Digital Design

FourTtH EDITION

M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

Michael D. Ciletti

Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs

PEARSO!
.

Prentice
T

Hall
Upper Saddle River, N| 07458

Contents

Preface ix
1 Digital Systems and Binary Numbers 1
1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number-Base Conversions 5
1.4 Octal and Hexadecimal Numbers B
1.5 Complements 9
1.6 Signed Binary Numbers 14
1.7 Binary Codes 17
1.8 Binary Storage and Registers 25
1.9 Binary Logic 28
2 Boolean Algebra and Logic Gates 36
2.1 Introduction 36
2.2 Basic Definitions 36
23 Axiomatic Definition of Boolean Algebra 38
2.4 Basic Theorems and Properties
of Boolean Algebra 41
2.5 Boolean Functions 44
2.6 Canonical and Standard Forms 48
27 Other Logic Operations 35
2.8 Digital Logic Gates 57
259 Integrated Circuits 63

iv

Contents

3 Gate-Level Minimization 70
31 Introduction 70
3.2 The Map Method 70
33 Four-Variable Map 76
3.4 Five-Variable Map 81
3.5 Praduct-of-5ums Simplification 83
3.6 Don't-Care Conditions 86
3.7 NAND and NOR Implementation 89
3.8 Other Two-Level Implementations 96
3.9 Exclusive-OR Function 101
3.10 Hardware Description Language 106
4 Combinational Logic 122
41 Introduction 122
4.2 Combinational Circuits 122
4.3 Analysis Procedure 123
4.4 Design Procedure 126
4.5 Binary Adder-Subtractor 130
4.6 Decimal Adder 139
47 Binary Multiplier 142
4.8 Magnitude Comparator 144
49 Decoders 146
4.10 Encoders 150
4.1 Multiplexers 152
4,12 HDL Models of Combinational Circuits 159
5 Synchronous Sequential Logic 182
5.1 Introduction 182
5.2 Sequential Circuits 182
53 Storage Elements: Latches 184
5.4 Storage Elements: Flip-Flops 188
55 Analysis of Clocked Sequential Circuits 195
56 Synthesizable HDL Models of Sequential
Circuits 207
5.7 State Reduction and Assignment 221
58 Design Procedure 225
6 Registers and Counters 242
6.1 Registers 242
6.2 Shift Registers 245

Contents

v

6.3 Ripple Counters 253
6.4 Synchronous Counters 258
6.5 Other Counters 265
6.6 HDL for Registers and Counters 269
Memory and Programmable Logic 284
71 Introduction 284
7.2 Random-Access Memory 285
7.3 Memory Decoding 291
7.4 Error Detection and Correction 296
7.5 Read-Only Memory 299
7.6 Pragrammable Logic Array 308
7 7 Programmable Array Logic 309
7.8 Sequential Programmable Devices 3
Design at the Register

Transfer Level 334
8.1 Introduction 334
B.2 Register Transfer Level (RTL) Notation 334
8.3 Register Transfer Level in HDL 336
B.4 Algorithmic State Machines (ASMs) 345
8.5 Design Example 352
8.6 HDL Description of Design Example 361
8.7 Sequential Binary Multiplier 7
B8 Control Logic 376
8.9 HDL Description of Binary Multiplier 382
B.10 Design with Multiplexers 390
8.1 Race-Free Design 401
812 Latch-Free Design 403
813 Other Language Features 404
Asynchronous Sequential Logic 415
9.1 Introduction 415
9.2 Analysis Procedure 417
9.3 Circuits with Latches 425
9.4 Design Procedure 433
9.5 Reduction of State and Flow Tables 439
9.6 Race-Free State Assignment 446
9.7 Hazards 452
9.8 Design Example 457

