
PIC Microcontroller and
E b dd d S tEmbedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam AlzaqE g m q
The Islamic Uni. Of Gaza

The PIC uCs 1-1

Chapter 1:p
The PIC
Mi t ll Microcontrollers:
History and Features History and Features

Microcontroller and

PIC Microcontroller
d E b dd d S

Embedded Processors
Overview of the PIC18 and Embedded Systems

Muhammad Ali Mazidi,
Rolin McKinlay and
D C s F b

Overview of the PIC18
Family

Danny Causey, February
2007.

The PIC uCs 1-2

ObjectiveObjective

 d P d Compare and contrast uP and uC
Describe the advantages of uCg
Explain the concept of ES
Describe criteria for considering a uCDescribe criteria for considering a uC
Compare and contrast the various of the
PIC FamilyPIC Family
Compare the PIC with uC offered by

h others

The PIC uCs 1-3

Microcontroller and Embedded
Processors

ll G l PMicrocontroller VS General purpose uP
uC for embedded systemsy
X86 PC Embedded Application

The PIC uCs 3-4

Figure 1-1. Microprocessor System
Contrasted With Microcontroller Contrasted With Microcontroller
System

The PIC uCs 3-5

Choosing a uControllerChoosing a uController

h b The major 8-bit
Freescale Semiconductor’s (formerly Motorola)
6 H 0 /6 H 1168HC08/68HC11
Intel’s 8051
Atmel’s AVR
Zilog’s Z8
PIC from Microchip Technology

The PIC uCs 3-6

Criteria for Choosing
uController

 h d f h k 1. Meeting the computing needs of the task
at hand efficiency and cost effectively

2. Availability of SW and HW development
tools

Compilers
Assemblers
Debuggers
Emulators

3. Wide availability and reliable source

The PIC uCs 3-7

Criteria for Choosing
uController

 h d f h k Meeting the computing needs of the task
at hand efficiency and cost effectively

Determine its type, 8-bit,16-bit or 32-bit
Speed
Packaging (40-Pin or QFP)
Power consumption
The amount of RAM and ROM
The number of I/O pins and the timer
Cost per unit
Ease of upgrade.

The PIC uCs

pg

The PIC uCs 3-8

uC Data width uC Data width

b ll8-bit Microcontrollers
PIC10, PIC12, PIC14
PIC16, PIC17, PIC18

16-bit Microcontrollers
PIC24F, PIC24H

32-bit Microcontrollers32 bit Microcontrollers
PIC32

16 bit Digital Signal Controllers16-bit Digital Signal Controllers
dsPIC30, dsPIC33F

The PIC uCs 3-9

Overview of the PIC18 Family

 b ll ll d P An 8-bit uController called PIC is
introduces in 1989 by Microchip

h l Technology Corporation
It includes

Small Data Ram
Few bytes of Romy
One timer
I/O portsp

The PIC uCs 3-10

PIC 18 FeathersPIC 18 Feathers

 hRISC Architecture
On-chip program, Code, ROMp p g
Data EEPROM
TimersTimers
ADC
U RTUSART
I/O Ports

The PIC uCsThe PIC uCs 3-11

Figure 1-2. Simplified View of a PIC
Microcontroller

The PIC uCs 3-12

PIC18 Features PIC18 Features

 hRISC Architecture
On chip Code ROM and Data RAM, Data p
EEPROM
TimersTimers
ADC
USARTUSART
I/O ports

The PIC uCs 3-13

Figure 1-3 PIC18 Block DiagramFigure 1-3. PIC18 Block Diagram

The PIC uCs 3-14

Figure 1-3. PIC18 Block Diagram
(continued)

The PIC uCs 3-15

Figure 1-4 PIC16 Block DiagramFigure 1-4. PIC16 Block Diagram

The PIC uCs 3-16

Figure 1-4. PIC16 Block Diagram
(continued)

The PIC uCs 3-17

uCuC

The PIC uCs 3-18

PIC uC program ROMPIC uC program ROM

P f d ff d d PIC exists in terms of different speed and
the amount of on-chip RAM/ROM
Compatibility is restricted as far as the
instructions are concerns.

The PIC uCs 3-19

PIC uC Program ROMPIC uC Program ROM

P 1 BPIC 18 can support up to 2MB
Generally, they come with 4KB – 128KBy y
Available in flash, OTP, UV-EPROM, and
masked.masked.

The PIC uCsThe PIC uCs 3-20

UV-EPROMUV-EPROM

The PIC uCs 3-21

PIC18Fxxxx with flashPIC18Fxxxx with flash

d f d d lUsed for product development

The PIC uCsThe PIC uCs 3-22

PIC18Cxxxx and Masked PICPIC18Cxxxx and Masked PIC

POTP
One time programmable
C indicates the OTP RPM
Used for mass production
Cheaper

Masked
program will be burned into the PIC chip during
the fabrication processp

The PIC uCsThe PIC uCs 3-23

PIC uC data RAM and EEPROMPIC uC data RAM and EEPROM

 40 6 B (4 kB) f d Max. 4096 Bytes (4 kB) of data RAM
space.
Data RAM space has two components

Varied GPR, General Purpose RAMp
• For read/write and data manipulation
• Divided into banks of 256 B

Fixed SFR, Special Function Registers
Some of PICs have a small amount of
EEPROM

Used for critical data storing

The PIC uCs

g

The PIC uCs 3-24

The PIC uCsTransport Layer 3-25

PIC uC peripheralsPIC uC peripherals

N (ll N k) CAN- (Controller Area Network),
LIN- (Local Interconnect Network),
USB- (Universal Serial Bus),
I²C- (Inter-Integrated Circuit) I C- (Inter-Integrated Circuit),
SPI- (Serial Peripheral Interface),

i l E h I fSeriel or Ethernet Interface
ADC - Analog Digital Converterg g
USART- Universal Synchronous
Asynchronous Receiver Transmitter

The PIC uCs

synchronous ece ver ransm tter

3-26

Chapter 1: SummaryChapter 1: Summary
We have Compared We have Compared
between uP and uC
We have described the We have described the
advantages of uC
W h i sim l We have given a simple
introduction for PIC18 Next:

PIC Architecture and
assembly language
programming.

The PIC uCs 3-27

PIC Microcontroller and
E b dd d S tEmbedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam AlzaqE g m q
The Islamic Uni. Of Gaza

The PIC uCs 1-1

Chapter 2:p
PIC Architecture And
A bl L Assembly Language
Programming Programming.

The WREG Register

PIC Microcontroller
d E b dd d S

The PIC File Register
Using instruction with the default

and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
D C s F b

access bank

Danny Causey, February
2007.

The PIC uCs 1-2

OutlineOutline

P PIC Status Register
PIC data format and directive
Intro. To PIC assembly language
Assembling and linking a PIC programAssembling and linking a PIC program
The Program Counter and program ROM
space in the PICspace in the PIC
RISC Architecture in the PIC
Viewing Register and memory with MPLAB
simulator

The PIC uCs 1-3

ObjectiveObjective

E h d f l f h P Examine the data RAM fileReg of the PIC uC
Manipulate data using the WREG & MOVEp g
Perform simple operations such ADD and
fileReg using and access bank in the PIC uCfileReg using and access bank in the PIC uC
Explain the purpose of the status reg
Discuss data RAM memory space allocation in Discuss data RAM memory space allocation in
the PIC uC
Li SFR f h PIC CList SFRs of the PIC uC
Describe PIC data types and directives

The PIC uCs 1-4

The WREG RegisterThe WREG Register

M i f i h i d l i Many registers for arithmetic and logic
operation.
The WREG (WORking Register) Register is
one of the most widely used registers of y g
the PIC

8-bit register any data larger than 8 bits g y g
must be broken into 8-bits chunks before it is
processed.
There is only one .
D7 D6 D5 D2D4 D3 D1 D0

The PIC uCs 3-5

MOVLWMOVLW

 b d EGMoves 8-bit data into WREG
MOVLW k; move literal value k into WREG

Example
MOVLW 25H
MOVLW A5H

Is the following code correct?
MOVLW 9HMOVLW 9H
MOVLW A23H

The PIC uCs 1-6

ADDLWADDLW

DDLW k dd li l l k WREG (k WREG)ADDLW k; Add literal value k to WREG (k +WREG)

0 0 0 01 0 1 0Example:
MOVLW 12H ;
ADDLW 16H ;

0 0 0 01 0 1 0

0 0 1 00 1 0 0ADDLW 16H ;
ADDKW 11H ;
ADDLW 43H ;

0 0 1 00 1 0 0

0 0 1 01 1 0 1ADDLW 43H ; 0 0 1 01 1 0 1

0 1 1 11 1 0 00 1 1 11 1 0 0

The PIC uCs 1-7

Figure 2-1. PIC WREG and ALU Using Literal
Value

The PIC uCs 1-8

The PIC File RegisterThe PIC File Register

 h d It is the data memory.
Read/Write Static RAM
Used for data storage, scratch pad and
registers for internal use and function
8-bit width

PIC File Register

General Purpose
RAM

Special Function
Registers

GP RAM EEPROM

The PIC uCs 1-9

Register File ConceptRegister File Concept
Register File
Concept: All of data

Data Memory
(Register File)

Concept: All of data
memory is part of
the register file, so
any location in data

w f
ALU

07h

08h

09h

D
at

a
B

us

d

any location in data
memory may be
operated on
directly

w f

0Ah

0Bh

0Ch

D directly
All peripherals are
mapped into data

0Dh

0Eh

0Fh

10h memory as a series
of registers
Orthogonal

WREG
10h

Decoded Instruction
from Program Memory:

g
Instruction Set:
ALL instructions
can operate on ANY

Opcode d a Address

The PIC uCsThe PIC uCs

Arithmetic/Logic Function to
be Performed Result

Destination

Address of Second Source
Operand

p
data memory
location 1-10

PIC18F Programming ModelPIC18F Programming Model

The PIC uCs 1-11

Special Function RegistersSpecial Function Registers

d d d f f h dedicated to specific functions such as
ALU status, timers, serial communication,
/ DI/O ports, ADC,…

The function of each SFR is fixed by the y
CPU designer at the time of design

it is used for control of the microcontroller or
peripheral

8-bit registersg
Their numbers varies from one chip to
another

The PIC uCs

another.
1-12

General Purpose RAMGeneral Purpose RAM

G f lGroup of RAM locations
8-bit registersg
Larger than SFR

Difficult to manage them by using Assembly Difficult to manage them by using Assembly
language
Easier to handle them by C Compiler.y p

The microchip website provides the data The microchip website provides the data
RAM size, which is the same as GPR size.

The PIC uCs 1-13

File Register Size File Register Size

File Register
=

SFR
+

GPR
= +

(Bytes) (Bytes) (Bytes)
PIC12F508 32 7 25PIC12F508 32 7 25
PIC16F84 80 12 68
PIC18F1220 512 256 256PIC18F1220 512 256 256
PIC18F452 1792 256 1536
PIC18F2220 768 256 512
PIC18F458 1792 256 1536
PIC18F8722 4096 158 3938

The PIC uCs
PIC18F4550 2048 160 1888

1-14

Figure 2-2. File Registers of
PIC12, PIC16, and PIC18

The PIC uCs 1-15

The PIC uCs 1-16

GPRAM VS EEPROMGPRAM VS. EEPROM

 dd An add-on memory
Can be zero size

The PIC uCs 1-17

File Register and access bank in
the PIC18

h P 1 F l h f 40 6 The PIC18 Family can have a max. of 4096
Bytes.
The File Register

has addresses of 000- FFFH
divided into 256-byte banks
Max. 16 banks (How?)()

At least there is one bank
Known as default access bankKnown as default access bank.

Bank switching is a method used to access
all the banks

The PIC uCs

all the banks
1-18

Figure 2-3. File Register for PIC18
Family

The PIC uCs 1-19

Access bank in the PIC18Access bank in the PIC18

 6 B b kIt is 256-Byte bank.
Divided into equal two discontinuous q
sections (each 128 B).

GP RAM, from 0 to 7FH
SFR, from F80H to FFFH

The PIC uCs 1-20

Figure 2-4. SFRs of the PIC18 Family.

The PIC uCs 1-21

Using instruction with the
default access bank

 d h We need instruction to access other
locations in the file register for ALU and

h other operations.
MOVWF
COMF
DECF
MOVF
MOVFF

The PIC uCs 1-22

MOVWF instructionMOVWF instruction

F d f f l F indicates for a file register
MOVWF Address

It tells the CPU to copy the source
register, WREG, to a destination in the file register, WREG, to a destination in the file
register.

A location in the SPRA location in the SPR
A location in GP RAM

WREG

The PIC uCs 1-23

Example 2-1Example 2-1

MOVLW 99H 99 Add D t

WRFG

MOVLW 99H
MOVWF 12H

99 Address Data
012H
013H85MOVLW 85H

MOVWF 13H
014H
015H
016H3F

85

MOVLW 3FH
MOVWF 14H

016H3F
Address Data

MOVLW 63H
MOVWF 15H

63 012H 99
013H 85
014H 3F

MOVLW 12H
MOVWF 16H

12
014H 3F
015H 63
016H 12

The PIC uCs 1-24

NoteNote

 l l l d l We cannot move literal values directly into
the general purpose RAM location in the
P 18 h b d h PIC18. They must be moved there via
WREG.

