
cse141: Introduction to
Computer Architecture

Steven Swanson
Hung-Wei Tseng

1

Today’s Agenda

• What is architecture?
• Why is it important?
• At the highest level, where is architecture today?

Where is it going?
• What’s in this class?

2

What is architecture?

• How do you build a machine that computes?

• Quickly, safely, cheaply, efficiently, in technology X, for
application Y, etc.

Civilization advances by extending
the number of important

operations which we can perform
without thinking about them.

-- Alfred North Whitehead

Orientation

The internet

Orientation

The internet

Orientation
System Bus

(PCI)
IO

Power

Memory

Power

Memory

Memory Memory
Architecture begins about here.

Orientation
System Bus

(PCI)
IO

Power

Memory

Power

Memory

Memory Memory
Architecture begins about here.

You are here

You are here

cse141

The processors go here…

The processors go here…

Abstractions of the Physical World…

Physics/Materials Devices Micro-architecture ArchitecturesProcessors

Abstractions of the Physical World…

Physics/Materials Devices Micro-architecture ArchitecturesProcessors

This Coursecse241a/
ECE dept

Physics/
Chemistry/

Material science

…for the Rest of the System

Architectures

JVM

Processor

Abstraction
Compilers Languages

Software

Engineers/
Applications

…for the Rest of the System

Architectures

JVM

Processor

Abstraction
Compilers Languages

Software

Engineers/
Applications

cse130cse121 cse131 cseEverythingElse

Why study architecture?

11

• As CEs or CSs you should understand how computers
work
• Processors are the basis for everything in CS (except theory)
• They are where the rubber meets the road.

• Performance is important
• Faster machines make applications cheaper
• Understanding hardware is essential to understanding how

systems behave

• It’s cool!
• Microprocessors are among the most sophisticated devices

manufactured by people
• How they work (and even that they work) as reliably and as

quickly as they do is amazing.

• Architecture is undergoing a revolution
• The future is uncertain
• Opportunities for innovation abound.

Performance and You!

• Live Demo

12

Processor are Cool!

• Chips are made of silicon
• Aka “sand”
• The most adundant element in the

earth’s crust.
• Extremely pure (<1 part per billion)
• This is the purest stuff people make

Building Chips

Building Chips

• Photolithography

Silicon Wafer

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist
Silicon Wafer

SiO2
Resist

Mask Mask

Expose to UV

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist
Silicon Wafer

SiO2
Resist

Mask Mask

Expose to UV

Silicon Wafer
SiO2

Patterned resist

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist
Silicon Wafer

SiO2
Resist

Mask Mask

Expose to UV

Silicon Wafer
SiO2

Patterned resist
Silicon Wafer

Etch SiO2

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist
Silicon Wafer

SiO2
Resist

Mask Mask

Expose to UV

Silicon Wafer
SiO2

Patterned resist
Silicon Wafer

Etch SiO2
Silicon Wafer

Met

Deposit metal

Building Chips

• Photolithography

Silicon Wafer Silicon Wafer
SiO2

Grow silicon dioxide
Silicon Wafer

SiO2
Resist

Apply photo resist
Silicon Wafer

SiO2
Resist

Mask Mask

Expose to UV

Silicon Wafer
SiO2

Patterned resist
Silicon Wafer

Etch SiO2
Silicon Wafer

Met

Deposit metal
Silicon Wafer

Met

Etch SiO2
(Or not)

Building Blocks: Transistors

Building Blocks: Wires

State of the art CPU

• 1-2 Billion xtrs
• 45nm features
• 3-4Ghz
• Several 100 designers
• >5 years
• $3Billion fab
• 70 GFLOPS

18

Current state of
architecture

Since 1940

Since 1940

• Plug boards -> Java

• Hand assembling -> GCC

• No OS -> Windows Vista

Since 1940

• Plug boards -> Java

• Hand assembling -> GCC

• No OS -> Windows Vista

Flexible performance is a liquid asset

• 50,000 x speedup

• >1,000,000,000 x density
(Moore’s Law)

Moore’s Law: Raw transistors

The Importance of
Architecture

• We design smarter and smarter processors

• Process technology gives us about 20%
performance improvement per year

• Until 2004, performance grew at about
40% per year.

• The gap is due to architecture! (and
compilers)

Computer Performance

23

Computer Performance

23

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006

Computer Performance

23

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year

Computer Performance

23

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year
39% per year

Computer Performance

23

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year
39% per year

 1

 10

 100

 1000

 10000

 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT95
specINT2000
specINT2006
47% per year
39% per year
25% per year

The clock speed addiction

24

• Clock speed is the biggest contributor to power
• Chip manufactures (Intel, esp.) pushed clock speeds very

hard in the 90s and early 2000s.
• Doubling the clock speed increases power by 2-8x
• Clock speed scaling is essentially finished.

 0

 1000

 2000

 3000

 4000

 5000

 1996 1998 2000 2002 2004 2006 2008 2010

Cl
oc

k
sp

ee
d

(M
hz

)

Year

specINT2000
specINT2006

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Power

25

W
a
tt
s
/c
m
 2

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

What’s Next: Brainiacs

• Hold the clock rate steady.
• Be smarter in silicon

• More sophisticated processors
• More clever algorithms
• This continues to deliver about 25% per year.
• But for how long?

26

What’s Next: Parallelism
• This is all the rage right now
• You probably own a multi-processor, they used to

be pretty exotic.
• They provide some performance, but it’s hard to

use.
• There aren’t that many threads
• Remember, flexible performance is a liquid asset
• Remember or look forward to cse121

27

28

Intel P4
1 core

Intel Core 2 Duo
2 cores

AMD Barcelona
4 cores

SPARC T1
8 cores

Intel Prototype
80 cores

Cell BE
8 + 1 cores

Intel Nahalem
4 cores

Computer Performance

29

Computer Performance

29

 100

 1000

 10000

 1996 1998 2000 2002 2004 2006 2008 2010

Re
la

tiv
e

Pe
rfo

rm
an

ce

Year

specINT2000
specINT2006
39% per year
25% per year

Course Staff

• Instructor: Steven Swanson
• Lectures Tues + Thurs

• TA: Hung-Wei Tseng
• Discussion sec: Wed.
• (but not this week)

• See the course web page for
contact information and
office hours.

30

http://www.cse.ucsd.edu/classes/sp09/cse141/
http://www.cse.ucsd.edu/classes/sp09/cse141/

What’s in this Class

31

• Course outline
• Instruction sets
• The basics of silicon technology
• Measuring performance
• How processors work

• Basic pipelining
• Data and control hazards
• Branch prediction and speculation

• The memory system
• Introduction to multiprocessors

• Weekly technology digressions
• How various technologies actually work.

Your Tasks
• Read the text!

• Computer Organization and Design: The Hardware/Software
Interface (4th Edition) -- previous editions are not supported

• I’m not going to cover everything in class, but you are
responsible for all the assigned text.

• Come to class!
• I will cover things not in the book. You are responsible for

that too.
• Class participation (5%)

• Homeworks throughout the course. (10%)
• Weekly quizzes on Thursdays (10%)
• One midterm. (25%)
• One cumulative final. (35%)
• One project (15%)

• Design your own ISA!
32

The Link to 141L

• You do not need to take 141L along with 141,
but you may need both to get your degree.

• The classes are mostly independent, except
• The results of the project will be used in 141L
• You can earn extra credit by licensing your ISA groups in

141L who are not in 141

33

Grading

• Grading is on a 13 point scale -- F through A+
• You will get a letter grade on each assignment
• Your final grade is the weighted average of the

assignment grades.

• An excel spreadsheet calculates your grades
• We will post a sanitized version online once a week.
• It will tell you exactly where you stand.
• It specifies the curves used for each assignment etc.

• OpenOffice doesn’t run it properly.

34

Academic Honesty

• Don’t cheat.
• Cheating on a test will get you an F in the class and no

option to drop, and a visit with your college dean.
• Cheating on homeworks means you don’t have to turn

them in any more, but you don’t get points either. You
will also take at least 25% penalty on the exam grades.

• Copying solutions of the internet or a solutions
manual is cheating.

• Review the UCSD student handbook
• When in doubt, ask. Honest mistakes will be

forgiven.

35

CpE 252

Computer Organization & Design

Central Processing Unit

Dr. T. Eldos 2

Central Processing Unit (CPU)

 Introduction

 General Register Organization

 Stack Organization

 Instruction Formats

 Addressing Modes

 Data Transfer and Manipulation

 Program Control

 Reduced Instruction Set Computer

Dr. T. Eldos 3

CPU: Major Components

 Datapath

 Storage Components; Registers & Flags

 Processing Components; Arithmetic, Logic, Shift Unit (ALSU)

 Transfer Components; Bus

 Control

 Control Unit

Register File

Control Unit

ALSU

BUS A
BUS B

BUS C

Dr. T. Eldos 4

General Register Organization - Datapath

Input

R1

R2

R3

R4

R5

R6

R7

DEC MUX MUX

ALSU

Clock

Load

BUS BBUS A

Output

SEL D

S
E

L
 A

S
E

L
 B

O
P

R

BUS C

Dr. T. Eldos 5

Operation of Control Unit

 Control Unit, directs the information flow through ALU by

 Selecting various Components in the system

 Selecting the Function of ALU

 Example: R1 R2 + R3

 SELA: BUS A R2

 SELB: BUS B R3

 OPR: ALU instruction to ADD

 SELD: R1 BUS C

Control Word

3 bits 3 bits 3 bits 5 bits

SEL A SEL B SEL D OPR

Field Encoding
Binary Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

Dr. T. Eldos 6

ALU Control

Encoding of ALU operations

OPR Operation Outcome Symbol

00000 Transfer A TSFA

00001 Increment A+1 INCA

00010 Add A + B ADD

00101 Subtract A – B SUB

00110 Decrement A – 1 DECA

01000 And A B AND

01010 Or A B OR

01100 Xor X B XOR

01110 Complement A’ COMA

10000 Shift Right SHRA

10001 Shift Left SHLA

Dr. T. Eldos 7

ALU Microoperations

 Example of ALU Microoperation using the 3-address format

 Unary operation like Increment Register needs a source and

destination (can be the same, too)

ALU Microoperations: Example

Microoperation SELA SELB SELD OPR Control Word

R1 R2 – R3 R2 R3 R1 SUB 010 011 001 00101
R4 R4 R5 R4 R5 R4 OR 100 101 100 01010
R6 R6 + 1 R6 - R6 INCA 110 000 110 00001
R7 R1 R1 - R7 TSFA 001 000 111 00000
Output R2 R2 - None TSFA 010 000 000 00000
Output Input Input - None TSFA 000 000 000 00000
R4 shl R4 R4 - R4 SHLA 100 000 100 11000
R5 0 R5 R5 R5 XOR 101 101 101 01100

Dr. T. Eldos 8

Register Stack Organization

 Useful in nested subroutines and nested loops control

 Efficient for arithmetic expression evaluation

 LIFO; only PUSH and POP operations are applicable

Initially, SP = 0, EMPTY = 1, FULL = 0

PUSH:

SP SP + 1

M[SP] DR

EMPTY 0, SP = 0: FULL 1

POP:

DR M[SP]

SP SP – 1

FULL 0, SP = 0: EMPTY 1

Stack Pointer

EMPTY FULL

DR

C

B

A

2

1

0

63

4

3

Address

Dr. T. Eldos 9

Memory Stack Organization

SP

DR

000

Address

AR

PC

800

A00

FFF

D
a

ta
 S

e
g

m
e

n
t

S
ta

c
k
 S

e
g

m
e

n
t

C
o

d
e

 S
e

g
m

e
n

t

 Memory with Program, Data,

and Stack Segments

 Portion of memory used as

stack with a register as a

stack pointer

 Check overflow & underflow

 Initially, SP is set to the end

of memory (FFF)

 Stack overflows if it exceeds

some limit

 Operations:

PUSH: SP SP – 1

M[SP] DR

POP: DR M[SP]

SP SP + 1

Dr. T. Eldos 10

Reverse Polish Notation

 Consider the arithmetic expressions: A + B

 A + B Infix notation

 + A B Prefix or Polish notation

 A B + Postfix or Reverse Polish notation

 Reverse Polish Notation is suitable for evaluation using stack

 Any arithmetic expression can be expressed in parenthesis-free

 Example: RPN of expression (3 * 4) + (5 * 6) is 3 4 * 5 6 * +

 Arrow stands for the top of the stack

3 4 * 5 6 * +

6

5

12

30

12 42

5

1212

4

33

Dr. T. Eldos 11

Instruction Format

 Instruction Fields

 OP-code; specifies the operation to be performed

 Address; designates memory addresses or a processor registers

 Mode; specifies the way operand or effective address is determined

 Number of address fields in the instruction format depends on the

internal organization. Most common organizations are:

 Single accumulator organization:

 ADD X ; AC AC + M[X]

 Register organization:

 ADD R1, R2, R3 ; R1 R2 + R3

 ADD R1, R2 ; R1 R1 + R2

 ADD R1, X ; R1 R1 + M[X]

 Stack organization:
 PUSH X ; TOS M[X]

 ADD

Dr. T. Eldos 12

0-address & 1-address instructions

 0-address, used in a stack computers; evaluate X = (A + B) * (C + D) :

PUSH A ; TOS A

PUSH B ; TOS B

ADD ; TOS (A + B)

PUSH C ; TOS C

PUSH D ; TOS D

ADD ; TOS (C + D)

MUL ; TOS (C + D) * (A + B)

POP X ; M[X] TOS

 1-address, implies AC for manipulation; evaluate X = (A + B) * (C + D) :

LOAD A ; AC M[A]

ADD B ; AC AC + M[B]

STORE T ; M[T] AC

LOAD C ; AC M[C]

ADD D ; AC AC + M[D]

MUL T ; AC AC * M[T]

STORE X ; M[X] AC

Dr. T. Eldos 13

2-address & 3-address Instruction

 2-address, evaluate X = (A + B) * (C + D)

MOV R1, A ; R1 M[A]

ADD R1, B ; R1 R1 + M[B]

MOV R2, C ; R2 M[C]

ADD R2, D ; R2 R2 + M[D]

MUL R1, R2 ; R1 R1 * R2

MOV X, R1 ; M[X] R1

 3-address, evaluate X = (A + B) * (C + D)

ADD R1, A, B ; R1 M[A] + M[B]

ADD R2, C, D ; R2 M[C] + M[D]

MUL X, R1, R2 ; M[X] R1 * R2

 Compared to the 2-address instructions, 3-address results in short
programs but instruction becomes long (many bits)

Dr. T. Eldos 14

Addressing Modes

 Techniques, methods or ways by which the instruction accesses its
operand

 Specifies a rule for interpreting or modifying the address field of the
instruction (before the operand is actually referenced)

 Many addressing modes for flexibility and efficient use of bits

 Types are:

 Implied

 Immediate

 Absolute (Direct Address)

 Register Direct

 Register Indirect

 Register Indirect with Autoincrement and Autodecrement

 Relative:

 PC relative

 Index relative

 Base relative

Dr. T. Eldos 15

Addressing Modes

 Implied Mode

 Address of operand specified implicitly in the instruction

 No need to specify address in the instruction

 Example: effective address of CMA is AC and that of POP is stack
pointer

 Immediate Mode

 Instead of specifying the address, operand itself is specified

 No need to specify address, operand itself needs to be specified

 Sometimes, require more bits than the address

 Fast to acquire an operand

 Example: LD #129, R1, source is immediate

 Register Mode

 Address specified in the instruction is the register address

 Designated operand need to be in a register

 Shorter address than the memory address

 Saving address field in the instruction

 Faster to acquire an operand than the memory addressing

 Example: MOV R1, R2, source and destinations are register direct

Dr. T. Eldos 16

Addressing Modes

 Register Indirect Mode

 Instruction specifies a register containing address of operand

 Saving instruction bits since register address is shorter than memory
address

 Slower to acquire an operand than both register and memory addressing

 Example: MOV R1, (R4), destination is memory whose address is in R4

 Register Indirect with Autoincrement/Autodecrement

 Register based addressing is automatically adjusted by incrementing or
decrementing [some processor restrict the use to ()+ and –()]

 Automatically adjust the pointers by adding proper offset

 Example: ST R1, (R4)+

 Absolute or Direct Address Mode

 Instruction specifies directly the memory address of the operand

 Faster than the other memory addressing modes

 Too many bits are needed to specify the address for a large memory space

 Example: ST #$12, 124400, destination is operand at address 124400

Dr. T. Eldos 17

Addressing Modes

 Indirect Addressing Mode

 Address field specifies address to address of operand in memory

 Abbreviated address is used to address operand using small number of bits

 Slow to acquire an operand because of an additional memory access

 Example: ST R1, (124400), destination address is at address 124400

 Relative Addressing Modes

 Address fields of an instruction specifies part of the address which can

be used along with a designated register to calculate operand address

 Address field of the instruction is short

 Large physical memory can be accessed with a small number of address

bits

 Example: Operand is at address formed modifying a special purpose

register

 3 different Relative Addressing Modes depending on register:

 PC Relative, effective address is PC + offset, like BRA Loop

 Indexed

 Base Register

Dr. T. Eldos 18

Addressing Modes: Example

Addressing Modes Example: LDA [Mode] 500
Mode EA Operation AC content

Direct 500 ; AC (500) 800
Immediate - ; AC 500 500
Indirect 800 ; AC ((500)) 300
Relative 702 ; AC (PC+500) 325
Indexed 600 ; AC (XR+500) 900
Register - ; AC R1 400
Register Indirect 400 ; AC (R1) 700
Autoincrement 400 ; AC (R1)+ 700
Autodecrement 399 ; AC -(R) 450

MemoryAddress

PC 200

R1 400

XR 100

AC

LDA Mode

Address=500

Next Instruction

450

700

800

900

325

300

200

201

202

399

400

500

600

702

800

Load Accumulator

using variety of Modes

Dr. T. Eldos 19

Instruction Types: Data Transfer

 Highest frequency

 Transfer data between registers and memory or input-output devices

Typical Data Transfer Instructions
Mnemonic Name

LD Load
ST Store
MOV Move
EX Exchange
EXX Exchange All
SWP Swap
IN Input
OUT Output
PUSH Push
POP Pop

Dr. T. Eldos 20

Addressing Modes for Data Transfer

Data Transfer Instructions with Different Addressing Modes

Addressing Mode Assembler ConventionRegister Transfer

Direct address LD ADR AC M[ADR]

Indirect address LD @ADR AC M[M[ADR]]

Relative address LD $ADR AC M[PC + ADR]

Immediate operand LD #NBR AC NBR

Index addressing LD ADR(X) AC M[XR+ADR]

Register LD R1 AC R1

Register indirect LD (R1) AC M[R1]

Autoincrement LD (R1)+ AC M[R1], R1 R1 + 1

Autodecrement LD -(R1) R1 R1 - 1, AC M[R1]

Dr. T. Eldos 21

Instruction Types: Arithmetic Operations

 Some processors include FP and/or BCD arithmetic

Arithmetic Instructions
Mnemonic Name

INC Increment
DEC Decrement
ADD Add
SUB Subtract
MUL Multiply
DIV Divide
ADDC Add with Carry
SUBB Subtract with Borrow
NEG Negate (2’s Complement)

Dr. T. Eldos 22

Instruction Types: Logical and Bit Operations

Logical and Bit Manipulation Instructions
Mnemonic Name Mnemonic

CLR Clear
COM Complement
AND AND
OR OR
XOR Exclusive-OR
CLRC Clear carry CLRC
SETC Set Carry
COMC Complement Carry
EI Enable Interrupt
DI Disable Interrupt

Dr. T. Eldos 23

Instruction Types: Shift Operations

Shift Instructions
Mnemonic Name Mnemonic

SHR Logical Shift Right
SHL Logical Shift Left
SHRA Shift Right Arithmetic
SHLA Shift Left Arithmetic
ROR Rotate Right
ROL Rotate Left
RORC Rotate Right thru Carry
ROLC Rotate Left thru Carry

Dr. T. Eldos 24

Instruction Types: Program Control

 PC is updated in two major ways;

 By incrementing

 Fetch from the fall through path

 Skip the next instruction to the next

 By loading

 Jump to an address

 Branch to an address

 Call subroutine

 Return to the calling part of the program

Program Control Instructions
Mnemonic Name

BR Branch
JMP Jump
SKP Skip
CALL Call Subroutine
RTN Return
CMP Compare (using SUB)
TST Test (using AND)

Dr. T. Eldos 25

Condition Codes

 The recent state of the machine is expressed in flip-flops collectively called:

 Flags

 Status register

 Condition Code Register

 The S (sometimes called N) for Sign or Negative, it reflects the sign of the

outcome, that is why it is a copy of the MSB of the ALU

 The Z (Zero) flag is set when all the bits of the result are 0’s

 The C (Carry) and V (oVerflow) flags are meant to reflect the carry for the

unsigned and signed

Status Flag Circuit

A

8-bit ALU

B

8

88

F

V

Z

S

C
C8

C7

F7

F7 – F0

Dr. T. Eldos 26

Conditional Branch Instructions

Simple Compare Condition

Branch Condition Tested condition Mnemonic

Branch if Zero Z = 1 BZ

Branch if Not Zero Z = 0 BNZ

Branch if Carry C = 1 BC

Branch if No Carry C = 0 BNC

Branch if Plus S = 0 BP

Branch if Minus S = 1 BM

Branch if oVerflow V = 1 BV

Branch if No oVerflow V = 0 BNV

Dr. T. Eldos 27

Arithmetic Compare Conditions

Unsigned Compare conditions (A - B)

Branch Condition Tested Condition Mnemonic

Branch if Higher A > B C’ . Z’ BHI

Branch if Higher or Equal A B C’ BHE or BNC

Branch if Lower A < B C BLO or BC

Branch if Lower or Equal A B C + Z BLOE

Signed Compare Conditions (A - B)

Branch Condition Tested Condition Mnemonic

Branch if Greater Than A > B (N V)’ . Z’ BGT

Branch if Greater or Equal A B (N V)’ BGE

Branch if Less Than A < B (N V) BLT

Branch if Less or Equal A B (N V) + Z BLE

Signed & Unsigned Compare conditions (A - B)

Branch Condition Tested Condition Mnemonic

Branch if Equal A = B Z BEQ or BZ

Branch if Not Equal A B Z’ BNE or BNZ

Dr. T. Eldos 28

Subroutine Call & Return

 Subroutine calls have flavors: Call, Jump and Branch

 Two Most Important Operations are Implied:

 Save Return Address (current value of PC) for proper operation

 Locations for storing Return Address

 Fixed Location in the subroutine area

 Fixed Location in memory

 Special register within the processor

 Memory stack, which is the most efficient way

 Branch to the beginning of the subroutine by placing effective address

into the PC

 Stack Based Microoperations:

 CALL SP SP – 1

M[SP] PC

PC EA

 RTN PC M[SP]

SP SP + 1

Dr. T. Eldos 29

Program Interrupt - Types

 External interrupts; initiated from external devices

 Input-Output Device; data transfer start & stop

 Timing Device

 Power Failure

 Operator; a pushbutton

 Internal interrupts (traps); caused by a running program

 Register Check

 Stack Overflow

 Divide by zero

 OP-code Violation (illegal instruction)

 Protection Violation

 Software Interrupts; initiated by executing an instruction

 Supervisor Call; to switch from the user mode to the supervisor mode

Dr. T. Eldos 30

Interrupt Procedure

 Interrupts are two types:

 Hardware, or external interrupt, usually initiated by an external event

 Software, or internal interrupt, due to instruction execution

 The address of the interrupt service program is determined by:

 Hardware, requesting device send a vector

 Software, fixed address for each type

 An interrupt procedure usually stores all the information necessary

to define the state of processor rather than storing only the PC

 The state of the processor is determined from;

 Content of the PC

 Content of all processor registers

 Content of status bits

 Saving the state of processor depends on the architecture

Dr. T. Eldos 31

Computer Architecture Trends

 The instruction set is an important aspect of computer design

 The instruction set determines how the machine language programs

are constructed

 Early 80’s, stuck by marginal improvement in performance through

technology, directed the effort towards the organization instead

 Ideas for improving the organization included:

 Adding Registers, to localize the variables for high speed access

 Adding Caches, to keep data and instructions handy

 Adding Functional units, to overlap executions

 This would have increased the performance, but not with the limited

integration level of 105 transistors/chip of that time

 Conventionally, control units used to eat up good deal of that, nearly

50%, but could reach 70% in some implementations

 The idea was to make the control unit less complex, taking only a

fraction of that; say 5%

Dr. T. Eldos 32

Major Trends

 Trends were then called:

 Reduced Instruction Set Computers (RISC) &

 Complex Instruction Set Computers (CISC)

 Both have good reasons to stay

 Differences are becoming less and less, as the number of

transistors per package is no longer an issue;

 Registers are in abundance in both

 Cache is now in abundance in both and implemented in many levels

 Functional units are also many in both

 To stay backwardly compatible, a new trend is now in existence;

RISC core with CISC shell, P4 is just like that

Dr. T. Eldos 33

RISC & CISC

 Instruction set size < 100

 Addressing modes < 4

 Control unit logic < 10%

 Memory access is restricted to

Load/Store instructions

 Fixed length instructions

 Single cycle execution

 Most of the instructions are used

 Hardwired control unit

 Highly complier dependent for

efficient code

 Because of less complex control

unit, it has:

 Large number of registers > 128

 Larger caches

 More functional units

 Instructions set size, > 200

 Addressing modes > 8

 Control unit logic > 50%

 Memory access is allowed for data

manipulation instructions

 Variable length instructions

 Multiple cycle execution

 Some instructions are rarely used

 Microprogrammed control unit

 Compiler dependence is not as

much

 Because of more complex control

unit, it has:

 Small number of registers < 32

 Smaller caches

 Less functional units

Instruction Set
Architectures: Talking to

the Machine

1

The Architecture Question

• How do we build computer from contemporary
silicon device technology that executes general-
purpose programs quickly, efficiently, and at
reasonable cost?

• i.e. How do we build the computer on your
desk.

2

In the beginning...

• Physical configuration specifies the computation
3

The Difference Engine ENIAC

The Stored Program Computer

• The program is data
• i.e., it is a sequence of numbers that machine interprets

• A very elegant idea
• The same technologies can store and manipulate

programs and data
• Programs can manipulate programs.

4

The Stored Program Computer

• A very simple model
• Several questions

• How are program
represented?

• How do we get
algorithms out of our
brains and into that
representation?

• How does the the
computer interpret a
program?

5

Processor IO

Memory

Data Program

Representing Programs
• We need some basic building blocks -- call them

“instructions”

• What does “execute a program” mean?

• What instructions do we need?

• What should instructions look like?

• Is it enough to just specify the instructions?

• How complex should an instruction be?
6

Program Execution

7

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Read instruction from program storage (mem[PC])

Determine required actions and instruction size

Locate and obtain operand data

Compute result value

Deposit results in storage for later use

Determine successor instruction (i.e. compute next PC).
Usually this mean PC = PC + <instruction size in bytes>

• This is the algorithm for a stored-program
computer
• The Program Counter (PC) is the key

Motivating Code segments
• a = b + c;
• a = b + c + d;
• a = b & c;
• a = b + 4;
• a = b - (c * (d/2) - 4);
• if (a) b = c;
• if (a == 4) b = c;
• while (a != 0) a--;
• a = 0xDEADBEEF;
• a = foo[4];
• foo[4] = a;
• a = foo.bar;
• a = a + b + c + d +... +z;
• a = foo(b); -- next class

8

What instructions do we
need?

• Basic operations are a good choice.
• Motivated by the programs people write.
• Math: Add, subtract, multiply, bit-wise operations
• Control: branches, jumps, and function calls.
• Data access: Load and store.

• The exact set of operations depends on many,
many things
• Application domain, hardware trade-offs, performance,

power, complexity requirements.
• You will see these trade-offs first hand in the ISA project

and in 141L.

9

What should instructions look like?

• They will be numbers -- i.e., strings of bits
• It is easiest if they are all the same size, say 32

bits
• We can break up these bits into “fields” -- like members

in a class or struct.

• This sets some limits
• On the number of different instructions we can have
• On the range of values any field of the instruction can

specify

10

Is specifying the instructions sufficient?

• No! We also must what the instructions operate on.
• This is called the “Architectural State” of the

machine.
• Registers -- a few named data values that instructions can

operate on
• Memory -- a much larger array of bytes that is available for

storing values.
• How big is memory? 32 bits or 64 bits of addressing.

• 64 is the standard today for desktops and larger.
• 32 for phones and PDAs
• Possibly fewer for embedded processors

• We also need to specify semantics of function calls
• The “Stack Discipline,” “Calling convention,” or “Application

binary interface (ABI)”.

11

How complex should instructions be?

• More complexity
• More different instruction types are required.
• Increased design and verification costs
• More complex hardware.
• More difficult to use -- What’s the right instruction in this context?

• Less complexity
• Programs will require more instructions -- poor code density
• Programs can be more difficult for humans to understand
• In the limit, decremement-and-branch-if-negative is sufficient

• Imagine trying to decipher programs written using just one
instruction.

• It takes many, many of these instructions to emulate simple
operations.

• Today, what matters most is the compiler
• The Machine must be able to understand program
• A program must be able to decide which instructions to use

12

Big “A” Architecture
• The Architecture is a contract between the

hardware and the software.
• The hardware defines a set of operations, their

semantics, and rules for their use.
• The software agrees to follow these rules.
• The hardware can implement those rules IN ANY WAY IT

CHOOSES!
• Directly in hardware
• Via a software layer
• Via a trained monkey with a pen and paper.

• This is a classic interface -- they are everywhere
in computer science.
• “Interface,” “Separation of concerns,” “API,” “Standard,”

• For your project you are designing an
Architecture -- not a processor.