vi Contents
10 Digital Integrated Circuits 471
10.1 Introduction 471
10.2 Special Characteristics 473
10.3 Bipolar-Transistor Characteristics 477
10.4 RTL and DTL Circuits 481
10.5 Transistor-Transistor Logic 484
10.6 Emitter-Coupled Logic 493
10.7 Metal-Oxide Semiconductor 495
10.8 Complementary MOS 498
10.9 CMOS Transmission Gate Circuits 501
10.10 Switch-Level Modeling with HDL 505
11 Laboratory Experiments
with Standard ICs and FPGAs)
1.1 Introduction to Experiments 511
11.2 Experiment 1: Binary and Decimal Numbers 516
11.3 Experiment 2: Digital Logic Gates 519
11.4 Experiment 3: Simplification of Boolean
Functions 520
11.5 Experiment 4: Combinational Circuits 522
11.6 Experiment 5: Code Converters 524
1.7 Experiment 6: Design with Multiplexers 526
11.8 Experiment 7: Adders and Subtractors 527
11.2 Experiment 8: Flip-Flops 530
11.10 Experiment 9: Sequential Circuits 532
11.11 Experiment 10: Counters 534
11.12 Experiment 11: Shift Registers 535
11.13 Experiment 12: Serial Addition 538
11.14 Experiment 13: Memory Unit 539
11.15 Experiment 14: Lamp Handball 541
11.16 Experiment 15: Clock-Pulse Generator 545
11.17 Experiment 16: Parallel Adder and
Accumulator 547
11.18 Experiment 17: Binary Multiplier 549
11.19 Experiment 18: Asynchronous Sequential
Circuits 553
11.20 Verilog HDL Simulation Experiments
and Rapid Prototyping with FPCAs 553
12 Standard Graphic Symbols 559
121 Rectangular-Shape Symbols 559
12.2 Qualifying Symbals 562
123 Dependency Notation 564

12.4
12.5
12.6
12.7
128

Symbols for Combinational Elements
Symbols for Flip-Flops

Symbols for Registers

Symbols for Counters

Symbol for RAM

Answers to Selected Problems

Index

Contents

566
568
570
573
575

wii

577
597

Preface

Digital el ic circuits are the engines of cell phones, MPEG players, digital cameras, com-
puters, data servers, personal digital devices, GPS displays, and many other consumer prod-
ucts that process and use information in a digital format. This book presents a basic treatment
of digital circuits and the fundamental concepts used in their design. It is suitable for use as a
textbook in an introductory course in an electrical engineering, computer engineering, or com-
puter science curriculum,

Each significant advance in industry practice ultimately works its way into the engineering
curriculum. Since the mid-1980's, the use of computer-based design tools has transformed the
electronics industry worldwide. Application specific integrated circuits (ASICs) are designed
today by using a hardware description language (HDL), such as Verilog or VHDL, to write
a behavioral model of the circuit’s functionality, and then synthesizing that description into
a hardware realization in a particular wechnology, e.g.. CMOS integrated circuits or field-
programmable gate arrays (FPGAs). No longer a novelty, these design tools are now readily
available to universities, and are migrating in a strategic way from graduate level curricula
inwo undergraduate courses. It is clear that HDLs have an essential, significant role in edueat-
ing our future engineers. Learning to design with an HDL is as important to today’s students,
we think, as oscilloscopes, breadboards, and logic analyzers were 1o previous generations of
engineers, so this edition of the text adds more weight to the use of hardware description lun-
guages in designing digital circuits,

We note that intreducing HDLS in a first course in designing digital circuits is not intend-
ed to replace fundamental understanding of the building blocks of such cireuits or to eliminate
a discussion of manual methods of design. It is still essential for a student to understand how
hardware works. Thus, we retain a thorough treatment of combinational and sequential logic
devices. Manual design practices are presented, and their resulis are compared with those ob-
tained with a HDL-based paradigm. What we are presenting, however, is a shift in emphasis

ix

X Preface

on haw hardware is designed, a shift that, we think, betler prepares a student for a career in
today’s industry, where HDL-based design practices are prevalent.

