
 1

Analog versus digital:

Analog devices and systems process time-varying signals can take on any value a

cross a continuous range of voltage, current, or other metric, so do digital circuits and

systems, the difference that we can pretend that they don’t a digital signal is modeled

as taking on, at any time, only one as two discrete values, which we call 0 and 1 [low

and high, false and true].

Digital computers have been around since the 1940s and have been in widespread

commercial use since the 1960s. Yet only in the past 10-20 years has the digital

revolution spread to many other aspects of life. Examples of once analog systems that

now “gone digital” include the following:

1. Still picture, the increased density of digital memory chips has

allowed the development of digital cameras which record a picture as a

640x480 or longer carry of pixels, where each pixel stores the

intensities of its red green, and blue color components as 85 bits each

JPEG formal compresses the picture down to as little as 5% of the

original storage size.

2. Video recording, (DVD) stores video is a highly compressed digital

formal called MPEG-Z. It encodes each other frame as the difference

between it and the previous one. The capacity of a single-layer, single

sided DVD is about 35 billion bits, 2 hours of high quality video, and a

two layer double sided disk four times that capacity.

3. Audio recordings, once made exclusively by impressing analog

waveforms on to vinyl or magnetic tape, audio recordings now use

digital compact discs (CD’s). Stores music as a sequence of 16 bit no. .

A full length CD recording (73min) contains over six billion bits of

information.

 2

4. Telephone system.

5. Traffic lights, stop lights used to be controlled by electromechanical

timers that would give the green light to each direction for a

predetermined amount of time. Later relays were used in controllers

that could activate the light according to the pattern of traffic detected

by sensor embedded in the pavement. Toady’s controllers use

microprocessors and can control the lights in ways that maximize

vehicle throughput.

6. Movie effects.

Why digital:

a) Reproducibility of results: Given the same set of input

(in both value and time sequence), a properly designed

digital circuit always produces exactly the same results.

The outputs of an analog circuit vary with temperature,

power-supply voltage, aging of components and other

factors.

b) Ease of design. Digital design often called logic design

“is logical no special math’s skills are needed and the

behavior of small logic circuits can be visualized

mentally without any special insights about the

operation of capacitors, transistors or other devices that

require calculus to model.

c) Programmability. Much of digital design is carried out

today by writing programs. HDL (Hardware Description

languages), simulation and synthesis programs. These

software tools are used to test the hardware models

behavior before and real hardware is built.

 3

d) Speed, today’s digital devices are very fast individual

transistors in the fastest integrated circuits can switch in

less than 10 Pico seconds and a complete, complex

device built from these transistors can examine its

inputs and produce an output in less than 2

nanoseconds. This means that such a device can

produce 500 million or more results per second.

Number Systems And Codes

Digital systems are built from circuit that process binary digits 0s and 1s yet very few

real life problems are based on binary numbers. Digital system designer must

establish some correspondence between the binary digits processes by digital circuits.

Positional number system

The traditional number system that we learned in school and use every day in business

is called a positional number system. In such a system a number is represented by a

string of digits, where each digit position has an associated weight.

 For example

1734 = (1)(1000)+(7)(100)+(3)(10)+(4)(1)

Each weight is a power of 10 corresponding to the digits position. A decimal point

allows negative as well as positive powers of 10 to be used.

5185.68 = (5)(1000)+(1)(100)+(8)(10)+(5)(1)+(6)(.1)+(8)(.01)

in general, a number D of the form d1d0.d-1d-2 has the value

D = d1.101+d0.100+d-1 .10-1+d-2 .10-2

Here, 10 is called the base or radix of the number system.

 4

In a binary number, the radix point is called the binary point. We use a subscript to

indicate the base or radix of each number

100112 = (1)(16)+(0)(8)+(0)(4)+(1)(2)+(1)(1) = 1910

101.0012 =(1)(4)+(0)(2)+(1)(1)+(0)(.5)+(0)(.025)+(1)(.125)

 = 5.12510

The left bit of binary number is called the high order or most significant bit(MSB).

The right most is the Low-order or least significant bit (LSB).

Example.

