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Analog versus digital: 

 
Analog devices and systems process time-varying signals can take on any value a 

cross a continuous range of voltage, current, or other metric, so do digital circuits and 

systems, the difference that we can pretend that they don’t a digital signal is modeled 

as taking on, at any time, only one as two discrete values, which we call 0 and 1 [low 

and high, false and true]. 

 

Digital computers have been around since the 1940s and have been in widespread 

commercial use since the 1960s. Yet only in the past 10-20 years has the digital 

revolution spread to many other aspects of life. Examples of once analog systems that 

now “gone digital” include the following: 

 

1. Still picture, the increased density of digital memory chips has 

allowed the development of digital cameras which record a picture as a 

640x480 or longer carry of pixels, where each pixel stores the 

intensities of its red green, and blue color components as 85 bits each 

JPEG formal compresses the picture down to as little as 5% of the 

original storage size. 

 

2. Video recording, (DVD) stores video is a highly compressed digital 

formal called MPEG-Z. It encodes each other frame as the difference 

between it and the previous one. The capacity of a single-layer, single 

sided DVD is about 35 billion bits, 2 hours of high quality video, and a 

two layer double sided disk four times that capacity. 

 

3. Audio recordings, once made exclusively by impressing analog 

waveforms on to vinyl or magnetic tape, audio recordings now use 

digital compact discs (CD’s). Stores music as a sequence of 16 bit no. . 

A full length CD recording (73min) contains over six billion bits of 

information. 
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4. Telephone system. 

 

5. Traffic lights, stop lights used to be controlled by electromechanical 

timers that would give the green light to each direction for a 

predetermined amount of time. Later relays were used in controllers 

that could activate the light according to the pattern of traffic detected 

by sensor embedded in the pavement. Toady’s controllers use 

microprocessors and can control the lights in ways that maximize 

vehicle throughput. 

 

6. Movie effects. 

 

Why digital:  

 
a) Reproducibility of results: Given the same set of input 

(in both value and time sequence), a properly designed 

digital circuit always produces exactly the same results. 

The outputs of an analog circuit vary with temperature, 

power-supply voltage, aging of components and other 

factors. 

 

b) Ease of design. Digital design often called logic design 

“is logical no special math’s skills are needed and the 

behavior of small logic circuits can be visualized 

mentally without any special insights about the 

operation of capacitors, transistors or other devices that 

require calculus to model. 

 

c) Programmability. Much of digital design is carried out 

today by writing programs. HDL (Hardware Description 

languages), simulation and synthesis programs. These 

software tools are used to test the hardware models 

behavior before and real hardware is built. 
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d) Speed, today’s digital devices are very fast individual 

transistors in the fastest integrated circuits can switch in 

less than 10 Pico seconds and a complete, complex 

device built from these transistors can examine its 

inputs and produce an output in less than 2 

nanoseconds. This means that such a device can 

produce 500 million or more results per second. 

 

 

Number Systems And Codes 

 
Digital systems are built from circuit that process binary digits 0s and 1s yet very few 

real life problems are based on binary numbers. Digital system designer must 

establish some correspondence between the binary digits processes by digital circuits. 

 

Positional number system 

 
The traditional number system that we learned in school and use every day in business 

is called a positional number system. In such a system a number is represented by a 

string of digits, where each digit position has an associated weight. 

 For example 

  

1734 = (1)(1000)+(7)(100)+(3)(10)+(4)(1) 

 

Each weight is a power of 10 corresponding to the digits position. A decimal point 

allows negative as well as positive powers of 10 to be used. 

 

5185.68 = (5)(1000)+(1)(100)+(8)(10)+(5)(1)+(6)(.1)+(8)(.01) 

 

in general, a number D of the form d1d0.d-1d-2 has the value 

  

D = d1.101+d0.100+d-1 .10-1+d-2 .10-2 

 

Here, 10 is called the base or radix of the number system. 
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In a binary number, the radix point is called the binary point. We use a subscript to 

indicate the base or radix of each number  

 

100112  = (1)(16)+(0)(8)+(0)(4)+(1)(2)+(1)(1) = 1910 

 

101.0012 =(1)(4)+(0)(2)+(1)(1)+(0)(.5)+(0)(.025)+(1)(.125) 

                                     = 5.12510 

 

The left bit of binary number is called the high order or most significant bit(MSB). 