13

From Brain to Bits

14

Your brain

Programming

Language (C, C++, Java)

Brain/

Fingers/

SWE

Compiler

Assembly language

Machine code

(i.e., .o files)

Assembler

Executable

(i.e., .exe files)

Linker

C Code

15

int i;
int sum = 0;
int j = 4;
for(i = 0; i < 10; i++) {
sum = i * j + sum;

}

In the Compiler

16

Function

decl: i decl: sum = 0 decl: j = 4 Loop

init: i = 0 test: i < 10 inc: i++ Body

statement: =

lhs: sum rhs: expr

sum *

+

j i

In the Compiler

17

sum = 0

j = 4

i = 0

t1 = i * j

sum = sum + t1

i++;

...

i < 10?

false true

Control flow graph
w/high-level
instructions

addi $s0, $zero, 0

addi $s1, $zero, 4

addi $s2, $zero, 0

mult $t0, $s1, $s2

add $s0, $t0

addi $s2, $s2, 1

...

addi $t0, $zero, 10

bge $s2, $t0

true false

Control flow graph
w/real instructions

Out of the Compiler

18

addi $s0, $zero, 0
addi $s1, $zero, 4
addi $s2, $zero, 0

top:
addi $t0, $zero, 10
bge $s2, $t0, after

body:
mult $t0, $s1, $s2
add $s0, $t0
addi $s2, $s2, 1
br top

after:
...

addi $s0, $zero, 0

addi $s1, $zero, 4

addi $s2, $zero, 0

mult $t0, $s1, $s2

add $s0, $t0

addi $s2, $s2, 1

...

addi $t0, $zero, 10

bge $s2, $t0

true false

Assembly language

Labels in the Assembler

19

addi $s0, $zero, 0
addi $s1, $zero, 4
addi $s2, $zero, 0

top:
addi $t0, $zero, 10
bge $s2, $t0, after

mult $t0, $s1, $s2
add $s0, $t0
addi $s2, $s2, 1
br top

after:
...

‘after’ is defined at 0x20
used at 0x10

The value of the immediate for the branch
is 0x20-0x10 = 0x10

‘top’ is defined at 0x0C
used at 0x1C

The value of the immediate for the branch
is 0x0C-0x1C = 0xFFFF0 (i.e., -0x10)

Labels in the Assembler

19

addi $s0, $zero, 0
addi $s1, $zero, 4
addi $s2, $zero, 0

top:
addi $t0, $zero, 10
bge $s2, $t0, after

mult $t0, $s1, $s2
add $s0, $t0
addi $s2, $s2, 1
br top

after:
...

0x00
0x04
0x08

0x0C
0x10

0x14
0x18
0x1C

0x20

‘after’ is defined at 0x20
used at 0x10

The value of the immediate for the branch
is 0x20-0x10 = 0x10

‘top’ is defined at 0x0C
used at 0x1C

The value of the immediate for the branch
is 0x0C-0x1C = 0xFFFF0 (i.e., -0x10)

Assembly Language

20

• “Text section”
• Hold assembly language instructions
• In practice, there can be many of these.

• “Data section”
• Contain definitions for static data.
• It can contain labels as well.

• The addresses in the data section have no
relation to the addresses in the data section.

• Pseudo instructions
• Convenient shorthand for longer instruction sequences.

.data and pseudo instructions

21

void foo() {
 static int a = 0;

a++;
...

}

.data
foo_a:
.word 0

.text
foo:
lda $t0, foo_a
ld $s0, 0($t0)
addi $s0, $s0, 1
st $s0, 0($t0)

after:
...

.data and pseudo instructions

21

void foo() {
 static int a = 0;

a++;
...

}

.data
foo_a:
.word 0

.text
foo:
lda $t0, foo_a
ld $s0, 0($t0)
addi $s0, $s0, 1
st $s0, 0($t0)

after:
...

lda $t0, foo_a
becomes these instructions (this is not assembly language!)
andi $t0, $zero, ((foo_a & 0xff00) >> 16)
sll $t0, $t0, 16
andi $t0, $t0, (foo_a & 0xff)

.data and pseudo instructions

21

void foo() {
 static int a = 0;

a++;
...

}

.data
foo_a:
.word 0

.text
foo:
lda $t0, foo_a
ld $s0, 0($t0)
addi $s0, $s0, 1
st $s0, 0($t0)

after:
...

lda $t0, foo_a
becomes these instructions (this is not assembly language!)
andi $t0, $zero, ((foo_a & 0xff00) >> 16)
sll $t0, $t0, 16
andi $t0, $t0, (foo_a & 0xff)

The assembler computes and inserts these values.

.data and pseudo instructions

21

void foo() {
 static int a = 0;

a++;
...

}

.data
foo_a:
.word 0

.text
foo:
lda $t0, foo_a
ld $s0, 0($t0)
addi $s0, $s0, 1
st $s0, 0($t0)

after:
...

lda $t0, foo_a
becomes these instructions (this is not assembly language!)
andi $t0, $zero, ((foo_a & 0xff00) >> 16)
sll $t0, $t0, 16
andi $t0, $t0, (foo_a & 0xff)

If foo is address 0x0,
where is after?

The assembler computes and inserts these values.

.data and pseudo instructions

21

void foo() {
 static int a = 0;

a++;
...

}

.data
foo_a:
.word 0

.text
foo:
lda $t0, foo_a
ld $s0, 0($t0)
addi $s0, $s0, 1
st $s0, 0($t0)

after:
...

lda $t0, foo_a
becomes these instructions (this is not assembly language!)
andi $t0, $zero, ((foo_a & 0xff00) >> 16)
sll $t0, $t0, 16
andi $t0, $t0, (foo_a & 0xff)

If foo is address 0x0,
where is after?

0x00
0x0C
0x10
0x14

0x18

The assembler computes and inserts these values.

ISA Alternatives

• MIPS is a 3-address, RISC ISA
• add rs, rt, rd -- 3 operands
• RISC -- reduced instruction set. Relatively small number

of operation. Very regular encoding. RISC is the “right”
way to build ISAs.

• 2-address
• add r1, r2 --> r1 = r1 + r2
• + few operands, so more bits for each.
• - lots of extra copy instructions

• 1-address
• Accumulator architectures
• add r1 -> acc = acc + rI

22

Stack-based ISA

• A push-down stack holds arguments
• Some instruction manipulate the stack

• push, pop, swap, etc.

• Most instructions operate on the contents of the
stack
• Zero-operand instructions
• add --> t1 = pop; t2 = pop; push t1 + t2;

• Elegant in theory.
• Clumsy in hardware.

• How big is the stack?

• Java byte code is a stack-based ISA
• So is the x86 floating point ISA

23

24

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16•

•
•

0x1000

Memory

Base ptr (BP)

PC

24

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16•

•
•

0x1000

Memory

Base ptr (BP)

PC

25

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

25

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

26

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

C
B

•
•
•

0x1000

Memory

Base ptr (BP)

PC

26

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

C
B

•
•
•

0x1000

Memory

Base ptr (BP)

PC

27

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

27

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

28

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C
Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

28

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C
Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

29

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

X
B*C

Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

29

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

X
B*C

Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

30

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result
- Store -- Store the top of the stack

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C
X*Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

30

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result
- Store -- Store the top of the stack

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

B*C
X*Y

•
•
•

0x1000

Memory

Base ptr (BP)

PC

31

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

X
Y
B
C
A

SP
+4
+8

+12
+16

X*Y-B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

31

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

X*Y-B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

32

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result
- Store -- Store the top of the stack

X
Y
B
C
A

SP
+4
+8

+12
+16

X*Y-B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

32

compute A = X * Y - B * C

• Stack-based ISA
- Processor state: PC, “operand stack”, “Base ptr”
- Push -- Put something from memory onto the stack
- Pop -- take something off the top of the stack
- +, -, *,… -- Replace top two values with the result
- Store -- Store the top of the stack

Push 8(BP)
Push 12(BP)
Mult
Push 0(BP)
Push 4(BP)
Mult
Sub
Store 16(BP)
Pop

X
Y
B
C
A

SP
+4
+8

+12
+16

X*Y-B*C

•
•
•

0x1000

Memory

Base ptr (BP)

PC

• Functions are an essential feature of modern
languages

• What does a function need?
• Arguments.
• Storage for local variables.
• To return control to the the caller.
• To execute regardless of who called it.
• To call other functions (that call other functions...that

call other functions)

• There are not instructions for this
• It is a contract about how the function behaves
• In particular, how it treats the resources that are shared

between functions -- the registers and memory

33

Supporting Function Calls

Register Discipline

• All registers are the
same, but we assign
them different uses.

34

Name number use saved?

$zero 0 zero n/a

$v0-$v1 2-3 return value no

$a0-$a3 4-7 arguments no

$t0-$t7 8-15 temporaries no

$s0-$7 26-23 saved yes

$t8-$t9 24-25 temporaries no

$gp 26 global ptr yes

$sp 29 stack ptr yes

$fp 30 frame ptr yes

$ra 31 return address yes

Arguments

• How many arguments can
function have?
• unbounded.
• But most functions have just a

few.

• Make the common case fast
• Put the first 4 argument in

registers ($a0-$a3).
• Put the rest on the “stack”

35

int Foo(int a, int b, int c, int d, int e) {
 ...
}

a$a0

b$a1

c$a2

d$a3

0x1DEA$sp

e0x1DEA

Stack (in memory)Register file

Storage for Local Variables

• Local variables
go on the stack
too.

36

int Foo(int a, int b, int c, int d, int e) {
 int bar[4];
 ...
}

a$a0

b$a1

c$a2

d$a3

0 x1D EA

$sp

e0 x1D EA

Stack (in memory)Register file

bar[3]

0 x1D EA + 16

$fp

bar[2]

bar[1]

bar[0]

Returning Control

37

int Foo(int a, ...) {
 int bar[4];
 ...

return bar[0];
}

...
move $a0, $t1
move $a1, $s4
move $a2, $s3
move $a3, $s3
sw $t2, 0($sp)
subi $sp, $sp, 4
jal Foo0xBAD0:

Caller

Callee
...
subi $sp, $sp, 16 // Allocate bar
...
lw $v0, 0($sp)
addi $sp, $sp, 16 // deallocate bar
jr $ra // return

a$a0

b$a1

c$a2

d$a3

0x1DEA

$sp

e0x1DEA

Stack (in memory)
Register file

bar[3]

0x1DEA + 16

$fp

bar[2]

bar[1]

bar[0]

bar[0]$v0

0xBAD4$ra

Saving Registers

• Some registers are preserved across function calls
• If a function needs a value after the call, it uses one of these
• But it must also preserve the previous contents (so it can

honor its obligation to its caller)
• Push these registers onto the stack.
• See figure 2.12 in the text.

38

Evaluating Computers:
Bigger, better, faster, more?

1

What do you want in a computer?

2

What do you want in a computer?

• Low latency -- one unit of work in minimum time
• 1/latency = responsiveness

• High throughput -- maximum work per time
• High bandwidth (BW)

• Low cost
• Low power -- minimum jules per time
• Low energy -- minimum jules per work
• Reliability -- Mean time to failure (MTTF)
• Derived metrics

• responsiveness/dollar
• BW/$
• BW/Watt
• Work/Jule
• Energy * latency -- Energy delay product
• MTTF/$

3

Latency

• This is the simplest kind of performance
• How long does it take the computer to perform

a task?
• The task at hand depends on the situation.

• Usually measured in seconds
• Also measured in clock cycles

• Caution: if you are comparing two different system, you
must ensure that the cycle times are the same.

4

Measuring Latency

• Stop watch!
• System calls
• gettimeofday()
• System.currentTimeMillis()

• Command line
• time <command>

5

Where latency matters

• Application responsiveness
• Any time a person is waiting.
• GUIs
• Games
• Internet services (from the users perspective)

• “Real-time” applications
• Tight constraints enforced by the real world
• Anti-lock braking systems
• Manufacturing control
• Multi-media applications

• The cost of poor latency
• If you are selling computer time, latency is money.

6

Latency and Performance

• By definition:
• Performance = 1/Latency
• If Performance(X) > Performance(Y), X is faster.
• If Perf(X)/Perf(Y) = S, X is S times faster than Y.
• Equivalently: Latency(Y)/Latency(X) = S

• When we need to talk about specifically about
other kinds of “performance” we must be more
specific.

7

The Performance Equation
• We would like to model how architecture impacts

performance (latency)
• This means we need to quantify performance in

terms of architectural parameters.
• Instructions -- this is the basic unit of work for a

processor
• Cycle time -- these two give us a notion of time.
• Cycles

• The first fundamental theorem of computer
architecture:

Latency = Instructions * Cycles/Instruction *
Seconds/Cycle

8

The Performance Equation

• The units work out! Remember your
dimensional analysis!

• Cycles/Instruction == CPI
• Seconds/Cycle == 1/hz
• Example:

• 1GHz clock
• 1 billion instructions
• CPI = 4
• What is the latency?

9

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

Examples

• gcc runs in 100 sec on a 1 GHz machine
– How many cycles does it take?

• gcc runs in 75 sec on a 600 MHz machine
– How many cycles does it take?

100G cycles

45G cycles

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

How can this be?

• Different Instruction count?
• Different ISAs ?
• Different compilers ?

• Different CPI?
• underlying machine implementation
• Microarchitecture

• Different cycle time?
• New process technology
• Microarchitecture

11

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

Computing Average CPI

• Instruction execution time depends on instruction
time (we’ll get into why this is so later on)
• Integer +, -, <<, |, & -- 1 cycle
• Integer *, /, -- 5-10 cycles
• Floating point +, - -- 3-4 cycles
• Floating point *, /, sqrt() -- 10-30 cycles
• Loads/stores -- variable
• All theses values depend on the particular implementation,

not the ISA

• Total CPI depends on the workload’s Instruction mix
-- how many of each type of instruction executes
• What program is running?
• How was it compiled?

12

The Compiler’s Role

• Compilers affect CPI…
• Wise instruction selection

• “Strength reduction”: x*2n -> x << n
• Use registers to eliminate loads and stores

• More compact code -> less waiting for instructions

• …and instruction count
• Common sub-expression elimination
• Use registers to eliminate loads and stores

13

Stupid Compiler
int i, sum = 0;
for(i=0;i<10;i++)
 sum += i;

sw 0($sp), $0 #sum = 0
sw 4($sp), $0 #i = 0
loop:
lw $1, 4($sp)
sub $3, $1, 10
beq $3, $0, end
lw $2, 0($sp)
add $2, $2, $1
st 0($sp), $2
addi $1, $1, 1
st 4($sp), $1
b loop
end:

Type CPI Static # dyn #

mem 5 6 42

int 1 3 30

br 1 2 20

Total 2.8 11 92

(5*42 + 1*30 + 1*20)/92 = 2.8

Smart Compiler
int i, sum = 0;
for(i=0;i<10;i++)
 sum += i;

add $1, $0, $0 # i
add $2, $0, $0 # sum
loop:
sub $3, $1, 10
beq $3, $0, end
add $2, $2, $1
addi $1, $1, 1
b loop
end:
sw 0($sp), $2

Type CPI Static # dyn #

mem 5 1 1

int 1 5 32

br 1 2 20

Total 1.01 8 53

(5*1 + 1*32 + 1*20)/53 = 2.8

Live demo

16

Program inputs affect CPI too!

int rand[1000] = {random 0s and 1s }
for(i=0;i<1000;i++)
 if(rand[i]) sum -= i;
 else sum *= i;

int ones[1000] = {1, 1, ...}
for(i=0;i<1000;i++)
 if(ones[i]) sum -= i;
 else sum *= i;

• Data-dependent computation
• Data-dependent micro-architectural behavior

–Processors are faster when the computation is
predictable (more later)

Live demo

18

• Meaningful CPI exists only:
• For a particular program with a particular compiler
•with a particular input.

• You MUST consider all 3 to get accurate latency estimations
or machine speed comparisons
• Instruction Set
• Compiler
• Implementation of Instruction Set (386 vs Pentium)
• Processor Freq (600 Mhz vs 1 GHz)
• Same high level program with same input

• “wall clock” measurements are always comparable.
• If the workloads (app + inputs) are the same

19

Making Meaningful Comparisons

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

The Performance Equation

• Clock rate =
• Instruction count =
• Latency =
• Find the CPI!

20

Latency = Instructions * Cycles/Instruction * Seconds/Cycle

Today

• DRAM
• Quiz 1 recap
• HW 1 recap
• Questions about ISAs
• More about the project?
• Amdahl’s law

21

Key Points

• Amdahl’s law and how to apply it in a variety of
situations

• It’s role in guiding optimization of a system
• It’s role in determining the impact of localized

changes on the entire system
•

22

Limits on Speedup: Amdahl’s Law

• “The fundamental theorem of performance
optimization”

• Coined by Gene Amdahl (one of the designers of the
IBM 360)

• Optimizations do not (generally) uniformly affect the
entire program
– The more widely applicable a technique is, the more valuable it

is
– Conversely, limited applicability can (drastically) reduce the

impact of an optimization.

Always heed Amdahl’s Law!!!
It is central to many many optimization problems

Amdahl’s Law in Action

• SuperJPEG-O-Rama2000 ISA extensions
**
–Speeds up JPEG decode by 10x!!!
–Act now! While Supplies Last!

** Increases processor cost by 45%

Amdahl’s Law in Action

• SuperJPEG-O-Rama2000 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Amdahl’s Law in Action

• SuperJPEG-O-Rama2000 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.4x Speedup != 10x

Amdahl’s Law in Action

• SuperJPEG-O-Rama2000 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.4x Speedup != 10x
Is this worth the 45% increase in cost?

Amdahl’s Law in Action

• SuperJPEG-O-Rama2000 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.4x Speedup != 10x
Is this worth the 45% increase in cost?

Amdahl
ate our

Speedup!

Amdahl’s Law

• The second fundamental theorem of computer
architecture.

• If we can speed up X of the program by S times
• Amdahl’s Law gives the total speed up, Stot

Stot = 1 .

 (x/S + (1-x))

Amdahl’s Law

• The second fundamental theorem of computer
architecture.

• If we can speed up X of the program by S times
• Amdahl’s Law gives the total speed up, Stot

Stot = 1 .

 (x/S + (1-x))

x =1 => Stot = 1 = 1 = S

 (1/S + (1-1)) 1/S

Sanity check:

Amdahl’s Corollary #1

• Maximum possible speedup, Smax

Smax = 1
 (1-x)

S = infinity

Amdahl’s Law Practice
• Protein String Matching Code

–200 hours to run on current machine, spends 20% of
time doing integer instructions

–How much faster must you make the integer unit to
make the code run 10 hours faster?

–How much faster must you make the integer unit to
make the code run 50 hours faster?

A)1.1
B)1.25
C)1.75
D)1.33

E) 10.0
F) 50.0
G) 1 million times
H) Other

Amdahl’s Law Practice

• Protein String Matching Code
–4 days ET on current machine

• 20% of time doing integer instructions
• 35% percent of time doing I/O

–Which is the better economic tradeoff?
• Compiler optimization that reduces number of
integer instructions by 25% (assume each integer
inst takes the same amount of time)

• Hardware optimization that makes I/O run 20%
faster?

Amdahl’s Law Applies All Over

30

• SSDs use 10x less power than HDs
• But they only save you ~50% overall.

Amdahl’s Law in Memory

31

Memory Device

R
o
w

 d
e
c
o

d
e
r

Column decoder

Sense Amps

High order bits

Low order bits

Storage array

DataAddress

• Storage array 90% of area
• Row decoder 4%
• Column decode 2%
• Sense amps 4%

• What’s the benefit of
reducing bit size by 10%?

• Reducing column decoder
size by 90%?

Amdahl’s Corollary #2

• Make the common case fast (i.e., x should be
large)!
–Common == “most time consuming” not necessarily

“most frequent”
–The uncommon case doesn’t make much difference
–Be sure of what the common case is
–The common case changes.

• Repeat…
–With optimization, the common becomes uncommon

and vice versa.

Amdahl’s Corollary #2: Example
Common case

Amdahl’s Corollary #2: Example
Common case

7x => 1.4x

Amdahl’s Corollary #2: Example
Common case

7x => 1.4x
4x => 1.3x

Amdahl’s Corollary #2: Example
Common case

7x => 1.4x
4x => 1.3x

1.3x => 1.1x

Total = 20/10 = 2x

Amdahl’s Corollary #2: Example
Common case

7x => 1.4x
4x => 1.3x

1.3x => 1.1x

Total = 20/10 = 2x

• In the end, there is no common case!
• Options:

– Global optimizations (faster clock, better compiler)
– Find something common to work on (i.e. memory latency)
– War of attrition
– Total redesign (You are probably well-prepared for this)

Amdahl’s Corollary #3

• Benefits of parallel processing
• p processors
• x% is p-way parallizable
• maximum speedup, Spar

Spar = 1 .
 (x/p + (1-x))

Amdahl’s Corollary #3

• Benefits of parallel processing
• p processors
• x% is p-way parallizable
• maximum speedup, Spar

Spar = 1 .
 (x/p + (1-x))

x is pretty small for desktop applications, even for p = 2

Amdahl’s Corollary #3

• Benefits of parallel processing
• p processors
• x% is p-way parallizable
• maximum speedup, Spar

Spar = 1 .
 (x/p + (1-x))

x is pretty small for desktop applications, even for p = 2
Does Intel’s 80-core processor make much sense?

Amdahl’s Corollary #4
• Amdahl’s law for latency (L)

Lnew = Lbase *1/Speedup
Lnew = Lbase *(x/S + (1-x))
Lnew = (Lbase /S)*x + ETbase*(1-x)

• If you can speed up y% of the remaining (1-x), you can apply
Amdahl’s law recursively

Lnew = (Lbase /S1)*x +
 (Sbase*(1-x)/S2*y + Lbase*(1-x)*(1-y))

• This is how we will analyze memory system performance

Amdahl’s Non-Corollary

• Amdahl’s law does not bound slowdown
Lnew = (Lbase /S)*x + Lbase*(1-x)

• Lnew is linear in 1/S
• Example: x = 0.01 of execution, Lbase = 1

–S = 0.001;
• Enew = 1000*Lbase *0.01 + Lbase *(0.99) ~ 10*Lbase

–S = 0.00001;
• Enew = 100000*Lbase *0.01 + Lbase *(0.99) ~ 1000*Lbase

• Things can only get so fast, but they can get
arbitrarily slow.
–Do not hurt the non-common case too much!

Benchmarks: Standard Candles for
Performance

• It’s hard to convince manufacturers to run your program
(unless you’re a BIG customer)

• A benchmark is a set of programs that are representative of a
class of problems.

• To increase predictability, collections of benchmark
applications, called benchmark suites, are popular
– “Easy” to set up
– Portable
– Well-understood
– Stand-alone
– Standardized conditions
– These are all things that real software is not.

Classes of benchmarks

• Microbenchmark – measure one feature of system
– e.g. memory accesses or communication speed

• Kernels – most compute-intensive part of applications
– e.g. Linpack and NAS kernel b’marks (for supercomputers)

• Full application:
– SpecInt / SpecFP (int and float) (for Unix workstations)
– Other suites for databases, web servers, graphics,...

Bandwidth

• The amount of work (or data) per time
• MB/s, GB/s -- network BW, disk BW, etc.
• Frames per second -- Games, video transcoding

• (why are games under both latency and BW?)

• Also called “throughput”

39

Measuring Bandwidth

• Measure how much work is done
• Measure latency
• Divide

40

Latency-BW Trade-offs
• Often, increasing latency for one task and

increase BW for many tasks.
• Think of waiting in line for one of 4 bank tellers
• If the line is empty, your response time is minimized, but

throughput is low because utilization is low.
• If there is always a line, you wait longer (your latency

goes up), but there is always work available for tellers.

• Much of computer performance is about
scheduling work onto resources
• Network links.
• Memory ports.
• Processors, functional units, etc.
• IO channels.
• Increasing contention for these resources generally

increases throughput but hurts latency.
41

Stationwagon Digression
• IPv6 Internet 2: 272,400 terabit-meters per second

–585GB in 30 minutes over 30,000 Km
–9.08 Gb/s

• Subaru outback wagon
– Max load = 408Kg
– 21Mpg

• MHX2 BT 300 Laptop drive
–300GB/Drive
–0.135Kg

• 906TB
• Legal speed: 75MPH (33.3 m/s)
• BW = 8.2 Gb/s
• Latency = 10 days
• 241,535 terabit-meters per second

Prius Digression
• IPv6 Internet 2: 272,400 terabit-meters per second

–585GB in 30 minutes over 30,000 Km
–9.08 Gb/s

• My Toyota Prius
– Max load = 374Kg
– 44Mpg (2x power efficiency)

• MHX2 BT 300
–300GB/Drive
–0.135Kg

• 831TB
• Legal speed: 75MPH (33.3 m/s)
• BW = 7.5 Gb/s
• Latency = 10 days
• 221,407 terabit-meters per second (13%

performance hit)

1

A 5-Stage Pipeline

Source: H&P textbook

2

Pipeline Summary

RR ALU DM RW

ADD R1, R2, R3 Rd R1,R2 R1+R2 -- Wr R3

BEQ R1, R2, 100 Rd R1, R2 -- -- --
Compare, Set PC

LD 8[R3] R6 Rd R3 R3+8 Get data Wr R6

ST 8[R3] R6 Rd R3,R6 R3+8 Wr data --

3

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

4

Data Hazards

• An instruction produces a value in a given pipeline stage

• A subsequent instruction consumes that value in a pipeline
stage

• The consumer may have to be delayed so that the time
of consumption is later than the time of production

5

Example 1

add R1, R2, R3

lw R4, 8(R1)

Source: H&P textbook

6

Example 2

lw R1, 8(R2)

lw R4, 8(R1)

Source: H&P textbook

7

Example 3

lw R1, 8(R2)

sw R1, 8(R3)

Source: H&P textbook

8

Example 4

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

9

Example 4

D/R

ALU

DM

RW

IF

I1

CYC-1

D/R

I1

ALU

DM

RW

IF

I2

CYC-2

D/R

I2

ALU

I1

DM

RW

IF

I3

CYC-3

D/R

I2

ALU

DM

I1

RW

IF

I3

CYC-4

D/R

I2

ALU

DM

RW

I1

IF

I3

CYC-5

D/R

I3

ALU

I2

DM

RW

IF

I4

CYC-6

D/R

I4

ALU

I3

DM

I2

RW

IF

I5

CYC-7

D/R

ALU

DM

I3

RW

I2

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

10

Example 5

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (with bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
Identify the input latch for each input operand.

Example 5

• Show the instruction occupying each stage in each cycle (with bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
Identify the input latch for each input operand.

D/R

ALU

DM

RW

IF

I1

CYC-1

D/R

I1

ALU

DM

RW

IF

I2

CYC-2

D/R

I2

ALU

I1

DM

RW

IF

I3

CYC-3

D/R

I3

ALU

I2

DM

I1

RW

IF

I4

CYC-4

D/R

I4

ALU

I3

DM

I2

RW

I1

IF

I5

CYC-5

D/R

ALU

DM

I3

RW

I2

IF

CYC-6

D/R

ALU

DM

RW

I3

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

L3 L3 L4 L3 L5 L3

12

Example 6

IF Dec ALU

DM RWALU DM

RW

lw $1, 8($2)

add $4, $1, $3

IF Dec RR

A 7 or 9 stage pipeline

13

Example 6

IF Dec ALU

DM RWALU DM

RW

lw $1, 8($2)

add $4, $1, $3
IF Dec RR

Without bypassing: 4 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW

IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW

IF: IF :DE:DE:DE:DE:RR :AL:RW

14

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

6th instruction is a branch!)
 assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

 make a smarter guess and fetch instructions from the
expected target

15

Branch Delay Slots

Source: H&P textbook

Scheduling branch delay slot:

from before

• Always improves

performance

16

Scheduling branch delay slot:

from target

• improves performance

when branch is taken

• Must be ok to execute

the inst if the branch is

not taken

17

Scheduling branch delay slot:

from the fall through

• improves performance

when branch is not

taken

• Must be ok to execute

the inst if the branch is

taken

18

cpe 252: Computer Organization 1

Dheya Mustafa

HU Computer

Project:

HU architecture

• Build your own computer architecture

cpe 252: Computer Organization 2

Ask Questions:

• What is the memory model(size,address,data,

Harvard or Princeton)

• What is the instruction size; fixed or variable

• What addressing modes we support, RISC,CISC

• What are the instructions formats, stack,

accumelator two operand, one operand

• What instructions we support

• What registers we need

cpe 252: Computer Organization 3

cpe 252: Computer Organization 4

5-1 Instruction Codes

Stored Program Organization
cont.

Opcode Address

Instruction Format

Binary Operand

Operands
(data)

Processor register
(Accumulator AC)

Memory
4096x16

15 12 11 0

15 0

Instructions
(program)

15 0

015

cpe 252: Computer Organization 5

5-1 Instruction Codes

Indirect Address
• There are three Addressing Modes used for

address portion of the instruction code:

– Immediate: the operand is given in the address

portion (constant)

– Direct: the address points to the operand stored

in the memory

– Indirect: the address points to the pointer

(another address) stored in the memory that

references the operand in memory

• One bit of the instruction code can be used to

distinguish between direct & indirect addresses

cpe 252: Computer Organization 6

5-1 Instruction Codes

Indirect Address cont.

Opcode Address

Instruction Format

15 14 12 0

I

11

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+

AC

+

AC

Direct Address Indirect address

Effective

address

cpe 252: Computer Organization 7

5-1 Instruction Codes

Indirect Address cont.

• Effective address: the address of the

operand in a computation-type instruction

or the target address in a branch-type

instruction

• The pointer can be placed in a processor

register instead of memory as done in

commercial computers

cpe 252: Computer Organization 8

5-2 Computer Registers
• Computer instructions are normally stored

in consecutive memory locations and
executed sequentially one at a time

• The control reads an instruction from a
specific address in memory and executes
it, and so on

• This type of sequencing needs a counter
to calculate the address of the next
instruction after execution of the current
instruction is completed

cpe 252: Computer Organization 9

5-2 Computer Registers cont.

• It is also necessary to provide a register in

the control unit for storing the instruction

code after it is read from memory

• The computer needs processor registers

for manipulating data and a register for

holding a memory address

cpe 252: Computer Organization 10

List of BC Registers

DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction

TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

Registers in the Basic Computer

11 0

PC

15 0

IR

15 0

TR

7 0

OUTR

15 0

DR

15 0

AC

11 0

AR

INPR

0 7

Memory

4096 x 16

cpe 252: Computer Organization 11

S2
S1
S0

Bus

Memory unit
4096 x 16

LD INR CLR

Address

ReadWrite

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC
Adder
and
logic

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6

Computer Registers

Common Bus System

cpe 252: Computer Organization 12

5-2 Computer Registers

Common Bus System cont.

• S2S1S0: Selects the register/memory that would

use the bus

• LD (load): When enabled, the particular register

receives the data from the bus during the next

clock pulse transition

• E (extended AC bit): flip-flop holds the carry

• DR, AC, IR, and TR: have 16 bits each

• AR and PC: have 12 bits each since they hold a

memory address

cpe 252: Computer Organization 13

5-2 Computer Registers

Common Bus System cont.

