virtual 8086 mode of operation
is initiated. The virtual 8086 program is run at privilege level 3. The virtual 8086 moni-
tor is responsible for setting and resetting the VM bit in the task’s copy of EFLAGS and
permits both protected-mode tasks and virtual-8086-mode tasks to coexist in a multi-
tasking program environment.

Another way of initiating virtual 8086 mode is through an interrupt return. In this
case, the EFLAGS are reloaded from the stack. Again the copy of EFLAGS must have the
VM bit set to 1 to enter the virtual 8086 mode of operation.

▲ 10 80486 MICROPROCESSOR FAMILY

Intel’s second generation of 32-bit microprocessors, the 80486 family, was introduced in
1989. The first product offered in this family was the 80486DX MPU. This device is a full
32-bit microprocessor—that is, its internal registers and external data paths are both
32 bits wide. This device offers a number of advanced software and hardware architecture
features as compared to the 80386DX. Two major changes that greatly improved perfor-
mance were the addition of an on-chip floating-point math coprocessor and an on-chip
code and data cache memory. The 80386 family supports both a math coprocessor and
cache memory, but they need to be implemented external to the device.

The 80486 family maintains real-mode and protected-mode software compatibility
with the 80386 architecture. However, important changes have been made in the instruc-
tion set. First, and most important, is that the execution speed of most instructions of the
instruction set has been improved for the 80486 family. This was done by changing the
way in which they are performed by the MPU so that now most of the basic instructions
execute in just one clock cycle. For instance, the move, add, subtract, and logic operations
can all be performed in a single clock cycle. With the 80386DX, these same operations
took two or more clock cycles to be completed. Finally, a number of new instructions
have been added to make the instruction set even more versatile. The result of these archi-
tectural changes is an improvement of more than 2� in the overall performance for the
80486 family.

Similar to the 80386DX, the 80486DX was followed by an 80486SX device. How-
ever, this time the SX version did not have a 16-bit external architecture. It also is a full
32-bit MPU, although it does not include the on-chip floating-point coprocessor unit. The

804

The 80386, 80486, and Pentium Processor Families

80486DX and 80486SX were followed by several new generations of 80486 MPUs,
which introduced additional architectural features that further enhanced the performance
of the family. For instance, the 80486DX2 MPU, which is both hardware and software
compatible with the 80486DX, has increased performance by a technique known as clock
doubling. In the 80486DX4, this internal clock scaling was expanded to permit multipli-
cation by 2�, 2.5�, or 3�. Here we will focus on the 80486SX, not the 80486DX.

Let us next briefly compare the levels of performance offered by the 80386 family
and 80486 family MPUs. Referring back to the iCOMP index chart in Fig. 1, we see that
the 80486SX-20 has an iCOMP rating of 78 compared to a rating of 32 for the 80386SX-
20. Moreover, the 80486DX-33 is rated at a level of 166, whereas the 80386DX-33 is at
68. In this way, we see that comparable 80486 family members do deliver more than
twice the performance. Also, newer members of the 80486 family, such as the
80486DX2-66 (rated at 297 in the iCOMP chart), have widened this performance advan-
tage to more than 4�.

EXAMPLE 17

What is the iCOMP rating of the 80486DX4-100?

Solution

Looking at Fig. 1, we find that the iCOMP rating of the 80486DX4-100 is 435.

Internal Architecture of the 80486

We already mentioned that the internal architecture of the 80486 family is an
improvement over that of the 80386 family. For instance, we said that a floating-point
coprocessor and cache memory are now on-chip, but these are not the only changes that
have been made to improve the performance of the 80486 family. Here we will explore
the functional elements within the 80486DX microprocessor’s architecture and how they
have changed from that of the 80386DX.

Figure 49 shows a block diagram of the internal architecture of the 80486 family.
Similar to the 80386 architecture, we find the execution unit, segmentation unit, paging
unit, bus interface unit, prefetch unit, and decode unit. However, the function of many of
these elements has been enhanced for the 80486 family. For instance, we already men-
tioned that the coding of instructions in the control ROM had been changed to permit
instructions to be performed in fewer clock cycles. Some other changes are that the code
queue in the prefetch unit has been doubled in size to 32 bytes. This permits more instruc-
tions to be held on-chip ready for decode and execution. Also, the translation lookaside
buffer in the paging unit now uses an improved algorithm. Finally, the bus interface unit
has been modified to give the 80486 architecture a much faster and more versatile proces-
sor bus.

The 8086 family microprocessors available before the 80486DX are what are
known as complex instruction set computers or CISC processors. That is, they have a
large versatile instruction set that supports many complex addressing modes. In general,

805

The 80386, 80486, and Pentium Processor Families

Figure 49 Internal architecture of the 80486DX MPU. (Reprinted by per-
mission of Intel Corporation. Copyright/ Intel Corp. 1994)

the instructions execute in two to many clock cycles. For instance, the 80386’s register-
to-register ADD instruction takes two clock cycles, but the same instruction when adding
the content of a storage location in memory takes seven clock cycles. Other instructions,
for instance, the integer multiply (IMUL) and integer divide (IDIV) take even more clock
cycles.

The 80486DX is the first member of this family with a high-performance reduced-
instruction-set computer (RISC) integer core. A RISC processor is typically characterized
as having a small instruction set, limited addressing modes, and single-clock execution
for instructions. The MPUs of the 80486 family are best described as complex reduced-
instruction-set computers (CRISC). This is because a core group of instructions in the
80486’s instruction set executes in a single clock cycle. For example, the register-to-register
ADD is performed in a single cycle. At the same time, it retains the many complex
instructions and addressing modes that make the instruction set more versatile. However,
the number of clock cycles needed to execute many of these complex instructions has
also been reduced in the 80486DX. For instance, the register-to-memory ADD is reduced
from seven to three clock cycles.

Let us now look more closely at the new elements of the 80486DX’s internal archi-
tecture. Traditionally, an externally attached floating-point coprocessor has performed the

806

The 80386, 80486, and Pentium Processor Families

floating-point operations of the microcomputer. With the 80486DX, this function is inte-
grated into the MPU. This floating-point math unit supports the processing of the 32-bit,
64-bit, and 80-bit number formats specified in the IEEE 754 standard for floating-point
numbers. At the same time, it is upward software compatible with the older 8087, 80287,
and 80387 numeric coprocessors. The result of this on-chip implementation is higher-
performance floating-point operation. Remember that this unit is not provided in the
80486SX MPU.

Addition of a high-speed cache memory to a microcomputer system provides a way
of improving overall system performance while permitting the use of low-cost, slow-
speed memory devices in the main system memory. During system operation, the cache
memory contains recently used instructions, data, or both. The objective is that the MPU
accesses code and data in the cache most of the time, instead of from the main memory.
Since less time is required to access the information from the cache memory, the result
is a higher level of system performance. The internal cache memory unit of the 80486DX
is 8Kbytes in size and caches both code and data.

EXAMPLE 18

In Fig. 49, identify an architectural element other than the floating-point unit that is not
implemented in the PGA-packaged 80486SX MPU.

Solution

Looking at Fig. 49, we find that the boundary scan control block of the bus interface unit
is not available on the 80486SX MPU.

Real-Mode Software Model and Instruction Set of the 80486SX

At this point, we will turn our attention to the 80486SX MPU and its real-mode
software model. Figure 50 shows the registers in the software model of the 80486SX.
These registers are essentially the same as those shown for the 80386DX in Fig. 3. The
organization and functionality are also the same. One exception is control register 0
(CR0). In the 80386DX, this register has just one bit that is active in the real mode. For
the 80486SX, two other bits, caches disable (CD) and not write-through (NW), are active.
They are used to enable and configure the operation of the on-chip cache memory. Of
course, the 80486DX has more registers in its real-mode model. The new registers are
needed to support the operation of the floating-point coprocessor.

The real-mode instruction set has been enhanced with new instructions for the
80486 family. Figure 51(a) shows that the 80486SX’s instruction set is simply a superset
of that of the 80386DX. A group of new instructions called the 80486 specific instruction
set has been added. Figure 51(b) summarizes the instructions of the 80486 specific
instruction set. Since all the earlier instructions are retained in all 80486 family proces-
sors and their object code is compatible with the 8086, 8088, 80286, and 80386 proces-
sors, upward software compatibility is maintained. Let us now look at the operation of
each of the new instructions.

807

31 16 15 0

IP

15 0

CS

DS

SS

ES

FS

GS

15 0

AX

BX

CX

DX

31 16 8 7

AL

BL

CL

DL

AH

BH

CH

DH

EAX

EBX

ECX

EDX

SP

BP

SI

DI

ESP

EBP

ESI

EDI

FLAGS

CR0

CR1

CR2

CR3

DR0

DR1

DR2

DR3

DR4

DR5

DR6

DR7

TR3

TR4

TR5

TR6

TR7

Figure 50 Real-mode software model
of the 80486SX microprocessor.

The 80386, 80486, and Pentium Processor Families

808

Basic
instruction

set

E
xt

en
ded instruction

set

80
38

6 Specific instruction
set

80
48

6 Specific instruction set
(a)

Mnemonic Meaning Format Operation

BSWAP Byte swap BSWAP r32 Reverse the bye order
of the 32-bit register.

XADD Exchange and add XADD D,S (D) (S),
(D) (S) + (D)

CMPXCHG Compare and exchange CMPXCHG D,S if (ACC) = (D)
 (ZF) 1, (D) (S)
Else (ZF) 0, (ACC) (D)

(b)

Figure 51 (a) 80486SX instruction set. (b) 80486 specific instructions set.

Byte-Swap Instruction: BSWAP. When studying the 8086 microprocessor, we showed
how the bytes of a double word of data were stored in memory. As Fig. 52(a) shows, the
least significant byte is stored at the lowest-value byte address, which is identified as
address m. The next more significant bytes are held at address m � 1 and m � 2. Finally,
the most significant byte is saved at the highest-value byte address, m � 3. This method
of storing information in memory is known as little endian organization.

The 80386, 80486, and Pentium Processor Families

Figure 52 (a) Little endian memory
format. (Reprinted by permission of
Intel Corporation. Copyright/ Intel
Corp. 1994) (b) Big endian memory
format. (Reprinted by permission of
Intel Corporation. Copyright/ Intel
Corp. 1994)

809

The 80386, 80486, and Pentium Processor Families

Other microprocessor architectures employ another method of double-word data
organization, called big endian. For instance, Motorola’s 68000 family of microproces-
sors stores data in this way. Figure 52(b) shows how the bytes of a 32-bit word are
arranged in big endian format. Note that they are stored in the opposite order.

To make it easier for the 80486SX to process data that had been initially created in the
big endian format, a special instruction was added to the real-mode instruction set. This
byte-swap (BSWAP) instruction in provided to convert the organization of the bytes of a
double word of data between the big endian format and little endian format. Figure 51(b)
shows that the instruction has a single 32-bit register as its destination. Therefore, the dou-
ble word that is to be converted must first be loaded into an internal register of the 80486SX.

An example is the instruction

BSWAP EAX

Let us assume that the contents of EAX are in big endian format. Then, when this instruc-
tion is executed, the bytes of the double word of data in register EAX are rearranged into
the little endian format. For instance, if the big endian contents of the register are

the new contents of EAX after the byte swap has taken place will be

Actually, BSWAP will convert the format of data either way. If the bytes of data in
EAX are in little endian form when the instruction is executed, it will be changed to big
endian form.

EXAMPLE 19

Write an instruction sequence that reads the double-word contents of storage location
DS:1000H in memory, rearrange the bytes from big endian to little endian organization,
and then return the new value to the original storage location in memory.

Solution

The big endian-format double-word data is read from memory with the instruction

MOV EAX, [1000H]

Then, the double word is converted to little endian form by

BSWAP EAX

Finally, the double word is returned to memory with the instruction

MOV [1000H], EAX

(EAX) � 67452301H � 011001110100010100100011000000012

(EAX) � 01234567H � 000000010010001101000101011001112

810

The 80386, 80486, and Pentium Processor Families

Exchange and Add Instruction: XADD. The second instruction added to the real-
mode instruction set of the 80486SX is the exchange and add (XADD) instruction. Look-
ing at Fig. 51(b), we find that this instruction performs both an add and exchange opera-
tion on the contents of the source and destination operands. The source operand must be
an internal register, whereas the destination can be either another register or a storage
location in memory.

For example, let us determine the operation of the register-to-register exchange and
add instruction

XADD AX, BX

We will assume that the contents of registers AX and BX are 123416 and 111116, respec-
tively. After the exchange and add operation takes place, the sum of these two values ends
up in destination register AX:

and the original contents of AX are in BX

EXAMPLE 20

If the value in EAX is 00000001H and the double word at memory address DS:1000H is
00000002H, what results are produced by executing the instruction

XADD EAX, [1000H]

Solution

Execution of the instruction causes the addition

The value that results in the source location is

and that in the destination is

(EAX) � 0000000316

(DS:1000H) � 0000000116

 � 0000000316

 (EAX) � (DS:1000H) � 0000000116 � 0000000216

(BX) � 123416

� 234516

(AX) � 00010010001101002 � 00010001000100012 � 00100011010001012

811

The 80386, 80486, and Pentium Processor Families

Compare and Exchange Instruction: CMPXCHG. The last of the new real-mode
instructions is compare and exchange (CMPXCHG). This instruction performs a compare
operation and an exchange operation that depends on the result of the compare. As Fig.
51(b) shows, the compare that takes place is not between the values of the source and des-
tination operand. It is between the content of the accumulator register (AL, AX, EAX) and
the corresponding size destination. If the accumulator and destination contain the same
value, the zero flag is set to 1 and the content of the source register is loaded into the des-
tination location. Otherwise, ZF is cleared to 0 and the content of the destination is loaded
into the accumulator. The destination can be either a register or storage location in mem-
ory. The value in the accumulator must be loaded prior to execution of the CMPXCHG
instruction.

As an example, let us consider the instruction

CMPXCHG [2000H], BL

and assume that register AL contains 1116, register BL contains 2216, and the byte mem-
ory location at address 2000H contains 1216. When the instruction is executed, the value
in AL (1116) is compared to that at address 2000H in memory (1216). Since they are not
equal, ZF is made logic 0 and the value 1216 is copied from memory into AL. Therefore,
after execution of the instruction, the results are

EXAMPLE 21

Assume that the values in registers AL and BL are 1216 and 2216, respectively, and that
the byte-wide memory location DS:2000H contains 1216. What results are produced by
executing the instruction

CMPXCHG [2000H], BL

Solution

Since , the zero flag is set and the value of the source
operand is loaded into the destination. This gives

 (DS:2000H) � 2216

 (BL) � 2216

 (AL) � 1216

(AL) � (DS:2000H) � 1216

 (DS:2000H) � 1216

 (BL) � 2216

 (AL) � 1216

812

The 80386, 80486, and Pentium Processor Families

Figure 53 Protected-mode flags register. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp. 1992)

Protected-Mode Software Architecture of the 80486SX

Now that we have examined the differences between the software architectures of
the 80386DX and 80486SX in the real mode, let us turn our attention to protected-mode
operation. The protected-mode operation of the 80486SX is essentially the same as that of
the 80386DX. Enhancements have been made to the register set, system control instruction
set, and the page tables. Here we will focus on the differences between the two MPUs.

Protected-Mode Software Model. Similar to the real mode, the protected-mode soft-
ware model of the 80486SX is essentially the same as that shown for the 80386DX in Fig.
8. That is, the same set of registers exists in both processors, and they serve the same
functions relative to the protected-mode operation. However, the 80486SX has three addi-
tional test registers and new bits defined in the flags register and control registers. We will
begin by examining these new register functions.

Figure 53 shows the protected-mode flags (EFLAGS) register of the 80486SX. In
this illustration, the system-control flags, bits that affect protected-mode operation, are
identified. Comparing these bits to those of the 80386DX in Fig, 15, we find that just one
new bit has been added, the alignment-check (AC) flag, which is located in bit position
18. When this bit is set to 1, an alignment check is performed during all memory access
operations that are performed at privilege level 3. A double word of data that is not stored
at an address that is a multiple of four is said to be unaligned. If an unaligned double-
word storage location is accessed, two memory bus cycles must be performed. The extra
bus cycle that is introduced because the data is unaligned reduces overall system perfor-
mance. The alignment-check feature of the 80486SX can be used to identify when
unaligned elements of data are accessed. If an unaligned access takes place, an alignment-
check exception, which is exception 17, occurs.

813

The 80386, 80486, and Pentium Processor Families

Figure 54 Control registers of the 80486SX. (Reprinted by permission of
Intel Corporation. Copyright / Intel Corp. 1992)

The 80486SX has four control registers just like the 80386DX; however, a number
of new bits are now active. The control registers of the 80486SX are shown in Fig. 54,
and those of the 80386DX are in Fig. 12. Note that five additional bits have been activated
in CR0 of the 80486SX: the alignment mask (AM), numeric error (NE), write protect
(WP), cache disable (CD), and not write-through (NW). Let us look at a few of these bits
in detail.

We just said that the AC system-control flag enabled memory data alignment
checks. Actually it takes more than just setting AC to 1 to enable this mode of operation.
The AM bit, which is bit 18 in CR0, must also be set to 1. If AM is switched to 0, the
alignment check operation is masked out.

Two other bits in CR0, CD (bit 30) and NW (bit 29), are used to enable and control
the operation of the on-chip cache memory. To enable the cache for operation, CD must
be cleared to 0. The NW bit enables write through and cache validation cycles to take
place when it is set to 0. Therefore, to permit normal cache operation, both of these bits
should be cleared to 0.

Some more changes are found in CR3. Two new bits, page-level cache disable
(PCD) and page-level writes transparent (PWT), have been defined. The state of these
bits is output on signal lines PCD and PWT, respectively, during all bus cycles that are
not paged. They are used as input signals to the control circuitry for an external cache
memory subsystem.

System-Control Instruction Set. The system-control instruction set has been expanded
by three instructions for the 80486SX microprocessor: invalidate cache (INVD), write-
back and invalidate data cache (WBINVD), and invalidate translation lookaside buffer
entry (INVLPG). Figure 55 shows the format of these instructions and briefly describes
their operation.

The first two instructions, INVD and WBINVD, support management of the on-
chip and external cache memories. When an INVD instruction is executed, the on-chip
cache is flushed. That is, all of the data that it holds is made invalid. In addition to inval-
idating the content of the on-chip cache, execution of this instruction also initiates a spe-

814

The 80386, 80486, and Pentium Processor Families

Figure 55 80486SX specific system-control instructions.

Figure 56 80486SX directory and
page table entry format. (Reprinted by
permission of Intel Corporation.
Copyright/ Intel Corp. 1992)

cial bus cycle known as a flush bus cycle. External circuitry must detect the occurrence of
this cycle and initiate a flush of the data held in the external cache memory subsystem.
WBINVD is similar to INVD in that it initiates a flush of the on-chip cache memory;
however, it initiates a different special bus cycle, a write-back bus cycle. External circuitry
must again identify that a write back cycle has taken place and tell the external cache to
write back its content to the main memory.

The INVLPG instruction is used to invalidate a single entry in the 80486SX’s inter-
nal translation lookaside table. Notice that the instruction has an operand m that identifies
which of the 32 table entries is to be marked invalid.

Page Directory and Page Table Entries. The page directory and page tables of the
80486SX are the same size and serve the same function as they did in the 80386DX’s pro-
tected-mode software architecture. However, a change has been made in the format of the
page directory and page table entries. Two additional bits of the 32-bit entry are defined.
Let us now look at the function of these two bits.

Figure 31 gives the format of a page directory/page table entry for the 80386DX.
Comparing it to the format of the 80486SX’s entry in Fig. 56, we find that the two new
bits are page cache disable (PCD) and page write transparent (PWT). These two bits are

815

The 80386, 80486, and Pentium Processor Families

used for page-level control of the internal and external caches. To enable caching of a
page, the PCD bit in the page table entry must be set to 0. Logic 1 in PWT selects page-
level write through operation of the cache for the corresponding page.

When paging is in use, the logic levels of the PCD and PWT bits in the page table
entry are output at the PCD and PWT pins of the MPU. This permits control of an exter-
nal cache memory subsystem.

▲ 11 80486DX FLOATING-POINT ARCHITECTURE AND
INSTRUCTIONS

Up to this point, the instructions that we examined all performed operations on integer
data. This limits computations to the use of whole numbers. Many practical applications
require the processing of real numbers—requiring a much larger range of numbers that
includes signed integers, fractions, and mixed numbers. Some examples of floating-point
numbers are

In reference to microprocessors, these types of numbers are referred to as floating-point
numbers. The instructions of the on-chip floating-point unit of the 80486DX micro-
processor perform computations using these types of numbers. The floating-point unit
also has the ability to operate on integer and packed BCD data. However, this section
focuses on the processing of data expressed as real numbers.

Organization of Floating-Point Data

Let us first look at how floating-point numbers are expressed in the floating-point
registers of the 80486DX. This microprocessor has eight registers that are used to hold
floating-point operands for processing, and they are each 80 bits wide. Binary floating-
point numbers are expressed in normalized scientific notation form for processing. A nor-
malized binary floating-point number is expressed in general as

Note that the significand, also called the mantissa, is expressed in normalized form as
1.bbbb.

Data, such as decimal real numbers, must be expressed in this form for processing.
The process for converting a decimal number to this form is as follows:

1. Convert the integer part of the decimal number to binary form.

2. Convert the fractional part of the decimal number to binary form.

3. Form the binary equivalent of the number by combining the integer and decimal
parts.

4. Express the number as a normalized binary number.

FPNorm � �Significand � 2�Exponent � � 1.bbbb � 2�Exp

11�2, �201.75, 2.5 � 10�6

816

The 80386, 80486, and Pentium Processor Families

As an example, let us apply this process to convert the number 20.75 to its equiva-
lent normalized binary number. First, the integer and fractional parts are converted to
binary form as

Integer Fraction

Combining the integer and fractional parts gives the binary number

Finally, shifting the point 4 bit positions left and expressing as a power of 2 normalizes
the binary number:

Data in a floating-point register is coded according to IEEE Standard 754. This stan-
dard defines three different size floating-point numbers: single precision, double precision,
and extended double precision. Figure 57 shows how these different types of numbers are
placed in the 80-bit floating-point registers. Note that the single precision number is coded
into the 32 least significant bits of the 80-bit register. The most significant bit, bit position
31, represents the sign and is made 0 for positive numbers and 1 for negative numbers. Our
earlier example is a positive number; therefore, the sign bit is made 0. The 23 least signifi-
cant bits, bits 0 through 22, contain the fractional part of the signficand in the normalized
number expressed with 23 bits of precision. For our earlier example, these bits contain

Note that unused less significant bits are simply filled with 0s. The 8 bits, bit 23 through
30, are an 8-bit biased exponent. This is not the exponent in the normalized number. It is
biased by adding 12710 (). Therefore, the exponent for our example is

or

Coding as a 32-bit value and expressing as a hexadecimal number gives

�20.75 � 0 10000011 01001100000000000000000 � 41A60000H

Fractional significand � 01001100000000000000000

Bias exponent � 10000011

Sign � 0

000001002 � 011111112 � 100000112

�410 � 12710 � 13110

11111112 � 7FH

01001100000000000000000

�20.75 � �10100.112 � �1.010011 � 2�4

�20.75 � �10100.112

20 � 101002

.75 � .1121 � 2 → 1
2 � 2 → 0

2 � 1.0 → 15 � 2 → 1
2 � 1.5 → 110 � 2 → 0
2 � .7520 � 2 → 0

817

The 80386, 80486, and Pentium Processor Families

The 32 bit number is placed in the 80-bit floating-point register left justified, with unused
less significant bits of the register filled with 0s.

Numbers are coded as double precision and extended precision numbers in a simi-
lar way. However, when coding a number in double precision, the size of the fractional
significand is expanded to 52 bits, the exponent to 11 bits, and bias added to the exponent
increases to 3FFH. The earlier example is expressed as a double precision number as

The larger exponent of the double precision notation permits it to represent a larger range
of numbers and the additional bits of the significand result in higher precision. In this
way, we see that double precision notation represents a wider range of numbers and
expresses them more accurately than the single precision notation.

 � 4034C00000000000
�20.75 � 0 10000000011 01001100

Fractional significand � 01001100

Biased exponent � 00000000100 � 01111111111 � 10000000011

Sign � 0

Biased
exponent

Sign
bit

Fractional
significand

31 30 24 23 0

(a)

Biased
exponent

Sign
bit

Fractional significand

63 62 53 52 0

(b)

Biased
exponent

Sign
bit

Fractional significand

79 78 64 63 62 0

(c)

Figure 57 (a) Coding a single precision number. (b) Coding a double
precision number. (c) Coding an extended double precision number.

818

The 80386, 80486, and Pentium Processor Families

Sign Exponent Significand
R0
R1
R2
R3
R4
R5

R7

R6

79 78 64 63 0

Figure 58 Organization of the
floating-point registers of the
80486DX.

Finally, extended precision uses a 63-bit fractional significand, a 15-bit biased
exponent, and bias value of 3FFFH. Note that for extended precision numbers the integer
bit of the significand is placed in bit position 64. Again the larger exponent and additional
significand bits expand the range of numbers and increase their accuracy, respectively.

Floating-Point Register Stack

Earlier we pointed out that the 80486DX has eight floating-point registers. Figure
58 shows that these registers are denoted R0 through R7. From a software point of view,
they are organized as a register stack and accessed by floating-point instructions using the
notation ST(n) where n represents the nth register from the current top of stack. Figure
59(a) shows the organization of the stack when it is full. Note that register ST(7) repre-
sents the bottom of the stack and ST(0), or just ST, corresponds to the top of the stack.
As floating-point values are pushed onto the stack, the stack grows from the bottom of the
stack R7 toward register R0.

The stack in Fig. 59(b) illustrates the state of the stack after just two values are
loaded onto an empty floating-point stack. The first value is placed in R7 and is denoted
in software as ST(1), and the second is placed into R6; therefore, ST(0) corresponds to
register R6 and represents the current top of stack (ST). As additional floating-point num-
bers are loaded onto the stack, the software references are adjusted so that ST(0) refer-
ences the new register associated with the top of the stack. For example, if two more val-
ues are loaded onto the stack, ST(0) now corresponds to registers R4 and the bottom of
the stack (still R7) is identified from a software point of view as ST(3). When information
is removed from the stack, the stack adjusts in the opposite direction. For instance, if one
value is now popped from the stack, the new top of stack ST(0) points to the data in reg-
ister R5 and the bottom of stack R7 represents ST(2).

Our description of stack operation raises the question of how the floating-point
unit keeps track of the current top of this stack. The answer is that there is a 3-bit code
TOP in bits 11 through 13 of a floating-point status register that identifies which regis-
ter is currently at the top of stack. Figure 60 shows the format of the status word in the
80486DX’s floating-point status register. This value decrements or increments, respec-
tively, as values are pushed onto or popped off the stack. For our earlier example, TOP
equals 1002 meaning R4 after the fourth value is placed on the stack and 1012 after the
value is popped from the stack.

819

The 80386, 80486, and Pentium Processor Families

Error summary status

Stack fault

Exception flags

Precision

Underflow

Overflow

Zero divide

Denormalized operand

Invalid operation

FPU busy

Top of stack pointer

Condition code

B C3

15 0

TOP C2 C1 C0 ES SF PE DEUE IEOE ZE

Figure 60 Format of the floating-point status register.

Let us look briefly at the purpose of some of the other bits in the floating-point
status register. Control bit B tells whether or not the floating-point unit is busy execut-
ing an instruction. Flag bits, such as underflow error (UE), overflow error (OE), and
zero divide error (ZE), mark the occurrence of error conditions that result in a floating-
point exception. The content of this register can be copied to either memory or the AX
register. Then individual bits can be examined and, through software, an appropriate
response initiated.

Top of stack

Bottom of stack

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(7)

ST(6)

R0

R1

R2

R3

R4

R5

R7

R6

Bottom of stack ST(1)

ST(0)

R0

R1

R2

R3

R4

R5

R7

R6Top of stack

(a) (b)

Figure 59 (a) Software notation for a full stack. (b) Partially filled stack.

820

The 80386, 80486, and Pentium Processor Families

Group Mnemonic Name Format
Data transfer FLD Load real number FLD S

FST Store real number FST D
FSTP Store real number and pop FSTP D
FXCH Exchange registers FXCH D

Arithmetic FADD Add real numbers FADD D, S
FADDP Add real numbers and pop FADDP D, S
FSUB Subtract real numbers FSUB D, S
FSUBP Subtract real numbers and pop FSUBP D, S
FMUL Multiply real numbers FMUL D, S
FMULP Multiply real numbers and pop FMULP D, S
FDIV Divide real numbers FDIV D, S
FDIVP Divide real numbers and pop FDIVP D, S
FQRT Compute square root FSQRT D, S
FABS Compute absolute value FABS D, S
FCHS Change sign FCHS D, S

Comparison FCOM Compare real numbers FCOM S
FCOMP Compare real numbers and pop FCOMP S
FCOMPP Compare real numbers and pop twice FCOMPP S

Transcendental FSIN Compute sine function FSIN
FCOS Compute cosine function FCOS
FTAN Compute tangent function FTAN
FATAN Compute arctangent function FATAN

Constant FLDZ Load 0.0 FLDZ
FLD1 Load 1.0 FLD1
FLDPI Load PI=3.14.159... FLDPI

Control FINIT Reset the floating point unit FINIT
FINCSTP Increment the stack pointer FINCSTP
FDECSTP Decrement the stack pointer FDECSTP
FSTSW Store status word FSTSW D
FSTSW Store status word to AX FSTSW AX

Figure 61 Commonly used floating-point instructions.

Floating-Point Instructions

The floating-point instruction set of the 80486DX microprocessor consists of
68 instructions. Instructions are provided for loading information to and storing infor-
mation from the stack, performing numeric computations and comparisons of informa-
tion of the stack, and controlling operations of the floating-point unit. These instructions
are categorized into the following groups: data transfer instructions, arithmetic instruc-
tions, compare instructions, transcendental instructions, constant instructions, and con-
trol instructions

A number of the commonly used instructions of the 80486DX’s floating-point
instruction set are listed in Fig. 61. The table lists their mnemonic, name, and format. Let
us briefly look at the operation of a few of these instructions.

The load and store instructions from the data transfer group are used to load values
onto the floating-point stack for processing or to save values on the stack that result from
computation by storing them in memory. For instance, the source operand can load a
value from memory to the current top of the stack or from a register within the stack to
the top of the stack. Figure 62 presents the notation used to identify memory and register

821

The 80386, 80486, and Pentium Processor Families

Operand Location of operand

None (ST or ST (0)) Current top of stack
ST(n) Stack register offset by n from the current top of stack
Mem32/64/80real Single precision, double precision, or extended precision memory location

Figure 62 Floating-point instruction operand notations.

operands. For instance, to load a single precision real number from memory, the instruc-
tion is written as

FLD Mem32real

Here Mem32real stands in general for an address pointer to a single precision floating
point number stored in memory. When the instruction executes, the top of stack pointer
(TOP) is decremented by 1 and then the value at this memory location is read and loaded
onto the new top of the stack. An example of this instruction is

FLD DATA1_32B

To copy a value from a register within the stack to the top of the stack, the operand
is expressed in general as

FLD ST(n)

For example, to copy the value in the third register below the current top of the stack to
the new top of stack, the instruction is written as

FLD ST(3)

Note that the 3 in ST(3) does not stand for R3. It is the offset of the source register rela-
tive to the current top of the stack. For instance, if the top of the stack before executing
the instruction is R2, ST(3) stands for R5. The value in this register is copied to register
R2, which is the new top of stack.

The FST instruction is used to copy the current top of stack to a destination that is
either another register or a storage location in memory. For example, execution of the
instruction

FST DATA1_32B

stores the value at the current top of stack in memory at the address pointed to by
DATA1_32B. Likewise, the instruction

FST ST(3)

822

The 80386, 80486, and Pentium Processor Families

copies the value in the register at the top of the stack into the third register below the
TOS. Neither of these stored instructions affects the value in TOP. To pop the value off
the stack after it is saved, use the FSTP instruction. Execution of the instruction

FSTP DATA1_32B

saves the current value at the top of stack and then pops this value from the stack by
incrementing TOP by 1.

Now that we know how to place data on the floating-point stack and copy it from
register to register, let us use the FADD instruction to perform a computation. This
instruction has the ability to add a value in memory to the value at the current top of the
stack, add the value in another stack register to the top of the stack, or add the value cur-
rently at the top of the stack to another that is in another stack register. For example, exe-
cuting the instruction

FADD DATA2_32B

adds the single precision value held at the memory location pointed to by address
DATA2_32B to the value at the current top of the stack and places the result in the register
corresponding to TOP. Execution of this instruction does not affect the new value in TOP.

EXAMPLE 22

The instruction that follows adds the value in the source register to the value of the des-
tination register and places their sum in the destination registers:

FADD ST(2), ST(0)

If the values in ST(0) and ST(2) are �2.5 and �10.75, respectively, find

a. The destination registers.

b. The decimal value of SUM produced in the destination register.

c. Express SUM as a single precision binary number.

d. Express SUM in hexadecimal notation.

Solution

a. This instruction performs this addition:

Therefore, the SUM is produced in destination floating-point register ST(2).

b. The decimal computation is as follows:

SUM � �10.75 � (�2.5) � �7.25

(ST(2)) � (ST(0)) → (ST(2))

823

The 80386, 80486, and Pentium Processor Families

c. Converting the integer and fractional parts to binary form gives

Integer Fraction

Combining the integer and fractional parts gives the binary number

Now, normalizing the binary number gives

and prepares it to be expressed in 32-bit single precision form

d. Finally, bits are grouped to form hexadecimal digits to give

The FSUB instruction supports the same operand combinations as the FADD
instruction. An example of a floating-point subtraction of real numbers in two re-
gisters is

This instruction performs the subtraction

Note that the result is placed at the current top of the stack. Again, the value in TOP is
unaffected. The FADDP and FSUBP instructions perform add and subtract operations,
but also pop the result at the current top of the stack by incrementing TOP.

In many floating-point instructions, no operands are directly specified. In these
cases, the current top of stack, ST(0), is normally assumed as the source and destination

(ST(3)) � (ST(0)) → (ST(0))

FSUB ST(0), ST(3)

�7.25 � 40E80000H

� 010000001110100000000000000000002

�7.25 � 0 10000001 11010000000000000000000

Fractional significand � 11010000000000000000000

Bias exponent � �210 � 12710 � 000000102 � 011111112 � 100000012

Sign � 0

�111.012 � �1.1101 � 2�2

�7.25 � �111.012

.25 � .0127 � 1112

2 � 1.0 → 11 � 2 → 1
2 � .5 → 03 � 2 → 1
2 � .257 � 2 → 1

824

The 80386, 80486, and Pentium Processor Families

if there is a single operand. If the instruction requires two operands, ST(1) is assumed as
the destination and ST(0) the source. An example is the instruction

FADD

When executed, it performs the computation

Another example is the instruction

FABS

Execution of this instruction computes the absolute value of the value at the current top
of the stack and places this result in the same register. It does this by clearing the sign bit
of the value in this register equal to 0.

EXAMPLE 23

Describe what the following sequence of instructions does?

FLD DATA3_64B
FLD DATA4_64B
FSUBP
FABS
FSTP DATA5_64B

Solution

The two instruction decrement TOP and then load the double precision real number from
memory location DATA3_64B to the new top of the stack. The next instruction performs
the same operation for the real number held at address DATA4_64B. This makes

Once the data are loaded, the FADD instruction performs the addition

and then increments the stack pointer to pop the current top of stack. Therefore, the new
top of stack contents is

(ST(0)) � (DATA4_64B) � (DATA3_64B)

(ST(0)) � (ST(1)) → (ST(1))

(ST(1)) � (DATA3_64B)

(ST(0)) � (DATA4_64B)

 TOP � TOP � 1

 (ST(0)) � (ST(1)) → (ST(1))

825

The 80386, 80486, and Pentium Processor Families

The next instruction computes the absolute value of the double precision real number at
the current top of stack. This gives

Finally, the absolute value from the current top of stack is saved in the memory location
pointed to by the address DATA5_64B:

and the result is popped from the current top of stack by incrementing TOP.

▲ 12 PENTIUM PROCESSOR FAMILY

The Pentium processor family, introduced in 1993, represents the high-performance end
of Intel’s 8086 architecture. Like the 80486 MPUs, Pentium processors are 32-bit
MPUs—that is, they have a 32-bit register set and the instructions can process words of
data as large as 32 bits in length. However, the Pentium processor’s 32-bit architecture is
enhanced with a 64-bit external data bus and a variety of internal data paths that are
64 bits, 128 bits, or 256 bits wide. These large internal and external data paths result in
an increased level of performance.

The Pentium processors’ internal and software architectures have been enhanced in
many other ways. For instance, they employ an advanced superscaler pipelined internal
architecture. The parallel processing provided by this superscaler pipelining gives the
Pentium processors the ability to execute more than one instruction per clock cycle. From
a software point of view, the instruction set has been enhanced with new instructions and,
more important, the performance of the floating-point unit has been greatly increased.

Figure 1 shows the performance of the Pentium processor family members relative
to those of the 80386 and 80486 families. Note that the iCOMP index of the original Pen-
tium processor (60-MHz) MPU, 510, is about 20 percent higher than the fastest 80486
MPU, the 80486DX4-100. With the introduction of faster family members, the Pentium
processor’s performance edge has increased to more than 2. For instance, the 133-MHz
device has an iCOMP rating of 1110.

EXAMPLE 24

Which speed Pentium processor is the first device to offer more than a 2� performance
increase over the 80486DX4-100?

Solution

Figure 1 shows that the iCOMP rating of the 80486DX4-100 is 435. Therefore, the
Pentium 120 MHz, which has an iCOMP rating of 1000, is the first member of the
Pentium processor family that offers more than a 2� performance increase over the
80486DX4-100.

ƒ (DATA4_64B) � (DATA3_64B) ƒ → (DATA5_64B)

(ST(0)) � ƒ (DATA4_64B) � (DATA3_64B) ƒ

826

The 80386, 80486, and Pentium Processor Families

Prefetch

address

Instruction
pointer

Branch
target
buffer

Code cache
8K bytes

TLB

Prefetch buffers

Instruction decode

Control unit

Control
ROM

Address
generate

(U pipeline)

Address
generate

(V pipeline)

ALU
(V pipeline)

ALU
(U pipeline)

Integer register file

Barrel shifter

Data cache
8K bytes

TLB

Control

Register file

Floating
point
unit

Multiply

Divide

Add

80

80

DP
logic

Control

Bus
unit

64-bit
data
bus

Control

32-bit
address

bus

APIC
Control

Data

Page
unit

256

32

32
32

32

32
32

32
64 32-bit

addr.
bus

64-bit
data
bus

Branch verification
& target address

Figure 63 Internal architecture of the Pentium processor. (Reprinted by permission of
Intel Corporation. Copyright/ Intel Corp. 1994)

Internal Architecture

Figure 63 presents a block diagram of the Pentium processor’s internal architecture.
Earlier we pointed out a number of important architectural advances introduced with the
Pentium processor. Three of these are its superscaler pipelined architecture, independent
code and data caches, and high-performance floating-point unit. Let us next look briefly
at each of these architectural features.

Intel uses the term superscaler to describe an architecture that has more than one
execution unit. In the case of the Pentium processor, there are two execution units. These
execution units, or pipelines as they are also known, process the instructions of the micro-
computer program. Each of these execution units has its own ALU, address generation

827

The 80386, 80486, and Pentium Processor Families

circuitry, and data cache interface. They are identified in Fig. 63 as the U pipeline and the
V pipeline.

In Section 10 we found that the execution time of a core group of instructions were
reduced to one clock cycle in the 80486 MPU family. With the Pentium processor’s dual-
pipeline architecture, two instructions can be processed at the same time. Therefore, they
have the capability of executing as many as two instructions per clock cycle. For this rea-
son, pipelining makes a significant contribution to the higher level of performance
achieved with the Pentium processor family.

The 80486 family of MPUs has an on-chip cache memory that is used to cache both
code and data. With the Pentium processor, the on-chip cache memory subsystem has
been further enhanced. Its cache memory, like that of the 80486DX4 MPU, has been
expanded to 16Kbytes, but it is also partitioned into separate 8Kbyte code and 8Kbyte
data caches. Also, like the 80486DX4, the write update method can be configured for
either the write-through or the write-back mode of operation. Note in Fig. 63 that the U
pipe and V pipe of the ALU accesses the data cache independently. This is known as a
dual-port interface and permits both ALUs to access data in the cache at the same time.
These independent caches result in more frequent use of the cache memory and lead to a
higher level of performance for the Pentium processor-based microcomputer system.

All members of the Pentium processor family have a built-in floating-point unit.
This floating-point math unit has been further enhanced from that used in the 80486 fam-
ily. For instance, it employs faster hardwired, instead of microcoded, implementations of
the floating-point add, multiply, and divide operations. The result is higher-performance
floating-point operation for the Pentium processor. In fact, it can execute floating-point
instructions 5 to 10 times as fast as the 80486DX-33 MPU.

Software Architecture of the Pentium Processor

The MPUs of the Pentium processor family remain fully software compatible with
the 80486 architecture. Just like the 80386 and 80486 MPUs, the Pentium processor
comes up in real mode after reset and can be switched to the protected mode by execut-
ing a single instruction. Its real- and protected-mode software models and instruction sets
are both supersets of those of the 80486 family MPU. They have all of the same instruc-
tions, functional registers, and register bit definitions. However, just like for the 80486
MPU and 80386 MPU before that, a number of new instructions, flags, and control bits
have been defined.

Real-Mode and Protected-Mode Register Sets. The real-mode and protected-mode
application register sets of the Pentium processor are essentially the same as those of the
80486SX microprocessor. However, some changes are found in the functionality of both
the flags register and the control registers. Figure 64 shows the EFLAGS register of the
Pentium processor. Three additional flag bits, ID flag (ID), virtual interrupt pending
(VIP), and virtual interrupt flag (VIF), have been activated. The ID flag can be used to
determine if the MPU supports a new instruction called CPUID. If this bit can be set or
reset under software control, CPUID is included in the instruction set. The VIP and VIF
flag bits are used to implement a virtualized system-interrupt flag for protected-mode
multitasking software environments.

828

The 80386, 80486, and Pentium Processor Families

X ID flag (ID)
X Virtual interrupt pending (VIP)
X Virtual interrupt flag (VIF)
X Alignment check (AC)
X Virtual 8086 mode (VM)
X Resume flag (RF)
X Nested task (NT)
X I/O privilege level (IOPL)
S Overflow flag (OF)
C Direction flag (DF)
X Interrupt enable flag (IF)
X Trap flag (TF)
S Sign flag (SF)
S Zero flag (ZF)
S Auxiliary carry flag (AF)
S Parity flag (PF)
S Carry flag (CF)

S Indicates a status flag
C Indicates a control flag
X Indicates a system flag

Bit positions shown as 0 or 1 are Intel reserved.
Do not use. Always set them to the value previously read.

C
F

1P
F

0A
F

0Z
F

S
F

T
F

I
F

D
F

O
F

I
O
P
L

N
T

0R
F

V
M

A
C

V
I
P

I
D

0000000000
V
I
F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 64 EFLAGS register of the Pentium processor. (Reprinted by per-
mission of Intel Corporation. Copyright/ Intel Corp. 1995)

The function of the control registers has been expanded in the Pentium processor.
Figure 65(a) shows that a fifth control register, CR4, has been added, and the six new con-
trol bits are all in this register. The meaning of each bit and a brief description of its func-
tion is given in Fig. 65(b). Looking at the functional descriptions for these control bits, we
see that they are all used to enable or disable new capabilities of the Pentium processor. For
instance, the virtual-8086 mode extensions (VME) and protected-mode virtual interrupts
(PVI) bits are used to enable the virtualized system interrupt capability implemented with
the VIP and VIF flag bits in the virtual-8086 mode and protected-mode, respectively.

EXAMPLE 25

What is the protected-mode page size when the PSE bit in CR4 is logic 0? Logic 1?

Solution

When PSE is logic 0, the page size is 4Kbytes, and when it is switched to logic 1, the size
is increased to 4Mbytes.