The PIC uCs 1-25

ADDWFADDWF

dd h h f EG d Adds together the content of WREG and a
file register location

ADDWF File Reg. Address, D
The result will be placed in either the The result will be placed in either the
WREG or in the file register location

D indicates the destination bitD indicates the destination bit
If D=0 or (D=w)

The result will be placed in the WREGThe result will be placed in the WREG
If D=1 or (D=f)

Th l ill b l d i h fil i
The PIC uCs

The result will be placed in the file register
1-26

Example 2-2Example 2-2

 h f f l l State the content of file register location
and WREG after the following program

MOVLW 0
MOVWF 12H 0 Address Data

012H 0

Address Data
012H 22
Address Data
012H 44
Address Data
012H 66

Address Data
012H 88MOVWF 12H

MOVLW 22H
ADDWF 12H F

012H 0
013H
014H

22 013H
014H
015H

012H 44
013H
014H

012H 66
013H
014H
013H
014H
015HADDWF 12H, F

ADDWF 12H, F
015H
016H

015H
016H
015H
016H
015H
016H
015H
016H

ADDWF 12H, F
ADDWF 12H, F

The PIC uCs

DDWF H, F

1-27

Example 2-3Example 2-3

 h f f l l State the content of file register location
and WREG after the following program

MOVLW 0
MOVWF 12H 0 Address Data

012H 0
Address Data
012H 22MOVWF 12H

MOVLW 22H
ADDWF 12H F

013H
014H
015H

22
012H 22
013H
014H

ADDWF 12H, F
ADDWF 12H, W

015H
016H
015H
016H44

ADDWF 12H, W
ADDWF 12H, W

66
88

The PIC uCs

DDWF H, W

1-28

88

Figure 2-5. WREG, fileReg, and
ALU in PIC18

The PIC uCs 1-29

COMF instructionCOMF instruction

F F l dd DCOMF File Reg. Address, D
It tells the CPU to complement the content p
of fileReg and places the results in WREG
or in fileReg.g

The PIC uCs 1-30

Example 2-4Example 2-4

 l l h F Write a simple program to toggle the SFR
of Port B continuously forever.

Solution
MOVLW 55H

55 Address Data
F81H 55H
Address Data

MOVLW 55H
MOVWF PORTB

B1 F P B F

F81H 55H
F82H
F83H

F81H AAH
F82H
F83H

B1 COMF PORTB, F
GOTO B1

F83H

The PIC uCs 1-31

DECF instructionDECF instruction

DE F F l dd DDECF File Reg. Address, D
It tells the CPU to decrement the content
of fileReg and places the results in WREG
or in fileReg.

3 Address DataAddress Data
g

Example:
MOVLW 3

3 Address Data
012H 3
013H

Address Data
012H 2
013HMOVLW 3

MOVWF 20H
DECF 20H F

014H
015H
016H

014H
015H
016HDECF 20H, F

DECF 20H, F
DECF 20H F

016H016H

The PIC uCs

DECF 20H, F

1-32

DECF instructionDECF instruction

DE F F l dd DDECF File Reg. Address, D
It tells the CPU to decrement the content
of fileReg and places the results in WREG
or in fileReg.

3 Address Datag
Example:

MOVLW 3

3 Address Data
012H 3
013H2MOVLW 3

MOVWF 20H
DECF 20H w

014H
015H
016H

1
DECF 20H, w
DECF 20H, w
DECF 20H w

016H

0

The PIC uCs

DECF 20H, w

1-33

MOVF instructionMOVF instruction

F F l dd DMOVF File Reg. Address, D
It is intended to perform MOVFWp

MOVFW isn’t existed
If D=0If D 0

Copies the content of fileReg (from I/O pin) to
WREG

If D=1
The content of the fileReg is copied to itself The content of the fileReg is copied to itself.
(why?)

The PIC uCs 1-34

MOVF instructionMOVF instruction

F F l dd 0MOVF File Reg. Address, 0

WREG

The PIC uCs 1-35

Example 2-5Example 2-5

 l d f Write a simple program to get data from
the SFRs of Port B and send it the SFRs of
P R lPORT C continuously.

Solution XX Address Data
F81H XX

Address Data
F81H XX

AGAIN MOVF PORTB, W
MOVWF PORTC

F81H XX
F82H
F83H

F81H XX
F82H XX
F83HMOVWF PORTC

GOTO AGAIN

The PIC uCs 1-36

Example 2-6Example 2-6

 l d f Write a simple program to get data from
the SFRs of Port B Add the value 5 to it

d d h FR f P R and send it the SFRs of PORT C
Solution 55

Address Data
F81H 55H

Address Data
F81H 55H5A

MOVF PORTB,W
ADDLW 05H

55 F81H 55H
F82H
F83H

F81H 55H
F82H 5AH
F83H

5A

ADDLW 05H
MOVWF PORTC

The PIC uCs 1-37

MOVFF instructionMOVFF instruction

 d f l F lIt copies data from one location in FileReg
to another location in FileReg.

MOVFF Source FileReg, destination FileReg

The PIC uCs 1-38

Example 2-7Example 2-7

 l d f Write a simple program to get data from
the SFRs of Port B and send it the SFRs of
P R lPORT C continuously.

Solution XX Address Data
F81H XX
Address Data
F81H XX

AGAIN MOVFF PORTB, PORTC
GOTO AGAIN

F81H XX
F82H
F83H

F81H XX
F82H XX
F83H

GOTO AGAIN

The PIC uCs 1-39

PIC Status RegisterPIC Status Register

 d h d To indicate arithmetic conditions
It is a 8-bit registerg

Five bits are used
D0: C Carry FlagD0 C Carry Flag
D1: DC Digital Carry Flag
D2: Z Z FlD2: Z Zero Flag
D3: OV Overflow Flag
D4: N Negative Flag

The PIC uCs 1-40

Figure 2-7 Bits of Status RegisterFigure 2 7. Bits of Status Register

The PIC uCs 1-41

Example 2-8Example 2-8

h h f h D fl f Show the status of the C, DC, Z flags after
the following addition instruction

MOVLW 38H
ADDLW 2FHADDLW 2FH

Solution
38H + 2FH 67H WREG 67H38H + 2FH = 67H WREG=67H

C=0
DC 1DC=1
Z=0

The PIC uCs 1-42

Example 2-9Example 2-9

h h f h D fl Show the status of the C, DC, Z flags
after the following addition instruction

MOVLW 9CH
ADDLW 64HADDLW 64H

Solution
9CH + 64H 100H WREG 00H9CH + 64H = 100H WREG= 00H

C=1
DC 1DC=1
Z=1

The PIC uCs 1-43

Instruction That Affect Flag
Bits

The PIC uCs 1-44

Instruction That Affect Flag
Bits

The PIC uCs 1-45

Instruction That Affect Flag
Bits

The PIC uCs 1-46

Flag Bits and Decision MakingFlag Bits and Decision Making

The PIC uCs 1-47

PIC Data Format and DirectivesPIC Data Format and Directives

h d There is one data type
8 bits
It is the job of the programmer to break down
data larger 8 bits

Data type can be positive or negative
Data format are

Hex (default in PIC) 12 or 0x12 or H'12' or 12H
Binary B'00010010' B nary B 000 00 0
Decimal .12 or D'12'
ASCII A'c' or a'c'

The PIC uCs

ASCII A c or a c

1-48

Assembler Directives Assembler Directives

h h d ff b What is the difference between
Instruction and Directives?
EQU

Defines a constant or fixed address
SET

Defines a constant or fixed addressDefines a constant or fixed address
Maybe reassigned later

ORG (Origin)ORG (Origin)
END

The PIC uCs
LIST

1-49

Rules for labels in A LRules for labels in A.L.

 Unique name
Alphabetic lettersp

Upper, lower, digits (0-9),special char. (? . @_
$)

The first letter must be Alphabetic letters
Not a reserved wordNot a reserved word

The PIC uCs 1-50

Introduction to PIC Assembly
Language

D ff l f d l h h h Difficult for us to deal with the machine
code (0s and 1s)
Assembly Language provide

Mnemonic: codes and abbreviations that are
easy to remember
Faster programming and less prone error
LLL (why?)
Programmer must know all Reg. …etc.

Assembler is used to translate the
assembly code into machine code (object

The PIC uCs

m y m (j
code)

1-51

Structure of Assembly
Language

 f lSeries of lines
Instruction
Directives

Consists of four field
[label] mnemonic [operands] [;commands]

Label: refer to line by code (certain length)Label: refer to line by code (certain length)
Mnemonic and operands are task that
sh ld b t dshould be executed.

Directive don’t generate any machine code and
used by assembler

The PIC uCs

used by assembler
1-52

Sample of Assembly Language
Program

UM EQU 10H R M l 10H f UMSUM EQU 10H ;RAM loc 10H fro SUM
ORG 0H; start at address 0
MOVLW 25H ; WREG = 25
ADDLW 0x34 ;add 34H to WREG=59H
ADDLW 11H ;add 11H to WREG=6AH
ADDLW D’18’ ; W = W+12H=7CH
ADDLW 1CH ; W = W+1CH=98H
ADDLW b’00000110’ ; W = W+6H=9EH
MOVWF SUM ;save the result in SUM location

HERE GOTO HERE ;stay here forever

The PIC uCs
END ; end of asm source file

1-53

Assembling and Linking A PIC
Program

Figure 2Figure 2-
8. Steps

 C to Create
a Programg

The PIC uCs 1-54

List FileList File

The PIC uCs 1-55

The Program Counter and
Program ROM Space in the PIC

P (P) d b h P Program Counter (PC) is used by the CPU to
point to the address of the next

 b dinstruction to be executed
The wider the program counter, more the p g
memory locations can be accessed

PIC16 has 14 bits (8K)()
PIC18 has 21 bits (2M)
8051 has 16 bits (64K)()

The PIC uCs 1-56

Figure 2-9. Program Counter in
PIC18

The PIC uCs 1-57

The PIC uCs 3-58

Example 2-11Example 2 11

F d h dd f h f Find the ROM Memory Address of each of
the following PIC chips:

a) PIC18F2220
b) PIC18F2410b) PIC18F2410
c) PIC18F458

The PIC uCs 1-59

P i UP
At what address does the

Powering UP
At what address does the
CPU wake up when power
applied?applied?
• The uC wakes up at

mem r address 0000memory address 0000
• The PC has the value 0000
• ORG directive put the

address of the first op p
code at the memory
location 0000

The PIC uCs 1-60

Figure 2-11. PIC18
Program ROM Space

Placing Code in program ROMPlacing Code in program ROM

The PIC uCs 1-61

Program MemoryProgram Memory

All instructions are 2Byte All instructions are 2Byte
except the GOTO,
which has 4-Byte

The PIC uCs 1-62

Program ROM Width for the
PIC18

B dd bl h l h ld l Byte addressable: each location holds only one
byte

CPU with 8-Bit will fetch one byte a time
Increasing the data bus will bring more information

Solution: Data bus between CPU and ROM can
be similar to traffic lanes on the highwayg y
The wide of Data path is 16 bit

Increase the processing powerIncrease the processing power
Match the PIC18 instruction single

cycle

The PIC uCs

cycle

1-63

Figure 2-12. Program ROM
Width for the PIC18

The PIC uCs 1-64

Little endian VS big endian warLittle endian VS big endian war

h l b h l The low byte goes to the low memory
location
The high byte goes to the high memory
location
Intel uP and many uCs use little endian

The PIC uCs 1-65

Figure 2-13. PIC18 Program ROM
Contents for Program 2-1 List File

The PIC uCs 1-66

Harvard Architecture in the
PIC

 N h h Von Neumann Architecture: uses the same
bus for accessing both the code and data
memory.

Slow down the processing speed
Get in each other’s way

Harvard Architecture: uses separate buses p
for accessing the code and data memory.

Inexpensive for a chipp p

The PIC uCs 1-67

Figure 2-14. von Neumann vs.
Harvard Architecture

The PIC uCs 1-68

Instruction size of the PIC18Instruction size of the PIC18

P B 4 BPIC Instructions are 2-Byte or 4-Byte
The first seven or eight bits represents g p
the op-code
Most of PIC18 instructions are 2-ByteMost of PIC18 instructions are 2 Byte

MOVLW 0000 1110 kkkk kkkk (0E XX)
ADDLW 0000 1111 kkkk kkkk (0F XX)ADDLW 0000 1111 kkkk kkkk (0F XX)
MOVWF 0110 111a ffff ffff (6E XX

or 6F XX)F)
• A specifies the default access bank if it is 0 and if a

= 1 we have to use bank switching

The PIC uCs 1-69

Instruction size of the PIC18Instruction size of the PIC18

4 B l d 4-Byte instructions include
MOVFF (move data within RAM, which is 4k)

• 1100 ssss ssss ssss (0≤ fs ≤ FFF)
• 1111 dddd dddd dddd (0≤ fd ≤ FFF)

GOTO (th d dd b idth i 21 hi h GOTO (the code address bus width is 21, which
is 2M)

• 1110 1111 k kkk kkkk01110 1111 k7kkk kkkk0

• 1111 k19kkk kkkk kkkk8

The PIC uCs 1-70

RISC Architecture in the PICRISC Architecture in the PIC

 h f h To increase the processing power of the
CPU
1. Increase the clock frequency of the chip
2. Use Harvard architecture
3. change the internal architecture of the CPU

and use what is called RISC architecture

The PIC uCs 1-71

RISC Architecture in the PICRISC Architecture in the PIC

RISC
Simple and Small

CISC
Complex and large p

instruction set
Regular and fixed

p g
instruction set
Irregular instruction Regular and fixed

instruction format
Simple address

Irregular instruction
format
Complex address Simple address

modes
Pipelined instruction

Complex address
modes
May also pipeline Pipelined instruction

execution --> 95%
executed in one cycle

May also pipeline
instruction execution

The PIC uCs

executed in one cycle
1-72

RISC Architecture in the PICRISC Architecture in the PIC

RISC
Provide large number

CISC
Provide smaller number g

of CPU registers
Separated data and

of CPU registers
Combined data and Separated data and

program memory
Most operations are

Combined data and
program memory
Most operations can be Most operations are

register to register
Take shorter time to

Most operations can be
register to memory
Take longer time to Take shorter time to

design and debug
Take longer time to
design and debug

The PIC uCs 1-73

Viewing Register and memory
with MPLAB Simulater

The PIC uCs 1-74

Figure 2-15. SFR Window in
MPLAB Simulator

The PIC uCs 1-75

Figure 2-16. File Register (Data
RAM) Window in MPLAB Simulator

The PIC uCs 1-76

Figure 2-17. Program (Code)
ROM Window in MPLAB ROM Window in MPLAB
Simulator

The PIC uCs 1-77

Chapter 2: SummaryChapter 2: Summary
Sample PIC18 Sample PIC18
Instructions

Move add subtractMove, add, subtract

Next:
Branch, Call and Time ,

Delay Loo

The PIC uCs 3-78

The PIC uCs

PIC Microcontroller and
Embedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam Alzaq
The Islamic Uni. Of Gaza

3-1

The PIC uCs

Chapter 3:
Branch, Call and Time
Delay Loop

PIC Microcontroller
and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
Danny Causey, February
2007.