The right most is the Low-order or least significant bit (LSB). 

 

Example. 

The decimal equivalent of the binary number 11010.11 is 26.75 as shown 

 

(1)(23)+(1)(22)+(0)(21)+(1)(20)+(1)(2-1)+(1)(2-2) = 26.75 

 

Octal And Hexadecimal Number: 

 
Base 10 is important because we use it in every day, business and radix 2 is important 

because binary numbers can be processed by digital circuit. Other bases have their 

uses but not as important as the first two. Base 8 and 16 provide convenient shorthand 

representation for multibit number in a digital system. 

The octal number system uses base 8 while the hexadecimal number system uses base 

16. The octal system needs 8 digits, so it uses digits 0 – 7 of the decimal system. The 

hexadecimal system needs 16 digits so it supplements decimal digits 0 – 9 with the 

letters A- F. 

 

Examples, 

(127.4) 8 = (1)(8)2+(2)(8)1+(7)(8)0+(4)(8)-1 = (87.5) 10 

 

(B65F) 16 = (11)(16) 3+(6)(16) 2+(5)(16) 1+(15)(16) 0 = (46687) 10 

 

Remember: 
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A = 10, 

B = 11, 

C = 12, 

D = 13, 

E = 14, 

F = 15. 

 

 

 

Number Base Conversions: 

 
We have already discussed how to convert binary, octal and hexadecimal numbers to 

base 10. It is very easy to convert a binary number to octal. Starting at the binary point 

and working left, we simply separate the bits into groups of three and replace each 

group with the corresponding octal digit. 

 

Examples, 

(100011001110) 2 = 100 011 001 110 = (4316) 8 

(11101101110101001) 2 = 011 101 101 110 101 001 = 

=  (35565) 8 

The procedure for binary-to-hexadecimal conversion is similar, except we use groups 

of four bits. 

Example, 

(100011001110) 2 = 1000 1100 1110 = (8CE) 16 

(11101101110101001) 2 = 0001 1101 1011 1010 1001 

=  (1DBA9) 16 

In theses examples we have freely added zeroes on the left to make the total number 

bits a multiple of 3 or 4. 

If a binary number contains digits to the right of the binary point we can convert them 

to octal or hexadecimal by starting at the binary point and working right, both the left 

hand side and right hand sides can be added with zeroes to get multiples of three or 

four bits. 
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Example. 

(10.1011001011) 2 = 010 . 101 100 202 100 = (2.5454) 8 

Converting in the reverse direction: 

(1357) 8= 001 011 101 1112 

(2046.178) 8= 010 000 100 110.001 1112 

(BEAD) 16= 1011 1110 1010 11012 

(9F.46C) 16= 1001 1111.0100 0110 11002 

 

Complements: 

Complements are used in digital computers for simplifying the subtraction operation 

and for logical manipulation, while the signed-magnitude system negatives a number 

by changing its sign a complement number system negates a number by taking its 

complement as defined by the system. 

 

Twos – complement Representation: 

For binary numbers, the base complement is called the twos complement. The MSB 

of a number in this system serves as the sign bit; a number is called a negative number 

if and only if its MSB is 1. 

 

Example, 

17 10 = 000100012                   -9910 =10011101 2 

11101110 complements             01100010 complements 

+1                                                +1 

11101111 = - 17 10                           011000112 = 99 10 

 

119 10 = 01110111 2                             -128 10 = 1000 0000 

10001000 complements              0111 1111complement 

+1                                                 +1 

10001001 2 = -119                      1000 0000 = -128 10 

Note that in 2s complement there is no negative output and the last previous 

example gave us –ve no. .In this case we pad the MSB with zero this is caused sign 

extension. 
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Ones-Complement Representation: 

The diminished radix-complement system for binary numbers is called the “ones” 

complement. As in twos complement the MSB is the sign output +ve and 1 if –ve. 