829

The 80386, 80486, and Pentium Processor Families

D
E

0
M
C
E

0000000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000000000

P
E

E
M

E
T

W
P

A
M

N
W

C
D

P
G

00000
P
S
E

T
S
D

P
V
I

V
M
E

P
C
D

P
W
T

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
P

T
S

N
E

Page directory base

Page fault linear address

Reserved Reserved

CR4

CR3

CR2

CR1

CR0

(a)

Bit

0

1

2

3

4

6

Name Function

Virtual-8086 mode
Extensions (VME)
Protected mode
Virtual interrupts (PVI)
Time-date stamp
Disable (TSD)
Debugging
Extensions (DE)
Page size
Extensions (PSE)
Machine check
enable (MCE)

Logic 1 enables support for a virtual interrupt flag
in virtual-8086 mode.
Logic 1 enables support for a virtual interrupt flag
in protected mode.
Logic 1 makes the read from time stamp counter
(RDTSC) instruction a privileged instruction.
Logic 1 enables I/O breakpoints.

Logic 1 enables 4M-byte page size.

Logic 1 enables the machine-check exceptions.

(b)

Figure 65 (a) Control registers of the Pentium processor. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1995) (b) Functions of
the CR4 control bits.

Both 80386 and 80486 MPUs also contained debug and test registers in their real-
and protected-mode software models. However, these registers are not used in application
programming. Another difference in the register models of the Pentium processor is that
debug registers DR4 and DR5 are now implemented. Also, the test registers no longer
exist; instead, their functionality is implemented in a new group of registers called the
model-specific registers.

For simplicity, we have ignored the registers that are provided for the floating-point
math unit in the application software models.

830

The 80386, 80486, and Pentium Processor Families

Mnemonic Meaning

CMPXCH8B Compare and exchange
8 bytes

Format

CMPXCH8B D

Operation

if [EDX:EAX] = D
 (ZF)←1, (D)←[ECX:EBX]
else
 (ZF)←0, [EDX:EAX]←(D)

CPUID CPU identification CPUID if (EAX) = 0H
 [EAX,EBX,ECX,EDX]←
 Vendor information
if (EAX) = 1H
 [EAX,EBX,ECX,EDX]←
 MPU information

RDTSC Read from time stamp
counter

RDTSC [EDX:EAX]← Time stamp
 counter

RDMSR Read from model
specific register

RDMSR [EDX:EAX]←MSR(ECX)
 (ECX) = 0H selects MCA
 (ECX) = 1H selects MCT

WRMSR Write to model
specific registers

WRMSR MSR(ECX)←[EDX:EAX]
 (ECX) = 0H selects MCA
 (ECX) = 1H selects MCT

RSM Resume from system
management mode

RSM Resume operation from SMM

MOV CR4 Move to/from CR4 MOV CR4,r32
MOV r32, CR4

(CR4)←(r32)
 (r32)←(CR4)

Figure 66 Additions to the instruction set in the Pentium processor.

Enhancements to the Instruction Set. Upwards software compatibility is maintained
in the instruction set of the Pentium processor family. That is, it retains all of the instruc-
tions of the 8086, 8088, 80286, 80386, and 80486 microprocessor families. This means
that all software written for a microcomputer constructed with one of these earlier MPUs
can be directly run on a Pentium processor-based microcomputer.

The instruction set of the Pentium processor is enhanced with three new Pentium
processor specific-instructions and four additional system-control instructions. The chart
in Fig. 66 summarizes the function of each of the new instructions. For instance, the
instruction compare and exchange 8 bytes (CMPXCHG8B) is an enhancement in the Pen-
tium processor’s specific instruction set. CMPXCHG8B is a variation of the CMPXCHG
instruction, which was first introduced with the 80486 instruction set. It enables a 64-bit
compare and exchange operation to be performed. Note in Fig. 66 that when the instruc-
tion is executed, the 64-bit value formed from EDX and EAX, denoted [EDX:EAX]
(where EDX is the more significant double word), is compared to the value of a 64-bit
data word (quad-word) in memory. If the two values are equal, ZF is set to 1 and the
quad-word value formed from [ECX:EBX] (where ECX is the more significant double

831

The 80386, 80486, and Pentium Processor Families

word) is written into the quad-word storage location in memory. On the other hand, if the
value [EDX:EAX] does not match that in memory, ZF is cleared to 0 and the quad-word
held in memory is read into [EDX:EAX].

EXAMPLE 26

If the contents of EAX, EBX, ECX, and EDX are 1111111116, 2222222216, 3333333316,
and FFFFFFFF16, respectively, and the content of the quad-word memory storage location
pointed to by the address TABLE is FFFFFFFF1111111116, what is the result produced
by executing the instruction

CMPXCHG8B [TABLE]

Solution

When the instruction is executed, the value of

is compared to the quad-word pointed to by address TABLE. The contents of this mem-
ory location are given as

Since these two values are equal, the results produced are

Another one of the new Pentium processor’s specific instructions, CPU identifica-
tion (CPUID), permits software to identify the type and feature set of the Pentium proces-
sor that is in use in the microcomputer system. The EAX register must be set to either 0
or 1 before executing CPUID. Depending on which value is selected for EAX, different
identification information is made available to software. By executing this instruction
with EAX equal to 0, the processor identification information provided is as follows:

EDX � vendor identification string ← ntel

ECX � vendor identification string ← ineI

EBX � vendor identification string ← Genu

EAX � 1 ← Pentium processor

(DS:TABLE) ← (ECX:EBX) � 333333332222222216

(ZF) ← 1

(DS:TABLE) � FFFFFFFF1111111116

(EDX:EAX) � FFFFFFFF1111111116

832

The 80386, 80486, and Pentium Processor Families

Family

0000000010

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10

Model Stepping

Reserved

Figure 67 EAX after executing the CPUID instruction. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1995)

Note that the MPU is identified as a Pentium processor and that it is a Genuine Intel
device. Now, executing the instruction again with EAX equal to 1 provides more informa-
tion about the MPU. The results produced in EAX, EBX, ECX, and EDX are as follows:

EXAMPLE 27

Figure 67 shows the contents of the EAX register after executing the CPUID instruction.
What are the family, model, and stepping?

Solution

In Fig. 67 we find

stepping � 0000 � 0

model � 0000 � 0

family � 0101 � 5 � Pentium processor

EDX(31:9) ← reserved

EDX(8:8) ← CMPXCHG8B instruction

EDX(7:7) ← machine-check exception

EDX(5:5) ← Pentium CPU style model-specific registers

EDX(4:4) ← time-stamp counter

EDX(2:2) ← I /O breakpoints

EDX(0:0) ← FPU on-chip

ECX ← reserved bits

EBX ← reserved bits

EAX(31:12) ← reserved bits

EAX(11:8) ← family

EAX(7:4) ← model

EAX(3:0) ← stepping ID

833

The 80386, 80486, and Pentium Processor Families

The last of the new Pentium processor-specific instructions is read from time-stamp
counter (RDTSC). The Pentium processor has an on-chip 64-bit counter called the time-
stamp counter. The value in this counter is incremented during every clock cycle. Exe-
cuting the RDTSC instruction reads the value in this counter into the register set
[EDX:EAX]. EDX holds the upper 32 bits of the 64-bit count, and EAX holds the lower
32 bits. In some software applications, it may be necessary to determine how many clock
cycles have elapsed during an event. Reading the value of the time-stamp counter before
and after the event being measured and then determining the number of elapsed clock
cycles by forming the difference of the two count readings can do this.

Looking at Fig. 66, we find that the four new system-control instructions are read
from model-specific register (RDMSR), write to model-specific register (WRMSR),
resume from system management (RSM), and a new form of the move instruction (MOV
CR4, r32 and MOV r32, CR4) that permits data to be moved directly between control reg-
ister 4 (CR4) and an internal register. The instructions RDMSR and WRMSR are used to
permit software access to the contents of the model-specific registers of the Pentium
processor. The two model-specific registers that can be accessed with these instructions
are the machine check address register (MCA) and the machine check type register
(MCT). To access MCA, the value 0H must be loaded into ECX prior to executing the
instruction, or to select MCT, ECX must be loaded with the value 1H. Execution of the
instructions cause either a 64-bit read- or 64-bit write-data transfer to take place between
the selected model-specific register and the register set [EDX:EAX]. The RSM instruc-
tion is used by the Pentium processor’s system management mode.

System-Management Mode. The Pentium processor also has a mode of operation known
as system-management mode (SMM). This mode is used primarily to manage the system’s
power consumption. SMM is entered by an interrupt request from external hardware, and
the return to real or protected mode is initiated by executing the RSM instruction.

▲ 13 MULTIMEDIA ARCHITECTURE AND INSTRUCTIONS

Multimedia applications, such as audio, graphics, and speech recognition, require the
MPU to perform the same operation on multiple elements of data. Digital signal proces-
sors (DSP) have traditionally performed these types of applications. The architecture of
the Pentium processor with MMX technology has been enhanced to produce high perfor-
mance for these types of applications in a PC, without the need for a DSP. This is the first
Pentium family processor to implement the MMX technology—new multimedia data
types and special instructions for processing of these types of data. In this section, we
examine the new multimedia data types, the registers in which multimedia information is
processed, and instructions that process multimedia data.

Organization of SIMD Data

Many multimedia applications process large arrays of 8-bit or 16-bit data elements
and frequently require that the same operation be performed repeatedly on groups of this
data. For this reason, the MMX technology packs multiple elements of data into a single

834

The 80386, 80486, and Pentium Processor Families

Byte 7

63 54 53

Word 3

Double word 1

Quad word 0

Packed bytes (8 � 8-bits)

Packed words (4 � 10-bits)

Packed double words (2 � 32-bits)

Packed quad word (1 � 64-bits)

Double word 0

Word 2 Word 1 Word 0

Byte 6

48 47

Byte 5

40 39

Byte 4

32 31

Byte 3

24 23

Byte 2

16 15

Byte 1

8 7

Byte 0

0

Figure 68 MMX technology packed data types.

operand and performs an operation, such as arithmetic computations, repositioning of
data, and alignment of data, with them in parallel. That is, the operation is independently
performed on each element of data at the same time. Data types that represent more than
one piece of data that are to be processed at the same time are known as single instruc-
tion multiple data (SIMD). Four new 64-bit SIMD data types are implemented in the Pen-
tium processor with MMX technology.

Figure 68 shows the new packed SIMD data types—the packed byte, packed word,
packed double word, and packed quad-word. The packed byte format represents eight
independent elements of 8-bit integer data. This format is also referred to as an 8 � 8-bit
word of data. Note that the packed word and packed double word forms correspond to four
16-bit integers (4 � 16-bit) and two 32-bit double words (2 � 32-bit) of integer data,
respectively. Finally, the packed quad-word (1 � 64-bit) form is simply a single 64-bit ele-
ment of integer data. In this way, we see that the source and destination operands of mul-
timedia instructions are always 64 bits in width.

Multimedia Register File

Eight 64-bit registers are provided for storage of operands processed by MMX
instructions. These are not new registers; they are aliases with the existing floating-point
register stack. That is, as shown in Fig. 69 MMX registers MM0 through MM7 are
mapped on top of the subtrahend part (lower 64 bits) of the registers in the floating-point
stack. Dual use of these registers means that applications must not intermix instructions
that process floating-point data and MMX data. Therefore, it is important to clear these
registers after using them for either floating-point or MMX computations. The MMX
instruction set has an instruction, the EMMS (empty MMX technology state instruction),
specifically for this purpose. Execution of this instruction invalidates the data in all MMX
registers.

The MMX registers are only used to hold source and destination operands that rep-
resent MMX data. Data are placed in the register using one of the data formats shown in
Fig. 68. MMX instructions that access memory use an integer register, such as SI, for the
address pointer. When a value of MMX is loaded into a register, the unused, more signif-
icant bits of the floating-point register are all set to 1. Unlike the floating-point registers,
the MMX registers can be randomly accessed.

835

The 80386, 80486, and Pentium Processor Families

63 0647980

63 0

MM7

MM6

MM5

Floating point registers

MMX registers
MM4

MM3

MM2

MM1

MM0

Figure 69 MMX technology register set.

Multimedia Instruction Set

By adding the U and V pipes, performance of the Pentium processor increased by
enabling it to execute more than one instruction at a time. Performance was further
improved in the Pentium processor with MMX technology by extending the instruction
set with 57 new instructions to perform operations on SIMD data. Introduction of these
new MMX instructions expands parallelism by allowing a single instruction to perform an
operation on multiple elements of data at the same time. That is, MMX technology
exploits parallelism in data to speed up applications.

Here we introduce the MMX instructions groups and examine the operation of a
few of them. Categorizing the MMX instructions based on their function gives the fol-
lowing groups: data transfer instructions, arithmetic instructions, comparison instruc-
tions, logical instructions, and conversion instructions. The table in Fig. 70 lists the
mnemonic, name, and format for the instructions in each of these groups.

The move quad word (MOVQ) instruction allows an MMX register to be initialized
with data from memory or to copy data from one MMX register to another. Figure 71
shows the allowed operands from the MMX instructions. Note that all instructions except
MOVD require the destination operand to be in an MMX register (MM). Moreover, all
instruction, with the exception of MOVD and the shift instructions, allow the source
operand to be either a quad word storage location in memory (M64) or another MMX
register (MM). The shift instructions also permit use of an 8-bit (IMM8) source operand.
In the case of a source operand in memory, the address that points to this operand is held
in one of the MPUs integer registers, for instance, SI or BX. An example of an instruc-
tion that performs a register-to-register quad word move is

MOV MM7, MM0

836

The 80386, 80486, and Pentium Processor Families

Group Mnemonic Name Format
Data transfer MOVQ Move quad word MOVQ D, S

MOVD Move double word MOVQ D, S
Arithmetic PADDB Packed add bytes PADDB D, S

PADDW Packed add words PADDW D, S
PADDD Packed add double words PADDD D, S
PADDSB Packed add signed bytes PADDSB D, S
PADDSW Packed add signed words PADDSW D, S
PADDUSB Packed add unsigned bytes PADDSB D, S
PADDUSW Packed add unsigned words PADDSW D, S
PSUBB Packed subtract bytes PSUBB D, S
PSUBW Packed subtract words PSUBW D, S
PSUBD Packed subtract double words PSUBD D, S
PSUBSB Packed subtract signed bytes PSUBSB D, S
PSUBSW Packed subtract signed words PSUBSW D, S
PSUBSD Packed subtract signed double words PSUBSD D, S
PSUBUSB Packed subtract unsigned bytes PSUBUSB D, S
PSUBUSW Packed subtract unsigned words PSUBSW D, S
PMULLW Packed multiply low words PMULLW D, S
PMULHW Packed multiply high words PMULHW D, S
PMADDWD Packed multiply and add words PMULHW D, S
PSRAW Packed shift right arithmetic words PSRAW D, S
PSRAD Packed shift right arithmetic double words PSRAD D, S

Comparison PCMPEQB Packed compare for equal bytes PCMPEQB D, S
PCMPEQW Packed compare for equal words PCMPEQB D, S
PCMPEQD Packed compare for equal double words PCMPEQB D, S
PCMPGTB Packed compare for greater than bytes PCMPEQB D, S
PCMPGTW Packed compare for greater than words PCMPEQB D, S
PCMPGTD Packed compare for greater than double words PCMPEQB D, S

Logical PAND Bitwise logical AND PAND D, S
PANDN Bitwise logical AND NOT PANDN D, S
POR Bitwise logical OR POR D, S
PXOR Bitwise logical exclusive-OR PXOR D, S
PSLLW Packed shift left logical word PSLLW D, S
PSLLD Packed shift left logical double word PSLLD D, S
PSLLQ Packed shift left logical quad word PSLLQ D, S
PSRLW Packed shift right logical word PSRLW D, S
PSRLD Packed shift right logical double word PSRLW D, S
PSRLQ Packed shift right logical quad word PSRLQ D, S

Conversion PACKUSWB Pack words to bytes with unsigned saturation PACKUSWB D, S
PACKSSWB Pack words to bytes with signed saturation PACKSSWB D, S
PACKSSDW Pack double words to words with signed saturation PACKSSDW D, S
PUNPCKHBW Unpack high packed data bytes to words PUNPCKHBW D, S
PUNPCKHWD Unpack high packed data words to double words PUNPCKHWD D, S
PUNPCKHDQ Unpack high packed data double words to quad word PUNPCKHDQ D, S
PUNPCKLBW Unpack low packed data bytes to words PUNPCKLBW D, S
PUNPCKLWD Unpack low packed data words to double words PUNPCKLWD D, S
PUNPCKLDQ Unpack low packed data double words to quad word PUNPCKLDQ D, S

Figure 70 MMX instruction set.

837

Operand Allowed operands Location of operand
Destination MM MMX register

R32* Integer register
M32* Memory

Source MM MMX register
M64 Memory
R32* Integer register
M32* Memory
IMM8+ Immediate data

* MOVD only
+ PSRAW/D, PSLLW/D/Q, and PSRLW/D/Q only

Figure 71 MMX instruction operand
notations.

When this instruction is executed, the SIMD data in MM0 is copied into MM7. The instruc-
tion that follows is used to initialize register MM3 with data from a storage location
pointed to by the address in the source index register:

MOV MM3, SI

Now that we know how data are loaded from memory into the MMX registers, let
us examine the operation of some instructions that process SIMD data. The PADDW
instruction independently adds the four word-wide data elements of the source to their
corresponding elements in the destination and places the four 16-bit sums that result in
the destination register. An example is the instruction

PADDW MM0, MM1

When executed, this instruction performs the addition

� � � �

That is, it processes each element of the MMX operands in parallel. Word 0 of register
MM1 is added to Word 0 of MM0 and the sum of these two values is placed in the least
significant word location of MM0, Word 1 of register MM1 is added to Word 1 of MM0,
and the sum of these two values is placed in the next least significant word position in
MM0, and so on. If the sum is larger than 16 bits it cannot fit in the register. The PADD
instruction resolves this overflow with a method known as wraparound. It simple trun-
cates any bits above the 16th bit.

EXAMPLE 28

If registers MM3 and MM4 contain the values FFFFFFFF12345678H and 000100028765-
4321H respectively, what result does the instruction execution produce?

PADDUSW MM4, MM3

MM0 Word 3 Word 2 Word 1 Word 0

MM1 Word 3 Word 2 Word 1 Word 0

The 80386, 80486, and Pentium Processor Families

838

Solution

The PADDUSW instruction treats the word-wide operands as unsigned integers when it
performs the add operation. If the result of the addition is greater that 16 bits, an overflow
condition has occurred. In this case, the PADDUSB/W instructions resolve the overflow
by applying saturation. Using saturation, the result is simply replaced with the largest
value that can be represented with 16 bits, which is FFFFH for an unsigned word. There-
fore, the instruction performs the four additions that follow:

The result produced in the MMX register is

If an underflow occurs in an unsigned, parallel subtraction (PSUBUSB/W), the
result is replaced by the smallest value that can be represented with the number of bits,
either 00H or 0000H. The maximum and minimum saturation limits for signed byte and
word overflows and underflows are 7FH for a byte (7FFFH for a word) and 80H for a byte
(8000H for a word), respectively.

The compare instructions permit parallel comparison operations to be performed on
parallel byte-wide, word-wide, and double-word-wide elements of data. For example, the
PCMPEQ instruction independently compares the corresponding elements of the source
and destination operand to see if they are equal. If the corresponding elements of the
source and destination operand are equal, the comparison is true and all bits of the desti-
nation element are set to 1; otherwise, the comparison is false and all bits of the destina-
tion element are cleared to 0. The PCMPGT performs the same operation except it checks
to see if the individual values in the destination operand are greater than their corre-
sponding elements in the source operand. An example is the instruction

PCMPGTB MM4, MM5

Execution of this instruction compares the source to the destination for each of the inde-
pendent signed byte elements of data. This is, it performs the eight comparisons that
follow:

� � � � � � � �

MM5 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

MM4 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

MM4 � FFFFFFFF99999999H

Word 0 5678H � 4321H � 9999H

Word 1 1234H � 8765H � 9999H

Word 2 FFFFH � 0002H � 10001H → FFFFH due to saturation

Word 3 FFFFH � 0001H � 10000H → FFFFH due to saturation

The 80386, 80486, and Pentium Processor Families

839

The 80386, 80486, and Pentium Processor Families

Word 3Destination operand

Doubleword 0Doubleword 1

Source operand Destination operand

Doubleword 1 Doubleword 0

Word 2 Word 1 Word 0

Figure 72 Pack operation of the PACKUSDW instruction.

If the value of a specific byte in MM4 is greater than its corresponding byte in MM5, the
comparison is true and the byte in MM4 is set to FFH; otherwise it is false and made 00H.

EXAMPLE 29

Determine the results produced in the destination register after executing the instruction

PCMPEQD MM3, MM4

Assume that MM3 and MM4 contain the values FFFF000012345678H and
FFFF000087654321H. What result does the instruction execution produce?

Solution

This instruction compares the individual double-word destination elements to their corre-
sponding source elements and determines whether or not they are equal. This gives the
following result:

Therefore, the result in the destination register is

The pack and unpack conversion instructions are used for storing data after con-
verting the size of elements according to the destination size. For example, the instruction

PACKUSDW MM0, MM1

converts the four double-word elements of source and destination registers MM0 and
MM1 into four words and packs them into destination register MM0. Figure 72 shows
how the elements are merged together in the destination. Just like the PADD instruction,
if an element results in an overflow or underflow when it is compressed during the exe-

MM3 � FFFFFFFF00000000H

Double word 0 12345678H 	 87654321H � False → 00000000H

Double word 1 FFFF0000H � FFFF0000H � True → FFFFFFFFH

840

The 80386, 80486, and Pentium Processor Families

Byte7Destination operand Byte6 Byte5 Byte4 Byte3 Byte2 Byte1 Byte0

Byte7 Byte6 Byte5 Byte4 Byte3 Byte2 Byte1 Byte0 Byte7 Byte6 Byte5 Byte4 Byte3 Byte2 Byte1 Byte0

Source operand Destination operand

Figure 73 Unpack operation of the PUNPCKLBW instruction.

cution of the PACKUSDW instruction, FFFFH and 0000H replace it, respectively. For the
instruction PACKUSDW, the signed number overflow and underflow maximum and min-
imum values are 7FFFH and 8000H, respectively.

EXAMPLE 30

What results are produced in the destination register by executing the instruction that
follows?

PACKUSDW MM6, MM5

Assume that MM5 and MM6 contain the values 000100FF80000123H and 0000AA00000-
04321H.

Solution

The word-wide elements produced in destination MM6 are as follows:

Therefore, the result in the destination register is

Let us now briefly look at how the unpack instruction is used to realign data. Figure
73 shows how the PUNPCKLBW MM4, MM3 merges the four low bytes of byte-wide
source and destination operands to form four words in the destination operand. For
instance, if the original data in registers MM3 and MM4 are 0F0F0F0F07050301H and
FFFF000006040200H, respectively, executing the instruction merges the bytes into the
destination as

MM4 � 0706050403020100H

MM6 � FFFF0000AA004321H

Word 0 00004321H → 4321H

MM6 Word 1 0000AA00H → AA00H

Word 2 80000123H → 0000H Unsigned saturation underflow

MM5 Word 3 000100FFH → FFFFH Unsigned saturation overflow

841

REVIEW PROBLEMS

Section 1
1. Name two MPUs in the 80386 family.

2. What size are the registers and the data bus of the 80386DX? The 80386SX?

3. What is the iCOMP rating of an 80386SX-25 MPU? An 80386DX-25 MPU?

4. List the three modes of software operation supported by the 80386DX.

Section 2
5. Name the six internal processing units of the 80386DX.

6. What are the word lengths of the 80386DX’s address bus and data bus?

7. Does the 80386DX have a multiplexed address/data bus or separate address and
data buses?

8. How large is the 80386DX’s instruction stream queue?

9. In which unit is the instruction stream queue located?

10. How large is the descriptor cache?

11. Where are recently used page directory and page table entries stored?

Section 3
12. How does the performance of a 16-MHz 80386DX compare to that of a 5-MHz 8086?

13. What is meant when we say that the 80386DX is object code compatible with the
8086?

14. In the real mode, is the accumulator register 16 bits or 32 bits in length? The DS
register?

15. What new registers are found in the 80386DX’s real-mode software model?

Section 4
16. Write an instruction that will move the contents of control register 1 to the extended

base register.

17. What instruction does the mnemonic SHLD stand for?

18. Describe the operation performed by the instruction MOVSX EAX, BL.

19. Write an instruction that will zero-extend the word of data at address
DATA_WORD and copy it into register EAX.

20. What operation is performed when the instruction LFS EDI, DATA_F_ADDRESS
is executed?

21. If the values in AX and CL are F0F016 and 0416, respectively, what is the result in
AX and CF after execution of each of the instructions that follow:
(a) BT AX, CL
(b) BTR AX, CL
(c) BTC AX, CL

22. What does the mnemonic SETNC stand for? What flag condition does it test for?

Section 5
23. List the protected-mode registers that are not part of the real-mode model.

24. What are the two parts of the GDTR called?

The 80386, 80486, and Pentium Processor Families

842

25. What function is served by the GDTR?
26. If the contents of the GDTR are 0021000001FF16, what are the starting and ending

addresses of the table? How large is the table? How many descriptors can be stored
in the table?

27. What is stored in the GDT?
28. What do IDTR and IDT stand for?
29. What is the maximum limit that should be used in the IDTR?
30. What is stored in the IDT?
31. What descriptor table defines the local memory address space?
32. What gets loaded into the LDTR? What happens when it gets loaded?
33. Which control register contains the MSW?
34. Which bit is used to switch the 80386DX from real-address mode to protected-

address mode?
35. What MSW bit settings identify that floating-point operations are to be performed

by an 80387 coprocessor?
36. What does TS stand for?
37. What must be done to turn on paging?
38. Where is the page directory base register located?
39. How large is the page directory?
40. What is held in the page table?
41. What gets loaded into TR? What is its function?
42. What is the function of the task descriptor cache?
43. What determines the location and size of a task state segment?
44. What is the name of the CS register in the protected mode? The DS register?
45. What are the names and sizes of the three fields in a selector?
46. What does TI equals 1 mean?
47. If the GDT register contains 0013000000FF16 and the selector loaded into the

LDTR is 004016, what is the starting address of the LDT descriptor that is to be
loaded into the cache?

48. What does NT stand for? RF?
49. If the IOPL bits of the flag register contain 10, what is the privilege level of the I/O

instructions?
50. What size is the 80386DX’s virtual address?
51. What are the two parts of a virtual address called?
52. How large can a data segment be? How small?
53. How large is the 80386DX’s virtual address space? What is the maximum number

of segments that can exist in the virtual address space?
54. How large is the global memory address space? How many segments can it contain?
55. In Fig. 19, which segments of memory does task 3 have access to? Which segments

does it not have access to?
56. What part of the 80386DX is used to translate virtual addresses to physical addresses?

The 80386, 80486, and Pentium Processor Families

843

The 80386, 80486, and Pentium Processor Families

57. What happens when the instruction sequence that follows is executed?

MOV AX, [SI]
MOV CS, AX

58. If the descriptor accessed in problem 57 has the value 00200000FFFF16 and IP con-
tains 010016, what is the physical address of the next instruction to be fetched?

59. Into how many pages is the 80386DX’s address space mapped when paging is
turned on? What is the size of a page?

60. What are the three elements of the linear address produced by page translation?
Give the size of each element.

61. What is the purpose of the translation lookaside buffer?
62. How large is a page frame? What selects the specific storage location in the page frame?

Section 6
63. How many bytes are in a descriptor? Name each of its fields and give their sizes.
64. Which registers are segment descriptors associated with? System segment

descriptors?
65. The selector 022416 is loaded into the data segment register. This value points to a

segment descriptor starting at address 0010022016 in the local descriptor table. If the
words of the descriptor are

what are the LIMIT and BASE?
66. Is the segment of memory identified by the descriptor in problem 65 already loaded

into physical memory? Is it a code segment or a data segment?
67. If the current value of IP is 0000022616, what is the physical address of the next

instruction to be fetched from the code segment of problem 65?
68. What do the 20 most significant bits of a page directory or page table entry stand for?
69. The page mode protection of a page frame is to provide no access from the user pro-

tection level and read/write operation at the supervisor protection level. What are
the settings of R/W and U/S?

70. What happens when an attempt is made to access a page frame that has P � 0 in its
page table entry?

71. What does the D bit in a page directory entry stand for?

Section 7
72. If the instruction LGDT [INIT_GDTR] is to load the limit FFFF16 and base

0030000016, show how the descriptor must be stored in memory.
73. Write an instruction sequence that can be used to clear the task-switched bit of the

MSW.

(0010022616) � 000016

(0010022416) � 1A2016

(0010022216) � 000016

(0010022016) � 011016

844

The 80386, 80486, and Pentium Processor Families

74. Write an instruction sequence that will load the local descriptor table register with
the selector 02F016 from register BX.

Section 8
75. Define the term multitasking.

76. What is a task?

77. What two safeguards are implemented by the 80386DX’s protection mechanism?

78. What happens if either the segment limit check or segment attributes check fails?

79. What is the highest privilege level of the 80386DX protection model called? What
is the lowest level called?

80. At what protection level are applications run?

81. What protection mechanism is used to isolate local and global resources?

82. What protection mechanism is used to isolate tasks?

83. What is the privilege level of the segment defined by the descriptor in problem 72?

84. What does CPL stand for? RPL?

85. State the data access protection rule.

86. Which privilege-level data segments can be accessed by an application running at
level 3?

87. Summarize the code access protection rules.

88. If an application is running at privilege level 3, what privilege-level operating sys-
tem software is available to it?

89. What purpose does a call gate serve?

90. Explain what happens when the instruction CALL [NEW_ROUTINE] is executed
within a task. Assume that NEW_ROUTINE is at a privilege level that is higher
than the CPL.

91. What is the purpose of the task state descriptor?

92. What is the function of a task state segment?

93. Where is the state of the prior task saved? Where is the linkage to the prior task
saved?

94. Into which register is the TSS selector loaded to initiate a task?

95. Give an overview of the task switch sequence illustrated in Fig. 47.

Section 9
96. Which bit position in EFLAGS is VM?

97. Is 80386DX protection active or inactive in virtual 8086 mode? If active, what is the
privilege level of a virtual 8086 program?

98. Can both protected mode and virtual 8086 tasks coexist in an 80386DX multitask-
ing environment?

99. Can multiple virtual 8086 tasks be active in an 80386DX multitasking environment?

Section 10
100. Give two on-chip additions of the 80486DX MPU that result in greater performance.

101. What is the key difference between the 80486DX and 80486SX MPUs?

845

102. What is the iCOMP rating of the 80486SX-33 MPU? The 80486DX-50 MPU?

103. What is the size of the 80486SX’s instruction code queue?

104. What does CISC stand for? RISC? CRISC?

105. List three characteristics of a RISC processor.

106. Is the 80486SX best categorized as that of a CISC, RISC, or CRISC?

107. What new bits are active in the CR0 of the real-mode 80486SX?

108. Does the 8086 architecture use little endian or big endian organization for data
stored in memory?

109. If the contents of EAX are 0F0F0F0FH, what is the result in the register after exe-
cuting the instruction SWAP EAX?

110. Write an instruction sequence that will read the big endian double-word elements of
a table starting at address BIG_E_TABLE and convert them to little endian format
in a table starting at address LIT_E_TABLE. Assume that the number of double-
word elements in the table equals COUNT.

111. Write an instruction that performs an exchange and add operation on the double
word storage location SUM and register EBX. If the original value in SUM is
00000001H and that in EBX is 00000000H, what result is produced in destination
SUM by executing the instruction five times?

112. If the instruction CMPXCHG [DATA], BL is executed when the content of AL is
1116, BL is 2216, and storage location DATA is 1116, what results are produced?

113. What new flag is active in the 80486SX’s EFLAGS register, and in which bit posi-
tion is it found?

114. Which bits in the protected mode CR0 are used to control the operation of the on-
chip cache memory?

115. What instruction should be executed to flush the on-chip cache and initiate a flush
bus cycle?

116. What is the difference between the operations performed by the INVD and
WBINVD instructions?

117. Name the two new active bits in the 80486SX’s page table entry.

Section 11
118. Convert the floating-point number �9.5 to its equivalent normalized binary number.

119. What are the three sizes of floating-point numbers defined by IEEE Standard 754?
How many bits are required to code each of these types of floating point-numbers?

120. What are the three elements of a double precision floating-point number and how
many bits wide is each?

121. Express the normalized floating-point number found in problem 118 as a binary sin-
gle precision floating-point number. What is the hexadecimal value of this number?

122. How are the registers of the floating-point stack labeled from a hardware point of
view? How are the registers identified from a software point of view?

123. If the value of TOP in the floating-point status register is 010, which hardware reg-
ister is currently the top of the stack? How many valid values are currently held in
the stack? Which hardware register currently corresponds to ST(4)?

The 80386, 80486, and Pentium Processor Families

846

124. If the current top of stack corresponds to floating-point register R5, what operation
does the instruction FLD ST(2) perform?

125. If the values corresponding to DATA3_64B and DATA4_64B are �2.5 and �10.75,
respectively, what binary result does the program in Example 23 store in the mem-
ory location corresponding to DATA4_64B? Hexadecimal result?

Section 12
126. How wide is the Pentium processor’s external data bus?

127. What does the term superscaler mean?

128. What is the iCOMP rating of the 90-MHz Pentium processor MPU?

129. How many pipelines are in a Pentium processor MPU? What are they called?

130. List three improvements made in the Pentium processor’s on-chip cache memory
over that provided in the 80486SX MPU.

131. How many times faster is the floating-point unit of the Pentium processor compared
to that of the 80486DX-33?

132. Give the mnemonics for the three new flags activated in the Pentium processor’s
EFLAGS register.

133. What does PSE stand for? How many 32-bit entries are in a page when PSE is set to 1?

134. What capability does the MCE bit of CR4 enable/disable?

135. List three new real-mode instructions supported by the Pentium processor MPU.

136. If the contents of EAX, EBX, ECX, and EDX are 1111111116, 2222222216,
3333333316, and FFFFFFFF16, respectively, and the content of the quad-word mem-
ory storage location pointed to by the address TABLE is 11111111FFFFFFFF16,
what is the result produced by executing the instruction CMPXCHG8B [TABLE]?

137. Which model-specific register is accessed when the RDMSR system control instruc-
tion is executed when ECX contains the value 116?

Section 13
138. What does SIMD stand for?

139. What four types of SIMD data can be processed by the Pentium processor with
MMX technology?

140. How many bits wide are the MMX registers? How are they labeled?

141. If an MMX register contains the value FF0012345678ABCDH
(a) What are the values of the individual elements of 8 � 8 data?
(b) 4 � 16 data?
(c) 2 � 32 data?

142. When the instruction PADDUSB MM3, MM4 is executed and the contents of reg-
isters MM3 and MM4 are FFFFFFFF12345678H and 0001000287654321H, respec-
tively, what results are produced in the destination register?

143. If the operands for the instruction PCMPGTD M3, M4 process the operand values
given in Problem 142, what results are produced in the destination?

144. Assume that MM5 and MM6 contain the values 000100FF80000123H and 0000AA-
0000004321H. What results are produced in the destination register by executing
the instruction PACKUSDW MM6, MM5.

The 80386, 80486, and Pentium Processor Families

847

The 80386, 80486, and Pentium Processor Families

Section 1
1. 80386DX and 80386SX.

3. 39; 49.

Section 2
5. Bus unit, prefetch unit, decode unit, execution unit, segment unit, and page unit.

7. Separate address and data buses.

9. Prefetch unit.

11. Translation lookaside buffer.

Section 3
13. Object code compatible means that programs and operating systems written for the

8088/8086 will run directly on the 80386DX and 80386SX in real-address mode.

15. FS, GS, and CR0 registers.

Section 4
17. Double precision shift left.
19. MOVZX EAX, [DATA_WORD].

21. (a) , .
(b) , .
(c) , .

Section 5
23. Global descriptor table register, interrupt descriptor table register, task register, and

local descriptor table register.

25. Defines the location and size of the global descriptor table.

27. System segment descriptors.

29. 0FFFH.

31. Local descriptor table.

33. CR0.

35. , , and .

37. Switch the PG bit in CR0 to 1.

39. 4Kbyte.

41. Selector; selects a task state segment descriptor.

43. BASE and LIMIT of the TSS descriptor.

45.

47. 00130020H.

49. Level 2.

51. Selector and offset.

INDEX � 13 bits
TI � 1 bit
RPL � 2 bits

(ET) � 1(EM) � 0(MP) � 1

(CF) � 1(AX) � F0E0H
(CF) � 1(AX) � F0E0H
(CF) � 1(AX) � F0F0H

ANSWERS TO SELECTED REVIEW PROBLEMS▲

848

The 80386, 80486, and Pentium Processor Families

53. 64Tbyte, 16,384 segments.

55. Task 3 has access to the global memory address space and the task 3 local address space,
but it cannot access either the task 1 local address space or task 2 local address space.

57. The first instruction loads the AX register with the selector from the data storage
location pointed to by SI. The second instruction loads the selector into the code seg-
ment selector register. This causes the descriptor pointed to by the selector in CS to
be loaded into the code segment descriptor cache.

59. 1,048,496 pages; 4096 bytes long.

61. Cache page directory and page table pointers on-chip.

Section 6
63. 8, , , ,

, and .

65. , .

67. 00200226H.

69. and or and .

71. Dirty bit.

Section 7
73. LMSW AX ;Get MSW

AND AX, 0FFF7H ;Clear task-switched bit
SMSW AX ;Write new MSW

Section 8
75. The running of multiple processes in a time-shared manner.

77. Local memory resources are isolated from global memory resources, and tasks are
isolated from each other.

79. Level 0, level 3.

81. LDT and GDT.

83. Level 0.

85. A task can access data in a data segment at the CPL and at all lower privilege levels,
but it cannot access data in segments that are at a higher privilege level.

87. A task can access code in segments at the CPL or at higher privilege levels, but can-
not modify the code at a higher privilege level.

89. The call gate is used to transfer control within a task from code at the CPL to a rou-
tine at a higher privilege level.

91. Identifies a task state segment.

93. The state of the prior task is saved in its own task state segment. The linkage to the prior
task is saved as the back link selector in the first word of the new task state segment.

Section 9
97. Active, level 3.

99. Yes.

U/S � 0R/W � 1U/S � 0R/W � 0

BASE � 00200000HLIMIT � 00110H

GRANULARITY � 1 bitAVAILABLE � 1 bit
ACCESS RIGHTS BYTE � 8-bitsLIMIT � 20-bitsBASE � 32-bits

849

The 80386, 80486, and Pentium Processor Families

Section 10
101. The 80486SX does not have an on-chip floating-point math coprocessor.

103. 32 bytes.

105. Small instruction set, limited addressing modes, and single clock execution for
instructions.

107. Cache disable (CD) and not write-through (NW).

109. F0F0H.
111. XADD [SUM], EBX

(EAX) (SUM)

01H 00H
01H 01H 1st execution
01H 02H 2nd execution
02H 03H 3rd execution
03H 05H 4th execution

113. Alignment check (AC); bit 18.

115. INVD.

117. Page cache disable (PCD) and page write transparent (PWT).

Section 11
119. Single precision number � 32 bits, double precision number � 64 bits, and extended

precision number � 80 bits.

121.

123. R2, 5, R5.

125.

Fractional significand � 00001000
8.25 � 0 10000000010 00001000
8.25 � 010000000010000010002

Section 12
127. A microprocessor architecture that employs more than one execution unit.

129. 2; U pipe and V pipe.

8.25 � 4020800000000000H

Biased exponent � 000000000112 � 011111111112 � 10000000010
Sign � 0
8.25 � 1000.012 � 1.00001 � 2�3
ƒ �10.75 � (�2.5) ƒ � ƒ �10.75 � 2.5 ƒ � ƒ �8.25 ƒ � 8.25
ƒ (DATA4_64B) � (DATA3_64B) ƒ → DATA5_64B

�1.0011 � 2�3 � C1180000H
�1.0011 � 2�3 � 1 10000010 00110000000000000000000;
Fractional significand � 00110000000000000000000
Biased exponent � �3 � 127 � 000000112 � 011111112 � 10000010

Sign � 1

850

The 80386, 80486, and Pentium Processor Families

131. 5 to 10 times faster.

133. Page size extensions, 1M 32-bit entries.

135. Compare and exchange 8 bytes (CMPXCHG8B), CPU identification (CPUID), and
read from time stamp counter (RDTSC).

137. Machine check type (MCT).

Section 13
139. Packed byte, packed word, packed double word, and packed quad-word; 8 � 8-bit,

4 � 16-bit, 2 � 32-bit, and 1 � 64-bit.

141. (a) , , , , ,
, , Byte 0 = CDH.

(b) , , , .
(c) .

143. Data is compared as signed numbers. This gives

MM3 � 00000000FFFFFFFFH
Double word 0 12345678H � 876554321H � True → FFFFFFFFH
Double word 1 FFFFFFFFH � 00010002H � False → 00000000H

Double word 1 � FF001234H Double word 0 � 5678ABCDH
Word 0 � ABCDHWord 1 � 5678HWord 2 � 1234HWord 3 � FF00H

Byte 1 � ABHByte 2 � 78H
Byte 3 � 56HByte 4 � 34HByte 5 � 12HByte 6 � 00HByte 7 � FFH

851

This page intentionally left blank

The 80386, 80486,
and Pentium Processor
Families: Hardware
Architecture

▲ INTRODUCTION

In this chapter, we will turn our attention to the hardware architecture of the 80386,
80486, and Pentium processors. We examine the signal interfaces of the 80386DX MPU,
its memory interface, input/output interface, and interrupts/exception processing. Next we
will introduce the 80486SX and Pentium processor families. Here we focus on the hard-
ware architecture difference between these newer processors and the 80386DX. For this
purpose, we have included the following topics in this chapter:

1 80386 Microprocessor Family

2 Signal Interfaces of the 80386DX

3 System Clock of the 80386DX

4 80386DX Bus States and Pipelined and Nonpipelined Bus Cycles

5 Memory Organization and Interface Circuits

6 Input/Output Interface Circuits and Bus Cycles

7 Interrupt and Exception Processing

8 80486SX and 80486DX Microprocessors

9 Other 80486 Family Microprocessors—80486DX2 and 80486DX4

From Chapter 16 of 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

853

10 Pentium Microprocessor Family

11 Pentium Pro Processor and Pentium Processor with MMX Technology

12 Pentium II Processor, Celeron Processor, and Pentium II Xeon Processor

13 Pentium III Processor and Pentium IV Processor

� 1 80386 MICROPROCESSOR FAMILY

Hardware compatibility of the 80386 family of microprocessor with either the 8086 or
80286 microprocessor is much less of a concern than software compatibility. In fact, a
number of changes have been made to the hardware architecture of the 80386DX to
improve both its versatility and its performance. For example, additional pipelining has
been provided within the 80386DX, and the address and data buses have both been made
32 bits in length. These two changes in the hardware result in increased performance for
80386DX-based microcomputers. Another feature, dynamic bus sizing for the data bus,
provides more versatility in system hardware design.

The original 80386DX was manufactured using Intel’s complementary high-
performance metal-oxide-semiconductor III (CHMOSIII) process. Its circuitry is equiva-
lent to approximately 275,000 transistors, more than twice those used in the design of the
80286 MPU and almost 10 times that of the 8086.

The 80386DX is housed in a 132-pin ceramic pin grid array (PGA) package. An
80386DX in this package is shown in Fig. 1. This package can be mounted in a socket
that is soldered to the circuit board or have its leads inserted through holes in the board
and soldered. The signal at each pin is shown in Fig. 2(a). Note that all the 80386DX’s
signals are supplied at separate pins on the package. This is intended to simplify the
microcomputer circuit design.

Figure 2(a) shows that the rows of pins on the package are identified by row num-
bers 1 through 14 and the columns of pins are labeled A through P. Therefore, the loca-
tion of the pin for each signal is uniquely defined by a column and row coordinate. For
example, in Fig. 2(a) address line A31 is at the junction of column N and row 2—that is,
it is at pin N2. Figure 2(b) lists the pin locations for all of the 80386DX’s signals.

EXAMPLE 1

At what pin location is the signal D0?