The decimal equivalent of the binary number 11010.11 is 26.75 as shown

(1)(23)+(1)(22)+(0)(21)+(1)(20)+(1)(2-1)+(1)(2-2) = 26.75

Octal And Hexadecimal Number:

Base 10 is important because we use it in every day, business and radix 2 is important

because binary numbers can be processed by digital circuit. Other bases have their

uses but not as important as the first two. Base 8 and 16 provide convenient shorthand

representation for multibit number in a digital system.

The octal number system uses base 8 while the hexadecimal number system uses base

16. The octal system needs 8 digits, so it uses digits 0 – 7 of the decimal system. The

hexadecimal system needs 16 digits so it supplements decimal digits 0 – 9 with the

letters A- F.

Examples,

(127.4) 8 = (1)(8)2+(2)(8)1+(7)(8)0+(4)(8)-1 = (87.5) 10

(B65F) 16 = (11)(16) 3+(6)(16) 2+(5)(16) 1+(15)(16) 0 = (46687) 10

Remember:

 5

A = 10,

B = 11,

C = 12,

D = 13,

E = 14,

F = 15.

Number Base Conversions:

We have already discussed how to convert binary, octal and hexadecimal numbers to

base 10. It is very easy to convert a binary number to octal. Starting at the binary point

and working left, we simply separate the bits into groups of three and replace each

group with the corresponding octal digit.

Examples,

(100011001110) 2 = 100 011 001 110 = (4316) 8

(11101101110101001) 2 = 011 101 101 110 101 001 =

= (35565) 8

The procedure for binary-to-hexadecimal conversion is similar, except we use groups

of four bits.

Example,

(100011001110) 2 = 1000 1100 1110 = (8CE) 16

(11101101110101001) 2 = 0001 1101 1011 1010 1001

= (1DBA9) 16

In theses examples we have freely added zeroes on the left to make the total number

bits a multiple of 3 or 4.

If a binary number contains digits to the right of the binary point we can convert them

to octal or hexadecimal by starting at the binary point and working right, both the left

hand side and right hand sides can be added with zeroes to get multiples of three or

four bits.

 6

Example.

(10.1011001011) 2 = 010 . 101 100 202 100 = (2.5454) 8

Converting in the reverse direction:

(1357) 8= 001 011 101 1112

(2046.178) 8= 010 000 100 110.001 1112

(BEAD) 16= 1011 1110 1010 11012

(9F.46C) 16= 1001 1111.0100 0110 11002

Complements:

Complements are used in digital computers for simplifying the subtraction operation

and for logical manipulation, while the signed-magnitude system negatives a number

by changing its sign a complement number system negates a number by taking its

complement as defined by the system.

Twos – complement Representation:

For binary numbers, the base complement is called the twos complement. The MSB

of a number in this system serves as the sign bit; a number is called a negative number

if and only if its MSB is 1.

Example,

17 10 = 000100012 -9910 =10011101 2

11101110 complements 01100010 complements

+1 +1

11101111 = - 17 10 011000112 = 99 10

119 10 = 01110111 2 -128 10 = 1000 0000

10001000 complements 0111 1111complement

+1 +1

10001001 2 = -119 1000 0000 = -128 10

Note that in 2s complement there is no negative output and the last previous

example gave us –ve no. .In this case we pad the MSB with zero this is caused sign

extension.

 7

Ones-Complement Representation:

The diminished radix-complement system for binary numbers is called the “ones”

complement. As in twos complement the MSB is the sign output +ve and 1 if –ve.

Example,

1710 = 000 1 000 1 -99 10 = 100 111 00

= 111 0 111 0 = -17 10 01100011 = 99 10

119 10 = 01110111 2 -127 10 = 10000000

10001000 = -119 01111111 = 127 10

The main advantages of ones complement system are its symmetry and the ease of

complementation. However, the adder design for ones complement numbers is
somewhat trickier than the twos- complement added. Also zero detecting circuits in a

ones – complement system either must check for both representation of zero, or must

always convert 11...11 to 00...00.

Binary Codes:

Binary coded decimal (BCD). The table bellow gives the 4-bit code for one decimal

digit. A number with K decimal digits will require 4K bits in BCD. Decimal 396 is

represented in 5CD with 12 bits as 0011 1001 0110.