 

Example, 

1710 = 000 1 000 1               -99 10 = 100 111 00 

= 111 0 111 0 = -17 10                      01100011 = 99 10 

119 10 = 01110111 2                    -127 10 = 10000000 

10001000 = -119                   01111111 = 127 10 

 

The main advantages of ones complement system are its symmetry and the ease of 

complementation. However, the adder design for ones complement numbers is 
somewhat trickier than the twos- complement added. Also zero detecting circuits in a 

ones – complement system either must check for both representation of zero, or must 

always convert 11...11 to 00...00. 

 
Binary Codes: 

Binary coded decimal (BCD). The table bellow gives the 4-bit code for one decimal 

digit. A number with K decimal digits will require 4K bits in BCD. Decimal 396 is 

represented in 5CD with 12 bits as 0011 1001 0110. 

Binary Coded Decimal (BCD): 

 

Decimal symbol BCD digit 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 
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A (BCD) number grater than 10 looks different than its equivalent binary number for 

example  

10 = (0001 000) BCD = (1010) 2 

15 = (0001 0101) BCD = (1111) 2 

185 = (0001 1000 0101) BCD = (10111001) 2 

 

It 10 important to realize that BCD number are decimal number and not binary 

numbers. 

 
Binary Storage And Registers 

The binary information in digital computer must have a physical existence in some 

information storage medium for storing individual bits. A binary cell is a device that 

possesses two stable states and is capable of storing one bit of information 0 or 1. 

 

Registers: 

A register is a group of binary cells. A register with n cells can store any discrete 

quantity of information that contains n bits. A 16-bit register has the following content 

1100001111001001. 

A register with 16 cells can be in one of 216  possible states. If a binary integer then 

the register can store any binary number from 0 to 2 16- 1   

 

 Gray code: 

The output data of many physical systems produce quantities that are continuous. 

These data must be converted into digital form before they are applied to a digital 

system. Continuous or analog information is converted into digital form by means of 

an analog-to-digital converter. It is sometimes convenient to use the gray code shown 

below to represent the digital data when it is converted from analog data. The 

advantages of the gray code over the straight binary number sequence is that only one 

bit changes in the code group changes when going from one number to the next. 

Example, 

7  8 

Gray      0100 1100        only on bit changes 

Binary   0111 1000         four bits changes 
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A typical application of the gray code occurs when analog data are represented by 

continuous change of a shaft position. The shaft is partitioned into segments and each 

segment is a signed a number. If adjacent segments are made to correspond with the 

gray code sequence ambiguity is eliminated. 

 

The gray code is used in applications where the normal sequences of binary number 

may produce an error or ambiguity during the translation from one number to the 

next. If binary numbers are used a change from 0111 to 1000 may produce an 

intermediate erroneous number 1001 if the right most bit takes longer to change in 

value than the other three bits. The gray code eliminates this problem since only one-

bit changes in value during the transition between two number. 

 

Gray – code  

Gray code  Decimal equivalent 

0000 0 

0001 1 

0011 2 

0010 3 

0110 4 

0111 5 

0101 6 

0100 7 

1100 8 

1101 9 

1111 10 

1110 11 

1010 12 

1011 13 

1001 14 

1000 15 

 

. 
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AND Gate 
 Symbol                                           Truth Table 

 IC example   (7408) 

A B Z=(A.B)

0 0 0

1 0 0

0 1 0

1 1 1



OR Gate 
 Symbol                                              Truth Table 

 IC example : 7432  

A B Z=(A+B)

0 0 0

1 0 1

0 1 1

1 1 1



Buffer
 Symbol                                              Truth Table 

 IC example :

A Z=A

0 0

1 1



NOT Gate  (Invertor)
 Symbol                                              Truth Table 

 IC example : 7404  

A 𝒁 = ഥ𝑨

0 1

1 0



NAND Gate
 Symbol                                              Truth Table 

 IC example : 7400

A B Z=(𝑨.𝑩)

0 0 1

0 1 1

1 0 1

1 1 0



NOR Gate
 Symbol                                              Truth Table 

 IC example : 7402

A B Z=𝑨 + 𝑩

0 0 1

0 1 0

1 0 0

1 1 0



Exclusive Or (EXOR) Gate
 Symbol                                              Truth Table 

 IC example : 7486

A B Z= 𝑨. ഥ𝑩 +ഥ𝑨.B

0 0 0

0 1 1

1 0 1

1 1 0



EXNOR Gate
 Symbol                                              Truth Table 

 IC example : 74266

A B Z= 𝑨.𝑩+ ഥ𝑨ഥ𝑩

0 0 1

0 1 0

1 0 0

1 1 1



 14 pin IC





Boolean Algebra

 Boolean algebra was introduced by George Boole in 
his first book The Mathematical Analysis of 
Logic (1847).

