csel4l:Introduction to
Computer Architecture

Steven Swanson
Hung-Wei Tseng




Today’s Agenda

What is architecture!?

Why is it important?

At the highest level, where is architecture today!
Where is it going!?

What’s in this class?




What is architecture?

® How do you build a machine that computes!?

® Quickly, safely, cheaply, efficiently, in technology X, for
application Y, etc.

Civilization advances by extending
the number of important
operations which we can perform

without thinking about them.
-- Alfred North Whitehead




Orientation




Orientation

The internet




entat

System Bus
(PCl)

I 23 _JALST yociatd

- wdi o 13 R
e Ao s, TR Un®. L

2 ‘IJ,\-,E‘!J« L ¥ QP:@ .

Architecture begins about here.




Orientation

: £
System Busm

1O

TR R AL yoegiatd

ji>d¢—

1 5—.““ -‘.'-\!‘ - t‘.

R
id i d

,M:[f{je'mo x_

“.-*n* T A R Lk

%

e ) = @

Architecture begins about here.




B
W b
i ﬂ ‘.ﬂ




B
W b
i ﬂ ‘.ﬂ




O
U
. -
U
g
0
>




O
U
. -
U
g
0
>




The processors go here...




ot d . )4

#

KAnNgr
ﬁ‘i\!ﬁ'




Abstractions of the Physical World...

}ALU out

=

Arithmetic/
Logic Unit
(ALU)

ANRE RN AR
NN n

> Sun

microsystems

Physics/Materials Devices  Micro-architecture  Processors Architectures




Abstractions of the Physical World...

cse241a/
ECE dept

Physics/
Chemistry/
Material science
ﬂ;H-(H = I+E‘% J.J.E-(!.ﬁ'

&E .dl = - (if} j J'H . ds

Physics/Materials

Devices

This Course

L

NRRRE RN
L

;.W R

i

1.
i m
i

microsystems

Micro-architecture Processors Architectures




...for the Rest of the System

Processor - Software

Compilers Languages

Architectures Abstraction Engineers/

Applications




...for the Rest of the System

N

Architectures

csel2l csel3l csel30 cseEverythingElse

o

VA
SN

» Microsoft , » @@Q

JVM
Xen-
Processor Software
Compilers Languages
Abstraction Engineers/

Applications



Why study architecture!

® As CEs or CSs you should understand how computers
work
® Processors are the basis for everything in CS (except theory)
® They are where the rubber meets the road.

® Performance is important
® Faster machines make applications cheaper

® Understanding hardware is essential to understanding how
systems behave

® |t’'s cool!

® Microprocessors are among the most sophisticated devices
manufactured by people

® How they work (and even that they work) as reliably and as
quickly as they do is amazing.
® Architecture is undergoing a revolution
® The future is uncertain
® Opportunities for innovation abound.




Performance and You!

® Live Demo




Processor are Cool!

® Chips are made of silicon
Aka “sand”

The most adundant element in the
earth’s crust.

Extremely pure (<I part per billion)
This is the purest stuff people make




[ 1

LR D B0 04 10 B B MMM SRR TSR [ T M AR 1 T GO 1 e —————ement

(Vg
=1
i e
O

o Vo,
=
O
E
a




Building Chips

* Photolithography

Silicon Wafer




Building Chips

* Photolithography

Silicon Wafer ‘ Silicon Wafer \

Grow silicon dioxide




Building Chips

* Photolithography

Resist

m_
Silicon Wafer Silicon Wafer Silicon Wafer

Grow silicon dioxide Apply photo resist




Building Chips WKL

/N

* Photolithography <>

Resist Resist

m
Silicon Wafer

Silicon Wafer Silicon Wafer
Grow silicon dioxide Apply photo resist Expose to UV

Silicon Wafer




Building Chips WKL

/N

* Photolithography <>

Resist Resist

m_
Silicon Wafer

Silicon Wafer Silicon Wafer
Grow silicon dioxide Apply photo resist Expose to UV

Silicon Wafer

——

Silicon Wafer
Patterned resist




Building Chips WKL

/N

* Photolithography <>

Resist Resist

m_
Silicon Wafer

Silicon Wafer Silicon Wafer
Grow silicon dioxide Apply photo resist Expose to UV

Silicon Wafer

Silicon Wafer ‘ Silicon Wafer }

Patterned resist Etch SiO2




Building Chips Ui

/N

* Photolithography <>

Resist Resist

m_
Silicon Wafer

Silicon Wafer Silicon Wafer
Grow silicon dioxide Apply photo resist Expose to UV

Silicon Wafer

Silicon Wafer ‘ Silicon Wafer } ‘ Silicon Wafer \

Patterned resist Etch SiO2 Deposit metal




Building Chips

* Photolithography

Silicon Wafer

——

Silicon Wafer
Patterned resist

‘ Silicon Wafer \

Grow silicon dioxide

‘ Silicon Wafer } ‘ Silicon Wafer \

Resist

Silicon Wafer
Apply photo resist

Etch SiO2

Deposit metal

R
/N

>

Resist

Silicon Wafer
Expose to UV

Mask

I Vot

Silicon Wafer
Etch o102

(Or not)




Building Blocks: Transistors

90 nm Generation Transistor

Nickel
Silicide Layer

Silicon Gate
Electrode

1.2 nm SiO,
Strained
Silicon

No other company combines these
transistor features at the 90 nm generation




Building Blocks: Wires

90 nm Generation Interconnects

Low-k CDO
Dielectric

Combination of copper + low-k dielectric now meeting
performance and manufacturing goals




State of the art CPU

| -2 Billion xtrs

45nm features
3-4Ghz

Several 100 designers

>5 years
$3Billion fab

70 GFLOPS




Current state of
architecture




Since 1940




Since 1940

* Plug boards -> Java
« Hand assembling -> GCC
* No OS ->Windows Vista




Since 1940

* 50,000 x speedup * Plug boards -> Java

* >1,000,000,000 x density « Hand assembling -> GCC
(Moore’s Law) * No OS ->Windows Vista

Flexible performance is a liquid asset




Moore’s Law: Raw transistors

Dual-Core Intel® |tanium® 2 Processor

MOQORE'S LAW Intel® itanium® 2 Processor "

Intel® kardum® Processor A

Intel® Pentium® 4 Procossor /

Intel® Pentium® 0 Fm:er.?r"
Intel* Pentivm® Il Processor r
Intel® Pentium® Proce H.n:u"_,.-f'”ﬁ

Intel486™ Processer |

.d-

Intel 386 Processor

EEE- f'/'

EFEI-EE-IE'“

Ell]Elﬂ /

BO ElEt
4004 4

transistors
10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

1970 1975 1980 1985 1920 1985 2000 2005

1,000
2010




The Importance of
Architecture

® We design smarter and smarter processors

® Process technology gives us about 20%
performance improvement per year

® Until 2004, performance grew at about
40% per year.

® The gap is due to architecture! (and
compilers)




Computer Performance




Computer Performance

10000

I
specINT95  +
specINT2000  x
specINT2006  x

Relative Performance

1 |
1990 1992 1994 1996 1998 2000 2006 2008 2010

Year
23




Computer Performance

10000 |

specINTS|95
specINT2000
specINT2006
47% per year

Relative Performance

1 | | | | |
1990 1992 1996 1998 2000 2002 2004 2006 2008 2010

Year

23




Computer Performance

10000 |

speclNTSlaS +
specINT2000 x
specINT2006  x
47% per year
39% per year

Relative Performance

ii

_|_
_|_
I A
+

_|_

+

1 | + | | | | | | |
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

23




Computer Performance

10000 |

specINT£|95 -
specINT2000 x
specINT2006  x
47% per year
39% per year
25% per year

Relative Performance

ii

_|_
_|_
I A
+

_|_

+

1 | + | | | | | | |
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

23



The clock speed addiction

I
specINT2000 +
specINT2006  x

X X

X

L R R e 4 XX
+H H X
H HN X X X
e S T T B X B
b b bbb g XX K
Y T+ bk o

Clock speed (Mhz)

® Clock speed is the biggest contributor to power

® Chip manufactures (Intel, esp.) pushed clock speeds very
hard in the 90s and early 20085.

® Doubling the clock speed increases power by 2-8x
® C(Clock speed scaling is essentially finished.




Power

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm?!

Pentium® lli
Pentium® Il

AN
S
o
7
&
=

10

1.5un 1n 0.7n 0.5n 0.35u 0.25un 0.18u 0.13un 0.1n 0.07wn

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




Power

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm?!

Pentium® lli
Pentium® Il

AN
S
o
7
&
=

10

entium® Pro

1.5un 1n 0.7n 0.5n 0.35u 0.25un 0.18u 0.13un 0.1n 0.07wn

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




Power

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm?! /

ﬁ

Pentium® lli
Pentium® Il

AN
S
o
7
&
=

-
o

entium® Pro

1.5un 1n 0.7n 0.5n 0.35u 0.25un 0.18u 0.13un 0.1n 0.07wn

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




Power

Power doubles every 4 years /L./

5-year projection: 200W total, 125 W/ecm?! -~

ﬁ )

Pentium® lli
Pentium® Il

AN
S
o
7
&
=

-
o

entium® Pro

1.5un 1n 0.7n 0.5n 0.35u 0.25un 0.18u 0.13un 0.1n 0.07wn

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




Power

- Power doubles every 4 years /L. @”@
- 5-year projection: 200W total, 125 W/cm2! -~ Lty

ﬁ J

Pentium® lli
Pentium® Il

AN
S
o
7
&
=

10

entium® Pro

1.5un 1n 0.7n 0.5n 0.35u 0.25un 0.18u 0.13un 0.1n 0.07wn

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




$WMM

|
j A 7

Pentium® Il
Pentium® lI

/‘Pentium@ Pro

Pentium®

N
=
L
v
=
«
=

1.5un 1n 0.7n 0.5u 0.35n 0.25un 0.18u 0.13u 0.1n 0.07n

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.




What’s Next: Brainiacs

® Hold the clock rate steady.

® Be smarter in silicon

More sophisticated processors

More clever algorithms

This continues to deliver about 25% per year.
But for how long?




What’s Next: Parallelism

® This is all the rage right now

® You probably own a multi-processor, they used to
be pretty exotic.

® They provide some performance, but it’'s hard to
use.

® There aren’t that many threads
® Remember, flexible performance is a liquid asset
® Remember or look forward to csel2|




L L EeEadd dhdam;

AMD Barcelona

Intel Nahalem
4 cores

Cell BE
8 + | cores

type

80 cores

O
)
a
N
)
.
O
@,
o,
e’
=

8 cores

SPARC TI Intel Proto




Computer Performance




Computer Performance

specll\llTZOOO -
specINT2006  x
39% per year
25% per year

Relative Performance




Course Staff

® |nstructor: Steven Swanson
® |ectures Tues + Thurs

® TA:Hung-Wei Tseng

® Discussion sec:Wed.
® (but not this week)

® See the course web page for
contact information and
office hours.



http://www.cse.ucsd.edu/classes/sp09/cse141/
http://www.cse.ucsd.edu/classes/sp09/cse141/

What'’s in this Class

® Course outline

Instruction sets

The basics of silicon technology
Measuring performance

How processors work

® Basic pipelining

® Data and control hazards

® Branch prediction and speculation
® The memory system

® Introduction to multiprocessors

® Weekly technology digressions
® How various technologies actually work.




Your Tasks

Read the text!

° ComPuter Organization and Design: The Hardware/Software
Interface (4th Edition) -- previous editions are not supported

® |'m not ioin to cover everything in class, but you are
responsible for all the assigned text.

Come to class!

® | will cover things not in the book. You are responsible for
that too.

® C(Class participation (5%)

Homeworks throughout the course. (10%)
Weekly quizzes on Thursdays (10%)

One midterm. (25%)

One cumulative final. (35%)

One project (15%)

® Design your own [SA!




The Link to 141L

® You do not need to take |14I|L along with 141,
but you may need both to get your degree.
® The classes are mostly independent, except

® The results of the project will be used in 141L

® You can earn extra credit by licensing your ISA groups in
|41L who are not in |41




Grading

® Grading is on a |3 point scale -- F through A+
® You will get a letter grade on each assighment
® Your final grade is the weighted average of the
assignment grades.

® An excel spreadsheet calculates your grades
® We will post a sanitized version online once a week.
® |t will tell you exactly where you stand.
® [t specifies the curves used for each assignment etc.

® OpenOffice doesn’t run it properly.




Academic Honesty

® Don’t cheat.

® Cheating on a test will get you an F in the class and no
option to drop, and a visit with your college dean.

® Cheating on homeworks means you don’t have to turn
them in any more, but Eou don’t get points either. You
will also take at least 25% penalty on the exam grades.

® Copying solutions of the internet or a solutions
manual is cheating.

® Review the UCSD student handbook

® VWhen in doubt, ask. Honest mistakes will be
forgiven.




CpE 252
Computer Organization & Design

Central Processing Unit

v~

»




Central Processing Unit (CPU)

o Introduction

o General Register Organization

o Stack Organization

o Instruction Formats

o Addressing Modes

o Data Transfer and Manipulation

o Program Control

o Reduced Instruction Set Computer

Dr. T. Eldos



CPU: Major Components

o Datapath
. Storage Components; Registers & Flags
Processing Components; Arithmetic, Logic, Shift Unit (ALSU)
» Transfer Components; Bus
o Control
- Control Unit

BUS A
BUS B

I
V
Register File ALSU

| BUS C

WL TP

Control Unit

Dr. T. Eldos



General Register Organization - Datapath

Clock Input
l— I
—:» R1 |
N R2 :
| |
I R3 I
> R4 :
I |
L R5
| |
l R6 :
I I
L R7 :
| |
1 Load ]
\ 4 Yy v vV VYV VY VvV Y \ 4 y y v Y Y vV V CO
DEC 1— MUX MUX —
0p) 0y}
n BUS A BUS B
SELD v —> - -
%—» ALSU
e
—_—
BUS C
Output

Dr. T. Eldos



Operation of Control Unit

o Control Unit, directs the information flow through ALU by
Selecting various Components in the system
Selecting the Function of ALU
o Example: R1 « R2 +R3
SELA: BUS A <« R2
SELB: BUS B « R3
OPR: ALU instruction to ADD
SELD: R1 <« BUSC

Field Encoding

Binary Code SELA SELB SELD
3 bits 3 bits 3 bits 5 bits

000 Input  Input  None
SELA SELB | SELD OPR 001 R1 R1 R1

010 R2 R2 R2

Control Word 011 R3 R3 R3

100 R4 R4 R4

101 R5 R5 R5

110 R6 R6 R6

111 R7 R7 R7

Dr. T. Eldos 5



ALU Control

Encoding of ALU operations

OPR

00000
00001
00010
00101
00110
01000
01010
01100
01110
10000
10001

Operation

Transfer
Increment
Add
Subtract
Decrement
And

Or

Xor
Complement
Shift Right
Shift Left

Outcome

A
A+l
A+B
A-B
A-1
AAB
Av B
X®B
A

Symbol

TSFA
INCA
ADD
SUB
DECA
AND
OR
XOR
COMA
SHRA
SHLA

Dr. T. Eldos




ALU Microoperations

Example of ALU Microoperation using the 3-address format

Unary operation like Increment Register needs a source and
destination (can be the same, to0)

ALU Microoperations: Example
Microoperation SELA
R1 <+ R2-R3 R2
R4 < R4 AR5 R4
R6«< R6+ 1 R6
R7 < R1 R1
Output « R2 R2
Output « Input Input
R4 « shl R4 R4
R5«0 R5

SELB

SELD

R1
R4
R6
R7
None
None
R4
R5

OPR

SUB
OR
INCA
TSFA
TSFA
TSFA
SHLA
XOR

Control Word

010
100
110
001
010
000
100
101

011
101
000
000
000
000
000
101

001 00101
100 01010
110 00001
111 00000
000 00000
000 00000
100 11000
101 01100

Dr. T. Eldos




Register Stack Organization

o Useful in nested subroutines and nested loops control

o Efficient for arithmetic expression evaluation

o LIFO; only PUSH and POP operations are applicable

Initially, SP = 0, EMPTY =1, FULL=0

PUSH:

SP«SP+1

M[SP] < DR

EMPTY < 0,SP=0: FULL« 1

POP:
DR « M[SP]
SP«SP-1

FULL «<- O, SP =0: EMPTY « 1

Stack Pointer

EMPTY

FULL

v

Address
63

O P N W b

Dr. T. Eldos



Memory Stack Organization

o Memory with Program, Data,

and Stack Segments

a Portion of memory used as
stack with a register as a
stack pointer

o Check overflow & underflow

o Initially, SP is set to the end
of memory (FFF)

o Stack overflows if it exceeds

some limit
o Operations:
PUSH: SP« SP-1

M[SP] « DR

POP: DR « M[SP]
SP«SP+1

PC

Address

AR

000

A

Code Segment

SP

\ 4

800 1

AO00

FFF

Stack Segment | Data Segment

DR

Dr. T. Eldos



Reverse Polish Notation

o Consider the arithmetic expressions: A + B

. A+B Infix notation
. +AB Prefix or Polish notation
- AB+ Postfix or Reverse Polish notation

o Reverse Polish Notation is suitable for evaluation using stack

o Any arithmetic expression can be expressed in parenthesis-free
o Example: RPN of expression (3*4)+(5*6)is34*56*+

o Arrow stands for the top of the stack

— 6
— 4 —1 5 5 | /130
— 3 3| —| 12 12 12 12| —*| 42
3 4 * 5 6 * +

Dr. T. Eldos



Instruction Format

o Instruction Fields
OP-code; specifies the operation to be performed
Address; designates memory addresses or a processor registers
Mode; specifies the way operand or effective address is determined
o Number of address fields in the instruction format depends on the
Internal organization. Most common organizations are:
Single accumulator organization:

- ADD X ; AC « AC + M[X]
Register organization:

. ADD R1,R2,R3 :R1 <« R2 +R3

: ADD R1,R2 ;' R1 < R1+R2

: ADD  R1,X : R1 « R1 + M[X]
Stack organization:

. PUSH X ; TOS « M[X]

» ADD

Dr. T. Eldos

11



0O-address & 1-address instructions

o 0O-address, used in a stack computers; evaluate X=(A+B)*(C +D):

PUSH A : TOS « A

PUSH B : TOS « B

ADD : TOS « (A + B)

PUSH C : TOS « C

PUSH D : TOS < D

ADD : TOS « (C + D)

MUL : TOS < (C + D) * (A + B)
POP X : M[X] < TOS

o 1l-address, implies AC for manipulation; evaluate X =(A+B) *(C + D) :

LOAD A . AC « M[A]
ADD B : AC « AC + M[B]
STORE T . M[T] « AC
LOAD C : AC « M[C]
ADD D . AC « AC + M[D]
MUL T . AC « AC * M[T]
STORE X . M[X] < AC

Dr. T. Eldos



2-address & 3-address Instruction

o 2-address, evaluate X=(A+B)*(C+ D)

MOV R1, A ' R1 « M[A]
ADD RI1,B ' R1 « R1 + M[B]
MOV R2,C ' R2 « M[C]
ADD R2,D ' R2 « R2 + M[D]
MUL R1, R2 ' R1 <« R1*R2
MOV X, R1 . M[X] « R1

o 3-address, evaluate X=(A+B)*(C+ D)

ADD R1,A, B ;R1<« MA]+ M[B]
ADD R2,C,D ;R2« M[C]+ M[D]
MUL X, R1,R2 :M[X]« R1*R2

a Compared to the 2-address instructions, 3-address results in short
programs but instruction becomes long (many bits)

Dr. T. Eldos

13



Addressing Modes

o Techniques, methods or ways by which the instruction accesses its
operand

o Specifies a rule for interpreting or modifying the address field of the
Instruction (before the operand is actually referenced)

o Many addressing modes for flexibility and efficient use of bits

o Types are:
Implied
» Immediate
. Absolute (Direct Address)
Register Direct
Register Indirect
Register Indirect with Autoincrement and Autodecrement

Relative:

> PC relative
> Index relative
> Base relative

Dr. T. Eldos 14



Addressing Modes

o Implied Mode
» Address of operand specified implicitly in the instruction
> NO need to specify address in the instruction

> Example: effective address of CMA is AC and that of POP is stack
pointer

o Immediate Mode
Instead of specifying the address, operand itself is specified

> NoO need to specify address, operand itself needs to be specified

> Sometimes, require more bits than the address

> Fast to acquire an operand

> Example: LD #129, R1, source is immediate
o Register Mode

. Address specified in the instruction is the register address

> Designated operand need to be in a register
Shorter address than the memory address
Saving address field in the instruction
Faster to acquire an operand than the memory addressing
Example: MOV R1, R2, source and destinations are register direct

Y

Y

Y

Y

Dr. T. Eldos 15



Addressing Modes

o Register Indirect Mode

Instruction specifies a register containing address of operand

> Saving instruction bits since register address is shorter than memory
address

> Slower to acquire an operand than both register and memory addressing
> Example: MOV R1, (R4), destination is memory whose address is in R4

o Register Indirect with Autoincrement/Autodecrement

Register based addressing is automatically adjusted by incrementing or

decrementing [some processor restrict the use to ()+ and —()]
> Automatically adjust the pointers by adding proper offset
> Example: ST R1, (R4)+
o Absolute or Direct Address Mode

Instruction specifies directly the memory address of the operand
> Faster than the other memory addressing modes
> T0o0o many bits are needed to specify the address for a large memory space
> Example: ST #3$12, 124400, destination is operand at address 124400

Dr. T. Eldos

16



Addressing Modes

o Indirect Addressing Mode

Address field specifies address to address of operand in memory
> Abbreviated address is used to address operand using small number of bits
> Slow to acquire an operand because of an additional memory access
> Example: ST R1, (124400), destination address is at address 124400

o Relative Addressing Modes
Address fields of an instruction specifies part of the address which can
be used along with a designated register to calculate operand address
> Address field of the instruction is short
> Large physical memory can be accessed with a small number of address
bits
> Example: Operand is at address formed modifying a special purpose
register
3 different Relative Addressing Modes depending on register:
> PC Relative, effective address is PC + offset, like BRA Loop
> Indexed
> Base Register

Dr. T. Eldos 17



Addressing Modes: Example

Address
PC 200 200 |
___________ 201 !
=TT TS ~< R1 400 202 |
e Load Accumulator \ !

X : . )

~._ ~U-S|_n? \_/a-rl_et-y-of Mod?f » XR 100 :
oo\ ;
oo N AC 399
AN 400 |
\\\\ :
Addressing Modes Example: LDA [Mode] 500 500 :
Mode EA Operation AC content ;
|
Direct 500 :AC « (500) 800 600 1
Immediate - ; AC « 500 500 ;
Indirect 800 ; AC « ((500)) 300 I
Relative 702 : AC « (PC+500) 325 |
Indexed 600 ; AC « (XR+500) 900 702 :
Register - ; AC « R1 400 I
Register Indirect 400 ; AC « (R1) 700 800 |
Autoincrement 400 ; AC « (R1)+ 700 l
Autodecrement 399  ; AC « -(R) 450 :

Memory

LDA

Mode

Address=500

Next Instruction

Dr. T. Eldos



Instruction Types: Data Transfer

o Highest frequency

o Transfer data between registers and memory or input-output devices

Typical Data Transfer Instructions
Mnemonic Name

LD Load

ST Store

MOV Move

EX Exchange
EXX Exchange All
SWP Swap

IN Input

ouT Output
PUSH Push

POP Pop

Dr. T. Eldos

19



Addressing Modes for Data Transfer

Direct address LD
Indirect address LD
Relative address LD
Immediate operand LD

Index addressing LD
Register LD
Register indirect LD
Autoincrement LD
Autodecrement LD

ADR
@ADR
$ADR
#NBR
ADR(X)
R1
(R1)
(R1)+
-(R1)

Data Transfer Instructions with Different Addressing Modes
Addressing Mode  Assembler ConventionRegister Transfer

AC « M[ADR]

AC <« M[M[ADR]]

AC « M[PC + ADR]

AC < NBR

AC « M[XR+ADR]

AC « R1

AC « M[R1]

AC « M[R1], R1 « R1 +1
R1 < R1-1,AC « M[R1]

Dr. T. Eldos

20



Instruction Types: Arithmetic Operations

o Some processors include FP and/or BCD arithmetic

Arithmetic Instructions

Mnemonic Name

INC Increment

DEC Decrement

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

ADDC Add with Carry
SUBB Subtract with Borrow
NEG Negate (2’'s Complement)

Dr. T. Eldos



Instruction Types: Logical and Bit Operations

Logical and Bit Manipulation Instructions
Mnemonic Name Mnemonic
CLR Clear

COM Complement

AND AND

OR OR

XOR Exclusive-OR
CLRC Clear carry CLRC
SETC Set Carry

COMC Complement Carry
El Enable Interrupt

Dl Disable Interrupt

Dr. T. Eldos



Instruction Types: Shift Operations

Shift Instructions
Mnemonic

SHR
SHL
SHRA
SHLA
ROR
ROL
RORC
ROLC

Name Mnemonic

Logical Shift Right
Logical Shift Left

Shift Right Arithmetic
Shift Left Arithmetic
Rotate Right

Rotate Left

Rotate Right thru Carry
Rotate Left thru Carry

Dr. T. Eldos

23



Instruction Types: Program Control

o PC is updated in two major ways;

By incrementing
> Fetch from the fall through path
> Skip the next instruction to the next
By loading
> Jump to an address
> Branch to an address
> Call subroutine
> Return to the calling part of the program

Program Control Instructions
Mnemonic Name

BR Branch

JMP Jump

SKP Skip

CALL Call Subroutine

RTN Return

CMP Compare (using SUB)
TST Test (using AND)

Dr. T. Eldos 24



Condition Codes

o The recent state of the machine is expressed in flip-flops collectively called:
Flags
Status register
Condition Code Register

o The S (sometimes called N) for Sign or Negative, it reflects the sign of the
outcome, that is why it is a copy of the MSB of the ALU

o The Z (Zero) flag is set when all the bits of the result are O’'s

o The C (Carry) and V (oVerflow) flags are meant to reflect the carry for the
unsigned and signed

fo g0

Cq | |

8-bit ALU : ¢ |

C, : :

84' 1 V :

o F; | |

Status Flag Circuit 4 S |
e Doz}

F7_FO L____:

Dr. T. Eldos 25



Conditional Branch Instructions

Simple Compare Condition

Branch Condition Tested condition Mnemonic
Branch if Zero Z=1 BZ

Branch if Not Zero Z=0 BNZ
Branch if Carry C=1 BC

Branch if No Carry C=0 BNC
Branch if Plus S=0 BP

Branch if Minus S=1 BM
Branch if oVerflow V=1 BV

Branch if No oVerflow V=0 BNV

Dr. T. Eldos

26



Arithmetic Compare Conditions

Unsigned Compare conditions (A - B)

Branch Condition Tested Condition Mnemonic
Branch if Higher A>B C.Z BHI

Branch if Higher or Equal A>B C BHE or BNC
Branch if Lower A<B C BLO or BC
Branch if Lower or Equal A<B C+Z BLOE

Signed Compare Conditions (A - B)

Branch Condition Tested Condition Mnemonic
Branch if Greater Than A>B (N®V).Z BGT
Branch if Greater or Equal A>B (N @ V) BGE
Branch if Less Than A<B (N@V) BLT
Branch if Less or Equal A<B (N®V)+Z BLE

Signed & Unsigned Compare conditions (A - B)

Branch Condition Tested Condition Mnemonic
Branch if Equal A=B Z BEQ or BZ
Branch if Not Equal A=B Z BNE or BNZ

Dr. T. Eldos



Subroutine Call & Return

o Subroutine calls have flavors: Call, Jump and Branch

o Two Most Important Operations are Implied:

Save Return Address (current value of PC) for proper operation

> Locations for storing Return Address
> Fixed Location in the subroutine area
> Fixed Location in memory
> Special register within the processor
> Memory stack, which is the most efficient way

Branch to the beginning of the subroutine by placing effective address
into the PC

o Stack Based Microoperations:
CALL SP« SP-1
M[SP] « PC
PC « EA

RTN PC « M[SP]
SP« SP+1

Dr. T. Eldos 28



Program Interrupt - Types

o External interrupts; initiated from external devices
Input-Output Device; data transfer start & stop
= Timing Device
Power Failure
» Operator; a pushbutton
o Internal interrupts (traps); caused by a running program
Register Check
Stack Overflow
Divide by zero
OP-code Violation (illegal instruction)
» Protection Violation
o Software Interrupts; initiated by executing an instruction
Supervisor Call; to switch from the user mode to the supervisor mode

Dr. T. Eldos

29



Interrupt Procedure

o Interrupts are two types:
Hardware, or external interrupt, usually initiated by an external event
Software, or internal interrupt, due to instruction execution

o The address of the interrupt service program is determined by:
Hardware, requesting device send a vector
Software, fixed address for each type
o An interrupt procedure usually stores all the information necessary
to define the state of processor rather than storing only the PC
The state of the processor is determined from;
> Content of the PC

> Content of all processor registers
> Content of status bits

Saving the state of processor depends on the architecture

Dr. T. Eldos 30



Computer Architecture Trends

The instruction set is an important aspect of computer design

The instruction set determines how the machine language programs
are constructed

Early 80’s, stuck by marginal improvement in performance through
technology, directed the effort towards the organization instead
ldeas for improving the organization included:

. Adding Reqgisters, to localize the variables for high speed access

» Adding Caches, to keep data and instructions handy

» Adding Functional units, to overlap executions

This would have increased the performance, but not with the limited
integration level of 10° transistors/chip of that time

Conventionally, control units used to eat up good deal of that, nearly
50%, but could reach 70% in some implementations

The idea was to make the control unit less complex, taking only a
fraction of that; say 5%

Dr. T. Eldos

31



Major Trends

o Trends were then called:
Reduced Instruction Set Computers (RISC) &
Complex Instruction Set Computers (CISC)
o Both have good reasons to stay
o Differences are becoming less and less, as the number of
transistors per package is no longer an issue;
Registers are in abundance in both
Cache is now in abundance in both and implemented in many levels
Functional units are also many in both

o To stay backwardly compatible, a new trend is now in existence;
RISC core with CISC shell, P4 is just like that

Dr. T. Eldos

32



RISC & CISC

o Instruction set size < 100
o Addressing modes < 4
o Control unit logic < 10%

o Memory access is restricted to
Load/Store instructions

o Fixed length instructions

o Single cycle execution

o Most of the instructions are used
o Hardwired control unit

o Highly complier dependent for
efficient code
o Because of less complex control
unit, it has:
Large number of registers > 128
Larger caches
More functional units

Instructions set size, > 200
Addressing modes > 8
Control unit logic > 50%

Memory access is allowed for data
manipulation instructions

Variable length instructions
Multiple cycle execution

Some instructions are rarely used
Microprogrammed control unit

Compiler dependence is not as
much

Because of more complex control
unit, it has:
Small number of registers < 32
Smaller caches
Less functional units

Dr. T. Eldos

33



Instruction Set
Architectures: Talking to
the Machine




The Architecture Question

® How do we build computer from contemporary
silicon device technology that executes general-
purpose programs quickly, efficiently, and at
reasonable cost!?

® i.e. How do we build the computer on your
desk.




o e, . ¥ 3
|| d <1
Y —
= ..M ¥ =
= %t i

‘1‘

2

e

P

I

The Difference Engine ENIAC

RN

® Physical configuration specifies the computation




The Stored Program Computer

® [he program is data
® j.e.,itisasequence of numbers that machine interprets

® A very elegant idea

® The same technologies can store and manipulate
programs and data

® Programs can manipulate programs.




The Stored Program Computer

® A very simple model orosessor
® Several questions I

® How are program
represented?

® How do we get
algorithms out of our
brains and into that
representation!? Program

How does the the
computer interpret a
program?




Representing Programs

We need some basic building blocks -- call them
“instructions”

What does “execute a program’” mean?
What instructions do we need?

What should instructions look like!?

s it enough to just specify the instructions?

How complex should an instruction be!




Program Execution

® This is the algorithm for a stored-program

computer
® The Program Counter (PC) is the key

:

Insémcﬁon Read instruction from program storage (mem[PC])
etc

|

Instruction Determine required actions and instruction size
Decode

!

Operand Locate and obtain operand data
Fetch

}

Execute Compute result value

!

Result Deposit results in storage for later use

Store

}

Next Determine successor instruction (i.e. compute next PC).

Instruction

: Usually this mean PC = PC + <instruction size in bytes>




Motivating Code segments

a=b +c;
a=b+c+d;

a=b &c;

a=b+4;
a=b-(c™(d?2)-4);
if () b =c¢;

if (@==4) b =c;

while (a != 0) a--;

a = OxDEADBEEF;

a = foo[4];

foo[4] = a;

a = foo.bar;
a=at+b+ct+d+. +z;
a = foo(b); -- next class




What instructions do we
need!?

® Basic operations are a good choice.
® Motivated by the programs people write.
® Math: Add, subtract, multiply, bit-wise operations
® Control: branches, jumps, and function calls.
® Data access: Load and store.

® The exact set of operations depends on many,
many things
® Application domain, hardware trade-offs, performance,
power, complexity requirements.

® You will see these trade-offs first hand in the ISA project
and in 141L.




What should instructions look like?

® They will be numbers -- i.e., strings of bits

® |t is easiest if they are all the same size, say 32
bits
® We can break up these bits into “fields” -- like members
in a class or struct.
® This sets some limits
® On the number of different instructions we can have

® On the range of values any field of the instruction can
specify




Is specifying the instructions sufficient?

® No! We also must what the instructions operate on.

® This is called the “Architectural State” of the
machine.

® Registers -- a few named data values that instructions can
operate on

® Memory -- a much larger array of bytes that is available for
storing values.

® How big is memory?! 32 bits or 64 bits of addressing.
® 64 is the standard today for desktops and larger.

® 32 for phones and PDAs
® Possibly fewer for embedded processors
® We also need to specify semantics of function calls

® The “Stack Discipline,” “Calling convention,” or “Application
binary interface (ABI)”.




How complex should instructions be?

® More complexity
® More different instruction types are required.
® |Increased design and verification costs
® More complex hardware.
® More difficult to use -- What’s the right instruction in this context?

® | ess complexity
® Programs will require more instructions -- poor code density
® Programs can be more difficult for humans to understand
® |n the limit, decremement-and-branch-if-negative is sufficient

® |magine trying to decipher programs written using just one
Instruction.

® |t takes many, many of these instructions to emulate simple
operations.
® TJoday, what matters most is the compiler
® The Machine must be able to understand program
® A program must be able to decide which instructions to use




Big “A” Architecture

® [he Architecture is a contract between the

hardware and the software.

® The hardware defines a set of operations, their
semantics, and rules for their use.

® The software agrees to follow these rules.
® The hardware can implement those rules INANY WAY IT

CHOOSES!

® Directly in hardware
® Via a software layer
® Viaa trained monkey with a pen and paper.
® This is a classic interface -- they are everywhere
In computer science.
® “Interface,” “Separation of concerns,” “APl,” “Standard,”

® For your project you are designing an
Architecture -- not a processor.




From Brain to Bits

Your brain

v

Brain/
Fingers/
SWE

Programming
Language (C, C++, Java)

v

Compiler

Assembly language

v

ssemble

Machine code
(i.e., .o files)

v

Linker

Executable
(i.e., .exe files)







In the Compiler

Function

N

decl: |

decl: sum=0

decl:j=4

Loop

N

init: =0

test:i< 10

iNC: i++

Body

statement: =

/N

lhs: sum

rhs: expr

7

7 X




In the Compiler

addi $s0, Szero, 0
su.m-O addi $sl1, Szero, 4

!==g addi $s2, Szero, 0
| =

l v
_ - addi $t0, Szero, 10
1< 10% bge $s2, $tO0

a5 /N

false true
true false

\ \

t1=i%]j mult $t0, $sl, $s2
sum=.su.m+t1 add S$s0, $tO
i++; addi $s2, $s2, 1

)\ /

Control flow graph
w/high-level
Instructions

Control flow graph
w/real instructions




Out of the Compiler

addi $s0, $zero,
addi $sl, Szero,
addi S$s2, Szero,

l

addi $t0, S$zero,
bge $s2, $tO0

/N

true false

X

mult $tO,
add S$sO0,
addi S$s2,

$sl,
St0
$s2,

Ss2

1

/

addi $s0, Szero, O
addi S$sl, S$zero, 4
addi S$s2, Szero, O

top:
addi $t0, S$zero, 10
bge $s2, S$t0, after

body:

mult $t0, S$Ssl, Ss2
add $s0, S$tO

addi S$s2, $s2, 1
br top

after:

Assembly language




Labels in the Assembler

addi $s0, Szero, O
addi Ssl, S$zero, 4
addi Ss2, Szero, O

‘after’ is defined at 0x20
used at OxI0
The value of the immediate for the branch

top: is 0x20-0x10 = 0x 10

addi $t0, Szero 0
bge $s2, S$tO0 ,

‘top’ is defined at Ox0C

1t tol 1’ 2
mult $ $sl, $s used at OxI1C

add $s0, StO

addi $s2, 1 The value of the immediate for the branch
br is Ox0C-0x|C = OxFFFFO (i.e.,-0x10)

after:




Labels in the Assembler

addi $s0, Szero, O
addi Ssl, S$zero, 4
addi Ss2, Szero, O

‘after’ is defined at 0x20
used at OxI0
The value of the immediate for the branch

top: is 0x20-0x10 = 0x 10

addi $t0, Szero 0
bge $s2, S$tO0 ,

‘top’ is defined at Ox0C

1t tOI 1’ 2
mult $ $sl, $s used at OxI1C

add $s0, StO

addi $s2, 1 The value of the immediate for the branch
br is Ox0C-0x|C = OxFFFFO (i.e.,-0x10)

after:




Assembly Language

® “Text section”
® Hold assembly language instructions
® |n practice, there can be many of these.

