© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1

SOLUTIONS MANUAL

DIGITAL DESIGN

FOURTH EDITION

M. MORRIS MANO

California State University, Los Angeles

MICHAEL D. CILETTI

University of Colorado, Colorado Springs

rev 01/21/2007

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2

CHAPTER 1

1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40
Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
Base-13 A B C 10 11 12 13 14 15 16 17 18 19 23 24 25 26

1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674

1.3 (4310)s =4 * 5 + 3 * 52 + 1 * 51 = 580,

(198), =1 * 12 + 9 * 12 + 8 * 12° = 260,
(735)s =7 *82+3*8" +5*8°=477,,
(525)s=5*6°+2*6" +5*6° =197y

1.4 14-bit binary: 11_1111 1111 1111
Decimal: 2 -1=16,383y
Hexadecimal: 3FFF¢

15 Let b = base
(@) 14/2=(b+4)/2=5,s0b=6
(b) 54/4=(5*b +4)/4=b+3,505*b=52-4,andb=8
(c) @*b+4)+(b+7)=4b,sob=11

1.6 (X -3)(x—6) = x* (6 + 3)x + 6*3 = x* -11x + 22

Therefore: 6 +3=b+1msob=8
Also, 6*3 = (18)10 = (22)8

17 68BE = 0110_1000_1011_1110=110_100_010_111 110 = (64276)s

1.8 (a) Results of repeated division by 2 (quotients are followed by remainders):

431,0=215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
Answer: 1111 1010, =FAg

(b) Results of repeated division by 16:

43150 = 26(15); 1(10) (Faster)
Answer: FA =1111 1010

1.9 (a) 10110.0101, = 16 + 4 + 2 + .25 + .0625 = 22.3125
(b) 16.5,5 = 16 + 6 + 5*(.0615) = 22.3125

(C) 26.245=2*8 + 6 + 2/8 + 4/64 = 22.3125

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

3

(d) FAFA Byg = 15%16° + 10%162 + 15%16 + 10 + 11/16 = 64,250.6875
(€) 1010.1010, =8 + 2 + .5 + .125 = 10.625

1.10 (a) 1.10010, = 0001.1001, = 1.9, = 1 + 9/16 = 1.563,,
(b) 110.010, = 0110.0100, = 6.4, = 6 + 4/16 = 6.25,,

Reason: 110.010, is the same as 1.10010, shifted to the left by two places.

1011.11
111 101|111011.0000
101
01001
_101
1001
101
1000
101
0110

The quotient is carried to two decimal places, giving 1011.11
Checking: 111011,/ 101, = 590/ 55 = 1011.11, =58.75,¢

1.12 (a) 10000 and 110111

1011 1011
+101 x101
10000 = 1649 1011
1011

110111 =55y,
(b) 62, and 958;,

2E, 0010 1110 2E,

+34, 0011 0100 X34,

62, 0110 0010 = 98;, B8
82A

9 58, =2392y

1.13 (a) Convert 27.315 to binary:

Integer Remainder Coefficient
Quotient
2712 = 13 + Yo =1
13/2 6 + Yo =1
6/2 3 + 0 =0
312 1 + Ya =1
Yo 0 + Ya =1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

4

2710 = 110112

Integer Fraction Coefficient
315x2 = 0 + .630 a;=0
630x2 = 1 + .26 a,=1
26x2 = 0 + .52 as=0
52x2 = 1 + .04 az=1

31555 =.0101, = .25 + .0625 = .3125
27.315=11011.0101,

(b) 2/3 = .6666666667

Integer Fraction Coefficient
.6666_6666_67x2 = 1 + .3333_3333_34 a;=1
.3333333334x2 =0 + .6666666668 a,=0
.6666666668 x2 = 1 + .3333333336 az=1
3333333336 x2 = 0 + .6666666672 as=0
.6666666672x2 = 1 + .3333333344 as=1
.3333333344x2 =0 + .6666666688 ag=0
.6666666688 x2 = 1 + .3333333376 a;=1
3333333376 x2 = 0 + .6666666752 ag=0

.6666666667;5 =.10101010, = .5 +.125 + .0313 + ..0078 = .66411¢

.101010102 = .1010_1010, = .AA;s = 10/16 + 10/256 = .6641,, (Same as (b)).

1.14 €)) 1000_0000 (b) 0000_0000 (c) 1101 1010
1scomp: 0111 1111 1scomp: 1111 1111 1s comp: 0010_0101
2s comp: 1000_0000 2s comp: 0000_0000 2s comp: 0010 0110
(d) 0111_0110 (e) 1000_0101 (f) 1111 1111
1s comp: 1000_1001 1s comp: 0111 1010 1s comp: 0000_0000
2s comp: 1000_1010 2s comp: 0111 1011 2s comp: 0000_0001
1.15 (a) 52,784,630 (b) 63,325,600
9s comp: 47,215,369 9s comp: 36,674,399
10s comp: 47,215,370 10s comp: 36,674,400
(c) 25,000,000 (d) 00,000,000
9s comp: 74,999,999 9s comp: 99,999,999
10s comp: 75,000,000 10s comp: 00,000,000
1.16 B2FA B2FA: 1011 0010_1111_1010
15s comp: 4D05 1s comp: 0100_1101_0000_0101
16s comp: 4D06 2s comp: 0100_1101_0000_0110 =4D06

1.17 (a) 3409 — 03409 —96590 (9s comp) — 96591 (10s comp)
06428 — 03409 = 06428 + 96591 = 03019

(b) 1800 — 01800 — 98199 (9s comp) — 98200 (10 comp)
125 — 1800 = 00125 + 98200 = 98325 (negative)
Magnitude: 1675
Result: 125 - 1800 = 1675

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5

(c) 6152 — 06152 — 93847 (9s comp) — 93848 (10s comp)
2043 — 6152 = 02043 + 93848 = 95891 (Negative)
Magnitude: 4109
Result: 2043 — 6152 = -4109

(d) 745 — 00745 — 99254 (9s comp) — 99255 (10s comp)
1631 -745 = 01631 + 99255 = 0886 (Positive)
Result: 1631 — 745 = 886

1.18 Note: Consider sign extension with 2s complement arithmetic.
@ 10001 (b) 100011
1s comp: 01110 1s comp: 1011100 with sign extension
2s comp: 01111 2s comp: 1011101
10011 0100010
Diff: 00010 1111111 sign bit indicates that the result is negative

0000001 2s complement
-000001 result

(©) 101000 (d) 10101
1s comp: 1010111 1scomp: 1101010 with sign extension
2s comp: 1011000 2s comp: 1101011
001001 110000
Diff: 1100001 (negative) 0011011 sign bit indicates that the result is positive
0011111 (2s comp) Check: 48 -21 = 27

-011111 (diff is -31)

119 +0286 — 009286; +801 — 000801; -9286 — 990714; -801 —> 999199
(a) (+9286) + (_801) = 009286 + 000801 = 010087
(b) (+9286) + (-801) = 009286 + 999199 = 008485
(c) (-9286) + (+801) = 990714 + 000801 = 991515
(d) (-9286) + (-801) = 990714 + 999199 = 989913

1.20 +49 — 0_110001 (Needs leading zero indicate + value); +29 — 0_011101 (Leading 0 indicates + value)
-49 — 1 001111;-29 — 1100011

(a) (+29) + (-49) = 0_011101 + 1_001111 =1_101100 (1 indicates negative value.)
Magnitude = 0_010100; Result (+29) + (-49) = -20

(b) (-29) + (+49) =1 100011 +0_110001 = 0_010100 (0 indicates positive value)
(-29) + (+49) = +20

(c) Must increase word size by 1 (sign extension) to accomodate overflow of values:
(-29) + (-49) =11 100011 + 11 001111 =10 110010 (1 indicates negative result)
Magnitude: 1 001110 =789
Result: (-29) + (-49) = -78

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

6

1.21 +9742 — 009742 — 990257 (9's comp) — 990258 (10s) comp
+641 — 000641 — 999358 (9's comp) — 999359 (10s) comp

(a) (+9742) + (+641) — 010383

(b) (+9742) + (-641) —009742 + 999359 = 009102
Result: (+9742) + (-641) = 9102

(c) -9742) + (+641) = 990258 + 000641 = 990899 (negative)
Magnitude: 009101
Result: (-9742) + (641) = -9101

(d) (-9742) + (-641) = 990258 + 999359 = 989617 (Negative)
Magnitude: 10383
Result: (-9742) + (-641) = -10383

1.22 8,723
BCD: 1000_0111_0010_0011
ASCIl: 0011 1000 011 0111 011 0010 011 0001

1.23
1000 0100 0010 (842)
0101 0011 0111 (+537)
1101 0111 1001
0110
0001 0011 0111 0101 (1,379)
1.24 @ (b)
6 311 Decimal 6 421 Decimal
0000 O 0000 O
0001 1 0001 1
0010 2 0010 2
0100 3 0011 3
0110 4(or0101) 0100 4
0111 5 0101 5
1000 6 1000 6(or0110)
1010 7(or1001) 1001 7
1011 8 1010 8
1100 9 1011 9
1.25 (a) 5,137, BCD: 0101_0011 0111
(b) Excess-3: 1000 0100 0110 1010
(c) 2421: 1011 0001_0011 0111
(d) 6311: 0111 0001 0100 1001

1.26 5,137 9s Comp: 4,862
2421 code: 0100_1110_1100_1000
1s comp: 1011 0001 0011 0111 sameas (c) in 1.25

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

7

1.27 For a deck with 52 cards, we need 6 bits (32 < 52 < 64). Let the msb's select the suit (e.g., diamonds,
hearts, clubs, spades are encoded respectively as 00, 01, 10, and 11. The remaining four bits select the
"number" of the card. Example: 0001 (ace) through 1011 (9), plus 101 through 1100 (jack, queen, king).
This a jack of spades might be coded as 11_1010. (Note: only 52 out of 64 patterns are used.)

1.28 G (dot) (space) B 0 0 | e
01000111 11101111 01101000_01101110_00100000_11000100_ 11101111 11100101

1.29 Bill Gates
1.30 73F4E576 E5 4A EF 62 73

73: 0_111 0011
F4: 1 111 0100
E5: 1 110 0101
76 0_111 0110
E5: 1 110 0101
4A: 0_100_1010
EF: 1 110 1111
62: 0_110_0010
73: 0_111 0011

woCoO—D< D—~+W

1.31 62 + 32 = 94 printing characters
1.32 bit 6 from the right
1.33 (a) 897 (b) 564 (c) 871 (d) 2,199
1.34 ASCII for decimal digits with odd parity:
(0): 10110000 (1): 00110001 (2): 00110010 (3): 10110011

(4): 00110100 (5): 10110101 (6): 10110110 (7): 00110111
(8): 00111000 (9): 10111001

1.35 €))
abec
a [1 LI LI 1
D "o] L
c I
jL>c 9 1 |_
9
1.36

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

8

CHAPTER 2
2.1 €)]
Xyz | X+y+z | x+y+2)| x|y || XYz Xyz | (xyz2) | (xyz)' | X' |y | ' | X+y +7
000 0 1 1111 1 000| O 1 1111 1
001 1 0 1110 0 001| O 1 1(1]0 1
010 1 0 1101 0 010 O 1 1101 1
011 1 0 1/0/|0 0 011] O 1 1/0]|0 1
100 1 0 0111 0 100 O 1 0111 1
101 1 0 0|10 0 101| O 1 0/1]0 1
110 1 0 0,01 0 110 0 1 0,01 1
111 1 0 0,010 0 111 1 0 0,00 0
(b) (©
Xyz | x+yz | (x+y) | x+2) | x+y)x+2) Xyz [X(y+2z)| xy | xz | xy+xz
000 0 0 0 0 000 0 0 0 0
001 0 0 1 0 001 0 0 0 0
010 0 1 0 0 010 0 0 0 0
011 1 1 1 1 011 0 0 0 0
100 1 1 1 1 100 0 0 0 0
101 1 1 1 1 101 1 0 1 1
110 1 1 1 1 110 1 1 0 1
111 1 1 1 1 111 1 1 1 1
(© (d)
Xyz | x |y+z|x+(y+2) | (x+y) | (x+y)+z xyz | yz | x(y2) | xy | (xy)z
000| O 0 0 0 0 000 0 0 0 0
001| O 1 1 0 1 0010 0 0 0
010| O 1 1 1 1 010 0 0 0 0
011, 0 1 1 1 1 0111 0 0 0
100 1 0 1 1 1 100 |0 0 0 0
101 1 1 1 1 1 1010 0 0 0
110 1 1 1 1 1 110 0 0 1 0
111 1 1 1 1 1 1111 1 1 1
2.2 (@) xy +xy' =x(y +y)=x

(b) (x+y)(x+y)=x+yy =xX(x+y) +y(Xx +y) = XX+ xy" +xy +yy" =X
(€) xyz +Xy+xyz’ =xy(z+2) +Xy=xy+xy=y

(d) (A+B)'(A'+B') = (A'B')(AB) = (A'B")(BA) = A'(B'BA) = 0

(e) xyz' + X'yz + xyz + X'yz' =xy(z + ") + X'y(z+) =xy + X'y =y

) X+y+2) X +y +2)=xX"+Xy' + X2+ Xy +yy +yz+ X272 +y7' +722' =
=XY' +XZ+HXY+HYZ+ X +YI =X@Y + (XP2) + (YPI)

2.3 (a) ABC+AB+ABC'=AB+AB=B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

9

(b) Xyz+xz=(Xy+x)z=z(x +X)(x+Yy) =z(x +y)

© x+y)(x +y)=xy (X +y)=xy

(d) xy + x(wz + wz") = x(y +wz + wz') = x(w +Y)

(e) (BC'+ A'D)(AB' + CD') =BC'AB' + BC'CD' + A'DAB' + A'DCD' =0

() X+y +2)X +2)=xX"+X2' + XY +y7' + X'+ 1'I' =7+ y' (X' + ') = 7' + X'
2.4 (@) ACC+ABC+AC'=C'+ABC=(C+C)C'+AB)=AB+C'

(b) Xy'+2) +z+xy+wz=(Xy)2' +z+xy+wz=[(x+y)z' +z] +xy +wz =
=Z+2)z+x+y)+xy+wz=z+wz+x+xy+y=z(1+w)+x(1+y)+y=x+y+z

(c) AB(D' + C'D) + B(A + A'CD) = B(A'D' + AC'D + A + A'CD)
=B(AD'+A+AD(C+C)=BA+A(D' +D))=BA+A)=B

(d) (A+C)YA'+C)YA+B+CD)=(A"+CC)YA+B+CD)=A'(A+B+CD)
=AA'+ AB+A'CD=A'(B+C'D)

(e) ABCD + A'BD + ABC'D = ABD + A'BD =BD

2.5 (@)
X y Fsimplified
F
(b)
X oy
,_§|7 Fsimplified
)
F
(©

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

10

X y z
I:simplified
F
(d)
A B 0
Fsimplified
)
F
()
X y z
I:simplifiad
F

(f)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

11

X y z
—Z>—LD_ F
\
)
/.
F. ..
\)) simplified
Y/
A\
)
Y/
2.6 (@)
A B C
% |
Fsimplified
(b)
X y z

>

(©)

DLD_F
) Fsimplified

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

12

(d)

w X y z

vIvIvlY

v

DJDF
]
F

simplified

g

v,

(e)

VIYIYY e

(f)

=
=
<+
1

Fsimplified

%F

T

2.7 (@)

I:simplified

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

13

(b)

(©)

F

simplified

(d)

I:sirnplified

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

14
(e)
A B cC D
F
37 I:simplil‘ied
2.8 F'=(wx +yz)' = wx)'(y2)' = (W' +x')(y' + 2"

FF' = wx(Ww' +xX)(y' +2") +yz(w' + xX)(y'+2) =0
F+F =wx+yz+(Wx+yz)) =A+A" =1withA=wx+yz

2.9 (@ F' =y +xy) =xy)(Xy) =X +y)x+y)=xy +xy

(b) F'=[(A'B + CD)E' + E]' = [(A'B + CD) + E]' = (A'B + CD)'E' = (A'B)'(CD)'E'
F'=(A+B')(C +D)E'=ACE'+ AD'E' + B'CE' + BD'E'

(© F =[x +y+2)X+Y)x+2]'= (< +y+2) + (x+y) + (x+2) =
F'=xy'z+xy+x7

2.10 (a) Fi+F=Xm;+Zmy=2 (mli + m2i)
(b) F1F2 =2 m; Zm;where mim;=0ifi = jand mim;=1if i =]
211 @) F(x,y,2) =2(1,4,5,6,7)

(b) F(x,y,2) =%(0,2,3,7)

F=xy+xy'+y'z F=x7"+yz

Xyz F Xyz F

000 0 000 1

001 1 001 0

010 0 010 1

011 0 011 1

100 1 100 0

101 1 101 0

110 1 110 0

111 1 111 1
2.12 A =1011 0001
B =1010_1100

(a) AAND B =1010_0000
() AORB=1011_1101
(c) AXORB =0001_1101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

15

(d) NOTA=0100_1110
() NOTB=0101_0011

2.13 ()
AB C
?7?7 DJD =A+B+B'(a+C)
(b)
ABC D
(©
ABCD
Dﬁ} Y=A+CD+ABC
R
4
(d)
A BC
—\,DJD Y=(A xorC)'+B
(€)
A B CD
D—LD_Y = (A+ B)C + DY)
0

D—LD_Y = (A+B")C'+D)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

16

2.14 (@)
X oy z
F=xy+Xxy +yz
(b)
X oy z
)
) F=xy+Xxy +yz
=X HY)+xFY)+(+2)
©)
X oy z
O
D_DO*:D—D"_ F=xy+xy +yz
D > =[0oy)" (Xy))T
(d)

)D__ F=xy+xy +y'z

=[0y) Xy))T

188

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

17

(€)

YIV]Y

) F=xy+XYy +y7z

=(CHY) + (XHy)+(y+2)
2.15 (@) T, =A'B'C'+ AB'C + ABC'=AB'(C' + C) +A'C'(B' + B)=A'B' +A'C' = A'(B' + C')
(b) T, =T;'= A'BC + AB'C' + AB'C + ABC' + ABC
=BC(A'+ A) + AB'(C' + C) + AB(C' + C)
=BC+AB' +AB=BC+A(B'+B)=A+BC

>(3,56,7)=T11(0,1,2,4)

T,=AB'C'+AB'C + A'BC' T,=A'BC+AB'C'+AB'C+ ABC'+ ABC
— T T
A'B' AC AC' AC

T, =AB AC' =A'(B +C)
BC
T,=AC' + BC + AC = A+ BC
2.16 (a) F(A, B, C) = AB'C' + AB'C + ABC' + A'BC + AB'C' + AB'C + ABC' + ABC
= A'(B'C' + B'C + BC' + BC) + A((B'C' + B'C + BC' + BC)

= (A'+ A)(B'C' + B'C + BC' + BC) =B'C' + B'C + BC' + BC
=B'(C'+C)+B(C'+C)=B'+B=1

(b) F(X1, X2, X3, ..., Xo) = Zm; has 2"/2 minterms with x; and 2"/2 minterms with x';, which can be factored
and removed as in (a). The remaining 2"* product terms will have 2"/2 minterms with x, and 2"%/2
minterms with x',, which and be factored to remove X, and x',. continue this process until the last term is
left and x, + X', = 1. Alternatively, by induction, F can be written as F = x,G + x',;,GwithG=1.So F =
(X +Xx')G =1.

2.17 @xy+2)(y+xz) =xy+yz+xyz+x2=%(3,5,6,7)=T11(0, 1, 2, 4)
(b) (A'+B)(B'+C)=AB'+AC+BC=X(0,1,3,7)=11(2,4,5,6)
© yz+wxy'+wxz' +wxz=2(1,3,5,9,12,13,14)=11(0, 2, 4, 6, 7, 8, 10, 11, 15)

(d) (xy +yz' + X'2)(X + 2) = Xy + Xyz' + Xyz + X'z
=%(1,3,9,11,14,15)=T11(0, 2,4,5,6, 7, 8, 10, 12, 13)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

18

218 (a)

T

WXy z F=xy'z + xX'y'z + w'xy + wx'y + wxy

F=3(1,5,6,79 1011 13, 14,15)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PRPRPORRPRRPRORRLPRRPROOORO

(b)

5 - Three-input AND gates

2 - Three-input OR gates
Alternative: 1 - Five-input OR gate
4 - Inverters

() F=xyz+Xyz+wxy+wxy+wxy=yz+xy+wy=yz+yw+x)

(d) F=yz+yw+yx)=3(1,5,9 13,10, 11, 13, 15, 6, 7, 14, 15)
=%(1,5,6,7,9, 10,11, 13, 14, 15)

1) -

y

(€)

<

SxX N

1 — Inverter, 2 — Two-input AND gates, 2 — Two-input OR gates

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

19

2.19 F=B'D+ A'D+BD
ABCD ABCD ABCD
-B'-D A'--D -B-D

0001=1 0001 =1 0101 =5
0011 =3 0011 =3 0111 =7
1001 =9 0101 =5 1101 =13
1011 =11 0111 =7 1111 =15

F=3(3,579 11,13, 15) = [1(0, 2, 4, 6, 8, 10, 12, 14)

2.20 (a) F(A, B, C, D) =%(3, 5, 9, 11, 15)
F'(A,B,C,D)=3(0, 1,2, 4,678, 10, 12, 13, 14)

(b) F(x,y,2)=T11(2,4,5,7)
F'=2(2,4,57)

2.21 (@) F(x,y,2)=2(2,5,6)=T11(0, 1, 3,4, 7)
(b) F(A,B,C,D)=T1(0,1,2,4,7,9,12) = (3,5, 6, 8, 10, 11, 13, 14, 15)
2.22 (a) (AB+C)(B+C'D)=AB+BC + ABC'D + CC'D=AB(1+ C'D) +BC

= AB + BC (SOP form)
=B(A + C) (POS form)

(b) X' +x(x+y)y+2) = +X)X +(x+y)y+2)] =
=X +x+Y)X +y+7)
=X'+y+7

2.23 (a) B'C +AB + ACD
A B C D

ks

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

20

(b) (A +B)(C+D)(A'+B+D)

A B C

ks

oy
LﬂJ

(c) (AB + A'B")(CD' + C'D)

A B Cc D

vIYYY

§

st

(d)A + CD + (A + D')(C' + D)

A B C

v Y|YY

lw)

F

)

2.24 X @Yy =Xy+Xxy and(x @ y) =(xX+y)x +vy)

Dual of X'y + xy' = (X +y)(X +y) = (x @ y)'

2.25 @x]y=xy' zy|x=xy Not commutative
x|y |z=xy'z' #x| (y]|2) =x(yz")' =xy' + xz Not associative

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

21

(b) x @y) =xy' +Xy=y @x=yx' +y'x Commutative

x@y) @z=3(1,2,4,7)=x D(y @z) Associative

2.26
NAND NOR
Gate (Positive logic) (Negative logic)
Xy z Xy z Xy z
LL H 00 1 11 0
LH H 01 1 10 0
HL H 10 1 01 0
HH L 11 0 00 1
NOR NAND
Gate (Positive logic) (Negative logic)
Xy z Xy z Xy z
LL H 00 1 11 0
LH L 01 0 10 1
HL L 10 0 01 1
HH L 11 0 00 1
2.27 f,=a'b'c + a'bc + abc' + abc

f,=a'bc’' + a'bc + ab'c’ + ab'c + abc'

ClJ
U

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

22

2.28 (@) y=a(bcd)e=a(b'+c' +de

y=a(b'+c' +d)e=ab’e+ac’e+ad’e
=3(17,19, 21, 23, 25, 27, 29)

a bcde y a bcde y
0 0000 0 1 0000 0
0 0001 0 10001 1
00010 0 10010 0
00011 0 10011 1
00100 0 10100 0
00101 0 10101 1
00110 0 10110 0
00111 0 10111 1

0 0
0 1000 0 11000 0
01001 0 11001 1
01010 0 11010 0
01011 0 11011 1
01100 0 11100 0
01101 0 11101 1
01110 0 11110 0
01111 0 11111 0

(b) yy=a@(c+d+e)=a'(c+d+e)+a(c'de)=a'c+a'd+a'e+acde

y> =b'(c +d + e)f = b'cf + b'df + b'ef

y,=a (c+d+e)=a'(c+d+e) +a(c'de) =a’c+ad+ae+acde

y,= b'(c + d + e)f = bcf + b'df + bref

a'-c---
001000 =8
001001=9
001010 =10
001011 =11

001100 =12
001101 =13
001110 =14
001111 =15

011000 = 24
011001 = 25
011010 = 26
011011 =27

011100 =28
011101 =29
011110=30
011111=31

a'--d--
000100 = 8
000101 = 9
000110 = 10
000111 =11

001100 = 12
001101 =13
001110 =14
001111=15

010100 = 20
010101=21
010110 = 22
010111 =23

011100 =28
011101 =29
011110=30
011111=31

a'---e-

000010=2
000011 =3
000110 =6
000111 =7

001010 =10
001011=11
001110=14
001111=15

010010=18
010011 =19
010110 = 22
010111 =23

011010 = 26
011001 =27
011110=30
011111=31

a-c'd'e’-

100000 = 32
100001 = 33
110000 = 34
110001 =35

-b' c--f

001001=9

001011=11
001101 =13
001111 =15
101001 = 41
101011 =43
101101 =45
101111 =47

-b'-d-f

001001=9

001011=11
001101 =13
001111 =15
101001 =41
101011 =43
101101 =45
101111 =47

-b' --ef

000011=3

000111 =7

001011 =11
001111 =15
100011 =35
100111 =39
101011 =51
101111 =55

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

23

y,=2(2,3,6,7,8,9,10,11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28,
Zb, 30, 31,32,33,34,35)

y,=2(3,7,9,13, 15, 35, 39, 41, 43, 45, 47, 51, 55)

abcdef |y, y, | abcdef [y, y, | abcdef |y, y, | abcdef |y, v,
000000 |0 O 010000 |0 O 100000 (1 0 110000 (0 O
000001 |0 O 010001 |0 O 100001 (1 0 110001 [0 O
000010 |1 O 010010 |1 0 100010 (1 0 110010 (0 O
000011 |11 010011 |1 0 100011 |11 110011 |0 1
000100 |0 O 010100 |0 O 100100 |0 O 110100 |0 O
000101 |0 O 010101 |0 O 100101 (0 O 110101 (0 ©
000110 |1 O 010110 |1 0 100110 (0 O 110110 (0 ©
000111 |1 1 010111 |1 0 100111 (0 1 110111 (0 1
001000 |1 O 011000 |1 0O 101000 (0 O 111000 [0 O
001001 |1 1 011001 |1 0 101001 (0 1 111001 (0 O
001010 |1 O 011010 |1 0 101010 (0 O 111010 (0 ©
001011 |1 0 011011 |10 101011 (0 1 111011 [0 ©
001100 |1 © 011100 |1 0 101100 (0 O 111100 (0 ©
001101 (11 011101 (1 0 101101 |0 1 111101 |0 O
001110 |1 O 011110 |1 O 101110 |0 O 111110 |0 O
001111 |11 011111 |1 O 101111 |0 1 111111 |0 O

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
24

Chapter 3

3.1
yz y yz y
1 1
X 00 01 11 10 X 00 01 11 10
mo m1 m3 m2 m0 m1 m3 m2
ol 1 1 ol 1 1 1
m4 m5 m7 me m4 m5 m7 ms
X 1 1 1 X 1 1 1
.] [
z z
(@ F=xy+x7 (b) F=z+Xxy
yz y yz y
X 00 01 11 10 X 00 01 11 10
m, m, m, m, My m, My m,
0 1 1 1 1 0 1
m m m m m, mg m, My
X [A R X [1 1 |1 |1
.] e]
YA z
(c) F=x+yz (d) F=xy+xz+yz
3.2
yz y yz y
X 00 01 11 10 X 00 01 11 10
m0 m1 m3 I’T'I2 I’T'I0 I’T'I1 m3 mz
ol 1 1 0 1 1 1
m4 m5 m7 m6 m4 m5 m7 me
x| 1 1 1 x| 1 1 1
z z
(@) F=xy +xz (b) F=y+xz
yz y yz y
1
X 00 01 11 10 X 00 01 11 10
m, m, m, m, My m, m; m,
ol 1 1 0| 1 1 1
m m m m m, mg m, Mg
X [AR R T X [101 | a2
.] L 1
YA YA
() F=xYy' +xy (d) F=y +xz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
25
yz y yz y
1 1
XN 00 0L 11 10 N0 01 11 10
m, m, m, m, My m, my m,
0 1 1 0 1
m m m m m, mg m, mg
X [o D T T X [N I IR R
L | L |
z z
(e) F=z) F=x+Yy'z
3.3
yz y yz y
X 00 01 11 10 X 00 01 11 10
m, m, m, m, m, m, m, m,
0 1 1 0 1 1 1 1
m, mg m; mg m, m, m, mg
x| 1 1 1 x| 1 1
| [
z z
(@ F=xy +xy'z' + x'yz' (b) F=xYy +yz+xyz
F=xy+x'z F=x"+yz
yz y yz y
1
XN 00 01 11 10 *N_00 01 11 10
My m, m, m, m, n, m, m,
0 1 1 1 0 1
m m m m m, mg m, mg
X [1 ' 1 ’ ' : 1 X [1 1 1
L | e —
z z
(c) F=xy+yz+y7 (d) F =xyz + X'y'z + xyz'
F==xy+Z F=XYyz+xy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

26
3.4
CD C
AB 0 01 11 10
mO ml m3 mZ
00
m4 m5 m7 me
NG N 01| 1 1 1
00 01 11 10 B
m, m, m, m, my, My Myg My,
0 1 1 11 1
A
m, m5 m, m6 mg Mgy my, My
x| 1 1 1 10
] |
z D
a F= b F=BCD + A' BD'
y
CD C yz y
1
AB 00 01 11 10 WX 00 o1 11 10
My m, My m, My m, My m,
00 1 00 1 1
l'l’]4 I’T'I,5 m7 ms I’T'I4 m5 m7 I’T'I6
01 1 01
m12 m13 m15 m14 B m12 m13 m15 m14 X
11 1 1 1 1] 1 1 1 1
A mB m9 mll mlO w m8 m9 mll mlO
10 1 10
]]
D z
(c) F=CD + ABD + ABC (d) F = w'X'y +wx
yz R A yz
WX 00 01 11 10 WX 000l 11 10
My m, My m, m, m; m, m,
00 1 00| 1 1
I'ﬂ4 m5 m7 I’T'I6 mA I’T'I5 m7 l'l’]6
01| 1 1 1 1 01 1
le mlS m15 m14 X m12 m13 m15 m14 X
11 1 11
w m8 m9 mll mlO w mS mg mll mlO
10 10 (1 1
.] |
YA z
(e) F=wXx+wyz ()] F=xYy +wyz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

27

3.5
yz y CcD C
WX 0 01 11 10 AB 00 01 11 10
m0 ml m3 mZ mO ml m3 m2
00 1 00 1
I’T'I4 I’T'I5 m7 mG m4 m5 m7 l’T]6
01 1 1 1 01 1
le m13 m15 m14 m12 m13 m15 m14
11 1 1 1 11 1 1
w mB m9 mll mlO A m8 m9 m11 mlO
10 10 1 1 1
Ly L
z D
@ F =xz' + w'y'z+ wxy (b) F=AC+A'CD+B'CD
yz y CD C
WX 00 01 11 10 AB 00. 01 11 .10
mO ml m3 m2 mO ml m3 mZ
00 1 1 00 1 1
[T'I4 m5 m7 me I'TI4 m5 I'T'I7 m6
01 1 1 1 1 01 1 1 1 1
m12 m13 m15 m14 le m13 m15 m14
11 11 1 1
w Mg Mgy my My A Mg My My My
10 1 1 10 1 1
Ly Ly
z D
(c) F=wYy' +wx'y" + w'xy (d) F=BD+AB+B'D'
or=BD +B'D'+ A'D'
3.6
CD C yz
AB 00- 01 11 .10 WX 00 .01l 10
mO ml m3 m2 mO ml m3 mZ
00 1 1 00 1 1
m, m, m, mg m, mg m, [N
01 1 1 01 1 1
my, My3 My My my, My Mys My
11 1 1 11 1 1
A mB m9 mll mlO w m8 m9 mll mlO
10 1 1 10 1 1 1
[[
D z
() F=B'D'+A'BD + ABC' (b) F=xy" +x'z + wx'y

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

28

CD C CD C
1 1
AB 0. 01 11 .10 AB 0 01 11 10
My my my 3 Mg my m m,
00 1 1 00 1 1
m, Mg m, M, m, m, m, My
01 1 1 1 01 1
my, LT myg m,, B my, My Mys My B
11 1 11 1 1
A Mg My my, Myo A Mg Mg My Mo
10 1 1 10 1 1
| |
D D
(d) F=AB'D'+BC'D + ACD' + AB'C
(©) F=B'D'+BCD + A'BD + A'BC
3.7
yz y CD C
wx 0 01 dd.dO AB 0 01 ddedO
my m, L, m, My m,, ma m,
00 1 1 1 00 1 1 1
m, mg m, My m, m, m, M,
01 1 1 01 1
m;, My3 Mg My X LTS ;3 M5 My, B
11 1 1 11 1 1
w Mg Mg iy My A mg mg my, My
10 1 1 1 10 1 1 1
L. = L. =
z D
(a) F=z +xy (b) F=C'D+B'C + ABC'

CD C yz y
AB WX

mO ml m3 mZ mO ml
00 1 1 1 00 1

m, ms m, me m, mg m, me
01 1 1 01 1

le m13 mlS m14 B m12 m13 m15 m14 X
11 1 1 i1 1 1 1

A mB mg mll mlO w ma
100 1 1 il 10
[
D

(© F=B'D' + AC+ABD +CD (or B'C) (d) F=wx+xy+yz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