 Boolean algebra is the branch of algebra in which 
the values of the variable are the Truth values true 
(one) and false (zero),



Boolean operation and expression
Boolean Addition 

 It is  equivalent to the OR operation 

 In Boolean algebra the sum term is sum(+), while in 
circuit it  OR gate.



Boolean operation and expression 
Boolean Addition

 What is the Value of   A,B,C and D?  if   the sum term 
is given as:

𝐴 + ത𝐵 + ҧ𝐶 + 𝐷 = 0



Boolean operation and expression 
Boolean Addition

 If A=0 , B=1  and C=1, What is the sum term  for 
ҧ𝐴, ഥ𝐵 and C



Boolean operation and expression 
Boolean Multiplication 

 It is  equivalent to the AND  operation

 In Boolean algebra the product  term is the product in 
literal (.), while in circuit it  AND gate.



Boolean operation and expression 
Boolean Multiplication 

 What is the value of A,B,C and D that make the 
product term 𝐴, ത𝐵, C, and ഥ𝐷 equal to 1



Boolean operation and expression 
Boolean Multiplication 

 What is the value product term of 𝐴, ത𝐵, C,  if A=1,b=0 
AND C=0



Laws and ruled of Boolean algebra

 The basic laws of Boolean  algebra is :

1- The commutative law for addition and multiplication 

2- The  associative law for addition and multiplication

3- The distributive law



Laws and ruled of Boolean algebra
The commutative law for addition 

 It is written as 

A+B=B+A

 The commutative law applied to OR gate



Laws and ruled of Boolean algebra
The commutative law for multiplication 

 It is written as 

A.B=B.A

 The commutative law applied to AND  gate



Laws and ruled of Boolean algebra
The associative  law for addition 

 It is written as 

( A+B)+C= A+(B+C)

 The associative law applied to OR gate



Laws and ruled of Boolean algebra
The associative  law for Multiplication 

 It is written as 

( AB)C= A(BC)

 The associative  law applied to AND  gate





Laws and ruled of Boolean algebra
The distributive law

 It is written  for three variables as as

A(B+C)= AB+AC

 The associative  law applied to OR and AND gate



 (NOTA.B)C+D.C





Laws and ruled of Boolean algebra

 The basic Rule that simplifies  Boolean  expression  is 
given in the table below  :



Laws and ruled of Boolean algebra

 Rule 1: A+0=A

 Rule 2: A+1=1

 Rule 3: A.0=0

 Rule 4: A.1=A



Laws and ruled of Boolean algebra

 Rule 5: A+A=A

 Rule 6: A+ ҧ𝐴=1

 Rule 7: A.A=A

 Rule 8: A. ҧ𝐴 = 0



Laws and ruled of Boolean algebra

 Rule 9: Ӗ𝐴=A

 Rule 10: A+AB=A                              

Proof:

=A(1+B) Using distributive  law

=A.1=A  Using rule 2



Laws and ruled of Boolean algebra

 Rule 11: A+B ҧ𝐴 =A+B                              

Proof:

= A+BA+B ҧ𝐴 (rule 10)

=A+B(A+ ҧ𝐴 ) (distributive  law)

=A+B.1 (Rule 6 )

=A+B ( Rule 4)



Laws and ruled of Boolean algebra

 Rule 12: (A+B)(A+C)=A+BC               

Proof :

=AA+AB+AC+BC  (distributive law)

=A+AB+AC+BC     (rule 7)

=A+AC+BC            (rule 10)

=A+BC                    (rule 10)





DeMorgan’s theorems 

 DeMorgan is a mathematician who proposed two 
theorems in Boolean algebra.

 The theorem provide  mathematical proof of the 
equivalency  between NAND and negative-OR, also 
the  equivalency between NOR  and negative AND 
gate.



DeMorgan’s theorems
First theorem 

 The complement of product of variables is the sum of 
the complement of the variables.