Solution

Looking at Fig. 2(a), we find that the pin for D0 is located in column H at row 12. There-
fore, its pin is identified as H12 in Fig. 2(b).

The 80386SX MPU is not packaged in a PGA. It is available in a 100-lead plastic
quad flat package (PQFP). A plastic package is used to permit a lower cost for the device.
This type of package is meant for surface-mount installation. That is, its pins do not go

The 80386, 80486, and Pentium Processor Families

854

The 80386, 80486, and Pentium Processor Families

Figure 1 80386 IC. (Courtesy of Intel Corporation)

through the board; instead, the device is laid on top of the circuit board and then soldered
in place.

� 2 SIGNAL INTERFACES OF THE 80386DX

Figure 3 presents a block diagram of the 80386DX microprocessor. Here we have
grouped its signal lines into four interfaces: the memory/IO interface, the interrupt inter-
face, the DMA interface, and the coprocessor interface. Figure 4 lists each of the signals
at the 80386DX’s interfaces. Included in this table are a mnemonic, function, type, and
active level for each signal. For instance, we find that the signal with the mnemonic
stands for memory/IO indication. This signal is an output produced by the 80386DX that
is used to tell external circuitry whether the current address available on the address bus
is for memory or an input/output device. Its active level is listed as 1/0, which means that
logic 1 on this line identifies a memory bus cycle and logic 0 an input/output bus cycle.
On the other hand, the signal INTR at the interrupt interface is the maskable interrupt
request input of the 80386DX. This input is active when at logic 1. By using this input,
external devices can signal the 80386DX that they need to be serviced.

Memory/IO Interface

In a microcomputer system, the address bus and data bus signal lines form a paral-
lel path over which the MPU talks with its memory and I/O subsystems. Like the 80286
microprocessor, but unlike the older 8086 and 8088, the 80386DX has a demultiplexed
address/data bus. Note in Fig. 2(b) that the address bus and data bus lines are located at
different pins of the IC.

M/IO

855

The 80386, 80486, and Pentium Processor Families

Figure 2 (a) Pin layout of the 80386DX. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp. 1987) (b) Signal pin numbering. (Reprinted
by permission of Intel Corporation. Copyright/ Intel Corp. 1987)

From a hardware point of view, there is only one difference between an 80386DX
configured for the real-address mode and one configured for protected-address mode.
This difference is the size of the address bus. When in real mode, only the lower 18
address lines, A2 through A19, are active, whereas in the protected mode all 30 lines, A2

through A31, are functional. Of these, A19 and A31 are the most significant address bits,
respectively. Actually, real-mode addresses are 20 bits long and protected-mode addresses
are 32 bits long. The other two bits, A0 and A1, are decoded inside the 80386DX, along
with information about the size of the data to be transferred, to produce byte-enable out-
puts, , , , and .

As Fig. 4 shows, the address lines are outputs. They are used to carry address infor-
mation from the 80386DX to memory and input/output ports. In real-address mode, the
20-bit address gives the 80386DX the ability to address a 1Mbyte physical memory
address space. On the other hand, in protected mode the extended 32-bit address results
in a 4Gbyte physical memory address space. Moreover, when in protected mode, virtual

BE3BE2BE1BE0

856

Figure 2 (continued)

addressing is provided through software. This results in a 64Tbyte virtual memory
address space.

In both the real and protected modes, the 80386DX microcomputer has an inde-
pendent I/O address space. This I/O address space is 64Kbytes in length. Therefore, only
address lines A2 through A15 and the outputs are used when addressing I/O devices.

The 80386SX has the same number of active address lines as the 80386DX in the
real mode, but fewer address lines in the protected mode. Its protected-mode address is
only 25 bits long; therefore, the address space is limited to 16Mbytes. This is the first key
difference between the 80386SX and 80386DX MPUs. The 80386SX accesses the I/O
address space in exactly the same way as the 80386DX.

BE

The 80386, 80486, and Pentium Processor Families

857

Figure 3 Block diagram of the 80386DX.

Since the 80386DX is a 32-bit microprocessor, its data bus is formed from the
32 data lines D0 through D31. Data line D31 is the most significant bit and D0 the least sig-
nificant bit. These lines are identified as bidirectional in Fig. 4 because they have the abil-
ity to carry data either in or out of the MPU. The kinds of data transferred over these lines
are read/write data and instructions for memory, input/output data for input/output
devices, and interrupt type codes from an interrupt controller.

The 80386SX has a 16-bit data bus instead of a 32-bit data bus. This is the second
important hardware difference between the 80386SX and 80386DX. This results in lower
performance, but has the advantage of enabling the design of a lower-cost memory sub-
system for the microcomputer system.

Earlier we indicated that the 80386DX supports dynamic bus sizing. Even though
the 80386DX has 32 data lines, the size of the bus can be dynamically switched to 16 bits.
Simply switching the bus size 16 () input to logic 0 does this. When in this mode,
32-bit data transfers are performed as two successive 16-bit data transfers over bus lines
D0 through D15. Since the 80386SX has a 16-bit data bus, it does not have this input.

Remember that the 80386DX supports byte, word, and double-word data transfers
over its data bus during a single bus cycle. Therefore, it must signal to external circuitry
what type of data transfer is taking place and over which part of the data bus the data will

BS 16

The 80386, 80486, and Pentium Processor Families

858

Figure 4 Signals of the 80386DX.

be carried. The bus unit does this by activating the appropriate byte enable () output
signals.

Figure 5 lists each byte-enable output signal and the part of the data bus it is
intended to enable. For instance, here we see that corresponds to data bus lines D0

through D7. If a byte of data is being read from memory, only one of the outputs is
made active. For instance, if the most significant byte of an aligned double word is read
from memory, is switched to logic 0 and the data moves on data lines D24 through
D31. On the other hand, if a word of data is being read, two outputs become active. An
example would be to read the most significant word of an aligned double word from

BE3

BE
BE0

BE

Figure 5 Byte enable outputs and
data bus lines.

The 80386, 80486, and Pentium Processor Families

859

memory. In this case, and are both switched to logic 0 and the data is carried by
lines D16 through D31. Finally, if an aligned double-word read is taking place, all four
outputs are made active and all 32 data lines are used to transfer the data.

EXAMPLE 2

What code is output on the byte-enable lines whenever the address on the bus is for an
instruction-acquisition bus cycle?

Solution

Since code is always fetched as 32-bit words (aligned double words), all the byte-enable
outputs are made active. Therefore,

The byte-enable lines work exactly the same way when write data transfers are performed
over the bus. Figure 6(a) identifies what type of data transfer takes place for all possible
variations of the byte-enable outputs. For instance, we find that

means that a byte of data is written over data bus lines D0 through D7.

EXAMPLE 3

What type of data transfer takes place and over which data bus lines are data transferred
if the byte-enable code output is

Solution

In Fig. 6(a), we see that a word of data is transferred over data bus lines D0 through D15.

With its 16-bit data bus, the 80386SX can transfer only a byte or word of data over
the bus during a single bus cycle. For this reason, the four byte-enable signals of the
80386DX are replaced by just two signals: byte high enable () and byte low enable
() on the 80386SX. Logic 0 at tells that a byte of data is being transferred over
data bus line D0 through D7, and logic 0 at means a byte transfer is taking place over
data bus lines D8 through D15. When a word of data is transferred, both of these signals
are at their active 0 logic level.

The 80386DX performs what is called data duplication during certain types of
write cycles. Data duplication is provided in the 80386DX to optimize the performance
of the data bus when it is set for 16-bit mode. Note that whenever a write cycle is per-

BHE
BLEBLE

BHE

BE3BE2BE1BE0 � 11002

BE1BE0 � 11102

BE3BE2

BE3BE2BE1BE0 � 00002

BE
BE3BE2

The 80386, 80486, and Pentium Processor Families

860

Figure 6 (a) Types of data transfers for the various byte-enable combinations.
(b) Data transfers that include duplication.

formed in which data are transferred only over the upper part of the 32-bit data bus, the
data are duplicated on the corresponding lines of the lower part of the bus. For example,
looking at Fig. 6(b), we see that when , data (denoted as
XXXXXXXX) are actually being written over data bus lines D16 through D23. However,
at the same time, the data (denoted as DDDDDDDD in Fig. 6(b)) are automatically dupli-
cated on data bus lines D0 through D7. Despite the fact that the byte is available on the
lower eight data bus lines, stays inactive. The same thing happens when a word of
data is transferred over D16 through D31. In this example, , and
Fig. 6(b) shows that the word is duplicated on data lines D0 through D15.

EXAMPLE 4

If a word of data that is being written to memory is accompanied by the byte-enable code
10012, over which data bus lines are the data carried? Is data duplication performed for
this data transfer?

BE3BE2BE1BE0 � 00112

BE0

BE3BE2BE1BE0 � 10112

The 80386, 80486, and Pentium Processor Families

861

Solution

The tables in Fig. 6 show that for the byte-enable code 10012, the word of data is trans-
ferred over data bus lines D8 through D23. For this transfer, data duplication does
not occur.

Control signals are required to support information transfers over the 80386DX’s
address and data buses. They are needed to signal when a valid address is on the address
bus, in which direction data are to be transferred over the data bus, when valid write data
are on the data bus, and when an external device can put read data on the data bus. The
80386DX does not directly produce signals for all these functions. Instead, it outputs bus
cycle definition and control signals at the beginning of each bus cycle. These bus cycle
indication signals must be decoded in external circuitry to produce the needed memory
and I/O control signals.

Three signals are used to identify the type of 80386DX bus cycle that is in progress.
In Figs. 3 and 4, they are labeled write/read indication (), data/control indication
(), and memory/input-output indication (). The table in Fig. 7 lists all possible
combinations of the bus cycle indication signals and the corresponding type of bus cycle.
Here we find that the logic level of memory/input-output () tells whether a memory
or input/output cycle is to take place over the bus. Logic 1 at this output signals a mem-
ory operation, and logic 0 signals an I/O operation. The next signal in Fig. 7, data/con-
trol indication (), identifies whether the current bus cycle is a data or control cycle. In
the table we see that it signals control cycle (logic 0) for instruction fetch, interrupt
acknowledge, and halt/shutdown operations and data cycle (logic 1) for memory and I/O
read and write operations. Looking more closely at the table in Fig. 7, we find that if the
code on these two lines, , is 00, an interrupt is to be acknowledged; if it is 01,
an input/output operation is in progress; if it is 10, instruction code is being fetched; and
finally, if it is 11, a data memory read or write is taking place.

The last signal noted in Fig. 7, write/read indication (), identifies the specific
type of memory or input/output operation that will occur during a bus cycle. For exam-
ple, when is logic 0, data are to be read from memory or an I/O port. On the other
hand, logic 1 at says that data are to be written into memory or an I/O device. For
example, all bus cycles that read instruction code from memory are accompanied by logic
0 on the line.W/R

W/R
W/R

W/R

M/ IO D/C

D/C

M/IO

M/IOD/C
W/R

Figure 7 Bus cycle indication signals
and types of bus cycles.

The 80386, 80486, and Pentium Processor Families

862

EXAMPLE 5

If the bus cycle indication code equals 010, what type of bus cycle is tak-
ing place?

Solution

Looking at the table in Fig. 7, we see that bus cycle indication code 010 identifies an I/O
read (input) bus cycle.

Three bus cycle-control signals are produced directly by the 80386DX. They are
identified in Figs. 3 and 4 as address status (), transfer acknowledge (), and
next-address request (). The output is switched to logic 0 to indicate that the bus
cycle indication code (), byte-enable code (), and address
(A2 through A31) signals are all stable. Therefore, it is normally applied to an input of the
external bus-control logic circuit and tells it that a valid bus cycle indication code and
address are available. In Fig. 7 the bus cycle indication code is
identified as idle. That is, it is the code that is output whenever no bus cycle is being per-
formed.

can be used to insert wait states into the current bus cycle such that it is
extended by a number of clock periods. In Fig. 4, we find that this signal is an input to
the 80386DX. Normally, it is produced by the microcomputer’s memory or input/output
subsystem and supplied to the 80386DX by way of external bus control logic circuitry.
By switching to logic 0, slow memory or I/O devices can tell the 80386DX
when they are ready to permit a data transfer to be completed.

Earlier we pointed out that the 80386DX supports address pipelining at its bus
interface. By address pipelining, we mean that the address and bus cycle indication code
for the next bus cycle is output before becomes active to signal that the prior bus
cycle can be completed. This mode of operation is optional. The external bus-control
logic circuitry activates pipelining by switching the next-address request () input to
logic 0. By using pipelining, delays introduced by the decode logic can be made trans-
parent and the address to data access time is increased. In this way, the same level of per-
formance can be obtained with slower, lower-cost memory devices.

One other bus interface control output that is supplied by the 80386DX is bus lock
indication (). This signal is needed to support multiple-processor architectures. In
multiprocessor systems that employ shared resources, such as global memory, this signal
can be employed to assure that the 80386DX has uninterrupted control of the system bus
and the shared resource. That is, by switching its output to logic 0, the MPU can
lock up the shared resource for exclusive use.

The 80386SX has the same bus cycle indication and control signals as the
80386DX. The signals that identify the type of bus cycle are write/read indication (),
data/control indication (), and memory/input-output indication (), whereas those
that control the bus cycle are address status (), transfer acknowledge (), next
address request (), and bus lock indication (). Each of these signals serves the
exact same function as they do for the 80386DX MPU.

LOCKNA
READYADS

M/IOD/C
W/R

LOCK

LOCK

NA

READY

READY

READY

M/IO D/C W/R � 001

BE1BE0BE3BE2M/IO D/C W/R
ADSNA

READYADS

M/IO D/C W/R

The 80386, 80486, and Pentium Processor Families

863

Interrupt Interface

Looking at Figs. 3 and 4, we find that the key interrupt interface signals are
interrupt request (INTR), nonmaskable interrupt request (NMI), and system reset
(RESET). INTR is an input to the 80386DX that can be used by external devices to sig-
nal that they need to be serviced. The 80386DX samples this input at the beginning of
each instruction. Logic 1 on INTR represents an active interrupt request.

When the 80386DX recognizes an active interrupt request, it signals this fact to
external circuitry and initiates an interrupt-acknowledge bus cycle sequence. In Fig. 7, the
occurrence of an interrupt-acknowledge bus cycle is signaled to external circuitry with the
bus cycle definition equal to 000. This bus cycle indication code can be
decoded in the external bus control logic circuitry to produce an interrupt-acknowledge
signal. With this interrupt-acknowledge signal, the 80386DX tells the external device that
its request for service has been granted. This completes the interrupt request /acknowl-
edge handshake. At this point, program control is passed to the interrupt’s service routine.

The INTR input is maskable. That is, its operation can be enabled or disabled with
the interrupt flag (IF) within the 80386DX’s flag register. On the other hand, the NMI
input, as its name implies, is a nonmaskable interrupt input. On any 0-to-1 transition of
NMI, a request for service is latched within the 80386DX. Independent of the setting of
the IF flag, control is passed to the beginning of the nonmaskable interrupt service rou-
tine at the completion of execution of the current instruction.

Finally, the RESET input provides a method of implementing a hardware reset for
the 80386DX microprocessor. For instance, using this input can reset the microcomputer
at power on. Switching RESET to logic 1 initializes the internal registers of the
80386DX. When it is returned to logic 0, program control is passed to the beginning of a
reset service routine. This routine is used to initialize the rest of the system’s resources,
such as I/O ports, the interrupt flag, and data memory. A diagnostic routine that tests the
80386DX microprocessor can also be initiated as part of the reset sequence. This assures
an orderly startup of the microcomputer system.

The 80386SX’s interrupt interface is exactly the same as that of the 80386DX. It is
implemented with the same signals, interrupt request (INTR), nonmaskable interrupt
request (NMI), and system reset (RESET), and it is identified to external circuitry with
the same bus cycle code.

DMA Interface

Now that we have examined the signals of the 80386DX’s interrupt interface, let us
turn our attention to the direct memory access (DMA) interface. Figures 3 and 4 show
that the DMA interface is implemented with just two signals: bus hold request (HOLD)
and bus hold acknowledge (HLDA). When an external device, such as a DMA controller,
wants to take over control of the local address and data buses, it signals this fact to the
80386DX by switching the HOLD input to logic 1. At completion of the current bus
cycle, the 80386DX enters the hold state. When in the hold state, its local bus signals are
in the high-impedance state. Next, the 80386DX signals external devices that it has
given up control of the bus by switching its HLDA output to the 1 logic level. This com-
pletes the hold/hold acknowledge handshake sequence. The 80386DX remains in this

M/IO D/C W/R

The 80386, 80486, and Pentium Processor Families

864

state until the hold request is removed. The 80386SX’s DMA interface is exactly the
same as that of the 80386DX.

Coprocessor Interface

Figure 3 shows that a coprocessor interface is provided on the 80386DX micro-
processor to permit it to easily interface to the 80387DX numeric coprocessor. The
80387DX cannot perform transfers over the data bus by itself. Whenever the 80387DX
needs to read or write operands from memory, it must signal the 80386DX to initiate the
data transfers. The 80387DX does this by switching the coprocessor request (PEREQ)
input of the 80386DX to logic 1.

The other two signals included in the external coprocessor interface are and
. Coprocessor busy () is an input of the 80386DX. Whenever the

80387DX is executing a numeric instruction, it signals this fact to the 80386DX by
switching the input to logic 0. In this way, the 80386DX knows not to request the
numeric coprocessor to perform another calculation until returns to 1. Moreover,
if an error occurs in a calculation performed by the numeric coprocessor, this condition is
signaled to the 80386DX by switching the coprocessor error () input to the 0
logic level. This interface is implemented the same way on the 80386SX MPU.

� 3 SYSTEM CLOCK OF THE 80386DX

The time base for synchronization of the internal and external operations of the 80386DX
microprocessor is provided by the clock (CLK2) input signal. At present, the 80386DX
has been available with four different clock speeds. The original 80386DX-16 MPU oper-
ates at 16 MHz and its three faster versions, the 80386DX-20, 80386DX-25, and
80386DX-33, operate at 20, 25, and 33 MHz, respectively. The clock signal applied to the
CLK2 input of the 80386DX is twice the frequency rating of the microprocessor. There-
fore, CLK2 of an 80386DX-16 is driven by a 32-MHz signal. This signal must be gener-
ated in external circuitry. The 80386SX is also available in each of these four speeds.

Figure 8 illustrates the waveform of the CLK2 input of the 80386DX. This signal
is specified at CMOS-compatible voltage levels and not TTL levels. Its minimum and

ERROR

BUSY
BUSY

BUSYERROR
BUSY

Figure 8 System clock (CLK2) waveform.

The 80386, 80486, and Pentium Processor Families

865

maximum low logic levels are and respectively.
Moreover, the minimum and maximum high logic levels are and

respectively. The minimum period of the 16-MHz clock signal
is (measured at the 2.0V level); its minimum high time tpmin and low time
tImin (measured at the 2.0V level) are both equal to 9 ns; and the maximum rise time trmax

and fall time tfmax of its edges (measured between the and 0.8V levels) are
equal to 8 ns.

� 4 80386DX BUS STATES AND PIPELINED
AND NONPIPELINED BUS CYCLES

Before looking at the bus cycles of the 80386DX, let us first examine the relationship
between the timing of the 80386DX’s CLK2 input and its bus cycle states. The internal
processor clock (PCLK) signal is at half the frequency of the external clock input signal.
Therefore, as shown in Fig. 9, one processor clock cycle corresponds to two CLK2
cycles. Note that these CLK2 cycles are labeled as phase 1 () and phase 2 (). In a
20-MHz 80386DX microprocessor, CLK2 equals 40 MHz and each clock cycle has a
duration of 25 ns. In Fig. 9, the two phases of a processor cycle are identified
as one processor clock period. A processor clock period is also called a T state. There-
fore, the minimum length of an internal processor clock cycle is 50 ns.

Nonpipelined and Pipelined Bus Cycles

A bus cycle is the activity performed whenever a microprocessor accesses informa-
tion in program memory, data memory, or an input/output device. The 80386DX can per-
form bus cycles with either of two types of timing: nonpipelined and pipelined. Here we
will examine the difference between these two types of bus cycles.

Figure 10 shows a typical nonpipelined microprocessor bus cycle. Note that the
bus cycle contains two T states, T1 and T2. During the T1 part of the bus cycle, the

(�1 � �2)

�2�1

Vcc � 0.8V

tcmin � 31 ns
VIHCmax � Vcc � 0.3 V,

VIHCmin � Vcc � 0.8 V
VILCmax � 0.8 V,VILCmin � �0.3 V

Figure 9 Processor clock cycles. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1987)

The 80386, 80486, and Pentium Processor Families

866

Figure 10 Typical nonpipelined
read/write bus cycle.

80386DX outputs the address of the storage location that is to be accessed on the address
bus, a bus cycle indication code, and control signals. In the case of a write cycle, write
data are also output on the data bus during T1. The second state, T2, is the part of the bus
cycle during which external devices are to accept write data from the data bus or, in the
case of a read cycle, put data on the data bus.

For instance, in Fig. 10, the sequence of events starts with an address, denoted as n,
being output on the address bus in clock state T1. Later in the bus cycle, while the address
is still available on the address bus, a read or write data transfer takes place over the data
bus. Note that the data transfer for address n is shown to occur in clock state T2. Since
each bus cycle has a minimum of two T states (four CLK2 cycles), the minimum bus
cycle duration for an 80386DX-20 is 100 ns.

Let us now look at a microprocessor bus cycle that employs pipelining. By pipelin-
ing we mean that addressing for the next bus cycle is overlapped with the data transfer of
the prior bus cycle. When address pipelining is in use, the address, bus cycle indication
code, and control signals for the next bus cycle are output during T2 of the prior cycle,
instead of the T1 that follows.

In Fig. 11, address n becomes valid in the T2 state of the prior bus cycle, and then
the data transfer for address n takes place in the next T2 state. Moreover, note that at the
same time that data transfer n occurs, address is output on the address bus. In this
way we see that the microprocessor begins addressing the next storage location to be

n � 1

Figure 11 Pipelined bus cyle. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1987)

The 80386, 80486, and Pentium Processor Families

867

accessed while it is still performing the read or write of data for the previously addressed
storage location. Due to the address/data pipelining, the memory or I/O subsystem actu-
ally has five CLK2 cycles (125 ns for an 80386DX-20 running at full speed) to perform
the data transfer, even though the duration of every bus cycle is just four CLK2 cycles
(100 ns).

The interval of time denoted as address-access time in Fig. 10 represents the
amount of time that the address must be stable prior to the read or write of data actually
taking place. Note that this duration is less than the four CLK2 cycles in a nonpipelined
bus cycle. Figure 11 shows that in a pipelined bus cycle the effective address-access time
equals the duration of a complete bus cycle. This leads us to the benefit of the 80386DX’s
pipelined mode of bus operation over the nonpipelined mode of operation—that is, for a
fixed address-access time (equal speed memory design), the 80386DX pipelined bus cycle
will have a shorter duration than its nonpipelined bus cycle. This results in improved bus
performance.

Another way of looking at this is to say that when using equal-speed memory
designs, an 80386DX that uses a pipelined bus can be operated at a higher clock rate than
a design that executes a nonpipelined bus cycle. Once again, the result is higher system
performance.

Figure 11 shows that at completion of the bus cycle for address n, another bus cycle
is initiated immediately for address . Sometimes another bus cycle will not be ini-
tiated immediately. For instance, if the 80386DX’s prefetch queue is already full and the
instruction that is currently being executed does not need to access operands in memory,
no bus activity will take place. In this case, the bus goes into a mode of operation known
as an idle state and no bus activity occurs. Figure 12 shows a sequence of bus activity in
which an idle state exists between the bus cycles for addresses and . The
duration of a single idle state is equal to two CLK2 cycles.

Wait states can be inserted to extend the duration of the 80386DX’s bus cycle. This
is done in response to a request by an event in external hardware instead of an internal
event such as a full queue. In fact, the input of the 80386DX is provided specif-
ically for this purpose. This input is sampled in the later part of the T2 state of every bus
cycle to determine if the data transfer should be completed. Figure 13 shows that logic 1
at this input indicates that the current bus cycle should not be completed. As long as

READY

n � 2n � 1

n � 1

Figure 12 Idle states in bus activity.

The 80386, 80486, and Pentium Processor Families

868

Figure 13 Bus cycle with wait states.

is held at the 1 level, the read or write data transfer does not take place and the
current T2 state becomes a wait state (Tw) to extend the bus cycle. The bus cycle is not
completed until external hardware returns back to logic 0. This ability to extend
the duration of a bus cycle permits the use of slow memory or I/O devices in the micro-
computer system.

Nonpipelined Read Cycle Timing

The memory interface signals that occur when the 80386DX reads data from mem-
ory are shown in Fig. 14. This diagram shows two separate nonpipelined read cycles.
They are cycle 1, which is performed without wait states, and cycle 2, which includes one
wait state. Let us now trace through the events that take place in cycle 1 as data or instruc-
tions are read from memory.

The occurrence of all the signals in the read bus cycle timing diagram are illustrated
relative to the two timing states, T1 and T2, of the 80386DX’s bus cycle. The read opera-
tion starts at the beginning of phase 1 () in the T1 state of the bus cycle. At this
moment, the 80386DX outputs the address of the double-word memory location to be
accessed on address bus lines A2 through A31, outputs the byte-enable signals
through that identify the bytes of the double word that are to be fetched, and switches
address strobe () to logic 0 to signal that a valid address is on the address bus. Look-
ing at Fig. 14, we see that the address and bus cycle indication signals are maintained sta-
ble during the complete bus cycle; however, they must be latched into the external bus
control logic circuitry synchronously with the pulse to logic 0 on . At the end of
of T1, is returned to its inactive 1 logic level.

Note in Fig. 14 that the bus cycle indication signals, , , and , are also
made valid at the beginning of of state T1. Figure 15 highlights the bus cycle indi-
cation codes that apply to a memory read cycle. Here we see that if code is being read
from memory, equals 100. That is, signal is set to logic 1 to indi-M/IOM/IO D/C W/R

�1

W/RD/CM/IO
ADS

�2ADS

ADS
BE3

BE0

�1

READY

READY

The 80386, 80486, and Pentium Processor Families

869

Figure 14 Nonpipelined read cycle timing. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1987)

cate to the circuitry in the memory interface that a memory bus cycle is in progress,
is set to 0 to indicate that code memory is to be accessed, and is set to 0 to indicate
that data are being read from memory.

At the beginning of in T2 of the read cycle, external circuitry must signal the
80386DX whether the bus is to operate in the 16- or 32-bit mode. In Fig. 14, we see that
it does this with the signal. The 80386DX samples this input in the middle of the
T2 bus cycle state. The 1 logic level shown in the timing diagram indicates that a 32-bit
data transfer is to take place.

BS16

�1

W/R
D/C

The 80386, 80486, and Pentium Processor Families

870

Note in Fig. 14 that at the end of T2 the input is tested by the 80386DX.
The logic level at this input signals whether the current bus cycle is to be completed or
extended with wait states. The logic 0 at this input means that the bus cycle is to run to
completion. For this reason we see that data available on data bus lines D0 through D31

are read into the 80386DX at the end of T2.

Nonpipelined Write Cycle Timing

The nonpipelined write bus cycle timing diagram, shown in Fig. 16, is similar to
that given for a nonpipelined read cycle in Fig. 14. It includes waveforms for both a no-
wait-state write operation (cycle 1) and a one-wait-state write operation (cycle 2). Look-
ing at the write cycle waveforms, we find that the address, byte-enable, and bus cycle
indication signals are output at the beginning of of the T1 state. All these signals are
to be latched in external circuitry with the pulse at . The one difference here is that

is at the 1 logic level instead of 0. In fact, as shown in Fig. 17, the bus cycle indi-
cation code for a memory data write is equals 111; therefore, and

are also at the logic 1 level.
Let us now look at what happens on the data bus during a write bus cycle. Note in

Fig. 16 that the 80386DX outputs the data to be written to memory onto the data bus at
the beginning of in the T1 state. These data are maintained valid until the end of the
bus cycle. In the middle of the T2 state, the logic level of the input is tested by the
80386DX and indicates that the bus is to be used in the 32-bit mode. Finally, at the end
of T2, is tested and found to be at its active 0 logic level. Since the memory sub-
system has made logic 0, the write cycle is complete and the buses and control
signal lines are prepared for the next write cycle.

Wait States in a Nonpipelined Memory Bus Cycle

Earlier we showed how wait states are used to lengthen the duration of the memory
bus cycle of microprocessors. Wait states are inserted with the input signal.
Upon request from an event in external hardware, for instance, slow memory, the
input is switched to logic 1. This signals the 80386DX that the memory subsystem is not

READY
READY

READY
READY

BS16
�2

D/C
M/IOM/IO D/C W/R

W/R
ADS

�1

READY

Figure 15 Memory read bus cycle
indication codes.

The 80386, 80486, and Pentium Processor Families

871

Figure 16 Nonpipelined write cycle timing. (Reprinted by permission of Intel
Corporation. Corporation/Intel Corp. 1987)

ready and that the current bus cycle should not be completed. Instead, repeating the
T2 state extends it. Therefore, the duration of one wait state () equals 50 ns for
20-MHz clock operation.

Cycle 2 in Fig. 14 shows a read cycle extended by one wait state. Note that the
address, byte-enable, and bus cycle indication signals are maintained throughout the wait-
state period. In this way, the read cycle is not completed until is switched to
logic 0 in the second T2 state.

READY

Tw � T2

The 80386, 80486, and Pentium Processor Families

872

EXAMPLE 6

If cycle 2 in Fig. 16 is for an 80386DX-20 running at full speed, what is the duration of
the write bus cycle?

Solution

Each T state in the bus cycle of an 80386DX running at 20 MHz is 50 ns. Since the write
cycle is extended by one wait state, the write cycle takes 150 ns.

Pipelined Read/Write Cycle Timing

Timing diagrams for both nonpipelined and pipelined read and write bus cycles are
shown in Fig. 18. Here we find that the cycle identified as cycle 3 is an example of a
pipelined write bus cycle. Let us now look more closely at this bus cycle.

Remember that when pipelined addressing is in use, the 80386DX outputs the
address information for the next bus cycle during the T2 state of the current cycle. The
signal next address () is used to signal the 80386DX that a pipelined bus cycle is to
be initiated. This input is sampled by the 80386DX during any bus state when is not
active. In Fig. 18, we see that () is first tested as 0 (active) during T2 of cycle 2. This
nonpipelined read cycle is also extended with period T2P because is not active.
Note that the address, byte-enable, and bus cycle indication signals for cycle 3 become
valid (identified as VALID 3 in Fig. 18) during this period and a pulse is produced at

. This information is externally latched synchronously with and decoded to
produce bus enable and control signals. In this way, the memory access time for a zero-
wait-state memory cycle has been increased.

Bus cycle 3 represents a pipelined write cycle. The data to be written to memory are
output on D0 through D31 at of T1P and remain valid for the rest of the cycle. Logic 0 on

at the end of T2P indicates that the write cycle is to be completed without wait states.
Looking at Fig. 18, we find that is also active during T1P of cycle 3. This means

that cycle 4 will also be performed with pipelined timing. Cycle 4 is an example of a
zero-wait-state pipelined read cycle. In this case, the address information, bus cycle indi-
cation code, and address strobe are output during T2P of cycle 3 (the previous cycle), and
memory data are read into the MPU at the end of T2P of cycle 4.

NA
READY

�2

ADSADS

READY
NA

ADS
NA

Figure 17 Memory write bus cycle
indication code.

The 80386, 80486, and Pentium Processor Families

873

Figure 18 Pipelined read and write cycle timing. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1987)

� 5 MEMORY ORGANIZATION
AND INTERFACE CIRCUITS

Earlier we indicated that in protected mode the 32-bit address bus of the 80386DX results
in a 4Gbyte physical memory address space. As Fig. 19 shows, from a software point of
view, this memory is organized as individual bytes over the address range from
0000000016 through FFFFFFFF16. The 80386DX can also access data in this memory as
words or double words.

Hardware Organization of the Memory Address Space

From a hardware point of view, the physical address space is implemented as four
independent byte-wide banks, and each of these banks is 1Gbyte in size. In Fig. 20 the
banks are identified as bank 0, bank 1, bank 2, and bank 3. Note that they correspond
to addresses that produce byte-enable signals , , , and , respectively.
Logic 0 at a byte-enable input selects the bank for operation. Looking at Fig. 20, we see
that address bits A2 through A31 are applied to all four banks in parallel. On the other

BE3BE2BE1BE0

The 80386, 80486, and Pentium Processor Families

874

Figure 19 Physical address space.

hand, each memory bank supplies just eight lines of the 80386DX’s 32-bit data bus. For
example, byte data transfers for bank 0 take place over data bus lines D0 through D7,
whereas byte data transfers for bank 3 are carried over data bus lines D24 through D31.

When the 80386DX is operated in real mode, only the value on address lines A2

through A19 and the signals are used to select the storage location to be accessed. For
this reason, the physical address space is 1Mbyte in length, not 4Gbyte. The memory sub-
system is once again partitioned into four banks, as shown in Fig. 20, but this time each
bank is 256Kbyte in size.

BE

Figure 20 Hardware organization of the physical address space.

The 80386, 80486, and Pentium Processor Families

875

Figure 20 shows that in hardware the memory address space is physically organized
as a sequence of double words. The address on lines A2 through A31 selects the double-
word storage location. Therefore, each aligned double word starts at a physical address
that is a multiple of 4. For instance, in Fig. 20 aligned double words start at addresses
0000000016, 0000000416, 0000000816, up through FFFFFFFC16.

Each of the four bytes of a double word corresponds to one of the byte-enable sig-
nals. For this reason, they are each stored in a different bank of memory. In Fig. 20, we
have identified the range of byte addresses that correspond to the storage locations in each
bank of memory. For example, byte data accesses to addresses such as 0000000016,
0000000416, and 0000000816 all produce , which enables memory bank 0, and the
read or write data transfer takes place over data bus lines D0 through D7. Figure 21(a)
illustrates how the byte at double-word aligned memory address X is accessed.

On the other hand, in Fig. 20 byte addresses 0000000116, 0000000516, and
0000000916 correspond to data held in memory bank 1. Figure 21(b) shows how the byte
of data at address is accessed. Notice that is made active to enable bank 1 of
memory.

Most memory accesses produce more than one byte-enable signal. For instance, if
the word of data beginning at aligned address X is read from memory, both and
are generated. In this way, bank 0 and bank 1 of memory are enabled for operation. As
Fig. 21(c) shows, the word of data is transferred to the MPU over data bus lines D0

through D15.
Let us now look at what happens when a double word of data is written to aligned

double-word address X. As Fig. 21(d) shows, , , , and are made 0 to
enable all four banks of memory, and the MPU writes the data to memory over the com-
plete data bus, D0 through D31.

All the data transfers we have described so far have been for what are called
double-word aligned data. For each of the pieces of data, all the bytes existed within the
same double word, that is, a double word that is on an address boundary equal to a mul-
tiple of four. The diagram in Fig. 22 illustrates a number of aligned words and double words
of data. Byte, aligned word, and aligned double-word data transfers are all performed by the
80386DX in a single bus cycle.

It is not always possible to have all words or double words of data aligned at dou-
ble-word boundaries. Figure 23 shows some examples of misaligned words and double
words of data that can be accessed by the 80386DX. Note that word 3 consists of byte 3
that is in aligned double word 0 and byte 4 that is in aligned double word 4. Let us now
look at how misaligned data are transferred over the bus.

The diagram in Fig. 24 illustrates a misaligned double-word data transfer. Here the
double word of data starting at address is to be accessed. However, this word con-
sists of bytes and of the aligned double word at physical address X and
bytes Y and of the aligned double word at physical address Y. Looking at the dia-
gram, we see that and are active during the first bus cycle, and the word at
address Y is transferred over D0 through D15. A second bus cycle automatically follows
in which and are active, address X is put on the address bus, and the second
word of data, and , is carried over D16 through D31. In this way we see that
data transfers of misaligned words or double words take two bus cycles.

X � 3X � 2
BE4BE3

BE1BE0

Y � 1
X � 3X � 2

X � 2

BE3BE2BE1BE0

BE1BE0

BE1X � 1

BE0

The 80386, 80486, and Pentium Processor Families

876

EXAMPLE 7

Is the word at address 0000123F16 aligned or misaligned? How many bus cycles are
required to read it from memory?

Solution

The first byte of the word is the fourth byte at aligned double-word address 0000123C16

and the second byte of the word is the first byte of the aligned double word at address

Figure 21 (a) Accessing a byte of data in bank 0. (b) Accessing a byte of data in bank
1. (c) Accessing a word of data in memory. (d) Accessing an aligned double word in
memory.

The 80386, 80486, and Pentium Processor Families

877

Figure 21 (continued)

0000124016. Therefore, the word is misaligned and requires two bus cycles to be read
from memory.

Memory Interface Circuitry

Figure 25 presents a memory interface diagram for a protected-mode, 80386DX-
based microcomputer system. Here we find that the interface includes bus control
logic, address bus latches and an address decoder, data bus transceiver/buffers, and

The 80386, 80486, and Pentium Processor Families

878

Figure 22 Examples of aligned data
words and double words.

bank write control logic. The bus cycle indication signals, , , and , which
are output by the 80386DX, are supplied directly to the bus control logic. Here they are
decoded to produce the command and control signals needed to control data transfers
over the bus. Figs. 15 and 17 highlight the status codes that relate to the memory inter-
face. For example, the code equal to 110 indicates that a data memory-read
bus cycle is in progress. This code switches the command output of the bus con-
trol logic to logic 0. Note in Fig. 25 that is applied directly to the input of the
memory subsystem.

Next let us look at how the address bus is decoded, buffered, and latched. Look-
ing at Fig. 25, we see that address lines A29 through A31 are decoded to produce chip-
enable outputs through . These chip-enable signals are latched along with
address bits A2 through A28 and byte-enable lines through into the address
latches. Note that the bus-control logic receives and the bus cycle indication code
as inputs and produces the address latch enable (ALE), memory read command (MRDC

ADS
BE3BE0

CE7CE0

OEMRDC
MRDC

M/IO D/C W/R

W/RD/CM/IO

Figure 23 Examples of misaligned
data words and double words.

The 80386, 80486, and Pentium Processor Families

879

Figure 24 Misaligned double-word data transfers.

), and memory write command () signals at its output. ALE is applied to the CLK
input of the latches and strobes the bits of the address, byte-enable, and chip-enable sig-
nals into the address latches. These signals are buffered by the address latch devices; the
address and chip enables are output directly to the memory subsystem, and the byte
enables are supplied as inputs to the bank write control logic circuit.

This part of the memory interface demonstrates one of the benefits of the
80386DX’s pipelined bus mode. When working in the pipelined mode, the 80386DX
actually outputs the address in the T2 state of the prior bus cycle. Therefore, by putting
the address decoder before the address latches instead of after, the code at address lines
A28 through A31 can be fully decoded and stable prior to the T1 state of the next bus cycle.
In this way, the access time of the memory subsystem is reduced.

MWTC

The 80386, 80486, and Pentium Processor Families

880

Figure 25 Memory interface block diagram.

Th
e 8

0
3

8
6

, 8
0

4
8

6
, an

d
 Pen

tiu
m

 Pro
cesso

r Fam
ilies

881

During read bus cycles, the output of the bus control logic enables the data
at the outputs of the memory subsystem onto data bus lines D0 through D31. The
80386DX will read the appropriate byte, word, or double word of data. On the other hand,
during write operations to memory, the bank write control logic determines into which of
the four memory banks the data are written. This depends on whether a byte, word, or
double-word data transfer is taking place over the bus.

Note in Fig. 25 that the latched byte-enable signals through are gated with
the memory-write command signal to produce a separate write-enable signal for
each of the four banks of memory. These signals are denoted as through in
Fig. 25. For example, if a word of data is to be written to memory over data bus lines D0

through D15, and are switched to their active 0 logic level.
The bus transceivers control the direction of data transfer between the MPU and

memory subsystem. In Fig. 25, the operation of the transceivers is controlled by the data-
transmit/receive () and data bus-enable () outputs of the bus control logic.

is applied to the enable () input of the transceivers and enables them for opera-
tion. This happens during all read and write bus cycles. selects the direction of data
transfer through the transceivers. Note that it is supplied to the DIR input of the devices.
When a read cycle is in process, is set to 0 and data are passed from the memory
subsystem to the MPU. On the other hand, when a write cycle is taking place, is
switched to logic 1 and data are carried from the MPU to the memory subsystem.

� 6 INPUT/OUTPUT INTERFACE CIRCUITS
AND BUS CYCLES

In Section 5 we studied the memory interface of the 80386DX microprocessor. Here we
will examine another important interface of the 80386DX microcomputer system, the
input/output interface.

Input/Output Interface and I/O Address Space

The input/output interface of the 80386DX-based microcomputer permits it to com-
municate with the outside world. The way in which the 80386DX and 80386SX MPUs
deal with input/output circuitry is similar to the way in which they interface with mem-
ory circuitry. That is, input/output data transfers also take place over the data bus. This
parallel bus permits easy interface to LSI peripheral devices such as parallel I/O expanders,
interval timers, and serial communication controllers. Let us continue by looking at how
the 80386DX interfaces to its I/O subsystem.

Figure 26 shows a typical I/O interface circuit for an 80386DX-based microcom-
puter system. Note that the interface between the microprocessor and I/O subsystem
includes the bus controller logic, an I/O address decoder, I/O address latches, I/O data
bus transceiver/buffers, I/O bank write control logic, and the I/O subsystem. An example
of a typical device used in the I/O subsystem is a programmable peripheral interface (PPI)
IC, such as the 82C55A. This type of device can be used to implement an interface that
employs parallel input and output ports. Some examples are a keyboard/display interface
circuit and a parallel printer interface circuit. Let us now look at the function of each of
the blocks in this circuit more closely.

DT/R
DT/R

DT/R
ENDEN

DENDT/R

WEB1WEB0

WEB3WEB0

MWTC
BE3BE0

MRDC

The 80386, 80486, and Pentium Processor Families

882

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

A2–A15

80386DX
MPU

BE0–BE3

ADS

M/IO

D/C

W/R

NA

BS

READY

D0–D31

A2–A12

Input/output
interface

circuit

IOWR0–7

NA

BS

READY

D0–D31

I/O
address

bus
latch

CLK

I/O
Data
bus

transceiver/
buffer

DIR OE

ALE

Bus
control
logic

IODENIODT/R

IORC

IOWC

I/O
bank
write

control
logic

IOWR8–15

IOWR16–23

IOWR24–31

IORD

I/O
address
decoder

A13–A15

Data bus

IOCE0–IOCE7

A2–A12

BE0–BE3

I/O device
0

IOCE0–IOCE7

I/O device
1

I/O device
N

Figure 26 Byte, word, and double-word I /O interface block diagram.

Th
e 8

0
3

8
6

, 8
0

4
8

6
, an

d
 Pen

tiu
m

 Pro
cesso

r Fam
ilies

883

The I/O interface shown in Fig. 26 is designed to support 8-, 16-, and 32-bit I/O
data transfers. The I/O device that is accessed for input or output of data is selected by an
I/O address. This address is specified as part of the instruction that performs the I/O oper-
ation. Just as for the 8086 architecture, the 80386DX’s I/O addresses are 16 bits in length
and support 64K independent byte-wide I/O ports. The address on lines A2 through A15

is used to specify the double-word I/O port that is to be accessed. When data are output
to output ports, the logic levels of 0 through 3 determine which byte-wide port or
ports are enabled for operation. The more significant address bits, A16 through A31, are
held at the 0 logic level during the address period of all I/O bus cycles. The 80386DX sig-
nals external circuitry that an I/O address is on the bus by switching its M/ output to
logic 0.

Note in the circuit diagram that the I/O address decoder decodes the part of the I/O
address that is output on address lines A2 through A15 of the 80386DX. The bits of the
address that are decoded produce I/O chip-enable signals for the individual I/O devices.
For instance, Fig. 26 shows that with three address bits, A13 through A15, enough chip-
enable outputs are produced to select up to eight I/O devices. Note that the outputs of the
I/O address decoder are labeled 0 through 7. The I/O chip-enable signals are
latched along with the address and byte-enable signals in the I/O address latches. Latch-
ing of this information is achieved with a pulse at the ALE output of the bus control logic.
If a microcomputer employs a very simple I/O subsystem, it may be possible to eliminate
the address decoder and simply use some of the latched high-order address bits as I/O
enable signals.