® ‘“‘Data section”
® (Contain definitions for static data.
® |t can contain labels as well.

® [he addresses in the data section have no
relation to the addresses in the data section.

® Pseudo instructions
® Convenient shorthand for longer instruction sequences.




.data and pseudo instructions

.data
foo a:

.word O
vold foo () {

static 1nt a = 0; . text

foo:
at; lda $t0, foo a

1d $s0, 0(s$st0)

addi $s0, $s0, 1

st S$s0, 0(St0)
after:




.data and pseudo instructions

.data
foo a:
.word O
void foo () {

static 1nt a = 0; . text

foo:
at; lda $t0, foo a

1d $s0, 0(s$st0)

addi $s0, $s0, 1

st S$s0, 0(St0)
after:

lda $t0, foo a

becomes these instructions (this is not assembly language!)
andi 5t0, Szero, ((foo a & Oxff00) >> 16)
sll $t0, $t0, 16

andi 5t0, $St0, (foo a & Oxff)




.data and pseudo instructions

.data
foo a:
.word O
void foo () {

static 1nt a = 0; . text

foo:
at lda 5t0, foo a

« o o 1d $s0, 0(s$st0)
addi $s0, $s0, 1
st S$s0, 0(St0)

after:

lda $t0, foo a

becomes these instructio isTis hot assembly 1an .
andi 5t0, Szerof ((foo a & Oxff00) >> 16)

sll $t0, $t0, —

andi 5t0, 5t0,( (foo a & Offfl:>

The assembler computes and inserts these values.




.data and pseudo instructions

.data
foo a:
.word O
void foo () {

static 1nt a = 0; . text

foo:
at; lda $t0, foo a

1d $s0, 0(s$st0)

addi $s0, $s0, 1

st S$s0, 0(St0)
after:

lda $t0, foo a
becomes these instructio isTis hot assembly 1an

andi $t0, Szerof ((foo a & Oxff00) >> 16 .
s11  $t0, Sto, — If foo is address 0xO,

andi $t0, $tO0,( (foo a & 0Oxff) .
2 60D ) where is after?
The assembler computes and inserts these values.




.data and pseudo instructions

.data
foo a:
.word O
void foo () {

static 1nt a = 0; . text

foo:
at; 0x00 1lda $t0, foo a

0x0C 1d $s0, 0(StO0)

0x10 addi Ss0, $s0, 1

Ox14 st $s0, 0(st0)
after:

0x18...

lda $t0, foo a

becomes these instructio isTis hot assembly 1an .
andi 5t0, Szerof ((foo a & Oxff00) >> 16) .
s11 $t0, $t0, — If foo is address 0xO,

andi $t0, $tO0,( (foo a & 0Oxff) .
N ) where is after?

The assembler computes and inserts these values.




ISA Alternatives

® MIPS is a 3-address, RISC ISA

® addrs,rt,rd -- 3 operands

® RI|SC -- reduced instruction set. Relatively small number
of operation. Very regular encoding. RISC is the “right”
way to build ISAs.

® 2-address
® addrl,r2 -->rl=rl +r2
® + few operands, so more bits for each.
® - |ots of extra copy instructions

® |-address
® Accumulator architectures
® addrl -> acc =acc +rl




Stack-based ISA

A push-down stack holds arguments

Some instruction manipulate the stack
® push, pop, swap, etc.

Most instructions operate on the contents of the
stack

® /ero-operand instructions

® add --> tl = pop; t2 = pop; push tl + t2;

Elegant in theory.

Clumsy in hardware.
® How big is the stack?

Java byte code is a stack-based ISA
So is the x86 floating point ISA




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

Tt *,... -- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

Tt *,... -- Replace top two values with the result

Push 8 (BP)
Push 12 (BP)
Mult

Push

Push

Mult

Sub

Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Push 8 (BP)
Push 12 (BP)

PC
mm)Mult

Push
Push
Mult
Sub
Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Push
Push

pc Mult
mmm) P sh
Push
Mult
Sub
Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, “operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack

- +,-,%,..-- Replace top two values with the result

Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

Processor state: PC, “operand stack”, "Base ptr"
Push -- Put something from memory onto the stack
Pop -- take something off the top of the stack
+,-,%,.. -- Replace top two values with the result
Store -- Store the top of the stack

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

Processor state: PC, “operand stack”, "Base ptr"
Push -- Put something from memory onto the stack
Pop -- take something off the top of the stack
+,-,%,.. -- Replace top two values with the result
Store -- Store the top of the stack

Push 8 (BP)
Push 12 (BP)
Mult
Push
PC Push
mm)Mu ]l t
Sub
Store 16 (BP)
Pop

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, "operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something of f the top of the stack

- +,-,%,..-- Replace top two values with the result

Memory
| X

Y
B
C
A

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

- Processor state: PC, "operand stack”, "Base ptr”

- Push -- Put something from memory onto the stack
- Pop -- take something of f the top of the stack

- +,-,%,..-- Replace top two values with the result

Memory
| X

Store 16 (BP)
Pop

Y
B
C
A

Base ptr (BP)




compute A= X*Y -B*C

- Stack-based ISA

Processor state: PC, "operand stack”, "Base ptr”
Push -- Put something from memory onto the stack
Pop -- take something off the top of the stack
+,-,%,.. -- Replace top two values with the result
Store -- Store the top of the stack

Base ptr (BP)




PC

compute A= X*Y -B*C

- Stack-based ISA

Processor state: PC, "operand stack”, "Base ptr”

Push -- Put something from memory onto the stack
Pop -- take something off the top of the stack
+,-,%,.. -- Replace top two values with the result

Store -- Store the top of the stack

Push
Push

Mult
Push
Push
Mult
Sub

mm) Store 16 (BP)

Pop
Base ptr (BP)




Supporting Function Calls

® Functions are an essential feature of modern
languages

® VWhat does a function need?
Arguments.
Storage for local variables.
To return control to the the caller.
To execute regardless of who called it.
To call other functions (that call other functions...that
call other functions)

® There are not instructions for this

® |tis a contract about how the function behaves

® |n particular, how it treats the resources that are shared
between functions -- the registers and memory




Register Discipline

® All registers are the
same, but we assign
them different uses.

NETE

$zero

humber

0

use

Zero

$vO0-$vi

2-3

return value

$a0-%a3

4.7

arguments

$t0-$t7

8-15

temporaries

$s0-$7

26-23

saved

$t8-$t9

24-25

temporaries

$gp

26

global ptr

$sp

29

stack ptr

$fp

30

frame ptr

$ra

31

return address




Arguments

® How many arguments can
function have!
® unbounded.

® But most functions have just a
few.

® Make the common case fast
® Put the first 4 argument in
registers ($a0-%$a3).
® Put the rest on the “stack”

Register file Stack (in memory)

Ox1DEA e

Ox1DEA

int Foo(int a, int b, 1int ¢, 1int d, int e) {

J




Storage for Local Variables

O qist rfil Otk in m mory

$0 x A0
. $D
® | ocal variables $00

go on the stack o

too.
o
$fp x 00

0.

int Foo(int a, int b, int ¢, 1int d, 1int e) {
int bar[4];




Returning Control

Reqister file

Cal Iel" Stack (in memory)

$vO0 bar[0]

move S$al, Stl
move S$Sal, Ss4
move S$Sa2, $s3
move S$a3, $s3
SW st2, 0(Ssp)

$a0 Ox1DEA
a1

$a2
$a3

subi 3sp, $sp, 4 $q>(kﬂEA+ws:::j’

O0xBADO: jal Foo $fp 0x1DEA

$Sra 0xBAD4

Callee

int Foo(int a, ... subi $sp, $sp, 16 // Allocate bar
int bar([4];

e 1w Sv0, 0 (S$Ssp)
return bar[0]; | addi S$Ssp, Ssp, 16 // deallocate bar
jr Sra // return

37



Saving Registers

® Some registers are preserved across function calls
If a function needs a value after the call, it uses one of these

But it must also preserve the previous contents (so it can
honor its obligation to its caller)

Push these registers onto the stack.
See figure 2.12 in the text.




Evaluating Computers:
Bigger, better, faster, more?




What do you want in a computer?




What do you want in a computer?

® | ow latency -- one unit of work in minimum time
® |/latency = responsiveness

High throughput -- maximum work per time
e High bandwidth (BW)

Low cost
Low power -- minimum jules per time

Low energy -- minimum jules per work
Reliability -- Mean time to failure (MTTF)

Derived metrics
responsiveness/dollar
BW/$
BW/Watt
Work/|ule
Energy * latency -- Energy delay product

MTTF/$




Latency

® This is the simplest kind of performance

® How long does it take the computer to perform
a task!?
® The task at hand depends on the situation.

® Usually measured in seconds

® Also measured in clock cycles

e (Caution:if you are comparing two different system, you
must ensure that the cycle times are the same.




Measuring Latency

® Stop watch!

® System calls
® gettimeofday ()
® System.currentTimeMillis ()

® Command line
® time <command>




VWhere latency matters

® Application responsiveness
® Any time a person is waiting.
o GUIs
® Games
® Internet services (from the users perspective)

® “Real-time” applications
® Tight constraints enforced by the real world
® Anti-lock braking systems

® Manufacturing control
® Multi-media applications

® The cost of poor latency
® [f you are selling computer time, latency is money.




Latency and Performance

By definition:
Performance = |/Latency
If Performance(X) > Performance(Y), X is faster.

If Perf(X)/Perf(Y) =S, X'is S times faster than.
Equivalently: Latency(Y)/Latency(X) =S

When we need to talk about specifically about
other kinds of “performance” we must be more
specific.




The Performance Equation

® We would like to model how architecture impacts
performance (latency)

® This means we need to quantify performance in
terms of architectural parameters.

® |nstructions -- this is the basic unit of work for a
processor

® Cycle time -- these two give us a notion of time.
® Cycles

® The first fundamental theorem of computer
architecture:

Latency = Instructions * Cycles/Instruction *
Seconds/Cycle




The Performance Equation

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

The units work out! Remember your
dimensional analysis!

Cycles/Instruction == CPI
Seconds/Cycle == | /hz

Example:
| GHz clock

| billion instructions
CPl =4
What is the latency!?




Examples

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

* gccrunsin 100 sec on a 1 GHz machine
— How many cycles does it take?

* gccrunsin 75 sec on a 600 MHz machine
— How many cycles does it take?




How can this be?

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

® Different Instruction count!?
® Different ISAs ?
® Different compilers ?
® Different CPI?
® underlying machine implementation
® Microarchitecture
® Different cycle time!?
® New process technology
® Microarchitecture




Computing Average CPI

® |nstruction execution time depends on instruction
time (we’ll get into why this is so later on)
® |Integer +,-,<<,[,& -- | cycle
® |[nteger * /,-- 5-10 cycles
® Floating point +,- -- 3-4 cycles
® Floating point *,/, sqrt() -- 10-30 cycles
® | oads/stores -- variable
® All theses values depend on the particular implementation,
not the ISA
® TJotal CPl depends on the workload’s Instruction mix
-- how many of each type of instruction executes
® What program is running?
® How was it compiled?




The Compiler’s Role

® Compilers affect CPI...

® Wise instruction selection
® “Strength reduction”: x*2n -> x <<n
® Use registers to eliminate loads and stores

® More compact code -> less waiting for instructions

® .. ..and instruction count
® Common sub-expression elimination
® Use registers to eliminate loads and stores




Stupid Compiler

Type Static #

mem 6 42
int 1 3 30
br 2 20
Total . 11 92

(5*42 + 1*30 + 1*20)/92 = 2.8 end:




Smart Compiler

add $1, S0, SO # 1
add $2, $0, SO # sum
loop:

)

Type Static #

mem 1
int 1 32
br 1 20
Total . 53

(5*1 + 1*32 + 1*20)/53 = 2.8




Live demo



Program inputs affect CPI too!

int rand[1l000] = {random 0s and 1s }
for(1=0;1<1000;1++)

1f(rand[1]) sum -= 1;

else sum *= 1;

int ones[1000] = {1, 1,
for (i=0;1i<1000; i++)
1f (ones[1]) sum -= 1;
else sum *= 1i;

« Data-dependent computation

» Data-dependent micro-architectural behavior

—Processors are faster when the computation is
predictable (more later)




Live demo



Making Meaningful Comparisons

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

® Meaningful CPI exists only:
® For a particular program with a particular compiler
® _.with a particular input.

® You MUST consider all 3 to get accurate latency estimations
or machine speed comparisons
Instruction Set
Compiler
Implementation of Instruction Set (386 vs Pentium)
Processor Freq (600 Mhz vs | GHz)
Same high level program with same input

® “wall clock” measurements are always comparable.
® |[f the workloads (app + inputs) are the same




The Performance Equation

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

Clock rate =

Instruction count =
Latency =

Find the CPI!




e DRAM

® Quiz | recap

® HW | recap

® Questions about ISAs

® More about the project!?
® Amdahl’s law




Key Points

Amdahl’s law and how to apply it in a variety of
situations

It’s role in guiding optimization of a system

It’s role in determining the impact of localized
changes on the entire system




Limits on Speedup: Amdahl’'s Law

* “The fundamental theorem of performance
optimization”

* Coined by Gene Amdahl (one of the designers of the
IBM 360)

* Optimizations do not (generally) uniformly affect the
entire program
— The more widely applicable a technique is, the more valuable it
IS
— Conversely, limited applicability can (drastically) reduce the
Impact of an optimization.

Always heed Amdahl’'s Law!!!
It is central to many many optimization problems




Amdahl’'s Law in Action

» SuperdJPEG-0-Rama2000 ISA extensions

—Speeds up JPEG decode by 10x!!!
—Act now! While Supplies Last!

* %
Increases processor cost by 45%




Amdahl’'s Law in Action

» SuperdPEG-0O-Rama2000 in the wild

* PictoBench spends 33% of it's time doing
JPEG decode

* How much does JORZ2k help?

30s

w/o JOR2k JPEG Decode
21s

w/ JORZ2k




Amdahl’'s Law in Action

» SuperdPEG-0O-Rama2000 in the wild

* PictoBench spends 33% of it's time doing
JPEG decode

* How much does JORZ2k help?

30s

w/o JOR2k JPEG Decode
21s

w/ JORZ2k
Performance: 30/21 = 1.4x Speedup = 10x




Amdahl’'s Law in Action

» SuperdPEG-0O-Rama2000 in the wild

* PictoBench spends 33% of it's time doing
JPEG decode

* How much does JORZ2k help?
30s

w/o JOR2k JPEG Decode

21s

w/ JORZ2k

Performance: 30/21 = 1.4x Speedup = 10x
|s this worth the 45% increase in cost?




Amdahl’'s Law in Action

» SuperdPEG-0O-Rama2000 in the wild

* PictoBench spends 33% of it's time doing
JPEG decode

* How much does JORZ2k help?

30s

w/o JOR2k JPEG Decode

21s Amdah
| ate our
Speedup!

w/ JORZ2k

Performance: 30/21 = 1.4x Speedu
|s this worth the 45% increase in cost*




Amdahl’s Law

* The second fundamental theorem of computer
architecture.

* If we can speed up X of the program by S times
« Amdahl’s Law gives the total speed up, S;;

Stot = |
(x/S + (I-x))




Amdahl’s Law

* The second fundamental theorem of computer
architecture.

* If we can speed up X of the program by S times
« Amdahl’s Law gives the total speed up, S;;

Stot = |
(x/S + (I-x))

Sanity check:
X=|=>§,,= |
(1/S + (1-1)) 1/S




Amdahl’'s Corollary #1

« Maximum possible speedup, S,,.,
S = infinity

Smax = 1

(1-X)




Amdahl’'s Law Practice

* Protein String Matching Code

—200 hours to run on current machine, spends 20% of
time doing integer instructions

—How much faster must you make the integer unit to
make the code run 10 hours faster?

—How much faster must you make the integer unit to
make the code run 50 hours faster?

A)l.1 E) 10.0

B)1.25 F) 50.0

C)L.75 G) 1 million times
D)1.33 H) Other




Amdahl’'s Law Practice

 Protein String Matching Code

—4 days ET on current machine
» 20% of time doing integer instructions
* 35% percent of time doing I/O

—Which is the better economic tradeoff?

» Compiler optimization that reduces number of
integer instructions by 25% (assume each integer
inst takes the same amount of time)

* Hardware optimization that makes /O run 20%
faster?




Amdahl’s Law Applies All Over

Flash Disk [Flash Disk [Flash Disk [Flash Disk |[Flash Disk [Flash Disk Flash Disk

index |compgrep| sort simpgrep | identity | ngram | average

B overhead cpu disk/flash 1 mem

® SSDs use 10x less power than HDs
® But they only save you ~50% overall.




Amdahl’s Law in Memory

Memory Device

Storage array 90% of area
Row decoder 4%

High order bits -
Column decode 2% J
Sense amps 4%

Storage array

Row decoder

What’s the benefit of FTTTTTINSTYAHTNTNFSTITNIY
reducing bit size by 10%!? Sense Amps

Reducing column decoder I s
size b)’ 90%? Low order bits —|  Column decoder

AMMAMAMMAAMAL
TN

Address




Amdahl’'s Corollary #2

* Make the common case fast (i.e., x should be
large)!
—Common == "most time consuming” not necessarily
“most frequent”

—The uncommon case doesn’t make much difference
—Be sure of what the common case iIs
— The common case changes.

* Repeat...

—With optimization, the common becomes uncommon
and vice versa.




Amdahl's Corollary #2. Example

Common case




Amdahl's Corollary #2: Example

Common case

_ B 7x=>14x
_




Amdahl's Corollary #2: Example

Common case

_ B 7x=>14x
_

N 4x =>1.3x




Amdahl's Corollary #2: Example

Common case

I B 7x=>1.4x
B N 4x =>1.3x

B 1.3x=>1.1x

Total = 20/10 = 2x




Amdahl's Corollary #2. Example

Common case

I B /x=>14x
B N 4x =>1.3x

B 1.3x=>1.1x

Total = 20/10 = 2x

* |In the end, there is no common case!
* Options:
— Global optimizations (faster clock, better compiler)
— Find something common to work on (i.e. memory latency)

— War of attrition
— Total redesign (You are probably well-prepared for this)




Amdahl's Corollary #3

» Benefits of parallel processing
* D processors

* X% IS p-way parallizable

« maximum speedup, S,

1 .
(X/p + (1-x))




Amdahl's Corollary #3

» Benefits of parallel processing
* D processors

* X% IS p-way parallizable

« maximum speedup, S,

1 .
(X/p + (1-x))




Amdahl's Corollary #3

» Benefits of parallel processing
* D Processors

* X% IS p-way parallizable

« maximum speedup, S,

1
(X/p + (1-x))

x 1s pretty small for desktop applications, even for p = 2

Does Intel’'s 80-core processor make much sense?



Amdahl’'s Corollary #4

 Amdahl’s law for latency (L)

Lew = Lpase - 1/Speedup
I—new = Lbase *(X/S T (1'X))
I—new = (Lbase /S)*X t ETbase*(1'X)

* |If you can speed up y% of the remaining (1-x), you can apply
Amdanhl’s law recursively

I—new = (Lbase /S1)*X T
(Sbase*(1 'X)/Sz*y t l—base*(1 'X)*(1 'y))

* This is how we will analyze memory system performance




Amdahl’'s Non-Corollary

« Amdahl’s law does not bound slowdown
Lnew = (Lbase /S)*X + Lbase*(1'x)

e LIS linearin 1/S

« Example: x = 0.01 of execution, L, .= 1
—-S =0.001;
. E ., = 1000*L, ... *0.01 + L, ... *(0.99) ~ 10*L, ..
—-S =0.00001:;
. E ., = 100000*L,_.. *0.01 + L,_.. *(0.99) ~ 1000*L,...

* Things can only get so fast, but they can get
arbitrarily slow.

—Do not hurt the non-common case too much!




Benchmarks: Standard Candles for
Performance

* It's hard to convince manufacturers to run your program
(unless you're a BIG customer)

* Abenchmark is a set of programs that are representative of a
class of problems.

* To increase predictability, collections of benchmark
applications, called benchmark suites, are popular
— “Easy” to set up
— Portable
— Well-understood
— Stand-alone
— Standardized conditions
— These are all things that real software is not.




Classes of benchmarks

* Microbenchmark — measure one feature of system
— e.g. memory accesses or communication speed

« Kernels — most compute-intensive part of applications
— e.g. Linpack and NAS kernel b’'marks (for supercomputers)

* Full application:
— Specint / SpecFP (int and float) (for Unix workstations)

— Other suites for databases, web servers, graphics,...




Bandwidth

® The amount of work (or data) per time

® MB/s, GB/s -- network BVY, disk BWVY, etc.

® Frames per second -- Games, video transcoding
® (why are games under both latency and BW?)

® Also called “throughput”




Measuring Bandwidth

® Measure how much work is done

® Measure latency
® Divide




Latency-BWV Trade-offs

® Often, increasing latency for one task and
increase BV for many tasks.
® Think of waiting in line for one of 4 bank tellers

® |[f the line is empty, your response time is minimized, but
throughput is low because utilization is low.

® |f there is always a line, you wait longer (your latency
goes up), but there is always work available for tellers.
® Much of computer performance is about
scheduling work onto resources
® Network links.
Memory ports.
Processors, functional units, etc.
|O channels.

Increasing contention for these resources generally
increases throughput but hurts latency.




Stationwagon Digression

* |Pv6 Internet 2: 272,400 terabit-meters per second

—585GB in 30 minutes over 30,000 Km
—9.08 Gb/s

» Subaru outback wagon
— Max load = 408Kg
— 21Mpg
MHX2 BT 300 Laptop drive
- 300GB/Drive
- 0.135Kg
006TB
Legal speed: 75MPH (33.3 m/s)
BW = 8.2 Gb/s
Latency = 10 days
241,535 terabit-meters per second




Prius Digression

* |Pv6 Internet 2: 272,400 terabit-meters per second
—585GB in 30 minutes over 30,000 Km

—9.08 Gb/s
* My Toyota Prius
— Max load = 374Kg
— 44Mpg (2x power efficiency)
. MHX2 BT 300
- 300GB/Drive
- 0.135Kg
831TB
Legal speed: 75MPH (33.3 m/s)
BW = 7.5 Gb/s
Latency = 10 days

221,407 terabit-meters per second (13°¢
performance hit)




A 5-Stage Pipeline

CcC 4 CC 5 CC 6

cc 3
[ Reg ’>\3| H DM Reg -

=

|

I
K

| A

Source: H&P textbook



Pipeline Summary

RR ALU DM
ADD R1,R2, > R3 RdR1,R2 R1+R2 --

BEQ R1,R2,100 RdR1,R2 -- -
Compare, Set PC

LD 8[R3] > R6 R4IR3  R3+8 Getdata

ST 8[R3] €« R6 RdR3,R6 R3+8 Wr data




Hazards

 Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

 Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways



Data Hazards

* An instruction produces a value in a given pipeline stage

* A subsequent instruction consumes that value in a pipeline
stage

* The consumer may have to be delayed so that the time
of consumption is later than the time of production



Example 1

add R1,R2, R3 [MHRE_ _> BUE
:
w R4, 8(R1) L '%——‘DT_E@_r =

M= }j— (G Reg

11
11
1

Source: H&P textbook >



Example 2

w R1,8R2) [WMrrE- -> oM
et P' — =)
lw R4, 8(R1) [ g g -D oM

M= }j— (G Reg

11
11
1

Source: H&P textbook 6



Example 3

w R1,8R2) [WMHFR -> oW -
sw R1, 8(R3) | g g& —~D |Gl

M= }j— (G Reg

11
11
1

Source: H&P textbook 7



Example 4

» Show the instruction occupying each stage in each cycle (no bypassing)
if 11 is R1+R2->R3 and 12is R3+R4->R5 and I3 is R7+R8>R9

CYC-1 CYC-2 CYC-3 CYC4 CYC-5 CYC-6 CYC-7 CYC-8




Example 4

» Show the instruction occupying each stage in each cycle (no bypassing)
if 11 is R1+R2->R3 and 12is R3+R4->R5 and I3 is R7+R8>R9

CYC-1 CYC-2 CYC-3 CYC4 CYC-5 CYC-6 CYC-7 CYC-8




Example 5

« Show the instruction occupying each stage in each cycle (with bypassing)
if 11is R1+R2->R3 and 12 is R3+R4->R5 and I3 is R3+R8->R9.
|dentify the input latch for each input operand.

CYC-1 CYC-2 CYC-3 CYC4 CYC-5 CYC-6

O
<
Q




Example 5

« Show the instruction occupying each stage in each cycle (with bypassing)
if 11is R1+R2->R3 and 12 is R3+R4->R5 and I3 is R3+R8->R9.
|dentify the input latch for each input operand.

CYC-1 CYC-2 CYC-3 CYC4 CYC-5 CYC-6

O
<
Q




Example 6

A7 or 9 stage pipeline

w  $1, 8(52)

add $4, $1, $3

12



Example 6

Without bypassing: 4 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
|IF: IF :DE:DE:DE:DE:RR :AL:RW

w  $1, 8($2)
R A




Control Hazards

« Simple techniques to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done - if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the

expected target y



Branch Delay Slots

a. Fram before

add 3s1, $s2. 553

if $s2 = 0 then ——

I Delay slot

Becomes

if $22 =0 then ——

add 3s1, 552, 553

b. From target

sub $t4, 55, St6 =

add 3s1, 352, 353

if 351 = 0 then ——

Delay slot

Becomes

add $s1, $s2. $s3

if 81 = Q0 then

| sub sts, 515, 518 |

Source: H&P textbook

15



Scheduling branch delay slot:
from before

* Always improves
performance

begz r2,L

beqz r2,L

16



Scheduling branch delay slot:
from target

* Improves performance
when branch i1s taken

e Must be ok to execute
the inst 1f the branch is
not taken

instr

add rl,r2,r3
begz rl, L

+ instr

add rl,r2,r3
begz rl, L




Scheduling branch delay slot:
from the fall through

* 1mproves performance add rl,r2,r3
begz rl,L

when branch 1s not
taken

e Must be ok to execute . sl .rd,r5,r6
the 1nst 1f the branch is
taken




Project:

Dheya Mustafa

HU Computer

cpe 252: Computer Organization



HU architecture

* Build your own computer architecture

cpe 252: Computer Organization



Ask Questions:

What is the memory model(size,address,data,
Harvard or Princeton)

W
W
W

nat is the instruction size; fixed or variable
nat addressing modes we support, risc.cisc

nat are the instructions formats, stack,

accumelator two operand, one operand

What instructions we support
What registers we need

cpe 252: Computer Organization 3



5-1 Instruction Codes
Stored Program Organization

cont.

15 12 11 0 Memory

Opcode Address 15 4096x16 0

Instruction Format
Instructions
15 0 (program)
Binary Operand
Operands
(data)
15 0

Processor register
(Accumulator AC)

cpe 252: Computer Organization



5-1 Instruction Codes

Indirect Address

* There are three Addressing Modes used for
address portion of the instruction code:

— Immediate: the operand is given in the address
portion (constant)

— Direct: the address points to the operand stored
In the memory

— Indirect: the address points to the pointer
(another address) stored in the memory that
references the operand in memory

* One bit of the instruction code can be used to
distinguish between direct & indirect addresses

cpe 252: Computer Organization



5-1 Instruction Codes
Indirect Address cont

Instruction Format Effective

15 14 12 11 0 address
I |Opcode Address

Direct Address Indirect addrgSs
22 [0JADD 457 35 [1JADD | 300
300 1350
457 Operand
1350 Operand
p———— y —
:CP+ O,
X
| AC | | AC |
| |

cpe 252: Computer Organization



5-1 Instruction Codes
Indirect Address cont

» Effective address: the address of the
operand in a computation-type instruction
or the target address in a branch-type
Instruction

* The pointer can be placed in a processor
register instead of memory as done in
commercial computers

cpe 252: Computer Organization



5-2 Computer Registers

« Computer instructions are normally stored
In consecutive memory locations and
executed sequentially one at a time

 The control reads an instruction from a
specific address in memory and executes
It, and so on

* This type of sequencing needs a counter
to calculate the address of the next
Instruction after execution of the current
Instruction is completed

cpe 252: Computer Organization



5-2 Computer Registers cont

* It is also necessary to provide a register in
the control unit for storing the instruction
code after it is read from memory

* The computer needs processor registers
for manipulating data and a register for
holding a memory address

cpe 252: Computer Organization



Registers in the Basic Computer

1 0
PC
11 0
AR Memory
15 0 4096 x 16
IR
15 0 15 0
TR DR
7 0 7 0 15 0
OUTR INPR AC
List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

cpe 252: Computer Organization




> Memory unit

4096 x 16

Write Read

En

I I Address

AR |
LD INR CLR

PC
LD INR CLR

DR _ ]

LD INR CLR

Adder

~E]

\ 4

and

logic

0

AC A
| I | | I
LD INR CLR

INPR

> IR A

LD —

> TR ~

| | | [
LD INR CLR

OUTB?

Clock

LD

16-bit common bus <-——

cpe 252: Computer Organization

Computer Registers
Common Bus System

11



5-2 Computer Registers
Common Bus System cont

S,5,5,: Selects the register/memory that would
use the bus

LD (load): When enabled, the particular register
receives the data from the bus during the next
clock pulse transition

E (extended AC bit): flip-flop holds the carry
DR, AC, IR, and TR: have 16 bits each

AR and PC: have 12 bits each since they hold a
memory address

cpe 252: Computer Organization 12



5-2 Computer Registers
Common Bus System cont

* \When the contents of AR or PC are
applied to the 16-bit common bus, the four
most significant bits are set to zeros

 When AR or PC receives information from
the bus, only the 12 least significant bits
are transferred into the register

* INPR and OUTR: communicate with the
eight least significant bits in the bus

cpe 252: Computer Organization 13



5-2 Computer Registers

Common Bus System cont
INPR: Receives a character from the input
device (keyboard,...etc) which is then
transferred to AC

OUTR: Receives a character from AC and
delivers it to an output device (say a Monitor)

Five registers have three control inputs: LD
(load), INR (increment), and CLR (clear)

Register = binary counter with parallel load and
synchronous clear

cpe 252: Computer Organization 14



5-2 Computer Registers
Memory Address

The input data and output data of the memory
are connected to the common bus

But the memory address is connected to AR

Therefore, AR must always be used to specify a
memory address

By using a single register for the address, we
eliminate the need for an address bus that would
have been needed otherwise

cpe 252: Computer Organization 15



5-2 Computer Registers
Memory Address cont

* Register 2> Memory: Write operation

 Memory = Register: Read operation (note
that AC cannot directly read from
memory!!)

* Note that the content of any register can
be applied onto the bus and an operation
can be performed in the adder and logic
circuit during the same clock cycle

cpe 252: Computer Organization 16



5-2 Computer Registers
Memory Address cont
* The transition at the end of the cycle
transfers the content of the bus into the

destination register, and the output of the
adder and logic circuit into the AC

* For example, the two microoperations
DR—AC and AC—DR (Exchange)
can be executed at the same time
* This is done by:

cpe 252: Computer Organization

17



5-2 Computer Registers
Memory Address cont

» 1- place the contents of AC on the bus
(S,5,5,=100)
« 2- enabling the LD (load) input of DR

» 3- Transferring the contents of the DR
through the adder and logic circuit into AC

* 4- enabling the LD (load) input of AC
 All during the same clock cycle

* The two transfers occur upon the arrival of
the clock pulse transition at the end of the
CIOCk CyC|e cpe 252: Computer Organization 18



5-3 Computer Instructions

Basic Computer Instruction code format

Memory-Reference Instructions (OP-code = 000 ~ 110)

15 14 12 11 0
I Opcode Address

Register-Reference Instructions (OP-code =111, 1=0)

15 12 11 0
o1 1 1 Register operation
Input-Output Instructions (OP-code =111, 1=1)
15 12 11 0
11 1 1 1/0 operation

cpe 252: Computer Organization 19



BASIC COMPUTER INSTRUCTIONS

Hex Code
Symbol | 1=0 =1 Description
AND Oxxx  8xxx AND memory word to AC
ADD IXXX  9xxx Add memory word to AC
LDA 2xxx Axxx | Load AC from memory
STA 3xxx Bxxx | Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx | Branch and save return address
I1ISZ 6xxx Exxx | Increment and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer
INP F800 Input character to AC
ouT F400 Output character from AC
SKi F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

20



5-3 Computer Instructions

Instruction Set Completeness
* The set of instructions are said to be
complete if the computer includes a
sufficient number of instructions in each of
the following categories:

— Arithmetic, logical, and shift instructions

— Instructions for moving information to and
from memory and processor registers

— Program control instructions together with
instructions that check status conditions

— Input & output instructions
cpe 252: Computer Organization 21



5-4 Timing & Control cont

* In the hardwired organization, the control
logic Is implemented with gates, flip-flops,
decoders, and other digital circuits.

* In the microprogrammed organization, the
control information is stored in a control
memory (if the design is modified, the
microprogram in control memory has to be
updated)

* D;T,: SC0

cpe 252: Computer Organization 22



The Control Unit for the basic computer

Instruction register (IR)

[15] 14 13 12 | 11-0 | Other inputs
vy VvV v |
3x8
decoder
76543 210
D
& 1T o
D ontro » Control
L > logic outputs
- gates
T15 >l
SR LY E—
15 14 .... 210
4x16
Sequence decoder

It1t

4-bit
sequence

counter
(SC)

<

<«+——— Increment (INR)
<4——— (Clear (CLR)

<—— (Clock

Hardwired Control Organization

cpe 252: Computer Organization

23



- Generated by 4-bit sequence counter and 4x16 decoder

- The SC can be incremented or cleared.

- Example: To, T1, T2, T3, T4, To, T1, "o
Assume: At time T,, SC is cleared to 0 if decoder output D3 is active.

Clock

TO

T

T2

T3

T4

D3

CLR
SC

T0

D,T,: SC < 0

™ T2 T3

Y

T4

TO

_Y \

cpe 252: Computer Organization

24



5-4 Timing & Control cont

A memory read or write cycle will be initiated
with the rising edge of a timing signal

Assume: memory cycle time < clock cycle time!

S0, a memory read or write cycle initiated by a
timing signal will be completed by the time the
next clock goes through its positive edge

The clock transition will then be used to load the
memory word into a register

The memory cycle time is usually longer than
the processor clock cycle - wait cycles

cpe 252: Computer Organization 25



5-4 Timing & Control cont

» T,: AR—PC
— Transfers the content of PC into AR if timing signal T,
IS active
— T, Is active during an entire clock cycle interval

— During this time, the content of PC is placed onto the
bus (with S,5,5,=010) and the LD (load) input of AR
IS enabled

— The actual transfer does not occur until the end of the
clock cycle when the clock goes through a positive
transition

— This same positive clock transition increments the
sequence counter SC from 0000 to 0001

— The next clock cycle has T, active and T, inactive

cpe 252: Computer Organization 26



5-5 Instruction Cycle

* A program is a sequence of instructions
stored in memory

* The program is executed in the computer

by going through a cycle for each
instruction (in most cases)

* Each instruction in turn is subdivided into a
sequence of sub-cycles or phases

cpe 252: Computer Organization 27



5-5 Instruction Cycle cont.

* Instruction Cycle Phases:
— 1- Fetch an instruction from memory
— 2- Decode the instruction

— 3- Read the effective address from memory if
the instruction has an indirect address

— 4- Execute the instruction

* This cycle repeats indefinitely unless a
HALT instruction is encountered

cpe 252: Computer Organization 28



5-5 Instruction Cycle
Fetch and Decode

* |nitially, the Program Counter (PC) is
loaded with the address of the first
instruction in the program

* The sequence counter SC is cleared to O,
providing a decoded timing signal T,

 After each clock pulse, SC is incremented
by one, so that the timing signals go
through a sequence T,, T,, T,, and so on

cpe 252: Computer Organization 29



5-5 Instruction Cycle

Fetch and Decode cont.
— To: AR—PC (this is essentiall!)

