Analog versus digital:

Analog devices and systems process time-varying signals can take on any value a
cross a continuous range of voltage, current, or other metric, so do digital circuits and
systems, the difference that we can pretend that they don’t a digital signal is modeled
as taking on, at any time, only one as two discrete values, which we call 0 and 1 [low
and high, false and true].

Digital computers have been around since the 1940s and have been in widespread
commercial use since the 1960s. Yet only in the past 10-20 years has the digital
revolution spread to many other aspects of life. Examples of once analog systems that

now “gone digital” include the following:

1. Still picture, the increased density of digital memory chips has
allowed the development of digital cameras which record a picture as a
640x480 or longer carry of pixels, where each pixel stores the
intensities of its red green, and blue color components as 85 bits each
JPEG formal compresses the picture down to as little as 5% of the

original storage size.

2. Video recording, (DVD) stores video is a highly compressed digital
formal called MPEG-Z. It encodes each other frame as the difference
between it and the previous one. The capacity of a single-layer, single
sided DVD is about 35 billion bits, 2 hours of high quality video, and a

two layer double sided disk four times that capacity.

3. Audio recordings, once made exclusively by impressing analog
waveforms on to vinyl or magnetic tape, audio recordings now use
digital compact discs (CD’s). Stores music as a sequence of 16 bit no. .
A full length CD recording (73min) contains over six billion bits of

information.



4. Telephone system.

5. Traffic lights, stop lights used to be controlled by electromechanical
timers that would give the green light to each direction for a
predetermined amount of time. Later relays were used in controllers
that could activate the light according to the pattern of traffic detected
by sensor embedded in the pavement. Toady’s controllers use

microprocessors and can control the lights in ways that maximize

vehicle throughput.

6. Movie effects.

Why digital:

a)

b)

Reproducibility of results: Given the same set of input
(in both value and time sequence), a properly designed
digital circuit always produces exactly the same results.
The outputs of an analog circuit vary with temperature,
power-supply voltage, aging of components and other

factors.

Ease of design. Digital design often called logic design
“is logical no special math’s skills are needed and the
behavior of small logic circuits can be visualized
mentally without any special insights about the
operation of capacitors, transistors or other devices that

require calculus to model.

Programmability. Much of digital design is carried out
today by writing programs. HDL (Hardware Description
languages), simulation and synthesis programs. These
software tools are used to test the hardware models
behavior before and real hardware is built.



d) Speed, today’s digital devices are very fast individual
transistors in the fastest integrated circuits can switch in
less than 10 Pico seconds and a complete, complex
device built from these transistors can examine its
inputs and produce an output in less than 2
nanoseconds. This means that such a device can

produce 500 million or more results per second.

Number Systems And Codes

Digital systems are built from circuit that process binary digits 0s and 1s yet very few
real life problems are based on binary numbers. Digital system designer must

establish some correspondence between the binary digits processes by digital circuits.

Positional number system

The traditional number system that we learned in school and use every day in business
is called a positional number system. In such a system a number is represented by a
string of digits, where each digit position has an associated weight.

For example

1734 = (1)(1000)+(7)(100)+(3)(10)+(4)(1)

Each weight is a power of 10 corresponding to the digits position. A decimal point

allows negative as well as positive powers of 10 to be used.

5185.68 = (5)(1000)+(1)(100)+(8)(10)+(5)(1)+(6)(.1)+(8)(.01)

in general, a number D of the form d1d0.d-1d-2 has the value

D = d1.10*+d0.10%+d-1 .10 +d-2 .10

Here, 10 is called the base or radix of the number system.



In a binary number, the radix point is called the binary point. We use a subscript to
indicate the base or radix of each number

100112 = (1)(16)+(0)(8)+(0)(4)+(1)(2)+(1)(1) = 1910

101.0012 =(1)(4)+(0)(2)+(1)(1)+(0)(.5)+(0)(.025)+(1)(.125)
= 5.12510

The left bit of binary number is called the high order or most significant bit(MSB).
The right most is the Low-order or least significant bit (LSB).

Example.
The decimal equivalent of the binary number 11010.11 is 26.75 as shown

(D@)+D)(@)+H0)2H+D)(2)+HD)(2H)+(1)(27) = 26.75

Octal And Hexadecimal Number:

Base 10 is important because we use it in every day, business and radix 2 is important
because binary numbers can be processed by digital circuit. Other bases have their
uses but not as important as the first two. Base 8 and 16 provide convenient shorthand
representation for multibit number in a digital system.

The octal number system uses base 8 while the hexadecimal number system uses base
16. The octal system needs 8 digits, so it uses digits 0 — 7 of the decimal system. The
hexadecimal system needs 16 digits so it supplements decimal digits 0 — 9 with the
letters A- F.

Examples,
(127.4) 8 = (1)(8)*+(2)(8)+(7)(8)°+(4)(8) ™ = (87.5) 10

(B65F) 16 = (11)(16) 3+(6)(16) 2+(5)(16) *+(15)(16) ° = (46687) 10

Remember:



Number Base Conversions:

We have already discussed how to convert binary, octal and hexadecimal numbers to
base 10. It is very easy to convert a binary number to octal. Starting at the binary point
and working left, we simply separate the bits into groups of three and replace each

group with the corresponding octal digit.

Examples,
(100011001110)2=100 011001 110 = (4316) s
(11101101110101001)2=011 101 101 110101001 =
= (35565) s
The procedure for binary-to-hexadecimal conversion is similar, except we use groups
of four bits.
Example,
(100011001110)2=1000 1100 1110 = (8CE) 16
(11101101110101001)2=10001 1101 1011 1010 1001
= (1DBA9) 16
In theses examples we have freely added zeroes on the left to make the total number
bits a multiple of 3 or 4.
If a binary number contains digits to the right of the binary point we can convert them
to octal or hexadecimal by starting at the binary point and working right, both the left
hand side and right hand sides can be added with zeroes to get multiples of three or

four bits.



Example.
(10.1011001011)2=010. 101 100 202 100 = (2.5454) s
Converting in the reverse direction:
(1357) =001 011 101 111>
(2046.178) s= 010 000 100 110.001 111>
(BEAD) 16= 1011 1110 1010 11012
(9F.46C) 16= 1001 1111.0100 0110 11002

Complements:
Complements are used in digital computers for simplifying the subtraction operation
and for logical manipulation, while the signed-magnitude system negatives a number
by changing its sign a complement number system negates a humber by taking its

complement as defined by the system.

Twos — complement Representation:
For binary numbers, the base complement is called the twos complement. The MSB
of a number in this system serves as the sign bit; a number is called a negative number
if and only if its MSB is 1.

Example,
17 10 = 000100012 -9910=10011101 2
11101110 complements 01100010 complements
1 . #
11101111 =-17 10 011000112 =99 10
119 10 = 01110111 -128 10= 1000 0000
10001000 complements 0111 1111complement
+1 _+#
10001001 2=-119 1000 0000 = -128 10

Note that in 2s complement there is no negative output and the last previous
example gave us —ve no. .In this case we pad the MSB with zero this is caused sign

extension.



Ones-Complement Representation:
The diminished radix-complement system for binary numbers is called the “ones”

complement. As in twos complement the MSB is the sign output +ve and 1 if —ve.

Example,
1710=000 1 000 1 -99 10 = 100 111 00
=11101110=-1710 01100011 =99 10
119 10 = 01110111 > -127 10= 10000000
10001000 =-119 01111111 =127 10

The main advantages of ones complement system are its symmetry and the ease of
complementation. However, the adder design for ones complement numbers is
somewhat trickier than the twos- complement added. Also zero detecting circuits in a
ones — complement system either must check for both representation of zero, or must

always convert 11...11 to 00...00.

Binary Codes:

Binary coded decimal (BCD). The table bellow gives the 4-bit code for one decimal
digit. A number with K decimal digits will require 4K bits in BCD. Decimal 396 is
represented in 5CD with 12 bits as 0011 1001 0110.

Binary Coded Decimal (BCD):

Decimal symbol BCD digit

0 0000

0001

0010

0011

0100

0101

0110

0111

1000

©O©| O N| O O | W N -

1001




A (BCD) number grater than 10 looks different than its equivalent binary number for
example
10 = (0001 000) BCD = (1010) 2
15 =(0001 0101) BCD = (1111) 2
185 = (0001 1000 0101) BCD =(10111001) 2

It 10 important to realize that BCD number are decimal number and not binary

numbers.

Binary Storage And Registers
The binary information in digital computer must have a physical existence in some
information storage medium for storing individual bits. A binary cell is a device that
possesses two stable states and is capable of storing one bit of information 0 or 1.

Registers:

A register is a group of binary cells. A register with n cells can store any discrete
quantity of information that contains n bits. A 16-bit register has the following content
1100001111001001.

A register with 16 cells can be in one of 2% possible states. If a binary integer then

the register can store any binary number from 0 to 2 6- 1

Gray code:
The output data of many physical systems produce quantities that are continuous.
These data must be converted into digital form before they are applied to a digital
system. Continuous or analog information is converted into digital form by means of
an analog-to-digital converter. It is sometimes convenient to use the gray code shown
below to represent the digital data when it is converted from analog data. The
advantages of the gray code over the straight binary number sequence is that only one
bit changes in the code group changes when going from one number to the next.
Example,
7 28
Gray 0100 1100 only on bit changes
Binary 0111 1000 four bits changes



A typical application of the gray code occurs when analog data are represented by
continuous change of a shaft position. The shaft is partitioned into segments and each
segment is a signed a number. If adjacent segments are made to correspond with the

gray code sequence ambiguity is eliminated.

The gray code is used in applications where the normal sequences of binary number
may produce an error or ambiguity during the translation from one number to the
next. If binary numbers are used a change from 0111 to 1000 may produce an
intermediate erroneous number 1001 if the right most bit takes longer to change in
value than the other three bits. The gray code eliminates this problem since only one-

bit changes in value during the transition between two number.

Gray - code

Gray code Decimal equivalent

0000

0001

0011

0010

0110

0111

0101

0100

1100

©O©| O N| o g | W N | O

1101

1111

(BN
o

1110

-
-

1010

-
N

1011

=
w

1001

[EE
N

1000

-
(6]
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AND Gate

* Symbol Truth Table
=P A B lz=am)
B — o o) 0
* IC example (7408) v | g
il [l Rl el 1 T 1 1 1
3

L] (2] Ls] Laf [s] [s] [2]

7408 Pinout )




OR Gate

* Symbol

A b zam)

N - BN

Truth Table

o

o
o
1
1

1
1
1



Buffer

* Symbol Truth Table

~

o o

Input
1 1

* IC example :
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NOT Gate (Invertor)

* Symbol Truth Table

4 Z=p ZZZ
‘: 0 1

1 o

* IC example : 7404

Woo G 8% 58 5% a8 4%

14| |1 3_|~12|_11 1ol Jo |_| 8

T404 Hex Inverters
=1 =1 27
Tz el e slell?

18 1% 24 2% 3I4A 3Y GHND




NAND Gate

* Symbol

same as
—

MNAND

AMND NOT

* IC example : 7400

i
[1a] [1a] [a2] faa] Qo] [a] [&]

3

L] L=l Ls1 Led L=l Lel [

GrD

s i

1

Truth Table

N e

1
1
0]



NOR Gate

* Symbol Truth Table

NOR OR O O 1

MNOT
0 1 0
* IC example : 7402 1 0 0
T402 Chuad 2-input NOR Sates 1 1 (0)

woo 4B 448 4% 2B 3A 3

14| [z 1z 11 1ol el s

-
]

) <

R ERREIRENREIR gkl
14 1B 1Y 2A 2B Z2Y GMND




Exclusive Or (EXOR) Gate

* Symbol Truth Table

’“I)D—

o
equivalent to . . 0
1
1

AB
Do_ AB + AB
AB

Vee
A@®B = AB + AB “ || 2] m] 1 d B

D D
* IC example : 7486 EDW T;)D—|

w >




EXNOR Gate

* Symbol Truth Table

A A B 245 AB
)DRY: ,&@_B o o 1

B 0 1 o)

* IC example : 74266

Voo
14 |13 12 11| 10 a a
D~
IC 74266
o <k
1 z 3-| 4| 5 &

D
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Boolean Algebra

Boolean algebra was introduced by George Boole in
his first book The Mathematical Analysis of

Logic (1847).

Boolean algebra is the branch of algebra in which
the values of the variable are the Truth values true

(one) and false (zero),



Boolean Addltlon

It is equivalentto the OR operation

0+40=0 O+1=1 140=1 l+1=1

010100

In Boolean algebra the sum term is sum(+), while in
circuit it OR gate.
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Boolean Addition

* Whatis the Valueof A,B,Cand D? if the sum term

1S given as:
1B € D0 A -,
e P, %
G 1 1 o - ¢ >0E G
- . -
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Boolean Addition

e [f A=0, B=1 and C=1, What is the sum term for

A B and C
: R
- = - A — =
A _—\ % _'\'C = Sy —Den\
- - 12__)>6/3 ———
6 4.1 =1 —




Boolean Multiplication

It is equivalentto the AND operation

Qe0=0 0¢1=0 10=0 1+1=1

sijuiisiiv}

In Boolean algebra the product term is the productin
literal (.), while in circuit it AND gate.




~ Boolean operation and expression

Boolean Multiplication

* Whatis the Value_ of A,B,C ind D that make the
product term A, B, C,and D equal to 1
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Boolean Multiplication

» What is the value product term of 4, l?, C, if A=1,b=0
AND C=o0 Ay
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“Laws and ruled of Boolean algebra

The basic laws of Boolean algebra is :

1- The commutative law for addition and multiplication
2- The associative law for addition and multiplication

3- The distributive law



/Lamnd “

The commutative law for addition

e [tiswritten as
A+B=B+A
* The commutative law applied to OR gate

Azo

o
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The commutative law for multiplication

e [tiswritten as
A.B=B.A
* The commutative law applied to AND gate

o

[
A { (<) 2 ‘ o
o "\ 5 E ) [)) |
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The associative law for addition

e [tiswritten as

( A+B)»+C= A+(B+C)

* The associativelaw applied to OR gate
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The associative law for Multiplication

e [tiswritten as
(AB)C=A(BC)

» The associati appliedto AND gate A= |
=
) =)

‘u'/)'/ ) ABD o
R (&)
‘ e
‘A'}' 1 =7 O
D_J_f Samac D— \B)(
(@) C |

Fe







- Lawsand rW

The distributive law

o Jtiswritten for three variablesas as

A(B+C)=AB+AC — .
* The associative law applied to OR and AND gate
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S.A A=10
9.4 = A

10.A + AB=A
50A+A4A=A 11.A+AB=A+B
6.4 + A=1 12. (A + BYA + C) = A + BC

A. B, or C can represent o single variable or a combination of vanables.




~1aws and ruled of Boolean algebra

* Rule1: A+o=A ) s )

14

* Rule 2: A+1=1 Ty

1 =0
x:D_'\’_"\
(4 1 =1
=)

* Rule 4: A.1=A iy

=
* Rule3: A.o=0 N T

A= —
: X
=A



*Rule5iA+A=A 51> ST

* Rule 6: A+A=1 T )

* Rule7: A.A=A = = o

°* Rule8:A.A=0 2=



~1aws and ruled of Boolean algebra

s

® RUle 9: AZA .\:“—Dd“:—lc%jﬂp .&:I—DO;;”C{>——-;-;
* Rule1o: A+AB=A Q=Y
— N
Proof:
P T I T e —A—
=A(1+B) Using (distributive law
0 1 0 0 {
0 l 0 0 B =A.1=A Using rule 2
l 0 0 I J
I | | l straight connection
? equal j




~1aws and ruled of Boolean algebra

= A+BA+BA (e o)
Sy G

=A+B(A+ /T) (distributive law)

=A+R. LJ (Rule 6 )
=A+B ( Rule 4)




aws and ruled of Boolean algebra

* Rule 12: (A+B)(A+C)2A+BC

;M+AB+AC+BC (distributivelaw)
=;¢_A_B+AC+BC (rule 7)
Rk =A+AC+BC (rule 10)

(rule 10)

H
b
+
)
-
0

—_——— D — o B

_————O O SO

_-—__e s o =000

—0E 0 DO

1— equal ——T

(A+B)A+C) | BC | A+BC A
o
[







DeMorgan’s theorems

/

DeMorgan is a mathematician who proposed two
theorems in Boolean algebra.