• When the contents of AR or PC are

applied to the 16-bit common bus, the four

most significant bits are set to zeros

• When AR or PC receives information from

the bus, only the 12 least significant bits

are transferred into the register

• INPR and OUTR: communicate with the

eight least significant bits in the bus

cpe 252: Computer Organization 14

5-2 Computer Registers

Common Bus System cont.

• INPR: Receives a character from the input

device (keyboard,…etc) which is then

transferred to AC

• OUTR: Receives a character from AC and

delivers it to an output device (say a Monitor)

• Five registers have three control inputs: LD

(load), INR (increment), and CLR (clear)

• Register binary counter with parallel load and

synchronous clear

cpe 252: Computer Organization 15

5-2 Computer Registers

Memory Address

• The input data and output data of the memory

are connected to the common bus

• But the memory address is connected to AR

• Therefore, AR must always be used to specify a

memory address

• By using a single register for the address, we

eliminate the need for an address bus that would

have been needed otherwise

cpe 252: Computer Organization 16

5-2 Computer Registers

Memory Address cont.

• Register Memory: Write operation

• Memory Register: Read operation (note

that AC cannot directly read from

memory!!)

• Note that the content of any register can

be applied onto the bus and an operation

can be performed in the adder and logic

circuit during the same clock cycle

cpe 252: Computer Organization 17

5-2 Computer Registers

Memory Address cont.

• The transition at the end of the cycle

transfers the content of the bus into the

destination register, and the output of the

adder and logic circuit into the AC

• For example, the two microoperations

DR←AC and AC←DR (Exchange)

can be executed at the same time

• This is done by:

cpe 252: Computer Organization 18

5-2 Computer Registers

Memory Address cont.

• 1- place the contents of AC on the bus
(S2S1S0=100)

• 2- enabling the LD (load) input of DR

• 3- Transferring the contents of the DR
through the adder and logic circuit into AC

• 4- enabling the LD (load) input of AC

• All during the same clock cycle

• The two transfers occur upon the arrival of
the clock pulse transition at the end of the
clock cycle

cpe 252: Computer Organization 19

Memory-Reference Instructions (OP-code = 000 ~ 110)

5-3 Computer Instructions

Basic Computer Instruction code format

15 14 12 11 0

I Opcode Address

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

Register operation0 1 1 1

15 12 11 0

I/O operation1 1 1 1

cpe 252: Computer Organization 20

BASIC COMPUTER INSTRUCTIONS
Hex Code

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

cpe 252: Computer Organization 21

5-3 Computer Instructions

Instruction Set Completeness
• The set of instructions are said to be

complete if the computer includes a

sufficient number of instructions in each of

the following categories:

– Arithmetic, logical, and shift instructions

– Instructions for moving information to and

from memory and processor registers

– Program control instructions together with

instructions that check status conditions

– Input & output instructions

cpe 252: Computer Organization 22

5-4 Timing & Control cont.

• In the hardwired organization, the control

logic is implemented with gates, flip-flops,

decoders, and other digital circuits.

• In the microprogrammed organization, the

control information is stored in a control

memory (if the design is modified, the

microprogram in control memory has to be

updated)

• D3T4: SC←0

cpe 252: Computer Organization 23

I

The Control Unit for the basic computer

Hardwired Control Organization

Instruction register (IR)

15 14 13 12 11 - 0

3 x 8
decoder

7 6 5 4 3 2 1 0

Control
logic
gates

D0

15 14 2 1 0
4 x 16

Sequence decoder

4-bit
sequence

counter
(SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

Control
outputs

D

T

T

7

15

0

cpe 252: Computer Organization 24

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 4x16 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC 0

cpe 252: Computer Organization 25

5-4 Timing & Control cont.

• A memory read or write cycle will be initiated

with the rising edge of a timing signal

• Assume: memory cycle time < clock cycle time!

• So, a memory read or write cycle initiated by a

timing signal will be completed by the time the

next clock goes through its positive edge

• The clock transition will then be used to load the

memory word into a register

• The memory cycle time is usually longer than

the processor clock cycle wait cycles

cpe 252: Computer Organization 26

5-4 Timing & Control cont.

• T0: AR←PC
– Transfers the content of PC into AR if timing signal T0

is active

– T0 is active during an entire clock cycle interval

– During this time, the content of PC is placed onto the
bus (with S2S1S0=010) and the LD (load) input of AR
is enabled

– The actual transfer does not occur until the end of the
clock cycle when the clock goes through a positive
transition

– This same positive clock transition increments the
sequence counter SC from 0000 to 0001

– The next clock cycle has T1 active and T0 inactive

cpe 252: Computer Organization 27

5-5 Instruction Cycle

• A program is a sequence of instructions

stored in memory

• The program is executed in the computer

by going through a cycle for each

instruction (in most cases)

• Each instruction in turn is subdivided into a

sequence of sub-cycles or phases

cpe 252: Computer Organization 28

cont.Instruction Cycle 5 -5

• Instruction Cycle Phases:

– 1- Fetch an instruction from memory

– 2- Decode the instruction

– 3- Read the effective address from memory if

the instruction has an indirect address

– 4- Execute the instruction

• This cycle repeats indefinitely unless a

HALT instruction is encountered

cpe 252: Computer Organization 29

5-5 Instruction Cycle

Fetch and Decode

• Initially, the Program Counter (PC) is

loaded with the address of the first

instruction in the program

• The sequence counter SC is cleared to 0,

providing a decoded timing signal T0

• After each clock pulse, SC is incremented

by one, so that the timing signals go

through a sequence T0, T1, T2, and so on

cpe 252: Computer Organization 30

5-5 Instruction Cycle

Fetch and Decode cont.

– T0: AR←PC (this is essential!!)

The address of the instruction is moved to AR.

– T1: IR←M[AR], PC←PC+1

The instruction is fetched from the memory to IR

,

and the PC is incremented.

– T2: D0,…, D7←Decode IR(12-14), AR←IR(0-

11), I←IR(15)

cpe 252: Computer Organization 31

BC Instruction cycle: [Fetch Decode [Indirect] Execute]*

• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)
T1: IR M [AR], PC PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7 Decode IR(12-14), AR IR(0-11), I IR(15)

S2

S1

S0

Bus

7
Memory

unit
Address

Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

cpe 252: Computer Organization 32

= 0 (direct)

D'7IT3: AR M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

Start
SC 0

AR PC
T0

IR M[AR], PC PC + 1
T1

AR IR(0-11), I IR(15)
Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction
SC 0

Execute
input-output
instruction

SC 0

M[AR]AR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction
SC 0

T4

DETERMINE THE TYPE OF INSTRUCTION

cpe 252: Computer Organization 33

REGISTER REFERENCE INSTRUCTIONS

r = D7 I’ T3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11, the ith bit of IR.

- D7 = 1, I = 0
- Register Ref. Instr. is specified in B0 ~ B11 of IR
- Execution starts with timing signal T3

Register Reference Instructions are identified when

r: SC 0
CLA rB11: AC 0
CLE rB10: E 0
CMA rB9: AC AC’
CME rB8: E E’
CIR rB7: AC shr AC, AC(15) E, E AC(0)
CIL rB6: AC shl AC, AC(0) E, E AC(15)
INC rB5: AC AC + 1
SPA rB4: if (AC(15) = 0) then (PC PC+1)
SNA rB3: if (AC(15) = 1) then (PC PC+1)
SZA rB2: if (AC = 0) then (PC PC+1)
SZE rB1: if (E = 0) then (PC PC+1)
HLT rB0: S 0 (S is a start-stop flip-flop)

cpe 252: Computer Organization 34

AND to AC

D0T4: DR M[AR] Read operand

D0T5: AC AC DR, SC 0 AND with AC

ADD to AC

D1T4: DR M[AR] Read operand

D1T5: AC AC + DR, E Cout, SC 0 Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to be completed in a CPU cycle
- The execution of MR Instruction starts with T4

Symbol
Operation
Decoder

Symbolic Description

AND D0 AC AC M[AR]
ADD D1 AC AC + M[AR], E Cout

LDA D2 AC M[AR]
STA D3 M[AR] AC
BUN D4 PC AR
BSA D5 M[AR] PC, PC AR + 1
ISZ D6 M[AR] M[AR] + 1, if M[AR] + 1 = 0 then PC PC+1

5.6 MEMORY REFERENCE INSTRUCTIONS

cpe 252: Computer Organization 35

MEMORY REFERENCE INSTRUCTIONScont.

Memory, PC after execution

21

0 BSA 135

Next instruction

Subroutine

20

Return address: PC = 21

AR = 135

136

1 BUN 135

Memory, PC, AR at time T4

0 BSA 135

Next instruction

Subroutine

20

21

135

PC = 136

1 BUN 135

Memory Memory

LDA: Load to AC
D2T4: DR M[AR]
D2T5: AC DR, SC 0

STA: Store AC
D3T4: M[AR] AC, SC 0

BUN: Branch Unconditionally
D4T4: PC AR, SC 0

BSA: Branch and Save Return Address
M[AR] PC, PC AR + 1

cpe 252: Computer Organization 36

BSA: executed in a sequence of two micro-operations:
D5T4: M[AR] PC, AR AR + 1
D5T5: PC AR, SC 0

ISZ: Increment and Skip-if-Zero
D6T4: DR M[AR]
D6T5: DR DR + 1
D6T6: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

Memory Reference
cont.Instructions

cpe 252: Computer Organization 37

Memory-reference instruction

DR M[AR] DR M[AR] DR M[AR] M[AR] AC
SC 0

AND ADD LDA STA

AC AC DR
SC <- 0

AC AC + DR
E Cout
SC 0

AC DR
SC 0

D T0 4 D T1 4 D T2 4 D T3 4

D T0 5 D T1 5 D T2 5

PC AR
SC 0

M[AR] PC
AR AR + 1

DR M[AR]

BUN BSA ISZ

D T4 4 D T5 4 D T6 4

DR DR + 1

D T5 5 D T6 5

PC AR
SC 0

M[AR] DR
If (DR = 0)
then (PC PC + 1)
SC 0

D T6 6

cpe 252: Computer Organization 38

5-7 Input-Output and Interrupt

• Instructions and data stored in memory

must come from some input device

• Computational results must be transmitted

to the user through some output device

• For the system to communicate with an

input device, serial information is shifted

into the input register INPR

• To output information, it is stored in the

output register OUTR

cpe 252: Computer Organization 39

5-7 Input-Output and

Interruptcont.

Input-output
terminal

Serial
communication

interface
Computer

registers and

flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

cpe 252: Computer Organization 40

5-7 Input-Output and

Interruptcont.

• INPR and OUTR communicate with a
communication interface serially and with
the AC in parallel. They hold an 8-bit
alphanumeric information

• I/O devices are slower than a computer
system we need to synchronize the
timing rate difference between the
input/output device and the computer.

• FGI: 1-bit input flag (Flip-Flop) aimed to
control the input operation

cpe 252: Computer Organization 41

5-7 Input-Output and Interrupt
cont.

• FGI is set to 1 when a new information is
available in the input device and is cleared
to 0 when the information is accepted by
the computer

• FGO: 1-bit output flag used as a control
flip-flop to control the output operation

• If FGO is set to 1, then this means that the
computer can send out the information
from AC. If it is 0, then the output device is
busy and the computer has to wait!

cpe 252: Computer Organization 42

5-7 Input-Output and

Interruptcont.

• The process of input information transfer:

– Initially, FGI is cleared to 0

– An 8-bit alphanumeric code is shifted into
INPR (Keyboard key strike) and the input flag
FGI is set to 1

– As long as the flag is set, the information in
INPR cannot be changed by another data
entry

– The computer checks the flag bit; if it is 1, the
information from INPR is transferred in
parallel into AC and FGI is cleared to 0

cpe 252: Computer Organization 43

5-7 Input-Output and

Interruptcont.

– Once the flag is cleared, new information can

be shifted into INPR by the input device

(striking another key)

• The process of outputting information:

– Initially, the output flag FGO is set to 1

– The computer checks the flag bit; if it is 1, the

information from AC is transferred in parallel

to OUTR and FGO is cleared to 0

– The output accepts the coded information

(prints the corresponding character)

cpe 252: Computer Organization 44

5-7 Input-Output and

Interruptcont.

– When the operation is completed, the output

device sets FGO back to 1

– The computer does not load a new data

information into OUTR when FGO is 0

because this condition indicates that the

output device is busy to receive another

information at the moment!!

cpe 252: Computer Organization 45

Input-Output Instructions

• Needed for:
– Transferring information to and from AC register

– Checking the flag bits

– Controlling the interrupt facility

• The control unit recognize it when D7=1 and I = 1

• The remaining bits of the instruction specify the
particular operation

• Executed with the clock transition associated with
timing signal T3

• Input-Output instructions are summarized next

cpe 252: Computer Organization 46

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

INP pB11: AC(0-7) INPR, FGI 0 Input char. to AC
OUT pB10: OUTR AC(0-7), FGO 0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC PC + 1) Skip on output flag
ION pB7: IEN 1 Interrupt enable on
IOF pB6: IEN 0 Interrupt enable off

Input-Output Instructions

cpe 252: Computer Organization 47

Program Interrupt

• The process of communication just
described is referred to as Programmed
Control Transfer

• The computer keeps checking the flag bit,
and when it finds it set, it initiates an
information transform (this is sometimes
called Polling)

• This type of transfer is in-efficient due to
the difference of information flow rate
between the computer and the I/O device

cpe 252: Computer Organization 48

Program Interruptcont.

• The computer is wasting time while

checking the flag instead of doing some

other useful processing task

• An alternative to the programmed

controlled procedure is to let the external

device inform the computer when it is

ready for the transfer

• This type of transfer uses the interrupt

facility

cpe 252: Computer Organization 49

Program Interruptcont.

• While the computer is running a program,

it does not check the flags

• Instead:

– When a flag is set, the computer is

immediately interrupted from proceeding with

the current program

cpe 252: Computer Organization 50

Program Interruptcont.

– The computer stops what it is doing to take care

of the input or output transfer

– Then, it returns to the current program to continue

what it was doing before the interrupt

• The interrupt facility can be enabled or disabled

via a flip-flop called IEN

• The interrupt enable flip-flop IEN can be set and

cleared with two instructions (IOF, ION):

– IOF: IEN 0 (the computer cannot be

interrupted)

– ION: IEN 1 (the computer can be interrupted)

cpe 252: Computer Organization 51

Program Interruptcont.

• Another flip-flop (called the interrupt flip-

flop R) is used in the computer’s interrupt

facility to decide when to go through the

interrupt cycle

• FGI and FGO are different here compared

to the way they acted in an earlier

discussion!!

• So, the computer is either in an

Instruction Cycle or in an Interrupt

Cycle

cpe 252: Computer Organization 52

Program Interruptcont.

• The interrupt cycle is a hardware

implementation of a branch and save

return address operation (BSA)

• The return address available in PC is

stored in a specific location where it can

be found later when the program returns to

the instruction at which it was interrupted

• This location may be a processor register,

a memory stack, or a specific memory

location

cpe 252: Computer Organization 53

Program Interruptcont.

• For our computer, we choose the

memory location at address 0 as a place

for storing the return address

• Control then inserts address 1 into PC:

this means that the first instruction of the

interrupt service routine should be stored

in memory at address 1, or, the

programmer must store a branch

instruction that sends the control to an

interrupt service routine!!

cpe 252: Computer Organization 54

IEN
=0

=1

Program Interruptcont.

R = Interrupt flip-flop

Store return address

=1=0

in location 0
M[0] PC

Branch to location 1
PC 1

IEN 0
R 0

Interrupt cycleInstruction cycle

Fetch and decode
instructions

Execute
instructions

R 1

=1

=1

=0

=0

FGI

FGO

R

Flowchart for interrupt cycle

cpe 252: Computer Organization 55

Program Interruptcont.

• IEN, R 0: no more interruptions can

occur until the interrupt request from the

flag has been serviced

• The service routine must end with an

instruction that re-enables the interrupt

(IEN 1) and an instruction to return to

the instruction at which the interrupt

occurred

• The instruction that returns the control to

the original program is "indirect BUN 0"

cpe 252: Computer Organization 56

Program Interruptcont.

• Example: the computer is interrupted

during execution of the instruction at

address 255
After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

Before interrupt

Main
Program

1120

I/O
Program

0 BUN 1120

0

PC = 1

256
255

1 BUN 0

Memory

Main
Program

1120

I/O
Program

256

cpe 252: Computer Organization 57

Interrupt Cycle
• The fetch and decode phases of the

instruction cycle must be :

(Replace T0, T1, T2 R'T0, R'T1, R'T2

(fetch and decode phases occur at the

instruction cycle when R = 0)

• Interrupt Cycle:

– RT0: AR 0, TR PC

– RT1: M[AR] TR, PC 0

– RT2: PC PC + 1, IEN 0, R 0, SC 0

CPE252 cpe 252: Computer Organization 58

+

AR
CLR

PC
CLR

INR

TR
LD

Memory

write

K

J

K

J

0
S

1
S

2
S

2

6

1

7

16-bit common bus

0

0

0

Clock

IEN

R

R

0T

1T

2T

SCCLR

Address

Register transfers

for the Interrupt

Cycle

cpe 252: Computer Organization 59

Interrupt cont.

• Further Questions:

– How can the CPU recognize the device requesting

an interrupt?

– Since different devices are likely to require

different interrupt service routines, how can the

CPU obtain the starting address of the

appropriate routine in each case?

– Should any device be allowed to interrupt the CPU

while another interrupt is being serviced?

– How can the situation be handled when two or

more interrupt requests occur simultaneously?

cpe 252: Computer Organization 60

AR M[AR]Execute
RR

Instruction

Execute
I/O

Instruction

I

PC PC + 1, IEN 0
R 0, SC 0

D7

AR IR(0~11), I IR(15)
D0...D7 Decode IR(12 ~ 14)

M[AR] TR, PC 0IR M[AR], PC PC + 1

AR 0, TR PCAR PC

R

start
SC 0, IEN 0, R 0

5-8 Complete Computer Description

(I/O) =1 =0 (Register) (Indir) =1 =0 (Dir)

R’T0

R’T1

R’T2

RT0

RT1

RT2

I

Idle

D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

(Instruction Cycle) =0 =1 (Interrupt Cycle)

(Register or I/O) =1 =0 (Memory Ref)

D7’T4

Fig 5-15

cpe 252: Computer Organization 61

AR PC
IR M[AR], PC PC + 1
D0, ..., D7 Decode IR(12 ~ 14), AR IR(0 ~ 11), I IR(15)

AR M[AR]

R 1
AR 0, TR PC
M[AR] TR, PC 0
PC PC + 1, IEN 0, R 0, SC 0

DR M[AR]
AC AC . DR, SC 0
DR M[AR]
AC AC + DR, E Cout, SC 0
DR M[AR]
AC DR, SC 0
M[AR] AC, SC 0
PC AR, SC 0
M[AR] PC, AR AR + 1
PC AR, SC 0
DR M[AR]
DR DR + 1
M[AR] DR, if(DR=0) then (PC PC + 1), SC 0

5-8 Complete Computer

Descriptioncont.

Fetch

Decode

Indirect

Interrupt:

Memory-Reference:
AND

ADD

LDA

STA
BUN
BSA

ISZ

R’T0:
R’T1:
R’T2:

D7’IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

T0’T1’T2’(IEN)(FGI + FGO):

cpe 252: Computer Organization 62

5-8 Complete Computer

Descriptioncont.
Register-Reference:

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output:

INP
OUT
SKI
SKO
ION
IOF

D7I’T3 = r
IR(i) = Bi

r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

D7IT3 = p
IR(i) = Bi

p:
pB11:
pB10:
pB9:
pB8:
pB7:
pB6:

(Common to all register-reference instructions)
(i = 0,1,2, ..., 11)
SC 0
AC 0
E 0
AC AC’
E E’
AC shr AC, AC(15) E, E AC(0)
AC shl AC, AC(0) E, E AC(15)
AC AC + 1
If(AC(15) =0) then (PC PC + 1)
If(AC(15) =1) then (PC PC + 1)
If(AC = 0) then (PC PC + 1)
If(E=0) then (PC PC + 1)
S 0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC 0
AC(0-7) INPR, FGI 0
OUTR AC(0-7), FGO 0
If(FGI=1) then (PC PC + 1)
If(FGO=1) then (PC PC + 1)
IEN 1

IEN 0

Table 5-6

cpe 252: Computer Organization 63

5-9 Design of Basic Computer
1. A memory unit: 4096 x 16.

2. Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR,

and SC

3. Flip-Flops (Status): I, S, E, R, IEN, FGI, and

FGO

4. Decoders:

1. a 3x8 Opcode decoder

2. a 4x16 timing decoder

5. Common bus: 16 bits

6. Control logic gates

7. Adder and Logic circuit: Connected to AC

cpe 252: Computer Organization 64

5-9 Design of Basic

Computercont.

• The control logic gates are used to

control:

– Inputs of the nine registers

– Read and Write inputs of memory

– Set, Clear, or Complement inputs of the flip-

flops

– S2, S1, S0 that select a register for the bus

– AC Adder and Logic circuit

cpe 252: Computer Organization 65

5-9 Design of Basic

Computercont.

• Control of registers and memory

– The control inputs of the registers are LD
(load), INR (increment), and CLR (clear)

– To control AR We scan table 5-6 to find out
all the statements that change the content of
AR:
• R’T0: AR PC LD(AR)

• R’T2: AR IR(0-11) LD(AR)

• D’7IT3: AR M[AR] LD(AR)

• RT0: AR 0 CLR(AR)

• D5T4: AR AR + 1 INR(AR)

cpe 252: Computer Organization 66

5-9 Design of Basic

Computercont.

AR

LD

INR

CLR

Clock

To busFrom bus
D'

I

T
T

R

T

D5
T

7

3
2

0

4

Control Gates associated with AR

cpe 252: Computer Organization 67

5-9 Design of Basic

Computercont.

– To control the Read input of the memory we

scan the table again to get these:

• D0T4: DR M[AR]

• D1T4: DR M[AR]

• D2T4: DR M[AR]

• D6T4: DR M[AR]

• D7′IT3: AR M[AR]

• R′T1: IR M[AR]

– Read = R′T1 + D7′IT3 + (D0 + D1 + D2 + D6)T4

cpe 252: Computer Organization 68

5-9 Design of Basic

Computercont.

• Control of Single Flip-flops (IEN for

example)

– pB7: IEN 1 (I/O Instruction)

– pB6: IEN 0 (I/O Instruction)

– RT2: IEN 0 (Interrupt)

• where p = D7IT3 (Input/Output Instruction)

– If we use a JK flip-flop for IEN, the control

gate logic will be as shown in the following

slide:

cpe 252: Computer Organization 69

5-9 Design of Basic

Computercont.

D

I

T3

7

J

K

Q IEN
p

B7

B6

T2

R

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q’(t)

JK FF Characteristic Table

cpe 252: Computer Organization 70

5-9 Design of Basic

Computercont.

• Control of Common bus is accomplished
by placing an encoder at the inputs of the
bus selection logic and implementing the
logic for each encoder input

x1

x2

x3

x4

x5

x6

x7

Encoder

S 2

S 1

S 0

Multiplexer

bus select

inputs

cpe 252: Computer Organization 71

5-9 Design of Basic

Computercont.

• To select AR on the bus then x1 must be
1. This is happen when:

• D4T4: PC AR

• D5T5: PC AR

• x1 = D4T4 + D5T5

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0
selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

cpe 252: Computer Organization 72

5-9 Design of Basic

Computercont.

• For x7:

– X7 = R′T1 + D7′IT3 + (D0 + D1 + D2 + D6)T4 where

it is also applied to the read input

cpe 252: Computer Organization 73

5-10 Design of Accumulator Logic

Circuits associated with AC

All the statements that change the content of AC

16

16

8

Adder and

logic

circuit

16
ACFrom DR

From INPR

Control

gates

LD INR CLR

16

To bus

Clock

D0T5: AC AC DR AND with DR
D1T5: AC AC + DR Add with DR
D2T5: AC DR Transfer from DR
pB11: AC(0-7) INPR Transfer from INPR
rB9: AC AC’ Complement
rB7 : AC shr AC, AC(15) E Shift right
rB6 : AC shl AC, AC(0) E Shift left
rB11 : AC 0 Clear
rB5 : AC AC + 1 Increment

cpe 252: Computer Organization 74

Gate structures for controlling
the LD, INR, and CLR of AC

AC

LD

INR
CLR

Clock

To bus
16From Adder

and Logic
16

AND

ADD

LDA

INPR

COM

SHR

SHL

INC

CLR

D0

D1

D2

B11

B9

B7

B6

B5

B11

r

p

T5

T5

5-10 Design of Accumulator

Logiccont.

cpe 252: Computer Organization 75

Adder and Logic Circuit

AND

ADD

LDA

INPR

COM

SHR

SHL

J

K

Q
AC(i)

LD

FA

C

C

From
INPR
bit(i)

DR(i)
AC(i)

AC(i+1)

AC(i-1)

i

i

i+1

I

CPE 408340

Computer Organization

Chapter 5 : Large and Fast:

Exploiting Memory Hierarchy
The

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of
their address space at any time

 Temporal locality

 Items accessed recently are likely to be
accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely
to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels

 Block (aka line): unit of copying
 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses
= 1 – hit ratio

 Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.2

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if
the data is present?

 Where do we look?

Cache Design Rules

Address = [Block Address] [Block Offset]

Address = [Tag] [Index] [Word Offset] [Byte Offset]

Block_bits = log2(Block_Size)

#Blocks in Cache = Cache_Size/Block_Size

#Sets in Cache = #Blocks / Set_Size

Set_Size = number of ways in the cache

For direct cache : Set_Size=1 (#Sets = #Blocks)

For fully associative : Set_Size= #Blocks (#Sets = 1)

For k-way associative: Set_Size= k

Index_bits = log2 (#Sets)

Tag_bits = Address_bits - (Block_bits + Index_bits)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

K-way Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Index

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Tags and Valid Bits

 How do we know which particular block is
stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state, Mem=32 words (or blocks)

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Miss :Tag
mismatch

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

120010= 0 ….01 00 1011 0000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

In the next few

slides we will

measure:

1. Miss Rate

2. Miss Penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Associativity Example

 2-way set associative
Block

address
Cache
index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

How Much Associativity

 Increased associativity decreases miss
rate

 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Write-Back

 Alternative: On data-write hit, just update
the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Write-allocate on miss: fetch the block

 Write around (no write allocate): don’t fetch
the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Example: Intrinsity FastMATH

 Embedded MIPS processor
 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Advanced DRAM Organization

 Bits in a DRAM are organized as a
rectangular array

 DRAM accesses an entire row

 Burst mode: supply successive words from a
row with reduced latency

 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.3

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Cache Performance Example

 Given
 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Replacement Policy

 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Cache Misses

Cache Misses The Cause Dependency

Capacity misses Occur due to the finite

size of the cache.

Cache size

Conflict misses Occur because the

cache had evicted an

entry earlier.

Associatively

Compulsory

misses

(Cold misses)

Caused by the first

reference to a location

in memory.

Block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict misses May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate due
to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Memory Protection

 Different tasks can share parts of their
virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only
accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

The Memory Hierarchy

 Common principles apply at all levels of
the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.5

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry H

ie
ra

rc
h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Write Policy

 Write-through
 Update both upper and lower levels
 Simplifies replacement, but may require write

buffer

 Write-back
 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Sources of Misses

 Compulsory misses (aka cold start misses)
 First access to a block

 Capacity misses
 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Cache Design Trade-offs

Design change Effect on miss rate Negative

performance effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

MIPS
 Addressing Modes

and Memory
Architecture

(Second Edition:Section 3.8
Fourth Edition: Section 2.10)

from Dr. Andrea Di Blas’ notes

CMPE 110 – Spring 2011 – J. Ferguson

Memory Organization and Addressing
•  Memory may be viewed as a single-dimensional array of individually

addressable bytes. 32-bit words are aligned to 4 byte boundaries.
–  232 bytes, with addresses from 0 to 232 – 1.
–  230 words with addresses 0, 4, 8, …, 232 - 4

4 - 2

1101 0001
1100 0101
0001 1100
1111 0010
1010 1100

0000 0000
1111 0000
0000 1111
0000 1010
0110 0001

9
8
7
6
5
4
3
2
1
0

1 word

1 word

1 word

not a word

CMPE 110 – Spring 2011 – J. Ferguson

Byte ordering within words
•  Little Endian: word address is LSB
•  Big Endian: word address is MSB

4 - 3

Ex: 0000 0001 0010 0011 0100 0101 0110 0111

x..x1101
x..x1100
x..x0111
x..x0110
x..x0101
x..x0100
x..x0011
x..x0010

Little
Endian

Big
Endian

00000001
00100011
01000101
01100111

01100111
01000101
00100011
00000001

x..x1101
x..x1100
x..x0111
x..x0110
x..x0101
x..x0100
x..x0011
x..x0010

CMPE 110 – Spring 2011 – J. Ferguson

MIPS addressing modes

•  Register addressing
•  Immediate addressing
•  Base addressing
•  PC-relative addressing
•  Indirect addressing
•  Direct addressing (almost)

4 - 4

Addressing modes are the ways of specifying
an operand or a memory address.

CMPE 110 – Spring 2011 – J. Ferguson

Register addressing
•  Operands are in a register.
•  Example: add $3,$4,$5
•  Takes n bits to address 2n registers

4 - 5

op rs rt rd shamt funct

CMPE 110 – Spring 2011 – J. Ferguson

Register addressing

4 - 6

ALU

op rs rt rd shamt funct

registers

memory

CMPE 110 – Spring 2011 – J. Ferguson

Immediate Addressing
•  The operand is embedded inside the encoded

instruction.

4 - 7

op rs rt Immediate value

16 bits

16 bit two’s-complement number:
-215 – 1 = -32,769 < value < +215 = +32,768

CMPE 110 – Spring 2011 – J. Ferguson

Immediate addressing

4 - 8

ALU registers

memory

op rs rt Immediate value

16 bits

Example is addi or similar

----------------xxxxxxxxxxxxxxxx
Sign-extended

CMPE 110 – Spring 2011 – J. Ferguson

Base (or Base-offset or
displacement) Addressing

•  The address of the operand is the sum of
the immediate and the value in a register
(rs).