The address of the instruction is moved to AR.

— T,: IR—M[AR], PC«+—PC+1
The instruction is fetched from the memory to IR

and the PC is incremented.

~T,:D,,..., D,«Decode IR(12-14), AR—IR(0-
11), l<IR(15)

cpe 252: Computer Organization 30



BC Instruction cycle: [Fetch Decode [Indirect] Execute]*

* Fetch and Decode |To0: AR « PC (S0S1S2=010, T0=1)
T1: IR < M[AR], PC « PC +1 (S0S1S2=111, T1=1)
T2: DO, ..., D7 « Decode IR(12-14), AR « IR(0-11), | « IR(15)

™ 1 'é)—b S2

T0O — £ )—+{s1 Bus
»| Memory

7
é)—b S0
unit

>
Address
£ I Read
AR 1
D D

>
> PC . 12
>

(3>t L |
INR

R /N >"'.;I

L

|

N
Common bus

cpe 252: Computer Organization

Clock




| 3&310 DETERMINE THE TYPE OF INSTRUCTION
v

T
AR < PC|'°
! T
IR « M[AR], PC « PC + 1
] T2

Decode Opcode in IR(12-14),
AR « IR(0-11), |« IR(15)

(Register or 1/10) = 1 = 0 (Memory-reference)

(10) =1 = 0 (register) (indirect) = 1 = 0 (direct)

13 T3 T3
Execute Execute AR < M[AR]| [ Nothing ]
input-output register-reference l L
instruction instruction
SC« 0 SC « 0 Execute T4
memory-reference
instruction
l SC « 0
v v
D7IT3: AR « M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

cpe 252: Computer Organization 32



REGISTER REFERENCE INSTRUCTIONS

Register Reference Instructions are identified when

-D,=1,1=0
- Register Ref. Instr. is specified in B, ~ B, of IR
- Execution starts with timing signal T,

r=D,I’T, =>Register Reference Instruction
B, = IR(i) , i=0,1,2,...,11, the ith bit of IR.

r: SC«0
CLA | rB;: AC <0
CLE | rB,,: E«<0
CMA | rBy: AC « AC’
CME | rBs: E«F
CIR | rB;: AC < shr AC, AC(15) < E, E < AC(0)
CIL | rBg: AC « shl AC, AC(0) < E, E < AC(15)
INC | rBg: AC « AC +1
SPA | rB;: if (AC(15) = 0) then (PC < PC+1)
SNA | rB;: if (AC(15) = 1) then (PC <~ PC+1)
SZA | rB,: if (AC = 0) then (PC < PC+1)
SZE | rB;: if (E =0) then (PC < PC+1)
HLT | rB,: S < 0 (S is a start-stop flip-flop)

cpe 252: Computer Organization 33



5.6 MEMORY REFERENCE INSTRUCTIONS

Symbol ggggzt;?n Symbolic Description

AND | D, AC « AC A M[AR]

ADD | D, AC « AC + M[AR], E « C,_,,

LDA | D, AC <« MI[AR]

STA | D, M[AR] « AC

BUN D, PC « AR

BSA | D, M[AR] « PC, PC < AR +1

1SZ D, M[AR] < M[AR] + 1, if M[AR] + 1 = 0 then PC « PC+1

- The effective address of the instruction is in AR and was placed there during
timing signal T, when | = 0, or during timing signal T3 when | =1

- Memory cycle is assumed to be short enough to be completed in a CPU cycle

- The execution of MR Instruction starts with T,

AND to AC
D,T,:
D,T5:

ADD to AC
D, T,:
D,Ts:

DR <« M[AR] Read operand
AC «AC ADR,SC « 0 AND with AC
DR < M[AR] Read operand

AC <~ AC+DR,E«C_,;, SC« 0 AddtoAC and store carry in E
cpe 252: Computer Organization 34



MEMORY REFERENCE INSTRUCTIONSeont

LDA: Load to AC
D,T,: DR « M[AR]
D, T;: AC <« DR,SC« 0
STA: Store AC
D,T,: M[AR] « AC,SC « 0
BUN: Branch Unconditionally
D,T,: PC«+ AR,SC«0
BSA: Branch and Save Return Address
M[AR] < PC, PC <~ AR +1

Memory, PC, AR at time T4 Memory, PC after execution

20 (0 BSA 135 20 (0 BSA 135
Return address: PC = 21 | Next instruction 21 | Next instruction
AR =135 135 21
136 Subroutine PC =136 Subroutine
1 BUN 135 1 BUN 135

M
cpe 252:e88rrnyputer Organization

Memory

35



Memory Reference
Instructionscent

BSA: executed in a sequence of two micro-operations:
D.T,: M[AR] « PC, AR+ AR +1
D;T;: PC« AR,SC <« 0

ISZ: Increment and Skip-if-Zero
D;T,: DR « M[AR]
Ds;T;: DR« DR +1
D,T6: M[AR] « DR, if (DR =0) then (PC <~ PC +1), SC « 0

cpe 252: Computer Organization 36



Memory-reference instruction

AND ADD 1 LDA STA
DoT4 D174 DaT4 l D3T4
DR <M[AR] DR <MI[AR] DR < M[AR] MIAR] € AC
SC € 0
1 DoT5 1 D1T5 1 DaT5
AC < ACADR| [Ac € AC +DR AC < DR
SC <- 0 E < Cout SC € 0
SC €0
BUN BSA ISZ
1 D4T4 l DsT4 1_ DeT4
PC € AR M[AR] < PC DR < M[AR]
SC €0 AR € AR + 1

1 D5T5 v Dﬂls

PC € AR DR < DR + 1
SC <0
v DaT
M[AR] € DR
If (DR = 0)

SC <0

then (PC € PC + 1)

cpe 252: Computer Organization

37



5-7 Input-Output and Interrupt

Instructions and data stored in memory
must come from some input device

Computational results must be transmitted
to the user through some output device

For the system to communicate with an
input device, serial information is shifted
into the input register INPR

To output information, it is stored in the
output register OUTR

cpe 252: Computer Organization 38



5-7 Input-Output and
Interrupteent

Serial registers and
Input-output communication J
erminal interface ﬁﬁ,m o”,;gr
Receiver

Printer  [*——— interface |*+——LOUTR | [FGO|

| Ac |

Transmitter
Keyboard [——% interface INPR | [FGI]

—— Serial Communications Path
= Parallel Communications Path

cpe 252: Computer Organization 39



5-7 Input-Output and

Interrupteont

* INPR and OUTR communicate with a
communication interface serially and with
the AC in parallel. They hold an 8-bit
alphanumeric information

 |/O devices are slower than a computer
system - we need to synchronize the
timing rate difference between the
iInput/output device and the computer.

* FGI: 1-bit input flag (Flip-Flop) aimed to
control the input operation

cpe 252: Computer Organization

40



5-7 Input-Output and Interrupt

cont.

* FGl is set to 1 when a new information is
available in the input device and is cleared
to O when the information is accepted by
the computer

 FGO: 1-bit output flag used as a control
flip-flop to control the output operation

* If FGO is set to 1, then this means that the
computer can send out the information
from AC. If it is O, then the output device is
busy and the computer has to wait!

cpe 252: Computer Organization 41



5-7 Input-Output and

Interrupteont

* The process of input information transfer:
— Initially, FGl is cleared to O

— An 8-bit alphanumeric code is shifted into
INPR (Keyboard key strike) and the input flag
FGl is set to 1

— As long as the flag is set, the information in
INPR cannot be changed by another data
entry

— The computer checks the flag bit; if it is 1, the
information from INPR is transferred in
parallel into AC and FGl is cleared to 0

cpe 252: Computer Organization 42



5-7 Input-Output and
Interrupteent

— Once the flag is cleared, new information can
be shifted into INPR by the input device
(striking another key)

* The process of outputting information:
— Initially, the output flag FGO is set to 1

— The computer checks the flag bit; if it is 1, the
information from AC is transferred in parallel
to OUTR and FGO is cleared to 0O

— The output accepts the coded information
(prints the corresponding character)

cpe 252: Computer Organization 43



5-7 Input-Output and
Interrupteent

— When the operation is completed, the output
device sets FGO back to 1

— The computer does not load a new data
information into OUTR when FGO is O
because this condition indicates that the
output device is busy to receive another
information at the moment!!

cpe 252: Computer Organization

44



Input-Output Instructions

Needed for:

— Transferring information to and from AC register
— Checking the flag bits
— Controlling the interrupt facility

The control unit recognize it when D=1 and | = 1

The remaining bits of the instruction specify the
particular operation

Executed with the clock transition associated with
timing signal T,
Input-Output instructions are summarized next

cpe 252: Computer Organization 45



Input-Output Instructions

D,IT,=p
IR()=B,i=86, ..., 11

INP
OouT
SKi
SKO
ION
IOF

AC(0-7) « INPR, FGI « 0
OUTR « AC(0-7), FGO « 0
if(FGI = 1) then (PC « PC + 1)
if(FGO = 1) then (PC « PC + 1)
IEN « 1

IEN < 0

Input char. to AC
Output char. from AC
Skip on input flag
Skip on output flag
Interrupt enable on
Interrupt enable off

cpe 252: Computer Organization

46



Program Interrupt

* The process of communication just
described is referred to as Programmed
Control Transfer

* The computer keeps checking the flag bit,
and when it finds it set, it initiates an
information transform (this is sometimes
called Polling)

* This type of transfer is in-efficient due to
the difference of information flow rate
between the computer and the I/O device

cpe 252: Computer Organization 47




Program Interrupteont

* The computer is wasting time while
checking the flag instead of doing some
other useful processing task

* An alternative to the programmed
controlled procedure is to let the external
device inform the computer when it is
ready for the transfer

* This type of transfer uses the interrupt
facility

cpe 252: Computer Organization

48



Program Interrupteont

* While the computer is running a program,
it does not check the flags
* Instead:

— When a flag is set, the computer is
immediately interrupted from proceeding with
the current program

cpe 252: Computer Organization

49



Program Interrupteont

— The computer stops what it is doing to take care
of the input or output transfer

— Then, it returns to the current program to continue
what it was doing before the interrupt

* The interrupt facility can be enabled or disabled
via a flip-flop called IEN

* The interrupt enable flip-flop IEN can be set and
cleared with two instructions (IOF, ION):

— |OF: IEN < 0O (the computer cannot be
interrupted)

— ION: IEN < 1 (the computer can be interrupted)

cpe 252: Computer Organization 50



Program Interrupteont

* Another flip-flop (called the interrupt flip-
flop R) is used in the computer’'s interrupt
facility to decide when to go through the
interrupt cycle

* FGI and FGO are different here compared
to the way they acted in an earlier
discussion!!

* S0, the computer is either in an
Instruction Cycle or in an Interrupt

Cycle

cpe 252: Computer Organization 51



Program Interrupteont

* The interrupt cycle is a hardware
implementation of a branch and save
return address operation (BSA)

* The return address available in PC is
stored in a specific location where it can
be found later when the program returns to
the instruction at which it was interrupted

* This location may be a processor reqister,
a memory stack, or a specific memory
location

cpe 252: Computer Organization 52



Program Interrupteont

* For our computer, we choose the
memory location at address O as a place
for storing the return address

« Control then inserts address 1 into PC:
this means that the first instruction of the
Interrupt service routine should be stored
In memory at address 1, or, the
programmer must store a branch
Instruction that sends the control to an
interrupt service routine!!

cpe 252: Computer Organization 53



Program Interrupteont

Instruction cycle =0 /k:

1

R = Interrupt flip-flop

Interrupt cycle

[ N\

Fetch and decode
instructions

v

Execute
instructions

!

Store return address
in location 0

M[0] €« PC

A 4

Branch to location 1
PC & 1

A 4
IEN€ 0
R< 0

A 4

Flowchart for interrupt cycle

cpe 252: Computer Organization

o4



Program Interrupteont

 |[EN, R € 0: no more interruptions can
occur until the interrupt request from the
flag has been serviced

* The service routine must end with an
iInstruction that re-enables the interrupt
(IEN €< 1) and an instruction to return to
the instruction at which the interrupt
occurred

 The instruction that returns the control to
the original program is "indirect BUN 0"

cpe 252: Computer Organization 55



Program Interrupteont

 Example: the computer is interrupted
during execution of the instruction at
address 255

Memory
Before interrupt After interrupt cycle
0 0 256
1 L0__BUN 1120 PC=1]10_BUN 1120
Main Main
255 Program 255 Program
PC =256 256
1120 1120
/10 110
Program Program
T = T o

cpe 252: Computer Organization



Interrupt Cycle

* The fetch and decode phases of the
instruction cycle must be :

(Replace TO, T1, T2 - R'TO, R'T1, R'T2
(fetch and decode phases occur at the
instruction cycle when R = 0)

* Interrupt Cycle:
~RT,: AR« 0, TR« PC
—RT,: M[AR] « TR, PC « 0
—RT,:PC«~PC+1, IEN«<~0, R«<0,SC«0

cpe 252: Computer Organization 57



Register transfers
for the Interrupt
Cycle

CPE252 cpe 252: Computer Organization 58



Interrupt cont

 Further Questions:

— How can the CPU recognize the device requesting
an interrupt?

— Since different devices are likely to require
different interrupt service routines, how can the
CPU obtain the starting address of the
appropriate routine in each case?

— Should any device be allowed to interrupt the CPU
while another interrupt is being serviced?

— How can the situation be handled when two or
more interrupt requests occur simultaneously?

cpe 252: Computer Organization 59



Fig 5-15

5-8 Complete Computer Description

start

SC<O0,IENCO, RSO

(Instruction Cycle) =0

v

R’T,

AR & PC
1

R'T,

IR € M[AR], PC < PC +1

,Tz

AR € IR(0~11), | € IR(15)
D,...D, & Decode IR(12 ~ 14)
L

& =1 (Interrupt Cycle)
\/

(Register or 1/0) =1 /Dk
g/

D,IT. §

Execute
/10
Instruction

N

(1/0) =1 I =0 (Register)

A\

y DI’ T

Execute
RR
Instruction

\

y

J/

v RTO
|AR < 0, TR < PC|
|

RT,

M[AR] € TR, PC < 0

RT,

PC <PC+1,IEN <O

RéF.jﬁéQ

=0 (Memory Ref)

(Indir) =1 =0 (Dir)
Y

D,/IT3 v v D/I'T3

AR € M[AR]] | Idle

v v

Execute MR
Instruction

cpe 252: Computer Organization

D,'T4

60



5-8 Complete Computer

Descriptioncont.

Fetch
Decode
Indirect

Interrupt:

TO’T1’T2’(IEN)(FGI + FGO):
RTO:

R’TO:
R’T1:
R’T2:

D7’IT3:

RT1:
RT2:

Memory-Reference:

AND

ADD
LDA
STA
BUN
BSA

ISZ

DOT4:
DOT5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR & PC
IR &€ M[AR], PC < PC + 1
DO, ..., D7 & Decode IR(12 ~ 14), AR < IR(0 ~ 11), | < IR(15)

AR < M[AR]

R <1

AR < 0, TR € PC

M[AR] < TR, PC < 0

PC < PC+1,IEN < 0,R < 0,SC <0

DR < M[AR]

AC < AC .DR, SC < 0

DR < M[AR]

AC < AC + DR, E < Cout, SC < 0
DR < M[AR]

AC ¢ DR, SC <0

M[AR] < AC, SC < 0

PC € AR, SC < 0

M[AR] < PC, AR < AR + 1

PC € AR, SC < 0

DR < M[AR]

DR < DR + 1

M[AR] < DR, if(DR=0) then (PC < PC + 1), SC < 0




5-8 Complete Computer

Register-Reference:

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output:

INP
ouT
SKi
SKO
ION
IOF

D7PT3=r
IR(i) = Bi
r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rBO:

D7IT3=p
IR(i) = Bi
p:
pB11:
pB10:
pB9:
pB8:
pB7:
pB6:

DescnptlonCO”t

(Common to all register-reference instructions)
(i=01,2,..,11)

SC<0

AC <0

E<O

AC <€ AC’

E<CFE

AC < shr AC, AC(15) € E, E <« AC(0)
AC < shl AC, AC(0) € E, E € AC(15)
AC € AC +1

If(AC(15) =0) then (PC < PC +1)
If(AC(15) =1) then (PC €< PC +1)
If(AC = 0) then (PC < PC + 1)

If(E=0) then (PC €< PC + 1)

S0

(Common to all input-output instructions)
(i=6,7,8,9,10,11)

SC<0

AC(0-7) € INPR, FGI €« 0

OUTR <« AC(0-7), FGO < 0

If(FGI=1) then (PC < PC + 1)

If(FGO=1) then (PC < PC + 1)

IEN < 1

IEN <0

UPT 2J4Z. VUITTPULCT UtyarnZauurl

Table 5-6

62



5-9 Design of Basic Computer
1. A memory unit: 4096 x 16.

2. Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR,
and SC

3. Flip-Flops (Status): |, S, E, R, IEN, FGI, and
FGO
4. Decoders:

1. a 3x8 Opcode decoder
2. a4x16 timing decoder

5. Common bus: 16 bits
6. Control logic gates
7. Adder and Logic circuit: Connected to AC

cpe 252: Computer Organization 63



5-9 Design of Basic
Computercont.

* The control logic gates are used to
control:

Inputs of the nine registers
Read and Write inputs of memory

Set, Clear, or Complement inputs of the flip-
flops

S2, S1, SO that select a register for the bus
AC Adder and Logic circuit

cpe 252: Computer Organization 64



5-9 Design of Basic

Computercont.

« Control of registers and memory

— The control inputs of the reqisters are LD
(load), INR (increment), and CLR (clear)

— To control AR We scan table 5-6 to find out
all the statements that change the content of
AR:
+ R'T0: AR« PC LD(AR)

R'T2: AR« IR(0-11) LD(AR)

D’71T3: AR « M[AR] LD(AR)

RT0: AR<«O CLR(AR)

D5T4: AR« AR+ 1 INR(AR)

cpe 252: Computer Organization 65



5-9 Design of Basic

Computercont.

Control Gates associated with AR

. From bus —#~—» AR —— To bus
71 S
TI _|_:>_ LD ‘ Clock
3 :) INR
CLR
—>o

wivlv

cpe 252: Computer Organization 66



5-9 Design of Basic
Computercont.

— To control the Read input of the memory we
scan the table again to get these:

D,T,: DR € M[AR
D,T,: DR € M[AR
D,T,: DR ¢ M[AR
DsT,: DR € M[AR
D.'IT,;: AR € M[AR]
R'T,: IR € M[AR]

— > Read =R'T,+ D, IT,+ (D, + D, + D, + Dy )T,

cpe 252: Computer Organization 67



5-9 Design of Basic
Computercont.

« Control of Single Flip-flops (IEN for
example)

pB7: IEN < 1 (I/O Instruction)
pB6: IEN < 0 (I/O Instruction)

RT2: IEN < 0 (Interrupt)
where p = D7IT3 (Input/Output Instruction)

If we use a JK flip-flop for IEN, the control
gate logic will be as shown in the following
slide:

cpe 252: Computer Organization

68



5-9 Design of Basic

Computercont.
D.,_I_ A
CFOSD— o

—

BB@ K
R ——
T2_

J K Q(t+1)
0 0 Q(t)

0 1 0

1 0 1

1 1 Q'(t)

JK FF Characteristic Table

cpe 252: Computer Organization

69



5-9 Design of Basic

Computercont.

« Control of Common bus is accomplished
by placing an encoder at the inputs of the
bus selection logic and implementing the
logic for each encoder input

x1 —»

2 ——b S
23 > $>2 Multiplexer
x4 ——P Sices ————p| S, busselect
X5 —>p inputs
x6 ——b IS,
x7 >

cpe 252: Computer Organization 70



5-9 Design of Basic

Computercont.

* To select AR on the bus then x, must be
1. This is happen when:
- D,T,:PC € AR
+ D,T;: PC € AR

* =X = DTy + DsTs

selected
x1 x2 x3 x4 x5 x6 x7 S2 S1 SO register
0 0 0 0 0 0 O 0 0 O none
1 0 0 0 0 0 O o 0 1 AR
01 0 0 0 0O 0 1 0 PC
0O 01 0 0 0O o 1 1 DR
0O 0 01 0 0O 1 0 O AC
0 00 01 0O 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
O 00 00 0 1 1 1 1 Memory

cpe 252: Computer Organization



5-9 Design of Basic
Computercont.

For x;:

it is also applied to the read input

cpe 252: Computer Organization 72



5-10 Design of Accumulator Logic

Circuits associated with AC

16
1;6 o Adder and 16 16
From DR —<—»| logic L AC A
8 circuit A To bus
Y LD| INR| CLR| Clock
Con-trol
gates
All the statements that change the content of AC
D,T5s: | AC < AC ADR AND with DR
D,T;: | AC «— AC +DR Add with DR
D,T;: | AC « DR Transfer from DR
pB,;: | AC(0-7) < INPR Transfer from INPR
rB,: AC « AC’ Complement

rB,: | AC « shr AC, AC(15) « E | Shift right
rBg: | AC < shl AC, AC(0) «— E | Shift left
rB,y: | AC«0 Clear
rB;: | AC«— AC +1 Increment

7

73




5-10 Design of Accumulator
LogicCOnt.

Gate structures for controlling
the LD, INR, and CLR of AC

From Adder _16 16
and Logic —7 " AC Y To bus
Do D& LD Clock
BS — ADD INR
1
) )_ CLR
D, —Loa|| (=
Ts |
p DINPR
B11 ‘
r —COM
Bg E—
SHR
B7
DSHL
Be
— INC
—~CLR
B4 t—

cpe 252: Computer Organization



Adder and Logic Circuit

DR(i) AC(i)

AND

vC

FA

ADD

*ci+1

LDA

From
INPR
bit(i)

INPR

COM

[>o
AC(i+1)

AC(i-1)

SHR

SHL

cpe 252: Computer Organization

-
Bs

AC(i)



=  COMPUTER ORGANIZATION AND DESIGN “4

The Hardware/Software Interface

CPE 408340
Computer Organization

Chapter 5 : Large and Fast:
Exploiting Memory Hierarchy
The




Memory Technology

Static RAM (SRAM)
0.5ns — 2.5ns, $2000 — $5000 per GB

Dynamic RAM (DRAM)
50ns — 70ns, $20 — $75 per GB

Magnetic disk
5ms — 20ms, $0.20 — $2 per GB

ldeal memory
Access time of SRAM
Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2



Principle of Locality

Programs access a small proportion of
their address space at any time

Temporal locality

Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality

ltems near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3



Taking Advantage of Locality

Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
Main memory

Copy more recently accessed (and

nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4



Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
Processor upper level

| Hit: access satisfied by upper level
B L Hit ratio: hits/accesses

If accessed data is absent

. Miss: block copied from lower level
Data is transferred _ _
' Time taken: miss penalty

Miss ratio: misses/accesses
=1 — hit ratio

N Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5



Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X, ..., X _4, X,

- K

A Fa .

. - How do we know if

the data is present?

LER B

% “ Where do we look?
An

Xy A

a. Before the reference to X, b After the reference to X,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6



Cache Design Rules

Address
Address

[Block Address] [ Block Offset ]
[Tag] | ] [ Word Offset] [ Byte Offset]

Block bits =lo
#Blocks in Cache =

s(Block_Size)
ache_Size/Block_Size
#Sets in Cach #Blocks / Set_Size

Set_Size number of ways in the cache

For direct cache : Set_Size=1 (#Sets = #Blocks)
For fully associative : Set_Size= #Blocks (#Sets = 1 )
For k-way associative: Set_Size= k

ex_bits = log, (#Sets)

Tag_Dbits = Address_bits - ( Block_bits + Index_bits)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7



Direct Cache Example

A cache is direct-mapped and has 64 KB data. Each
block contains 32 bytes. The address is 32 bits wide.

What are the sizes of the tag, index, and block offset
fields?

# bits in block offset = 5 (since each block contains 275
bytes)

# blocks in cache = 64x1024 / 32 = 2048 blocks

— S0 # bits in index field = 11 (since thereare 2711
blocks)

# bits in tag field = 32 -5 - 11 = 16 (the rest!)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8



K-way Cache Example

A cache is 4-way set-associative and has 64 KB data.
Each block contains 32 bytes. The address is 32 bits
wide. What are the sizes of the tag, index, and block
offset fields?

# bits in block offset = 5 (since each block contains 275
bytes)

# blocks In cache = 64x1024 / 32 = 2048 (2*11)

# sets In cache = 2048 /4 =512 (2"9) sets (asetis 4
blocks kept in the cache for each index)

— S0 # bits In index field = 9
# bitsintag field=32-5-9=18

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9



Direct Mapped Cache

Location determined by address

Direct mapped: only one choice

< = (Block address) modulo (#Blocks in cache) >

Cach
mEB=E2rFT
A :‘
/ I.' .:_':.:-"' J x‘\.
¢ Y
.l' b ] "ul \\\
N l'. 3 h
/.-"'"f jl"'/ Y l,-'l x“x:._‘h\ ., "
kTS
& A k) S,
___.-": lIl.' I."l l"-,_ '.l:x M‘\\
T ." T T l._l :
A AL B B
/ :dJII B 'm
CEI0IH oo Q1001 1101 10001 10 11001 11101
hemony

Index

#Blocks is a
power of 2

Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10



Tags and Valid Bits

How do we know which particular block is
stored in a cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location”?
Valid bit: 1 = present, 0 = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11



Cache Example

8-blocks, 1 word/block, direct mapped
Initial state, Mem=32 words (or blocks)

Index
000
001
010
011
100
101
110
111

Tag Data

Z|1Z2|1Z2|1Z2|Z2|Z2(Z2|2Z2|I<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12



Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

Z|1Z2|1Z2|1Z2|Z2|Z2|<

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13



Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index V Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14



Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem[11010]

10 Mem[10110]

Z|I<|Z2|1Z2|Z2|<[(Z2(Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15



Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16



Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010
Index V Tag Data
000 Y |10 Mem[10000]
001 N
010 Yy |10 Mem[10010] = r'\:']:zfn ;tia
011 Y |00 Mem[00011]
100 N
101 N
110 Y |10 Mem[10110]
111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17



Address Subdivision

AEDEEE ahiang bk posiions])
FUEE ~-0 MHEEIT B 10
| i
efia
Hie 20 e
Lt
Index Valid Tag Data
0
1
2
L | L ]
1021
1082
s
ik -y i
?
-r

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18



Example: Larger Block Size
64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address =| 1200/16 ] = 75
Block number = 75 modulo 64 = 11

31 10 9 4 3 0
Tag Index | Offset
22 bits 6 bits 4 bits

1200,,= 0 ....01 00 1011 0000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19



Associative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once

Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20



Associative Cache Example

Block # 01234567

Data

ot

Direct mapped

i

Set associative Fully associative

Setd 0 1 2 3

Data Data

A

seaen 1 seae TTTTTTTT

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21



Spectrum of Associativity

For a cache with 8 entries

SIMaanmy BT ARnGoiniy
felimgrd vimpReds
Gl Tag e
i
i —_— Tese wm Seeoalriive
= I fer Thg Dak Ty Dok
T &
q
p | 'i
x e
& &
T
Fian- e il Doty

Set  lag Lol Ve Unin ey Duia Ul Duke
12
.I'

Eighboas ot siguepiiativwe fluls eorpanlatins}
T O o Gumin Wy Deln Ty Geim Ty Deix Tep Caln e Datn Ty Dek

| I I I I

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22



Cache Performance

Components of CPU time
Program execution cycles
Includes cache hit time
Memory stall cycles
Mainly from cache misses

With simplifying assumptiong”

In the next few
slides we will
measure:
1. _Miss Rate

. Miss Penalty

Memory stall cycles

_ Memory accesses

- Program

_ Instructions y Misses
Program  Instruction

x Miss rate x Miss penalty

x Miss penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23



Associativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem([8]
0 0 miss Mem[0]
6 2 miss Mem[O0]
8 0 miss Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24



Associativity Example

2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem([0]
0 0 hit Mem|[0] Mem[8]
6 0 miss Mem[O0] Mem[6]
8 0 miss Mem([8] Mem|[6]
Fully associative
Block Hit/miss Cache content after access
address
0 miss
8 miss Mem([0]
0 hit Mem|[0] Mem[8]
6 miss Mem([0] Mem([8]
8 hit Mem[O0] Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25




How Much Associativity

Increased associativity decreases miss
rate

But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26



Set Associative Cache Organization

Hiverin
i EHEETE F o I g S SR

[

g = 1:.,_&"
ey
Tighis
Index vV Tag Data YV Tag Dafa YV Tag Data YV Tag Data
0
1
2
|* E | | | L ] L ] L ] L ] [ | [ ] T L L |
253
254
25‘5 [ ] 1 |
s k=
LA 5 S

| . ] Ty
JJ l wa-l wm‘lxir#nrf;‘a
!

A3 R

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27



Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality

But in a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28



Cache Misses

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29



Write-Through

On data-write hit, could just update the block in
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer

e.g., if base CPIl =1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPI =1+ 0.1x100 = 11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30



Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31



Write Allocation

What should happen on a write miss?

Alternatives for write-through
Write-allocate on miss: fetch the block

Write around (no write allocate): don’t fetch
the block

Since programs often write a whole block before
reading it (e.qg., initialization)

For write-back
Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32



Example: Intrinsity FastMATH

Embedded MIPS processor

12-stage pipeline

Instruction and data access on each cycle
Split cache: separate |-cache and D-cache

Each 16KB: 256 blocks x 16 words/block

D-cache: write-through or write-back
SPEC2000 miss rates

l-cache: 0.4%

D-cache: 11.4%

Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33



Example: Intrinsity FastMATH

Sdeian fshaslnyg Bir pOREGCS]
i L AT A - L

L ]

i Js  Ja : -
1 Tig "}~ # ! T m I
&
Irzkm: Bk it
18 s ELZ bile |
¥ T Trada
— : *
256
[ | ’ ’ entries
e | 1
" -:I.E} 'T‘EE -...‘m s u) _'E:ﬂ'
1
x{;‘) .
& ™
= N
"IurJ' ""-...EH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34



Main Memory Supporting Caches

Use DRAMSs for main memory
Fixed width (e.g., 1 word)

Connected by fixed-width clocked bus
Bus clock is typically slower than CPU clock

Example cache block read
1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM
Miss penalty = 1 + 4x15 + 4x1 = 65 bus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35



Mermiory

L
a. Crne-word-wide
mamory organization

|F‘iﬁ¢‘£€¢ﬂi‘

Increasing Memory Bandwidth

[T Ty
™y T
T s
rni** 5 T
= [mm"‘-::
BSR e IS ERS
i
Bus Bus
Mamary Memony || Memory | Memory || Memory
bank 0 bank 1 bank 2 bank 3
b, Wider memaory organization

4-word wide memory

<. Intedeaved memony arganization

Miss penalty =1+ 15+ 1 =17 bus cycles

Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
4-bank interleaved memory

Miss penalty = 1 + 15 + 4x1 = 20 bus cycles
Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36



Miss Penalty = Addr_Transfer + MemoryAccess + DataTrasfer

Single-word-wide memory

I_ Cache

-

ddr Memory | Data | | Memory | Data Memory | Data | |Memory | Data
Cache a Access |Trans || Access |Trans| | Access |Trans|| Access |Trans
_.__#__;—”’“'H-_hh_‘_h
Bus
— Miss Penalty =1 + 154 + 1*4 =65 cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
[Processor] 4-word-wide memory
__—Tultiplexer—0
T T I T Memory | Data
addr
Access |Trans

I B“ifi Miss Penalty =1 + 15*1 + 1*1 =17 cycles

—

| Memory

Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

Interleaved memory
==
—— addr Memory | Data || Data | | Data || Data
; Access |Trans||Trans| |Trans||Trans
L Miss Penalty =1 + 151 + 1*4 = 20 cycles
Memory || Memary || Memary | Memay|  Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

bank 0

bank 3

37



Advanced DRAM Organization

Bits in a DRAM are organized as a
rectangular array

DRAM accesses an entire row

Burst mode: supply successive words from a
row with reduced latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38



DRAM Generations

Year | Capacity | $/GB 300
1980 | 64Kbit $1500000 250
1983 | 256Kbit | $500000

1985 | 1Mbit $200000 200
1989 | 4Mbit $50000

1992 | 16Mbit $15000 1507
1996 | 64Mbit $10000 100
1998 | 128Mbit | $4000

2000 | 256Mbit | $1000 >0
2004 | 512Mbit | $250 0
2007 | 1Gbit $50

——Trac
—-=—Tcac

‘80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39




Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

Memory stall cycles
_ Memory accesses
- Program

_Instructions = Misses

— X — xMiss penalty
Program Instruction

x Miss rate xMiss penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40



Cache Performance Example

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: 0.02 x 100 = 2
D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44 =544
ldeal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41



Average Access Time

Hit time is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, |-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42



Performance Summary

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43



Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44



Cache Misses

Cache Misses |The Cause Dependency

Capacity misses |Occur due to the finite |Cache size
size of the cache.

Conflict misses |Occur because the Associatively
cache had evicted an
entry earlier.

Compulsory Caused by the first Block size
misses reference to a location
(Cold misses) |in memory.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45




Cache Design Trade-offs

Design change

Effect on miss rate

Negative
performance effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate due
to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46




Memory Protection

Different tasks can share parts of their
virtual address spaces

But need to protect against errant access
Requires OS assistance

lardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions

Page tables and other state information only
accessible in supervisor mode

System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47



The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching

At each level in the hierarchy
Block placement
Finding a block
Replacement on a miss
Write policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48



Block Placement

Determined by associativity

Direct mapped (1-way associative)
One choice for placement

n-way set associative
n choices within a set

Fully associative
Any location

Higher associativity reduces miss rate
Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49



Finding a Block

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set Set index, then search |n
associative entries within the set
Fully associative Search all entries #entries
Full lookup table 0
Hardware caches

Reduce comparisons to reduce cost

Virtual memory

Full table lookup makes full associativity feasible
Benefit in reduced miss rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50



Replacement

Choice of entry to replace on a miss
Least recently used (LRU)

Complex and costly hardware for high associativity

Random
Close to LRU, easier to implement

Virtual memory
LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51



Write Policy

Write-through
Update both upper and lower levels

Simplifies replacement, but may require write
buffer

Write-back

Update upper level only
Update lower level when block is replaced
Need to keep more state

Virtual memory

Only write-back is feasible, given disk write
latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52



Sources of Misses

Compulsory misses (aka cold start misses)
First access to a block

Capacity misses
Due to finite cache size
A replaced block is later accessed again

Conflict misses (aka collision misses)
In a non-fully associative cache
Due to competition for entries in a set

Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53



Cache Design Trade-offs

Design change

Effect on miss rate

Negative
performance effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict
misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54




MIPS
Addressing Modes
and Memory
Architecture

(Second Edition:Section 3.8
Fourth Edition: Section 2.10)
from Dr. Andrea Di Blas' notes




Memory Organization and Addressing

Memory may be viewed as a single-dimensional array of individually
addressable bytes. 32-bit words are aligned to 4 byte boundaries.

- 232 bytes, with addresses from O to 232 - 1.
- 239 words with addresses 0, 4, 8, ..., 232 -4

1101 0001 1 word
1100 0101

0001 1100
1111 0010

1010 1100
0000 0000
1111 0000

0000 1111

0000 1010
0110 0001

oy N 00 \O

1 word

hot a word

w p

o
5N
n

(415 ) CMPE 110 - Spring 2011 - J. Ferguson



Byte ordering within words

- Little Endian: word address is LSB
» Big Endian: word address is MSB

Ex: 0000 0001 0010 0011 0100 0101 0110 0111

x..x1101 Little x..x1101

x..x1100 Endian x..x1100

x..x0111 00000001 x.x0111 01100111
x..x0110 00100011 x..x0110 01000101
x..x0101 01000101 x..x0101 00100011
x..x0100 01100111 x_x0100 00000001
x..x0011 x..x0011 Big
x..x0010 X.

x0010 Endian

L‘ CMPE 110 - Spring 2011 - J. Ferguson 4-3 (-



MIPS addressing modes

Addressing modes are the ways of specifying
an operand or a memory address.