Or :

 The complement of two or more Aneded variables is 
the equivalent to the OR of the complement of the 
individual variables. 



DeMorgan’s theorems
First theorem 

 Mathematical expression : 

𝐴𝐵 = ҧ𝐴 + ത𝐵

 Logical circuit and truth table



DeMorgan’s theorems
Second theorem 

 The complement of the sum of the variables is 
equivalent to product of the complement of the 
individual variables.

Or:

 The complement of two or more ORed variables is 
equivalent to negative-And of the complement of the 
individual variable.



DeMorgan’s theorems
Second  theorem 

 Mathematical expression : 

𝐴 +𝐵 = ҧ𝐴. ത𝐵

 Logical circuit and truth table



DeMorgan’s theorems





DeMorgan’s theorems

 Example :

(𝐴𝐵 + 𝐶) (𝐴 + 𝐵𝐶)



DeMorgan’s theorems

 Example :



DeMorgan’s theorems

 Example :



Truth Table FOR Logic Circuit 
 Logic circuit

 The Boolean expression  F=A(B+CD)



Truth Table FOR Logic Circuit 




Truth Table FOR Logic Circuit 
 The truth table  



Simplification Using Boolean 
Algebra 





Simplification Using Boolean 
Algebra 





Simplification Using Boolean Algebra 





Simplification Using Boolean Algebra 



Simplification Using Boolean Algebra 



Simplification Using Boolean Algebra 





Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the 
form either SOP or POS.  



Standard form of Boolean Algebra

 The SOP  : when two or  more  product variables are 
summed .

 Example : 

 Circuit example 



Standard form of Boolean Algebra

 Circuit example 



Standard form of Boolean Algebra

 Conversion of general expression to SOP



Standard form of Boolean Algebra

 The standard form of SOP, in which all variables in the 
domain appear in each product.

 Example : 

 It is important in constructing truth tables, and in 
Karnaugh map simplification.



Standard form of Boolean Algebra

 Converting Boolean  expression to the standard form 
of SOP:



Standard form of Boolean Algebra



Standard form of Boolean Algebra

 Binary representation for SOP



Standard form of Boolean Algebra

 Binary representation for SOP





Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the 
form either SOP or POS.  



Standard form of Boolean Algebra

 The POS  : when two or  more  summed terms are 
multiplied.

 Example : 

 Circuit example 



Standard form of Boolean Algebra

 The standard form of POS, in which all variables in the 
domain appear in each sum.

 Example : 

 It is important in constructing truth tables, and in 
Karnaugh map simplification.



Standard form of Boolean Algebra

 Converting Boolean  expression to the standard form 
of POS:



Standard form of Boolean Algebra



Standard form of Boolean Algebra

 Binary representation for SOP



Standard form of Boolean Algebra

 Binary representation for  POS



Standard form of Boolean Algebra

 Converting standard SOP  to standard POS



Standard form of Boolean Algebra

 Converting standard SOP  to standard POS



Standard form of Boolean Algebra











Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the 
form either SOP or POS.  



Boolean expression and truth table 
 Converting  SOP expression to truth table 



Boolean expression and truth table 
 Converting  POS expression to truth table 



Boolean expression and truth table 
 Converting  POS expression to truth table 



Boolean expression and truth table 
 Converting  POS expression to truth table 



Boolean expression and truth table 
 Determining truth table from Bolean expression 



Boolean expression and truth table 
 Determining truth table from Bolean expression 



Boolean expression and truth table 





The Karnugh Map
 Provide systematic method to find simplifying Bolean expression

 Produce the simplest SOP or POS  expression. Known as the
minimum expression.

 By the end of this section you should be able to :

- Construct the Karnugh map
- Determine the binary value for each cell of the map
- Determine the standard product term for each cell in the map
- Explain cell adjacency and  identify  adjacent cell.



The Karnugh Map

 Is an array of cells:

 Each cell represent a binary value of the input.

Example for two inputs A,B:

A    B    0                 1

0

1

Cell 1 Cell2

Cell3 Cell4

00 01

10 11



The Karnugh Map

 The Karnugh For three  Inputs:

 There are eight cells with eight different binary 
representation



The Karnugh Map

 The Karnugh for four Inputs:

 There are 16 cells with 16 different binary 
representation.