•  16-bit immediate is a two’s complement
number

•  Ex: lw $15,16($12)

4 - 9

op rs rt Immediate value

CMPE 110 – Spring 2011 – J. Ferguson

Base addressing

4 - 10

ALU registers

memory

op rs rt Immediate value

16 bits

----------------xxxxxxxxxxxxxxxx Sign-extended

Effective address lw $8,128($5)

CMPE 110 – Spring 2011 – J. Ferguson

PC-relative addressing: the value in the immediate
field is interpreted as an offset of the next
instruction (PC+4 of current instruction)

Example: beq $0,$3,Label

4 - 11

op rs rt Immediate value

CMPE 110 – Spring 2011 – J. Ferguson

PC-relative addressing

4 - 12

ALU

Program Counter

op rs rt Immediate value

16 bits

beq $0,$5,Label

----------------xxxxxxxxxxxxxx00

Shifted by 2 and Sign-extended

CMPE 110 – Spring 2011 – J. Ferguson

Detail of MIPS PC-Relative

4 - 13

address instruction
40000008 addi $5, $5, 1
4000000C beq $0, $5, label
40000010 addi $5, $5, 1
40000014 addi $5, $5, 1
40000018 label addi $5, $5, 1
4000001C addi $5, $5, 1
40000020 etc…

Binary code to beq $0,$5, label
is 0x10050002, which means 2
instructions from the next
instruction.

PC = 0x4000000C
PC+4= 0x40000010
Add 4*2 = 0x00000008
Eff. Add. = 0x40000018

op rs rt Immediate value

00010 00000 00101 0000000000000010

CMPE 110 – Spring 2011 – J. Ferguson

Register Direct Addressing: the value the (memory)
effective address is in a register. Also called
“Indirect Addressing”.

Special case of base addressing where offset is 0.
Used with the jump register instructions (jr, jalr).

Example: jr $31

4 - 14

000000 rs 00000 00000 00000 001000

op rs rt rd shamt funct

CMPE 110 – Spring 2011 – J. Ferguson

Register Direct

4 - 15

registers

memory

jr $5

op rs rt rd shamt funct

program counter

CMPE 110 – Spring 2011 – J. Ferguson

Direct Addressing: the address is “the immediate”. 32-
bit address cannot be embedded in a 32-bit instruction.

Pseudodirect addressing: 26 bits of the address is
embedded as the immediate, and is used as the
instruction offset within the current 256MB
(64MWord) region defined by the MS 4 bits of the PC.

Example: j Label

4 - 16

op offset
31 26 25 0

PC: 0111 0001 … … 00
offs: 0101 0001 0100 0010 1111 0101 10
shift: 00
ADDR: 0111 0101 0001 0100 0010 1111 0101 10 00

CMPE 110 – Spring 2011 – J. Ferguson

Pseudodirect addressing

4 - 17

op offset
31 26 25 0

j Label

program counter
xxxx 00

CMPE 110 – Spring 2011 – J. Ferguson

Caution: Addressing mode is not
Instruction type

•  Addressing mode is how an address (memory or
register) is determined.

•  Instruction type is how the instruction is put
together.

•  Example: addi, beq, and lw are all I-types
instructions. But
–  addi uses immediate addressing mode (and register)
–  beq uses pc-relative addressing (and register)
–  lw uses base addressing (and register)

4 - 18

CMPE 110 – Spring 2011 – J. Ferguson 5 - 19

MIPS Addressing Modes

1.  REGISTER: a source or destination operand is specified as content of one
of the registers $0-$31.

2.  IMMEDIATE: a numeric value embedded in the instruction is the actual
operand..

3.  PC-RELATIVE: a data or instruction memory location is specified as an
offset relative to the incremented PC..

4.  BASE: a data or instruction memory location is specified as a signed
offset from a register.

5.  REGISTER-DIRECT: the value the effective address is in a register.
6.  PSEUDODIRECT: the memory address is (mostly) embedded in the

instruction.

CMPE 110 – Spring 2011 – J. Ferguson

PowerPC and x86 addressing
modes and instructions

•  PowerPC: 2nd edition: pp. 175-177, 4th
edition: Appendix E.

•  80x86: 2nd edtion: pp. 177-185, 4th edition:
Section 2.17.

4 - 20

CMPE 110 – Spring 2011 – J. Ferguson

Indexed Addressing: The address is the sum of two
registers. (note indexed addressing is different here
than usually used)

MIPS code: add $10, $20, $13 ;$20 is base,$13 is index
 lw $5, 0($10)

PowerPC: lw $5, $20+$13 ; $5 ($20+$13)

Saves instruction for incrementing array index.
No extra hardware.

4 - 21

Additional PowerPC addressing modes - 1

CMPE 110 – Spring 2011 – J. Ferguson

PowerPC: Indexed Addressing

4 - 22

registers

memory

ALU

op rs rt rd

CMPE 110 – Spring 2011 – J. Ferguson

Update Addressing: base addressing with automatic base
register increment.

MIPS code: lw $10, 4($13) ; $10 Mem[$10+4]
 addi $13, $13, 4 ; $13 $13+4

PowerPC: lwu $10, 4($13) ; $10 Mem[$10+4]
 ; and $13 $13+4

Requires that two registers be written at the same time
 more hardware.

4 - 23

Additional PowerPC addressing mode - 2

CMPE 110 – Spring 2011 – J. Ferguson

PowerPC: Update Addressing

4 - 24

registers

memory

ALU

op rs rt Immediate value

16 bits

(for base and index addressing)

eff. add.

CMPE 110 – Spring 2011 – J. Ferguson

Memory Indirect Addressing: read effective address
from memory. (Usually PC-relative addressing is used
to get the effective address from memory).

RISC code: lw $10, 0($13)
 lw $5, 0($10)

CISC: ldi $5, Label ; $5 Mem[Label]

Requires two sequential data memory accesses.

4 - 25

Additional non-RISC addressing mode

CMPE 110 – Spring 2011 – J. Ferguson

CISC: Memory Indirect Addressing

4 - 26

registers

memory

ALU

op rs rt Immediate value

eff. add.

(or from PC)

1

Early Developments:

From Difference Engine to IBM

701

Arvind

Computer Science & Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L1-2
ArvindCharles Babbage 1791-1871

Lucasian Professor of Mathematics,

Cambridge University, 1827-1839

Charles Babbage
Image removed due to copyright restrictions.

To view image, visit

http://www.rtpnet.org/robroy/Babbage/hawks.html

September 7, 2005

http://www.rtpnet.org/robroy/Babbage/hawks.html

6.823 L1-3
Arvind

Charles Babbage

•	 Difference Engine 1823

•	 Analytic Engine 1833

–	 The forerunner of modern digital computer!

Application
–	 Mathematical Tables – Astronomy
–	 Nautical Tables – Navy

Background
–	 Any continuous function can be approximated by a

polynomial --- Weierstrass

Technology

–	 mechanical - gears, Jacquard’s loom, simple

calculators

September 7, 2005

6.823 L1-4
Arvind

Difference Engine
A machine to compute mathematical tables

Weierstrass:
–	 Any continuous function can be approximated by a

polynomial
–	 Any Polynomial can be computed from difference tables

An example
f(n) = n2+n+41

d1(n) = f(n) - f(n-1) = 2n

d2(n) = d1(n) - d1(n-1) = 2

f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)

n
d2(n)
d1(n)
f(n)

0 1 2 3 4 ...
2 2 2

8
53 61
62 4

41 43 47

all you need is an adder!

September 7, 2005

6.823 L1-5
Arvind

Difference Engine

1823
–	 Babbage’s paper is published

1834
–	 The paper is read by Scheutz & his son in Sweden

1842
–	 Babbage gives up the idea of building it;he is onto

Analytic Engine!

1855
–	 Scheutz displays his machine at the Paris World Fare
–	 Can compute any 6th degree polynomial
–	 Speed: 33 to 44 32-digit numbers per minute!

Now the machine is at the Smithsonian

September 7, 2005

6.823 L1-6
Arvind

Analytic Engine

1833: Babbage’s paper was published
–	 conceived during a hiatus in the development of the

difference engine

Inspiration: Jacquard Looms
–	 looms were controlled by punched cards

• The set of cards with fixed punched holes
dictated the pattern of weave ⇒ program

• The same set of cards could be used with different
colored threads ⇒ numbers

1871: Babbage dies
–	 The machine remains unrealized.

It is not clear if the analytic engine
could be built even today using only
mechanical technology

September 7, 2005

6.823 L1-7
Arvind

Analytic Engine
The first conception of a general purpose computer

1.	 The store in which all variables to be operated
upon, as well as all those quantities which have
arisen from the results of the operations are
placed.

2.	 The mill into which the quantities about to be
operated upon are always brought.

The program
Operation variable1 variable2 variable3

An operation in the mill required feeding two punched
cards and producing a new punched card for the store.

An operation to alter the sequence was also provided!

September 7, 2005

6.823 L1-8
Arvind

The first programmer
Ada Byron aka “Lady Lovelace” 1815-52

Ada Byron a.k.a "Lady Lovelace"
Image removed due to copyright restrictions. To
view image, visit
http://www.sdsc.edu/ScienceWomen/lovelace.ht
ml

Ada’s tutor was Babbage himself!

September 7, 2005

http://www.sdsc.edu/ScienceWomen/lovelace.html
http://www.sdsc.edu/ScienceWomen/lovelace.html

6.823 L1-9
Arvind

Babbage’s Influence

•	 Babbage’s ideas had great influence later
primarily because of
–	 Luigi Menabrea, who published notes of Babbage’s

lectures in Italy
–	 Lady Lovelace, who translated Menabrea’s notes in

English and thoroughly expanded them.
“... Analytic Engine weaves algebraic patterns....”

•	 In the early twentieth century - the focus
shifted to analog computers but
–	 Harvard Mark I built in 1944 is very close in spirit to

the Analytic Engine.

September 7, 2005

6.823 L1-10
Arvind

Harvard Mark I

•	 Built in 1944 in IBM Endicott laboratories
–	 Howard Aiken – Professor of Physics at Harvard
–	 Essentially mechanical but had some electro

magnetically controlled relays and gears
–	 Weighed 5 tons and had 750,000 components
–	 A synchronizing clock that beat every 0.015

seconds

Performance:

0.3 seconds for addition
6 seconds for multiplication
1 minute for a sine calculation

Broke down once a week!

September 7, 2005

6.823 L1-11
Arvind

Linear Equation Solver
John Atanasoff, Iowa State University

1930’s:
– Atanasoff built the Linear Equation Solver.
– It had 300 tubes!

Application:
– Linear and Integral differential equations

Background:
–	 Vannevar Bush’s Differential Analyzer

--- an analog computer

Technology:
– Tubes and Electromechanical relays

Atanasoff decided that the correct mode of
computation was by electronic digital means.

September 7, 2005

6.823 L1-12

Electronic Numerical Integrator
Arvind

and Computer (ENIAC)
•	 Inspired by Atanasoff and Berry, Eckert and

Mauchly designed and built ENIAC (1943-45) at
the University of Pennsylvania

•	 The first, completely electronic, operational,
general-purpose analytical calculator!

– 30 tons, 72 square meters, 200KW
• Performance

– Read in 120 cards per minute
– Addition took 200 µs, Division 6 ms
– 1000 times faster than Mark I

•	 Not very reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
air density, temperature, weight of shell,
propellant charge, ...)

September 7, 2005

6.823 L1-13

Electronic Discrete Variable
Arvind

Automatic Computer (EDVAC)
•	 ENIAC’s programming system was external

– Sequences of instructions were executed
independently of the results of the calculation

– Human intervention required to take instructions
“out of order”

•	 Eckert, Mauchly, John von Neumann and others
designed EDVAC (1944) to solve this problem

– Solution was the stored program computer

⇒ “program can be manipulated as data”

•	 First Draft of a report on EDVAC was published in
1945, but just had von Neumann’s signature!

– In 1973 the court of Minneapolis attributed the
honor of inventing the computer to John Atanasoff

September 7, 2005

6.823 L1-14
Arvind

Stored Program Computer

Program = A sequence of instructions

How to control instruction sequencing?
manual control calculators

automatic control
external (paper tape) Harvard Mark I , 1944

Zuse’s Z1, WW2
internal

plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

– The same storage can be used to store program
and data

September 7, 2005

EDSAC 1950 Maurice Wilkes

6.823 L1-15
Arvind

Technology Issues

ENIAC ⇒ EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage

mercury delay lines

ENIAC had many asynchronous parallel units
but only one was active at a time

BINAC : Two processors that checked each other
for reliability.

Didn’t work well because processors never
agreed

September 7, 2005

6.823 L1-16
Arvind

The Spread of Ideas

ENIAC & EDVAC had immediate impact
brilliant engineering: Eckert & Mauchley
lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

UNIVAC - the first commercial computer, 1951

Alan Turing’s direct influence on these developments
is still being debated by historians.

September 7, 2005

6.823 L1-17
Arvind

Dominant Problem: Reliability

Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps
the most reliable machine !

Reasons for unreliability:

1. Vacuum Tubes

2. Storage medium
acoustic delay lines

mercury delay lines

Williams tubes

Selections

CORE J. Forrester 1954

September 7, 2005

6.823 L1-18
Arvind

Commercial Activity: 1948-52

IBM’s SSEC

Selective Sequence Electronic Calculator

–	 150 word store.
–	 Instructions, constraints, and tables of data were

read from paper tapes.
–	 66 Tape reading stations!
–	 Tapes could be glued together to form a loop!
–	 Data could be output in one phase of computation

and read in the next phase of computation.

September 7, 2005

6.823 L1-19
Arvind

And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54

IBM 650 -- a cheaper, drum based machine,
more than 120 were sold in 1954
and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computer
technology?

IBM was making too much money!

Even without computers, IBM revenues
were doubling every 4 to 5 years in 40’s
and 50’s.

September 7, 2005

6.823 L1-20
Arvind

Software Developments

up to 1955 Libraries of numerical routines

- Floating point operations
- Transcendental functions
- Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956
Operating Systems -

- Assemblers, Loaders, Linkers, Compilers
- Accounting programs to keep track of

usage and charges

Machines required experienced operators

⇒	 Most users could not be expected to understand

these programs, much less write them

⇒	 Machines had to be sold with a lot of resident
software

September 7, 2005

6.823 L1-21

Factors that Influence
Arvind

Computer Architecture

Technology

Applications

Software

Computer Architecture

Compatibility

Software played almost no role in defining an
architecture before mid fifties.

special-purpose versus general-purpose
machines

September 7, 2005

6.823 L1-22
Arvind

Microprocessors Economics since 1990’s

• Huge teams design state-of-the-art
microprocessors

PentiumPro ~ 500 engineers

Itanium ~ 1000 engineers

• Huge investments in fabrication lines and
technology

⇒ to improve clock-speeds and yields
⇒ to build new peripheral chips (memory controllers, ...)

• Economics
⇒ price drops to one tenth in 2-3 years
⇒ need to sell 2 to 4 million units to breakeven

The cost of launching a new ISA is prohibitive
and the advantage is dubious!

September 7, 2005

6.823 L1-23
Arvind

Compatibility
Essential for portability and competition

Its importance increases with the market size
but it is also the most regressive force

What does compatibility mean?

Instruction Set Architecture (ISA) compatibility

The same assembly program can run on an

upward compatible model

then IBM 360/370 ... now Intel x86 (IA32), IA64

System and application software developers expect
more than ISA compatibility (API’s)

applications
operating system
proc + mem + I/O

Java?

Wintel

September 7, 2005

6.823 L1-24
Arvind

Perpetual tension

Language/ Compiler/ Architect/Hardware
System software designer designer

Need mechanisms ⇒ Decompose each
to support important mechanism into essential
abstractions micro-mechanisms and

determine its feasibility
and cost effectiveness

Determine compilation ⇐ Propose mechanisms and
strategy; new language features for performance
abstractions

Architects main concerns are performance (both
absolute and MIPs/$), and power (both

class of software systems.

September 7, 2005

absolute and MIPs/watt) in supporting a broad

1

Influence of Technology and

Software on Instruction Sets:

Up to the dawn of IBM 360

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L2- 2
Arvind

Importance of Technology

New technologies not only provide greater
speed, size and reliability at lower cost, but
more importantly these dictate the kinds of
structures that can be considered and thus
come to shape our whole view of what a
computer is.

Bell & Newell

September 12, 2005

6.823 L2- 3

Technology is the dominant factor
Arvind

in computer design
Technology

Transistors

VLSI (initially)

Technology
Core memories
Magnetic tapes
Disks

Technology

ROMs, RAMs
VLSI
Packaging
Low Power

Computers

Laser disk, CD’s

Computers

Computers

Integrated circuits

September 12, 2005

6.823 L2- 4
Arvind

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact

on computer architecture

Modern architects cannot avoid paying
attention to software and compilation issues.

Technology

Software

Computers

September 12, 2005

6.823 L2- 5
Arvind

Computers in mid 50’s

• Hardware was expensive
•	 Stores were small (1000 words)

⇒	No resident system-software!

•	 Memory access time was 10 to 50 times
slower than the processor cycle
⇒ Instruction execution time was totally dominated by

the memory reference time.

• The ability to design complex control
circuits to execute an instruction was the
central design concern as opposed to the
speed of decoding or an ALU operation

•	 Programmer’s view of the machine was
inseparable from the actual hardware
implementation

September 12, 2005

6.823 L2- 6
ArvindProgrammer’s view of the machine

IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009
•	 “Load the contents of location 1234 into the

distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

Good programmers optimized the placement of
instructions on the drum to reduce latency!

September 12, 2005

6.823 L2- 7
Arvind

The Earliest Instruction Sets

Single Accumulator - A carry-over from the calculators.

LOAD x
STORE x

ADD x
SUB x

MUL x
DIV x

SHIFT LEFT
SHIFT RIGHT

JUMP x
JGE x

LOAD ADR x
STORE ADR x

AC ← M[x]

M[x] ← (AC)

AC ← (AC) + M[x]

Involved a quotient register

AC ← 2 × (AC)

PC ← x

if (AC) ≥ 0 then PC ← x

AC ← Extract address field(M[x])

Typically less than 2 dozen instructions!
September 12, 2005

6.823 L2- 8

Programming:
Arvind

Single Accumulator Machine
Ci ← Ai + Bi, 1 ≤ i ≤ n A

LOOP LOAD N B
JGE DONE
ADD ONE
STORE N C

F1 LOAD A
F2 ADD B
F3 STORE C N

JUMP LOOP ONE
DONE HLT

code

How to modify the addresses A, B and C ?

-n
1

September 12, 2005

JUMP LOOP
DONE HLT

6.823 L2- 9
Arvind

Self-Modifying Code

LOOP

F1

F2

F3

modify the
program
for the next
iteration

DONE
September 12, 2005

LOAD
JGE
ADD
STORE
LOAD
ADD
STORE

N
DONE
ONE
N
A
B
C

Ci ← Ai + Bi, 1 ≤ i ≤ n

Each iteration involves
total book-

LOAD ADR
ADD
STORE ADR
LOAD ADR
ADD
STORE ADR
LOAD ADR
ADD
STORE ADR

F1
ONE
F1
F2
ONE
F2
F3
ONE
F3

JUMP LOOP
HLT

instruction
fetches

operand
fetches

stores

keeping

17 14

10 8

5 4

6.823 L2- 10
ArvindProcessor-Memory Bottleneck:

Early Solutions

•	 Fast local storage in the processor
–	 8-16 registers as opposed to one accumulator

•	 Indexing capability
–	 to reduce book keeping instructions

•	 Complex instructions
– to reduce instruction fetches

•	 Compact instructions
–	 implicit address bits for operands, to reduce

instruction fetches

Memory

Processor

September 12, 2005

6.823 L2- 11
Arvind

Processor State

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer visible state of the processor (and memory)
plays a central role in computer organization for both
hardware and software:

•	 Software must make efficient use of it

•	 If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

Programmer’s machine model is a contract
between the hardware and software

September 12, 2005

6.823 L2- 12
Arvind

Index Registers
Tom Kilburn, Manchester University, mid 50’s

One or more specialized registers to simplify
address calculation

Modify existing instructions
LOAD x, IX AC ← M[x + (IX)]
ADD x, IX AC ← (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers

JZi x, IX if (IX)=0 then PC ← x

else IX ← (IX) + 1
LOADi x, IX IX ← M[x] (truncated to fit IX)
...

Index registers have accumulator-like
characteristics

September 12, 2005

6.823 L2- 13
Arvind

Using Index Registers
Ci ← Ai + Bi, 1 ≤ i ≤ n

LOADi -n, IX A
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP LASTA

DONE HALT

• Program does not modify itself
• Efficiency has improved dramatically (ops / iter)

with index regs without index regs
instruction fetch 5(2) 17 (14)
operand fetch 2 10 (8)
store 1 5 (4)

• Costs: Instructions are 1 to 2 bits longer
Index registers with ALU-like circuitry
Complex control

September 12, 2005

6.823 L2- 14
Arvind

Indexing vs. Index Registers

Suppose instead of registers, memory locations
are used to implement index registers.

LOAD x, IX

Arithmetic operations on index registers can be
performed by bringing the contents to the
accumulator

Most bookkeeping instructions will be avoided but
each instruction will implicitly cause several
fetches and stores

⇒ complex control circuitry

September 12, 2005

6.823 L2- 15
Arvind

Operations on Index Registers

To increment index register by k
AC ← (IX) new instruction
AC ← (AC) + k
IX ← (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi k, IX IX ← (IX) + k

More instructions to manipulate index register

STOREi x, IX M[x] ← (IX) (extended to fit a word)
...

IX begins to look like an accumulator

⇒ several index registers

several accumulators

⇒ General Purpose Registers

September 12, 2005

6.823 L2- 16
Arvind

Support for Subroutine Calls

Main

Program

call F
a1
a2

call F
b1
b2

F:

return

Subroutine F

A special subroutine jump instruction

M:	 JSR F F ← M + 1 and
jump to F+1

September 12, 2005

M+1M+2

6.823 L2- 17

Indirect Addressing and Arvind

Subroutine Calls
Indirect addressing

LOAD (F)
inc F

STORE(F)
inc F

JUMP (F)

M+3

Subroutine
LOAD (x) means AC ← M[M[x]] F
... F+1

Caller
Events:

S1 fetch M JSR F Execute M
argarg Execute S1

result
Execute S2M+3
Execute S3 S2

store
result

Indirect addressing almost eliminates the

need to write self-modifying code (location S3

F still needs to be modified)

⇒ Problems with recursive procedure calls
September 12, 2005

6.823 L2- 18

Recursive Procedure Calls and
Arvind

Reentrant Codes

Indirect Addressing through a register

LOAD R1, (R2)

Load register R1 with the contents of the
word whose address is contained in register R2

PC

SP

registers Pure Code

Data

Stack

memory

September 12, 2005

6.823 L2- 19
Arvind

Evolution of Addressing Modes

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers
LOAD x, IX

3. Indirection
LOAD (x)

4. Multiple accumulators, index registers, indirection
LOAD R, IX, x

or LOAD R, IX, (x) the meaning?
R ← M[M[x] + (IX)]

or R ← M[M[x + (IX)]]
5. Indirect through registers

LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base addr

September 12, 2005

6.823 L2- 20
Arvind

Variety of Instruction Formats

• Two address formats: the destination is

same as one of the operand sources

(Reg × Reg) to Reg	 ← (RI) + (RJ)RI
(Reg × Mem) to Reg ← (RI) + M[x] RI

–	 x can be specified directly or via a register
–	 effective address calculation for x could include

indexing, indirection, ...

• Three address formats: One destination and

up to two operand sources per instruction

(Reg x Reg) to Reg	 (RJ) + (RK)RI ←
(Reg x Mem) to Reg (RJ) + M[x]RI 	←

September 12, 2005

6.823 L2- 21
Arvind

More Instruction Formats

•	 Zero address formats: operands on a stack

add M[sp-1] ← M[sp] + M[sp-1]
load M[sp] ← M[M[sp]]

–	 Stack can be in registers or in memory (usually top of
stack cached in registers)

•	 One address formats: Accumulator machines
–	 Accumulator is always other implicit operand

Many different formats are possible!

September 12, 2005

6.823 L2- 22
Arvind

Data Formats and Memory Addresses

Data formats:
Bytes, Half words, words and double words

Some issues
• Byte addressing

Big Endian 0 1 2 3
vs. Little Endian 3 2 1 0

• Word alignment
Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, ?

0 1 2 3 4 5 6 7

September 12, 2005

6.823 L2- 23
Arvind

Some Problems

•	 Should all addressing modes be provided for
every operand?

⇒ regular vs. irregular instruction formats

•	 Separate instructions to manipulate
Accumulators, Index registers, Base registers

⇒ 	 large number of instructions

•	 Instructions contained implicit memory
references -- several contained more than one

⇒	very complex control

September 12, 2005

6.823 L2- 24
Arvind

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

701 → 7094
650 → 7074
702 → 7080
1401 → 7010

Each system had its own

• Instruction set
• I/O system and Secondary Storage:

magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche

business, scientific, real time, ...

⇒ IBM 360

September 12, 2005

6.823 L2- 25
Arvind

IBM 360 : Design Premises

Amdahl, Blaauw and Brooks, 1964

•	 The design must lend itself to growth and
successor machines

•	 General method for connecting I/O devices
•	 Total performance - answers per month rather

than bits per microsecond ⇒ programming aids
•	 Machine must be capable of supervising itself

without manual intervention
•	 Built-in hardware fault checking and locating aids

to reduce down time
•	 Simple to assemble systems with redundant I/O

devices, memories etc. for fault tolerance
•	 Some problems required floating point words

larger than 36 bits

September 12, 2005

6.823 L2- 26

IBM 360: A General-Purpose
Arvind

Register (GPR) Machine
• Processor State

– 16 General-Purpose 32-bit Registers
• may be used as index and base register

• Register 0 has some special properties

– 4 Floating Point 64-bit Registers
– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address !

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words,

64-bit double-words

September 12, 2005

6.823 L2- 27
Arvind

IBM 360: Implementation

Model 30 . . . Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1µsec Conventional circuits

IBM 360 instruction set architecture completely hid
the underlying technological differences between
various models.

With minor modifications it survives till today

September 12, 2005

6.823 L2- 28
Arvind

IBM S/390 z900 Microprocessor

• 64-bit virtual addressing
– first 64-bit S/390 design (original S/360 was 24-bit, and

S/370 was 31-bit extension)

• 1.1 GHz clock rate (announced ISSCC 2001)
– 0.18µm CMOS, 7 layers copper wiring
– 770MHz systems shipped in 2000

• Single-issue 7-stage CISC pipeline
• Redundant datapaths

– every instruction performed in two parallel datapaths and
results compared

• 256KB L1 I-cache, 256KB L1 D-cache on-chip
• 20 CPUs + 32MB L2 cache per Multi-Chip Module
• Water cooled to 10oC junction temp

September 12, 2005

6.823 L2- 29
Arvind

What makes a good instruction set?

One that provides a simple software interface yet
allows simple, fast, efficient hardware
implementations

… but across 25+ year time frame

Example of difficulties:
�	 Current machines have register files with more storage

than entire main memory of early machines!
�	 On-chip test circuitry in current machines has hundreds

of times more transistors than entire early computers!

September 12, 2005

6.823 L2- 30
Arvind

Full Employment for Architects
•	 Good news: “Ideal” instruction set changes continually

–	 Technology allows larger CPUs over time
–	 Technology constraints change (e.g., now it is power)
–	 Compiler technology improves (e.g., register allocation)
–	 Programming styles change (assembly, HLL, object-oriented, …)
–	 Applications change (e.g., multimedia,)

–	 Bad news: Software compatibility imposes huge damping

coefficient on instruction set innovation

–	 Software investment dwarfs hardware investment
–	 Innovate at microarchitecture level, below the ISA level (this is

what most computer architects do)

•	 New instruction set can only be justified by new large market
and technological advantage
–	 Network processors
– Multimedia processors

– DSP’s

September 12, 2005

1

Instruction Set Evolution

in the Sixties:

GPR, Stack, and Load-Store

Architectures

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L3- 2
Arvind

The Sixties
•	 Hardware costs started dropping

- memories beyond 32K words seemed likely
- separate I/O processors
- large register files

•	 Systems software development became
essential

- Operating Systems

- I/O facilities

•	 Separation of Programming Model from
implementation become essential

- family of computers

September 14, 2005

6.823 L3- 3
Arvind

Issues for Architects in the Sixties

•	 Stable base for software development

•	 Support for operating systems
–	 processes, multiple users, I/O

•	 Implementation of high-level languages
–	 recursion, ...

•	 Impact of large memories on instruction size

•	 How to organize the processor state from the
programming point of view

•	 Architectures for which fast implementations
could be developed

September 14, 2005

6.823 L3- 4

Three Different Directions in
Arvind

the Sixties

•	 A machine with only a high-level language
interface
–	 Burrough’s 5000, a stack machine

•	 A family of computers based on a common
ISA
–	 IBM 360, a General Register Machine

•	 A pipelined machine with a fast clock
(Supercomputer)
–	 CDC 6600, a Load/Store architecture

September 14, 2005

6.823 L3- 5
Arvind

The Burrough’s B5000:
An ALGOL Machine, Robert Barton, 1960

•	 Machine implementation can be completely
hidden if the programmer is provided only a
high-level language interface.

•	 Stack machine organization because stacks are
convenient for:

1. expression evaluation;
2. subroutine calls, recursion, nested interrupts;
3. accessing variables in block-structured
languages.

•	 B6700, a later model, had many more innovative
features

– tagged data

– virtual memory

–	 multiple processors and memories

September 14, 2005

6.823 L3- 6
Arvind

A Stack Machine

Processor A Stack machine has a stack as

:

stack Main
Store

a
b
a

poppush cpush b
c
b
a ÎÎ
Î

a part of the processor state

typical operations:
push, pop, +, *, ...