In Fig 26, all the low-order address bits, A2 through A12, are latched and sent
directly to the I/O devices. Typically, these address bits are used to select the register
within the peripheral device that is to be accessed. For example, with just four of these
address lines, we can select any one of 16 registers.

EXAMPLE 8

If address bits A7 through A15 are used directly as chip-enable signals and address lines
A2 through A6 are used as register-select inputs for the I/O devices, how many I/O
devices can be used, and what is the maximum number of registers that each device can
contain?

Solution

When latched into the address latch, the nine address lines produce the nine I/O chip-
enable signals, 0 through 8, for I/O devices 0 through 8. The lower five
address bits are able to select one of registers for each peripheral IC.

During input and output bus cycles, data are passed between the selected register in
the enabled I/O device and the 80386DX over data bus lines D0 through D31. Earlier we
pointed out that the 80386DX can input or output data in byte-wide, word-wide, or double-
word-wide format. Just as for the memory interface, the signals 0 through 3 are
used to signal which byte or bytes of data are being transferred over the bus. Again logic

BEBE

25 � 32
IOCEIOCE

IOCEIOCE

IO

BEBE

The 80386, 80486, and Pentium Processor Families

884

0 at 0 identifies that a byte of data is input or output over data bus lines D0 through D7.
On the other hand, logic 0 at 3 means that a byte-data transfer is taking place over bus
lines D24 through D31.

Many of the peripheral ICs used in the 80386DX microcomputer have a byte-wide
data bus. For this reason they are normally attached to the lower part of the data bus. That
is, they are connected to data bus lines D0 through D7. If this is done in the circuit of Fig.
26, all I/O addresses must be scaled by 4. This is because the first byte I/O address that
corresponds to a byte transfer across the lower eight data bus lines is 000016, the next byte
address, which represents a byte transfer over D0 through D7, is 000416, the third I/O
address is 000816, and so on. In fact, if only 8-bit peripherals are used in the 80386DX
microcomputer system and they are all attached to I/O data bus lines D0 through D7, the
byte-enable signals are not needed in the I/O interface. In this case, address bit A2 is used
as the least significant bit of the I/O address and A15 the most significant bit. Therefore,
from a hardware point of view, the I/O address space appears as 16K contiguous byte-
wide storage locations over the address range from

to

This puts the burden on software to assure that bytes of data are input or output only for
addresses that are a multiple of 4 and correspond to a data transfer over data bus lines D0

through D7.
As in the memory interface, bus control logic is needed to produce the control sig-

nals for the I/O interface. Figure 26 shows that the inputs of the bus control logic are the
bus cycle indication signals that are output by the 80386DX on M/ , D/ , and W/ .
They are decoded to produce the I/O read command () and I/O write command
() outputs. is applied directly to the input/output read () input of the
I/O devices and tells them when data are to be input to the MPU. In this case, 32-bit data
are always put on the data bus. However, the 80386DX inputs only the appropriate byte,
word, or double word. On the other hand, is gated with the signals to produce
a separate write-enable signal for each byte of the data bus. They are labeled 0-7,

8-15, 16-23, and 24-31. These signals are needed to support writing of
8-, 16-, or 32-bit data through the interface.

The bus-control logic section also produces the signals needed to latch the address
and set up the data bus for an input and output data transfer. The data bus transceiver/
buffers control the direction of data transfers between the 80386DX and I/O devices.
They are enabled for operation when their output-enable () input is switched to logic
0. Note that the signal I/O data bus enable () is applied to the inputs.

The logic level of the DIR input determines the direction in which data are passed
through the transceivers. This input is supplied by the I/O data-transmit/receive (IODT/
) output of the bus-control logic. During all input cycles, IODT/ is logic 0 and theR

R

OEIODEN
OE

IOWRIOWRIOWR
IOWR

BEIOWC

IORDIORCIOWC
IORC

RCIO

A15 . . . A3A2 � 111111111111112

A15 . . . A3A2 � 000000000000002

BE
BE

The 80386, 80486, and Pentium Processor Families

885

transceivers are set to pass data from the selected I/O device to the 80386DX. On the
other hand, during output cycles, IODT/ is switched to logic 1 and data passes from the
80386DX to the I/O device.

Figure 27 presents another input/output interface diagram. This circuit includes an
I/O bank select decoder in the data bus interface. This circuit is used to multiplex the 32-
bit data bus of the 80386DX to an 8-bit I/O data bus for connection to 8-bit peripheral
devices. By using this circuit configuration, data can be input from or output to all 64K
contiguous byte addresses in the I/O address space. In this case, hardware, instead of soft-
ware, assures that byte data transfers to consecutive byte I/O addresses are performed to
contiguous byte-wide I/O ports. The I/O bank-select decoder circuit maps bytes of data
from the 32-bit data bus to the 8-bit I/O data bus. It does this by assuring that only one
byte-enable () output of the 80386DX is active. That is, it checks to assure that a byte-
input or byte-output operation is in progress. If more than one of the inputs of the
decoder is active, none of the outputs of the decoder is produced, and the data trans-
fer does not take place. Now the I/O address 000016 corresponds to a I/O cycle over data
bus lines D0 through D7 to an 8-bit peripheral attached to I/O data bus lines, IOD0 through
IOD7; 000116 corresponds to an input or output of a byte of data for the peripheral over
lines D8 through D15; 000216 represents a byte I/O transfer over D16 through D23; and
finally, 000316 accompanies a byte transfer over data bus lines D24 through D31. That is,
even though the byte of data for addresses 000016 through 000316 are output by the
80386DX on different parts of its data bus, they are all multiplexed in external hardware
to the same 8-bit I/O data bus, IOD0 through IOD7. In this way, the addresses of the
peripheral’s registers no longer need to be scaled by four in software.

Input and Output Bus Cycle Timing

We just found that the I/O interface signals of the 80386DX microcomputer are
essentially the same as those involved in the memory interface. In fact, the function, logic
levels, and timing of all signals other than the M/ are identical to those already
described for the memory interface in Section 5.

The timing diagram in Fig. 28 shows some nonpipelined input and output bus
cycles. Looking at the waveforms for the first input/output bus cycle, cycle 1, we see that
it represents a zero-wait-state input bus cycle. Note that the byte-enable signals 0

through 3, the address lines A2 through A15, the bus cycle indication signals M/ ,
D/ , and W/ , and address status () signal are all output at the beginning of the T1

state. This time the 80386DX switches M/ to logic 0, D/ to logic 1, and W/ to logic
0 to signal external circuitry that an I/O data input bus cycle is in progress.

As shown in the block diagram in Fig. 27, the bus cycle indication code is input
to the bus-control logic. An input of M/ D/ W/ equals 010 initiates an I/O input
bus-control sequence. Let us continue with the sequence of events that takes place in
external circuitry during the input cycle. First, the bus-control logic outputs a pulse to
the 1 logic level on ALE. As the circuit in Fig. 27 shows, this pulse is used to latch the
address information into the I/O address latch devices. The decoded part of the latched
address (0 through 7) selects the I/O device to be accessed, and the code onIOCEIOCE

RCIO

RCIO
ADSRC

IOBE
BE

IO

OE
BE

BE

R

The 80386, 80486, and Pentium Processor Families

886

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

A2–A15

80386DX
MPU

BE0– BE3

ADS

M/IO

D/C

W/R

NA

BS

READY

A2–A12

Byte-wide
input/output

interface
circuit

IOWR

NA

BS

IOD0–IOD7

I/O
address

bus
latch

CLK

DIR OE

ALE

Bus
control
logic

DENDT/R

IORC

IOWC

I/O
bank
select

decoder

IOR

I/O
address
decoder

A13–A15
IOCE0–IOCE3

A2–A12

BE0–BE3

I/O device
0

IOCE0–IOCE3

I/O device
1

I/O device
N

D0–D7

Data
bus trans.

0

D8–D15

Data
bus trans.

1

D16–D23

Data
bus trans.

2

D24–D31

Data
bus trans.

3

OE24–31

OE16–23

OE8–15

OE0–7

Figure 27 Byte-wide I /O interface block diagram.

Th
e 8

0
3

8
6

, 8
0

4
8

6
, an

d
 Pen

tiu
m

 Pro
cesso

r Fam
ilies

887

Figure 28 I /O read and I /O write bus cycles. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1987)

the lower address lines selects the register that is to be accessed. Later in the bus cycle,
is switched to logic 0 to signal the enabled I/O device that data are to be input to

the MPU. In response to , the enabled input device puts the data from the addressed
register onto the data bus. A short time later, is switched to logic 0 to set the data
bus transceivers to the input direction, and then the transceivers are enabled as is
switched to logic 0. At this point the data from the I/O device are available on the
80386DX’s data bus.

In the waveforms shown in Fig. 28, we see that at the end of the T2 state the
80386DX tests the logic level at its ready input to determine if the I/O bus cycle should
be completed or extended with wait states. As Fig. 28 shows, is at its active 0
logic level when sampled. Therefore, the 80386DX inputs the data off the bus. Finally, the
bus-control logic returns , , and IODT/ to their inactive logic levels, and
the input bus cycle is finished.

Cycle 3 in Fig. 28 is also an input bus cycle. However, looking at the
waveform, we find that this time it is not logic 0 at the end of the first T2 state. Therefore,
the input cycle is extended with a second T2 state (wait state). Since some of the periph-
eral devices used with the 80386DX are older, slower devices, it is common to have sev-
eral wait states in I/O bus cycles.

READY

RIODENIORC

READY

IODEN
IODT/R

IORC
IORC

The 80386, 80486, and Pentium Processor Families

888

EXAMPLE 9

If the 80386DX that is executing cycle 3 in Fig. 28 is running at 20 MHz, what is the
duration of this input cycle?

Solution

An 80386DX that is running at 20 MHz has a T state equal to 50 ns. Since the input bus
cycle takes three T states, its duration is 150 ns.

Looking at the output bus cycle, cycle 2 in the timing diagram in Fig. 28, we see
that the 80386DX puts the data to be output onto the data bus at the beginning of 2 in
the T1 state. This time the bus-control logic switches to logic 0 and maintains
IODT/ at the 1 level for transmit mode. From Fig. 26, we find that since is
logic 0 and IODT/ is 1, the transceivers are enabled and set up to pass data from the
80386DX to the I/O devices. Therefore, the data output on the bus are available on the
data inputs of the enabled I/O device. Finally, the signal is switched to logic 0. It
is gated with 0 through 3 in the I/O bank write-control logic to produce the needed
bank write-enable signals. These signals tell the I/O device that valid output data are on
the bus. Now the I/O device must read the data off the bus before the bus control logic
terminates the bus cycle. If the device cannot read data at this rate, it can hold at
the 1 logic level to extend the bus cycle.

EXAMPLE 10

If the output bus cycles performed to byte-wide ports by an 80386DX running at 20 MHz
are to be completed in a minimum of 250 ns, how many wait states are needed?

Solution

Since each T state is 50 ns in duration, the bus cycle must last at least

A zero-wait-state output cycle lasts just two T states; therefore, all output cycles must
include three wait states.

Similar to memory, the I/O bus cycle requirements exist for data transfers for
aligned and unaligned I/O ports. That is, all word and double-word data transfers to
aligned port addresses take place in only one bus cycle. However, two bus cycles are
required to perform data transfers for unaligned 16- or 32-bit I/O ports.

Protected-Mode Input/Output

When the 80386DX is in the protected-address mode, the input/output instructions
can be executed only if the current privilege level is greater than or equal to the I/O priv-

number of T states � 250 ns/50 ns � 5

READY

BEBE
IOWC

R
IODENR

IODEN
�

The 80386, 80486, and Pentium Processor Families

889

Figure 29 Location of the I /O
permission bit map in the TSS.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1986)

ilege level (IOPL). That is, the numerical value of CPL must be lower than or equal to the
numerical value of IOPL. Remember that IOPL is defined by the code in bits 12 and 13
of the flags register. If the current privilege level is less than IOPL, the instruction is not
executed; instead, a general protection fault occurs. The general protection fault is an
example of an 80386DX exception and is examined in more detail in the next section.

The task state segment (TSS) of a task includes a section known as the I/O per-
mission bit map. This I/O permission bit map provides a second protection mechanism
for the protected-mode I/O address space. Remember that the size of the TSS segment
is variable. Its size is specified by the limit in the TSS descriptor. Figure 29 shows a typ-
ical task state segment. Here we see that the 16-bit I/O map base offset, which is held at
word offset 6616 in the TSS, identifies the beginning of the I/O permission bit map. The
limit field in the descriptor for the TSS sets the upper end of the bit map. Let us now
look at what the bits in the I/O permission bit map stand for.

Figure 30 shows a more detailed representation of the I/O permission bit map. Note
that it contains one bit position for each of the 65,536 byte-wide I/O ports in the
80386DX’s I/O address space. In the bit map we find that the bit position that corre-
sponds to I/O port 0 (I/O address 000016) is the least significant bit at the address defined
with the I/O bit map base offset. The remaining bits in this first double word in the map
represent I/O ports 1 through 31. Finally, the last bit in the table, which corresponds to
port 65,535 and I/O address FFFF16, is the most significant bit in the double word located
at an offset of 1FFC16 from the I/O bit map base. Figure 30 shows that the byte address
that follows the map must always contain FF16. This is the least significant byte in the last
double word of the TSS. The value of the I/O map base offset must be less than DFFF16;
otherwise the complete map may not fit within the TSS.

Using this bit map, restrictions can be put on input/output operations to each of the
80386DX’s 65,536 I/O port addresses. In protected mode, the bit for the I/O port in the
I/O permission map is checked only if the CPL, when the I/O instruction is executed, is
less privileged than the IOPL. If logic 0 is found in a bit position, it means that an I/O

The 80386, 80486, and Pentium Processor Families

890

operation can be performed to the port address. On the other hand, logic 1 inhibits the I/O
operation. Any attempt to input or output data for an I/O address marked with a 1 in the
I/O permission bit map by code with a CPL that is less privileged than the IOPL results
in a general protection exception. In this way an operating system can detect attempts to
access certain I/O devices and trap to special service routines for the devices through the
general protection exception. In virtual 8086 mode, all I/O accesses reference the I/O per-
mission bit map.

The I/O permission configuration defined by a bit map applies only to the task
that uses the TSS. For this reason, many different I/O configurations can exist within a
protected-mode software system. Actually, a different bit map could be defined for
every task.

In practical applications, most tasks would use the same I/O permission bit map
configuration. In fact, in some applications not all I/O addresses need to be protected
with the I/O permission bit map. It turns out that any bit map position located beyond
the limit of the TSS is interpreted as containing a 1. Therefore, all accesses to an I/O
address that corresponds to a bit position beyond the limit of the TSS will produce a
general protection exception. For instance, a protected-mode I/O address space may be
set up with a small block of I/O addresses to which access is permitted at the low end of
the I/O address space and with access to the rest of the I/O address space restricted. A
smaller table can be set up to specify this configuration. By setting the values of the bit
map base and TSS limit such that the bit positions for all the restricted addresses fall
beyond the end of the TSS segment, they are caused to result in an exception. On the
other hand, the bit positions located within the table are all made 0 to permit I/O
accesses to their corresponding ports. Moreover, if the complete I/O address space is to
be restricted for a task, the I/O permission map base address can simply be set to a value
greater than the TSS limit.

Figure 30 Contents of the I/O permission bit map.

The 80386, 80486, and Pentium Processor Families

891

Figure 31 Interrupt program context-switch mechanism.

� 7 INTERRUPT AND EXCEPTION PROCESSING

In our study of the 8086 microprocessor, we found that interrupts provide a mechanism for
quickly changing program environments. Moreover, we identified that the transfer of pro-
gram control is initiated by the occurrence of either an event internal to the microproces-
sor or an event in its external hardware. Finally, we determined that the interrupts employ
a well-defined context-switching mechanism for changing the program environment.

Figure 31 illustrates the program context-switching mechanism. Here we see that
interrupt 32 occurs as instruction N of the main program is being executed. When the
MPU terminates execution of the main program in response to interrupt 32, it first saves
information that identifies the instruction following the one where the interrupt occurred,
instruction , and then picks up execution with the first instruction in the service
routine. After this routine has run to completion, program control is returned to the point
where the MPU originally left the main program, instruction , and then execution
resumes.

N � 1

N � 1

The 80386, 80486, and Pentium Processor Families

892

Figure 32 Types of interrupts and
their priority.

The 80386DX’s interrupt mechanism is essentially the same as that of the 8086.
Just like the 8086-based microcomputer, the 80386DX is capable of implementing any
combination of up to 256 interrupts. As Fig. 32 shows, they are divided into five groups:
external hardware interrupts, nonmaskable interrupt, software interrupts, internal inter-
rupts and exceptions, and reset. The functions of the external hardware, software, and
nonmaskable interrupts are identical to those in the 8086 microcomputer and are defined
by the user. On the other hand, the internal interrupts and exception processing capability
of the 80386DX has been greatly enhanced. These internal interrupts and exceptions and
reset perform dedicated system functions. Figure 32 identifies the priority by which the
80386DX services interrupts and exceptions.

Interrupt Vector and Interrupt Descriptor Tables

An address pointer table is used to link interrupt type numbers to the locations of
their service routines in program-storage memory. In a real-mode 80386DX-based micro-
computer system, this table is called the interrupt-vector table. On the other hand, in a
protected-mode system, the table is referred to as the interrupt-descriptor table. Figure 33
shows a map of the interrupt-vector table in the memory of a real-mode 80386DX micro-
computer. The table contains 256 address pointers, identified as vector 0 through vector
255. That is, one pointer corresponds to each of the interrupt types 0 through 255. As in
the 8086 microcomputer system, these address pointers identify the starting locations of
their service routines in program memory. The contents of these tables are either held as
firmware in EPROMs or loaded into RAM as part of the system initialization routine.

Note in Fig. 33 that the interrupt vector table is located at the low-address end of
the memory address space. It starts at address 0000016 and ends at 003FE16. Unlike the
8086 microcomputer system, the interrupt vector table or interrupt descriptor table in an
80386DX microcomputer can be located anywhere in the memory address space. Its start-
ing location and size are identified by the contents of a register within the 80386DX
called the interrupt-descriptor table register (IDTR). When the 80386DX is reset at
power on, it comes up in the real mode with the bits of the base address in IDTR all equal
to zero and the limit set to 03FF16. This positions the interrupt vector table, as shown in
Fig. 33. Moreover, when in the real mode, the value in IDTR is normally left at this ini-
tial value to maintain compatibility with 8086/8088-based microcomputer software.

The protected-mode interrupt-descriptor table can reside anywhere in the
80386DX’s physical address space. The location and size of this table are again defined
by the contents of the IDTR. Figure 34 shows that the IDTR contains a 32-bit base
address and a 16-bit limit. The base address identifies the starting point of the table in
memory. On the other hand, the limit determines the number of bytes in the table.

The 80386, 80486, and Pentium Processor Families

893

Figure 33 Real-mode interrupt vector
table.

The 80386, 80486, and Pentium Processor Families

894

Figure 34 Accessing a gate in the protected-mode interrupt-descriptor table.

The interrupt-descriptor table contains gate descriptors, not vectors. The table in
Fig. 34 contains a maximum of 256 gate descriptors. These descriptors are identified as
gate 0 through gate 255. Each gate descriptor can be defined as a trap gate, interrupt
gate, or task gate. Interrupt and trap gates permit control to be passed to a service routine
that is located within the current task. On the other hand, the task gate permits program
control to be passed to a different task.

Just like a real-mode interrupt vector, a protected-mode gate acts as a pointer that is
used to direct program execution to the starting point of a service routine. However,
unlike an interrupt vector, a gate descriptor takes up 8 bytes of memory. For instance, in
Fig. 34, we see that gate 0 is located at addresses through and gate
255 is at addresses through . If all 256 gates are not needed
for an application, limit in the IDTR can be set to a value lower than 07FF16 to minimize
the amount of memory reserved for the table.

Figure 35 illustrates the format of a typical interrupt or trap gate descriptor. Here
we see that the two lower-addressed words, 0 and 1, are the interrupt’s code offset 0
through 15 and segment selector, respectively. The highest-addressed word, word 3, is the
interrupt’s code offset 16 through 31. These three words identify the starting point of the
service routine. The upper byte of word 2 of the descriptor is called the access rights byte.
The settings of the bits in this byte identify whether or not this gate descriptor is valid,
the privilege level of the service routine, and the type of gate. For example, the present

IDT � 7FFHIDT � 7F8H
IDT � 7HIDT � 0H

The 80386, 80486, and Pentium Processor Families

895

Figure 35 Format of a trap or interrupt gate descriptor.

bit (P) needs to be set to logic 1 if the gate descriptor is to be active. The next 2 bits, iden-
tified as DPL in Fig. 35, are used to assign a privilege level to the service routine. If these
bits are made 00, level 0, which is the most privileged level, is assigned to the gate.
Finally, the setting of the type bit (T) determines if the descriptor works as a trap gate or
an interrupt gate. T equal to 0 selects the interrupt-gate mode of operation. The only dif-
ference between the operations of these two types of gates is that when a trap gate context
switch is performed IF is not cleared to disable external hardware interrupts.

Normally, external hardware interrupts are configured with interrupt-gate descrip-
tors. Once an interrupt request has been acknowledged for service, the external hardware-
interrupt interface is disabled with IF. In this way, additional external interrupts cannot be
accepted unless the interface is reenabled under software control. On the other hand,
internal interrupts, such as software interrupts, usually use trap gate descriptors. In this
case, the hardware-interrupt interface in not affected when the service routine for the soft-
ware interrupt is initiated. Sometimes low-priority hardware interrupts are assigned trap
gates instead of an interrupt gate. This will permit higher-priority external events to eas-
ily interrupt their service routine.

External Hardware-Interrupt Interface

Up to this point in the section, we have introduced the types of interrupts supported
by the 80386DX, its interrupt descriptor table, and interrupt descriptor format. Let us now
look at the external hardware-interrupt interface of the 80386DX microcomputer system.

Figure 36 shows a general interrupt interface for an 80386DX-based microcom-
puter system. Here we see that it is similar to the interrupt interface of the maximum-
mode 8086 microcomputer system. Note that it includes the address and data buses,
byte-enable signals, bus cycle indication signals, lock output, and the ready and interrupt-
request inputs. Moreover, external circuitry is required to interface interrupt inputs, INT32

through INT255, to the 80386DX’s interrupt interface. This interface circuit must identify
which of the pending active interrupts has the highest priority, perform an interrupt-
request/acknowledge handshake, and then set up the bus to pass an interrupt-type number
to the MPU.

In this circuit we see that the key interrupt interface signals are interrupt request
(INTR) and interrupt acknowledge (). The logic-level input at the INTR line signalsINTA

The 80386, 80486, and Pentium Processor Families

896

Figure 36 80386DX microcomputer system external hardware interrupt interface.

the 80386DX that an external device is requesting service. The 80386DX samples this
input at the beginning of each instruction execution cycle—that is, at instruction bound-
aries. Logic 1 at INTR represents an active interrupt request. INTR is level triggered;
therefore, the external hardware must maintain the active level until it is tested by the
MPU. If it is not maintained, the request for service may not be recognized. For this rea-
son, inputs INT32 through INT255 are normally latched. Moreover, the 1 at INTR must be
removed before the service routine runs to completion; otherwise, the same interrupt may
be acknowledged a second time.

When the 80386DX has recognized an interrupt request, it signals this fact to exter-
nal circuitry by outputting the interrupt-acknowledge bus cycle indication code on M/
C/ W/ . This code, which equals 0002, is highlighted in Fig. 37. Note in Fig. 36 that
this code is input to the bus controller logic, where it is decoded to produce a pulse to
logic 0 at the output. Actually, two pulses are produced at during the
interrupt-acknowledge bus cycle sequence. The first pulse, which is output during cycle 1,
signals external circuitry that the interrupt request has been acknowledged and to prepare
to send its type number to the MPU. The second pulse, which occurs during cycle 2, tells
the external circuitry to put the type number on the data bus. The ready () input
can be used to insert wait states into these bus cycles.

Note that the lower eight lines of the data bus, D0 through D7, are also part of the
interrupt interface. During the second cycle in the interrupt-acknowledge bus cycle, exter-
nal circuitry must put the 8-bit type number of the highest-priority active interrupt-request

READY

INTAINTA

RD
IO

The 80386, 80486, and Pentium Processor Families

897

Figure 37 Interrupt-acknowledge bus
cycle indication code.

input onto this part of the data bus. The 80386DX reads the type number off the bus to
identify which external device is requesting service. It uses the type number to generate
the address of the interrupt’s vector or gate in the interrupt vector or descriptor table,
respectively, and to read the new values of IP and CS into the corresponding internal reg-
isters. IP and CS values from the interrupt vector table are transferred to the MPU over
the data bus. Before loading IP and CS with new values, their old values and the values
of the internal flags are automatically written to the stack part of memory.

Address lines A2 through A31 and byte-enable line 0 through 3 are also shown
in the interrupt interface circuit in Fig. 36. This is because LSI interrupt-controller
devices are typically used to implement most of the external circuitry. When a read or
write bus cycle is performed to the controller, for example, to initialize its internal regis-
ters after system reset, some of the address bits are decoded to produce a chip select to
enable the controller device, and other address bits are used to select the internal register
to be accessed. The interrupt controller could be I/O mapped instead of memory mapped;
in this case only address lines A2 through A15 are used in the interface. Addresses are also
output on A2 through A31 during the write cycles that save the old program context in the
stack and the read cycles used to load the new program context from the vector table in
program memory.

Another signal shown in the interrupt interface of Fig. 36 is the bus lock indication
() output of the 80386DX. is used as an input to the bus arbiter circuit in
multiprocessor systems. The 80386DX switches this output to its active 0 logic level and
maintains it at this level throughout the complete interrupt-acknowledge bus cycle. In
response to this signal, the arbitration logic assures that no other device can take over
control of the system bus until the interrupt-acknowledge bus cycle sequence is com-
pleted.

External Hardware-Interrupt Sequence

In the real mode, the 80386DX processes interrupts in exactly the same way as
the 8086. That is, the same events that take place during the interrupt request, inter-
rupt-acknowledge bus cycle, and device service routine. On the other hand, in pro-
tected mode a more complex processing sequence is performed. When the 80386DX-
based microcomputer is configured for the protected mode of operation, the interrupt
request/acknowledge handshake sequence appears to take place exactly the same way

LOCKLOCK

BEBE

The 80386, 80486, and Pentium Processor Families

898

in the external hardware; however, a number of changes do occur in the internal-
processing sequence of the MPU. Let us now look at how the protected mode 80386DX
reacts to an interrupt request.

When processing interrupts in protected mode, the general protection mechanism of
the 80386DX comes into play. The general protection rules dictate that program control
can be directly passed only to a service routine that is in a segment with equal or higher
privilege—that is, a segment with an equal- or lower-numbered descriptor privilege level.
Any attempt to transfer program control to a routine in a segment with lower privilege
(higher-numbered descriptor privilege level) results in an exception unless the transition
is made through a gate.

Typically, interrupt drivers are in code segments at a high privilege level, possibly
level 0. Moreover, interrupts occur randomly; therefore, there is a good chance that the
microprocessor will be executing application code at a low privilege level. In the case of
interrupts, the current privilege level (CPL) is the privilege level assigned by the descrip-
tor of the software that was executing when the interrupt occurred. This could be any of
the 80386DX’s valid privilege levels. The privilege level of the service routine is that
defined in the interrupt or trap gate descriptor for the type number. That is, it is the
descriptor privilege level (DPL).

When a service routine is initiated, the current privilege level may change. This
depends on whether the software that was interrupted was in a code segment that was
configured as conforming or nonconforming. If the interrupted code is in a conforming
code segment, CPL does not change when the service routine is initiated. In this case, the
contents of the stack after the context switch is as illustrated in Fig. 38(a). Since the
privilege level does not change, the current stack (OLD SS:ESP) is used. Note that as
part of the interrupt initiation sequence, the OLD EFLAGS, OLD CS, and OLD EIP are

Figure 38 (a) Stack after context
switch with no privilege-level
transition. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1986) (b) Stack after context
switch with a privilege-level transition.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1986)

The 80386, 80486, and Pentium Processor Families

899

Figure 39 Stack contents after
interrupt with an error. (Reprinted by
permission of Intel Corporation.
Copyright/Intel Corp. 1986)

automatically saved on the stack. Actually, the requested privilege level (RPL) code is
also saved on the stack. This is because it is part of OLD CS. Code RPL identifies the
protection level of the interrupted routine.

However, if the segment is nonconforming, the value of DPL is assigned to CPL as
long as the service routine is active. As Fig. 38(b) shows, this time the stack is changed
to that for the new privilege level. The MPU is loaded with a new SS and new ESP from
TSS, and the old stack pointer, OLD SS, and OLD ESP are saved on the stack followed
by the OLD EFLAGS, OLD CS, and OLD EIP. Remember that for an interrupt gate, IF
is cleared as part of the context switch, but for a trap gate, IF remains unchanged. In both
cases, the TF flag is reset after the contents of the flag register are pushed to the stack.

Figure 39 shows the stack as it exists after an attempt to initiate an interrupt-service
routine that did not involve a privilege-level transition failed. Note that the context switch
to the exception service routine caused an error code to be pushed onto the stack follow-
ing the values of OLD EFLAGS, OLD CS, and OLD EIP.

One format of the error code is given in Fig. 40. This type error code is known as
an IDT error code. Here we see that the least significant bit, EXT, indicates whether the
error was for an externally or internally initiated interrupt. For external interrupts, such as
the hardware interrupts, the EXT bit is always set to logic 1. The next bit, IDT, is set to
1 if the error is produced as a result of an interrupt. That is, it is the result of a reference
to a descriptor in the IDT. If IDT is not set, the third bit indicates whether the descriptor
is in the GDT () or the LDT (). The next 14 bits contain the segment selec-
tor that produced the error condition. With this information available on the stack, the
exception service routine can determine which interrupt attempt failed and whether it was
internally or externally initiated. A second format is used for errors that result from a pro-
tected-mode page fault. Figure 41 illustrates this error code and the function of its bits.

TI � 1TI � 0

Figure 40 IDT error code format.

The 80386, 80486, and Pentium Processor Families

900

Figure 41 Page fault error code format and bit functions. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1986)

Just as in real-mode, the IRET instruction is used to return from a protected-mode
interrupt-service routine. For service routines using an interrupt gate or trap gate, IRET is
restricted to the return from a higher privilege level to a lower privilege level, for instance,
from level 1 to level 3. Once the flags, OLD CS, and OLD EIP are returned to the
80386DX, the RPL bits of OLD CS are tested to see if they equal CPL. If ,
an intralevel return is in progress. In this case, the return is complete and program execu-
tion resumes at the point in the program where execution had stopped.

If RPL is greater than CPL, an interlevel return, not an intralevel return, is taking
place. During an interlevel return, checks are performed to determine if a protection vio-
lation will occur due to the protection-level transition. Assuming that no violation occurs,
the OLD SS and OLD ESP are popped from the stack into the MPU and then program
execution resumes.

Internal Interrupt and Exception Functions

Earlier we indicated that some of the 256 interrupt vectors of the 80386DX are ded-
icated to internal interrupt and exception functions. Internal interrupts and exceptions dif-
fer from external hardware interrupts in that they occur as the result of executing an
instruction, not an event that takes place in external hardware. That is, an internal interrupt
or exception is initiated because an error condition was detected before, during, or after
execution of an instruction. In this case, a routine must be initiated to service the internal
condition before resuming execution of the same or next instruction of the program.

Internal interrupts and exceptions are not masked out with the interrupt enable flag.
For this reason, the 80386DX automatically detects the occurrence of any one of these

RPL � CPL

The 80386, 80486, and Pentium Processor Families

901

internal conditions and causes an interrupt of program execution and a vectored transfer
of control to a corresponding service routine. During the control-transfer sequence, no
interrupt-acknowledge bus cycles are produced.

Figure 42 identifies the internal interrupts and exceptions that are active in real
mode. Here we find internal interrupts such as breakpoint and exception functions such
as divide error and overflow error that were also detected by the 8086. However, the
80386DX also implements several new real-mode exceptions. Examples of exceptions
that are not implemented on the 8086 are invalid opcode, bounds check, and interrupt
table limit too small.

Internal interrupts and exceptions are further categorized as a fault, trap, or abort
based on how the failing function is reported. In the case of an exception that causes a
fault, the values of CS and IP saved on the stack point to the instruction that resulted in
the fault. Therefore, after servicing the exception, the faulting instruction can be reexe-
cuted. On the other hand, for those exceptions that result in a trap, the values of CS and
IP pushed to the stack point to the next instruction to be executed, instead of the instruc-
tion that caused the trap. Therefore, upon completion of the service routine, program
execution resumes with the instruction that follows the instruction that produced the
trap. Finally, exceptions that produce an abort do not preserve any information that iden-
tifies the location that caused the error. In this case the system may need to be restarted.
Let us now look at the new 80386DX real-mode internal interrupts and exceptions in
more detail.

Debug Exception. The debug exception relates to the debug mode of operation of the
80386DX. The 80386DX has a set of eight on-chip debug registers. Using these registers,
the programmer can specify up to four breakpoint addresses and specify conditions under
which they are to be active. For instance, the activating condition could be an instruction
fetch from the address, a data write to the address, or either a data read or write for the
address, but not an instruction fetch. Moreover, for data accesses, the size of the data ele-
ment can be specified as a byte, word, or double word. Finally, the individual addresses
can be locally or globally enabled or disabled. If an access that matches any of these
debug conditions is attempted, a debug exception occurs and control is passed to the ser-
vice routine defined by IP1 and CS1 at word addresses 0000416 and 0000616, respectively.
The service routine could include a mechanism that allows the programmer to view the
contents of the 80386DX’s internal registers and its external memory.

If the trap flag (TF) bit in the flags register is set, the single-step mode of operation
is enabled. This flag bit can be set or reset under software control. When TF is set, the
80386DX initiates a type 1 interrupt to the service routine defined by IP1 and CS1 at
addresses 0000416 and 0000616, respectively, at the completion of execution of every
instruction. This permits implementation of the single-step mode of operation so that the
program can be executed one instruction at a time.

Bounds Check Exception. Earlier we pointed out that the BOUND (check array index
against bounds) instruction can be used to test an operand that is used as the index into
an array to verify that it is within a predefined range. If the index is less than the lower
bound (minimum value) or greater than the upper bound (maximum value), a bound
check exception has occurred and control is passed to the exception handler pointed to by

The 80386, 80486, and Pentium Processor Families

902

Figure 42 Real-mode internal
interrupt and exception vector table.

The 80386, 80486, and Pentium Processor Families

903

CS5:IP5. The exception produced by the BOUND instruction is an example of a fault.
Therefore, the values of CS and IP pushed to the stack represent the address of the
instruction that produced the exception.

Invalid Opcode Exception. The exception-processing capability of the 80386DX per-
mits detection of undefined opcodes. This feature of the 80386DX allows it to detect
automatically whether or not the opcode to be executed as an instruction corresponds to
one of the instructions in the instruction set. If it does not, execution is not attempted;
instead, the opcode is identified as being undefined and the invalid opcode exception is
initiated. In turn, control is passed to the exception handler identified by IP6 and CS6. This
undefined opcode-detection mechanism permits the 80386DX to detect errors in its
instruction stream. Invalid opcode is an example of an exception that produces a fault.

Coprocessor Extension Not Available Exception. When the 80386DX comes up in
the real mode, both the EM (emulate coprocessor) and MP (math present) bits of its
machine status word are reset. This mode of operation corresponds to that of the 8088 or
8086 microprocessor. When set in this way, the coprocessor not available exception can-
not occur. However, if the EM bit has been set to 1 under software control (do not mon-
itor coprocessor) and the 80386DX executes an ESC (escape) instruction for the math
coprocessor, a processor extension not present exception is initiated through the vector at
CS7: IP7. This service routine could pass control to a software emulation routine for the
floating-point arithmetic operation. Moreover, if the MP and TS bits are set (meaning that
a math coprocessor is available in the system and a task is in progress), when an ESC or
WAIT instruction is executed, an exception also takes place.

Interrupt Table Limit Too Small Exception. Earlier we pointed out that the LIDT
instruction can be used to relocate or change the limit of the interrupt vector table in
memory. If the real-mode table has been changed, for example, its limit is set lower
than address 003FF16 and an interrupt is invoked that attempts to access a vector stored
at an address higher than the new limit, the interrupt table limit too small exception
occurs. In this case, control is passed to the service routine by the vector CS8:IP8. This
exception is a fault; therefore, the address of the instruction that exceeded the limit is
saved on the stack.

Coprocessor Segment-Overrun Exception. The coprocessor segment-overrun excep-
tion signals that the 80387DX numeric coprocessor has overrun the limit of a segment
while attempting to read or write its operand. This event is detected by the coprocessor
data channel within the 80386DX and passes control to the service routine through inter-
rupt vector 9. This exception handler can clear the exception, reset the 80387DX, deter-
mine the cause of the exception by examining the registers within the 80387DX, and then
initiate a corrective action.

Stack Fault Exception. In the real mode, if the address of an operand access for the
stack segment crosses the boundaries of the stack, a stack fault exception is produced.
This causes control to be transferred to the service routine defined by CS12 and IP12.

The 80386, 80486, and Pentium Processor Families

904

Segment Overrun Exception. This exception occurs in the real mode if an instruction
attempts to access an operand that extends beyond the end of a segment. For instance, if
a word access is made to the address CS:FFFFH, DS:FFFFH, or ES:FFFFH, a fault
occurs to the segment overrun exception service routine.

Coprocessor Error Exception. As part of the handshake sequence between the
80386DX microprocessor and 80387DX numeric coprocessor, the 80386DX checks the
status of its input. If the 80387DX encounters a problem performing a numeric
operation, it signals this fact to the 80386DX by switching its output to logic 0.
This signal is normally applied directly to the input of the 80386DX and signals
that an error condition has occurred. Logic 0 at this input causes a coprocessor error
exception through vector 16.

Protected-Mode Internal Interrupts and Exceptions. In protected mode, more inter-
nal conditions can initiate an internal interrupt or exception. Figure 43 identifies each of
these functions and its corresponding type number.

� 8 80486SX AND 80486DX MICROPROCESSORS

The 80486 family of microprocessors is Intel Corporation’s second generation of 32-bit
processors. It brought a higher level of performance and more versatility to the 8086
architecture. Just like for the 80386 family, maintaining compatibility of the 80486
family’s hardware architecture to earlier 8086 family MPUs was also less important.
This does not mean that the signal interfaces were purposely changed. In fact, many of
the 80486’s interface signals are the same as those provided on the 80386DX. However,
a number of enhancements have been made to the 80486 family that are directed at
improving its performance and making the 80486-based microcomputer more versatile.
Much of the focus of these enhancements was on the memory interface. For instance, it
is now enabled to do dynamic bus sizing down to eight bits, high-speed burst data trans-
fers over the bus, and write operations are buffered. The addition of these new capabil-
ities has expanded the number of interface signals.

A number of hardware elements that were normally implemented in external cir-
cuitry are for the first time added into the MPU with the 80486 family. Examples of
these new on-chip hardware functions are parity generation/checking, code/data cache
memory, and—in the case of the 80486DX—a floating-point mathematics unit. Addi-
tion of these capabilities called for further expansion of the number of interface
signals.

The more advanced processes used to manufacture the 80486 family of MPUs per-
mitted the integration of many more transistors into a single IC. The circuitry of the
80486DX is equivalent to approximately 1.2M transistors, four times more than the
80386DX. Actually, the 80486DX was the first IC made by Intel Corporation that con-
tained more than 1 million transistors.

Originally the 80486DX and 80486SX were both manufactured in a 168-lead pin
grid array package. Figure 44 shows a device in this package. The layout of the pins

ERROR
ERROR

ERROR

The 80386, 80486, and Pentium Processor Families

905

Figure 43 Protected-mode internal
exception gate locations.

and signals on this package are shown in Fig. 45(a) and (b). For example, the pin
located at the uppermost left corner, which corresponds to row S and column 1, is address
bit A27. Another example is the data bus line D20, which is located at the junction of row
A and column 1. Later both devices were made available in a lower-cost 196-lead plastic
quad flat package.

The 80386, 80486, and Pentium Processor Families

906

Figure 44 80486DX IC. (Reprinted
by permission of Intel Corporation.)

EXAMPLE 11

What signal is located at pin S17 of the 80486SX’s PGA package?

Solution

Looking at Fig. 45(a), we find that the signal corresponding to this pin is .

Signal Interfaces of the 80486SX MPU

Let us continue our study of the 80486 family of microprocessors by exploring its
signal interfaces. Figure 46 is a block diagram showing the signal interfaces of the
80486SX MPU. Many of the 80486SX’s interface signals are identical in name, mnemonic,
and function to those on the 80386DX. For instance, we find that the 80486SX’s 30 address
bus lines are labeled A2 through A31, and its four byte-enable signals are labeled 0

through 3. However, most of the interfaces have some new signals that are provided to
implement enhanced functions. In fact, the interrupt interface is the only interface that is
completely unchanged. Here we will focus on the new signals at each of the 80486SX’s
interfaces.

Memory/IO Interface. Earlier we pointed out that many of the hardware enhance-
ments of the 80486 family are in the memory interface. For this reason, most of the new
signal lines of the 80486SX are located at this interface. Let us look at the function of
these new signals.

The 80386DX MPU had the ability to configure the data bus as 16 bits instead of
32 bits by activating the input. The 80486SX also has this capability; however,
another input bus size 8 () also gives designers the ability to configure the data bus
8 bits wide. If is at the active 0 logic level, data are transferred one byte at a time
over data bus lines D0 through D7.

BS8
BS8
BS16

BE
BE

ADS

The 80386, 80486, and Pentium Processor Families

907

Figure 45 (a) Pin layout of the 80486SX PGA. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1992) (b) Signal pin numbering.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1992)

908

Figure 46 Block diagram of the
80486SX. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1992)

The bus cycle indication signals M/ , D/ , and W/ of the 80486SX are the same
as those on the 80386DX, except a change has been made in the coding of the bus cycles.
For the 80486SX, the halt/shutdown bus cycle is identified by the code 0012, instead of
1012. The code 1012 is now reserved. Codes for all other types of bus cycles are
unchanged.

An important difference between the memory interface of the 80386DX MPU and
that of the 80486SX is that automatic parity generation and checking has been added.
Parity has been added to each byte of the 80486SX’s 32-bit data bus. An even parity bit
is automatically generated for each byte of the data written to memory, and each byte of
data on read operations is checked for even parity. For this reason, four bidirectional data
parity (DP0 through DP3) lines and a parity status () output have been added into
the memory interface. The data parity lines are additional data bus lines used to carry par-
ity data to and from memory. On the other hand, the parity status output is used to signal
external circuitry whether or not a parity error has occurred on a read operation. Logic 0
at this output identifies a parity error condition.

The 80486SX automatically performs an operation known as address bit 20 mask.
This is an operation that must be performed in all ISA bus-compatible computers. In an
80386DX-based microcomputer, masking of A20 is accomplished with external circuitry.
An extra input, address bit 20 mask (), has been added on the 80486SX to perform
this function. Whenever is logic 0, address bit A20 is masked out for bus cycles
that access internal cache memory or external memory.

A20M
A20M

PCHK

RCIO

The 80386, 80486, and Pentium Processor Families

909

Another enhancement in the 80486 family of MPUs is the ability to perform what
is known as burst bus cycles. A burst bus cycle is a special bus cycle that permits faster
reads and writes of data. During a burst bus cycle, the transfer of the first element of data
takes place in two clock cycles, and each additional data element is transferred in a sin-
gle clock cycle. Nonburst bus cycles transfer one data element at a time and require a
minimum of two clock cycles for each data transfer. Whenever the 80486SX requires
data, it can perform the transfer with normal or burst bus cycles. If the external device can
perform burst data transfers, it signals this fact to the MPU. Switching the control signal
burst ready (), instead of , to logic 0 does this.

During all memory bus cycles, the output signals when the last data trans-
fer takes place. In the case of a normal bus cycle, only one data transfer takes place. This
data transfer is marked by switching to logic 0. For a burst cycle, multiple data
transfers are performed, but is active only for the last one.