The Karnugh Map

 Cell adjacency : is defined as single-variable change 



The Karnugh Map

 Karnugh map SOP minimization

A minimized SOP expression  contains the least number 
of terms and least number of variable  per terms.

By the end of this section you should be able to:

- Map a standard SOP expression  on a Karnugh map.

- Combine the one’s  cell into max group

- Combine the min product terms to form the min SOP 
expression .



The Karnugh Map

 Mapping  a standard  SOP expression 



The Karnugh Map

 Mapping  a standard  SOP expression 



The Karnugh Map
 Mapping  a standard  SOP expression 



The Karnugh Map
 Mapping  non  standard  SOP expression 



The Karnugh Map
 Mapping  non  standard  SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 

 Determining the min SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 

 Determining the min SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 

 Determining the min SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 

 Determining the min SOP expression 



The Karnugh Map
 Karnugh map simplification of SOP expression 



The Karnugh Map
 Mapping directly from the truth table  to Karnugh

map



The Karnugh Map
 Don’t care condition 



The Karnugh Map
 Karnugh map simplification of POS expression 



The Karnugh Map
 Karnugh map simplification of POS expression 



The Karnugh Map
 Karnugh map simplification of POS expression 



The Karnugh Map
 Karnugh map simplification of POS expression 



The Karnugh Map
 Karnugh map simplification of POS expression 



The Karnugh Map
 Converting between SOP and POS using Karnugh map



The Karnugh Map
 Karnugh map for 5 variables





The Boolean expression

- Boolean expression of multiple  variables  can be written 
- F(A,B,C)= ∑(1,3,4)=1   this is equivalent to SOP

=A’B’C+A’BC+AB’C’ 
=oo1+011+100 

- Each terms called minterm
- Or 
- F(A,B,C)=Π(0,2,5,6,7) this is equivalent to POS
- =(A+B+C)(A+B’+C)(A’+B+C’)(A’+B’+C)(A’+B’+C’)
- =(000)(010)(101)(110)(111)
- Each term is called maxterm
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Digital system application
Seven  segment display

 It is a display for the number,  each one can display the number from 1 
to 9, thus the seven segments display takes BCD as an input .

 Consists of seven  LEDs 

 The goal of this example 
is to design a logic circuit 
for each segment(a,b,c,d,e,f) .



Digital system application
Seven  segment display



Digital system application
Seven  segment display

 Design procedure 

1- Construct the truth table  for the segments.

2- Mapping  the truth table to Karnugh map. 

3- Find the minimized Boolean expression in the form of 
SOP or POS. 

4. Convert the Boolean expression to digital circuit.

Note there will be for each segment output (a,b,c,d,e,f) 
digital circuit to convert the BCD input  to the 
appropriate  activation level for each output.



Digital system application
Seven  segment display

 Truth table 



Digital system application
Seven  segment display

 Karnugh map                                   Digital circuit 



Digital system application
Seven  segment display

 Karnugh map  for output b                                  
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Logic Circuit 

 The combinational logic circuit : is a logical gate circuit in which the 
output will be presented immediately upon input present. 

 The sequential logic circuit : the circuit employ memory element 
beside the logical  gate.



Combinational Logic Circuit 

 Example of combinational  logic circuit 



Combinational Logic Circuit 

 Implementation of combinational logic 



Combinational Logic Circuit 

 Combinational  logic circuit  from truth table 



Combinational Logic Circuit 
 Combinational  logic circuit  from truth table 



Combinational Logic Circuit 

 Combinational  logic circuit  from truth table 



Combinational Logic Circuit 
 Combinational  logic circuit  from truth table 



Combinational Logic Circuit 

 Self study sections 



Logic  circuit operation with pulse 
waveform input

 The operation of the logical gate  for pulse input is similar 
to the input of constant input.