FLEXIBILITY

The sequence of topics in the text can accommodate courses that adhere to traditional, manu-
al-based, treatments of digital design, courses that treat design using an HDL, and courses that
are in transition between or blend the two approaches. Because modern synthesis tools auto-
matically perform logic minimization, Karnaugh maps and refated topics in optimization can
be presented at the beginning of a treatment of digital design, or they can be presented after cir-
cuits and their applications are examined, designed, and simulated with an HDL. The text in-
cludes both manual and HDL-based design examples. Our end-of-chapter problems further
facilitate this flexibility by cross-referencing problems that address a traditional manual design
task with a companion problem that uses an HDL to accomplish the task. Additionally, we link
manual and HDL-based approaches by presenting ar 1 results of simulations in the text,
in answers lo selected problems at the end of the text, and in the solutions manual.

WHAT'S NEW?

The previous edition of this text recognized the importance of hardware description languages
in the design of digital circuits, and incorporated new material and examples introdueing stu-
dents to the Verilog language, as defined by IEEE Standard 1364-1995. This revision updates
and expands that treatment by:

revising HDL-based examples to present the ANSI-C like syntax that was adopted in the
standards IEEE 1364-2001 and IEEE 1364-2003

ensuring that all HDL examples conform 1o industry-accepted practices for modelling dig-
ital circuits

providing a systematic methodology for designing a datapath controller

presenting selected exercises and solutions to end-of-chapter problems in Verilog 1995
and Verilog 2001/2005 syntax

introducing an important design tool — the algorithmic state machine and datapath
(ASMD) chart

revising the end-of-chapter problems and expanding the set ol problems by including
over 75 additional problems

providing students with fully developed answers to selected problems, including simu-
lation results

providing students with a CD-ROM containing simulator-ready HDL solutions of an-
swers to selected problems

expanding the treatment of programmable logie devices to include FPGAs

DESIGN

Preface xi

revising the solutions manual and web-based materials and ensuring that solutions of
HDL.-based exercises conform 1o industry practices for modelling with an HDL
discussing and demonstrating the importance of test plans for verifying HDL models of
circuits

providing instructors with verified. simulator-ready source code and test benches for all
end-of chapter problems

making all figures. tables, and HDL examples available to instructors for downloading
in PDF format from the publisher

including with the book a CD-ROM with tutorials and simulators for the TEEE- 1995 and
IEEE-2001 Standards of the Verilog language

-

In addition to the above enhancements, the text incorporates more graphical material o bet-
ter serve learners who are oriented toward & graphicil medium. A d graphical results and
explanations of simulations are pr d 1o help students understand digital circuits and 1o fa-

cilitmte classroom discussions of them, Karnaugh maps are presented with additional graphics.

METHODOLOGY

This edition of the text extends the previous edition’s treatment of synchronous finite state ma-
chines by presenting a systematic methodology for designing a state machine to control the data-
path of a digital system. Moreover, the framework in which this muterinl is presented treats the
realistic situation in which the controller uses signals from the datapath, i.e.. the system has feed-
back. The methodology is applicable to manual and HDL-based approaches 1o design,

HDL-BASED APPROACH

It is not sufficient for an introduction to HDLs to dwell on language syntax. We present only
those elements of the Verilog language that are matched 1o the level and scope of this text,
Also, correct syntax does not guarantee that a model meets a functional specification or that
it ciin be synthesized into physical hardware. We introduce students to a disciplined use of
industry-based practices for writing models (o ensure that a behavioral deseription can be syn-
thesized into physical hardware, and that the behavior of the synthesized circuit will match
that of the behavioral description. Failure to follow this discipline can lead to software race con-
ditions in the HDL models of such machines, race conditions in the testbench used to verify
them. und 4 mismatch between the results of simulating a behavioral mode! and its synthe-
sized physical counterpart, Simmilarly, failure to abide by industry practices may lead o designs
that simulate correctly, but which have hardware latches that are introduced into the design
accidentally as a consequence of the modelling style used by the designer. The industry-based
methodology we present leads to race-free and latch-free designs. It is important that students
learn and follow industry practices in using HDL models, independent of whether a student’s
curriculum has access to synthesis wols,