* Register addressing

- Immediate addressing

- Base addressing

* PC-relative addressing

* Indirect addressing

» Direct addressing (almost)




Register addressing

Operands are in a register.
Example: add $3,$4, $5
Takes n bits to address 2" registers

op rs rvr r'd shamt funct

i%)‘,‘ CMPE 110 - Spring 2011 - J. Ferguson 4.5 (=




Register addressing

op rs r|1' r-d shamt funct

-

registers

I I
I I
I I
| memory
I |
I I

5 i CMPE 110 - Spring 2011 - J. Ferguson



Immediate Addressing

 The operand is embedded inside the encoded
Instruction.

op rs rt Immediate value

16 bits

16 bit two's-complement number:
-215-1=-32,769 < value < +215= +32,768

(412 ) CMPE 110 - Spring 2011 - J. Ferguson 4.7 (F




Immediate addressing

op rs rt Immediate value

| 16 bits

Sign-extended

________________ XXXXXXXAXXXXXXXX

memory

registers

Example is addi or similar

A CMPE 110 - Spring 2011 - J. Ferguson



Base (or Base-offset or
displacement ) Addressing

» The address of the operand is the sum of
the immediate and the value in a register

(rs).

+ 16-bit immediate is a two's complement
number

. Ex: lw $15,16($12)

op rs rt Immediate value

I
CMPE 110 - Spring 2011 - J. Ferguson 4 -




Base addressing

op rs

rt

Immediate value

________________ XXXXXXXAXXXXXXXX

registers

1w $8,128($5)

| 16 bits

memory

Effective address

9 CMPE 110 - Spring 2011 - J. Ferguson




PC-relative addressing: the value in the immediate
field is interpreted as an of fset of the next
instruction (PC+4 of current instruction)

Example: beq $0,$3,Label

op rs rt Immediate value

(415 CMPE 110 - Spring 2011 - J. Ferguson 4-11 (=



PC-relative addressing

op rs rt Immediate value

16 bits

Shifted by 2 and Sign-extended

N\

................ XXXXXXXXXXXXXX00

Program Counter v

ALU

beq $0, %5, Label

L%‘ CMPE 110 - Spring 2011 - J. Ferguson 4-12 (




Detail of MIPS PC-Relative

address instruction Binary code to beq $0,$5, label
40000008 addi $5, $5, 1 is 0x10050002, which means 2
4000000C beq $0, $5, label fns‘rruc’r!ons from the next

: Instruction.
40000010 addi $5, $5, 1
40000014 addi $5, $5, 1 PC = 0x4000000C
40000018 label addi $5, $5, 1 PC+4-= 0x40000010
4000001C addi $5, $5, 1 Add4*2 = 0x00000008
40000020 ete. Eff. Add. = 0x40000018
op rs rt Immediate value
00010 00000 00101 0000000000000010

R
S
7Y

i CMPE 110 - Spring 2011 - J. Ferguson 4-13 (




Register Direct Addressing: the value the (memory)
effective address is in a register. Also called
"Indirect Addressing".

Special case of base addressing where offset is O.
Used with the jump register instructions (jr, jalr).

Example: jr $31

op rs r-1' r-d shamt funct

000000 rs 00000 | 00000 00000 001000

% \N
59 B »f)"q

{415 ) CMPE 110 - Spring 2011 - J. Ferguson 4-14 (=




Register Direct

op rs rt rd shamt funct

memory

— —

registers program counter

jr $5

CMPE 110 - Spring 2011 - J. Ferguson




Direct Addressing: the address is "the immediate”. 32-
bit address cannot be embedded in a 32-bit instruction.

Pseudodirect addressing: 26 bits of the address is
embedded as the immediate, and is used as the
instruction offset within the current 256 MB
(64MWord) region defined by the MS 4 bits of the PC.

Example: j Labe]

op

offset

31 26 25

PC: 01110001 ...

of fs: 0101 0001 0100 0010 1111 0101 1Q

shift:

00

00

ADDR: 0111 0101 0001 0100 0010 1111 0101 10 OO

A
£
2 SSQ
= \‘\ \%
| i\
#‘3“{

(& @) CMPE 110 - Spring 2011 - J. Ferguson




Pseudodirect addressing

op offset
31 26 25 0

j Label

v
XXXX 00
program counter

RSN
AN
=0 ﬂ')"q

(412 ) CMPE 110 - Spring 2011 - J. Ferguson 4-17 (=




Caution: Addressing mode is not
Instruction type

Addressing mode is how an address (memory or
register) is determined.

» Instruction type is how the instruction is put
together.

Example: addi, beq, and lw are all I-types
instructions. But

- addi uses immediate addressing mode (and register)
- beq uses pc-relative addressing (and register)

- lw uses base addressing (and register)

r CMPE 110 - Spring 2011 - J. Ferguson 4-18 (&




MIPS Addressing Modes

1. REGISTER: a source or destination operand is specified as content of one
of the registers $0-$31.

2. IMMEDIATE: a numeric value embedded in the instruction is the actual
operand..

3. PC-RELATIVE: a data or instruction memory location is specified as an
offset relative to the incremented PC..

4. BASE: a data or instruction memory location is specified as a signed
offset from a register.

5. REGISTER-DIRECT: the value the effective address is in a register.

6. PSEUDODIRECT: the memory address is (mostly) embedded in the
instruction.

o Y O,
7%y
T |
i\

A
S
e

NN :
L CMPE 110 - Spring 2011 - J. Ferguson 5-19



PowerPC and x86 addressing
modes and instructions

+ PowerPC: 2nd edition: pp. 175-177, 4th
edition: Appendix E.

+ 80x86: 2"d edtion: pp. 177-185, 4t edition:
Section 2.17.




Additional PowerPC addressing modes - 1

Indexed Addressing: The address is the sum of two
registers. (note indexed addressing is different here
than usually used)

MIPS code: add $10, $20, $13 :$20 is base,$13 is index
lw $5, 0($10)

PowerPC: Iw $5, $20+$13  ; $5 < ($20+$13)

Saves instruction for incrementing array index.
No extra hardware.




PowerPC: Indexed Addressing

op rs rt rd

P

registers

memory

2 CMPE 110 - Spring 2011 - J. Ferguson



Additional PowerPC addressing mode - 2

Update Addressing: base addressing with automatic base
register increment.

MIPS code: lw $10, 4($13) ; $10 € Mem[$10+4]
addi $13, $13,4 ; $13 < $13+4

PowerPC:  Iwu $10, 4($13) ; $10 € Mem[$10+4]
;and $13 € $13+4

Requires that two registers be written at the same time
-~ more hardware.




PowerPC: Update Addressing

op rs rt Immediate value

16 bits

memory

=

registers
eff. add.

(for base and index addressing)

RSSS
& dym) CMPE 110 - Spring 2011 - J. Ferguson 4 -
S



Additional hon-RISC addressing mode

Memory Indirect Addressing: read effective address
from memory. (Usually PC-relative addressing is used
to get the effective address from memory).

RISC code: Iw $10, 0($13)
lw $5, 0($10)

CISC: Idi $5, Label : $5 € Mem[Label]

Requires two sequential data memory accesses.




CISC: Memory Indirect Addressing

op rs rt Immediate value

(or from PC)

!

registers

memory

eff. add.

{412 CMPE 110 - Spring 2011 - J. Ferguson 4-26 (=2




----------

Early Developments:

From Difference Engine to IBM
701

Arvind
Computer Science & Artificial Intelligence Lab
M.IL.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L1-2

Charles Babbage 1791-1871

Lucasian Professor of Mathematics,
Cambridge University, 1827-1839

Charles Babbage
Image removed due to copyright restrictions.
To view image, visit
lhttp://www.rtpnet.org/robroy/Babbage/hawks.html

September 7, 2005 el


http://www.rtpnet.org/robroy/Babbage/hawks.html

6.823 L1-3
Arvind

Charles Babbage

e Difference Engine 1823

e Analytic Engine 1833

— The forerunner of modern digital computer!

Application
— Mathematical Tables — Astronomy
— Nautical Tables — Navy

Background
— Any continuous function can be approximated by a
polynomial --- Weierstrass
Technology
— mechanical - gears, Jacquard’s loom, simple
calculators

September 7, 2005 el



6.823 L1-4
Arvind

Difference Engine
A machine to compute mathematical tables

Welerstrass:

— Any continuous function can be approximated by a
polynomial
— Any Polynomial can be computed from difference tables

An example

f(n) = n?+n+41
di(n) =f(n) - f(n-1) =2n
d2(n) =di(n) -di(n-1) =2
f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)
n 0 1 2 3 4 .
d2(n) 2 2 2
d1(n) 2 —4 — 6 — 8
f(n) 41 — 43 — 47 — 53 — 61

September 7, 2005

all you need is an adder!

f-hT‘ﬂw

Vsls]

T CSAIL

IS



6.823 L1-5
Arvind

Difference Engine

1823
— Babbage’s paper is published

1834

— The paper is read by Scheutz & his son in Sweden

1842

— Babbage gives up the idea of building it;he is onto
Analytic Engine!

1855

— Scheutz displays his machine at the Paris World Fare
— Can compute any 6th degree polynomial
— Speed: 33 to 44 32-digit numbers per minute!

Now the machine is at the Smithsonian

September 7, 2005 i



6.823 L1-6
Arvind

Analytic Engine

1833: Babbage’s paper was published

— conceived during a hiatus in the development of the
difference engine

Inspiration: Jacquard Looms
— looms were controlled by punched cards

e The set of cards with fixed punched holes
dictated the pattern of weave = program

e The same set of cards could be used with different
colored threads = numbers

1871: Babbage dies

— The machine remains unrealized.

It is not clear if the analytic engine
could be built even today using only
mechanical technology

J| 1071
September 7, 2005 Va1l s



6.823 L1-7
Arvind

Analytic Engine

The first conception of a general purpose computer

1. The store in which all variables to be operated
upon, as well as all those quantities which have
arisen from the results of the operations are
placed.

2. The mill into which the quantities about to be
operated upon are always brought.

The program
Operation variablel variable2 variable3

e T

An operation in the mill required feeding two punched
cards and producing a new punched card for the store.

An operation to alter the sequence was also provided!

September 7, 2005



6.823 L1-8
Arvind

The first programmer
Ada Byron aka “Lady Lovelace” 1815-52

Ada Byron a.k.a ""Lady Lovelace"
Image removed due to copyright restrictions. To
view image, Vvisit
http://www.sdsc.edu/ScienceWomen/lovelace.ht
ml

Ada’s tutor was Babbage himself!

September 7, 2005 =


http://www.sdsc.edu/ScienceWomen/lovelace.html
http://www.sdsc.edu/ScienceWomen/lovelace.html

6.823 L1-9
Arvind

Babbage’s Influence

e Babbage’s ideas had great influence later

primarily because of

— Luigi Menabrea, who published notes of Babbage’s
lectures in ltaly
— Lady Lovelace, who translated Menabrea’s notes in
English and thoroughly expanded them.
“... Analytic Engine weaves algebraic patterns....”

e In the early twentieth century - the focus

shifted to analog computers but

— Harvard Mark | built in 1944 is very close in spirit to
the Analytic Engine.

September 7, 2005 2wl



6.823 L1-10
Arvind

Harvard Mark |

e Built in 1944 in IBM Endicott laboratories
— Howard Aiken — Professor of Physics at Harvard
— Essentially mechanical but had some electro-
magnetically controlled relays and gears
— Weighed 5 tons and had 750,000 components
— A synchronizing clock that beat every 0.015
seconds

Performance:

0.3 seconds for addition
6 seconds for multiplication
1 minute for a sine calculation

Broke down once a week!

[ |7‘ ]

September 7, 2005 TCSAIL



6.823 L1-11
Arvind

Linear Equation Solver
John Atanasoff, lowa State University

1930'’s:

— Atanasoff built the Linear Equation Solver.
— It had 300 tubes!

Application:

— Linear and Integral differential equations

Background:
— Vannevar Bush’s Differential Analyzer
--- an analog computer

Technology:

— Tubes and Electromechanical relays

Atanasoff decided that the correct mode of
computation was by electronic digital means.

September 7, 2005 el



6.823 L1-12
Arvind

Electronic Numerical Integrator
and Computer (ENIAC)

e Inspired by Atanasoff and Berry, Eckert and
Mauchly designed and built ENIAC (1943-45) at
the University of Pennsylvania

e The first, completely electronic, operational,
general-purpose analytical calculator!
— 30 tons, 72 square meters, 200KW
e Performance
— Read in 120 cards per minute
— Addition took 200 us, Division 6 ms
— 1000 times faster than Mark |

e Not very reliable!

Application: Ballistic calculations
angle = f (location, tail wind, cross wind,

air density, temperature, weight of shell,
propellant charge, ... )

September 7, 2005 2wl



6.823 L1-13
Arvind

Electronic Discrete Variable
Automatic Computer (EDVAC)

e ENIAC’s programming system was external

— Sequences of instructions were executed
iIndependently of the results of the calculation

— Human intervention required to take instructions
“out of order”

e Eckert, Mauchly, John von Neumann and others
designed EDVAC (1944) to solve this problem

— Solution was the stored program computer

= “program can be manipulated as data”

e First Draft of a report on EDVAC was published in
1945, but just had von Neumann’s signature!

— In 1973 the court of Minneapolis attributed the
honor of inventing the computer to John Atanasoff

September 7, 2005 el



6.823 L1-14
Arvind

Stored Program Computer

Program = A sequence of instructions

How to control instruction sequencing?
manual control calculators

automatic control
external ( paper tape) Harvard Mark | , 1944
Zuse’s Z1, WW?2

internal
plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

— The same storage can be used to store program
and data

September 7, 2005



6.823 L1-15
Arvind

Technology Issues

ENIAC = EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage

mercury delay lines

ENIAC had many asynchronous parallel units
but only one was active at a time

BINAC : Two processors that checked each other
for reliability.

Didn’t work well because processors never
agreed

September 7, 2005 2wl



6.823 L1-16
Arvind

The Spread of ldeas

ENIAC & EDVAC had immediate impact

brilliant engineering: Eckert & Mauchley
lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge  46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis

JOHNIAC Rand 50-53
ILLIAC lllinois 49-52
Argonne 49-53

SWAC UCLA-NBS

Alan Turing’s direct influence on these developments
Is still being debated by historians.

September 7, 2005



6.823 L1-17
Arvind

Dominant Problem: Reliability

Mean time between failures (MTBF)

MIT’s Whirlwind with an MTBF of 20 min. was perhaps
the most reliable machine !

Reasons for unreliability:

1. Vacuum Tubes

2. Storage medium
acoustic delay lines
mercury delay lines
Williams tubes
Selections

September 7, 2005



6.823 L1-18
Arvind

Commercial Activity: 1948-52

IBM’s SSEC

September 7, 2005

Selective Sequence Electronic Calculator

— 150 word store.

— Instructions, constraints, and tables of data were
read from paper tapes.

— 66 Tape reading stations!

— Tapes could be glued together to form a loop!

— Data could be output in one phase of computation
and read in the next phase of computation.



6.823 L1-19
Arvind

And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54

IBM 650 -- a cheaper, drum based machine,
more than 120 were sold in 1954
and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computer
technology?

IBM was making too much money!
Even without computers, IBM revenues

were doubling every 4 to 5 years in 40’s
and 50’s.

September 7, 2005 7l



Software Developments

6.823 L1-20
Arvind

up to 1955 Libraries of numerical routines

- Floating point operations
- Transcendental functions

- Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956
Operating Systems -
- Assemblers, Loaders, Linkers, Compilers

- Accounting programs to keep track of
usage and charges

Machines required experienced operators

= Most users could not be expected to understand
these programs, much less write them

— Machines had to be sold with a lot of resident
software

September 7, 2005



6.823 L1-21
Arvind

Factors that Influence
Computer Architecture

Technology \

Applications >

Software

Software played almost no role in defining an
architecture before mid fifties.

special-purpose versus general-purpose
machines

September 7, 2005



6.823 L1-22
Arvind

Microprocessors EcConomics since 1990's

e Huge teams design state-of-the-art
microprocessors

PentiumPro ~ 500 engineers
Itanium ~ 1000 engineers

e Huge investments in fabrication lines and
technology

= to improve clock-speeds and yields
= to build new peripheral chips (memory controllers, ...)

e Economics
= price drops to one tenth in 2-3 years
= need to sell 2 to 4 million units to breakeven

The cost of launching a new ISA is prohibitive
and the advantage is dubious!

September 7, 2005 2wl



6.823 L1-23
Arvind

Compatibility

Essential for portability and competition

Its importance increases with the market size
but it is also the most regressive force

What does compatibility mean?

Instruction Set Architecture (ISA) compatibility

The same assembly program can run on an
upward compatible model

then IBM 360/370 ... now Intel x86 (1A32), 1A64
System and application software developers expect
more than ISA compatibility (API’s)
applications Java?
operating system _
proc + mem + I/0| \Wintel

September 7, 2005 AL



Perpetual tension

6.823 L1-24

Arvind

Language/ Compiler/

System software designer

Need mechanisms

to support important
abstractions

Determine compilation
strategy; new language
abstractions

—

Architect/Hardware
designer

Decompose each
mechanism into essential
micro-mechanisms and
determine its feasibility
and cost effectiveness

Propose mechanisms and
features for performance

September 7, 2005

CSAIL



________

Influence of Technology and
Software on Instruction Sets:
Up to the dawn of IBM 360

Arvind
Computer Science and Artificial Intelligence Laboratory

M.1.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L2- 2
Arvind

Importance of Technology

New technologies not only provide greater
speed, size and reliability at lower cost, but
more importantly these dictate the kinds of
structures that can be considered and thus
come to shape our whole view of what a

computer is.

Bell & Newell

September 12, 2005 ai/sls
CCCCC



6.823 L2- 3

Technology is the dominant factor
In computer design

Technology
Transistors _——_
Integrated circuits
VLSI (initially)
Laser disk, CD’s

Technology
Core memories e

Magnetic tapes
Disks

Technology
ROMs, RAMs
VLSI <4+—>
Packaging
Low Power
iy

September 12, 2005 [HE]
CSAIL




6.823 L2-4
Arvind

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

Modern architects cannot avoid paying
attention to software and compilation issues.

Technology

’

‘

Software

A 4
September 12, 2005 F21/stls]

CCCCC



6.823 L2-5
Arvind

Computers in mid 50’s

e Hardware was expensive

e Stores were small (1000 words)
= No resident system-software!

e Memory access time was 10 to 50 times

slower than the processor cycle

= Instruction execution time was totally dominated by
the memory reference time.

e The ability to design complex control
circuits to execute an instruction was the
central design concern as opposed to the
speed of decoding or an ALU operation

e Programmer’s view of the machine was
Inseparable from the actual hardware
Implementation

September 12, 2005 (el



6.823 L2- 6

Programmer’s view of the machine ™
IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009
e “Load the contents of location 1234 into the
distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

Good programmers optimized the placement of
Instructions on the drum to reduce latency!

September 12, 2005 'l
IL



6.823 L2- 7

The Earliest Instruction Sets

Arvind

Single Accumulator - A carry-over from the calculators.

LOAD X
STORE X
ADD X
SUB X
MUL X
DIV X
SHIFT LEFT
SHIFT RIGHT
JUMP X
JGE X
LOAD ADR X
STORE ADR X

AC <« M[X]
M[x] < (AC)

AC « (AC) + M[x]

Involved a quotient register
AC « 2 x (AC)

PC « X

If (AC) >0 then PC « x
AC « Extract address field(M[x])

September 12, 2005

Typically less than 2 dozen instructions!



Programming:
Single Accumulator Machine

6.823 L2- 8
Arvind

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A

F2 ADD B

F3 STORE C
JUMP LOOP

DONE HLT

How to modify the addresses A, B and C ?

September 12, 2005

ONE

code

CSAIL



Self-Modifying Code

6.823 L2-9
Arvind

LOOP LOAD
JGE
ADD
STORE
F1 LOAD
F2 ADD
F3 STORE

modify the
program
for the next
iteration
JUMP
DONE HLT

September 12, 2005

N
DONE
ONE

N
A
B
C

LOOP

Each iteration involves

total book-

keeping

instruction
fetches 17 14
operand
fetches 10 8
stores 5 4

CSAIL



6.823 L2- 10

Processor-Memory Bottleneck:
Early Solutions

e Fast local storage In the processor

— 8-16 registers as opposed to one accumulator -

e Indexing capability

— to reduce book keeping instructions

e Complex instructions
— to reduce instruction fetches

e Compact instructions

— Implicit address bits for operands, to reduce
instruction fetches

September 12, 2005



6.823 L2- 11
Arvind

Processor State

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer visible state of the processor (and memory)
plays a central role in computer organization for both
hardware and software:

e Software must make efficient use of it

e |f the processing of an instruction can be interrupted
then the hardware must save and restore the state In
a transparent manner

Programmer’s machine model is a contract
between the hardware and software

September 12, 2005 L]



6.823 L2- 12
Arvind

Index Registers
Tom Kilburn, Manchester University, mid 50’s

One or more specialized registers to simplify
address calculation

Modify existing instructions
LOAD x, 1X AC « M[x + (1X)]
ADD x, 1X AC < (AC) + M[x + (1X)]

Add new instructions to manipulate index registers

JZi X, IX If (IX)=0 then PC « X
else IX« (IX) +1
LOADI X, IX IX « M[X] (truncated to fit IX)

Index registers have accumulator-like
characteristics

| 7]
September 12, 2005 L A]L



6.823 L2- 13
Arvind

Using Index Registers

LOADI -n, IX A
LOOP JZi  DONE, IX
LOAD LASTA, IX :

ADD  LASTB, IX

STORE LASTC, IX

JUMP LOOP LASTA
DONE HALT

e Program does not modify itself

e Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 5(2) 17 (14)

operand fetch 2 10 (8)

store 1 5(@4)
e Costs: Instructions are 1 to 2 bits longer

Index registers with ALU-like circuitry
Complex control

September 12, 2005



6.823 L2- 14
Arvind

Indexing vs. Index Registers

Suppose instead of registers, memory locations
are used to implement index registers.
LOAD x, IX

Arithmetic operations on index registers can be

performed by bringing the contents to the
accumulator

Most bookkeeping instructions will be avoided but
each instruction will implicitly cause several
fetches and stores

= complex control circuitry

IRy
September 12, 2005 Falstls]

CCCCC



6.823 L2- 15
Arvind

Operations on Index Registers

To increment index register by k

AC « (IX) new instruction
AC « (AC) + k
IX <« (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi K, IX IX<« (IX) + k

More instructions to manipulate index register
STOREI X, IX M[X] <« (IX) (extended to fit a word)

IX begins to look like an accumulator
— several index registers
several accumulators

— General Purpose Registers

A
September 12, 2005 (AlAg]

T CSAIL



6.823 L2- 16
Arvind

Support for Subroutine Calls

call F
al
Main a2 _
Program i Subroutine F

F
call F

b1l return
b2 /

A special subroutine jump instruction

M: JSR F F« M+ 1 and
jump to F+1

September 12, 2005



Indirect Addressing and

Subroutine Calls

6.823 L2- 17

Arvind

Indirect addressing
LOAD (%) means AC <« M[M[x]]
Caller
- Events:
M| JSR F Execute M
arg Execute S1
result c te S0
M=+3 xecute
Execute S3
— ~—

Indirect addressing almost eliminates the
need to write self-modifying code (location

F still needs to be modified)

Subroutine
— ~——— ]

FI. M+3 _|
F+1

L — ~—
_—— ~———— |

S1| LOAD (F)
iInc F

| — ~————
— ~——— |

S2| STORE(F)
inc F

/\/
— ~——— |

S3| JUMP (F)
_— ~—~——

= Problems with recursive procedure calls

September 12, 2005

fetch
arg

store
result



6.823 L2- 18
Arvind

Recursive Procedure Calls and
Reentrant Codes

Indirect Addressing through a register
LOAD R,, (R,)

Load register R, with the contents of the
word whose address Is contained in register R,

- memory
registers | Pure Code
PC
SP Data
. A A
[ ]
[ ]
Stack

September 12, 2005 Ll

CCCCC



6.823 L2- 19
Arvind

Evolution of Addressing Modes

1.

2.

5.

6

Single accumulator, absolute address

LOAD X
Single accumulator, index registers
LOAD x, IX
. Indirection
LOAD (X)

. Multiple accumulators, index registers, indirection

LOAD R, IX, X
or LOAD R, IX, (X) the meaning?
R <« M[M[x] + (IX)]
or R « M[M[x + (I1X)]]
Indirect through registers
LOAD R,, (R)

. The works

LOAD R,, R;, (Ry) R, = index, R, = base add;?.-—r

Ny
September 12, 2005 (i3]

T CSAIL



6.823 L2- 20
Arvind

Variety of Instruction Formats

e Two address formats: the destination is
same as one of the operand sources

(Reg x Reg) to Reg R
(Reg x Mem) to Reg R,

— X can be specified directly or via a register

— effective address calculation for x could include
iIndexing, indirection, ...

e Three address formats: One destination and
up to two operand sources per instruction

(Reg x Reg) to Reg R, < (R) + (RY)
(Reg x Mem) to Reg R, « (R) + M[x]

September 12, 2005



6.823 L2- 21
Arvind

More Instruction Formats

e Zero address formats: operands on a stack

add M[sp-1] <« M][sp] + M[sp-1]
load M[sp] « M[M[sp]]

— Stack can be in registers or in memory (usually top of
stack cached in registers)

e One address formats: Accumulator machines
— Accumulator is always other implicit operand

Many different formats are possible!

September 12, 2005 Ll



6.823 L2- 22
Arvind

Data Formats and Memory Addresses

Data formats:

Bytes, Half words, words and double words
Some issues
e Byte addressing

Big Endian 0 1 2 3
vs. Little Endian 3 2 1 0]

e Word alignment
Suppose the memory is organized in 32-bit words.
Can a word address begin only at O, 4, 8, .... ?

September 12, 2005



6.823 L2- 23
Arvind

Some Problems

e Should all addressing modes be provided for
every operand?

= regular vs. irregular instruction formats

e Separate instructions to manipulate
Accumulators, Index registers, Base registers

= large number of instructions

e Instructions contained implicit memory
references -- several contained more than one

= very complex control

September 12, 2005 (el



6.823 L2- 24
Arvind

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of

computers!
701 - 7094
650 — 7074
702 - 7080
1401 — 7010

Each system had its own
e Instruction set
e |/O system and Secondary Storage:
magnetic tapes, drums and disks
e assemblers, compilers, libraries,...
e market niche
business, scientific, real time, ...

= IBM 360

September 12, 2005 Ll
IL



6.823 L2- 25
Arvind

IBM 360 : Design Premises

Amdahl, Blaauw and Brooks, 1964

e The design must lend itself to growth and
successor machines

e General method for connecting 1/0 devices

e Total performance - answers per month rather
than bits per microsecond = programming aids

e Machine must be capable of supervising itself
without manual intervention

e Built-in hardware fault checking and locating aids
to reduce down time

e Simple to assemble systems with redundant 1/0
devices, memories etc. for fault tolerance

e Some problems required floating point words
larger than 36 bits

September 12, 2005 (el



6.823 L2- 26
Arvind

IBM 360: A General-Purpose
Register (GPR) Machine

e Processor State

— 16 General-Purpose 32-bit Registers
e may be used as index and base register

e Register O has some special properties
— 4 Floating Point 64-bit Registers
— A Program Status Word (PSW)

e PC, Condition codes, Control flags

e A 32-bit machine with 24-bit addresses
— No instruction contains a 24-bit address !

e Data Formats

— 8-bit bytes, 16-bit half-words, 32-bit words,
64-bit double-words

September 12, 2005 L]
AlL



6.823 L2- 27
Arvind

IBM 360: Implementation

Model 30 C Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store  Main Store Transistor Registers
Control Store Read only lusec Conventional circuits

IBM 360 instruction set architecture completely hid

the underlying technological differences between
various models.

With minor modifications it survives till today

At
September 12, 2005 ]L



6.823 L2- 28
Arvind

IBM S/390 z900 Microprocessor

e 64-bit virtual addressing

— first 64-bit S/390 design (original S/360 was 24-bit, and
S/370 was 31-bit extension)

e 1.1 GHz clock rate (announced ISSCC 2001)
— 0.18um CMQOS, 7 layers copper wiring
— 770MHz systems shipped in 2000

e Single-issue 7-stage CISC pipeline
e Redundant datapaths

— every instruction performed in two parallel datapaths and
results compared

e 256KB L1 I-cache, 256KB L1 D-cache on-chip
e 20 CPUs + 32MB L2 cache per Multi-Chip Module
e \Water cooled to 10°C junction temp

September 12, 2005



6.823 L2- 29
Arvind

What makes a good instruction set?

One that provides a simple software interface yet
allows simple, fast, efficient hardware
Implementations

... but across 25+ year time frame

Example of difficulties:

= Current machines have register files with more storage
than entire main memory of early machines!

= On-chip test circuitry in current machines has hundreds
of times more transistors than entire early computers!

September 12, 2005 ekl A] L



6.823 L2- 30
Arvind

Full Employment for Architects

e Good news: “ldeal” instruction set changes continually
— Technology allows larger CPUs over time
— Technology constraints change (e.g., now it is power)
— Compiler technology improves (e.g., register allocation)

— Programming styles change (assembly, HLL, object-oriented, ...)

— Applications change (e.g., multimedia, ....)

— Bad news: Software compatibility imposes huge damping
coefficient on instruction set innovation
— Software investment dwarfs hardware investment

— Innovate at microarchitecture level, below the ISA level (this is
what most computer architects do)

e New instruction set can only be justified by new large market

and technological advantage
— Network processors

— Multimedia processors

— DSP’s

September 12, 2005



::::::::

Instruction Set Evolution
IN the Sixties:
GPR, Stack, and Load-Store
Architectures

Arvind
Computer Science and Artificial Intelligence Laboratory

M.1.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L3-2
Arvind

The Sixties

e Hardware costs started dropping
- memories beyond 32K words seemed likely
- separate 1/0O processors
- large register files

e Systems software development became

essential
- Operating Systems
- 1/0 facilities

e Separation of Programming Model from

Implementation become essential
- family of computers

September 14, 2005 2wl



6.823 L3-3
Arvind

Issues for Architects In the Sixties

e Stable base for software development

e Support for operating systems
— processes, multiple users, 1/0

e Implementation of high-level languages
— recursion, ...

e Impact of large memories on instruction size

e How to organize the processor state from the
programming point of view

e Architectures for which fast implementations
could be developed

September 14, 2005 esAIL



6.823 L3-4
Arvind

Three Different Directions In
the Sixties

e A machine with only a high-level language

Interface
— Burrough’s 5000, a stack machine

e A family of computers based on a common

ISA
— IBM 360, a General Register Machine

e A pipelined machine with a fast clock

(Supercomputer)
— CDC 6600, a Load/Store architecture

September 14, 2005 esAIL



6.823 L3-5
Arvind

The Burrough’s B5000:

An ALGOL Machine, Robert Barton, 1960

e Machine implementation can be completely
hidden if the programmer is provided only a
high-level language interface.

e Stack machine organization because stacks are

convenient for:
1. expression evaluation;
2. subroutine calls, recursion, nested interrupts;

3. accessing variables in block-structured
languages.

e B6700, a later model, had many more innovative

features
— tagged data
— virtual memory
— multiple processors and memories

September 14, 2005 2wl



A Stack Machine

6.823 L3- 6
Arvind

Processor

Main
Store

September 14, 2005

A Stack machine has a stack as
a part of the processor state

typical operations:
push, pop, +, *, ...

Instructions like + implicitly

specify the top 2 elements of
the stack as operands.

CSAIL



6.823 L3-7
Arvind

Evaluation of Expressions

(@a+b*c)/(a+d*c-e)

N
S

b C a Q
AN

d C

Reverse Polish

abc*+adc*+e-/ _
1 Evaluation Stack
push a]Push C

Push b multiply @fm
September 14, 2005 “CsAlL




6.823 L3-8
Arvind

Evaluation of Expressions

(@a+b*c)/(a+d*c-e)

N
S

b C a Q
AN

d C

Reverse Polish _GK_

abc*+adc*+e-/ )
Evaluation Stack

Iadd

September 14, 2005 it



6.823 L3-9
Arvind

Hardware organization of the stack

e Stack Is part of the processor state
. = stack must be bounded and small
~ number of Registers,
not the size of main memory

e Conceptually stack is unbounded
— a part of the stack is included in the
processor state; the rest is kept in the
main memory

Arh
September 14, 2005 '. AuCkl



6.823 L3- 10

Stack Size and Memory References

Arvind

program
push a
push b
push c

*

4+
push a
push d
push c

*

_|_
push e

/

September 14, 2005

stack (size = 2)
RO

RO R1

RO R1 R2

RO R1

RO

RO R1

RO R1 R2
RO R1 R2 R3
RO R1 R2

RO R1

RO R1 R2
RO R1

RO

memory refs
a

b

c, ss(a)

sf(a)

a
d, ss(a+b*c)
c, ss(a)

sf(a)
sf(a+b™*c)
e,ss(a+b*c)
sf(a+b™*c)

4 stores, 4 fetches (implicit)

CSAIL



6.823 L3- 11
Arvind

Stack Operations and
Implicit Memory References

e Suppose the top 2 elements of the stack
are kept in registers and the rest is kept In
the memory.

Each push operation = 1 memory reference
pop operation = 1 memory reference
No Good!

e Better performance can be got if the top N
elements are kept in registers and memory
references are made only when register
stack overflows or underflows.

Issue - when to Load/Unload registers ?

September 14, 2005 el



6.823 L3- 12
Arvind

Stack Size and Expression

Evaluation

program stack (size = 2)
push a — RO
push b RO R1

a and c are push ¢ — RO R1 R2

“loaded” twice * RO R1

— + RO

not the best push a RO R1

use of registerst ~ Push d RO R1 R2
push ¢ — RO R1 R2 R3
* RO R1 R2
- RO R1
push e RO R1 R2
- RO R1
/ RO

September 14, 2005 CSAIL



6.823 L3- 13
Arvind

Register Usage in a GPR Machine

Reuse
R2

Reuse
R3

Reuse
RO

September 14, 2005

Load
Load
Load
Mul
Add
Load
Mul
Add
Load
Sub
Div

RO
R1
R2
R2
R2
R3
R3
R3
RO
R3
R2

a
C
b
R1
RO
d
R1
RO
e
RO
R3

More control over register usage
since registers can be named
explicitly

Load Rim

Load Ri (R))
Load Ri (R)) (RKk)
—

- eliminates unnecessary
Loads and Stores
- fewer Registers

but instructions may be longer!




6.823 L3- 14
Arvind

Procedure Calls

e Storage for procedure calls also follows
a stack discipline

e However, there is a need to access
variables beyond the current stack
frame dynamic
— lexical addressing <1l , d > links
— display registers to speed up accesses R
to stack frames
Q
) R
[ 2 Y,
R ,4 =1 N P
display stack static
registers links
automatic loading of display registers?
Al

September 14, 2005 CSAIL



6.823 L3- 15

Arvind

Stack Machines: Essential features

e In addition to push,
pop, + etc., the
Instruction set must
provide the capability

to
— refer to any element in
the data area
— jump to any instruction
In the code area
— move any element in
the stack frame to the
top

September 14, 2005

SP

PC

N

push a
push b
push c

push e

code

stack

data




6.823 L3- 16
Arvind

Stack versus GPR Organization
Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push down stack
organization is derived from the presence of fast
registers and not the way they are used.

2.“Surfacing” of data in stack which are “profitable” is
approximately 50% because of constants and
common subexpressions.

3. Advantage of instruction density because of implicit
addresses is equaled if short addresses to specify
registers are allowed.

. Management of finite depth stack causes complexity.

. Recursive subroutine advantage can be realized only
with the help of an independent stack for addressing.

6. Fitting variable length fields into fixed width word is
awkward.

g b

September 14, 2005 AL



6.823 L3- 17
Arvind

Stack Machines ostyy Died by 1980

1. Stack programs are not smaller if short
(Register) addresses are permitted.

2. Modern compilers can manage fast register space
better than the stack discipline.

3. Lexical addressing is a useful abstract model for
compilers but hardware support for it (i.e.
display) is not necessary.

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers!

