

stability of columns

Student Name: Mohammed Nedal

1832971

ID # :

Result and calculations:

Rod material	Steel	Cross section dimension	(20 x 4) mm ²
Length	700 mm	Modulus of elasticity	210 Gpa
Cross section type	Rectangle	Ends condition	Pin –pin (K=1)

Experiment parameters

Deflection y [mm]	0.5	1.0	1.5	2.0	2.5
Load (P) N	200	280	330	360	410
P/y (N/mm)	400	280	220	180	164

The Hashemite University Faculty Of Engineering Mechanical Engineering Department

Strength Of Materials Lab

<u>Calculation:</u> BY APPLYING THE RELATION WE FOUND THAT :

$$\begin{split} P(cr) &= (n^2 * 3.14^2 * E * I) / (KL)^2 >>> \\ (1^2 * 3.14^2 * 210 * 10^9 * 1.066 * 10^{-10}) / (1 * 700 * 10^{-3})^2 &= 450.5 \ N \\ This is the critical point . \end{split}$$

Discussion and conclusion:

We found that if p(cr) < p then it is un stable and will be buckling falier BUT if p(cr) > p then it is stable and buckling will no occure. The Hashemite University Faculty Of Engineering Mechanical Engineering Department

Strength Of Materials Lab

P critical depend on the length of the column inversely relation and with K and proportional with moment of inertia and modulus of elastisty which depend on type of materal or steel .