 Branch instruction and
looping

 Call instruction and stack
 PIC18 Time Delay and

instruction pipeline

3-2

The PIC uCs

Objective

 Code PIC Assembly language instructions to
create loops and conditional branch
instructions

 Code Goto instructions for unconditional
jump

3-3

The PIC uCs

Branch instructions and looping

 Looping in PIC
 Loop inside loop
Other conditional jumps
All conditional branches are short jumps
 Calculating the short branch address
Unconditional branch instruction

3-4

The PIC uCs

Looping in PIC

 Repeat a sequence of instructions or a
certain number of times

 Two ways to do looping
 Using DECFSZ instruction
 Using BNZ\BZ instructions

3-5

The PIC uCs

DECFSZ instruction

Decrement file
register, skip the
next instruction if
the result is equal
0

DECFSZ fileRef, d
 GOTO instruction

follows DECFSZ

3-6

The PIC uCs

Example 3-1

Write a program to
a) Clear WREG
b) Add 3 to WREG

ten times and
place the result in
SFR PORTB

 Solution
COUNT EQU 0x25

MOVLW d'10'
MOVWF COUNT
MOVLW 0

AGAIN ADDLW 3
DECFSZ COUNT,F
GOTO AGAIN
MOVWF PORTB

3-7

The PIC uCs

Figure 3-1. Flowchart for the
DECFSZ Instruction

3-8

The PIC uCs

Using BNZ\BZ instructions

 Supported by PIC18 families
 Early families such as PIC16 and PIC12 doesn’t

support these instruction
 These instructions check the status flag

Back ……………….
……………….
DECF fileReg, f
BNZ Back

3-9

The PIC uCs

Example 3-2

Write a program to
a) Clear WREG
b) Add 3 to WREG

ten times and
place the result in
SFR PORTB

 Solution
COUNT EQU 0x25

MOVLW d'10'
MOVWF COUNT
MOVLW 0

AGAIN ADDLW 3
DECF COUNT,F
BNZ AGAIN
MOVWF PORTB

3-10

The PIC uCs

Figure 3-2. Flowchart for Example 3-2
3-11

The PIC uCs

Example 3-3

What is the maximum number of times that
the loop can be repeated?

All locations in the FileReg are 8-bit
 The max. loop size is 255 time

3-12

The PIC uCs

Loop inside a loop

Write a program to
a) Load the PORTB SFR register with the

value 55H
b) Complement PORTB 700 times
Solution
R1 EQU 0x25
R2 EQU 0x26
COUNT_1 EQU d'10'
COUNT_2 EQU d'70'

3-13

The PIC uCs

Solution
MOVLW 0x55
MOVWF PORTB
MOVLW COUNT_1
MOVWF R1

LOP_1 MOVLW COUNT_2
MOVWF R2

LOP_2 COMPF PORTB, F
DECF R2, F
BNZ LOP_2
DECF R1, F
BNZ LOP_1 3-14

Address Data

25H (R1) 10

26H (R2) 70
…
…

F81H
(PORTB) 55

The PIC uCs
Figure 3-3. Flowchart

3-15

The PIC uCs

Figure 3-3. (continued)
3-16

The PIC uCs

Other conditional jumps

All of the 10 conditional jumps are 2-byte
instructions

 They requires the target address
 1 byte address (short branch address)
 Relative address

 Recall: MOVF will affect the status Reg.
 In the BZ instruction, the Z flag is

checked. If it is high, that is equal 1, it
jumps to the target address.

3-17

The PIC uCs

Flag Bits and Decision Making

1-18

The PIC uCs

Example 3-5

Write a program to determine if the loc.
0x30 contains the value 0. if so, put 55H in it.

 Solution:
 MYLOC EQU Ox30
 MOVF MYLOC, F
 BNZ NEXT
 MOVLW 0x55
 MOVWF MYLOC
NEXT ...

3-19

The PIC uCs

Example 3-6

 Find the sum of the values 79H, F5H, and
E2H. Put the sum in fileReg loc. 5H and 6H.

3-20

Address Data

5H (Low-
Byte) 0
6H (High-
Byte) 0
…

79

Address Data

5H (Low-
Byte) 0
6H (High-
Byte) 1
…

6E
79+F5
= 16E 6E+E2

= 150

Address Data

5H (Low-
Byte) 50
6H (High-
Byte) 2
…

50

The PIC uCsThe PIC uCs

Solution
L_Byte EQU 0x5
H_Byte EQU 0x6

ORG 0h
MOVLW 0x0
MOVWF H_Byte
ADDLW 0x79
BNC N_1
INCF H_Byte,F

N_1 ADDLW 0xF5
BNC N_2
INCF H_Byte,F

N_2 ADDLW 0xE2
BNC OVER
INCF H_Byte,F

OVER MOVWF L_Byte
END

3-21

The PIC uCs

Example 3-7
000000 0E00 00004 MOVLW 0x0
000002 6E06 00005 MOVWF H_Byte
000004 0F79 00006 ADDLW 0x79
000006 E301 00007 BNC N_1
000008 2A06 00008 INCF H_Byte,F
00000A 0FF5 00009 N_1 ADDLW 0xF5
00000C E301 00010 BNC N_2
00000E 2A06 00011 INCF H_Byte,F
000010 0FE2 00012 N_2 ADDLW 0xE2
000012 E301 00013 BNC OVER
000014 2A06 00014 INCF H_Byte,F
000016 6E05 00015 OVER MOVWF L_Byte3-22

The PIC uCs

Example 3-7

3-23

The PIC uCs

Example 3-8

3-24

The PIC uCs

Question?

Which is better, to use BNZ along with DECF
or DCFSNZ??

3-25

The PIC uCs

Unconditional branch
instruction
 Control is transferred unconditionally to

the target location (at ROM)
 Tow unconditional branches

 GOTO
 BRA

3-26

The PIC uCs

Figure 3-4. GOTO Instruction

3-27

The PIC uCs

Figure 3-5. BRA (Branch Unconditionally
Instruction Address Range

3-28

BRA Instruction

The PIC uCs

BRA Instruction

3-29

Forward
jump

Backward
jump

The PIC uCs

GOTO to itself

 Label and $ can be used to keep uC busy
(jump to the same location)

HERE GOTO HERE
 GOTO $

OVER BRA OVER
 BRA $

3-30

The PIC uCs

PIC18 Call instruction

Section 3-2
3-31

The PIC uCs

Call instruction

Call a
subrutine

Call
4-byte instruction
Long Call

Rcall
2-byte instruction
Relative Call

3-32

The PIC uCs

Figure 3-6. CALL Instruction
3-33

CALL Instruction

110S

The PIC uCs

CALL Instruction

 Control is transferred to subroutine
 Current PC value, the instruction address

just below the CALL instruction, is stored
in the stack
 push onto the stack

 Return instruction is used to transfer the
control back to the caller,
 the previous PC is popped from the stack

3-34

The PIC uCs

Stack and Stack Pointer (SP)

 Read/Write Memory
 Store the PC Address

 21-bit (000000 to 1FFFFF)
 5-bit stack, total of 32 locations
 SP points to the last used location of the

stack
 Location 0 doesn’t used
 Incremented pointer

3-35

The PIC uCs

Figure 3-7. PIC Stack 31 × 21
3-36

The PIC uCs

Return from Subroutine
 The stack is popped and the top of the stack

(TOS)is loaded into the program counter.
 If ‘s’ = 1, the contents of the shadow

registers WS, STATUSS and BSRS are
loaded into their corresponding registers, W,
STATUS and BSR.

 If ‘s’ = 0, no update of these registers occurs
(default).

3-37

The PIC uCs

Example 3-9

 Toggle all bits of to SFR register of PORTB
by sending to it values 55H and AAH
continuously. Put a delay in between issuing of
data to PORTB .

Analyze the stack for the CALL instructions

3-38

The PIC uCsThe PIC uCs

Solution
MYREG EQU 0x08
PORTB EQU 0x0F8

ORG 0
BACK MOVLW 0x55

MOVWF PORTB
CALL DELAY
MOVLW 0xAA
MOVWF PORTB
CALL DELAY
GOTO BACK

ORG 20H
DELAY MOVLW 0xFF

MOVWF MYREG
AGAIN NOP

NOP
DECF MYREG, F
BNZ AGAIN

RETURN
END

3-39

The PIC uCs

Example
3-10

3-40

Address Data

4
3
2
1

Address Data

4
3
2
1 000008

Address Data

4
3
2
1

Address Data

4
3
2
1 000016

Address Data

4
3
2
1

The PIC uCs

Figure 3-8. PIC Assembly Main
Program That Calls Subroutines

3-41

The PIC uCs

RCALL (Relative Call)

 2-Byte instruction
 The target address must be within 2K

 11 bits of the 2 Byte is used
 Save a number of bytes.

3-42

The PIC uCs

Example 3-12

3-43

The PIC uCs

PIC18 Time Delay and
instruction pipeline

Section 3-3
3-44

The PIC uCs

Delay Calculating for PIC18

 Two factors can affect the accuracy of
the delay

1. The duration of the clock period, which is
function of the Crystal freq
 Connected to OSC! And OSC2

2. The instruction cycle duration
Most of the PIC18 instructions consumes 1

cycle
• Use Harvard Architecture
• Use RISC Architecture
• Use the pipeline concept between fetch and execute.

3-45

The PIC uCs

Figure 3-9. Pipeline vs. Non-pipeline
3-46

The PIC uCs

PIC multistage pipeline

 Superpipeline is used to speed up
execution.

 The process of executing instructions is
split into small steps

 Limited to the slowest step

3-47

The PIC uCs

Figure 3-10. Pipeline Activity After
the Instruction Has Been Fetched

3-48

The PIC uCs

Figure 3-11. Pipeline Activity
for Both Fetch and Execute

3-49

The PIC uCs

Instruction Cycle time for the
PIC
What is the Instruction Cycle ?
Most instructions take one or tow cycles

 BTFSS can take up to 3 cycles
 Instruction Cycle depends on the freq. of

oscillator
 Clock source: Crystal oscillator and on-chip

circuitry
One instruction cycle consists of four

oscillator period.

3-50

The PIC uCs

Example 3-14

 Find the period of the instruction cycle you
chose 4 MHz crystal? And what is required
time for fetching an instruction?

 Solution
 4 MHz/4 =1 MHz
 Instruction Cycle = 1/1MHz = 1 usec
 Fetch cycle = 4 * 1 usec = 4 usec

3-51

The PIC uCs

Branch penalty

Queue is needed for prefetched
instruction

 If the prefetched instruction is incorrect,
the CPU must flush the memory. When??

3-52

The PIC uCs

Branch penalty

3-53

The PIC uCs

BTFSC and BTFSS

3-54

The PIC uCs

Example 3-15

 Find how long it take to execute each of
the following instructions for a PIC18 with
4 MHz

MOVLW
ADDLW CALL
DECF GOTO
NOP BNZ
MOVWF

3-55

The PIC uCs

Delay calculation for PIC18
Example 3-16
 Find the size of the delay in the following

program if the crystal freq. is 4MHz.
DELAY MOVLW 0xFF

MOVWF MYREG
AGAIN NOP

NOP
DECF MYREG, F
BNZ AGAIN
RETERN

3-56

The PIC uCs

Example 3-17

MYREG EQU 0x08
ORG 0
BACK MOVLW 0x55
MOVWF PORTB
CALL DELAY
MOVLW 0xAA
MOVWF PORTB
CALL DELAY
GOTO BACK

ORG 300H
DELAY MOVLW 0xFA
MOVWF MYREG
AGAIN NOP

NOP
NOP

DECF MYREG, F
BNZ AGAIN
RETURN

3-57

The PIC uCs

Example 3-20

R2 EQU 0x2
R3 EQU 0x3
R4 EQU 0x4

MOVLW 0x55
MOVWF PORTB

BACK
CALL DELAY_500MS

COMF PORTB
GOTO BACK

DELAY_500MS
MOVLW D'20'
MOVWF R4

BACK
MOVLW D'100'
MOVWF R3

AGAIN
MOVLW D'250'

MOVWF R2
HERE NOP

NOP
DECF R2, F
BNZ HERE
DECF R3, F
BNZ AGAIN
DECF R4, F
BNZ BACK
RETURN 3-58

The PIC uCs

Chapter 3: Summary
 Looping in PIC Assembly language is

performed using an instruction to decrement a
counter and to jump to the top of the loop if
the counter is not zero.

Assembly language includes conditional and
unconditional, and call instructions.

 PIC18 uses Superpipeline is used to speed up
execution.

Next: Chapter 4
PIC I/O Port

Programming
3-59

PIC Microcontroller and
E b dd d S tEmbedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam AlzaqE g m q
The Islamic Uni. Of Gaza

The PIC uCs 4-1

Chapter 4:Chapter 4:
PIC I/O Port /O ort
Programming

I/O Port Programming in
P

PIC Microcontroller
d E b dd d S

PIC18
I/O Bit Manipulation

and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
D C s F b

p
Programming

Danny Causey, February
2007.

The PIC uCs 4-2

ObjectiveObjective

 ll h f h P 1List all the ports of the PIC18
Describe the dual role of PIC18 pinsp
Code Assembly to use ports for input or
outputoutput
Code PIC instructions for I/O handling
Code I/O bit manipulation Programs for Code I/O bit-manipulation Programs for
PIC
E l i h bi dd bili f PIC Explain the bit addressability of PIC ports

The PIC uCs 4-3

I/O Port Programming in PIC18I/O Port Programming in PIC18

P 1 h PIC18 has many ports
Depending on the family member
Depending on the number of pins on the chip
Each port can be configured as input or output.