29

3.8
@ F(xvy,2)=2%(3,56,7)

yz y
——
X 00 01 11 10
My my m, m,
0 1
m4 m5 m7 m5
X [1 1 1 1
Ly
z

(b) F=3(1,3,5,9, 12, 13, 14)

CcD C
1
AB 00 01 11 10
mO ml m3 m2
00 1 1
mA I'T'I5 m7 m6
01 1
le m13 m15 m14 B
1] 1 1 1
A Mg My my, LT
10 1
.]
D
() F=x(0,1,2 3, 11, 12, 14, 15)
y
1
WX 00 01 11 10
mD ml m3 mZ
0| 1 1 1 1
m4 m5 m7 me
01
le m13 m15 m14 X
1] 1 1 1
W m8 m9 mll mlO
10 1
.]
YA

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

30

d) F= 33 45,711, 12)

cD c
1
AB 00 01 11 10
mO ml m3 mZ
00 1
m, Mg m, My

01| 1 1 1

m12 m13 m15 m14 B
11 1
A Mg My my My
10 1
e 1
D
3.9
(@) (b)
yz y CD C
WX 00 01 11 10 AB 00 01 [T 10
Fg— |™ M, My My m e |,
00| 1) 1 00| 1 1] 1,
My 13 i gy m, mg n7~ Mg .
oL 1) 1| 1 i1 01 1|1
B m12 m13 m15 mlA“ X m12 m13 L 15 m14 B
11 1 1 11 1 1
w m8 m9 mll mlO A mB m9 n,ﬂ' mlO \\
10 1 1 10 1 { 1) 11
B |
z D
Essential: xz, x'z' Essential: B'D', AC, A'BD
Non-essential: w'x, w'z' Non-essential: CD, B'C
F=xz+ X'z + (Wxorw'z) F=B'D'+AC+ ABD + (CD ORB'C)
© (d)
CD C yz
1
AB 00 01 11 10 WX 0 01 11 10
mO ml m3 mZ mO ml m3 m2
00 1 1 00 1 1
m, m, m, mg m, m, m, mg
01 1 1 01 1 1
my, My My My, B My, My3 Myg my, X
11 1 1 1 1 11 1 1 1 1
A mB m9 mll mlO w m8 m9 m11 mlO
10 1 1 10 1 1
L 1 L 1
D YA
Essential: BC', AC, A'B'D Essential: wy', xy, w'x'z
F=BC'+AC+ A'B'D F=wy' +xy+wx'z

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

31

(e)
CD C yz
1
AB 00 01 11 10 WX 0 01 11 10
mO ml m3 m2 mO ml m3 mZ
00 1 1 1 00 1 1
m4 m5 m7 ms m4 m5 m7 m6
01 1 1 01 1
My, My3 My My B M My3 M5 my X
11 1 1 11 1 1 1 1
A m8 mQ mll mlO W mB m9 mll mlO
10 1 1 1 10 1 1 1
L 1 L 1
D YA
Essential: BD, B'C, B'C'D’ Essential: wy', wx, X'z', Xyz
F=BD +B'C +B'CD F=wy' +wx + x'z'+ xyz
3.10
(a) (b)
yz y CD C
1
WX 0 01 11 10 AB 0 01 11 10
My my My m, My my my m,
00 1 1 00 1 1 1
I'I'l4 ms m7 I'I'l6 m4 m5 m7 I'I'l8
01 1 1 1 1 01 1 1
m12 m13 m15 m14 X le m13 m15 m14 B
11 1 1 11 1 1
W mB m9 mll mlO A mﬂ m9 mll mlO
10 1 1 10 1 1 1
L 1 L 1
z D
Essential: xz, w'x, x'z' Essential: AC, B'D', CD, A'BD
F=xz+wx+Xx7 F=AC+B'D'+CD+ABD

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

32

() (d)
CD C yz
1
ABN__ 00 01 43 10 MON_ 00 [ort 11 10
M, [I N Mo a My ™
00 11 00 AR
m m m 777777777 = m m, ”“5 My Mg
ot 1 [l1 | 6 01 1 1
m mu — B Myl I Uik
11| 1 1 1 1 11| §1 1 1 1]
A Mg My Mo, Mo W Mg Mg My Mo
10 1 1 101 1
\—1 \—‘
D z
Essential: BC', AC Essential: wy', xy
Non-essential: AB, A'B'D, B'CD, A'C'D Non-essential: wx, x'y'z, w'wz, w'x'z
F=BC'+AC+ A'B'D F=wy +xy+wXxz
(e)]
CD C yz
1
AB 00 01 1110 w 00 01 11 10
My m, [yp— N My m, my I
00 1 1 00 1 1
m, Ms m, Me m, mg m, mg
01 1 1 01 1
B m m m m >
m m m m 12 13 15 14
11 12 131 151 14 11 1 1 1 1
A m m m m w Mg my my, My,
10 8 1 9 111 101 10 1 1 1
\—1 \—‘
D z
Essential: BD, B'C, AB'C Essential: wy', wx, xyz, X'yz'
Non-essential: CD F= wy' +wx + xyz + x=yz'

F=BD+B'C+AB'C

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

33

311 (a)F(A, B,C,D,E)=Y(0,1,4,5, 16,17, 21, 25, 29
F=ABD +ADE +BCD'

me: A'B'C'D'E' =00000
m;: A'B'C'D'E =00001
m,: A'B'CD'E' =00100
ms: A'B'CD'E =00101
m: AB'C'D'E' =10000
m;7: AB'C'D'E =10001

my: ABCDE =10101
ms ABCDE =11001
Mme: ABCD'E =11101
A=0
[D |
DE ‘ ‘
ABD BCN_ 00 01 11 10
W~
01 <1 1
c
11
B
19
BCD'
E
A=1
[D |
DE ‘ ‘
g BCNL 00 01 11 10
00 A1 1
01 1
11 1 c
B
19 1
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

34

(b) F(A, B, C, D, E) = AB'CE' + BC'D'E' + AB'D' + B'CD' + A'CD + A'BD
F(A B, C, D, E)=ABD' +B'DE' +B'CD' +A'CD + ABD

A'B'CE': AB'CDE'+ A'B'CD'E'

B'C'D'E': AB'C'D'E'+ A'B'C'D'E'

A'B'D: A'B'CD'E+AB'CDE'+A'B'C'D'E+ AB'C'D'E'
B'CD': AB'CD'E+ AB'CD'E'+ A'B'CD'E + A'B'CD'E'
A'CD: A'BCDE + A'BCDE' + A'B'CDE + A'B'CDE'
A'BD: A'BCDE + A'BCDE' + A'BC'DE + A'BC'DE'

AB'D'
A=0
[|
e D
BDE oE | |
BCD 11 10
1 A'CD
1 1
c
u L AT
B
10 1 1
A'BD
‘ \
E
A=1
[|
D
DE ‘ ‘
BC 00 o1 11 10
001
01 1
11 c
B
10
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

3.12
(@
yz
wx 00 01 11 40
m, o m; m,
00 1 1 1
m, Mg m, M,
01 1
m, M3 Mg My
11 1
w Mg My my, My
10 1 1
|
z
F =30, 1,2,5,8, 10, 13)
F= X7 +WXY + WYz
(b)
CD C
1
AB 0 01 11 10
My e My m,
00 0] 0
m, m; T, My
01 0 0
m, M3 T My
11 0 0
A Mg Mg myy My,
10
|
D
(c)
CD C
1
AB 00 0kdd, 10
M, T i m,
00 0 0
m4 m5 m7 ma
01 0
M, M3 M5 My
11 0 0
A Mg Mgy oy Myo
10 0 0
|
D

WX

yz
00 01 11 10

s m, Jt m,
00 0

m, m, m, Me
01 0 0 0

My M3 M5 My X
11 0 0 0

Mg Mgy W My,
10 0 0

|
z

F'=yz+xz' + xy + wx'z
F=@+2)X +)X +y)W +x+7)

F=T11(1, 3,5, 7, 13, 15)
F'=AD+BD
F=(A+D)B’+D)
F=CD +AB' + CD'

F=T1I(1,3,6, 09,11, 12, 14)
F'=B'D + BCD' + ABD'
F=(B+D)B +C +D)A +B +D)
F=BD+B'D' +ACD'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

36

313 (@) F=xy+z'=xx+z)y+2)

(b)
CD C CD
1
AB 0 01 11 10 AB 0 01 11 10
M, m,, my m, M, my my ity
00 0 1 0 0 00 0 1 0 0
m, m, m, M, m, m, iy M,
01 0 1 0 0 01 0 1 0 0
Mgy Mi3 My My m, M3 M5 e
11 1 1 1 0 11 1 1 1 0
A Mg My o My, A Mg My my, My,
10 1 1 1 1 10 1 1 1 1
| |
D D
F=AC'+AD+C'D + AB'C F'A'D'+ A'C + BCD'
F=(A+D)A+C)B' +C' +D)
(c)
CD C CD
1
AB 00 01 11 10 AB 00 01 11 10
My my Mg m, Mg m,, my m,
00 0 00 1 1 1
m, Mg iy My m, Mg m, M,
01 0 01 1 1 1
m;, Mg Mg My Myp M3 M5 My
11 0 0 11 1 1
A Mg My my, My, A Mg s my, My,
10 0 0 0 10 1
| |
D D

F=(A+C +D)A +B +D)A +B+D)A +B+C)
F'=A'CD + ABD + AB'D + AB'C
F=AC+AD +BD +CD'

F' = AD + CD +AB'C
F=(A"+D)(C +D')A +B+C)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

37

(d)
CD C CD C
1 1
AB 0 01 11 10 AB 00 01 11 10
My m; my m, Mo) " &,
00 00 0 0 0 0
m, m, m, My m, mg m, M,
01 1 01 0 0 0
M, P s My, B my, M3 M5 L B
11 1 1 1 11 0
A Mg Mgy [l My, A Mg Mg my, My
10 1 1 10 0 0
| |
D D
F =ABC' + AB'D + BCD F=AC +AB'+CD'+B'CD'
F=AD + ABC'+ BCD F=(A+C)A+B)(C'+D)B+C+D)
3.14
CD C CD C
1
AB 0. 01 11 10 AB 00 .01
My m, my m, my 4l
00 1 00 0
m, [T m, My M, m,
01 1 1 01 0
m;, M3 Mg My, B m;, M3 M5 My, B
11 1 11 0 0 0
A iy Mg my, Myg A Mg Mgy i1 My,
10 1 1 10 0 0
| e —— |
D D

SOP form (using 1s): F=B'C'D'+ AB'D'+ BC'D + A'BD
F=B'D'(A+C')+BDA'+C)

POS form (using 0s): F' =BD'+ B'D + A'CD' + ACD
F=[(B"'+D)B+D)][(A+C'+D)A +C'+D"]

Alternative POS: F'=BD'+B'D + A'CD' + AB'C
F = [(B' + D)(B + D')][(A + C' + D)(A' + B + C)]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

38

3.15
(@) (b)
CD C
AB 00 01 11 10
mO ml m3 m2
00 1 X
yz y m, Mg m, Mg
X 01 X 1
00 01 11 10 B
My my ms m, m m m m
0 X X 1 1 11 12 131 15 141
m, mg m, Mg A m m m m
X [1 1 X 1 1 10 8 l 9 11 10X
\—‘ \—‘
z D
F=1 F=B'D'+ ABC'D
F=2(0,1,2,3,4,56,7) F=2(0, 2,6, 8, 10, 13, 14)
© (d)
CD C CD C
E——— ———
AB 00 01 11 10 AB 0. 01 11 .10
mO ml m3 m2 mO ml m3 m2
00 X 00 X 1 1 X
m4 m5 m7 m5 m4 m5 m7 m5
01 1 1 1 01
le m13 m15 m14 B m12 m13 m15 m14 B
11 1 1 X 1 11 1
A Mg My My My A Mg My My Myo
10 X X 10 1 X 1
Ly Ly
D D
F=BC'+BD + AB F=B'D'+ AB'+ ABCD
F=2%(4,5,7, 12,13, 14, 15) F= F=%2(0,1,2,3,8,10,15)
3.16 (@)
CD C
U
AB 00 0l 11 10
M, m, m, m, F=A+AB
ool 12 [1| 1|1 F = (A(ABY)Y
m4 m5 m7 m6
01

11 1 1 1 1

A —
A mB m9 mll mlO BI -
10 1 1 1 1
|
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

39
(b)
cD C
AB 00 01 11 10
m, Mg My, [m, F=BC+AB+ABCD
00 1 F = ((BC)'(AB)'(A'B'C' D)')'
m4 m5 m7 m6
01 1|1 B _}
C —]
m12 m13 m15 m14 B
11| 1 1 1 1 A - - F
A B B
mB m9 mll mlO
10 A
. 1}
|
D LI—
o |
(©
CcD C
AB
00 01l 11 10
m, m, m, m, F' = A'B'D
0| 1 1 F = (A'B'D)'
m m m m A'
4 5 7 6 ,
01| 1 1 1 1 B %'} F
D
m12 m13 m15 m14 B
11| 1 1 1 1
A Mg My my; My,
10| 1 1 1 1
]
D
(d)
BC B
ANC oo 01 11 10
™, m, m, m, F=AC + AB
0 F = ((AC)' (AB)')'
m, mg m, mg
Al 1 1 1 1 A
C —]
— D
C A -
B —

3.17

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

40

CD C CD C
AB 1110 AB 0 01 11 10
o 1 &3 3 My m, my m,
00 1 1 1 1 00
B
m, My m, My m,
01 1 01
Mg M3 M5 My B My, B
11 1 11
A my, My A mg
| |
D D
F=AB'+C'D'+B'C F'=BC + AC +BD
F = (BC)'(AC)'(BD)'
cd D
C p—
B _| L]
- -
C p—
3.18 F=(A®)B(C @®D)=(AB' + A'B)(CD'+ C'D) =AB'CD' + AB'C'D + A'BCD' + A'BC'D
CD C
AB 00 01 11 10
o My M My —, A
00 i B
m‘A s M, mg ' A
01 1 1 B'
E
Mz gz "5 7R B
11 || ‘ <
A Mg My M1 My c'
10 1 1 D'
__J __J
e]
D

F=AB'CD'+AB'C'D + ABCD' + ABC'D and F' = A'B' + AB + C'D' + CD
F = (A'B')'(AB)'(C'D')'(CD)" = (A + B)(A" + B') (C' + D')(C + D)

F' = [(A+B)(A' + BY)]" + [(C'+ D')(C + D)]"

F = ([(A + B)(A' + B)]' + [(C'+ D')(C + D)]')

F=([(A+B) + (A +B)] +[(C+D) +(C+D)]y

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

41

319 (@) F=W+2)X +z2)W + X +VY)

yz
WX 00 01 11 10
mO ml m3 mZ
0] 1 1 y
A
m, m, m, Mg
01 1 1 w
X X
le m13 m15 m14 F
11 1 W
w Mg My My My z
10 1 1 1 1
L 1
z
F=y7 +wx' +w?7
F=[y+2)+ W +x)'+(W+2)]
F=[y+2)+W+x)'+W+2)7T
(b)
yz
WX 00 01 11 10
M, my m m, w'
00 1 1 X
m, Mg m; Mg w
01 X'
F
le m13 m15 m14 X]
11 1 1)
w m m m m
8 9 11 10
y
10 7
L 1
zZ

F=3(1,2 13, 14)
F= W+ wd + Y7 + vz = [(W+X)W + X0y +)Y +2)]
F= (W) + W +x)+ (y+ 2 +(+72)

(©) F =[x+ V)< + 21 = (x+y)' + (< +2)
F=[x+y) + (< +)T

N X < X

3.20 Multi-level NOR:
F = (AB'+ CD")E + BC(A + B)
F'=[(AB' + CD")E + BC(A + B)]'
F=[[(AB'+CD)+ET+[(BC)+(A+B)T T
F=[[((A"+B)+(C+D))+E]+[(B'+C)+(A+B)T I

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

42

W >

Multi-level NAND:

F = (AB'+ CD")E + BC(A + B)

F'= [(AB'+ CD")E]' [BC(A + B)]'
F'= [((AB")'(CD)')'E]' [BC(A'B")'T

[

ks
o

]

e ,
A :jj

3.21 F=w(x+y+2)+xyz
F'=[wix +y+)T [xyz]" = [w(x'y'z))]"(xyz)’

>

1
T

4 F
—

X
y
z

X

y
z

W

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

43

3.22
. 7
I/'
D
3{ 1
5 [O—
>,
> O
a 1
D
A >
3.23
CD C
AB 00 0l 11 10
my MM,
00 X 1 A
m4 m5 m7 mG BI
o1] 1 1 o .
Mz [P [Mis My B D
e x|
A mS mQ mll mlO
10 X X 1
Ly
D
F=AC'+ A'D'+ B'CD'
F'=D + ABC
F=[D+ABC]'=[D+ (A'+B"+CT)]
3.24
CD C
AB
00 01 11 10
mO ml mS mZ
00 1
m4 I'T]5 m7 I'T]6
01 1
my, My3 My My B
11 1 1
A m8 m9 mll m10
10 1 1 1 1

(a) F=C'D' + AB' + AD'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

44

F'=(C'D)'(AB")'(AD")’
AND-NAND:

90
| 1

o}

5 998
0

Orx» @W>x QO
| |
T

(b) F'=[C'D' + AB' + AD']’
AND-NOR:

(c) F=CD'+AB'+AD'=(C+D) + (A'+B) + (A" + D)’
F' = (C'D')'(AB")'(AD")' = (C + D)(A' + B)(A' + D)
F=[(C+D)A"+B)A'+D)]

OR-NAND:

w> U0

?%*ﬁ

o>

(d F=CD'+AB'+AD'=(C+ D) + (A'+B) + (A" + D)’

NOR-OR:
c
D
A F
s ID>——D—
Ao
5 1>
3.25
s 11 ;
_ B
c)~ ABCD A+B+C+D
5 10 c
D
AND-AND — AND OR-OR — OR

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

45

A A
. B
. (AB CD) (A+B+C+Dy
D C
D
AND-NAND — NAND OR-NOR — NOR
8 A -
RIS B —
. (AB'C'D') [AB) + (C' D)
D A+B+C+D S ABCD
NOR-NAND — OR NAND-NOR — AND
A A'B' A
A 4
) . B —
c AB'C'D A+B +C +D'
D :Z>E:|T.(A+B+C+D)‘ 8] (A+B+C+D)
NOR-AND — NOR NAND-OR — NAND

The degenerate forms use 2-input gates to implement the functionality of 4-input gates.

3.26
g=(@+b+c' +d)(b'+c' +d)a+c+d)
f=abc' +c'd+a'cd'+ b'cd g'=a'b'cd + bed' + ac'd
cd c cd c
1 1
ab 0 01 11 10 ab 00 0L 11 10
mO ml m3 m2 mO ml m3 m2
00 1 1 00| 1 1 0 1
m, m m, m m, m m, m
01 1 1 01 1 1 1 0
m12 m13 m15 m14 b m12 m13 m15 m14 b
11 1 1 11 1 0 1 0
a Mg My myy Mg a Mg My myy Mg
10 1 1 10 1 0 1 1
L L
d d
fg = ac'd + abc'd + b'cd’
3.27 X@y =x'y +xy'; Dual = (X' + y)(x + y") = (x@y)'
3.28
X
y
X
z
g P
(a) 3-bit odd parity generator (b) 4-bit odd parity generator

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

46

3.29 D=A®B&C
E=ABC+ABC = (A @ B)C
F=ABC' + (A' + B')C = ABC' + (AB)'C = (AB) ®C

G =ABC
A @B
A — S S— D=A®Ba®C
Half-Adder C Half-Adder
B — C = C— E=(Ae®B)C
S—— F=(AB)®C
Half-Adder
C+— G=ABC
AB
3.30 F=AB'CD'+ A'BCD'+ AB'C'D + A'BC'D

F=(A @B)CD'+ (A @B) C'D = (A @B)(C @D)

A
B
F
Cc
D
3.31 Note: It is assumed that a complemented input is generated by another circuit that

is not part of the circuit that is to be described.

€)] module Fig_3_22a gates (F, A, B, C, C_bar, D);

output F;

input A, B, C, C_bar, D;
wire wl, w2, w3, w4;
and (wl, C, D);

or (w2, wl, B);

and w3, w2, A);

and (w4, B, C_bar);

or (F, w3, wd);
endmodule

(b) module Fig_3 22b_gates (F, A, B, C, C_bar, D);
output F;
input A, B, C, C_bar, D;
wire wl, w2, w3, w4;

not (wl_bar, wl);

not (B_bar, B);

not (w3_bar, w3);

not (w4 _bar, w4);

nand (wl, C, D);

or (w2, wl_bar, B_bar);

nand (w3, w2, A);

nand (w4, B, C_bar);

or (F, w3_bar, w4_bar);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

47

(c) module Fig_3 23a_gates (F, A, A_bar, B, B_bar, C, D_bar);
output F;
input A, A _bar, B, B_bar, C, D_bar;
wire wl, w2, w3, w4;
and (wl, A, B_bar);
and (w2, A_bar, B);

or (w3, wl, w2);

or (w4, C, D_bar);

or (F, w3, w4);
endmodule

(d) module Fig_3 23b_gates (F, A, A_bar, B, B_bar, C_bar, D);

output F;
input A, A bar, B, B_bar, C_bar, D;
wire wl, w2, w3, w4;

nand (wl, A, B_bar);
nand (w2, A_bar, B);

not (wl_bar, wl);

not (w2_bar, w2);

or (w3, wl_bar, w2_bar);

or (w4, C, D_bar);

not (w5, C_bar);

not (w6, D);

nand (F_bar, ws, w6);

not (F, F_bar);
endmodule

(e) module Fig_3 26 gates (F, A, B, C, D, E_bar);
output F;
input A, B, C, D, E_bar;
wire wl, w2, wl bar, w2_bar, w3_bar;
not (wl_bar, wl);
not (w2_bar, w2);
not (w3_bar, E_bar);
nor (w1, A, B);
nor (w2, C, D);
nand (F, wl_bar, w2_bar, w3_bar);
endmodule

(f module Fig_3_27 gates (F, A, A_bar, B, B_bar, C, D_bar);

output F;

input A, A bar, B, B_bar, C, D_bar

wire wl, w2, w3, w4, wh, w6, w7, w8, w7_bar, w8_bar;
not (w1, A_barn);

not (w2, B_bar);

not w3, A);

not (w4, B_bar);

not (W7_bar, w7);

not (w8_bar, w8);

and (w5 wl, w2);

and (w6, w3, wi);

nor (W7, w5, wb);

nor (w8, C, D_bar);

and (F, w7_bar, w8_bar);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

48

3.32 Note: It is assumed that a complemented input is generated by another circuit that
is not part of the circuit that is to be described.

(@) module Fig_3_22a_CA (F, A, B, C, C_bar, D),

output F;
input A, B, C, C bar, D;
wire wl, w2, w3, w4,

assign wl=C&D;
assign w2 =wl| B;
assign w3 =w2 & A);
assigh w4 =B & C_bar);
assign F=w3|w4);
endmodule

(b) module Fig_3_22b_CA (F, A, B, C, C_bar, D);

output F;
input A, B, C, C_bar, D;
wire wl, w2, w3, w4;

assign wl_bar = ~w1,;
assign B_bar =~B;
assign w3_bar = ~w3;
assign w4 _bar = ~w4;
assign wl=~(C &D);
assign w2 =wl_bar | B_bar;
assign w3 =~(W2 & A);
assign w4 =~(B & C_bar);
assign F =w3_bar | w4_bar;
endmodule

(c) module Fig_3_23a_CA (F, A, A_bar, B, B_bar, C, D_bar);

output F;
input A, A_bar, B, B_bar, C, D_bar;
wire wl, w2, w3, w4,

assign wl=A&B_bar;

assign w2 =A_bar & B;

assign w3 =wl |w2);

assign w4 =C | D_bar;

assign F=w3|w4;
endmodule

(d) module Fig_3_23b_CA (F, A, A_bar, B, B_bar, C_bar, D);

output F;
input A, A_bar, B, B_bar, C_bar, D;
wire wl, w2, w3, w4;
assign wl=~(A &B_bar);
assign w2 =~(A_bar & B);
assign wl_bar = ~w1,;
assign w2_bar = ~w2;
assign w3 =wl_bar | w2_bar;
assign w4, C|D_bar;
assign w5 =~C_bar;
assign w6 = ~D;
assign F_bar = ~(w5 & w6);
assign F =~F_bar;

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

49

(e) module Fig_3 26 _CA (F, A, B, C, D, E_bar);

output F;

input A, B, C, D, E_bar;

wire wl, w2, wl_bar, w2_bar, w3_bar;
not wl_bar = ~wl;

not w2_bar = ~w2;

not w3_bar = ~E_bar;

nor wl=(A|B;

nor w2 = (C| D;

nand F =~(wl_bar & w2_bar & w3_bar);
endmodule

(f module Fig_3_27 CA(F, A, A_bar, B, B_bar, C, D_bar);

output F;

input A, A bar, B, B_bar, C, D_bar

wire wl, w2, w3, w4, wh, w6, w7, w8, w7_bar, w8_bar;
not wl =~A_bar;

not w2 = ~B_bar;

not w3 = ~A;

not w4 = ~B_bar;

not w7_bar = ~w7;

not w8_bar = ~w8;

assign w5 =wl & w2;
assign w6 = w3 & w4;
assign w7 = ~(w5 | wb);
assign w8 = ~(C | D_bar);
assign F=w7_bar & w8_bar;

endmodule
3.32 (@)
—D-—F F=x®o
I: . j > y
y . DW

Initially, with xy = 00, wl =w2 =1, w3 =w4 = 0 and F = 0. w1 should change to 0 4ns after xy
changes to 01. w4 should change to 1 8 ns after xy changes to 01. F should change from 0 to 1 10 ns
after w4 changes from 0 to 1, i.e., 18 ns after xy changes from 00 to 01.

(b)

‘timescale 1ns/1ps

module Prob_3_33 (output F, input X, Y);
wire wl, w2, w3, w4,

and #8 (w3, x, wl);
not #4 (wl, x);
and #8 (w4, y, wl);
not #4 (w2, y);
or #10 (F, w3, w4);

endmodule
modulet Prob_3 33 ();

reg x,y,
wire F;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

50

Prob_3 33 MO (F, x, y);

initial #200 $finish;

initial fork
x=0;
y=0;
#20y =1,
join
endmodule

(c) To simulate the circuit, it is assumed that the inputs xy = 00 have been applied sufficiently long for
the circuit to be stable before xy = 01 is applied. The testbench sets xy =00 att=0ns,and xy =latt=
10 ns. The simulator assumes that xy = 00 has been applied long enough for the circuit to be in a stable
state at t = 0 ns, and shows F = 0 as the value of the output at t = 0. The waveforms show the response to
xy = 01 applied at t = 10 ns.

0.000ns 39.290ns 78.580ns 117.870ns
Name 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1
X
wl
y
w2
w3
w4
F
t=28ns
t=18ns)
t=14ns Note: input change occurs at t = 10 ns.
t=10ns
< A=18ns —
3.34 module Prob_3 34 (Out_1, Out_2, Out_3, A, B, C, D);

output Out_1, Out_2, Out_3;

input A, B, C, D;

wire A_bar, B_bar, C_bar, D_bar;

assign A _bar = ~A;

assign B_Bar =~B;

assign C_bar =~C;

assign D_bar = ~D;

assign Out_ 1=~((C|B)& (A _bar|D)&B);

assigh Out 2=((C*B_bar)|(A&B&C)|(C_bar&B))& (A|D_bar);
assign Out 3=C&((A&D)|B)|(C&A_bar);

endmodule
3.35
module Exmpl-3(A, B, C, D, F) /I Line 1
inputs A, B, C, Output D, F, Il Line 2
output B /I Line 3
and g1(A, B, B); /I Line 4
not (D, B, A), /I Line 5
OR (F, B; C); /I Line 6

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

51

endofmodule; /I Line 7

Line 1: Dash not allowed, use underscore: Exmpl_3. Terminate line with semicolon (;).

Line 2: inputs should be input (no s at the end). Change last comma (,) to semicolon (;). Output is
declared but does not appear in the port list, and should be followed by a comma if it is intended
to be in the list of inputs. If Output is a mispelling of output and is to declare output ports, C
should be followed by a semicolon (;) and F should be followed by a semicolon (;).

Line 3: B cannot be declared as input (Line 2) and output (Line 3). Terminate the line with a semicolon

()

Line 4: A cannot be an output of the primitive if it is an input to the module

Line 5: Too many entries for the not gate (only two allowed).

Line 6: OR must be in lowercase: change to “or”.

Line 7: endmodule is mispelled. Remove semicolon (no semicolon after endmodule).

3.36 (@)
¢ [—
| 4 X
D >4 = -
z
W
|
(b)
Al A0 B1 BO
wl
>, ——
= w6
—\ w2 Ly~ A lt B
J —__
S w3 A gt B
> _gt_|
R B0 e B o
[
\ w4
/)) —\ A eq B
. L
) >
(c)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

52

Y1

[D—
_D— Y2

3.37
UDP_Majority_4 (y, a, b, c, d);
outputy;
input a, b, c,d;
table
/la b cd y
00O0O 0;
0001 0;
0010 0;
0011 0;
0100 0;
0101 0;
0110 0;
0111 1;
1000 0;
1001 0;
1010 0;
1011 0;
1100 0;
1101 0;
1110 1;
1111 1;
endtable
endprimitive
3.38
module t_Circuit_with_UDP_02467;
wire E, F;
reg A, B,C,D;

Circuit_with_UDP_02467 mO (E, F, A, B, C, D);

initial #100 $finish;

initial fork
A=0;B=0;C=0;D=0;
#40 A =1,
#20B =1;
#40B = 0;
#60B =1,
#10C=1;#20C=0;#30C=1;#40C=0;#50C=1;#60C=0; #70C =1,
#20D =1;

join

endmodule

/I Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);

output D;

inputA, B, C;
/I Truth table forD=f (A, B, C) =2 (0, 2, 4, 6, 7);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

53

table

/I A B C D // Column header comment
0 0O 1;
0 01 0;
010 1;
011 0;
1 0 O 1;
1 0 1 0;
1 10 1;
1 11 1;

endtable

endprimitive
/I Verilog model: Circuit instantiation of Circuit_ UDP_02467
module Circuit_with_UDP_02467 (e, f, a, b, c, d);

output e, f;

input a, b, c d;

UDP_02467 MO (e, a, b, ¢);

and (f, e, d); //Option gate instance name omitted

endmodule
Name 0 | |30‘ |60‘ |90‘
A I
B I | [
c I N D e —
D I
E e L O e
F - L

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

54

CHAPTER 4

41 () T,=B'C,T,=AB,Tz3=A+T,=A+B'C,
T,=D &T,=D @(A'B)=ABD'+ D(A + B) =A'BD' + AD + B'D
Fi=T;+T,=A+B'C+ABD'+AD+BD
WithA+ AD=Aand A+ ABD'=A+BD"
F,=A+B'C+BD'+B'D
Alternative cover: F; = A+ CD'+ BD'+ B'D

F,=T,+D=AB+D

ABCD| T, T, T, T, F, F, D c
00000 0 0 0 0 O 0 0l 11 10
0001|0 0 0 1 1 1 Mo m, My m,
00101 01 0 1 0 00 1 1 1
0111 0 1 1 1 1 _ _ _ _
0100/ 0 1 0 1 1 1 ol ™ " "
01010 1 00 0 1
0110/ 0 12 0 1 1 1 LDV F— i o— B
01110 1 0 0 0 1 1] 1 1 1 1

A

100000 0 1 0 1 0 10 ”‘81 m91 "‘“1 ”‘wl

10000 0 1 1 1 1

1000/1 0 1 0 1 0

101111 0 1 1 1 1 D

1100/ 0 0 1 0 1 0

11000 0 1 1 1 1 F,=A+B'C+BD +BD'

1110/ 0 0 1 0 1 0

1112710 0 1 1 1 1

CD C cD C

1
AB 0 01 11 10 AB 0 01 11 10

I’n0 m1 m3 m2 m0 m1 m3 m2

00 1 1 00 1 1 1
m, m, m, mg m, m, m, m,

01| 1 1 1 1 01| 1 1
le m13 m15 m14 B le m13 m15 m14 B

11 1 1 NE 1 1 1

A Mg My My, My Mg My My My
10 1 1 0] 1 1 1 1

D D
F,=AB+D F,=A+CD' +BD +BD'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

55
4.2
. [(AD) AT=A+D
A N A
ST D—A)¢
B :I > D— BC + A’
c BC
L - G
D
(AD) =A+D’
F=(A+ D)(A"+BC) = A'D + ABC + BCD += A'D + ABC
F=(A+D")A"+BC)=AD"+ ABC + BCD'=A'D' + ABC
CD C CD C
1
AB 00 01 11 10 AB 00 01 11 10
mO ml m3 mZ mO ml m3 m2
00 1 1 00 1 1
m4 m5 m7 me m4 m5 m7 m6
01 1 1 01 1 1
m12 m13 m15 m14 B m12 m13 m15 m14 B
11 1 1 11 1 1
A m8 mg mll mlO A mB mg mll mlO
10 10
| |
D D
F=AD+ ABC + BCD = A'D + ABC G =AD"+ ABC + BCD'= A'D' + ABC
4.3 () Yi= (AS' +BS)E' fori=0, 1,2, 3
(b) 1024 rows and 14 columns
4.4 (@)
Xyz F_ vz y
000 1 X 00 01 11 10
001 |1 P [N 8 X _
010 |1 0 1 1 1]
011 |0 F
100 |0 My My ™ Ms
1010 {0 x| 1 -
110 |0 B
|
111 |0 .
F=xYy +x7