The theorem provide mathematical proof of the
equivalency between NAND and negative-OR, also
the equivalency between NOR and negative AND

gate.



DeMorgan’s'theorems —
First theorem

_—

The complement of product of variables is the sum of
the complement of the variables.

Or:

The complement of two or more Aneded variables is
the equivalent to the OR of the complement of the
individual variables.



re
First theorem

* Mathematical expression : -
——vﬁj’/

* Logical circuit and truth table

i
A R<CD
b oy— . !
n e p Y
\o g R
NAND Negative-OR \ij
_— N\




DeMorgan’s'theorems —
Second theorem

_—

The complement of the sum of the variablesis
equivalent to product of the complement of the
individual variables.

Or:;

The complement of two or more ORed variablesis
equivalent to negative-And of the complement of the
individual variable.
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Second theorem

* Mathematical expression :
A+B=A.B
* Logical/circuit and truth table

_ Inputs | Output
™ 4% \\ R ——
X — X —0} -—
S = X}
) ==
\% ®

NOR Negative-AND




| EXAMPLE 4-3

Solution

Related Problem

I EXAMPLE 4-4

Solution

Related Problem

1
s

+
1|
+
<y
+
iy

Apply DeMorgan's theorems ty the expressions XYZ and X + Y + Z.

X=X+ 742 — 23 )
e W 9y <

X+Y+Z=XY -
Apply DeMorgan's theorem to the expression X+Y+Z KﬂD’
S
k3

S~
~

N1

X -37-Z kAl

exr e
Apply DeMorgan's theorems to the expressions WXYZand W + X + ¥V + Z

V

WXYZ=W+X+Y+2Z
W+X+Y+2Z=WXYZ

Apply DeMorgan's theorem to the expression WX Y Z.

e g
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* Example: -

Apply DeMorgan’s theorems to each of the following expressions:

(@ (A+B+C)D (b) ABC+ DEF  (¢) AB+ CD + EF

X X 9 X ‘3 T
—— (E.;Z‘.C:) 9
Xh
o




Truth Table FOR Logic Circuit

* Logic circuit

T
g 1)

* The Boolean expression F=A(B+CD)




Truth Table FOR Logic Circuit

2\
(\0

b

Evaluating the Expression To evaluate the expression A(B + CD), first find the values
of the variables that make the expression equal to 1, using the rules for Boolean addition

and multiplication. In this case, the expression equals 1 only if A = l and B + CD = |
bt =\
\ + =1- @
N

Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = | or
CD = | or if both B and CD equal 1 because

B+CD=1+0=1
B+CD=0+1=1
B+CD=1+1=1

Theterm CD = lonlyif C= land D = 1.

To summarize, the expression A(B + CD) = 1 when A = | and B = | regardless of the
values of Cand D or when A = | and C = | and D = | regardless of the value of B. The
expression A(B + CD) = 0 for all other value combinations of the variables.

E

P e = O O e R e e et S
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Truth Table FOR Logic Circuit

e The tryth table

INPUTS OQuUTPUT

AT R | A(B + cD)
0 0 0 0 0 Y
0 R | 0 s /C
0 0 1 0 0
/ 0 0 l 1 0
0 1 [\ =g 0 g =l 5)
0 | 0 1 ) /6
0 l l 0 0
0 I 1 1 0
I e L 0 Y
| 5T | 0 2 _’ - lqw
i 0 1 0 0
I 0 ] ] |
I l 0 0 |
1 I 0 1 1
1 ! 1 0 |
1 1 ! I 1
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@&XAMPLE 4-8

Solution

e
** lification Usi

Algebra

Using Boolean algebra techniques, simplify this expression:

AB + A(B 4 Ol

The following is not necessarily the only approach.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Apply the distributive law to the second and third terms in the expression, as
follows: b

[\

AB + AB + AC + BB + BC
Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC
Apply rule 5 (AB + AB = AB) to the first two terms.

’M
AB+AC+B+BC =9
Apply rule 10 (B + BC = B) to the last two terms.
AB+AC+ B N AN
Apply rule 10 (AB + B = B) to the first and third terms.
B+ AC



e
— Simplification Usi

Algebra

———————

_)4)—.‘\8+.418+(’i+b’(8+0 ? B+AC
I\



/——\ %
~—— Simplification Using Boolean Algebra

Solution

Simplify the following Boolean expression:

[AB(C + BD) + AB]C

Note that brackets and parentheses mean the same thing: the term inside is multiplied
(ANDed) with the term outside.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Apply the distributive law to the terms within the brackets.
(ABC + A'i AB)C
Apply rule 8 (BB = 0) to the second term within the parentheses.
(ABC + A-0-D + AB)C
Apply rule 3 (A - 0 - D = 0) to the second term within the parentheses.
(ABC + 0 + AB)C
Apply rule 1 (drop the 0) within the parentheses.
(ABC + AB)C
Apply the distributive law. C
A@ + ABC
Apply rule 7 (CC = C) to the first term.

ABC + ABC
Factor out BC. \
sl
Apply rule 6 (A + A = 1). —
BC-1

Apply rule 4 (drop the 1).

BC
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/ Simblification Using Boolean Algebra

[AB(C + BD) + AB|C 7

Bl
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~—— Simplification Using Boolean Algebra

I EXAMPLE 4-11
Simplify the following Boolean expression:

s

A

&

&

/

h

Solution

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

AB + AC + ABC

Apply DeMorgan’s theorem to the first term.
(AB)(AC) + ABC

Apply DeMorgan’s theorem to each term in parentheses.

(A + B)(A + C) + ABC
Apply the distributive law to the two terms in parentheses.
D AA+AC+AB + BC + ABC
[y e ——

Apply rule 7 (A A = A) to the first term, and apply rule 10
[AB + ABC = AB(1 + C) = AB] to the third and last terms.

A A+AC+AB+BC

Apply rule 10 [A + AC = A(1 + C) = A] to the first and second terms.
© A+AB+EBC
Applyrule 10[A + AB = A(1 + B) = Z] to the first and second terms.
A+ BC
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FE 5 on Using Boolean Algebra

AB + AC + ABC N
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Standard forms of Boolean Algebra

The two standards forms of Boolean expression :

- Sum of Product (SOP)
-Product of Sum (POS)

All Boolean expressions can be written in on of the
form either SOP or POS.



Standard form of Boolean Algebra

* The SOP :when two or more productvariablesare
summed .

AR 4+ ARBC
ABC + CDhE + BCD
AR + ABC + AC

* Example:

e Circuit example

FIGURE 4-18
J Implementation of the SOP
3@7 expression AB + BCD + AC.

iR [
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Standard form of Boolean Algebra

e Circuit example

FIGURE 4-19

A —j
B—1____ This NAND/NAND implementation
is equivalent to the AND/OR in

B

C —:}@— X=AB+ BCD + AC  Figure 4-18.
)

A — )
i l—
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Standard form of Boolean Algebra

* Conversion of general expression to SOP

‘ EXAMPLE 4-12
Convert each of the following Boolean expressions to SOP form:

(@) AB+B(CD+EF) () (A+BB+C+D) (¢ (A+B)

Solution (a) AB + B(CD + EF) = AB + BCD + BEF
(h) A+ BB+ C+D)=AB+AC+AD + BB + BC + BD

© (A + ) = (A+ B)C = (4 + B)C = AC + BC

+



Standard form of Boolean Algebra

The standard form of SOP, in which all variablesin the
domain appearin each product.

Example:  ABCD + ABCD + ABCD

[t is important in constructing truth tables, and in
Karnaugh map simplification.



—

Standard form of Boolean Algebra

* Converting Boolean expression to the standard form
of SOP:

Step 1.

Step 2.

Multiply each nonstandard product term by a term made up of the sum of a
missing variable and its complement. This results in two product terms. As you
know, you can multiply anything by 1 without changing its value.

Repeat Step 1 until all resulting product terms contain all variables in the do-
main in either complemented or uncomplemented form. In converting a prod-
uct term to standard form, the number of product terms 15 doubled for each
missing variable, as Example 4-13 shows.



Standard form of Boolean Algebra

EXAMPLE 4-13

Solution

Convert the following Boolean expression into standard SOP form:
ABC + AB + ABCD
The domain of this SOP expression is A, B, C, D. Take one term at a time. The first

term, ABC, is missing variable D or D, so multiply the first term by D + D as
follows:

ABC = ABC(D + D) = ABCD + ABCD
In this case, two standard product terms are the result.
The second term, A B, is missing variables C or C and D or D, so first multiply the
second term by C + C as follows:
AB = AB(C + C) = ABC + ABC
The two resulting terms are missing variable D or D, so multiply both terms by
D + D as follows:
AB =ABC + ABC = ABC(D + D) + ABC(D + D)
= ABCD + ABCD + ABCD + ABCD
In this case. four stanq_ard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard SOP
form of the original expression is as follows:

ABC + AB + ABCD = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD



Standard form of Boolean Algebra

* Binary representation for SOP

Binary Representation of a Standard Product Term A standard product term is equal to
| for only one combination of variable values. For example, the product term ABCD is
equal to 1 when A = 1,B=0,C = 1, D = 0, as shown below, and is 0 for all other com-
binations of values for the variables.

ABCD = 1:0-1-0 =1-1-1-1 = 1
In this case, the product term has a binary value of 1010 (decimal ten).

Remember, a product term is implemented with an AND gate whose output is | only if each
of its inputs is 1. Inverters are used to produce the complements of the variables as required.

An SOP expression is equal to 1 only if one or more of the product terms in the
expression is equal to 1.
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Standard form of Boolean Algebra

* Binary representation for SOP

EXAMPLE 4-14
Determine the binary values for which the following standard SOP expression is
equal to 1:

ABCD + ABCD + ABCD
Solution Theterm ABCDisequaltol whenA=1,B=1,C=1l,andD = 1.
ABCD=1-1-1-1=1
The term AB CD is equal to | whenA = 1,B=0,C =0,and D = 1.
ABCD = 1:0-0-1=1:1-1-1 = |
The term ABC D is equal to 1 whenA =0,B=10,C =0, and D = 0.

ABCD =0:0:0:0=1:1-1+1 =1

The SOP expression equals 1 when any or all of the three product terms is 1.






Standard forms of Boolean Algebra

The two standards forms of Boolean expression :

- Sum of Product (SOP)
-Product of Sum (POS)

All Boolean expressions can be written in on of the
form either SOP or POS.



- Standard form of Boolean Algebra

e The POS :whentwo or more summed terms are

multiplied.
® Example : (A+B)A+B+C)
(A+B+ C)(C+ D+ E)B+ C+ D)
(A+ B)(A+ B+ C)A+ C)

* Circuit example

‘f»)’ — l

( X (A+BUB+C+ DA +O)
1)

\

(

FIGURE 4-20

Implementation of the POS
expression (A + B)(B +~ C + D)(A + C).




Standard form of Boolean Algebra

The standard form of POS, in which all variablesin the
domain appearin each sum.

Example: (A+B+C+D)A+B+C+D)A+B+C+D)

[t is important in constructing truth tables, and in
Karnaugh map simplification.
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Standard form g)f Boolean Algebra
.
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e
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K\Mf) bt

* Converting Boolean expression to the standard form
of POS:

Converting a Sum Term to Standard POS Each sum term in a POS expression that does
not contain all the variables in the domain can be expanded to standard form to include all
variables in the domain and their complements. As stated in the following steps, a non-
standard POS expression is converted into standard form using Boolean algebra rule 8
(A - A = 0) from Table 4-1: A variable multiplied by its complement equals 0.

Step 1. Add to each nonstandard product term a lerm made up of the product of the
missing variable and its complemen s~ (wo sum terms. As you
know, you can add () to anything without changing its va

Step 2. Apply rule 12 from Table 4-1{A + BC = (A + B)(A + C )

Step 3. Repeat Step 1 until all resulting sum terms comta
in either complemented or uncomplemented form.

s 1n the domain
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Standard form of Boolean Algebra

|EXAMPI.E 4-15 x‘il
Qv \O? Convert the following Boolean expression into standard POS form:

Dv, ,& (A+£+C)(E+C+[_))(A+E+E+D)
¢ Solution  The domain of this POS expression is A, B, C, D. Take one term at a time. The first
P
\Y term, A + B + C, is missing variable D or D, so add DD and apply rule 12 as follows:
= o
X*"V 5) A+B+C= A+B:€%M)(A+B+C+MM+B+C+D)
0 i ,a The second term, B + C + D, is missing variable A or A, so add AA and apply
= WK * 7) (.- rule 12as follows: 3
Z \
9,83 B+C+D=B+C+D+AA= A+B+C+DM+B+C+D
= W griry (g £ ) i )
The third term, A + B + C + D, is alre dy in standard form AIhe standard POS

form of the original expression is as follows:
(A+B+C)B+C+D)A+B+C+D)=
(A+B+C+D)A+B+C+D)A+B+C+D)JA+B+C+D)A+B+C+D)



Standard form of Boolean Algebra

. 2 % Q
* Binary representation for SOP = O\

& -

Binary Representation of a Standard Sum Term A standard sum term 1s equal to 0 for
only one combination of variable values. For example, the sumterm A + B + C + Dis 0
whenA =0,B=1,C=0,and D = 1, as shown below, and is 1 for all other combmanon\s\

of values for the variables.

