

Impact Test

Student Name: Mohammed Nedal

ID#: 1832971

Apply the *impact test* on the following *Specimens:*

Material	Notch Type	Total Absorbed Energy		Absorbed Energy by specimen only	
		(N.m)		(N.m)	
Mild Steel	V,U	26	35	26-4=22	35-4=31
Brass	V,U	14	21	14-4=10	21-4=17
Aluminum	V,U	20	24	20-4=16	24-4=20

Absorbed Energy by friction only is _____4 N.m__.

Q1: State the main *Material Property* obtained from this test.

Toughness

Q2: In order to perform an impact test, we need high strain rate, in other words a **shock load**. What is the constrain (condition) of applying a **shock load**?

Time of impact <(1/3)wn

Q3: According to the above table, answer the following questions:

A. Why we use *notched specimens*?

Increase stress concentration

B. Which specimens from the same material absorb higher amount of energy and why?

U notch \rightarrow low stress concentration

C. Which specimen absorbed higher energy (Mild Steel or Brass), and why?

Mild steel \rightarrow more ductile

Q4: If we apply **the same impact load** on **the same specimens** but at **different temperature**, what you think will happen? Explain.

Sol : inversely of the ductility of material will increase >>>toughness will increase >>>it will absorb more energy .

Q5: Compare between impact test and tensile test.

	Impact Test	Tensile Test
Type of Load	shock	static
Strain Rate	High	low
Specimen's Notch	U and V	No notch

Q6: state two differences between **Charpy** and **Izod** test ?

Charpy Test	Izod Test		
 Opposite side to the notch Two shearing area (more energy) 	 1- Same side to the notch (facing the notch) 2- One shearing area (less energy) 		