Binary Coded Decimal (BCD):

Decimal symbol BCD digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

 8

A (BCD) number grater than 10 looks different than its equivalent binary number for

example

10 = (0001 000) BCD = (1010) 2

15 = (0001 0101) BCD = (1111) 2

185 = (0001 1000 0101) BCD = (10111001) 2

It 10 important to realize that BCD number are decimal number and not binary

numbers.

Binary Storage And Registers

The binary information in digital computer must have a physical existence in some

information storage medium for storing individual bits. A binary cell is a device that

possesses two stable states and is capable of storing one bit of information 0 or 1.

Registers:

A register is a group of binary cells. A register with n cells can store any discrete

quantity of information that contains n bits. A 16-bit register has the following content

1100001111001001.

A register with 16 cells can be in one of 216 possible states. If a binary integer then

the register can store any binary number from 0 to 2 16- 1

 Gray code:

The output data of many physical systems produce quantities that are continuous.

These data must be converted into digital form before they are applied to a digital

system. Continuous or analog information is converted into digital form by means of

an analog-to-digital converter. It is sometimes convenient to use the gray code shown

below to represent the digital data when it is converted from analog data. The

advantages of the gray code over the straight binary number sequence is that only one

bit changes in the code group changes when going from one number to the next.

Example,

7 8

Gray 0100 1100 only on bit changes

Binary 0111 1000 four bits changes

 9

A typical application of the gray code occurs when analog data are represented by

continuous change of a shaft position. The shaft is partitioned into segments and each

segment is a signed a number. If adjacent segments are made to correspond with the

gray code sequence ambiguity is eliminated.

The gray code is used in applications where the normal sequences of binary number

may produce an error or ambiguity during the translation from one number to the

next. If binary numbers are used a change from 0111 to 1000 may produce an

intermediate erroneous number 1001 if the right most bit takes longer to change in

value than the other three bits. The gray code eliminates this problem since only one-

bit changes in value during the transition between two number.

Gray – code

Gray code Decimal equivalent

0000 0

0001 1

0011 2

0010 3

0110 4

0111 5

0101 6

0100 7

1100 8

1101 9

1111 10

1110 11

1010 12

1011 13

1001 14

1000 15

.

 10

AND Gate
 Symbol Truth Table

 IC example (7408)

A B Z=(A.B)

0 0 0

1 0 0

0 1 0

1 1 1

OR Gate
 Symbol Truth Table

 IC example : 7432

A B Z=(A+B)

0 0 0

1 0 1

0 1 1

1 1 1

Buffer
 Symbol Truth Table

 IC example :

A Z=A

0 0

1 1

NOT Gate (Invertor)
 Symbol Truth Table

 IC example : 7404

A 𝒁 = ഥ𝑨

0 1

1 0

NAND Gate
 Symbol Truth Table

 IC example : 7400

A B Z=(𝑨.𝑩)

0 0 1

0 1 1

1 0 1

1 1 0

NOR Gate
 Symbol Truth Table

 IC example : 7402

A B Z=𝑨 + 𝑩

0 0 1

0 1 0

1 0 0

1 1 0

Exclusive Or (EXOR) Gate
 Symbol Truth Table

 IC example : 7486

A B Z= 𝑨. ഥ𝑩 +ഥ𝑨.B

0 0 0

0 1 1

1 0 1

1 1 0

EXNOR Gate
 Symbol Truth Table

 IC example : 74266

A B Z= 𝑨.𝑩+ ഥ𝑨ഥ𝑩

0 0 1

0 1 0

1 0 0

1 1 1

 14 pin IC

Boolean Algebra

 Boolean algebra was introduced by George Boole in
his first book The Mathematical Analysis of
Logic (1847).

 Boolean algebra is the branch of algebra in which
the values of the variable are the Truth values true
(one) and false (zero),

Boolean operation and expression
Boolean Addition

 It is equivalent to the OR operation

 In Boolean algebra the sum term is sum(+), while in
circuit it OR gate.

Boolean operation and expression
Boolean Addition

 What is the Value of A,B,C and D? if the sum term
is given as:

𝐴 + ത𝐵 + ҧ𝐶 + 𝐷 = 0

Boolean operation and expression
Boolean Addition

 If A=0 , B=1 and C=1, What is the sum term for
ҧ𝐴, ഥ𝐵 and C

Boolean operation and expression
Boolean Multiplication

 It is equivalent to the AND operation

 In Boolean algebra the product term is the product in
literal (.), while in circuit it AND gate.