A+B+C+D=0+14+0+1=0+0+0+0=0

) —

6 | o | = o (010\)

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term
is implemented with an OR gate whose output is 0 only if each of its inputs is (). Inverters
are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the

expression is equal to 0.
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Standard form of Boolean Algebra

e
e

I EXAMPLE 4-16
Determine the binary values of the variables for which the following standard POS

expression is equal to 0:

(A+B+C+D)A+B+C+D)A+B+C+D)

* Binary representation for POS

Solution ThetermA + B + C + Disequal toOwhenA =0,B=0,C=0,and D = 0.
W IR A o 2 A+B+C+D=0+0+0+0=0
ThetermA + B + C + DisequaltoOwhenA =0,B=1,C=1,and D = 0.
9./;> A+B+C+D=0+1+1+0=0+0+0+0=0
S Theterm A + B + C + DisequaltoOwhenA=1,B=1,C=1,and D = 1.
N P A+B+C+D=T+1+1+1=0+0+0+0=0

> N - The POS expression equals 0 when any of the three sum terms equals ().
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Standard form of Boolean Algebra

* Converting standard SOP to standard POS

Step 1. Evaluate each product term in the SOP expression. That is, determine the bi-
nary numbers that represent the product terms.

Step 2. Determine all of the binary numbers not included in the evaluation in Step |.
Step 3. Wirite the equivalent sum term for each binary number from Step 2 and express
in POS form.

Using a similar procedure, you can go from POS to SOP.
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Standard form of Boolean Algebra

-
§ o\ JK i 0
* Converting standard SOP to standard POS ,,
N >
A VA SRS
I EXAMPLE 4-17
Convert the following SOP expression to an equivalent POS expression:
* ABC + ABC + ABC + ABC + ABC = | :
- = - - G\P oK
Solution The evaluation is as follows: %_ ) S
<\
\ - 0 000 + 010 + 011 + 101 + 111
o
o _ \ Since there are three variables in the domain of this expression, there are a total of
x € - eight (27) possible combinations. The SOP expression contains five of these
% - combinations, so the POS must contain the other three which are 001, 100, and 110.

N 0 — —
\ O (/\ = v

\ X ».% Remember, these are the binary valu sum term (. The equivalent POS
/\)7 expression 1s
y Y V) 26 - ol
\V N xq +B+C)A+B+C)A+ B+ C)
S



—~

Standard form of Boolean Algebra

SECTION 4-6
‘ REVIEW 1. Identify each of the following expressions as SOP, standard SOP, POS, or standard

‘ POS:
S (a) AB + ABD + ACD (b) (A+ B+ C)(A+B+Clsyy
(c) ABC + ABC (d) A(A + C)(A + B)

2. Convert each SOP expression in Question 1 to standard form.

3. Convert each POS expression in Question 1 to standard form.

(N
\—

oo [6 | [/ 0 1)/ ~ o
dEe | Afe
+ MC@

™y
I\l
Q
>
™
N
4
>
N
N1









A,'?,C S A(“)[‘-‘
> C )

B
S~ —Y—~V}

A Ak [p12) (Aﬂ)

s s s)
A-;J?:k/)"‘g“cc) = ( A—\B-*()/ﬂ-H?:l C"
/L_“jg.:(/l‘lg“'cz) = (A_rl-u()/ pAtR+C)

A:(A&B+c)(A+B+2)(ﬂﬂg"‘f}(ﬁ*@* E)






Standard forms of Boolean Algebra

The two standards forms of Boolean expression :

- Sum of Product (SOP)
-Product of Sum (POS)

All Boolean expressions can be written in on of the
form either SOP or POS.



Boolean expression and truth table

* Converting SOP expression to truth table

I EXAMPLE 4-18

r€\ Solution
) N
7’\
l—)
K
TABLE 4~\p0
‘ [<)
RN
QO 1)
& 9 .1
™
Vv ONY W
/ I
~
O 3 /
e v
(
M
\UY)
s

Develop a truth table for the standard SOP expression E BC + ABC + ABC.
- R

- . - \ - \- -
There are three variables in the domain, so there are eight \posmble combinations of
binary values of the variables as listed in the left three columns of Table 4-6. The

binary values that make the product terms in the expressions equal to | are
ABC: 001; AB C: 100; and ABC: 111. For each of these binary values, place a 1 in the

_/,

output column as shown in the table. For each of the remaining binary combinations,
place a 0 in the output column.

S L0 7)('5(,
O\
INPUTS OUTPUT o)
X PRODUCT TERM
0 0 0 0 - A
0 0 | | ABC o ©
0 ] 0 0 \
1 1 0
| 0 0 O ABC y % G
TETS S A T e e \
| 0 1 0 W
| I 0 0
1 | 1 (D) ABC




Boolean expression and truth table

* Converting POS expression to truth table

I EXAMPLE 4-19

TABLE 4-7
INPUTS OUTPUT
SUM TERM
b/&'V A+ B+ 0O
A 0 0 1 1
0 I 0 0 (A+B+C)
- e s )in
0 I 1 0 (A + B+ C) ,('7;/
1 0 0 1 N
— — ~
1 0 1 0 (A+ B+ C) _ .
1 | 0 0 (A+B+C) i
1 I 1 1

This means that the SOP expression in the previous cxample and the POS exprcsend&
in this example are equivalent.
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Boolean expression and truth table

* Converting POS expression to truth table

|EXAMPLE 4-19

V)

a)

-
/
\

Solution

Determine the truth table for the following standard POS expression:

A+B+C)A+B+C)A+B+C)A+B+C)A+B+C) . o
S e —— T i ~— =
O ) 0 0 2

There are three variables in the domain and the eight possible binary values are listed
in the left three columns of Table 4-7. The binary values that make the sum terms in
the expression equal to O are A + B + C: 000; A + B+ C:010;A + B + C:011;
A+ B+ C:101;and A + B + C: 110. For each of these binary values, place a ) in
the output column as shown in the table. For each of the remaining binary

combinations, place a | in the output column.



Boolean expression and truth table

* Converting POS expression to truth table

TABLE 4-7
INPUTS OUTPUT :
0 0 0 0 A+B+C) 0 B
0 0 1 1
0 | 0 0 (A+ B+ C)
0 I 1 0 (A+ B+ C)
1 0 0 1
1 0 1 0 (A+ B+ C)
| I 0 0 (A+ B+ C)
1 I 1 1

Notice that the truth table in this example is the same as the one in Example 4-18.
This means that the SOP expression in the previous example and the POS expression
in this example are equivalent.



Boolean expression and truth table

* Determining truth table from Bolean expression

| EXAMPLE 4-20

From the truth table in Table 4-8, determine the standard SOP expression and the
equivalent standard POS expression.

A c
) 0 0
Bt 1 0
0 I 0 0
0 S g 1
I 0 0 1
| 0 m 0
| i 0 !

E R B o 1

INPUTS OuUTPUT
B X




Solution

R -~ B e

There are four 1s in the output column and the corresponding binary values are 011,
100, 110, and 111. Convert these binary values to product terms as follows:

011 — ABC
100 —> ABC
110 —> ABC
111 —> ABC
The resulting standard SOP expression for the output X is
X = ABC + ABC + ABC + ABC

For the SOS expression, the output is 0 for binary values 000, 001, 010, and 101.
Convert the ary values to sum terms as follows:

000 — A+ B+
001l —> A + B +
010 — A + B +
10l — A + B +

ala Ol 6

The resulting standard POS expression for the output X is

X=(A+B+C)(A+B+C)A+B+C)A+B+0C)

) 5 TRVAEARy Ry AL, LSENSRRECT a PSS S AROTI s SO RIS T WO o ) e g b PSR [ 6 FOEVER W o Y, VRS IO T0O0 NS SN TOTEAS

Boolean expression and truth table

* Determining truth table from Bolean expression

c
LB 0
AR 1 =
RIS TRt 5
T o I =5
I 0 0
I TR T
I 1 0
I | |




/X/

- Boolean expression and truth table

SECTION 4-7
REVIEW . 1. If a certain Boolean expression has a domain of five variables, how many binary

o, B velues will be in it truth table? » o ¢/ 0 C 23
‘Jo ' A . ‘ B
~ 2. In a certain truth table, the output is a I for the binary valuConvert this

binary value to the corresponding product term using variables W, X, ¥, and Z,

M+ W Es® 3 Inacerain truth table, the output s 3 0 for the binary valueTTT00\Convert thig

SRR = binary value to the corresponding sum term using variables W, X, ¥, and Z
//V "% AR

S e






/

/ e
The Karnugh Map

Provide systematic method to find simplifying Bolean expression

Produce the simplest SOP or POS expression. Known as the
minimuim expression.

By the end of this section you should be able to :

Construct the Karnugh map

Determine the binary value for each cell of the map
Determine the standard product term for each cell in the map
Explain cell adjacencyand identify adjacent cell.



/X/

’ The Karnugh Map

v\

: e L
* Is an array of cells: : en

: Qi

Cells Cellg > ",V‘(J'S"S?’ : s

» Each cell represent a binaryvalue of the input.

Example for two inputs A,B:

A~B o 1
o

10 . 11
1 AR AR
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/ The Karnugh Map

i

S
* The Karnugh For three Inputs: C
* There are eight cells with eight different binary

representation .

Sipaes ce
NEL!

FIGURE 4-21 '
0 1 AB 0 l

A 3-variable Karnaugh map showing
00

product terms.

0l

ta)



The Karnugh Map

I'he Karnugh for four Inputs:

I'here are 16 cells with 16 different binary

represe WAy
CD . CcD FIGURE 4-22
BN 00 00 110 ARNC 00 01 11 10 ;
' A 4-variable Karnaugh
G 6 00 00 |ABCDIABCIDIABCINABCD
\) 01 o1 |ascolascplaseplasch
v 11 11 JAR( ( BC

'\ 10 10 JABCINABCDIABCINABCD

(@) o N (b)



The Karnugh Map

* Cell adjacency : is defined as single-variable change

51 A FIGURE 4
AB 00\ /01 11\ /10 ° : cD
oo 3 = 7 Adjacent cells AB 00 0l 1 10
! Ll e 1 10 - «l»> - are those that
A A A A .
: ‘ : variable. Arroy 00
o1 ¥ v v : £
P K i Tl R adjacent cells. \
4 ~—
01
11 v v v ¥ (16— ;)\_)7 z
s L - > - > <> -2 L
A A & A —~
‘ 11
lO Y ' v ] r/\
A [ ) i A
\ T\ o\ Jory 10
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The Karnugh Map

Karnugh map SOP minimization

A minimized SOP expression contains the least number
of terms and least number of variable per terms.

By the end of this section you should be able to:
Map a standard SOP expression on a Karnugh map.
Combine the one’s cell into max group

Combine the min product terms to form the min SOP
expression .



The Karnugh Map

* Mapping astandard SOP expression

Step 1. Determine the binary value of each product term in the standard SOP ex-
pression. After some practice, you can usually do the evaluation of terms
mentally.

Step 2. As each product term is evaluated, place a 1 on the Karnaugh map in the cell
having the same value as the product term.

FIGURE 4-24 C

Ex | ¢ ; dard SOP AB 0 [ ABC 4+ ABC + ABC + AB( :'
ample of mapping a standar 2
| & o, 000 001 110 100
expression. 00 . | <}~
!
onle | O |

11 T &

10 -




The Karnugh Map

» Mapping astandard SOP expression

EXAMPLE 4-21

Solution

FIGURE 4-25

Map the following standard SOP expression on a Karnaugh map:

ABC + ABC + ABC + ABC
Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in
Figure 4-25 for each standard product term in the expression.

ABC + ABC + ABC + ABC

001 Q10 110 18 1]

AB 0 1
00 ) a—f— AB(
01 | \ B¢
11 I~ 1=f— AB
10 I LB




The Karnugh Map

* Mapping astandard SOP expression

EXAMPLE 4-22

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution  Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in
Figure 4-26 for each standard product term in the expression.

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
0011 0100 1101 1111 1100 0001 1010

FIGURE 4-26

cD \BC'D
AB T A 10
’/
00 | =

- ABCD

01

\BCD
11 ' ' I

\BCD

10 «t— ABCD




The Karnugh Map

* Mapping non standard SOP expression
} EXAMPLE 4-23

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

Solution The SOP expression is obviously not in standard form because each product term does
not have three variables. The first term is missing two variables, the second term is
missing one variable, and the third term is standard. First expand the terms
numerically as follows: L

A + AB + ABC

000 100 110 Afc 4 0R €
001 101 ) .
~_010. AR (S =<

o )

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 3-
variable Karnaugh map in Figure 4-27.

FIGURE 4-27

AB 0 1

00 E l

01




The Karnugh Map

* Mapping non standard SOP expression

EXAMPLE 4-24
Map the following SOP expression on a Karnaugh map:

) D) : BC + AB + ABC + ABCD +~ ABCD + ABCD
Lk i
Solution The SOP expression is obviously not in standard form because each product term does

not have four variables. The first and second terms are both missing two variables, the
third term is missing one variable. and the rest of the terms are standard. First expand
the terms by including all combinations of the missing variables numerically as
follows:

BC AB + ABC + ABCD + ABCD + ABCD

OO0 1 GO0 I 1Q0 1010 0001 101 1
00 O\ 101 1101

10O 110

1O OJ1 111

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 4-
variable Karnaugh map in Figure 4-28. Notice that some of the values in the expande
expression are redundant.

FIGURE 4-23

i

AB 00 1 11 10

0]




The Karnugh Map

* Karnugh map simplification of SOP expression

Grouping the 1s You can group s on the Karnaugh map according to the following rules
by enclosing those adjacent cells containing Is. The goal is to maximize the size of the
groups and to minimize the number of groups.

L

2,

3.

A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In
the case of a 3-variable map, 2* = 8 cells is the maximum group.

Each cell in a group must be adjacent to one or more cells in that same group, but
all cells in the group do not have to be adjacent to each other.

Always include the largest possible number of 15 in a group in accordance with
rule 1.

Each I on the map must be included in at least one group. The Is already in a
group can be included in another group as long as the overlapping groups include
noncommon ls.



01

10

AB

0l

11

10

(a)

Group the 1s in each of the Karnaugh maps in Figure 4-29.

C
AB

0

00

0l

11

10

(b)

D

AB
00

01

11

10

(<)

00 01

10

cD

A\

01

00 |

01 |

11 I

(18

(d)

. FIGURE 4-29

The groupings are shown in Figure 4-30. In some cases, there may be more than one
way to group the 1s to form maximum groupings.

Solution

Wrap-around asdjacency Wrap-around adjacency

cD | \
110 AN 00 0L 11 \10
00 1




The Karnugh Map

* Karnugh map simplification of SOP expression

* Determining the min SOP expression

| B

o

? fV‘ /799/ S
Group the cells that have 1s. Each group of cells containing 1s creates one product hiced Z o &
term composed of all variables that occur in only one form (either uncomplemented e

or complemented) within the group. Variables that occur both uncomplemented and
complemented within the group are eliminated. These are called conrradictory
variables.