Instructions like + implicitly
specify the top 2 elements of
the stack as operands.

b
a

September 14, 2005

b
c

6.823 L3- 7
Arvind

Evaluation of Expressions

(a + b * c) / (a + d * c - e)

a e

d

a

* b * c

/

+

* +

-

ac *b

c

Reverse Polish

push a Push c

a b c * + a d c * + e - /
Evaluation Stack

Push b multiply

September 14, 2005

a

b * c

6.823 L3- 8
Arvind

Evaluation of Expressions

(a + b * c) / (a + d * c - e)

a

add

/

+

* + e

-

ac

d c

*b

Reverse Polish +

Evaluation Stack

a + b * c
a b c * + a d c * + e - /

September 14, 2005

6.823 L3- 9
Arvind

Hardware organization of the stack

• Stack is part of the processor state
⇒ stack must be bounded and small

≈ number of Registers,
not the size of main memory

• Conceptually stack is unbounded

⇒ a part of the stack is included in the

processor state; the rest is kept in the
main memory

September 14, 2005

6.823 L3- 10
Arvind

Stack Size and Memory References

program
push a
push b
push c
*
+
push a
push d
push c
*
+
push e
-
/

September 14, 2005

a b c * + a d c * + e - /

stack (size = 2) memory refs
R0 a
R0 R1 b
R0 R1 R2 c, ss(a)
R0 R1 sf(a)
R0
R0 R1 a
R0 R1 R2 d, ss(a+b*c)
R0 R1 R2 R3 c, ss(a)
R0 R1 R2 sf(a)
R0 R1 sf(a+b*c)
R0 R1 R2 e,ss(a+b*c)
R0 R1 sf(a+b*c)
R0

4 stores, 4 fetches (implicit)

6.823 L3- 11
ArvindStack Operations and

Implicit Memory References

•	 Suppose the top 2 elements of the stack
are kept in registers and the rest is kept in
the memory.

Each push operation ⇒ 1 memory reference
pop operation ⇒ 1 memory reference

No Good!

•	 Better performance can be got if the top N
elements are kept in registers and memory
references are made only when register
stack overflows or underflows.

Issue - when to Load/Unload registers ?

September 14, 2005

6.823 L3- 12
Arvind

Stack Size and Expression
Evaluation

a b c * + a d c * + e - /

a and c are
“loaded” twice
⇒

not the best
use of registers!

September 14, 2005

program
push a
push b
push c
*
+
push a
push d
push c
*
+
push e
-
/

stack (size = 2)
R0
R0 R1
R0 R1 R2
R0 R1
R0
R0 R1
R0 R1 R2
R0 R1 R2 R3
R0 R1 R2
R0 R1
R0 R1 R2
R0 R1
R0

6.823 L3- 13
Arvind

Register Usage in a GPR Machine
(a + b * c) / (a + d * c - e)

Load
Load

R0
R1

a
c

More control over register usage
since registers can be named
explicitly

Reuse
R2

Load
Mul

R2
R2

b
R1 Load Ri m

Add R2 R0 Load Ri (Rj)
Reuse Load R3 d Load Ri (Rj) (Rk)

R3 Mul
Add

R3
R3

R1
R0 ⇒

Reuse Load R0 e - eliminates unnecessary
R0 Sub R3 R0 Loads and Stores

Div R2 R3 - fewer Registers

but instructions may be longer!

September 14, 2005

6.823 L3- 14
Arvind

Procedure Calls

• Storage for procedure calls also follows
a stack discipline

•

frame
– < >
–

to stack frames

Proc P
Proc Q

Proc R
Q

R
Q

P

Q

R

Q

R

3
2

ll = 1
display

dynamic
links

staticstack

However, there is a need to access
variables beyond the current stack

lexical addressing ll , d
display registers to speed up accesses

registers links

September 14, 2005

automatic loading of display registers?

6.823 L3- 15
Arvind

Stack Machines: Essential features

•	 In addition to push,
pop, + etc., the
instruction set must
provide the capability
to
– refer to any element in

the data area
– jump to any instruction

in the code area
– move any element in

the stack frame to the
top

machinery to
carry out
+, -, etc.

stack
SP

DP

PC .
.
.

a
b
c

⇔

push a
push b
push c
*
+
push e data
/

code

September 14, 2005

6.823 L3- 16
Arvind

Stack versus GPR Organization

Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push down stack
organization is derived from the presence of fast
registers and not the way they are used.

2.“Surfacing” of data in stack which are “profitable” is
approximately 50% because of constants and
common subexpressions.

3. Advantage of instruction density because of implicit
addresses is equaled if short addresses to specify
registers are allowed.

4. Management of finite depth stack causes complexity.
5. Recursive subroutine advantage can be realized only

with the help of an independent stack for addressing.
6. Fitting variable length fields into fixed width word is

awkward.

September 14, 2005

6.823 L3- 17
Arvind

Stack Machines (Mostly) Died by 1980

1. Stack programs are not smaller if short
(Register) addresses are permitted.

2. Modern compilers can manage fast register space
better than the stack discipline.

3. Lexical addressing is a useful abstract model for
compilers but hardware support for it (i.e.
display) is not necessary.

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers!

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

September 14, 2005

6.823 L3- 18
Arvind

Stacks post-1980
• Inmos Transputers (1985-2000)

–	 Designed to support many parallel processes in Occam
language

–	 Fixed-height stack design simplified implementation
–	 Stack trashed on context swap (fast context switches)
–	 Inmos T800 was world’s fastest microprocessor in late 80’s

• Forth machines
–	 Direct support for Forth execution in small embedded real-

time environments
–	 Several manufacturers (Rockwell, Patriot Scientific)

• Java Virtual Machine
–	 Designed for software emulation not direct hardware

execution
–	 Sun PicoJava implementation + others

• Intel x87 floating-point unit
–	 Severely broken stack model for FP arithmetic
–	 Deprecated in Pentium-4 replaced with SSE2 FP registers

September 14, 2005

19

A five-minute break to stretch your legs

6.823 L3- 20

IBM 360: A General-Purpose
Arvind

Register (GPR) Machine
• Processor State

– 16 General-Purpose 32-bit Registers
• may be used as index and base register

• Register 0 has some special properties

– 4 Floating Point 64-bit Registers
– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address !

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words,

64-bit double-words

September 14, 2005

6.823 L3- 21
Arvind

IBM 360: Precise Interrupts

•	 IBM 360 ISA (Instruction Set Architecture)
preserves sequential execution model

•	 Programmers view of machine was that
each instruction either completed or
signaled a fault before next instruction
began execution

•	 Exception/interrupt behavior constant
across family of implementations

September 14, 2005

6.823 L3- 22
Arvind

IBM 360: Original family

Model 30 . . . Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1µsec Conventional circuits

IBM 360 instruction set architecture completely hid
the underlying technological differences between
various models.

With minor modifications it survives till today

September 14, 2005

6.823 L3- 23
Arvind

IBM S/390 z900 Microprocessor

• 64-bit virtual addressing
– first 64-bit S/390 design (original S/360 was 24-bit, and

S/370 was 31-bit extension)

• 1.1 GHz clock rate (announced ISSCC 2001)
– 0.18µm CMOS, 7 layers copper wiring
– 770MHz systems shipped in 2000

• Single-issue 7-stage CISC pipeline
• Redundant datapaths

– every instruction performed in two parallel datapaths and
results compared

• 256KB L1 I-cache, 256KB L1 D-cache on-chip
• 20 CPUs + 32MB L2 cache per Multi-Chip Module
• Water cooled to 10oC junction temp

September 14, 2005

6.823 L3- 24
Arvind

IBM 360: Some Addressing Modes

8 4 4

RR opcode R1 R2 R1← (R1) op (R2)

8 4 4 4 12

opcode R X B DRD

R ← (R) op M[(X) + (B) + D]
a 24-bit address is formed by adding the
12-bit displacement (D) to a base register (B)
and an Index register (X), if desired

The most common formats for arithmetic & logic
instructions, as well as Load and Store instructions

September 14, 2005

6.823 L3- 25
Arvind

IBM 360: Character String Operations

length

8 4 128 4 12

opcode B1 D1 B2 D2

SS format: store to store instructions
M[(B1) + D1] ← M[(B1) + D1] op M[(B2) + D2]

iterate “length” times

Most operations on decimal and character strings
use this format

MVC move characters
MP multiply two packed decimal strings
CLC compare two character strings
...
Multiple memory operations per instruction

September 14, 2005

complicates exception & interrupt handling

6.823 L3- 26
Arvind

IBM 360: Branches & Condition Codes

•	 Arithmetic and logic instructions set condition
codes
– equal to zero
– greater than zero

– overflow

–	 carry...

•	 I/O instructions also set condition codes

–	 channel busy

•	 Conditional branch instructions are based on
testing condition code registers (CC’s)
–	 RX and RR formats

• BC_	 branch conditionally
• BAL_	 branch and link, i.e., R15 ← (PC)+1

for subroutine calls
⇒	 CC’s must be part of the PSW

September 14, 2005

6.823 L3- 27
Arvind

CDC 6600 Seymour Cray, 1964

•	 A fast pipelined machine with 60-bit words

•	 Ten functional units
- Floating Point: adder, multiplier, divider
- Integer: adder, multiplier
...

•	 Hardwired control (no microcoding)

•	 Dynamic scheduling of instructions using a
scoreboard

•	 Ten Peripheral Processors for Input/Output
- a fast time-shared 12-bit integer ALU

• Very fast clock

• Novel freon-based technology for cooling

September 14, 2005

6.823 L3- 28
Arvind

CDC 6600: Datapath
Operand Regs

Address Regs Index Regs

Inst. Stack

IR

10 Functional
Units

Memory

result
addr

result

operand

oprnd
addr

8 x 18-bit 8 x 18-bit

8 x 60-bit

8 x 60-bit

Central

September 14, 2005

6.823 L3- 29
ArvindCDC 6600:

A Load/Store Architecture

• Separate instructions to manipulate three types of reg.
8 60-bit data registers (X)
8 18-bit address registers (A)
8 18-bit index registers (B)

•	 All arithmetic and logic instructions are reg-to-reg
6 3 3 3

opcode i j k 	 Ri ← (Rj) op (Rk)

• Only Load and Store instructions refer to memory!
6 3 3 18

opcode i j disp Ri ← M[(Rj) + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store

- very useful for vector operations

September 14, 2005

6.823 L3- 30
Arvind

CDC6600: Vector Addition

B0 ← - n
loop:	 JZE B0, exit

A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1
A6 ← B0 + c0 store X6
B0 ← B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

September 14, 2005

6.823 L3- 31
Arvind

What makes a good instruction set?

One that provides a simple software interface yet
allows simple, fast, efficient hardware
implementations

… but across 25+ year time frame

Example of difficulties:
�	 Current machines have register files with more storage

than entire main memory of early machines!
�	 On-chip test circuitry in current machines has hundreds

of times more transistors than entire early computers!

September 14, 2005

6.823 L3- 32
Arvind

Full Employment for Architects
•	 Good news: “Ideal” instruction set changes continually

–	 Technology allows larger CPUs over time
–	 Technology constraints change (e.g., now it is power)
–	 Compiler technology improves (e.g., register allocation)
–	 Programming styles change (assembly, HLL, object-oriented, …)
–	 Applications change (e.g., multimedia,)

–	 Bad news: Software compatibility imposes huge damping

coefficient on instruction set innovation

–	 Software investment dwarfs hardware investment
–	 Innovate at microarchitecture level, below the ISA level (this is

what most computer architects do)

•	 New instruction set can only be justified by new large market
and technological advantage
–	 Network processors
– Multimedia processors

– DSP’s

September 14, 2005

1

Microprogramming

Arvind

Computer Science & Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L4- 2
Arvind

ISA to Microarchitecture Mapping

•	 An ISA often designed for a particular

microarchitectural style, e.g.,

– CISC ⇒ microcoded

– RISC ⇒ hardwired, pipelined

– VLIW ⇒ fixed latency in-order pipelines

– JVM ⇒ software interpretation

•	 But an ISA can be implemented in any

microarchitectural style

– Pentium-4: hardwired pipelined CISC (x86) machine (with
some microcode support)

– This lecture: a microcoded RISC (MIPS) machine
– Intel will probably eventually have a dynamically scheduled

out-of-order VLIW (IA-64) processor
– PicoJava: A hardware JVM processor

September 21, 2005

6.823 L4- 3
Arvind

Microarchitecture: Implementation of an ISA

Controller

Data
path

control
pointsstatus

lines

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

September 21, 2005

6.823 L4- 4
Arvind

Microcontrol Unit Maurice Wilkes, 1954

Embed the control logic state table in a memory array

op conditional

code flip-flop

Matrix A Matrix B

Decoder

Next state

µ address

toControl lines
ALU, MUXs, Registers

September 21, 2005

6.823 L4- 5
Arvind

Microcoded Microarchitecture

Memory
(RAM)

Datapath

µcontroller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions

holds user program
written in macrocode

instructions (e.g.,
MIPS, x86, etc.)

September 21, 2005

6.823 L4- 6
Arvind

The MIPS32 ISA

• Processor State

32 32-bit GPRs, R0 always contains a 0
16 double-precision/32 single-precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers See H&P p129

137 & Appendix
• Data types	 C (online) for full

8-bit byte, 16-bit half word description
32-bit word for integers
32-bit word for single precision floating point

64-bit word for double precision floating point

• Load/Store style instruction set

data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big-endian mode

All instructions are 32 bits
September 21, 2005

6.823 L4- 7
Arvind

MIPS Instruction Formats

6 5 5 5 5 6
0 rs rt rd 0 func

opcode rs rt immediate

rd ← (rs) func (rt) ALU
rt ← (rs) op immediateALUi

6 5 5 16
Mem M[(rs) + displacement]

6 5 5 16

6 5 5 16

6 26

opcode rs rt displacement

opcode rs offset BEQZ, BNEZ

opcode rs JR, JALR

opcode offset J, JAL

September 21, 2005

Microinstruction: register to register transfer (17 control signals)

Bus

A B

OpSel ldA ldB

ALU

enALU

ALU
control

2

rs
rt
rd

ExtSel

IR

ldIR

Imm
Ext

enImm

2

6.823 L4- 8
Arvind

A Bus-based Datapath for MIPS

MA

addr

data

Memory

Opcode zero? Busy?

ldMA

MemWrt

enMem

32

RegWrt

enReg

addr

data

rs
rt
rd
32(PC)
31(Link)

RegSel

32 GPRs

32-bit Reg

3

+ PC ...

MA ← PC means RegSel = PC; enReg=yes; ldMA= yes
B ← Reg[rt] means RegSel = rt; enReg=yes; ldB = yes

September 21, 2005

6.823 L4- 9
Arvind

Memory Module

Enable

Write(1)/Read(0)RAM

din

we

addr busy

bus

dout

Assumption: Memory operates asynchronously
and is slow as compared to Reg-to-Reg transfers

September 21, 2005

6.823 L4- 10
Arvind

Instruction Execution

Execution of a MIPS instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the
next instruction address

September 21, 2005

6.823 L4- 11
Arvind

Microprogram Fragments

instr fetch: 	 MA ← PC
A ← PC can be

treated asIR ← Memory
a macroPC ← A + 4

dispatch on OPcode

ALU: 	 A ← Reg[rs]
B ← Reg[rt]
Reg[rd] ← func(A,B)
do instruction fetch

ALUi: 	 A ← Reg[rs]
B ← Imm sign extension ...
Reg[rt] ← Opcode(A,B)
do instruction fetch

September 21, 2005

6.823 L4- 12
Arvind

Microprogram Fragments (cont.)

LW: 	 A ← Reg[rs]

B ← Imm

MA ← A + B

Reg[rt] ← Memory

do instruction fetch

J: 	 A ← PC JumpTarg(A,B) =
{A[31:28],B[25:0],00}

B ← IR

PC ← JumpTarg(A,B)

do instruction fetch

beqz:	 A ← Reg[rs]
If zero?(A) then go to bz-taken
do instruction fetch

bz-taken:	 A ← PC

B ← Imm << 2

PC ← A + B

do instruction fetch

September 21, 2005

6.823 L4- 13
Arvind

MIPS Microcontroller: first attempt

next
state

µPC (state)

Opcode
zero?

Busy (memory)

s

s

6

µProgram ROM

addr

data

latching the inputs
may cause a
one-cycle delay

= 2(opcode+status+s) words

How big
is “s”?

ROM size ?

Word size ?
= control+s bits

Control Signals (17)

September 21, 2005

6.823 L4- 14
Arvind

Microprogram in the ROM worksheet

State Op zero? busy Control points next-state

fetch0 * * * MA ← PC fetch1

fetch1 * * yes fetch1
fetch1 * * no IR ← Memory fetch2
fetch2 * * * A ← PC fetch3
fetch3 * * * PC ← A + 4 ?

fetch3 ALU * * PC ← A + 4 ALU0

ALU0 * * * A ← Reg[rs] ALU1
ALU1 * * * B ← Reg[rt] ALU2
ALU2 * * * Reg[rd] ← func(A,B) fetch0

September 21, 2005

6.823 L4- 15
Arvind

Microprogram in the ROM

State Op zero? busy Control points next-state

fetch0 * * * MA ← PC fetch1
fetch1 * * yes fetch1
fetch1 * * ← Memory fetch2
fetch2 * * * A ← PC fetch3
fetch3 ALU * * PC ← A + 4 ALU0
fetch3 ALUi * * PC ← A + 4 ALUi0
fetch3 LW * * PC ← A + 4 LW0
fetch3 SW * * PC ← A + 4 SW0
fetch3 J * * ← A + 4 J0
fetch3 JAL * * PC ← A + 4 JAL0
fetch3 JR * * PC ← A + 4 JR0
fetch3 JALR * * PC ← A + 4 JALR0
fetch3 beqz * * PC ← A + 4 beqz0
...
ALU0 * * * A ← Reg[rs] ALU1
ALU1 * * * B ← Reg[rt] ALU2
ALU2 * * * ← 0

September 21, 2005

no IR

 PC

 Reg[rd] func(A,B) fetch

6.823 L4- 16
Arvind

Microprogram in the ROM Cont.

State Op zero? busy Control points next-state

ALUi0 * * * A ← Reg[rs] ALUi1
ALUi1 sExt * * B ← sExt16(Imm) ALUi2
ALUi1 uExt * * B ← uExt16(Imm) ALUi2
ALUi2 * * * ← Op(A,B) 0
...
J0 * * * A ← PC J1
J1 * * * B ← IR J2
J2 * * * ← 0
...
beqz0 * * * A ← Reg[rs] 1
beqz1 * * A ← PC beqz2
beqz1 * * fetch0
beqz2 * * * B ← sExt16(Imm) beqz3
beqz3 * * * ← A+B 0
...

JumpTarg(A,B) = {A[31:28],B[25:0],00}
September 21, 2005

 Reg[rd] fetch

PC JumpTarg(A,B) fetch

beqz
yes
no

PC fetch

6.823 L4- 17
Arvind

Size of Control Store

size = 2(w+s) x (c + s)

data

status & opcode

addr

next µPC

Control signals

µPC
/
w

/ s

/ c

Control ROM

MIPS: w = 6+2 c = 17 s = ?
no. of steps per opcode = 4 to 6 + fetch-sequence
no. of states ≈ (4 steps per op-group) x op-groups

+ common sequences
= 4 x 8 + 10 states = 42 states ⇒ s = 6

Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes
September 21, 2005

6.823 L4- 18
Arvind

Reducing Control Store Size

Control store has to be fast ⇒ expensive

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width

– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

September 21, 2005

6.823 L4- 19
Arvind

MIPS Controller V2

µ
next | spin

| fetch | dispatch
| feqz | fnez

Control ROM

address

data

+1

Opcode ext

µPC (state)

jump
logic

zero

µPC µPC+1

absolute (start of a predetermined sequence)

op-group

busy

µPCSrc
input encoding

reduces ROM height

next-state encoding
reduces ROM width

September 21, 2005

JumpType =

Control Signals (17)

6.823 L4- 20
Arvind

Jump Logic

µPCSrc = Case µJumpTypes

next ⇒ µPC+1

spin ⇒ if (busy) then µPC else µPC+1

fetch ⇒ absolute

dispatch ⇒ op-group

feqz ⇒ if (zero) then absolute else µPC+1

fnez ⇒ if (zero) then µPC+1 else absolute

September 21, 2005

6.823 L4- 21
Arvind

Instruction Fetch & ALU:MIPS-Controller-2

State Control points next-state

fetch0 MA ← PC next
fetch1 IR ← Memory spin
fetch2 A ← PC next
fetch3 PC ← A + 4 dispatch
...
ALU0 A ← Reg[rs] next
ALU1 B ← Reg[rt] next
ALU2 Reg[rd]←func(A,B) fetch

ALUi0 A ← Reg[rs] next
ALUi1 B ← sExt16(Imm) next
ALUi2 Reg[rd]← Op(A,B) fetch

September 21, 2005

6.823 L4- 22
Arvind

Load & Store: MIPS-Controller-2

State Control points next-state

LW0 A ← Reg[rs] next
LW1 B ← sExt16(Imm) next
LW2 MA ← A+B next
LW3 Reg[rt] ← Memory spin
LW4 fetch

SW0 A ← Reg[rs] next
SW1 B ← sExt16(Imm) next
SW2 MA ← A+B next
SW3 Memory ← Reg[rt] spin
SW4 fetch

September 21, 2005

6.823 L4- 23
Arvind

Branches: MIPS-Controller-2

State Control points next-state

BEQZ0 A ← Reg[rs] next
BEQZ1 fnez
BEQZ2 A ← PC next
BEQZ3 B ← sExt16(Imm<<2) next
BEQZ4 PC ← A+B fetch

BNEZ0 A ← Reg[rs] next
BNEZ1 feqz
BNEZ2 A ← PC next
BNEZ3 B ← sExt16(Imm<<2) next
BNEZ4 PC ← A+B fetch

September 21, 2005

6.823 L4- 24
Arvind

Jumps: MIPS-Controller-2

State Control points next-state

J0 A ← PC next
J1 B ← IR next
J2 PC ← JumpTarg(A,B) fetch

JR0 A ← Reg[rs] next
JR1 PC ← A fetch

JAL0 A ← PC next
JAL1 Reg[31] ← A next
JAL2 B ← IR next
JAL3 PC ← JumpTarg(A,B) fetch

JALR0 A ← PC next
JALR1 B ← Reg[rs] next
JALR2 Reg[31] ← A next
JALR3 PC ← B fetch

September 21, 2005

25

Five-minute break to stretch your legs

2

6.823 L4- 26
ArvindImplementing Complex

Instructions

Opcode zero? Busy?

ldIR OpSel ldA ldB 32(PC) ldMA
31(Link)
rd
rt2 rs

RegSel MA
3rd

rt A B addr addrIR rs
32 GPRs

ExtSel + PC ... Memory MemWrtImm ALU RegWrt
Ext control ALU 32-bit Reg enReg

data data enMemenImm enALU

Bus 32

rd ← M[(rs)] op (rt)

M[(rd)] ← (rs) op (rt)

M[(rd)] ← M[(rs)] op M[(rt)]

Reg-Memory-src ALU op
Reg-Memory-dst ALU op
Mem-Mem ALU op

September 21, 2005

6.823 L4- 27
ArvindMem-Mem ALU Instructions:

MIPS-Controller-2

Mem-Mem ALU op M[(rd)] ← M[(rs)] op M[(rt)]

ALUMM0 MA ← Reg[rs] next
ALUMM1 A ← Memory spin
ALUMM2 MA ← Reg[rt] next
ALUMM3 B ← Memory spin
ALUMM4 MA ←Reg[rd] next
ALUMM5 Memory ← func(A,B) spin

ALUMM6 fetch

Complex instructions usually do not require datapath
modifications in a microprogrammed implementation

-- only extra space for the control program

Implementing these instructions using a hardwired
controller is difficult without datapath modifications

September 21, 2005

6.823 L4- 28
Arvind

Performance Issues
Microprogrammed control

⇒ multiple cycles per instruction

Cycle time ?
tC > max(treg-reg, tALU, tµROM, tRAM)

Given complex control, tALU & tRAM can be broken
into multiple cycles. However, tµROM cannot be
broken down. Hence

tC > max(treg-reg, tµROM)

Suppose 10 * tµROM < tRAM
Good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

September 21, 2005

6.823 L4- 29
Arvind

Horizontal vs Vertical µCode
Bits per µInstruction

µInstructions

• Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
– Fewer steps per macroinstruction
– Sparser encoding ⇒ more bits

• Vertical µcode has narrower µinstructions

–	 Typically a single datapath operation per µinstruction

– separate µinstruction for branches
– More steps to per macroinstruction

– More compact ⇒ less bits

• Nanocoding
– Tries to combine best of horizontal and vertical µcode

September 21, 2005

6.823 L4- 30
Arvind

Nanocoding

Exploits recurring

control signal patterns

in µcode, e.g.,

ALU0 A ← Reg[rs]

...

ALUi0 A ← Reg[rs]

...

µ

nanoaddress

µcode
next-state

µaddress

µPC (state)

data

code ROM

nanoinstruction ROM

•	 MC68000 had 17-bit µcode containing either 10-bit µjump or 9
bit nanoinstruction pointer
– Nanoinstructions were 68 bits wide, decoded to give 196

control signals

September 21, 2005

6.823 L4- 31
Arvind

Some more history …

• IBM 360

• Microcoding through the seventies

• Microcoding now

September 21, 2005

6.823 L4- 32
Arvind

Microprogramming in IBM 360

M30 M40 M50 M65

Datapath
width (bits)

8 16 32 64

µinst width
(bits)

50 52 85 87

µcode size
(K minsts)

4 4 2.75 2.75

µstore
technology

CCROS TCROS BCROS BCROS

µstore cycle
(ns)

750 625 500 200

memory
cycle (ns)

1500 2500 2000 750

Rental fee
($K/month)

4 7 15 35

Only the fastest models (75 and 95) were hardwired

September 21, 2005

6.823 L4- 33
Arvind

Microcode Emulation

•	 IBM initially miscalculated the importance of
software compatibility with earlier models
when introducing the 360 series

•	 Honeywell stole some IBM 1401 customers by
offering translation software (“Liberator”) for
Honeywell H200 series machine

•	 IBM retaliated with optional additional
microcode for 360 series that could emulate
IBM 1401 ISA, later extended for IBM 7000
series
–	 one popular program on 1401 was a 650 simulator, so

some customers ran many 650 programs on emulated
1401s

– (650 simulated on 1401 emulated on 360)

September 21, 2005

6.823 L4- 34

Microprogramming thrived in the
Arvind

Seventies
•	 Significantly faster ROMs than DRAMs were

available

•	 For complex instruction sets, datapath and
controller were cheaper and simpler

•	 New instructions , e.g., floating point, could
be supported without datapath modifications

•	 Fixing bugs in the controller was easier

• ISA compatibility across various models

could be achieved easily and cheaply

Except for the cheapest and fastest machines,
all computers were microprogrammed

September 21, 2005

6.823 L4- 35
Arvind

Writable Control Store (WCS)
•	 Implement control store with SRAM not ROM

–	 MOS SRAM memories now almost as fast as control store
(core memories/DRAMs were 2-10x slower)

–	 Bug-free microprograms difficult to write

•	 User-WCS provided as option on several
minicomputers
– Allowed users to change microcode for each process

• User-WCS failed
–	 Little or no programming tools support
–	 Difficult to fit software into small space
–	 Microcode control tailored to original ISA, less useful for

others
–	 Large WCS part of processor state - expensive context

switches
–	 Protection difficult if user can change microcode
–	 Virtual memory required restartable microcode

September 21, 2005

6.823 L4- 36
Arvind

Microprogramming: late seventies

•	 With the advent of VLSI technology
assumptions about ROM & RAM speed
became invalid

• Micromachines became more complicated

•	 Micromachines were pipelined to overcome slower

ROM
•	 Complex instruction sets led to the need for

subroutine and call stacks in µcode
•	 Need for fixing bugs in control programs was in

conflict with read-only nature of µROM
⇒	WCS (B1700, QMachine, Intel432, …)

•	 Introduction of caches and buffers, especially
for instructions, made multiple-cycle
execution of reg-reg instructions unattractive

September 21, 2005

6.823 L4- 37
Arvind

Modern Usage
• Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties

Motorola 68K series

Intel 386 and 486

• Microcode pays an assisting role in most modern

CISC micros (AMD Athlon, Intel Pentium-4 ...)

• Most instructions are executed directly, i.e., with hard-wired

control
• Infrequently-used and/or complicated instructions invoke the

microcode engine

• Patchable microcode common for post-fabrication
bug fixes, e.g. Intel Pentiums load µcode patches
at bootup

September 21, 2005

38

Thank you !

1

Single-Cycle Processors:

Datapath & Control

Arvind

Computer Science & Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L5- 2

Instruction Set Architecture (ISA)
Arvind

versus Implementation

• ISA is the hardware/software interface
– Defines set of programmer visible state
– Defines instruction format (bit encoding) and instruction

semantics

– Examples: MIPS, x86, IBM 360, JVM

• Many possible implementations of one ISA

– 360 implementations: model 30 (c. 1964), z900 (c. 2001)
– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon,
Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...

– JVM: HotSpot, PicoJava, ARM Jazelle, ...

September 26, 2005

6.823 L5- 3
Arvind

Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

– Instructions per program depends on source code, compiler
technology, and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

this lecture

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

September 26, 2005

6.823 L5- 4
Arvind

Microarchitecture: Implementation of an ISA

Controller

Data
path

control
pointsstatus

lines

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

September 26, 2005

Hardware Elements

• Combinational circuits OpSelect

–

Result

Comp?

A

B

ALU

Sel

O
A0
A1

An-1

Mux...
A

D
em

u
x ...

O0
O1

On
1

Sel

A

D
ec

o
d
er ...