Boolean operation and expression
Boolean Multiplication

 What is the value of A,B,C and D that make the
product term 𝐴, ത𝐵, C, and ഥ𝐷 equal to 1

Boolean operation and expression
Boolean Multiplication

 What is the value product term of 𝐴, ത𝐵, C, if A=1,b=0
AND C=0

Laws and ruled of Boolean algebra

 The basic laws of Boolean algebra is :

1- The commutative law for addition and multiplication

2- The associative law for addition and multiplication

3- The distributive law

Laws and ruled of Boolean algebra
The commutative law for addition

 It is written as

A+B=B+A

 The commutative law applied to OR gate

Laws and ruled of Boolean algebra
The commutative law for multiplication

 It is written as

A.B=B.A

 The commutative law applied to AND gate

Laws and ruled of Boolean algebra
The associative law for addition

 It is written as

(A+B)+C= A+(B+C)

 The associative law applied to OR gate

Laws and ruled of Boolean algebra
The associative law for Multiplication

 It is written as

(AB)C= A(BC)

 The associative law applied to AND gate

Laws and ruled of Boolean algebra
The distributive law

 It is written for three variables as as

A(B+C)= AB+AC

 The associative law applied to OR and AND gate

 (NOTA.B)C+D.C

Laws and ruled of Boolean algebra

 The basic Rule that simplifies Boolean expression is
given in the table below :

Laws and ruled of Boolean algebra

 Rule 1: A+0=A

 Rule 2: A+1=1

 Rule 3: A.0=0

 Rule 4: A.1=A

Laws and ruled of Boolean algebra

 Rule 5: A+A=A

 Rule 6: A+ ҧ𝐴=1

 Rule 7: A.A=A

 Rule 8: A. ҧ𝐴 = 0

Laws and ruled of Boolean algebra

 Rule 9: Ӗ𝐴=A

 Rule 10: A+AB=A

Proof:

=A(1+B) Using distributive law

=A.1=A Using rule 2

Laws and ruled of Boolean algebra

 Rule 11: A+B ҧ𝐴 =A+B

Proof:

= A+BA+B ҧ𝐴 (rule 10)

=A+B(A+ ҧ𝐴) (distributive law)

=A+B.1 (Rule 6)

=A+B (Rule 4)

Laws and ruled of Boolean algebra

 Rule 12: (A+B)(A+C)=A+BC

Proof :

=AA+AB+AC+BC (distributive law)

=A+AB+AC+BC (rule 7)

=A+AC+BC (rule 10)

=A+BC (rule 10)

DeMorgan’s theorems

 DeMorgan is a mathematician who proposed two
theorems in Boolean algebra.

 The theorem provide mathematical proof of the
equivalency between NAND and negative-OR, also
the equivalency between NOR and negative AND
gate.

DeMorgan’s theorems
First theorem

 The complement of product of variables is the sum of
the complement of the variables.

Or :

 The complement of two or more Aneded variables is
the equivalent to the OR of the complement of the
individual variables.

DeMorgan’s theorems
First theorem

 Mathematical expression :

𝐴𝐵 = ҧ𝐴 + ത𝐵

 Logical circuit and truth table

DeMorgan’s theorems
Second theorem

 The complement of the sum of the variables is
equivalent to product of the complement of the
individual variables.

Or:

 The complement of two or more ORed variables is
equivalent to negative-And of the complement of the
individual variable.

DeMorgan’s theorems
Second theorem

 Mathematical expression :

𝐴 +𝐵 = ҧ𝐴. ത𝐵

 Logical circuit and truth table

DeMorgan’s theorems

DeMorgan’s theorems

 Example :

(𝐴𝐵 + 𝐶) (𝐴 + 𝐵𝐶)

DeMorgan’s theorems

 Example :

DeMorgan’s theorems

 Example :

Truth Table FOR Logic Circuit
 Logic circuit

 The Boolean expression F=A(B+CD)

Truth Table FOR Logic Circuit


Truth Table FOR Logic Circuit
 The truth table

Simplification Using Boolean
Algebra



Simplification Using Boolean
Algebra



Simplification Using Boolean Algebra



Simplification Using Boolean Algebra

Simplification Using Boolean Algebra

Simplification Using Boolean Algebra

Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the
form either SOP or POS.