Logic  circuit operation with pulse 
waveform input
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Logic  circuit operation with pulse 
waveform input



Logic  circuit operation with pulse 
waveform input



Logic  circuit operation with pulse 
waveform input



Logic  circuit operation with pulse 
waveform input





Logic  Function and Function 
Combinational

 Adders :  Half-adder, Full-adder

 Binary adding 

0+0=0

0+1=1

1+0=1

1+1=10

1- Half-adder : where  it accepts  two binary digit input  and results two 
output sum bit and carry bit 
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 Half-adder circuit 
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 The Full-adder : it accepts two input bit and one carry 
bit and generates a sum output and carry output 
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 Construct full-adder from two half adder 



Logic  Function and Function 
Combinational

 Parallel binary adder: to add  two binary number with 
number of bit more than one , a number of  full adders 
equal to the  number of bits.


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 Four-bit  parallel adder 
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 Four-bit  parallel adder  truth table

 Example of 4bits adder  
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 Four-bit  parallel adder  
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 Four-bit  parallel adder   
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 Four-bit  parallel adder   
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 Adder application : simple voting system    
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 Comparator (<, =, >,)

1- Equality   (A=B)

EXOR  gate can be used as comparator 
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 Comparator (<, =, >,)

1- Equality   (A=B)

EXOR  gate can be used as comparator 

Two bit comparator  
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 Comparator (<, =, >)

1- Inequality   (A>B) or (A<B)
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 Comparator (<, =, >, ≤, ≥,)

1- Inequality   (A>B) or (A<B)
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 Comparator (<, =, >, ≤, ≥,)

1- Inequality   (A>B) or (A<B)
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 Decoder : a digital circuit that can detect the presence 
of certain binary combination.

Examples :
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 Decoder :

 4bit to 16 line decoder 
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 Decoder : 



Logic Function and Function 
Combinational

 Decoder : 
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 Encoder : is a digital logic circuit that reverse the 
decoder function 

Example :  The Decimal to BCD 
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 Decimal to BCD Encoder

Digital circuit 
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 8 lines to 3 lines encoder (74LS148)
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 Expand the 8 lines to 3 lines encoder to 16 lines to 4 lines 
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 Encoder  Application (Key board )
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 Code converter : is a logic circuit that convert from one code to 

another .
Example :  BCD to Binary conversion 
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 Code converter : is a logic circuit that convert from one code to 

another .
Example :  BCD to Binary conversion 
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 Multiplexers (MUX):  it is a digital device that allows digital 
information from different sources to routed into single line

Example : 1 of 4 data selector 
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 Multiplexers (MUX):  it is a digital device that allows digital 
information from different sources to routed into single line

Example : 1 of 4 data selector 
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 Example : 1 of 4 data selector 
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 Example : 1 of 4 data selector 
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 Example : 74HC157
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 Example : 74LS151 8-input data selector 
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Application 
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Application 
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Demultiplexer (DEMUX) : It takes digital information from 
one line and distributes it to a given no. of out put lines.

Example:
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Example:
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Example: 74HC154
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 Parity generator/checker:

 Parity : is the number of 1’s in digital information either 
even or odd.

 Used to detect the error in transmission.

Basic parity logic : 

 In this circuit 

the out put 1 if the

parity is odd

0 if the parity is even.
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Example 74LS280  
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Example



Latches , Flip-Flop and timers
 The Flip-flop application

 Parallel data storage 
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 The Flip-flop application

 Frequency division 
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 The Flip-flop application

 Frequency division 



Latches , Flip-Flop and timers
Frequency division 
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Latches , Flip-Flop and timers
Counting 



Latches , Flip-Flop and timers
One-shot :

Is monostable multivibrator
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Latches , Flip-Flop and timers
One-shot : 



Latches , Flip-Flop and timers
Timer 555: 

Is a device can be used as either mono-stable multi-
vibrator or as an stable multi-vibrator (oscillator).
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Latches , Flip-Flop and timers
Timer 555: 
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Sequential logic system design 





Shift Register 

 A register is digital circuit with two basic function: 
data storage and data  movement. Usually D-flip flop 
is used

 Data storage example 
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 Shift register 
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 Serial in/ serial out shift reg.
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Shift Register 

 Parallel  in /serial out
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 Parallel  in /serial out
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 Parallel  in /parallel out
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 Parallel  in /parallel out



Shift Register 

 Bidirectional shift register 
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 Bidirectional shift register 



Shift Register 
 Bidirectional shift register 



Shift Register 
 shift register as counter ( Self study  )
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