O0
O1

On-1

Mux, Demux, Decoder, ALU, ... - Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

lg(n)
lg(n)

lg(n)

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Clk

D

Q

Enff

Q

D

Clk
En

ff

Q0

D0

Clk
En

ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

Edge-triggered: Data is sampled at the rising edge
September 26, 2005

6.823 L5- 6
Arvind

Register Files
Clock WE

ReadData1ReadSel1
ReadSel2

WriteSel

Register
file

2R+1W

ReadData2

WriteData

rd1rs1

rs2

ws
wd

rd2

we

ws clk

register 1

wd

we rs2

rs1

rd1

rd2

register 0

…

…

…

…

32

32

32

32

32

325 5

5

register 31

•	 No timing issues in reading a selected register
•	 Register files with a large number of ports are difficult

to design
–	 Intel’s Itanium, GPR File has 128 registers with 8 read ports and

4 write ports!!!
September 26, 2005

6.823 L5- 7
Arvind

A Simple Memory Model

WriteEnable
Clock

Address
ReadData

WriteData

Reads and writes are always completed in one cycle

MAGIC
RAM

• a Read can be done any time (i.e. combinational)
• a Write is performed at the rising clock edge

if it is enabled
⇒ 	 the write address and data

must be stable at the clock edge

Later in the course we will present a more realistic
model of memory

September 26, 2005

6.823 L5- 8
Arvind

Implementing MIPS:

Single-cycle per instruction

datapath & control logic

September 26, 2005

6.823 L5- 9
Arvind

The MIPS ISA

Processor State

32 32-bit GPRs, R0 always contains a 0

32 single precision FPRs, may also be viewed as

16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types

8-bit byte, 16-bit half word

32-bit word for integers

32-bit word for single precision floating point

64-bit word for double precision floating point

Load/Store style instruction set

data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big endian mode

All instructions are 32 bits
September 26, 2005

6.823 L5- 10
Arvind

Instruction Execution

Execution of an instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back

and the computation of the address of the
next instruction

September 26, 2005

6.823 L5- 11
Arvind

Datapath: Reg-Reg ALU Instructions

0x4
Add

clk

addr
inst

Inst.
Memory

PC

inst<5:0>

z
ALU

Control

RegWrite

clk

rd1

rs1
rs2

ws
wd rd2

weinst<25:21>
inst<20:16>

inst<15:11>

OpCode

ALU

GPRs

RegWrite Timing?
6 5 5 5 5 6
0 rd 0 funcrs rt rd ← (rs) func (rt)

31 26 25 21 20 16 15 11 5 0
September 26, 2005

6.823 L5- 12
Arvind

Datapath: Reg-Imm ALU Instructions

Imm
Ext

inst<15:0>

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

rs1
rs2

ws
wd rd2

we

ALU
Control

GPRs

inst<25:21>

inst<20:16>

inst<31:26>

OpCode ExtSel

6 5 5 16
opcode rs rt immediate rt ← (rs) op immediate

31 26 25 2120 16 15 0
September 26, 2005

6.823 L5- 13
Arvind

Conflicts in Merging Datapath

0x4
Add

addr
inst

Inst.
Memory

PC

clk

RegWrite Introduce

Imm
Ext

z
ALU

clk

rd1

rs1
rs2

ws
wd rd2

we

inst<15:0>

ALU
Controlinst<5:0>

muxes

GPRs

inst<25:21>

inst<20:16>

inst<31:26>

inst<15:11>

OpCode ExtSel

6 5 5 5 5 6
0 rs rt rd 0 func

opcode rs rt immediate

rd ← (rs) func (rt)

rt ← (rs) op immediate

September 26, 2005

6.823 L5- 14
Arvind

Datapath for ALU Instructions

0x4
Add

addr
inst

Inst.
Memory

PC

RegWrite

clk

<31:26>, <5:0>

BSrc

Imm
Ext

z
ALU

clk

rd1

rs1
rs2

ws
wd rd2

we<25:21>
<20:16>

<15:0>

ALU
Control

<15:11>
GPRs

OpCode	 RegDst ExtSel OpSel
rt / rd Reg / Imm

6 5 5 5 5 6

0 rs rt rd 0 func

opcode rs rt immediate

rd ← (rs) func (rt)

rt ← (rs) op immediate

September 26, 2005

6.823 L5- 15
Arvind

Datapath for Memory Instructions

Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory

at some level the two memories have
to be the same

Princeton style: the same (von Neumann’s influence)
- A Load or Store instruction requires

accessing the memory more than once
during its execution

September 26, 2005

6.823 L5- 16
Arvind

Load/Store Instructions:Harvard Datapath

0x4
Add

addr
inst

Inst.
Memory

PC

RegWrite MemWrite

clk

WBSrc
ALU / Mem

“base”

disp

ALU
Control

z
ALU

clk

rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

clk

addr

wdata

rdata
Data
Memory

we

GPRs

OpCode RegDst ExtSel OpSel BSrc

opcode rs rt displacement
6 5 5 16 addressing mode

(rs) + displacement
31 26 25 21 20 16 15 0
rs is the base register
rt is the destination of a Load or the source for a Store

September 26, 2005

6.823 L5- 17
Arvind

MIPS Control Instructions
Conditional (on GPR) PC-relative branch

6 5 5 16
opcode rs offset BEQZ, BNEZ

Unconditional register-indirect jumps

6 5 5 16

opcode rs JR, JALR

Unconditional absolute jumps
6 26

opcode target J, JAL

• PC-relative branches add offset×4 to PC+4 to calculate the
target address (offset is in words): ±128 KB range

• Absolute jumps append target×4 to PC<31:28> to calculate
the target address: 256 MB range

• jump-&-link stores PC+4 into the link register (R31)
• All Control Transfers are delayed by 1 instruction

we will worry about the branch delay slot later
September 26, 2005

6.823 L5- 18
Arvind

Conditional Branches (BEQZ, BNEZ)

Add

PCSrc

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

z

clk

clk

addr
inst

Inst.
Memory

PC rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

Add

br

pc+4

RegWrite

0x4

zero?

GPRs

OpCode RegDst ExtSel OpSel BSrc

September 26, 2005

6.823 L5- 19
Arvind

Register-Indirect Jumps (JR)
RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

z

clk

clk

addr
inst

Inst.
Memory

PC rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

PCSrc
br

pc+4

rind

0x4

zero?

GPRs

OpCode RegDst ExtSel OpSel BSrc

September 26, 2005

6.823 L5- 20
Arvind

Register-Indirect Jump-&-Link (JALR)

RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

z

clk

clk

addr
inst

Inst.
Memory

PC rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind

0x4

zero?

GPRs

OpCode RegDst ExtSel OpSel BSrc

September 26, 2005

6.823 L5- 21
Arvind

Absolute Jumps (J, JAL)
RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

z

clk

clk

addr
inst

Inst.
Memory

PC rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind
jabs

0x4

zero?

GPRs

OpCode RegDst ExtSel OpSel BSrc

September 26, 2005

6.823 L5- 22
Arvind

Harvard-Style Datapath for MIPS
RegWrite

Add
Add

clk

WBSrc

addr

wdata

rdata
Data
Memory

we

z

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br
rind
jabs
pc+4

0x4

MemWrite

GPRs

OpCode RegDst ExtSel OpSel BSrc

September 26, 2005

23

Five-minute break to stretch your legs

6.823 L5- 24
Arvind

Single-Cycle Hardwired Control:

Harvard architecture

We will assume
• clock period is sufficiently long for all of

the following steps to be “completed”:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. data fetch if required
5. register write-back setup time

⇒ tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

• At the rising edge of the following clock, the PC,

the register file and the memory are updated

September 26, 2005

6.823 L5- 25

Hardwired Control is pure
Arvind

Combinational Logic

combinational
logic

ExtSel

BSrc

OpSel
op code

MemWrite

WBSrc
zero?

RegDst

RegWrite

PCSrc

September 26, 2005

6.823 L5- 26
Arvind

ALU Control & Immediate Extension

Inst<31:26> (Opcode)

Decode Map

Inst<5:0> (Func)

ALUop

0?

+

OpSel
(Func, Op, +, 0?)

ExtSel
(sExt16, uExt16,
High16)

September 26, 2005

6.823 L5- 27
Arvind

Hardwired Control Table

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU * Reg Func no yes ALU rd pc+4
ALUi sExt16 Imm Op no yes ALU rt pc+4
ALUiu uExt16 Imm Op no yes ALU rt pc+4
LW sExt16 Imm + no yes Mem rt pc+4
SW sExt16 Imm + yes no * * pc+4

BEQZz=0 sExt16 * 0? no no * * br
BEQZz=1 sExt16 * 0? no no * * pc+4
J * * * no no * * jabs
JAL * * * no yes PC R31 jabs
JR * * * no no * * rind
JALR * * * no yes PC R31 rind

BSrc = Reg / Imm WBSrc = ALU / Mem / PC
RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

September 26, 2005

6.823 L5- 28
Arvind

Pipelined MIPS
To pipeline MIPS:

•	 First build MIPS without pipelining with CPI=1

•	 Next, add pipeline registers to reduce cycle
time while maintaining CPI=1

September 26, 2005

6.823 L5- 29
Arvind

Pipelined Datapath

0x4

Add

addrPC

we
rs1
rs2

rd1 we
ws addrrdata IR ALUwd rd2

rdata GPRs Data Inst.
MemoryImmMemory
wdataExt

write
fetch decode & Reg-fetch execute memory -back
phase phase phase phase phase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tC > max {tIM, tRF, tALU, tDM, tRW} (= tDM probably)

However, CPI will increase unless instructions are pipelined
September 26, 2005

6.823 L5- 30
Arvind

An Ideal Pipeline

stage
1

stage
2

stage
3

stage
4

• All objects go through the same stages

• No sharing of resources between any two stages

• Propagation delay through all pipeline stages is equal

• The scheduling of an object entering the pipeline
is not affected by the objects in other stages

These conditions generally hold for industrial
assembly lines.
But can an instruction pipeline satisfy the last
condition?

September 26, 2005

6.823 L5- 31

How to divide the datapath
Arvind

into stages

Suppose memory is significantly slower than
other stages. In particular, suppose

= 10 unitstIM

= 10 units
tDM

= 5 units
tALU
= 1 unittRF

= 1 unit
tRW

Since the slowest stage determines the clock, it
may be possible to combine some stages without
any loss of performance

September 26, 2005

tC > max {tIM, tRF, tALU, tDM, tRW} = tDMtC > max {tIM, tRF+tALU, tDM, tRW} = tDM

6.823 L5- 32
Arvind

Alternative Pipelining

write
-backfetch

phase
execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata
Memory

we
ALU

Imm
Ext

0x4

Add

addr

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR
PC

rdata
Data

rdata

phase

tC > max {tIM, tRF+tALU, tDM+tRW} = tDM+ tRW

⇒ increase the critical path by 10%

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

September 26, 2005

6.823 L5- 33
Arvind

Maximum Speedup by Pipelining

Assumptions 	 Unpipelined Pipelined Speedup
tC 	 tC

t
t

1. tIM = tDM = 10,

ALU = 5,

RF = tRW= 1

4-stage pipeline 	 27 10 2.7

2. tIM = tDM = tALU = tRF = tRW = 5
4-stage pipeline 25 10 2.5

3. 	tIM = tDM = tALU = tRF = tRW = 5
5-stage pipeline 25 5 5.0

It is possible to achieve higher speedup with more
stages in the pipeline.

September 26, 2005

34

Thank you !

1

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Pipeline Hazards

Based on the material prepared by
Arvind and Krste Asanovic

September 28, 2005

6.823 L6- 2
Arvind

Technology Assumptions

It makes the following timing assumption valid

• A small amount of very fast memory (caches)
backed up by a large, slower memory

• Fast ALU (at least for integers)

• Multiported Register files (slower!)

tIM ≈ tRF ≈ tALU ≈ tDM ≈ tRW

A 5-stage pipelined Harvard architecture will be
the focus of our detailed design

September 28, 2005

6.823 L6- 3
Arvind

5-Stage Pipelined Execution

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2 IF2 ID2 EX2 MA2 WB2
instruction3 IF3 ID3 EX3 MA3 WB3
instruction4 IF4 ID4 EX4 MA4 WB4
instruction5 IF5 ID5 EX5 MA5 WB5

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IR
PC

September 28, 2005

6.823 L6- 4
Arvind

5-Stage Pipelined Execution
Resource Usage Diagram

time t0 t1 t2 t3 t4 t5 t6 t7
IF I1 I2 I3 I4 I5
ID I1 I2 I3 I4 I5
EX I1 I2 I3 I4 I5
MA I1 I2 I3 I4 I5
WB I1 I2 I3 I4 I5

R
es

o
u
rc

es

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IR
PC

September 28, 2005

6.823 L6- 5
Arvind

Pipelined Execution:
ALU Instructions

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

Not quite correct!

We need an Instruction Reg (IR) for each stage

September 28, 2005

6.823 L6- 6
Arvind

IR’s and Control points

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

Are control points connected properly?
- ALU instructions
- Load/Store instructions
- Write back

September 28, 2005

6.823 L6- 7
Arvind

Pipelined MIPS Datapath
without jumps

IRIR IR

31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

OpSel

ExtSel BSrc

WBSrc
MemWrite

RegDst
RegWrite

F D E M W

September 28, 2005

6.823 L6- 8
ArvindHow Instructions can Interact

with each other in a pipeline

• An instruction in the pipeline may need a
resource being used by another instruction
in the pipeline
– structural hazard

• An instruction may produce data that is
needed by a later instruction
– data hazard

• In the extreme case, an instruction may
determine the next instruction to be
executed
– control hazard (branches, interrupts,...)

September 28, 2005

6.823 L6- 9
Arvind

Data Hazards

...
r1 ← r0 + 10
r4 ← r1 + 17
...

r1 is stale. Oops!

r1 ← …r4 ← r1 …

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

September 28, 2005

6.823 L6- 10
Arvind

Resolving Data Hazards

Freeze earlier pipeline stages until the data
becomes available ⇒ interlocks

If data is available somewhere in the datapath
provide a bypass to get it to the right stage

Speculate about the hazard resolution and kill
the instruction later if the speculation is wrong.

September 28, 2005

6.823 L6- 11
Arvind

Feedback to Resolve Hazards

• Detect a hazard and provide feedback to previous
stages to stall or kill instructions

FB1

stage
1

stage
2

stage
3

stage
4

FB2 FB3 FB4

• Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)

September 28, 2005

6.823 L6- 12
Arvind

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Interlocks to resolve Data
Hazards

...
r1 ← r0 + 10
r4 ← r1 + 17
...

Stall Condition

September 28, 2005

6.823 L6- 13
Arvind

stalled stages

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I3 I3 I3 I4 I5
ID I1 I2 I2 I2 I2 I3 I4 I5
EX I1 nop nop nop I2 I3 I4 I5
MA I1 nop nop nop I2 I3 I4 I5
WB I1 nop nop nop I2 I3 I4 I5

Stalled Stages and Pipeline Bubbles

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) r1 ← (r0) + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← (r1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3
(I4) IF4 ID4 EX4 MA4 WB4
(I5) IF5 ID5 EX5 MA5 WB5

Resource
Usage

nop ⇒ pipeline bubble

September 28, 2005

6.823 L6- 14
Arvind

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Interlock Control Logic

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted
instructions.

stall
Cstall

ws

rs
rt ?

September 28, 2005

6.823 L6- 15
Arvind

Cdest

Interlocks Control Logic
ignoring jumps & branches

Should we always stall if the rs field matches some rd?

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall
Cstall

ws

rs
rt ?

we

re1 re2

Cre

ws we ws
Cdest Cdest

we

not every instruction writes a register ⇒ we
not every instruction reads a register ⇒ re

September 28, 2005

6.823 L6- 16
Arvind

Source & Destination Registers

source(s) destination
ALU rd ← (rs) func (rt) rs, rt rd
ALUi rt ← (rs) op imm rs rt
LW rt ← M [(rs) + imm] rs rt
SW M [(rs) + imm] ← (rt) rs, rt
BZ cond (rs)

true: PC ← (PC) + imm rs
false: PC ← (PC) + 4 rs

J PC ← (PC) + imm
JAL r31 ← (PC), PC ← (PC) + imm 31
JR PC ← (rs) rs
JALR r31 ← (PC), PC ← (rs) rs 31

R-type: op rs rt rd func

I-type: op rs rt immediate16

J-type: op immediate26

September 28, 2005

6.823 L6- 17
Arvind

Deriving the Stall Signal
Cdest

ws = Case opcode
ALU ⇒ rd
ALUi, LW ⇒ rt
JAL, JALR ⇒ R31

we = Case opcode
ALU, ALUi, LW ⇒(ws ≠ 0)
JAL, JALR ⇒ on
... ⇒ off

Cre
re1 = Case opcode

ALU, ALUi,

⇒ on
⇒ off

re2 = Case opcode
⇒ on
⇒ off

LW, SW, BZ,
JR, JALR
J, JAL

ALU, SW
...

Cstall
stall = ((rsD =wsE).weE +

(rsD =wsM).weM +
(rsD =wsW).weW) . re1D +
((rtD =wsE).weE +
(rtD =wsM).weM +
(rtD =wsW).weW) . re2D

Th
is

is
no

t

th
e

fu
ll s

to
ry

 !

September 28, 2005

6.823 L6- 18
Arvind

Hazards due to Loads & Stores

...
M[(r1)+7] ← (r2)
r4 ← M[(r3)+5]
...

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Stall Condition

Is there any possible data hazard
in this instruction sequence?

What if
(r1)+7 = (r3)+5 ?

September 28, 2005

6.823 L6- 19
Arvind

Load & Store Hazards

However, the hazard is avoided because our
memory system completes writes in one cycle !

Load/Store hazards, even when they do exist, are
often resolved in the memory system itself.

More on this later in the course.

...
M[(r1)+7] ← (r2)
r4 ← M[(r3)+5]
...

(r1)+7 = (r3)+5 ⇒ data hazard

20

Five-minute break to stretch your legs

September 28, 2005

6.823 L6- 21
Arvind

Complications due to Jumps

I1 096 ADD
I2 100 J 200
I3 104 ADD
I4 304 ADD

kill

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

Note fetching the
next instruction
before decode is
speculation ⇒ kill

September 28, 2005

6.823 L6- 22
Arvind

Pipelining Jumps

I1 096 ADD
I2 100 J 200
I3 104 ADD
I4 304 ADD

kill

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD
J, JAL ⇒ nop
... ⇒ IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and
jump?

nop

IRSrcD

I2 I1

304
nop

September 28, 2005

6.823 L6- 23
Arvind

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 nop I4 I5
EX I1 I2 nop I4 I5
MA I1 I2 nop I4 I5
WB I1 I2 nop I4 I5

Jump Pipeline Diagrams

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: J 200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 nop nop nop nop
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

nop ⇒ pipeline bubble

September 28, 2005

6.823 L6- 24
Arvind

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 200
I3 104 ADD
I4 304 ADD

BEQZ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

nop

IRSrcD

Branch condition is not known until
the execute stage

what action should be taken in the
decode stage ?

A

YALU

zero?

September 28, 2005

6.823 L6- 25
Arvind

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

nop

IRSrcD

A

YALU

zero?

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage
is not valid

⇒ stall signal is not valid

I2 I1

108
I3

BEQZ?

?

September 28, 2005

6.823 L6- 26
Arvind

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M

PCSrc (pc+4/jabs/rind/br)

nop A

YALU

zero?
I2 I1

108
I3

BEQZ?

Jump?

IRSrcD

IRSrcE

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage
is not valid

⇒ stall signal is not valid

A
d
d

PC

September 28, 2005

6.823 L6- 27
Arvind

New Stall Signal

stall = (((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D

+ ((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D

) . !((opcodeE=BEQZ).z + (opcodeE=BNEZ).!z)

Don’t stall if the branch is taken. Why?

Instruction at the decode stage is invalid

September 28, 2005

6.823 L6- 28
ArvindControl Equations for PC and IR

Muxes
PCSrc = Case opcodeE

BEQZ.z, BNEZ.!z ⇒ br
... ⇒

Case opcodeD
J, JAL ⇒ jabs
JR, JALR ⇒ rind
... ⇒ pc+4

IRSrcD = Case opcodeE
BEQZ.z, BNEZ.!z ⇒ nop
... ⇒

Case opcodeD
J, JAL, JR, JALR ⇒ nop
... ⇒ IM

Give priority
to the older
instruction,
i.e., execute
stage instruction
over decode
stage instruction

IRSrcE = Case opcodeE
BEQZ.z, BNEZ.!z ⇒ nop
... ⇒ stall.nop + !stall.IRD

September 28, 2005

6.823 L6- 29
Arvind

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 nop I5
EX I1 I2 nop nop I5
MA I1 I2 nop nop I5
WB I1 I2 nop nop I5

Branch Pipeline Diagrams
(resolved in execute stage)

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ 200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

nop ⇒ pipeline bubble

September 28, 2005

6.823 L6- 30
Arvind

• One pipeline bubble can be removed if an extra
comparator is used in the Decode stage

PC addr
inst

Inst
Memory

0x4
Add

IR

IR
nop

EAdd

PCSrc (pc+4 / jabs / rind/ br)

rd1

GPRs

rs1
rs2

ws
wd rd2

we

nop

Zero detect on
register file output

Pipeline diagram now same as for jumps
D

Reducing Branch Penalty
(resolve in decode stage)

September 28, 2005

6.823 L6- 31
Arvind

Branch Delay Slots
(expose control hazard to software)

• Change the ISA semantics so that the instruction that
follows a jump or branch is always executed
– gives compiler the flexibility to put in a useful instruction where

normally a pipeline bubble would have resulted.

I1 096 ADD
I2 100 BEQZ r1 200
I3 104 ADD
I4 304 ADD

Delay slot instruction
executed regardless of

branch outcome

• Other techniques include branch prediction,
which can dramatically reduce the branch
penalty... to come later

September 28, 2005

6.823 L6- 32
Arvind

Bypassing

Each stall or kill introduces a bubble in the pipeline
 ⇒ CPI > 1

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 ← r0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← r1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3
(I4) stalled stages IF4 ID4 EX4
(I5) IF5 ID5

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 ← r0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← r1 + 17 IF2 ID2 EX2 MA2 WB2
(I3) IF3 ID3 EX3 MA3 WB3
(I4) IF4 ID4 EX4 MA4 WB4
(I5) IF5 ID5 EX5 MA5 WB5

A new datapath, i.e., a bypass, can get the data from
the output of the ALU to its input

September 28, 2005

6.823 L6- 33
Arvind

Adding a Bypass

ASrc

...
(I1) r1 ← r0 + 10
(I2) r4 ← r1 + 17

r4 ← r1... r1 ←...

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

When does this bypass help?

r1 ← M[r0 + 10]
r4 ← r1 + 17

JAL 500
r4 ← r31 + 17

yes no no

September 28, 2005

6.823 L6- 34
Arvind

The Bypass Signal
Deriving it from the Stall Signal

ASrc = (rsD=wsE).weE.re1D

we = Case opcode
ALU, ALUi, LW ⇒(ws ≠ 0)
JAL, JALR ⇒ on
... ⇒ off

No because only ALU and ALUi instructions can benefit
from this bypass

Is this correct?

Split weE into two components: we-bypass, we-stall

stall = (((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D

+((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D)

ws = Case opcode
ALU ⇒ rd
ALUi, LW ⇒ rt
JAL, JALR ⇒ R31

September 28, 2005

6.823 L6- 35
Arvind

Bypass and Stall Signals

we-bypassE = Case opcodeE
ALU, ALUi ⇒ (ws ≠ 0)
... ⇒ off

ASrc = (rsD =wsE).we-bypassE . re1D

Split weE into two components: we-bypass, we-stall

stall = ((rsD =wsE).we-stallE +

(rsD=wsM).weM + (rsD=wsW).weW). re1D

+((rtD = wsE).weE + (rtD = wsM).weM + (rtD = wsW).weW). re2D

we-stallE = Case opcodeE
LW ⇒ (ws ≠ 0)
JAL, JALR ⇒ on
... ⇒ off

September 28, 2005

6.823 L6- 36
Arvind

Fully Bypassed Datapath

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Is there still
a need for the
stall signal ? stall = (rsD=wsE). (opcodeE=LWE).(wsE≠0).re1D

+ (rtD=wsE). (opcodeE=LWE).(wsE≠0).re2D

September 28, 2005

6.823 L6- 37
Arvind

Why an Instruction may not be
dispatched every cycle (CPI>1)

• Full bypassing may be too expensive to
implement
– typically all frequently used paths are provided
– some infrequently used bypass paths may increase

cycle time and counteract the benefit of reducing CPI

• Loads have two cycle latency
– Instruction after load cannot use load result
– MIPS-I ISA defined load delay slots, a software-visible

pipeline hazard (compiler schedules independent
instruction or inserts NOP to avoid hazard). Removed
in MIPS-II.

• Conditional branches may cause bubbles
– kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler.

38

Thank you !

1

Multilevel Memories

Dheya Mustafa

Based on the material prepared by
Krste Asanovic and Arvind

CPU-Memory Bottleneck

Memory
CPU

Performance of high-speed computers is usually

limited by memory bandwidth &latencylimited by memory bandwidth &latency

• Latency)time for a single access (
Memory access time >> Processor cycle time

• Bandwidth)number of accesses per unit time (
if fraction m of instructions access memory ,

⇒1+m memory references / instruction

⇒ CPI = 1 requires 1+m memory refs / cycle

Core Memory

• Core memory was first large scale reliable main

memory
– invented by Forrester in late 40s at MIT for Whirlwind project

• Bits stored as magnetization polarity on small ferrite
cores threaded onto 2dimensional grid of wires

• Coincident current pulses on X and Y wires would write
cell and also sense original state)destructive reads (cell and also sense original state)destructive reads (

• Robust, non-volatile storage

• Used on space shuttle computers

until recently

• Cores threaded onto wires by
hand (25 billion a year at
peak production)

• Core access time ~ 1µs

DEC PDP-8/E Board,
4K words x 12bits, (1968(

Semiconductor Memory, DRAM

• Semiconductor memory began to be
competitive in early 1970s
– Intel formed to exploit market for semiconductor

memory

• First commercial DRAM was Intel 1103
– 1Kbit of storage on single chip– 1Kbit of storage on single chip

– charge on a capacitor used to hold value

• Semiconductor memory quickly replaced
core in 1970s

One Transistor Dynamic RAM

TiN top electrode (VREF)

1-T DRAM Cell Ta O dielectric2 5

word

access
FET

bit
Explicit storage
capacitor (FET
gate, trench,
stack)

poly
word
line

W bottom
electrode

access fet

TiN/Ta2O5/W Capacitor

Processor-DRAM Gap (latency (

µProc 60%/year

100

1000 CPU

Processor-Memory
Performance Gap:
)grows 50 % / year (

P
e
rf

o
rm

a
n
c
e “Moore’s Law ”

DRAM
7%/year

DRAM

1

10

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

)grows 50 % / year (

P
e
rf

o
rm

a
n
c
e

]From David Patterson, UC BerkeleyTime
Four-issue superscalar could execute 800
instructions during cache miss !

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

Memory
CPU

Misses in
flight tableflight table

Example :
 ---Assume infinite bandwidth memory

 ---100 cycles /memory reference

 -- -1 +0.2 memory references /instruction

⇒ Table size= =1.2 *100 120 entries

120 independent memory operations in flight!

DRAM Architecture

bit lines
Col.
2M

word linesCol.
1

Row 1

N

Row 2Nw
A
d
d
re

s
s

D
e
c
o
d
e
r

Row 2N

R
o
w

D
e
c
o
d
e
r

N+M M Column Decoder &
Sense Amplifiers

Memory cell
)one bit(

Data D

• Bits stored in 2 - dimensional arrays on chip

• Modern chips have around 4logical banks on each chip

 –each logical bank physically implemented as many smaller arrays

DRAM Operation

Three steps in read/write access to a given bank
• Row access (RAS)

– decode row address, enable addressed row (often multiple Kb in row)
– bitlines share charge with storage cell
– small change in voltage detected by sense amplifiers which latch

whole row of bits
– sense amplifiers drive bitlines full rail to recharge storage cells

• Column access (CAS)• Column access (CAS)
– decode column address to select small number of sense amplifier

latches (4, 8, 16, or 32 bits depending on DRAM package)
– on read, send latched bits out to chip pins
– on write, change sense amplifier latches which then charge storage

cells to required value
– can perform multiple column accesses on same row without another

row access (burst mode)

• Precharge
– charges bit lines to known value, required before next row access

Each step has a latency of around 20ns in modern DRAMs
Various DRAM standards (DDR, RDRAM) have different ways of encoding the

signals for transmission to the DRAM, but all share the same core
architecture

Multilevel Memory

Strategy: Hide latency using small, fast
memories called caches .

Caches are a mechanism to hide memory
latency based on the empirical observation
that the patterns of memory references
made by a processor are often highlymade by a processor are often highly

predictable :

PC

…

loop: ADD r2, r1, r1

SUBI r3, r3, #1

BNEZ r3, loop

…

96

100

104

108

112

What is the pattern
of instruction
memory addresses?

Typical Memory Reference Patterns

Address

Instruction

fetches

n loop iterations
linear sequence

Time

Stack

accesses

Data

accesses

Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced it
is likely to be referenced again in the nearis likely to be referenced again in the near

future.

– Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.

Caches

Caches exploit both types of predictability:

– Exploit temporal locality by remembering
the contents of recently accessed locations.

– Exploit spatial locality by fetching blocks of
data around recently accessed locations.

Memory Hierarchy
Big, Slow
Memory

(DRAM)
A

CPU

Small,
Fast

Memory
(RF, SRAM)

B

holds frequently used data

• size:
• latency :

Register << SRAM << DRAM
Register << SRAM << DRAM

why?
why?

why?•bandwidth: on-chip >>off-chip

On a data access:

hit (data ∈ fast memory) ⇒ low latency access

miss)data ∉ fast memory) ⇒ long latency access (DRAM (

Fast mem. effective only if bandwidth requirement at B > > A

Management of Memory Hierarchy

• Small/fast storage, e.g., registers

– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s back, e.g.,
stack management, register renaming

• Large/slower storage, e.g., memory• Large/slower storage, e.g., memory

– Address usually computed from values in register

– Generally implemented as a cache hierarchy

• hardware decides what is kept in fast memory

• but software may provide “hints”, e.g., don’t cache or

prefetch

A Typical Memory Hierarchy c.2003

Split instruction &data
primary caches
)on-chip SRAM (

Multiple interleaved
memory banks

(DRAM)

L1
Instruction

Cache Memory

Memory

CPU

L1 Data

Cache

Cache
Unified L2

Cache
RF

Memory

Memory

MemoryCPU

Multiported
register file
(part of CPU (

Large unified secondary cache
(on-chip SRAM)

Workstation Memory System
)Apple PowerMac G5, 2003(

•Dual 2GHz processors , each with 64KB I- cache , 32KB
D-cache, and 512KB L2 unified cache

•1GB/s1GHz, 2x32-bit bus, 16GB/s

• North Bridge Chip

•Up to 8GB DRAM, 400MHz, 128 - bit bus, 6.4GB/s•Up to 8GB DRAM, 400MHz, 128 - bit bus, 6.4GB/s

• AGP Graphics Card, 533MHz, 32-bit bus, 2 .