• Bidirectional port
Each port has some other functions

• Such as timer , ADC, interrupts and serial
communication

Some ports have 8 bits while others have notSome ports have 8 bits, while others have not

The PIC uCs 4-4

Figure 4-1. PICF458 Pin
Diagram

The PIC uCs

Pins Add 18-pin 28-pin 40-pin 64-pin 80-pinp p p p p
Chip PIC18F1220 PIC18F2220 PIC18F458 PIC18F6525 PIC18F8525
PORT A F80H X X X X X
PORT B F81H X X X X X
PORT C F82H X X X X
PORT D F83H X X XPORT D F83H X X X
PORT E F84H X X X
PORT F F85H X XPORT F F85H X X
PORT G F86H X X
PORT H X X
PORT J X X
PORT K X
PORT L X

The PIC uCs 4-6

I/O SFR I/O SFR

E h h h f Each port has three registers for its
operation:

TRIS register (Data Direction register)
• If the corresponding bit is 0 Output

If h di bi i 1 I• If the corresponding bit is 1 Input
PORT register (reads the levels on the pins of
the device)the device)
LAT register (output latch)

Th D t L t h (LAT) ist is s f l The Data Latch (LAT) register is useful
for read-modify-write operations on the

l th t th I/O pins d i in
The PIC uCs

value that the I/O pins are driving.
4-7

I/O SFR
Pins Address
PORT A F80HI/O SFR PORT A F80H
PORT B F81H
PORT C F82H

P 1 F4 h
PORT C F82H
PORT D F83H
PORT E F84H

PIC18F458 has 5
ports

LATA F89H
LATB F8AH
LATC F8BH

Upon reset, all
ports are

LATC F8BH
LATD F8CH
LATE F8DH

p
configured as input
TRISx register LATE F8DH

TRISA F92H
TRISB F93H

TRISx register
has 0FFH

TRISC F94H
TRISD F95H

The PIC uCs

TRISE F96H
4-8

Figure 4-2. CMOS States for P
and N Transistors

The PIC uCs

Figure 4-3. Outputting (Writing) 0
to a Pin in the PIC18

The PIC uCs

Figure 4-4. Outputting
(Writing) 1 to a Pin in the PIC18

The PIC uCs

Figure 4-5. Inputting (Reading)
0 from a Pin in the PIC18

The PIC uCs

Figure 4-6. Inputting (Reading)
1 from a Pin in the PIC18

The PIC uCs

Port APort A

P b d b d l PORTA is a 7-bit wide, bidirectional port.
Sometimes A6 is not available. why?

The corresponding Data Direction register
is TRISA.
Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input corresponding PORTA pin an input
Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output corresponding PORTA pin an output
On a Power-on Reset, these pins are
configured as inputs and read as ‘0’

The PIC uCs

configured as inputs and read as 0 .
4-14

Example 1Example 1

MOVLW B’00000000’MOVLW B’00000000’
MOVWF TRISA

B CK MOVLW 0 55

BACK MOVLW 0x55
MOVWF PORTA

BACK MOVLW 0x55
MOVWF PORTA
CALL DELAY

CALL DELAY
MOVLW 0xAA

CALL DELAY
MOVLW 0xAA
MOVWF PORTA

MOVWF PORTA
CALL DELAY

MOVWF PORTA
CALL DELAY
GOTO BACK

GOTO BACK

GOTO BACK

The PIC uCs 4-15

Example 2Example 2

MYREG EQU 0 20MYREG EQU 0x20
MOVLW B’11111111’
MOVWF TRISAMOVWF TRISA
MOVF PORTA, w

F EG MOVWF MYREG

The PIC uCs 4-16

PORT B, PORT C, PORT D and
PORT E

P B PORTB is 8 pins
PORTC is 8 pinsp
PORTD is 8 pins
PORTE is 3 pinsPORTE is 3 pins

The PIC uCs 4-17

Read followed by write operationRead followed by write operation

B f l F BBe careful
Don’t have a two I/O

 h

CLRF TRISB
SETF TRISC

operations one right
after the other.

D t D d

L4 MOVF PORTC,W
MOVWF PORTBData Dependency

A NOP is needed to
k th t d t i

MOVWF PORTB
BRA L4

make that data is
written into WREG
before it read for before it read for
outputting to PortB.

The PIC uCs 4-18

Figure 4-7. Pipeline for Read
Followed by Write I/O

The PIC uCs

Two SolutionsTwo Solutions

Solution1 Solution2Solution1 Solution2

CLRF TRISB
SETF TRISC

CLRF TRISB
SETF TRISCSETF TRISC

L4 MOVF PORTC,W
SETF TRISC
L4 MOVFF PORTC, PORTB

NOP
MOVWF PORTB

BRA L4

BRA L4 MOVFF is 4-byte
instruction

The PIC uCsThe PIC uCs

instruction.
4-20

Example 4-1 list P=PIC18F458Example 4-1

W it t t

#include P18F458.INC
R1 equ 0x07Write a test program

for the PIC18 chip
t t l ll th

R1 equ 0x07
R2 equ 0x08
ORG 0to toggle all the

bits of PORTB,
PORTC d PORTD

ORG 0
CLRF TRISB

PORTC and PORTD
every 0.25 of a

d (

CLRF TRISC
CLRF TRISDsecond. (suppose

that there is a 4
MH)

CLRF TRISD
MOVLW 0x55
MOVWF PORTBMHz) MOVWF PORTB
MOVWF PORTC

The PIC uCs
MOVWF PORTD

4-21

Solution
QDELAY

MOVLW D'200'Solution MOVLW D 200
MOVWF R1

D1 MOVLW D'250'
L3 COMF PORTB,F

COMF PORTC F

D1 MOVLW D'250'
MOVWF R2

COMF PORTC,F
COMF PORTD,F

D2 NOP
NOP

CALL QDELAY
BRA L3

NOP
DECF R2, F
BNZ D2BNZ D2
DECF R1, F
BNZ D1
RETURN

The PIC uCs

RETURN
END 4-22

I/O Bit Manipulation ProgrammingI/O Bit Manipulation Programming
I/O ports and bit-addressabilityp y
Monitoring a single bit
R di i l biReading a single bit

Section 4-2
The PIC uCs 3-23

I/O ports and bit-
addressability

PORT A PORT B PORT C PORT D PORT E PORT Bit
RA0 RB0 RC0 RD0 RE0 D0RA0 RB0 RC0 RD0 RE0 D0
RA1 RB1 RC1 RD1 RE1 D1
RA2 RB2 RC2 RD2 RE2 D2RA2 RB2 RC2 RD2 RE2 D2
RA3 RB3 RC3 RD3 D3
RA4 RB4 RC4 RD4 D4
RA5 RB5 RC5 RD5 D5

RB6 RC6 RD6 D6
RB7 RC7 RD7 D7

The PIC uCs 4-24

Bit Oriented Instruction for
PIC18

Instruction Function

BSF fileReg bit Bit Set File RegisterBSF fileReg, bit Bit Set File Register
BCF fileReg, bit Bit Clear File Registerg, g
BTG fileReg, bit Bit Toggl File Register

i il i ki if
BTFSC fileReg, bit

Bit Test File Register, skip if
clear

BTFSS fileReg, bit
Bit Test File Register, skip if
set

The PIC uCs

BTFSS fileReg, bit set
4-25

Example 4-2 CLRFTRISDExample 4-2

 ED d

BSF PORTD,0
CALLDELAY

A LED is connected
to each pin of port
D

BSF PORTD,1
CALLDELAYD. Write a program

to turn on each
LED f D0

CALLDELAY
BSF PORTD,2

LED from pin D0 to
D4.

CALLDELAY
BSF PORTD,3
CALLDELAY
BSF PORTD 4BSF PORTD,4
CALLDELAY

The PIC uCs 4-26

Example 4-3 Solution 1Example 4-3

 h f ll BCF TRISC 0 Write the following
programs

BCF TRISC,0
HERE

BSF PORTC 0A. Create a square
wave of 50% duty

BSF PORTC,0
CALL DELAYy

cycle on bit 0 of C BCF PORTC,0
CALL DELAYCALL DELAY
BRA HERE

How many byte are
d

The PIC uCs

used?
4-27

Example 4-3 Solution 2

 h f ll Write the following
programs BCF TRISC,0

BACK A. Create a square
wave of 50% duty

BACK
BTF PORTC,0y

cycle on bit 0 of C CALL DELAY
BRA BACKBRA BACK

H m b t How many byte are
used?

The PIC uCs 4-28

Example 4-4 BSF TRISB,2Example 4-4

F ,
CLRF TRISC
BCF PORTD 3Write a program to

perform the following:
BCF PORTD,3
MOVLW 0x45

a) Keep monitoring the
RB2 bit until it

AGAIN
BTFSS PORTB,2

becomes HIGH (1)
b) When RB2 becomes

,
BRA AGAIN
MOVWF PORTCb) When RB2 becomes

HIGH, write value
45H to portC and

MOVWF PORTC
BSF PORTD,345H to portC and

send a HIGH to LOW
plus to RD3

CALL DELAY
BCF PORTD,3

The PIC uCs

plus to D3 ,

4-29

Example 4-5Example 4-5

B B d Bit RB3 is an input and
represents the

d f d condition of a door
alarm.
Whenever it goes
LOW, send a HIGH-
to-LOW pulse to RC5
to turn on a buzzer

The PIC uCs 4-30

SolutionSolution

B F BBSF TRISB,3
BCF TRISC,5

HERE
BTFSC PORTB 3BTFSC PORTB,3
BRA HERE
B F PORTC 5BSF PORTC,5
BCF PORTC,5
CALL DELAY
BRA HERE

The PIC uCs

BRA HERE
4-31

Reading a single bit
Examole4-8

 h
BSF TRISB,0

A switch is
connected to pin
RB0 d LED

BCF TRISB,7
AGAIN

RB0 and a LED to
pin RB7. Write a

 d

G N
BTFSS PORTB,0
GOTO OVERprogram to read

the status of SW
d d i h

GOTO OVER
BSF PORTB,7

and send it to the
LED

GOTO AGAIN
OVER
BCF PORTB,7
GOTO AGAIN

The PIC uCs

GOTO AGAIN
4-32

Reading input pins VS. LATx
port

h b l d ’ There are two possibilites to read port’s
value

Through reading the status of the input pin
Through reading the internal latch of the LAT
register.

• Some instructions do that
The action is • The action is

1. The instruction read the latch instead of the pin
2. Execute the instruction. Execute the nstruct on
3. Write back the result to the Latch
4. The data on the pins are changed only if the TRISx

bi l d

The PIC uCs

bits are cleared.

٣٣- ٤

FunctionInstruction Function Instruction
Add WREG from ffileReg,dADDWF
Bit S t fil Rfil R bitBSF Bit Set fileRegfileReg,bitBSF
Bit Clear fileRegfileReg,bitBCF
Complement ffileReg,dCOMF
Increment FfileReg,dINCF g
Subtruct WREG from ffileReg,dSUBWF
Exclusive-OR WREG with ffileReg,dXORWF

The PIC uCs

Exclusive OR WREG with ffileReg,dXORWF

٣٤- ٤

Figure 4-8. LATx Register Role
in Reading a Port or Latch

The PIC uCs

Chapter 4: SummaryChapter 4: Summary
We focused on the We focused on the
I/O Ports of the PIC.
These ports used for These ports used for
input or output.
ProgrammingProgramming
We discussed Bit
m nip l ti n

Next:
Arithmetic, logic manipulation

instructions

, g
Instruction and
programs

The PIC uCs 4-36

PIC Microcontroller and
E b dd d S tEmbedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam AlzaqE g m q
The Islamic Uni. Of Gaza

The PIC uCs 5-1

Chapter 5: Arithmetic Chapter 5: Arithmetic,
logic Instruction and log c nstruct on and
programs

PIC Microcontroller
d E b dd d Sand Embedded Systems

Muhammad Ali Mazidi,
Rolin McKinlay and
D C s F b Danny Causey, February
2007.

The PIC uCs 5-2

ObjectiveObjective

D f h f b bl Define the range of numbers possible in
PIC unsigned data
Code addition and subtraction instructions
for unsigned datag
Perform addition of BCD
Code PIC unsigned data multiplication Code PIC unsigned data multiplication
instructions and programs for division
Code PIC Assembly language logic Code PIC Assembly language logic
instructions
C d PIC i i

The PIC uCs

Code PIC rotate instructions
5-3

OutlinesOutlines

h Arithmetic Instructions
Signed Number Concepts and Arithmetic g p
Operations
Logic and Compare InstructionsLogic and Compare Instructions
Rotate instruction and data serialization
BCD and ASCII ConversionBCD and ASCII Conversion

The PIC uCs 5-4

Arithmetic InstructionsArithmetic Instructions

d b d f d d Unsigned numbers are defined as data in
which all the bits are used to represent
d data

no bits are set aside for neg. or pos. sign
Addition of unsigned numbers

ADDLW k
ADDWF fileReg, d, a
ADDWFC (adding two 16-bit numbers)(g)

What happens to flag register?

The PIC uCs 5-5

Example 5 3
MOVLW 08DH
MOVWF 0x6Example 5-3

Add

MOVWF 0x6
MOVLW 3BH
MOVWF 0x7

3CE7H and

MOVWF 0x7
MOVLW 0xE7
ADDWF 0x6 F3B8DH ADDWF 0x6,F
MOVLW 0x3C
ADDWFC 0 7 FStore the sum in fileReg

locations 6 and 7, where

ADDWFC 0x7,F

Address DataWRFGlocation 6 should have
the lower bye.

00
05H 00
06H 00
07H 00

WRFG

00 07H 00
08H 00
09H 00

The PIC uCs 5-6

BCD Number SystemBCD Number System

 h d 0 dWe use the digits 0 to 9 in everyday
Binary Coded Decimaly

Unpacked BCD
• The lower 4 bits is just used
• Requires 1 byte

Packed BCD
0000 0010

• A single byte has two BCD numbers
• Efficient in storing data

0101 00100101 0010

The PIC uCs 5-7

BCDBCD

h h l f dd 0 17What is the result if you add 0x17
0x28

To correct the problem, we
should add 6.

