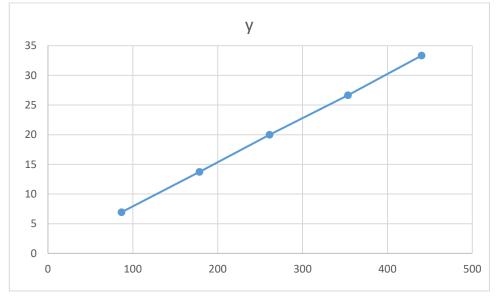


Thin Wall Cylinder

Student Name: Mohammed Nedal

.....

ID # : 1832971


.....

Results and Analysis:

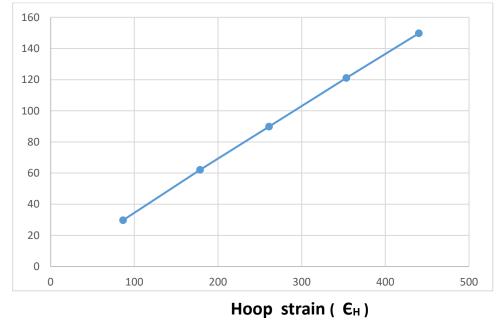
• Fill the experiment results for all parts and compare with theoretical value:

Trial No. #	Cylinder Pressure P (Mpa)	Hoop Strain ε _Η Gauge 1	Hoop Strain ε _Η Gauge 6	Average Hoop Strain ε _Η	Hoop stress σ _H (Mpa)			
1	0.52	76.65	96.56	86.60	6.93			
2	1.03	162.2	194.8	178.5	13.73			
3	1.5	243.2	278.9	261.05	20.0			
4	2	334.3	372.7	353.5	26.66			
5	2.5	421.2	459.2	440.2	33.33			
d = 80 mm		t = 3.00 mm		L = 358mm				
Theoretical modulus of elasticity (E) =69 Gpa								

• Plot σ_{Hoop} versus ε_{Hoop} then find E and compare with theoretical values.

** Sample of calculation: slope = Eexp ,,,, slope = y2-y1/x2-x1
We will take the point (178.5 , 13.73) (353.5 , 26.66)
Slope = 26.66-13.73/353.5-178.5 = 73.8 Gpa
= Eexp
Now we can find the percentage error by : theo-exp /theo *100%
69Gpa -73.8Gpa /69Gpa =6.95%

The Hashemite University Faculty Of Engineering Mechanical Engineering Department



Strength Of Materials Lab

Trial No. #	Hoop Strain ε _H Gauge 1	Hoop Strain ε _Η Gauge 6	Longitudinal strain ε∟ Gauge 2	Average Hoop Strain ε _Η			
1	76.65	96.56	-29.77	86.60			
2	162.2	194.8	- 62.14	178.5			
3	243.2	278.9	-89.86	261.05			
4	334.3	372.7	-121.1	353.5			
5	421.2	459.2	-149.8	440.2			
Theoretical Poisson's ratio (v) =0.33							

• Fill table below and find the Poisson's ratio (v):

• Plot ϵ_{Hoop} versus $\epsilon_{Longitudinal}$, then find Poisson's ratio (v) and compare with theoretical value.

Slope = $v = y^2 - y^1 / x^2 - x^1$

We will take the point (86.60, 29.77) (440.2, 149.8)

149.8-29.77/440.2-86.60 = 0.33 the the error is equal zero %

** Calculate the theoretical principal hoop and longitudinal strains for poisson's experiment and compare your results with the experimental values?? (first trial only)

Answer : for hoop strain by applying the relation ; strain hoop = stress hoop -v*stress long /E (6.93 *10^6 -(0.33*0.5*6.93*10^6))/69*10^9 = 83.86 *10^-6 (theo) For longitudinal strain = stress long -v*hoop stress /E (0.5*6.93*10^6-(0.33*6.93*10^6))/69*10^9 = 17.07*10^-6 (theo)

• Calculate the theoretical longitudinal stress ?

Longitudinal stress = 0.5^* stress hoop (theo) = $0.5^*6.93^*10^6$ = **3.465 Mpa** for first trial.