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

ah_‘_[‘_}’l
[ A 107]
September 14, 2005 Sesalt



6.823 L3- 18
Arvind

Stacks post-1980

e Inmos Transputers (1985-2000)

— Designed to support many parallel processes in Occam
language

— Fixed-height stack design simplified implementation

— Stack trashed on context swap (fast context switches)

— Inmos T800 was world’s fastest microprocessor in late 80’s

e Forth machines

— Direct support for Forth execution in small embedded real-
time environments

— Several manufacturers (Rockwell, Patriot Scientific)

e Java Virtual Machine

— Designed for software emulation not direct hardware
execution

— Sun PicoJava implementation + others
e Intel x87 floating-point unit
— Severely broken stack model for FP arithmetic
— Deprecated in Pentium-4 replaced with SSE2 FP registers

—

At
September 14, 2005 = ~7v



A five-minute break to stretch your legs

19



6.823 L3- 20
Arvind

IBM 360: A General-Purpose
Register (GPR) Machine

e Processor State

— 16 General-Purpose 32-bit Registers
e may be used as index and base register

e Register O has some special properties
— 4 Floating Point 64-bit Registers
— A Program Status Word (PSW)

e PC, Condition codes, Control flags

e A 32-bit machine with 24-bit addresses
— No instruction contains a 24-bit address !

e Data Formats

— 8-bit bytes, 16-bit half-words, 32-bit words,
64-bit double-words

September 14, 2005 =N



6.823 L3- 21
Arvind

IBM 360: Precise Interrupts

e IBM 360 ISA (Instruction Set Architecture)
preserves seguential execution model

e Programmers view of machine was that
each instruction either completed or
sighaled a fault before next instruction
began execution

e EXxception/interrupt behavior constant
across family of implementations

September 14, 2005 esAIL



6.823 L3- 22
Arvind

IBM 360: Original family

Model 30 C Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store  Main Store Transistor Registers
Control Store Read only lusec Conventional circuits

IBM 360 instruction set architecture completely hid

the underlying technological differences between
various models.

With minor modifications it survives till today

September 14, 2005



6.823 L3- 23
Arvind

IBM S/390 z900 Microprocessor

e 64-bit virtual addressing

— first 64-bit S/390 design (original S/360 was 24-bit, and
S/370 was 31-bit extension)

e 1.1 GHz clock rate (announced ISSCC 2001)
— 0.18um CMQOS, 7 layers copper wiring
— 770MHz systems shipped in 2000

e Single-issue 7-stage CISC pipeline
e Redundant datapaths

— every instruction performed in two parallel datapaths and
results compared

e 256KB L1 I-cache, 256KB L1 D-cache on-chip
e 20 CPUs + 32MB L2 cache per Multi-Chip Module
e \Water cooled to 10°C junction temp

September 14, 2005 2wl



6.823 L3- 24

IBM 360: Some Addressing Modes

8 4 4

RR opcode | R1 | R2 R1<(R1) op (R2)
8 4 4 4 12

RD opcode R X B D

R <« (R) op M[(X) + (B) + D]
a 24-bit address is formed by adding the
12-bit displacement (D) to a base register (B)
and an Index register (X), if desired

The most common formats for arithmetic & logic
Instructions, as well as Load and Store instructions

September 14, 2005 e



6.823 L3- 25
Arvind

IBM 360: Character String Operations

8 8 4 12 4 12
opcode length Bl D1 B2 D2

SS format: store to store instructions
M[(B1) + D1] « M[(B1) + D1] op M[(B2) + D2]
iterate “length” times

Most operations on decimal and character strings
use this format

MVC move characters
MP multiply two packed decimal strings
CLC compare two character strings

'I'\'/Iultiple memory operations per instruction
complicates exception & interrupt handling_h_‘____\

September 14, 2005 esAIL



6.823 L3- 26

IBM 360: Branches & Condition Codes

Arvind

e Arithmetic and logic instructions set condition
codes

— equal to zero

— greater than zero
— overflow

— carry...

e |/0 Instructions also set condition codes
— channel busy

e Conditional branch instructions are based on
testing condition code registers (CC’s)
— RX and RR formats
 BC _ branch conditionally
e BAL branch and link, i.e., R15 « (PC)+1
for subroutine calls
= CC’s must be part of the PSW

September 14, 2005



6.823 L3- 27
Arvind

CDC 6600 Seymour Cray, 1964

September 14, 2005 AL

A fast pipelined machine with 60-bit words

Ten functional units
- Floating Point: adder, multiplier, divider
- Integer: adder, multiplier

Hardwired control (no microcoding)

Dynamic scheduling of instructions using a
scoreboard

Ten Peripheral Processors for Input/Output
- a fast time-shared 12-bit integer ALU

Very fast clock

Novel freon-based technology for cooling



CDC 6600:

Datapath

6.823 L3- 28
Arvind

Central
Memory

Operand Regs

8 x 60-bit
operand
X "[10 Functional
result E units
IR
Address Regs Index Regs
8 x 18-bit 8 x 18-bit
Inst. Stack
Oprnd[ 8 x 60-bit
[~ addr I_ -
result
addr

September 14, 2005



6.823 L3- 29

CDC 6600:
A Load/Store Architecture

e Separate instructions to manipulate three types of reg.
8 60-bit data registers (X)
8 18-bit address registers (A)
8 18-bit index registers (B)

e All arithmetic and logic instructions are reg-to-reg
6 3 3 3

opcode| i ] k Ri <— (Rj}) op (Rk)
e Only Load and Store instructions refer to memory!
6 3 3 18
opcode| 1 | ] disp Ri « M[(Rj}) + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store
- very useful for vector operations

September 14, 2005



6.823 L3- 30
Arvind

CDC6600: Vector Addition

BO « -n
loop: JZE BO, exit
AO « BO + a0 load XO
Al <« BO + bO load X1
X6 « X0 + X1
A6 « BO + cO store X6
BO « BO+ 1
jump loop
Al = address register
Bi = index register
Xi = data register

September 14, 2005 2wl



6.823 L3- 31
Arvind

What makes a good instruction set?

One that provides a simple software interface yet
allows simple, fast, efficient hardware
Implementations

... but across 25+ year time frame

Example of difficulties:

= Current machines have register files with more storage
than entire main memory of early machines!

= On-chip test circuitry in current machines has hundreds
of times more transistors than entire early computers!

September 14, 2005 '. CSA L



6.823 L3- 32
Arvind

Full Employment for Architects

e Good news: “ldeal” instruction set changes continually
— Technology allows larger CPUs over time
— Technology constraints change (e.g., now it is power)
— Compiler technology improves (e.g., register allocation)

— Programming styles change (assembly, HLL, object-oriented, ...)

— Applications change (e.g., multimedia, ....)

— Bad news: Software compatibility imposes huge damping
coefficient on instruction set innovation
— Software investment dwarfs hardware investment

— Innovate at microarchitecture level, below the ISA level (this is
what most computer architects do)

e New instruction set can only be justified by new large market

and technological advantage
— Network processors

— Multimedia processors

— DSP’s

September 14, 2005



.......

Microprogramming

Arvind

Computer Science & Artificial Intelligence Lab
M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L4- 2
Arvind

ISA to Microarchitecture Mapping

e An ISA often designed for a particular
microarchitectural style, e.q.,
— CISC = microcoded
— RISC = hardwired, pipelined
— VLIW = fixed latency in-order pipelines
— JVM = software interpretation

e But an ISA can be implemented in any
microarchitectural style

— Pentium-4: hardwired pipelined CISC (x86) machine (with
some microcode support)

— This lecture: a microcoded RISC (MIPS) machine

— Intel will probably eventually have a dynamically scheduled
out-of-order VLIW (1A-64) processor

— PicoJava: A hardware JVM processor

September 21, 2005



6.823 L4- 3
Arvind

Microarchitecture: implementation of an ISA

Controller control
status points
lines l l l I_

Data
C—p — path

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

September 21, 2005 7l



6.823 L4- 4
Arvind

Microcontrol Unit maurice Wilkes, 1954

Embed the control logic state table in a memory array
op conditional

code flip-flop
Next state
u address
l Matrix A Matrix B
Decoder

Control lines to
ALU, MUXs, Registers

September 21, 2005 el



6.823 L4-5
Arvind

Microcoded Microarchitecture

holds fixed
microcode instructions

busy? =
Zerg,, ucontroller

opcode (ROM)

y y y ‘ A 4 ‘ y y y
Datapath
Data Addr

holds user program Memory enMem

written in macrocode ., (RAM) ['Memwrt
instructions (e.g., _ S )
MIPS, x86, etc.)

September 21, 2005 =5




6.823 L4- 6
Arvind

The MIPS32 ISA

e Processor State
32 32-bit GPRs, RO always contains a O
16 double-precision/32 single-precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter

some other special registers See H&P pl29-
137 & Appendix
e Data types C (online) for full
8-bit byte, 16-bit half word description

32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

e | oad/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big-endian mode

All instructions are 32 bits

J| 1071
September 21, 2005 Va1l s



6.823 L4- 7
Arvind

MIPS Instruction Formats

6 ) ) 5 ) 6
ALU 0 rs | rt | rd 0 func
ALUi [opcodel rs | rt | immediate
6 S 5 16
Mem/|opcodel rs rt | displacement
6 S5 S 16
opcode| rs | offset
6 ) ) 16
opcode| rs |
6 26
opcode] offset

September 21, 2005

rd < (rs) func (rt)
rt < (rs) op immediate

M[(rs) + displacement]

BEQZ, BNEZ

JR, JALR

J, JAL



6.823 L4- 8

Arvind
A Bus-based Datapath for MIPS
Opcode zero? Bu“sy?
IdIR | [ ——— 32(PC
OpSel IdA |dB 3&ELin)k) IdMA
r
2 — it \
\:IL/+RegSeI VA
v — 'd Yy v \ v 3 |
IR _—_:Fg A B addr addr
32 GPRs
ExtSel — y v - + PC ...
O mm] [AT l\ ' / regwrt | | oY [ Memwrt
2 Ext control ALU _hi N
enlmm enALU data data enMem

Microinstruction: register to register transfer (17 control signals)
IdMA= yes

MA « PC

means RegSel = PC;
B <« Reg[rt] means RegSel = rt;
September 21, 2005

enReg=yes;
enReg=yes;

|IdB

—YeS irn



Memory Module

6.823 L4- 9
Arvind

addr busy
RAM we
din  dout

Balss

| bus

Write(1)/Read(0)
Enable

Assumption: Memory operates asynchronously

and is slow as compared to Reg-to-Reg transfers

September 21, 2005

T CSAIL



6.823 L4- 10
Arvind

Instruction Execution

Execution of a MIPS instruction involves

Instruction fetch
decode and register fetch
. ALU operation
. memory operation (optional)
write back to register file (optional)
+ the computation of the
next instruction address

oA W NP

September 21, 2005 =



6.823 L4- 11
Arvind

Microprogram Fragments

instr fetch: MA < PC N
A« PC can be
IR <~ Memory , treated as
PC«+— A+4 a macro
dispatch on OPcode

ALU: A < Req]rs]
B « Reg]rt]
Reg[rd] <~ func(A,B)
do instruction fetch

ALUi: A <« Req|rs]
B <« Imm sign extension ...
Reg[rt] < Opcode(A,B)
do instruction fetch

September 21, 2005 C*S;I A



6.823 L4- 12
Arvind

Microprogram Fragments (cont.)

LW:

beqz:

bz-taken:

September 21, 2005

A <« Reg]|rs]

B <« Imm

MA <« A+ B
Reg[rt] « Memory
do instruction fetch

A <« PC
B« IR
PC « JumpTarg(A,B)
do instruction fetch

JumpTarg(A,B) =
{A[31:28],B[25:0],00}

A « Reqg]rs]
If zero?(A) then go to bz-taken
do instruction fetch

A « PC

B« Imm<<?2

PC« A+ B

do instruction fetch 1

TCSAIL



6.823 L4- 13

Arvind
MIPS Microcontroller: first attempt
Opcode i
zero? 6
Busy (memory)
latching the inputs ............... uPC (state)
may cause a M ............... .es S T HOW b|g
one-cycle delay is “s”?

addr Ls
ROM size ?

— 2(opcode+status+s) \words

uProgram ROM

Word size ? data

R

Control Signals (17)

September 21, 2005 cu L



6.823 L4- 14
Arvind

Microprogram in the ROM worksheet

State Op zero? busy| Control points next-state
fetch, * * * MA « PC fetch,
fetch, * * yes e fetch,
fetch, * * no IR < Memory fetch,
fetch, * * * A <« PC fetch,
fatrh >x X X D A 1 V| D)
ICLUI I3 o X N T = T
fetch, ALU * * PC«— A+ 4 ALU,
ALU, * * * A <« Reg]rs] ALU,
ALU, * * * B « Reg|[rt] ALU,
ALU, * * * Reg[rd] < func(A,B) fetch,

September 21, 2005

M-

TCSAIL



Microprogram in the ROM

6.823 L4- 15
Arvind

State Op zero? busy Control points next-state
fetch, * * * MA « PC fetch,
fetch, * * yes fetch,
fetch, * * no IR < Memory fetch,
fetch, * * * A <« PC fetch,
fetch, ALU  * - PC«— A+ 4 ALU,
fetch; ALUI * - PC«— A+ 4 ALUi,
fetch; LW * * PC«— A+ 4 LW,
fetchy; SW * * PC«— A+ 4 SW,
fetch; J - - PC— A+ 4 Jo
fetch, JAL  * - PC«— A+ 4 JAL,
fetch; JR - - PC«— A+ 4 JR,
fetch; JALR * - PC«— A+ 4 JALR,
fetch, beqz * * PC« A+ 4 beqz,
ALU, * * * A < Reg|rs] ALU,
ALU, * * * B < Reg[rt] ALU,
ALU, * * * Reg[rd] < func(A,B) fetch,

September 21, 2005

CSAIL



6.823 L4- 16
Arvind

Microprogram in the ROM cont.

State Op zero? Dbusy Control points next-state
ALUi, * * * A <« Reg]rs] ALUi,
ALUi; sExt * * B < sExt,s(Imm) ALUi,
ALUi; UuExt * * B <« ukxt,;(Imm) ALUI,
ALUI, * * * Reg[rd]« Op(A,B) fetch,
Jo * * * A « PC J;
J; * * * B« IR J,
J5 * * * PC < JumpTarg(A,B) fetch,
beqz, * * * A <« Reg]|rs] beqz,
beqz, * yes * A « PC beqz,
beqz, * no * e fetch,
beqz, * * * B < sExt,s(Imm) beqz,
* * * PC « A+B fetch,

beqz,

September 21, 2005

ANg

JumpTarg(A,B) = {A[31:28],B[25:O],OO}J+__ =

rallsin]

TCSAIL



6.823 L4- 17
Arvind

Size of Control Store

status & opcode 7 |
w uPC
addr 1°
size = 2W*s)x (c + s) Control ROM next 4PC
data

Control signals l C

MIPS: W = 6+2 c=17 s=7?
no. of steps per opcode =4 to 6 + fetch-sequence
no. of states ~ (4 steps per op-group ) X op-groups
+ common seguences
=4 x 8+ 10 states =42 states = s =06
Control ROM = 2(8+6) x 23 bits ~ 48 Kbytes

September 21, 2005 7l



6.823 L4- 18
Arvind

Reducing Control Store Size

Control store has to be fast = expensive

e Reduce the ROM height (= address bits)

— reduce inputs by extra external logic
each input bit doubles the size of the
control store

— reduce states by grouping opcodes
find common sequences of actions

— condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

e Reduce the ROM width

— restrict the next-state encoding
Next, Dispatch on opcode, Wait for memory, ...
— encode control signals (vertical microcode)
A

Alg]
September 21, 2005 = Zrel



MIPS Controller V2

6.823 L4- 19
Arvind

absolute (start of a predetermined sequence)

Opcode —| eXt

op-group

N _F

Input encoding

reduces ROM height

uJumpType =
next | spin

| fetch | dispatch

| feqz | fnez

September 21, 2005

uPC

uPC (state)

L

address

Control ROM

data

ERRRRN

Control Signals (17)

uPC+1
1
T uPCSrc
zero
busy

knext-state encoding
reduces ROM width}

T CSAIL



6.823 L4- 20

Arvind
Jump Logic
UPCSrc = Case uJumpTlypes

next =

spin = If (busy) then else

fetch =

dispatch =

feqz = If (zero) then else

fnez = If (zero) then else

September 21, 2005



6.823 L4- 21
Arvind

Instruction Fetch & ALU:mMips-Controller-2

State

fetch,
fetch,
fetch,
fetch,
ALU,
ALU,
ALU,

ALUi,

ALUi,
ALUi,

September 21, 2005

Control points next-state
MA <« PC ne_xt

IR <« Memory Spin

A <« PC next
PC« A+ 4 dispatch
A <« Reglrs] next

B <« Reg|rt] next

Reg[rd]«func(A,B) fetch

A <« Reg]|rs] next
B < sExt,s(Imm) next
Reg[rd]« Op(A,B) fetch



6.823 L4- 22

Arvind
Load & Store: mips-controller-2
State Control points next-state
LW, A <« Reglrs] next
LW, B <« sExt;s(Imm) next
LW, MA < A+B next
LW, Reg[rt] « Memory spin
LW, fetch
SW, A <« Reqg]|rs] next
SW; B <« sExt;s(Imm) next
SW, MA < A+B next
SW, Memory « Reg[rt] spin
SW, fetch
A0

September 21, 2005

Fa1sls]

TCSAIL



Branches: mips-controller-2

6.823 L4- 23
Arvind

September 21, 2005

State

BEQZ,
BEQZ,
BEQZ,
BEQZ,
BEQZ,

BNEZ,
BNEZ,
BNEZ,
BNEZ,
BNEZ,

Control points
A <« Reg]rs]

A« PC
B < sExt s(Imm<<?2)
PC « A+B

A <« Reg]rs]
A« PC

B < sExt s(Imm<<?2)
PC « A+B

next-state

next
fnez

next
next
fetch

next
feqz

next
next
fetch

drt
|,4,.’_-=.;|r_.-_-“f;;,;?1

TCSAIL



6.823 L4- 24
Arvind

JUMPS: MIPS-Controller-2

State

IR,
JR,

JAL,
JAL,
JAL,
JAL,

JALR,
JALR,
JALR,

JALR,

September 21, 2005

Control points next-state
A « PC next
B <« IR next

PC « JumpTarg(A,B) fetch

A <« Regl[rs] next
PC « A fetch
A « PC next
Reg[31] <« A next
B <« IR next
PC « JumpTarg(A,B) fetch
A <« PC next
B < Reg]|rs] next
Reg[31] <« A next
PC « B fetch

drt
Aoha)

TCSAIL



Five-minute break to stretch your legs

25



6.823 L4- 26

- Arvind
Implementing Complex
Instructions
Opcode zero? Bu“sy?
IdIR | [ 32(PC
OpSel IdA 1dB 3&ELin)k) IdMA
r
2/ TF& \
\':I”_'/+Re95el
A4 —Vrd A4 A4 3 |
— I't
—> 'S
ExtSe| ¥ y - \ < + PC ... Memory |vemwrt
—~ | Imm ALU RegWrt emWr
2 | Ext control [~ \ ALU 32-bit Reg| enr '
| ._enReg L
data data enMem

rd < M[(rs)] op (rt)
M[(rd)] < (rs) op (rt)
M[(rd)] < M[(rs)] op M[(rt)]

September 21, 2005

Reg-Memory-src ALU op
Reg-Memory-dst ALU op
Mem-Mem ALU op



6.823 L4- 27
Arvind

Mem-Mem ALU Instructions:
MIPS-Controller-2

Mem-Mem ALU op M[(rd)] < M[(rs)] op M[(rt)]
ALUMM, MA <« Reg][rs] next
ALUMM; A <« Memory spin
ALUMM, MA « Reg]|rt] next
ALUMM; B <« Memory spin
ALUMM, MA «<Reg|[rd] next
ALUMMg; Memory <« func(A,B) spin
ALUMM, fetch

Complex instructions usually do not require datapath
modifications in a microprogrammed implementation
-- only extra space for the control program

Implementing these instructions using a hardwired
controller is difficult without datapath modifications

September 21, 2005 el



6.823 L4- 28
Arvind

Performance Issues

Microprogrammed control
= multiple cycles per instruction

Cycle time ?
tc = max(tegregr tarus Liroms tram)

Given complex control, t, , & ty,, Can be broken
iInto multiple cycles. However, t zoy cannot be
broken down. Hence

tC = max(treg—reg’ tpROM)

Suppose 10 * t gom < Tram
Good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

September 21, 2005



6.823 L4- 29
Arvind

Horizontal vs Vertical nCode
e Bits per ulnstruction

# ulnstructions

I I v

e Horizontal ucode has wider uinstructions
— Multiple parallel operations per uinstruction
— Fewer steps per macroinstruction
— Sparser encoding = more bits

e Vertical ucode has narrower uinstructions
— Typically a single datapath operation per pinstruction
— separate nuinstruction for branches
— More steps to per macroinstruction
— More compact = less bits

e Nanocoding
— Tries to combine best of horizontal and vertical ucode i

T CSAIL

September 21, 2005



6.823 L4- 30
Arvind

Nanocoding

Exploits _recurring WPC (state) ucode
control signal patterns I next-state
In ucode, e.g., uaddress

ucode ROM
ALU, A < Reg]rs]

nanoaddress |

ALUiy A < Reg]rs]
nanoinstruction ROM

data

NREREREN

e MC68000 had 17-bit ucode containing either 10-bit yjump or 9-
bit nanoinstruction pointer
— Nanoinstructions were 68 bits wide, decoded to give 196
control signals

September 21, 2005 = ~7v



6.823 L4- 31
Arvind

Some more history ...

- IBM 360

e Microcoding through the seventies

e Microcoding now

September 21, 2005 2wl



6.823 L4- 32

Microprogramming in IBM 360

Arvind

M30 M40 M50 M65
Datapath 8 16 32 64
width (bits)
uinst width 50 52 85 87
(bits)
ucode size 4 4 2.75 2.75
(K minsts)
ustore CCROS TCROS BCROS BCROS
technology
ustore cycle 750 625 500 200
(ns)
memory 1500 2500 2000 750
cycle (ns)
Rental fee 4 7 15 35
($K/month)

September 21,

Only the fastest models (75 and 95) were hardwired

2005



6.823 L4- 33
Arvind

Microcode Emulation

e IBM initially miscalculated the importance of
software compatibility with earlier models
when introducing the 360 series

e Honeywell stole some IBM 1401 customers by

offering translation software (“Liberator”) for
Honeywell H200 series machine

e IBM retaliated with optional additional
microcode for 360 series that could emulate
IBM 1401 ISA, later extended for IBM 7000
series

— one popular program on 1401 was a 650 simulator, so

some customers ran many 650 programs on emulated
1401s

— (650 simulated on 1401 emulated on 360)

At
September 21, 2005 allps

CCCCC



6.823 L4- 34
Arvind

Microprogramming thrived in the
Seventies

e Significantly faster ROMs than DRAMs were
available

e For complex instruction sets, datapath and
controller were cheaper and simpler

e New instructions , e.g., floating point, could
be supported without datapath modifications

e Fixing bugs in the controller was easier

e ISA compatibility across various models
could be achieved easily and cheaply

Except for the cheapest and fastest machines,
all computers were microprogrammed

September 21, 2005

CCCCC



6.823 L4- 35
Arvind

Writable Control Store (WCS)

e Implement control store with SRAM not ROM

— MOS SRAM memories now almost as fast as control store
(core memories/DRAMs were 2-10x slower)
— Bug-free microprograms difficult to write

e User-WCS provided as option on several

minicomputers
— Allowed users to change microcode for each process

e User-WCS failed
Little or no programming tools support
— Difficult to fit software into small space
— Microcode control tailored to original ISA, less useful for
others
— Large WCS part of processor state - expensive context

switches
— Protection difficult if user can change microcode
— Virtual memory required restartable microcode o

September 21, 2005 Sesalt



6.823 L4- 36
Arvind

Microprogramming: late seventies

e With the advent of VLSI technology
assumptions about ROM & RAM speed
became invalid

e Micromachines became more complicated

e Micromachines were pipelined to overcome slower
ROM

e Complex instruction sets led to the need for
subroutine and call stacks in ucode

e Need for fixing bugs in control programs was in
conflict with read-only nature of uROM

= WCS (B1700, QMachine, Intel432, ...)

e Introduction of caches and buffers, especially

for instructions, made multiple-cycle
execution of reg-reg instructions unattractive

September 21, 2005 2wl



6.823 L4- 37
Arvind

Modern Usage

e Microprogramming is far from extinct

e Played a crucial role in micros of the Eighties
Motorola 68K series
Intel 386 and 486

e Microcode pays an assisting role in most modern
CISC micros (AMD Athlon, Intel Pentium-4 ...)

e Most instructions are executed directly, i.e., with hard-wired
control

e Infrequently-used and/or complicated instructions invoke the
microcode engine

e Patchable microcode common for post-fabrication
bug fixes, e.g. Intel Pentiums load pcode patches
at bootup

September 21, 2005 AL



Thank you !

38



..........

Single-Cycle Processors:
Datapath & Control

Arvind
Computer Science & Artificial Intelligence Lab
M.L.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L5-2
Arvind

Instruction Set Architecture (I1SA)
versus Implementation

e |SA is the hardware/software interface
— Defines set of programmer visible state

— Defines instruction format (bit encoding) and instruction
semantics

— Examples: MIPS, x86, IBM 360, JVM

e Many possible implementations of one ISA
— 360 implementations: model 30 (c. 1964), z900 (c. 2001)

— x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,
Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon,
Transmeta Crusoe, SoftPC

— MIPS implementations: R2000, R4000, R10000, ...
— JVM: HotSpot, PicoJava, ARM Jazelle, ...

September 26, 2005



6.823 L5- 3
Arvind

Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

— Instructions per program depends on source code, compiler
technology, and ISA

— Cycles per instructions (CPIl) depends upon the ISA and the
microarchitecture

— Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time
_ Microcoded >1 short
this lecture : —
— | Single-cycle unpipelined 1 long
Pipelined 1 short

September 26, 2005 =



6.823 L5- 4
Arvind

Microarchitecture: implementation of an ISA

Controller control
status points
lines l l l I_

Data
C—p — path

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

September 26, 2005 7l



Hardware Elements

e Combinational circuits OpSelect

— Mux, Demux, Decoder, ALU, ... : Adéal, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...
Sel oo Sel l9(n)
AO — > Oo - OO A—>
— L, ol——
Aj—> O A = O, A 3 . O >ALU — Result
s (M 7 GEJ - _'97(?)’ o Comp?
- —> H
Al’l—l D > On_ D ——> On—l B
1 /

e Synchronous state elements
— Flipflop, Register, Register file, SRAM, DRAM

D Clk register
l DO D1 D2 D11
En— . En R W En
Clk D_/ \ Clk — >R p i
Q Q / Q Q Q - Q

Edge-triggered: Data is sampled at the rising edge

September 26, 2005



6.823 L5- 6
Arvind

Register Files

Clolck V\IE

V
ReadSel|l ———»]rs1 we rd1l—— ReadDatal

ReadSel2 — |2 Register rd2—— ReadData2

_ file
\/\{'-rtEBSE;EEI —1 WS zzlcz__k_:l-\/\/

WriteData ———jwd

ws clk wd rsl
5 32//
—

L A/

v

register O
--1' 1 e ® 32
32

we —» register 1 rs2

- - | ‘
- = S %2 (1.5
register 31
I L —<> rd2
v E;:z 2322

e No timing issues in reading a selected register
e Register files with a large number of ports are difficult

to design
— Intel's Itanium, GPR File has 128 registers with 8 read ports and o

4 write ports!!!
September 26, 2005

-
Q
[

A 4

,I (NI I 2



6.823 L5-7
Arvind

A Simple Memory Model

WriteEnable
Cllock l

N4

Address ———
MAGIC | — ReadData

RAM

WriteData ————»

Reads and writes are always completed in one cycle
e a Read can be done any time (i.e. combinational)
e a Write is performed at the rising clock edge
If it iIs enabled
= the write address and data
must be stable at the clock edge

Later in the course we will present a more realistic
model of memory

September 26, 2005 el



6.823 L5- 8
Arvind

Implementing MIPS:

Single-cycle per instruction
datapath & control logic

September 26, 2005 i



6.823 L5-9
Arvind

The MIPS ISA

Processor State
32 32-bit GPRs, RO always contains a O
32 single precision FPRs, may also be viewed as
16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types
8-bit byte, 16-bit half word
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big endian mode

—

All instructions are 32 bits .

September 26, 2005 Fal/stls

T CSAIL



6.823 L5- 10
Arvind

Instruction Execution

Execution of an instruction involves

. Instruction fetch

decode and register fetch

. ALU operation

memory operation (optional)
. write back

g wWwN P

and the computation of the address of the
next instruction

September 26, 2005 esalL



6.823 L5- 11
Arvind

Datapath: Reg-Reg ALU Instructions

RegWrite Timing?

RegWrite
Ox4
clk l
, |
inst<25:21> IV we
inst<20:16> |rs1
a ~laddr . “|rs2
P inst inst<15:11> > rd1 ;LUI,_
A WS . -
»lwd rd2 "
ok Inst. GPRe L1
Memory
inst<5:0> _JALU
“LControl
v
OpCode
6 5 5 5 5 6
0 rs rt | rd 0 func rd « (rs) func (rt)
31 26 25 21 20 16 15 11 5 0

September 26, 2005



6.823 L5- 12
Arvind

Datapath: Reg-lmm ALU Instructions

RegWrite
Ox4
clk l
» .
inst<25:21> v we
»rsi
rs2
pq—|addr inst<20:16> rd1
inst »ws
A Mwd rd2
ok Inst. GPRs
Memory
inst<15:0> Imm
Ext
. . 7'}
inst<31:26> ALU
Control
v
OpCOde ExtSel
6 5 5 16
opcode| rs rt | immediate rt < (rs) op immediate
31 26 25 2120 16 15 0 At

| ]
September 26, 2005 Fallst's

T CSAIL



6.823 L5- 13

Arvind
Conflicts iIn Merging Datapath
oxa F:kegwrite Introduce
a I l muxes
inst<25:21> v we
> rs;
p—{addr inst<20:16> * rd1
inst|—=( £ > WS
A inst<15:11> olwd rd2
clk Inst. GPRs
Memory
inst<15:0> Imm
Ext
inst<31:26> i 0
inst<5:0> Control
OpCode ExtSel
6 5 5 5 5 6
0 rs rt | rd 0 func | rd « (rs) func (rt)
opcode|l rs rt | iImmediate rt < (rs) op immediate

September 26, 2005



6.823 L5- 14
Arvind

Datapath for ALU Instructions

RegWrite
Ox4
clk l
» .

<25:21> v we

<20:16> s
wpg—|addr L, ] rd1
R inst S WS

<15:11> B Mwd rd2
ok Inst. r GPRs

Memory
<15:0> Imm
Ext
<31:26>. 45 1 0
Control
v
OpCode RegDst ExtSel OpSel BSrc
rt/rd Reg / Imm
6 5 5 5 5 6
0 rs rt | rd 0 func | rd « (rs) func (rt)
opcode| rs rt | Immediate rt < (rs) op immediate

September 26, 2005



6.823 L5- 15
Arvind

Datapath for Memory Instructions

Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory
at some level the two memories have
to be the same

Princeton style: the same (von Neumann’s influence)
- A Load or Store instruction requires
accessing the memory more than once
during its execution

September 26, 2005 2wl



6.823 L5- 16

Arvind
Load/Store Instructions:Harvard Datapath
RegWrite MemWrite
0x4 a clk WBSrc
ALU / Mem
“base” o e 1we clk
*lrs2 ‘|’
d1
— P inst —;:D_' ws ; +—» adc\i’\:e
A - »wd rd2 r > v
ok Inst. GPRs > Dat ardata —_
Memory| | gisp J Tmm Memory .
Ex‘t‘ » wdata
ALU
Control
v
OpCode RegDst ExtSel OpSel BSrc
6 5 5 16 addressing mode
opcode| rs rt | displacement (rs) + displacement

31 2625 2120 1615 0
rs is the base register

rt is the destination of a Load or the source for a Store A
September 26, 2005 =



6.823 L5- 17
Arvind

MIPS Control Instructions
Conditional (on GPR) PC-relative branch

6 5 5 16
opcode| rs | offset BEQZ, BNEZ
Unconditional register-indirect jumps
6 5 5 16
opcode| rs | JR, JALR

Unconditional absolute jumps
6 26

opcode| target J, JAL

e PC-relative branches add offsetx4 to PC+4 to calculate the
target address (offset is in words): £128 KB range

e Absolute jumps append targetx4 to PC<31:28> to calculate
the target address: 256 MB range

e jump-&-link stores PC+4 into the link register (R31)

e All Control Transfers are delayed by 1 instruction
we will worry about the branch delay slot later i
September 26, 2005 2wl



6.823 L5- 18

Arvind
Conditional Branches (BEQZ, BNEZ)
PCSrc
br RegWrite MemWrite WBSrc
c+4
0x4
Add >
Add
clk
] Vv
> :51‘”6 clk
>lpdt— addr |_, 172 rd1 > \II v\;e
iNSt|—e ws —e—p| addr
> »wd rd2 LU
clk Inst. & GPRs T 1z rdata
Memory S Data AD—
J mm Memory

\ 4

wdata

Ext

A
»| ALU
Control

v |

v
OpCode RegDst ExtSel OpSel BSrc zero?

September 26, 2005



6.823 L5- 19

Arvind
PCSrc
l br RegWrite MemWrite WBSrc
=
<ind
c+4
~
0x4
Add >
Add
clk
] Vv
V
» rs1we clk
dd "'s2 [
>lPg—>[39C" Ll rd1 ¢ > V—we
iNSt | —a ws Lul—r— addr
>, »wd rd2 v
clk InSt GPRS A z rdata
Memory | Data
| Imm Memory
e p,j:r » wdata
»| ALU
Control
v I v
OpCode RegDst ExtSel OpSel BSrc zero?

September 26, 2005 =



6.823 L5- 20

Arvind
PCSrc
l br RegWrite MemWrite WBSrc
=
<ind
c+4
~
0x4
Add >
Add
clk
] v
V
> rs1we clk
> rs2 |
»lpg—>|addr 31,) rd1 . V—we
inst > ws LU —ep| 2 dr
> »iwd rd2 \4
clk Inst. GPRs 2 |2 rdata >
Memory | Data S
Imm Memory >
st:r »l wdata
»| ALU
Control
I !
OpCode RegDst ExtSel OpSel zero?
LRyl
[ AT
September 26, 2005 CSAIL



6.823 L5- 21

Arvind
Absolute Jumps (J, JAL)
PCSrc
l br RegWrite MemWrite WBSrc
=
JLind
jabs
Add
clk
] v
V
> rs1we clk
PIrs2 |
»lpg—>|addr 31,) rd1 . V—we
inst > ws Lul——r— addr
g »{wd rd2
clk Inst. GPRs 2 [ 2 rdata
Memory | S Data
Imm Memory
st:r »l wdata
»| ALU
Control
I !
OpCode RegDst ExtSel OpSel zero?
L3Ry
CSAIL

September 26, 2005



6.823 L5- 22

Harvard-Style Datapath for MIPS
;’i)?rc RegWrite MemWrite WBSrc

Add
clk
] Vv
vV we
s clk
PIrs2 |
>lPP— addr _ 31 rd1 ® > v V\;e
inst * ws Lul——r— addr
g »wd rd2 v
clk Inst. GPRs 2 | Z rdata
Memory | S Data
Imm Memory
st:r » wdata
»| ALU
Control
i | ‘
OpCode RegDst ExtSel OpSel BSrc zero?

September 26, 2005 =



Five-minute break to stretch your legs

23



6.823 L5- 24
Arvind

Single-Cycle Hardwired Control:

Harvard architecture

We will assume
e clock period is sufficiently long for all of
the following steps to be “completed”:

instruction fetch

. decode and register fetch

. ALU operation

. data fetch if required

. register write-back setup time

O wWwNP

= = Creten T trreten T tau™ tovem™ trws

e At the rising edge of the following clock, the PC,
the register file and the memory are updated

September 26, 2005 el



Hardwired Control is pure

Combinational Logic

6.823 L5- 25
Arvind

op code

Zero?