•PCI-X Expansion, 133MHz, 64 - bit bus, 1 GB/s

Inside a Cache

Address Address

Processor CACHE
Main

Memory
Data Data

copy of main
memory
location 100

copy of main
memory
location 101location 100 location 101

Line

Address

Tag

Data Block

100
Data
Byte

Data
Byte

304
Data
Byte

6848

Cache Algorithm (Read)

Look at Processor Address, search cache tags to find
match. Then either

Found in cache
a.k.a. HIT

Not in cache
a.k.a. MISS

Return copy
of data from

cache

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

Placement Policy

Block Number

Memory

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3 0 1 2 3 4 5 6 7Set Number

Cache

block 12
can be placed

anywhere anywhere in
set 0

(12 mod 4)

only into
block 4
)12 mod 8 (

Fully (2-way) Set Direct

Associative Associative Mapped

Direct-Mapped Cache

V Tag

Block

Offset
Tag

t
k b

Data Block

Index

=

t

HIT

2k

lines

Data Word or Byte

Direct Map Address Selection
higher-order vs. lower-order address bits

V Tag

Block

Offset
Index

tk
b

Tag

Data Block

=

t

HIT

2k

lines

Data Word or Byte

2-Way Set-Associative Cache

Block

Offset
Tag Index

b

t
k

Data BlockV Tag V Tag Data Block

t

 = = Data
Word
or Byte

HIT

Fully Associative Cache

V Tag
T
a
g

t

=

Data Block
B
lo

c
k

O
ff

s
e
t

T
a
g

t
=

HIT

b

Data

Word
or Byte

 =

Replacement Policy

In an associative cache, which block from a set
should be evicted when the set becomes full?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block

This is a second-order effect. Why?

Block Size and Spatial Locality

Block is unit of transfer between the cache and memory

block address offsetbSplit CPU
address

Tag 4 word block,

b=2
Word0 Word1 Word2 Word3

2b =block size a.k.a line size)in bytes (

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size ?

32 - b bits b bits

Average Cache Read Latency

α is HIT RATIO: Fraction of references in cache

1 - α is MISS RATIO: Remaining references

Average access time for serial search :

Addr Addr
Main

Memory
tc +)1- α) tm

Processor CACHE
Memory

tc +)1- α) tm

Data Data

Average access time for parallel search:

Addr
Main

Memory
α tc + (1 - α) tm

Processor

Data Data

CACHE

tc is smallest for which type of cache?

Improving Cache Performance

Average memory access time=
Hit time +Miss rate x Miss penalty

To improve performance :
• reduce the miss rate)e.g., larger cache (• reduce the miss rate)e.g., larger cache (
• reduce the miss penalty)e.g., L2 cache (

• reduce the hit time

What is the simplest design strategy ?

Write Performance

V Tag Data

Block

Offset
Tag

b

2k

Index

=

2k

lines

t

HIT

WE

Data Word or Byte

Write Policy

• Cache hit:
– write through: write both cache & memory

• generally higher traffic but simplifies cache coherence

– write back: write cache only
)memory is written only when the entry is evicted (

• a dirty bit per block can further reduce the traffic

• Cache miss:• Cache miss:
– no write allocate: only write to main memory

– write allocate (aka fetch on write): fetch into cache

• Common combinations :
– write through and no write allocate

– write back with write allocate

11/4/2017

1

1

Cache Optimizations

Dheya Mustafa

Based on the material prepared by
Krste Asanovic and Arvind

11/4/2017

2

we
addr

wdata

YY

CPU-Cache Interaction
(5-stage pipeline)

0x4
EAdd

MA

ALU

IR
Decode,
Register

Fetch

nop PrimaryB Data
Cache

wdata

rdata

Raddr instPC D
hit?wdatawdata

hit?

D
hit?

PCen Primary
Instruction

Cache
MD1 MD2

Stall entire
CPU on data
cache miss

To Memory Control

Cache Refill Data from Lower Levels of
Memory Hierarchy

What about Instruction miss or writes to i-stream ?

11/4/2017

3

3

Write Performance

V Tag Data

Block

Offset
Tag

b

2k

Index

 =

2k

lines

t

HIT

WE

Data Word or Byte

11/4/2017

4

4

Reducing Write Hit Time

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle
for data write if hit

Solutions:

• Design data RAM that can perform read and write in one
cycle, restore old value after tag miss

• CAM-Tag caches: Word line only enabled if hit

• Pipelined writes: Hold write data for store in single
buffer ahead of cache, write cache data during next
store’s tag check

11/4/2017

5

5

Pipelining Cache Writes
Address and Store Data From CPU

Tag Index Store Data

Delayed Write Addr. Delayed Write Data
Load/Store

 = ?

S

LTags Data

1 0=?

Load Data to CPU
Hit?

Data from a store hit written into data portion of cache
during tag access of subsequent store

11/4/2017

6

6

Write pipeline

Instr

Memory
RF ALU

Data

Memory
Data

Memory

What hazard has been introduced in this pipeline?

I-Fetch Decode Address Tag Mem

Reg Read Calc Read Data

Write

11/4/2017

7

7

Write Policy

• Cache hit:
– write through: write both cache & memory

• generally higher traffic but simplifies cache coherence

– write back: write cache only
)memory is written only when the entry is evicted (

• a dirty bit per block can further reduce the traffic

• Cache miss:• Cache miss:
– no write allocate: only write to main memory

– write allocate (aka fetch on write): fetch into cache

• Common combinations :
– write through and no write allocate

– write back with write allocate

11/4/2017

8

Average Cache Read Latency

α is HIT RATIO: Fraction of references in cache

1 - α is MISS RATIO: Remaining references

Average access time for serial search:

Addr Addr
Main

Memory
tc + (1 - α) tm

Processor CACHE
Memory

tc + (1 - α) tm

Data Data

Average access time for parallel search :

Addr
Main

Memory
α tc + (1 - α) tm

Processor

Data Data

CACHE

tc is smallest for which type of cache?

11/4/2017

9

9

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)

• reduce the hit time

What is the simplest design strategy?

11/4/2017

10

10

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)• reduce the miss penalty (e.g., L2 cache)
• reduce the hit time

The simplest design strategy is to design the
largest primary cache without slowing down the
clock or adding pipeline stages

(but design decisions are more complex with out-of-
order or highly pipelined CPUs)

11/4/2017

11

11

Causes for Cache Misses

• Compulsory: first-reference to a block a.k.a. cold

start misses
-misses that would occur even with infinite cache

• Capacity: cache is too small to hold all data
needed by the programneeded by the program

- misses that would occur even under perfect
placement &replacement policy

• Conflict: misses that occur because of
collisions due to block-placement strategy
- misses that would not occur with full associativity

11/4/2017

12

12

Effect of Cache Parameters on Performance

• Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

• Higher associativity
+ reduces conflict misses (up to around 4-8 way)+ reduces conflict misses (up to around 4-8 way)
- may increase access time

• Larger block size

11/4/2017

13

13

Block Size and Spatial Locality

Block is unit of transfer between the cache and memory

block address offsetbSplit CPU
address

Tag 4 word block,

b=2
Word0 Word1 Word2 Word3

2b = block size a.k.a line size (in bytes)

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

32-b bits b bits

11/4/2017

14

14

Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty
could be large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block,
called sub-blockscalled sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the word in the cache?

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

11/4/2017

15

15

Set-Associative RAM-Tag Cache
Tag Status Data Tag Status Data

Not energy-efficient
– A tag and data word

is read from every
way

Two-phase approach
– First read tags, then

=? =?

OffsetIndexTag

– First read tags, then
just read data from
selected way

– More energy-
efficient

– Doubles latency in
L1

– OK, for L2 and
above, why?

11/4/2017

16

Tag =? Data Block
Tag =? Data Block

16

Highly-Associative CAM-Tag Caches
• For high associativity (e.g., 32-way), use content-addressable

memory (CAM) for tags (Intel XScale)

• Overhead: Tag+comparator bit 2-4x area of plain RAM-tag bit

tagt seti offsetb

Set 1
Set i =?

Tag =? Data Block
Tag =? Data Block

Tag =? Data Block

Tag =? Data Block
Tag =? Data Block

Tag

Tag
=?

=?

Data Block

Data Block

Tag =? Data Block

Set 0
Set 1

Hit? DataOnly one set enabled
Only hit data accessed – saves energy

11/4/2017

17

17

Way Predicting Caches
(MIPS R10000 L2 cache)

• Use processor address to index into way prediction table

• Look in predicted way at given index, then:

HIT MISS

Return copy
of data from

cache

Look in other way

MISS
SLOW HIT
(change entry in
prediction table) Read block of data from

next level of cache

11/4/2017

18

18

Way Predicting Instruction Cache
(Alpha 21264-like)

Jump target

0x4

AddJump
control

PC addr inst

Primary
Instruction

Cache

Sequential Way

Branch Target Way

way

11/4/2017

19

20

Victim Caches (HP 7200)

CPU

L1 Data

Cache

Unified L2

CacheRF

Evicted data
from L1

Victim
FA Cache
4 blocks

from L1

where ?
Evicted data

From VC
Hit data from VC

(miss in L1)

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

11/4/2017

20

21

Multilevel Caches

• A memory cannot be large and fast

• Increasing sizes of cache at each level

CPU L1
L2

DRAM

L2

Local miss rate = misses in cache / accesses to cache Global

miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

11/4/2017

21

22

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache

– Extra-CPU access needs only check outer cache

– Most common case

• Exclusive multilevel caches:• Exclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Swap lines between inner/outer caches on miss

– Used in Athlon with 64KB primary and 256KB
secondary cache

Why choose one type of the other?

11/4/2017

22

23

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Image removed due to copyright restrictions.

To view image, visit http://www-

Level 1, 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single cycle

latency

Level 2, 256KB, 4-way s.a,To view image, visit http://www-

vlsi.stanford.edu/group/chips_micropro_body

.html

Level 2, 256KB, 4-way s.a,
128B line, quad-port (4
load or 4 store), five cycle

latency

Level 3, 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency

11/4/2017

23

24

Reducing Read Miss Penalty

Data

Cache

Unified

L2
Cache

RF

CPU

Write

buffer

Evicted dirty lines for writeback cacheEvicted dirty lines for writeback cache

OR
All writes in writethru cache

• Write buffer may hold updated value of location
needed by a read miss

• Simple scheme: on a read miss, wait for the write
buffer to go empty

• Faster scheme: Check write buffer addresses
against read miss addresses, if no match, allow
read miss to go ahead of writes, else, return value

October 5, 200i5n write buffer

11/4/2017

24

25

Prefetching

• Speculate on future instruction and
data accesses and fetch them into
cache(s)

– Instruction accesses easier to predict
than data accesses

• Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

• What types of misses does
prefetching affect?

11/4/2017

25

26

Issues in Prefetching

• Usefulness – should produce hits

• Timeliness – not late and not too early

• Cache and bandwidth pollution

L1 Unified L2CPU

L1 Data

L1
Instruction

Unified L2

Cache

RF

CPU

Prefetched data

11/4/2017

26

27

Hardware Instruction Prefetching

• Instruction prefetch in Alpha AXP 21064

– Fetch two blocks on a miss; the requested block and
the next consecutive block

– Requested block placed in cache, and next block in
instruction stream buffer

L1
Instruction

Unified L2

Cache

RF

CPU

Prefetched
instruction blockStream

Buffer
(4 blocks)

Req

block

Req

block

11/4/2017

27

28

Hardware Data Prefetching

• Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when

block b is accessedblock b is accessed
– Why is this different from doubling block
size?

– Can extend to N block lookahead

• Strided prefetch
– If sequence of accesses to block b, b+N,

b+2N, then prefetch b+3N etc.

11/4/2017

28

29

Software Prefetching

for(i=0; i < N; i++) {

);

);

prefetch(&a[i + 1]

prefetch(&b[i + 1]

SUM = SUM + a[i] * b[i];

}

• What property do we require of the cache
for prefetching to work ?

11/4/2017

29

30

Software Prefetching Issues

• Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is

required, you might be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come

into L1, so we can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {

P]prefetch(&a[i +
prefetch(
SUM = SUM

&b[i +

+ a[i]

P]);
);

}
* b[i];

Must consider cost of prefetch instructions

11/4/2017

30

31

Compiler Optimizations

• Restructuring code affects the data block
access sequence
– Group data accesses together to improve spatial locality

– Re-order data accesses to improve temporal locality

• Prevent data from entering the cache• Prevent data from entering the cache
– Useful for variables that will only be accessed once

before being replaced

– Needs mechanism for software to tell hardware not to
cache data (instruction hints or page table bits)

• Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal

locality

– Replace into dead cache locations

11/4/2017

31

32

Loop Interchange

for(j=0; j < N; j++) {
for(i=0; i <

x[i][j] =
M; i++) {
2 * x[i][j];

}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

}

}

What type of locality does this improve?

x[i][j] = 2 * x[i][j];

11/4/2017

32

33

Loop Fusion

for(i=0; i < N; i++)

for(j=0; j < M; j++)

a[i][j] = b[i][j] * c[i][j];

for(i=0; i < N; i++)

for(j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j];

for(i=0; i < M; i++)

}

What type of locality does this improve?

d[i][j] = a[i][j] * c[i][j];

for(j=0; j < N; j++) {

a[i][j] = b[i][j] * c[i][j];

d[i][j] = a[i][j] * c[i][j];

11/4/2017

33

34

Blocking

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];
x[i][j] = r;

}

x y zj k j

i i k

Not touched Old access New access

11/4/2017

34

35

Blocking
for(jj=0; jj < N; jj=jj+B)

for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)

for(j=jj; j < min(jj+B,N);

r = 0;

j++) {

for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];

x[i][j] = x[i][j] + r;x[i][j] =

y

x[i][j] + r;

k z jx j }

i i k

What type of locality does this improve?

1

Memory Management:

From Absolute Addresses

to Demand Paging

Joel Emer

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L9-2
Emer

Memory Management

• The Fifties
- Absolute Addresses

- Dynamic address translation

• The Sixties

- Paged memory systems and TLBs
- Atlas’ Demand paging

• Modern Virtual Memory Systems

October 12, 2005

6.823 L9-3
Emer

Names for Memory Locations

address
virtual

address
machine
language
address

Address
MappingISA

Physical
Memory
(DRAM)

physical

• Machine language address
– as specified in machine code

• Virtual address
– ISA specifies translation of machine code address

into virtual address of program variable (sometime
called effective address)

• Physical address

⇒ operating system specifies mapping of virtual

address into name for a physical memory location
October 12, 2005

6.823 L9-4
Emer

Absolute Addresses

EDSAC, early 50’s

virtual address = physical memory address

•	 Only one program ran at a time, with
unrestricted access to entire machine (RAM +
I/O devices)

•	 Addresses in a program depended upon where
the program was to be loaded in memory

• But it was more convenient for programmers

to write location-independent subroutines

How could location independence be achieved?

October 12, 2005

6.823 L9-5
Emer

Dynamic Address Translation

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?

⇒ multiprogramming

Location independent programs
Programming and storage management ease

⇒ need for a base register

Protection
Independent programs should not affect

each other inadvertently

⇒ need for a bound register

prog1

prog2 P
h
ys

ic
al

 M
em

o
ry

October 12, 2005

6.823 L9-6
Emer

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register ≤

Bounds
Violation?

M
ai

n
 M

em
o
ry

current

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

segment

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

October 12, 2005

6.823 L9-7
Emer

Separate Areas for Program and Data

What is an advantage of this separation?

Load X

Program
Address
Space

M
ai

n
 M

em
o
ry

data

Data Bound

Effective Addr

Data Base

≤

+

Bounds
Violation?

Program Bound

Program
Counter

Program Base

≤

+

Bounds
Violation?

program

segment

Register

Register

Register

Register

Register

segment

(Scheme still used today on Cray vector supercomputers)

October 12, 2005

6.823 L9-8
Emer

Memory Fragmentation

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

freeUsers 4 & 5
arrive

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

October 12, 2005

6.823 L9-9
Emer

Paged Memory Systems

• Processor generated address can be
interpreted as a pair <page number, offset>

page number offset

• A page table contains the physical address

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

of the base of each page

Page tables make it possible to store the
pages of a program non-contiguously.

October 12, 2005

6.823 L9-10
Emer

Private Address Space per User

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

Ph
ys

ic
al

M
em

o
ry

free

OS
pages

• Each user has a page table
• Page table contains an entry for each user page

October 12, 2005

6.823 L9-11
Emer

Where Should Page Tables Reside?

•	 Space required by the page tables (PT) is
proportional to the address space, number
of users, ...

⇒ 	Space requirement is large
⇒ 	Too expensive to keep in registers

•	 Idea: Keep PT of the current user in special
registers
–	 may not be feasible for large page tables
–	 Increases the cost of context swap

•	 Idea: Keep PTs in the main memory

–	 needs one reference to retrieve the page base address

and another to access the data word
⇒	doubles the number of memory references!

October 12, 2005

6.823 L9-12
Emer

Page Tables in Physical Memory

October 12, 2005

VA1

User 1

PT User 1

PT User 2

VA1

User 2

6.823 L9-13
Emer

A Problem in Early Sixties

•	 There were many applications whose data
could not fit in the main memory, e.g., payroll
–	 Paged memory system reduced fragmentation but still

required the whole program to be resident in the main
memory

•	 Programmers moved the data back and forth
from the secondary store by overlaying it
repeatedly on the primary store

tricky programming!

October 12, 2005

6.823 L9-14
Emer

Manual Overlays

• Assume an instruction can address all

the storage on the drum

•	 Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required

• Method 2: automatic initiation of I/O
transfers by software address
translation Ferranti Mercury

Brooker’s interpretive coding, 1960 1956

Problems?

40k bits
main

640k bits
drum

Central Store

Method1: Difficult, error prone
Method2: Inefficient

October 12, 2005

6.823 L9-15
Emer

Demand Paging in Atlas (1962)

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

User sees 32 x 6 x 512 words
of storage

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
Memory

October 12, 2005

6.823 L9-16
Emer

Hardware Organization of Atlas

Initial
Address
Decode

16 ROM pages
µsec

2 subsidiary pages
1.4 µsec

Main
32 pages
1.4 µsec

Drum (4)
8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR)

Effective
Address (not swapped)

(not swapped)
0

31

PARs

0.4 ~1

192 pages

system code

system data

per page frame <effective PN , status>

Compare the effective page address against all 32 PARs
match ⇒ normal access
no match ⇒ page fault

save the state of the partially executed
instruction

October 12, 2005

6.823 L9-17
Emer

Atlas Demand Paging Scheme

•	 On a page fault:
–	 Input transfer into a free page is initiated

–	 The Page Address Register (PAR) is updated

–	 If no free page is left, a page is selected to be
replaced (based on usage)

–	 The replaced page is written on the drum
• to minimize drum latency effect, the first empty

page on the drum was selected

–	 The page table is updated to point to the new
location of the page on the drum

October 12, 2005

6.823 L9-18
Emer

Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

primary
memory

CPU

Caching Demand paging
cache entry page-frame
cache block (~32 bytes) page (~4K bytes)
cache miss (1% to 20%) page miss (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss(~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software

October 12, 2005

19

Five-minute break to stretch your legs

6.823 L9-20
Emer

Modern Virtual Memory Systems

Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table ≡ name space

OS

useri

Demand Paging
Primary
Memory

Store
Swapping

Provides the ability to run programs
larger than the primary memory

Hides differences in machine

configurations

The price is address translation on

each memory reference VA
 PA

October 12, 2005

mapping

TLB

6.823 L9-21
Emer

Linear Page Table

•
contains:
–

exists
– PPN (physical page

resident page

–

a page on the disk

–

and usage
•

Base Register

process changes

VPN Offset

Virtual address

VPN

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

number) for a memory-

whenever active user

PT Base Register

Data word

Page Table Entry (PTE)

A bit to indicate if a page

DPN (disk page number) for

Status bits for protection

OS sets the Page Table

October 12, 2005

6.823 L9-22
Emer

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:

⇒ 220 PTEs, i.e, 4 MB page table per user
⇒	 4 GB of swap needed to back up full virtual address

space

Larger pages?

•	 Internal fragmentation (Not all memory in a page is

used)
•	 Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
•	 Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?

October 12, 2005

6.823 L9-23
Emer

Hierarchical Page Table

Virtual Address

31 21 22 11 12 0
p1 p2 offset

10-bit 10-bit
L1 index L2 index offset

Root of the Current
Page Table p2

p1

(Processor Level 1
Register) Page Table

Level 2
page in primary memory Page Tables
page in secondary memory

PTE of a nonexistent page
Data Pages

October 12, 2005

6.823 L9-24
Emer

Address Translation & Protection

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

• Every instruction and data access needs address

translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

October 12, 2005

6.823 L9-25
Emer

Translation Lookaside Buffers

Address translation is very expensive!

In a two-level page table, each reference

becomes several memory accesses

Solution: Cache translations in TLB

TLB hit ⇒ Single Cycle Translation

TLB miss ⇒ Page Table Walk to refill

October 12, 2005

VPN offset

V R W D tag PPN

PPN

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

physical address offset

6.823 L9-26
Emer

TLB Designs

•	 Typically 32-128 entries, usually fully associative
–	 Each entry maps a large page, hence less spatial locality

across pages Î more likely that two entries conflict
–	 Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative

•	 Random or FIFO replacement policy

•	 No process information in TLB?
•	 TLB Reach: Size of largest virtual address space

that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________?

October 12, 2005

6.823 L9-27
Emer

Variable Sized Page Support

October 12, 2005

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory

Page Table
p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset
031

10-bit
L1 index

10-bit
L2 index

PTE of a nonexistent page

Root of the Current

11 12 21 22

6.823 L9-28
Emer

Variable Size Page TLB
Some systems support multiple page sizes.

VPN offset

PPN

virtual address

hit?

V R W D Tag PPN L

physical address offset

October 12, 2005

6.823 L9-29
Emer

Handling A TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

October 12, 2005

0

6.823 L9-30

Hierarchical Page Table Walk:
Emer

SPARC v8

31 11

Virtual Address Index 1 Index 3 Offset

31 23 17 11 0
Context
Table

Context
root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

Index 2

Register

Register

MMU does this table walk in hardware on a TLB miss
October 12, 2005

6.823 L9-31
Emer

Translation for Page Tables

• Can references to page tables TLB miss

October 12, 2005

•

(in virtual space)

Data Pages

User PTE Base

System PTE Base

Can this go on forever?

User Page Table

System Page Table
(in physical space)

6.823 L9-32
EmerAddress Translation:

putting it all together
Virtual Address

October 12, 2005

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

the

33

Thank you !

1

Modern Virtual Memory Systems

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L10-2
ArvindAddress Translation:

putting it all together
Virtual Address

October 17, 2005

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

the

6.823 L10-3
Arvind

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

October 17, 2005

6.823 L10-4

Interrupts:
Arvind

altering the normal flow of control

Ii-1 HI1

interrupt
program Ii HI2 handler

HInIi+1

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

October 17, 2005

6.823 L10-5
Arvind

Causes of Interrupts

Interrupt: an event that requests the attention of the processor

•	 Asynchronous: an external event
–	 input/output device service-request
–	 timer expiration
–	 power disruptions, hardware failure

•	 Synchronous: an internal event (a.k.a
exceptions)
–	 undefined opcode, privileged instruction
–	 arithmetic overflow, FPU exception
–	 misaligned memory access
– virtual memory exceptions: page faults,

TLB misses, protection violations
–	 traps: system calls, e.g., jumps into kernel

October 17, 2005

6.823 L10-6
Arvind

Asynchronous Interrupts:

invoking the interrupt handler

•	 An I/O device requests attention by
asserting one of the prioritized interrupt
request lines

•	 When the processor decides to process the
interrupt
– It stops the current program at instruction Ii,

completing all the instructions up to Ii-1
(precise interrupt)

– It saves the PC of instruction Ii in a special
register (EPC)

– It disables interrupts and transfers control to a
designated interrupt handler running in the
kernel mode

October 17, 2005

6.823 L10-7
Arvind

Interrupt Handler

•	 Saves EPC before enabling interrupts to
allow nested interrupts ⇒
–	 need an instruction to move EPC into GPRs
–	 need a way to mask further interrupts at least until

EPC can be saved

•	 Needs to read a status register that
indicates the cause of the interrupt

•	 Uses a special indirect jump instruction
RFE (return-from-exception) which
–	 enables interrupts
–	 restores the processor to the user mode
–	 restores hardware status and control state

October 17, 2005

6.823 L10-8
Arvind

Synchronous Interrupts

•	 A synchronous interrupt (exception) is caused
by a particular instruction

•	 In general, the instruction cannot be
completed and needs to be restarted after the
exception has been handled
– requires undoing the effect of one or more partially

executed instructions

•	 In case of a trap (system call), the instruction
is considered to have been completed
– a special jump instruction involving a change to

privileged kernel mode

October 17, 2005

6.823 L10-9
Arvind

Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

•	 How to handle multiple simultaneous
exceptions in different pipeline stages?

•	 How and where to handle external
asynchronous interrupts?

October 17, 2005

6.823 L10-10
Arvind

Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
E
PC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select

PC
Kill

Writeback

Commit
Point

Handler

October 17, 2005

6.823 L10-11
Arvind

Exception Handling 5-Stage Pipeline

•	 Hold exception flags in pipeline until
commit point (M stage)

• Exceptions in earlier pipe stages override

later exceptions for a given instruction

•	 Inject external interrupts at commit
point (override others)

•	 If exception at commit: update Cause
and EPC registers, kill all stages, inject
handler PC into fetch stage

October 17, 2005

6.823 L10-12
Arvind

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

October 17, 2005

6.823 L10-13
Arvind

Address Translation in CPU Pipeline

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

•	 Software handlers need a restartable exception on
page fault or protection violation

•	 Handling a TLB miss needs a hardware or software
mechanism to refill TLB

•	 Need mechanisms to cope with the additional latency
of a TLB:
– slow down the clock
– pipeline the TLB and cache access
– virtual address caches
– parallel TLB/cache access

October 17, 2005

6.823 L10-14
Arvind

Virtual Address Caches

CPU Physical
Cache

TLB Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM)Virtual
Cache

PA
TLB

Primary
Memory

•	 one-step process in case of a hit (+)
•	 cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)
•	 aliasing problems due to the sharing of pages (-)

October 17, 2005

6.823 L10-15
Arvind

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

VA1 1st Copy of Data at PA

VA2 2nd Copy of Data at PA

Virtual cache can have two
copies of same physical data.Two virtual pages share Writes to one copy not visibleone physical page to reads of other!

General Solution: Disallow aliases to coexist in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

Tag Data

October 17, 2005

6.823 L10-16
Arvind

Concurrent Access to TLB & Cache

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

Index L is available without consulting the TLB
⇒ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L + b = k L + b < k L + b > k

October 17, 2005

6.823 L10-17

Virtual-Index Physical-Tag Caches:
Arvind

Associative Organization

Virtual
2aVA VPN a L = k-b b Index

Direct-map Direct-map TLB k 2L blocks 2L blocks

Phy.
PA PPN Page Offset Tag

= =
Tag hit? 2a

Data
After the PPN is known, 2a physical tags are compared

Is this scheme realistic?
October 17, 2005

6.823 L10-18
Arvind

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Can VA1 and VA2 both map to PA ?

October 17, 2005

6.823 L10-19
Arvind

A solution via Second Level Cache

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

October 17, 2005

6.823 L10-20
Arvind

Anti-Aliasing Using L2: MIPS R10000

VA

PA

•

•

be detected in L2.

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

Virtual Index L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

PA a1 Data

PPN

into L2 tag

and VA1 is already in L1, L2 (VA1 ≠ VA2)
Suppose VA1 and VA2 both map to PA

After VA2 is resolved to PA, a collision will

•	 VA1 will be purged from L1 and L2, and Direct-Mapped L2

VA2 will be loaded ⇒ no aliasing !
October 17, 2005

6.823 L10-21
ArvindVirtually-Addressed L1:

Anti-Aliasing using L2

VA

PA

used to avoid aliases in virtually-

VPN Page Offset b

TLB

PPN Page Offset b

Tag

Virtual

Physical

L1 VA Cache

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically-addressed L2 can also be

Index & Tag

Index & Tag

addressed L1 L2 PA Cache
L2 “contains” L1

October 17, 2005

22

Five-minute break to stretch your legs

6.823 L10-23
Arvind

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

October 17, 2005

6.823 L10-24
Arvind

Page Fault Handler

•	 When the referenced page is not in DRAM:
–	 The missing page is located (or created)
– It is brought in from disk, and page table is

updated

Another job may be run on the CPU while the first
job waits for the requested page to be read from disk

– If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

•	 Since it takes a long time to transfer a page
(msecs), page faults are handled completely
in software by the OS
– Untranslated addressing mode is essential to allow

kernel to access page tables

October 17, 2005

October 17, 2005

6.823 L10-25
Arvind

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

A program that tra
verses the

page table needs a “no

translation” addressing mode.

6.823 L10-26
Arvind

Swapping a Page of a Page Table

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

⇒ 	a page of a PT can be swapped out only
if none its PTE’s point to pages in the
primary memory

Why?__________________________________

October 17, 2005

6.823 L10-27
Arvind

Atlas Revisited

•	 One PAR for each physical page
PAR’s

•	 PAR’s contain the VPN’s of the
pages resident in primary memory

PPN

•	 Advantage: The size is
proportional to the size of the
primary memory

•	 What is the disadvantage ?

VPN

October 17, 2005

6.823 L10-28
ArvindHashed Page Table:

Approximating Associative Addressing

hash
Offset

Base of Table

+
PA of PTE

VPN PID PPN

Page Table

VPN d Virtual Address

VPN PID DPN

VPN PID

PID

•	 Hashed Page Table is typically 2 to 3
times larger than the number of PPN’s
to reduce collision probability

•	 It can also contain DPN’s for some non
resident pages (not common)

•	 If a translation cannot be resolved in
this table then the software consults a
data structure that has an entry for
every existing page

Primary

Memory

October 17, 2005

6.823 L10-29
Arvind

Global System Address Space

Global
System
Address
Space

Physical
Memory

User

User

map

map

mapLevel A

Level B

•	 Level A maps users’ address spaces into the
global space providing privacy, protection,
sharing etc.