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

56
(b)
xyz | F yz y
000 |0 X 00 01 11 10
001 1 m, I m, m
010 | O 0 1 1
011 | O z F
100 | O m, Mg ity Mg
101 |0 x| 1 L] 2
110 | O
L
111 |0 .
F=z
45
xyz | ABC A
000 | 010 J? Y
X
00 01 11 10
8(])-3 (])-éé mo ml I'I'l3 mz X]
0 1 1 y —
011 101 A
100 | 001 my Mg Mg Mg
101 | 010 x| 1 1 Y
110 | 011 Z
|
111 | 100 z
A=xy+yz
yz B y
E—
X 00 01 11 10
m, m, m, m, X _}
0 1 1 Yy —
m4 n'l5 m7 me i
VEET B o
Ly
: 7,
B =Xy +y'z+ xy7 y _3_
c ? j
yz y
X 00 01 11 10
mO m1 mS mZ
0 1 1
X C
X 1 1 1
L
z
C=Xxz+xz'
4.6
F A
oo W d
X 00 01 11 10
001 O m0 m1 m3 m2 X
010 0 0 1 7 —
011 1 y — F
loo O m4 m5 m7 me 7 —
101 1 X 1 1 1 1 X
110 1 y
e]
111 1 7

F=xz+yz+xy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

57

module Prob_4_6 (output F, input X, Yy, 2);
assign F=x&2)|(y&2)| (x&Y);

endmodule
4.7 ()

ABCD | WXyz CcD CcD c
0000 | 0000 AB 00 01 11 10 00 01 11 10
0001 | 0001 R e M T,
0011 | 0010 00 00
0010 | 0011
0110 | 0100 m MM Mg M Ms M M
o111 | o101 01 01| 1 1 1 1
0101 0110 my, My, My My, LY My3 My My,
0100 | 0111 1] 1 1 1 1 11
1100 1000 A Mg My My, LT A Mg My My My,
1101 | 1001 10| 1 1 1 1 10| 1 1 1 1
1111 | 1010

| |
1110 | 1011
D D
1010 | 1100
_ =AB'+AB=A®B
1011 | 1101 w=A X
1001 | 1110
1000 | 1111
cD cD C
AB 00 01 11 10 AB 0 o1 11 10
m, m, m, m, m, m, m, m,
00 1 1 00 1 1
m4 m5 I’T'I7 l'l’]6 l‘ﬂ4 m5 m7 me
01| 1 1 01| 1 1
m12 mlS m15 m14 le m13 m15 m14
11 1 1 11 1 1
A mB m9 mll mlO A mS m9 mll mlO
10| 1 1 10| 1 1
| .]
D D
y=A'B'C ABC' + ABC + AB'C' J=A®@B®Co®D
=A(A®B)+ABeC) =yeD
=AaBeoeC
=XecC
A w
B i)D 1 x
C y
D) g
(b)

module Prob_4_7(outputw, X, Y, z, input A, B, C, D);
always @ (A, B, C, D)
case ({A, B, C, D})
4'h0000: {w, %, y, z} = 4'b0000;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

58

4'h0001: {w, x,y, z} = 4'b1111;
4'p0010: {w, X, y, z} = 4'b1110;
4'b0011: {w, x,y, z} = 4'b1101;
4'b0100: {w, X, y, z} = 4'b1100;
4'h0101: {w, x,y, z} = 4'b1011;
4'p0110: {w, X, y, z} = 4'b1010;
4'pb0111: {w, x, Y, z} = 4'b1001;

4'H1000: {w, x, Yy, z} = 4'b1000;
4'h1001: {w, x,y, z} = 4'b0111;
4'n1010: {w, x, Y, z} = 4'b0110;
4'h1011: {w, X, y, z} = 4'b0101;
4'h1100: {w, x, Yy, z} = 4'b0100;
4'h1101: {w, x, Y, z} = 4'b0011;
4'p1110: {w, x, Y, z} = 4'b0010;
4'h1111: {w, X, y, z} = 4'b0001;
endcase
endmodule

Alternative model:

module Prob_4_7(output w, X, Y, z, input A, B, C, D);
assign w=A;
assign x = A" B);
assigny=x"C;
assign z=y"D;

endmodule
4.8
WXYyZ
ABCD | W2 cD c cD c
00001 0000 ABN g9 o1 11 10 00 01 ~41-10
0001 | 0001 e RN L R L
0011 | 0010 00 X X X 00 X X X
0010 | 0011
0110 | 0100 I O A M M ™ T
0111 | 0101 01 0y 1
0101 0110 my, mg; m; My, B my, My, Myg My, B
0100 { 0111 11| x X 1 X 11| x X X
1100 1000 A Mg my My My, A Mg My Myg My,
1101 | 1001 10 1 10 1 1 1
1111 | 1010
e] .. =
1110 | 1011
1010 | 1100 D D
1011 1101
1001 | 1110 ,p cb —c
1000 | 1111 00 01 11 10
mO ml m3 mZ
00 x | x | x W = AB+AC'D'
Xx=B'C +B'D +BC'D’
m, Mg m; mg y= CD'+C'D
01 1 1 =D
m12 m13 m15 m14 B
11 X X X
A
mS m9 mll mlU
10 1 1
L
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

59
Alternative model:
module Prob_4_8(output w, X, y, z, input A, B, C, D);
assign w = (A&B) | (A & (~C)) & (~D) ;
assign x=((~B) & C) | ((~B) & D) | (B & (~C)) & (~D);
assigny=C"D;
assign z = D;
endmodule
4.9
ABCD [a|b|c|d]e]f ¢b c ¢b <
. A8 0. 01 11 10 AB 00 01 11 10
o000 (111 (1j1/1¢0 m, m, Wz m, g m, g m,
ooorlol111l0lo0l0l0 00 1 1 1 001 1 1 1 1
0010 [1]1|0|1|1]0|1 L e e I
o011 (1111|0012 01 ‘ 51 71 61 01 41 ° 71 ¥
0100 (0}1/1|/0|0|1/12 B B
0101 1 0 1 1 0 l 1 m12 m13 m15 m14 le m13 m15 m14
0110 |1]0|1 /1|1]1]|1 11 11
0111 |11 1]/0/0|0|0| A L A —
1000 1 1 l 1 1 1 1 10 8 l 9 1 11 10 10 8 l 9 1 11 10
1001 (1111|011
Ly Ly
D D
a=AC+ABD+B'C'D'+ AB'C' b=AB'+ A'C'D'+ A'CD + AB'C'
CD C CD C
AB 0. 01 11 10 AB 0. 01 11 10
mO ml m3 m2 mD ml mS m2
00 1 1 1 00 1 1 1
m4 m5 m7 me m4 m5 m7 me
01 1 1 1 1 01 1 1
m12 m13 mlS m14 B m12 m13 m15 m14 B
11 11
A mB m9 mll mlO A mB mg mll mlO
10 1 1 10 1 1
L L
D D
c=AB+AD+BCD'+AB'C' d=ACD'+AB'C+B'C'D'+AB'C'+ABC'D
CD C CD C CD C
AB 000 01 11 10 AB 00 01 11 10 AB 0 01 11 10
m, m m, m, Mg m, m, m, m, m, m, M5
00 1 00 1 00 1 1
m, m m, Mg m, mg m, Mg m, mg m, Mg
01 01 1 1 1 01 1 1 1
m12 m m15 m B m12 m13 m15 m14 B m12 m13 m15 m14 B
11 11 11
A m8 m9 mll mlO A mB m9 mll mlO A m8 m9 mll mlO
10 1 10 1 1 10 1 1
| | |
D D D

e=A'CD'+B'C'D’ f=A'BC'+A'C'D' + A'BD + AB'C’ g=A'CD'+AB'C + ABC'+ AB'C'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

60

4.10
WXyzZ
1 1
0000 | 0000 AB 00 01 11 10 00 01 .11 10
0001 | 1111 i = [[[[
0010 | 1110 00 r 1 1 1 00 1 1 1
0011 | 1101 ¥
0100 1100 m, ﬂ15 m; i Mg my mg m; Mg
0110 1001 m12 mlS m15 m14 B m12 m13 m15 m14 B
0111 | 1000 11 11 1
1000 | 1000 A [m e [A P L [
1001 | 0111 1011 10 11 .
1010 | 0110
1011 | 0101
1100 | 0100 D D
1101 | oo11 w=A'(B + C + D) + AB'C'D' x = B'(C + D) + CB'D'
1110 | 0010 =Ao(B+C+D) =B @ (C+D)
1111 | 0001
CD C CD C
1
AB 0 01 11 10 AB 00 01 11 10
mO ml mS m2 mO ml m3 m2
00 1 1 00 1 1
m4 m5 m7 mG m4 m5 m7 me
01 1 1 01 1 1
m12 m13 m15 m14 B m12 m13 m15 m14 B
11 1 1 11 1 1
A m8 m9 mll m10 A mS m9 mll mlO
10 1 1 10 1 1
L 1 L 1
D D
y=CD'+CD=C® D z=D
For a 5-bit 2's complementer with input E and output v:
v=Ee (A+B+C+D)
411 (@)
A3 AZ Al AO
1
X y X y X y X y
Half Adder Half Adder Half Adder Half Adder
C S C S C S C S

Note: 5-bit output

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

61
(b)
A, 1 A, 1 A, 1 A, 1
X y X y X y X y
Full Adder Full Adder Full Adder Half Adder
B D B D B D B D

Note: To decrement the 4-bit number, add -1 to the number. In 2's complement format (add F,) to
the number. An attempt to decrement 0 will assert the borrow bit. For waveforms, see solution to

Problem 4.52.
4.12
@
(b)
XyB,| BD
000 22 Diff=xo yo z
o011 |10
100 (01
101(00
110060
111111
413 Sum C
(@ 1101 0
(b) 0001 1
(c) 0100 1
(d 1011 0
(e) 1111 0
4.14 xor AND OR
10 +5 +5 +10 =30ns

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

62

4.15 C4 = G3 + P3C3 = G3 + P3(G; + P,Gy + P,P1Gy + P,P1PCo)

= G3 + P3Gy + P3PyGy + P3PoP1Gy + P3P,P.PoCy

4.16 (a)

(C'G'i +pi) = (Ci + Gi)Pi = GiP; + PiC;
= ABi(Ai + Bj) + PiCi
=AB; +PiCi = Gi + PiCi
=AB; + (A + B)Ci = AB; + AC; + BiCi = Ciny
(PiGY) ® Ci = (Ai+ B)(AB) ® Ci = (Ai + Bi)(A' + B) ® G
= (A'iBi + AiB'i) ® Ci = Ai ® Bi ® Ci = Si

(b)

Output of NOR gate = (Ag + Bg)' =P
Output of NAND gate = (A¢Bo)' = G'o
S1=(PoG'o) ® Cy

C,=(C'yG'y +Py)" asdefined in part (a)

417 (a)
(CiG'i + Py)' = (Ci+ G)Pi = GiP; + PiCi = ABi(Ai + B)) + PiC;
=AB; + PiCi = G; + PiC;
=ABi + (Ai+ B)Ci = AB; + AC; + BiCi = Ciy

(PiGH)@C; = (A + B)(AB)'®C; = (A + B)(A'i + B})@C;
= (A'B; + AB)®C; = A@®B®C; = S;

(b)

Output of NOR gate = (Aq + By)' = Py

Output of NAND gate = (A¢Bo)' = G'g

So = (PoG'0)®Cy
C,=(C'yG'y +Py)" asdefined in part (a)

4.18
Inputs | Outputs
ABCD| wxyz
0000 | 1001
0001 | 1000 d(A, b, ¢, d) = (10, 11, 12, 13, 14, 15)
0010 | 0111
0011 | 0110
0100 | 0101
0101 | 0100
0110 | 0011
0111 | 0010
1000 | 0001
1001 | 0000

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

63

CD C CD C
S —— S ——
AB 00 0l 11 10 ABN 00 01 1110
mO ml mS mZ mO ml m3 m2
00 1 1 00 1 1
m4 m5 m7 mﬁ m4 m5 m7 me
01 01 1 1
le m13 m15 m14 B le m13 m15 m14
11 X X X X 11 X X X X
A Mg My My My A Mg My Mg LT
10 X X 10 X X
L L
D D
w=AB'C x=BC'+B'C=B @C
CD C CD C
00 01 11 10 ABN 00 01 11 10
mO ml m3 m2 mO ml m3 mZ
00 1 1 00| 1 1
m, mg m, mg m, mg m, me
01 1 1 01 1 1 1
m12 m13 m15 m14 B m12 m13 m15 m14
11 X X X X 11 X X X X
mB m9 mll mlO A mB m9 mll mlO
10 X X 10 1 X X
e] e]
D D
y=C z=D'
419
Mode = 0 FOR Add
B, B, B, B, Mode = 1 for Subtract
9's Complementer
(See Problem 4.18)
— — Select
Select =1 Select =0
AS A2 Al A0
Quadruple 2 x 1 MUX
Y Y Y 4 l l l 4 Cin
S —

BCD Adder (See Fig. 4.14)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

64

4.20 Combine the following circuit with the 4-bit binary multiplier circuit of Fig. 4.16.

A, ¢, C, C, C, C, C C,
B B B B
|_ 3 |_ 2 1 |_ 0
C -
om 4-bit Adder Augend
D7 D6 D5 D4 3 DZ Dl DO
421
AO j >°
BO
Al
B D]:
i
A, — |
BZ
A3
e,) >
x=(A,®B,)'(A,®B))'(A,® B))(A® B,)
4.22
XS-3 | Binary
ABCD| wxyz
0011 | 0000
0100 | o001
0101 | 0010
0110 | 0011
0111 | 0100
1000 | 0101
1001 | 0110
1010 | o111
1011 | 1000
1100 | 1001

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

65
cD C cD C
1 1
AB 0 01 11 10 ABN 2000l 11 10
My m, m, X m, m, m, m,
00 X X 00| X X X
m4 m5 m7 m6 m4 m5 m7 m5
01 01 1
m12 m13 m15 m14 B le m13 m15 m14 B
11 1 X X X 11 X X X
A m8 m9 mll mlO A m8 mQ mll mlU
10 1 10 1| 1 1
D D
w=AB+ACD x=B'C'+B'D' +BCD
y=CD +CD'
z=D'
4.23
Al
A D—DO=(A1+AO+E):A1AOE
\—|> D— D,= (A, +A,+E') =A'AE
> D— D,= (A", + A, +E') = AAE
D— D,= (A", + A, + E') = AAE
E_ P,
I/'
4.24
cD C
ABN_ 00 01 11 10
m, m, m, X
wo|D, | D, | D | D
Inputs: A, B, C, D ° ! ’ 2
Outputs: D, D, ... D4 m, mg m, Mg
D, = AB'C'D' D, = BC'D 01| D, | D, | D, | D,
D, =AB'CD D, = BCD' = - = = B
D2 =B'CD' D7 = BCD 1 12X 13X 15X 14X
D; = B'CD D, = AD'
D, = BC'D' D; = AD S I S L P L
11
10 [D, D, X X
|
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

66
4.25
A 8
0 3x8
< D,-
ﬁl Decoder Do- Dy
2
E
3x8 8
Decoder Dg-Dyg
0 E
A 20
3
2x4 1
Decoder
A 2 ? 3x8 78; D,.-D
4 3 Decoder 16—
E
8
3x8
AR -
Decoder Dy~ Dy
E
4.26
A 20 4
0 1 Dsc)c()ger / Do- D,
A 2
E
2 oya 4
21 Decoder D,-D;
0 E
A, 20
ox4 1
) Decoder 2 20 2% 4 4
A
As 2 3 21 Decoder Dg- Dy
E
20 4
2x4 7 D12 - D15
o1 Decoder
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

67
4.27
0 — 1
b F,=%(2,4,7)
1 o r
2
A% 3x8 |
— {21 1
B 2" Decoder 4)] FZ - 2(01 3)
cC—2°
5
6 o
; b F,=3(0,2,3,4,7)
(F;=2(1,5,6))
428 (a)

Fi=x(y+y)z=xYyz7 =%(0,5,7)
Fo=xy'zZ + X'y + X'y(z +2") = 2(2, 3, 4)
Fa=xXYyz+xy(z+2)=2(1,6,7)

—

0
1 5::: £
2
X ——2% 348 s
y —2'Decoder © [| \ F
7z —2° 4 , 2
5
o1
7 —|Z>— F3
(b)
yz y yz y
E— E—
X 00 01 11 10 X 00 01 11 10
m, m, m, m, m, m, m, my
0 1 0 1 1
m4 m5 m7 m6 m4 m5 m7 m6
X [1 1 1 X [1 1 1 1
L L
z z
F =yz+x2=2(1,5,7) F,=y 7' +xy'+yz’=2(0,2,4,5,6)
0
1 | % > Fy yz !y—\
X 00 01 11 10
X —2% 343 ; R e R
y — 2 Decoder \ E
7 20 4 I] 2 m, m, m, mg
5 x| 1 1
6
7

F,=Xz+yz=2%(1,3,7)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

68

4.29
Inputs Outputs D,D, D,
D;D, D, Dy | XY 2 D,D, 00 01 11 10
mO ml m3 m2
0 00 0|xx0 00 |I x
X X x 11001
x x1 0|011 My Ms m Ms
x 100|101 01 |8t 5
1000 111 e M3 myg m,, 2
11 1
D3 ma My My My,
10 1
L
DO
v=D,+D,+D,+D,
D
D,D, %
D,D, 00 01 11 10
D N~ m, m, my m,
0 | —x 00| x 1
Dl
> — m, mg m, me
01 1
L] y D
D2 > 1 my, M3 Myg My, 2
D0
D Dl Z D3 Mg My My, My,
D, 2 10 1 1
L
DO
y=D'\D, +D',D,
4.30
Inputs Outputs
b, b, b, b, b, b, D, D, Xyz V
6 0 0 0 0 0 0 , XXx 0
10 0 0 0 0 0 000 1
x 1 0 0 0 0 0 , 0011
Xx x 1 0 0 0 0 , 0101
x x x 1 0 0 0 0111
X x x x 1 0 0 1001
X x x x x 1 0 1011
X x x x x x 1 1001
X X X X x X X 1111

IfD,=1,D,=1, all others =0
Outputxyz=100and V=1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

69

4.31
Sy o
S; o
S, 8,
s 0—1 0
; % 8x1
3 3 Mux
4— 4
5—1 5
6— 6
7— 7
2x1
O Mux ¢
1
SO
S1
SZ
8_—10
190 ; 8x1
35 Mux
12— 4
13— 5
14— 6
15— 7
4.32 (@) F=x(0,2,5,7, 11, 14)
Inputs
ascD| F
0000| 1p_py
0001| 0
0010 1__ A s
oo11| oF=P B N
0100[0 C s
ot01] 17=P ¢
0110 0. _ D 1
F=D F
0111] 1 I_|>.,_ 1, x| F
1000[0 _, | I
1001] 0 4
1010[0 __, o l]lg
1011] © L6
1100[0p_p 7
1101 1
mo] 1__
1111] oF=P

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

70

(b) F=11(3,8,12)=(A'+B'+C+D)(A+B' +C' +D)A+B +C' +D
F' = ABC'D' + A'BCD + A'B'CD = %(12, 7, 3)
F=3(0,1,24,5,6,8,9,10, 11, 13, 14, 15)

Inputs
agcD| F
0000| 1p_4
0001| 1
0010 1 , A 5
o011 oF=P B N
0100 1_ _ c 3
oto1] 1F=1 1 ¢
0110 1. _ 1
F=D F
0111] 0 D o 8x1 o)
1000 1p_, L | 3 MUX
1001] 1 4
1010 1__ 5
1011 1771 6
1100(0p_p 7
1101 1
1110 1_ _
11| 1771
4,33
X 0
S(x,y,2)=2(1,2,4,7) [> 1
C(x,y,2)=ZX(3,5,6,7) 2
S
3
Dual
s 1,1, 1,1 o 1,1, 1 4x1 Y
1 3 C o "1 "2 13 MUX
X |01 3 X101 23 0— o0 C
X 5 x |45 67 1
XX 0 x x'1 2
1— 3
y z
4,34 (@)
A B C D F CcD C
AB
L 0011 01 mo00 m101 m311 mle
3 0 1 1 1|1 00 1
=, L 0 1 01
577 1 0 1 1|1 Me M M M
50 0 0 00 0 L]z
0 O 0 0 l 1 m12 m13 mlS m14 B
1 0 0 O0]O 1] 1
b=D 1 0o 0 1)1 ,
o 1 1 0 0 1 Mg Mg myy My,
=D 1 1 o 1 | o0 10 1 1 1
|
D
Other minterms = 0
sincel, =1,=1,=0 F(A, B,C,D)=3(1,6,7,9, 10,11, 12)

(b)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

71

>
vs]
(@)
@)
-
(@)
@)
O

3

00| 1 1

3

01 1 1

11 1 1 1

10 1

l,= D’

Rlo ok k- r|lo olo oo o
o olo o r|lk Rk rloo
o|lo olo o Rk r|lo o[k —

= o[k o|k o~ o|F ol o~ o

o rlorlk ol krlkkrloooo

=D’

=
[y
o

F(A B, C,D)=3(0, 1,6, 7,9, 13, 14, 15)

Other minterms =0
sincel, =1,=0

4.35 (@)

Inputs
ABCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T

AB = 00
F=D

o >
w un
&

AB =01
F=CD
=(C+Dy

L]
c
D) >——
AB =10 I
F=CD]

AB =11
F=

4x1
MUX

w NN - O

P FRPPRPRPPFPOOOOCOOR|IFkF OO

(b)
Inputs
ABCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T

w
o

w
iy

A
AB =00 B
F=CD+CD’

AB=01
F=CD'+CD o
D —

4x1
MUX

Y

RPoOrRrORRRRFPOoOOROR RO

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

72

4.36

module priority_encoder_gates (output x, y, V, input DO, D1, D2, D3); // V2001
wire wl, D2_not;
not (D2_not, D2);
or (x,D2, D3);
or (v, DO, D1, x);
and (wl, D2_not, D1);
or (y, D3, wl);

endmodule

Note: See Problem 4.45 for testbench)

4,37

module Add_Sub_4_bit (
output [3: 0] S,
output C,
input [3: 0] A, B,
input M
)i
wire [3: 0] B_xor_M,;
wire C1, C2, C3, C4;
assign C = C4; I/l output carry
xor (B_xor_M][0], B[O], M);
xor (B_xor_M[1], B[1], M);
xor (B_xor_M[2], B[2], M);
xor (B_xor_M[3], B[3], M);
/I Instantiate full adders
full_adder FAO (S[0], C1, A[0], B_xor_M][0], M);
full_adder FA1 (S[1], C2, A[1], B_xor_M[1], C1);
full_adder FA2 (S[2], C3, A[2], B_xor_M[2], C2);
full_adder FA3 (S[3], C4, A[3], B_xor_M[3], C3);
endmodule

module full_adder (output S, C, input X, vy, z); // See HDL Example 4.2
wire S1, C1, C2;
/I instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, 2);
or G1 (C, C2, C1);
endmodule

module half_adder (output S, C, input X, y); /I See HDL Example 4.2
xor (S, x,Y);
and (C, x,y);

endmodule

module t_Add_Sub_4_bit ();
wire [3: 0] S;
wire C;
reg [3: 0] A, B;
reg M;

Add_Sub_4_bit MO (S, C, A, B, M);

initial #100 $finish;
initial fork
#10M =0;
#10 A = 4'hA;
#10 B = 4'h5;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

4.38

#50 M = 1;
#70 B = 4'h3;
join
endmodule
Name 0 /50 100
Ao | x X a
B[3:0] |_x X 5 X 3
M
si3:0] | x X X s X 7
C |

module quad_2x1_mux (

input [3:0] A, B,

input enable_bar, select,
output [3:0] Y

/1 V2001

Il 4-bit data channels

/l enable_bar is active-low)
/I 4-bit mux output

73

)

/lassign Y = enable_bar ? 0 : (select ? B : A); /I Grounds output
assign Y = enable_bar ? 4'bzzzz : (select ? B : A); // Three-state output
endmodule

/I Note that this mux grounds the output when the mux is not active.

module t_quad_2x1_mux ();
reg [3: 0] A, B, C;
reg enable_bar, select;
wire [3:0] Y;

/I 4-bit data channels
// enable_bar is active-low)
I 4-bit mux

quad_2x1_mux MO (A, B, enable_bar, select, Y);

initial #200 $finish;
initial fork
enable_bar =1,
select = 1;
A =4'hA;
B = 4'h5;
#10 select = 0; /l channel A
#20 enable_bar = 0;
#30 A = 4'h0;
#40 A = 4'hF;
#50 enable_bar = 1;
#60 select = 1; // channel B
#70 enable_bar = 0;
#80 B = 4'h00;
#90 B = 4'hA,;
#100 B = 4'hF;
#110 enable_bar = 1;
#120 select = 0;
#130 select = 1;
#140 enable_bar = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

74

A[3:0] a__ Yo f

B[3:0] 5 f
enable_bar I

select I LI

Y[3:0] 0 XaXoxXf)X o YsXoXaXf) 0

With three-state output:

Name 0) \70‘ | 14\0 !
A[3:0] a___foX f
B[3:0] 5 f
enable bar [L L
select I L
Y[3:0] z YaXoXfX z X5XoXaXf) z

4.39 /I Verilog 1995
module Compare (A, B, Y);
input [3: 0] A, B; /I 4-bit data inputs.
output [5:0] Y; /I 6-bit comparator output.

reg [5:0] Y; Il EQ, NE, GT, LT, GE, LE
always @ (A or B)
if (A==B) Y = 6'h10_0011; I EQ, GE, LE
else if (A<B) Y = 6'b01_0101; /I NE, LT, LE
else Y = 6'h01_1010; I NE, GT, GE
endmodule

/l Verilog 2001, 2005

module Compare (input [3: 0] A, B, output reg [5:0] Y);
always @ (A, B)

if (A==B) Y =6'b10_0011; Il EQ, GE, LE

else if (A <B) Y = 6'b01_0101; /I NE, LT, LE

else Y =6'b01_1010; /I NE, GT, GE
endmodule

4.40
module Prob_4_40 (
output [3: 0] sum_diff, output carry_borrow,
input [3: 0] A, B, input sel_diff

assign {carry_borrow, sum_diff} = sel_diff ?A-B: A+ B;
endmodule

module t Prob_4 40;
wire [3: 0] sum_diff;
wire carry_borrow;
reg [3:0] A, B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

75

reg sel_diff;

integer 1, J, K;
Prob_4_40 MO (sum_diff, carry_borrow, A, B, sel_diff);
initial #4000 $finish;
initial begin
for (1=0;1<2;1=1+1)begin
sel_diff = I;
for (J=0;J<16;J=J+1)begin
A=
for (K=0; K< 16; K=K+ 1) begin B=K; #5 ; end
end
end
end
endmodule

4.41
module Prob_4 41 (
output reg [3: 0] sum_diff, output reg carry_borrow,
input [3: 0] A, B, input sel_diff
);

always @ (A, B, sel_diff)
{carry_borrow, sum_diff} = sel_diff ? A-B: A + B;

endmodule

module t_Prob_4_41;
wire [3: 0] sum_diff;
wire carry_borrow;
reg [3:0] A, B;
reg sel_diff;

integer 1, J, K;
Prob_4_46 MO (sum_diff, carry_borrow, A, B, sel_diff);
initial #4000 $finish;
initial begin
for 1=0;1<2;1=1+ 1) begin
sel_diff = I;
for (J=0;J<16;J=J+1)begin
A=,
for (K=0; K< 16; K=K+ 1) begin B=K; #5 ; end
end
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

76

780 810 840 870
Name \\\\\\\\\l\\\\\\\\\l\\\\\\\\\l\\\\\\\\

sel_diff

\ L »

9
B30 380 800880800005200808008000¢
7 f
| I

A[3:0]

a
f
sum_aif3:0] 200000000 0088800000000¢

carry_borrow |
Name 2064 I 2094 I 2124 I 2154

I S B | I I | I I | L1
sel_diff
A[3:0] 9 X a X b
B0) 8000800006008 0800800001

p— SOERGDG00060000000EN00)

carry_borrow

4.42 @)
module Xs3_Gates (input A, B, C, D, output w, X, Y, 2);
wire B _bar, C_or_D bar;
wire CD, C_or_D;
or (C_or_D,C,D);
not (C_or_D_bar, C_or_D);
not (B_bar, B);
and (CD, C, D);
not (z, D);
or (y,CD, C_or_D_bar);
and (wl, C_or_D_ bar, B);
and (w2, B_bar, C_or_D);
and (w3, C_or_D, B);
or (x,wl, w2);
or (w, w3, A);
endmodule
(b)
module Xs3_Dataflow (input A, B, C, D, output w, X, y, 2);
assign {w, x, y, z} ={A, B, C, D} + 4'b0011;
endmodule
(c)
module Xs3_Behavior_95 (A, B, C, D, w, X, Y, 2);
input A, B, C,D;
output w, x,Y, z;
reg w, XY,z

always @ (A or B or C or D) begin {w, x, y, z} ={A, B, C, D} + 4'b0011; end
endmodule

module Xs3_Behavior_01 (input A, B, C, D, output reg w, X, Y, 2);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

77

always @ (A, B, C, D) begin {w, x, y, z} = {A, B,C, D} + 4b0011; end
endmodule

module t_Xs3_Converters ();
reg A, B, C, D;
wire w_Gates, x_Gates, y_Gates, z_Gates;
wire w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow;
wire w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95;
wire w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01;
integer k;
wire [3: 0] BCD_value;
wire [3: 0] Xs3_Gates = {w_Gates, x_Gates, y_Gates, z_Gates};
wire [3: 0] Xs3_Dataflow = {w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow};
wire [3: 0] Xs3_Behavior_95 = {w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95};
wire [3: 0] Xs3_Behavior_01 = {w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01};

assign BCD_value = {A, B, C, D};

Xs3_Gates MO (A, B, C, D, w_Gates, x_Gates, y_Gates, z_Gates);

Xs3 Dataflow M1 (A, B, C, D, w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow);
Xs3_Behavior_95 M2 (A, B, C, D, w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95);
Xs3_Behavior_01 M3 (A, B, C, D, w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01);

initial #200 $finish;

initial begin
k=0;
repeat (10) begin {A, B, C, D} =k; #10 k=k + 1; end
end
endmodule
Name 0 3 60 90
k o X 1 X 2 X 3 X a4 X 5 X & X 7 X 8 X 9 1]
A —
B I .
c - o -
D I 1 I 1 I 1 I I E—
BCD_value[3:0] o X 12 X 2 X 3 X 4 ¥ 5 X &6 X 7 K s X o
w_Gates I
x_Gates 1 1 |
y_Gates - - 0 - 0
z_Gates 1 J]]]]] N
Xs3_Gates[3:0] 0011 X 0100 X o101 X o110 X o111 X 1000 X 1001 X 1010 X 1011 X 1100
Xs3_Gates[3:0] 3 X 4 X 5 X & X 7 X 8 X 9 X a X b X ¢
Xs3_Dataflow[3:0] 3 X 4 X 5 X 6 X 7 X 8 X 9 X a X b X c
Xs3_Behavior_95[3:0] 3 X a4 X 5 X e X 7 X 8 X 9 X a X b X <
Xs3_Behavior_01[3:0] 3 X 4 X 5 X e X 7 X 8 X 9 X a X b X <
4.43 Two-channel mux with 2-bit data paths, enable, and three-state output.

4.44
module ALU (output reg [7: 0] y, input [7: O] A, B, input [2: 0] Sel);
always @ (A, B, Sel) begin

y=0;

case (Sel)
3'b000: y=8'h0;
3'b001l: y=A&B;
3'b010: y=A|B;
3'b011: y=A~"B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

78

3'b100: y=A+B;
3b101: y=A-B;
3'b110: y=-~A;
3'b111: y=8hFF;
endcase
end

endmodule

module t_ALU ();
wire[7: Qly;
reg [7: 0] A, B;
reg [2: 0] Sel;

ALU MO (y, A, B, Sel);

initial #200 $finish;
initial fork
#5 begin A = 8hAA; B =8h55;end // Expecty =8'd0
#10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000 Expecty =8'd0
#20 begin Sel = 3'b001; A = 8hAA; B=8hAA;end //y=A&B Expecty=8hAA=281010_1010
#30 begin Sel = 3'b001; A =8'h55; B=8'h55;end //y=A&B Expecty=8h55=8b0101_0101
#40 begin Sel = 3'b010; A = 8h55; B=8'h55;end //y=A|B Expecty=8h55=8b0101_0101
#50 begin Sel = 3'b010; A = 8hAA; B=8hAA;end //ly=A|B Expecty=8hAA=28b1010_1010
#60 begin Sel = 3'b011; A = 8'h55; B=8'h55;end //y=A"B Expecty = 8'd0
#70 begin Sel = 3'b011; A =8hAA; B=8h55;end //y=A"~B Expecty=8hFF=8b1111 1111
#80 begin Sel = 3'b100; A = 8'h55; B=8'h00; end //y=A+B Expecty=8h55=8b0101_0101
#90 begin Sel = 3'b100; A = 8hAA; B=8h55;end //ly=A+B Expecty=8hFF=8b1111 1111
#110 begin Sel = 3'b101; A = 8hAA; B=8h55;end //y=A-B Expecty = 8h55=8b0101_0101
#120 begin Sel = 3'b101; A =8'h55; B =8hAA;end //y=A—-B Expecty=8hab=8b1010_1011

#130 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#140 begin Sel = 3'b110; A = 8'd0; end Iy =~A Expecty = 8hFF =8'b1111_ 1111
#150 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#160 begin Sel = 3'b111; end Il'y=8hFF Expecty=8hFF =8b1111_1111
join
endmodule
Name © I60 | 120 | 180

seizop | X X oot X o0 Y oir { 200 Y am 1m0 111

Az [X__aa X 55 Yaafssfeaafss) a5) ff o) ff
B0 [N 55 faa) 55 Yaa) 55 oo s aa

yiral [00 55 Naafoo)ff\ssX ff }55)\abjoo) ff koo) f

Note that the subtraction operator performs 2's complement subtraction. So 8'h55 — 8'hAA adds the 2's
complement of 8'hAA to 8'h55 and gets 8'hAB. The sign bit is not included in the model, but hand
calculation shows that the 9™ bit is 1, indicating that the result of the operation is negative. The
magnitude of the result can be obtained by taking the 2's complement of 8'hAB.