September 26, 2005

combinational

logic

ExtSel
BSrc
OpSel
MemWrite
WBSrc
RegDst
RegWrite
PCSrc



6.823 L5- 26
Arvind

ALU Control & Immediate Extension

Inst<5:0> (Func)

Inst<31:26> (Opcode)

N

ALUop
N >
0? —— -~
1
OpSel
( Func, Op, +, 07)
Decode Map

ExtSel

September 26, 2005

( sExt,q, UEXt,q,
High )



6.823 L5- 27
Arvind

Hardwired Control Table

Opcode | ExtSel | BSrc | OpSel | MemW | RegW | WBSrc | RegDst PCSrc
ALU * Reg | Func no yes ALU rd pc+4
ALUI sExt,, | Imm | Op no yes | ALU rt pc+4
ALUiu uExt,s| Imm | Op no yes | ALU rt pc+4
LW SExt,s | Imm + no yes | Mem rt pc+4
SW sExt,s | Imm + yes no * * pc+4
BEQZ,_, | sExty * 07 no no * * br
BEQZ,_, | sExt, | * 07? no no * * pc+4
J * * * no no * * jabs
JAL " i * no yes | PC | R31 jabs
JR * * * no no * * rind
JALR * * * no yes PC R31 rind
BSrc = Reg / Imm WBSrc = ALU/ Mem / PC

RegDst =rt/rd / R31 PCSrc = pc+4 / br/ rind / jabs

September 26, 2005 el



6.823 L5- 28
Arvind

Pipelined MIPS

To pipeline MIPS:

e First build MIPS without pipelining with CPI=1

e Next, add pipeline registers to reduce cycle
time while maintaining CPI=1

September 26, 2005 AL



6.823 L5- 29
Arvind

Pipelined Datapath

Ox4 ﬁ

write
fetch decode & Reg-fetch execute memory _back
phase phase phase phase phase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc = max {tyy, tge, tay, toms trwd (= toy Probably)
However, CPI will increase unless instructions are pipelined

ot jgils]
September 26, 2005 digl



6.823 L5- 30
Arvind

An ldeal Pipeline

stage | stage | stage | stage
1 ' 1 2 ' '

e All objects go through the same stages
e No sharing of resources between any two stages
e Propagation delay through all pipeline stages is equal

e The scheduling of an object entering the pipeline
IS not affected by the objects in other stages

These conditions generally hold for industrial
assembly lines.
But can an instruction pipeline satisfy the last

condition? Arih
September 26, 2005 2wl



6.823 L5- 31
Arvind

How to divide the datapath
Into stages

Suppose memory is significantly slower than
other stages. In particular, suppose

t,y = 10 units
toy = 10 units
t, y = 5 units
t.r = 1 unit
to,y = 1 unit

Since the slowest stage determines the clock, it
may be possible to combine some stages without
any loss of performance

September 26, 2005 AL



6.823 L5- 32
Arvind

Alternative Pipelining

Ox4 ﬁ

i vy

|

i

Wwrite
fetch decode & Reg-fetch = execute memory _back
phase phase phase phase phase

tc = max {t,y, teettyy: outtrwt = tout trw

= increase the critical path by 10%

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

September 26, 2005




6.823 L5- 33
Arvind

Maximum Speedup by Pipelining

Assumptions Unpipelined Pipelined Speedup
t 1

1. t,, =ty = 10, ¢ ¢

tay = O,

trr = ey = 1

4-stage pipeline 27 10 2.7
2. Ly Tlhy =ty T e = =9

4-stage pipeline 25 10 2.5
3. Ly Thom = tay = e = o = O

5-stage pipeline 25 5 5.0

It Is possible to achieve higher speedup with more
stages in the pipeline.

September 26, 2005 el



Thank you !

34



0~
CCCCC

Pipeline Hazards

Arvind
Computer Science and Artificial Intelligence Laboratory

M.1.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L6- 2
Arvind

Technology Assumptions

e A small amount of very fast memory (caches)
backed up by a large, slower memory

e Fast ALU (at least for integers)

e Multiported Register files (slower!)

It makes the following timing assumption valid

Ly R e = Ty y = oy =

A 5-stage pipelined Harvard architecture will be
the focus of our detailed design

September 28, 2005 '. CSA L



6.823 L6- 3
Arvind

5-Stage Pipelined Execution

0Ox4
0

I-Fetch Decode, Reg. Fetch Execute

(1F)
time
instructionl
instruction?2
Instruction3
instruction4
instruction5

September 28, 2005

Write
Memory -Back
(ID) (EX) (MA) (WB)
tO t1 t2 t3 |t4 |[t5 t6 t7
IF, 1D, EX, MA, WB,
IF, 1D, EX,|MA,|WB,
IF, 1D, |EX,; |MA, WB,
IF, |ID, |EX, MA, WB,
IF. |ID. EX. MA; WB,

CSAIL



5-Stage Pipelined Execution

Resource Usage Diagram

6.823 L6- 4
Arvind

0Ox4
0

I-Fetch Decode, Reg. Fetch Execute

(1F) (ID)
" time t0 t1
Q IF I, 1,
= ID 1,
% EX
r MA

WB

September 28, 2005

_—_H
BN W N

(EX)

Write
Memory -Back
(MA) (WB)
t6 t7
I5
, I
P V.

CSAIL



Pipelined Execution:

ALU Instructions

6.823 L6-5
Arvind

0ox4 a

A l/|13 1 A
s

vowe
»rsl
»lrs2
—»B »laddr rdl
inst ws
A »wd rd2
Inst GPRs
Memory
. Imm
Ext

A
vV o we
R J_ | ] rdata

Data
Memory,
I_I Plwdata
A
MD2

Not quite correct!

We need an Instruction Reg (IR) for each stage

September 28, 2005



6.823 L6- 6
Arvind

v
I—T =
T
> 3
|

A

vVowe

IR’s and Control points

Ox4 a
rs2
—>H »|adar rd1 A v i've
inst ws LA
. »jwd rd2 f—a— addr
Inst GPRs 1 |7 rdata .,

\ A 4

A

B
Memory, T LA Data
o Imm Memory
Ext Plwdata
Al L)
MD1 MD2

Are control points connected properly?
- ALU instructions
- Load/Store instructions
- Write back

September 28, 2005 AL



6.823 L6- 7
Arvind

Pipelined MIPS Datapath

without jJumps

F D E M W
b |

31

0x4 a
egDs

RegWrite

V-we OpsSel @
PIrsl ] emWrli @
»|rs2
— »laddr rdl o vVowe
instHIR wWs L Y addr
A »|wd rd2 p——44—> .
Inst GPRs 1 18 rdata R
Memory, g LA Data
J Tmm ] Memory
| Ext Plwdata
n La)
MD1 MD2

September 28, 2005



6.823 L6- 8
Arvind

How Instructions can Interact
with each other In a pipeline

e An instruction in the pipeline may need a
resource being used by another instruction
In the pipeline
— structural hazard

e An instruction may produce data that is

needed by a later instruction
— data hazard

e In the extreme case, an instruction may
determine the next instruction to be

executed
— control hazard (branches, interrupts,...)

September 28, 2005

CCCCC



6.823 L6-9
Arvind

Data Hazards

rd4 <« ri ... rlT « ..

Oox4 -
> | >R >
A AN|—— A

l/l‘Sl “
vWe Lf‘
»Irsl ]
»rs2 A v
—p »laddr rdl N vVowe
i ws
inst | vel rdz ——e—sl — addr
Inst GPRs -B . rdata N
Memory " I Data
[ Tmm |_| Memory
Ext Plwdata
. | N
MD1 MD2
ri«<r0+ 10
r4 «rl + 17 rl is stale. Oops!

September 28, 2005 esalL



6.823 L6- 10
Arvind

Resolving Data Hazards

Freeze earlier pipeline stages until the data
becomes available = interlocks

If data is available somewhere in the datapath
provide a bypass to get it to the right stage

Speculate about the hazard resolution and Kkill
the instruction later If the speculation is wrong.

September 28, 2005 esAIL



6.823 L6- 11
Arvind

Feedback to Resolve Hazards

e Detect a hazard and provide feedback to previous
stages to stall or kill instructions

e Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)

September 28, 2005 2wl



Interlocks to resolve Data
Hazards

6.823 L6- 12
Arvind

Stall Condition

\4
nop =" IR » IR > (IR
A A 31 A

\ A 4

»laddr
instHl
A

Inst
Memory

rl «<~rO+ 10
r4 < rl + 17

September 28, 2005

vV-we
rsli T
rs2
rdl i \Y :/'ve
WS
»lwd rd2 p——=e——> ] Y addr
GPRs 1 |'IB rdata
r I Data
Imm |_| Memory,
Ext Plwdata
—— Al N
MD1 MD2




6.823 L6- 13
Arvind

Stalled Stages and Pipeline Bubbles

time
t0O t1 t2 t3 t4 t5 t6 t7
1N
(L) rd4 « (r1) + 17 IF, ID, ID, ID, ID, EX, MA, WB,
(1) IF; IF; IF; IF; ID; EX; MA; WBg
stalled stages
(1) IF, ID; EX; MA; WB,
time
t0 t1 2 t3 t4 t5 t6 t7/
IF L, I 13 1 I
ID PR P PO PY I
Eesource EX nop nop nop I, I3 1, Ig
Sage MA nop nop nop I, 15 I
WB nop nop nop I, I3 I

nop =  pipeline bubble o
September 28, 2005 Lgidel]

T CSAIL



6.823 L6- 14
Arvind

Interlock Control Logic

=
5

—

r—f'\

vowe
"—‘ »rsl ]
v »Irs2
—»[pi] »laddr _H_ rd1 A w Y tve
inst=I ws — addr
A »|lwd rd2 p—-9—>
Inst GPRs ‘ \J- Bj I rdata ‘e
Memory, T A Data
J Tmm |_| Memory >
Ext I_A_I Plwdata
A

MD1 MD2

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted

Instructions. Aol
September 28, 2005 esAIL



6.823 L6- 15
Arvind

Interlocks Control Logic

ignoring jumps & branches

WS we WS

Cdest

V-we
ad »rsl ]
—‘ v »Irs2 A v
— 5 »laddr rdl vVowe
inst}=I »Iws A % addr
A »|lwd rd2 p—-9—>
- A \4
Inst GPRs ‘ B rdata I
Memory, T A Data
J Tmm |_| Memory >
| EXt | L Mwdata
LA
MD1 MD2

Should we always stall if the rs field matches some rd?
not every instruction writes a register = we

not every instruction reads a register = re Arn
September 28, 2005 =



6.823 L6- 16

Arvind
Source & Destination Registers
R-type: op rs rt rd func
I-type: op rs rt immediate16
J-type: op immediate26
source(s) destination
ALU  rd « (rs) func (rt) rs, rt rd
ALUI rt « (rs) op imm rs rt
LW rt < M [(rs) + imm] rs rt
SW M [(rs) + imm] « (rt) rs, rt
BZ cond (rs)
true: PC « (PC) + imm rs
false: PC « (PC) + 4 rs
J PC « (PC) + imm
JAL r3l « (PC), PC « (PC) + imm 31
JR PC « (rs) rs
JALR r31 « (PC), PC « (rs) rs 31

September 28, 2005



6.823 L6- 17

Arvind
Deriving the Stall Signal
Cdest Cre
ws = Case opcode rel = Case opcode
ALU = rd ALU, ALUI,
ALUi, LW = It
JAL, JALR = R31 = on
= off
we = Case opcode
ALU, ALUI, LW =(ws = 0) re2 = Case opcode
JAL, JALR = on = on
= off = off
Cstall
stall = ((rsp =wsg).weg + <
(rsp =wsy).wey, + ‘ 600 &OC\
(rsp =ws,,).we,) . rel, + & \)\\9
((rt; =wsgp).weg + N\
(rty, =ws,,).we,, + S
(rtp; =ws,,).we,,) . re2,

September 28, 2005

TCSAIL



6.823 L6- 18
Arvind

Hazards due to Loads & Stores

Stall Condition What it

(rL)+7 = (r3)+5 ?

0Ox4 ﬂOp - IR > IR > IR—
A A|———— |/31 A w
v—we Lr
4 »rsl .
—‘ »rs2 v
_.[Pj »addr EL rd1 A addr ‘
inst =l wSs LA addr
A »wd rd2 p=——-ae—>
Inst GPRs \J- B . rdata
Memory L 1A Data
[ Tmm ] Memory/ >
Ext Plwdata
— ol N
MD1 MD2
M[(r1)+7] « (r2) Is there any possible data hazard
r4 « M[(r3)+5] In this instruction sequence”?

September 28, 2005 2wl



6.823 L6- 19

Load & Store Hazards

Arvind

MI(r1)+7] < (r2)
r4 « M[(r3)+5]

(rl)+7 = (r3)+5 = data hazard

However, the hazard is avoided because our
memory system completes writes in one cycle !

Load/Store hazards, even when they do exist, are
often resolved in the memory system itself.

More on this later in the course.

September 28, 2005

CCCCC



Five-minute break to stretch your legs

20



6.823 L6- 21
Arvind

Complications due to Jumps

PCSrc (pc+4 / jabs / rind/ br) stall

0ox4 a

A A “:

2\

3

<

E

l —>  Jump? I

\4
nop -r:l ’
> JAY

Note fetching the
next instruction

September 28, 2005

> »add -
PA i I’inst :IEJ[
104 Inst
Memory I
I, 096 ADD
I, 100 J 200
15 1064 ADPD kill
I, 304 ADD

before decode is
speculation = Kkill

A jump instruction Kills (not stalls)
the following instruction

How?



Pipelining Jumps

6.823 L6- 22
Arvind

PCSrc (pc+4 / jabs / rind/ br)

stall

A A A :

/Adds
a N

a

To kill a fetched
instruction -- Insert
a mux before IR

E M

nop -D_’ :H
i A A

_'P—‘ »laddr
A inst

304 Inst
Memory,

l, 096

L, 100

|3
l, 304

September 28, 2005

—>

Jump?

\ 4

I, Iy

Any
Interaction
between
stall and
jump?

IRSrc, = Case opcode,
J, JAL

= nop
= IM

T CSAIL



Jump Pipeline Diagrams

6.823 L6- 23
Arvind

(1,) 100: J 200
(1) 104: ADD
304: ADD

Resource
Usage

EX
MA
WB

September 28, 2005

time
to tl t2

t3

t4

t5 t6 t7

IF, 1D, EX, MA, WB,
Oop Nop nop nop

IF,
time
to tl t2
|2 |3
I2

3

nop

P

t4

5

5 to t7

5

nop I, Ig

P

nop I
I, nop I
nop =

pipeline bubble_ﬂ

@ﬁﬂ

T CSAIL



6.823 L6- 24

Arvind
Pipelining Conditional Branches
PCSrc (pc+4 / jabs / rind / br) stall
N 2 .
x4 nop IR IR
= -f—
| —> BEQZ? I A
zero?
"—‘ IRSrcy
— 5 > addr_ nop - |:
A Inst ‘ |—>I. > | v
104 Inst A a I
Memory, I,
1, 096  ADD Branch condition is not known until
L, 100 BEQz r1 200 the execute stage |
., 104  ADD what action should be taken in the
l, 304  ADD decode stage ?

September 28, 2005



6.823 L6- 25

Arvind
Pipelining Conditional Branches
PCSrc (pc+4 / jabs / rind / br) stall
g ’-’
I\: A:@ E  BEQz? M
0x4 nop = ) 1 T JIR
> L
| I2 Il
zero?
"—‘ IRSrc, ‘
— b > addr_ nop _Iﬁ [
A inst If > _ | v
108 Inst A a I
Memory I3
If the branch is taken
I, 096 ADD - kill the two following instructions
l, 100 BEQZ rl1 200 - the instruction at the decode stage
E 104 ADD is not valid
l, 304  ADD

September 28, 2005

= stall signal is not valid An



6.823 L6- 26
Arvind

Pipelining Conditional Branches

PCSrc (pc+4/jabs/rind/br) stall
g g \
M <
I\: IRSrc E BEQZ? M
Ox4 nop - _. 1t R
| i A A
—  Jumpp I, Iy
zero?
v A 4 :p(J
ﬁB ;zzmzﬁ -
A inst > IR > B
108 Inst — a
Memory I3
If the branch is taken
I, 096 ADD - kill the two following instructions
l, 100 BEQZ rl1 200 - the instruction at the decode stage
E 104 ADD is not valid
l, 304  ADD

September 28, 2005

= stall signal is not valid i



6.823 L6- 27
Arvind

New Stall Signal

stall = ( ((rsp =wsg).weg + (rsp =ws,,).we,, + (r'sp =ws,,).we,,).rel,
+ ((rt; =wsg).weg + (rt; =ws,,).we,, + (rt; =ws,,).we,,).re2,

) . !((opcode,=BEQZ).z + (opcode.=BNEZ).1z)

Don’t stall if the branch is taken. Why?

Instruction at the decode stage is invalid

September 28, 2005 Al



Control Equations for PC and IR

Muxes

6.823 L6- 28
Arvind

PCSrc = Case opcodeg
BEQZ.z, BNEZ.!1z = br

—
Case opcodep
J, JAL = jabs
JR, JALR = rind

= pc+4

IRSrc, = Case opcode,
BEQZ.z, BNEZ.!1z = nop
p—
Case opcode
J, JAL, JR, JALR = nop
= IM

IRSrc. = Case opcode,
BEQZ.z, BNEZ.!z = nop

= stall.nop + !stall.

IR,

September 28, 2005

Give priority

to the older
Instruction,

l.e., execute
stage instruction
over decode
stage instruction



6.823 L6- 29
Arvind

Branch Pipeline Diagrams
(resolved In execute stage)

time
t0 t1 t2 t3 t4 t5 t6 1t/

(1,) 096: ADD IF, ID; EX; MA, WB,

(1,) 100: BEQZ 200 IF, ID, EX, MA, WB,

(1) 104: ADD IF, \hop nop nop
108: Op NOp Nnop nop
304: ADD

time

t0 t1 2 t3 t4 t5 t6 t7/
IF L, I
ID I, I, 13 nop I

E(Sezogrce EX I, I, nop nop Ig
9 MA I, I, nop nop I

WB I, I, nop nop Ig

nop =  pipeline bubble _.

TCSAIL

September 28, 2005



6.823 L6- 30
Arvind

Reducing Branch Penalty
(resolve in decode stage)

e One pipeline bubble can be removed If an extra
comparator is used in the Decode stage

PCSrc (pc+4 / jabs / rind/ br)

E
A A nop —‘ ] I
l A

Zero detect on
S register file output
rsli L

~

rs2
:H »|addr nop = rd1
inst > —_—] WS
A > wd rd24=——>»
GPRs

Inst
Memory

Pipeline diagram now same as for jump?_r_u_
ITll

September 28, 2005



6.823 L6- 31
Arvind

Branch Delay Slots
(expose control hazard to software)

e Change the ISA semantics so that the instruction that
follows a jump or branch is always executed

— gives compiler the flexibility to put in a useful instruction where
normally a pipeline bubble would have resulted.

l, 096  ADD

l, 100 BEQZ r1 200 Delay slot instruction
I, 104  ADD < executed regardless of
l, 304  ADD branch outcome

e Other techniques include branch prediction,

which can dramatically reduce the branch
penalty... to come later

September 28, 2005



6.823 L6- 32
Arvind

Bypassing
time t0 t1 t2 t3 t4 t5 t6 t7
pr— VI VWE N
(1) rd4 «rl + 17 IF, ID, ID, ID, ID, EX, MA, WB,
(1) IF, IF, IF, IF, ID, EX, MA,
) stalled stages IF, 1D, EX,
(I5) IF. 1D,
Each stall or kill introduces a bubble in the pipeline
=CPl = 1

A new datapath, i.e., a bypass, can get the data from
the output of the ALU to its input

September 28, 2005

time t0 t1 t2 t3. t4 t5 t6 t7
[\
(1) rd < rl + 17 IF, 1D, (EX; MA, WB,
(1) IF, ID; EX; MA; WB,
) IF, ID, EX, MA, WB,
(Is) IFs 1Ds EXs MAg WBg i,

T CSAIL



Adding a Bypass

6.823 L6- 33

Arvind

stall

| r4 < rl...
v
Ox4 nop -D_,B: ; M B\_N
A\ 31 —
ASrc‘ ) w
vWe
) = | ne
»rs2
— »|addr D " rd1 b v tve
instHl >ws L~ — a addr
A »|lwd rd2 p—-9—>
Inst GPRs ‘ \J- B n rdata T~
Memory, T A Data
J Tmm |_| Memory >
Ext I_A_I Plwdata
LA |
MD1 MD2
When does this bypass help?
(I) rd«rl+17 r4 «rl+ 17 r4 «<r31+ 17 _

September 28, 2005 YES

NO

no (s

CSAIL



6.823 L6- 34
Arvind

The Bypass Signal

Deriving it from the Stall Signal

stall = (rsg=wswez + (r'sp =ws,,).we,, + (rsp =ws,,).we,,).rel,

+((rty =wsp).we; + (rty; =ws,)).we,, + (rt; =ws,,).we,,).re2,)

ws = Case opcode we = Case opcode
ALU =rd ALU, ALUi, LW =(ws = 0)
ALUI, LW =t JAL, JALR = 0on
JAL, JALR = R31 = off
ASrc = (rsp=wsg).weg.rely Is this correct?

No because only ALU and ALUI instructions can benefit
from this bypass

Split we into two components: we-bypass, we-stall

September 28, 2005 CSM L



6.823 L6- 35
Arvind

Bypass and Stall Signals

Split weg into two components: we-bypass, we-stall

we-bypass, = Case opcode, we-stall. = Case opcodeg
ALU, ALUI = (ws = 0) LW = (ws = 0)
= off JAL, JALR = on
= off
ASrc = (rsp =wsg).we-bypass; . rel,
stall = ((rsp =wsg).we-stall; +

(rsp=ws,,).we,, + (rsp=ws,,).we,,). rely

+((rt; = wsg).weg + (rty; = ws,).we,, + (rty = ws,,).we,,). re2,

September 28, 2005 A



Fully Bypassed Datapath

6.823 L6- 36

Arvind

stall

PC for JAL, ...

0Ox4 a

}
nop =

,,
=

ASrc -

v

E |\/|
Iﬂ >

y
vowe

A

—

N
"_‘ »Irsl B
— 5 »laddr e rdlp—=—- A Vv :/'ve
instjHl - wg o — ” ‘B »laddr
Inst . | GPRs - \J' B rdata >
Memory —ir I Data
Imm Memory, >
| Ext [~ 77 BS Plwdata
| e I\?I%l MD2
Is there still
a need for the
stall signal ? stall = (rspy=ws;). (opcode,=LW,).(ws=0 ).rel,

September 28, 2005

+ (rty;=wsg). (opcode=LW;).(wsg=0 ).re2,

T h—_r_}‘l

T CSAIL



6.823 L6- 37
Arvind

Why an Instruction may not be
dispatched every cycle (cri>1)

e Full bypassing may be too expensive to
Implement
— typically all frequently used paths are provided
— some infrequently used bypass paths may increase
cycle time and counteract the benefit of reducing CPI
- Loads have two cycle latency
— Instruction after load cannot use load result

— MIPS-I1 ISA defined load delay slots, a software-visible
pipeline hazard (compiler schedules independent
Instruction or inserts NOP to avoid hazard). Removed
in MIPS-I1.

- Conditional branches may cause bubbles
— Kkill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler.

September 28, 2005 2wl



Thank you !

38



Multilevel Memories

Dheya Mustafa

Based on the material prepared by
Krste Asanovic and Arvind



CPU-Memory Bottleneck

CPU

Memory
[

Performance of hig

N-speed computers is usually

limited by memory bandwidth &latency

e Latency )time
Memory access

for a single access(
time >> Processor cycle time

e Bandwidth )number of accesses per unit time(
if fraction m of instructions access memory,
—=14+m memory references / instruction
= CPI = 1 requires 1+m memory refs / cycle



Core Memory

e Core memory was first large scale reliable main
memory
- invented by Forrester in late 40s at MIT for Whirlwind project
e Bits stored as magnetization polarity on small ferrite
cores threaded onto 2dimensional grid of wires

e Coincident current pulses on X and Y wires would write
cell and also sense original state )destructive reads(

e Robust, non-volatile storage
e Used on space shuttle computers
until recently

e Cores threaded onto wires by
hand (25 billion a year at
peak production)

e (Core access time ~ 1lus

DEC PDP-8/E Board,
4K words x 12bits, ((1968




Semiconductor Memory, DRAM

e Semiconductor memory began to be

competitive in early 1970s

- Intel formed to exploit market for semiconductor
memory

e First commercial DRAM was Intel 1103

— 1Kbit of storage on single chip
— charge on a capacitor used to hold value

e Semiconductor memory quickly replaced
core in 1970s



One Transistor Dynamic RAM

TiN top electrode (Vgge)
1-T DRAM Caell

T word
Nl

T [ ~_access

FET
Explicit storage bit poly
capacitor (FET word
gate, trench, line access fet

stack)

TiN/Ta205/W Capacitor



Processor-DRAM Gap (latency(

1000

Performance

100

10

UProc 60%/year

“Moore’s Law’,

CPU

Performance Gap:
)grows / %50year(

<\

7%/year

1980
1981
1982 |
1983
1984 |
1985 |
1986 |
1987 |
1988 |
1989 |
1990
1991 |
1992 |
1993 |

31994 |

LN O
D
(o))
1 i
D

Time /™

2000

avid Patterson, UC Berkeley

Four-issue superscalar could execute 800
instructions during cache miss!



Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

Memory

|
CPU " Misses in [
I* flight table[*
|

_—

Example: L
---Assume infinite bandwidth memory
100 ---cycles /memory reference
0.2 + 1 ---memory references /instruction

— Table size= 100 * 1.2 = 120 entries

120 independent memory operations in flight!



DRAM Architecture

bit Ilnes
Col. / word lines
1 /
AR EBE Row!
NS T b S S S
BERRAREE
2Aal oo o Ho b t\ oW
Memory cell
bit
N+M | M, ["Column Decoder & Jone bit(
Sense Amplifiers
Data$ D

e Bits stored in -2dimensional arrays on chip

e Modern chips have around 4logical banks on each chip

—each logical bank physically implemented as many smaller arrays



DRAM Operation

Three steps in read/write access to a given bank

e RO

w access (RAS)

decode row address, enable addressed row (often multiple Kb in row)
bitlines share charge with storage cell

small change in voltage detected by sense amplifiers which latch
whole row of bits

sense amplifiers drive bitlines full rail to recharge storage cells

e Column access (CAS)

decode column address to select small number of sense amplifier
latches (4, 8, 16, or 32 bits depending on DRAM package)

on read, send latched bits out to chip pins

on write, change sense amplifier latches which then charge storage
cells to required value

can perform multiple column accesses on same row without another
row access (burst mode)

e Precharge

charges bit lines to known value, required before next row access

Each step has a latency of around 20ns in modern DRAMs

Various DRAM standards (DDR, RDRAM) have different ways of encoding the
signals for transmission to the DRAM, but all share the same core
architecture



Multilevel Memory

Strategy: Hide latency using small, fast
memories called caches.

Caches are a mechanism to hide memory
latency based on the empirical observation
that the patterns of memory references
made by a processor are often highly

predictable:
PC
96
loop: ADD r2, r1, rl 100 What is the pattern
SUBI r3, r3, #1 104 of instruction
BNEZ r3, loop 108 memory addresses?

112



Typical Memory Reference Patterns

Address linear sequence
n loop iterations
~—
Instruction

fetches

Stack

accesses

Data

daccesses

Time



Common Predictable Patterns

Two predictable properties of memory references:

— Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

— Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.



Caches

Caches exploit both types of predictability:

— Exploit temporal locality by remembering
the contents of recently accessed locations.

— Exploit spatial locality by fetching blocks of
data around recently accessed locations.



Memory Hierarchy

Big, Slow
Memory i
A Small, B (DRAM)
CPU Fast
Memory
(RF, SRAM)
holds frequently used data
* size: Register << SRAM << DRAM  why?
e J[atency: Register << SRAM << DRAM  why?
ebandwidth: on-chip >>off-chip why?

On a data access:
hit (data € fast memory) = low latency access

miss )data ¢ fast memory) = long latency access (DRAM(

Fast mem. effective only if bandwidth requirement at B >>A



Management of Memory Hierarchy

e Small/fast storage, e.qg., registers
— Address usually specified in instruction

— Generally implemented directly as a register file

e but hardware might do things behind software’s back, e.qg.,
stack management, register renaming

e Large/slower storage, e.g., memory
— Address usually computed from values in register
— Generally implemented as a cache hierarchy

e hardware decides what is kept in fast memory

e but software may provide “hints”, e.g., don’t cache or
prefetch



A Typical Memory Hierarchy c.2003

Split instruction &data Multiple interleaved
primary caches memory banks
)on-chip SRAM( (DRAM)
L1
(& Instruction Memory
CPU —Cache Unified L2 Memory
it Cache Memory
RF | |yl L1 Data
Cache Memory
Multiported Large unified secondary cache
register file (on-chip SRAM)

(part of CPU(



Workstation Memory System
JApple PowerMac G5, (2003

eDual 2GHz processors, each with 64KB I- cache, 32KB
D-cache, and 512KB L2 unified cache

¢1GB/s1GHz, 2x32-bit bus, 16GB/s

e North Bridge Chip

eUp to 8GB DRAM, 400MHz, -128bit bus, 6.4GB/s
e AGP Graphics Card, 533MHz, 32-bit bus, .2
oPCI-X Expansion, 133MHz, -64bit bus, 1 GB/s



Inside a Cache

[Processor

v

~\ Address

copy O

Data

f main

memory
location 100\

CACHE

Address

Data

copy of main
memory
location 101

Main
Memory

100
304
— [c8as
Address
Tag

C

>—} Line

> Data Block




Cache Algorithm (Read)

Look at Processor Address, search cache tags to find
match. Then either

Found in cache Not in cache
a.k.a. HIT a.k.a. MISS
Return copy Read block of data from
of data from Main Memory
cache
Wait ...

Return data to processor
and update cache

Q: Which line do we replace?



Placement Policy

1111111111222222222233
Block Number

[0[1(2]314[5(6]/[8[9|0|1|2|3]|4[5[6]/|8[9[0]|1]|2[3[4|5[6[/|8]9[0|1
Memory
Set Number 1 2 3 01234567
Cache
ully Z-way) Set Irec
Associative  Associative Mapped
block 12 anywhere anywhere in only into
can be placed set 0 block 4

(12 mod 4) 12)mod (8



Direct-Mapped Cache

Block
'I;ag Index Offeet
t /k 7~
V| Tag Data Block
2 0 O 2 O o -------- o ....... 2k
imos
A

HIT Data Word or Byte



Direct Map Address Selection

higher-order vs. lower-order address bits

Block
Index Tag Offeet
7‘_I Z
Kk ! 7
7 b
V| Tag Data Block
sl o ko e b e e ]| 2K
____________________________________________________________ 1 | es
\_J

HIT Data Word or Byte



2-Way Set-Associative Cache

Ta Index Block —
9 Offset b

k
V| Tag |Data Block V| Tag [Data Block

Data
Word
or Byte

HIT




Fully Associative Cache

V_ Taq Data Block

Ef
LN
— \

)
Y s

HIT

~ Data
—’@ N T Word

— or Byte

— Block
o LOffset

AN




Replacement Policy

In an associative cache, which block from a set
should be evicted when the set becomes full?

® Random

e | east Recently Used (LRU)
e LRU cache state must be updated on every access
e true implementation only feasible for small sets (2-way)
e pseudo-LRU binary tree often used for 4-8 way

e First In, First Out (FIFO) a.k.a. Round-Robin
e used in highly associative caches

e Not Least Recently Used (NLRU)
e FIFO with exception for most recently used block

This is a second-order effect. Why?



Block Size and Spatial Locality

Block is unit of transfer between the cache and memory

Tag Word0 | Wordl | Word2 | Word3 | 4 word block,
b=2
Split CPU block address offset,
address < — y
—— -
-32b bits b bits

2b =Dblock size a.k.a line size )in bytes(

Larger block size has distinct hardware advantages
¢ |ess tag overhead
e exploit fast burst transfers from DRAM
e exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?



Average Cache Read Latency

a is HIT RATIO: Fraction of references in cache
- 1o is MISS RATIO: Remaining references

Average access time for serial search:

Processor

Addr

Addr

CACHE

Data

Data

Main t. - 1) +a) t,
Memory

Average access time for parallel search:

Processor

Addr

CACHE

Data

Data

Main -
Memory ot.+(1-0a)t,

t. is smallest for which type of cache?



Improving Cache Performance

Average memory access time=
Hit time +Miss rate x Miss penalty

To improve performance:

o I'ed
® IreC

® I'ed

uce t
uce t

uce t

ne miss rate )e.qg., larger cache(
ne miss penalty )e.g., L2 cache(

he hit time

What is the simplest design strategy?



Write Performance

Tag Index Block

7 , / b

7

T T e e AR AR 2K

o 55 e pemm By Tl ”nes

WE
A

Data Word or Byte

HIT



Write Policy

e Cache hit:

— write through: write both cache & memory
e generally higher traffic but simplifies cache coherence

— write back: write cache only
)memory is written only when the entry is evicted(

e a dirty bit per block can further reduce the traffic
e Cache miss:

— no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

e Common combinations:

— write through and no write allocate
— write back with write allocate



11/4/2017

Cache Optimizations

Dheya Mustafa

Based on the material prepared by
Krste Asanovic and Arvind




CPU-Cache Interaction

(5-stage pipeline)

PCen

0x4

o
addr i

inst

hit?
Primary
Instruction
Cache

D

Decode,
Register
Fetch

v

Primary
Data 'rdata
Cache

MD1

MD2

wdata hit?

\4

-

H

To Memory Control

v

Stall entire
CPU on data
cache miss

/| >

Cache Refill Data from Lower Levels of

Memory Hierarchy
What about Instruction miss or writes to i-stream ?

11/4/2017



Write Performance

Block
Tag Index Offcot
7_, , ’/ b
V] Tag Data
’/

WE A

Data Word or Byte

2k
lines

11/4/2017



Reducing Write Hit Time

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle
for data write if hit

Solutions:

e Design data RAM that can perform read and write in one
cycle, restore old value after tag miss

e CAM-Tag caches: Word line only enabled if hit

e Pipelined writes: Hold write data for store in single
buffer ahead of cache, write cache data during next
store’s tag check

11/4/2017



Pipelining Cache Writes

Address and Store Data From CPU
Y Y

Tag

StoreData |

D

Delayed Write Data

D Delayed Write Addr.
Load/Store

Y

"IS

Tags

Y

!
Data

i

—@_
7

1 0/

Load Data to CPU

Data from a store hit written into data portion of cache
during tag access of subsequent store

11/4/2017



Write pipeline

G = T

I-Fetch Decode Address Tag Mem
Reg Read Calc Read Data
Write

What hazard has been introduced in this pipeline?

11/4/2017



Write Policy

e Cache hit:

- write through: write both cache & memory
e generally higher traffic but simplifies cache coherence

- write back: write cache only
)memory is written only when the entry is evicted(

e a dirty bit per block can further reduce the traffic
e Cache miss:

- no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

e Common combinations:
- write through and no write allocate
— write back with write allocate

11/4/2017



Average Cache Read Latency

o is HIT RATIO: Fraction of references in cache
1 - o is MISS RATIO: Remaining references

Average access time for serial search:

Processor

Addr

Addr

CACHE

Data

Data

Main t.+ (1 -a)t,
Memory

Average access time for parallel search:

Processor

Addr

CACHE

Data

Data

Main -
Memory oat.+ (1-a)t,

t. is smallest for which type of cache?

11/4/2017



Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the miss rate (e.g., larger cache)
e reduce the miss penalty (e.g., L2 cache)
e reduce the hit time

What is the simplest design strategy?

11/4/2017



Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the miss rate (e.qg., larger cache)
e reduce the miss penalty (e.g., L2 cache)
e reduce the hit time

The simplest design strategy is to design the
largest primary cache without slowing down the
clock or adding pipeline stages

(but design decisions are more complex with out-of-
order or highly pipelined CPUs)

10

11/4/2017

10



Causes for Cache Misses

« Compulsory: first-reference to a block a.k.a. cold
start misses
-misses that would occur even with infinite cache

J Capacity:  cache is too small to hold all data
needed by the program
- misses that would occur even under perfect
placement &replacement policy

. Conflict: misses that occur because of
collisions due to block-placement strategy
- misses that would not occur with full associativity

11

11/4/2017

11



12

Effect of Cache Parameters on Performance

» Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

e Higher associativity
+ reduces conflict misses (up to around 4-8 way)
- Mmay increase access time

e Larger block size

11/4/2017

12



13

Block Size and Spatial Locality

Block is unit of transfer between the cache and memory

Tag Word0 | Wordl | Word2 | Word3 | 4 word block,
b=2
Split CPU block address offset;
address - — y
— v
32-b bits b bits

20 = block size a.k.a line size (in bytes)

Larger block size has distinct hardware advantages
e |less tag overhead
e exploit fast burst transfers from DRAM
e exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

11/4/2017

13



14

Block-level Optimizations

e Tags are too large, i.e., too much overhead
— Simple solution: Larger blocks, but miss penalty
could be large.
e Sub-block placement (aka sector cache)

— A valid bit added to units smaller than the full block,
called sub-blocks

— Only read a sub-block on a miss
— If a tag matches, is the word in the cache?

1700 |

300 | 1 1 0 0
204 0 1 0 1

11/4/2017

14



15

Set-Associative RAM-Tag Cache

Tag Status Data Tag Status Data
L N J
—Y —Y
I V
Tag Index Offset

Not energy-efficient

- A tag and data word
is read from every
way

Two-phase apénroach

- First read tags, then
just read data from
selected way

- More energy-
efficient

— Doubles latency in
L1

- OK, for L2 and
above, why?