. Determine the minimum product term for each group.

a. For a 3-variable map: 7

(1) A 1-cell group yields a 3-variable product term

(2) A 2-cell group yields a 2-variable product term

(3) A 4-cell group yields a 1-variable term

(4) An 8-cell group yields a value of 1 for the expression
b. For a 4-variable map:

(1) A 1-cell group yields a 4-variable product term

(2) A 2-cell group yields a 3-variable product term

(3) A 4-cell group yields a 2-variable product term

(4) An 8-cell group yields a 1-variable term

(5) A 16-cell group yields a value of 1 for the expression

When all the minimum product terms are derived from the Karnaugh map, they
are summed to form the minimum SOP expression.
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’ EXAMPLE 4-26
Determine the product terms for the Karnaugh map in Figure 4-31 and write the

w=culing minimum SOP expression.

ch 2 Sy R 2
AB 00 0l I 10 URE 4-31
y For jy&w(’ 1 ;'5’3 ABCD 00 01 11 10 ‘.‘2
b\%m R i . . —r= _
—— prA 5 elerme/2 Ac Iy

geor o [

-
Mbvji - _ 7 — y
TIIA n, P 1 LI | 1 19 - )-.D_
o B o —

Ast I\
& Cveny 2 = A_C 10 1
710 \ g% o clemmat B o a
ACD —
Q’ '7,'7 "5 CICM'V‘JD — C/Db
D—
,Cv Cyau/’ 3 Solution Eliminate variables that are in a grouping in both complemented and
B uncomplemented forms. In Figure 4-31, the product term for the 8-cell group is B

B - e/ P ,;‘ Py A /4 because the cells within that group contain both A and A.Cand C, and D and D,

§ which are eliminated. The 4-cell group contains B, B. D. and D, leaving the variables

A and C, which form the product term AC. The 2-cell | group contains B and B, leavin
variables A, C, and D which form the product term ACD. Notice how overlapping is
used to maximize the size of the groups. The resulting minimum SOP expression is

the sum of these product terms:
B + AC + ACD

b el SRR I, TON N TSN ) tr ORI, PAPRED, ¢ e AT A, G RSN LN R e -SSR OV s o R et T W S Bty ot TR A TS, RE NSRS TR L 2N [ n h Y e




The Karnugh Map

* Karnugh map simplification of SOP expression
* Determining the min SOP expression

%1)(\'\"/}\ /D/(b :% e
K G il 00 0l 11 10 & 00 0l 11 10 v
3 ® - C ¢ \'Lj_ (] \/’ B '\B
pEC ABN S o1 00 (xT—.Y /ufr—
oo v 00 ‘ QL
a % ol f‘\”%v?( ’DV” ‘ o Ol 01 \ ’\’\ '
M [ el of TN
a (1) P = 1 1 |\ ’
— - \
10 P(%’IU Y\_\_/U
7 ) [T 0 10 /)/ @-’_’ '
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I EXAMPLE 4-27
Determine the product terms for each of the Karnaugh maps in Figure 4-32 and write

the resulting minimum SOP expression. st e L
C—vcu»(' ;
1;3{ BC B AC B A
SC g / W0 1 / ABCD w/0 11 10 ABCD 0/ 0 1 So arf
1 O X

!
| @] »
01 /q ol || 1 AC | |)*' AR
1|1 11 /I\]-»--N' 1 1

:\
10 \ 10 (I 10 (S 10

. \ T - T \ ) am—
AB ABD
(a) (b) (©) (d)

FIGURE 4-32

Solution  The resulting minimum product term for each group is shown in Figure 4-32. The
minimum SOP expressions for each of the Karnaugh maps in the figure are

(a) AB+ BC+ABC (b) B+ AC + AC
(¢) AB + AC + ABD (d) D+ ABC + BC

Related Problem  For the Karnaugh map in Figure 4-32(d), add a 1 in the 0111 cell and determine the
resulting SOP expression.



I EXAMPLE —69““
A ® S Use a Karnaugh map to minimize the following SOP expression:

. o% CY”}) BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

® ] YM S D
V\V W{ Sdugmp The first term B C D must be expanded into AB C D and A B C D to get the standard SOP
(e expression, which is then mapped; and the cells are grouped as shown in Figure 4-34,
» FIGURE 4-34 . oasn = A o/
CD o B 2 welii L /he7

ABN 00 01 11 10 NXlw o 10f

~—] e e—— [ !
00 A O ol 1) k@ " .
01| 1 I ;
o 11 4{ 1 V%
1 10| 1 (1_-@
10 ‘QDDB‘(

Notice that both groups exhibit “wrap around™ adjacency. The group of eight is
formed because the cells in the outer columns are adjacent. The group of four is
formed to pick up the remaining two 1s because the top and bottom cells are adjacent.
The product term for each group is shown, The resulting minimum SOP expression is

D + BC

o by )— -



The Karnugh Map

* Mapping directly from the truth table to Karnugh
map

FIGURE 4-35

Example of mapping directly from a
truth table to a Karnaugh map.




o« . phiis
* Don't care condition » 5 9>—

Inputs | Output
ABCD| Y

0000 0
0001| 0
0010 0
0011| o
0100 0
0101 0
-
3k

A

X

X

X

X

X

jo=——r= =i e Sl

(a) Truth table

‘”,H@c,\’)
cD
ABN\ 00 01 11 10
00
‘-SL
0l =
1 l =31 e [ x
e
'0\\/' Jiy

Don’t cares |

A= ¢

ABC

(b) Without “don’t cares” ¥ = ABC + ABCD
With “don’t cares™ ¥ = A + BCD

The Karnugh Map

P

A

8
.

GURE 4-36

ple of the use of "don’t care
itions to simplify an expression.

’Z‘i‘_—‘l

cD
AR\ 00 01 11 10

00

0l ‘w AR cp
1| x x K P

L |

10 ()

R [ S I

AR c

IRE L ARC D



The Karnugh Map

* Karnugh map simplification of POS expression

Step 1. Determine the binary value of each sum term in the standard POS expression.
This is the binary value that makes the term equal to 0.

Step 2. As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-
sponding cell.

e
FIGURE 4-37 C , , 2
. AN\, 0 1 4 GRS R ECve E S
Example of mapping a standard POS A 000 010 110 101 :
expression. 00 ﬂ = : )

01 g ]

10 | Q




The Karnugh Map

* Karnugh map simplification of POS expression

| EXAMPLE 4-30
Map the following standard POS expression on a Karnaugh map:

(A+B+C+D)A+B+C+D)(A+B+C+D)A+B+C+D)A+B+C+D)

Solution  Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh
map in Figure 4-38 for cach standard sum term in the expression.

(A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)A+B~+C+D)

1100 1011 0010 1111 0011
FIGURE 4-38 - -
cD A4 l\'/‘ C+D
AB 00 0 ll/ 10
00 0 +b—A+B+C+D
01
1| o 0 \+B+C4+D
4 i
/
10 ()
|/ )

- , - r4
\+B+C+D \+B+0C+ D



The Karnugh Map

* Karnugh map simplification of POS expression

| EXAMPLE 4-30
Map the following standard POS expression on a Karnaugh map:

(A+B+C+D)A+B+C+D)(A+B+C+D)A+B+C+D)A+B+C+D)

Solution  Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh
map in Figure 4-38 for cach standard sum term in the expression.

(A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)A+B~+C+D)

1100 1011 0010 1111 0011
FIGURE 4-38 - -
cD A4 l\'/‘ C+D
AB 00 0 ll/ 10
00 0 +b—A+B+C+D
01
1| o 0 \+B+C4+D
4 i
/
10 ()
|/ )

- , - r4
\+B+C+D \+B+0C+ D



The Karnugh Map

* Karnugh map simplification of POS expression

EXAMPLE 4-31
Use a Karnaugh map to minimize the following standard POS expression:

(A+B+C)YA+B+C)A+ B+ C)A+B+C)A+B+C)

Q° /“ / Also, derive the equivalent SOP expression.
y X Solution The combinations of binary values of the expression are

O0O+0+0)O+0+1D)O+1+0)O+1+1)(Q1+1+0)

Map the standard POS expression and group the cells as shown in Figure 4-39.

FIGURE 4-39

C

ABN__ O A (Bxc) o|(@ [ 0
S a2 G Gl ) . Y,
- I loldl AL

é—sn——éjj ﬂ‘\/,\Ac p V2 o [(C1 1

hC a
AB

Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in
the 4-cell group. The sum term for each blue group is shown in the figure and the
resulting minimum POS expression is

A(B + C)



The Karnugh Map

* Karnugh map simplification of POS expression

IEXAMPLE 4-32 c
Use a Karnaugh map to minimize the following POS expression: 2

(B+C+D)A+B+C+D)A+B+C+DYA+B+C+D)A+B+C+D) :

b

/P' Solution  The first term must be expanded into A + B+ C + DandA + B+ C + Dto geta 2
standard POS expression, which is then mapped; and the cells are grouped as shown in

Figure 4—40. The sum term for each group is shown and the resulting minimum POS ?
expression is

(C+D)A+B+D)A+B+C)
Keep in mind that this minimum POS expression isequivalent to the original standard €

POS expression.

FIGURE 4-490 C K

00 01 11 10

L
Q]

A,8X
— <42




The Karnugh Map
* Converting between SOP and POS using Karnugh map

I EXAMPLE 4-33
Using a Karnaugh map, convert the following standard POS expression into a

minimum POS expression, a standard SOP expression, and a minimum SOP
expression.

(A+B+C+D)A+B+C+D)A+B+C+D)
(A+B+C+D)A+B+C+D)A+B+ C+D)

i3 + { ol \oct)

cD 355 D
AB 00 ‘ 0l . 11 10 AB 00 01 11 10
4
00 QJ (o] o) ool e |20 | o RAAECR
[ e il
0l m 01 0 | - \BCD
1 L(_») 1| o f «t— ABCD
4 .
10 m 10 0 | = D
o 4
— \
| cn
(a) Minimum POS: (A + B+ C)B + C + D)(B + C + D) {b) Standard SOP:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD




TSR R R R A R R R R R A A R A A A A A A
AR AR AR AR AR AR AR ARt At Rt

The Karnugh Map

* Karnugh map for 5 variables






The Boolean expression

Boolean expression of multiple variables can be written

F(A,B,C)= Y.(1,3,4)=1 this is equivalent to SOP
=A'B'C+A’BC+AB'C’
=001+011+100

Each terms called minterm

Or

F(A,B,C)=I1(0,2,5,6,7) this is equivalent to POS
=(A+B+C)(A+B’+C)(A’+B+C’)(A'+B’+C)(A+B’'+C’)
=(000)(010)(101)(110) (111)

Each term is called maxterm







Seven segment display

* Itisadisplay for the number, each one can display the number from 1
to 9, thus the seven segments display takes BCD as an input .

* Consists of seven LEDs

* The goal of this example
is to design a logic circuit
for each segment(a,b,c,d,e,f) .

(a) Common-anode

FIGURE 4-49

Arrangements of 7-segment LED
displays.

(b) Common-cathode



Seven segment display

TABLE 4-9
Active segments for each decimal -
digit. 0 abecdef - —1
| b, ¢ x
2 a b de g ’C
3 abcdg g il
4 boof g
5 acdfg ' e '
6 a.cdefg : J__..l__l
7 a b c ( =
8 abcdefg (b) Common-cathode
9 a b ocdf g
FIGURE 4-50
Block diagram of 7-segment logic 7-segment
and display. de;.:;;c:::ng Z =y
St} 5; ‘j e ol
-3 =i
g

T-segment display




/Dlgltal W

Seven segment display

Design procedure
1- Construct the truth table for the segments.
2- Mapping the truth table to Karnugh map.

3- Find the minimized Boolean expression in the form of
SOP or POS.

4. Convert the Boolean expression to digital circuit.

Note there will be for each segment output (a,b,c,d,e,f)
digital circuit to convert the BCD input to the
appropriate activation level for each output.



e Truth table

INPUTS

DECIMAL
DIGIT

[ M T - S o T - S — i~ A =S O

Seven segment display

C

(= 2N = TR = Tt~

—

xRk R K RN

2 XXX AR X

SEGMENT OUTPUTS

bl S

o e K K =

e

-0 O

P - S T T

e

o < Kl

Pl -

DIGIT SEGMENTS ACTIVATED

ab.cdef

0

N -

)

o B N N s

b, ¢

a b, de g

a

. b, c.d g
bocf g

acocdf g

acdefg

a, b, c

a.bcdef g
abcdf e

(b) Common-cathode



Seven segment display

* Karnugh map Digital circuit

Standard SOP expression: L . v
DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA

i o 00 0l 1 10
= B ol n o AB
00 | J rl \l 00
CA /

0l I q | . 0l

o lx [Lx X )
11

10 [\ 1 \X |8

\ y 10

Minimum SOP expression: D + B + CA + CA



10

0l

00

00
0l
10

11

Seven segment display

* Karnugh map for output b

—






. Logic Circuit

The combinational logic circuit : is a logical gate circuit in which the
output will be presented immediately upon input present.

. > Combinational
Fr imputs . 2
Ccircult

o OuUutputls

The sequential logic circuit : the circuit employ memory element

beside the logical gate.

Inputs ——

Combinational
Circuit

— —

Memory
Element

Outputs




o Example of combinational logic circuit

EXAMPLE 5-1

Solution

In a certain chemical-processing plant, a liquid chemical is used in a manufacturing
process. The chemical is stored in three different tanks. A level sensor in each tank
produces a HIGH voltage when the level of chemical in the tank drops below a
specified point.

Design a circuit that monitors the chemical level in each tank and indicates when
the level in any two of the tanks drops below the specified point.

The AND-OR circuit in Figure 5-2 has inputs from the sensors on tanks A, B, and C as
shown. The AND gate G, checks the levels in tanks A and B, gate G, checks tanks A and
C, and gate G, checks tanks B and C. When the chemical level in any two of the tanks gets
too low, one of the AND gates will have HIGHs on both of its inputs, causing its output to
be HIGH; and so the final output X from the OR gate is HIGH. This HIGH input is then
used to activate an indicator such as a lamp or audible alarm, as shown in the figure,

G ﬂo O
A 8 € . © G =
(&
s\ y(‘J .
L level © : - 2
ow-leve
indicator \ O \
§ s
\M-\'\




* Implementation of combinational logic

X = AB(CD’t EF) AD

AND

==

X = AB(CD + EF)

S /4

AND

3— X = AB(CD + EF)

RESS

(CD + EF) = ﬂi@ ABEF

TR Y N

\)

X =ABCD + ABEF

e

ABEF

L'
F

rd

(b) Sum-of-products implementation of the circuit in part (a)



* Combinational logic circuit from truth table

3 <,\/\vcv\“‘r'

INPUTS | ouTeuTt P oy

A B ot PRODUCT TERM — >
| | X = ABC@OABC =v 5o

0 0 0 0 ks .