•	 Level B provides demand-paging for the large
global system address space

•	 Level A and Level B translations may be kept in
separate TLB’s

October 17, 2005

6.823 L10-30
Arvind

Hashed Page Table Walk:
PowerPC Two-level, Segmented Addressing

October 17, 2005

Seg ID Page Offset
0 51

Global Seg ID Page Offset
0

PPN Offset
0 27

hashP

PA of Page Table +

hashS

+

40-bit PA

per process PA

PA

[IBM numbers bits

 35 63

Hashed Segment Table

80-bit System VA
 51 67 79

Hashed Page Table

 39

PA of Seg Table

64-bit user VA

system-wide

with MSB=0]

6.823 L10-31
Arvind

Power PC: Hashed Page Table

•

•

Base of Table

hash
Offset +

PA of Slot
VPN PPN

Page Table
VPN d 80-bit VA

VPN

<VPN,PPN> that are searched sequentially

function is used to look in another slot
All these steps are done in hardware!

Each hash table slot has 8 PTE's

If the first hash slot fails, an alternate hash

•	 Hashed Table is typically 2 to 3 times larger
than the number of physical pages

•	 The full backup Page Table is a software
data structure

Primary

Memory

October 17, 2005

6.823 L10-32
Arvind

Virtual Memory Use Today - 1

•	 Desktops/servers have full demand-paged
virtual memory
–	 Portability between machines with different memory sizes
–	 Protection between multiple users or multiple tasks
–	 Share small physical memory among active tasks
–	 Simplifies implementation of some OS features

•	 Vector supercomputers have translation and
protection but not demand-paging

(Crays: base&bound, Japanese: pages)
–	 Don’t waste expensive CPU time thrashing to disk (make

jobs fit in memory)
–	 Mostly run in batch mode (run set of jobs that fits in

memory)
–	 Difficult to implement restartable vector instructions

October 17, 2005

6.823 L10-33
Arvind

Virtual Memory Use Today - 2

•	 Most embedded processors and DSPs provide
physical addressing only
–	 Can’t afford area/speed/power budget for virtual memory

support
–	 Often there is no secondary storage to swap to!
–	 Programs custom written for particular memory

configuration in product

–	 Difficult to implement restartable instructions for exposed

architectures

Given the software demands of modern embedded devices (e.g.,
cell phones, PDAs) all this may change in the near future!

October 17, 2005

34

Thank you !

1

Branch Prediction

and

Speculative Execution

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Krste Asanovic and Arvind

6.823 L13-2
Arvind

Outline

• Control transfer penalty

• Branch prediction schemes

• Branch misprediction recovery schemes

October 26, 2005

6.823 L13-3
Arvind

Phases of Instruction Execution

Fetch: Instruction bits retrieved
from cache.I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

State

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

issue (aka “dispatch”) stage buffer

Buffer Commit: Instruction irrevocably updates

“completion”).

PC

Arch.

Decode: Instructions placed in appropriate

Result

architectural state (aka “graduation” or

October 26, 2005

6.823 L13-4
Arvind

Fetch Stage

PC

Instruction Cache

Hit?

To Decode Stage

Fetch Buffer
Opcode Rd Rsrc1 Rsrc2/Imm

Instructions

October 26, 2005

6.823 L13-5
Arvind

Decode & Rename Stage

Opcode Rd Rsrc1 Rsrc2/Imm(Renaming is shown only

for Rsrc2, similar for Rsrc1)

R31
SignExt V Tag R31

Committed R30 V Tag R30 Rename
Architectural Table

Regfile R0
 V Tag R0

1 X

0 1 0 1 0 1

1

0 1 0 1 ImmSel

t1
t2

tn

Opcode U E P1 Tag1 Data1 P2 Tag2 Data2 Pd Rd Datad Cause

ROB

October 26, 2005

6.823 L13-6
Arvind

Execute Stage

•	 Arbiter selects one ready instruction (P1=1 AND P2=1) to

execute
•	 Instruction reads operands from ROB, executes, and

broadcasts tag and result to waiting instructions in ROB.
Also saves result and exception flags for commit.

Func. Unit

Opcode U E Tag1P1 Data1 Tag2P2 Data2 RdPd Datad Cause

Opcode U E Tag1P1 Data1 Tag2P2 Data2 RdPd Datad Cause

t1
t2

tn

ROB

October 26, 2005

6.823 L13-7
Arvind

Commit Stage

•	 When instruction at ptr2 (commit point) has

completed, write back result to architectural state
and check for exceptions

•	 Check if rename table entry for architectural
register written matches tag, if so, clear valid bit in
rename table

October 26, 2005

tn

TagV
TagV

TagV

Table

R0

R30
R31

R0

R30
R31Committed

Regfile

Exception?

=?Clear rename valid?

Opcode U E Tag1P1 Data1 Tag2P2 Data2 RdPd Datad Cause

t1

ptr2

ROB

Rename

Architectural

6.823 L13-8
Arvind

Branch Penalty

Next fetch
started

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

I-cache

Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Branch executed

Fetch

Fetch

October 26, 2005

6.823 L13-9
ArvindAverage Run-Length between

Branches

Average dynamic instruction mix from SPEC92:

SPECint92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc, li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches

October 26, 2005

6.823 L13-10
Arvind

Reducing Control Transfer Penalties

Software solution
• loop unrolling

Increases the run length

• instruction scheduling

Compute the branch condition as early
as possible (limited)

Hardware solution

• delay slots

replaces pipeline bubbles with useful work
(requires software cooperation)

• branch prediction & speculative execution
of instructions beyond the branch

October 26, 2005

6.823 L13-11
Arvind

MIPS Branches and Jumps

Need to know (or guess) both target address and
whether the branch/jump is taken or not

Instruction Taken known? Target known?

BEQZ/BNEZ After Reg. Fetch After Inst. Fetch

J Always Taken After Inst. Fetch

JR Always Taken After Reg. Fetch

October 26, 2005

6.823 L13-12
Arvind

Branch Penalties in Modern Pipelines

UltraSPARC-III instruction fetch pipeline stages

(in-order issue, 4-way superscalar, 750MHz, 2000)

P
F
B
I
J
R
E

A PC Generation/Mux
Instruction Fetch Stage 1
Instruction Fetch Stage 2
Branch Address Calc/Begin Decode
Complete Decode
Steer Instructions to Functional units
Register File Read
Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

October 26, 2005

6.823 L13-13
Arvind

Outline

• Control transfer penalty

• Branch prediction schemes

• Branch misprediction recovery schemes

October 26, 2005

6.823 L13-14
Arvind

Branch Prediction

Motivation: branch penalties limit performance of
deeply pipelined processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:

Prediction structures: branch history tables, branch target
buffers, etc.

Mispredict recovery mechanisms:
• In-order machines: kill instructions following

branch in pipeline
• Out-of-order machines: shadow registers and

memory buffers for each speculated branch

October 26, 2005

6.823 L13-15
Arvind

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

backward

JZ

forward

90%
 50%

JZ

ISA can attach additional semantics to branches about

preferred direction, e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction
(HP PA-RISC, Intel IA-64)

October 26, 2005

6.823 L13-16
Arvind

Dynamic Branch Prediction

learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation

Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

October 26, 2005

6.823 L13-17
Arvind

Branch Prediction Bits
• Assume 2 BP bits per instruction
• Change the prediction after two consecutive mistakes!

¬take
wrong

taken
¬ taken

taken
taken take ¬take ¬ taken

right right
taken

¬ taken ¬ taken
take

wrong

BP state:
(predict take/¬take) x (last prediction right/wrong)

October 26, 2005

6.823 L13-18
Arvind

Branch History Table

0 0Fetch PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Branch? Target PC Taken/¬Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

October 26, 2005

6.823 L13-19
Arvind

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

October 26, 2005

0 0

kFetch PC

results of each
branch

2-bit global branch
history shift register

Shift in
Taken/¬Taken

Taken/¬Taken?

6.823 L13-20
Arvind

Exploiting Spatial Correlation

Yeh and Patt, 1992

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

History bit: H records the direction of the last
branch executed by the processor

Two sets of BHT bits (BHT0 & BHT1) per branch
instruction

H = 0 (not taken) ⇒ consult BHT0

H = 1 (taken) ⇒ consult BHT1

October 26, 2005

6.823 L13-21
Arvind

Limitations of BHTs

Cannot redirect fetch stream until after branch instruction is
fetched and decoded, and target address determined

Correctly
predicted
taken branch
penalty

Jump Register
penalty

A
P
F
B
I
J
R
E

PC Generation/Mux
Instruction Fetch Stage 1
Instruction Fetch Stage 2
Branch Address Calc/Begin Decode
Complete Decode
Steer Instructions to Functional units
Register File Read
Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

October 26, 2005

6.823 L13-22
Arvind

Branch Target Buffer

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPbpredicted

target BP

target

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction

and update BTB & BPb else update BPb
October 26, 2005

6.823 L13-23
Arvind

Address Collisions

Assume a
128-entry
BTB

target BPb

Instruction

What will be fetched after the instruction at 1028? Memory

BTB prediction = 236
Correct target = 1032

take236

1028

132 Jump 100

Add

⇒ kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

October 26, 2005

6.823 L13-24

BTB should be for Control Transfer
Arvind

instructions only

BTB contains useful information for branch and
jump instructions only

⇒ it should not be updated for other
instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
instruction?

October 26, 2005

6.823 L13-25
Arvind

Branch Target Buffer (BTB)

I-Cache PC
2k-entry direct-mapped BTB

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

(can also be associative)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

October 26, 2005

6.823 L13-26
Arvind

Consulting BTB Before Decoding

1028

132 Jump 100

BPbtarget
take236

entry PC
132 Add

• The match for PC=1028 fails and 1028+4 is fetched
⇒ eliminates false predictions after

ALU instructions
• BTB contains entries only for control transfer
instructions

⇒ more room to store branch targets

October 26, 2005

6.823 L13-27
Arvind

Combining BTB and BHT

•	 BTB entries are considerably more expensive than BHT,

but can redirect fetches at earlier stage in pipeline and
can accelerate indirect branches (JR)

•	 BHT can hold many more entries and is more accurate

A
P
F
B
I
J
R
E

BTB

BHT
pipeline stage

taken branch

corrects when
BTB misses a

PC Generation/Mux
Instruction Fetch Stage 1
Instruction Fetch Stage 2

BHT in later Branch Address Calc/Begin Decode
Complete Decode
Steer Instructions to Functional units

predicted Register File Read
Integer Execute

BTB/BHT only updated after branch resolves in E stage
October 26, 2005

6.823 L13-28
Arvind

Uses of Jump Register (JR)
• Switch statements (jump to address of matching case)

BTB works well if same case used repeatedly

• Dynamic function call (jump to run-time function address)

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

• Subroutine returns (jump to return address)

BTB works well if usually return to the same place
⇒ Often one function called from many different call
sites!

How well does BTB work for each of these cases?

October 26, 2005

6.823 L13-29
Arvind

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fb()

&fc()

Push call address when

&fd()

Pop return address
when subroutinefunction call executed return decoded

k entries
(typically k=8-16)

October 26, 2005

6.823 L13-30
Arvind

Outline

• Control transfer penalty

• Branch prediction schemes

• Branch misprediction recovery schemes

Five-minute break to stretch your legs

October 26, 2005

6.823 L13-31
Arvind

Mispredict Recovery
In-order execution machines:

– Assume no instruction issued after branch can
write-back before branch resolves

– Kill all instructions in pipeline behind

mispredicted branch

Out-of-order execution?

–Multiple instructions following branch in program

order can complete before branch resolves

October 26, 2005

6.823 L13-32

In-Order Commit for Precise Arvind

Exceptions
In-order Out-of-order In-order

Fetch Decode

Execute

CommitReorder Buffer

Kill
Kill Kill

Exception?Inject handler PC

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
memory, is in-order

October 26, 2005

Temporary storage needed in ROB to hold results before
commit

6.823 L13-33
Arvind

Extensions for Precise Exceptions
Inst# use exec op p1 src1 p2 src2 pd dest data cause

ptr2

next to

commit

ptr1
next

available

Reorder buffer

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order ⇒ buffers can be maintained circularly

• on exception, clear reorder buffer by resetting ptr1=ptr2
(stores must wait for commit before updating memory)

October 26, 2005

6.823 L13-34
Arvind

Branch Misprediction Recovery
pd dest data cause

ptr2
next to
commit
rollback

next
available

ptr1
next

available

Inst# use exec op p1

BEQZ

Speculative Instructions

src1 p2 src2

Reorder buffer

On mispredict
• Roll back “next available” pointer to just after branch
• Reset use bits
• Flush mis-speculated instructions from pipelines
• Restart fetch on correct branch path

October 26, 2005

6.823 L13-35
Arvind

Branch Misprediction in Pipeline

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

• Can have multiple unresolved branches in ROB
• Can resolve branches out-of-order by killing all the

instructions in ROB that follow a mispredicted branch

October 26, 2005

ttt

6.823 L13-36
Arvind

Recovering Renaming Table

vvv Register

File

Reorder
buffer

Load
Unit

FU FU FU Store
Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

r1 t v
r2

Rename
Snapshots

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

October 26, 2005

6.823 L13-37
Arvind

Speculating Both Directions

An alternative to branch prediction is to execute
both directions of a branch speculatively

• resource requirement is proportional to the
number of concurrent speculative executions

• only half the resources engage in useful work
when both directions of a branch are executed
speculatively

• branch prediction takes less resources

than speculative execution of both paths

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

October 26, 2005

38

Thank you !

COMPUTERORGANIZATION ANDDESIGN

The Hardware/Software Interface

ARM

Edition

Chapter 6

Parallel Processors from

Client to Cloud

Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)

§
6
.1

 In
tro

d
u
c
tio

n

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware

 Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

Parallel Programming

 Parallel software is the problem

 Need to get significant performance

improvement

 Otherwise, just use a faster uniprocessor,

since it’s easier!

 Difficulties

 Partitioning(load-balancing,scheduling)

 Coordination(syncronization)

 Communications overhead

§
6
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s

Chapter 6 — Parallel Processors from Client to Cloud — 4

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential

 Solving: Fparallelizable = 0.999 = 99.9%

 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

Chapter 6 — Parallel Processors from Client to Cloud — 5

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix
sum. Matrix sum is parallelizable
 Find Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential speedup
10x(ideal))

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 6

Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 7

Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 8

Instruction and Data Streams

 Flynn's taxonomy

 Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 9

§
6
.3

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Example: DAXPY (Y = a × X + Y)

 Conventional LEGv8 code:

LDURD D0,[X28,a] //load scalar a

ADDI X0,X19,512 //upper bound of what to load

loop: LDURD D2,[X19,#0] //load x(i)

FMULD D2,D2,D0 //a x x(i)

LDURD D4,[X20,#0] //load y(i)

FADDD D4,D4,D2 //a x x(i) + y(i)

STURD D4,[X20,#0] //store into y(i)

ADDI X19,X19,#8 //increment index to x

ADDI X20,X20,#8 //increment index to y

CMPB X0,X19 //compute bound

B.NE loop //check if done

Vector LEGv8 code:

LDURD D0,[X28,a] //load scalar a

LDURDV V1,[X19,#0] //load vector x

FMULDVS V2,V1,D0 //vector-scalar multiply

LDURDV V3,[X20,#0] //load vector y

FADDDV V4,V2,V3 //add y to product

STURDV V4,[X20,#0] //store the result

Chapter 6 — Parallel Processors from Client to Cloud — 10

Staring address of X.Y

are x19,x20

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to LEGv8

 32 × 64-element registers (64-bit elements)

 Vector instructions

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 11

Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried
dependences

 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media
extensions (such as MMX, SSE)

 Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 12

SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 13

Vector vs. Multimedia Extensions

 Vector instructions have a variable vector width,

multimedia extensions have a fixed width

 Vector instructions support strided access,

multimedia extensions do not

 Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 14

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
6
.4

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 6 — Parallel Processors from Client to Cloud — 15

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 16

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 17

Future of Multithreading

 Will it survive? In what form?

 Power considerations simplified

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share

resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 18

Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 19

§
6
.5

 M
u
ltic

o
re

 a
n
d
 O

th
e
r S

h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Example: Sum Reduction

 Sum 100,000 numbers on 100 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 99

 Partition 1000 numbers per processor

 Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 20

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 21

History of GPUs

 Early video cards

 Frame buffer memory with address generation for

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 22

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 23

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language
(HLSL)

 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 24

Example: NVIDIA Tesla

Streaming

multiprocessor

8 × Streaming

processors

Chapter 6 — Parallel Processors from Client to Cloud — 25

Example: NVIDIA Tesla

 Streaming Processors

 Single-precision FP and integer units

 Each SP is fine-grained multithreaded

 Warp: group of 32 threads

 Executed in parallel,
SIMD style

 8 SPs
× 4 clock cycles

 Hardware contexts
for 24 warps

 Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 26

Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD

 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 27

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 28

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 29

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 30

Message Passing

 Each processor has private physical
address space

 Hardware sends/receives messages
between processors

§
6
.7

 C
lu

s
te

rs
, W

S
C

, a
n
d
 O

th
e
r M

e
s
s
a
g
e
-P

a
s
s
in

g
 M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 31

Loosely Coupled Clusters

 Network of independent computers

 Each has private memory and OS

 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks

 Web servers, databases, simulations, …

 High availability, scalable, affordable

 Problems

 Administration cost (prefer virtual machines)

 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 32

Sum Reduction (Again)

 Sum 100,000 on 100 processors

 First distribute 100 numbers to each

 The do partial sums

sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

 Reduction

 Half the processors send, other half receive

and add

 The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 33

Sum Reduction (Again)

 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization

 Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 34

Grid Computing

 Separate computers interconnected by

long-haul networks

 E.g., Internet connections

 Work units farmed out, results sent back

 Can make use of idle time on PCs

 E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 35

Interconnection Networks

 Network topologies

 Arrangements of processors, switches, and links

§
6
.8

 In
tro

d
u
c
tio

n
 to

 M
u
ltip

ro
c
e
s
s
o
r N

e
tw

o
rk

 T
o
p
o
lo

g
ie

s

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 36

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 37

Network Characteristics

 Performance

 Latency per message (unloaded network)

 Throughput
 Link bandwidth

 Total network bandwidth

 Bisection bandwidth

 Congestion delays (depending on traffic)

 Cost

 Power

 Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 38

Parallel Benchmarks

 Linpack: matrix linear algebra

 SPECrate: parallel run of SPEC CPU programs
 Job-level parallelism

 SPLASH: Stanford Parallel Applications for
Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§
6
.1

0
 M

u
ltip

ro
c
e
s
s
o
r B

e
n
c
h
m

a
rk

s
 a

n
d
 P

e
rfo

rm
a
n
c
e
 M

o
d
e
ls

Chapter 6 — Parallel Processors from Client to Cloud — 39

Code or Applications?

 Traditional benchmarks

 Fixed code and data sets

 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns

 Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 40

Modeling Performance

 Assume performance metric of interest is
achievable GFLOPs/sec

 Measured using computational kernels from
Berkeley Design Patterns

 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed

 For a given computer, determine

 Peak GFLOPS (from data sheet)

 Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 41

Roofline Diagram

Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 42

Comparing Systems

 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz

vs. 2.3GHz

 Same memory system

 To get higher performance

on X4 than X2

 Need high arithmetic intensity

 Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 43

Optimizing Performance

 Optimize FP performance

 Balance adds & multiplies

 Improve superscalar ILP
and use of SIMD
instructions

 Optimize memory usage

 Software prefetch
 Avoid load stalls

 Memory affinity
 Avoid non-local data

accesses

Chapter 6 — Parallel Processors from Client to Cloud — 44

Optimizing Performance

 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is

not always fixed

 May scale with

problem size

 Caching reduces

memory accesses

 Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 45

i7-960 vs. NVIDIA Tesla 280/480
§
6
.1

1
 R

e
a
l S

tu
ff: B

e
n
c
h
m

a
rk

in
g
 a

n
d
 R

o
o
flin

e
s
 i7

 v
s
. T

e
s
la

Chapter 6 — Parallel Processors from Client to Cloud — 46

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 47

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 48

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 49

 GPU (480) has 4.4 X the memory bandwidth

 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X

the double precision throughput

 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming

memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels

with strided data

 Lack of synchronization and memory consistency

support on GPU limits performance for some kernels

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 50

§
6
.1

2
 G

o
in

g
 F

a
s
te

r: M
u
ltip

le
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

a
trix

 M
u
ltip

ly

 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

for (int sj = 0; sj < n; sj += BLOCKSIZE)

for (int si = 0; si < n; si += BLOCKSIZE)

for (int sk = 0; sk < n; sk += BLOCKSIZE)

do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 51

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 52

Fallacies

 Amdahl’s Law doesn’t apply to parallel

computers

 Since we can achieve linear speedup

 But only on applications with weak scaling

 Peak performance tracks observed

performance

 Marketers like this approach!

 But compare Xeon with others in example

 Need to be aware of bottlenecks

§
6
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 6 — Parallel Processors from Client to Cloud — 53

Pitfalls

 Not developing the software to take

account of a multiprocessor architecture

 Example: using a single lock for a shared

composite resource

 Serializes accesses, even if they could be done in

parallel

 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 54

Concluding Remarks

 Goal: higher performance by using multiple

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a

good match

 Performance per dollar and performance per

Joule drive both mobile and WSC

§
6
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 6 — Parallel Processors from Client to Cloud — 55

Concluding Remarks (con’t)

 SIMD and vector

operations match

multimedia applications

and are easy to

program

Chapter 6 — Parallel Processors from Client to Cloud — 56

1

Sequential Consistency

and

Cache Coherence Protocols

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L17- 2
Arvind

Memory Consistency in SMPs

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?

November 9, 2005

What is the view of shared memory for programming?

6.823 L17- 3
Arvind

Write-back Caches & SC

prog T1

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

cache-1 memory cache-2 prog T2
ST X, 1 LD Y, R1
ST Y,11 ST Y’, R1• T1 is executed

LD X, R2
ST X’,R2

• cache-1 writes back Y

• T2 executed

• cache-1 writes back X

• cache-2 writes back

X’ & Y’

November 9, 2005

X = 0
Y =10
X’=
Y’=

X = 0
Y =11
X’=
Y’=

X = 0
Y =11
X’=
Y’=
X = 1
Y =11
X’=
Y’=

X = 1
Y =11
X’= 0
Y’=11

Y =
Y’=
X =
X’=

Y =
Y’=
X =
X’=

Y = 11
Y’= 11
X = 0
X’= 0
Y = 11
Y’= 11
X = 0
X’= 0

Y =11
Y’=11
X = 0
X’= 0

n
 t
ere

oh

nc
i

6.823 L17- 4
Arvind

Write-through Caches & SC

X= 0
Y=10

prog T1
ST X, 1
ST Y,11

cache-1 memory cache-2 prog T2

X = 0 Y = LD Y, R1

Y =10 Y’= ST Y’, R1

X’= X = 0 LD X, R2

Y’= X’= ST X’,R2

• T1 executed

• T2 executed

Y =
Y’=
X = 0
X’=

X = 1
Y =11
X’=
Y’=

X= 1
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

X = 1
Y =11
X’= 0
Y’=11

X= 1
Y=11

Write-through caches don’t preserve
sequential consistency either

November 9, 2005

6.823 L17- 5
Arvind

Maintaining Sequential Consistency

SC is sufficient for correct producer-consumer
and mutual exclusion code (e.g., Dekker)

Multiple copies of a location in various caches
can cause SC to break down.

Hardware support is required such that

• only one processor at a time has write

permission for a location
• no processor can load a stale copy of

the location after a write

⇒ cache coherence protocols

November 9, 2005

6.823 L17- 6
Arvind

A System with Multiple Caches

L1
P

L1
P

L1
P

L1
P

L2L2
L1
P

L1
P

M

Interconnect

•	 Modern systems often have hierarchical caches
•	 Each cache has exactly one parent but can have zero

or more children
•	 Only a parent and its children can communicate

directly
•	 Inclusion property is maintained between a parent

and its children, i.e.,

a ∈ Li ⇒ a ∈ Li+1

November 9, 2005

6.823 L17- 7
Arvind

Cache Coherence Protocols for SC

write request:
the address is invalidated (updated) in all other
caches before (after) the write is performed

read request:

if a dirty copy is found in some cache, a write-

back is performed before the memory is read

We will focus on Invalidation protocols

as opposed to Update protocols

November 9, 2005

6.823 L17- 8
Arvind

Warmup: Parallel I/O

Either Cache or DMA can

effect transfers
DISK

DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

Page transfers
occur while the
Processor is running

Memory
Bus

be the Bus Master and

DMA stands for Direct Memory Access

November 9, 2005

6.823 L17- 9
Arvind

Problems with Parallel I/O

Memory Disk: Physical memory may be
DISK

DMA

Physical
Memory

Proc.
Cache

Memory
Bus

of page

DMA transfers

Cached portions

stale if Cache copy is dirty

Disk Memory: Cache may have data
corresponding to the memory

November 9, 2005

6.823 L17- 10
Arvind

Snoopy Cache Goodman 1983

•	 Idea: Have cache watch (or snoop upon)
DMA transfers, and then “do the right
thing”

•	 Snoopy cache tags are dual-ported

Proc.

Cache

Data
(lines)

Tags and
A

D

R/W

Used to drive Memory Bus

A

R/WState

when Cache is Bus Master

Snoopy read port
attached to Memory
Bus

November 9, 2005

6.823 L17- 11
Arvind

Snoopy Cache Actions

Observed Bus
Cycle Cache Action

Address not cached

Read Cycle Cached, unmodified

Memory Disk Cached, modified

Address not cached

Write Cycle Cached, unmodified

Disk Memory Cached, modified

No action

No action

No action

Cache intervenes

Cache purges its copy

???

Cache State

November 9, 2005

6.823 L17- 12
Arvind

Shared Memory Multiprocessor

Memory

Bus

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Snoopy
Cache

Snoopy
Cache

DISKS

Use snoopy mechanism to keep all
processors’ view of memory coherent

November 9, 2005

6.823 L17- 13
Arvind

Cache State Transition Diagram

The MSI protocol

M: ModifiedEach cache line has a tag
S: Shared
I: InvalidAddress tag

state
bits

P1 reads
or writes

Other processor
intents to write

Read by any

processor
 Cache state in

processor P1

M

S I
P 1

int
en

ts
to

writ
e

Other processor

Other processor reads
P1 writes back

intents to write

November 9, 2005

Write miss

Read

miss

6.823 L17- 14
Arvind

2 Processor Example
P1 readsP1 reads P1 or writes

P1 writes
Write missP2 reads

P2 writes
P2 intent to write

P1 reads
P1 writes Read

miss
P2 writes

P1 writes

M

S I
P1

inten
t to

write

P2 intent to write

P2 reads,
P1 writes back

M

S I

Write miss

Read
miss

P2
inten

t to
write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

November 9, 2005

6.823 L17- 15
Arvind

Observation

M

S I
P 1

int
en

ts
to

writ
e

Other processor

Other processor reads
P1 writes back	

intents to write

Write miss

Other processor
intents to write

P1 reads

or writes

Read

miss

Read by any
processor

•	 If a line is in the M state then no other
cache can have a copy of the line!
–	 Memory stays coherent, multiple differing copies

cannot exist
November 9, 2005

6.823 L17- 16
Arvind

MESI: An Enhanced MSI protocol

M: Modified ExclusiveEach cache line has a tag
E: Exclusive, unmodified
S: Shared
I: Invalid

Address tag
state
bits

P1 write	 P1 read
P1 write M	 E
or read

Write miss

Other processor reads Other processor
P1 writes back intent to write

Read miss,
shared

S

Read by any	 Other processor

intent to write

I
P 1

int
en

t to
writ

e

processor Cache state in
processor P1

November 9, 2005

17

Five-minute break to stretch your legs

6.823 L17- 18
Arvind

Cache Coherence State Encoding

tag

=

data blocktag m offset V M

Valid and dirty bits can be used
to encode S, I, and (E, M) states

index

block Address

V=0, D=x ⇒ Invalid Hit? word
V=1, D=0 ⇒ Shared (not dirty)
V=1, D=1 ⇒ Exclusive (dirty)

November 9, 2005

6.823 L17- 19
Arvind

2-Level Caches

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

• Processors often have two-level caches

• Small L1 on chip, large L2 off chip

• Inclusion property: entries in L1 must be in L2
invalidation in L2 ⇒ invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

What problem could occur?
November 9, 2005

6.823 L17- 20
Arvind

Intervention

cache-1A

CPU-1 CPU-2

cache-2

memory (stale data)A

200

CPU-Memory bus

100

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

November 9, 2005

6.823 L17- 21
Arvind

False Sharing

state data0 ... dataNblk addr data1

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

November 9, 2005

cache

6.823 L17- 22
Arvind

Synchronization and Caches:
Performance Issues

Processor 1 Processor 2 Processor 3

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

CPU-Memory Bus

mutex=1cache cache

L: swap(mutex, R); L: swap(mutex, R); L: swap(mutex, R);

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

November 9, 2005

6.823 L17- 23

Performance Related to Bus
Arvind

occupancy
In general, a read-modify-write instruction

requires two memory (bus) operations without

intervening memory operations by other

processors

In a multiprocessor setting, bus needs to be

locked for the entire duration of the atomic read

and write operation

⇒ expensive for simple buses
⇒ very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

November 9, 2005

6.823 L17- 24
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and

address, and the outcome of store-conditional

Load-reserve(R, a):
<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional(a, R):
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] ← <R>;
status ← succeed;

else status ← fail;

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

November 9, 2005

6.823 L17- 25
Arvind

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

November 9, 2005

6.823 L17- 26
Arvind

Out-of-Order Loads/Stores & CC

snooper
Wb-req, Inv-req, Inv-rep

load/store

buffers
 pushout (Wb-rep) Memory

CacheCPU

(I/S/E) (S-rep, E-rep)

(S-req, E-req) CPU/MemoryBlocking caches
One request at a time + CC ⇒ SC Interface

Non-blocking caches
Multiple requests (different addresses) concurrently + CC

⇒ Relaxed memory models
CC ensures that all processors observe the same
order of loads and stores to an address

November 9, 2005

6.823 L17- 27
Arvind

next time

Designing a Cache Coherence
Protocol

November 9, 2005

28

Thank you !

6.823 L17- 29
Arvind

2 Processor Example

Block b P1 write
or read

Write miss

P2 intent to writeP1

Read

miss

M E

S I
P1

inten
t to

write

P2 intent to write

P1

P2 reads,
P1 writes back

write

Block b

P2

Read

miss

P1 read

M E

S I

Write miss

P2
inten

t to
write

P1 intent to write

P2
P2
or read

P1 reads,
P2 writes back

P2 read

P1 intent to write

write
write

November 9, 2005