11/4/2017

15



16

Highly-Associative CAM-Tag Caches

e For high associativity (e.g., 32-way), use content-addressable
memory (CAM) for tags (Intel XScale)

e QOverhead: Tag+comparator bit 2-4x area of plain RAM-tag bit

tag; | set; | offsety,
/ |
_ {
| Set | (
Bet 1
Set 0
| Tag H @ ] Data Block "
| Talg H @ ) Data Block
| Ta-g L;’@-:—J Data Blaock |
Only one set enabled l Hit? lData

Only hit data accessed — saves energy

11/4/2017

16



17

Way Predicting Caches
(MIPS R10000 L2 cache)

e Use processor address to index into way prediction table
e Look in predicted way at given index, then:

25

Return copy Look in other way
of data from

cache k /

SLOW HIT WMISS
(change entry in Y
prediction table) Read block of data from

next level of cache

11/4/2017

17



Way Predicting Instruction Cache

(Alpha 21264-like)

Jump target l

; ‘ !
czrr?tll?ol 'D

——-| 1

OX

addr inst
Primary
> Instruction
—>| wa
Y Cache
S tial W.
Branch Target Way

11/4/2017

18



Victim Caches (HP 7200)

CPU
11l

RF

20

ﬁ
_

L1 Data
Cache

Unified L2
< Cache
\ >
Victim |
FA Cache where ?
4 blocks

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines

e First look up in direct mapped cache
e If miss, look in victim cache
e If hit in victim cache, swap hit line with line now evicted from L1
e If miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

11/4/2017

19



21

Multilevel Caches

e A memory cannot be large and fast
e Increasing sizes of cache at each level

DRAM

CPU =L
> — l-:z

Local miss rate = misses in cache / accesses to cache Global

miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

11/4/2017

20



22

Inclusion Policy

e Inclusive multilevel cache:
- Inner cache holds copies of data in outer cache
- Extra-CPU access needs only check outer cache
- Most common case

e Exclusive multilevel caches:
- Inner cache may hold data not in outer cache
- Swap lines between inner/outer caches on miss

- Used in Athlon with 64KB primary and 256KB
secondary cache

Why choose one type of the other?

11/4/2017

21



[Source: K. Asanovic, 2008]

Itan1um-2 On- Ch1p Caches

(14 '
L |
ache

21.6 mm

gt (02) |
p]ml I.L_ pu[m U ﬂl'ﬁ Lev el 1. 16KB. 4-way s.a.. 64B line,
L quad-port (2 load+2 store). single
cycle latency
C
Level 2, 256KB, 4-way s.a. 128B line,
quad-port (4 load or 4 store), five
cycle latency

Level 3. 3MB. 12-way s.a.. 128B line.
single 32B port. twelve cycle latency
L3 and L2 caches occupy

more than 2/3 of total areal

19.5mm >

11/4/2017

22



Reducing Read Miss Penalty

CPU )

111 Data
RF | [ Cache

—p| Write
/ buffer

Unified
L2
Cache

Evicted dirty lines for writeback cache
OR
All writes in writethru cache

e Write buffer may hold updated value of location

needed by a read miss

e Simple scheme: on a read miss, wait for the write

buffer to go empty
e Faster scheme: Check write buffer addresses

against read miss addresses, if no match, allow
read miss to go ahead of writes, else, return value

October 5, 203'9 Write buffer

11/4/2017

23



Prefetching

e Speculate on future instruction and
data accesses and fetch them into
cache(s)

— Instruction accesses easier to predict
than data accesses

e Varieties of prefetching
— Hardware prefetching
— Software prefetching
- Mixed schemes

e What types of misses does
prefetching affect?

25

11/4/2017

24



Issues in Prefetching

o Usefulness - should produce hits
e Timeliness — not late and not too early
e Cache and bandwidth pollution

CPU L1 Unified L2
&= |nstruction [¢— Cache
>
11l
RF
> |1Data| [

Prefetched data

26

11/4/2017

25



27

Hardware Instruction Prefetching

e Instruction prefetch in Alpha AXP 21064

— Fetch two blocks on a miss; the requested block and
the next consecutive block

— Requested block placed in cache, and next block in
instruction stream buffer

Prefetched

Req Stream instruction block

block Buffer
(4 blocks)

CPU Unified L2
Cache
L1 '
RF Instruction | Req
block

11/4/2017

26



Hardware Data Prefetching

e Prefetch-on-miss:
— Prefetch b + 1 upon misson b

e One Block Lookahead (OBL) scheme
— Initiate prefetch for block b + 1 when
block b Is accessed

- VI_/hy?is this different from doubling block
Size:
— Can extend to N block lookahead

e Strided prefetch

— If sequence of accesses to block b, b+N,
b+2N, then prefetch b+3N etc.

28

11/4/2017

27



29

Software Prefetching

for(1=0; 1 < N; i++) {
prefetch( &al[1 + 1] );
prefetch( &bl1 + 1] );
SUM = SUM + af[i] * b[1i];

o What property do we require of the cache
for prefetching to work ?

11/4/2017

28



30

Software Prefetching Issues

e Timing is the biggest issue, not predictability
— If you prefetch very close to when the data is
required, you might be too late
— Prefetch too early, cause pollution

— Estimate how long it will take for the data to come
into L1, so we can set P appropriately

- Why is this hard to do?

for(i=0; 1 < N; i++) {
prefetch( &al[i + P );
prefetch( ¢b[i + P] );
SUM = SUM 4 ali] * bl[il;

Must consider cost of prefetch instructions

11/4/2017

29



31

Compiler Optimizations

e Restructuring code affects the data block

dCCESS sequence

— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

e Prevent data from entering the cache

— Useful for variables that will only be accessed once
before being replaced

— Needs mechanism for software to tell hardware not to
cache data (instruction hints or page table bits)

e Kill data that will never be used again

— Streaming data exploits spatial locality but not temporal
locality

— Replace into dead cache locations

11/4/2017

30



Loop Interchange

What type of locality does this improve?

32

11/4/2017

31



Loop Fusion

33

for(i=0; i < N; 1i++)
for (3=0; J < M; J++)
alil[j] = bli][]]

for (i=0; i < N; 1i++)
for (j=0; J < M; Jj++)
dfi]1[J] = alil[7]]

a

for (1=0; 1 < M; 1i++)
for ( ;7 J < N; J++)
j] = bl[1]1[7]

=0
(1] []
(11 (3] = alil[3]]

a
iy
}

What type of locality does this improve?

11/4/2017

32



34

Blocking

for(i=0; 1 < N; 1i++)

for(j=06 J < N; J++) |
r = 0;
for (k=0; k < N; k++)
r =1r + y[i]l[k] * z[k]1I[3];
x[1][J] = r;
}
p 4 Jj \'4 k

[ ] Nottouched B—Oidaccess

11/4/2017

33



35

Blocking

for(Jj=0; 3Jjj < N; Jj=jJj+B)
for (kk=0; kk < N; kk=kk+B)
for(i=0; i < N; i++)
for(j=jj; Jj < min(3jj+B,N); J++) {

r = 0;

for (k=kk; k < min(kk+B,N); k++)
r =r + y[i] [k] * z[k]I[3];

x[1][J] = x[1][J] + r;

p 4 I J k Z

i i IIIIII

What type of locall

g
2
7))
s

'S improve?

11/4/2017

34



::::::::

Memory Management:
From Absolute Addresses
to Demand Paging

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L9-2
Emer

Memory Management

e The Fifties

- Absolute Addresses
- Dynamic address translation

e The Sixties
- Paged memory systems and TLBs
- Atlas’ Demand paging

e Modern Virtual Memory Systems

October 12, 2005 esAlL



6.823 L9-3
Emer

Names for Memory Locations

- > " > - >
machine virtual physical
language address address

address
e Machine language address
— as specified in machine code

e Virtual address

— ISA specifies translation of machine code address
Into virtual address of program variable (sometime
called effective address)

e Physical address

— operating system specifies mapping of virtual
address into name for a physical memory location

October 12, 2005 ﬂﬁfl L



6.823 L9-4
Emer

Absolute Addresses

EDSAC, early 50’s

virtual address = physical memory address

e Only one program ran at a time, with
unrestricted access to entire machine (RAM +
1/0 devices)

e Addresses in a program depended upon where
the program was to be loaded in memory

e But it was more convenient for programmers
to write location-independent subroutines

How could location independence be achieved?

October 12, 2005 SERAl



Dynamic Address Translation

6.823 L9-5
Emer

Motivation
In the early machines, 1I/0 operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and 1/0 of 2 or more
programs were overlapped. How?
= multiprogramming

Location independent programs
Programming and storage management ease
= need for a base register

Protection
Independent programs should not affect
each other inadvertently

= need for a bound register

October 12, 2005

Physical Memory

T CSAIL



6.823 L9-6
Emer

Simple Base and Bound Translation

T : Segment Length

Bounds

- Violation?
/ 5
o
: : Physical GE)
i Load X | Effective Address =
: Address + -%
=

Base Physical Address
Program
Address

Space

Base and bounds registers are visible/accessible only
when processor is running Iin the supervisor mode

October 12, 2005 CSAIL



6.823 L9-7
Emer

Separate Areas for Program and Data

Bounds
Violation?

Effective Addr
Load X ‘ Register

>

|-

o

=

Q

EssssssssssssssssmmEnnm 2

c

Program ‘T

Bounds S

—
Address Violation?

Space Program
Counter

What is an advantage of this separation?
(Scheme still used today on Cray vector supercomputers)

October 12, 2005 CSAIL



6.823 L9-8
Emer

Memory Fragmentation

Users 4 &5 Users 2 &5
arrive leave

user 3 \\\\\j\\\§ user 3 \\\\\\\*‘\\\
user 5 n”m \

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

CSAIL

October 12, 2005



6.823 L9-9
Emer

Paged Memory Systems

e Processor generated address can be
Interpreted as a pair <page number, offset>

page number offset

e A page table contains the physical address
of the base of each page

1
0 0 / 0
1 1
2 2
3 3 3
Address Space Page Table
of User-1 of User-1 z

Page tables make it possible to store the
pages of a program non-contiguously. i
Al

October 12, 2005 CsAIL




6.823 L9-10
Emer

Private Address Space per User

Physical
Memory

Page Table

User 2

Page Table

User 3

Page Table

e Each user has a page table
e Page table contains an entry for each user page

October 12, 2005 @ L



6.823 L9-11
Emer

Where Should Page Tables Reside?

e Space required by the page tables (PT) is
proportional to the address space, number
of users, ...

= Space requirement is large
= Too expensive to keep in registers

e ldea: Keep PT of the current user in special
registers

— may not be feasible for large page tables
— Increases the cost of context swap

e ldea: Keep PTs in the main memory

— needs one reference to retrieve the page base address
and another to access the data word

= doubles the number of memory references!

October 12, 2005 Loy



6.823 L9-12

Page Tables in Physical Memory
_______________ | Prusers
T uer 2

. -

W//////////é 1fifififififififififififi;

User 2 T

October 12, 2005



6.823 L9-13
Emer

A Problem In Early Sixties

e There were many applications whose data
could not fit in the main memory, e.g., payroll

— Paged memory system reduced fragmentation but still
required the whole program to be resident in the main
memory

e Programmers moved the data back and forth
from the secondary store by overlaying it
repeatedly on the primary store

tricky programming!

October 12, 2005



6.823 L9-14
Emer

Manual Overlays

e Assume an instruction can address all

the storage on the drum 40k bits
main
e Method 1: programmer keeps track of I
addresses in the main memory and
initiates an 1/0 transfer when required 640k bits
drum
e Method 2: automatic initiation of 1/0 Central Store
transfers by software address _
translation Ferranti Mercury
1956

Brooker’s interpretive coding, 1960

Problems?

Methodl: Difficult, error prone
Method?2: Inefficient

ey
October 12, 2005



6.823 L9-15
Emer

Demand Paging in Atlas (1962)

“A page from secondary
storage is brought into the
primary storage whenever
it 1Is (implicitly) demanded
by the processor.”

Tom Kilburn Primary
32 Pages

512 words/page

Primary memory as a cache

for secondary memory Secondary

Central (Drum)
User sees 32 x 6 x 512 words Memory 32x6 pages
of storage

October 12, 2005 CSAIL



6.823 L9-16
Emer

Hardware Organization of Atlas
Effective

Address Initial J (nOt Swapped)
Address >

(not swapped)
48-bit words 0
512-word pages

8 Tape decks
88 sec/word

1 Page Address
Register (PAR)
per page frame

31
<effective PN , status>

Compare the effective page address against all 32 PARs
match = normal access
no match = page fault

save the state of the partially executed
instruction

October 12, 2005 TR

CSAIL



Atlas

6.823 L9-17
Emer

Demand Paging Scheme

e On a page fault:

October 12, 2005

Input transfer into a free page is initiated

The Page Address Register (PAR) is updated

If no free page is left, a page is selected to be
replaced (based on usage)

The replaced page is written on the drum

e to minimize drum latency effect, the first empty
page on the drum was selected

The page table is updated to point to the new
location of the page on the drum

M-

TCSAIL



6.823 L9-18
Emer

Caching vs. Demand Paging

CPU

Caching
cache entry

cache block (—32 bytes)
cache miss (1% to 20%)
cache hit (—1 cycle)
cache miss (—100 cycles)
a miss is handled

October 12, 2005

In hardware

secondary
memory

CPU

Demand paging

page-frame

page (—4K bytes)

page miss (<0.001%)

page hit (—100 cycles)

page miss(—5M cycles)

a miss is handled
mostly in software

CSAIL



Five-minute break to stretch your legs

19



6.823 L9-20
Emer

Modern Virtual Memory Systems

lllusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces
page table = name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price Is address translation on
each memory reference

October 12, 2005

Primary
Memo_ry/

OS

user,

W
Store
N

-/

N—

mapping | pa

T CSAIL



Linear Page Table

6.823

L9-21
Emer

e Page Table Entry (PTE) Page Table Data Fages
contains: PPN
— A bit to indicate if a page E)IF;RI
exists PPN
— PPN (physical page % Data word
number) for a memory-
resident page Offset
— DPN (disk page number) for
a page on the disk Y
— Status bits for protection EEH
and usage PPN %
e OS sets the Page Table DPN
Base Register DPN
: %
whenever active user 222222222229 | VPN
process changes PPN
> PPN
PT Base Register VPN Offset

October 12, 2005

Virtual address




6.823 L9-22
Emer

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:

— 220 PTEs, i.e, 4 MB page table per user

= 4 GB of swap needed to back up full virtual address
space

Larger pages?
e Internal fragmentation (Not all memory in a page is
used)

e Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
e Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?

October 12, 2005 esAlL



6.823 L9-23
Emer

Hierarchical Page Table

Virtual Address
31 2221 1211 0

pl p2 offset

\

v A J
10-bit 1g—bit
L1 index L2 index

Root of the Current
Page Table m

(Processor Level 1 %

Register) Page Table %
Level 2

page in primary memory Page Tables

page in secondary memory

—
T

” .
7] PTE of a nonexistent page Data Pages A

October 12, 2005 TCsAIL



6.823 L9-24
Emer

Address Translation & Protection

Virtual Address | Virtual Page No. (VPN) offset

Kernel/User Mode

Read/Write

Exception?
Physical Address | Physical Page No. (PPN) | offset

e Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (— one cycle) and
space efficient

October 12, 2005 TCSAIL



6.823 L9-25
Emer

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB

TLB hit = Single Cycle Translation
TLB miss — Page Table Walk to refill
virtual address VPN offset
|
VR \W| D] tl';lg PPN (VPN = virtual page number)

(PPN = physical page number)

1 | 1

nit? physical address PPN offsét

October 12, 2005 = P



6.823 L9-26
Emer

TLB Designs

e Typically 32-128 entries, usually fully associative

— Each entry maps a large page, hence less spatial locality
across pages = more likely that two entries conflict

— Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

e Random or FIFO replacement policy

e No process information in TLB?

e TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = ?

October 12, 2005 A



6.823 L9-27
Emer

Variable Sized Page Support

Virtual Address

31 22 21 1211 0]
pl p2 offset
\ A J
10Ybit 1g—bit
L1 index L2 indeX Y offset[
Root of the Current _ T ~
Page Table Y, p2‘
(Processor Level 1 %
Register) Page Table Z
. . Level 2
page in primary memory page Tables

AN\

W

large page in primary memory
page in secondary memory
PTE of a nonexistent page

October 12, 2005

Data Pages

[rhﬂfjﬁ

T CSAIL



6.823 L9-28
Emer

Variable Size Page TLB

Some systems support multiple page sizes.

_ virtual address VPLI:\I | offset
i
VIRMWD Tag PPN L
o A
physical address PP‘IV\I : off;et

October 12, 2005 = Fo



6.823 L9-29
Emer

Handling A TLB Miss

Software (MIPS, Alpha)

TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)

A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

dlAg]
October 12, 2005 e



Hierarchical Page Table Walk:
SPARC v8

6.823 L9-30
Emer

Virtual Address

Context
Table
Register

Context Table

Context
Register

»|root ptr

MMU does this table walk in hardware on a TLB miss

October 12, 2005

Index 1 Index 2 Index 3 Offset
31 23 17 11 0
L1 Table
L2 Table
PTP > L3 Table
PTP >
PTE
31 11
Physical Address PPN Offset




6.823 L9-31
Emer

Translation for Page Tables

e Can references to page tables TLB miss
e Can this go on forever?

A,

User PTE Base
User Page Table \¢

(in virtual space)

T7/////////A

System Page Table
(in physical space)

System PTE Base

Data Pages

October 12, 2005 TCSAIL



6.823 L9-32

Address Translation: mer
putting It all together
Virtual Address

l

1 hardware
[ hardware or software

[] software

the | page is _
€ memory denied permitted

¢ memory

Page Fault indate TI B| | Protection Physical

(OS Ioads page) Fault AddreSS
l (to cache)
Where? SEGFAULT
Ed

October 12, 2005 CSAIL



Thank you !

33



........

Modern Virtual Memory Systems

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L10-2

Address Translation:
putting It all together
Virtual Address

l

[ hardware
[ hardware or software

[[] software

Restart instruction

the | page is _ _
¢ memory e memory  denied permitted
Page Fault Undate TIB| | Protection Physical

(OS loads page) ool e T e e e e e Fault AddreSS
(to cache)

SEGFAU LT‘

October 17, 2005 CSAIL



Topics

6.823 L10-3
Arvind

e Interrupts )

e Speeding up the common case:

— TLB & Cache organization

e Speeding up page table walks

e Modern Usage

October 17, 2005



6.823 L10-4
Arvind

Interrupts:
altering the normal flow of control

B/ @

" " Interrupt
program )= \Hl: handler

HI

Ii+ n

!

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

October 17, 2005 esAlL



6.823 L10-5
Arvind

Causes of Interrupts

Interrupt: an event that requests the attention of the processor

e Asynchronous: an external event
— Input/output device service-request
— timer expiration
— power disruptions, hardware failure

e Synchronous: an internal event (a.k.a
exceptions)
— undefined opcode, privileged instruction
— arithmetic overflow, FPU exception
— misalighed memory access

— virtual memory exceptions: page faults,
TLB misses, protection violations

— traps: system calls, e.g., jumps into kernel

October 17, 2005 =5



6.823 L10-6
Arvind

Asynchronous Interrupts:
Invoking the interrupt handler

e An 1I/0 device requests attention by
asserting one of the prioritized interrupt
request lines

e \When the processor decides to process the
Interrupt

— It stops the current program at instruction I,
completing all the instructions up to I, ,
(precise interrupt)

— It saves the PC of instruction I; in a special
register (EPC)
— It disables interrupts and transfers control to a

designated interrupt handler running in the
kernel mode

October 17, 2005 I' c 1Y



6.823 L10-7
Arvind

Interrupt Handler

e Saves EPC before enabling interrupts to

allow nested interrupts =
— need an instruction to move EPC into GPRs

— need a way to mask further interrupts at least until
EPC can be saved

e Needs to read a status register that
Indicates the cause of the interrupt

e Uses a special indirect jump instruction

RFE (return-from-exception) which
— enables interrupts

— restores the processor to the user mode

— restores hardware status and control state

October 17, 2005 4 Al



6.823 L10-8
Arvind

Synchronous Interrupts

e A synchronous interrupt (exception) is caused
by a particular instruction

e In general, the instruction cannot be
completed and needs to be restarted after the
exception has been handled

— requires undoing the effect of one or more partially
executed instructions

e In case of a trap (system call), the instruction
IS considered to have been completed

— a special jJump instruction involving a change to
privileged kernel mode

October 17, 2005 SERAl



6.823 L10-9
Arvind

Exception Handling s-stage Pipeline

Inst. | | | Decode | _>\| Data | [
PC Mem D E + M Mem W
PC address lllegal Data address
: Overflow )
Exception Opcode Exceptions

Asynchronous Interrupts

e How to handle multiple simultaneous
exceptions in different pipeline stages?

e How and where to handle external
asynchronous interrupts?

October 17, 2005 4 “CSAIL



6.823 L10-10
Arvind

Exception Handling s-stage pipeline

Commit.
Points
Inst. \ DataE
Mem Decode > + MemE
@ @, :
PC address Icl)legacll Overflow | Data address
Exception peode Exceptions ; o
. m g
g n @
- @)
/ . @
> > U o
Select A h 7 n LLi
Handler Kill F‘ Kill D‘ Kill E‘ synchronous| . KiII‘
PC Stage Stage Stage Interrupts | writeback

(i

October 17, 2005 CSAIL



6.823 L10-11
Arvind

Exception Handling s-stage Pipeline

e Hold exception flags in pipeline until
commit point (M stage)

e Exceptions in earlier pipe stages override
later exceptions for a given instruction

e Inject external interrupts at commit
point (override others)

e If exception at commit: update Cause
and EPC regqisters, kill all stages, inject
handler PC into fetch stage

October 17, 2005 = F



Topics

6.823 L10-12
Arvind

e Interrupts

e Speeding up the common case:
— TLB & Cache organization

e Speeding up page table walks

e Modern Usage

October 17, 2005

A



6.823 L10-13

Address Translation in CPU Pipeline

Inst 1 Inst. Decode _> i Data 1 Data 1 IR
PC TLB [ cache [P El +MMM 1B [ cache [TW
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

e Software handlers need a restartable exception on
page fault or protection violation

e Handling a TLB miss needs a hardware or software
mechanism to refill TLB

e Need mechanisms to cope with the additional latency
of a TLB:
— slow down the clock
— pipeline the TLB and cache access
— virtual address caches
— parallel TLB/cache access

Hlog]
October 17, 2005 =



Virtual Address Caches

6.823 L10-14
Arvind

CPU

VA

TLB

.| Physical

Cache

PA

|Primary

Memory

Alternative: place the cache before the TLB

CPU

VA

Virtual

Cache

PA

| TLB

Primary

» Memory

(StrongARM)

e one-step process in case of a hit (+)

e cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

e aliasing problems due to the sharing of pages (-)

October 17,

2005



6.823 L10-15

Aliasing In Virtual-Address Caches

Page Table Tag Data
VA, —
Data Pages VA1 1St CODV Of Data. at PA
PA VA, 2nd Copy of Data at PA
VA, — .
Virtual cache can have two

copies of same physical data.
Writes to one copy not visible
to reads of other!

Two virtual pages share
one physical page

General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCS)

October 17, 2005 4 c SAIL



6.823 L10-16
Arvind

Concurrent Access to TLB & Cache

VA

PA

— Virtual
VPN L b Index
/ y
Direct-map Cache
k
TLB *’ 2 blocks
Y 2b-byte block
PPN Page Offset
< 7 \
Tag O — \.

\T'/ Physical Tag Data
hit?

Index L is available without consulting the TLB
= cache and TLB accesses can begin simultaneously
Tag comparison is made after both accesses are completed

Cases: L +b =k

October 17, 2005

L+ b <Kk L+b>Kk



6.823 L10-17

Virtual-Index Physical-Tag Caches: ™
Associative Organization
- I a Virtual
VA l S b/ ..2. Index
TLB " Direct-mag  pirect-mag
T 2- blocks 2- blocks
l ‘,
PA Page Offset
|
Tag
l Data

After the PPN is known, 2% physical tags are compared

Is this scheme realistic?

October 17, 2005 = Fe M



6.823 L10-18
Arvind

Concurrent Access to TLB & Large L1

The problem with L1 > Page size

Virtual Index

/ ' \ L1 PA cache
VA VPN a | Page Offset | b Direct-map
TLB VA,[PPN_ | Data
l VA,|PPN, | Data
PA PPN Page Offset |b
N / .
Tag

October 17, 2005

Can VA, and VA, both map to PA ?

.......



A solution via Second Level Cache

6.823 L10-19

Arvind

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 1S “Inclusive” of both Instruction and Data caches

October 17, 2005

emor

emor

emor

<SS |

emor

<IKIIK K

Al

CSAIL



6.823 L10-20

Anti-Aliasing Using L2: MIPS R10000

/ ' Virtual Index]| L1 PA cache
VA VPN a | Page Offset |b | Direct-map
'— into L2 tag VA,|PPN, | Data
TLB
VA,|PPN_ Data
PA PPN Page Offset | b
N /
' PN (=) hit
Tag

e Suppose VAl and VA2 both map to PA
and VAl is already in L1, L2 (VAL # VA2) [ | Al a, Data
e After VA2 is resolved to PA, a collision will
be detected in L2.
e VA1 will be purged from L1 and L2, and
VA2 will be loaded = no aliasing ! Ay
October 17, 2005 CsAIL

Direct-Mapped L2



Virtually-Addressed L1:
Anti-Aliasing using L2

6.823 L10-21
Arvind

|
— ~ Virtual
VA VPN Page Offset| b Index & Tag
VA,| Data
TLB
1 VA,| Data
PA PPN Page Offset| b L1 VA Cache
N /
“Virtual
Tag Physical v v Tag”
Index & Tag

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

October 17, 2005

PA | VA,| Data

L2 PA Cache

L2 “contains” L1



Five-minute break to stretch your legs

22



Topics

6.823 L10-23
Arvind

e Interrupts

e Speeding up the common case:
— TLB & Cache organization

e Speeding up page table walks

e Modern Usage

October 17, 2005

A



6.823 L10-24
Arvind

Page Fault Handler

e \When the referenced page is not in DRAM:
— The missing page is located (or created)

— It is brought in from disk, and page table is
updated

Another job may be run on the CPU while the first
job waits for the requested page to be read from disk

— If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

e Since it takes a long time to transfer a page
(msecs), page faults are handled completely
In software by the OS

— Untranslated addressing mode is essential to allow
kernel to access page tables

October 17, 2005 I' c 1Y



6.823 L10-25

Hierarchical Page Table

Arvind

Virtual Address
31

72
H

Z

w2

#

(Processor Level 1
Register) Page Table

Level
page in primary memory Page Tables

page in secondary memory

7 PTE of a nonexistent page Data Pages

October 17, 2005

CSAIL



6.823 L10-26
Arvind

Swapping a Page of a Page Table

A PTE In primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

— a page of a PT can be swapped out only
If none its PTE’s point to pages in the
primary memory

Why?

October 17, 2005 “esAlL



6.823 L10-27
Arvind

Atlas Revisited

e One PAR for each physical page
PAR’s

e PAR’s contain the VPN’s of the
pages resident in primary memory

PPN VPN

e Advantage: The size is
proportional to the size of the
primary memory

e What is the disadvantage ?

October 17, 2005 = F



6.823 L10-28
Arvind

Hashed Page Table:

Approximating Associative Addressing

VPN d Virtual Address
l Page Table

Offset PA of PTE

Base of Table

VPN PID| PPN

e Hashed Page Table is typically 2 to 3
times larger than the number of PPN’s VPN PID DPR

to reduce collision probability VPN IPID

e |t can also contain DPN’s for some non-
resident pages (not common)

e |If a translation cannot be resolved in
this table then the software consults a Primary
data structure that has an entry for Memory
every existing page

\
D

October 17, 2005 Al



6.823 L10-29
Arvind

Global System Address Space

User = map

Level A

v

User

e Level A maps users’ address spaces into the
global space providing privacy, protection,
sharing etc.

e Level B provides demand-paging for the large
global system address space

e Level A and Level B translations may be kept in
separate TLB’s

October 17, 2005 Ic%}u



Hashed Page Table Walk:

PowerPC Two-level, Segmented Addressing

6.823 L10-30

Arvind

64-bit user

VA Seg ID

Page

Offset

hashg

per process

PA of Seg Table ——»d.) >
PA

35

51

Hashed Segment Table

80-bit System VA Global Seg ID Page | Offset
0] 51 67 79
hash,” Hashed Page Table

PA of Page Table Aé

system-wide

[ IBM numbers bits
with MSB=0 ] 40-b
October 17, 2005

PA

27

V739

it PA PPN

Offset

CSAIL



6.823 L10-31
Arvind

Power PC: Hashed Page Table

VPN d 80-bit VA
} Page Table
PA of Slot |
S Offset @ : TN o
- VPN 7
Base of Table
e Each hash table slot has 8 PTE's
<VPN,PPN> that are searched sequentially
e If the first hash slot fails, an alternate hash
function is used to look in another slot
All these steps are done in hardware!
e Hashed Table is typlcally_2 to 3 times larger Primary
than the number of physical pages Memor
e The full backup Page Table is a software Yy

data structure e
October 17, 2005 = 2o



6.823 L10-32
Arvind

Virtual Memory Use Today - 1

e Desktops/servers have full demand-paged

virtual memory
— Portability between machines with different memory sizes
— Protection between multiple users or multiple tasks
— Share small physical memory among active tasks
— Simplifies implementation of some OS features

e Vector supercomputers have translation and
protection but not demand-paging

(Crays: base&bound, Japanese: pages)

— Don’t waste expensive CPU time thrashing to disk (make
jobs fit in memory)

— Mostly run in batch mode (run set of jobs that fits in
memory)

— Difficult to implement restartable vector instructions

October 17, 2005 I' c SAIL



6.823 L10-33
Arvind

Virtual Memory Use Today - 2

e Most embedded processors and DSPs provide
physical addressing only

— Can’t afford area/speed/power budget for virtual memory
support

— Often there is no secondary storage to swap to!

— Programs custom written for particular memory
configuration in product

— Difficult to implement restartable instructions for exposed
architectures

Given the software demands of modern embedded devices (e.qg.,
cell phones, PDAS) all this may change in the near future!

[ |7‘ ]

T CSAIL

October 17, 2005



Thank you !

34



----------

Branch Prediction
and
Speculative Execution

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by
Krste Asanovic and Arvind



Outline

6.823 L13-2
Arvind

A

e Control transfer penalty

e Branch prediction schemes

e Branch misprediction recovery schemes

October 26, 2005



6.823 L13-3
Arvind

Phases of Instruction Execution

PC
Buffer
Buffer

Units
Result
Buffer
State

October 26, 2005

Fetch: Instruction bits retrieved
from cache.

Decode: Instructions placed in appropriate
Issue (aka “dispatch”) stage buffer

Execute: Instructions and operands sent to
execution units .

When execution completes, all results and
exception flags are available.

Commit: Instruction irrevocably updates
architectural state (aka “graduation” or
“completion”).

CSAIL



6.823 L13-4
Arvind

Fetch Stage

-

Instruction Cache

v
Hit?

Opcodel Rd | Rsrcl Rsrc2/Im

Instructions

l To Decode Stage

October 26, 2005 CSAIL



Decode & Rename Stage

6.823 L13-5
Arvind

(Renaming is shown only

for Rsrc2, similar for Rsrcl)

Opcode
R31
Committed R30 1ag
Architectural ! I . !
Regfile RO V] Tag

R31
R30 Rename

Table
RO

A

y

A

y

ALLJ/_ImmSeI

October 26, 2005

CSAIL



6.823 L13-6
Arvind

Execute Stage

e Arbiter selects one ready instruction (P1=1 AND P2=1) to
execute

e Instruction reads operands from ROB, executes, and
broadcasts tag and result to waiting instructions in ROB.
Also saves result and exception flags for commit.

\ 4 \ 4 \ 4

\ 4 \ 4

tn [Opcode|U|E|P1|Tagl|Datal|P2|Tag2|Data2|Pd| Rd |Datad|Cause

\\Eunc. Uni;/
L

October 26, 2005 @%

CSAIL



6.823 L13-7
Arvind

Commit Stage

e When instruction at ptr2 (commit point) has

completed, write back result to architectural state
and check for exceptions

e Check if rename table entry for architectural

register written matches tag, if so, clear valid bit In
rename table

tl
ptr2 —
tn
1
v Exception?
i R31 Rename
Committed R31 V] Tag
L, V] Ta R30
Architectural R3O! | | q. Table
Regfile RO VI Tag]RO

¥ v
__.i) .
October 26, 2005 ;;'Zlear rename Valldi%

"CSAIL



6.823 L13-8
Arvind

Branch Penalty

Next fetch
started

Buffer

Buffer
Func.
units

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

Branch executed

October 26, 2005 CSAIL



6.823 L13-9

Average Run-Length between
Branches

Average dynamic instruction mix from SPEC92:
SPECiInt92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %
SPECIint92: compress, egntott, espresso, gcc, li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches

October 26, 2005 =



6.823 L13-10
Arvind

Reducing Control Transfer Penalties

Software solution
e loop unrolling
Increases the run length
e instruction scheduling
Compute the branch condition as early
as possible (limited)

Hardware solution
e delay slots
replaces pipeline bubbles with useful work
(requires software cooperation)
e branch prediction & speculative execution
of instructions beyond the branch

i Yy I| [
October 26, 2005 CsAIL



6.823 L13-11

MIPS Branches and Jumps

Arvind

Need to know (or guess) both target address and
whether the branch/jump is taken or not

Instruction Taken known?  Target known?
BEQZ/BNEZ After Reg. Fetch After Inst. Fetch
J Always Taken After Inst. Fetch

JR Always Taken After Reg. Fetch

October 26, 2005

.......



6.823 L13-12
Arvind

Branch Penalties in Modern Pipelines

UltraSPARC-I11 instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

October 26, 2005

le|=|W|TM|O|>

h—

« | T

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)



Outline

6.823 L13-13
Arvind

e Control transfer penalty

e Branch prediction schemes -

e Branch misprediction recovery schemes

October 26, 2005



6.823 L13-14
Arvind

Branch Prediction

Motivation: branch penalties limit performance of
deeply pipelined processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures: branch history tables, branch target
buffers, etc.

Mispredict recovery mechanisms:
e In-order machines: Kill instructions following
branch in pipeline
e Qut-of-order machines: shadow registers and
memory buffers for each speculated branch

October 26, 2005 =i



6.823 L13-15
Arvind

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:
|

backward ' forward

90% ; 50%

ISA can attach additional semantics to branches about
preferred direction, e.g., Motorola MC88110
bneO (preferred taken) begO (not taken)

ISA can allow arbitrary choice of statically predicted direction
(HP PA-RISC, Intel 1A-64)

October 26, 2005 = F



6.823 L13-16
Arvind

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

October 26, 2005 e



6.823 L13-17
Arvind

Branch Prediction Bits

e Assume 2 BP bits per instruction
e Change the prediction after two consecutive mistakes!

— taken

BP state:
(predict take/—take) x (last prediction right/wrong)

October 26, 2005 = Fo



Branch History Table

6.823 L13-18
Arvind

Fetch PC |O|O
g J
N I
¥k | | 2k-entry
I-Cache BHT Index - BHT
2 bits/entry
Instruction
Opcode offset
| v | |
Y/
,, : \
Branch? Target PC Taken/—Taken?

4K-entry BHT, 2 bits/entry, —80-90% correct predictions

October 26, 2005



6.823 L13-19
Arvind

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (—95% correct)

010

Fetch PC

.

2-bit global branch
history shift register

_.|

Shift in
Taken/—Taken
results of each
branch

October 26, 2005

-+

||

|
\

/

Taken/—Taken? ()

CSAIL



6.823 L13-20
Arvind

Exploiting Spatial Correlation
Yeh and Patt, 1992

It (X[1] < 7) then
y+: 1;

It (X[1] < 5) then
c —-= 4,

If first condition false, second condition also false

History bit: H records the direction of the last
branch executed by the processor

Two sets of BHT bits (BHTO & BHT1) per branch
Instruction

O (not taken) = consult BHTO
1 (taken) = consult BHT1

October 26, 2005

CCCCC



6.823 L13-21
Arvind

Limitations of BHTSs

Cannot redirect fetch stream until after branch instruction is
fetched and decoded, and target address determined

Correctly A| PC Generation/Mux
predicted Instruction Fetch Stage 1
taken branch Instruction Fetch Stage 2
penalty

P

F

B | Branch Address Calc/Begin Decode
| | Complete Decode
J

R

E

Jump Register
penalty

Steer Instructions to Functional units
Register File Read
Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-I11 fetch pipeline

TCSAIL

October 26, 2005



6.823 L13-22
Arvind

Branch Target Buffer

predicted ||BPbh
target
Branch
. : * | Target
IMEM . . * | Buffer
(2K entries)
Tk
PC
/\
target |BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
and update BTB & BPb else update BPb o

October 26, 2005 = Fo



6.823 L13-23
Arvind

Address Collisions

132 | Jump 100
Assume a
128-entry
BTB 1028 | Add .....
target BPb
- 236 take
' Instruction
What will be fetched after the instruction at 10287 Memory
BTB prediction = 236
Correct target — 1032

= kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

October 26, 2005



6.823 L13-24
Arvind

BTB should be for Control Transfer
Instructions only

BTB contains useful information for branch and
jump instructions only
= It should not be updated for other
Instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
Instruction?