0 0 | 0 b NN eye Stmple

0 I 0 0 1 1(”\ 5% f,évm L)

0 1 1 1, / o

1 0 0 1/ ABC e fo 5 Ji,-owm (¢ Jerms)

1 0 1 0

1 1 0 0 sy W

1 1 ! 0

L ed P

Y

U

\ &

—~



Combinational Logic Circuit

* Combinational logic circuit from truth table

Py WG s 5ot P owmin

Design a logic circuit to implement the operation specified in the truth table of Table #~

TABLE 5-4 oY 74
- \/e\/
INPUTS OUTPUT . ~ ~
A 8 c X | PRODUCT TERM = X =q)5f ! ;_@){; + AB%J &
0 0 0 0 R S
0 0 I 0 L. & A
0 1 0 0 l l
0 | : I ABC
| 0 0 0 \/\/
1 0 | ! ABC S A ¢ -SAT
I 1 0 l ABC I “")
I 1 I 0 ¢ _j \lfc':D__ :
\ L 5¢
[




* Combinational logic circuit from truth table

I EXAMPLE 5-4

Solution

TABLE 5-5

<N\

[ D) X
Develop a logic circuit with four input variables that will only produce a | output s vyl
when exactly three input variables are Ts. yies i |
il
Out of sixteen possible combinations of four variables, the combinations in which AR V- 2
there are exactly three 1s are listed in Table 5-5, along with the corresponding product "\ ' o
term for each.
D B \

PRODUCT TERM

l
.
0 1 1 1 \ ABCD \/\/\1/
1 0 1 | ( ABCD Y
I 1 0 I | ABCD I _)‘—”'
1 1 1 0 ‘ ABCD
' ? ABCD

The product terms are ORed to get the o
)
X = %CD + A?D + AB%‘Z ABC@

This expression is implemum.d in Figure 5-11 with AND-OR logic. )
A 5( /’

‘1"'"_./;'




Combinational Logic Circuit

* Combinational logic circuit from truth table

Minimize the combinational logic circuit in Figure 5-14. Inverters for the
complemented variables are not shown.

FIGURE 5-14

Solution  The output expression is
X =ABC + ABCD + ABCD + ABCD
Expanding the first term to include the missing variables D and D,

AB

00

01

cD
00

01

11 10

L

[

()

&

il




* Self study sections

5 Combinational Logic Analysis 244

5-3  The Universal Property of NAND and NOR
Gates 256

5-4  Combinational Logic Using NAND and
NOR Gates 258



* The operation of the logical gate for pulse input is similar
~tothe input of constant input.

Determine the final output waveform X for the circuit in Figure 5 29, with input

waveforms A, B, and C as shown.

T O a7 S i 5 £
LR . KLY LA e A
8 SO I T \ A Y |
Inputs < B S4B s 8w B B )3
“ il e e
e HI ni HiGF
Ranisntmhanlnt
A A
-1l 11 11 B R
Lo N 1] 1
I\l E LI bl

| -

FIGURE 5-29

]

&




. S
| 1 [ B 5
E@: AB + AB

ADO—’__ b o

£
O ° o ‘)/

0 /\

S =

\
Solution  When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as
shown in Figure 5-31. Notice that this is an exclusive-NOR circuit. The intermediate
outputs of gates G, and (5 are also shown in Figure 5-31.

]
)

|
-a

| : |
A\ G, output ! : : Ly
. l, ll | |
4 G, output : : :
- i —
Al XL LT LI N e




~M s
Q
%J
- - - - - P S S L P
L N
~
LR R R R R _E_E_§ J LR R B I - -
—_ — — e — " e - Ead b BB ] -
o
o ¥
-~
- LA B B B B B B L B _E B R _J_EL A R B N A _LAE B N LN _E R _ B _R
o e e st e ] o e il s e Sl CEtE B - o

-] —————— e R R

- - - kI L T R I P

VR « B W B gl S L

3

(a)
(b)




I EXAMPLE 5-13

Solution

Determine the output waveform X for the circuit in Example 5-12, Figure 5-32(a),
directly from the output expression.

The output expression for the circuit is developed in Figure 5-33. The SOP form
indicates that the output is HIGH when A is LOW and C is HIGH or when B is LOW
and C is HIGH or when C is LOW and D is HIGH.

‘$—X=(§+ B)C + fB: (.Z+ E)(‘+.('—‘D=.‘TC+EC+ (_.'l)

g

. FIGURE 5-33



I EXAMPLE 5-13

Solution

Determine the output waveform X for the circuit in Example 5-12, Figure 5-32(a),
directly from the output expression.

The output expression for the circuit is developed in Figure 5-33. The SOP form
indicates that the output is HIGH when A is LOW and C is HIGH or when B is LOW
and C is HIGH or when C is LOW and D is HIGH.

(Z-f- t_i)(‘ “ f‘D = .IC - EC +CD

. FIGURE 5-33



The result is shown in Figure 5-34 and is the same as the one obtained by the
intermediate-waveform method in Example 5-12. The corresponding product terms
for each waveform condition that results in a HIGH output are indicated.

¢ A 5 ch

- - ———

R R e
—— —— — — —— — — —— —
- — -l - ——— R — — -

__--_-___-_-fi_-

b e e e e ey ot e . oy e v o o

1 I

I ]

el | |

1 | I I

| | |
D 1 1 1 J
| I I | I I
8- = <28 | I |
X=AC+BC+CD . | :

+ FIGURE 5-34
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~Logic Fur

/ Combinational

e Adders: Half-adder, Full-adder

* Binary adding é/
/
0+0=0 -
pras
0+1=1 '
\

0= i Sthn Vcofm%
1+1=10

1- Half-adder : where itaccepts two binary digit input and results two
output sum bit and carrv bit

™M
>
bl

FIGURE 6-1
Logic symbol for a half-adder. Open — A X — Sum 0 0 0 0
file F06-01 to verify operation. Input bits )| % oot 0 | 0 |
Il Carry I 0 1
~— | I 0

I = sum
Cq = Output carry
A and B = input variables (operands)



Combinational

TABLE 6-1

Half-adder truth table. m
0 0 0 0
0 | 0 I B
! 0 0 1 <
EEs L o f M
Z = sum
= oulput carry g G2/
AandB = mputvmbles(opemnds) 4
Fe AL T T STy
[

e Half-adder circuit

FIGURE 6-2

Y=AGR=AB+AR

A = )
('\ltl‘ = "H
I —e—

Half-adder logic diagram.




/Legic FUW/

/ Combinational

The Full-adder: it accepts two input bit and one carry
bit and generates a sum output and carry output

FIGURE 6-3

A o Logic symbol for a full-adder. Open
file F06-03 to verify operation.




- - = — 2 o c o BN
-~ < - o - o W

Ll = S B R = — R 0D
o T R — S — RS — B — )

Combinational

—_ 0 O O e D

TABLE 6-2
Full-adder truth 1

C., = input carry, sometimes designated as C/
Coe: = OUtput carry, sometimes designated as CO




Combinational

M TABLE 6-2
A B Ci, Full-adder truth t
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 [ ‘ |1
1 0 1 1 0 87
: 1 0 1 0 el
1 I i I 1 =090,
. ‘ ! ‘
C., = input carry, sometimes designated as C/
Cow = OULpUL carry, sometimes designated as CO
L = sum
(] & H .
(= AB+ABBIC
i\l




—~

Combinational

* Construct full-adder from two half adder

Half-adder Half-adder
pF z
— A l—-A Z f—
— B Cwl B B C-.'vul

8]

et |}
- [
.

(a) Arrangement of two half-adders to form a full-adder

(b) Full-adder logic symbol

Full-adder implemented with half-adders.



Combinational

Parallel binary adder: to add two binary numberwith
number of bit more than one, a number of full adders
equal to the number of bits.

s
. S

Carry bit from right «

1 ;A [0 L.
F 01 M A B kel
100_ Rt
1 this iS¢, the k_ C-.w! E COLI E
L from
Ol olumi



Combinational

* Four-bit parallel adder

>
[ —1 1 p—
A; By Ay By \, B, \, B, Rinur.\J —2 |, Sodl2 A
numberA | =—i 3 3 | | sum
\l\ < \—4 4
[ [ ] [ l—_v\kj_ —1
A B G, A B Cy A B G, A B G, I Binary | —1 2 B
(MSB) (LSB) number B L—— 3
Conr X Cou > Cout z Coun Z —14
C, _l _I(‘, _I( ¥ I _l( | Input Cy C; Output
¥ £, 5, ¥ s o
(a) Block diagram (b) Logic symbol

FIGURE 6-9
A 4-bit parallel adder.




* Four-bit parallel adder truth table

TABLE 6-3
Co A. 8. = & Truth table for each stage of a 4-bit
0 0 0 0 0
parallel adder.
0 0 1 I 0
0 1 0 1 0
0 1 1 0 1
1 0 0 I 0
1 0 I 0 1
I I 0 0 I
I I

* Example of 4bits adder



. : Cuncti
Combinational

* Four-bit parallel adder

I EXAMPLE 6-3
Use the 4-bit parallel adder truth table (Table 6-3) to find the sum and output carry for

the addition of the following two 4-bit numbers if the input carry (C,_,) is 0:

A_;A_';A:.A| = 1100 and B4B3B:B| = 1100

Solution Forn=1:A,=0,B,=0,and C,_, = 0. From the st row of the table,
X=0 and C, =0

Forn =2: A, = 0,B, =0, and C,_, = 0. From the 1st row of the table,
=0 and G, =0

3:A; = 1. B; = l,and C,_, = (. From the 4th row of the table,

Z; =0 and C{ =]

For n

Ii

Forn=4:A;=1,B,= 1,and C,_, = 1. From the last row of the table,
24 =1 and C4 =1
C, becomes the output carry; the sum of 1100 and 1100 is 11000.

Related Problem Use the truth table (Table 6-3) to find the result of adding the binary numbers 1011
and 1010.
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* Four-bit parallel adder

FIGURE 6-10

Vee
Four-bit parallel adder.
(16)
(5) | b
3) |,
14 A
(14) 3 | 4
(12) {4 ) _“_)_,
by F p
(B) | P 3 (13)
{2) 2 4 (]0}
(19 |, B
(an |
! 14
(7) G ¢, (9)
(8)
GND

(2) Pin diagram of 74LS283 {b) 74L.S283 Jogic symbol



* Four-bit parallel adder

Fu

Combinational

I

Hﬁ

B, B, B» B i; 4 A, A

}

C

32!4\2

-
P
4 3 1

\_,._/

-

C.

a3
(

3 £
0 oy

=g

l 3

2.1

(a) Cascading of two 4-bit adders to form an 8-bit adder

43,21 3 1'G, 2l ‘s‘_-'l.tl'l [ fady B ) IRV < i ) B o) -
So e — —_——
i} y A B ‘
Cout 43 21 Coin ¢ 321 Coot 4 3 | Cout
BIE R i SR VS [ Uk Sz ) 1] 1Y



* Adderapplica

Vee

é 1.0 k2

s AN
Yﬁsé

Combin

tion : sim

Six-Position Adder Module

y—C—0

Ile vot 1n y

Fu

onal

stem

B
e S— ) o) 1 —
("lh | &
. YESO ‘—i
Full-adder 1
— O—0
NO O0——— b :
O A
~ YESO 5
S e —0- B
: Con [
NO Oy =0 Cia i
W YES O = Full-adder =
O >0 YES
NO o—
L \ y
6 YES O—<= o 7
| i / y
O B
NO 0—— ¢
~ (. our
A ra— e n
\ YES 0=
L ey Full-adder 3
NO o— T l ‘
Switches L &= ], | '

O "o —.'S
ot
AD ves
l———1 BCD % =
7-scg:ncm ”AM‘ , ’
decoder _M“
i L
-
NO
B‘l;l) m —
T-segment W , '
decoder —M—‘ , '
I B
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/ Combinational

* Comparator (<, =, >,)

1- Equality (A=B)
EXOR gate can be used as comparator

4)’D__ ) The input bits are equal. :):D—— The input bits are not equal.
D— T'he input bits are not equal. ® - The input bits are equal.



Combinational

* Comparator (<, =, >,)

1- Equality (A=B) = =
EXOR gate can be used as comparator high

| : /J T
) The mput bits are equal. The input bits are not equal. i ,,; er

‘ ‘)D; The input bits are not equal. 4)D4 The input bits are equal.

e G C ‘ /”"A % @ ’/) ’
Two bit comparator o e




Combinational

* Comparator (<, =, >)

1- Inequality (A>B) or (A<B)

To determine an inequality of binary numbers A and B, you first examine the highest-
order bit in each number. The following conditions are possible:
1. If A, = 1 and B; = 0, number A is greater than number B.
2. If A; = D and By = |, number A is less than number B.

3. If A; = B, then you must examine the next lower bit position for an inequality.




; Cuncti
Combinational

* Comparator (<, =, >, <, 2,)
1- Inequality (A>B) or (A<B)

THE 74HC85 4-BIT MAGNITUDE COMPARATOR

FIGURE 6-24

The 74HCSS is a comparator that is also available in other IC families. The pin diagram and
logic symbol are shown in Figure 6-24. Notice that this device has all the inputs and out-
puts of the generalized comparator previously discussed and, in addition, has three cascad-
ing inputs: A < B. A = B. A > B. These inputs allow several comparators to be cascaded for
comparison of any number of bits greater than four. To expand the comparator, the A < B,

Pin diagram and logic symbol fo
74HC85 4-bit magnitude
comparator (pin numbers are in
parentheses).

(10) o COMP
rthe - 12)
_ (13) A
B s |,
A=B 4 | 5
m : ( (3' A>B A>HB '(;' )
A>By, iy ‘ 1 ‘ : A=B A=B o * Outputs
. TS 1 ‘2| (?l 1
‘A > Buo( = ;o 44 < B A < B /
9 1.
A=B 0
ol (ll)
A<B(ml “4) B
GND (1) 3
; Vee( 16}, GND(8)

(a) Pin diagram (b) Logic symbaol
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* Comparator (<, =, >, <, 2,)
1- Inequality (A>B) or (A<B)

Use 74HCS5 comparators to compare the magnitudes of two 8-bit numbers. Show the
comparators with proper interconnections.

Two 7T4HCS8Ss are required to compare two 8-bit numbers. They are connected as
shown in Figure 6-25 in a cascaded arrangement.

An 8-bit magnitude comparator 0 COME ) COME:
Ging Bo4HES T T R S T I | B
A A
3 —_—3
—{A>B A>B A>B A>B P
+5V A=B A=B A=B A=B|— i
e—|A<B A<B A<B A<B |——
0 —A0
B B
3 iy
_L T4HCBS T4HCS8S

Expand the circuit in Figure 6-25 to a 16-bit comparator.



- logic Function and Function

Combinational

* Decoder : a digital circuit that can detect the presence
of certain binary combination.