xii Preface

VERIFICATION

In industry. significant effort is expended to verify that the functionality of a circuit is correct. Yet
not much attention is given to verification in introductory texts on digital design, where the focus
is on design itself, and testing is perhaps viewed as a secondary undertaking, Our experience is
that this view can lead to premature declarations that “the circuit works beautifully.” Likewise,
industry gains repeated returns on its investment in an HDL model by ensuring that it is readable,
portable and reusable. We demonstrate naming practices and the use of parameters. We also pro-
vide test benches for all of the solutions and exercises 1o (1) verify the functionality of the cir-
cuit, (2) underscore the importance of thorough testing, and (3) introduce students to important
concepts, such as self-checking test benches. Advocating and illustrating the development of &
test plar 1o guide the development of a test bench, we introduce them in the text and expand
them in the solutions manual and in the answers to selected problems at the end of the text.

HDL CONTENT

This edition of the text updates and expands its treatment of the Verilog Hardware Descrip-
tion Language (HDL) and exploits key enhancements available in IEEE Standards 1364-2001
and 1364-2005. We have ensured that all examples in the text and all answers in the solution
manual conform to accepted industey practices for modeling digital hardware. As in the pre-
vious edition, HDL material is inserted in separate sections so it can be covered or skipped
as desired, does not diminish treatment of manual-based design, and does not dictate the se-
quence of presentation. The treatment is at a level suitable for beginning students that are
learning digital circuits and a hardware description language at the same time. The text pre-
pares students to work on significant independent design projects and to suceed in a later
course in computer architecture.

* Digital circuits are introduced in Chapters | through 3 with an introduction 1o Yerilog
HDL in Section 3.10,

Further discussion of modeling with HDLs oecurs in Section 4.12 following the study
of combinational circuils.

Sequential circuits are covered in Chapters 5 and 6 with corresponding HDL examples
in Sections 5.6 und 6.6,

The HDL description of memory is presented in Section 7.2.

The RTL symbols used in Verilog are introduced in Sections 8.3,

Examples of RTL and structural models in Verilog are provided in Sections 8.6 and 8.9.
Chapter 8 also presents a new, comprehensive treatment of HDL-based design of a data-
path controller.

Section 10.10 covers switch-level modeling corresponding 1o CMOS circuits.

Section 11.20 supplements the hardware experiments of Chapter 11 with HDL expen-
ments, Now the circuits designed in the laboralory can be checked by modeling them in
Verilog and simulating their behavior. Then they can be synthesized and implemented with
an FPGA on a prototyping board.

Preface iii

HDL SIMULATORS

The CD-ROM in the back of the book comtains the Verilog HDL source code files for the ex-
amples in the book and two simulators provided by SynaptiCAD. The first simulator is
VeriLogger Pro, o traditionul Verilog simulator that cun be used 10 simulate the HDL examples
in the book and to verify the solutions of HDL problems. This simulator accepts the syntax of
the TEEE-1995 Standard and will be useful to those who have legacy models. As un interac-
tive simulator, Verilagger Extreme, accepts the syntax of IEEE-2001 as well as IEEE-1995, al-
lowing the designer to simulate and analyze design ideas before a complete simulation model
or schematic is available, This technology is particularly useful for students, because they can
quickly enter Boolean and 2 flip-flop or latch input equations 1o check equivalency or 10 ex-
periment with fip-flops and latch designs.

INSTRUCTOR RESOURCES

Instructors can download the following classroom-ready resources from the publisher
(www.prenhall.com/mano);

* Source code and test benches for all Verilog HDL examples in the test

* All figures and tables in the text

* Source code for all HDL models in the solutions manual

A solution manual in typed hardcopy format with graphics, suitable for classroom presen-
tation, will also be provided instructors,

CHAPTER SUMMARY

The following is a brief summary of the topics that are covered in euch chapler.