0x3F
should add 6.

0x45

The PIC uCs 5-8

DAW Decimal Adjust WREGDAW, Decimal Adjust WREG

k l h EGWorks only with WREG
Add 6 to the lower or higher nibble if g
needed
After execution,After execution,

If the lower nibble is greater than 9, or if DC =
1, add 0110 to the lower nibble.,
If the upper nibble is greater than 9, or if C =
1, add 0110 to the upper nibble.

Doesn’t require the use of arithmetic
instructions prior the DAW execution

The PIC uCs

p

5-9

Subtraction of unsigned
numbers

b b (h)Subtracter circuit is cumbersome. (Why?)
PIC performs the 2’s complement then uses p p
adder circuit to the result.
Take one Clock CycleTake one Clock Cycle
There are four sub instructions

SUBLW k (k – WREG)SUBLW k (k – WREG)
SUBWF f d (destination = fileReg – WREG)

R s lt m b ti (N 1 d C 1)Result may be negative (N=1 and C=1)
The result is left in 2’s complement

The PIC uCs 5-10

Example 5-5Example 5-5

MOVLW 0x23
SUBLW 0x3F

0011 1111
1101 11011101 1101
0001 11001

+

C =1, D7 = N = 0

The PIC uCs 5-11

Example 5-6Example 5-6

b 4 6E MYREG EQU 0 20Subtract 4C – 6E? MYREG EQU 0x20
MOVLW 0x4C
MOVWFMYREG
MOVLW 0x6EMOVLW 0x6E
SUBWF MYREG,W
BNN NEXT

0100 1100
1001 0010 BNN NEXT

NEGF WREG
1001 0010
1101 11100

+

NEXT
MOVWFMYREG

C =0, D7 = N = 1

The PIC uCs

MOVWFMYREG
5-120010 0010

Multiplication of unsigned
number

P b b b PIC supports byte-by-byte
multiplication
One of the operand must be
in WREG
After multiplication, the
result is stored in PRODH result is stored in PRODH
and PRODL (16 bit)
Example Example

MOVLW 0x25
MULLW 0x65

The PIC uCs

MULLW 0x65
5-13

Division of unsigned numbersDivision of unsigned numbers

h l f h There is no single instruction for the
division of byte/byte numbers.
You need to write a program

Repeated subtractionp
The numerator is place in a fileReg
Denominator is subtracted from it repeatedlyp y
The quotient is the number of times we
subtracted
The reminder is in fileReg upon completion

The PIC uCs 5-14

Example 5-8
#include <P18F458.INC>
NUME EQU 0 15Example 5-8

 h h d l

NUME EQU 0x15
QU EQU 0x20

Convert the hexadecimal
number FDH, stored in
l 0 15

RMND_L EQU 0x22
RMND M EQU 0x23location 0x15, into

decimal.
RMND_M EQU 0x23
RMND_H EQU 0x24
MYNUM EQU 0 FDSave the digits in

locations 0x22, 0x23
MYNUM EQU 0xFD
MYDEN EQU D'10‘

and 0x24 ORG 0H
MOVLW MYNUM MOVLW MYNUM
MOVWF NUME
MOVLW MYDEN

It is a
Mistake in

 b k

The PIC uCs

MOVLW MYDEN
CLRF QU,F 5-15

your book.
There is no

F

Example 5-8 (2) D_2Example 5-8 (2)

D 1

INCF QU,F
SUBWF NUMED_1

INCF QU,F

SUBWF NUME
BC D_2
ADDWF NUMESUBWF NUME

BC D 1

ADDWF NUME
DECF QU,FBC D_1

ADDWF NUME
DECF QU F

MOVFF
NUME,RMND_M

DECF QU,F
MOVFF NUME,RMND_L

MOVFF
QU,RMND H

MOVFF QU,NUME
CLRF QU

QU,RMND_H
HERE

GOTO HERE
The PIC uCs

CLRF QU GOTO HERE
END 5-16

Signed Number Concepts and
Arithmetic Operations

h B d fThe MSB is set aside for
the sign (0 or -)g
The rest, 7 bits, are used
for the magnitudefor the magnitude.
To convert any 7-bit positive number to
negative use the 2’s complementnegative use the 2 s complement
You have 128 negative numbers and 127

i i bpositive numbers

The PIC uCs 5-17

Overflow problem in Signed
Number Operations

 fl h h l f An overflow occurs when the result of an
operation is too large for the register
OV flag indicate whether the result is valid
or not.

If OV = 1, the result is erroneous
When is the OV flag set?When is the OV flag set?

The is a carry from D6 to D7 but no carry out
of D7
There is a carry from D7 out (C = 1) but no
carry from D6 to D7

The PIC uCs 5-18

ExamplesExamples

6 0110 0000+96 0110 0000
+ +70 0100 0110
+ 166 1010 0110 (N=1, OV=1 and sum=-90)

-128 1000 0000
2 11 11 11 10+ - 2 11 11 11 10

+ 166 1 0111 1110 (N=0, OV=1 and sum=126)

The PIC uCs 5-19

Logic and Compare InstructionsLogic and Compare Instructions

d l d Widely used instructions
ANDLW k
ANDFW FileReg, d
IORLW k
IORFW FileReg, d
XORLW k
XORFW FileReg, d

Effect only Z and N FlagsEff y F g

The PIC uCs 5-20

Complement InstructionsComplement Instructions

F F l dCOMF FileReg,d
Takes the 1’s complement of a file register
Effect only Z and N Flags

NEGF FileRegg
Takes the 2’s complement of a file register
Effect all Flagsff g

Example
MYREG EQU 0x10MYREG EQU 0x10
MOVLW 0x85
MOVWF MYREG

The PIC uCs

MOVWF MYREG
NEGF MYREG 5-21

Compare InstructionsCompare Instructions

Th i i k 1/2 l ()These instructions take 1/2 cycle(s)

CPFSGT
FileReg

Compare FileReg with WREG, skip
if greater than

FileREg >
WREGFileReg if greater than WREG

CPFSEQ
Fil R

Compare FileReg with WREG, skip FileREg =
FileReg if equal WREG
CPFSLT Compare FileReg with WREG, skip FileREg <

The PIC uCs
FileReg

p g , p
if less than

g
WREG

5-22

Figure 5-3. Flowchart for
CPFSGT

The PIC uCs 5-23

Figure 5-4. Flowchart for
CPFSEQ

The PIC uCs 5-24

Figure 5-5. Flowchart for
CPFSLT

The PIC uCs 5-25

Example 5-27Example 5-27

 d CLRF TRISCWrite code to
determine if data

 P R B

CLRF TRISC
MOVLW A'N'

on PORTB contains
the value 99H. If

 l ‘ ’

MOVWF PORTC
SETF TRISBso, write letter ‘y’

to PORTC;
h i k

SETF TRISB
MOVLW 0x99
CPFSEQ PORTBotherwise, make

PORTC=‘N’
CPFSEQ PORTB
BRA OVER
MOVLW A'Y'
MOVWF PORTC

The PIC uCs

MOVWF PORTC
OVER ………… 5-26

Rotate instruction and data
serialization

 f l h f ()Rotate fileReg Right or Left (no Carry)
RRNCF fileRed, d
RLNCF fileRed, d
affect the N and Z flag

Rotate Right or Left through Carry flag
RRCF fileRed, df ,
RLCF fileRed, d
affect the C, N and Z flagaffect the C, N and Z flag

The PIC uCs 5-27

Serializing dataSerializing data

 f h d l d l One of the most widely used applications
of the rotate instructions.

Take less space on the PCB
Sending a byte of data, one bit at a time g y
through a single pin of uC.

Using the serial port.g p
Using a programming technique to transfer data
one bit at a time and control the sequence of
data and spaces between them.

The PIC uCs 5-28

Example 5-28
BCF TRISB,1
MOVLW 0x41Example 5-28

MOVWF MYREG
BCF STATUS,C

Write a program to
transfer value 41H

ll RB1

MOVLW 0x8
MOVWF RCNT

serially via RB1.
Put one High at the

BSF PORTB,1
AGAIN RRCF MYREG,Fg

start and end
Send LSB

,
BNC OVER
BSF PORTB,1Send LSB

Solution

BSF PORTB,
BRA NEXT

OVER BCF PORTB,1Solution
RCNT EQU 0x20

OVER BCF PORTB,1
NEXTDECF RCNT,F

BNZ AGAIN

The PIC uCs

MYREG EQU 0x21
BNZ AGAIN
BSF PORTB,1

5-29

Example 5-29
RCNT EQU 0x20

REG E 0 21Example 5-29

MYREG EQU 0x21
BSF TRISC,7

Write a program to
bring in a byte of
d ll

MOVLW 0x8
MOVWFRCNTdata serially via pin

RC7 and save it in
f l

MOVWFRCNT
AGAIN BTFSC

PORTC 7file register
location 0x21

PORTC,7
BSF STATUS,C

The byte comes in
with the LSB first

BTFSS PORTC,7
BCF STATUS,CF S S,
RRCF MYREG,F
DECF RCNT F

The PIC uCs

DECF RCNT,F
BNZ AGAIN 5-30

SWAPF SWAPF

 h l bbl d h h h Swap the lower nibble and the higher
nibble

Before After
D7-D4 D3-D0 D7-D4D3-D0

In the absence of a SWAPF instruction,
h ld h h ibbl ? H how would you exchange the nibbles? How
many rotate instruction do you need?

The PIC uCs 5-31

BCD and ASCII ConversionBCD and ASCII Conversion

h What is ASCII?
What does Keyboard produce when you press

 bany button?
Real time clock, RTC, provide the time and
date in BCD.

The PIC uCs 5-32

BCD and ASCII Codes for
digits 0-9

K ASCII (h) Bi BCD (k d)Key ASCII (hex) Binary BCD (unpacked)
0 30 0011 0000 0000 0000
1 31 0011 0001 0000 00011 31 0011 0001 0000 0001
2 32 0011 0010 0000 0010
3 33 0011 0011 0000 00113 33 0011 0011 0000 0011
4 34 0011 0100 0000 0100

3 0011 0101 0000 01015 35 0011 0101 0000 0101
6 36 0011 0110 0000 0110
7 37 0011 0111 0000 0111
8 38 0011 1000 0000 1000

The PIC uCs

9 39 0011 1001 0000 1001
5-33

Packed BCD to ASCII
Conversion
RTC id th d t d th ti i RTC provides the date and the time in
packed BCD
Data must be in ASCII to be displayed on a
LCD

Unpacked packed
ASCIIBCDBCD
32H and 39H02H & 09H29H

0011 00100011 00100010 1001
0011 10010011 1001

The PIC uCs ٣٤- ٥

ASCII to Packed BCD
Conversion

G id f h hi h ibbl (3)Get rid of the high nibble (3)

packed BCD
Unpacked
BCDASCIIkey

0100 0111
which is 47H

0000 0100344
0000 0111377

The PIC uCs ٣٥- ٥

Example 5-32 BCD_VAL EQU 0x29Example 5-32

 h

L_ASC EQU 0x06
H_ASC EQU 0x07

Assume that
register WREG has

k d B D

_ Q
MOVLW BCD_VAL
ANDLW 0x0Fpacked BCD. Write

a program to
 k d

ANDLW 0x0F
IORLW 0x30

convert packed
BCD to two ASCII

b d l

MOVWF L_ASC
MOVLW BCD_VAL

numbers and place
them in in file

i l i 6

_
ANDLW 0xF0
SWAPF WREG Wregister locations 6

and 7.
SWAPF WREG,W
IORLW 0x30

The PIC uCs

MOVWF H_ASC
5-36

Chapter 5: SummaryChapter 5: Summary
We discussed arithmetic We discussed arithmetic
instructions for both
signed and unsigned data.signed and unsigned data.
We defined the logic and
compare instructionscompare instructions.
The rotate and swap
inst ti ns id l

Next:
Bank Switching, Table instructions are widely

used.
 d b d B D d

g,
processing, Macros
and Modules

We described BCD and
ASCII formats and

The PIC uCs

conversions.
5-37

The PIC uCs

PIC Microcontroller and
Embedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam Alzaq
The Islamic Uni. Of Gaza

6-1

The PIC uCs

Chapter 6: Bank
Switching, Table
processing, Macros and
Modules

PIC Microcontroller
and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
Danny Causey, February
2007.

6-2

The PIC uCs

Objective
List all addressing modes of PIC18 uCs
Contrast and compare the addressing modes
Code PIC18 instructions to manipulate a
lookup table.
Access fixed data residing in ROM space.
Discuss how to create macros and models, and
its advantages.
Discuss how to access the entire 4kB of RAM
List address for all 16 banks of the PIC18
Discuss bank switching for the PIC18

6-3

The PIC uCs

Outlines

Immediate and Direct Addressing mode
Register indirect Addressing mode
Lookup table and table processing
Bit addressability of data RAM
Bank switching
Checksum and ASCII subroutines
Macros and models

6-4

The PIC uCs

Introduction

Data could be in
A register
In memory
Provided as an immediate values

PIC18 provides 4 addressing modes
Immediate
Direct
Register indirect
Indexed-ROM

6-5

The PIC uCs

Section 6.1: Immediate and
Direct Addressing mode

In immediate addressing mode, the operands
comes after the opcode

MOVLW 0x25
SUBLW D’34’
ADDLW 0x86

In direct addressing mode, the operand data
is in a RAM location whose address is known
and given as a part of the instruction.

6-6

The PIC uCs

Figure 6-1. MOVFF and MOVWF Direct
Addressing Opcode

6-7

MOVLW 0X56
MOVWF 0X40
MOVFF 0X40,50H

The PIC uCs

Figure 6-1. MOVFF and MOVWF
Direct Addressing Opcode

6-8

MOVLW 0X56
MOVWF 0X40
MOVFF 0X40,50H

The PIC uCs

Immediate and Direct
Addressing mode

What is the difference between
INCF fileReg, W
INCF fileReg, F

What is the default destination?
What is the difference between DECFSZ and
DECF?

Operation
Branch

6-9

The PIC uCs

SFR Registers and their addresses

Can be access by
Their name
Their address

Which is easier to
remember?