The 80486SX has a second type of lock signal. This signal, pseudo-lock (
), differs from in that it locks out access to the bus by other devices for more than
one bus cycle.

Cache Memory-Control Interface. A new group of interface signals is provided on
the 80486 family MPUs to support internal and external cache memory subsystems. They
include the cache-enable () input, cache-flush () input, the page cache dis-
able (PCD) output, the page write-through (PWT) output, the address hold (AHOLD)
input, and the valid external address () input. Let us next look briefly at the func-
tion of each of these signals.

The external memory subsystem has the ability to tell the 80486SX whether or not
a bus cycle is cacheable. It does this by switching the input to logic 0 or 1. When-
ever is set to logic 0 during a memory-read bus cycle, the information carried over
the bus is copied into the on-chip cache. If remains at its inactive 1 logic level, a
noncacheable bus cycle takes place.

External circuitry also has the ability to invalidate all of the data in the on-chip cache
memory of the 80486SX. This operation is known as a cache flush. To flush the on-chip
cache, the input is simply switched to its active 0 logic level for one clock cycle.

PCD and PWT are outputs of the MPU and are used to control external cache. Ear-
lier we pointed out that the programmed logic levels of the page attribute bits in the page
entry table, page directory table, or control register 3 are output on these lines when
caching is enabled. The logic level of PCD signals the external cache memory subsystem
whether or not the page of memory being accessed is configured as cacheable. Logic 1 at
PWT indicates that write operations to the external cache are performed in a write-
through fashion.

The last two signals, AHOLD and , are used to perform what is known as
a cache-invalidate cycle. This type of bus cycle is used to maintain consistency between
data in the internal cache and external main memory. For instance, if another bus mas-
ter device modifies data in main memory, a check must be made immediately to see if
the contents of this storage location are currently held in the 80486SX’s internal cache
memory. If they are and the 80486SX would read the value at this address, the wrong
value would be accessed from the cache. For this reason, the value in the cache must be
invalidated.

EADS

FLUSH

KEN
KEN

KEN

EADS

FLUSHKEN

LOCK
PLOCK

BLAST
BLAST

BLAST
RDYBRDY

The 80386, 80486, and Pentium Processor Families

910

The signal AHOLD is used to tristate the address bus during a cache-invalidate
cycle. The first step in this cycle is for an external device to apply logic 1 to the AHOLD
input of the 80486SX. In response to this input, the address lines are immediately put into
the high-Z state. Next, the external device puts the address of the main memory storage
location that was modified onto the 80486SX’s address bus and then switches to
logic 0 to signal the MPU that a valid address is on the address bus. In this case, the
address lines are inputs to the MPU. If the internal cache subsystem identifies that the
content of this memory location is stored in the cache, the value held in the cache is
invalidated. Since the cache entry is no longer valid, consistency is restored between
cache memory and main memory.

Bus Arbitration Interface. The DMA interface of the 80386DX is expanded in the
80486SX MPU to make it into what is called the bus arbitration interface. Two new sig-
nals, backoff input () and bus request output (BREQ), have been added to the inter-
face. Let us look at the function of each of these signals.

The BREQ output of the 80486SX signals whether or not the MPU is generating a
request to use the external bus. When a bus cycle is to be performed, BREQ is switched to
logic 0 and remains at this level until the bus cycle is completed. This signal can be used
by external circuitry to tell other bus masters that the MPU has a bus access pending.

is similar to the HOLD input of the MPU in that its active logic level tris-
tates the bus interface signals. However, there are two differences between the operation
of and HOLD. First, a bus backoff operation is initiated at the completion of the
current clock cycle, not at the end of the current bus cycle. Moreover, no hold-acknowledge
response is made to external circuitry. When returns to its inactive logic level,
the interrupted bus cycle is restarted. External bus masters can use this input to quickly
take over control of the system bus.

Memory Interface That Employs Dynamic Bus Sizing

The 80386DX has the ability to dynamically adjust the physical width of the data
bus as either 32 bits or 16 bits. This capability has been expanded further in the 80486SX
to enable sizing of the data bus as 32 bits wide, 16 bits wide, or 8 bits wide. The mem-
ory interface signals that select the size of the bus are bus size 16 () and bus size 8
(). If both of these signals are at their active 0 logic level, the bus defaults to 8-bit-
wide operation.

EXAMPLE 12

How would the data bus of the 80486SX be configured if both and are wired
to �5V?

Solution

The 80486SX’s data bus is permanently set for 32-bit-wide operation.

BS8BS16

BS8
BS16

BOFF

BOFF

BOFF

BOFF

EADS

The 80386, 80486, and Pentium Processor Families

911

Data
memory

Program
memory

Memory-
mapped

peripheral

Boot
EPROM

80486SX
MPU

Address bus

Control bus

Data bus

Memory-
interface
circuits BS16

BS8

D0–D7 D0–D15 D0–D31 D0–D31

D0–D31

A2L–A19L

Figure 47 8-bit, 16-bit, and 32-bit memory subsystems.

Figure 47 shows a typical application where the memory address space is parti-
tioned in this way. Note that a single-boot EPROM is used in an 8-bit memory con-
figuration, a memory-mapped peripheral that has a 16-bit data bus in its microprocessor
interface is treated as a 16-bit segment of memory, and the main program and data
storage-memories are both 32 bits wide.

If the data bus is sized at 16 bits or 8 bits, additional bus cycles may need to be per-
formed to complete a read- or write-data transfer. For instance, if is logic 0 when
an instruction is executed that initiates an aligned 32-bit read from the memory-mapped
peripheral in Fig. 47, the data bus is set for 16-bit width, and two consecutive 16-bit data-
read bus cycles will take place. Moreover, when an instruction fetch occurs from the boot
ROM, is active during this memory operation, and the data transfer is performed
with four 8-bit data-read bus cycles.

EXAMPLE 13

How many bus cycles are required to read the double word of data from address F100116

in the address space of the memory-mapped peripheral in Fig. 47?

Solution

Since the 32-bit word at address F100116 is misaligned, three 16-bit read-data transfer bus
cycles must take place.

BS8

BS16

The 80386, 80486, and Pentium Processor Families

912

Figure 48 Nonburst, noncacheable
bus cycle. (Reprinted by permission of
Intel Corporation. Copyright/Intel
Corp. 1992)

Nonburst and Burst Bus Cycles

In our description of the memory interface signals, we found that the 80486SX’s
data bus can be dynamically configured for an 8-bit, a 16-bit, or a 32-bit mode of opera-
tion. For each of these modes, the 80486SX can perform either of two bus cycles, a
nonburst bus cycle or a burst bus cycle. Both of these cycles can be made cacheable or
noncacheable. Here we look briefly at the bus activity for each of these bus cycles.

Nonburst, Noncacheable Bus Cycle. The timing diagram in Fig. 48 shows the
sequence of bus activity that takes place as the 80486SX reads or writes data to memory
or an I/O device with a nonburst, noncacheable bus cycle. Note that the minimum dura-
tion of a bus cycle is two clock cycles. They are identified as T1 and T2 in the bus cycle
timing diagram.

Looking at Fig. 48, we see that early in clock cycle T1 the address (A2 through A31),
byte enables (0 through 3), and memory indication signals (M/ , D/ , and W/)
are made available and latched into external circuitry with the transition of . Assum-
ing that the data transfer is to take place in a single bus cycle, is switched to the
0 logic level during clock cycle T2. This tells the external circuitry that the data transfer
is to be complete at the end of the current bus cycle. Therefore, at the end of T2, external
circuitry switches to logic 0 to tell the MPU that the data transfer is to take place.

A bus cycle can be extended by any number of clock cycles by holding at
logic 1 during T2.

RDY
RDY

BLAST
ADS

RCIOBEBE

The 80386, 80486, and Pentium Processor Families

913

Figure 49 Nonburst, cacheable bus cycle. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1992)

Nonburst, Cacheable Bus Cycle. Earlier we pointed out that the input deter-
mines whether or not a bus cycle is cacheable. Figure 49 shows the 80486SX’s nonburst,
cacheable bus cycle. Here we see that the bus cycle starts the same way, but later in T1

the external circuitry switches the input to logic 0. This indicates that the cycle is a
cacheable bus cycle. Only memory-read bus cycles are cacheable; therefore, the MPU
ignores during all write and I/O bus cycles.

Information is stored in the internal cache memory as lines, which are 16 bytes
wide. Whenever a cacheable read cycle is performed, a complete line of code or data
(four double words), instead of a single 32-bit word, is read from memory. Looking at the
timing diagram in Fig. 49, we see that four read-data transfers take place. The address is
automatically adjusted to point to the appropriate double word after each read operation
and then is made active. For this reason, the complete bus cycle takes a total of eight
clock states. Note that is not switched to the active 0 logic level until T2 of the
fourth and last double word of data is read.

Burst, Cacheable Bus Cycle. The burst, cacheable bus cycle of Fig. 50 is similar to the
nonburst, cacheable bus cycle we just described in that four read operations are per-
formed. One difference is that during a burst bus cycle external circuitry signals that burst
data transfers are to take place by replying with logic 0 on instead of . A sec-
ond and very important difference is that only the first data transfer takes two clock

RDYBRDY

BLAST
RDY

KEN

KEN

KEN

The 80386, 80486, and Pentium Processor Families

914

Figure 50 Burst, cacheable bus cycle. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1992)

cycles. Note that all four data transfers of the burst bus cycle are completed in just five
clock states.

Cache Memory

When a microcomputer system employs a large main memory subsystem of sev-
eral megabytes, it is normally made with high-capacity but relative slow-speed dynamic
RAMs, EPROMs, and FLASH memory. Even though DRAMs are available with access
times as short as 60 ns and EPROMs as fast as 70 ns, these high-speed versions of the
devices are expensive and still too slow to work in a microcomputer system that is run-
ning with zero wait states. For example, an 80486SX-25 microprocessor running at
25 MHz requires DRAMs with a 40-ns access time to implement a zero-wait state
memory design. For this reason, wait states are introduced in all bus cycles to data and
program memory. These waits states degrade the overall performance of the micro-
computer system.

The 80386, 80486, and Pentium Processor Families

915

Addition of a cache memory subsystem to the microcomputer provides a means for
improving overall system performance while still permitting the use of low-cost, slow-
speed memory devices in main memory. In a microcomputer system with cache, a second
smaller, but very fast memory section is added between the MPU and main memory sub-
system. Figure 51(a) illustrates this type of system architecture. This small, high-speed
memory section is known as the cache memory. The cache is designed with fast, more
expensive static RAMs and can be accessed without wait states. During system operation,
the cache memory contains recently used instructions and data. The objective is that most
of the time the MPU accesses code and data in the cache rather than from main memory.
This results in close to zero-wait-state memory system operation even though accesses of
the main memory require one or more wait states, thus resulting in higher performance for
the microcomputer. As Fig. 51(b) shows, the 80486SX’s cache differs in that it is on-
chip—that is, it is internal to the MPU.

External cache memories are widely used in high-performance 80486-based micro-
computer systems today. Notice in Fig. 51(a) that at one side the external cache memory sub-
system attaches to the local bus of the MPU, and at the other side it drives the system bus
of the microcomputer’s main memory subsystem. External caches typically range in size
from 32Kbytes to 512Kbytes and can be used to cache both data and code. The
80486SX’s internal cache also stores both code and data, but is smaller (8Kbytes) in size.
The internal cache of the 80486SX is called the first-level cache and the external cache a
second-level cache.

Function of a Cache. Let us continue our examination of cache for the microcomputer
system by looking at how it affects the execution of a program. The first time the MPU
executes a segment of program, one instruction after the other is fetched from main mem-
ory and executed. The most recently fetched instructions are automatically saved in the
cache memory. That is, a copy of these instructions is held within the cache. For exam-
ple, a segment of program that implements a loop operation could be fetched, executed,
and placed in the cache. In this way, we see that the cache always holds some of the most
recently executed instructions.

Now that we know what the cache holds, let us look at how the cached instructions
are used during program execution. Many software operations involve repeated execution
of the same sequence of instructions. A loop is a good example of this type of program
structure. In Fig. 52, we find that the first execution of the loop references code held in
the slow main program memory. During this access, the routine is copied into the cache.
When the instructions of the loop are repeated, the MPU reaccesses the routine by using
the instructions held in the cache instead of refetching them from the main memory.
Accesses to code in the cache are performed with no wait states, whereas those of code
in main memory normally require multiple wait states. In this way, we see that the use of
cache has reduced the number of accesses made from the slower main memory. The more
frequent instructions held in the cache are used, the closer to zero-wait-state operation is
achieved, the more the overall execution time of the program is decreased, and the higher
is the performance for the microcomputer system.

During execution of the loop routine, data operands that are accessed can also be
cached in the internal cache of the 80486SX. If these operands are reaccessed during the

The 80386, 80486, and Pentium Processor Families

916

Figure 51 (a) Microcomputer system with cache memory. (b) Internal cache
of the 80486SX.

The 80386, 80486, and Pentium Processor Families

917

Figure 52 Caching a loop routine.

repeated execution of the loop, they are read from the cache instead of from main data
memory. This further reduces execution time of the segment of program.

Cache Hit, Cache Miss, and Hit Rate. We just found that the concept behind cache
memory is that it stores recently used code and data and that if this information is to be
reaccessed, it may be read from the cache with zero-wait-state bus cycles rather than from
main memory. When the address of a code or data-storage location to be read is output
on the local bus, the cache subsystem must determine whether or not the information to
be accessed resides in both main memory and cache memory. If it does, the memory cycle
is considered a cache hit condition. In this case, a bus cycle is not initiated to the main
memory subsystem; instead, the copy of the information in the cache is accessed.

The 80386, 80486, and Pentium Processor Families

918

On the other hand, if the address output on the local bus does not correspond to
information that is already cached, the condition represents what is called a miss. This
time the MPU reads the code or data from main memory and writes it into a correspond-
ing location in cache.

Hit rate is a measure of how effective the cache subsystem operates and is defined
as the ratio of the number of cache hits to the total number of memory accesses,
expressed as a percentage. That is, hit rate equals

The higher the value of hit rate, the better the cache memory design. For instance, a cache
may have a hit rate of 85 percent. This means that the MPU reads code or data from the
cache memory for 85 percent of its memory bus cycles. In other words, just 15 percent of
the memory accesses are from the main memory subsystem. The hit rate is not a fixed
value for a cache design. It depends on the code being executed and data used. That is, a
hit rate may be one value for a specific application program and a totally different value
for another.

Cache design also affects the hit rate. For instance, the size, organization, and the
update method of the cache memory subsystem all determine the maximum hit rate that
may be achieved by a cache. Practical cache memories for microcomputer systems range
in size from as small as 8Kbytes to as large as 512Kbytes. In general, the larger the size
of the cache, the higher the hit rate. This is because a larger cache can contain more data
and code, which yields a greater chance that the information to be accessed resides in the
cache. However, the improvement in hit rate decreases if we keep increasing cache size,
whereas the cost of the cache subsystem may increase substantially.

Types of Cache Memory Organizations. Three widely used cache memory organiza-
tions are those known as the direct-mapped cache, two-way set associative cache, and
four-way set associative cache. The direct-mapped cache is also called a one-way set
associative cache. Figure 53 illustrates the organization of a 64Kbyte direct-mapped
cache memory. Note that the cache memory array is arranged as a single 64Kbyte bank
of memory, and the main memory is viewed as a series of 64Kbyte pages, denoted page
0 through page n. Note that the data-storage location at the same offset (X) in all pages
of main memory, X(0) through X(n) in Fig. 53, map to a single storage location, marked
X, in the cache memory array. That is, each location in a 64Kbyte page of main memory
maps to a different location in the cache memory array.

On the other hand, the 64Kbyte memory array of a two-way set associative cache
memory is organized into two 32Kbyte banks. That is, the cache array is divided two
ways, BANK A and BANK B. This cache memory subsystem configuration is shown in
Fig. 54. Again main memory is mapped into pages equal to the size of a bank in the cache
array. But because a bank is now 32Kbyte, there are twice as many main-memory pages
as in the direct-mapped organization. In this case, the storage location at a specific offset
in every page of main memory can map to the same storage location in either the A or B

Hit rate �
Number of hits

Number of bus cycles
� 100%

The 80386, 80486, and Pentium Processor Families

919

Figure 53 Organization of a direct-mapped memory subsystem. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1990)

Figure 54 Organization of a two-way set associative memory subsystem.
(Reprinted by permission of Intel Corporation. Copyright/Intel Corp. 1990)

The 80386, 80486, and Pentium Processor Families

920

bank. For example, the contents of storage location X(2) can be cached into either X(A) or
X(B). The two-way set associative organization results in higher hit rate operation.

The 80486SX’s internal 8Kbyte cache memory uses a four-way set associative
memory. Therefore, its configuration is similar to that shown in Fig. 53 except that it is
arranged into four 2Kbyte banks.

An example of a memory update method that affects hit rate is the information
replacement algorithm. Replacement methods are based on the fact that there is a higher
chance that more recently used information will be reused. For instance, the two-way set
associative cache organization permits the use of a least recently used (LRU) replacement
algorithm. In this method, the cache subsystem hardware keeps track of whether infor-
mation X(A) in the BANK A storage location or X(B) in BANK B is most recently used.
For example, let us assume that the value at storage location X(A) in BANK A of Fig. 54
is X(0) from page 0 and that it was just loaded into the cache. On the other hand, X(B)
in BANK B is from page 1 and has not been accessed for a long time. Therefore, the
value of X(B) in BANK B is tagged as the least recently used information. When a new
value of code or data, for instance, from offset X(3) in page 3 is accessed, it must replace
the value of X(A) in BANK A or X(B) in BANK B. Therefore, the cache replacement
algorithm automatically selects the cache storage location corresponding to the least
recently accessed bank for storage of X(3). For our example, this would be storage loca-
tion X(B) in BANK B. This shows that the replacement algorithm retains more recently
used information in the cache memory array. The four-way set associative cache mem-
ory of the 80486SX MPU uses the LRU replacement algorithm. This results in a higher
maximum hit rate for the internal cache and a higher level of performance for the
microcomputer system.

We found earlier that use of a cache reduced the number of accesses of main mem-
ory over the system bus. In our example of a loop routine, we saw that repeated accesses
of the instructions that perform the loop operation were made from the internal cache, not
from main memory. Therefore, fewer code and data accesses are performed across the
system bus. That is, availability of the bus has been increased for external devices and is
another advantage of using cache in a microcomputer system. The freed-up bus band-
width is available to other bus masters, such as DMA controllers or other processors in a
multiprocessor system.

Organization and Operation of the 80486SX’s Internal Cache. Let us next examine
the organization and operation of the 80486SX’s internal 8Kbyte four-way set associa-
tive cache memory. We begin by determining how data are stored in the cache memory
array.

Since the internal cache uses a four-way set associative organization, the data-
storage array is partitioned into four separate 2Kbyte areas. Figure 55 illustrates how this
memory is organized. We will refer to these areas of memory as SET 0 through SET 3.
Data are loaded, stored, validated, and invalidated in 16-byte-wide elements called a line
of data. The 80486SX’s cache does not support filling of partial lines. Therefore, if a sin-
gle double word of data is to be read from memory and copied into the cache, the MPU
must fetch from memory the complete line in which this double word is contained. This
is the reason that cacheable read bus cycles initiate four double-word data transfers. That
is, they always access code or data one line (16 bytes) at a time so that a complete line

The 80386, 80486, and Pentium Processor Families

921

Figure 55 Organization of the on-
chip cache of the 80486SX. (Reprinted
by permission of Intel Corporation.
Copyright/Intel Corp. 1992)

of the cache gets filled. In this way, we see that the contents of each 2Kbyte bank in the
cache’s storage array is further arranged into 128 lines of data.

Associated with each data-storage set is a separate tag directory. The tag directory
contains 128 21-bit tag entries; one corresponds to each line of data in the set. Each tag
entry includes bits of information about the use of the line and whether or not it currently
holds valid information.

When the MPU initiates a read operation and the information that is to be accessed
is already in the internal cache, the information is obtained without performing external
bus cycles. Instead, the information is simply read from the cache memory. However, if a
cache miss occurs, a line of code or data must be read from main memory and copied into
the cache. The on-chip cache circuitry must determine if there is room in the cache and,
if not, which of the current valid lines of information is to be replaced. It does this by
checking the information in the tag directory. If the cache is found to contain invalid lines
of data or code, one of them can be simply replaced with the new information. On the
other hand, if there are no vacant line-storage locations, the least recently used mecha-
nism of the cache automatically checks the use information in the tag to determine which
valid line of information to replace.

Let us next look at what happens when a data-write operation is performed. When-
ever a new value of data is to be written to a storage location in memory, the internal
cache circuitry must first be checked to confirm whether or not the contents of this stor-
age location also exist within the cache. If they do, the value must be either invalidated or

The 80386, 80486, and Pentium Processor Families

922

updated as part of the write operation. Otherwise, a cache data consistency problem
is created.

The 80486SX’s on-chip cache is implemented with a write-update method known as
write-through. With this method, all write bus cycles that result in a cache hit automati-
cally update both the corresponding storage location in the internal cache and external
memory. That is, write operations to main memory can be viewed as going through the
cache. On the other hand, for a cache miss, the data are written only to main memory.
Remember that a cache write-through operation can be enabled or disabled with the no-
write-through (NW) bit of CR0. However, write-through would not be disabled during nor-
mal operation.

Enabling and Disabling Internal Caching. The 80486SX is equipped with a variety of
methods for controlling the operation of the internal cache. For instance, the complete cache
memory can be turned on or off, the memory-address space can be mapped with cacheable
and noncacheable areas, and external circuitry can define any bus cycle as cacheable or non-
cacheable. Let us briefly review how each of these cache memory controls are implemented
on the 80486SX.

Remember that the operation of the cache memory can be enabled or disabled
under software control. Logic 1 in the cache fill disable (CD) bit of control register CR0

can be used to turn off filling of the cache. However, this does not completely disable the
cache; it just stops it from being refilled. To completely disable the cache, the no-write-
through (NW) bit in CR0 must also be set to 1 and then the cache must be flushed. The
flush operation is needed to remove the stale data that were left in the cache when cache
fill was turned off.

Mapping of parts of the memory address space as cacheable or noncacheable can
be achieved either through software or hardware. Under software control, each page of
the memory address space can be configured as cacheable or noncacheable with the page-
level cache-disable (PCD) bit in its page table entry. For instance, to make a page of
memory noncacheable the PCD bit is made 0. The memory address space can be mapped
cacheable or noncacheable on a byte-wide basis by external circuitry. The cache-enable
() input can be used to indicate whether or not the data for the current bus cycle
should be cached. By decoding addresses in external circuitry and returning logic 1 at

, a part of the address space can be designated as noncacheable.

Flushing the Cache. When the internal cache is flushed, all of the line valid bits in the
tag directory are invalidated. Therefore, after a flush occurs the cache is empty and will
need to be refilled. The cache is flushed whenever the MPU is reset; it can be flushed
under software control by executing the invalidate cache (INVD) instruction or with
external circuitry by activating the input.

Cache Line Invalidations. We just described how the complete contents of the cache
can be invalidated with a flush operation. It is also possible to invalidate individual lines of
information within the cache. This is known as a cache line invalidation and is normally
done to make the contents of the internal cache consistent with that of external memory.

If an external device changes the contents of a storage location in external memory
and the value of this storage location is currently held in the 80486SX’s internal cache
memory, a cache consistency problem can occur. That is, the corresponding storage loca-

FLUSH

KEN

KEN

The 80386, 80486, and Pentium Processor Families

923

tion in cache and external memory no longer contain the same value and the value in
cache is no longer valid. If the 80486SX were to read this storage location, the incorrect
value in the cache would be accessed, and if this data were processed and written back to
memory, the results in external memory would then also be wrong.

To protect against inconsistency problems between the contents of the internal
cache and external memory, external circuitry needs to initiate a cache line invalidation
operation each time an external device modifies the content of a storage location in exter-
nal memory. This is done by initiating an invalidate bus cycle. The first step in this
process is to switch address hold (AHOLD) to logic 1. This puts the address bus lines into
the high-Z state. Next, the external circuitry puts the address of the external memory stor-
age location whose contents were changed onto the address lines and signals the
80486SX that a valid external address is available by switching (external address)
to logic 0. Now the address lines of the MPU act as inputs, instead of outputs. If this
address corresponds to an element of data that is currently held in cache, the correspond-
ing cache entry is invalidated. In this way, cache consistency is restored.

Internal Exceptions

Earlier we indicated that the external hardware interrupt interface of the 80486SX
MPU is exactly the same as that of the 80386DX processor. In fact, the only differences
between the interrupt /exception processing capability of the 80486SX and 80386DX are
that one additional internal exception function is defined for the 80486SX and one that
was performed by the 80386DX is no longer supported in the 80486SX. Next we look
briefly at these two changes in exception processing.

The new exception that is activated for the first time in 80486 family MPUs is
the alignment check exception. Recall two new control bits, the alignment-check (AC)
flag in EFLAGS and the alignment-mask (AM) control bit in CR0, that are used to enable
address alignment checking for memory-access operations. This function gives the
80486SX the ability to detect an attempt to access an unaligned element of data. This
exception is detected only for memory accesses initiated while in protected mode and exe-
cuting user-code privilege level 3. When this option is enabled, any attempt by the program
to access an unaligned operand in memory results in an alignment-check exception through
exception gate 17.

The 80386DX exception function not supported by 80486 family MPUs is excep-
tion 9, coprocessor segment overrun.

� 9 OTHER 80486 FAMILY MICROPROCESSORS—
80486DX2 AND 80486DX4

The 80486DX2 and 80486DX4 are hardware- and software-compatible upgrades of the
80486DX MPU. They contain a number of architectural enhancements that result in
higher performance for the 80486-based microcomputer system. The 80486DX2-50 has an
iCOMP rating of 231. This value is close to twice the rating of the 80486DX-25 and very
close to that of the 80486DX-50.

EADS

The 80386, 80486, and Pentium Processor Families

924

Two architectural enhancements made in the 80486DX2 are clock doubling and
write-back enhanced cache. 80486DX2 MPUs are driven by what is called a 1⁄2 � clock,
instead of a 1 × clock like the 80486SX and 80486DX. That is, the signal applied to the
clock input of a 50-MHz 80486DX2 MPU (80486DX2-50) is actually a 25-MHz signal,
or half the clock speed rating of the device. Similarly, the 80486DX2-66 is driven by a
33-MHz clock signal. On-chip clock multiplying circuitry doubles the input clock fre-
quency to produce a 66-MHz clock that runs the internal circuitry of the MPU. Only the
core of the 80486DX2-66 MPU operates at 66MHz, not the external bus interface. Like
the 80486DX-33, the external bus interface of the 80486DX2-66 is operated at 33MHz.
In this way, we see that the 80486DX2 achieves a higher level of performance by run-
ning its internal circuitry twice as fast. At the same time, it permits simpler external
interface circuit designs by maintaining the clock speed of the external local bus inter-
face at 33 MHz.

The 80486DX2’s 8Kbyte on-chip cache memory is configurable to operate with
either the write-through or write-back methods for updating external memory. Actually,
the lines of the cache memory array can be individually configured as write-through or
write-back. The write-though mode of operation is compatible with that of the 80486SX
and 80486DX MPUs, whereas write-back is an improvement that offers higher system-
level performance. Unlike the write-through operation, write-back updates of external
memory are not performed at the same time the information is written into the internal
cache. Instead, the updates are accumulated in the on-chip cache memory subsystem and
written to memory at a later time. This reduces the bus activity and therefore enhances the
microcomputer’s performance.

When in write-back mode, the 80486DX2’s cache also supports snooping. The abil-
ity to snoop is needed to assure that data coherency is maintained between the data in the
on-chip cache and the external main memory. A data coherency problem can occur when-
ever another bus master attempts to read information from or write information into the
main memory. For example, if the storage location being read in main memory corre-
sponds to an address whose data is cached within the 80486DX2 and modified, but not
yet written back to main memory, the information that would be read from main memory
is incorrect. In this case, a write-back must be performed to update main memory before
the bus master can complete the read cycle. On the other hand, if the bus master writes to
a storage location in main memory whose data are also cached, the value held in the
cache must be invalidated. In this way, we see that whenever a bus master accesses main
memory, a snoop bus cycle must be performed to determine if the content of the storage
location to be accessed is cached within the MPU and, if so, initiate a write-back. Other-
wise, cache coherency may be lost. The 80486DX2 employs the MESI (modify/exclusive/
shared/invalid) write-back cache-consistency protocol.

Figure 56 is a block diagram that shows the new pin functions defined for the
80486DX2 and 80486DX4 MPUs. Added are four signals, , , INV, and

, for use in control of the 80486DX2’s write-back cache memory. The cacheabil-
ity () output switches to its active level for cacheable data reads, instruction code
fetches, and data write-backs. Logic 0 at signals external circuitry that a
cacheable read cycle or a burst write-back cycle is taking place.

The hit/miss () output and invalidate request (INV) input are used during
snoop bus cycles of the on-chip cache. The output is activated by the cache-HITM

HITM

CACHE
CACHE

WBWT
HITMCACHE

The 80386, 80486, and Pentium Processor Families

925

ADS#

RDY#
Bus control

CLK

CLKMUL
Clocking

1

DATA BUS

Interrupt signals

STPCLK#
INTR

RESET, SRESET
NMI, SMI#
SMIACT#

5

AHOLD

EADS#
Cache invalidation

KEN#

FLUSH#

Page caching
control

PWT

PCD

FERR#

IGNEE#

Cache control

Numeric error
reporting 4

A20M#Address bit
20 mask

TCK
TMS
TDI
TDO

Boundry scan
2

CACHE#
HITM#
INV
WBWT#

Write back
cache control

M/IO#
D/C#
W/R#
LOCK#
PLOCK#

Bus cycle
definition

BE3#
BE2#
BE1#
BE0#

Byte
enables

A2–A31

HOLD
HLDA
BOFF#
BREQ

Bus arbitration

BRDY#
BLAST#

Burst control

BS8#
BS16#

Bus size control

UP# Upgrade present
5DP3

DP2
DP1
DP0
PCHK#

Parity

VOLDET Voltage detect 1

Intel486TM

Processor
Family

D0–D31
32-bit
data

32-bit
address

bus

3

Figure 56 Block diagram of the 80486 MPU, including new pin functions for
the 80486DX2 and 80486DX4. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1994)

coherency protocol of the 80486DX2. If during a snoop bus cycle, the line of information
checked for is found to be cached and modified but not yet written back to main memory,
this fact is signaled to the external circuitry by logic 1 at . If INV is at its active 1
logic level during a snoop cycle for a write to main memory that identifies a line of data
currently cached on-chip, this line of data is invalidated whether the cache is configured
for write-through or write-back operation. However, if a line of data is found in the cache

HITM

The 80386, 80486, and Pentium Processor Families

926

and it has been modified, it is first written back to main memory and then invalidated.
INV should be held at logic 0 during snoop cycles for a read of main memory. In this
case, the snoop cycle initiates a write-back to main memory but does not invalidate the
data in the cache. In this way, cache invalidations are minimized.

The 80486DX2’s cache memory is configured for the write-back mode of operation
as part of the hardware-reset process. If the write-back/write-through () input is
held at logic 1 for at least two clock periods before and after the falling edge of RESET,
the write-back configuration is enabled for the cache. The function of the input
changes when the cache is set up for write-back mode. Now logic 0 at initiates a
write-back of all lines of data in the cache that are modified before the contents of the
cache are invalidated.

With the 80486DX4 came additional architectural enhancements and even higher per-
formance. This device is designed to operate off a 3.3-V dc power supply instead of 5V dc;
the clock-scaling circuitry is enhanced to permit multiplication of the clock by 2, 2.5, or 3;
and the size of the cache is increased from 8Kbytes to 16Kbytes. The result is an increase
of the iCOMP performance rating for the 80486DX4-100 to 435, almost 50 percent higher
than the 80486DX2-66.

The Vcc power supply of the 80486DX4 MPU is rated at +3.3 V dc ± 0.3V. This
does not mean that the 80486DX4 can only be used in 3.3-V system designs. Its inputs
are 5-V tolerant and outputs are TTL compatible. Therefore, the 80486DX4 can be inter-
faced to 5-V logic components even though the internal circuitry is operating at 3.3 V.
This is known as a mixed voltage system. Applying 5V dc to the Vcc5 pin enables mixed
voltage system operation.

Earlier we pointed out that the clock-multiplier circuitry in the 80486DX4 MPU has
been enhanced to permit scaling of the clock by 2, 2.5 or 3. The logic level of a new input
pin, clock multiplier (CLKMUL), determines the value of the multiplier. The logic level
of this input is sampled during hardware reset of the MPU to select the clock multiplier.
Logic 1 at this input selects the clock-tripled mode of operation. For instance, if the
80486DX4-100 is run by a 33-MHz clock signal, the internal operation of the MPU is
99MHz, and the speed of the local bus is maintained at 33 MHz. This increase in internal
speed is the primary cause of higher performance for the 80486DX4-based microcom-
puter system.

The last architectural change in the 80486DX4 is that the size of the on-chip cache
memory has been expanded to 16Kbytes. However, unlike the 80486DX2, this cache is
write-though only and does not support the write-back mode of operation. Figure 57
shows the organization of the cache memory. Expanding the size of the cache results in a
higher hit rate. This is another cause for the improved performance obtained with the
80486DX4 MPU.

� 10 PENTIUM PROCESSOR FAMILY

Many enhancements have been made to the hardware architecture of the MPUs in the Pen-
tium processor family. Some examples of important improvements are that the data bus has
been expanded to 64 bits, parity has been provided for the address bus, the on-chip cache

FLUSH
FLUSH

WBWT

The 80386, 80486, and Pentium Processor Families

927

4K bytes

4K bytes

4K bytes

4K bytes

20-bit
tag

256
tags

256
sets

16-byte line size

256
sets

4 valid
bits

3 LRU
bits

Figure 57 Organization of the
on-chip cache of the 80486DX4.
(Reprinted by permission of Intel
Corporation. Copyright/Intel Corp.
1994)

memory is partitioned into separate code and data caches, the internal caches support either
the write-through or write-back cache-update methods, and pipelined bus cycles have been
implemented. These hardware changes play a key role in giving the Pentium processor its
higher level of performance and simplifying the design of Pentium processor-based multi-
processor microcomputer systems.

We have seen that continued advances in processor technology have enabled Intel
Corporation to integrate more and more transistors into its MPUs. The Pentium family of
microprocessors were originally built on a 0.6-μm manufacturing process but have been
moved to an even smaller geometry process. The reduction in transistor size achieved
with these more advanced processes has permitted the integration of more than 3 million
transistors into the Pentium processor.

Because of the process used to manufacture the Pentium processor, it must be
powered by a 3.3-V power supply, Vcc. Its inputs and outputs are also rated at 3.3 V.
Output signal lines are TTL-compatible in that they do meet the minimum high-logic
level (VIHmin) for a TTL input. For this reason, they may directly drive external inter-
face circuits made with either 3.3-V or 5-V TTL logic devices. On the other hand, the
inputs of the Pentium processor cannot tolerate more than 3.3 V as the VIHmax. There-
fore, inputs signal lines must be driven from outputs of 3.3-V logic devices or 5-V
devices with open-collector outputs that are set up to convert between 5-V and 3.3-V
logic levels.

The 80386, 80486, and Pentium Processor Families

928

The Pentium processor and its pin layout are shown in Figs. 58(a) and (b), respec-
tively. Here we see that it is housed in a 296-pin staggered-pin grid array (SPGA) package.

EXAMPLE 14

What are the pin locations of the signals D0 and D64?

Solution

The pin layout diagram in Fig. 58(b) shows that signal D0 is at pin D3 and signal D63 at
pin H18.

In this section, we will examine some of the architectural advancements that were
first introduced in the Pentium processor family.

Signal Interfaces of the Pentium Processor

Figure 59 presents a block diagram of the Pentium processor. Although a lot of
changes have been made in the hardware architecture of the Pentium processor, many of
the interface signals remain the same as those used on 80386 and 80486 family MPUs.
For example, similar to the 80386DX and 80486SX, the type of bus cycle is defined by
the code output on M/ , D/ , and W/ , and the interrupt interface consists of INTR,
NMI, and RESET inputs. Most of the interface signals first introduced on the 80486 fam-
ily of MPUs are also provided on Pentium processors. For instance, the signal lines

, , , , , PWT, and PCD are all part of the Pentium proces-
sor’s memory/IO and cache memory interfaces. Here we will focus on the interface sig-
nals first introduced with the Pentium processor family.

Memory/IO Interface. Earlier we pointed out that the memory/IO interface has been
improved by making the data bus 64 bits wide and by adding parity on the address bus.
The data bus now consists of bidirectional data lines D0 through D63. Because of the
larger data bus, the number of byte-enable and data parity lines have been increased to
eight. In Fig. 59, they are labeled 0 through 7 and DP0 through DP7, respectively.
Extending this bus to 64 bits results in increased data-transfer rate between the MPU and
its memory and I/O subsystem and higher-performance operation.

During all write cycles, the bus interface unit generates a code at DP0 through DP7

that produces even parity for each byte of data on D0 through D63. When a read bus cycle
takes place, the data on D0 through D63 and DP0 through DP7 are tested for even parity
on a byte-wide basis. If a data parity error is detected in any byte of the quad-data word,
this fact is signaled to external circuitry with logic 0 at the output. The parity-
enable () input is used to determine whether or not an exception is initiated when a
data-read parity error occurs. Logic 0 at this input configures the MPU to initiate an
exception automatically whenever a read parity error is detected.

In the Pentium processor, parity generation and checking has been added to the
address bus. Whenever an address is output on A3 through A31, an even parity bit is gen-
erated and output at pin address parity (AP). In this way, the memory subsystem can

PEN
PCHK

BEBE

KENFLUSHBRDYBOFFA20M

RCIO

The 80386, 80486, and Pentium Processor Families

929

(a)

(b)

Figure 58 (a) Pentium processor IC. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1995) (b) Pin layout of the Pentium pro-
cessor. (Reprinted by permission of Intel Corporation. Copyright/Intel Corp.
1995)

The 80386, 80486, and Pentium Processor Families

930

Figure 59 Pentium processor block diagram. (Reprinted by permission of
Intel Corporation. Copyright/Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

931

perform parity checks on both the data and the address. Adding address parity checking
and detection to the memory/IO subsystem results in an increased level of data integrity
for the microcomputer system.

The address bus is actually bidirectional because the Pentium processor, like the
80486SX, permits external devices to examine the contents of its internal caches. The
operation is enhanced on the Pentium processor with address parity checking. The exter-
nal system applies what is known as an inquire address to the processor on A5 through
A31. This is the address of the cache-storage location to be accessed during the inquire
cycle. Logic 0 at the valid external address () input signals the MPU that the
address is available. As part of the read operation, a parity-check operation is performed
on the inquire address, and if a parity error is detected, it is identified by logic 0 at the
address parity check () output.

The Pentium processor’s memory/IO interface can also detect whether or not a bus
cycle has run to completion correctly. This is known as a bus error condition. The bus
check () input is used for this purpose. External circuitry must determine
whether or not the current bus cycle is not successfully completed. If the bus cycle is not
completed, it switches to logic 0. This input is sampled during read and write
bus cycles. If an active 0 logic level is detected, the address and type of the failing bus
cycle are latched within the MPU. An exception can also be automatically initiated to
transfer program control to a service routine for the bus error problem.

Cache Memory-Control Interface. The number of control signals at the cache
memory-control interface of the Pentium processor have also be expanded. Comparing
the block diagram shown in Fig. 59 to that of the 80486SX in Fig. 46, we find that five
new signals are provided: cacheability (), write-back/write-through (WB/),
inquire cycle hit/miss indication (), hit/miss to a modified line (), and invali-
dation request (INV). Here we look briefly at how they function in support of the internal
cache memory.

The logic level of the output has a different meaning, depending on
whether a read or write operation is taking place. This output is switched to logic 0 dur-
ing bus cycles where the data read from external memory can be cached. That is, it sig-
nals external circuitry that a cacheable data read or cacheable code fetch is taking place.

is also made active during write cycles that represent a write-back to external
memory of data updated in the internal cache.

WB/ is an input that can be used to define the individual storage locations of
the internal cache memory as write-back or write-through. By applying logic 0 or 1 to this
input, external circuitry can dynamically decide whether the external memory-update
method for the addressed storage location is write-back or write-through.

The other three signals, the output, output, and INV input, are involved
in the inquire address operation.

Interrupt Interface. Comparing the interrupt interface of the Pentium processor to that
of the 80486SX, we find that just one new signal has been added. The function of this
input, initialization (INIT), is similar to that of RESET in that it is used to initialize the
MPU to a known state. However, in the case of INIT, the content of the internal cache and
a number of other registers remain unchanged.

HITMHIT

WT

CACHE

CACHE

HITMHIT
WTCACHE

BUSCHK

BUSCHK

APCHK

EADS

The 80386, 80486, and Pentium Processor Families

932

Bus Cycles: Nonpipelined, Pipelined, and Burst

The bus interface of the Pentium processor has been designed to be very versatile
and permit a number of different types of data-transfer bus cycles to be performed. Sim-
ilar to the 80486 family of MPUs, the Pentium processor can perform bus cycles with
either a single data transfer or burst of data transfers, and these bus cycles can be made
either noncacheable or cacheable. Moreover, like the 80386 family, it can perform non-
pipelined and pipelined bus cycles. The table in Fig. 60 shows the relationship between
the bus cycle indication signals and corresponding bus activity. For instance, if

M/IO Cycle description

0 0 0 1 x Interrupt acknowledge
(2 locked cycles)

D/C W/R CACHE* KEN No. of Transfers

1 transfer each cycle

0 0 1 1 x Special cycle 1

0 1 0 1 x I/O read, 32 bits or less,
noncacheable

1

0 1 1 1 x 1

1 0 0 1 x 1

1 0 0 x 1

1 0 0 0 0 Code read, 256-bit burst
line fill

4

1 0 1 x x Intel reserved (will not be
driven by the Pentium®
processor)

n/a

1 1 0 1 x Memory read, 64 bits or less,
noncacheable

1

1 1 0 x 1 1

1 1 0 0 0 Memory read, 256-bit burst
line fill

4

1 1 1 1 x Memory write, 64 bits or less,
noncacheable

1

1 1 1 0 x 256-bit burst writeback 4

Code read, 64 bits,
noncacheable

1Code read, 64 bits,
noncacheable

I/O write, 32 bits or less,
noncacheable

Memory read, 64 bits or less,
noncacheable

* CACHE will not be asserted by any cycle in which M/IO is driven low or for any cycle in which PCD is
driven high.

Figure 60 Types of bus cycles. (Reprinted by permission of Intel Corporation.
Copyright/Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

933

and , a noncacheable 32-bit single data-transfer I/O
read-bus cycle is taking place. Moreover, if and ,
a noncacheable 64-bit code read is in process. They are both examples of single-data-
transfer bus cycles. On the other hand, if , , and

, code is read into the on-chip code cache memory with a 256-bit burst line-
fill bus cycle. Let us next look more closely at the different types of read and write bus
cycles that can be performed by the Pentium processor.

Nonpipelined Read and Write Cycles. Figure 61(a) shows the waveforms for the non-
pipelined single-data read or write bus cycle. Note that a single-data-transfer read or write
takes a minimum of two clock cycles, denoted T1 and T2 in the timing diagram. The read
bus cycle starts with an address being output on the address bus accompanied by an
address strobe pulse at . At the same time, W/ is switched to logic 0 to identify a
read-data transfer. Note that and are both left at logic 1 throughout the busCACHENA

RADS

KEN � 0
CACHE � 0M/IO D/C W/R � 1002

CACHE � 1M/IO D/C W/R � 1002

CACHE � 1M/IO D/C W/R � 0102

T1
CLK

T2 Ti T1 T2 Ti T1

ADDR

ADS#

NA#

CACHE#

W/R#

BRDY#

DATA

DP

PCHK#

Valid ValidInvalid Invalid

(a)

From CPU

From CPU

To CPU

To CPU

Figure 61 (a) Nonpipelined read and write bus cycles. (Reprinted by
permission of Intel Corporation. Copyright/Intel Corp. 1995) (b) Nonpipelined
read and write bus cycle with wait states. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

934

cycle. This means that the bus cycle is nonpipelined and noncacheable. If the Pentium
processor samples the input late in T2 and finds that it is at its active 0 logic level
as shown, the read-data transfer takes place to the MPU and the bus cycle is complete.
Otherwise, the bus cycle is extended with additional clock periods until a logic 0 is
detected at . The bus cycle diagram in Fig. 61(b) shows a read extended with one
wait state and a write bus cycle extended with two wait states.