Examples :
:&’_ i ;{>'L
= =10
::'4>‘j:>
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* Decoder:
* 4bit to 16 line decoder

TABLE 6-4
Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

DECIMAL | BINARY INPUTS | DECODING OUTPUTS

DIGIT ey e R FUNCTION 10 11 12 13 14
0 IS ) MR T T B i 7 TN B e et B A (R R ey SRS RS LReh e (R
| 0 [y e Nl Y R T e o A Tt (s Sy e 1 41 e e, B RS e LR O
2 4R R T TP TG Vo N IR B2 e D G WU INE ) sy O e e s IS |
3 o T, L ¥ U BN S U D U A NS e o o s U] bt GRS O
4 (1, ERE S TRV T YL U LIRS R W R T VA T (TR TR S T LIS (S (S|
5 O .4 0 STV ot L T G e S VN + R O AL R S (o e Lot Ry e
6 IRy | IR 7 S T T LS R VAR T Ly KRt SO [ (G S LTI - i G 07 [ Py
7 bt LR (e PSS EoE | T R S T CR R [ SO | e (i) MR (S M) S (RS L |
8 B R R ) RN Dt N (LS et T Tl ([ (Sl 1 SR et S (=) (R
9 L P 710 AT e S e FER SN SEME G TN I | SR (T () (Ao, (S (U
10 S | S I ) PR TR L TR e e o St R DO LRSI [ LT | R S (gt L) o
11 y G R R AAA A, i e M PR e BN VS Sy Lo R BT R I (] R
12  C) US| e o Rr TR T T R i I, TR A N (O ) e (e ) o N (R |
13 T () S | o v S (ST GAR Kar VRly [ D Pl D) Ui (B LSy s ) Sl (Sets
14 b 0 e B ) ZS T | Yo RS B Gl (e L (SR Ve N TR N ) ) (VR 1
15 L2 U | T | P\ ) e S e (A SO VO TN TERrT) A Gl et B st LAty |
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Combinational

5 =3 =]

THE 74HC154 1-OF-16 DECODER

= The 74HC154 is a good example of an IC decoder. The logic symbol is shown in Figure
6-29. There is an enable function (EN) provided on this device, which is implemented with
a NOR gate used as a negative-AND. A LOW level on each chip select input, CS; and CS,,
is required in order to make the enable gate output (EN) HIGH. The enable gate output is

FIGURE 6-29 e N
Pin diagram and logic symbol for the 0 P
74HC154 1-of-16 decoder. b2

s 3)
(4)
Ip——
5
4 (J)
YO Vee 5 -(_gl_
B 23
Y1 AD o —=2 ¥ 61
o v (22) (8)
Y2 Al —={2 7p———
N . (21 ()
Y3 A2 z 4 s D——
7 A v 20 Lo o b (10)
& Cs2 10:>':+
== — (13)
Y6 CS1 1 p—
eges —— 12 (14)
Y7 Y15 e
Ys Yia 13 :1;)
Y9 Yi3 14 ;'
-— (17)
Y10 Yi2 g5, U8 d 2 | s
e (
GND Yl S, 9) EN

(a) Pin diagram {b) Logic symbol



l EXAMPLE 6-9
A certain application requires that a 5-bit number be decoded. Use 74HC 154 decoders

to implement the logic. The binary number is represented by the format A ,A,A,A A,

Solution  Since the 74HC154 can handle only four bits, two decoders must be used to decode
five bits. The fifth bit, A,, is connected to the chip select inputs, CS; and CS,, of one

decoder, and A, is connected to the €S, and CS, inputs of the other decoder, as shown
in Figure 6—30. When the decimal number is 15 or less, Ay = 0, the low-order decoder

is enabled, and the high-order decoder is disabled. When the decimal number is
greater than 15, Ay = 1 so A; = 0, the high-order decoder is enabled, and the low-
order decoder is disabled.

FIGURE 6-30

A 5-bit decoder using 74HC154s.

BIN/DEC

Low-order
0

4l
E

w0

LT

= R LY T T R o i
=

%8 & 1 -
=
=)

]

p— 12
===
o— 14
D— 15

—
[

7
»

EN

74HCI154

cs,

L N

BIN/DEC

EN

oL N s W e - O

—
WVoa e - O

High-order
D— 16
O— 17
D |8
D— 19
o—— 20
D— 21
p—122
D—— 23
P—24
p—— 125
D26
D——27
D— 28
[>—— 20
D— 30)
D— 3]

T4HCI54
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* Encoder: is a digital logic circuit that reverse the
decoder function ..

Example : The Decimal to BCD . .

BCD CODE
" i e Ao

DECIMAL DIGIT

(L C 0 0 0 0 0
DEC/BCD

. " 1 0 0 0 I
— 1 2 0 0 1 0
— i 3 0 0 1 1
T - 4 0 I 0 0

ol | —1§ 2f— | BcD
;| _ 5 41— .ﬂp:" 5 0 l 0 ]
—Te 8 |— f 0 1 1 0
. I 7 0 1 I 1
B - 8 | 0 0 0
9 1 0 0 1
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e Decimal to BCD Encoder

Digital circuit
e
o> D
. I Ly @ (LSB)

BCD CODE
DECIMALDIGIT | A; A, A,
0 0 0 0
1 0 0 0
2 0 0 1o
3 0 0 Lo
4 0 v 0
5 0 )
f 0 e
7 0 R
8 v 0 0
9 1v 0 0

Ag
4]

l o
0
1l «—
0
l o
0
1 —

D=0

] —
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Yoo

(16)

HPRI/BIN
El EO
GS

B O

~N OB W -

(8)
GND

Combinational
* 8 lines to 3 lines encoder (741.S148)

=, O u\fa}\

The 7415148 is a priority encoder that has eight activc-LQW inputs and three active-LOW
binary outputs. as shown in Figure 6-40. This device can be used for converting octal in-
puts (recall that the octal digits are 0 through 7) to a 3-bit binary code. To enable the device,
the £/ (enable input) must be LOW. It also has the EO (enable output) and GS output for
expansion purposes. The EQ is LOW when the £/is LOW and none of the inputs (0 through
7) is active. GS is LOW when Ef is LOW and any of the inputs is active. This device may
be available in other TTL or CMOS families. Check the Texas Instruments website at
www.ti.com or the TI CD-ROM accompanying this book.
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e Expand the 8 lines to 3 lines encoder to 16 lines to 4 lines

UL e UL g o

= \

e Ay ey A A i,
P —

741L.S148 741.S148

(z0) P3() (oA )

qs

Skl e

¥as
C
o]
7/§
A
: d
N
0



FIGURE 6-32

A simplified keyboard encoder.

o)
Qe

+V

Fu

Combinational
* Encoder Application (Key board )

All BCD complement lines
are HIGH indicating a 0.
No encoding necessary.,

[ VO
: 80|_ ; I- \'\'VJ—
HPRI/BCD ac
)¢ ) A1 ",
%R, éR ég Ei L
da o — A
: 3 2p0—4, | s
( :.() 4 O-—ﬁ_ > BCD compl
A s ek 9 8 o— -
{ ol L —ds
R, % R, R, 74HC147
iv /
i ¢
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* Code converter : is a logic circuit that convert from one code to

another .
Example: BCD to Binary conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion
process is as follows:

1. The value, or weight. of each bit in the BCD number is represented by a binary
number.

2. All of the binary representations of the weights of bits that are 1s in the BCD
number are added.

3. The result of this addition is the binary equivalent of the BCD number.

(MSB)  BINARY REPRESENTATION

BCD BIT BCD WEIGHT 64 32 16 8

Ao I 0 0 0 s ! i
A 2 0 0 0 e S 0
A 4 0 0 0 1 S S b 0
A 8 0 0 0 NS 0
B, 10 0 0 0 o S 0
B, 20 0 0 1 T B0 0
B 40 0 I 0 [Aekes0as 50 0
By 80 1 0 1 P s 1 A 0
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* Code converter : is a logic circuit that convert from one code to

another .

IEXAMPLE 6-12

Solution

Combinational

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to

binary.

Write the binary representations of the weights of all Is appearing in the numbers, and

then add them together.
80 40 20 10 8 4

7 SO+ 1A (R § e ) R |
\

—
—

‘ —= 0000001
‘ » 0000010
0000100

0011011

80 40 20 10 8 4 2 |
| g O 1 T 6 D0
|
’ ’ > 0001000
0001010
= ~ — + 1010000
1100010

1
2
4

20
Binary number for decimal 27

8
10
80

Binary number for decimal 98
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* Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

Example: 1 of 4 data selector

DATA-SELECT INPUTS

S, So | INPUT SELECTED
0 0 D, —o - ‘l
O l Dl Il o | X = -l l
3
I 0 D, )y
. —13
I I D,

Da - e g " . B \

(_:) ¥ I}rhg_lsu + 1{)'5:5“ T JF:":"-'l’r's’n + Jr}m-‘lr*f’l:tl S
S] \-}>6\ \ 3 ~—
e — e



Example: 1 of 4 data selector

DATA-SELECT INPUTS |

s, So ' INPUT SELECTED

0 0 D,

O l D, I‘l o | .
I 0 D, o

I I D,

Y = DyS,S, + D\5,Sy + D:8,5p + D35,y

Combinational

Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

IR




Combinational

* Multiplexers (MUX): it is a digital device that allows digital
information from different sources to routed into single line

Example: 1 of 4 data selector

DATA-SELECT INPUTS |
S, So ’ INPUT SELECTED

Y = DyS\8, + DiS\S, + D,8,8, + DsS,5,
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Combinational

* Example : 1 of 4 data selector

¥ = D[SJSJ e DJE‘iSU + er:“3’115-13 + D,5\8,
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» Example : 1 of 4 data selector

| EXAMPLE 6-14
The data-input and data-select waveforms in Figure 6-48(a) are applied to the

multiplexer in Figure 6-47. Determine the output waveform in relation to the inputs.

FIGURE 6-48

(a)

Solution  The binary state of the data-select inputs during each interval determines which data
input is selected. Notice that the data-select inputs go through a repetitive binary
sequence 00, 01, 10, 11,00, 01, 10, 11, and so on. The resulting output waveform is
shown in Figure 6-48(b).
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* Example : 74HC157

SEng
s
FIGURE 6-49 o2
Pin diagram and logic symbol for the DETAARLECT
74HC157 quadruple 2-input data 1A
selector/multiplexer. IB
1Y |4
2A [5
2B
2Y
GND |8

{a) Pin diagram

it L,;,%S IQ%QVMA,//C/V\

Y 191(5 MZ“’W‘J/V\

V.C(ﬁ t'—:l.'. hile ( I o ][ EAI

Data ———
select
1A
|B
2A
2B

MUX )

IR A

A
B

(13)

{b) Logic symbol
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(a) Pin diagram

Functi

Combinational
* Example : 74L.S151 8-input data selector

—
0
G2

MUX

-
—

~ AN W B W N -

(b) Logic symbol

e

(3)

(6)
D——— )

MULTIPLEXERS (DATA SELECTC

FIGURE 6-50

Pin diagram and logic symbol for the
74L5151 8-input data
selector/multiplexer.
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W
Use 74LS151s and any other logic necessary to multiplex 16 data lines onto a single

data-output line.

Solution  An implementation of this system is shown in Figure 6-51. Four bits are required to
select one of 16 data inputs (2* = 16). In this application the Enable input is used as
the most significant data-select bit. When the MSB in the data-select code is LOW, the
left 74L.S151 is enabled, and one of the data inputs (D, through D) is selected by the
other three data-select bits. When the data-select MSB is HIGH., the right 74L.S151 is
enabled, and one of the data inputs (Dg through D, ;) is selected. The selected input
data are then passed through to the negative-OR gate and onto the single output line.

FIGURE 6-51
A 16-input multiplexer.

1/6 T4HCO4

(o E';MUX ENMUX

S3525, s, : i _C.O LN o | one

O x xy (o—1) S, ® 2 2 ' L vl B—
Al

(4}
AR = — 5 ’
L (g ) Du_ 0 D\'— O
l)I | D, 1
Dy—2 Dy, 2
D,—3 Dy—3 ¥
D, 4 Y Dy, 4
Dy 5 D, 5 :
by 6 D, 6 1/4 T4HCO0
D, 7 Dl> 7

74LS151 74LS151
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FIGURE 6-52 LOW selects A 5A,A Ay
Simplified 7-segment display —— HIGH sclects B3 8,8, B,
multiplexing logic. »
(. [ ) 7 T I
. Data
select
:C EN BCD/T-seg
———1Gi
- : .
B, 1 c &
A i B d =
B(
1 & ¢ L 2
B, — f 7
A | — D £
B, ——
74LS157 TALS4T
LD el 1 Ay Common-cathode .-l ,-l
MSD BCD: 83 BIB 1 BO dlspla)"& , ' , l
. =3
LOW enables LSD B digit A digil
HIGH enables MSD (MSD) (LSD)
Decoder
4 A, 1Y, o—
&
T
*Additional buffer drive i p— |
circuitry may be required. GL(EN) v, b \
LLOWSs epable common-anode
T-seg display.

174LS139



Application

MUX
Y EN
A 0}
1, (JQ
As 2
1 ® 0
LDQ I
o2
+5V 3
4
5
6
—1 7
T4LS151

Fu

Combinational

t ‘l.,l\‘.\‘r'.‘, v ‘, \'\ A

4 ArdrAiAn + AA-AAN

+AASA Ap +AsAA Ay

DECIMAL
DIGIT  |A,
0 0

I 0

2 0

3 0
4 0
5 0

6 0

7 0

8 |

9 1
10 l
11 1
12 |
13 1
14 |
15 |

INPUTS
A; Ay
0 0
0 0
0 1
0 1
1 0
| 0
1 1
1 1
0 0
0 0
0 1
0 1
1 0
1 0
I I
1 I

Ay

o e

S QD e O -

OuUTPUT
)



PFLogic Function and Function—

Combinational

Demultiplexer (DEMUX) : It takes digital information from
one line and distributes it to a given no. of out put lines.

Example:

DAL
FIGURE 6-55

A 1-line-to-4-line demultiplexer.

3] @J
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Example:
~ FIGURE 6-56 b
ata ===
in o : T '_J'
So1 T :
s | -
ln l' o B i i
I b o 1
| i | | | 1 | ' 1
AR S S e
o " [ R R, Y O
L) L) L) ' . ' '
7 S N S A 1
=1 et =
D e tgel Y i ] 1
Wk e (Y S
Fana i sepial I A R

Solution  Notice that the select lines go through a binary sequence so that each successive input
bit is routed o D, D,, D,, and D, in sequence, as shown by the output waveforms in
Figure 6-56.
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Example: 74HCi54

! FIGURE 6-57

DEMUX i
P2, 0 The 74HC154 decoder used as a

P, 1 demultiplexer.
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~logic Function-ane Function

Combinational

Parity generator/checker:

Parity : is the number of 1’s in digital information either
even or odd.

Used to detect the error in transmission.

Basic parity logic :

In this circuit D
the out put1if the > Z)D'D =
parity is Odd (a) Summing of two bits (b) Summing of four bits

o if the parity is even.