Standard form of Boolean Algebra

 The SOP : when two or more product variables are
summed .

 Example :

 Circuit example

Standard form of Boolean Algebra

 Circuit example

Standard form of Boolean Algebra

 Conversion of general expression to SOP

Standard form of Boolean Algebra

 The standard form of SOP, in which all variables in the
domain appear in each product.

 Example :

 It is important in constructing truth tables, and in
Karnaugh map simplification.

Standard form of Boolean Algebra

 Converting Boolean expression to the standard form
of SOP:

Standard form of Boolean Algebra

Standard form of Boolean Algebra

 Binary representation for SOP

Standard form of Boolean Algebra

 Binary representation for SOP

Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the
form either SOP or POS.

Standard form of Boolean Algebra

 The POS : when two or more summed terms are
multiplied.

 Example :

 Circuit example

Standard form of Boolean Algebra

 The standard form of POS, in which all variables in the
domain appear in each sum.

 Example :

 It is important in constructing truth tables, and in
Karnaugh map simplification.

Standard form of Boolean Algebra

 Converting Boolean expression to the standard form
of POS:

Standard form of Boolean Algebra

Standard form of Boolean Algebra

 Binary representation for SOP

Standard form of Boolean Algebra

 Binary representation for POS

Standard form of Boolean Algebra

 Converting standard SOP to standard POS

Standard form of Boolean Algebra

 Converting standard SOP to standard POS

Standard form of Boolean Algebra

Standard forms of Boolean Algebra

 The two standards forms of Boolean expression :

- Sum of Product (SOP)

-Product of Sum (POS)

 All Boolean expressions can be written in on of the
form either SOP or POS.

Boolean expression and truth table
 Converting SOP expression to truth table

Boolean expression and truth table
 Converting POS expression to truth table

Boolean expression and truth table
 Converting POS expression to truth table

Boolean expression and truth table
 Converting POS expression to truth table

Boolean expression and truth table
 Determining truth table from Bolean expression

Boolean expression and truth table
 Determining truth table from Bolean expression

Boolean expression and truth table

The Karnugh Map
 Provide systematic method to find simplifying Bolean expression

 Produce the simplest SOP or POS expression. Known as the
minimum expression.

 By the end of this section you should be able to :

- Construct the Karnugh map
- Determine the binary value for each cell of the map
- Determine the standard product term for each cell in the map
- Explain cell adjacency and identify adjacent cell.

The Karnugh Map

 Is an array of cells:

 Each cell represent a binary value of the input.

Example for two inputs A,B:

A B 0 1

0

1

Cell 1 Cell2

Cell3 Cell4

00 01

10 11

The Karnugh Map

 The Karnugh For three Inputs:

 There are eight cells with eight different binary
representation

The Karnugh Map

 The Karnugh for four Inputs:

 There are 16 cells with 16 different binary
representation.

The Karnugh Map

 Cell adjacency : is defined as single-variable change

The Karnugh Map

 Karnugh map SOP minimization

A minimized SOP expression contains the least number
of terms and least number of variable per terms.

By the end of this section you should be able to:

- Map a standard SOP expression on a Karnugh map.

- Combine the one’s cell into max group

- Combine the min product terms to form the min SOP
expression .

The Karnugh Map

 Mapping a standard SOP expression

The Karnugh Map

 Mapping a standard SOP expression

The Karnugh Map
 Mapping a standard SOP expression

The Karnugh Map
 Mapping non standard SOP expression

The Karnugh Map
 Mapping non standard SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

 Determining the min SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

 Determining the min SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

 Determining the min SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

 Determining the min SOP expression

The Karnugh Map
 Karnugh map simplification of SOP expression

The Karnugh Map
 Mapping directly from the truth table to Karnugh

map

The Karnugh Map
 Don’t care condition

The Karnugh Map
 Karnugh map simplification of POS expression

The Karnugh Map
 Karnugh map simplification of POS expression

The Karnugh Map
 Karnugh map simplification of POS expression

The Karnugh Map
 Karnugh map simplification of POS expression

The Karnugh Map
 Karnugh map simplification of POS expression

The Karnugh Map
 Converting between SOP and POS using Karnugh map

The Karnugh Map
 Karnugh map for 5 variables

The Boolean expression

- Boolean expression of multiple variables can be written
- F(A,B,C)= ∑(1,3,4)=1 this is equivalent to SOP