Chapter 1 presents the various binary systems suitable for representing information in dig-
ital systems. The binary number system is explained and binary codes are illustrated. Examples
are given for addition and subtraction of signed binary numbers und decimal numbers in BCD.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correlation be-
tween Boolean expressions and their corresponding logic diag . All possible logic opera-
tions for two variables are investigated und from that, the most useful logic gates used in the
design of digital systems are determined. The characteristics of integrated circuit gates are
mentioned in this chapter but a more detailed analysis of there the electronic circuits of the gates
is done in Chapter 1.

Chapter 3 covers the map method for simplifying Boolean expressions, The map method
is also used to simplify digital circuits constructed with AND-OR, NAND, or NOR gates. All
other possible two-level gate circuits are considered and their method of implementation is
explained. Verilog HDL is introduced together with simple gate-level modeling examples.

Chapter 4 outlines the formal procedures for the analysis and design of combinational cir-
cuits, Some basic components used in the design of digital systems, such as adders und code

xiv

Preface

converters, are introduced as design examples. Frequently used digital logic functions such as
parallel adders and subtractors, decoders, encoders, and multiplexers are explained, and their
use in the design of combinational circuits is illustrated. HDL examples are given in the gate-
level, dataflow, and behavioral modeling to show the alternative ways available for describing
combinational circuits in Verilog HDL. The procedure for writing a simple test bench to pro-
vide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for the analysis and design of clocked (synchro-
nous) sequential circuits. The gate structure of several types of flip-flops is presented togeth-
er with a discussion on the difference between level and edge triggering. Specific examples are
used to show the derivation of the state table and state diagram when analyzing a sequential
circuit. A number of design examples are presented with emphasis on sequential circuits that
use D-type flip-flops. Behavioral modeling in Verilog HDL for sequential circuits is explained.
HDL Examples are given to illustrate Mealy and Moore models of sequential circuits.

Chapter 6 deals with various sequential circuits components such as registers, shift registers,
and counters. These digital components are the basic building blocks from which more complex
digital systems are constructed, HDL descriptions of shift registers and counter are presented.

Chapter 7 deals with random access memory (RAM) and programmable logic devices.
Memory decoding and error correction schemes are discussed. Combinational and sequential
programmable devices are presented such as ROMs, PLAs, PALs, CPLDs, and FPGAs.

Chapter 8 deals with the register transfer level (RTL) representation of digital systems.
The algorithmic state machine (ASM) chart is introduced. A number of examples demonstrate
the use of the ASM chart, ASMD chart, RTL representation, and HDL description in the de-
sign of digital systems. The design of a finite state machine to control a datapath is presented
in detail, including the realistic situation in which status signals from the datapath are used by
the state machine that controls it. This chapter is the most important chapter in the book as it
provides the student with a systematic approach to more advanced design projects.

Chapter 9 presents formal procedures for the analysis and design of asynchronous se-
quential circuits. Methods are outlined to show how an asynchronous sequential circuit can be
implemented as a combinational circuit with feedback. An alternate implementation is also de-
scribed that uses SR latches as the storage elements in asynchronous sequential circuits.

Chapter 10 presents the most common integrated circuit digital logic families. The electronic
circuits of the common gate in each family are analyzed using electrical circuit theory. A basic
knowledge of electronic circuits is necessary to fully understand the material in this chapter.
Examples of Verilog switch-level descriptions demonstrate the ability to simulate circuits con-
structed with MOS and CMOS transistors.

Chapter 11 outlines experiments that can be performed in the laboratory with hardware
that is readily available commercially. The operation of the integrated circuits used in the ex-
periments is explained by referring to diagrams of similar components introduced in previous
chapters. Each experiment is presented informally and the student is expected to produce the
circuit diagram and formulate a procedure for checking the operation of the circuit in the lab-
oratory. The last section supplements the experiments with corresponding HDL experiments.
Instead of, or in addition to, the hardware construction, the student can use the Verilog HDL
software provided on the CD-ROM to simulate and verify the design.