4.45
module priority_encoder_beh (output reg X, Y, V, input DO, D1, D2, D3); // V2001
always @ (DO, D1, D2, D3) begin
X=0;
Y =0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

V=0;

casex ({DO, D1, D2, D3})

79

4'b0000: {X,Y, V} = 3'bxx0;
4'h1000: {X,Y, V}=3'b001;
4'bx100: {X,Y, V}=3b011;
4'bxx10: {X, Y, V}=3b101;
4'bxxx1: {X,Y, V}=3b111;
default: {X,Y, V} = 3'b000;
endcase
end
endmodule

module t_priority_encoder_beh (); // V2001
wire X, Y, V,;
reg DO, D1, D2, D3;
integer k;

priority_encoder_beh MO (X, Y, V, DO, D1, D2, D3);

initial #200 $finish;

initial begin
k = 32'bx;
#10 for (k = 0; k <= 16; k = k + 1) #10{DO0, D1, D2, D3} = k;
end
endmodule
Name |° 1% 120 {180

4.46 €)]
F=%(0,2, 57, 11, 14)
See code below.

(b) From prob 4.32:
F=11(3,8,12)=(A'+B'+C+D)A+B'+C'+D')A+B+C'+ D)
F'=ABC'D'+ A'BCD + A'B'CD =3(12,7, 3)

F=2X(0,1,245,6,8,9, 10,11, 13, 14, 15)

module Prob_4_46a (output F, input A, B, C, D);

assign F = (~A&~B&~C&~D) | (~A&~B&C&~D) | (~A&B&~C&D) | (~A&B&C&D) | (A&~B&C&D) |
(A&B&C&~D);

endmodule

module Prob_4_46b (output F, input A, B, C, D);
assign F = (~A&~B&~C&~D) | (~A&~B&~C&D) | (~A&~B&C&~D) | (~A&B&~C&~D) | (~A&B&~C&D) |

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

80

(~A&B&C&~D) | (A&~B&~C&~D) | (A&~B&~C&D) | (A&~B&C&~D) | (A&~B&C&D) | (A&B&~C&D) |
(A&B&C&~D) | (A&B&C&D);
endmodule

module t_Prob_4 46a ();
wire F_a, F_b;
reg A, B, C, D;
integer k;
Prob_4 _46a MO (F_a, A, B, C, D);
Prob_4 46b M1 (F_b, A, B, C, D);

initial #200 $finish;
initial begin
k=0;
#10 repeat (15) begin {A, B, C, D} =k; #10 k=k + 1; end
end
endmodule

Name | | | | | | | |

DO
D1
D2
D3

4.47
module Add_Sub_4_bit_Dataflow (
output [3: 0] S,

output C\V,

input [3:0] A, B,
input M
);

wire C3;

assign {C3, S[2: O]} = A[2: 0] + ({M, M, M}~ B[2: 0]) + M;
assign {C, S[3]} = A[3] + M~ B[3] + C3;
assign V=C"Cs;

endmodule

module t_Add_Sub_4_bit_Dataflow ();
wire [3: 0] S;
wire C, V;
reg [3: 0] A, B;
reg M;

Add_Sub_4_bit_Dataflow MO (S, C, V, A, B, M);

initial #100 $finish;
initial fork
#10 M = 0;
#10 A = 4'hA;
#10 B = 4'h5;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

81

#50 M = 1;
#70 B = 4'h3;
join
endmodule
100

o
al
o

Name ‘ |7, |

Ao | x X a
B[3:0] |_x X 5 X 3
M

sio] | x A f s X 7

4.48
module ALU_3state (output [7: O] y_tri, input [7: O] A, B, input [2: 0] Sel, input En);
reg [7: 0]y;
assign y_tri=En ?y: 8'bz;
always @ (A, B, Sel) begin
y=0;
case (Sel)
3'b000: y=8'h0;
3'b001l: y=A&B;
3'b010: y=A|B;
3'b011: y=AA~"B;
3'b100: y=A+B;
3'b101: y=A-B;
3b110: y=-~A;
3'b111: y=8hFF;
endcase
end

endmodule

module t_ALU_3state ();
wire[7: 0] y;
reg [7: 0] A, B;
reg [2: 0] Sel;
reg En;

ALU_3state MO (y, A, B, Sel, En);

initial #200 $finish;
initial fork
#5En=1;

#5 begin A = 8'hAA; B = 8'h55; end /I Expecty = 8'd0
#10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000 Expecty = 8'd0
#20 begin Sel = 3'b001; A = 8hAA; B=8hAA;end //y=A&B Expecty=8hAA=281010_1010
#30 begin Sel = 3'b001; A = 8'h55; B=8h55;end //y=A&B Expecty=8h55=8b0101_0101
#40 begin Sel = 3'b010; A = 8'h55; B = 8'h55; end //y = A | BExpecty =8'h55=8b0101_0101
#50 begin Sel = 3'b010; A = 8hAA; B=8hAA;end //y=A|B Expecty=8hAA=28b1010_1010
#60 begin Sel = 3'b011; A=8'h55; B=8'h55;end //y=A~B Expecty=8'd0
#70 begin Sel = 3'b011; A=8hAA; B=8h55;end //ly=A"B Expecty=8hFF=8b1111 1111
#80 begin Sel = 3'b100; A = 8'h55; B=8'h00; end //y=A+B Expecty=8h55=80101_0101
#90 begin Sel = 3'b100; A = 8'hAA; B=8h55;end //ly=A+B Expecty=8hFF=8b1111 1111
#100 En = 0;
#115En=1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

82

#110 begin Sel = 3'b101; A = 8hAA; B=8h55;end //y=A-B Expecty=8h55=8b0101_0101
#120 begin Sel = 3'b101; A =8'h55; B=8hAA;end //y=A—-B Expecty=8hab=8%1010_1011
#130 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#140 begin Sel = 3'b110; A = 8'd0; end IIy=~A Expecty = 8hFF =8'b1111_ 1111
#150 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#160 begin Sel = 3'b111; end /l'y=8hFF Expecty=8hFF=8b1111_1111
join

endmodule

4.49

/I See Problem 4.1

module Problem_4_49 Gates (output F1, F2, input A, B, C, D);
wire A_bar = |A;
wire B_bar = IB;

and (T1, B_bar, C);

and (T2, A_bar, B);

or (T3, A, T1);

xor (T4, T2, D);

or (F1, T3, T4);

or (F2, T2, D);
endmodule

module Problem_4_49 Boolean_1 (output F1, F2, input A, B, C, D);
wire A_bar = |A;
wire B_bar = IB;
wire T1 = B_bar && C;
wire T2 = A_bar && B;
wire T3=A|| T1;
wire T4 =T2"D;
assign F1=T3|| T4,
assign F2=T2 || D;
endmodule

module Problem_4_49 Boolean_2(output F1, F2, input A, B, C, D);
assign F1=A|| (B &&C) || (B && ('D)) || (\B && D);
assign F2 = (('A) && B) || D;

endmodule

module t_Problem_4 49;
reg A, B, C, D;
wire F1_Gates, F2_Gates;
wire F1_Boolean_1, F2_Boolean_1;
wire F1_Boolean_2, F2_Boolean_2;

Problem_4_48_Gates MO (F1_Gates, F2_Gates, A, B, C, D);
Problem_4_48 Boolean_1 M1 (F1_Boolean_1, F2_Boolean_1, A, B, C, D);
Problem_4_48_Boolean_2 M2 (F1_Boolean_2, F2_Boolean_2, A, B, C, D);

i

initial #100 $finish;
integer K;
initial begin
for (K=0; K< 16; K=K + 1) begin {A, B, C, D} =K; #5; end
end
endmodule

4.50
/I See Problem 4.8 and Table 1.5.
/I Verilog 1995

module Prob_4 50 (Code_8 4 m2_m1, A, B, C, D);
output [3: 0] Code_8 4 m2_mi;

input A, B, C,D;
reg [3:0] Code_8 4 m2 mil;

I/l Verilog 2001, 2005

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

83

module Prob_4 50 (output reg [3: 0] Code_8 4 m2_ml, input A, B, C, D);

always @ (A, B, C, D) /l always @ (A or B or C or D)
case ({A, B, C, D})
4'b0000: Code_8 4 _m2_m1 = 4'b0000; /00
4'h0001:Code_8 4 m2_m1l = 4'b0111; ni 7
4'b0010:Code_8 4 m2_ml =4'h0110; 112 6
4'b0011:Code_8 4 m2_m1l = 4'b0101; /I3 5
4'p0100: Code_8 4 m2_m1 = 4'b0100; a 4
4'h0101:Code_8 4 m2_m1l = 4'b1011; /15 11
4'h0110:Code_8 4 m2_m1l = 4'b1010; /6 10
4'h0111:Code_8 4 m2_m1l = 4'b1001; N7 9
4'H1000: Code_8 4 m2_m1 = 4'b1000; /18 8
4'h1001:Code_8 4 m2_ml =4'b1111; /19 15
4'H1010: Code_8 4 m2_m1l = 4'b0001; /110 1
4'h1011:Code_8 4 m2_m1l = 4'b0010; 111 2
4'h1100:Code_8 4 2 1 = 4'b0011; /112 3
4'h1101: Code_8 4 2 1 = 4'b1100; /113 12
4'h1110:Code 8 4 2 1 =4'h1101; /114 13
4'p1111: Code 8421 =4'b1110; /115 14
endcase
endmodule

modulet_Prob_4 50;
wire [3: 0] BCD;
reg A, B, C, D;
integer K;

Prob_4 50 MO (BCD, A, B, C, D); // Unitunder test (UUT)
initial #100 $finish;
initial begin

for (K=0; K< 16; K=K + 1) begin {A, B, C, D} =K; #5 ; end

end
endmodule

451 Assume that that the LEDs are asserted when the output is high.

module Seven_Seg_Display_ V2001 (
outputreg [6:0] Display,

input [3: 0] BCD

)i
I abc_defg
parameter BLANK = 7'b000_0000;
parameter ZERO =7'b111 1110; /I h7e
parameter ONE = 7'b011_0000; /' h30
parameter TWO =7'b110 1101; /I hed
parameter THREE =7'b111_1001; /I 'h79
parameter FOUR =7'b011 0011; /I h33
parameter FIVE =7'h101_1011; // h5b
parameter SIX =7'b101 1111; /I h5f
parameter SEVEN = 7'b111_0000; /I'h70
parameter EIGHT =7'b111 1111; /I h7f
parameter NINE =7'b111_1011; /' h7b

always @ (BCD)
case (BCD)
0: Display = ZERO;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

84

Display = ONE;
Display = TWO;
Display = THREE;
Display = FOUR;
Display = FIVE;
Display = SIX;
Display = SEVEN;
Display = EIGHT;
: Display = NINE;
default: Display = BLANK;
endcase
endmodule

CoNoORRWNR

module t_Seven_Seg_Display_V2001 ();
wire [6: 0] Display;
reg [3:0] BCD;

parameter BLANK = 7'b000_0000;
parameter ZERO =7'b111 1110; /I'h7e
parameter ONE = 7'b011_0000; /I h30
parameter TWO =7'h110_1101; // heéd
parameter THREE =7'b111 1001; /I'h79
parameter FOUR =7'h011_0011; //'h33
parameter FIVE =7'b101_1011; /I h5b
parameter SIX =7'h001_1111; I/ hif
parameter SEVEN =7'b111_0000; /I'h70
parameter EIGHT =7'b111 1111; I h7f
parameter NINE =7'b111 1011; /I'h7b
initial #120 $finish;
initial fork

#10 BCD = 0;

#20 BCD = 1;

#30 BCD = 2;

#40 BCD = 3;

#50 BCD = 4;

#60 BCD = 5;

#70 BCD = 6;

#80BCD =7;

#90 BCD = §;

#100 BCD = 9;
join

Seven_Seg_Display_V2001 MO (Display, BCD);
endmodule

0 60 120
Name ! | L

BCD[3:0] x JohiA2X3hahsXe X7 A8\ 9
Display[6:0] [xx } 7e k30 \6d X 79 k33 K5b X 5t k70 k7t X__7b

Alternative with continuous assignments (dataflow):

module Seven_Seg_Display_V2001_CA (
output [6: O] Display,

input [3: 0] BCD

);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

85

I abc_defg

parameter BLANK = 7'h000_0000;

parameter ZERO =7'b111 1110; /l'h7e
parameter ONE =7'h011_0000; /I h30
parameter TWO =7'b110_1101; // heéd
parameter THREE =7'h111 1001; /I'h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'h101_1011; // h5b
parameter SIX =7'b101_1111; /I h5f
parameter SEVEN =7'h111 0000; /I'h70
parameter EIGHT =7'b111 1111, I h7f
parameter NINE =7'h111 1011; /I'h7b
wire A /B, C/D,ab,cdefg;

assign A = BCD[3];

assign B = BCD[2];

assign C = BCD[1];

assign D = BCD[0];

assign Display = {a,b,c,d,e,f,g};

assign a = (~A)&C | (~A)&B&D | (~B)&(~C)&(~D) | A & (~B)&(~C);

assign b = (~A)&(~B) | (~A)&(~C)&(~D) | (~A)&C&D | A&(~B)&(~C);

assign ¢ = (~A)&B | (~rA)&D | (~B)&(~C)&(~D) | A&(~B)&(~C);

assign d = (~A)&C&(~D) | (~A)&(~B)&C | (~B)&(~C)&(~D) | A&(~B)&(~C) | (~A)&B&(~C)&D;

assign e = (~A)&C&(~D) | (~B)&(~C)&(~D);

assign f = (~A)&B&(~C) | (~A)&(~C)&(~D) | (~A)&B&(~D) | A&(~B)&(~C);

assign g = (~A)&C&(~D) | (~A)&(~B)&C | (~A)&B&(~C) | A&(~B)&(~C);
endmodule

module t_Seven_Seg_Display_V2001_CA ();
wire [6:0] Display;
reg [3: 0] BCD;

parameter BLANK = 7'b000_0000;
parameter ZERO =7'b111 1110; /I'h7e
parameter ONE =7'h011_0000; /I h30
parameter TWO =7'b110_1101; /' heéd
parameter THREE =7'h111 1001; /I'h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'h101_1011; // h5b
parameter SIX =7'b001_1111; /l hif
parameter SEVEN =7'h111 0000; /I'h70
parameter EIGHT =7'b111 1111, Il h7f
parameter NINE =7'h111 1011; /I'h7b
initial #120 $finish;
initial fork

#10 BCD = 0;

#20BCD = 1;

#30 BCD = 2;

#40 BCD = 3;

#50 BCD = 4;

#60 BCD = 5;

#70 BCD = 6;

#80 BCD = 7;

#90 BCD = 8;

#100 BCD =9;
join

Seven_Seg_Display_V2001_CA MO (Display, BCD);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

86

endmodule

4.52 (@) Incrementer for unsigned 4-bit numbers

module Problem_4 52a Data_Flow (output [3: 0] sum, output carry, input [3: 0] A);
assign {carry, sum} = A + 1,
endmodule

module t_Problem_4 52a Data_Flow;
wire [3: 0] sum;

wire carry;

reg [3: 0] A;

Problem_4 52a Data_Flow MO (sum, carry, A);

initial # 100 $finish;
integer K;
initial begin
for (K=0; K< 16; K=K + 1) begin A =K; #5; end
end
endmodule

(b) Decrementer for unsigned 4-bit numbers

module Problem_4 52b Data_Flow (output [3: 0] diff, output borrow, input [3: 0] A);
assign {borrow, diff} = A - 1;
endmodule

module t_Problem_4 52b Data_Flow;
wire [3: 0] diff;
wire borrow;
reg [3: 0] A;
Problem_4 52b_Data_Flow MO (diff, borrow, A);

initial # 100 $finish;

integer K;
initial begin
for (K=0; K< 16; K=K + 1) begin A =K; #5; end
end
endmodule
Name (© ‘30 60)

mzol |O0f1h2f3kafhsk6)7) 8fofafbfchdfek f

gz | fYofa1X2XafaNs e 7 s o aXp cdX e
borrow | |

453 /I BCD Adder

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

87

module Problem_4_53 BCD_Adder (
output Output_carry,
output [3: 0] Sum,
input [3: 0] Addend, Augend,
input Carry_in);
supply0 gnd;
wire [3: 0] Z_Addend,;
wire Carry_out;
wire C_out;
assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (w2, Z_sum|[3], Z_sum[1]);
or (Output_carry, Carry_out, wl, w2);

Adder_4_bit MO (Carry_out, Z_sum, Addend, Augend, Carry_in);
Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: 0] a, b, input c_in);
assign {carry, sum}=a+b +c_in;
endmodule

module t Problem_4 53 Data_Flow;
wire [3: 0] Sum;

wire Output_carry;
reg [3: 0] Addend, Augend,;
reg Carry_in;

Problem_4 53 BCD_Adder MO (Output_carry, Sum, Addend, Augend, Carry_in);

initial # 1500 $finish;
integer i, j, k;
initial begin
for (i=0;i<=1;i=i+1)begin Carry_in =i; #5;
for (j=0;j<=9;j=]j+1) begin Addend = j; #5;
for (k=0; k<=9; k=k + 1) begin Augend = k; #5;
end
end
end
end
endmodule
Name 168 T 158 188

Addend[3:0]
Augend[3:0]
Carry_in
Sum([3:0]
Output_carry 1 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

88

4.54
module Nines_Complementer (//' V2001
outputreg [3:0] Word_9s_Comp,
input [3: 0] Word_BCD
).

always @ (Word_BCD) begin
Word_9s_Comp = 4'b0;
case (Word_BCD)
4'b0000: Word_9s_Comp = 4'b1001; //0to 9
4'b0001: Word_9s_Comp = 4'b1000; //1t08
4'b0010: Word_9s Comp = 4'b1111; 12t07
4'h0011: Word_9s_Comp = 4'b0110; //3t06
4'b0100: Word_9s_Comp = 4'b1001; II4t05
4'b0101: Word_9s_Comp = 4'b0100; II5t0 4
4'b0110: Word_9s_Comp = 4'b0011; //6t03
4'h0111: Word_9s_Comp = 4'b0010; 11 7t02
4'b1000: Word_9s_Comp = 4'b0001; //8to 1
4'b1001: Word_9s_Comp = 4'b0000; //9t0 0
default: Word_9s Comp = 4'b1111; /I Error detection
endcase
end
endmodule

module t_Nines_Complementer ();
wire [3:0] Word_9s_Comp;
reg [3:0] Word_BCD;

Nines_Complementer MO (Word_9s_Comp, Word_BCD);

initial #11%$finish;
initial fork
Word_BCD = 0;
#10 Word_BCD =1;
#20 Word_BCD = 2;
#30 Word_BCD = 3;
#40 Word_BCD = 4;
#50 Word_BCD =5;
#60 Word_BCD = 6;
#70 Word_BCD =7;
#20 Word_BCD = 8§;
#90 Word_BCD = 9;
#100 Word_BCD = 4'b1100;
join
endmodule

0 ‘60
L L

Word_BCD[3:0] 0 56X 7 Xo)
Word_9s_Comp[3:0] | 9 X8 X_f X6 X9 X 4 2__Xo)

Name

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

89

4.55 From Problem 4.19:
Mode = 0 FOR Add

B, B, B, B, Mode = 1 for Subtract
9's Complementer
(See Problem 4.18)
— — Select
Select=1 Select =0
A3 AZ Al AO
Quadruple 2 x 1 MUX
Y Y Y Cm
| —
BCD Adder (See Fig. 4.14)

// BCD Adder — Subtractor
module Problem_4 55 BCD_Adder_Subtractor (

output [3: 0] BCD_Sum_Diff,

output Carry_Borrow,

input [3: 0] B, A,

input Mode
);

wire [3: 0] Word_9s_Comp, mux_out;

Nines_Complementer MO (Word_9s_Comp, B);

Quad_2 x_1_mux M2 (mux_out, Word_9s_Comp, B, Mode);

BCD_Adder M1 (Carry_Borrow, BCD_Sum_Diff, mux_out, A, Mode);
endmodule
module Nines_Complementer (//' V2001

outputreg [3: 0] Word_9s_Comp,

input [3: 0] Word_BCD
).

always @ (Word_BCD) begin
Word_9s_Comp = 4'b0;
case (Word_BCD)
4'b0000: Word_9s_Comp = 4'h1001; //0to9
4'b0001: Word_9s_Comp = 4'b1000; //1t08
4'h0010: Word_9s_Comp = 4'b0111; 12t07
4'b0011: Word_9s_Comp = 4'b0110; //3t0 6
4'b0100: Word_9s_Comp = 4'h1001; II4t05
4'b0101: Word_9s_Comp = 4'b0100; //5t04
4'h0110: Word_9s_Comp = 4'b0011; //6t03
4'b0111: Word_9s_Comp = 4'b0010; /17102
4'b1000: Word_9s_Comp = 4'b0001; //8to 1
4'b1001: Word_9s_Comp = 4'b0000; //9t0 0
default: Word_9s Comp = 4'b1111; /I Error detection
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

90

module Quad_2_x_1 mux (output reg [3: 0] mux_out, input [3: 0] b, a, input select);
always @ (a, b, select)
case (select)
0: mux_out = a;
1. mux_out=b;
endcase
endmodule

module BCD_Adder (
output Output_carry,
output [3:0] Sum,
input [3:0] Addend, Augend,

input Carry_in);
supply0 gnd;

wire [3: 0] Z_Addend;
wire Carry_out;
wire C_out;

assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (W2, Z_sum|[3], Z_sum[1]);
or (Output_carry, Carry_out, wl, w2);

Adder_4_bit MO (Carry_out, Z_sum, Addend, Augend, Carry_in);
Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: O] a, b, input c_in);
assign {carry, sum}=a+b +c_in;
endmodule

module t_Problem_4 55 BCD_Adder_Subtractor();
wire [3:0] BCD_Sum_Diff;

wire Carry_Borrow;
reg [3:0] B,A;
reg Mode;

Problem_4 55 BCD_Adder_Subtractor MO (BCD_Sum_Diff, Carry_Borrow, B, A, Mode);
initial #1000 $finish;

integer J, K, M;
initial begin
for(M=0; M<2; M=M + 1) begin
for (J=0;J<10;J=J+1)begin
for (K=0; K< 10; K=K+ 1) begin
A=J;B=K;Mode =M; #5;
end
end
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

91

M 0

A3q

B30
Word 95 G4
mux_ ouf3q

BOD Sm O3]
CayBuoow|— | L [

Note: For subtraction, Carry_Borrow = 1 indicates a positive result; Carry_Borrow = 0 indicates a
negative result.

Name

M 1

A[3:0]

B[3:0]
Word_9s_Comp|[3:0]

mux_out[3:0]

BCD_Sum_Diff[3:0]

Carry_Borrow —‘—, |—,

4.56
assign match = (A ==B); // Assumes reg [3: 0] A, B;

4.57
/I Priority encoder (See Problem 4.29)
/I Caution: do not confuse logic value x with identifier x.
/I Verilog 1995

module Prob_4 57 (x,y, v, D3, D2, D1, DO);
output Xx,y,V;

input D3, D2, D1, DO;

reg X, Y, V;

/l Verilog 2001, 2005

module Prob_4 57 (output reg X, y, v, input D3, D2, D1, DO);
always @ (D3, D2, D1, DO) begin // always @ (D3 or D2 or D1 or DO)
x=0;
y=0;
v=0;
casex ({D3, D2, D1, D0O})
4'b0000:{x, y, v} = 3'bxx0;
4'bxxx1: {x, y, v} = 3'b001;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

92
4'bxx10: {x, y, v} = 3'b011;
4'bx100: {x, y, v} = 3'b101;
4'b1000:{x, y, v} = 3'b110;
endcase
end
endmodule
module t Prob 4 57;
wire X, Y, V;
reg D3, D2, D1, DO;
integer K;
Prob_4_57 MO (x, y, v, D3, D2, D1, DO);
initial #100 $finish;
initial begin
for (K=0; K< 16; K=K+ 1) begin {D3, D2, D1, DO} = K; #5 ; end
end
endmodule
4.58
/Imodule shift_right_by 3_V2001 (output [31: O] sig_out, input [31: 0] sig_in);
/I assign sig_out = sig_in >>> 3;
/lendmodule
module shift_right_by 3 V1995 (output reg [31: 0] sig_out, input [31: 0] sig_in);
always @ (sig_in)
sig_out = {sig_in[31], sig_in[31], sig_in[31], sig_in[31: 3]};
endmodule
module t_shift_right_by 3 ();
wire [31: 0] sig_out_V1995;
wire [31: 0] sig_out V2001;
reg [31: 0] sig_in;
/Ishift_right_by 3 V2001 MO (sig_out_V2001, sig_in);
shift_right_by 3 V1995 M1 (sig_out_V1995, sig_in);
integer k;
initial #1000 $finish;
initial begin
sig_in = 32'hf000_0000;
#100 sig_in = 32'h8fff_ffff;
#500 sig_in = 32'hOfff_ffff;
end
endmodule
Nae 0 hdl kil il
sig_in[31:0] 00001111111111111111111111111111
sig_out_V1995[31:0] 00000001111111111111111111111111
34 44 54 64
Name | | | | ‘ | ‘ | ‘
sig_in[31:0] 11110000000000000000000000000000
sig_out_V1995[31:0] 11111110000000000000000000000000

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

93

4.59
/Imodule shift_left_by 3 V2001 (output [31: 0] sig_out, input [31: 0] sig_in);
/I assign sig_out = sig_in <<< 3;
/lendmodule
module shift_left_by 3 V1995 (output reg [31: 0] sig_out, input [31: O] sig_in);
always @ (sig_in)
sig_out = {sig_in[28: 0], 3'b0};
endmodule
module t_shift_left_by 3 ();
wire [31: 0] sig_out_V1995;
/lwire [31: 0] sig_out_V2001;
reg [31: 0] sig_in;
/Ishift_left_by 3_V2001 MO (sig_out_V2001, sig_in);
shift_left_by 3 V1995 M1 (sig_out_V1995, sig_in);
integer k;
initial #500 $finish;
initial begin
#100 sig_in = 32'h0000_000f;
end
endmodule
’\HTE O | | | | | | | | | ‘EO\ | | | | | | | | ‘]-(\D | | | | | | | | ‘]E\O | | |
Sig in3L0) X00000X) 0000000k
sig out VI99E31:0] X00000K) 00000078
4.60
module BCD_to_Decimal (output reg [3: 0] Decimal_out, input [3: 0] BCD_in);
always @ (BCD_in) begin
Decimal_out = 0;
case (BCD_in)
4'b0000: Decimal_out = 0;
4'b0001: Decimal_out =1;
4'b0010: Decimal_out = 2;
4'b0011: Decimal _out = 3;
4'b0100: Decimal_out = 4;
4'b0101: Decimal_out =5;
4'b0110: Decimal_out = 6;
4'b0111: Decimal out=7;
4'h1000: Decimal_out = 8;
4'b1001: Decimal_out=9;
default: Decimal_out = 4'bxxxx;
endcase
end
endmodule
4.61

module Even_Parity_Checker_4 (output P, C, input x, Y, 2);
xor (Wi, X, V);
xor (P, wi, 2);
xor (C, wl, w2);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

94

xor (w2, z, P);
endmodule

See Problem 4.62 for testbench and waveforms.

4,62
module Even_Parity_Checker_4 (output P, C, input X, Yy, 2);
assign wl=x"y;
assign P =wl " z;
assign C =wl *w2;
assign w2 =z " P;
endmodule
Name (© | 14‘0 28‘0 429
X]
y [| [
z I T e EO I S
p J J
C
CHAPTERS
5.1 (@)
D I> R=D'C
Q
CP C
Q
S=DC
(b)
R=(D+C)=DC
D J—
Q
Q
s=(D'+C)=DC
(c)

S=(DC)' =D'+C'

o DL

R=((DC)' C) =DC +C'
=(D+C)=(DC)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

95

5.2

2x1 D=JQ +KQ

Y D Q

5.3 Q(t+1)=(Q +KQ) =@ +Q)K+Q)=JQ +KQ

KQ K
1
J 00 01 11 10

0 0 1 0 0

m, m, m, My
J| 1 1 1 0 1

]
Q
5.4
@ P N |Q(t+1) () P N Q) | Qt+1)
0 0 0 00 O 0
01 Q(t) 00 1 0
10 Q') 01 0 0
11 1 01 1 1
10 0 1
10 1 0
11 0 1
11 1 1
NQ N
P 00 01 11 10
mO ml m3 m2
0 1
m4 m5 m7 me
Pl 1 1 1 1
L 1
Q
Q(t+1) = PQ"+ NQ
() Q® Q+1) |P N (d) Connect P and N together.
0 0 0 x
0 1 1 X
1 0 x 0
1 1 x 1
5.5

The truth table describes a combinational circuit.

The state table describes a sequential circuit.

The characteristic table describes the operation of a flip-flop.

The excitation table gives the values of flip-flop inputs for a given state transition.
The four equations correspond to the algebraic expression of the four tables.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5.6

5.7

(@)

« ™.
l/‘
y
b
< a 5
o = Z% O
A B xvy AB z
00 00 00 O
00 01 10 0
00 10 00 O
00 11 00 0
01 00 01 1
01 01 11 1
01 10 00 1
0 1 11 00 1
10 00 00 O
10 01 10 0
10 10 11 0
10 11 11 0
11 00 01 1
11 01 11 1
11 10 11 1
11 11 11 1
S =
s 2 gz 8
as £ zw O
Q xy Q s
0 00 0 0
0 01 0 1
0 10 0 1
0 1 1 1 0
1 00 0 1
1 01 1 0
1 10 1 0
1 11 1 1
S=x@y®Q

Qt+1)=xy+xQ+yQ

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

CcP

00/0
01/0

01/0
10/0

96

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

97

5.8 A counter with a repeated sequence of 00, 01, 10.
g
258 FF 00 o
o % Z % | Inputs \\
ABAB| T,T, p
0 000 01
0110 11
1000 10
1100 11
T,=A+B
To=A"+B |

Repeated sequence: @ 10
|—>OO—> 01— 10->|

5.9

A(t+1) = J, A"+ K'A = XA" + BA
B(t+1) = J,B' + K';B = xB' + A'B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

98
5.10 (a) Ja=Bx+BY Jg = A'X
Ka = B'xy’ Kg =A +xy' z = Axy + Bx'y'
(b) (©)
g 2 _ . 5 |FF Xy X
$8 2 3§ 5 | oupus AB 00 01 11 10
e - =w J, K, J, J My m; m, Mg
A B Xy AB z A A YA B 00 1 1
00 00 10 01000
00 01 00 0 00TO0O0 My Ms ™ Me
00 10 11 0|11 11 01 1 1
00 11 01 00010 B
01 00 01 1 0000 1 m121 m“l m151 m“l
01 01 01 00000
01 10 10 01010 A M M T
0 1 11 1 1 0 1 010 10 1 1 1
10 00 10 01001
10 01 10 0 /0001
10 10 00 0 |11 01
10 11 10 0 /000 1 y
11 00 10 1 |00 01 .
11 01 100 1l0001 A(t+1) = AX' + Bx + Ay + A'B'y
11 10 10 0 1001 Xy X
11 11 10 1 11001 AB 00 o1 ﬁ
mO ml m3 mZ
00 1 1
m4 I’T\5 m7 mﬁ
A 01 1 1 1
my, My3 My My B
11
Mg My My My
10
L 1
y
B(t+1) = AB'X + A'B'(X' +)
5.11 Present state: 000001000111000111100001111010

Input: 010110111011110
Output: 001001000100001
Next state: 000100011100011110000111101000

5.12 Present Next state Output
state 0 1 0 1
a f b 0 0
b d a 0 0
d g a 10
f f b 11
g g d 0 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

99

5.13 (a) State: afbcedghggha
Input: 01110010011
Output: 010001110120
(b) State: afbabdgdggda
Input: 01110010011
Output: 01000111010
5.14

Present Next
state state Output

A B C x=0x=1 x=1x=0

a 000 000 001 0 O
b 001 011 010 0 O
c 011 000 010 0 O
d 010 110 010 0 1
e 110 000 010 0 1
5.15 Do =Q'J+ QK
Present Next
state MPUS gtate K]
Q I K Q QN 00 01 11 10
0 00 0 Nochange P e P
0 01 0 Reset to 0
0 10 1 Setto 1 L ”‘41 Ms My mel
0 11 1 Complement Q
1 00 1 No change
1 01 0 Reset to 0 K
1 10 1 Settol
1 11 0 Complement Q(t+1) =D, + QI+ QK
L
J D Q Q
K—l>07
|_ clk Q Q

5.16 (@) Da = AX' + Bx

Dg = A'X + BX’

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

100

B
Present Next Bx
state MPUt giate AN oo 01 11 10
m m m m
B x AB P T L P
00 0 00 .
00 1 01 A[1 1 1 1
01 0 01
01 1 11 ‘f‘
10 0 10 L
10 1 00 DA— AX' + Bx
11 0 11 Bx B
11 1 10 AN o0 01 11 10
mO ml m3 mZ
0 1 1 1
m4 m5 m7 me
Al 1l 1
L 1
X
DB: A'x + Bx'
(b) Da=A'x + AX'
Dg = AB + BX'
B
Present Next Bx ——
state MPUL giate AN 00 01 11 10
mO ml m3 mZ
A B X A B 0 1 1
s N B
01 0 01
01 1 10 ‘f‘
10 0 10 o ,
10 1 00 DA— A'X + AX
11 0 11 Bx B
11 1 01 AN 00 01 11 10
m0 m1 m3 m2
0 1 1
[m, m, m, mg
Al 1 1 1
L 1
X
Dy = AB + B’

5.17 The output is 0 for all 0 inputs until the first 1 occurs, at which time the output is 1. Thereafter, the output
is the complement of the input. The state diagram has two states. In state 0: output = input; in state 1:
output = input'.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5.18

101

clk
[@)

o

g ®

g § = reset_b

€ 2 § 2 on

QA' _x i (; 0/0 reset_b 1/0

0 0 O 0

0o 1 1 1

1 0 1 1

1 1 1 0 1/1

D,=A+x
y = Ax'+ A'X
Binary up-down counter with enable E.