=A’B’C+A’BC+AB’C’
=oo1+011+100

- Each terms called minterm
- Or
- F(A,B,C)=Π(0,2,5,6,7) this is equivalent to POS
- =(A+B+C)(A+B’+C)(A’+B+C’)(A’+B’+C)(A’+B’+C’)
- =(000)(010)(101)(110)(111)
- Each term is called maxterm

ch4

Digital system application
Seven segment display

 It is a display for the number, each one can display the number from 1
to 9, thus the seven segments display takes BCD as an input .

 Consists of seven LEDs

 The goal of this example
is to design a logic circuit
for each segment(a,b,c,d,e,f) .

Digital system application
Seven segment display

Digital system application
Seven segment display

 Design procedure

1- Construct the truth table for the segments.

2- Mapping the truth table to Karnugh map.

3- Find the minimized Boolean expression in the form of
SOP or POS.

4. Convert the Boolean expression to digital circuit.

Note there will be for each segment output (a,b,c,d,e,f)
digital circuit to convert the BCD input to the
appropriate activation level for each output.

Digital system application
Seven segment display

 Truth table

Digital system application
Seven segment display

 Karnugh map Digital circuit

Digital system application
Seven segment display

 Karnugh map for output b

ch5

Logic Circuit

 The combinational logic circuit : is a logical gate circuit in which the
output will be presented immediately upon input present.

 The sequential logic circuit : the circuit employ memory element
beside the logical gate.

Combinational Logic Circuit

 Example of combinational logic circuit

Combinational Logic Circuit

 Implementation of combinational logic

Combinational Logic Circuit

 Combinational logic circuit from truth table

Combinational Logic Circuit
 Combinational logic circuit from truth table

Combinational Logic Circuit

 Combinational logic circuit from truth table

Combinational Logic Circuit
 Combinational logic circuit from truth table

Combinational Logic Circuit

 Self study sections

Logic circuit operation with pulse
waveform input

 The operation of the logical gate for pulse input is similar
to the input of constant input.

Logic circuit operation with pulse
waveform input

Ch5,6

Logic circuit operation with pulse
waveform input

Logic circuit operation with pulse
waveform input

Logic circuit operation with pulse
waveform input

Logic circuit operation with pulse
waveform input

Logic Function and Function
Combinational

 Adders : Half-adder, Full-adder

 Binary adding

0+0=0

0+1=1

1+0=1

1+1=10

1- Half-adder : where it accepts two binary digit input and results two
output sum bit and carry bit

Logic Function and Function
Combinational

 Half-adder circuit

Logic Function and Function
Combinational

 The Full-adder : it accepts two input bit and one carry
bit and generates a sum output and carry output

Logic Function and Function
Combinational

Logic Function and Function
Combinational

Logic Function and Function
Combinational

 Construct full-adder from two half adder

Logic Function and Function
Combinational

 Parallel binary adder: to add two binary number with
number of bit more than one , a number of full adders
equal to the number of bits.



Logic Function and Function
Combinational

 Four-bit parallel adder

Logic Function and Function
Combinational

 Four-bit parallel adder truth table

 Example of 4bits adder

Logic Function and Function
Combinational

 Four-bit parallel adder

Logic Function and Function
Combinational

 Four-bit parallel adder

Logic Function and Function
Combinational

 Four-bit parallel adder

Logic Function and Function
Combinational

 Adder application : simple voting system

Logic Function and Function
Combinational

 Comparator (<, =, >,)

1- Equality (A=B)

EXOR gate can be used as comparator

Logic Function and Function
Combinational

 Comparator (<, =, >,)

1- Equality (A=B)

EXOR gate can be used as comparator

Two bit comparator

Logic Function and Function
Combinational

 Comparator (<, =, >)

1- Inequality (A>B) or (A<B)

Logic Function and Function
Combinational

 Comparator (<, =, >, ≤, ≥,)

1- Inequality (A>B) or (A<B)

Logic Function and Function
Combinational

 Comparator (<, =, >, ≤, ≥,)

1- Inequality (A>B) or (A<B)

Logic Function and Function
Combinational

 Decoder : a digital circuit that can detect the presence
of certain binary combination.