Combinational

(9 d\rl"’_’j )Ol(‘

e e oG o
& : “
/—\ == | 00{0| ’Darll’j

'7// 100\6

RS
gvewm O G]D

D T M ) \
FIGURE 6-58

)
) Jﬁ ot Ay : *:jg;p[:}_x
(o A, :):D_ 2 Ay

(a) Summing of two bits (b) Summing of four bits
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Example 7415280

(8)
(9) i Z
10 5
(10)
(11) &
- 5
Dt 12) b 2 v Bve
nput ]; E L) B
T ¥ O
el
(0) G
| b
(4)
!

(1) Tradinonal logic symbol

FIGURE 6-59

3|f LV en

Seven ~JL5 ,ﬂ OJJ
J(/’ ﬁ '-Q O‘JO’
L

Number of Inputs

Sl
uui/&/’o

A=l That Are HIGH

0,2,4,6,8
1,3.5,7,9

(b) Function table

Qutputs
3 Even X Qdd
H 1.
L H

The 74L5280 9-bit parity generator/checker.
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- Latches, Flip-Flop and timers

* The Flip-tflopapplication
* Parallel data storage

\'5\(-6/(_/

FIGURE 7-36 ‘ : \(2\66 6\(6 ’
: . : D, et D — 0 {,\l‘,\
Example of flip-flops used in a basic ' ] YI\
register for parallel data storage. ?
= C
Do 0
1
D,
D [
Dy
0
o = C l
I I lel CLR , :
HAtS |
I
I I
X CLK |
D [ o il :
! e —
|
; Q) 1
® > | ”I
I _—
@ | ‘
R ()'L—l
|
.J ! |
| g L —
D 5 e
|




- Latches, Flip-Flop and timers

* The Flip-tlopapplication

* Frequency division : Yooy €
Y bW

FIGURE 7-37

The J-K flip-flop as a divide-by-2
device. Q is one-half the frequency
of CLK.

CLK
\/\L
e = p
q 2/ faw

CLK _[LALALALRNLFLILL
= R e b e e
0 o O S o, o,
-1 \21"4(
To\( — \,

AN



Latches , Flip-Flop and timers
* The Flip-tflopapplication

* Frequency division

| EXAMPLE 7-10
Develop the £, waveform for the circuit in Figure 7-39 when an 8 kHz square wave

input is applied to the clock input of flip-flop A.

—

HIGH

o)

FIGURE 7-39

9- ®
E V\/l fi/\ 'V|
L— J 0, ./ Qp ./ Q¢
= C \‘ > C —I > C
=K — K —K
Flip-flop A Flip-flop B Flip-flop C

Fa =

Solution  The three flip-flops are connected to divide the input frequency by eight (2° = 8) and

the f,,, waveform is shown in Figure 7-40. Since these are positive edge-triggered flip-

flops, the outputs change on the positive-going clock edge. There is one output pulse
for every eight input pulses, so the output frequency is | kHz. Waveforms of Q, and

Qy are also shown.

\ V(\’\l



Latches , Flip-Flop and timers

Frequency division

| EXAMPLE 7-10
Develop the £, waveform for the circuit in Figure 7-39 when an 8 kHz square wave

input is applied to the clock input of flip-flop A.

HIGH ® *—
a4 QA = J QB _I 1’ QC /ml
fia > C > C > C
—tK — —K
Flip-flop A Flip-flop B Flip-flop C
f in = I
| | |
Qs -t r
I | i
4 . | e o o
B . | I \ I
! : 1 H | : : : L
four | : ! :




Latches , Flip-Flop and timers

& P

Counting
o O
' 033
- FIGURE 7-41 1 o
Flip-flops used to generate a binary @ \
count sequence. Two repetitions (00, l \ |
01, 10, 11) are shown. —J — l— J Qy
™\
CLK ———éﬂc = C
— R K

v g
Binary Binary
sequence sequence



Latches , Flip-Flop and timers

Counting

EXAMPLE 7-11

Determine the output waveforms in relation to the clock for Q,, QO and Q in the
circuit of Figure 7-42 and show the binary sequence represented by these

waveforms.
1 ®
I o9 l— 7ot |/
CLK > C o = o N e
K o £, € K
FIGURE 7-42

4 (58
Up
e Msp

Solution  The output timing diagram is shown in Figure 7-43. Notice that the outputs change on
the negative-going edge of the clock pulses. The outputs go through the binary

sequence 000, 001, 010, 011, 100, 101, 110, and 111 as indicated.




Latches, Flip-Flop and timers

One-shot:
Is monostable multivibrator

Figure 7-44 shows a basic one-shot (monostable multivibrator) that is composed of a
logic gate and an inverter. When a pulse is applied to the trigger input. the output of gate
G, goes LOW. This HIGH-to-LOW transition is coupled through the capacitor to the input
of inverter G,. The apparent LOW on G, makes its output go HIGH. This HIGH is con-
nected back into G, keeping its output LOW. Up to this point the trigger pulse has caused
the output of the one-shot, Q, to go HIGH.

The capacitor immediately begins to charge through R toward the high voltage level. The
rate at which it charges is determined by the RC time constant. When the capacitor charges
to a certain level, which appears as a HIGH to G,, the output goes back LOW.

To summarize, the output of inverter GG, goes HIGH in response to the trigger input. It
remains HIGH for a time set by the RC time constant. At the end of this time, it goes LOW.
A single narrow trigger pulse produces a single output pulse whose time duration is con-
trolled by the RC time constant. This operation is illustrated in Fieure 7-44.
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One-shot: ) ¢'¢C
Trigger J_‘r H' I—I/

g vk )

(a) I ( }
These pulses are
w“ ignored by the
g rf P Y i I
r~ —ERy— e e
(b)

A one-shot can be triggered before it times out. The result of retriggering
s an extedsion of the pulse width as illustrated in Figure 7-47.

e 'Lt ReuMT

(b) Iy

hon -Vc.l',/.'j jw“’
hot.,

ont -3

RC

bl «



Latches , Flip-Flop and timers

One-shot:

THE 74121 NONRETRIGGERABLE ONE-SHOT

The 74121 is an example of a nonretriggerable IC one-shot. It has provisions for external R

and C, as shown in Figure 7-48. The inputs labeled A,, A,, and B are gated trigger inputs.
The Ryr input connects to a 2 k€2 internal timing resistor,

Setting the Pulse Width A typical pulse width of about 30 ns is produced when no ex-
ternal timing components are used and the internal timing resistor (Ryyy) is connected to
Ve, as shown in Figure 7-49(a). The pulse width can be set anywhere between about 30 ns
and 28 s by the use of external components. Figure 7-49(b) shows the configuration using
the internal resistor (2 k€2) and an external capacitor, Part (c) shows the configuration us-
ing an external resistor and an external capacitor. The output pulse width is set by the val-
ues of the resistor (Rpyy = 2 k€2, and Rgyr is selected) and the capacitor according to the
following formula:

y = 0.7RC[:_x'r

where R is either Ry or Rexr. When R is in kilohms (k€2) and Ceyy is in picofarads (pF),
the output pulse width 1y, is in nanoseconds (ns).

Equation 7-1
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Latches , Flip-Flop and timers

3)

A >1 & ) g
,-\_, _(4_)h (6) Q
) =
A I I (5)
L@ > Y ) B s
" :9> e
Ric:
o e RI o RI  CX RX/CX
Crxr &b cxX ol (9) (10) (1)
Rexr/Cexr RX/CX

(a) Traditional logic symbol

Rt Cixr Rexr/Cexr

(b) ANSKIEEE std. 911984 logic symbol
( X = nonlogic connection). “1 7L is the
qualifying symbol for a nonretriggerable

e B | & |1
Ay —
>
B —ﬂ’
RI CX RX/CX
Vee

(a) No external components

one-shot.
. FIGURE 7-48
Logic symbols for the 74121 nonretriggerable one-shot.
dy—tp St | & Jire A—S s | e Ly
— 0 Ay —r — Ay — o —— 1
> >
B — /i b —1h
“==e i S
RI CX RX/CX Rl CX RX/CX
T — I



| at~rhoacec Elin_FlAan anAd timarg

O_ AL T T
: A (1) el A 2) &Q
p, BEiE et g, I
B, =t i) (9) v
: Risy = RI L© 5
e G0 ® - 0
" /C.m an T B Rl CX_RX/CX
T © a0y b
CLR L), i
' Ry Cexr Rexi/Cixy
(a) Traditional logic symbol (b) ANSIIEEE std, 91-1984 logic symbol
(X = nonlogic connection), JL is the
qualifying symbol for a retriggerable
one-shot.
FIGURE 7-50
Logic symbol for the 74L5122 retriggerable one-shot.
—_—
—

s &
O»‘\ A/.

e
A minimum pulse width of approximately 45 ns is obtained with no external compo- §\/“
nents. Wider pulse widths are achieved by using external components. A general formula

for calculating the values of these components for a specified pulse width (1) is
0.7 == \r\ﬂk
> kS & 8

where (.32 is a constant determined by the particular type of one-shot, R is in k€2 and is ei-
ther the internal or the external resistor, Cgxy 18 in pF, and f is in ns. The internal resis-

tance isd can be used instead of an external resistor. (Notice the difference
between This formula and that for the 74121, shown in Equation 7-1.)

Equation 7-2
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One-shot:

I EXAMPLE 7-13
Determine the values of and\Cgxy Yhat will produce a pulse width of 1 ps when

connected to a 74L.S122. L —
il
Solution  Assume a value of and then solve for Ry The pulse width must be
expressed in ns and Cgyy in pF. Ry will be in k€.

0.7 0.32Rpx1C,
tw = 0.32Rex1Cexrl 1 + —— | = 0.32Rx:Cexr + 0.7(——"—’1—‘?-“—)
R Rexr

= 0'32REXTCEXT o= (0'7)(0'32)CEXT
R IS ,w - (0.7)(0.32)CEXT i ’w -
2 0.32Ckxr 032Cer

1000 ns
= iaoistoms M1 ~|M8 kQ

Use a standard value of

Related Problem Show the conpectio or a 74L.S122 one-shot with an output
pulse width off 5 us. Assume Cpxr = 560 pE

0.7
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- Latches, Flip-Flop and timers

Timer 555:

Is a device can be used as either mono-stable multi-
vibrator or as an stable multi-vibrator (oscillator).

FIGURE 7-53 Voe

Internal functional diagram of a 555

timer (pin numbers are in
parenthesis). §
(6)
Ihreshold : +
(5)
Sk ]
Output
- buffer




Latches , Flip-Flop and timers

Timer 555:

3) (;IL

S N

(5)

- FIGURE 7-54 +V
cc
The 555 timer connected as a one-
shot.
e; 1(4) (8)
RESET Vee
U, DISCH
(6) 335
THRESH our
(2)
L o TRIG CONT
GND

I EXAMPLE 7-14

Solutio
DATE  she ok
Related Problem

L >

4R

rrstam

0.01 uF
(decouplirfz optional)

What is the output pulse width for a 555 monostable circuit with R, = 2.2 k€ and

C| = (.01 [LF?

From Equation 7-3 the pulse width is

1.1(2.2 kQ)(0.01 uF)

For C, = 0.01 pF determine the value of R, for a pulse width of 1 ms.



/\
Latches , Flip-Flop and timers
Timer 555 I e i

7-60. Determine the frequency of the output and the duty cycle.

» FIGURE 7-60
sy +3.5V

TN Open file FO7-60 to verify
C/ 5 operation.
[7) —_
{6 ( 6 R, I lon

I 0.01 uF
Solution  Use Equations 74 and 7-7. /
\ = 1.44 8 1.44 S
— @[ (R, + 2R,)C,  (22kQ + 9.4 k0)0.022 uF i : )

R, TR, 2.2k + 4.7k}
e | (e % = 100% = 59.5%
Pury:cycle (R, + 2R2)100 (2.2 KQ + 94 m) {j
Related Problem Determine the duty cycle in Figure 7-60 if a diode is connected across R, as indicated
in Figure 7-59.
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Sequential logic system design
W
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Solution

Design a counter with the irregular binary count sequence shown in the state diagram
of Figure 8-32. Use J-K flip-flops. 3 _\< ‘L\ 0 &,( o\’
’f

FIGURE 8-32 @ N %Ygi'e/ \!0\\//\
P oo el
= \('/ )

Step 1:  The state diagram is as shown. Although there are only four states, a 3-bit
counter is required to implement this sequence because the maximum bmary
count is seven. Since the required sequence does not include a possible
binary states, the invalid states (0, 3, 4, and 6) can be treated as
in the design. However, if the counter should erroneously get intd an invalid
state, you must make sure that it goes back to a valid state.

Step 2: The next-state table is developed from the state diagram and is given in
Table 8-9.



TABLE 8-9

Sequential logic system design

Step 2: The next-state table is developed from the state diagram and is given in

Next-state table,

Table 8-9.
QPRESENOTSTATE 1NEXT;)STATE v , c o \ 2\
2 1 1 U \ O )
¢
\ 0 \ ;)
iy

\

TABLE 8-10
Transition table for a J-K L TRONSHTION !
flip-flop. N : S - : \/
aad y - 0 0
0O = O 6\1\""" 0 — 1 1 X ! el
o \ 1 S 0 X 1

1 S I X 0 &

= SN SO o 1%

\ | v 0 \ \ =\ 0 o
f\\_\ \ )d_l (o]




Sequential logic system design

Step 4:  The J/ and K inputs are plotted on the present-state Karnaugh maps in Figure
8-33. Also “don’t cares” can be placed in the cells corresponding to the
invalid states of 000, 011, 100, and 110, as indicated by the red Xs.

QN
-‘/’/
FIGURE 8-33 D 0 N 5
(722 el 0,0, Do o W 0.0\ 0 1
o\mb\\(x" w|x|o| 00 ()T—_I\Li‘__./l 00 ()-(_?ﬁ%loo 2
Y o[- ofx]x] af[t[x]}] o ) =
2 7 Sd I Q_XJ‘KO\/\ x| x n x| x [} . e =V
5 9\J | x|x | o | 1) loxx;o\ob;\'\
o ? FICTEVEY sy n - @@ T <
076)(( g J, map J, map Jymap \ o! e =¥
-
6° L4
xe?
> 0\ ‘/ 2,0, % 0 1 0,0, o 0 1 2,0, 000 : Q" o\ \ ‘D J:‘L
\/O.c. 00| x | x oo |(x | x k- oofx_lf 00‘ ey
- & z
o \/ ol [(x x},.4-7 o f| 1| x o flx [ x) \
\\/ IIQI x| nfxfo \ ©
0| x|o 10 |\x | x| 10| x| o0 T T
ol B.5]




Sequential logic system design

Step 5: Group the s, taking advantage of as many of the “don’t care” states as
possible for maximum simplification, as shown in Figure 8-33. Notice that
when all cells in a map are grouped, the expression is simply equal to 1. The
expression for each J and K input taken from the maps is as follows:

Jh=1,K =0,
5=K =1
J, =K, = O

Step 6: The implementation of the counter is shown in Figure 8-34.

&

FIGURE 8-34 0, 0.