Present Next . .
state Inpu state Flip-flop inputs
AB X AB Ja Ky Jg Kg
00 01 00 O0Ox 0 x
00 01 00 O0x 0 x
00 10 11 1 x 1 x
00 11 01 O0x 1 x
01 00 01 O0Ox x O
01 01 01 O0x x©0
01 10 01 O0x x1
01 11 10 1 x x1
10 00 10 x O 10
10 01 10 x 0 10
10 10 01 x1 «x1
10 11 11 x0 x 1
11 00 11 x0 x 0
11 01 11 x0 x O
11 10 11 10 x1
11 11 11 x1l x 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

102

AB
00 01 11 10 AB 00 01 11 10
my my my m, M, m, m, m,
00 1 00| x X X X
m, mg m; Mg m, mg m; Mg
01 1 01| «x X X
m;, M3 M5 my, B M, M M5 My, B
11 x X X X 11 1
A Mg My My Mg A mg m, m;; Mig
10| x X X X 10 1
L L
X X
J, = (Bx+BX)E K, = (Bx + B'X)E
Ex E Ex E
I —
AB 00 0L 11 10 AB 00 01 11 10
m0 m1 m?1 m2 m0 m1 m3 m2
00 1 1 00 X X X X
m, m, m, m, m, m, m, mg
01 X X X X 01 1 1
m12 m13 m15 m14 E m12 m13 m15 m14 E
11 X X X X 11 1 1
A Mg My my My A Mg My Mgy My
10 1 1 10 X X X X
L L
X X
J,=E Ky =E

5.19 (a) Unused states (see Fig. P5.19): 101, 110, 111.

Present Next
state MPUL g OUWUL
ABC X ABC y
000 0 011 0
000 1 100 1
001 0 001 0
001 1 100 1
010 0 010 0
010 1 000 1
011 0 001 0
011 1 010 1
100 0 010 0
100 1 011 1

d(A, B, C,x) = = (10, 11, 12, 13, 14, 15)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

103

Cx Cﬁ Cx C
E—
AB 00 01 11 10 AB 00 01 11 10
my my my m, M, m, m, m,
00 1 1 00 1
m4
01
mp, B
11 X
A M
10
Cx
AB 00
my
00 1
m4
01
My, B
11 X
A M
10
Ly Ly
X X
Dc = Cx'+ AX +A'B'X' y =AX

The machine is self-correcting, i.e., the
unused states transition to known states.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

104
(b) With JK flip=flops, the state table is the same as in (a).
Flip-flop inputs
‘]A KA ‘]B KB ‘JC KC
J,=A+C¥X K, =C'x+ Cx'
0x 0x x0 B_ Ry s -
J.=Ax+ABX K.=x
1x 0x x1 c . ¢
0x x0 0x y=Ax .
The machine is self-correcting
0 x x 1 0x because K, =1
0x x1 x0 AT
0x x0 x1
x1 1 x 0x
x1 1 x 1Xx
5.20 From state table 5.4: To (A, B, X) =X (2, 3, 6), Tg(A, B, x) =X (0, 3, 4, 6).
Bx B Bx B
AN 00 01 11 10 ANL 00 o1 11 10
m, m, m, m, m, m, m, m,
0 1 1 0 1 1
m, m m, mg m, m, m, mg
Al 1l 1 A [1 1 1
X X
T,=AB+Bx Ty = BX' + AX + ABX
5.21 The statements associated with an initial keyword execute once, in sequence, with the activity expiring

after the last statment competes execution; the statements assocated with the always keyword execute
repeatedly, subject to timing control (e.g, #10).

5.22

@ _—— |

(b) |
\ \ 1 \ \ \ \ \ 1t
0 20 40 60 80 100 120 140 160

5.23 (a) RegA =125, RegB =125
(b) RegA =125, RegB =30

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

105

5.24 (@)
module DFF (output reg Q, input D, clk, preset, clear);
always @ (posedge clk, negedge preset, negedge clear)
if (preset ==0) Q <= 1'b1;
else if (clear == 0) Q <= 1'b0;
else Q <=D;
endmodule

module t_DFF ();

wire Q;
reg clk, preset, clear;
reg D;

DFF MO (Q, D, clk, preset, clear);

initial #160 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#10 preset = 0;
#20 preset = 1;
#50 clear = 0;
#80 clear = 1;
#10D = 1;
#100 D = 0;
#200 D =1,

join

endmodule

Name |0 /60 120

clk AN Y Y e e e Y Y Y Y I T
preset

clear
D |
Q

(b) module DFF (output reg Q, input D, clk, preset, clear);
always @ (posedge clk)
if (preset == 0) Q <=1'b1,;
else if (clear == 0) Q <= 1'b0;
else Q <=D;
endmodule

Name |0 L |60\ | 12\0 L

clk PN [Y Yy S Yy O I

preset

clear
D |
Q |

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

106

5.25
module Dual_Input_DFF (output reg Q, input D1, D2, select, clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b==0) Q<=0;
else Q <=select ? D2 : D1;
endmodule
module t_Dual_Input_DFF ();
wire Q;
reg D1, D2, select, clk, reset_b;
Dual_Input_DFF MO (Q, D1, D2, select, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
select = 0;
#30 select = 1;
#60 select = 0;
join
initial fork
#2 reset_ b =1;
#3 reset_b =0;
#4 reset_b=1;
D1=0;
D2=1;
join
endmodule
0 30 60 90
Name ‘ 1™ e 1™
clk I l I l I l I l I l I l I l I l I l I |
reset b |
select
D
b
2
Q
5.26 (a)

Qt+1) =3Q +KQ

When Q =0, Q(t + 1) =J
WhenQ =1, Q(t+1) =K’

module JK_Behavior_a (output reg Q, input J, K, CLK, reset_b);
always @ (posedge CLK, negedge reset_b)
if (reset_b==0) Q <=0; else

if (Q==0) Q<=7
else Q<=-K;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

107

(b)

module JK_Behavior_b (output reg Q, input J, K, CLK, reset_b);
always @ (posedge CLK, negedge reset_b)
if (reset_ b==0) Q <=0;
else
case ({J, K})
2'b00: Q <=Q;
2'b01: Q <=0;
2'b10: Q<=1;
2'b11: Q <=~Q;
endcase
endmodule

modulet_Prob_5 26 ();

wire Q_a, Q_b;

reg J, K, clk, reset_b;

JK_Behavior_a MO0 (Q_a, J, K, clk, reset_b);

JK_Behavior_b M1 (Q_b, J, K, clk, reset_b);

initial #100 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork

#2 reset_b=1;

#3 reset_b = 0; /I Initialize to sO
#4 reset_b=1;

J=0;K=0;

#20 begin J=1; K=0; end
#30 begin J=1; K=1; end
#40 begin J=0; K=1; end
#50 begin J=1; K=1; end

join
endmodule
Name 0 | ‘40‘ | 80‘
clk _
reset b |JU
J I L
K
Qa 1 [| [-
Qb 1 [| [-

5.27
/I Mealy FSM zero detector (See Fig. 5.16)
module Mealy_Zero_Detector (
output reg y_out,
input x_in, clock, reset

reg [1: O] state, next_state;
parameter SO0 =2'b00, S1 =2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clock, negedge reset) // state transition

if (reset == 0) state <= S0;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

108

always @ (state, x_in) // Form the next state
case (state)
S0:begin y_out =0; if (x_in) next_state = S1; else next_state = SO; end
S1: beginy out=~x_in;if (x_in) next_state = S3; else next_state = SO; end
S2:begin y_out = ~x_in; if (~x_in) next_state = SO; else next_state = S2; end
S3: beginy out=~x_in;if (x_in) next_state = S2; else next_state = SO; end
endcase

endmodule
module t_Mealy Zero_Detector;
wire t_y out;
reg t x_in,t clock,t reset;
Mealy_Zero_Detector MO (t_y_out, t_x_in, t_clock, t_reset);

initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork
t_reset = 0;
#2 t_reset = 1;

#87 t_reset = 0;
#89t reset=1;

#10t x_in=1;
#30t_x_in=0;
#40t x_in=1;
#50t x_in=0;
#52t x_in=1;
#54 t_x_in=0;
#70t x_in=1;
#80t x_in=1;
#70t_x_in=0;
#90 t_x_in =1,
#100t x_in=0;
#120t x_in=1;
#160t_x_in=0;
#170t x_in =1,
join
endmodule

Note: Simulation results match Fig. 5.22.

6 46 86 126 166
Name ‘ [[R I

telock [LI LT Lo L rrrieriererer e rer e r e reren
t_reset U

statef:0] | 0 U1 '3 Yo Y1 X 0 0o X1 X 0 1 X 3 2 Yo X1

txin | L [y I e SN LT
Ly out 1 mn ! 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

109

5.28 (@)
module Prob_5_28a (output A, input x, Y, clk, reset_b);
parameter sO =0, s1 =1,
reg state, next_state;
assign A = state;

always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= s0; else state <= next_state;

always @ (state, X, y) begin
next_state = s0O;
case (state)
s0: case ({x, y})
2'b00, 2'b11: next_state = sO;
2'h01, 2'h10: next_state = s1;
endcase
sl: case ({x, y})
2'b00, 2'b11: next_state = sl;
2'b01, 2'b10: next_state = sO;
endcase
endcase
end
endmodule
modulet_Prob_5 28a ();
wire A;
reg x, y, clk, reset_b;
Prob_5_28a MO (A, x, v, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset_b =0; /I Initialize to sO
#4 reset_b=1;
x=0;y=0;
#20 begin x=1;y=1; end
#30 begin x=0; y = 0; end
#40 begin x=1;y=0; end
#50 begin x = 0; y = 0; end
#60 begin x=1;y=1; end
#70 begin x=1;y =0; end
#80 begin x=0;y=1; end
join
endmodule

o

Name 80 160

clk Iy I I Iy I I o 0

reset_b |H
X 1 1 I |
y 1 1|

A L] L] L] L] L

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

110

b

(rgodule Prob_5 28b (output A, input x, y, Clock, reset_b);
xor (wl, X, y);
xor (w2, wl, A);
DFF MO (A, w2, Clock, reset_b);

endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_ b==0) Q <=0;
else Q <=D;
endmodule

module t Prob_5 28b ();
wire A;
reg x, y, clk, reset_b;
Prob_5_28b MO (A, x, Y, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_b=1;
#3 reset_b = 0; /I Initialize to sO
#4 reset_b=1;

x=0;y=0;

#20 begin x=1;y=1; end
#30 begin x=0; y=0; end
#40 begin x=1;y=0; end
#50 begin x=0; y=0; end
#60 begin x=1;y=1; end
#70 begin x=1;y=0; end
#80 begin x=0; y=1; end

join

endmodule

[o< 1 [0 e e e I I O B B I
reset_b]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

111

(©) See results of (b) and (c).
modulet_Prob_5 28c ();
wire A_a, A b;
reg x, y, clk, reset_b;
Prob_5_28a MO (A_a, x, Y, clk, reset_b);
Prob_5 28b M1 (A_b, X, y, clk, reset_b);

initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_ b=1;
#3 reset_b =0; / Initialize to sO
#4 reset_b=1;

x=0;y=0;

#20 begin x=1;y=1; end
#30 begin x=0; y =0; end
#40 begin x=1;y =0; end
#50 begin x=0; y =0; end
#60 begin x=1;y=1; end
#70 begin x=1;y=0; end
#80 begin x=0;y=1; end

join

endmodule
Narne 0 | ‘60\ ‘ 12\0 | |18\O |
clk N I e e Y s Y Y Y Y S O I |
reset b T

L 1

y I
Aa — —J I I I I 7 L7 1L
Ab — —J I I I I 7 L7 1L

5.29
module Prob_5 29 (output reg y_out, input x_in, clock, reset_b);
parameter sO = 3'b000, s1 = 3'b001, s2 = 3'h010, s3 = 3'b011, s4 = 3'b100;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
y_out = 0;
next_state = s0;
case (state)
sO: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
sl: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1;y out = 0; end
s2: if (x_in) begin next_state = sO; y_out = 1; end else begin next_state = s2;y_out = 0; end
s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1;y _out=0; end
s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end
default: next_state = 3'bxxx;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

112
modulet_Prob_5 29 ();
wirey_out;
reg x_in, clk, reset_b;
Prob_5_29 MO (y_out, x_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_ b =1;
#3 reset_b =0; / Initialize to sO
#4 reset_b =1;
/] Trace the state diagram and monitor y_out
X_in=0; /I Drive from sO to s3to S1 and park
#40 x_in = 1; // Drive to s4 to s3 to s2 to sO to s4 and loop
#90 x_in = 0; /I Drive from sO to s3 to s2 and part
#110 x_in=1; // Drive sO to s4 etc
join
endmodule
0 40 80 120
Name | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | |
clk s rrrrrrrrrrrrrrrii
reset b (U
x_in I I I
state[2:0] | X 3 X 1 {4 X3)2)Y o)a)X 2 YoYxasx
y_out 1 I | e R

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

113

5.30
With non-blocking (<=) assignment operator:

A
> e D
B
C
CLK
With blocking (=) assignment operator:
AL
 — > o
s 1
C
C
CLK

Note: The expression substitution implied by the sequential ordering with the blocking assignment operator results.
in the elimination of E by a synthesis tool. To retain E, it is necessary to declare E to be an output port of the
module.

531
module Seq_Ckt (input A, B, C, CLK, output reg Q);
reg E;
always @ (posedge CLK)
begin
Q=E|C;
E=A&B;
end
endmodule

Note: The statements must be written in an order than produces the effect of concurrent assignments.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

114

5.32

enable

A — I

M m O Ow

initial begin
enable=0;A=0;B=0;C=0;D=1;E=1;F=1;
#10 B=1;
C 1;
=0;
#10 A=1,;
B=0;
D=1;
E=0;
#10 B=1;
E=1;
F=0;
#10 enable=1
A=0;
B=0;
F=0;
#10 B=1;
#10 A=1;
B=0;
#10 B=1;
end
initial fork
enable=0;A=0;B=0;C=0;D=1;E=1;F=1;
#40 enable = 1
#20A =1,
#40 A=0;
#60 A =1,
#10B =1;
#20 B = 0;
#30B =1,
#40 B = 0;
#50B =1;
#60 B = 0;
#70B =1,
#10C=1;
#10D =0;
#20D =1;
#20E =0;
#30 E =1,
#30F =0;
#40F =1;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

115

5.33 Signal transitions that are caused by input signals that change on the active edge of the clock race with
the clock itself to reach the affected flip-flops, and the outcome is indeterminate (unpredictable).
Conversely, changes caused by inputs that are synchronized to the inactive edge of the clock reach
stability before the active edge, with predictable outputs of the flip-flops that are affected by the inputs.

5.34
module JK_flop_Prob_5 34 (output Q, input J, K, clk);
wire K_bar;
D_flop MO (Q, D, clk);
Mux M1 (D, J, K_bar, Q);
Inverter M2 (K_bar, K);
endmodule
module D_flop (output reg Q, input D, clk);
always @ (posedge clk) Q <=D;
endmodule
module Inverter (output y_bar, input y);
assign y_bar = ~y;
endmodule
module Mux (output y, input a, b, select);
assign y = select ? a: b;
endmodule
module t_JK flop_Prob_5 34 ();
wire Q;
reg J, K, clock;
JK_flop_Prob_5_34 MO (Q, J, K, clock);
initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
#10 begin J =0; K=0; end // toggle Q unknown
#20 beginJ=0;K=1;end //setQto0
#30 beginJ=1; K=0; end /lsetqtol
#40 begin J=1; K=1; end /I no change
#60 begin J =0; K=0; end // toggle Q
join
endmodule
Name 0 | ‘30\ ‘60\ ‘90\
dock |— Lo O [LI 1L_r /7 L’’’ 1’ °L_JI 1
J |
K
Q 1 I
5.35
initial begin
enable=0;A=0;B=0;C=0;D=1,E=1;F=1;
#10 beginB=1;C=1;D=0; end
#10begin A=1;B=0;D=1;E=0; end
#10 begin A=1;B=0;E=1;F=0; end
#10 begin enable=1; A=0;B=0; F=1; end

#10 begin B = 1; end
#10 begin A=1;B=0; end
#10B =1,

end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

116

initial fork
enable = 0;
#40 enable = 1;
#20 A =1,
#40 A =0;
#60 A=1;
#10B =1,
#20B =0;
#30B =1;
#40 B = 0;
#50 B = 1,
#60 B = 0;
#70B = 1;
#10C =1,
#10D = 0;
#20D =1,
#20E =0;
#30E=1;
#30F =0;
#40F =1,
join
5.36 Note: See Problem 5.8 (counter with repeated sequence: (A, B) =00, 01, 10, 00

/I See Fig. P5.8
module Problem_5_36 (output A, B, input Clock, reset_b);
or (T_A, A, B);
or (T_B, A_b, B);
T_flop MO (A, A_b, T_A, Clock, reset_b);
T_flop M1 (B, B_b, T_B, Clock, reset_b);
endmodule

module T_flop (output reg Q, output QB, input T, Clock, reset_b);
assigh QB =~ Q;
always @ (posedge Clock, negedge reset_b)
if (reset_b==0) Q<=0;
else if (T) Q <= ~Q;
endmodule

module t_Problem_5_36 ();
wire A, B;
reg Clock, reset_b;

Problem_5 36 MO (A, B, Clock, reset_b);

initial #350%finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
#2 reset_b = 1;
#3 reset b =0;
#4 reset_b =1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

117

Name

clok | o T3’ rrr—rrr 1
resst b |1

5.37
module Problem_5_37_Fig_5_25 (output reg y, input x_in, clock, reset_b);

parameter a = 3'b000, b = 3'b001, c = 3'b010, d = 3'b011, e = 3'b100, f = 3'b101, g = 3'b110;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= a;
else state <= next_state;

always @ (state, x_in) begin
y=0;
next_state = a;
case (state)

a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end
b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end
c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end
d: if (x_in ==0) begin y = 0; next_state = e; end

else begin y = 1; next_state = f; end

e: if (x_in ==0) begin y = 0; next_state = a; end
else begin y = 1; next_state = f; end

f: if (x_in==0) begin y =0; next_state = g; end
else begin y = 1; next_state = f; end

g: if (x_in==0) begin y = 0; next_state = a; end
else begin y = 1; next_state = f; end

default: next_state = a;
endcase
end
endmodule
module Problem_5_37_Fig_5_26 (output reg y, input x_in, clock, reset_b);
parameter a = 3'h000, b = 3'b001, ¢ = 3'b010, d = 3'b011, e = 3'b100;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) state <= a;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

118

always @ (state, x_in) begin
y=0;
next_state = a;
case (state)

a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end
b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end
c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end
d: if (x_in ==0) begin y = 0; next_state = e; end

else begin y = 1; next_state = d; end

e: if (x_in ==0) begin y = 0; next_state = a; end
else begin y = 1; next_state = d; end

default: next_state = a;
endcase
end
endmodule

module t_Problem_5_37 ();
wirey Fig_5 25,y Fig 5 26;
reg x_in, clock, reset_b;

Problem_5_37_Fig_5_25 MO (y_Fig_5_25, x_in, clock, reset_b);
Problem_5_37_Fig_5_26 M1 (y_Fig_5_26, x_in, clock, reset_b);

wire [2: O] state_25 = MO.state;
wire [2: 0] state_26 = M1.state;

initial #350 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end

initial fork
Xx_in=0;
#2 reset b=1;
#3 reset_b =0;
#4 reset_b =1;
#20 x_in=1;
#40 x_in=0; [/ abdea, abdea
#60 x_in = 1;
#100 x_in = 0; // abdf....fga, abd ... dea
#120 x_in = 1;
#160 x_in = 0;
#170 x_in=1;
#200 x_in = 0; // abdf....fgf...fga, abd ...ded...ea
#220 x_in=1;
#240 x_in=0;
#250 x_in =1; // abdef... // abded...
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

119
Name 0 110 220
clock Jruyyuyryuryuyyryyyryyuyuuaa
reset b I
x_in I | I— I L] LT L]

state_25[2:0] [f_0 X1)(3)XaX X21X3X 5 XeXoX X3X 5 X X5 XeXoXi) XaX_ s
state_26[2:0] [J_0 X1)EXaX X3 YaXoX) 3 YU 3 XaXoXi)(a3

y_Fig_5_25 M [[L nr—
y_Fig 5 26 I I [L nr—

538 (a)
module Prob_5_38a (input x_in, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: O] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
next_state = s0;
case (state)
s0O: if (x_in == 0) next_state = s0;
else if (x_in == 1) next_state = s3;

sl: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;
default: next_state = s0;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

120

modulet_Prob_5_38a ();
reg x_in, clk, reset_b;

Prob_5_38a MO0 (x_in, clk, reset_b);

initial #350%finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_b =1;
#3 reset_b =0;
#4 reset b=1;
#2 x_in =0;
#20 x_in=1;
#60 x_in = 0;
#80 x_in=1;
#90 x_in = 0;
#110 x_in=1;
#120 x_in=0;
#140 x_in=1;
#150 x_in = 0;
#170 x_in=1;
join

endmodule

/I Initialize to sO

Name

clk AN S S Y S I O

reetb [
x_in I |
state[1:0] [\ O f3)\1)2) L1 X 2

(b)
module Prob_5 38b (input x_in, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
next_state = s0;
case (state)
s0: if (x_in == 0) next_state = s0;
else if (x_in == 1) next_state = s3;

sl: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;
default: next_state = s0;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

121

endmodule
module t_Prob_5 38b ();
reg x_in, clk, reset_b;
Prob_5_38b MO (x_in, clk, reset_b);

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b =1;
#3reset_b=0; // Initialize to sO
#4 reset_b =1;
#2 x_in =0;
#20 x_in = 1;
#60 x_in = 0;
#80 x_in=1;
#90 x_in=0;
#110 x_in = 1;
#120 x_in=0;
#140 x_in=1;
#150 x_in = 0;
#170 x_in=1;
join
endmodule

nme 0 60 120 180

clk NN e e e e e Y Y
reset b I

x_in I J
statefi:0] [X__0 }3f1f2X o } 3 Y 1 Y} 2 Yofsfif2fo]

5.39
module Serial_2s_Comp (output reg B_out, input B_in, clk, reset_b);
/I See problem 5.17
parameter S_0=1'b0, S_1=1'b1;
reg state, next_state;
always @ (posedge clk, negedge reset_b) begin
if (reset_b == 0) state <= S_0;
else state <= next_state;
end

always @ (state, B_in) begin
B_out = 0;
case (state)
S_0: if (B_in==0) begin next_state =S_0; B_out = 0; end
else if (B_in == 1) begin next_state =S _1; B_out=1; end

S 1: begin next_state =S_1; B _out =~B_in; end
default: next_state =S_0;

endcase

end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

122

module t_Serial_2s Comp ();
wire B_in, B_out;
reg clk, reset_b;
reg [15: O] data;
assign B_in = data[0];

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) data <= 16'ha5ac; else data <= data >> 1; // Sample bit stream

Serial_2s_Comp MO (B_out, B_in, clk, reset_b);

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

#10 reset_b =0;

#12 reset b =1;

join
endmodule
Name 0 \ \60\ | 12\0 !
clk
reset b | — |
B_in I L | L
state I
B_out M1 L |
5.40
EF = 0x

0x

module Prob_5_40 (input E, F, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) state <= s0;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

123

always @ (state, E, F) begin
next_state = s0;
case (state)
s0O: if (E == 0) next_state = s0;
else if (F == 1) next_state = s1; else next_state = s3;

sl: if (E ==0) next_state = s1;
else if (F == 1) next_state = s2; else next_state = s0;

s2: if (E == 0) next_state = s2;
else if (F == 1) next_state = s3; else next_state = s1;

s3: if (E == 0) next_state = s3;
else if (F == 1) next_state = s0; else next_state = s2;
default: next_state = s0;
endcase
end
endmodule

module t_Prob_5 40 ();
reg E, F, clk, reset_b;
Prob_5_40 MO (E, F, clk, reset_b);

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_ b =1;
#3 reset_b =0; /l Initialize to sO
#4 reset_b =1;
#2 E =0;
#20beginE=1; F=1; end
#60 E = 0;
#80 E =1;
#90 E = 0;
#110E =1,
#120 E =0;
#140E =1,
#150 E = 0;
#170 E= 1,
#170 F = 0;
join
endmodule

Name 0 ‘ | 190

clk gy yyyryyryryurererg

reset b |l

state[1:0] [k 0 A1X2X3X_ o0 X 1 X 2 X 3 jk2k1)XoX3X2)1]

541

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

124
module Prob_5_41 (output reg y_out, input x_in, clock, reset_b);
parameter sO = 3'b000, s1 = 3'b001, s2 = 3'h010, s3 = 3'b011, s4 = 3'b100;
reg [2: 0] state, next_state;
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;
always @ (state, x_in) begin
y_out = 0;
next_state = s0;
case (state)
s0O: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
sl: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1;y_out =0; end
s2: if (x_in) begin next_state = sO; y_out = 1; end else begin next_state = s2; y_out = 0; end
s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1; y_out =0; end
s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end
default: next_state = 3'bxxx;
endcase
end
endmodule
module t_Prob_5_41 ();
wirey_out;
reg x_in, clk, reset_b;
Prob_5 41 MO (y_out, x_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b =1;
#3reset_b=0; // Initialize to sO
#4 reset_b=1;
/I Trace the state diagram and monitor y_out
X_in=0; // Drive from sO to s3 to S1 and park
#40 x_in = 1; // Drive to s4 to s3 to s2 to sO to s4 and loop
#90 x_in=0; /I Drive from s0 to s3 to s2 and part
#110 x_in=1; // Drive sO to s4 etc
join
endmodule
0 40 80 120
Name | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | |
clk s rrrrrrrrrrrrrrrii
reset_b I
x_in [| I
state[2:0] | X 3 X 1 Y4 X3)X2)Xo)X4) 2 Yo)Yxax
y_out 1 I T L r

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

125

5.42
module Prob_5_42 (output A, B, B_bar, y, input x, clk, reset_b);
/I See Fig. 5.29
wire wl, w2, w3, D1, D2;
and (wl, A, x);
and (w2, B, x);
or (D_A, wl, w2);

and (w3, B_bar, x);
and (y, A, B);
or (D_B, wi, w3);
DFF MO_A (A, D_A, clk, reset_b);
DFF MO_B (B, D_B, clk, reset_b);
not (B_bar, B);

endmodule

module DFF (output reg Q, input data, clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) Q <=0; else Q <= data;
endmodule

module t_Prob_5 42 ();
wire A, B, B_bar, y;
reg bit_in, clk, reset_b;
wire [1:0] state;
assign state = {A, B};
wire detect = y;

Prob_5_42 MO (A, B, B_bar, y, bit_in, clk, reset_b);
/I Patterns from Problem 5.45.

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset_b =0;
#4reset_b = 1;
/] Trace the state diagram and monitor detect (assert in S3)
bit_in=0; /I Park in SO
#20 bit_in = 1; /I Drive to SO
#30 bit_in = 0; // Drive to S1 and back to SO (2 clocks)

#50 bit_in = 1;
#70 bit_in = 0; // Drive to S2 and back to SO (3 clocks)
#80 bit_in = 1;
#130 bit_in = 0;// Drive to S3, park, then and back to SO
join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

126

reset b
clk

A

B

B _bar

y
state[1:0]
detect

5.43
module Binary_Counter_3_bit (output [2: O] count, input clk, reset_b)
always @ (posedge clk) if (reset_b == 0) count <= 0; else count <= next_count;
always @ (count) begin
case (state)
3'b000: count = 3'b001;
3'b001: count = 3'b010;
3'b010: count =3'b011;
3'b011: count = 3'b100;
3'b100: count = 3'b001;
3'b101: count = 3'b010;
3'b110: count =3'b011;
3'b111: count = 3'b100;
default: count = 3'b000;
endcase
end
endmodule

module t_Binary_Counter_3_bit ()
wire [2: O] count;
reg clk, reset_b;
Binary_Counter_3_bit MO (count, clk, reset_b)

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
reset = 1;
#10 reset = 0;
#12 reset = 1,
endmodule

Name (O 50 100 150

reset_b L
clk T rirrrrerererrrerrere e e rerreri

count2:0] |_x foX 1 X 2 X3 X7a X5 X'o X7 X0 X1 X2 X7 X4 X5 e

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

127

Alternative: structural model.

module Prob_5_41 (output A2, Al, AO, input T, clk, reset_bar);
wire toggle_A2;

T_flop MO (AO, T, clk, reset_bar);
T_flop M1 (A1, AQ, clk, reset_bar);
T_flop M2 (A2, toggle_A2, clk, reset_bar);
and (toggle_A2, A0, Al);
endmodule

module T_flop (output reg Q, input T, clk, reset_bar);
always @ (posedge clk, negedge reset_bar)
if (Ireset_bar) Q <=0; else if (T) Q <=~Q; else Q <=Q;
endmodule

modulet Prob 5 41;
wire A2, Al, AO;
wire [2: 0] count = {A2, A1, AO};
reg T, clk, reset_bar;
Prob_5 41 MO (A2, A1, AO, T, clk, reset_bar);

initial #200 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork reset_bar = 0; #2 reset_bar = 1; #40 reset_bar = 0; #42 reset_bar = 1; join
initial fork T=0;#20T=1;#70 T =0; #110 T = 1; join
endmodule

If the input to AO is changed to 0 the counter counts incorrectly. It resumes a correct counting
sequence when T is changed back to 1.

/ 0 40 80 120 160 200
Narre o b b e v b |l

Defanlt
clk

reset_bar
T
A2
Al
A0
count{2:0]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

128
5.44
module DFF_synch_reset (output reg Q, input data, clk, reset);
always @ (posedge clk)
if (reset) Q <= 0; else Q <= data;
endmodule
module t DFF_synch_reset ();
reg data, clk, reset;
wire Q;
DFF_synch_reset MO (Q, data, clk, reset);
initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
reset = 1;
#20 reset = 1,
#40 reset = 0;
#10 data = 1;
#50 data = 0O;
#60 data = 1;
#100 data = 0;
join
endmodule
0 50 100 150
Name | | ‘ | ‘ | | ‘
reset |
clk
data L | |
Q [| [|
5.45

module Seq_Detector_Prob_5 45 (output detect, input bit_in, clk, reset_b);
parameter S0=0,S1=1,S2=2,S3=3;
reg [1: O] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= SO; else state <= next_state;

always @ (state, bit_in) begin
next_state = SO;
case (state)

0: if (bit_in) next_state = S1; else state = SO;
1: if (bit_in) next_state = S2; else next_state = SO;
2: if (bit_in) next_state = S3; else state = SO;
3: if (bit_in) next_state = S3; else next_state = SO;
default: next_state = SO;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

129
module t_Seq_Detector_Prob_5_45 ();
wire detect;
reg bit_in, clk, reset_b;
Seq_Detector_Prob_5_45 MO0 (detect, bit_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_ b =1;
#3 reset_b =0;
#4reset_b = 1;
/] Trace the state diagram and monitor detect (assert in S3)
bit_in=0; /l Park in SO
#20 bit_in = 1; /I Drive to SO
#30 bit_in = 0; // Drive to S1 and back to SO (2 clocks)
#50 bit_in = 1;
#70 bit_in = 0; /I Drive to S2 and back to SO (3 clocks)
#80 bit_in = 1;
#130 bit_in = 0;// Drive to S3, park, then and back to SO
join
endmodule
Nme 0 ® % 2
reset_b
clk s rrrru
bit_in J | — | I
state[1:0] |XX 0 | D B F) D D 3 o
detect J I

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

130

CHAPTER 6

6.1 The structure shown below gates the clock through a nand gate. In practice, the circuit can exhibit two
problems if the load signal is asynchronous: (1) the gated clock arrives in the setup interval of the clock
of the flip-flop, causing metastability, and (2) the load signal truncates the width of the clock pulse.

Additionally, the propagation delay through the nand gate might compromise the synchronicity of the
overall circuit.

Connect to the
clock input of each

flip-flop.
Load 3’\‘_
Clock
6.2 Modify Fig. 6.2, with each stage replicating the first stage shown below:
load —I>°——I>°— |_
clear N,
I/‘
D Q A,
Iy |—
clk
Load Clear D Operation
0 0 A, No change
0 1 0 Clearto 0
1 X I Load input
Note: In this design, load has priority over clear.
6.3 Serial data is transferred one bit at a time. Parallel data is transferred n bits at a time (n > 1).

A shift register can convert serial data into parallel data by first shifting one bit a time into the register
and then taking the parallel data from the register outputs.

A shift register with parallel load can convert parallel data to a serial format by first loading the data in
parallel and then shifting the bits one at a time.

6.4 101101 = 1101; 0110; 1011; 1101; 0110; 1011
6.5 (a) See Fig. 11.19: IC 74194

(b) See Fig. 11.20. Connect two 74194 ICs to form an 8-bit register.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

131

6.6 First stage of register:

shift __|>,,_
load {>o—

serial input
I — D Q A,
0
[clk|_
6.7 First stage of register:
SS—* g
s, — 2
@ 4x1
J o Mux Y) A
—» 1 Ali
0 > 2 2
I » 3 clk
6.8 A =0010, 0001, 1000, 1100. Carry=1,1,1,0
6.9 (a) In Fig. 6.5, complement the serial output of shift register B (with an inverter), and set the initial
value of the carry to 1.
(b)
X
Present Next _FF Xy _—
state Inputs state Output inputs @\ 0001 _11 _10
Q X y Q D JQ KQ 0 0 11 3 2
0 00 0 0 0 x M M m m;
0 00 1 1 1 x Q[1 X X X X
0 01 0 1 0 x
0 01 0 0 0 x —
1 10 1 1 x0 Loy y
1 10 1 0 x0 Q= Y
1 11 0 0 x1 Xy X
1 11 1 1 xO0 QN_00 01 11 10
mO ml m3 m2
0 X X X X
m4 m5 m7 ms
Q[1 1
L |
X
KQ— XYoo @
D= Qexay

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

6.10

6.11

6.12

6.13

6.14

6.15

See solution to Problem 5.7.