MOVWF PORTB
MOVWF 0xF81

6-10

The PIC uCs

SFR Registers and their
addresses
Remember

SFR addresses is
started at F80h and the
last location has the
address FFFh

Notes
In .lst file, you will see
that the SFR names are
replaced with their
addresses.
The WREG register is
one of the SFR
registers and has
address FE8h

6-11

The PIC uCs

Section 6.2: Register
indirect Addressing mode

A register is used as a pointer to the data
RAM location.
Three 12-bit Registers are used (from 0 to
FFFh)

FSR0
FSR1
FSR2

Each register is associated with INDFx
Syntax

LFSR n,data LFSR 1,95Eh needs 2 cycles
6-12

FSR means file
Select register

The PIC uCs

Advantages of Register
indirect Addressing mode

It makes accessing data dynamic
Looping is possible to increment the
address

Not possible in direct addressing mode
Example
• INCF FSR2L

6-13

The PIC uCs

Example 6-2
Write a program to
copy the value 55H
into RAM locations
40h to 45h using

A. Direct addressing
mode

B. Register indirect
addressing mode

C. A loop

Solution A
MOVLW 0x55
MOVWF 0x40
MOVWF 0x41
MOVWF 0x42
MOVWF 0x43
MOVWF 0x44

6-14

The PIC uCs

Example 6-2 (cont.)
Solution B

MOVLW 55H
LFSR 0,0x40
MOVWF INDF0
INCF FSR0L,F
MOVWF INDF0
INCF FSR0L,F
MOVWF INDF0
INCF FSR0L,F
MOVWF INDF0
INCF FSR0L,F
MOVWF INDF0

Solution C
COUNT EQU 0x10
MOVLW 0x5
MOVWF COUNT
LFSR 0,0x40
MOVLW 0x55

B1
MOVWF INDF0
INCF FSR0L,F
DECF COUNT,F
BNZ B1

6-15

The PIC uCs

Auto increment option for FSR

Normal increment can cause problem since
it increments 8-bit

INC FSR0L, F

Auto increment and auto decrement solve
the problem

They doesn’t affect the status flag

6-16

FF03
FSR0H FSR0L

The PIC uCs

PIC18 auto
increment/decrement of FSRn

Instruction Function

CLRF INDFn After clearing fileReg pointed by FSRn,
the FSRn stays the same

CLRF POSTINCn After clearing fileReg pointed by FSRn,
the FSRn is incremented (like x++)

CLRF PREINCn The FSRn is incremented, then fileReg
pointed to by FSRn is cleared (like ++x)

CLRF POSTDECnAfter clearing fileReg pointed by FSRn,
the FSRn is decremented (like x++)

CLRF PLUSWn Clears fileReg pointed by FSRn +
WREG, and FSRn W are unchanged

6-17

The PIC uCs

Example 6-4
Write a program to
clear 16 RAM location
starting at location 60H
using Auto increment.
Note: there are two
identical mistakes in
your book, pp 202. The
right correction is
FSR1=60H (not 40H)

Solution
COUNTREG EQU 0x10
CNTVAL EQU D'16'

MOVLW CNTVAL
MOVWF COUNTREG
LFSR 1,0x60

B3
CLRF POSTINC1
DECF COUNTREG,F
BNZ B3

6-18

The PIC uCs

Example 6-5

Write a program to copy
a block of 5 bytes of
data from location
starting at 30H to RAM
locations starting at
60H.

Solution
COUNTREG EQU 0x10
CNTVAL EQU D'5'

MOVLW CNTVAL
MOVWF COUNTREG
LFSR 0, 0x30
LFSR 1, 0x60

B3
MOVF POSTINC0,W
MOVWF POSTINC1
DECF COUNTREG,F
BNZ B3

6-19

The PIC uCs

Example 6-6

Assume that RAM
locations 40-43H have
the following hex data.
Write a program to add
them together and place
the result in locations
06 and 07.

Solution
COUNTREG EQU 0x20
L_BYTE EQU 0x06
H_BYTE EQU 0x07
CNTVAL EQU 4
MOVLW CNTVAL
MOVWF COUNTREG
LFSR 0,0x40
CLRF WREG
CLRF H_BYTE
B5 ADDWF POSTINC0, W
BNC OVER
INCF H_BYTE,F
OVER DECF COUNTREG,F
BNZ B5
MOVWF L_BYTE 6-20

Address Data
040H 7D
041H EB
042H C5
043H 5B

The PIC uCs

Example 6-7

Write a program to add
the following multi-byte
BCD numbers and save
the result at location
60H.

12896577
+ 23647839

Solution
COUNTREG EQU 0x20
CNTVAL EQU D'4'
MOVLW CNTVAL
MOVWF COUNTREG
LFSR 0,0x30
LFSR 1,0x50
LFSR 2,0x60
BCF STATUS,C

B3MOVF POSTINC0,W
ADDWFC POSTINC1,W
DAW
MOVWF POSTINC2
DECF COUNTREG,F
BNZ B3

6-21

Address Data
030H 77
031H 65
032H 89
033H 12
050H 39
051H 78
052H 64
053H 23

The PIC uCs

Section 6.3: Lookup table and
table processing

Beside instructions, ROM has enough space to
store fixed data
DB directive, which means Define Byte, is widely
used to allocate ROM program memory in byte-
sized chunks
Use single quotes (´) for a single character or
double quotes (“) for a string

Org 0x500
DATA1 DB 0x39
DATA2 DB `z´
DATA3 DB “Hello All“

ROM address must be even
6-22

The PIC uCs

Reading table elements in PIC18

Program conter is 21-bit, which is used to
point to any location in ROM space.
How to fetch data from the code space?

Known as a table processing: register indirect
ROM addressing mode.
There are table read and table write
instructions

The PIC uCs

Reading table elements in PIC18

To read the fixed data byte
We need an address pointer: TBLPTR

• Points to data to be fetched
• 21 bits as the program counter!!
• Divided into 3 registers: TBLPTRL, TBLPTRH,

TBLPTRU (all parts of SFR)
• Is there any instruction to load 21 bits (as LFSR)?

A register to store the read byte
• TBLLAT: keeps the data byte once it is fetched into

the CPU

The PIC uCs

Auto increment option for TBLPTR

Can you use the following instruction
INCF TBLPTRL, f

Cause Problem
Example: Assume that ROM space starting at
250H contains "Embedded System“, write a
program to send all characters to PORTB one byte
at a time

After Read, TBLPRTR stays the sameTable ReadTBLRD*
Reads and inc. TBLPTRTable Read with Post-incTBLRD*+
Reads and dec TBLPTRTable Read with Post-decTBLRD*-
Increments TBLPTR and then readsTable Read with pret-incTBLRD+*

The PIC uCs

Example 6.10a

RCOUNT EQU 0x20
CNTVAL EQU 0x0F
ORG 0000H
MOVLW 0x50
MOVWF TBLPTRL
MOVLW 0x02
MOVWF TBLPTRH
MOVLW CNTVAL
MOVWF RCOUNT
CLRF TRISB

B6 TBLRD*
MOVFF

TABLAT,PORTB
INCF TBLPTRL,F
DECF RCOUNT,F
BNZ B6
HERE GOTO HERE

ORG 0x250
MYDATA DB

"Embedded System"
END

The PIC uCs 6-27

The PIC uCs

Why don’t you see the
“Embedded System”

6-28

The PIC uCs

Example 6.10b

ORG 0000H
MOVLW 0x50
MOVWF TBLPTRL
MOVLW 0x02
MOVWF TBLPTRH
CLRF TRISB
B7 TBLRD*
MOVF TABLAT,W
BZ EXIT
MOVWF PORTB

INCF TBLPTRL,F
BRA B7
EXIT GOTO EXIT

ORG 0x250
MYDATA DB "

Embedded System",0
END

The PIC uCs

Example 6.11: Auto increment
ORG 0000H
MOVLW 0x50
MOVWF TBLPTRL
MOVLW 0x02
MOVWF TBLPTRH
CLRF TRISB
B7 TBLRD*+
MOVF TABLAT,W
BZ EXIT
MOVWF PORTB
BRA B7
EXIT GOTO EXIT

ORG 0x250
MYDATA DB "

Embedded System",0
END

The PIC uCs

Summery

Store Data

In RAM In ROM

FSR: Pointer to
the RAM
address

TBLPTR
(21 bits)

TBLLAT
Contains Data

INDFx:
Contains

Data

The PIC uCs

Look-Up table and RETLW

Used to access elements of a frequently
used with minimum operations
Example: x2

We can use a look-up table instead of
calculating the values WHY?
We need to a fixed value to the PCL to
index into the look-up table
RETLW (Return Literal to W) will provide
the desired look-up table element in WREG

The PIC uCs

Example 6-14
Write a program to get the
x valuefrom PORT B and
send x2 to port C.
Use look-up table instead
of a mutliply instruction.
Use PB3-PB0

ORG 0
SETF TRISB
CLRF TRISC
B1MOVF PORTB,W
ANDLW 0x0F
CALL XSQR_TABLE
MOVWF PORTC
BRA B1

XSQR_TABLE
MULLW 0x2
MOVFF PRODL, WREG
ADDWF PCL
RETLW D'0'
RETLW D'1'
RETLW D'4'
RETLW D'9'
RETLW D'16'
RETLW D'25'
RETLW D'36'
RETLW D'49'
RETLW D'64'
RETLW D'81'
END

The PIC uCs

Example 6-14

6-34

The PIC uCs

Accessing a look-up table in
RAM

Store data in a continue location
Using FSR as a pointer and the working
register as an index
For example:

MOVFF PLUS2 , PortD
Will copy data from location pointed by
FSR2+WREG into PortD

6-35

The PIC uCs

Example 6-15: X2

ORG 0
MOVLW 0
MOVWF 40H
MOVLW 1
MOVWF 41H
MOVLW 4
MOVWF 42H
MOVLW .9
MOVWF 43H
MOVLW .16

SETF TRISC
CLRFTRISD
LFSR2,0x40

B1 MOVF PORTC,W
ANDLW B'00000111'
MOVFF PLUSW2,PORTD
BRA B1
END

6-36

The PIC uCs

Example 6-15

6-37

The PIC uCsThe PIC uCs

Example 6-15

6-38

The PIC uCs

Example 6-16
Write a program to get the
x valuefrom PORT B and
send x2 +2x +3 to port C.
Use look-up table instead
of a mutliply instruction.
Use PB3-PB0

ORG 0
SETF TRISB
CLRF TRISC
B1 MOVF PORTB,W
ANDLW 0x0F
CALL XSQR_TABLE
MOVWF PORTC
BRA B1

XSQR_TABLE
MULLW 0x2
MOVFF PRODL, WREG
ADDWF PCL
RETLW D'3'
RETLW D'6'
RETLW D'11'
RETLW D'18'
RETLW D'27'
RETLW D'38'
RETLW D'51‚
RETLW D'66'
RETLW D'83'
RETLW D'102'
END

The PIC uCs

Section 6.4: bit addressability
of data RAM

One of the basic feathers of the PIC18 is
the bit addressability of RAM.

Bit-addressable instructions
• Use only direct addressing mode

Byte-addressable instructions

6-40

The PIC uCs

Status Register Bit-
addressability

You can access any
bit of the status
register by their
name.
Examples
BCF STATUS,C
BTFSS STATUS, Z

6-41

The PIC uCs

Section 6.5: Bank switching in
the PIC18

PIC18 has maximum of 4K of RAM
Not all the space used.
The fileReg is divided into 16 banks of 256B each
Every PIC18 has the access bank (the first 128B
of RAM + SFR)
Most PIC18 that access the data space in RAM
has the ability to access any bank through setting
an optional operand, called A
Example: MOVWF myReg, A

• If 0 it access the default bank (default)
• If 1, it uses the bank selection register (BSR) to select

the bank
6-42

The PIC uCs

Figure 6-3. Data RAM
Registers

6-43

The PIC uCs

The BSR register and bank
switching

It is 8-bit register
4 bits are used 16 banks
Banks 0 (from 00 to FF)
Banks 1 (from 100 to 1FF)
Banks 2 (from 200 to 2FF)
.....
Banks F (from F00 to FFF) (includes SFR)

Upon power-on reset, BSR is equal to 0
(default value)

6-44

The PIC uCs 6-45

The PIC uCs

A Bit in the Instruction Field
for INCF F, D, A

Two things must be
done

1. Load BSR with
desired bank

2. Make A = 1 in the
instruction itself.

MYREG EQU 0x40
MOVLB 0x2
MOVLW 0
MOVWF MYREG,1
INCF MYREG, F, 1
INCF MYREG, F, 1
INCF MYREG, F, 1

6-46

The PIC uCs

Example 6-25

Write a program to
copy the value 55H
into RAM locations
340h to 345h using

A. Direct addressing
mode

B. A loop

MOVLB 0x3
MOVLW 0x55
MOVWF0x40, 1
MOVWF0x41, 1
MOVWF0x42, 1
MOVWF0x43, 1
MOVWF0x44, 1
MOVWF0x44, 1

6-47

Solution (A)

The PIC uCs

Example 6-25

Write a program to
copy the value 55H
into RAM locations
340h to 345h using

A. Direct addressing
mode

B. A loop

COUNT EQU 0x10
MOVLB 0x3
MOVLW 0x6
MOVWFCOUNT
LFSR 0,0x340
MOVLW 0x55

B1
MOVWF INDF0,0
INCF FSR0L
DECF COUNT,F,0
BNZ B1

6-48

Solution (B)
Mistake
in your

Textbook

The PIC uCs

Section 6.6: Checksum and
ASCII subroutines
To ensure the integrity of ROM contents, every
system must perform a checksum calculation.