Chapter 12 presents the standard graphic symbols for logic functions recommended by
an ANSI/IEEE Standard. These graphic symbols have been developed for SSI and MSI

Preface XV

components so that the user can recognize each function from the unique graphic symbol
assigned. The chapter shows the standard graphic symbols of the integrated circuits used in
the laboratory experiments. The various digital components that are represented through-
out the book are similar to commercial integrated circuits. However, the text does not men-
tion specific integrated circuits except in Chapters 11 and 12. Doing the suggested
experiments in Chapter 11 while studying the theory presented in the text will enhance the
practical application of digital design.

LAB EXPERIMENTS

The book may be used in a stand-alone course or with a companion lab based on the lab ex-
periments included with the text. The lab experiments can be used in a stand-alone manner too,
and can be accomplished by a traditional approach. with a breadboard and TTL circuits. or with
an HDL/synthesis approach using FPGAs. Today. software for synthesizing an HDL model and
implementing a circuit with an FPGA is available at no cost from vendors of FPGAs, allowing
students to conduct a significant amount of work in their personal environment before using
prototyping boards and other resources in a lab. Circuit boards for rapidly prototyping circuits
with FPGAs are available at nominal cost, and typically include push buttons, switches, and
seven-segment displays, LCDs, keypads and other I/O devices. With these resources, students
can work prescribed lab exercises or their own projects and get results immediately.

The operation of the integrated circuits used in the experiments is explained by referring to
diagrams of similar components introduced in previous chapters. Each experiment is present-
ed informally and the student is expected to produce the circuit diagram and formulate a pro-
cedure for verifying the operation of the circuit in the laboratory. The last section supplements
the experiments with corresponding HDL experiments. Instead of, or in addition to. the hard-
ware construction, the student can use the Verilog HDL software provided on the CD-ROM to
simulate and check the design. Synthesis tools can then be used to implement the circuit in an
FPGA on a prototyping board.

Our thanks go to the editorial team at Prentice Hall for committing 1o this timely revision
of the text. Finally, we are grateful to our wives, Sandra and Jerilynn. for encouraging our pur-
suit of this project.

M. Morris MANO
Emeritus Professor of Computer Engineering
California State University, Los Angeles

MicHAEL D. CILETTI
Deparmment of Electrical and Computer Engineering
University of Coloradoe at Colorado Springs

Chapter 1
Digital Systems and Binary Numbers

1

i

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech-
nological period as the digiral age. Digital systems are used in communication, business trans-
actions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig-
ital television, digital versatile discs, digital cameras, handheld devices. and, of course, digi-
tal computers. The most striking property of the digital computer is its generality. It can follow
a sequence of instructions, called a program, that operates on given data. The user can specify
and change the program or the data according to the specific need. Because of this flexibility,
general-purpose digital computers can perform a variety of information-processing tasks that
range over a wide spectrum of applications,

One characteristic of digital systems is their ability to represent and manipulate discrete el-
ements of information, Any set that is restricted to a finite number of elements contains dis-
crete information. Examples of discrete sets are the 10 decimal digits, the 26 letters of the
alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early digital computers
were used for numeric computations. In this case, the discrete elements were the digits. From
this application, the term digital computer emerged. Discrete elements of information are rep-
resented in a digital system by physical quantities called signals. Electrical signals such as
voltages and currents are the most common, Electronic devices called transistors predominate
in the circuitry that implements these signals, The signals in most present-day electronic dig-
ital systems use just two discrete values and are therefore said to be binary. A binary digit,
called a bit, has two values: 0 and 1. Discrete elements of information are represented with
groups of bits called binary codes. For example, the decimal digits 0 through 9 are represented

in a digital system with a code of four bits (e.g., the number 7 1s represented by O111),

1

2

Chapter 1 Digital Systems and Binary Numbers

Through various techniques, groups of bits can be made to represent discrete symbols, which
are then used to develop the system in a digital format. Thus, a digital system is a system that
manipulates discrete elements of information represented internally in binary form.