October 26, 2005 = Fo



6.823 L13-25
Arvind

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

(can also be associative)

Entry PC Valid predicted
target PC

I-Cache PC

match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

= Next PC determined before branch fetched and decoded o
October 26, 2005 kit



6.823 L13-26
Arvind

Consulting BTB Before Decoding

l 132 | Jump 100
entry PC target BPb
132 236 take 1028 | Add .....

e The match for PC=1028 fails and 1028+4 is fetched
= eliminates false predictions after
ALU instructions
e BTB contains entries only for control transfer
Instructions
= more room to store branch targets

October 26, 2005 =



6.823 L13-27
Arvind

Combining BTB and BHT

e BTB entries are considerably more expensive than BHT,
but can redirect fetches at earlier stage in pipeline and
can accelerate indirect branches (JR)

e BHT can hold many more entries and is more accurate

|

PC Generation/Mux

BTB Instruction Fetch Stage 1

A

F)

F | Instruction Fetch Stage 2

BHT in later BHT| | B| Branch Address Calc/Begin Decode

I

J

R

E

pipeline stage
corrects when
BTB misses a
predicted
taken branch

Complete Decode

Steer Instructions to Functional units
Register File Read

/ Integer Execute

BTB/BHT only updated after branch resolves in E stage FaoRy
October 26, 2005 ¥s’



6.823 L13-28
Arvind

Uses of Jump Register (JR)

e Switch statements (Jump to address of matching case)

BTB works well if same case used repeatedly
e Dynamic function call Jump to run-time function address)

BTB works well if same function usually called, (e.g., In
C++ programming, when objects have same type in
virtual function call)

e Subroutine returns (Jump to return address)
BTB works well if usually return to the same place

= Often one function called from many different call
sites!

How well does BTB work for each of these cases?

October 26, 2005 = Fo



6.823 L13-29
Arvind

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

fa() { T™OO:; }
O { fcO: }
fcO { fdQO; }
Pop return address

Push call address when )
. when subroutine
function call executed

return decoded

&td () k entries
&fc() (typically k=8-16)

&b

October 26, 2005 = Fe M




6.823 L13-30
Arvind

Outline

e Control transfer penalty

e Branch prediction schemes

e Branch misprediction recovery schemes

Five-minute break to stretch your legs

October 26, 2005 = Fo



6.823 L13-31
Arvind

Mispredict Recovery

In-order execution machines:

— Assume no Iinstruction issued after branch can
write-back before branch resolves

— Kill all instructions in pipeline behind
mispredicted branch

Out-of-order execution?

—Multiple instructions following branch in program
order can complete before branch resolves

October 26, 2005 =i



6.823 L13-32
Arvind

IN-Order Commit for Precise

Exceptions
In-order Out-of-order In-order
Fetch " Decode —| Reorder Buffer »] Commit
A
]
Kill ~
 Execute

Inject handler PC

e Instructions fetched and decoded into instruction
reorder buffer in-order

e Execution is out-of-order ( = out-of-order completion)

e Commit (write-back to architectural state, i.e., regfile &
memory, IS in-order

Temporary storage needed in ROB to hold results before
commit

October 26, 2005 = P



6.823 L13-33
Arvind

Extensions for Precise Exceptions

pd dest data cause

otr U
next to U
commit L

Inst# use exec op pl srcl p2 src2

next D077
available T4

Reorder buffer

e add <pd, dest, data, cause> fields in the instruction template
e commit instructions to reg file and memory in program
order = buffers can be maintained circularly
= on exception, clear reorder buffer by resetting ptrq=ptr,
(stores must wait for commit before updating memory)

Tt

October 26, 2005 CSAIL



6.823 L13-34
Arvind

Branch Misprediction Recovery

srcl p2 src2 d dest data cause

Inst# use exec op pl

ptr,
next to
commit

rollback
availlable | 777777 8 k., oy v 2
ptr,
next
available

Reorder buffer

On mispredict
 Roll back “next available” pointer to just after branch

e Reset use bits
e Flush mis-speculated instructions from pipelines

e Restart fetch on correct branch path

October 26, 2005



6.823 L13-35
Arvind

Branch Misprediction in Pipeline

nject correct PC

Kill

pc|— Fetch "1 Decode | Reorder Buffer /j— Commit

l ‘ Complete

Execute

e Can have multiple unresolved branches in ROB
e Can resolve branches out-of-order by killing all the
Instructions in ROB that follow a mispredicted branch

October 26, 2005



6.823 L13-36

Arvind
Recovering Renaming Table
——7
Rename "=tV Rename Register —_—
Table f2 || Snapshots File
Ins# [use|exed op |pl srcl_p2] src2 Cdatany t,
N N t
Reorder N R 2
buffer R N} '
| N DN t,
Load Store Commit
unit| | 7° FU FU Unit
1 1 1 < t, result >

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

October 26, 2005 = P



6.823 L13-37
Arvind

Speculating Both Directions

An alternative to branch prediction Is to execute
both directions of a branch speculatively

e resource requirement is proportional to the
number of concurrent speculative executions

e only half the resources engage in useful work
when both directions of a branch are executed
speculatively

e pbranch prediction takes less resources
than speculative execution of both paths

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction .

October 26, 2005 = Fo



Thank you !

38



COMPUTER ORGANIZATION AND DESIGN s

The Hardware/Software Interface =dition

Chapter 6

Parallel Processors from
Client to Cloud




Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Task-level (process-level) parallelism
High throughput for independent jobs
Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

- ’5:“&“ Chapter 6 — Parallel Processors from Client to Cloud — 2



Hardware and Software

lardware
Serial: e.g., Pentium 4
Parallel: e.g., quad-core Xeon €5345

Software
Sequential: e.g., matrix multiplication
Concurrent: e.g., operating system
Sequential/concurrent software can run on
serial/parallel hardware

Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3



Parallel Programming

Parallel software is the problem

Need to get significant performance
improvement

Otherwise, just use a faster uniprocessor,
since it's easier!

Difficulties

Partitioning(load-balancing,scheduling)
Coordination(syncronization)
Communications overhead

Chapter 6 — Parallel Processors from Client to Cloud — 4



Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T =T /100 + T

1
(1-F

parallelizable sequential

Speedup =

=90
parallelizable ) + Fp /1 OO

SoVing: F oraieiizasie = 0-999 = 99.9%

Need sequential part to be 0.1% of original
time

arallelizable

Chapter 6 — Parallel Processors from Client to Cloud — 5



Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum. Matrix sum is parallelizable

Find Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_ 4
10 processors

Time =10 xt_, + 100/10 xt =20 x t_,,

Speedup = 110/20 = 5.5 (55% of potential speedup
10x(ideal))

100 processors
Time = 10 x t 4, + 100/100 x t_4 = 11 % t
Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across
Processors

Chapter 6 — Parallel Processors from Client to Cloud — 6




Scaling Example (cont)

What if matrix size is 100 x 1007?
Single processor: Time = (10 + 10000) x t_,4
10 processors

Time =10 x t_44, + 10000/10 x t_4q = 1010 x t_4
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time = 10 x t_,, + 10000/100 x t_4, = 110 x t_,
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 7




Strong vs Weak Scaling

Strong scaling: problem size fixed
As Iin example

Weak scaling: problem size proportional to
number of processors
10 processors, 10 x 10 matrix
Time =20 x t_ 4
100 processors, 32 x 32 matrix
Time = 10 x t_,, + 1000/100 x t_,, =20 x t_,
Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 8



Instruction and Data Streams

Flynn's taxonomy

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 9



Example: DAXPY (Y = a x X +Y)

Conventional LEGVS8 code:
LDURD DO, [X28,a] //load scalar a
ADDI X0,X19,512 //upper bound of what to load
Toop: LDURD D2,[X19,#0] //load x(i)
FMULD2,DO //a x x(i)
LDURD D4,{x20,#0] //load y(i)

FADDD //a x x(3) + y(@i)

Staring address of X.Y
are x19,x20

STURD ) [X20,#0] //store 1into y(i)

ADDI X19,X19,# //increment index to Xx
ADDI X20,X20,#8 //increment index to y
CMPB X0,X19 //compute bound

B.NE Tloop //check if done

Vector LEGvS8 code:
LDURD DO, [X28,a] //load scalar a
LDURDV V1, [X19,#0] //load vector x
FMULDVS V2,v1,D0 //vector-scalar multiply
LDURDV V3, [X20,#0] //load vector y
FADDDV V4,Vv2,V3 //add y to product
STURDV V4, [X20,#0] //store the result

Chapter 6 — Parallel Processors from Client to Cloud — 10




Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to LEGv8
32 x 64-element registers (64-bit elements)

Vector instructions
1v, sv: load/store vector
addv . d: add vectors of double
addvs.d: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 11




Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
iInterleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology

= ’5:{%‘«_ Chapter 6 — Parallel Processors from Client to Cloud — 12



SIMD

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same
instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications

el -\.-;“:
) =

Chapter 6 — Parallel Processors from Client to Cloud — 13



Vector vs. Multimedia Extensions

Vector instructions have a variable vector width,
multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and

arrayed functional units: T e T e A e
| [ BB B B B
alEl| (B s [ Pipmt | [ e} [ppma:|
A (e [ | R 1 U
AlG]| B Veotar Wedbar hiecior Vecior
AJ_d-] ﬂ 0,48, .- LR-E 8,19, = Mo i o
== = O xl lx 1T B
i J | i SR
+ S T S S = el M b=t
o2 =K | Vesar nad shore i

Elsment group
Chapter 6 — Parallel Processors from Client to Cloud — 14



Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 6 — Parallel Processors from Client to Cloud — 15




Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 16




Multithreading Example

Time

Time

Is=ue slots

Thread A Thread B Thread & Thread D
HE HER HER

H HE

HEN [

|
HEER
HE

B |

HER

Issue gloty ——=
Coarse MT Fine MT SMT
HE 1 11
1| HE NN
HEN HENE
-1 1 1

] [ |
HE -1
— EmEE
=-- B

Chapter 6 — Parallel Processors from Client to Cloud — 17



Future of Multithreading

Will it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 18




Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Frocessor Frocessor . Processor
i I 1
T
Cache Cache o Cache
; . 1
T
Interconnection Metwork

| Memary | | 110

Chapter 6 — Parallel Processors from Client to Cloud — 19




Example: Sum Reduction
Sum 100,000 numbers on 100 processor UMA

Each processor has ID: 0 < Pn <99
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] =
for (1 = 1000 ‘Pn;
1 < 1000%* (Pn+1); 1 =1+ 1)
sum[Pn] = sum[Pn] + A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 20




Example: Sum Reduction
@

.

fhealf = 132 ][4
r

fraalt = [ ]| 11 2] &
half = 100; LJL ¥
repeat thall = 3 [g] 0 2ls] £l gl €]z
synch();

it (half%2 !'= 0 && Pn == 0)
sum[0] = sum[0] + sum[half-1];
/% Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until Chalf == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 21



History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’'s Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units

Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization

Chapter 6 — Parallel Processors from Client to Cloud — 22




Graphics in the System

>N

#18 PCI-Express Link ¥

Front Soe Bus

Morth _ | poRz
Bricige: T | Memary
x4 POI-Exprasa Link § 126-5i1
derivative ¢ HEY MTrs
mfilﬁjr!.r Zaraith
CPU Cricge CRL
core
Fronl Side Ous L — = 124-bit
1 romil Sicde Dus Wﬁ%ﬁ ) G MTs
Martn - Marth : DAz
Hiclge Mermony Bricige B Memary
Y POl Bis 4 1
1 K18 FO-Express Link ¢ HyparTranssort 1.03
L T
Soulh Framebullar - Chipsct
Bridage Pdarmary Sy
- AEA
g
M( Chapter 6 — Parallel Processors from Client to Cloud — 23

St Bl




GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems

CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 24




Streaming
multiprocessor

/

processors

NVIDIA Tesla

.-..{ Syt Mgy |

O)
=
e
©
()
=
n
X
(00)
o2 o 2
Ill )
i Illl
Z |ll= _
Ty
N u_n___
.__r__.._. .-. £
e ....._-. H\L_..ﬂ..
<~ -
m UGl (i
mi= — |2 3
a m_.__HIuJT iz
=0 R = Ll
— ; 2 [
&
o ]| e
B = Ty B
ER
2| L —
L5 —| |2
.|m__ m m D
-3 S —
- . vl |
o |25 [E5 | g S S
R ___HI§| G S
& ] = <
I L) 2 R
: ___Il_._ﬁ_ LT
L E!E u..l
E =
o | [
mflﬂ
o il ===
T
Jl..m
Lo
5
|| =T
T e—

Example

Parallel Processors from Client to Cloud — 25

Chapter 6



Example: NVIDIA Tesla

Streaming Processors
Single-precision FP and integer units
Each SP is fine-grained multithreaded

Warp: group of 32 threads
Executed in parallel,

Processars

LliraSPARC T2 Tesla Multiprocessor

B0 | EEEEEEEE
SIMD Style B Thread o rrrrrT Warpo
8 SPs B |EEEEEEES
x 4 clock cycles Spones M Theast (o RN
e e |UNEEEEES,,
Hardware contexts | Hmer | IEEEEEEE

for 24 warps
Registers, PCs, ...

T
|-
EEEEEENE

EEEEEENE

Chapter 6 — Parallel Processors from Client to Cloud — 26




Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation

Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 27




GPU Memory Structures

CUDA Thread

=—p=| Par-CUDA Thread Privale Memory

Thread block

Per-Block
Local Memory

hAA AL

Saquance

GPU Mamaory

M( Chapter 6 — Parallel Processors from Client to Cloud — 28



Putting GPUs into Perspective

________ Feature | MulticorewithSIMD | _GPU__

SIMD processors 4108 8to 16
SIMD lanes/processor 2to4 8to 16
Multithreading hardware support for 2to 4 16 to 32
SIMD threads

Typical ratio of single precision to 2:1 2:1
double-precision performance

Largest cache size 8 MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4 GB to 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD Yes No
processor

Cache coherent Yes No

Chapter 6 — Parallel Processors from Client to Cloud — 29



Guide to GPU Terms

MK

More descriptive | Closest old term Official CUDAS
ﬂ outside of GPUs |  NVIDIA GPU term flook definition
Vectorizable Vectorizable Loop A vectorizable loop, executed on the GPLL mads

@ Loop up of one or mors Thresd Blocks bodies of

= vectorized loop) that can execute in parallel.

5

E Body of Body of a Thread Block A vectorized loop exscuted on a multithreaded

2 Vectorized Loop | (S p-Mined) SIMD Procsssor, made up of one or mons threads

= Vectorized Loop of SIMD instructions. They can communicate via

E Lezal Mamory.

? Sequence of One itsration of CLIDA Thread Avertical cut of & thread of SIMD instructions
SIMD Lane a Scalar Loop carrespending to one element sxscutsd by one
Oparations 5IMD Lane. Result is storsd depending on mask

and predicats redister.

- A Thread of Thread of Yector Warp A traditional thread, but it contains just SIMD

ki SIMD Instructions instructions that are sxscuted on & multithread sd

&) Irestructions SIMD Processaor. Results stored depending on a

z per<lement mask.

E SIMD Vector Instruckion | PTX Instuction A singls SIMD instruction exscuted across SIMD
Irstruction Lanes.

Multithresded {Multithreaded) Streaming & multith readed SIMD Procsssor exscutes
SIMD Vector Processor Multiprecessor threads of SIMD instructions, ndependent of
Processar other SIMD Processors.

Thread Block Scalar Processor Giga Thread Assigns multipk Thread Blocks (bodies of

g Scheduler Engine vectorized loop) to multithrzadsd SIMD

= Processors.

= SIMD Thread Thread scheduler | Warp Scheduler Hardware unit that schedules and issues threads

o Scheduler in a Multithreaded of SIMD instructions when they ars ready to

] CpPu execute; includes a scosboard to track SIMD

g Thread execution.

o SIMD Lane Vector lane Thread Processor A SIMD Lare sxecutss the opsations ina thread
of SIMD instructions on a sindls elerment. Results
stored depending on mask.

GPU Mamaony Main Memary Global Memaory DRAM memory accessible by all multithreaded

o SIMD Procsssors ina GPLL

2

5 Lezal Mamiony Lozal Mermony Shared Mamaory Fast local SRAM for one multithreaded SIMD

E‘ Procassor, unavailabls to other SIMD Proecessors.

i

= SIMD Lane Vactor Lans Thiread Processor Registers in a single SIMD Lane allocatsd across
Registers Registers Regdisters a full thread block body of vectorized ksop).

Chapter 6 — Parallel Processors from Client to Cloud — 30




Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Frocssecr Fregsesoy cua [Frormseos
1 1
SR Vs e Gl

3 I —
T + L
Memory Mearmory i Mermory

' [ i
T T ¥

Intergonnaction Metwork

Chapter 6 — Parallel Processors from Client to Cloud — 31




Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS

Connected using /O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...
High availability, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 32




Sum Reduction (Again)

Sum 100,000 on 100 processors

First distribute 100 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 =1 + 1)
sum = sum + AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...

Chapter 6 — Parallel Processors from Client to Cloud — 33



Sum Reduction (Again)

Given send() and receive() operations

Timit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum = sum + receive();
Timit = half; /* upper 1imit of senders */
until (half == 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 34




Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 35



Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

IR [ S S S S S

Bus Ring
L"‘l il M M
Ta [ TaTa Tn
Tt Ta T
e te e e
[
Uw U U U N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 36




Multistage Networks

e r—]
_|-.|_'l —-—
i L 442 F,I _\_y_
‘P—nlrrrhr*rr I N Y, \\ J
et afa Lt L ek o e
— — Py Y T Y T
SNCniataialatababate S ATTA
Mrniakababaldbalala =P L —
=J| _._P_l .-""-f .-""-'r -
plabdRababibak ol s :
Mrnhakakabak halk ol 4 |"“E|‘— -
Pu?‘f‘?“‘f“‘?‘f‘
SRRk akabak o hak ol a
&, Croasbar b, Crnega neteeork
S sl e 4 %
B |14 D
. Amesa nelwar switch ox
M( Chapter 6 — Parallel Processors from Client to Cloud — 37



Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 38



Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism
SPLASH: Stanford Parallel Applications for
Shared Memory
Mix of kernels and applications, strong scaling
NAS (NASA Advanced Supercomputing) suite
computational fluid dynamics kernels
PARSEC (Princeton Application Repository for
Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP

N B
. i o

= NS Chapter 6 — Parallel Processors from Client to Cloud — 39



Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 40



Modeling Performance

Assume performance metric of interest is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed

For a given computer, determine
Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 41



Roofline Diagram

320

16.0

Qgﬁpeah floating-point peformance

8.0

Attainable GFLOPs'sccond

40
2.0 i Kemel 1 | Kemal 2
+ i Memory ¢ (Computation
1.0 : Bandwidth ¢ limited)
* limited) :
0.5 - =

Ve Yy s 1 2 4 B 16
Arithrnetic Intensity: FLOPsDGyte Ratio

Attainable GPLOPs/sec
= Max ( Peak Memory BW x Arithmetic Intensity, Peak FP Performance )

Chapter 6 — Parallel Processors from Client to Cloud — 42



Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2% FP performance/core, 2.2GHz
vs. 2.3GHz

Same memory system

4 Optaron X4 {Ea[i::muna} .
g P To get higher performance

o 30| / on X4 than X2
L.
S 160 L Need high arithmetic intensity
o 80 /\/ Or working set must fit in X4’s
£ 40| 4 Opteron X2 2MB L-3 cache
E Lo/
€ 20

1.0

0.5 -
Ve ¥, W 1 2 4 8 16
Actual FLOPbyte ratio

Chapter 6 — Parallel Processors from Client to Cloud — 43



Optimizing Performance

AMD Cipboron

Optimize FP performance ..

Balance adds & multiplies .. e
Improve superscalar ILP /
and use of SIMD /
Instructions
Optimize memory usage e et

Software prefetch

Avoid load stalls i
Memory affinity 3w

Avoid non-local data ..

dCCesses

5
e L. L 2 4 4 | B
Afflhmaly Inhanaty: F QP =Rsa Ralia

Chapter 6 — Parallel Processors from Client to Cloud — 44




Optimizing Performance

Choice of optimization depends on
arithmetic intensity of code

N Arithmetic intensity is
g not always fixed
; 80 May scale with
S ol problem size
: ) ] L Caching reduces
= | , memory accesses

"IIH 1 llc ! ll:_:l 1 E 4 B 1 E

Increases arithmetic
iIntensity

Chapter 6 — Parallel Processors from Client to Cloud — 45

Arithmetic Intensity; FLOPs/Byle Ratio



17-960 vs. NVIDIA Tesla 280/480
I A

Mumber of processing elements (cores ar Shs)

Clock freguency (GHz) 3.2 1.3 1.4 41 .44
Cie size 263 576 520 2.2 2.0
[echnology Iritel A5 rirm [CMS Eh nm [CMS A0 nm 1.8 1.0
Poweer [chip, nob moduls) 130 130 1&7 1.0 1.3
Transistors FO0 M 1A M 3140 M 2.0 a4
Memory brandwith (GBytes/ =soc) a2 141 17T .4 5.5
Single frecision SIMD wickth 4 5 a2 2.0 a0
Cabule precision SIMO with 2 1 15 LR 2.0
Paak Single fracision scalar FLOPS (GFLOFP =e0) 265 117 (£ 4.6 2.5
Peak Single Mrecision s SIMD FLOPS (GFLOP, Sec) 102 311 o 933 51510 1344 | 2.09.1 66131
1SP 1 add or multiply) M.A, (311) (515] 2.0 6.8
(5P L instruction fused) M.A (522 (1344) (.1} (13.1)
iface SP dual issue fused) M.A (933) M.A (9.1}

Peal double frecision SIMD FLOPS {GFLOP/ scc) T 515 101

a1

1.5

Chapter 6 — Parallel Processors from Client to Cloud — 46




Rooflines

inkzl Cang 1¥ -0ED WIS GTEARD
125 1251 . . - LA .
: ) peak = TH GMopds
BAp: ool By ER e Donbie Pradislon T ¥ i i
J T q
22 I
w I
- [
ik 2
& ' g
T ] n
= 8
s I B
i 1
4 - ’ |
| 1 .
z ' ! 2 e
| 1
1 | ! i ; i
178 454 2020 L 2 a 8 15 3z G BT T - | # 4 I [ 71
Arshmesls Intensite (Flops, Byte) Anthrmetin Inlsngily
] Ikl Cong |-G
L -
256
168 .. & 1024 GFF s Shple Frodlslon
Bt
E
o
L1
G 32
6
g .
5

] [ | ]
18 14 152 1 2 | H 1G22
Attt Intensiy (Fops/Beta)

Chapter 6 — Parallel Processors from Client to Cloud — 47




Benchmarks
e T o [ [ S

SGEMM GFLOP/sec

MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixelsisec 1250 3500 28
FFT GFLOP/sec 71.4 213 3.0
SAXPY GBytes/sec 16.8 88.8 5.3
LEM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 o2 0.5
SpMY GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec BT 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec 5 8.1 1.6
Search Million queries/sec 50 a0 1.8
Hist Million pixelsisec 1517 2583 1.7
EBilat Million pixels/sec 83 475 o.7

g M( Chapter 6 — Parallel Processors from Client to Cloud — 48

7



Performance Summary

GPU (480) has 4.4 X the memory bandwidth

Benefits memory bound kernels

GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
Benefits FP compute bound kernels

CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

GPUs offer scatter-gather, which assists with kernels
with strided data

Lack of synchronization and memory consistency
support on GPU limits performance for some kernels

Chapter 6 — Parallel Processors from Client to Cloud — 49



Multi-threading DGEMM

Use OpenMP:

vold dgemm (int n, double* A, double* B, double* C)
{
fpragma omp parallel for
for ( int sj = 0; s < n; sj += BLOCKSIZE )
for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do block(n, si, sj, sk, A, B, C);

M< Chapter 6 — Parallel Processors from Client to Cloud — 50



Multithreaded DGEMM

MK

speedup relative o 1 core

14 |
13

114

10 4

g

Y 208 o

&

960 X 960

=450 X 480
—— | G0 X 160

_____________________________________________________________

- ' e 2 N

Chapter 6 — Parallel Processors from Client to Cloud — 51



Multithreaded DGEMM

32x32 m 160x160 m 480x480m 960x960

200

150

100

GFLOPS

50

Chapter 6 — Parallel Processors from Client to Cloud — 52




Fallacies

Amdahl’s Law doesn’t apply to parallel
computers

Since we can achieve linear speedup

But only on applications with weak scaling

Peak performance tracks observed
performance

Marketers like this approach!
But compare Xeon with others in example
Need to be aware of bottlenecks

= ’5:{%‘«_ Chapter 6 — Parallel Processors from Client to Cloud — 53



Pitfalls

Not developing the software to take
account of a multiprocessor architecture

Example: using a single lock for a shared
composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 54




Concluding Remarks

Goal: higher performance by using multiple
Processors
Difficulties

Developing parallel software

Devising appropriate architectures

SaaS importance is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC

Chapter 6 — Parallel Processors from Client to Cloud — 55




Concluding Remarks (con’t)

SIMD and vector I s ;
operations match G P
multimedia applications SO a20) e
and are easy to " /

%

?

-r i i i |
2003 2007 201 2015 2019 2023

M( Chapter 6 — Parallel Processors from Client to Cloud — 56



----------

Sequential Consistency
and
Cache Coherence Protocols

Arvind
Computer Science and Artificial Intelligence Lab
M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic



6.823 L17- 2
Arvind

Memory Consistency in SMPs

CPU-1 CPU-2
| |
A 100 cache-1 A 100 cache-2

CPU-Memory bus
|

A 100 memory

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming__’g?_u

November 9, 2005 e



6.823 L17- 3
Arvind

Write-back Caches & SC

prog T1 cache-1 memory cache-2  prog T2

ST X, 1 X=1 X = = LD Y, R1
: STY,11 Y=11 Y =10 = STY’, R1
e T1 is executed o " — D X R
= X'= ST X’,R2
e cache-1 writes back Y| vy=11 Y =11 Y=
X'= X =
Y'= T—
X=1 X=0 Y =11
- T2 executed Lt I M B Mt
Y= X'=0
X=1 X=1 Y =11
e cache-1 writes back X | Y=11 Y =11 Y'=11 X
X'= X=0 @(\
Y'= X'=0 6(
\(\
_ X= 1 X=1 Y=11] O
e cache-2 writes back y=11 Y =11 y=11| 4&
] ] X’: O X e 0
X &Y y'=11 X'= 0 ks

November 9, 2005 = Fo



6.823 L17- 4
Arvind

Write-through Caches & SC

prog T1 cache-1 memory cache-2 prog T2
ST X, 1 X=0 X = = ;ETD :(( F;{l1
STVY,11 Y=10 Y =10 = :
’ X’'= X = 0 LD X, R2
Y’ '= X'= ST X’,R2
e T1 executed o X~ o
Y'= X'=
X=1 X=1 Y =11
e T2 executed SRV I O I IVSee
Y’:A X'=0

Write-through caches don’t preserve
sequential consistency either

J| ~1
November 9, 2005 Lby



6.823 L17-5
Arvind

Maintaining Sequential Consistency

SC is sufficient for correct producer-consumer
and mutual exclusion code (e.g., Dekker)

Multiple copies of a location in various caches
can cause SC to break down.

Hardware support is required such that
e only one processor at a time has write
permission for a location
e NO processor can load a stale copy of
the location after a write

— cache coherence protocols

November 9, 2005

.......



6.823 L17- 6
Arvind

A System with Multiple Caches

November 9, 2005

| pllPIlP|lP]

TN | N | N |

P

_P |
1 L2
I I I
Interconnect

M

—
=

Modern systems often have hierarchical caches

Each cache has exactly one parent but can have zero
or more children

Only a parent and its children can communicate
directly

Inclusion property is maintained between a parent
and its children, i.e.,

a e L = aeli,



6.823 L17-7
Arvind

Cache Coherence Protocols for SC

write request:
the address is invalidated (updated) in all other
caches before (after) the write is performed

read request:

If a dirty copy is found in some cache, a write-
back is performed before the memory is read

We will focus on Invalidation protocols
as opposed to Update protocols

November 9, 2005 = Fe M



Warmup: Parallel 1/0

6.823 L17- 8
Arvind

Either Cache or DMA can
be the Bus Master and
effect transfers

>

ad MeBmOI’y Physical
Address (A): us |Memory
Proc. | Dpata (D) | Cache |
> < 4a|:|
R/W

Page transfers
occur while the

Processor is running

DMA

> W

\ /2 A 4

R/W

DISK

-

DMA stands for Direct Memory Access

November 9, 2005



Problems with Parallel 1I/0

6.823 L17-9
Arvind

Cached portions
of page Physical
- Memory [Memory
- Bus
Proc. |=— < >
Cache

DMA transferso

DMA

Memory — Disk: Physical memory may be

DISK

-

stale if Cache copy is dirty

Disk — Memory: Cache may have data

corresponding to the memory

November 9, 2005



6.823 L17- 10
Arvind

Snoopy Cache Goodman 1983

e |dea: Have cache watch (or snoop upon)
DMA transfers, and then “do the right

thing”

e Snoopy cache tags are dual-ported

Proc.

» Used to drive Memory Bus
> when Cache is Bus Master

A

A A

Snoopy read port

November 9, 2005

A
>l Tags and
R/W State
Data
D (lines)
Cache

R/W attached to Memory
Bus



Snoopy Cache Actions

6.823 L17- 11
Arvind

Observed Bus

Cycle Cache State Cache Action
Address not cached | No action
Read Cycle Cached, unmodified | No action

Memory — Disk

Cached, modified

Cache intervenes

Write Cycle

Disk — Memory

Address not cached

Cached, unmodified
Cached, modified

No action

Cache purges its copy

2?77

November 9, 2005



6.823 L17- 12
Arvind

Shared Memory Multiprocessor

Memory
Bus
A
Snoopy )
M, |=—— -—
1 Cache Physical
Memory
Snoopy
IVIZ Cache

——
Snoopy [)hﬂ/\
I\/IS Cache

Y

Use snoopy mechanism to keep all
processors’ view of memory coherent

November 9, 2005



6.823 L17- 13
Arvind

Cache State Transition Diagram
The MSI protocol

Each cache line has a tag M: Modified
S: Shared

Address tag I- Invalid

state
bits

P, reads
or writes

T~

Other processor
intents to write

Other processor reads M
P, writes back

Write miss

Cache state In

Read
miss S |
Read by anyC/ _Other processor
processor intents to write
processor P, fvin

November 9, 2005 esAlL



2 Processor Example

6.823 L17- 14

Arvind

P, reads
P, writes
P, reads
P, writes
P, reads
P, writes
P, writes
P, writes

November 9, 2005

P, reads
P L
1 P, reads, 4 M or writes
P, writes back —-— = _* ~
Prig e Write miss
/ R\
/ ..._...--'(\,&&0 P, intent to write
/ ,\(\\,G
Read 2 Qn
miss 7 S ) |
— 5 Em— o E—— o o E— >
P, intent to write
P /D P, reads
2 P, reads, ——[ M or writes
P, writes back_.—- jy
7 7 e Write miss
/J/ R
- ‘60‘&0 P, intent to write
. . AN
Read_ < ,‘/51«\
miss X

P, intent to write




6.823 L17- 15

Arvind
Observation
P, reads
Other processor reads M ‘\or writes
P, writes back Write miss

Other processor
intents to write

Read

miss g |
Read by anyC/ Other processor
processor intents to write

e |f aline is in the M state then no other
cache can have a copy of the line!

— Memory stays coherent, multiple differing copies
cannot exist

November 9, 2005 = Fo




6.823 L17- 16

Arvind
MESI: An Enhanced MSI protocol
Each cache line has a tag M: Modified Exclusive
E: Exclusive, unmodified
Address tag S: Shared
state I: Invalid
bits
. P. write /> P, read
P, write < M 1 E
or read
™~ Write miss
X
Other processor reads o @\‘ Other processor
P, writes back (\x‘ intent to write
Read miss, \0’&
shared —_ R
S I
Read by any Other processor
intent to write
processor Cache state In
processor P; i1

November 9, 2005 SERAl



Five-minute break to stretch your legs

17



6.823 L17- 18
Arvind

Cache Coherence State Encoding

block Address
AN

/ \

tag | index.] offset | |— tag VIM data block

Valid and dirty bits can be used
to encode S, I, and (E, M) states |
V=0, D=x = Invalid Hit? word

1, D=0 = Shared (not dirty)
1, D=1 = Exclusive (dirty)

November 9, 2005 4 L’Esl{m



6.823 L17- 19
Arvind

2-Level Caches

CPU CPU CPU CPU
| | | |
L1 $ L1 $ L1 $ L1 $
L2 $ L2 $ L2 $ L2 $
Enooper Enooper Snooper Snooper

——

e Processors often have two-level caches
e Small L1 on chip, large L2 off chip
e Inclusion property: entries in L1 must be in L2
Invalidation in L2 = invalidation in L1
e Snooping on L2 does not affect CPU-L1 bandwidth

What problem could occur?

November 9, 2005 = Fe M



Intervention

6.823 L17- 20
Arvind

CPU-1
|

CPU-2

A 200 cache-1

cache-2

CPU-Memory bus
|

A 100

memory (stale data)

When a read-miss for A occurs In cache-2,

a read request for A is placed on the bus
e Cache-1 needs to supply & change its state to shared
e The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

November 9, 2005



False Sharing

6.823 L17- 21
Arvind

state |blk addr |dataO | datal

dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and

not word-level

Suppose M; writes word; and M, writes word, and
both words have the same block address.

What can happen?

November 9, 2005



6.823 L17- 22
Arvind

Synchronization and Caches:
Performance Issues

Processor 1 Processor 2 Processor 3

R« 1 R« 1 R« 1
L: swap(mutex, R); L: swap(mutex, R); L: swap(mutex, R);

if <R> then goto L; if <R> then goto L; if <R> then goto L;

<critical section> <critical section> <critical section>
M[mutex] « O; M[mutex] « O; M[mutex] « O;
| | |
cache mutex=1 cache

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex

location (non-atomically) and executing a swap only if it is
found to be zero.

[rh;;lif_:._ll
November 9, 2005 Fallgle



6.823 L17- 23
Arvind

Performance Related to Bus
occupancy

In general, a read-modify-write instruction
requires two memory (bus) operations without
Intervening memory operations by other
processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation

= expensive for simple buses

= very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

November 9, 2005 = F



6.823 L17- 24
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve(R, a): Store-conditional(a, R):
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R < M[a]; then cancel other procs’
reservation on a;
M[a] < <R>;
status <« succeed;
else status <« fail;

If the snooper sees a store transaction to the address

In the reserve register, the reserve bit is set to O
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

November 9, 2005 = Fo



6.823 L17- 25
Arvind

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
IS not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

e Increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

e reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

b el
November 9, 2005 esAlL



6.823 L17- 26

Out-of-Order Loads/Stores & CC

Wb-req, Inv-req, Inv-rep

load/store —

buffers pushout (Wb-rep) Memory
— | [ —| cache
—

(1/S/E) | (S-rep, E-rep)
Blocking caches (S-req, E-req) CPU/Memory
One request at a time + CC = SC Interface

Non-blocking caches

Multiple requests (different addresses) concurrently + CC
= Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address T

November 9, 2005 = Fe M

T




6.823 L17- 27
Arvind

next time

Designing a Cache Coherence
Protocol

November 9, 2005 .g;;_r-é.,;'-‘.‘l L



Thank you !

28



2 Processor Example

6.823 L17- 29
Arvind

Block b

P4

Block b

P>

November 9, 2005

_ P, write P, read
P, write M E
or read \ . .
| ° Write miss
P, reads, T
P, writes back (\"&0 P, intent to write
o
Read g Q\/\(\

Mmiss

P, intent to write

_ P, write
P, write M
or read /

. /,
P, reads, R\
P, writes back R
e
Read._ \

miss

P, read
A E
g Write miss

P, intent to write