Corruption (caused by current surge)
To calculate the checksum byte
1. Add the bytes and drop the carries
2. Take the 2’s complement of the total sum
To perform the checksum operation
1. Add all bytes, including the checksum byte
2. The result must be zero, else error

6-49

The PIC uCs

Example 6-29

Find the checksum
byte
25H

+ 62H
+ 3FH
+ 52H
118H (Drop the
carry bit)

The 2’s comp. is E8

Perform the
checksum
25H

+ 62H
+ 3FH
+ 52H
+ E8H
200 (Drop the
carry)

6-50

The PIC uCs

Example 6-29

If the second byte 62H has been changed
into 22H. Show how the checksum method
detects the error.
25H

+ 22H
+ 3FH
+ 52H
+ E8H
1C0H (Drop the carry bit)

6-51

The PIC uCs

Section 6.6:
Checksum

AM_ADDR EQU 40H
COUNTREG EQU 0x20
CNTVAL EQU 4
CNTVAL1 EQU 5

ORG 0
CALL COPY_DATA
CALL CAL_CHKSUM
CALL TEST_CHKSUM
BRA $

6-52

Calculating and Testing
Checksum byte

ORG 0x500
MYBYTE DB 0x25,

0x62, 0x3F, 0x52,
0x00
END

The PIC uCs 6-53

COPY_DATA
MOVLW low(MYBYTE)
MOVWF TBLPTRL
MOVLW high(MYBYTE)
MOVWF TBLPTRH
MOVLW upper(MYBYTE)
MOVWF TBLPRTRU
LFSR 0, RAM_ADDR

C1 TBLRD*+
MOVF TABLAT,W
BZ EXIT
MOVWF POSTINC0
BRA C1

EXIT RETURN

Mistake
in your

Textbook

The PIC uCs

CAL_CHKSUM
MOVLW CNTVAL
MOVWF COUNTREG
LFSR 0,RAM_ADDR
CLRF WREG

C2ADDWF POSTINC0,W
DECF COUNTREG,F
BNZ C2
XORLW 0xFF
ADDLW 1
MOVWF POSTINC0
RETURN

TEST_CHKSUM
MOVLW CNTVAL1
MOVWF COUNTREG
CLRF TRISB
LFSR 0,RAM_ADDR
CLRF WREG

C3ADDWF POSTINC0,W
DECF COUNTREG,F
BNZ C3
XORLW 0x0
BZ G_1
MOVLW 'B'
MOVWF PORTB
RETURN

G_1 MOVLW 'G'
MOVWF PORTB
RETURN

6-54

The PIC uCs

Section 6.7: Macros and
models

Dividing a program into several models allows
us to use models in other application.

Reduce time
Reduce of errors

Increase the code size every time it invoked
MACRO Syntax

Name MACRO dummy1, dummy2 …
…………….
…………….
ENDM

6-55

Unique Body

The PIC uCs

Example:

Write a delay
macro and a
MOVLF macro.

#include P18F458.INC
NOEXPAND
DELAY_1 MACRO V1,

TREG
LOCAL BACK
MOVLW V1
MOVWFTREG

BACK NOP
NOP
NOP
NOP
DECF TREG,F
BNZ BACK
ENDM

6-56

Local
decleration

The PIC uCs

Example, cont.
MOVLF MACRO K, MYREG

MOVLW K
MOVWFMYREG
ENDM

ORG 0
CLRF TRISB

OVER MOVLF
0x55,PORTB
DELAY_1 0x200,0x10
MOVLF 0xAA,PORTB
DELAY_1 0x200,0x10
BRA OVER

END
6 -57

The PIC uCs

Figure 6-11. List File with
NOEXPAND Option for Program 6-4

6-58

The PIC uCs

Figure 6-12. List File with EXPAND
Option for Program 6-4

6-59

The PIC uCs

Figure 6-12. List File with EXPAND
Option for Program 6-4 (cont.)

6-60

The PIC uCs

Chapter 6: Summary

Next: Chapter 9
Arithmetic, logic

Instruction and
programs

6-61

The PIC uCs

PIC Microcontroller and
Embedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam Alzaq

The Islamic Uni. Of Gaza

9-1

The PIC uCs

Chapter 9: PIC18 Timer
Programming in
Assembly and C

PIC Microcontroller
and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
Danny Causey, February
2007.

9-2

The PIC uCs

Objective
 List the Timers of PIC18 and their associated

registers

Describe the various modes of the PIC18
timers

 Program the PIC18 timers in Assembly to
generate time delays

 Program the PIC18 timers in Assembly as
event counters

9-3

The PIC uCs

Outlines

 Programming timers 0 and 1

 Counter Programming

9-4

The PIC uCs

Introduction

 PIC18 has two to five timers
 Depending on the family number

 These timers can be used as
 Timers to generate a time delay

 Counters to count events happening outside the
uC

9-5

The PIC uCs

Section 9.1: Programming
timers 0 and 1

 Every timer needs a clock pulse to tick

 Clock source can be
 Internal  1/4th of the frequency of the crystal

oscillator on OSC1 and OSC2 pins (Fosc/4) is fed
into timer

 External: pulses are fed through one of the
PIC18’s pins  Counter

 Timers are 16-bit wide
 Can be accessed as two separate reg. (TMRxL &

TMRxH)

 Each timer has TCON (timer Control) reg.
9-6

The PIC uCs

Timer0 registers and
programming

 TMR0L & TMR0H are 8-bit Reg.
MOVWF TMR0L

MOVFF TMR0L, PORTB

9-7

The PIC uCs

T0CON
Reg
Determine

the timer
operations
modes

 Example

 If T0CON=
0000 1000
 16-bit

No prescaler

 Rising edge

9-8
Figure 9-2. T0CON (Timer0 Control)

Register

The PIC uCs

TMR0IF flag bit

 Part of INTCON

9-9
Figure 9-3. INTCON (Interrupt Control

Register) has the TMR0IF Flag

The PIC uCs

Figure 9-4. Timer0 Overflow
Flag

9-10

The PIC uCs

Characteristics and operations
of 16-bit mode

1. 16-bit timer, 0000 to FFFFH.

2. After loading TMR0H and TMR0L, the
timer must be started.

3. Count up, till it reaches FFFFH, then it
rolls over to 0000 and activate TMR0IF
bit.

4. Then TMR0H and TMR0L must be
reloaded with the original value and
deactivate TMR0IF bit.

9-11

The PIC uCs

Steps to program Timer0 in 16-
bit mode to generate time delay

1. Load the value into the T0CON register

2. Load reg. TMR0H followed by reg. TMR0L
with initial value

3. Start the timer with instruction

BSF T0CON, TMR0ON

4. Keep monitoring the timer flag (TMR0IF)
to see if it is raised.

5. Stop the timer

6. Clear the TMR0IF flag 3

7. Go Back to step 2
9-12

The PIC uCs

Figure 9-5. Timer0 16-bit Block
Diagram

9-13

The PIC uCs

Example 9-3

A square wave of
50% duty cycle on
the PORTB.5 is
created

Analyze the
program

BCF TRISB,5

MOVLW 0x08

MOVWF T0CON

HERE

MOVLW 0xFF

MOVWF TMR0H

MOVLW 0xF2

MOVWF TMR0L

BCF INTCON, TMR0IF

BTG PORTB,5

BSF T0CON, TMR0ON

AGAIN

BTFSS INTCON, TMR0IF

BRA AGAIN

BCF T0CON, TMR0ON

BRA HERE
9-14

FFF2FFF3FFF4
FFFF 0000

TMR0IF=0TMR0IF=1

The PIC uCs

Example 9-5

 Calculate the
frequency of the
wave generated on
PIN PORTB 5.

BCF TRISB,5

MOVLW 0x08

MOVWF T0CON

BCF INTCON,
TMR0IF

HERE

MOVLW 0xFF

MOVWF TMR0H

MOVLW -D'48'

MOVWF TMR0L

CALL DELAY

BTG PORTB,5

BRA HERE

DELAY

BSF T0CON, TMR0ON

AGAIN

BTFSS INTCON, TMR0IF

BRA AGAIN

BCF T0CON, TMR0ON

BCF INTCON, TMR0IF

RETURN

1

1

1

1

2

1

2

1

48

1

1

2

The PIC uCs

Figure 9-6. Timer Delay Calculation
for XTAL = 10 MHz with No Prescaler

 General formula for delay calculation
 T = 4/(10MHz) = 0.4 usecond

9-16

The PIC uCs

Example 9-8

Write a program to
generate a square
wave with a period
of ms on pin
PORTB.3 (XALT=10
Mhz)

 T = 10 ms

 Time delay =
10ms/2 = 5 ms.

We need
5ms/0.4us = 12500
clocks

 FFFF - 30D4 +1
=CF2C

 TMR0H = CFH

 TMR0L= 2CH
9-17

The PIC uCs

Example 9-8, Cont.
BCF TRISB,3

MOVLW 0x08

MOVWF T0CON

HERE

MOVLW 0xCF

MOVWF TMR0H

MOVLW 0x2C

MOVWF TMR0L

BCF INTCON,TMR0IF

CALL DELAY

BTG PORTB,3

BRA HERE

DELAY

BSF T0CON,TMR0ON

AGAIN

BTFSS INTCON,TMR0IF

BRA AGAIN

BCF T0CON,TMR0ON

RETURN

9-18

The PIC uCs

Example 9-8, Cont.

9-19

The PIC uCs

Prescaler and generating larger
delay

 The size of delay depend on
 The Crystal frequency

 The timer’s 16-bit register.

 The largest timer happens when
TMR0L=TMR0H=0

 Prescaler option is used to duplicate the
delay by dividing the clock by a factor of
2,4, 8,16, 32,64 ,128,256
 If T0CON=0000 0101, then T = 4*64/f

9-20
XTAL Osc ÷ 4 ÷ 64 TMRx

The PIC uCs

Example 9-13

 Examine the
following program
and find the time
delay in second.

Assume that XALT
= 10 MHz.

BCF TRISB,2

MOVLW 0x05

MOVWFT0CON

HERE

MOVLW 0x01

MOVWFTMR0H

MOVLW 0x08

MOVWFTMR0L

BCF INTCON,TMR0IF

CALL DELAY

BTG PORTB,2

BRA HERE
9-21

The PIC uCs

Figure 9-7. Timer0 8-bit Block
Diagram

9-22

The PIC uCs

Figure 9-8. Timer1 High and
Low Registers

 Can be programmed in 16-bit mode only

 It has 2 bytes named as TMR1L and RMR1H

 It has also T1CON and TMR1IF

 The module incorporates its own low-power
oscillator to provide an additional clocking option.

Used as a low-power clock source for the
microcontroller in power-managed operation.

9-23

The PIC uCs

Figure 9-9. Timer1 Block
Diagram

9-24

The PIC uCs

Figure 9-
10.
T1CON
(Timer 1
Control)
Register

9-25

The PIC uCs

Figure 9-11. PIR1 (Interrupt
Control Register 1) Contains the
TMR1IF Flag

9-26

The PIC uCs

SECTION 9.2: Counter
Programming

Used to counts event outside the PIC
 Increments the TMR0H and TMR0L registers

 T0CS in T0CON reg. determines the clock
source,
 If T0CS = 1, the timer is used as a counter

 Counts up as pulses are fed from pin RA4
(T0CKI)

What does T0CON=0110 1000 mean?

 If TMR1CS=1, the timer 1 counts up as
clock pulses are fed into pin RC0

9-27

The PIC uCs

Using external Crystal for
Timer1 clock

 Timer1 comes with two
options,
 clock fed into T1CKI

• T1OSCEN=0

 Clock from a crystal
connected to T1OSI-
T1OSO (additional)

• T1OSCEN=1

• 32 kHz Crystal is connected

• Used for saving power during
SLEEP mode  doesn’t
disable Timer1 while the main
crystal is shut down

9-28

External Source

I
nt

e
rn

a
l
S
ou

rc
e

The PIC uCs

Example 9-23

Assuming that
clock pulses are
fed into pin T0CK1,
write a program
for counter 0 in 8-
bit mode to count
the pulses and
display the state of
the TMR0L count
on PORTB.

BSF TRISA,RA

CLRF TRISB

MOVLW 0x68

MOVWF T0CON

HERE MOVLW 0x0

MOVWF TMR0L

BCF INTCON,TMR0IF

BSF T0CON,TMR0ON

AGAIN MOVFF TMR0L,PORTB

BTFSS INTCON,TMR0IF

BRA AGAIN

BCF T0CON,TMR0ON

GOTO HERE
9-29

The PIC uCs

Example 9-24

Assume that a 1 Hz
frequency pulse is
connected to input
for Timer0(T0CKI)

Write a program to
display counter 0
on PORTB, C and D
in decimal.

 Ser the initial value
of TMR0L to -60.

NUME EQU 0x00

QU EQU 0x20

RMND_L EQU 0x30

RMND_M EQU 0x31

RMND_H EQU 0x32

MYDEN EQU D'10'

BSF TRISA,RA4

MOVLW 0x68

MOVWFT0CON

HERE MOVLW 0x0

MOVWFTMR0L

BCF INTCON,TMR0IF

BSF T0CON,TMR0ON
9-30

The PIC uCs

Example 9-24

AGAIN MOVF
TMR0L,W

CALL
BIN_ASC_CON

BTFSS
INTCON,TMR0IF

BRA AGAIN

BCFT0CON,TMR0ON

GOTO HERE

BIN_ASC_CON

MOVFF PORTB,WREG

MOVWF NUME

MOVLW MYDEN

CLRFQU

D_1 INCF QU

SUBWF NUME

BC D_1

ADDWF NUME

DECF QU

MOVFF NUME,RMND_L

MOVFF QU,NUME

CLRFQU

D_2 INCF QU

SUBWF NUM

BC D_2

ADDWF NUM

DECF QU

MOVFF NUME,RMND_M

MOVFF QU,RMND_H

RETURN
9-31

The PIC uCs

Example 9-26

Assuming that
clock pulses are
fed into pin T0CKI
and a buzzer is
connected to pin
PORTB.1 write a
program for
counter0 in 8-bit
mode to sound the
buzzer every 100
pulses

BCF TRISB,1

BSF TRISA,4

MOVLW 0x68

MOVWF T0CON

MOVLW -D'100'

MOVWF TMR0L

BCF INTCON,TMR0IF

BSF T0CON,TMR0ON

AGAIN BTFSS
INTCON,TMR0IF

BRA AGAIN

BCFT0CON,TMR0ON

OVER BTG PORTB,1

CALL DELAY

GOTO OVER 9-32

The PIC uCs

Example 9-27

 Assume that a 1 Hz
frequency pulse is
connected to input for
Timer1(RC0)

 Write a program to
display the counter
values on PORTB and D in
decimal.