Q,
/ HIGH HIGH 3
N S | \
.67 Iy 1/ Iy

An analysis shows that if the counter, by accident, gets into one of the invalid states
(0, 3.4, 6), it will always return to a valid state according to the following sequences:
023247 and6— 1.
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lEXAMPl.E 8-6

Solution

Develop a sdown counter with a Gray code sequence. The
counter should count up When an UP/DOWN control input is 1 and count down when
the control input is 0. ——

Step 1: The state diagram is shown in Figure 8-35. The 1 or 0 beside each arrow
indicates the state of the UP/DOWN control input, ¥.

FIGURE 8-35

State diagram for a 3-bit up/down
Gray code counter.




Sequential logic system design

Step 2: The next-state table is derived from the state diagram and is shown in Table
8—11. Notice that for each present state there are two possible next states,
depending on the UP/DOWN control variable, Y.

—

TABLE 8-11

Next-state table for 3-bit up/down Gray code counter,

f. NEXT STATE
PRESENT STATE | Y = 0 (DOWN) y = 1 (up)
Q; Q;

0 0 0 I 0 0 0 0 1
0 0 1 0 0 0 0 I |
0 1 1 0 0 I 0 I 0 &
0 I 0 0 I I i | 0 &
1 | 0 0 1 0 1 1 1. &
I | ] | ! 0 | 0 T
] 0 [ I 1 1 1 0 o B
1 0 0 1 0 1 0 0 0

¥ = UP/DOWN control input.

Step 3: The transition table for the J-K flip-flops is repeated in Table 8—12.



Step 3: The transition table for the J-K flip-flops is repeated in Table 8—12.

TABLE 8-12
Transition table for a J-K flip-flop.

e 1

OUTPUT TRANSITIONS FLIP-FLOP INPUTS

s

x J

HEE=

o
T——

= TS

o
i

\.)70 ) \ o o
J o j= X jz\ ¢ =9

Sequential logic system design

Q/U/@
K — = Q&

o —™°
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P

o
o © ¢
0¥
0,0\ 00 01 11 10
oou olo]o
orfof(r)fo]of 0.5,
o [5G0 = =
|0(>_q X | X
-
0,0, J, map
Q.Y
Q,0, \ 00 01 11 10
oo | x |ix)| x | x
oxm X | x | x
QY LIJ 0ololo
1wl o m 0olo
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Sequential logic system design

The Karnaugh maps for the J and K inputs of the flip-flops are shown in
Figure 8-36. The UP/DOWN control input, ¥, is considered one of the state
variables along with Q,, Q,. and Q,. Using the next-state table, the
information in the “Flip-Flop Inputs™ column of Table 8-12 is transferred
onto the maps as indicated for each present state of the counter.

Joun
0.0} U“-)I) 0o 0 o—.—/
Q.Y | QY /
2,0, \_ 00 01 11/ 10 OO0 1/ 10 '
s < \‘ -~ 0.0} \e_‘_"/'i, w-’\k?
w|olo m 0 ool [ [x)| x|~
mxx@x on].0)| o | x| ol 0, o
D) »CJ»- s b
nxxx(x] n|o [0 [X)x oo
|0000U 0] D o | x |&]
f 2 6. w”
g " Qo A&\ Y d0
Jlmap L Jomap \ “
.0, 0,01 o0 O [e|lo
\ o
i <
QpY \ QY 2.0
2,0,\ 00 01 11 \10 @0, \ 0 o1 1 10 / (\
ofx | x |x|x) o0 [0 x| o | o el
—F 0,0 Y
mooou on|x |[(x] 1)[o | =
| . ga o |\
oo o n[x)| x| o |G}
'
0] x| x QJ X o|x |G| o] eor
2
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Step 5: The Is are combined in the largest possible groupings, with “don’t cares™
(Xs) used where possible. The groups are factored, and the expressions for
the J and K inputs are as follows:

Jo = g‘leY s QZEIE' + 0,0\Y + 0,0,Y Ky = gzélz' + 0:0,Y + 0,0\Y + 0,0,
Jy = Qz_QpY + gzgo_}: K, = 0,0,Y + 0,0,
L= QY + Q0¥ K, = 0,0,Y + 0,0,Y



Step 5: The Is are combined in the largest possible groupings, with “don’t cares™
(Xs) used where possible. The groups are factored, and the expressions for
the J and K inputs are as follows:

Jo = Q)Y + 0,0)Y + 0,0 + 0,0, Ky = 0.0, + 0:0\Y + 0,0\Y + 0,0,¥

S e 5 = QoY + 0:0Y Ki = 0.0, + 0:0,Y
Iy = Q0 + 0\00Y K; = 0,0 + 0,00Y
@, |e: |0, (2, |2
¥ .[ {')
1, i o
] o
2,
Ky o—
(o)
7, o
> C
@,
— K, ot
2,
g3 O
= C
- K, b—()"
AA
S ‘3"\ ¢ \







Shift Register

A register is digital circuit with two basic function:
data storage and data movement. Usually D-flip flop

is used

Data storage example

D —@ B t‘»

triggering edge of CLK
or remains a | if already
in the SET state,

FIGURE 9-1

b —
. . Whena 1 1son D, i
. Q‘ e Q becomes a | at the CLK A\

= C

o |o

When a0 ison D,

O becomes a 0 at the
triggering edge of CLK
or remains a O if already

in the RESET state.

The flip-flop as a storage elemfent® o

VL

. o G
0 5y fw- ool



,

Yoo :
, o
- . iIster « e
© Shift Regist -

AN LL rr(\\r-\o I e I S et (\ca,\/)— ( b
e UV S e
o A 20 to

0
. . 3% l O (o] 0
* Shift register x ) Aw= ©
2 : <L
cu. eNOO ¢ \\0\?”\3 S ¢
7\9’; .5 O"\e v Data in
Y © TR
S\ |
Data in == - N N Data out Data gut =—{ <= -wt—ap— | Duta in -t > Data out
X~ \0 0° (a) Serial in/shift rightlseriw (b) Serial inlsh'i;t left/serial out (¢) Parallel in/serial out
)
""%\a Data in
|
Duta in —=f =t —te L s : -
[ o
P P A R R T
Data out Data out (5 \ |o o X = ©0 \)
(d) Serial in/parallel out (e) Parallel in/parallel out (f) Rotate right (g) Rotate left
FIGURE 9-2

Basic data movement in shift registers. (Four bits are used for illustration. The bits move in the
direction of the arrows.)




Shift Register

* Serial in/ serial out shift reg.

FFO FF1 FF2 FF3

Sechel 0 0, 0 0
data D D D D Serial data ourput
input

> C P> C > C > C
Qs a
O0— Serial data output
CLK

.\ FIGURE 9-3

Serial infserial out shift register.



Ist data bit =0 ———'D

ckl _fL J

2nd data bit= | ——

ax ¥l J

3ed data bit = () =—

CLK3 f l l

4th da bit = | ——

B

e

-

= D g D g D g 04

> C > C > C >
J‘ ‘7 After CLKI

D L {p o 15 0 {p ? o
B = C: > C - C

lr 17 I_ After CLK2

1] | 0 0
D — 05
s > C = C > C

[d l> |7 After CLK3
D I D () D 1 D ) Q3
0 o > C >

After CLK4, the 4-bit

number is completely

B ctrvearl sud oD s Ol sbet



FFO FFl FF2 FF3
1 | 0 ) z
O0—D D D D I'st data bit
Q5
> ¢ > ¢ ¢ > ¢
After CLK4, register
contains 1010,
CLK
0 D 4 D 9 2nd duty bit
‘ Q5
> >0 > ¢ =25,
l After CLKS
CLKS —f_L
0—p 0 3h ' S 3 daia it
Qs
> > C > C > C
After CLK6
CLK6 ' |
(0 D 2 D D 2 D 4th data bit

Qs



Shift Register

I - Show the states of the 5-bit register in Figure 9-6(a) for the specified data input and
clock waveforms. Assume that the register is initially cleared (all Os).

~ FIGURE 9-6

- FF() FF1 FF2 FF3 FF4
Open file F09-06 to verify ) ) ) 0 2
i _Dm = o > o D oy 3 \ A @ Da
| i output
e O : >
: } = ¢ —= C E > C - C
'

“/"?ﬂ
)
/s
o

L
L
<

* (

\
L/' b\b\ P

=
=

g

nput
(a)

®
S e
@

©
<

&)

1
[
: Data bits stored
0: I N after five
: | A T pulses
: | |
L3 I !
|
|
[




Shift Register

* Serial in /parallel out

Data input D D D -—| D =
= C =g P > C
Data input D SRG 4
CLK—pC
CLK * * * l [ ] ]
Q (2] (e} 2y Q2 Q: G
(a) (b)

. FIGURE 9-8
A serial in/parallel cut shift register.




Shift Register

* Serial in /parallel out

IEXAMPLE 9-2

Solution

Related Problem

0 \\ O/
» FIGURE 9-9

Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in
Figure 9-9(a). The register initially{contams all Is.

The register contains 0110 after four clock pulses. See Figure 9-9(b).

If the data input remains 0 after the fourth clock pulse, what is the state of the register
after three additional clock pulses?

(h) e l._ )




Shift Register

* Serial in /parallel out

THE 74HC164 8-BIT SERIAL IN/PARALLEL OUT SHIFT REGISTER

The 74HC164 is an example of an IC shift register having serial in/parallel out operation.
The logic diagram is shown in Figure 9-10(a), and a typical logic block symbol is shown
in part (b). Notice that this device has two gated serial inputs, A and B, and a clear (CLR)
input that is active-LOW. The parallel outputs are O, through Q,.

Serial Jv‘\

b+—8

0-

(8) Dc d P
W Q Q Fol [ol Q Qi
: 2) b‘ R R O R D-— R O+ R — R R R
mnputs l.H
o= C = p ¢ = ‘A= C = C ‘A= C > C <= C
A S 91§ -1 § aalkl -9 5 5 -9 §
(3) 4) (3) (6) (10) (1 (12) (13)
Oy ¢y s 5 (N [ Uy
(a) Logic dingram
(h SRG 8
(2}
B
— 9
CILR —Q
8 1
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Shift Register

* Serial in /parallel out

A sample timing diagram for the 7T4HC164 is shown in Figure 9-11. Notice that the se-
rial input data on input A are shifted into and through the register after input B goes HIGH.

CLR

|

7

.Sﬂ’iill 5
mputs ¥ g
e 52 e S e i s 51
— ]
% ] L G
e "] = e e S
Outputs < |

1
il

ﬁ

=

|
|
|
|
-



Shift Register

e Parallel in /serial out

D, D,
SHIFTILOAD —o—cD

Gy Gs || G2
N
Serial
_: E> ? G
—> C > C
FFO FFI FF2 FF3
CLK ® °

(a) Logic diagram

Data in

/_—%
Dy, Dy Dy, Dy

L]

SHIFTILOAD —O SRG 4

—— Serinl data out

CLK —¢=C

(b) Logic symbol




Shift Register

e Parallel in /serial out

, EXAMPLE 9-3
Show the data-output waveform for a 4-bit register with the parallel input data and the

clock and SHIFT/LOAD waveforms given in Figure 9-13(a). Refer to Figure 9-12(a)
for the logic diagram.

D, Dy Ds Dy

0% 1 0
SHIFTILOAD —O SRG 4
= Data out {Qy)
CIK —>¢

ck _|1 sl fal fsl_JsL Je6

SR S T

(8)  SHIFTILOAD 1|_J T

I | I | ] !

| ] | | ] '

R R S R B
®) Datsou(@) _ 01 1 [ 0] | sy
Last data bit

4 FIGURE 9-13

Solution  On clock pulse 1, the parallel data (DD, D,D, = 1010) are loaded into the register.
making Q; a 0. On clock pulse 2 the | from Q, is shifted onto Q5: on clock pulse 3 the
0 1s shifted onto Oy on clock pulse 4 the last data bit (1) is shifted onto Q5; and on

i, P WG, NOERE T BHR | 1 P R L VO INUGRUEN RO L ST TN WO, O, A Y N ST AT S LR I T O R
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Shift Register

* Parallel in /parallel out

Figure 9-16 shows a parallel infparallel out register.

Parallel data inputs

e ™
Dy )} [N 8
— = el R S L=
> C —f= —> C > C
CLK ®

< 48 103 (4])

Paraile] data outputs

+ FIGURE 9-16
A parallel in/parallel out register.




Shift Register

* Parallel in /parallel out

THE 74HC195 4-BIT PARALLEL-ACCESS SHIFT REGISTER

The 74HC195 can be used for parallel in/parallel out operation. Because it also has a serial
input, it can be used for serial in/serial out and serial in/parallel out operations. It can be
used for parallel in/serial out operation by using Q. as the output. A typical logic block
symbol is shown in Figure 9-17.

FIGURE 9-17 Dy, Dy D, D
The 74HC195 4-bit parallel access
shift register. |(4) (5) |(6) (7)
Serial 4, J L SRG 4
inputs | ¥ __(3_)c
SHiTh —2g
air —Us
ok —2 b ¢
(14) |(13) [(12)

I(IS)

Qn Ql Q} Ql

When the SHIFT/LOAD input (SH/LD) is LOW, the data on the parallel inputs are en-
tered synchronously on the positive transition of the clock. When SH/LD is HIGH, stored
data will shift right (Q, to Q) synchronously with the clock. Inputs J and K are the serial
data inputs to the first stage of the register (Qy): Q; can be used for serial output data. The
active-LOW clear input is asynchronous.

The timing diagram in Figure 9-18 illustrates the operation of this register.
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Shift Register

* Bidirectional shift register

RIGHTILEFT I *

Senal —¢
data In

s . FIGURE 9-19
& Four-bit bidirectional shift register. Open file F09-19 to verify the operation.




Shift Register

* Bidirectional shift register

| EXAMPLE 9-4

» FIGURE 9-20

Solution
Related Problem

Determine the state of the shift register of Figure 9-19 after each clock pulse for the
given RIGHT/LEFT control input waveform in Figure 9-20(a). Assume that O, = 1,
Q, = 1.0, = 0,and Q; = | and that the serial data-input line is LOW.

RIGHTILEFT (right) I et | (right) l (left)

3 <3515 o Pl i el
| i : | | | | | i
gl Sy =be SO S e
Goov ko e Yo Fr vt ke e re 1
I | 1 I 1 | I 1
| I 1 ! 1 | 1 ' 1
o1 11 |o || Py Le g1 !u [t o
| | 1 I | I
| | 1 I | I
Q;O_!l EI il Lo 0 o7 Lo 0
1
(b Qs I_i 0 | L 1) 0 (l {l 0 0

See Figure 9-20(b).

Invert the RIGHT/LEFT waveform, and determine the state of the shift register in
Figure 9-19 after each clock pulse.



The 74HC194 4-bit bidirectional
universal shift register,

< FIGURE 9-21

(6)

Dy

Shift Register

D,

0,
|(31 |(4) I{S)
SRG 4

Dy

> C

(10

(I):
)

* Bidirectional shift register

(2)
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SLSER
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Shift Register

* shift register as counter ( Self study )
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