Examples :

Logic Function and Function
Combinational

 Decoder :

 4bit to 16 line decoder

Logic Function and Function
Combinational

 Decoder :

Logic Function and Function
Combinational

 Decoder :

Logic Function and Function
Combinational

 Encoder : is a digital logic circuit that reverse the
decoder function

Example : The Decimal to BCD

Logic Function and Function
Combinational

 Decimal to BCD Encoder

Digital circuit

Logic Function and Function
Combinational

 8 lines to 3 lines encoder (74LS148)

Logic Function and Function
Combinational

 Expand the 8 lines to 3 lines encoder to 16 lines to 4 lines

Logic Function and Function
Combinational

 Encoder Application (Key board)

Logic Function and Function
Combinational

 Code converter : is a logic circuit that convert from one code to

another .
Example : BCD to Binary conversion

Logic Function and Function
Combinational

 Code converter : is a logic circuit that convert from one code to

another .
Example : BCD to Binary conversion

Logic Function and Function
Combinational

 Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

Example : 1 of 4 data selector

Logic Function and Function
Combinational

 Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

Example : 1 of 4 data selector

Logic Function and Function
Combinational

 Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

Example : 1 of 4 data selector

Logic Function and Function
Combinational

 Example : 1 of 4 data selector

Logic Function and Function
Combinational

 Example : 1 of 4 data selector

Logic Function and Function
Combinational

 Example : 74HC157

Logic Function and Function
Combinational

 Example : 74LS151 8-input data selector

Logic Function and Function
Combinational

Logic Function and Function
Combinational

Application

Logic Function and Function
Combinational

Application

Logic Function and Function
Combinational

Demultiplexer (DEMUX) : It takes digital information from
one line and distributes it to a given no. of out put lines.

Example:

Logic Function and Function
Combinational

Example:

Logic Function and Function
Combinational

Example: 74HC154

Logic Function and Function
Combinational

 Parity generator/checker:

 Parity : is the number of 1’s in digital information either
even or odd.

 Used to detect the error in transmission.

Basic parity logic :

 In this circuit

the out put 1 if the

parity is odd

0 if the parity is even.

Logic Function and Function
Combinational

Logic Function and Function
Combinational

Example 74LS280

Logic Function and Function
Combinational

Example

Latches , Flip-Flop and timers
 The Flip-flop application

 Parallel data storage

Latches , Flip-Flop and timers
 The Flip-flop application

 Frequency division

Latches , Flip-Flop and timers
 The Flip-flop application

 Frequency division

Latches , Flip-Flop and timers
Frequency division

Latches , Flip-Flop and timers
Counting

Latches , Flip-Flop and timers
Counting

Latches , Flip-Flop and timers
One-shot :

Is monostable multivibrator

Latches , Flip-Flop and timers
One-shot :

Latches , Flip-Flop and timers
One-shot :

Latches , Flip-Flop and timers
One-shot :

Latches , Flip-Flop and timers
One-shot :

Latches , Flip-Flop and timers
One-shot :

Latches , Flip-Flop and timers
Timer 555:

Is a device can be used as either mono-stable multi-
vibrator or as an stable multi-vibrator (oscillator).

Latches , Flip-Flop and timers
Timer 555:

Latches , Flip-Flop and timers
Timer 555:

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Sequential logic system design

Shift Register

 A register is digital circuit with two basic function:
data storage and data movement. Usually D-flip flop
is used

 Data storage example

Shift Register

 Shift register

Shift Register

 Serial in/ serial out shift reg.

Shift Register

Shift Register

Shift Register

Shift Register

 Serial in /parallel out

Shift Register

 Serial in /parallel out

Shift Register

 Serial in /parallel out

Shift Register

 Serial in /parallel out

Shift Register

 Parallel in /serial out

Shift Register

 Parallel in /serial out

Shift Register

 Parallel in /parallel out

Shift Register

 Parallel in /parallel out

Shift Register

 Bidirectional shift register

Shift Register

 Bidirectional shift register

Shift Register
 Bidirectional shift register

Shift Register
 shift register as counter (Self study)

	Number Systems And Codes
	Positional number system
	For example