EXAMPLE 15

What bus cycle indication code is output when a nonpipelined, noncacheable 64-bit data-
write bus cycle is in progress?

Solution

From the table in Fig. 60, we find that

M/IO D/C W/R � 1112

BRDY

BRDY

Figure 61 (continued)

T1
CLK

T2 T2 Ti T1 T2 T2

From CPU

ADDR

ADS#

NA#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

Valid Valid

(b)

T2

To CPU

The 80386, 80486, and Pentium Processor Families

935

Burst Read and Write Bus Cycles. In Fig. 60 we find that the Pentium processor per-
forms only three types of burst bus cycles: a code-read burst line fill, data-read line fill,
and a burst write-back. Each of these cycles represents an update of the cache memory.
Note that a burst bus cycle involves 256 bits of data—that is, transfer of four quad data
words.

Figures 62(a) and (b) show typical burst read and burst write bus cycles, respec-
tively. Since all cacheable bus cycles are performed as burst cycles, we see that the

output is held at its active 0 logic level throughout the bus cycle. For the burst
read bus cycle, logic 0 must be returned to the input of the MPU in clock 2 of the
first data transfer. This signals that the memory subsystem will support the current read
bus cycle as a burst line fill. is not active during burst write bus cycles. The address
and byte enables of the first quad-word of data to be accessed are output by the MPU
along with a pulse at at the beginning of the bus cycle. This original address is
maintained valid throughout the bus cycle. For this reason, the address must be incre-
mented in external hardware to point to the storage locations for each of the other three
quad-word data transfers that follow. Note that the first 64-bit data transfer of a burst read
or write takes place in two clock cycles; however, just one additional cycle is needed for
each of the other three data transfers.

EXAMPLE 16

What bus cycle indication code is output when a burst write-back bus cycle is performed?
What are the values of and during this bus cycle?

Solution

The table in Fig. 60 shows that

Pipelined Read and Write Bus Cycles. The Pentium processor is equipped with a next
address () input to enable it to perform pipelined bus cycles. Remember that in a
pipelined-mode bus cycle, the address for the next bus cycle is output overlapping with
the data transfer for the prior bus cycle. Both single data-transfer and burst data-transfer
bus cycles can be performed in a pipelined manner.

Figure 63(a) illustrates the bus activity for back-to-back pipelined burst read cycles.
First a cacheable burst read is initiated to address a. When switches to logic 0,
also becomes active. Logic 0 at signals the MPU that the next address, identified as
address b, can be output on the address bus. As expected in a pipelined bus cycle, the
address for the second cacheable burst read cycle is available to the external memory
subsystem prior to the completion of the current burst read bus cycle. Therefore,

NA
NABRDY

NA

KEN � X

CACHE � 0

M/IO D/C W/R � 1112

KENCACHE

ADS

KEN

KEN
CACHE

The 80386, 80486, and Pentium Processor Families

936

T1
CLK

T2 T2 T2 T2 Ti

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

Valid

(b)

From CPU From CPU From CPU From CPU

T1
CLK

T2 T2 T2 T2 Ti

ADDR

ADS#

CACHE#

W/R#

KEN#

DATA/DP

PCHK#

Valid

(a)

BRDY#

To CPUTo CPUTo CPUTo CPU

Figure 62 (a) Burst read bus cycle. (Reprinted by permission of Intel
Corporation. Copyright/Intel Corp. 1995) (b) Burst write bus cycle. (Reprinted
by permission of Intel Corporation. Copyright/Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

937

T1
CLK

T2 T2 T2 T12 T2P T2

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

Valid Valid

(a)

T2T2

a b

a b

a. a. a. a. b. b. b.

NA#

KEN#

T1
CLK

T2 T2 T2 T12 T2P TD

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

Valid Valid

(b)

TiT2

a b

rd

To CPU

NA#

KEN#

To CPU To CPU To CPU From
CPU

wr

Figure 63 (a) Pipelined back-to-back burst read bus cycles. (Reprinted by permission of
Intel Corporation. Copyright / Intel Corp. 1995) (b) Pipelined back-to-back read and write
bus cycles. (Reprinted by permission of Intel Corporation. Copyright/ Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

938

the valid address is available for a longer period of time, and the memory subsystem can
be designed with slower-access-time memory devices.

The waveforms in Fig. 63(b) represent pipelined back-to-back read and write
cycles. The first cycle is a cacheable burst read and the second is a noncacheable single
data-transfer write. Note that there is one dead clock period between the read and write
cycles. It is identified as TD in the timing diagram. The Pentium processor needs this
period of time to turn around the bus from input for the read cycle to output for the write
cycle.

Cache Memory of the Pentium Processor

The architecture of the Pentium processor-based microcomputer system supports
both an internal and an external cache memory subsystem. Here we focus on the archi-
tecture, organization, and operation of the internal cache memory of the Pentium proces-
sor. Its on-chip cache memory differs from that of the 80486SX in several ways. For
instance, there are separate cache memories for storage of data and code; they employ a
two-way set associative organization instead of a four-way set associative organization,
and two write-update methods—write-through and write-back—are supported for the
data cache. The separate caches and write-back capability lead to higher performance for
the Pentium processor-based microcomputer.

Organization and Operation of the Internal Cache Memory. Let us begin by exam-
ining the organization of the Pentium processor’s on-chip data and code cache memories.
They both are 8Kbytes in size. Since the two-way set associative organization is used, the
storage array in each cache memory is organized into two separate 4Kbyte areas called
Way 0 and Way 1, as shown in Fig. 64. Just as with the cache of the 80486SX MPU,
updates to the data or code cache of the Pentium processor are always done a line of data
at a time; however, its line width is 256 bits (32 bytes) instead of 128 bits (16 bytes).
Therefore, Way 0 and Way 1 can each hold 256 lines (sets) of data.

WAY 0 and WAY 1 each have a separate tag directory. The tag directory contains
one tag for each of the 256 set entries. As Fig. 64 shows, a data cache tag entry is formed
from a tag address and two MESI (modified-exclusive-shared-invalid) state bits. The
MESI bits are used to maintain consistency between the Pentium processor’s on-chip data
cache and external caches. Note that the code cache tag only supports one bit for storage
of MESI state information.

When a data or code read is initiated by the MPU to a storage location whose infor-
mation is already held in an on-chip cache, a cache hit has occurred, and the information
is read from the internal cache memory. On the other hand, if a cache miss results from
the read operation, a line-fill cache read takes place from external memory. All line-fill
cache reads involve four quad-word (64-bit) data transfers and are performed with burst
bus cycles. Depending on whether the data read is for the code cache or data cache, the
data transfer is performed as a code-read or memory-read burst line-fill bus cycle, respec-
tively. If an invalid line exists within the cache, this quad-word of information is loaded
into it; otherwise, the LRU algorithm is used to decide which of the valid lines of data
will get replaced.

The 80386, 80486, and Pentium Processor Families

939

Set TAG address

MESI
state

Way 0 4K
bytes

LRU

Data cache

4K
bytes

TAG address

MESI
state

Way 1

32-byte
lines

256
sets

Set TAG address

State
bit

(S or I)

Way 0 4K
bytes

LRU

Code cache

4K
bytes

TAG address

Way 1

State
bit

(S or I)

Figure 64 Organization of the on-chip cache of the Pentium processor. (Reprinted by
permission of Intel Corporation. Copyright / Intel Corp. 1993)

During data write operations, cache-data consistency must be maintained between
the on-chip data cache and external memory. The internal cache circuitry must determine
whether or not the data held at the storage location being accessed also exist within the
data cache. If a cache hit occurs during a write operation, the corresponding storage loca-
tion in both the cache and the external memory must be updated.

As identified earlier, the Pentium processor’s data cache supports both the write-
through and write-back update methods. The 80486SX’s on-chip cache provided only the
write-through method. With this method, both the line in the internal data cache and its
corresponding storage locations in external memory are updated as the write operation is
performed. Unlike write-through operations, write-back updates of external memory are
not performed at the same time the information is written into the cache. Instead, they are
accumulated in the cache memory subsystem and written to memory at a later time. This
reduces the bus activity and therefore enhances the microcomputer’s performance. The
data transfers that take place during a write-back operation to external memory are per-
formed with 256-bit burst write-back bus cycles.

The 80386, 80486, and Pentium Processor Families

940

Different areas of the memory address space can be defined as either write-through
or write-back and this can be done through software or hardware. For instance, logic 1 at
the write-back /write-through (WB/) input selects the write-back operation for the
current write update.

The memory address space can also be partitioned into noncacheable and cacheable
sections through software or hardware. The way in which this is done on the Pentium
processor is identical to how it is performed on the 80486SX MPU. As discussed earlier
for the 80486SX MPU, individual pages of memory are made cacheable or noncacheable
under software control with the page-level cache disable (PCD) bit in its page table entry,
and the memory address space can be hardware mapped as cacheable or noncacheable on
a line-by-line basis with the cache-enable () input.

Enabling, Disabling, and Flushing the On-Chip Cache. Just like the cache of the
80486SX, the operation of the Pentium processor’s cache memories can be controlled
with software and hardware. The table in Fig. 65 shows how the cache disable (CD)

KEN

WT

CD Purpose/Description

0 0 Normal highest performance cache operation.

Read hits access the cache.
Read misses may cause replecement.
Write hits update the cache.
Only writes to shared lines and write misses appear externally.
Write hits can change shared lines to exclusive under control of WB/WT#.
Invalidation is allowed.

NW

0 1 Invalid setting.

A general-protection exception with an error code of zero is generated.

1 0 Cache disabled. Memory consistency maintained. Existing contents
locked in cache.

Read hits access the cache.
Read misses do not cause replacement.
Write hits update cache.
Only write hits to shared lines and write misses update memory.
Write hits can change shared lines to exclusive under control of WB/WT#.
Invalidation is allowed.

1 1 Cache disabled. Memory consistency not maintained.

Read hits access the cache.
Read misses do not cause replacement.
Write hits update cache but not memory.
Write hits change exclusive lines to be modified.
Shared lines remain shared lines after write hit.
Write misses access memory.
Invalidation is inhibited.

Figure 65 On-chip cache operating modes. (Reprinted by permission of Intel
Corporation. Copyright / Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

941

and not-write-through (NW) bits of control registers CR0 affect the operation of the
caches. The values of CD and NW can be changed under software control. For instance,
the cache memories are enabled for operation by setting both CD and NW to logic 0.
Note that making both CD and NW logic 1 does not totally disable the caches. Instead,
as shown in the table for this state, read hits still access valid information held in the
cache memory, but misses do not result in an update of the corresponding storage loca-
tions in the cache. To completely disable the cache, it must also be flushed after performing
the software disable. This can be done with the cache flush () input. Switching

to logic 0 initiates a write-back to external memory of the contents of all modi-
fied lines in the data cache, and when this is completed, all of the data held in the caches
are invalidated.

The contents of the cache memories can also be invalidated under software control.
This can be done with the write-back and invalidate cache (WBINVD) instruction. Exe-
cution of WBINVD causes a write-back to take place to external memory of any modi-
fied lines in the data cache and then the contents of both the code and data caches are
invalidated. The table in Fig. 65 shows that a software invalidation can be performed only
when the NW control bit is logic 0.

Applying logic 1 to the RESET input resets the MPU, sets both CD and NW to 1,
and flushes the internal caches. Therefore, a hardware reset also completely disables the
cache.

Interrupts and Internal Exceptions of the Pentium Processor

Interrupt and exception-processing capability has undergone very little change as
part of the evolutionary path from the 80386 family of microprocessor to the Pentium
processor family. In our study of the 80486SX MPU, we found that the only changes
made in the exception processing of the 80486SX are that one new exception, alignment
check exception, has been added and that one of the 80386DX’s exceptions, coprocessor
segment overrun, is no longer supported. The extensions made to the exception handling
of the Pentium processor are also very small. In fact, just one new exception, machine-
check exception, has been defined. Here we will look at this change.

Machine check is a new exception that was first implemented in the Pentium
processor. This exception is enabled for operation by making the machine-check-enable
(MCE) control bit, bit position 6 of CR4 in, to logic 1 under software control. Two events
that can occur in external hardware will cause this type of exception: the detection of a
parity error in a data read or the unsuccessful completion of a bus cycle. The data-read
parity error condition is signaled to the MPU by external circuitry with logic 0 at the
input and the occurrence of a bus cycle error is identified by logic 0 at the
input. If either of these events occurs, the address and type information for the bus cycle
is latched in the machine check-address (MCA) and machine check-type (MCT) registers,
respectively. Figure 66 shows the bus cycle-type information saved in MCT. The CHK bit
is set to 1 when data are latched into MTC and automatically cleared when the contents
are read through software. The exception service routine, initiated through exception gate
18, can access this information in an effort to determine the cause of the exception. The
read from model-specific register (RDMSR) instruction is used to read the contents of
MCA and MCT.

BUSCHK
PEN

FLUSH
FLUSH

The 80386, 80486, and Pentium Processor Families

942

Reserved

L
O
C
K

M
/
I
O

D
/
C

W
/
R

C
H
K

0
5

0
4

0
3

0
2

0
1

0
0

6
3

Figure 66 Machine check-type register contents. Reprinted by permission of
Intel Corporation. Copyright / Intel Corp. 1995

� 11 PENTIUM PRO PROCESSOR AND PENTIUM
PROCESSOR WITH MMX TECHNOLOGY

Intel Corporation has continued to extend the hardware and software capabilities of the
Pentium processor family through new members. For instance, a second generation of
devices, the Pentium Pro processor, was introduced in 1995. This MPU contains
advanced features needed by high-performance personal computers, workstations, and
servers. Some examples of these capabilities are support for easy, low-cost implementa-
tion of multiprocessor systems, and data integrity and reliability functions such as error
checking and correction (ECC), fault analysis/recovery, and functional redundancy check-
ing (FRC). The architecture of another family member, the Pentium processor with MMX
technology, has been enhanced to provide higher performance for multimedia and com-
munication applications. The intended use for this device, which was introduced in Janu-
ary 1997, is in desktop and laptop personal computers.

Let us begin by looking more closely at the Pentium Pro processor. As Fig. 67
shows, this device is actually two separate die that are housed in a single 387-pin dual-
cavity staggered-pin grid-array package (SPGA). One die is the Pentium Pro proces-
sor’s MPU and the other is a custom second-level cache. These die are manufactured
using Intel’s 0.35 �m BiCMOS process. This process technology uses bipolar transis-
tors to implement high-speed circuitry and CMOS transistors for low-power, high-
density circuitry. The circuitry of the Pentium Pro processor is equivalent to 5.5 million
transistors.

The Pentium Pro processor design implements a new higher-performance micro-
architecture—the P6 microarchitecture. P6 microarchitecture employs what is known as
dynamic execution. Unlike earlier members of the Pentium processor family, the Pentium
Pro processor does not execute instructions in order. In the dynamic execution architec-
ture, a larger group of instructions are prefetched and decoded and made available for
execution. They are identified as the instruction pool in Fig. 68.

Figure 68 shows that the traditional instruction-execution phase is replaced in the
Pentium Pro processor by dispatch/execute and retire phases. This execution architecture
permits instructions to be executed out of order, but assures that they are put back in their
original order when completed. Data flow analysis is performed to determine the
best order for execution of instructions. That is, instructions are executed based on
whether they are ready to be executed, not based on their order in the program. For

The 80386, 80486, and Pentium Processor Families

943

Figure 67 Pentium Pro processor IC. (Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp. 1996)

instance, if an instruction that is being executed cannot be completed because it is wait-
ing for additional data, the Pentium Pro processor looks ahead in the instruction pool and
begins working on the execution of other instructions. This is known as speculative
execution.

Several branch instructions exist in the large pool of decoded instructions. The
multiple branch prediction capability of the Pentium Pro processor gives it the ability to
analyze these branch conditions and predict the flow of the program through several lev-
els of branching. Adjusting the instruction execution sequence based on this information,
achieves more efficient instruction execution and a higher level of performance.

Some hardware architectural elements that in past family members were imple-
mented with external circuitry are now implemented within the Pentium Pro processor.
For instance, the device is available with either a 256Kbyte or 512Kbyte level-2 cache.
Unlike an external second-level cache, this internal level-2 cache runs at full speed and
results in a higher level of performance. Another hardware element that is now imple-
mented internal to the processor is the advanced programmable interrupt control (APIC).

Fetch/
decode

unit

Dispatch/
execute

unit

Retire
unit

Instruction
pool

Figure 68 Instruction execution of
the Pentium Pro processor. (Reprinted
by permission of Intel Corporation.
Copyright/ Intel Corp. 1995)

The 80386, 80486, and Pentium Processor Families

944

iCOMP® Index 2.0 Ratings

0 50 100 150 200 250

Pentium® Pro processor
200-MHz 256K L2 cache 220

Pentium® Pro processor
180-MHz 256K L2 cache 197

Pentium® processor 200-MHz
512K L2 cache 142

Figure 69 Pentium Pro processor iCOMP Index 2.0 ratings. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1996)

The performance of Pentium processor family devices is compared with the iCOMP
Index 2.0. The chart in Fig. 69 compares the 180-MHz and 200-MHz Pentium Pro proces-
sors with an internal 256Kbyte level-2 cache to a 200-MHz Pentium processor with an
external 512Kbyte level-2 cache. Note that the 200-MHz Pentium Pro processor has a rat-
ing of 220.

Figure 70 shows a Pentium processor with MMX technology. This device is both
software and pin-for-pin compatible with the earlier Pentium processor family members.
Like the Pentium Pro processor, it is manufactured on Intel’s 0.35 μm process technology,
but it is made with a single die that contains 4.5 million transistors.

Unlike the Pentium Pro, the Pentium processor with MMX technology is implemented
with the microarchitecture of the original Pentium processor; however, the internal archi-
tecture has been enhanced in a number of ways. First, the instruction set has been expanded
with a new group of MMX technology instructions and data types. They include 57 new
instructions and four new 64-bit data types. An additional pipeline stage, the fetch stage,
has been added into the instruction execution sequence, and its performance is further
increased by improvements made in the dynamic branch-prediction capability. Finally, the
size of the internal first-level code and data caches has been doubled to 16Kbytes, the caches
are four-way set associative instead of two-way set associative, and the write buffers that
are used to improve memory-write performance have been expanded from two to four
buffers. These enhancements lead to the higher level of performance achieved with the
Pentium processor with MMX technology. The iCOMP Index 2.0 ratings of the 166-MHz
and 200-MHz devices are shown in Fig. 71.

The 80386, 80486, and Pentium Processor Families

945

Figure 70 Pentium processor with MMX technology IC. (Reprinted by
permission of Intel Corporation. Copyright/ Intel Corp. 1997)

iCOMP® Index 2.0 Ratings

0 20 140 160 180 200

Pentium® processor with
MMXTM technology 200 MHz

182

Pentium® processor with MMX
technology 166 MHz

160

Pentium® processor 200 MHz 142

40 60 80 100 120

Figure 71 Pentium processor with MMX technology iCOMP Index 2.0 ratings.
(Reprinted by permission of Intel Corporation. Copyright / Intel Corp. 1997)

The 80386, 80486, and Pentium Processor Families

946

� 12 PENTIUM II PROCESSOR, CELERON PROCESSOR,
AND PENTIUM II XEON PROCESSOR

Intel Corporation introduced a third generation of Pentium processor class MPUs in 1998.
The first member, the Pentium II processor is shown in Fig. 72. The intended use of this
new processor is in the high-performance desktop personal computer. Two other MPUs,
the Celeron processor and the Pentium II Xeon processor have followed it. The Celeron
processor enables a new lower cost personal computer known as the Basic PC. On the
other hand, the Pentium II Xeon processor offers higher performance than the standard
Pentium II processor and is for use in workstations, servers, and other multiprocessor
computer systems.

The architecture of the Pentium II processor builds on the P6 dynamic execution
architecture that was first introduced in the Pentium Pro processor by merging into it the
MMX technology instruction set. Additional improvements made in the Pentium II
processor family include .25 �m manufacturing process technology, dual independent bus
architecture, and a 100-MHz front-side bus. These enhancements produce the higher level
of performance achieved with the Pentium II processor.

Like the Pentium processor, the original Pentium II processor had independent
8Kbyte L1 code and data caches; however, the instruction cache is implemented with a
four-way set associative organization. The original L2 cache was 256Kbytes and four-
way set associative.

The original 266 MHz Pentium II processor provided a 40 percent improvement in
performance, measured with the iCOMP Index 2.0 rating, over the 200-MHz Pentium
processor with MMX technology. Figure 73 shows that the iCOMP rating of the 266-
MHz MPU is 303 and that this rating increases to 440 at a clock frequency of 400 MHz,
which represents more than a 2 × improvement in performance.

Dual independent bus architecture was actually first introduced in the Pentium Pro
processor, but its implementation in the Pentium II processor is different. Figure 74 illus-
trates the dual independent bus architecture. This shows that in the Pentium II processor,
two separate buses are provided: the level 2 (L2) cache bus (backside bus) and the

Figure 72 Pentium II processor.
(Reprinted by permission of Intel
Corporation. Copyright/ Intel Corp.
1998)

The 80386, 80486, and Pentium Processor Families

947

0 50 100 150 200

213

226

250 300 350 400 450 500

296

318

303

332

366

386

440

483Pentium II 450 MHZ

Pentium II 400 MHZ

Pentium II 350 MHZ

Pentium II 333 MHZ

Pentium II 300 MHZ

Pentium II 266 MHZ

Celeron processor 333 MHZ

Celeron processor 300A MHZ

Celeron processor 300 MHZ

Celeron processor 266 MHZ

B
A

SI
C

 P
C

PE
R

FO
R

M
A

N
C

E
 P

C

Figure 73 Pentium II processor and Celeron processor iCOMP Index 2.0
ratings. (Reprinted by permission of Intel Corporation. Copyright / Intel Corp.
1998)

system memory bus (front side bus). The front-side bus is fixed at 66.67 MHz on all ear-
lier members of the Pentium processor family.

Peak bandwidth of a bus is calculated as the product of the bus frequency and the
number of bytes transferred over the bus per clock cycle. That is,

BWPeak � f � # bytes/clock

CPU
Core

System
Logic

S.E.C. Cartridge

System Bus at 800 MB/sec

1600 MB/sec

L2 Cache
Bus

L2
Cache

Figure 74 Dual independent bus
architecture. (Reprinted by permission
of Intel Corporation. Copyright/ Intel
Corp. 1998)

The 80386, 80486, and Pentium Processor Families

948

The system bus of both the Pentium and Pentium II processors carry 8 bytes per clock.
With the Pentium II processor, the maximum speed of this bus is increased to 100 MHz.
This results in higher bandwidth for the system memory bus—that is, it is capable of
transferring more bytes of information. For instance, at 100 MHz, the peak bandwidth of
the Pentium II processor is 800 Mbytes/second. Actually, the front-side bus of the Pen-
tium II processor can be set to run at either 66.67 MHz or 100 MHz.

The backside bus between the L2 cache and MPU is higher speed. The speed of this
bus is half that of the processor frequency. For instance, this bus is 200 MHz for the
400-MHz Pentium II processor. Therefore, its peak bus bandwidth is 1600 Mbytes/
second. The total peak bus bandwidth of the 400-MHz Pentium II processor is the sum of
the bus bandwidth of the system bus and the L2 cache bus. In this way, we find that the
total peak bandwidth at 400 MHz is 2400 Mbytes/second.

The cache implementation in the Pentium II processor’s dual independent bus
architecture differs from that in the Pentium Pro processor. Like the Pentium Pro proces-
sor, the L2 cache memory of the Pentium II processor is not implemented on the same die
as the MPU; however, in this case standard ICs are used to implement the tag RAM and
cache storage array. The MPU and cache chips are separately packaged ICs. These
devices are mounted on a standard printed circuit board and housed in a single edge car-
tridge connector cartridge (SECC). The signal leads of the processor are brought out at
an edge connector on the SECC cartridge. The Pentium II processor is mounted on the
PC’s main processor board by inserting it into a connector known as the slot 1 connector.

The Celeron processor and Pentium II processor are similar in many ways. For
instance, they both employ the dynamic execution architecture and MMX technology
instructions. Let us just briefly look at the key differences between them. The Celeron
processor runs at a lower clock rate, 266 MHz, its front side bus runs at the standard
66.67 MHz, and it does not have any built-in level 2 cache memory.

On the other hand, the architecture of the Pentium II Xeon processor has been
enhanced to provide higher performance and to support multiprocessor applications. For
instance, increasing the maximum size of the L2 cache to 1Mbyte and making the clock
rate of the L2 cache bus equal to that of the processor improve performance. Therefore,
the 400-MHz Pentium II Xeon processor has a 400-MHz backside bus and 100-MHz
front-side bus.

Because workstations and servers are normally implemented with multiple proces-
sors, advanced system management and multiprocessing support capabilities have been
added in the Pentium II Xeon processor. For instance, data integrity and reliability fea-
tures, such as error checking and correction (ECC) and functional redundancy checking
(FRC), which were first introduced in the Pentium Pro processor, are also implemented in
the Pentium II Xeon processor. However, within the Pentium II Xeon processor, this sys-
tem management capability has been enhanced with a dedicated system management bus
interface, processor information ROM, and a scratch EEPROM for storage of user-
defined system management information.

The design of multiprocessor systems has also been made easier. The Pentium II
Xeon processor permits up to eight processors to be directly connected together in a multi-
processor system architecture. This capability enables low-cost implementation of very
high performance multiprocessing computer systems.

The 80386, 80486, and Pentium Processor Families

949

� 13 PENTIUM III PROCESSOR
AND PENTIUM IV PROCESSOR

The Pentium II processor was followed by two new generations of Pentium class MPUs
for the high-performance desktop market—the Pentium III in 1999 and Pentium IV in
2000. The internal architecture and feature set have continued to evolve to make the Pen-
tium family of processors more versatile and higher performance. For example, in the
Pentium III, system bus bandwidth is improved by increasing the maximum speed of the
front-side bus to 133 MHz, the L1 code and data caches are both 16Kbytes in size, and
the L2 cache is now accessed at full clock speed. These architectural enhancements and
the 0.18 process technology used to manufacture the Pentium III enabled Intel Corpora-
tion to offer their first GHz range microprocessor—maximum clock rate of 1.13 GHz.
The Pentium IV contains 42 million transistors and runs at clock speeds in excess of
2 GHz.

In the Pentium III, the P6 microarchitecture is enriched with an additional 70
instructions. This new instruction group, known as the Internet Streaming SIMD exten-
sion, implements single instruction-multiple data operations similar to those available in
the MMX technology instruction set extension, but performs these operations on floating-
point numbers. These types of operations are important for applications such as high-
resolution graphics, high-quality audio, and fast speech recognition.

The Pentium IV processor is based on a new high-performance microarchitecture
called the Intel NetBurst architecture. This architecture vastly improves performance through
the use of a deeper pipeline, expanded out-of-order, and increased parallel instruction exe-
cution. Special logic is provided for reordering instructions for parallel execution, and
instructions can be dispatched to separate execution units for integer, floating point, load,
and store operations. In fact, the high-speed integer ALU is able to perform two operations
per main clock cycle. Availability of these extensive execution resources increased paral-
lel instruction execution.

Other architectural enhancements that contribute to the high performance attained
with the Pentium IV processor are the increase of the front-side bus speed to 400 MHz, a
new level of internal cache—the execution trace cache—that stores decoded instructions,
and the full-speed L2 cache is now eight-way associative.

Again, the MMX technology Internet SSE instruction set extensions are enhanced
with 14 new instructions in the Pentium IV processors. These instructions permit arith-
metic on 128-bit integer values and double precision floating-point numbers. This is
known as the SSE2 instruction set extension.

REVIEW PROBLEMS

Section 1
1. Name the technology used to fabricate the 80386DX microprocessor.

2. What is the transistor count of the 80386DX?

3. Which signal is located at pin B7?

The 80386, 80486, and Pentium Processor Families

950

Section 2
4. How large is the real-mode address and physical address space of the 80386DX

MPU? How large is the protected-mode address and physical address space? How
large is the protected-mode virtual address space?

5. If the byte-enable code output during a data-write bus cycle is
, is a byte, word, or double-word data transfer taking place? Over

which data bus lines are the data transferred? Does data duplication occur?

6. For which byte-enable codes does data duplication take place?

7. What type of bus cycle is in progress when the bus status code
?

8. Which signals implement the DMA interface?

9. What processor is most frequently attached to the processor extension interface?

Section 3
10. What are the speeds of the 80386DX ICs available from Intel Corporation? How are

these speeds denoted in the part number?

11. At what pin is the CLK2 input applied?

12. What frequency clock signal must be applied to the CLK2 input of an 80386DX-25
if it is to run at full speed?

Section 4
13. What is the duration of PCLK for an 80386DX that is driven by ?

14. What two types of bus cycles can be performed by the 80386DX?

15. Explain what pipelining the 80386DX’s bus means.

16. What is an idle state?

17. What is a wait state?

18. What are the two T states of the 80386DX’s bus cycle called?

19. If an 80386DX-25 is executing a nonpipelined write bus cycle that has no wait
states, what would be the duration of this bus cycle if the 80386DX is operating at
full speed?

20. If an 80386DX-25 that is running at full speed performs a read bus cycle with two
wait states, what is the duration of the bus cycle?

Section 5
21. How is memory organized from a hardware point of view in a protected-mode

80386DX microcomputer system? Real-mode 80386DX microcomputer system?

22. What five types of data transfers can take place over the data bus? How many bus
cycles are required for each type of data transfer?

23. If an 80386DX-25 is running at full speed and all memory accesses involve one wait
state, how long will it take to fetch the word of data starting at address 0FF1A16? At
address 0FF1F16?

24. During a bus cycle that involves a misaligned word transfer, which byte of data is
transferred over the bus during the first bus cycle?

CLK2 � 50 MHz

C W/R � 0102M/IO D/

BE1BE0 � 11102

BE3BE2

The 80386, 80486, and Pentium Processor Families

951

25. Give an overview of the function of each block in the memory interface diagram
shown in Fig. 25.

26. When the instruction PUSH AX is executed, what bus status code is output by the
80386DX, which byte enable signals are active, and what read/write control signal
is produced by the bus control logic?

Section 6
27. Which signal can be used to distinguish an I/O bus cycle and a memory bus cycle?

28. Which block produces the input (read), output (write), and bus control signals for
the I/O interface?

29. Describe briefly the function of each block in the I/O interface circuit in Fig. 27.

30. If an 80386DX-25 running at full speed inserts two wait states into all I/O bus
cycles, what is the duration of a nonpipelined bus cycle in which a byte of data is
being output?

31. If the 80386DX in problem 30 was outputting a word of data to a word-wide port at
I/O address 1A316, what would be the duration of the bus cycle?

32. What parameter identifies the beginning of the I/O permission bit map in a TSS? At
what address of the TSS is this parameter held?

33. At what double-word address in the I/O permission bit map is the bit for I/O port
64 held? Which bit of this double word corresponds to port 64?

34. To what logic level should the bit in problem 33 be set if I/O operations are to be
inhibited to the port in protected mode?

Section 7
35. What is the real-mode interrupt address pointer table called? Protected-mode

address pointer table?

36. What is the size of a real-mode interrupt vector? Protected-mode gate?

37. The contents of which register determines the location of the interrupt address
pointer table? To what value is this register initialized at reset?

38. At what addresses is the protected-mode gate for type number 20 stored in memory?
Assume that the table starts at address 0000016.

39. Assume that gate 3 consists of the four words that follow:

(a) Is the gate descriptor active?

(b) What is the privilege level?

(c) Is the gate a trap gate or an interrupt gate?

(d) What is the starting address of the service routine?

 (IDT � EH) � 000016

 (IDT � CH) � AE0016

 (IDT � AH) � B00016

 (IDT � 8H) � 100016

The 80386, 80486, and Pentium Processor Families

952

40. Values stored in memory locations are as follows,

What address is loaded into the interrupt-descriptor table register when the instruc-
tion LIDT [IDT_TABLE] is executed? What is the maximum size of the table? How
many gates are provided for in this table?

41. What is the primary difference between the real-mode and protected-mode interrupt-
request /acknowledge handshake sequence for the 80386DX microprocessor?

42. List the real-mode internal interrupts serviced by the 80386DX.

43. Internal interrupts and exceptions are categorized into groups based on how the fail-
ing function is reported. List the names of these three groups.

44. Which real-mode vector numbers are allocated to internal interrupts and exceptions?

45. Into which reporting group is the invalid opcode exception classified?

46. What is the cause of a stack fault exception?

47. Which exceptions take on a new meaning or are only active in the protected mode?

Section 8
48. What signal is located at pin A16 of the 80486SX’s package?

49. Which lines of the 80486SX’s memory/IO interface carry parity information? What
type of parity is automatically generated?

50. What input signal and logic level does the external circuitry use to tell the 80486SX
MPU that it can perform a burst bus cycle?

51. What does stand for?

52. What signal permits an external device to take control of the 80486SX’s bus inter-
face at the completion of the current clock cycle?

53. What is the maximum number of bytes that can be transferred with a single-burst
bus cycle? What signal must be supplied to the MPU by the memory subsystem to
initiate a burst bus cycle? How many clock cycles does it take for completion?

54. What is meant when a read cycle is said to be cacheable? What signal must be sup-
plied to the MPU by the memory subsystem to initiate a cacheable bus cycle? How
many bytes of data are transferred during a cacheable bus cycle?

55. What is the result obtained by using a cache memory in a microcomputer system?

56. Is the internal cache of the 80486SX a first-level or second-level cache?

57. Define the term cache hit.

58. When an application program is tested on an 80486SX-based microcomputer sys-
tem, it is found that 1340 instruction and data accesses are from the internal cache
memory and 97 are from main memory. What is the hit rate?

KEN

 (IDT_TABLE � 4H) � 000116

 (IDT_TABLE � 2H) � 000016

 (IDT_TABLE) � 01FF16

The 80386, 80486, and Pentium Processor Families

953

59. If the cache memory in problem 58 operates with zero wait states and main mem-
ory bus cycles are performed with three wait states, what is the average number of
wait states experienced executing the application?

60. What type of cache organization is used for the 80486SX’s internal cache?

61. How large is the 80486SX’s internal cache? What is the smallest element of data
that can be loaded into the cache?

62. What write update method is implemented for the internal cache of the 80486SX?

63. What happens when the input of the 80486SX is switched to logic 0 by
external circuitry?

64. What new internal exception is implemented in the 80486SX MPU? What protected
mode exception gate is assigned to this exception?

Section 9
65. Name two enhancements made in the architecture of the 80486DX2 to improve its

performance?

66. What method is employed by the 80486DX2 to assure coherency between data in
the on-chip cache and that in external memory?

67. What cache-coherency protocol is employed by the 80486DX2?

68. What output signal and logic level indicates that the line of data checked during a
snoop operation is held in the 80486SX’s on-chip cache and has been modified but
has not yet been written back to main memory?

69. How is the 80486SX’s cache put into the write-back mode?

70. Name two enhancements made to the architecture of the 80486DX2 to improve its
performance.

71. How many times greater is the performance of the 80486DX4-100 compared to that
of the 80386DX-33?

72. What value voltage supply is needed to power the 80486DX4?

Section 10
73. Approximately how many transistors are used to implement the Pentium processor?

74. What is the nominal value of the Pentium processor power supply?

75. At what pin of the Pentium’s package is data bus line D45 located? Address line A3?

76. How many byte-enable, data parity, address parity lines are provided in the memory/
IO interface of the Pentium processor?

77. What kinds of parity are supported on the Pentium processor’s bus interface? How
are parity errors identified?

78. What does logic 0 at the input mean?

79. What type of bus cycle is in progress if the bus cycle indication information output
by the processor is ?

80. What does logic 0 at mean about the current bus cycle?

81. What type of organization is implemented with the Pentium processor’s caches?

NA

M/IO D/C W/R CACHE KEN � 0111X

BUSCHK

FLUSH

The 80386, 80486, and Pentium Processor FamiliesThe 80386, 80486, and Pentium Processor FamiliesThe 80386, 80486, and Pentium Processor Families

954

82. How much cache memory is provided on the Pentium processor?

83. How many bits are in the Pentium processor’s cache line?

84. What does logic 0 on mean about the current write bus cycle?

85. Describe the operation of the cache memories enable by making and
.

Section 11
86. Which of the new Pentium processor family’s microprocessors is intended for use

in workstations and servers?

87. How many transistors are in the Pentium Pro processor? The Pentium processor
with MMX technology?

88. With what size level-2 cache is the Pentium Pro processor available?

89. How large are the internal caches of the Pentium processor with MMX technology?
How are they organized?

90. What is the iCOMP Index 2.0 rating of the 200-MHz Pentium processor with MMX
technology?

Section 12
91. Which processor is intended for use in the Basic PC?

92. What is the iCOMP rating of the 350 MHz Pentium II processor? 266 MHz Celeron
processor?

93. What is the peak bandwidth of the front-side bus of the Pentium II processor if it is
set to operate at 66 MHz?

94. What is the peak bandwidth of the backside bus of the L2 cache on a 300-MHz Pen-
tium II processor?

95. What packaging technology is used to house the Pentium II processor?

96. What is the total bus bandwidth of the 400-MHz Pentium II Xeon processor?

Section 13
97. What is the name of the microarchitecture used to design the Pentium III processor?

Pentium IV processor?

98. How many transistors does the Pentium IV processor have?

99. What is the speed of the front side bus of the Pentium III processor? The Pentium
IV processor?

100. What is the name of the cache in the Pentium IV that holds decoded instructions?

Section 1
1. CHMOSIII.

3. INTR.

NW � 0
CD � 0

WB/WT

The 80386, 80486, and Pentium Processor Families

ANSWERS TO SELECTED REVIEW PROBLEMS▲

955

5. Byte, D0 through D7, no.

7. I/O data read.

9. 80387DX numeric coprocessor.

Section 3
11. F12.

Section 4
13. 40 ns.

15. In Fig. 11 address n becomes valid in the T2 state of the prior bus cycle and then the
data transfer takes place in the next T2 state. Also, at the same time that data transfer
n occurs, address is output on the address bus. This shows that during pipelin-
ing, the 80386DX starts to address the next storage location to be accessed while still
reading or writing data for the previously addressed storage location.

17. An extension of the current bus cycle by a period equal to one or more T states
because the input was tested and found to be logic 1.

19. 80 ns.

Section 5
21. Four independent banks each organized as ; four banks each organized as

.

23. 120 ns; 240 ns.

25. The bus control logic produces the appropriately timed command and control signals
needed to control transfers over the data bus.

The address decoder decodes the higher-order address bits to produce chip-enable
signals.

The address bus latch is used to latch and buffer the lower bits of the address,
byte-enable signals, and chip-enable signals.

The bank write control logic determines to which memory banks is
applied during write bus cycles.

The data bus transceiver/buffer controls the direction of data transfers between the
MPU and memory subsystem and supplies buffering for the data bus lines.

Section 6
27. .

29. The I/O address decoder is used to decode several of the upper I/O address bits to
produce the signals.

The I/O address bus latch is used to latch lower-order address bits, byte-enable
signals, and outputs of the decoder.

The bus-control logic decodes I/O bus commands to produce the input/output and
bus-control signals for the I/O interface.

The data bus transceivers control the direction of data transfer over the bus, mul-
tiplex data between the 32-bit microprocessor data bus and the 8-bit I/O data bus, and
supplies buffering for the data bus lines.

The I/O bank-select decoder controls the enabling and multiplexing of the data
bus transceivers.

31. 320 ns.

I/OCE

I/OCE

M/IO

MWTC

256K � 8 bits
1G � 8 bits

READY

n � 1

The 80386, 80486, and Pentium Processor Families

Section 2

956

33. BASE � 8H; LSB (bit 0).

Section 7
35. Interrupt vector table; interrupt descriptor table.

37. Interrupt descriptor table register; 0000000003FF16.

39. (a) Active; (b) privilege level 2; (c) interrupt gate; (d) B000H:1000H.

41. In the protected mode, the 80386DX’s protection mechanism comes into play and
checks are made to confirm that the gate is present; the offset is within the limit of
the interrupt descriptor table; access byte of the descriptor for the type number is for
a trap, interrupt, or task gate; and to assure that a privilege level violation will not
occur.

43. Faults, traps, and aborts.

45. Fault.

47. Double fault, invalid task state segment, segment not present, general protection fault,
and page fault.

Section 8
49. DP0, DP1, DP2, DP3, and ; even parity.

51. Cache enable.

53. ; ; 5 clock cycles.

55. Near to zero-wait-state operation even though the system employs a main memory
subsystem that operates with one or more wait states.

57. A bus cycle that reads code or data from the cache memory is called a cache hit.

59. 0.203 wait states/bus cycle.

61. 8Kbytes; .

63. The contents of the internal cache are cleared. That is, the tag for each of the lines of
information in the cache is marked as invalid.

Section 9
65. Clock doubling and write-back cache.

67. Modify/exclusive/shared/invalid (MESI) protocol.

69. The input must be held at logic 1 for at least two clock periods before and
after a hardware reset.

71. .

Section 10
73. 3 million transistors.

75. D45 is at pin A21; A3 is at pin T17.

77. Data parity and address parity; address parity error and
data parity error.

79. I/O write.

81. Two-way set associative.

83. 256 bits (32 bytes).

PCHK � 0APCHK � 0

435/68 � 6.4

WBWT

line of data � 128 bits (16 bytes)

BRDY � 0Four double words � 16 bytes

PCHK

The 80386, 80486, and Pentium Processor Families

957

85. Read hits access the cache, read misses may cause replacement, write hits update the
cache, writes to shared lines and write misses appear externally, write hits can change
shared lines to exclusive under control of , and invalidation is allowed.

Section 11
87. 5.5 million; 4.5 million.

89. Both the code and data caches are 16Kbytes in size; they are organized four-way set-
associative.

Section 12
91. Celeron processor.

93. 533Mbytes/sec.

95. Single edge contact cartridge.

Section 13
97. P6 microarchitecture; NetBurst microarchitecture.

99. 133 MHz; 400 MHz.

WB/WT

The 80386, 80486, and Pentium Processor Families

958

Bibliography

Bistry, David, Carole Delong, Dr. Mickey Gutman, Michael Julier, Michael Keith, Lawrence M. Mennemeier,

Millind Mittal, Alex D. Peleg, and Dr. Uri Weiser. The Complete Guide to MMX™ Technology. New York:

McGraw-Hill, 1997.

Bradley, David J. Assembly Language Programming for the IBM Personal Computer. Upper Saddle River,

NJ: Prentice-Hall, 1984.

Ciarcia, Steven. “The Intel 8086,” Byte, November 1979.

Coffron, James W. Programming the 8086/8088. Berkeley, CA: Sybex, 1983.

Intel Corporation. Components Data Catalog. Santa Clara, CA: Intel Corporation, 1980.

———. 80286 Hardware Reference Manual. Santa Clara, CA: Intel Corporation, 1987.

———. 80286 Operating Systems Writer’s Guide. Santa Clara, CA: Intel Corporation, 1986.

———. 80286 and 80287 Programmer’s Reference Manual. Santa Clara, CA: Intel Corporation, 1987.

———. 80386 Microprocessor Hardware Reference Manual. Santa Clara, CA: Intel Corporation, 1987.

———. 80386 Programmer’s Reference Manual. Santa Clara, CA: Intel Corporation, 1987.

———. 80386 System Software Writer’s Guide. Santa Clara, CA: Intel Corporation, 1987.

———. iAPX86,88 User’s Manual. Santa Clara, CA: Intel Corporation, July 1981.

———. Introduction to the 80386. Santa Clara, CA: Intel Corporation, September 1985.

———. Memory. Santa Clara, CA: Intel Corporation, 1989.

———. i486™ Microprocessor Family Programmer’s Reference Manual. Santa Clara, CA: Intel

Corporation, 1992.

———. i486™ Microprocessor Hardware Reference Manual. Santa Clara, CA: Intel Corporation, 1990.