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in-
herently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, and so on. An employee’s paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $). On the other hand, a research scientist may observe a continuous process, but record
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak-
ing each number in his or her table a discrete quantity. In many cases, the quantization of a
process can be performed automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input—output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user. A digital computer can ac-
commodate many input and output devices. One very useful device is a communication unit
that provides interaction with other users through the Internet. A digital computer is a power-
ful instrument that can perform not only arithmetic computations, but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As the number of transistors that can be put on a piece of
silicon increases to produce complex functions, the cost per unit decreases and digital devices
can be bought at an increasingly reduced price. Equipment built with digital integrated cir-
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes. An example
of this strategy is the digital versatile disk (DVD), in which digital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the code in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module, it is necessary to have a basic knowledge of digital circuits and their logi-
cal function. The first seven chapters of this book present the basic tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices.
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
11 and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits,

Section 1.2 Binary Numbers 3

A major trend in digital design methodology is the use of a hardware description language
(HDL) to describe and simulate the functionality of a digital circuit, An HDL resembles a pro-
gramming language and is suitable for describing digital circuits in textual form. It is used to
simulate a digital system to verify its operation before hardware is built in. It is also used in
conjunction with logic synthesis tools to automate the design process. Because it is important
that students become familiar with an HDL-based design methodology, HDL descriptions of
digital circuits are presented throughout the book. While these examples help illustrate the fea-
tures of an HDL. they also demonstrate the best practices used by industry to exploit HDLs.
Ignorance of these practices will lead to cute, but worthless. HDL models that may simulate a
phenomenon, but that cannot be synthesized by design tools, or to models that waste silicon
areq or synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form. Operands used for calculations may be expressed in the binary
number system, Other discrete elements, including the decimal digits, are represented in binary
codes. Digital circuits, also referred to as logic circuits, process data by means of binary logic
elements (logic gates) using binary signals. Quantities are stored in binary (two-valued) stor-
age elements (flip-flops). The purpose of this chapter is to introduce the various binary con-
cepts as a frame of reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7.392 represents a quantity equal to 7 thousands, plus 3 hundreds,
plus 9 tens, plus 2 units. The thousands. hundreds. etc., are powers of 10 implied by the posi-
tion of the coefficients in the number. To be more exact, 7.392 is a shorthand notation for what
should be written as

7x 100+ 3x100+9x 10" +2 % 10°

However. the convention is to write only the coefficients and. from their position. deduce the
necessary powers of 10. In general. a number with a decimal point is represented by a series
of coefficients:

sz pdy - d a3

The coefficients a; are any of the 10 digits (0, 1, 2,9). and the subscript value j gives the
place value and. hence, the power of 10 by which the coefficient must be multiplied. Thus, the
preceding decimal number can be expressed as

10%as + 10%a, + 10%3 + 10%; + 10'a; + 10%, + 107'a_; + 10720, + 10730,

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number sys-
tem. The coefficients of the binary number system have only two possible values: 0 and 1.
Each coefficient a; is multiplied by 2/, and the results are added to obtain the decimal equiv-
alent of the number. The radix point (e.g.. the decimal point when 10 is the radix) distinguishes
positive powers of 10 from negative powers of 10, For example, the decimal equivalent of the

<t

Chapter 1 Digital Systems and Binary Numbers

binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by pow-
ers of 2:

I X2 +1XP4+0x2+1x2'+0x2%+1x27'+1X%x22%2=2675

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

— 2 -
ap r" F ap "N+ s+ agert v ayer 4+ ag+ asger!