Note thaty = x if Q =0, and y = x" if Q = 1. Q is set on the first 1 from x.

Note thatx ® 0 =x,and x ® 1 = X"

132

Shift Register

—>»
Serial input

Serial output

X

From
shift

control clk

Reset to 0

initially
(a) A count down counter.
(b) A count up counter.
Similar to diagram of Fig. 6.8.
(a) With the bubbles in C removed (positive-edge).
(b) With complemented flip-flops connected to C.
Al
4-Bit A2
Ripple Counter A3
Clear Ad
Asynchronous, active-low)

(@ 4 (b) 9; (c) 10

The worst case is when all 10 flip-flops are complemented. The maximum delay is 10 x 3ns = 30 ns.

The maximum frequency is 10%30 = 33.3 MHz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

133

6.16 Q80Q4Q2Q1: 1010 1100 1110 Self correcting
Next state: 1011 1101 1111
Next state: 0100 0100 0000

1010 — 1011 — 0100
1100 — 1101 — 0100
1110 — 1111 — 0000

6.17 With E denoting the count enable in Fig. 6.12 and D-flip-flops replacing the J-K flip-flops, the toggling
action of the bits of the counter is determined by: To = E, T; = AgE, T> = AjALE, Tz = AjAAE. Since D =
A @ T, the inputs of the flip-flops of the counter are determined by: Dpg = A¢®E; Dar = Ai@®(AGE); Das =
AsD(AoAE); Das = As®(AAAE).

6.18 When up = down = 1 the circuit counts up.

up down X y Operation
up X 0 0 0 0 No change
Combinational Circuit 0 1 0 0 Count down
down y 1 0 1 0 Count up
1 1 0 0 No change

Add this to Fig. 6.13

up X X = up (down)'

y = (up)'down

down) y

6.19 (b) From the state table in Table 6.5:

Do1=Q4

DQ2 = Z (1, 2, 5, 6)

Dos=Y (3, 4,5, 6)

Dos =2 (7, 8)

Don't care: d = 3 (10, 11, 12, 13, 14, 15)

Simplifying with maps:

Dq2 = Q:Q'1 + Q'5Q%Q1

Dos = Q4Q'1 + Q4Q2 + Q'4Q2Q:
Dqs = QsQ'1 + Q4Q2Q1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

(a)
6.20 (@)

(b)
6.21 (a)

(b)
6.22

Present Next . .
state state Flip-flop inputs

A8 A4 AZ Al AB A4 A2 Al ‘]AS KA8 ‘]AA KA4 JAZ KAZ JAl KAl
0000 0001 0 x 0 x 0 x 1 x
0001 0010 0 x 0 x 1 x x 1
0010 0011 0 x 0 x x 0 1 X
0011 0100 0 x 1 x x 1 x 1
0100 0101 0 x x 0 0 x 1 X
0101 0110 0 x x 0 1 x x 1
0110 0111 0 x x 0 x 0 1 x
0111 1000 1 X x 1 x 1 x 1
1000 1001 x 0 0 x 0 x 1 x
1001 0000 x 1 0 x 0 x x 1

d(Ag A, Ay A) =X (10, 11, 12, 13, 14, 15)

Block diagram of 4-bit circuit:

134

Jy=1

Ky = .
Jp=AAY
Kpo = A
= AA,
Kas = AA,
Jpe = AAA,
Kag = A

le—— Count

J=[LL)TL+C)= (L +LI)L+C)

LI +L'C + LIC = LI + L'C (use a map)

K=(LI)(L+C)=(L'+IN(L+C)=LI'+LC

. o C_out Fig. 6.14 le—— Load
16-bit counter needs 4 circuits | de— CLK
with output carry connected to pe—— Clear
the count input of the next
stage.

26=64
A A
st]] P11
P Count C_out Count=1
Fig. 6.14 L0 Fig. 6.14 toad
CLK CLK
Clear =1 9 Clear =1
A A F Y F Y F Y F Y F Y A
0
\]AO = Llo +L'C KA(): Lllo +L'C

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

135
A A A A A A A A
L
C out < Count=1 C out < Count=1
_ou . < Load _ou - < Load
-« Fig. 6.14 4 CLK < Fig. 6.14 4 CLK
Pe— Clear=1 P — Clear=1
A A A A A A A A
0 0
1
Count sequence: 0, 1, 2, 3,4,5,6,7,8,9, 10, 11 Count sequence: 4,5, 6, 7, 8,9, 10, 11, 1,2 13, 14, 15
A A A A
C out < Count=1
_ou . < Load =0
] Fig. 6.14 de CLK
< Clear
A A y A
0
Count sequence: 0, 1, 2, 3,4,5,6,7,8,9,10, 11
6.23 Use a 3-bit counter and a flip-flop (initially at 0). A start signal sets the flip-flop, which in turn enables
the counter. On the count of 7 (binary 111) reset the flip-flop to 0 to disable the count (with the value of

00 0).

6.24

Present Next) .
state state Flip-flop inputs

ABC ABC T, Tg T¢

o000 o001 o O 1
o001 o011 o 1 O
010 XXX X X X
o121 112 1 1 0
00 o0 1 1 O
101 XXX X X X
110 100 o 1 O
111 1120 o 0 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

136

BC B BC B
ANL 00 01 11 10 ANL 00 01 11 10
m0 m1 m3 m2 m0 m1 m3 m2
0 1 X 0 1 X
m4 I’T'I5 m7 mﬁ m4 m5 m7 ms
A [1 1 X A [1 X 1
C C
T,=AeB Tg=BeC
BC B BC B
ANL 00 01 11 10 ANL 00 01 11 10
mo m1 m3 m2 m0 m1 m3 m2
0 1 X 0 1 X
m, mg m, m m, mg m, m
A [1 X 1 A [1 X 1
C C
T.=AeC T.=AC+ABC
No self-correcting Self-correcting
6.25 (a) Use a 6-bit ring counter.
(b)
o O)—»T0
C 20 s
Counter of R 3x8 2—»T2
Fig. 6.16 i i Decoder g—j‘s‘
> 6—»T6
6.26 The clock generator has a period of 12.5 ns. Use a 2-bit counter to count four pulses.
80/4 = 20 MHz; cycle time = 1000 x 10 /20 = 50 ns.
6.27
Present Next)]
state state T Hp-flop inputs
ABC ABC J, K, J; K; J. K.
000 001 0x 0x 1x
001 010 0 x 1 x x1
010 011 0 x x 0 1 x
011 100 1 x x 1 x1
100 100 x x 00 1 x
101 110 xx 1x x1
110 000 X x x1 0x
111 xxx X X X X X X

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

137

BC B BC B
ANC oo 01 11 10 ANC oo 01 11 10
my m, ms m, My m, m, m,
0 1 0 X X X X
|’T14 m5 m7 fl’]8 |’T14 I'ﬂ5 m7 m6
Al 1l X X X X Al 1l X 1
| |
C C
J,=BC K,=B
BC B BC B
ANC oo 01 11 10 ANC oo 01 11 10
my m, ms m, my m, my m,
0 1 X X 0 X X 1
|’T14 rT'I5 m7 fl’]8 m4 m5 m7 IT]6
Al 1l 1 X X Al 1l X X X 1
| |
C C
J,=C Ky=A+C
BC B BC B
ANC o0 01 11 10 ANC o0 01 11 10
mO ml m3 m2 mO ml m3 m2
0 1 X X 1 0 X 1 1 X
m4 I'TI5 m7 mﬁ m4 I’ﬂ5 m7 ms
Al 1l 1 X X Al 1l X 1 X X
| |
C C
J=A+B Ke=1

Self-correcting

6.28

Present Next
state state

ABC ABC BC B
T AAn mma A

000 001 00 01 11 10

001 010 0 Moo MM M)

010 100 X

011 XXX m, m; m, Mg

100 110 APl 1 x| X

101 XXX

110 000 C

111 XXX DA =AoB

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

138

BC B BC B
EE— ——
AN 00 01 11 10 ANLC 00 01 11 10
My m; m, m, My m, My m,
0 1 X X 1 0 1 X
I'I'l4 m5 m7 I'I'l6 m4 I'I'l5 m7 I'I'l6
Al l 1 X X Al 1l X X
Ly Ly
C C
D, = AB'+C D, =ABC'

Self-correcting

6.29 (a) The 8 valid states are listed in Fig. 8.18(b), with the sequence: 0, 8, 12, 14, 15,7, 3,1, 0,

The 8 unused states and their next states are shown below:

Next
State ciate Al
invalid
ABCE ABCE states
/

0000 1001 9
0100 1010 10
0101 0010 2
0110 1011 11
1001 0100 4
1010 1101 13
1011 0101 5
1101 0110 6

(b) Modification: D¢ = (A + C)B.

D Q D Q _)_DQCDQE

a | [[! - -

The valid states are the same as in (a). The unused states have the following sequences: 2— 9— 4— 8 and
10— 13— 6—>11— 5— 0. The final states, 0 and 8, are valid.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

139
6.30
|~D AN o B D_ C D E
B D Q D Q D Q
Q' E
ac [[r I
The 5-bit Johnson counter has the following state sequence:
ABCDE 00000—»10000—»11000—»11100—»11110
decoded ‘E'_ AB' BC' CD' DE'
output:
11111—01111—00111— 0001100001
AE AB BC' CD' DE'
6.31

module Reg_4_bit_beh (output reg A3, A2, A1, AO, input 13, 12, 11, 10, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'h0;
else {A3, A2, Al, A0} <={I3, I2, I1, IO};
endmodule

module Reg_4_bit_Str (output A3, A2, Al, AQ, input I3, 12, I1, 10, Clock, Clear);
DFF M3DFF (A3, 13, Clock, Clear);
DFF M2DFF (A2, 12, Clock, Clear);
DFF M1DFF (A1, 11, Clock, Clear);
DFF MODFF (AQ, 10, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear ==0) Q <=0; else Q <=D;
endmodule

module t_Reg_4 bit ();
wire A3_beh, A2_beh, A1_beh, AO0_beh;
wire A3_str, A2_str, A1_str, AO_str;
reg 13, 12, 11, 10, Clock, Clear;
wire [3: 0] I_data ={I3, 12, 11, 10};
wire [3: 0] A_beh ={A3_beh, A2_beh, A1_beh, A0_beh};
wire [3: O] A_str = {A3_str, A2_str, Al_str, AO_str};

Reg_4_bit_beh M_beh (A3_beh, A2_beh, A1 _beh, A0_beh, 13, 12, I1, 10, Clock, Clear);
Reg_4 bit_Str M_str (A3_str, A2_str, A1_str, AO_str, 13, 12, I1, 10, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1, end
integer K;
initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, 10} = K; #10 ; end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

140

Name 0 50 100

Clock /NN I s Y U Y Iy I B S |
Clear |

ldata3:0]|_ 0 X 1 X 2 X 3 X 4 X5 X6 X7 X8X09)

13 r—
12 I |
1 . 1 |
10 [| | | | | | | [|

Abehol 0 X 1 X 2 3 X 4 X5 e 7 X8 Xo

A3_beh r
A2_beh I L
Albeh | 1
AO_beh [| I | [| [| [

A_str[3:0]:X0 X1X2X3X4X5X6X7X8XE

A3_str r
A2_str I | I
AL st Yoo - 1
AO_str I 1 I 1 I 1 I 1 [

6.32 (@)

module Reg_4 bit_Load (output reg A3, A2, Al, AQ, input I3, 12, 11, 10, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'h0;
else if (Load) {A3, A2, A1, A0} <= {I3, I2, I1, 10};
endmodule

modulet Reg_4 Load ();
wire A3_beh, A2_beh, A1_beh, AO_beh;
reg 13, 12, 11, 10, Load, Clock, Clear;
wire [3: 0] |_data ={I3, 12, I1, 10};
wire [3: 0] A_beh ={A3_beh, A2_beh, A1_beh, A0_beh};

Reg_4_bit_Load MO (A3_beh, A2_beh, A1_beh, AO_beh, I3, 12, 11, 10, Load, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end
integer K;
initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
join
initial begin
for (K=0; K<16; K=K+ 1) begin {I3, 12, I1, 10} = K; #10 ; end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

141

Name 0 50 100

Clock
Clear L

Load s p—

|_data[3:0] 0X1X2X3X4X5X6X7X8X9}

|_data[3] —
|_data[2] I

|_data[1] I [e N I
|_data[0] I l I l I | I l I |

A_beh[3:0] 0 X 2 X5 X6 X 7 X 8 o

A_beh[3] r
A_beh[2] I L
A_beh[1] — L | | I
A_beh[0] | | 1 —

(b)

module Reg_4_bit_Load_str (output A3, A2, A1, AO, input 13, 12, 11, 10, Load, Clock, Clear);
wire y3, y2, y1, y0;
mux_2 M3 (y3, A3, I3, Load);
mux_2 M2 (y2, A2, 12, Load);
mux_2 M1 (y1, A1, |1, Load);
mux_2 MO (y0, A0, 10, Load);

DFF M3DFF (A3, y3, Clock, Clear);

DFF M2DFF (A2, y2, Clock, Clear);

DFF M1DFF (A1, y1, Clock, Clear);

DFF MODFF (A0, y0, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear ==0) Q <=0; else Q <=D;
endmodule

module mux_2 (output y, input a, b, sel);
assigny=sel? a: b;
endmodule

modulet Reg_4 Load_str ();
wire A3, A2, Al, AQ;
reg 13, 12, 11, 10, Load, Clock, Clear;
wire [3: 0] |_data ={I3, 12, 11, I0};
wire [3: 0] A = {A3, A2, Al, AC};

Reg_4 bit_Load_str MO (A3, A2, A1, A0, I3, 12, 11, 10, Load, Clock, Clear);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

142

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
#80 Load = 0;
join
initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, I0} = K; #10 ; end
end
endmodule
Name 0 | \60‘
Clock N I s I I I
Clear i
Load i) W
Idata[3:0] | 0 k2 X2 X3 KN4 X5 K6 X7 X8)o)
A[3:0] X L3 X 4
(c)

module Reg_4_bit_Load_beh (output reg A3, A2, Al, AO, input 13, 12, 11, I0, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, Al, AQ} <= 4'b0;
else if (Load) {A3, A2, Al, A0} <={I3, 12, 11, I0};
endmodule

module Reg_4 bit_Load_str (output A3, A2, A1, A0, input 13, 12, 11, 10, Load, Clock, Clear);
wire y3, y2, y1, yO;
mux_2 M3 (y3, A3, I3, Load);
mux_2 M2 (y2, A2, 12, Load);
mux_2 M1 (y1, A1, 11, Load);
mux_2 MO (y0, A0, 10, Load);

DFF M3DFF (A3, y3, Clock, Clear);

DFF M2DFF (A2, y2, Clock, Clear);

DFF M1DFF (A1, y1, Clock, Clear);

DFF MODFF (A0, y0, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear == 0) Q <=0; else Q <=D;
endmodule

module mux_2 (output y, input a, b, sel);

assigny=sel ? a: b;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

143

modulet Reg_4_ Load_str ();
wire A3_beh, A2_beh, A1_beh, A0_beh;
wire A3_str, A2_str, A1_str, AO_str;
reg 13, 12, 11, 10, Load, Clock, Clear;
wire [3: 0] |_data, A_beh, A_str;
assign |_data ={I3, 12, I1, 10};
assign A_beh ={A3 _beh, A2_beh, A1_beh, AO_beh};
assign A_str = {A3_str, A2_str, Al_str, AO_str};

Reg_4_bit_Load_str MO (A3_beh, A2_beh, A1_beh, A0_beh, 13, 12, 11, 10, Load, Clock, Clear);
Reg_4_bit_Load_str M1 (A3_str, A2_str, A1_str, AO_str, I3, 12, 11, 10, Load, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end

integer K;

initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
#80 Load = 0;

join

initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, I0} = K; #10 ; end

end

endmodule

Name

Clock I I Yy Yy I I 0

Clear |
Load e

ldataf3:0] | 0 X1 f 2 3 X4 X5 K6 X7 X8)o9)
A_beh[3:0] X X3 X 4
A _str[3:0] X X3 X 4

6.33
/I Stimulus for testing the binary counter of Example 6-3

module testcounter;
reg Count, Load, CLK, Clr;
reg [3: O] IN;
wire CO;
wire [3: 0] A;
Binary _Counter_4_Par_Load MO (
A, // Data output

Co, // Output carry

IN, /l Data input

Count, /I Active high to count
Load, /I Active high to load
CLK, // Positive edge sensitive
Clr /I Active low

);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

144

always
#5 CLK = ~CLK;
initial
begin
Clr=0; /I Clear de-asserted
CLK=1; /I Clock initialized high
Load = 0; Count = 1; /I Enable count
#5Clr=1; /I Clears count, then counts for five cycles
#50 Load = 1; IN = 4'b1100; /I Count is set to 4'b1100 (12-,)
#10 Load = 0;
#70 Count = 0; /I Count is deasserted att = 135
#20 $finish; /I Terminate simulation
end
endmodule

/I Four-bit binary counter with parallel load

/I See Figure 6-14 and Table 6-6

module Binary_Counter_4_Par_Load (
output reg [3:0] A_count, // Data output

output C_out, // Output carry
input [3:0] Data_in, // Data input
input Count, /I Active high to count

Load, // Active high to load
CLK, /I Positive edge sensitive
Clear /I Active low

assign C_out = Count & (~Load) & (A_count == 4'b1111);

always @ (posedge CLK, negedge Clear)

if (~Clear) A_count <= 4'b0000;

elseif (Load) A_count <= Data_in;

else if (Count) A _count<=A_count + 1'b1;

else A_count <= A_count; // redundant statement
endmodule

/I Note: a preferred description if the clock is given by:
[/l initial begin CLK = 0; forever #5 CLK = ~CLK; end

0 60

120
Name ‘ | | -

CLK (Y Y Y Y Yy Yy Yy I o A
Clr —

Load
IN[3:0] X X c
Count
A[3:0]
Co

6.34
module Shiftreg (SI, SO, CLK);

input SI, CLK;

output SO;

reg [3:0] Q;

assign SO = Q[0];

always @ (posedge CLK)
Q={SlI, Q[3: 1]},

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

145

Il Test plan

1

/I Verify that data shift through the register

/I Set S| =1 for 4 clock cycles

// Hold SI =1 for 4 clock cycles

/l Set S| = 0 for 4 clock cycles

/I Verify that data shifts out of the register correctly

module t_Shiftreg;
reg Sl, CLK;
wire SO;

Shiftreg MO (SI, SO, CLK);

initial #130 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Sl =1'b1;
#80 Sl = 0;
join
endmodule

Name (© 60 120

(o] I”<Q S I Y s Y I Y I O
Sl |
SO [

6.35 (a) Note that Load has priority over Clear.

module Prob_6_35a (output [3: O] A, input [3:0] |, input Load, Clock, Clear);
Register_Cell RO (A[O0], I[0], Load, Clock, Clear);
Register_Cell R1 (A[1], I[1], Load, Clock, Clear);
Register_Cell R2 (A[2], I[2], Load, Clock, Clear);
Register_Cell R3 (A[3], I[3], Load, Clock, Clear);
endmodule

module Register_Cell (output A, input |, Load, Clock, Clear);
DFF MO (A, D, Clock);
not (Load_b, Load);
not (wl, Load_b);
not (Clear_b, Clear);
and (w2, I, wl);
and (w3, A, Load_b, Clear_b);
or (D, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <=D;
endmodule
modulet Prob_6 35a();

wire [3: 0] A;

reg [3: 0] [;
reg Clock, Clear, Load;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

146

Prob_6_35a MO (A, |, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork
| = 4'p1010;Clear = 1;
#40 Clear = 0;
Load =0;
#20 Load = 1;
#40 Load = 0;
join
endmodule

Name

Cock | LITLITLILf1Lrirririririrererieri

Clear |

Load |— [1
13:0] a

Aol | o X a X 0

(b) Note: The solution below replaces the solution given on the CD.
module Prob_6_35b (output reg [3: O] A, input [3:0] |, input Load, Clock, Clear);
always @ (posedge Clock)
if (Load) A<=1;
else if (Clear) A <= 4'b0;
llelse A <= A; /l redundant statement
endmodule

module t Prob_6_35b ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Load;

Prob_6_35b MO (A, I, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
| = 4'p1010; Clear = 1;
#60 Clear = 0;
Load = 0;
#20 Load = 1;
#40 Load = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

147

Name

Clock | LI LI LI L1 rirriririririeriri

Clear |

load |— [1
1[3:0] a

ao] | X0 X a X 0

(©)

module Prob_6_35c (output [3: 0] A, input [3:0] I, input Shift, Load, Clock);
Register_Cell RO (A[0], I[0], A[1], Shift, Load, Clock);
Register_Cell R1 (A[1], I[1], A[2], Shift, Load, Clock);
Register_Cell R2 (A[2], I[2], A[3], Shift, Load, Clock);
Register_Cell R3 (A[3], I[3], A[0], Shift, Load, Clock);
endmodule

module Register_Cell (output A, input |, Serial_in, Shift, Load, Clock);
DFF MO (A, D, Clock);
not (Shift_b, Shift);
not (Load_b, Load);
and (w1, Shift, Serial_in);
and (w2, Shift_b, Load, I);

and (w3, A, Shift_b, Load_b);
or (D, wil, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <=D;
endmodule

module t_Prob_6_35c ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Shift, Load;

Prob_6_35c MO (A, 1, Shift, Load, Clock);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork
| =4'p1010;
Load = 0; Shift = 0;
#20 Load = 1;
#40 Load = 0;
#50 Shift = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

148

0 60 120
L

Name L ‘ L ‘ L

Clock | LTI L1

shift
toad |—0 T 1

1[3:0]

a
AL3:0] x b a fs5KaXsXahsKaXshahs)

(d)
module Prob_6_35d (output reg [3: O] A, input [3:0] I, input Shift, Load, Clock, Clear);
always @ (posedge Clock)

if (Shift) A <= {A[0], A[3:1]};
else if (Load) A <=1
else if (Clear) A <= 4'b0;
llelse A <= A; // redundant statement

endmodule

modulet_Prob_6_35d ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Shift, Load;

Prob_6_35d MO (A, I, Shift, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
| = 4'h1010; Clear = 1;
#100 Clear = 0;
Load = 0;
#20 Load = 1;
#40 Load = 0;
#30 Shift =1;
#90 Shift = 0;

join

endmodule
Name 0 ‘ ‘60‘ | 1%0

Clock | LI reri

Clear L

shit ||
toad |— T 1

1[3:0]

a
azo] | X0 haXsXaksXaXsXal) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

149

()
module Shift_Register

(output [3: 0] A_par, input [3: 0] |_par, input MSB_in, LSB_in, s1, sO, CLK, Clear);
wire y3, y2, y1, y0;

DFF D3 (A_par[3], y3, CLK, Clear);

DFF D2 (A_par[2], y2, CLK, Clear);

DFF D1 (A_par[1], y1, CLK, Clear);

DFF DO (A_par[0], yO, CLK, Clear);

MUX_4x1 M3 (y3, |_par[3], A_par[2], MSB_in, A_par[3], s1, s0);

MUX_4x1 M2 (y2, |_par[2], A_par[1], A_par[3], A_par[2], s1, sO);

MUX_4x1 M1 (y1, I_par[1], A_par[0], A_par[2], A_par[1], s1, s0);

MUX_4x1 MO (yO, |_par[0], LSB_in, A_par[1], A_par[0], s1, s0);
endmodule

module MUX_4x1 (output reg vy, input 13, 12, 11, 10, s1, s0);
always @ (13, 12, 11, 10, s1, sO)
case ({s1, s0})

2bl1: y=13;
2'b10: y=12;
2'h01: y=11;
2'b00: y = 10;
endcase
endmodule

module DFF (output reg Q, input D, clk, reset_b);
always @ (posedge clk, negedge reset_b) if (reset_b == 0) Q <= 0; else Q <=D;
endmodule

module t_Shift_Register ();
wire [3: 0] A_par;
reg [3:0]|_par;
reg MSB_in, LSB_in, s1, s0O, CLK, Clear;

Shift_Register M_SR(A_par, |_par, MSB_in, LSB_in, s1, s0O, CLK, Clear);
initial #300 $finish;
initial begin CLK = 0O; forever #5 CLK = ~CLK; end

initial fork

MSB_in =0; LSB_in=0;

Clear = 0; /I Active-low reset
sl =0;s0=0; /I No change
#10 Clear = 1;

#10 I_par = 4'hA;
#30 begins1 =1;s0=1; end // 00: load |I_par into A_par

#50s1 =0; /1 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
#90 begin s1 =1; s0 = 1; end // 11: reload A with 1010
#100 s0 = 0; /1 10: shift left (1010 to 0100 to 1000 to 000)
#140 beginsl=1;s0=1; MSB_in=1; LSB in=1;end // Repeatwith MSB and LSB
#150 s1 = 0;
#190 beginsl1 =1;s0=1; end // reload with A =1010
#200 s0 = 0; /I Shift left
#220s1=0; /I Pause
#240 s1=1; /I Shift left
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

150
No Shift Shift
change Load right Load left
NarrE O | | | \\ | | | | | \90\ | | | | | | | | ‘18\0 | | | | | | | | ‘27\0 | |
CLK L L]
Clear L //
o m | —
s0 \J U U
Lparz0] | xX a
MSB_in |
LSB_in I
A par[3:0] 0 X a f5X2f1XokaXa)sX o XafdXeX f b f

()
module Shift_Register BEH
(output [3: O] A_par, input [3: 0] |_par, input MSB_in, LSB_in, s1, sO, CLK, Clear);

always @ (posedge CLK, negedge Clear) if (Clear == 0) A_par <= 4'b0;

else case ({s1, s0})
2'b11: A_par<=I_par;
2'b01l: A _par<={MSB_in, A par[3: 1]};
2'b10: A _par <={A par[2: 0], LSB_in};
2'b00: A_par <=A_par;

endcase

endmodule

module t_Shift_Register ();
wire [3: 0] A_par;
reg [3:0]l par;
reg MSB_in, LSB _in, s1, s0, CLK, Clear;

Shift_Register BEH M_SR(A _par, |_par, MSB_in, LSB_in, s1, s0O, CLK, Clear);
initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial fork

MSB_in =0; LSB_in=0;

Clear = 0; /I Active-low reset
sl =0;s0=0; /I No change
#10 Clear = 1;

#10 I_par = 4'hA;
#30 begins1 =1;s0=1; end // 00: load |I_par into A_par

#50s1 =0; /1 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
#90 begin s1 =1; s0 = 1; end // 11: reload A with 1010
#100 s0 = 0; /1 10: shift left (1010 to 0100 to 1000 to 000)
#140 beginsl=1;s0=1;MSB_in=1; LSB in=1;end // Repeatwith MSB and LSB
#150 s1 = 0;
#190 beginsl1 =1;s0=1; end // reload with A =1010
#200 s0 = 0; /I Shift left
#220s1=0; /I Pause
#240 s1=1; /I Shift left
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

151

Name o ® Tl 10
CLK ey
Clear -

sl L1 L

s0 L L] |

Lpar[30] | xX a

MSB_in '

LSB_in '

A par[3:0] 0 “ﬂﬂﬂ“ﬂﬂﬂ f b sz f

@)

module Ripple_Counter_4bit (output [3: O] A, input Count, reset_b);
reg A0, Al, A2, A3;
assign A ={A3, A2, A1, A0}
always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~A0;

always @ (negedge A0, negedge reset_b)
if (reset_b ==0) A1 <=0; else Al <= ~Al;

always @ (negedge Al, negedge reset_b)
if (reset_b == 0) A2 <=0; else A2 <= ~A2;

always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <=0; else A3 <= ~A3;
endmodule

module t_Ripple_Counter_4bit ();
wire [3: O] A;
reg Count, reset_b;

Ripple_Counter_4bit MO (A, Count, reset_b);

initial #300 $finish;
initial fork
reset b =0; /I Active-low reset
#60 reset_b =1;

Count=1;
#15 Count = 0;
#30 Count = 1,
#85 begin Count = 0; forever #10 Count = ~Count; end
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

152
Nare O % Tl e
Count L] L1 rerereereereerererrerr
reset b |
A[3:0] 0 X1 X2 X3)Y a4)Xs5 X6 X7 8)Xo Xal)b

(h) Note: This version of the solution situates the data shift registers in the test bench.

module Serial_Subtractor (output SO, input SI_A, SI_B, shift_control, clock, reset_b);
/I See Fig. 6.5 and Problem 6.9a (2s complement serial subtractor)

reg [1: 0] sum;

wire mem = sum[1];

assign SO = sum]0];

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin
sum <= 2'b10;
end
else if (shift_control) begin
sum <= SI|_A + (ISI_B) + sum[1];
end
endmodule

module t_Serial_Subtractor ();
wire SI_A, SI_B;
reg shift_control, clock, reset_b;

Serial_Subtractor M0 (SO, SI_A, SI_B, shift_control, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
shift_control = 0;
#10 reset_b =0;
#20 reset_b=1;
#22 shift_control = 1;
#105 shift_control = 0;
#112 reset_b =0;
#114 reset_ b =1;
#122 shift_control = 1;
#205 shift_control = 0;
join
reg [7: 0] A, B, SO_reg;
wire s7;
assign s7 = SO_req[7];
assign SI_A = A[0];
assign SI_B = BJ0];
wire SI_B_bar = ~SI_B;
initial fork
A = 8'h5A;
B = 8'h0A;
#122 A = 8'h0A;
#122 B = 8'h5A;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

153

always @ (negedge clock, negedge reset_b)
if (reset_b ==0) SO _reg <=0;
else if (shift_control == 1) begin
SO_reg <= {SO, SO_reg[7: 1]};
A<=A>>1;
B<=B>>1;
end
wire negative = IMO.sum[1];
wire [7: 0] magnitude = (Inegative)? SO_reg: 1'bl + ~SO_reg;
endmodule

Simulation results are shown for 5Ah — 0Ah = 50h = 80 d and 0Ah — 5Ah = -80. The magnitude of the
result is also shown.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

: J
_ oll© o
N~
o | - 2l = ee
Q ollo
- © S S s
| © o
3> e
> >< L o S< >< S><
B ollo
S Al — o g <
| o ol (]
m S>< >< — S >< ><
| foe] [oe]
NG o
- N N
| o ol Yy S
S S — - S< >< S><
24 1 - =< L
-
- S>< >< > >< —
N — Qaff -
o ol
>< >< >< >< L - ~
N
| SR ERE]E
ollo o
n S > S>< S>< — s}
| E=11H")
3|« NIE
S< >< >< >< L - ~ N
T o o
S | 8| = || &
- S >< S ><
_ — S > /><\
T o o
] 8||° 2|[38] (|3
- S< >< \x/
| o o
— >< Qe ©
— —
B ollo
S< >< S —) S< >< ><
] || = L ollg <
o s >< QS o
L S< >< ~ S< >< ><
| ® Joe)
NN o
— >< N N
| =} oy N
S ><) S >< ><
| | k¢ L <
n S< >< S>< >< — L
. ol] —
ol o
S > S< >< Lo -
(A IBN] N|| e
o || N o
N S>< ><< o ><< — — 5 8 o o
N
1 S E
S > S>< >< Lo -
| o
(| ol
I S< >< ><
| < SJIIES
o
S
° g 9 5
=
c < = By S
= -QI 8 -DI 3 g 8 =2 =
o| 3 X 5 & e e @ m < o g = S5 85
Q 1S
El o s a E &~ > _ O ¢ § O 0 g @
Il o s £ % < < @ @an n ® O E B o O c E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

155

(i) See Prab. 6.35h.

)
module Serial_Twos_Comp (output y, input [7: 0] data, input load, shift_control, Clock, reset_b);
reg [7: 0] SReg;
reg Q;
wire SO = SReg [0];
assighy=SO"Q;
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) begin
SReg <=0;
Q<=0
end
else begin
if (load) SReg = data;
else if (shift_control) begin
Q<=Q|S0;
SReg <={y, SReg[7: 1]};
end
end
endmodule

module t_Serial_Twos_Comp ();
wirey;
reg [7: 0] data;
reg load, shift_control, Clock, reset_b;

Serial_Twos_Comp MO (y, data, load, shift_control, Clock, reset_b);
reg [7: 0] twos_comp;

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) twos_comp <= 0;
else if (shift_control && !load) twos_comp <= {y, twos_comp[7: 1]};

initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_b = 1; end

initial fork
data = 8'hbBA;
#20 load = 1;
#30 load = 0;
#50 shift_control = 1;
#50 begin repeat (9) @ (posedge Clock) ;

shift_control = 0;

end

join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

156
Name 0 50 100
Clock
reset b -
data[7:0] 5a
load 1
shift_control /__l// L
SReg[7:0] X oo X (sa) Y 2d)X 96 cb)65 (32)99 [4acKae
y 1 | | [[
twos_comp[7:0] X 00 X80 X co X\ 60 X 30 X 98 X 4c X a6)

(k) From the solution to Problem 6.13:

0
Al

A2 !