From 8088 and 8086 Microprocessors, The: Programming, Interfacing,
Software, Hardware, and Applications, Fourth Edition. Walter A. Triebel, Avtar Singh.
Copyright © 2003 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

959

———. iAPX86,88 User’s Manual. Santa Clara, CA: Intel Corporation, July 1981.

———. Intel486™ SX Microprocessor Data Book. Santa Clara, CA: Intel Corporation, 1992.

———. MCS-86™ User’s Manual. Santa Clara, CA: Intel Corporation, February 1979.

———. Microprocessor. Santa Clara, CA: Intel Corporation, 1989.

———. Microprocessor and Peripheral Handbook, vols. 1 and 2. Santa Clara, CA: Intel Corporation, 1989.

———. Pentium® Processors and Related Products. Santa Clara, CA: Intel Corporation, 1995.

———. Pentium® Processor Family Developer’s Manual, vols. 1, 2, and 3. Santa Clara, CA: Intel

Corporation, 1995.

———. Pentium® II Processors Data Sheet. Santa Clara, CA: Intel Corporation, 1996,1997.

———. Peripheral. Santa Clara, CA: Intel Corporation, 1989.

———. Peripheral Design Handbook. Santa Clara, CA: Intel Corporation, April 1978.

Morse, Stephen P. The 8086 Primer. Rochelle Park, N.J.: Hayden Book Company, 1978.

National Semiconductor Corporation, Series 32000 Databook. Santa Clara, CA: National Semiconductor

Corporation, 1986.

Norton, Peter. Inside the IBM PC. Bowie, MD: Robert J. Brady, 1983.

Rector, Russell, and George Alexy. The 8086 Book. Berkeley, CA: Osborne/McGraw-Hill, 1980.

Scanlon, Leo J. IBM PC Assembly Language. Bowie, MD: Robert J. Brady, 1983.

Schneider, Al. Fundamentals of IBM PC Assembly Language. Blue Ridge Summit, PA: Tab Books, 1984.

Singh, Avtar, and Walter A. Triebel. IBM PC/8088 Assembly Language Programming. Upper Saddle River,

NJ: Prentice-Hall, 1985.

Singh, Avtar, and Walter A. Triebel. The 8088 Microprocessor: Programming, Interfacing, Software,

Hardware, and Applications. Upper Saddle River, NJ: Prentice-Hall, 1989.

Singh, Avtar, and Walter A. Triebel. The 8086 and 80286 Microprocessors: Hardware, Software, and

Interfacing. Upper Saddle River, NJ: Prentice-Hall, 1990.

Strauss, Ed, Inside the 80286. New York: Brady Books, 1986.

Texas Instruments Incorporated, Programmable Logic Data Book. Dallas, TX: Texas Instruments Incorporated,

1990.

Triebel, Walter A. Integrated Digital Electronics. Upper Saddle River, NJ: Prentice-Hall, 1985.

Triebel, Walter A. The 80386DX Microprocessor: Hardware, Software, and Interfacing. Upper Saddle River,

NJ: Prentice-Hall, 1992.

Triebel, Walter A. The 80386, 80486, and Pentium® Processor: Hardware, Software, and Interfacing. Upper

Saddle River, NJ: Prentice-Hall, 1998.

Triebel, Walter A., and Alfred E. Chu. Handbook of Semiconductor and Bubble Memories. Upper Saddle

River, NJ: Prentice-Hall, 1982.

Triebel, Walter A., and Avtar Singh. The 8086 Microprocessor: Architecture, Software, and Interface

Techniques. Upper Saddle River, NJ: Prentice-Hall, 1985.

Triebel, Walter A., and Avtar Singh. The 8088 and 8086 Microprocessors: Programming, Interfacing,

Software, Hardware, and Applications, 3rd edition. Upper Saddle River, NJ: Prentice-Hall, 2000.

Willen, David C., and Jeffrey I. Krantz. 8088 Assembly Language Programming: The IBM PC. Indianapolis,

IN: Howard W. Sams, 1983.

Bibliography

960

Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

2
2G, 619

A
Access time, 390, 436, 462, 473, 487, 863, 868, 873,

880, 915
Accumulator, 45-46, 60, 86, 90, 99, 102, 170, 172,

177, 190, 194, 234-235, 299, 319, 415, 428,
528, 531, 715, 812, 842

accuracy, 819
Adder, 30, 189-190

full, 30, 189-190
half, 189

Addition, 6, 32, 45, 48, 50, 109, 112, 142, 187-191,
194, 199-201, 203, 208, 232, 234, 274, 312,
324, 410, 468, 540, 626, 644, 664, 765, 776,
804, 807, 811, 814, 823, 825, 838-839, 905,
916

Address, 14, 19, 26, 29-30, 32-37, 40-44, 46-61,
65-66, 68, 72, 74-77, 87-88, 90-104, 106,
110, 113-116, 119, 122-124, 131-146,
148-156, 158-166, 170, 172-175, 178,
180-182, 185-187, 194-197, 206, 215-216,
223, 227, 232, 234-239, 245, 247, 252-253,
256-260, 266, 269-271, 273-274, 276-281,
284-287, 290-292, 294-296, 298-299,
301-303, 305-312, 319-321, 324, 332-336,
338-339, 342, 344, 346, 351, 353, 355,
357-358, 361, 363, 372, 374-380, 382-388,
390, 392-393, 395, 397, 407-410, 413-417,
419-428, 432-436, 439-441, 444-446, 448,
450-451, 453, 459, 461, 463-472, 474-475,
477-481, 483-487, 493-497, 499, 501-502,
505-506, 508, 510, 522-533, 536-538,
548-549, 551, 553, 555-562, 569, 575,
577-578, 580-581, 583-584, 586, 588-589,
591, 597-601, 603, 608-611, 613, 615,
617-619, 622, 626-627, 632, 635-640,
642-644, 648, 651-653, 658, 661, 665,
667-669, 671-680, 682, 684-686, 688, 690,
693-697, 707, 710, 712-716, 719, 722-723,
730, 732-733, 735-736, 739, 743, 745-750,
752-753, 756, 759, 761-765, 767-780, 785,
787, 789-791, 793, 797, 800, 803, 809,
811-813, 822-823, 825-827, 830, 832,
834-836, 838, 842-844, 846-849, 854-857,
860, 862-864, 867-869, 871-880, 882-891,
893, 896, 898, 902, 904-907, 909-914,
918-919, 923-927, 929, 932, 934, 936,
939-942, 951-954, 956-957

Address bus, 26, 30, 56, 357-358, 361, 363, 378, 383,
386-388, 390, 393, 420, 422, 426, 432,
434-435, 444, 459, 464, 467-468, 472, 478,
480, 495, 510, 525, 528, 561-562, 569, 578,
658, 661, 668-669, 679, 682, 685-686, 688,
693-695, 707, 735, 743, 748-749, 772, 827,
842, 855-856, 862, 867, 869, 874, 876,
878-879, 883, 887, 907, 911-912, 924,
926-927, 929, 932, 934, 936, 956

Address decoder, 386, 393, 395, 397, 414, 426, 441,
445-446, 493, 495-497, 499, 501, 508, 524,
528-529, 562, 584, 588, 597, 676, 678, 694,
697, 710, 733, 736, 739, 878, 880, 882-884,
887, 956

Address field, 132
Address multiplexing, 453
Address register, 332, 553, 555, 557, 600, 682, 834
Algorithm, 72-73, 77, 107, 439-440, 458, 462-465,

471, 485, 731, 805, 921, 939
Algorithms, 72, 439, 468, 471
Amplifier, 687
Analog, 699

AND array, 399-401
AND gate, 397, 400-401, 534, 671-672, 681, 895
AND-OR, 399-401, 405
Anode, 716
applications, 1-5, 8-10, 13, 25, 27, 29, 63-64, 69-70,

73, 98, 105, 109, 169, 175, 243, 263, 266,
300, 317, 357, 405, 429, 431-432, 439, 448,
458-461, 468, 478, 489, 500, 502, 564-565,
572, 585, 589, 595, 605, 611, 622, 639, 657,
699, 715, 745, 772, 793-795, 803-804, 816,
834-836, 845, 853, 891, 943, 949-950,
959-960

electronic systems, 585
Architecture, 1-3, 5-6, 8-10, 14, 25, 27, 29-61, 169,

253, 358, 399-401, 460-461, 466, 468, 471,
486, 534, 551, 569, 624-625, 657-658, 664,
673, 678, 745-748, 750, 753, 759, 765, 787,
790, 798, 804-806, 813, 815-816, 826-828,
834, 846, 850, 853-854, 884, 905, 916, 927,
929, 939, 943, 945, 947-950, 954, 960

Arctangent, 821
Arithmetic logic unit (ALU), 32, 60
ASCII, 40-41, 57-58, 60, 69, 132, 136, 152, 180-181,

187, 199-200, 203, 208, 234, 237, 240, 266,
310, 323, 331, 564, 572

Assembler, 66-68, 76-78, 105-107, 151, 196, 199,
215, 221, 251-252, 270, 278, 285, 291, 295,
302, 317-319, 321, 324-331, 335-337, 339,
342-344, 347-349, 352-355

Assembler directive, 199, 349
Assembly language, 29, 63-107, 109-110, 119, 123,

128, 144, 156, 169, 188, 264, 269, 274,
317-355, 644, 737, 745, 959-960

Asynchronous, 13, 410, 563-566, 569, 572-576, 578,
581, 583, 601

Audio, 6, 834, 950

B
Backup battery, 453
Bandwidth, 921, 948-950, 955
Base, 4-5, 14, 16-19, 21, 34, 36-37, 41-46, 49-53,

59-61, 75, 90-92, 95, 98-99, 101-102, 107,
114, 143, 173, 175, 187, 195, 234, 238, 319,
333, 339, 370, 536-537, 553, 555, 557,
559-560, 600, 608-609, 682, 746, 750, 753,
756, 761-765, 767-769, 776-781, 785,
787-789, 791, 797, 800, 830, 842-844,
848-849, 865, 890-891, 893, 957

numbers, 16-19, 21, 37, 59, 187, 234, 608-609,
893

time, 4-5, 41-42, 45, 51, 53, 95, 195, 238, 370, 536,
555, 557, 600, 746, 765, 768, 776, 797,
830, 849, 865

Base address, 36-37, 41-44, 46, 50, 61, 75, 90, 143,
173, 187, 333, 536-537, 553, 555, 557,
559-560, 600, 608-609, 682, 761, 764,
767-769, 776-780, 785, 791, 797, 800, 891,
893

Battery, 453
Baud rate, 566, 568, 571-573, 577-578
Bias, 817-819, 824
Biased exponent, 817-819, 850
BiCMOS, 943
Bidirectional port, 518
Binary, 8, 16-26, 35, 38-39, 50-51, 57, 68, 111, 119,

187-191, 199-201, 203-204, 208-209, 211,
220, 233-234, 240, 250, 310, 321, 323, 352,
363, 378, 433, 435, 456, 494, 511-512, 529,
534, 536, 556, 585, 589, 595-596, 599-600,
609, 629, 690-691, 696, 713, 742, 757, 769,
783, 785-786, 816-817, 823-824, 846-847

adder, 189-190
arithmetic, 187-188, 191, 204
data, 8, 16, 19, 21-22, 25-26, 35, 38-39, 50, 57,

111, 187, 199-200, 203, 209, 211, 220,
234, 240, 250, 310, 321, 323, 352, 363,
378, 433, 435, 456, 494, 534, 536, 589,

599, 690-691, 696, 713, 783, 786,
816-817, 823, 846-847

digit, 16-18, 21-23, 26, 39, 57, 187, 589
division, 19-20, 187, 209, 211
fraction, 20-21, 817, 824
information, 8, 16, 19, 21-22, 119, 187, 200, 240,

433, 536, 585, 690, 785
multiplication, 20, 187, 209
number, 8, 16-26, 38-39, 57, 187, 199-200, 203,

220, 233-234, 240, 250, 310, 323, 352,
433, 435, 456, 556, 585, 589, 595, 600,
609, 690, 816-817, 823-824, 846

point, 17-18, 20, 25-26, 742, 816-817, 823-824,
846-847

sequence, 187, 191, 199-200, 208, 220, 234, 240,
250, 536, 599-600, 629, 846

subtraction, 187, 201, 203-204, 208-209, 234, 250,
824

system, 8, 16-19, 21, 24-26, 363, 378, 435, 595,
629, 690-691, 696, 742, 785-786, 847

BIOS, 431, 485, 658, 676-677
Bipolar, 398, 401, 943
Bit, 1-3, 6, 8-10, 13, 17-20, 22-27, 30, 32-36, 38-39,

42-44, 46-51, 58, 89, 93-94, 110-119, 121,
123, 178, 180, 182, 187-188, 190-191, 194,
200-204, 208-211, 213-214, 218-231,
234-236, 238, 240-241, 249-251, 256-257,
259, 262-263, 276-277, 283, 307, 309-311,
323, 328, 345, 347, 358, 361, 363, 365, 368,
374-376, 378, 380, 382, 384, 391, 405,
409-410, 413, 415, 419-421, 425, 429,
432-433, 435, 440, 444-446, 448, 450-451,
453-456, 458, 461, 466, 468-471, 478-479,
483, 485, 487, 493, 495, 497, 502, 507-508,
510-511, 515-520, 522, 524, 527-528, 531,
533-537, 539-540, 546, 548-549, 551, 553,
555-560, 563-566, 569, 571-578, 581-582,
585, 589, 591, 595-597, 599, 602-603, 611,
613, 618, 624-627, 629-632, 634, 638-639,
642, 650, 652, 654, 658, 664, 672-673,
675-682, 684-685, 687-688, 690-691, 693,
713-716, 718, 746, 748-750, 752-754,
756-759, 761, 764-765, 767-774, 776,
778-783, 785, 787, 789, 791, 796, 800, 804,
807, 809-810, 813-820, 824-831, 834-836,
838, 843-851, 856, 858, 860-861, 870-871,
874-875, 884-886, 889-891, 893, 896-897,
900-902, 904-906, 909, 911-914, 922-924,
926, 928-929, 933-936, 939-942, 945, 950,
952, 956-957

Bit time, 564, 566, 571
Borrow, 48, 201-202, 204-205, 208-209, 250
Boundary scan, 807
Branch, 255, 262-263, 266, 274, 576, 634, 673, 827,

944-945
Breadboard, 700, 702-705, 707, 719, 722-723, 726,

728, 731-732, 734, 739, 741-742
Buffer, 387, 391-392, 401, 405, 426-427, 497,

506-507, 516-517, 524, 528, 534, 558, 569,
572, 581, 584, 589, 591, 607, 619, 624-625,
668, 679, 690-691, 714, 716, 719, 736, 749,
779, 785, 805, 814, 827, 844, 848, 883, 956

Burst, 905, 910, 913-915, 925-926, 933-934, 936-940,
953

Bus, 3-4, 6, 9-10, 24, 26, 30-32, 56, 60, 357-358,
360-361, 363-369, 372-376, 378-388,
390-393, 397, 410-411, 413-415, 417-428,
432, 434-436, 440, 444-445, 453, 455-456,
458-459, 461-469, 471-474, 477-481, 483,
485-487, 493-495, 497, 499, 502, 506, 508,
510, 524-526, 528-529, 533-534, 536,
547-549, 551, 555-558, 560-562, 568-569,
571-572, 578, 580-581, 587, 589, 597-599,
611, 613-615, 617-619, 622, 624-626,
630-631, 634, 637-641, 644, 647-648,
651-652, 654, 658, 661, 665, 667-673,
675-688, 690, 693-697, 699-700, 702,

961

704-707, 709-710, 713-714, 716, 719, 722,
728, 730, 732, 735-737, 739-740, 742-743,
746-750, 772, 805, 807, 813-815, 826-827,
842, 846-848, 853-856, 858-880, 882-889,
896-898, 902, 905-907, 909-916, 918-919,
921-929, 932-940, 942, 947-957

address, 26, 30, 32, 56, 60, 357-358, 361, 363,
372, 374-376, 378-380, 382-388, 390,
392-393, 397, 410, 413-415, 417,
419-428, 432, 434-436, 440, 444-445,
453, 459, 461, 463-469, 471-472, 474,
477-481, 483, 485-487, 493-495, 497,
499, 502, 506, 508, 510, 524-526,
528-529, 533, 536, 548-549, 551,
555-558, 560-562, 569, 578, 580-581,
589, 597-599, 611, 613, 615, 617-619,
622, 626, 637-640, 644, 648, 651-652,
658, 661, 665, 667-669, 671-673,
675-680, 682, 684-686, 688, 690,
693-697, 707, 710, 713-714, 716, 719,
722, 730, 732, 735-736, 739, 743,
746-750, 772, 813, 826-827, 842,
846-848, 854-856, 860, 862-864,
867-869, 871-880, 882-889, 896, 898,
902, 905-907, 909-914, 918-919,
923-927, 929, 932, 934, 936, 939-940,
942, 951-954, 956-957

control, 3-4, 30, 32, 60, 358, 360-361, 363-365,
368-369, 372, 378-381, 384, 386-388,
390-391, 397, 411, 413-414, 419-427,
432, 434-436, 444-445, 456, 459, 461,
464, 468, 471, 478-479, 481, 495, 497,
502, 508, 510, 524, 528, 533-534, 536,
549, 551, 555, 558, 561-562, 569,
571-572, 578, 581, 589, 598-599, 613,
615, 622, 624-626, 631, 634, 638-640,
644, 647-648, 652, 658, 665, 667-669,
671-673, 675-677, 679, 682-688,
693-696, 710, 735, 743, 748-750, 805,
807, 813-815, 827, 842, 846-847,
862-864, 867, 869, 871, 873, 878-880,
882-889, 896, 898, 902, 910-912,
923-926, 932, 942, 952-953, 956

external, 6, 10, 30, 32, 363-365, 368, 372-373,
378-383, 385, 414, 420, 424, 453,
467-468, 473-474, 487, 548, 551, 569,
572, 589, 611, 613-615, 617-618, 626,
630, 638-639, 644, 648, 651-652, 654,
668, 685, 699-700, 704, 746, 748,
814-815, 826, 847, 855, 858, 862-871,
884, 886, 896-898, 902, 905, 909-911,
913-914, 916, 921-926, 928-929, 932,
936, 939-940, 942, 953-954

internal, 6, 30, 32, 56, 60, 363-364, 372, 388, 410,
462, 471, 508, 533-534, 548, 551, 555,
569, 572, 611, 613, 615, 617-618, 622,
624-626, 638-639, 644, 648, 669,
685-686, 702, 704, 709, 746-748, 750,
805, 807, 815, 826-827, 842, 864-866,
868, 896, 898, 902, 905-906, 909-911,
914, 916, 921-925, 927-928, 932,
939-940, 942, 950, 953-955, 957

ISA, 3-4, 24, 702, 704-706, 710, 722, 739, 909
local, 3, 365, 369, 421, 547, 658, 667-669, 694,

772, 848, 864, 916, 918-919, 925, 927
multiplexed, 358, 361, 363, 378, 382, 410, 420,

479-481, 561, 587, 611, 638, 667, 679,
842, 886

PCI, 3
RS-232C, 568-569, 580

Bus arbitration, 911, 926
Bus controller, 365-366, 378, 380, 386-388, 390, 392,

413, 423, 426-427, 474, 477, 479, 481, 613,
640, 647-648, 654, 658, 665, 667-668, 671,
684, 882, 897

Bus interface unit (BIU), 30
Bus signals, 483, 485, 487, 549, 561, 658, 694, 699,

702, 704, 735, 743, 864
Byte, 3, 8, 19-20, 23, 26, 30, 32-38, 40-43, 45-46, 48,

50, 53-54, 56-57, 65-66, 68, 74, 86-87, 90,
94, 99-100, 102, 110-119, 121-122, 131-133,
135-143, 152, 155, 164, 166, 170, 172, 177,
187-188, 194-195, 199-201, 208-210,
213-214, 216, 218, 222-223, 227, 231-240,
250, 269, 277, 294-295, 297-299, 301, 303,
305, 311, 321, 323, 328-332, 338, 345, 347,
353, 358, 361, 363, 368, 374-378, 381, 388,
408, 410, 414-416, 419-428, 430, 432,
434-436, 440, 444, 446, 455-456, 458, 461,

463, 465-467, 469-472, 478-481, 485, 488,
489-490, 494-495, 497, 499-500, 502,
506-508, 515, 518, 523-524, 528, 530,
535-536, 538-540, 551, 553, 555, 557-561,
574-576, 578-579, 583, 590, 593, 598-603,
617-619, 650, 655, 672, 679-681, 685, 688,
690-691, 693, 695, 714-715, 736, 754, 756,
758-759, 762, 771, 777, 780-785, 789,
791-792, 795, 809-810, 812, 830, 835,
839-841, 849, 851, 856, 858-863, 869,
871-877, 879-880, 882, 884-887, 889-890,
895-896, 898, 902, 907, 909, 913, 921, 923,
926, 928-929, 936, 940, 951-952, 954,
956-957, 959

C
Cache memory, 804-805, 807, 814-816, 828, 846-847,

905, 909-911, 914-919, 921-923, 925, 927,
929, 932, 934, 936, 939-940, 942, 949,
953-955, 957

calculators, 8, 585
Capacitor, 371, 645
Capacity, 7, 25, 399, 405, 423, 430, 433-434, 436,

439-441, 443, 460-461, 478-479, 485-487,
679, 915

Carrier, 461, 584
Carry, 47-48, 110, 129, 187-191, 194-196, 199-200,

203-207, 225-230, 234, 238, 244, 247-248,
250-252, 254, 260, 263, 273, 306, 311, 318,
361, 502, 702, 715, 757, 829, 856, 858, 909,
949, 953

Cascade, 557, 624-625, 627, 639, 682
Cascading, 624, 630
Cathode, 716
cells, 398, 436, 453, 458
Channel, 3, 26, 553, 555-560, 600, 604, 657, 662,

664-665, 669-670, 672-673, 682-685, 688,
691-697, 699-700, 702, 704-705, 707,
709-710, 713, 722-723, 726, 735, 739, 904

Chip, 11, 13-14, 25, 27, 371, 387, 395, 397, 399, 423,
426-427, 434, 436, 440, 445, 459, 461,
468-469, 473-474, 476, 478, 480, 485,
487-488, 508, 524-525, 528, 530, 533, 548,
569, 576, 580, 589, 622, 657-658, 661-662,
669, 671-679, 684, 686, 688, 694, 696-697,
710, 713, 732, 768, 780, 790, 804-805, 807,
814-816, 828, 833-834, 845-847, 849-850,
879-880, 884, 898, 902, 905, 910, 922-923,
925-928, 934, 939-941, 954, 956

Chips, 358, 678, 949
CISC, 805, 846
Clear, 70, 72, 222, 227, 231, 244, 247-248, 301, 306,

311, 318, 469, 555, 559-561, 566, 584, 596,
600, 603, 610, 672, 691, 728, 835, 844, 849,
904

Clock, 357, 364, 368, 370-373, 376, 381, 388, 401,
417, 421-422, 428, 473-475, 477, 493-494,
534, 536, 541, 543-547, 551, 563-564,
571-573, 577-578, 595, 600-601, 612, 636,
639-642, 645-646, 658, 664-665, 667, 669,
672, 684-687, 691, 693, 706, 708, 712, 716,
722-723, 726-727, 732-733, 804-806, 826,
828, 834, 850, 853, 863, 865-868, 872,
910-911, 913-915, 925, 927, 934-936, 939,
947-951, 953, 957

Clock generator, 364, 370, 421, 475, 477, 636, 640,
645, 658, 665, 667, 669, 693

CMOS, 398, 435, 439, 442, 461, 622, 865, 943
Codes, 117, 180, 238, 357, 361, 363, 365, 368-369,

378, 380-381, 386, 413, 431, 464, 469, 481,
508, 581, 585, 587, 589, 591, 594, 597, 601,
615, 668, 713, 858, 869, 871, 879, 909, 951

Coding, 73, 109-124, 126-168, 595, 805, 817-818, 909
Coil, 719
Collector, 405, 928
Combinational logic, 188, 190
Common, 8, 34, 46, 59, 69, 158, 222, 262, 334, 354,

360, 365, 381, 445, 465, 500, 560, 563-564,
566, 568, 577, 579, 585, 644, 652, 705, 715,
726, 768, 888

Communications, 107, 410, 489, 502, 562-567,
573-574, 579

Compact disk (CD), 7
Comparator, 624-625, 710
Compiler, 69-70, 105-106, 220, 262
Complement, 38-39, 57, 110, 143, 203, 206, 209, 211,

233, 240, 244, 248, 323, 363, 401, 411, 419,
422, 427, 493, 495, 497, 579, 671, 757

computers, 2, 4-5, 7, 24, 430, 585, 805-806, 909, 943

Control bus, 434-435, 444, 561-562, 658, 694-695,
735, 827, 912

Control unit, 827
Controller, 13, 361, 365-366, 378, 380, 386-388, 390,

392, 413, 423, 426-427, 453, 474, 477, 479,
481, 489-490, 547-549, 551, 553, 555-556,
561, 569, 572-573, 575, 580, 587, 605, 607,
613, 622, 635, 639-640, 647-648, 654, 658,
661-662, 664-665, 667-669, 671, 673, 675,
682, 684, 687, 693, 696, 735, 858, 864, 882,
897-898

Conversion, 18-19, 22-23, 67, 76, 180-181, 199,
213-214, 238, 310, 836-837, 840

conversion tables, 238
conversions, 180
Converter, 470, 699-700
copper, 728
Coprocessor, 365, 664, 667, 672, 688, 765, 804-807,

843, 850, 855, 865, 904-905, 924, 942, 956
Core, 489-490, 597, 806, 828, 925, 948
Counter, 44, 65-66, 74, 162, 269, 311-313, 338, 345,

347, 506-507, 531, 534-541, 543-547, 571,
599-600, 603, 655, 673, 685-687, 695, 697,
830-831, 833-834, 851

binary, 534, 536, 599-600
synchronous, 543

Crystal, 371-372, 421, 581, 665
current, 42, 44, 46, 52-54, 58-59, 93-94, 96, 104,

127-128, 131-134, 142, 153, 155, 164,
172-174, 180, 185-186, 223, 234, 236-238,
244, 256-258, 276, 278, 298-299, 302,
307-308, 323, 335, 342, 344, 353, 363-364,
369, 373, 378, 388, 392, 398, 421-422, 424,
439, 442, 449, 461, 468-469, 474, 538-539,
551, 553, 555, 557-558, 574, 600, 607, 615,
617-618, 622, 625, 645, 667-670, 682, 685,
725, 749, 765, 770, 789, 791, 795-797, 800,
819, 821-826, 844, 847, 855, 862-864,
868-869, 871-873, 889-890, 895, 899, 911,
913, 922-923, 932, 936, 941, 953-956

bias, 819, 824
constant, 257, 821
holding, 913
leakage, 442, 449
load, 127, 131, 134, 153, 164, 244, 257-258, 299,

302, 323, 439, 442, 553, 685, 749, 789,
821-822, 825, 844

probe, 725
source, 94, 96, 104, 173-174, 223, 276, 278,

298-299, 302, 323, 342, 344, 353, 363,
551, 682, 685, 821-825

switching, 364, 388, 574, 682, 765, 789, 797,
863-864

Cycle, 70-72, 74, 76-77, 105, 357, 363-366, 368,
372-374, 376, 378-386, 388, 390, 413-415,
417-422, 424-428, 435-436, 447-451, 453,
456, 458-459, 461, 464, 468-469, 473-474,
478-480, 485-486, 493-494, 497, 508, 524,
528, 536, 545-546, 548, 551, 553, 555-561,
569, 580-581, 597-599, 612-613, 615, 617,
622, 624-626, 629, 638-639, 651, 654, 661,
667, 669-671, 673, 675, 679-685, 687,
694-696, 713-714, 716, 742, 748-749, 804,
806, 813, 815, 826, 828, 834, 846, 855, 858,
860, 862-864, 866-874, 876, 879-880, 882,
885-886, 888-889, 896-898, 909-911,
913-915, 918, 923-927, 929, 932-937, 939,
942, 948, 950-957

D
Data, 3-8, 10, 13, 16, 19, 21-22, 25-27, 29-30, 32-40,

42-48, 50, 52-60, 63-66, 69-70, 72-77, 79,
84, 86-87, 90, 93-97, 99-100, 102, 105-107,
109-111, 114-118, 121-124, 129, 131-147,
151-152, 156, 158-159, 161-165, 169-178,
180, 182-183, 185-187, 196-197, 199-200,
203, 209-211, 213, 218, 220, 222-224,
226-232, 234-241, 244, 246-247, 250, 252,
266, 269, 273-274, 277-278, 280-282,
285-287, 294-295, 297-303, 308, 310-313,
315, 319-324, 328-331, 334, 338, 344, 346,
349, 351-354, 358, 360-361, 363-364,
372-376, 378-380, 382-388, 390-393, 405,
407-408, 410-411, 413-417, 419-428,
429-436, 439-440, 442, 444-445, 448,
450-451, 453, 455-456, 458-459, 461-469,
471-481, 483, 485-487, 490, 493-495, 497,
499, 502-503, 506, 508, 515, 517-518,
523-524, 526, 528, 530-531, 533-534, 536,

962

547-549, 551, 555, 557-558, 560-569,
571-572, 575, 577-581, 583-584, 587, 589,
591, 597-599, 601-602, 611, 613, 615,
617-622, 624, 626, 631, 634-643, 648, 652,
655, 658, 662, 664-665, 667-669, 671-672,
676-677, 679-688, 690-691, 693-697, 707,
709, 713-714, 716, 718-719, 722-723, 730,
732-733, 735-737, 739-740, 743, 746,
748-750, 752, 754, 756, 765, 771-773, 776,
779-783, 786, 791-796, 802-804, 807,
809-810, 813-817, 819, 821, 823, 825-828,
831, 834-849, 851, 854-856, 858-871,
873-880, 882-889, 891, 896-898, 902,
904-907, 909-916, 918-919, 921-929,
932-940, 942-945, 947, 949-954, 956-958,
959-960

Data acquisition, 30
Data bus, 30, 56, 358, 361, 363, 374-376, 379,

382-388, 390-393, 410-411, 413-414,
419-424, 426-427, 434-435, 440, 444-445,
453, 455-456, 458-459, 461, 464, 466-469,
472, 478-481, 483, 486, 493, 497, 499, 506,
508, 524, 526, 528, 533-534, 548, 551,
560-562, 569, 571-572, 580, 587, 589, 611,
613, 615, 617-619, 622, 624, 631, 634,
637-639, 652, 658, 667-669, 672, 676-677,
679-680, 682, 684-686, 688, 693-695, 707,
709, 713-714, 716, 719, 722, 732, 735-737,
739-740, 743, 746, 748, 826-827, 842, 847,
854-855, 858-862, 865, 867, 871, 875-876,
878, 882-886, 888-889, 897-898, 906-907,
909, 911-913, 926-927, 929, 951, 954, 956

Data register, 45, 58, 170, 234-235, 294, 320, 569,
571, 575, 578

Data sheet, 960
Data storage, 42-43, 58, 311, 429-431, 479-481,

486-487, 679, 681, 752, 779, 849, 912
Data terminal equipment (DTE), 567
Data transfer, 79, 84, 107, 169-171, 176, 180, 183,

244, 298, 363-364, 372, 376, 378-379, 388,
391, 413-415, 419, 427, 451, 458, 479,
502-503, 528, 551, 557-558, 564, 566, 569,
571, 615, 624, 631, 638, 658, 668, 676, 679,
685, 736, 754, 821, 834, 836-837, 858,
860-861, 863, 867-870, 876, 882, 885-886,
910, 912-914, 933-936, 939, 951, 956

dB, 65-66, 68, 74, 152, 174, 179, 185, 196-197, 205,
215-216, 252-253, 270-271, 278-279,
285-286, 291-292, 295-296, 302-303, 321,
329-331, 338-339, 344, 346, 352, 548-551,
561-562, 587, 641, 684

DC power supply, 401, 927
Decimal numbers, 16-18, 21, 23, 26, 37-39, 57, 187,

208, 322
Decoder, 386, 393-395, 397, 414, 423, 426, 441,

445-446, 478, 493-497, 499, 501, 508, 524,
528-530, 549, 562, 584, 588-589, 597, 626,
671, 673, 675-678, 684, 694, 697, 710, 713,
719, 722-723, 732-733, 736, 739, 748, 878,
880, 882-884, 886-887, 956

Delay line, 677
Difference, 4-5, 25, 58, 142-143, 164-166, 201-203,

206, 208, 228, 234, 238, 257, 270, 273, 276,
293, 296, 306, 308, 321, 330, 352, 358,
369-370, 384, 415, 420, 423, 444-445, 453,
458, 466, 468, 479, 481, 485-486, 495,
518-519, 526, 528, 601-602, 613, 830, 834,
845-846, 853, 856-858, 866, 871, 896, 909,
914, 953

Digital, 10, 17, 19, 430, 585, 601, 699, 725, 735-736,
834, 960

Digital electronics, 960
Digital multimeter, 725
Diode, 442

symbol, 442
Direct memory access (DMA), 364, 547, 661, 682, 864
Disk, 3, 7-8, 13-14, 25, 69, 107, 109, 123-124, 145,

147, 430-431, 547, 607, 658, 662, 665, 667,
676, 683, 688, 690, 693, 728, 734-735,
773-774, 782, 787

Dividend, 213
Division, 19-20, 187, 209-213, 225, 238, 324, 649
Divisor, 211, 213, 581, 583, 695, 697
duty cycle, 545

E
EEPROM, 949
Electronic, 2, 5, 8, 17, 431, 453, 566, 568, 585, 723,

726, 728, 734, 739

Element, 36, 44, 72-73, 77, 99-100, 103, 158, 162,
180, 190, 203, 228, 297-299, 308, 312-315,
331, 351, 685, 761, 767, 780, 790, 798, 807,
835, 838-840, 844, 902, 910, 924, 944, 954

Encoder, 551
priority, 551

Enhancement, 831, 910
EPROM, 398, 432-436, 439-440, 443, 458-459,

461-462, 478-479, 483-487, 676-679, 697,
912

Erase, 398, 432, 458-471, 485-486, 488
Error, 70, 72, 76-77, 130, 158-159, 165, 232, 343,

346-347, 353, 355, 455-456, 458, 463, 465,
467, 470, 486, 502, 569, 574-576, 578, 591,
596, 607, 609, 645, 649, 682, 726, 767, 774,
791, 814, 820, 865, 900-902, 905, 909, 926,
929, 932, 941-943, 949, 957

Even parity, 48, 129, 260, 456, 458, 572-573, 581,
681-682, 759, 909, 929, 957

Event, 13, 364, 372, 500, 606, 611, 626, 644, 648,
723, 736, 834, 868, 871, 892, 901, 904

Exclusive-OR, 115, 217, 220-221, 234, 497, 837
Execution unit (EU), 30
Exponent, 17-18, 816-819, 824, 850

F
fall time, 866
Falling edge, 451, 927
Fault analysis, 943
Feedback, 6, 401, 405, 470
Field, 110-117, 119, 122, 132, 136, 318-319, 321,

335-337, 352, 778-780, 784, 790-791, 796,
890

Flag, 47-48, 58-59, 61, 110, 116, 128-130, 164, 170,
187, 191, 194-196, 204-207, 225-227,
229-231, 234, 236, 240, 243-245, 247-248,
250, 252, 260, 262-263, 273, 287, 292, 294,
296, 298, 301, 306-307, 311, 318, 363, 500,
511, 513, 520, 523-524, 530, 575, 596,
609-611, 617, 626, 638-639, 645, 648-651,
653, 715, 750, 757-758, 761, 770, 794, 800,
804, 812-814, 820, 828-830, 842-843, 846,
864, 900-902, 924

Flash memory, 429, 458-462, 464, 467, 469, 478, 486,
915

Flip-flop, 401, 473-474, 540, 553, 555, 619, 645,
669-672, 686-688, 691, 696

D, 401, 473-474, 619, 669, 672, 686, 688, 691
Floating point, 821-822, 827, 836, 846, 950
Floating-point number, 816, 846
Floppy disk, 3, 7, 14, 107, 430, 607, 662, 665, 683,

690, 693
For loop, 264, 266
Framing, 569, 571, 574
frequencies, 421
Frequency, 371-372, 421, 447, 534, 551, 581, 595,

600-601, 687, 694-695, 719, 726, 740,
865-866, 925, 947-949, 951

difference, 601, 866
fundamental, 371
motor, 687
side, 534, 947-949
sum, 949

Full-adder, 189-190
Full-duplex, 565, 569, 601, 604
Function, 4, 13, 27, 32, 58-60, 70, 72, 77, 87, 105,

110, 124, 161, 175, 188-190, 194, 201-204,
217, 247, 260, 266, 274, 300, 308, 325,
327-329, 332-334, 336-337, 339, 351-353,
355, 358, 360, 380-381, 392-393, 397,
399-401, 405, 417, 420, 422-424, 432, 439,
456-457, 459, 470, 473, 486-487, 490, 497,
515, 546-547, 553, 555, 557, 566, 569, 572,
574, 581, 587, 591, 598, 601, 606-607, 622,
624, 627, 629, 631, 645, 649-651, 664-665,
667, 682, 688, 693, 695, 700, 710, 723, 726,
728, 735, 739, 746, 754, 756, 768, 770, 772,
781, 790, 805, 807, 815, 821, 829-831, 836,
843, 845, 855, 863, 882, 886, 900, 902, 907,
909-911, 916, 924, 927, 932, 952-953

Function table, 456-457
Fuse, 398, 400-401, 427

G
Gain, 43, 558, 687
Gate, 397, 400-401, 405, 479, 494, 534, 536, 538,

540-544, 546-547, 584, 670-672, 676-677,
679, 681-682, 686-687, 696-697, 710, 713,

719, 722, 764, 780, 797-799, 802-803, 845,
849, 895-896, 898-901, 906, 924, 942, 952,
954, 957

Generator, 364, 370, 421, 429, 455-458, 473-477,
486-488, 531, 543-545, 566, 571-572, 579,
581, 600, 636, 640, 645, 658, 665, 667, 669,
681-682, 693, 710

pulse, 531, 543-545, 571, 600
signal, 364, 370, 421, 456, 458, 474-476, 486-487,

531, 544-545, 566, 571-572, 600, 636,
645, 658, 665, 667, 669, 681-682, 693,
710

Ground, 397, 413, 500, 566, 584, 645, 693, 705, 707,
713, 716, 722

H
Half-adder, 189
Handshaking, 489, 502, 583, 602
Hard disk, 3, 7-8, 13-14, 25, 69, 147, 430-431, 607,

658, 665, 667, 693, 735, 773, 782, 787
Hardware, 1-3, 5, 29-30, 32, 44, 63, 69, 105, 109, 169,

206, 243, 317, 357-358, 364, 372-374, 408,
421, 429, 442, 466-467, 471, 489, 500, 515,
524, 547, 559-560, 566, 575, 585, 602,
605-609, 611-615, 617-618, 632, 644-646,
648, 651-654, 657-697, 699-700, 726, 728,
731, 734, 737, 741, 743, 745, 748-749, 765,
773, 780, 790, 804-805, 834, 846, 853-854,
856, 858, 864, 868-869, 871, 874-876,
885-886, 892-893, 896-901, 905, 907, 921,
923-924, 927-929, 936, 941-944, 951, 957,
959-960

Hexadecimal addition, 109, 142
Hexadecimal numbers, 16, 21-24, 26, 59, 142, 166
High-level language, 64, 68-70, 105-106, 254, 262,

264
High-Z state, 365, 372, 383, 420, 434, 436, 453, 562,

615, 646-648, 709, 724, 735, 911, 924
Hit, 918-919, 921, 923, 925, 927, 932, 939-941, 953,

957
Hold, 7, 45-47, 91, 328, 333, 342, 360, 364, 369, 425,

430, 433, 436, 448, 549-550, 561-562, 581,
615, 669, 671, 679, 683-684, 694, 749, 762,
780, 788, 816, 835, 864-865, 889, 910-911,
924, 926, 939

Hold time, 448
Host processor, 622

I
IC, 6, 27, 370, 401, 405, 410, 423, 435, 444, 462, 470,

486, 490, 547, 584, 595, 622, 675, 679, 682,
685, 688, 705, 710, 714, 716, 719, 722, 724,
728, 732-733, 735, 740, 742, 855, 882, 884,
905, 907, 930, 944, 946

IEEE, 807, 817, 846
If-Then-Else, 255, 262
Impedance, 388, 450, 549, 864
Implementation, 69, 73, 180, 256, 263-264, 275, 289,

401, 453, 459, 479, 484, 489, 502, 507, 524,
531, 568, 577, 622, 650, 731, 777, 807, 902,
943, 947, 949

Index registers, 29, 32, 46-47, 58, 103, 175, 177, 186,
750

Input, 4-6, 13-14, 16-17, 25, 27, 29-30, 32, 46, 48, 56,
59, 69-70, 72-73, 76, 78, 109, 124, 140-141,
143, 150, 166, 342, 353-354, 357-359, 361,
363-365, 369-373, 379-381, 383, 387-388,
391, 393, 398-401, 405, 407-408, 410-411,
413-421, 423-425, 427-428, 430, 432, 435,
439, 442, 445, 449-451, 453, 456, 458-459,
461, 466-467, 469-471, 473-474, 478-481,
485-486, 489-604, 605, 609-613, 615,
617-619, 622-626, 630-632, 634, 638-639,
642-643, 645-648, 650-652, 657-658,
664-665, 667-673, 675-677, 679-688,
690-691, 693-694, 696-697, 699, 702-704,
707-710, 712-715, 719, 722, 726-727,
732-733, 735-736, 741, 748-750, 752, 770,
794-795, 814, 853, 855-856, 858, 862-866,
868, 870-871, 873-874, 879-880, 882-891,
896-898, 905, 907, 909-911, 914, 923, 925,
927-929, 932, 935-936, 939, 941-942,
951-954, 956-957

Input buffer, 516, 714
Input end, 30, 748
Instance, 3-4, 6, 10, 13, 17, 19, 22-23, 27, 30, 32, 34,

40, 43-46, 48-49, 52, 56, 67, 69, 77-78, 84,
92, 96, 98, 100, 110, 114, 116, 129-131,

963

133-135, 138, 140, 142, 145, 147, 150,
152-153, 155, 158-159, 170, 175, 182,
187-188, 203, 223-224, 229, 244, 249-250,
258, 260, 262, 266, 276-277, 282, 292,
318-319, 321, 323-324, 328, 331, 333,
336-337, 340-343, 346, 348, 351, 365,
370-371, 380-381, 391, 393, 401, 405, 408,
410, 415, 431, 434, 440, 455-456, 460, 468,
470-471, 474, 478-479, 481, 485, 490, 493,
497, 500, 502, 508, 519-520, 523-524, 531,
534, 539-540, 546-547, 551, 553, 555, 557,
559-560, 563-568, 572, 576, 579, 581, 585,
587, 595, 597, 606-607, 609, 611, 617, 632,
644, 650, 661-662, 672-673, 675-678, 682,
687, 693, 710, 714-715, 719, 722-726, 728,
732-735, 749-750, 757, 759, 761-762, 768,
771, 776, 781, 787, 789-790, 795, 804-806,
810, 819, 821-822, 826, 828-829, 831, 836,
841, 855, 859-860, 864, 867-868, 871, 876,
884, 891, 895, 901-902, 905, 907, 910, 912,
919, 921, 923, 927, 929, 933, 939, 941-944,
949

Instruction, 10, 13-14, 29-30, 32, 44-50, 52, 54-56,
58-60, 63-65, 68, 74, 76-77, 79, 84, 86-91,
93-100, 102-104, 106-107, 109-123, 128,
130-131, 142-145, 149-155, 158-159,
161-165, 169-180, 182, 184-187, 190-192,
194-201, 203-209, 211-216, 218-224,
226-227, 229-238, 240, 243-245, 247-267,
269-270, 273-287, 289-294, 296-301,
304-312, 318-324, 326-328, 334, 339-340,
342-343, 351-352, 354, 364, 368, 372,
379-381, 408, 414-416, 421-422, 424-426,
428, 478-479, 495, 497, 499-500, 502, 507,
523, 526, 536, 538, 560-561, 573-576,
597-601, 606-607, 609-612, 615, 617-618,
626, 635, 643-645, 648-653, 667-668,
672-673, 690, 694-695, 697, 715-716, 718,
731, 735, 737, 739-740, 745, 747-750,
753-759, 761, 763, 767, 771, 776, 787-790,
793, 796-800, 802-807, 809-815, 820-828,
830-842, 844-847, 849-850, 860, 862,
864-865, 868, 884, 890, 892, 897, 901-902,
904-905, 912, 916, 923, 925, 942-945, 947,
950, 952-953