 Initial value=0

 16-bit and no Prescaler

BSF TRISC,RC0

CLRF TRISB

CLRF TRISD

MOVLW 0x02

MOVWFT1CON

HERE MOVLW 0x0

MOVWFTMR1H

MOVLW 0x0

MOVWFTMR1L

BCF PIR1,TMR1IF

BSF T1CON,TMR1ON

9-33

The PIC uCs

Example 9-27

AGAIN MOVFF
TMR1H,PORTD

MOVFF TMR1L,PORTB

BTFSS PIR1,TMR1IF

BRA AGAIN

BCF PIR1,TMR1ON

GOTO HERE

9-34

The PIC uCs

Chapter 9: Summary

 The PIC18 can have up to four or more
timers/counters. Depending on the family
member

 Timers: Generate Time Delays (using Crystal)

 Counters: Event counter (using Pulse outside)

 Timers are accessed as two 8-bit registers,
TMRLx and TMRHx

 Can be used either 8-bit or 16-bit

 Each timer has its own Timer Control register

Next: Chapter 10

PIC18 Serial Port
Programming in
Assembly and C

9-35

The PIC uCs

PIC Microcontroller and
Embedded Systems

Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam Alzaq

The Islamic Uni. Of Gaza

10-1

The PIC uCs

Chapter 10: PIC18
Serial Port
Programming in
Assembly.

PIC Microcontroller
and Embedded Systems
Muhammad Ali Mazidi,
Rolin McKinlay and
Danny Causey, February
2007.

10-2

The PIC uCs

Objective
 Explain serial communication protocol

Describe data transfer rate and bps rate

 Interface the PIC18 with an RS232
connector

Describe the main registers used by serial
communication of the PIC18

 Program the PIC18 serial port in Assembly

10-3

The PIC uCs

Outlines

 Programming timers 0 and 1

 Counter Programming

10-4

The PIC uCs

Introduction

 Computers transfer data in two ways:
Parallel and Serial.

 Parallel: Eight or more data lines, few feet
only, short time

 Serial: Single data line, long distance

 The PIC18 has serial communication
capability built into it.

10-5

The PIC uCs

Basics of Serial Communication

 The byte of data must be converted to
serial bits using a parallel-in-serial-out
shift register

Serial versus Parallel Data Transfer 10-6

The PIC uCs

Basics of Serial Communication
(cont’d)

 The receiving end must be a serial-in-
parallel-out shift register and pack them
into a byte.

 Two methods of serial data communication:
Asynchronous and Synchronous

Transfers a
block of data at
a time

Transfers a single
byte at a time

10-7

The PIC uCsThe PIC uCs

Half-and Full-Duplex
Transmission

10-8

The PIC uCs

Start and Stop Bits

 In the asynchronous method, each
character is placed between start and stop
bits (framing)

Framing ASCII ‘A’ (41H)

LSBMSB

10-9

The PIC uCs

Data Transfer Rate

 Rate of data transfer: bps (bits per
second)

Another widely used terminology for bps is
baud rate

 For Asynchronous serial data
communication, the baud rate is generally
limited to 100,000bps

10-10

The PIC uCs

RS232 Standard

 Standard for serial comm (COM port)
1: -3V to -25V;
0: +3V to +25V

 Reason: for long distance wired line

 Input-output voltage are not TTL
compatible

 So, we need MAX232/233 for voltage
converter. Commonly known as line drivers

10-11

The PIC uCsThe PIC uCs

RS232 Pins

DB-25

25-Pin Connector

DB-9

9-Pin Connector

Connectors:
Minimally, 3 wires: RxD, TxD, GND

Could have 9-pin or 25-pin

10-12

The PIC uCsThe PIC uCs

RS232 Pins (cont’d)

IBM PC DB-9 Signals

Pin 1 – Data Carrier Detect (DCD)
Pin 2 – Received Data (RxD)
Pin 3 – Transmitted Data (TxD)
Pin 4 – Data Terminal Ready (DTR)
Pin 5 – Signal Ground (GND)
Pin 6 – Data Set Ready (/DSR)
Pin 7 – Request to Send (/RTS)
Pin 8 – Clear to Send (/CTS)
Pin 9 – Ring Indicator (RI)

DB-9

9-Pin Connector

Data in Data out

10-13

The PIC uCsThe PIC uCs

PIC18 Connection to RS232

Line driver

(a) Inside MAX232 (b) its Connection to the PIC18

10-14

The PIC uCs

Figure 10-6. Null Modem
Connection

Null modem is a communication method to
connect two DTEs (computer, terminal, printer
etc.) directly using a RS-232 serial cable.

With a null modem connection the transmit and
receive lines are crosslinked.

Depending on the purpose, sometimes also one
or more handshake lines are crosslinked.

10-15

The PIC uCsThe PIC uCs

PIC18 Connection to RS232

Line driver

(a) Inside MAX232 (b) its Connection to the PIC18

10-16

The PIC uCsThe PIC uCs

PIC18 Connection to RS232
(Cont’d)

(a) Inside MAX233 (b) Its Connection to the
PIC18

Line driver

10-17

The PIC uCs

Section10.3: PIC18 Serial Port
Programming in Assembly

USART has both
 Synchronous

 Asynchronous

 6 registers
 SPBRG

 TXREG

 RCREG

 TXSTA

 RCSTA

 PIR1

10-18

Rx Port

Tx Port

The PIC uCs

SPBRG Register and Baud Rate
in the PIC18

The baud rate in
is programmable

 loaded into the
SPBRG decides
the baud rate

Depend on crystal
frequency
 BR = F Fosc

4*16*(X+1)(

Baud

Rate

SPBRG

(Hex Value)

38400 3

19200 7

9600 F

4800 20

2400 40

1200 81

*For XTAL = 10MHz only!
10-19

The PIC uCsThe PIC uCs

Baud rate Formula

If Fosc = 10MHz

X = (156250/Desired Baud Rate) - 1

Example:

Desired baud rate = 1200, Clock Frequency =
10MHz

X = (156250/1200) – 1
X = 129.21 = 129 = 81H

10-20

The PIC uCs

TXREG Register

 8-bit register used for serial
communication in the PIC18

 For a byte of data to be transferred via
the Tx pin, it must be placed in the TXREG
register first.

 The moment a byte is written into TXREG,
it is fetched into a non-accessible register
TSR

MOVFF PORTB, TXREG

 The frame contains 10 bits
10-21

The PIC uCs

RCREG Register

 8-bit register used for serial
communication in the PIC18

When the bits are received serially via the
Rx pin, the PIC18 deframes them by
eliminating the START and STOP bit,
making a byte out of data received and
then placing it in the RCREG register

MOVFF RCREG, PORTB

10-22

The PIC uCsThe PIC uCs

TXSTA (Transmit Status and
Control Register)

10-23

The PIC uCsThe PIC uCs

TXSTA (Transmit Status and
Control Register) (Cont’d)

10-24

The PIC uCsThe PIC uCs

RCSTA (Receive Status and
Control Register)

10-25

The PIC uCsThe PIC uCs

RCSTA (Receive Status and
Control Register) (Cont’d)

10-26

The PIC uCsThe PIC uCs

PIR1 (Peripheral Interrupt
Request Register 1)

10-27

The PIC uCs

Programming the PIC18 to
Transfer Data Serially

1. TXSTA register = 20H: Indicating
asynchronous mode with 8-bit data frame, low
baud rate and transmit enabled

2. Set Tx pin an output (RC6)

3. Loaded SPBRG for baud rate

4. Enabled the serial port (SPEN = 1 in RCSTA)

5. The character byte to transmit must be
written into TXREG

6. Keep Monitor TXIF bit

7. To transmit next character, go to step 5

10-28

The PIC uCsThe PIC uCs

Example 10.2

;Write a program for the PIC18 to transfer the letter 'G' serially
;at 9600 baud continuously. Assume XTAL = 10 MHz

MOVLW B'00100000'
MOVWF TXSTA
MOVLW D'15'; 9600 bps
MOVWF SPBRG
BCF TRISC, TX
BSF RCSTA, SPEN

OVER MOVLW A'G'
S1 BTFSS PIR1, TXIF

BRA S1
MOVWF TXREG
BRA OVER

10-29

The PIC uCs

TXSTA: Transmit Status and
Control Register

10-30

The PIC uCs

Programming the PIC18 to
Receive Data Serially

1. RCSTA register = 90H: To enable the
continuous receive in addition to the 8-bit
data size option

2. The TXSTA register = 00H: To choose
the low baud rate option

3. Loaded SPBRG for baud rate

4. Set Rx pin an input

5. Keep Monitor RCIF bit

6. Move RCREG into a safe place

7. To receive next character, go to step 5
10-31

The PIC uCsThe PIC uCs

Example 10.4

;Write a program for the PIC18 to receive data serially and
;put them on PORTB. Set the baud rate at 9600, 8-bit data
;and 1 stop bit

MOVLW B'10010000'
MOVWF RCSTA
MOVLW D'15'
MOVWF SPBRG
BSF TRISC, RX
CLRF TRISB

R1 BTFSS PIR1, RCIF
BRA R1
MOVFF RCREG, PORTB
BRA R1

10-32

The PIC uCs

Increasing the Baud Rate

 Faster Crystal
 May not be able to change crystal

 TXSTA.BRGH bit
 Normally used low

 Can be set high

 Quadruples rate when set high

The PIC uCs

Baud Rate Error
Calculation

 ??? Errors in the baud rate? Yep!
 Caused by using integer division in rate generator

)1(64

)







SPBRG

F
RateBaudCalculated

where

RateBaudDesired

RateBaudDesiredratebaudCalculated
Error

OSC

The PIC uCs

Transmit and Receive

 Please see program 10-1: Page 412

10-35

The PIC uCs

Figure 10-12. Simplified USART
Transmit Block Diagram

10-36

The PIC uCs

Chapter 10: Summary

Next: the final exam

10-37

	PIC Microcontroller and Embedded Systems�Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey
	Slide Number 2
	Objective
	Branch instructions and looping
	Looping in PIC
	DECFSZ instruction
	Example 3-1
	Figure 3-1. Flowchart for the DECFSZ Instruction
	Using BNZ\BZ instructions
	Example 3-2
	Figure 3-2. Flowchart for Example 3-2
	Example 3-3
	Loop inside a loop
	Solution
	Figure 3-3. Flowchart
	Figure 3-3. (continued)
	Other conditional jumps
	Flag Bits and Decision Making
	Example 3-5
	Example 3-6
	Solution
	Example 3-7
	Example 3-7
	Example 3-8
	Question?
	Unconditional branch instruction
	Figure 3-4. GOTO Instruction
	Figure 3-5. BRA (Branch Unconditionally) Instruction Address Range
	BRA Instruction
	GOTO to itself
	PIC18 Call instruction
	Call instruction
	Figure 3-6. CALL Instruction
	CALL Instruction
	Stack and Stack Pointer (SP)
	Figure 3-7. PIC Stack 31 × 21
	Return from Subroutine
	Example 3-9
	Solution
	Example 3-10
	Figure 3-8. PIC Assembly Main Program That Calls Subroutines
	RCALL (Relative Call)
	Example 3-12
	PIC18 Time Delay and instruction pipeline
	Delay Calculating for PIC18
	Figure 3-9. Pipeline vs. Non-pipeline
	PIC multistage pipeline
	Figure 3-10. Pipeline Activity After the Instruction Has Been Fetched
	Figure 3-11. Pipeline Activity for Both Fetch and Execute
	Instruction Cycle time for the PIC
	Example 3-14
	Branch penalty
	Branch penalty
	BTFSC and BTFSS
	Example 3-15
	Delay calculation for PIC18�Example 3-16
	Example 3-17
	Example 3-20
	Chapter 3: Summary
	PIC Microcontroller and Embedded Systems�Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey
	Slide Number 2
	Objective
	Outlines
	Introduction
	Section 6.1: Immediate and Direct Addressing mode
	Figure 6-1. MOVFF and MOVWF Direct Addressing Opcode
	Figure 6-1. MOVFF and MOVWF Direct Addressing Opcode
	Immediate and Direct Addressing mode
	SFR Registers and their addresses
	SFR Registers and their addresses
	Section 6.2:	Register indirect Addressing mode
	Advantages of Register indirect Addressing mode
	Example 6-2
	Example 6-2 (cont.)
	Auto increment option for FSR
	PIC18 auto increment/decrement of FSRn
	Example 6-4
	Example 6-5
	Example 6-6
	Example 6-7
	Section 6.3: Lookup table and table processing
	Reading table elements in PIC18
	Reading table elements in PIC18
	Auto increment option for TBLPTR
	Example 6.10a
	Slide Number 27
	Why don’t you see the “Embedded System”
	Example 6.10b
	Example 6.11: Auto increment
	Summery
	Look-Up table and RETLW
	Example 6-14
	Example 6-14
	Accessing a look-up table in RAM
	Example 6-15: X2
	Example 6-15
	Example 6-15
	Example 6-16
	Section 6.4: bit addressability of data RAM
	Status Register Bit-addressability
	Section 6.5: Bank switching in the PIC18
	Figure 6-3. Data RAM Registers
	The BSR register and bank switching
	Slide Number 45
	A Bit in the Instruction Field for INCF F, D, A
	Example 6-25
	Example 6-25
	Section 6.6: Checksum and ASCII subroutines
	Example 6-29
	Example 6-29
	Section 6.6: Checksum
	Slide Number 53
	Slide Number 54
	Section 6.7: Macros and models
	Example:
	Example, cont.
	Figure 6-11. List File with NOEXPAND Option for Program 6-4
	Figure 6-12. List File with EXPAND Option for Program 6-4
	Figure 6-12. List File with EXPAND Option for Program 6-4 (cont.)
	Chapter 6: Summary