Yapr e+ o a,r™

The coefficients a; range in value from 0 to r — 1. To distinguish between numbers of differ-
ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that the base is
decimal). An example of a base-5 number is

(4021.2)s =4 X 52 +0x 52 +2%x5' +1x5°+2%x 5" =(5114)1

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a
base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
a base of 8:

(1274) =1 X 8 +2x 8 +7x 8 + 4 x 871 = (87.5))9

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal system
when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the
hexadecimal (base-16) number system, the first 10 digits are borrowed from the decimal sys-
tem. The letters A, B, C, D, E, and F are used for the digits 10, 11, 12, 13, 14, and 15, respec-
tively. An example of a hexadecimal number is

(B65F) 16 = 11 X 16> + 6 X 16 + 5 X 16' + 15 X 16° = (46,687),¢

As noted before, the digits in a binary number are called bits. When a bit is equal to 0, it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec-
imal can be obtained by adding only the numbers with powers of two corresponding to the bits
that are equal to 1. For example,

(110101); = 32 + 16 + 4 + 1 = (53)y0

There are four 1's in the binary number. The corresponding decimal number is the sum of
the four powers of two. The first 24 numbers obtained from 2 to the power of n are listed in
Table 1.1. In computer work, 210 s referred to as K (kilo), 22 as M (mega), 20 as G (giga),
and 2% as T (tera). Thus, 4K = 2! = 4,096 and 16M = 2%* = 16,777,216. Computer ca-
pacity is usually given in bytes. A byte is equal to eight bits and can accommodate (i.e., repre-
sent the code of) one keyboard character. A computer hard disk with four gigabytes of storage
has a capacity of 4G = 22 bytes (approximately 4 billion bytes).

Section 1.3 Number-Base Conversions 5

Table 1.1

Powers of Two
n 2" n - id n b
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1.024 18 262,144
3 8 1 2,048 19 524,288
4 16 12 4.096 20 1.048.576
5 32 13 8,192 21 2,097,152
B 64 14 16,384 22 4,194,304
T 128 15 32,768 2 8.388.608

Arithmetic operations with numbers in base r follow the same rules as for decimal num-
bers. When a base other than the familiar base 10 is used, one must be careful 1o use only the
r-allowable digits. Examples of addition, subtraction, and multiplication of two binary num-
bers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: 100111 subtrahend: —100111 multiplier: X 101
sum; 1010100 difference; 000110 1011
0000

1011
product: 1ot

The sum of two binary numbers is calculated by the same rules as in decimal, except that
the digits of the sum in any significant position can be only O or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. Subtraction is
slightly more complicated. The rules are still the same as in decimal, except that the borrow in
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is simple: The multiplier digits are always | or 0; there-
fore. the partial products are equal cither to the multiplicand or to 0.

1.3 NUMBER-BASE CONVERSIONS

The conversion of a number in base to decimal is done by expanding the number in a power
series and adding all the terms as shown previously, We now present a general procedure for
the reverse operation of converting a decimal number to a number in base « If the number in-
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently, The conversion of a decimal integer to a num-
ber in base r is done hy dividing the number and all successive quotients by r and accumulat-
ing the remainders, This procedure is best illustrated by example.

6 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of % Then the quotient is again divided by 2 to give a new quotient and remainder.
The process is continued until the integer quotient becomes 0. The ceefficients of the desired
binary number are obtained from the remainders as follows:

Integer

Quotient Remainder Coefficient
412 = 20 + 3 ag = 1
2012 = 10 + 0 a; =0
10/2 = 5 + 0 a =0
5= 2 + ! a3 =1
2/2 = 1 e 0 ay =10
12 = 0 + ! Ge=1

Therefore, the answer is (41)19 = (asazazaajag); = (101001),.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system 1s similar to this example, except that
division is done by r instead of 2.

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in-
teger quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of
2. This process can be conveniently manipulated as follows:

153
19

Section 1.3 Number-Base Conversions 7

The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers. However, multiplication 1s used instead of division. and integers instead of

remainders are accumulated. Again, the method is best explained by example.
|

EXAMPLE 1.3

Convert (0.6875) o to binary. First, 0.6875 is multiplied by 2 10 give an integer and a fraction.
Then the new fraction is multiplied by 2 1o give a new integer and a new fracti