Instruction decoder, 748
Instruction pointer, 29-30, 32, 44, 49-50, 58-59, 142,

253, 312, 609, 618, 648, 749-750, 761, 800,
827

Instruction queue, 30, 32, 45, 56, 88, 90, 368, 372,
381, 648, 667, 749

instrumentation, 724, 728
Instruments, 8, 389, 392, 394, 396, 400, 402-404, 406,

457, 585, 724, 734, 740, 960
Integer, 10, 19-20, 26, 37-39, 57, 60, 169-241, 243,

310, 649, 806, 816-817, 819, 824, 827,
835-836, 838, 950

Integrated circuit, 6, 431
Integrated circuit (IC), 6
integration, 5, 11, 13, 905, 928
Integrity, 453, 793, 932, 943, 949
Interfacing, 1, 29, 63, 109, 169, 243, 317, 357, 367,

429, 489, 605, 657, 699, 745, 853, 959-960
Internet, 950
Interpreter, 658, 676
Interrupt, 44, 48, 210, 244, 247, 306, 361, 363-365,

420, 469, 516-518, 520, 524, 540-541, 546,
579, 589, 596, 605-655, 657, 661, 664-665,
667-669, 672-673, 675, 682, 687, 691,
694-697, 761, 763-764, 780, 788-789, 797,
804, 828-830, 834, 848, 853, 855, 858, 862,
864, 892-905, 907, 924, 926, 929, 932-933,
942, 944, 952-953, 957

Inverter, 395, 397, 400-401, 479, 528, 670, 672, 687,
714, 722, 732, 734

ISA bus, 3-4, 24, 702, 704-706, 710, 722, 909
Isolation, 228

J
Jump, 44, 48, 123, 142, 158, 162, 243, 253-264, 266,

273, 289, 292-293, 306-309, 311-312, 319,
324, 352, 421, 425, 497, 500, 502, 546, 648,
740, 754, 757, 796-797, 799-800, 803

Junction, 585, 854, 906

K
Key, 5-6, 69, 124, 129, 135-136, 138, 149-150, 306,

340-342, 358, 364, 392, 423, 430, 453, 458,

479, 486, 518, 528, 569, 585, 587, 589-591,
593, 595-597, 601-602, 612, 624, 652, 691,
742, 767, 790, 798, 845, 857, 864, 896, 928,
949

Keying, 130

L
Language, 4, 8, 21, 29, 56, 63-107, 109-124, 126-168,

169, 188, 254, 262, 264, 269, 274, 317-355,
644, 737, 745, 959-960

Latch, 363, 379, 382, 387-390, 393, 397, 400, 405,
410, 414, 426, 451, 476, 479-480, 493,
495-497, 501, 505, 516, 524, 528, 538-539,
549-551, 561, 581, 583-584, 586, 588,
602-603, 636-637, 640, 645, 668, 671, 682,
684, 716, 718-719, 722-724, 726, 730,
732-733, 736, 879-880, 883-887, 956

Leading edge, 448
Leakage, 442, 449
Leakage current, 442, 449
LEDs, 702-703, 707-710, 712-713, 716, 724, 739-740,

742
Library, 78
Line control, 581
Linear, 749, 761, 764, 767-768, 773, 775-780, 830,

844
Load, 45, 75-77, 109, 123-124, 127, 131, 134-135,

143-146, 148-149, 153, 156, 158-159, 161,
164-165, 170, 175, 182, 187, 205, 231,
244-245, 251-252, 257-258, 269, 273, 279,
283-284, 297, 299-302, 311, 318, 321-323,
340, 349, 354, 416, 439, 442, 467, 495, 497,
511, 522-523, 530, 536, 553, 560, 575-576,
599, 601, 603-604, 626, 630, 635, 685, 716,
749, 754, 756, 759, 788-789, 803, 821-822,
825, 844-845, 898, 950

Load current, 442
Loading, 49, 77, 109, 124, 126, 136, 143-145, 147,

149, 156, 164-165, 179, 182, 192, 195, 212,
215, 230, 245, 252, 259, 264, 266, 273, 278,
284, 290, 299, 311, 317, 335, 349-350, 460,
497, 547, 613, 625, 682, 688, 726, 764-766,
774, 776, 789, 791, 821, 898

Local bus, 369, 421, 658, 667-669, 694, 864, 916,
918-919, 925, 927

Locked, 7, 467, 471, 558, 585, 623, 933, 941
Logic, 6, 30, 32, 35, 45, 47-48, 60, 77, 79, 107,

110-111, 159, 169, 188-190, 194, 201-204,
217-223, 226, 235, 238, 240, 244, 247,
250-251, 260, 262-263, 327, 330, 358-359,
363-367, 369-371, 373, 375-376, 379-381,
383-388, 390-391, 393, 395, 397, 399, 401,
405, 414, 417, 419-427, 434-436, 439, 445,
448, 451, 453, 455-456, 458-459, 466-471,
473-481, 485, 487-488, 493-495, 497,
499-500, 502, 506, 508, 510-511, 516-518,
520, 522, 524-525, 528, 530, 534, 536,
538-541, 543-551, 553, 555-556, 558-562,
564-565, 568-569, 571-575, 578, 580-581,
585, 589-591, 598, 600-601, 611-613, 615,
619, 622-627, 629-632, 634, 636, 638-639,
642, 645-648, 650, 652, 654, 657-658, 661,
664-665, 667-673, 675-677, 679-688,
690-691, 694, 696-697, 699, 709-710,
713-714, 716, 723-726, 732-740, 742-743,
748-749, 754, 757, 765, 781-782, 786-787,
804, 812, 816, 827, 829-830, 855, 858-860,
862-866, 868-874, 878-880, 882-891,
896-898, 900, 905, 907, 909-914, 923-929,
932, 934-936, 941-942, 948, 950, 952-957,
960

Logic analyzer, 699, 735-738, 742-743
Logic block, 624, 664
Logic function, 189, 194, 201-202, 204, 397, 399, 401,

423
Logic level, 48, 223, 235, 363-365, 371, 373, 379, 381,

383, 388, 391, 393, 395, 399, 401, 405, 414,
417, 420, 425, 434, 439, 445, 451, 455-456,
459, 468, 473, 479, 481, 493, 497, 500, 502,
506, 517, 520, 524, 528, 534, 544-545, 558,
560-561, 564-565, 571, 580, 585, 589, 611,
615, 622-624, 627, 629, 634, 638, 642,
645-646, 648, 652, 665, 667-668, 671-673,
675-677, 679-683, 686-687, 694, 697, 709,
713-714, 724, 733, 736, 860, 862, 864-865,
869-871, 882, 884-886, 888-889, 898, 907,
910-911, 913-914, 926-928, 932, 935-936,
952-954

Logic operations, 217-220, 327, 804

Logic probe, 709, 724-725, 733, 739-740
Logic pulser, 733-734
Loop, 46, 77, 162, 243, 263-264, 266, 289-296, 307,

309, 311, 313-315, 471, 495, 497, 500, 643,
715-716, 718-719, 723, 916, 918, 921

M
Machine language, 21, 64, 67-69, 76, 105-106,

109-124, 126-168, 169, 355
Magnetic storage, 430
Magnitude, 11, 13
Mantissa, 816
Mark, 72, 76, 130, 181-182, 333, 564, 568, 571, 584,

601, 740, 820
Matrix, 589
Mean, 3, 7, 30, 69, 124, 144, 187, 222, 255, 297, 318,

321, 353, 358, 365, 420, 430, 511, 543, 557,
563, 566, 593, 694, 709, 748-749, 772, 790,
843, 847, 863, 867, 905, 927, 954-955

Memory, 3, 5, 7-8, 13-14, 25-27, 29-30, 32-37, 41-47,
49-54, 56-61, 64, 68-70, 72, 75, 77, 79,
86-87, 89-96, 99-100, 102, 104, 106-107,
109-120, 122-124, 130-140, 142-146,
148-154, 156, 158-161, 163-165, 170,
172-175, 177, 179-182, 185-187, 191,
194-196, 199, 206, 208-209, 220, 223-224,
227-228, 230-233, 235-240, 244-247, 249,
257-260, 266, 269, 274, 276-277, 280-282,
294-297, 299-300, 302, 305, 307-308,
310-312, 319-321, 323-324, 328-329,
331-332, 335-336, 338-340, 349, 353-355,
357-358, 360-361, 363-366, 372-376,
378-388, 390, 397-398, 407-411, 413-414,
417, 419-422, 424-428, 429-481, 483-488,
489-490, 493-495, 499, 506, 528-533, 547,
549-551, 553, 555-558, 560-561, 569, 580,
596, 598-601, 608-610, 613, 617-619, 626,
635, 639, 641-642, 644-645, 648-654,
657-658, 661-662, 664-665, 667-674,
676-679, 682-685, 688, 690-691, 693, 695,
730, 735-737, 746, 748-750, 752-754,
756-759, 761-765, 767-768, 770-774,
776-783, 785, 787-793, 797, 804-807,
809-816, 820-823, 825-826, 828, 831-832,
835-836, 838, 843-844, 846-847, 849, 853,
855-866, 868-871, 873-880, 882, 884-886,
889, 893, 895, 898, 902, 904-905, 907,
909-929, 932-934, 936, 939-942, 945,
948-949, 951-957, 959

cache, 749, 765, 768, 774, 776, 780, 791, 804-805,
807, 814-816, 828, 843, 846-847, 849,
905, 909-911, 914-919, 921-929,
932-934, 936, 939-942, 945, 948-949,
953-955, 957

dynamic, 431, 444, 448, 479, 658, 662, 664,
678-679, 735, 858, 905, 911, 915, 945,
949

magnetic, 430
nonvolatile, 8, 431, 453, 455, 458-459, 478, 485,

677
random access, 429, 431, 442, 479, 676
random-access, 7
read-only, 7, 336, 398, 429, 431-432, 435, 442, 658
static, 444-445, 448, 479-480, 487, 916
volatile, 8, 444, 453, 485, 487, 677

Memory access time, 873
Memory address, 26, 29-30, 32-34, 43-44, 49, 53-54,

57-59, 93, 95, 114-115, 123, 131, 135, 153,
159, 173, 239, 245, 294, 319-320, 324,
335-336, 355, 357, 361, 374, 378, 408-410,
421-422, 479, 494-495, 528-530, 533, 553,
569, 599-600, 608, 618-619, 635, 639, 652,
661, 665, 676, 679, 695, 752-753, 756, 759,
761-762, 765, 771, 773, 780, 787, 790, 811,
843, 849, 856-857, 874, 876, 893, 912, 923,
941

Memory array, 456, 458-462, 464, 486-488, 919, 921,
925

Microcontroller, 13-14, 25
Microprocessor, 1-3, 6, 8-10, 13-14, 24-26, 29-30,

32-34, 37, 40, 46, 51-52, 56-59, 63-64, 74,
76-77, 79, 87, 110, 113, 126, 169-170, 187,
201, 243, 247, 254, 289, 297, 318-319, 323,
328, 344, 353, 358-360, 364-365, 367,
369-370, 372, 376, 378, 383, 407, 413, 419,
423, 435-436, 440, 453, 455, 462, 465, 479,
483, 487, 506, 508, 510, 533-534, 536-537,
540-541, 546-549, 553, 558, 560-562, 569,
571, 574, 576, 579, 589, 591, 596-597,

964

600-601, 606, 612, 615, 618, 622, 624-626,
631, 638, 642-643, 645-646, 654, 658,
664-665, 667, 669, 671-673, 675, 682, 685,
688, 690, 693, 695, 745-747, 750-751, 753,
759, 761-763, 767, 770, 787, 790, 793, 800,
804-805, 808-810, 814, 816, 821, 828, 831,
850, 853-855, 858, 864-867, 882, 892, 899,
904-905, 912, 915, 942, 950, 953, 956,
959-960

Minuend, 203
MIPS, 9-10, 25, 27
Mnemonic, 64, 210, 224, 260, 319, 343, 420, 693,

758-759, 809, 821, 831, 836-837, 842, 855,
907

Modem, 3, 567, 569
Monochrome, 665, 690, 693
Multimeter, 724-725, 732, 741
Multiplexer, 679-680
Multiplication, 20, 45, 187, 209-210, 212, 324, 805,

927
Multiplier, 927
Multitasking, 14, 27, 746, 759, 790, 798, 804, 828, 845
Music, 3

N
NAND gate, 479, 584, 670-672, 676-677, 696-697,

719, 722
Nibble, 8, 48, 598
NMOS, 450
Nonperiodic, 735, 742-743
Nonvolatile memory, 478, 485
NOR gate, 679, 682
Normalizing, 824
NOT operation, 234
Null, 540

O
Object code, 14, 67, 78, 105, 324, 344-345, 750, 807,

842, 848
Odd parity, 251, 456, 486, 569, 572-573, 581, 682
Offset address, 37, 46-47, 61, 65-66, 74, 76, 172, 174,

182, 185-187, 223, 236-237, 258-259, 266,
276, 308, 310, 334, 338, 342, 344, 346

Open circuit, 400, 691, 728
Operand, 32, 45, 47, 59-60, 64, 87-91, 93-94, 96,

98-99, 101-107, 110-118, 122, 152, 170,
190-191, 194-195, 198, 203-204, 206,
209-211, 219-225, 227, 229, 232, 234,
238-239, 250, 256-260, 269, 275-277,
281-282, 293, 299, 306-308, 318-328,
330-333, 335-337, 341-342, 352, 354, 415,
422, 480, 749, 754, 756-757, 759, 776-777,
779, 788, 792, 800, 811-812, 815, 820-822,
824-825, 835-836, 838-841, 847, 902,
904-905, 924

OR array, 400-401, 405
OR gate, 400-401, 405, 710, 713, 898
OR gates, 390, 405, 742
Oscillator, 371, 595, 665
Oscilloscope, 724-725, 732-736, 741-743

digital, 725, 735-736
Output, 4-6, 13-14, 16-17, 25-27, 29-30, 32, 45-46, 56,

59, 67, 69-70, 72-73, 76-78, 88, 109,
140-143, 164, 337, 342, 344, 353-354,
357-358, 360-361, 363-369, 371-372,
378-381, 383-388, 391, 393, 395, 398,
400-401, 405, 407-408, 410-411, 413-428,
430, 434-436, 439-440, 442, 445, 449-451,
453, 456, 458-459, 463, 465, 468-470,
473-474, 478-481, 486-488, 489-604, 606,
613, 615, 619, 622, 624-626, 630-632,
638-639, 645, 647, 654, 657-658, 664-665,
667-673, 675-688, 690-691, 693-694,
696-697, 699, 703-704, 707, 709-710,
712-714, 716, 718-719, 722-724, 726-727,
730, 732-733, 736, 739, 748-750, 752, 770,
794-795, 814, 816, 853, 855-856, 858-860,
862-864, 866-867, 871, 873, 879-880,
882-887, 889-891, 896-898, 905, 909-911,
918-919, 925, 928-929, 932, 934-936, 939,
951-952, 954, 956

Overflow, 47-48, 187, 250-251, 260, 311, 574, 607,
609-610, 649-650, 653, 820, 829, 838-841,
902

Overshoot, 442

P
Package, 4, 358-359, 401, 439, 451, 461, 465-466,

468, 479, 854, 905-907, 929, 943, 953-954
Packets, 547
Page, 56, 65-66, 74, 96, 196-197, 215-216, 252-253,

270-271, 278-279, 285-286, 291-292,
295-296, 302-303, 329, 337-339, 344, 346,
353, 355, 408, 415, 453, 675, 684-685, 693,
695, 697, 745, 747, 749, 767, 773-774,
778-780, 785-787, 813-816, 827, 829-830,
842-844, 846-851, 900-901, 910, 919, 921,
923, 926, 941, 957

Page mode, 844
Parallel connection, 445
Parity, 47-48, 129-130, 164, 187, 250-251, 260, 429,

455-458, 486, 488, 564, 569, 571-574,
576-578, 581, 601, 664, 672, 679, 681-682,
688, 693-694, 710, 759, 829, 905, 909,
926-927, 929, 932, 942, 953-954, 957

Parity generator/checker, 681-682, 710
PCI bus, 3
Pentium, 1-3, 5, 7, 10-14, 25, 30, 745-851, 853-907,

909-958, 960
Period, 1-2, 266, 345, 355, 364, 371-372, 378,

382-383, 414, 417, 426, 448, 495, 497,
543-545, 547, 551, 585, 612, 716, 726, 740,
866, 872-873, 884, 939, 956

Periodic, 725, 735, 741, 743
Phase, 866, 869, 943
Physical address, 49-54, 59, 88, 90-91, 94-95, 98-104,

106, 131-132, 142-143, 159, 161, 172, 178,
180, 185, 238, 276-277, 294, 299, 363, 378,
610, 653, 749-750, 772-774, 776-779, 844,
874-876, 893, 951

Pin numbering, 401, 856, 908
Pins, 32, 358-359, 361, 369, 381, 401, 442, 450-451,

461, 502, 511, 518, 522-523, 547, 566-567,
646, 665, 688, 693-694, 704, 719, 722-724,
728, 732, 734, 748, 816, 854-855, 905

Pipeline, 827-828, 945, 950
Pipelining, 826, 828, 854, 863, 867-868, 951, 956
Pointer, 29-30, 32, 36-37, 44, 46-47, 49-50, 54, 58-59,

92, 95, 97-98, 100, 122, 142, 182, 234, 253,
258-260, 276-277, 282, 284, 298, 311-313,
315, 506-507, 597, 608-611, 613, 617-618,
621, 641, 645, 648-649, 653, 655, 749-750,
754, 756, 761, 769, 771, 778, 800, 820-822,
825, 827, 835, 893, 895, 900, 952

Polling, 469-470, 500, 502, 506-507, 702
Pop operation, 55
Port, 56, 87, 140-143, 164, 166, 363, 408-410,

413-416, 419, 424-425, 428, 490, 493-497,
499-503, 505-508, 510-513, 515-520,
522-532, 562, 568, 597-599, 601-603, 664,
672-673, 687-688, 690-691, 693, 696,
715-716, 719, 828, 862, 884, 889-891, 952

Power, 4-5, 8, 17, 21, 25, 60, 153, 369, 398, 401, 421,
431, 434, 436, 439, 442, 444, 448, 453, 455,
461, 467-468, 486-488, 508, 591, 593, 607,
645, 654, 658, 665, 667, 669-670, 673, 676,
684, 691, 693, 705, 709, 722, 732, 734-735,
739, 817, 834, 864, 893, 927-928, 943, 954

true, 436
Power supply, 369, 401, 421, 431, 436, 444, 461,

486-487, 665, 667, 705, 732, 734-735,
927-928, 954

Practical applications, 70, 263, 266, 317, 458, 500,
715, 816, 891

Precision, 817-820, 822-826, 846, 848, 850, 950
Prefetching, 30
Preset, 244, 669
Printed circuit board, 728, 949
Priority encoder, 551
Probe, 709, 724-725, 732-735, 739-740
Procedure, 19, 76, 274, 283-286, 334-335, 339, 343,

353, 728, 730-731, 734-735, 797-798, 800,
802

Product, 20, 210, 212-213, 238-239, 399-401, 405,
423, 432, 442, 804, 948

Product term, 400
Program, 6-8, 10, 13, 25, 29-30, 32, 42-45, 48-49, 58,

61, 63-79, 105-106, 109-110, 119-120,
123-124, 130-131, 134, 139, 142, 145-149,
151-152, 155-156, 158-163, 165, 169-170,
173, 178, 185, 187, 191, 195-198, 200, 205,
207-209, 212, 214-217, 221, 226, 230, 232,
237-238, 243, 245-248, 250-260, 262-281,
283-300, 302-304, 307-310, 317-355,
364-365, 410, 429-432, 439-440, 442, 458,
460, 463-465, 467-468, 470, 474, 478-481,
485, 487, 490, 495, 497, 506-507, 523-524,

526, 531, 555, 576-578, 598-599, 602,
606-608, 610-611, 617-622, 624, 632, 635,
639, 641-644, 648-650, 652-653, 658, 667,
715-716, 718-719, 723, 726, 728, 730-731,
735, 740-741, 748, 750, 757, 763-764,
772-774, 790-791, 795-800, 802-804, 827,
845, 847, 864, 866, 892-893, 895, 898-899,
901-902, 912, 915-916, 918-919, 924, 932,
943-944, 953

Programmable array, 401
Programmable interrupt controller (PIC), 661
Programmable logic, 358, 397, 427, 960
Programmable logic array (PLA), 397
Programmable peripheral interface (PPI), 410, 661,

688, 882
Programmer, 4, 6, 32, 43, 56, 70, 72-74, 76, 79, 93,

99, 124, 152, 159, 182, 289, 297, 321, 328,
337, 348, 432, 539-540, 650, 757, 772, 774,
780, 787, 902, 959

Programming, 1, 8, 19, 21, 29, 63-107, 109, 169-241,
243-316, 317, 333-334, 345-346, 353, 357,
397-399, 423, 429, 432-433, 436, 439-440,
459-460, 462-469, 471, 485, 489, 605,
626-627, 657, 699, 730, 745, 750, 804, 830,
853, 959-960

PROM, 432-434, 478, 485
Propagation delay time, 390
Pull-up resistor, 500
Pulse, 363, 379, 382, 384, 401, 426, 439-440, 448,

463-465, 468, 470, 480, 493-494, 506-507,
531, 534, 540-541, 543-547, 571, 585, 587,
589, 600, 613, 615, 623-625, 634, 639, 646,
671, 684, 696, 723, 726, 732-734, 743, 869,
871, 873, 884, 886, 897, 934, 936

Pulse width, 543-544, 600
Pulser, 733-734
Push operation, 54

Q
Q, 130, 149, 174, 179, 185, 193, 198, 205, 208, 210,

213, 217, 222, 227, 231, 246, 249, 254,
258-259, 272, 280, 288, 293, 297, 304, 322,
350, 405, 450-451, 453-454, 473-474, 619,
669-671, 710, 722-724, 726-727, 736-737,
838

Quality, 69, 734, 950
Queue, 30, 32, 45, 56, 88, 90, 368-369, 372, 380-381,

421, 426, 471, 648, 667, 748-749, 805, 842,
846, 868

Quotient, 19-20, 211, 238, 649

R
Ramp, 463, 465
Ranging, 461
RC circuit, 645
Read, 7-8, 26, 30, 32, 43, 45-46, 55, 60, 67-68, 88, 90,

102, 104, 140, 145, 188, 231, 235, 237, 244,
260, 336, 340, 343, 358, 360-361, 363-366,
372, 375-376, 378-388, 390-391, 398, 413,
416-417, 420-427, 429-432, 434-436, 442,
444-445, 447-448, 450-451, 453, 455-456,
458-459, 461-469, 471, 473-474, 478-481,
483, 485-486, 490, 500, 506, 508, 515,
523-524, 526, 528, 531, 533-536, 538-540,
548, 551, 555, 557, 560, 563, 569, 571, 576,
578-581, 585, 589, 591, 596-598, 600,
602-604, 613, 615, 617-619, 622, 624-626,
632, 634, 639, 644-645, 652, 654, 658, 664,
668-671, 673, 676-677, 679-682, 684-688,
690-691, 693, 695-697, 710, 713-715, 730,
735, 739-740, 748-749, 765, 767, 773,
776-777, 779-781, 785-787, 789-790, 792,
800, 810, 822, 829-832, 834, 844, 846, 851,
858-860, 862-863, 865, 867-874, 876-879,
882, 885, 888-889, 898, 902, 904, 909-910,
912, 914, 918, 921-922, 924-925, 927, 929,
932-939, 941-942, 951-953, 956, 958

Read/write cycle, 749, 873
Real mode, 14, 27, 745-746, 749-750, 752-753, 759,

763, 765, 787, 789, 803, 807, 813, 828, 842,
856-857, 875, 893, 898, 902, 904-905

Real number, 821-822, 825-826
Real time, 69
Receiver, 13, 563-564, 568-569, 571-572, 574, 576,

578
Redundancy, 943, 949
Refresh, 453, 479, 490, 662, 664, 669-670, 677,

683-685, 687, 695, 706, 708, 712

965

Register, 29, 32, 42-47, 49-56, 58-61, 64, 75-76,
86-90, 92-96, 98-102, 106-107, 110-118,
121-122, 124, 126-131, 133-134, 142-143,
145, 155-156, 159, 161, 164-165, 170,
174-175, 177, 179-180, 182, 185-187,
190-191, 194-195, 199-200, 205-207, 210,
213, 220-221, 223-224, 227-228, 231-232,
234-236, 238-239, 244-247, 249-251, 253,
257, 259, 262-264, 266, 269, 276, 281-283,
285-287, 289, 294, 298, 300, 309-310, 312,
318-321, 323, 328, 332-334, 339, 349, 363,
378, 383, 405, 408, 410, 415-416, 424, 453,
462-463, 465, 468-471, 473-474, 497,
499-500, 502, 508, 510-512, 515, 517-518,
520, 522-524, 530, 533-534, 536-540, 546,
548, 551, 553, 555-561, 569, 571-578,
581-583, 590-591, 594, 596, 598-601,
603-604, 609, 617-618, 621-622, 624-626,
630, 632, 634, 638, 644, 648, 650, 652, 667,
669, 672-673, 675, 682, 684-686, 688,
690-691, 697, 749-750, 753-754, 756-763,
765-771, 774, 776, 778, 780, 788-792,
794-795, 800, 802-804, 806-807, 809-813,
817-823, 825-836, 838-849, 864, 884, 888,
890, 893, 898, 900, 902, 910, 923, 942-943,
952-953, 957

Register stack, 819, 835
Relational operator, 326-327
Relay, 687-688
Remainder, 19-20, 211, 609
Reset, 44, 48-49, 60, 116, 126, 128, 153, 191,

194-195, 226, 244, 250-251, 273, 294, 306,
311, 364, 368, 381, 464, 467-468, 471,
473-477, 508, 517-520, 548, 558-560, 562,
571, 573, 575, 577-579, 591, 596, 599, 603,
605, 607, 611, 619-620, 632, 636, 640-641,
645-648, 650, 652-653, 655, 658, 665, 667,
670-672, 676, 691, 694, 697, 706, 708, 712,
750, 752, 757, 759, 765, 770, 821, 828, 864,
893, 898, 900, 902, 904, 923, 926-927, 929,
932, 942, 952, 957

Resistance, 725
Resistor, 500, 713, 716, 719, 732, 734

chip, 713, 732
Resolution, 600
Resolver, 624-625
Ring, 584
Ringing, 736
RISC, 806, 846
rise time, 866
Rising edge, 543, 547
RS-232, 584

S
Sample, 410, 736
Sampling, 585, 735-736
Saturation, 837, 839, 841
Schematic, 719-720, 723, 732-733, 743
Schmitt trigger, 645
scientific notation, 816
Sector, 145-146
Segment, 29-30, 32, 36-37, 41-47, 49-54, 58-59, 61,

65-66, 69, 72-75, 86, 90-91, 93-94, 96, 100,
117-119, 121-122, 131, 133-134, 142-144,
153, 155, 158-159, 161, 164, 170, 172-175,
180, 182, 185-187, 196-197, 215-216, 223,
234, 236-239, 241, 244, 252-254, 256-257,
259, 266, 269-271, 274, 276-279, 281, 283,
285-286, 291-292, 294-296, 298, 301-303,
307-310, 312-313, 315, 320, 323, 328-329,
331-335, 338-339, 342, 344, 346, 353-355,
363, 378, 383, 420, 530-531, 587, 589, 591,
593, 595, 601, 608-609, 618-619, 621, 635,
642-643, 648, 651-652, 655, 667, 673, 723,
747, 749-750, 752-753, 756, 762-763, 765,
767-769, 771-774, 776-778, 780-784,
789-798, 800-803, 843-845, 848-849,
890-891, 895, 899-900, 904-905, 912, 916,
918, 924, 942, 957

Segment register, 42-43, 46, 50-51, 54, 58-59, 75, 86,
93-94, 96, 100, 117-118, 121, 131, 133,
142-143, 161, 170, 175, 182, 253, 259, 281,
294, 309, 312, 320, 328, 363, 378, 383, 618,
648, 667, 753, 756, 774, 776, 795, 802, 844

Semiconductor, 9, 11, 358, 371, 398, 430-431,
580-583, 854, 960

Semiconductor memory, 430-431
Serial data, 563, 566
Set, 8, 13-14, 16, 40, 43, 48-49, 63, 72, 76, 79, 84,

106, 109, 111, 113, 115-118, 120, 124,
129-131, 148, 156, 163, 169, 175, 180, 182,
187, 196, 199-201, 203, 207, 218, 220, 223,
234, 243-244, 247-253, 260, 274-275, 294,
296-298, 301-303, 306, 308-309, 311-313,
324, 329-330, 337, 340, 344, 346, 353, 360,
365, 376, 379, 382, 384, 388, 401, 408, 426,
436, 439, 451, 453, 456, 462, 464-465,
470-471, 474, 479, 486, 497, 502, 506, 511,
513, 516-520, 522, 526, 530-531, 534-536,
538-540, 543-545, 555, 557-560, 566-568,
571-575, 581, 583-584, 587, 589, 591, 593,
595-597, 599, 601, 603, 609-611, 615, 617,
621, 623-624, 626, 629-632, 634, 638-639,
641-643, 645, 648-650, 654-655, 658, 664,
669-673, 677, 679, 685, 687-688, 709-710,
726, 733-734, 737, 739, 742, 745, 750,
752-759, 763-765, 770, 772, 787-790, 793,
796, 800, 804-807, 809-814, 816, 821, 826,
828-829, 831-832, 834-837, 839-840, 847,
850, 860, 869-870, 882, 885-886, 888-889,
891, 893, 895-896, 900, 902, 904, 910-912,
919-923, 927-928, 939-940, 942, 945, 947,
949-950, 952, 955, 957

Seven-segment display, 589
Shift register, 473-474, 691
Sign bit, 38, 48, 213, 226, 754, 817-818, 825
Signal, 357-358, 360-361, 363-364, 367, 370-372,

379-381, 384, 386-388, 390-391, 397, 401,
405, 411, 413-414, 417, 419-422, 424, 432,
444-445, 451, 456, 458-459, 469-470,
474-476, 478-481, 485-487, 493, 495, 502,
515-518, 528, 531, 534, 541, 544-549, 551,
556-557, 561, 563-564, 566-567, 571-572,
574, 580, 587, 589, 591, 593, 595-596, 598,
600-602, 606, 611, 613, 615, 618-619,
622-623, 625-626, 636, 638-639, 642,
645-648, 651-654, 658, 661, 664-665,
667-673, 675-677, 679, 681-688, 691-697,
704, 709-710, 712-714, 716, 719, 723-726,
732, 735-736, 739-743, 814, 834, 853-856,
858-859, 862-866, 869-871, 873, 876, 882,
884-886, 888-889, 898, 905, 907-911, 925,
927-929, 932, 949-954

periodic, 725, 735, 741, 743
Significant digit, 17, 21, 40, 57-58, 231
Software, 1-5, 10, 13, 25, 29-61, 63-64, 69-70, 72-73,

76, 105-107, 109, 126, 142, 169, 180, 201,
224, 228, 231, 243, 255, 262, 264, 266, 290,
294, 317, 321, 345-346, 355, 357-358, 364,
408, 429, 431, 456, 462, 464, 467-471, 479,
489, 497, 500, 502, 508, 516, 523-524, 536,
538, 545-547, 553, 559-560, 569, 571-572,
575-576, 578, 581, 585, 587, 589, 591, 596,
605-611, 622-625, 634, 641-642, 644-645,
650, 652-653, 657, 661, 664, 672-673, 676,
682, 685, 687-688, 693, 699, 718, 723, 726,
728, 730-731, 734-735, 741, 745-746,
750-753, 757, 759, 762, 765, 767, 770, 772,
774, 777, 781-782, 785-786, 790-791,
793-795, 798, 804-805, 807-808, 813, 815,
819-820, 826, 828, 830-832, 834, 842,
845-846, 853-854, 857, 874, 885-886, 891,
893, 896, 899, 902, 904, 916, 923-924,
941-943, 945, 959-960

software packages, 2
Source, 43, 45, 47, 49, 61, 64-68, 70, 72-74, 76-78,

86-88, 90-91, 94, 96, 99, 101-107, 110-113,
116, 122, 138-139, 143-144, 146-147, 152,
158, 160, 162, 170, 173-175, 187, 191,
195-196, 203, 209-211, 214-215, 219,
223-224, 239, 250-252, 266, 269-271, 276,
278, 284-285, 287, 290-291, 294-295,
298-299, 302, 304-305, 312-313, 315,
317-321, 323-324, 326, 328, 332, 336-355,
363, 371, 415, 508, 551, 560, 624, 682, 685,
694, 696, 732-733, 754, 756, 771, 790,
811-812, 821-825, 835-836, 838-841

Source code, 65, 68, 78, 105, 158, 338
Source program, 67, 73-74, 76-78, 106, 146-147,

195-196, 214-215, 251-252, 270-271, 278,
284-285, 290-291, 295, 302, 317-318, 321,
324, 328, 332, 336-340, 342-345, 347,
349-351, 355

Space, 14, 29-30, 32-34, 41, 43-44, 56-59, 67, 69,
140, 159, 287, 318, 330, 335, 354, 357, 361,
374, 386, 408-410, 414-416, 419, 423-424,
448, 466, 470, 522, 528, 533, 548, 564-565,
568-569, 575, 584, 600, 608, 618-619, 635,

639, 651-652, 661, 665, 669, 671, 673,
684-685, 710, 752, 759, 761-762, 764-765,
768, 770-774, 777, 780, 787, 790-791, 793,
843-844, 849, 856-857, 874-876, 882,
885-886, 890-891, 893, 912, 923, 941, 951

Speaker, 6, 664, 685, 687-688, 693, 695, 702, 707,
709-710, 712-713, 718-719, 740

Spectrum, 13
Square wave, 545, 709, 719, 725-727, 732-733
Square-wave generator, 531, 600
SSOP, 468, 472
Stack, 30, 42-43, 46, 49-50, 52-56, 59, 65-67, 74, 100,

133-134, 164, 196-197, 215-216, 252-253,
270-271, 276-287, 291-292, 295-296,
302-303, 308, 312, 315, 320, 331-332, 334,
338-339, 344-347, 349, 378, 610, 613,
617-618, 620-622, 641-645, 651, 752, 756,
780, 782-783, 794-795, 797-798, 800, 804,
819-826, 835, 846-847, 898-902, 904, 953

Stack pointer, 46, 49-50, 54, 59, 276-277, 282, 284,
312, 617, 621, 641, 820-822, 825, 900

Stage, 945
Start bit, 564-565, 569, 571-572
State machine, 401, 468-470, 488
Static, 444-445, 448, 479-480, 487, 724, 916
Step, 37, 48, 64, 70, 72-73, 76, 105, 153, 159, 247,

340, 351, 464, 500, 609, 617, 645, 649-650,
719, 728, 730-732, 734-735, 741, 902, 911,
924

Stop bit, 564, 571, 573, 581
Storage, 7-8, 13, 25, 33, 36-37, 41-47, 50, 52-53, 58,

64, 86, 90, 93, 99, 110, 123, 131, 135-138,
140, 143, 159, 161, 163-164, 170, 173, 175,
177, 191, 194, 199, 206, 223-224, 227-228,
232, 234-237, 239-240, 244, 249, 269, 276,
281, 295, 299, 305, 311, 323, 328-329,
331-332, 351, 353, 374-376, 408, 429-436,
439-442, 444-445, 450-451, 453, 455-456,
458-462, 464, 466-468, 474, 478-481,
483-488, 538-539, 551, 553, 608-609, 648,
658, 664, 676-677, 679-681, 685, 697, 748,
752, 754, 757-758, 762, 768, 773-774, 776,
779, 782, 787, 791, 806, 810-813, 822, 832,
835-836, 838, 844, 846-847, 849, 867-868,
875-876, 885, 893, 910-912, 918-919,
921-925, 932, 936, 939-940, 942, 949, 956

String, 13, 46-49, 59, 69, 79, 107, 243-244, 297-302,
305, 309, 319, 322-323, 331, 341, 750, 754,
832

Subroutine, 46, 52, 105, 243-244, 274-278, 281,
284-286, 308-310, 312, 314-315, 319, 502,
598, 602, 610, 644, 651-653

Subtraction, 45, 109, 142, 187, 201-204, 206,
208-209, 234, 250-251, 299, 311, 644, 824,
839

Subtrahend, 203, 835
Sum, 48, 64, 142, 166, 172, 176, 178, 188-191,

194-200, 233, 238, 278-279, 324, 399-400,
425, 428, 442, 599, 811, 823, 838, 846, 850,
949

Supply voltage, 421, 461, 466, 486
Surface-mount, 854
Switch, 365, 380-381, 386, 435, 453, 468, 474, 494,

500, 502, 518, 528, 538, 585, 587, 590, 598,
618, 645, 664, 667, 669-670, 672, 690-691,
693-694, 702-704, 709-710, 713-715, 719,
735-736, 740-743, 752, 759, 765, 767,
789-790, 799-800, 802, 843, 845, 848, 892,
896, 899-900, 924

Synchronous, 448, 474, 543, 563-564, 569, 572, 601,
733

Syntax, 76, 124, 126, 131, 134, 144, 149, 159, 165,
317-318, 321, 328, 340, 342-343, 346-347

System software, 64, 431, 467, 676, 782, 786, 793,
845, 959

T
T3, 372-373, 382-384, 417, 419, 426, 615, 629-630
T4, 372-373, 382-383, 385, 426, 615
Tape, 664, 687
Terminal count, 540-541, 543, 557, 560, 685, 688, 693
Terminated, 135, 150, 155, 198, 217, 254, 272, 280,

283, 288, 293, 296-297, 304, 350, 431, 610,
671

Test instruments, 585
Testing, 48, 644, 699-700, 704, 719, 723, 726, 728,

735, 792
Text editor, 340
Threshold, 645

966

Time delay, 497, 541, 543, 600, 677, 716, 718-719
Timer, 13, 489, 531, 533, 535, 546, 600, 657, 661,

664-665, 668, 673, 683, 685-688, 693,
695-696

Timing diagram, 383, 450-451, 517-518, 736-737,
869-871, 886, 889, 913-914, 934, 939

Toggle, 235, 471, 654
Track, 253, 264, 269, 490, 587, 664, 695, 819, 921
Trailing edge, 382, 448
Transceiver, 386, 391-393, 397, 423, 427, 475-477,

479, 481, 493, 496, 499, 501, 505, 528, 550,
624, 631, 636-637, 640, 668, 676-677,
679-681, 684, 696-697, 878, 882-883, 885,
956

Transient, 455
Transistor, 11, 371, 419, 928, 950
Transmitter, 13, 563-564, 569, 572, 574, 576, 578-579,

581
Trap, 48, 645, 650, 653, 797, 829, 891, 895-896,

899-902, 952, 957
Trigger, 543, 645, 743
Troubleshooting, 699, 719, 723, 726, 728, 730-731,

733-735, 741-743
circuit failures, 728
plan, 723

Truth table, 217, 423

U
Units, 5-6, 17, 25, 30-31, 56, 432, 563, 746-747, 749,

773, 827, 842, 950

V
Variable, 50, 98, 172, 324, 328-329, 331, 343, 354,

415-416, 424, 575, 771, 890
Vector, 605, 608-611, 613, 615, 617, 619-621,

641-645, 649-654, 669, 893-895, 898,
903-905, 952-953, 957

Volatile memory, 8, 485
voltage, 369-371, 401, 410, 421, 442, 449, 461, 466,

486, 564, 568, 571, 584, 601, 645, 667, 687,
709, 724-725, 732, 736, 741-743, 865,
926-927, 954

applied, 369, 371, 401, 421, 442, 461, 486, 571,
601, 645, 667, 687, 709, 724, 732, 736,
865

supply, 369, 401, 421, 442, 449, 461, 466, 486,
584, 667, 687, 725, 732, 927, 954

terminal, 584
voltage divider, 687

Voltage drop, 442
Volume, 432

W
Waveform, 371, 543, 695, 725-727, 732, 736, 865,

888
waveforms, 383-384, 386, 417, 419, 421, 436, 448,

540-541, 543-544, 546-547, 589, 646, 726,
735-736, 871, 886, 888, 934, 939

Weight, 17-19, 21, 25-26
While loop, 266
Wire, 700, 705, 732, 739
Word, 4-5, 7-8, 19, 22, 25-27, 33-39, 42, 44-48, 53,

55-60, 64-65, 86-88, 95, 110, 115-118,
152-154, 165, 170, 173, 177, 180, 185, 187,
194, 196-199, 201, 208-210, 213-214,
216-218, 222-223, 227, 234-240, 260, 277,
280-281, 285-287, 297-299, 301, 306-308,
311-312, 329-331, 340, 353-354, 375-378,
386, 388, 405, 407-408, 410, 414-416,
419-425, 427-428, 430-431, 439, 441, 443,
445, 456, 458, 466, 469-471, 478, 488, 508,
511-512, 516, 520-523, 528, 534-537,
539-540, 553, 555-557, 574, 577-579,
581-582, 591, 593-601, 603, 608-609,
617-618, 626-627, 629-632, 634, 645, 682,
685, 749-750, 754, 765, 771, 788-789, 792,
800, 809-811, 813, 819, 821, 831-832,
835-842, 846-849, 851, 858-862, 869,
876-878, 880, 882-885, 889-890, 895, 902,
904-905, 912, 914, 921, 929, 936, 939,
951-952

Write, 4, 7, 23, 30, 32, 43, 64, 68-70, 90, 135,
140-141, 145, 147-148, 164-165, 220, 232,
234-238, 244, 266, 283, 306-310, 321-323,
347, 352-354, 358, 361, 363-365, 372, 379,
381-382, 384-386, 388, 390-391, 413,
415-417, 420-428, 429, 431, 442, 444-445,
447-448, 450-451, 453, 455-456, 458-459,

461-465, 467-471, 473-474, 479-481, 486,
488, 494-495, 499, 506, 508, 518, 520, 522,
524, 526, 528, 530-531, 533-536, 538, 540,
548, 551, 553, 555-558, 560-561, 569, 571,
575-576, 578-581, 589, 591, 597-601, 603,
617-619, 622, 624, 626, 632, 635, 639, 643,
652-655, 658, 668-673, 675-677, 681,
684-687, 691, 693-695, 710, 715-716, 735,
740, 748-749, 756, 759, 781, 785-787,
789-790, 807, 810, 814-816, 828, 831, 834,
842, 844-846, 849-850, 858, 860, 862-863,
865, 867-869, 871-874, 876, 879-880,
882-883, 885, 888-889, 898, 902, 904-905,
910, 912, 914, 922-923, 925-929, 932-942,
945, 951-952, 954-958

967

	Cover
	Table of Contents
	1. Introduction to Microprocessors and Microcomputers
	2. Software Architecture of the 8088 and 8086 Microprocessors
	3. Assembly Language Programming
	4. Machine Language Coding and the Debug Software Development Program of the IBM PC
	5. 8088/8086 Programming—Integer Instructions and Computations
	6. 8088/8086 Programming—Control Flow Instructions and Program Structures
	7. Assembly Language Program Developments with MASM
	8. The 8088 and 8086 Microprocessors and Their Memory and Input/Output Interfaces
	9. Memory Devices, Circuits, and Subsystem Design
	10. Input/Output Interface Circuits and LSI Peripheral Devices
	11. Interrupt Interface of the 8088 and 8086 Microprocessors
	12. Hardware of the Original IBM PC Microcomputer
	13. PC Bus Interfacing, Circuit Construction, Testing, and Troubleshooting
	14. The 80386, 80486, and Pentium™ Processor Families: Software Architecture
	15. The 80386, 80486, and Pentium™ Processor Families: Hardware Architecture
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