4-Bit 0
Ripple Counter A3

1
3)—< Clear Ad

Asynchronous, active-low)

(

module Prob_6_35k_BCD_Counter (output Al, A2, A3, A4, input clk, reset_b);
wire {Al, A2, A3, Ad} = A;
nand (Clear, A2, A4);
Ripple_Counter_4bit MO (A, Clear, reset_b);

endmodule

module Ripple_Counter_4bit (output [3: O] A, input Count, reset_b);
reg A0, Al, A2, A3;
assign A ={A3, A2, A1, AQ};
always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~A0;
always @ (negedge AO, negedge reset_b)
if (reset_b == 0) A1 <=0; else Al <= ~Al;
always @ (negedge Al, negedge reset_b)
if (reset_b == 0) A2 <= 0; else A2 <= ~A2;
always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <= 0; else A3 <= ~A3;
endmodule
modulet_ Prob_6_35k_BCD_Counter ();
wire [3: 0] A;
reg Count, reset_b;

Prob_6_35k_BCD_Counter MO (A1, A2, A3, A4, reset_b);
initial #300 $finish;

initial fork
reset_ b =0; /I Active-low reset
#60 reset_b = 1;
/*
Count=1;
#15 Count = 0;
#30 Count = 1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

157

#85 begin Count = 0; forever #10 Count = ~Count; end*/
join
endmodule

0]
module Prob_6_ 35| Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else case ({Up, Down})
2'b10: A<=A+4'b0001; // Up
2'b01: A<=A-4b0001; // Down
default: A<=A; /I Suspend (Redundant statement)
endcase
endmodule

module t_Prob_6_35I_Up_Dwn_Beh ();
wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Prob_6_35I_Up_Dwn_Beh MO (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20reset_b =1;
#40 Up = 1;
#150 Down = 1;
#220 Up = 0;
#280 Down = 0;
join
endmodule

0 %0 180 270
Name | ‘ | ‘ | | ‘ |

ok U e e L e e L L L LU
reset_b I

Up I | |
Down I L

Aol [xh__ 0 K1f2f3\aXsheh7X8X9a) b la)oA8X7Xeh_s

6.36 (a)

/I See Fig. 6.13., 4-bit Up-Down Binary Counter
module Prob_6_36_Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else if (Up) A <= A + 4'b0001;
else if (Down) A <= A - 4'b0001;
endmodule

module t_Prob_6_36_Up_Dwn_Beh ();

wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

158

Prob_6_36_Up_Dwn_Beh MO (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0O; forever #5 CLK = ~CLK; end
initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20 reset_ b =1;
#40 Up = 1;
#150 Down = 1;
#220 Up = 0;
#280 Down = 0;
join
endmodule

Name 0 8o 160 240

ok MUy L L L L L L L L Ll
resetb |— |

Up

A[3:0]

(b)

module Prob_6_36_Up_Dwn_Str (output [3: O] A, input CLK, Up, Down, reset_b);
wire Down_3, Up_3, Down_2, Up_2, Down_1, Up_1;
wire A_Ob, A_1b, A_2b, A_3b;

stage_register SR3 (A[3], A_3b, Down_3, Up_3, Down_2, Up_2, A[2], A_2b, CLK, reset_b);
stage_register SR2 (A[2], A_2b, Down_2, Up_2, Down_1, Up_1, A[1], A_1b, CLK, reset_b);
stage_register SR1 (A[1], A_1b, Down_1, Up_1, Down_not_Up, Up, A[0], A_Ob, CLK, reset_b);
not (Up_b, Up);
and (Down_not_Up, Down, Up_b);
or (T, Up, Down_not_Up);
Toggle_flop TFO (A[0], A_Ob, T, CLK, reset_b);

endmodule

module stage_register (output A, A_b, Down_not_Up_out, Up_out, input Down_not_Up, Up, A_in,
A_in_b, CLK, reset_b);

Toggle_flop TO (A, A_b, T, CLK, reset_b);
or (T, Down_not_Up_out, Up_out);
and (Down_not_Up_out, Down_not_Up, A_in_b);
and (Up_out, Up, A_in);
endmodule

module Toggle_flop (output reg Q, output Q_b, input T, CLK, reset_b);
always @ (posedge CLK, negedge reset_b) if (reset b==0) Q <=0;else Q<=Q"T,;
assign Q_b =-~Q;

endmodule
modulet_Prob_6_36_Up_Dwn_Str ();

wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

159

wire T3 = MO.SR3.T;
wire T2 = M0.SR2.T;
wire T1 = MO.SR1.T;
wire TO = MO.T;

Prob_6_36_Up_Dwn_Str MO (A, CLK, Up, Down, reset_b);

initial #150 $finish;

initial begin CLK = 0O; forever #5 CLK = ~CLK; end

initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20 reset_ b =1;
#50 Up = 1;
#140 Down = 1;
#120 Up = 0;
#140 Down = 0;

join

endmodule

Name

CLK I I e e e e I
reseth |—

Up
Down
A[3:0]
TO

T1

T2

T3

6.37
module Counter_if (output reg [3: 0] Count, input clock, reset);
always @ (posedge clock , posedge reset)

if (reset)Count <= 0;
else if (Count == 0) Count <= 1;
else if (Count == 1) Count <= 3; // Default interpretation is decimal
else if (Count == 3) Count <=7,
else if (Count == 4) Count <= 0;
else if (Count == 6) Count <= 4;
else if (Count == 7) Count <= 6;
else Count <= 0;

endmodule

module Counter_case (output reg [3: 0] Count, input clock, reset);
always @ (posedge clock , posedge reset)
if (reset)Count <= 0;
else begin
Count <= 0;
case (Count)
: Count <=1,
Count <= 3;
Count<=17;
Count <=0;
Count <= 4;
: Count <= 6;
default: Count <=0;
endcase

NoArwRO

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

160

end
endmodule

module Counter_FSM (output reg [3: 0] Count, input clock, reset);
reg [2: 0] state, next_state;
parameter s0=0,s1=1,s2=2,s3=3,84=4,55=5,86=6,s7 =7,

always @ (posedge clock , posedge reset)
if (reset) state <= s0; else state <= next_state;

always @ (state) begin

Count = 0;

case (state)
s0: begin next_state = s1; Count = 0; end
sl: begin next_state = s2; Count = 1; end
s2: begin next_state = s3; Count = 3; end
s3: begin next_state = s4; Count = 7; end
s4: begin next_state = s5; Count = 6; end
sb: begin next_state = s6; Count = 4; end
default: begin next_state = sO; Count = 0; end

endcase

end
endmodule
6.38 @)

module Prob_6_38a_Updown (OUT, Up, Down, Load, IN, CLK); // Verilog 1995
output [3: 0] OUT;
input [3:0] IN;
input Up, Down, Load, CLK;
reg [3:0] OUT;

always @ (posedge CLK)

if (Load) OUT <= IN;

elseif (Up) OUT <= OUT + 4'b0001;
else if (Down) OUT <= OUT - 4'b0001;
else OUT <= OUT;

endmodule

module updown (I/l Verilog 2001, 2005
output reg[3: 0] OUT,
input [3: 0] IN,

input Up, Down, Load, CLK
);
Name 0\\\\\\\\\lﬂwaww\\\\\\lzzwowwwww\\\lsawowwwwwwwwluwowwwww
clock HUUuuurriUvrvuurvrrrvrvvrrvrrrvvrvrrryruryu iy
reset_b M
Load J
Down J
Up L] |
data[3:0] [
N Y B9 100 0380008000806880080008098000800 N SN
(b)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

161

module Prob_6_38b_Updown (output reg [3: 0] OUT, input [3: O] IN, input s1, sO, CLK);

always @ (posedge CLK)

case ({s1, s0})
2'b00: OUT <= OUT + 4'b0001;
2'b01: OUT <= OUT - 4'b0001;
2'b10: OUT <= IN;
2'b11: OUT <= OUT;

endcase

endmodule

module t_Prob_6_38b_Updown ();
wire [3: 0] OUT;
reg [3: O] IN;
reg sl, s0, CLK;
Prob_6_38b_Updown MO (OUT, IN, s1, s0, CLK);

initial #150 $finish;

initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

IN = 4'b1010;

#10 beginsl=1;s0=0;end //LoadIN
#20 beginsl=1;s0=1;end /I no change
#40 begin s1=0;s0=0; end /I UP;
#80 beginsl1=0;s0=1;end // DOWN
#120beginsl=1;s0=1;end
join

endmodule

Name

CLK ANy Y I Y Y s Yy e I O

sl I—
s0 1 |
IN[3:0]

a
OUT[3:0] x_X a (b X e X X e XTd X X b X a

6.39
module Prob_6_39 Counter_BEH (output reg [2: 0] Count, input Clock, reset_b);
always @ (posedge Clock, negedge reset_b) if (reset_b == 0) Count <= 0;
else case (Count)

Count <=1,
Count <= 2;
Count <= 4;
Count <=5;
Count <= 6;
Count <=0;

endcase
endmodule

oumrdNdRO

module Prob_6_39 Counter_STR (output [2: 0] Count, input Clock, reset_b);
supplyl PWR;
wire Count_1_b = ~Count[1];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

162
JK_FF M2 (Count[2], Count[1], Count[1], Clock, reset_b);
JK_FF M1 (Count[1], Count[0], PWR, Clock, reset_b);
JK_FF MO (Count[0], Count_1 b, PWR, Clock, reset_b);
endmodule
module JK_FF (output reg Q, input J, K, clk, reset_b);
always @ (posedge clk, negedge reset_b) if (reset_b ==0) Q <= 0; else
case ({J,K})
2'b00: Q <=Q;
2'h01: Q<=0;
2'b10: Q<=1;
2'b11: Q <= ~Q;
endcase
endmodule
module t_Prob_6_39_Counter ();
wire [2: 0] Count_BEH, Count_STR;
reg Clock, reset_b;
Prob_6_39_Counter_BEH MO_BEH (Count_STR, Clock, reset_b);
Prob_6_39 Counter_STR MO_STR (Count_BEH, Clock, reset_b);
initial #250 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin Clock = 1; forever #5 Clock = ~Clock; end
endmodule
0 60 120
Name ‘ | e
Clock {5 e Y) Y S I I
reset_b —

countBEH20] ({0 X1 X2 X4 X5 Xo6NoX1X2NaXsXehoRtNahaR)
count sTRI20] ({0 X1 X2 X4 X5 X6 XNoX1X2NaXsXehoXtNahai)

6.40
module Prob_6_40 (output reg [0: 7] timer, input clk, reset_b);

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 8'b1000_0000; else
case (timer)

8'b1000_0000: timer <= 8'b0100_0000;
8'h0100_0000: timer <= 8'b0010_0000;
8'b0010_0000: timer <= 8'b0001_0000;
8'b0001_0000: timer <= 8'b0000_1000;
8'b0000_1000: timer <= 8'b0000_0100;
8'hb0000_0100: timer <= 8'b0000_0010;
8'b0000_0010: timer <= 8'b0000_0001;
8'b0000_0001: timer <= 8'b1000_0000;
default: timer <= 8'b1000_0000;
endcase
endmodule

modulet_Prob_6_40 ();

wire [0: 7] timer;
reg clk, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

163
Prob_6_40 MO (timer, clk, reset_b);
initial #250 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin clk = 1; forever #5 clk = ~clk; end
endmodule
Name 0 | ‘70‘ | 14‘0 | | 210
clk
reset_b
timer[0:7]
timer[0]
timer[1]
timer[2]
timer[3]
timer[4]
timer[5]
timer[6]
timer[7]
6.41
module Prob_6_41_Switched_Tail_Johnson_Counter (output [0: 3] Count, input CLK, reset_b);
wire Q _Ob, Q 1b, Q 2b, Q 3b;
DFF M3 (Count[3], Q_3b, Count[2], CLK, reset_b);
DFF M2 (Count[2], Q_2b, Count[1], CLK, reset_b);
DFF M1 (Count[1], Q_1b, Count[0], CLK, reset_b);
DFF MO (Count[0], Q_0Ob, Q_3b, CLK, reset_b);
endmodule

module DFF (output reg Q, output Q_b, input D, clk, reset_b);

assign Q_b =~Q;

always @ (posedge clk, negedge reset_b) if (reset_b ==0) Q <=0; else Q <= D;
endmodule

module t Prob_6_41_Switched_Tail_Johnson_Counter ();

wire [3: 0] Count;

reg CLK, reset_b;

wire sO = ~ M0.Count[0] && ~MO0.Count[3];
wire s1 = MO0.Count[0] && ~MO.Count[1];
wire s2 = MO0.Count[1] && ~MO0.Count[2];
wire s3 = MO0.Count[2] && ~MO0.Count[3];
wire s4 = MO0.Count[0] && MO.Count[3];
wire s5 = ~ M0.Count[0] && MO.Count[1];
wire s6 = ~ M0.Count[1] && MO0.Count[2];
wire s7 = ~ M0.Count[2] && MO0.Count[3];

Prob_6_41_ Switched_Tail_Johnson_Counter MO (Count, CLK, reset_b);
initial #150 $finish;
initial fork #1 reset_b = 0; #7 reset_b =1; join
initial begin CLK = 1; forever #5 CLK = ~CLK; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

164

Name

CLK

reset_b
Count[3:0]
sO

sl

s2

s3

s4

s5

s6 1 1
N [1 |

6.42 Because A is a register variable, it retains whatever value has been assigned to it until a new
value is assigned. Therefore, the statement A <= A has the same effect as if the statement was
omitted.

6.43

data

Mux
—] Mux (— D Q

DFF

D_in

Shift_control L
load l'
Clock [

module Prob_6_43 Str (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
supplyO gnd;
wire SO_A,;

Shift_with_Load M_A (SO_A, SO_A, data, load, Shift_control, Clock, reset_b);
Shift_with_Load M_B (SO, SO_A, data, gnd, Shift_control, Clock, reset_b);

endmodule

module Shift_with_Load (output SO, input D_in, input [7: 0] data, input load, select, Clock, reset_b);

wire [7: 0] Q;

assign SO = Q[0];

SR_cell M7 (Q[7], D_in, data[7], load, select, Clock, reset_b);
SR_cell M6 (Q[6], Q[7], data[6], load, select, Clock, reset_b);
SR_cell M5 (QI5], Q[6], data[5], load, select, Clock, reset_b);
SR_cell M4 (Q[4], Q[5], data[4], load, select, Clock, reset_b);
SR_cell M3 (Q[3], Q[4], data[3], load, select, Clock, reset_b);
SR_cell M2 (Q[2], Q[3], data[2], load, select, Clock, reset_b);
SR_cell M1 (Q[1], Q[2], data[1], load, select, Clock, reset_b);
SR_cell MO (Q[0], Q[1], data[0], load, select, Clock, reset_b);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

165
endmodule
module SR_cell (output Q, input D, data, load, select, Clock, reset_b);
wirey;
DFF_with_load MO (Q, vy, data, load, Clock, reset_b);
Mux_2 M1 (y, Q, D, select);
endmodule
module DFF_with_load (output reg Q, input D, data, load, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Q <=0; else if (load) Q <= data; else Q <=D;
endmodule
module Mux_2 (output reg y, input a, b, sel);
always @ (a, b, sel) if (sel ==1) y = b; else y = a;
endmodule
modulet Fig 6 4_Str();
wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;
Prob_6_43_Str MO (SO, data, load, Shift_control, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {M0.SO_A, Serial_Data [7: 1]};
initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_b = 1; end
initial fork
data = 8'h5A,;
#20 load = 1;
#30 load = 0O;
#50 Shift_control = 1,
#50 begin repeat (9) @ (posedge Clock) ;
Shift_control = 0;
end
join
endmodule
Name 0 B Tandl \
Clock _ e rrerrrerererrerererereru
reset b |
load
Shift_control I
data[7:0] 5a
SO A [|
SO '
Q[7:0] X o0 X 5a X 2d X 96 X 4b X a5 { d2 X 69 X b4 X5a) 2d
Q[7:0] X 00 X 80 X 40 X a0 X do X 68 X b4 X 5a X =2d
Serial_Data[7:0] |X 00 X 80 X 40 X a0 X do X 68 X b4 X 5a

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

166

Alternative: a behavioral model for synthesis is given below. The behavioral description implies
the need for a mux at the input to a D-type flip-flop.

module Fig_6_4_Beh (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
reg [7: 0] Shift_Reg_A, Shift Reg_B;
assign SO = Shift_Reg_BJ0];
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) begin
Shift Reg_A <=0;
Shift_Reg_B <=0;
end
else if (load) Shift_Reg_A <= data;
else if (Shift_control) begin
Shift_Reg_A <= { Shift_Reg_A[0], Shift_Reg_A[7: 1]};
Shift_Reg_B <= {Shift_Reg_A[0], Shift_Reg_B[7: 1]};
end

endmodule

modulet Fig 6 4 Beh ();
wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;

Fig_6_4 Beh MO (SO, data, load, Shift_control, Clock, reset_b);

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {MO0.Shift_Reg_A[0], Serial_Data [7: 1]};

initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_b = 1; end

initial fork
data = 8'h5A;
#20 load = 1;
#30 load = 0;
#50 Shift_control = 1;
#50 begin repeat (9) @ (posedge Clock) ;
Shift_control = 0;

end

join

endmodule

Narme 0 50 100 150
Clock N [s s s s sy I O
reset b -

load 1

Shift_control .
data[7:0] 5a

shift Reg A[7:0] |00 X 5a X 2d X 96 X 4b X a5 X d2 X 69 { b4 Y 5a X 2d
shift_Reg B[7:0] | 00 X 80 X 40 a0 X do X 68 X b4 X 5a X 2d

SO I
Serial_Data[7:0] | 00 X 80 X 40 X a0 X do X 68 X b4 X 5a

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

167

6.44
/I See Figure 6.5
/I Note: Sum is stored in shift register A; carry is stored in Q
/I Note: Clear is active-low.

module Prob_6_44 Str (output SO, input [7: 0] data_A, data_B, input S_in, load, Shift_control, CLK,
Clear);
supplyO gnd;
wire sum, carry;
assign SO = sum;
wire SO_A, SO_B;

Shift_Reg_gated_clock M_A (SO_A, sum, data_A, load, Shift_control, CLK, Clear);
Shift_Reg_gated_clock M_B (SO_B, S_in, data_B, load, Shift_control, CLK, Clear);
FA M_FA (carry, sum, SO_A, SO_B, Q);

DFF_gated M_FF (Q, carry, Shift_control, CLK, Clear);

endmodule

module Shift_Reg_gated_clock (output SO, input S_in, input [7: 0] data, input load, Shift_control,
Clock, reset_b);
reg [7: 0] SReg;
assign SO = SReg[0];

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) SReg <= 0;
else if (load) SReg <= data;
else if (Shift_control) SReg <= {S_in, SReg[7: 1]};
endmodule

module DFF_gated (output Q, input D, Shift_control, Clock, reset_b);
DFF M_DFF (Q, D_internal, Clock, reset_b);
Mux_2 M_Mux (D_internal, Q, D, Shift_control);

endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b ==0) Q <=0; else Q <= D;
endmodule

module Mux_2 (output reg y, input a, b, sel);
always @ (a, b, sel) if (sel ==1)y=b; else y = a;
endmodule

module FA (output reg carry, sum, input a, b, C_in);
always @ (a, b, C_in) {carry, sum}=a+b + C_in;
endmodule

modulet_Prob_6_44 Str ();
wire SO;
reg Sl, load, Shift_control, Clock, Clear;
reg [7: 0] data_A, data_B;

Prob_6_44 Str MO (SO, data_A, data_B, SlI, load, Shift_control, Clock, Clear);
initial #200 $finish;

initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 Clear = 0; #4 Clear = 1; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

168

initial fork
data_A = 8'hAA; //8'hff;
data B = 8h55; //8'h01;
SI=0;
#20 load = 1;
#30 load = 0;
#50 Shift_control = 1;
#50 begin repeat (8) @ (posedge Clock) ;
#5 Shift_control = 0;
end
join
endmodule

Name ‘ i I

Clock R e e Y s Y) N I O
Clear |
load

Shift_control '

aa, + 55, = {carry, sum} = {0, ff, }

data_A[7:0] (

aa Pl
sregiz:0] [J__00 X @A\ Xd5)ea)5 Nfa) fd fe < >

0 / \| —
data_B[7:0] \ J 55

sRegi7:0] |1__00 X_\.55/)2a)15 Y0a X05)02 o1 X 00
SO I

0 60

Name

Clock
Clear]
load

Shift_control -

ff, + 01, = {carry, sum} = {1, 00, }

data_A[7:0] - ff

sreg7:0] |00 X {/ ff \] af
Q J

data_B[7:0] \ / 01

SReg[7:0] | o0 X or— X 00
o)

6.45

module Prob_6_45 (output reg y_out, input start, clock, reset_bar);
parameter sO = 4'b0000,

s1 = 4'b0001,
s2 = 4'b0010,
s3 = 4'b0011,
s4 = 4'b0100,
s5 =4'p0101,

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

169
s6 = 4'b0110,
s7 = 4'b0111,
s8 = 4'p1000;

reg [3: 0] state, next_state;

always @ (posedge clock, negedge reset_bar)
if (Ireset_bar) state <= s0; else state <= next_state;

always @ (state, start) begin
y_out = 1'b0;
case (state)
sO: if (start) next_state = s1; else next_state = sO;
sl: begin next_state =s2;y out=1; end
s2: begin next_state =s3;y _out=1; end
s3: begin next_state =s4;y out=1; end
s4: begin next_state = s5;y out=1; end
s5: begin next_state = s6;y_out=1; end
s6: begin next_state =s7;y out=1; end
s7: begin next_state =s8;y out=1; end
s8: begin next_state = s0; y_out=1; end
default: next_state = s0;
endcase
end
endmodule

/I Test plan

/I Verify the following:

I/l Power-up reset

/I Response to start in initial state

/I Reset on-the-fly

/I Response to re-assertion of start after reset on-the-fly

/I 8-cycle counting sequence

/I lgnore start during counting sequence

/I Return to initial state after 8 cycles and await start

/I Remain in initial state for one clock if start is asserted when the state is entered

modulet_Prob_6_45;
wire y_out;
reg start, clock, reset_bar;

Prob_6_45 MO (y_out, start, clock, reset_bar);

initial #300 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_bar = 0;
#2 reset_bar =1,
#10 start = 1;
#20 start = 0;
#30 reset_bar = 0;
#50 reset_bar = 1,
#80 start = 1;
#90 start = 0;
#130 start = 1;
#140 start = 0;
#180 start = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

170

0 70 140 20 280
Name I Y N Y I I I N I I I N I O I I I N I I 1 I) |
clock U UL U L UL
reset_ar I L
start 11 1 1 I
y_out I L [

6.46
module Prob_6_46 (output reg [0: 3] timer, input clk, reset_b);
always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 4'b1000; else
case (timer)
4'h1000: timer <= 4'b0100;
4'b0100: timer <= 4'b0010;
4'b0010: timer <= 4'b0001;
4'b0001: timer <= 4'b1000;
default: timer <= 4'b1000;
endcase
endmodule
modulet_Prob_6_46 ();
wire [0: 3] timer;
reg clk, reset_b;
Prob_6_46 MO (timer, clk, reset_b);
initial #150 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin clk = 1; forever #5 clk = ~clk; end
endmodule
0 60 120
Name | ‘ | ‘ | |
clk
reset_b
timer [0:3]
timer [0]
timer [1]
timer [2]
timer [3]
6.47

module Prob_6_47 (
output reg P_odd,
input D_in, CLK, reset
)i

wire D;

assign D=D_in~ P_odd;
always @ (posedge CLK, posedge reset)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

171

if (reset) P_odd <=0;
else P_odd<=D;
endmodule

module t_Prob_6_47 ();
wire P_odd;
reg D_in, CLK, reset;

Prob_6_47 MO (P_odd, D_in, CLK, reset);

initial #150 $finish;

initial fork #1 reset = 1; #7 reset = 0; join

initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial begin D_in = 1; forever #20 D_in = ~D_in; end

endmodule

Name L ‘ L ‘ L L

CLK JE Y [y Y Yy Yy S Yy Sy I

reset T
D_in I L S O I S
P_odd — 1 L L | L |

6.48 (@)

module Prob_6_48a (output reg [7: O] count, input clk, reset_b);
reg [3: 0] state;
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1;
always @ (state)
case (state)
0,2,4,6,8, 10, 12: count =8b0000_0001;

1: count = 8'b0000_0010;
3: count = 8'b0000_0100;
5: count = 8'b0000_1000;
7: count = 8'b0001_0000;
9: count = 8'b0010_0000;
11: count = 8'b0100_0000;
13: count = 8'b1000_0000;
default: count = 8'b0000_0000;
endcase
endmodule

module t Prob_6_48a ();
wire [7: O] count;
reg clk, reset_b;

Prob_6_48a MO (count, clk, reset_b);

initial #200 $finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial begin reset_b = 0; #2 reset b =1; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

172

Name 0 60 120 180

clk

reset_b
state[3:0]
count[7:0]
count[7]

count[6]

count[5]

count[4]
count[3]
count[2]

count[1]

count[0]

(b)

module Prob_6_48b (output reg [7: 0] count, input clk, reset_b);
reg [3: 0] state;
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1,
always @ (state)
case (state)
0,2,4,6,8, 10, 12: count = 8'h1000_0000;

1: count = 8'b0100_0000;
3: count = 8'b0010_0000;
5: count = 8'b0001_0000;
7 count = 8'b0000_1000;
9: count = 8'b0000_0100;
11: count = 8'b0000_0010;
13: count = 8'b0000_0001;
default: count = 8'b0000_0000;
endcase
endmodule

module t_Prob_6_48b ();
wire [7: O] count;
reg clk, reset_b;

Prob_6_48b MO (count, clk, reset_b);

initial #180 $finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial begin reset_b =0; #2 reset b=1; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

173

Name 0 | 60 120 180

clk M rirrerererirereri i rereriererererieri

reset_b]
state[3:1] o X_ 1 X 2 X 3 X 4 X 5 X & X 7 X o X_
countir:0] |) a0 Yoo Y20 X 80 Yo a0 Yob o0 o X 8o Yoz Yao Yor X oo Xao Yao)
count7] | LI LT 1T 1 1 [1 I 1 1
count[6] _ 1 1
count[5] [1

count[4] [1

count[3] 1

count[2] 1

count[1] 1

count[0] 1

6.49

/I Behavioral description of a 4-bit universal shift register
/I Fig. 6.7 and Table 6.3

module Shift_Register_4 beh (//' V2001, 2005
outputreg [3:0] A_par, /I Register output
input [3: 0] | _par, [/l Parallel input
input s1, sO, /I Select inputs

MSB_in, LSB_in, // Serial inputs
CLK, Clear /I Clock and Clear
).

always @ (posedge CLK, negedge Clear) // V2001, 2005
if (~Clear) A_par <= 4'b0000;

else

case ({s1, s0})
2'b00: A_par <= A_par; /I No change
2'h01: A _par <={MSB_in, A_par[3: 1]}; /I Shift right
2'b10: A_par <= {A_par[2: 0], LSB_in}; /I Shift left
2'b11: A _par <=1_par; // Parallel load of input

endcase

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

174

/I Test plan:

/I test reset action load
// test parallel load

/I test shift right

/I test shift left

/I test circulation of data
/I test reset on the fly

module t_Shift_Register_4_beh ();

reg sl s0, /I Select inputs
MSB_in, LSB_in, /I Serial inputs
clk, reset_b; /I Clock and Clear

reg [3:0] I_par; /l Parallel input
wire [3:0] A_par; /I Register output

Shift_Register_4_beh MO (A_par, |_par,s1, sO, MSB_in, LSB_in, clk, reset_b);

initial #200 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
/I test reset action load
#3 reset_b=1;
#4 reset_b =0;
#9reset_b =1;

// test parallel load
#10 |_par = 4'hA;
#10 {s1, s0} = 2'b11;

// test shift right
#30 MSB_in = 1'b0;
#30 {s1, s0} = 2'b01;

/I test shift left
#80 LSB_in = 1'b1;
#80 {s1, sO} = 2'b10;

// test circulation of data
#130 {s1, s0} = 2'b11;
#140 {s1, s0} = 2'b00;

/I test reset on the fly
#150 reset_b = 1'b0;
#160 reset_b = 1'b1;
#160 {s1, s0} = 2'b11;

join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

175

Name 0 60 120 ‘ 180

clk

reset_b . L/A_I
/
I

I_par[3:0] ZX a

MSB_in

LSB_in

I
apar3:0] [N 0N a f5f2h1 X o fif3f7k f
T g
SN

sO |

X a
Al E] E
Reset A_par Shift left Load A_par Reset /

Load_A_par No change Load A_par
Shift right

6.50 (a) See problem 6.27.

module Prob_8_50a (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (Ireset_b) count <= 0;
else case (count)
3'd0: count <= 3'd1;
3'dl: count <= 3'd2;
3'd2: count <= 3'd3;
3'd3: count <= 3'd4;
3'd4: count <= 3'd5;
3'd5: count <= 3'd6;
3'd4: count <= 3'd6;
3'd6: count <= 3'd0;
default: count <= 3'd0;
endcase
endmodule

module t_Prob_8 50a;
wire [2: O] count;
reg clock, reset_b ;

Prob_8 50a MO (count, clock, reset_b);

initial #130 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset b
#2 reset_b
#40 res
#42 res
join
endmodule

)

=0
_b=1;
et b=0
et b=1

Name

clock /NN S S Y S Y B Y I N B
reset b | LI

count[2:0]zX1X2X31X2X3X4X5X6XOX1XZ

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

176

(b) See problem 6.28.

module Prob_8_50b (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)
if ('reset_b) count <= 0;
else case (count)

3'd0: count <= 3'd1;
3'dl: count <= 3'd2;
3'd2: count <= 3'd4;
3'd4: count <= 3'd6;
3'd6: count <= 3'd0;
default: count <= 3'd0;
endcase
endmodule

module t_Prob_8_ 50b;
wire [2: 0] count;
reg clock, reset_b ;

Prob_8_50b MO (count, clock, reset_b);

initial #100 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

#2 reset_b =
#40 reset_b
#42 reset_b
join
endmodule

reset_b L L
clock - rr r rr I I

count[2:0]zX1X2X41X2X4X6XOXZ

6.51
module Seq_Detector_Prob_5 51 (output detect, input bit_in, clk, reset_b);
reg [2: 0] sample_reg;
assign detect = (sample_reg == 3'b111);
always @ (posedge clk, negedge reset_b) if (reset_b ==0) sample_reg <= 0;
else sample_reg <= {bit_in, sample_reqg [2: 1]};
endmodule

module Seq_Detector_Prob_5 45 (output detect, input bit_in, clk, reset_b);
parameter SO=0,S1=1,S2=2,S3=3;
reg [1: 0] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= S0O; else state <= next_state;

always @ (state, bit_in) begin

next_state = SO;
case (state)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

177

0: if (bit_in) next_state = S1; else state = SO;
1: if (bit_in) next_state = S2; else next_state = SO;
2: if (bit_in) next_state = S3; else state = SO;
3: if (bit_in) next_state = S3; else next_state = SO;
default: next_state = SO;
endcase
end
endmodule

module t_Seq_Detector_Prob_6_51 ();
wire detect_45, detect_51;
reg bit_in, clk, reset_b;

Seq_Detector_Prob_5 51 MO (detect_51, bit_in, clk, reset_b);
Seq_Detector_Prob_5 45 M1 (detect_45, bit_in, clk, reset_b);

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
reset b=0;
#4 reset_b=1;
#10 bit_in = 1;
#20 bit_in = 0;
#30 bit_in = 1;
#50 bit_in = 0;
#60 bit_in = 1;
#100 bit_in=0;
join
endmodule
0 60 120
Name | ‘ | ‘ | |
clk A e Y e e e e e Y I O I O
reset b |
bit_in] L L |
detect_51
detect_45

The circuit using a shift register uses less hardware.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

178

Chapter 7

7.1 (@) 8 Kx32=2%x16 A=13 D=16
(b)2Gx8=2%x8 A=31 D=8
(c) 16 M x 32 = 2%*x 32 A=24 D=32
(d) 256 K x 64 = 28 x 64 A=18 D=64
(e)

7.2 @@ 28 (b) 2* (c) 2% (d) 2%

7.3 723=512+128+64+16+2+1

3451 =2048 + 1024 + 256 + 64 +32+16+8+2+1

Address: 101101 0011 = 2D345
Data: 0000 1101 0111 1011 = 0D7By5

7.4 f cpu = 100 MHz, Tepy = Ufepy = 108 Hz1 = 10 x 10° Hz1 = 10 ns
e——— 25ps5 —»
le——10 ns—>l¢——10 ns—>le—10 ns—»]

CPU clock
T1 T2 T3

Address >< Address valid ><
Memory select
Data from CPU >< Data valid for write ><:

Data from memory >< ><:

Data valid for read

7.5
/I Testing the memory of HDL Example 7.1.
module t_memory ();
reg Enable, ReadWrite;
reg [3:0] Dataln;
reg [5:0] Address;
wire [3:0] DataOut;

memory MO (Enable, ReadWrite, Address, Dataln, DataOut);
initial #200 $finish;
initial begin
Enable = 0; ReadWrite = 0; Address = 3; Dataln = 5;
repeat (8) #5 Enable = ~Enable;
end
initial begin

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

179

#10 Address = 43; Dataln = 10;
#10 ReadWrite = 1;
#10 Address = 0;
end
initial
$monitor ("E = %b RW = %b Add = %b D_in = %b D_out = %b T = %d",
Enable, ReadWrite, Address, Dataln, DataOut, $time);

wire memO = M0.Mem][0];
wire mem1 =M0.Mem[1];
wire mem2 =M0.Mem([2];
wire mem3 =M0.Mem[3];
wire mem4 =M0.Mem([4];
wire mem5 =M0.Mem[5];
wire mem40 =M0.Mem[40];
wire mem41l =M0.Mem[41];
wire mem42 =M0.Mem([42];
wire mem43 =M0.Mem[43];
wire mem44 =M0.Mem([44];
wire mem45 =M0.Mem[45];
endmodule

/IRead and write operations of Mem
/IMem size is 64 words of 4 bits each.
module memory (Enable, ReadWrite, Address, Dataln, DataOut);
input Enable, ReadWrite;
input [3: 0] Dataln;
input [5: 0] Address;
output [3:0] DataOut;
reg [3:0] DataOut;

reg [3:0] Mem [0: 63]; //64 x 4 Mem
always @ (Enable or ReadWrite)
if (Enable)
if (ReadWrite) DataOut = Mem[Address]; /IRead
else Mem[Address] = Dataln; /\Write
else DataOut = 4'bz; //High impedance state
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

180

Name 0 0 60 %

Address[5:0] 0 X 2 X 00
ReadWrite I —
Enable [N I I I N B S B
Dataln[3:0] 5 X a

DataOut[3:0] z (a Xz)5) z
Wem[0] [3:0] | x X 5

\Mem[1] [3:0]
\Mem[2] [3:0]
\Mem([3] [3:0]
\Mem[4] [3:0]
\Mem[5] [3:0]
\Mem[40] [3:0]
\Mem[41] [3:0]
\Mem([42] [3:0]
\Mem[43] [3:0] X X a
\Mem[44] [3:0]
\Mem[45] [3:0] X

e I e N I R I e B 1 B 1 B

x

7.6

8 Data input lines

J[s

Al———— 4 x4 RAM 4 x4 RAM

4 x4 RAM 4 x4 RAM

ig

8 Data output lines

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

181

7.7 (@) 16 K=2"=2"x2"=128x128
Each decoder is 7 x 128
Decoders require 256 AND gates, each with 7 inputs

(b) 6,000 =0101110_1110000
X=46 y=112

7.8 (a) 256 K /32 K =8 chips
(b) 256 K = 2'® (18 address lines for memory); 32 K = 215 (15 address pins / chip)
(c) 18 —15 =3 lines ; must decode with 3 x 8 decoder

7.9 13 + 12 = 25 address lines. Memory capacity = 2% words.

7.10 01011011=1 2 3 4 5 6 7 8 9 10111
P1P,0 P;,1 01 Pg1l 0 1 1 Py

~

P, = Xor of bits (3, 5, 1
P, = Xor of bits (3, 6,
P4 = Xor of bits (5, 6,

Pg= Xor of bits (9, 10,

)=0,1,1,1,1=0 (Note: even # of 0s)
1)=0,0,1,0,1=0

)=1,0,1,1=1 (Note: odd # of 0s)
12)=1,0,1,1,=1

9,
, 10,
12
1,

~ ~
e

1,
0,

[EE

Composite 13-bit code word: 0001 1011 1011 1

7.11 11001001010=1 2 3 4 5 011
1

6 78 9 10111
P,P,1 P,100Pg10 0 1
P, = Xor of bits (3, 5, 7, 0

3,5,7,9,11,13,15)=1,1,0,1,0
P, = Xor of bits (3, 6, 7, 1
56,71
1

11,14,15)=1,0,0, 0,
,13,14,15)=1,0,0, 1,
2,13, 14,15)= 1,0, 0,

0= (Note: odd # of 0s)
(Note: even # of 0s)

0,
2

oo-
e

P, = Xor of bits (5, 6, 7,
Pg= Xor of bits (9, 10, 11, 1

=
o

Composite 15-bit code word: 101 110 011 001 010

7.12 (@1234567 89 101112
000011 101010
C:(14,3,57911)=0,0,1,1,1,1=0
C,(2,3,6,7,10,11)=0,0,1,1,0,1=1
Cs(4,56,7,12)=0,1,1,1,0=1
Cs(8,9,10,11,12)=0,1,0,1,0=0
C =0110
Error in bit 6.

Correct data: 0101 1010

()1 23 4567 89 101112
101110000110
C:(1,35/7911)=1,1,1,0,0,1=0
C,(2,3,6,7,10,11)=0,1,0,0,1,1=1
C,(4,5,6,7,12)=1,1,0,0,0=0
Cs(8,9,10,11,12)=0,0,1,1,0=0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

182

C =0010
Error in bit 2 = Parity bit P,.
356 7 9 101112
Correct 8-bit data: 110001 10
(c)1 23456789 101112
101111110100
C = 0000)No errors)
C:(1,3,57,911)=1,1,1,0,0,1=0
C,(2,3,6,7,10,11)=0,1,0,0,1,1=1
C,(4,5,6,7,12)=1,1,0,0,0=0
Cg(8,9,10,11,12)=0,0,1,1,0=0
356 7 9 1011 12
Correct 8-bit data: 11110100
7.13 (a) 16-bit data (From Table 7.2): 5 Check bits
1 bit
6 parity bits
(b) 32-bit data (From Table 7.2): 6 Check bits
1 bit
7 parity bits
(6) 16-bit data (From Table 7.2): 5 Check bits
1 bit
6 parity bits
7.14 @ 1234567 P;=Xor (3,5,7)=0,0,0=1
PLP,OP40 10 P,=Xor (3,6,7)=0,1,0=0
P,=Xor (5,6,7)=0,1,0=1
7-bit word: 0101010
(b) No error:
Ci=Xor(1,3,57)=0,000=0
C,=Xor(2,3,6,7)=1,0,1,0=0
C,=Xor (4,5,6,7)=1,0,1,0=0
(c) Error in bit 5: 1234567
0101110
C;=Xor(0,0,1,0)=1
C,=Xor(1,0,1,0)=0
Cs,=Xor(1,1,1,0) =1

Error in bit5: C =101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

183
(d) 8-bit word 1234567 8
01010101
Errorinbits2and5:0 0 0 1 1 1 0 1
C;=Xor(0,0,1,0)=1
C,=Xor(0,0,1,0)=1
C4=Xor(1,1,1,0)=1
P=0
C=(1,1,1)=0andP =0 indicates double error.
7.15
""" 6
6 6 6 6
Address
(8 bits) > o4
Decoder
y A A y A A A A
En En En En
64 x 8 ROM 64 x 8 ROM 64 x 8 ROM 64 x 8 ROM
Data 8 8 8 8 8
(8 bits) A 4 y
Note: Outputs must be wired-OR or three-state outputs.
7.16
Note: 4096 = 212
Pwr —»
Gnd —
Inputgs»_—,?b 4%98,\)/('8 —,%» Outputs
cs | ’
16 inputs + 8 outputs requires a 24-pin IC.
7.18 (@) 256 x8 (b) 512x5 (c) 1024x4 (d) 32x7
7.17
Input Address ~ Output of ROM
l;1,1,1,, DD, | D,D,D, D,(2° Decimal
00000 000 000 0,1 0,1
00001 000 001 0,1 2,3
01000 001 | 011 01 1617
01001 001 100 0,1 18,19
11110 110 | 000 0,1 60,61
11111 110 001 0,1 62, 63
7.18 (a) 8 inputs 8 outputs 25x8 256 x 8 ROM
(b)9inputs S5outputs 2°x5 512 x5ROM

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

184

(c) 10 inputs 4 outputs 2'°x 41024 x 4 ROM

(d)5inputs 7outputs 2°x7 32x7ROM

7.19
yz b yz y
I I
X 00 01 11 10 X 00 01 11 10
m0 m1 m3 m2 mo m1 m3 m2
0 0 1 0 1 0 1 1 0 0
m, Mg m, My m, Mg m, My
X 1 1 0 0 1 X 1 0 0 1 1
z z
A=y +xz' + Xx'y'z B =xy +Xx'y'
A'=yz+xz+XYy7 B'=xYy +Xy
yz y yz y
1 1
X 00 01 11 10 X 00 01 11 10
m0 m1 m3 m2 m0 m1 m3 m2
0 0 0 0 1 0 0 1 1 1
m, Mg m, My m, Mg m, M
X [1 0 0 0 1 X [1 0 1 1 0
z z
C=yz D=z+xy
C=y+z D'=y7 +xz'
Outputs
Product Inputs ABCD
term xyz
v 1 -10 1 - 1 -
xz' 2 1-0 1- - -
xyz 3 001 1- - -
Xy' 4 10- -1 - -
X'y 5 01- -1 -1
z 6 --1 - -1
TCTT
7.20
Inputs Outputs
xyz |A/BC,D
000 1101
001 0111 M[001] = 0111
010 0000
011 1000
100| 1001 M[100] = 1001
101 0011
110| 1100
111 0101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

185

7.21 Note: See truth table in Fig. 7.12(b).

AA, Ay AA, A
—
>\, 00 01 11 10 AN 00 01 11 10
m, m, m, m, m, m, m, m,
0 0 0 0 0 0 0 0 0 0
m, mg m, I'I'I6 m, I'I'I5 m7 mg
Al 1l 0| o0]| 1 1 Al 1| 1 1 1| o0
L L
A, Ay
F =AA F,=AA +AA,
Fi=AL+ A By =A,+AA,
A Ay AAg Ay
AN 00 01 11 10 AN 00 01 11 10
m, m, m, m, m, m, ms m,
0 0 0 1 0 0 0 0 0 1
m, mg m, mg m, mg m, mg
Al 1] o] 10| o0 A1l o | o | o0 1
L L
A, Ay
F, = ALAA, +AALA F,=AA,
F, = A+ AA +AA F,=A +A,
Product Inputs Outputs
term AAA, F F,FF,
AA, 1 11- 1 - - -
A 2 0- - -1 - - Alternative: F', F',, F,, F,
AA, 3 -10 - 1-1 (5 terms)
AAA, 4 -11 - -1 -
AA, 5 101 - -1 -
TCTT
7.22
Decimal w x y z b, by by b, by b, b, by
0 0 0 00O 0 000O0OO0TO0OTO O
1 1 0 001 0 000O0O0TO0T1
2 4 0 010 0 000O0O1O00
3 9 0 011 0 000 1001
4 16 0 100 000 100O0TO0
5 25 0101 0 001 10 0 1 Note: b,=z,and b, =0.
6 36 0110 0 01 001 0 0 ROMwouldhave 4 inputs
7 49 0111 0 011000 1 and6outputs.A4x8
8 64 1 000 010000 0 0 ROMwouldwaste two
9 81 1 001 0 1 0100 0 1 outputs.
10 100 1 010 01100100
11 122 1 011 01111001
12 144 1 1 00 1 0010000
13 169 1 101 10101001
14 196 1 110 11000100
15 225 1 111 11100001

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
186

yz y yz y
WX 00 01 11 10 WX 00 01 11 10
m m1 mz m0 m1 I‘I‘I3 m2
00 1 00 1
m m5 mG m m5 m7 m
01 1 01 1
le m13 15 m14 m12 m13 m15 m14
11 1 11 1
w mB m9 11 mlO w m m9 mll mlO
10 1 10 1
L 1 L 1
z
b, =yx' b, =xy'z+x'yz
yz y yz y
1 1
wx 00 01 11 10 wx 00 01 11 10
mO ml m3 m2 mO ml m3 m2
00 00
4 m5 7 m6 4 m5 m7 m6
01| 1 1 1 01 1 1
m12 m13 m15 mlA le m13 mlS mlA
11 1 11 1 1
w mS m9 mll mlO w m8 m9 mll mlO
10 1 1 10 1 1
L 1 L 1
Z
b, =wxz +xy'z' + wx' z b, = w'xy + wxz + wx'y
yz y yz y
wx 00 01 11 10 WX 00 01 11 10
mO ml m3 m2 mO ml m3 m2
00 00
mA m5 I’T'I7 I'ﬂ6 m4 m5 m7 ms
01 01
le m13 m15 m14 m12 m13 m15 m14
11 1 1 11| 1 1 1 1
w m8 m9 mll m10 w m8 m9 mll mlO
10| 1 1 1 1 10
] |
Z A
b, = wy + wx’ = Wwx

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

187

7.23
From Fig. 4-3: Product Inputs Outputs
w=A+BC +BD term ABCD F1F2F3F4
w'=A'B'+ A'C'D' A 1 1-- - 1 - - -
x=B'C+B'D +BC'D’ BC 2 -11- 11- -
x'=B'C'D'+ BC BD BD 3 -1-1 11- -
y=CD+C'D BCD 4 -000 - 1- -
y'=C'D+CD' cD 5 --11 - -1 -
=D C'D’ 6 --00 - 1 -
=D D' 7 ---0 - - -1
Use w, X', y, Z (7 terms) TCcTT

7.24

AND
Product Inputs
term ABCD Outputs

1 1-- -

2 11 - w=A+BC+BD
3 -1-1

4 -01 -

5 -0- 1 x=BC+BD+BCD’
6 -100

7 --11

8 --00 y=CD+CD

9 - - - -

0 - - -

11 - - - - z=D'

2 - - - -

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

188

7.25
yz y yz y
X 00 01 11 10 X 00 01 11 10
m, m, m, m, m, m, my m,
0 0 1 0 1 0 1 1 1 0
m4 m5 m7 m5 m4 m5 m7 m5
X [1 1 0 0 1 X [1 0 0 1 1
L L
z z
A=yzr'+xz'+x'y'z B=xYy +xy+yz
yz y yz y
X 00 01 11 10 X 00 01 11 10
My m, my m, My my my m,
0 0 1 0 1 0 0 1 1 1
I'T'I‘.l m5 m7 ms m4 I'I‘l5 m7 ms
X [1 1 0 1 1 X [1 0 1 1 0
L L
z z
C=A+xyz D=z+xy
AND

Product Inputs
term XyzA Outputs

1 -10- , L
2 1.0. AFYI+xzZ+Xyz
3 001-

4 00- -

5 11-- B=xy+xy+yz
6 011-

7 0--1

8 111- C=A+xyz

9 0---

10 0-1-

11 01- - D=z+xy

122 - - - -

A=y7 +x2' +Xy'z
B=xy +xy+yz
C=A+xyz
D=z+xYy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

189
7.26
x xX y y A A CLKOE=1
¥ X—¥)
-
—X ¥ X D™ Q A
L/ ——7 >
—¥ *—¥ D_ ax 9]
Y
L/
x—>—1 <]
y — =
7.27
The results of Prob. 6.17 can be used to develop the equations for a three-bit binary counter with D-type
flip-flops.
DAO = A'o

DA, = A4A, + AA,
DA2 = Alz A1A0 + A2A'1 + AzAlo

Cout = AA1Ag

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

190

7.28
A B C
YY1V [
- | 4+
X—x X % A'BC’
— a } X AC
—¥ ¥) ¥ AB
>|< >|< —/‘ X BC
F‘Z
Fl
7.29
Product Inputs Output
term XxXyA D,
xXyA 1 001 1
XyA' 2 010 1
xy'A" 3 100 1
XyA 4 111 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

191
CHAPTER 8
8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge. After the transfer, R2
holds the contents that were in R1 before the clock edge, and R2 holds its previous value incremented
by 1.
(b) Decrement the content of R3 by one.
(c) If (S; = 1), transfer content of R1 to RO. If (S; = 0 and S, = 1), transfer content of R2 to RO.
8.2
A, 4 £
s1 cr R Datapath
= R
0 X = controller | iner R [T 111 111
Yy — =
1
l X reset b1
clock
< > 1
R<=0 R<=R+1
1 / /
8.3
reset_b reset_b reset_b
| a
*<? 1
l X
'
1
—3 2
R<=R+2
@ (b) (©
8.4
8.5 The operations specified in a flowchart are executed sequentially, one at a time. The operations specified

in an ASM chart are executed concurrently for each ASM block. Thus, the operations listed within a state
box, the operations specified by a conditional box, and the transfer to the next state in each ASM block
are executed at the same clock edge. For example, in Fig. 8.5 with Start = 1 and Flag = 1, signal Flush_R
is asserted. At the clock edge the state moves to S_2, and register R is flushed.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

192

8.6
Note: In practice, the asynchronous inputs x
and y should be synchronized to the clock to
avoid metastable conditons in the flip-flops..

count <=0

reset_b/
count <= count - 1 l l count <=count + 1
S idle
@~)
01 10
. %}

- ¢ —
o] Er]
10

0 00 00
—.9 | v

(5)

incr Datapath

x count
@CD Controller decr [TTTT 1711
y — >

.i ncr
reset b 1 I

clock

S_out

S idle

Note: To avoid counting a person more than
once, the machine waits until x or y is de-
asserted before incrementing or
decrementing the counter. The machine also
accounts for persons entering and leaving
simultaneously.

8.7 RTL notation:
S0: Initial state: if (start = 1) then (RA <« data_A, RB «— data_B, go to S1).
S1: {Carry, RA} « RA + (2’s complement of RB), go to S2.
S2: If (borrow = 0) go to SO. If (borrow = 1) then RA « (2’s complement of RA), go to SO.

Block diagram and ASMD chart:

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

193

reset_b

data_A data B done

borrow 8 8

Reg_A <=data_A
Reg B <=data B

= 8 <—|
paly

Datapath /
Load_A B Reg_A Load A B
[T TT--TT11 Reg A<=Reg A+~Reg B+1
Subtract Re S1 - - -
g_B
start Controller T T e /
Convert
carry result
done «— OOT11—-111
reset_b 1
clock 8

Reg A <=~Reg A+ 1

result /
Convert
module Subtractor_P8_7

(output done, output [7:0] result, input [7: 0] data_A, data_B, input start, clock, reset_b);

o0

Controller_P8_7 MO (Load_A_B, Subtract, Convert, done, start, borrow, clock, reset_b);
Datapath_P8_7 M1 (result, borrow, data_A, data_B, Load_A_B, Subtract, Convert, clock, reset_b);
endmodule

module Controller_P8_7 (output reg Load_A_B, Subtract, output reg Convert, output done,
input start, borrow, clock, reset_b);
parameter SO = 2'h00, S1 = 2'b01, S2 = 2'b10;
reg [1: 0] state, next_state;
assign done = (state == S0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= SO; else state <= next_state;

always @ (state, start, borrow) begin

Load_A_B =0;
Subtract = 0;
Convert = 0;

case (state)

SO0: if (start) begin Load_A_B = 1; next_state = S1; end
S1: begin Subtract = 1; next_state = S2; end
S2: begin next_state = SO; if (borrow) Convert = 1; end
default: next_state = SO;
endcase
end
endmodule

module Datapath_P8_7 (output [7: 0] result, output borrow, input [7: O] data_A, data_B,
input Load_A_B, Subtract, Convert, clock, reset_b);
reg carry;

reg [8:0] diff;
reg [7: 0] RA, RB;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

194

assign borrow = carry;
assign result = RA;

always @ (posedge clock, negedge reset_b)
if (reset_b) begin carry <= 1'b0; RA <= 8'b0000_0000; RB <= 8'b0000_0000; end
else begin
if (Load_A_B) begin RA <= data_A; RB <= data_B; end
else if (Subtract) {carry, RA} <= RA + ~RB + 1;

/I In the statement above, the math of the LHS is done to the wordlength of the LHS

/I The statement below is more explicit about how the math for subtraction is done:

/I else if (Subtract) {carry, RA} <= {1'b0, RA} + {1'b1, ~RB } + 9'b0000_0001;

/I If the 9-th bit is not considered, the 2s complement operation will generate a carry bit,
/I and borrow must be formed as borrow = ~carry.

else if (Convert) RA <= ~RA + 8'b0000_0001;
end
endmodule

/] Test plan — Verify;

I/l Power-up reset

/I Subtraction with data_A > data_B
/I Subtraction with data_A < data_B
I/l Subtraction with data_A = data_B
/I Reset on-the-fly: left as an exercise

module t_Subtractor_P8_7;
wire done;
wire [7:0] result;
reg [7: 0] data_A, data_B;
reg start, clock, reset_b;

Subtractor_P8_7 MO (done, result, data_A, data_B, start, clock, reset_b);

initial #200 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial fork
reset_ b =0;

#2 reset_b

#90 reset_b
#92 reset_b

join

1;
1
1

initial fork
#20 start = 1;
#30 start = 0;
#70 start = 1;
#110 start = 1;
join

initial fork
data_A = 8'd50;
data_B = 8'd20;

#50 data_A = 8'd20;
#50 data_B = 8'd50;

#100 data_A = 8'd50;
#100 data_B = 8'd50;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

195

Name 0 @0 £0 (120

clock L 1 rrrrrrrreri i rrrererrri

reset_b a

state[1:0] o x X o X1)X2X 0 Y1 X2 Yo X1 X2)Xol1)e]

start I

Load A B 1 1 1 1 I

Subtract [1

carry -

borrow — -

Convert

data_A[7:0] 50 X 20 X 50

RA[7:0] 00 32 X le Y14 Xe2 X 1e X322 X__ 00 Y32 _

data_B[7:0] 20 X 50

RB[7:0] 00 X 14 X 32

done 1 |

borrow -

result[7:0] 0 {50 X 30 Y20 X226 {30 {50 __ 0 Y 50 __
8.8 RTL notation:

S0: if (start = 1) AR « input data, BR <« input data, go to S1.

S1:if (AR [15]) = 1 (sign bit negative) then CR «— AR(shifted right, sign extension).
else if (positive non-zero) then (Overflow <— BR([15] @ [14]), CR <« BR(shifted left)
else if (AR = 0) then (CR « 0).

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

196

AR eq 0 data_AR data_BR
AR gt 0
— 16 16
AR_It 0
I
Datapath
Ld_AR BR AR
Div_AR x2_CR L] ""'éRl |
> Controller - T T
start — Mul_BR_x2_CR — cR
done «~—| CIr_CR LT T[T --TT]
reet b 1
clock
reset_b
SO
done

AR <=data A
BR<=data_B

Ld_AR_BR Note: Division by 2 of a

negative number
represented in 16-bit 2s
complement format

CR <= {AR[15], AR[15:1]}
/

1
Div_AR_x2_CR Note: Multiplication by

2 of a positive number
CR<=BR<<1

- represented in 16-bit 2s
1 Mul BR x2 CR complement format
CR<=0
/

CIr_CR

module Prob_8_8 (output done, input [15: 0] data_AR, data_BR, input start, clock, reset_b);

Controller_P8_8 MO (

Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR, done,
start, AR_It_0, AR_gt 0, AR_eq_0, clock, reset_b

);

Datapath_P8 8 M1 (
Overflow, AR_It_0, AR_gt_0, AR_eq_0, data_AR, data_BR,
Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR, clock, reset_b
);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

197

module Controller_P8_8 (
output reg Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR,
output done, input start, AR_It_0, AR_gt_0, AR_eq_0, clock, reset_b
);
parameter SO =1'h0, S1 = 1'b1;
reg state, next_state;
assign done = (state == S0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= SO; else state <= next_state;

always @ (state, start, AR_It_0, AR_gt_0, AR_eq_0) begin
Ld_AR_BR =0;
Div_AR x2_CR =0;
Mul_ BR_x2 CR =0;
Clr_CR =0;

case (state)
SO0: if (start) begin Ld_AR_BR = 1; next_state = S1; end
S1: begin
next_state = SO;
if (AR_It_0) Div_AR_x2_CR =1;
else if (AR_gt_0) Mul_BR_x2_CR = 1;
elseif (AR_eq_0) CIr_CR =1,
end
default: next_state = SO;
endcase
end
endmodule

module Datapath_P8 8 (
output reg Overflow, output AR_It_0, AR_gt 0, AR_eq_0, input [15: 0] data_AR, data_BR,
input Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR, clock, reset_b
);
reg [15: 0] AR, BR, CR;
assign AR_It_0 = AR[15];
assign AR_gt_0 = ('AR[15]) && (] AR[14:0)); // Reduction-OR
assign AR_eqg_0 = (AR == 16'b0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) begin AR <= 8'h0; BR <= 8'b0; CR <= 16'b0; end
else begin
if (Ld_AR_BR) begin AR <= data_AR; BR <= data_BR; end
else if (Div_AR_x2_CR) CR <= {AR[15], AR[15:1]}; // For compiler without arithmetic right shift
else if (Mul_BR_x2_CR) {Overflow, CR} <= (BR << 1);
else if (ClIr_CR) CR <= 16'h0;
end
endmodule

/] Test plan — Verify;

I/l Power-up reset

/I If AR < 0 divide AR by 2 and transfer to CR
/I'If AR > 0 multiply AR by 2 and transfer to CR
/I'lf AR = 0 clear CR

/I Reset on-the-fly

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

198

modulet_Prob_P8 8;

wire done;
reg [15: 0] data_AR, data_BR;
reg start, clock, reset_b;

reg [15: 0] AR_mag, BR_mag, CR_mag; // To illustrate 2s complement math

/I Probes for displaying magnitude of numbers
always @ (M0.M1.AR) /I Hierarchical dereferencing
if (M0.M1.AR[15]) AR_mag = ~M0.M1.AR+ 16'd1; else AR_mag = MO.M1.AR;
always @ (M0.M1.BR)
if (M0.M1.BR[15]) BR_mag = ~M0.M1.BR+ 16'd1; else BR_mag = M0.M1.BR;
always @ (M0.M1.CR)
if (M0.M1.CR[15]) CR_mag = ~M0.M1.CR + 16'd1; else CR_mag = M0.M1.CR;

Prob_8 8 MO (done, data_AR, data_BR, start, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_|
#2 reset_|
#50 reset_|
#52 reset_|
#90 reset_|
#92 reset_|
join

// Power-up reset

; Il Reset on-the-fly

cooooo
o nn
PRPRORO

initial fork
#20 start = 1;
#30 start = 0;
#70 start = 1;
#110 start = 1;
join

initial fork
data_AR = 16'd50; Il AR >0
data_BR = 16'd20; // Result should be 40

#50 data_AR = 16'd20;
#50 data_BR = 16'd50; // Result should be 100

#100 data_AR = 16'd50;
#100 data_BR = 16'd50;

#130 data_AR = 16'd0; // AR =0, result should clear CR

#160 data_AR =-16'd20; // AR <0, Verilog stores 16-bit 2s complement
#160 data_BR = 16'd50;// Result should have magnitude10

#190 data_AR = 16'd20;// AR < 0, Verilog stores 16-bit 2s complement
#190 data_BR = 16'hffff;// Result should have overflow
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

199
Reset on-the-fly
Name 60 120 180 240
| I I I I | | I I N S B | | I I I I I I | | I S I I I | | |

reset_b U/

clock

start I_l |

Multiply by 2 and xfer to CR Divide by 2 and xfer to CR

AR_It O

AR_gt_0 ’—4 |\ M

AR_eq_0 |

state |_|

Ld_AR BR M

Div_AR_x2_CR 1

Mul_BR_x2_CR | |_|_|_|_|_|

Clr_CR L1

done

data_AR[15:0] o) ” [s o) essie | 20

AR[15:0] o | o [o | 20 Y s) 0) 65516 /) 20

AR[15:0] oooo | oos2 | oooo X 0014 J oos2 | 0000 Y rec) 0014
AR_mag[15:0] 0 X 50 X 0 X 20 X 50 X 0 X 20 Y
data_BR[15:0] | p Y] essss

BR[15:0] o [b | o) 50) 65535

BR{15:0] 0000 | o014 o000 | 0032 X it
BR_mag[15:0] 0 X 20 0 X 50 X 1 \
CRI15:0] 0 } o« 0) 100) 0 | 65526 |) 65534 ¥
CRI15:0] o0 [/N oo [0064 T ffe —
CR_mag[15:0] o X 0 X 0 X 100 X 0 X 107 X 2 v
Overflow

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

200

8.9
Design equations:
Ds ige=S_2+ S _idle Start'
Ds 1= S_idle Start + S_1 (A2 A3)'
Ds_z =A2 A3 S_l

HDL description:

module Prob_8_9 (output E, F, output [3: O] A, output A2, A3, input Start, clock, reset_b);

Controller_Prob_8 9 MO (set_E, clr_E, set_F, clr_A_F, incr_A, Start, A2, A3, clock, reset_b);
Datapath_Prob_8 9 M1 (E, F, A, A2, A3, set_E, clr_E, set_F, clr_A_F, incr_A, clock, reset_b);

endmodule

/I Structural version of the controller (one-hot)
/I Note that the flip-flop for S_idle must have a set input and reset_b is wire to the set
/I Simulation results match Fig. 8-13

module Controller_Prob_8_9 (

output set E,clr_E, set_F, clr_A_F, incr_A,
input Start, A2, A3, clock, reset_b

)

wire D_S idle,D_S 1,D_S_2;

wire g_S_idle,q_S 1,q_S 2;

wire woO, wl, w2, w3;

wire [2:0] state={g_S_2,q9_S_1, q_S_idle};

/I Next-State Logic

or (D_S_idle, q_S_2, w0); /I input to D-type flip-flop for g_S_idle
and (w0, g_S_idle, Start_b);

not (Start_b, Start);

or (D_S_1, wl, w2, w3); /l input to D-type flip-flop forg_S_1
and (w1, g_S_idle, Start);

and W2, g_S_1, A2_h);

not (A2_b, A2);

and (W3, g_S_1, A2, A3_b);

not (A3_b, A3);

and (D_S_2, A2, A3,q_S_1); // input to D-type flip-flop forg_S_2

D_flop_S MO (g_S _idle, D_S idle, clock, reset_b);
D_flop M1 (g_S_1, D_S 1, clock, reset_b);
D_flop M2 (q_S_2, D_S_2, clock, reset_b);

// Output Logic

and (set_E, g_S 1, A2);

and (clr_E, q_S_1, A2_h);

buf (set_F, q_S_2);

and (clr_A_F, g_S_idle, Start);

buf (incr_A, q_S_1);
endmodule

module D_flop (output reg q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (Ireset_b) g <= 1'b0; else q <= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

201

module D_flop_S (output reg g, input data, clock, set_b);
always @ (posedge clock, negedge set_b)
if (Iset_b) q <= 1'b1; else q <= data;
endmodule

/*
/I RTL Version of the controller
/I Simulation results match Fig. 8-13

module Controller_Prob_8 9 (

outputreg set_E, clr_E, set_F, clr_A_F, incr_A,
input Start, A2, A3, clock, reset_b

);
parameter S_idle =3'b001, S_1=3'b010, S_2 = 3'b100; /I One-hot
reg [2: O] state, next_state;

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, A2, A3) begin

set E =1'b0;
cr E =1b0;
set F =1'b0;
cr A F =1'b0;
incr_A =1'b0;

case (state)
S idle: if (Start) begin next_state=S_1;clr_A_F=1; end
else next_state = S_idle;

S_1: begin
incr A=1;
if ({A2) begin next_state=S_1;clr_E =1, end
else begin
set E=1,
if (A3) next_state = S_2; else next_state = S_1;
end
end

S_2: begin next_state = S_idle; set_F =1, end
default: next_state = S_idle;
endcase
end
endmodule
*/
module Datapath_Prob_8 9 (
output reg E, F, output reg [3: 0] A, output A2, A3,
input set_E, cIr_E, set_F, clr_A_F, incr_A, clock, reset_b
)
assign A2 = A[2];
assign A3 = A[3];

always @ (posedge clock, negedge reset_b) begin
if (Ireset_b) begin E <=0; F <=0; A<=0; end
else begin
if (set_E) E<=1;
if (clr_E) E<=0;
if (set_F) F<=1;
if (clr_A_F) begin A<=0; F<=0;end
if (incr_A) A<=A+1;
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

202

/I Test Plan - Verify: (1) Power-up reset, (2) match ASMD chart in Fig. 8-9 (d),
I (3) recover from reset on-the-fly

modulet_Prob_8 9;
wire E, F;
wire [3: O] A;
wire A2, A3;
reg Start, clock, reset_b;

Prob_8 9 MO (E, F, A, A2, A3, Start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_ b=0; #2 reset_ b=1; end
initial fork
#20 Start = 1,
#40 reset_b =0;
#62 reset_b=1;
join
endmodule

8.10

reset_b

module Prob_8_10 (input x, Yy, clock, reset_b);
reg [1: 0] state, next_state;
parameter s0 = 2'b00, s1 =2'b01, s2 =2'b10, s3 =2'b11;
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0; else state <= next_state;

always @ (state, X, y) begin
next_state = s0;
case (state)
s0:if (x == 0) next_state = s0; else next_state = s1;
sl:if (y == 0) next_state = s2; else next_state = s3;
s2:if (x == 0) next_state = s0; else if (y == 0) next_state = s2; else next_state = s3;
s3:if (x == 0) next_state = s0; else if (y == 0) next_state = s2; else next_state = s3;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

203
modulet_Prob_8 10 ();
reg x, Yy, clock, reset_b;
Prob_8 10 MO (X, vy, clock, reset_b);
initial #150 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset b =0;
#12 reset_b=1;
x=0;y=0; // Remain in sO
#10y =1, // Remain in sO
#20x =1, /I Go to s1to s3
#40reset b=0; // GotosO
#42reset b=1; //Gotos2tos3
#60y = 0; /l Go to s2
#8380y =1, // Go to s3
#90 x = 0; /I Go to sO
#100 x = 1; /I Go to s1
#110y =0; /l Go to s2
#130 x=0; /l Go to sO
join
endmodule
Name 0 | ‘50‘ | 190 | | 150

clock L rrrerrrrererrrererreferi

reset b | —]
X I L |
y I L 1

1 3o X3 (T2 Y3 X o)X 2 X o

state[1:0] 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

204
8.11 Dp=A'B + Ax
Dg = A'B'x + A'By + xy
next AB Xy Xﬁ
state inputs state 00 01 11 10
mO ml m3 m2
00 00 00 00
00 01 00
00 10 01 m, Mg m; Mg
00 11 01 01 1 1 1 1
m12 m13 m15 m14 B
01 00 10 11 1 1
01 01 11 A
01 10 10 Mg My my, UUT
01 11 11 10 11
N
10 00O 00 y
10 01 00 D, =AB + Ax
10 10 10 Xy «
10 11 11 —
AB 00 01 11 10
m m m.
11 00 00 0 ! 2
11 01 00 00 L 1
11 10 10 LT [,
11 11 11 01 1 1
le m13 m14 B
11
A mS mg mlO
10
|
y
Dy =A'B'x+ A'By + xy
8.12 Modify the counter in Fig. 6.12 to add a signal, Clear, to clear the counter synchronously, as shown in the

circuit diagram below.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

205

Count enable
} J Q A
L

it |

Clear D K QB
I Q A,
—>

- 1K QB

|:) ___ Tonextstage

)
y

Tk o8
y

(1>

CLK

module Counter_4bit_Synch_CIr (output [3: 0] A, output next_stage, input Count_enable, Clear, CLK);
wire AO, Al, A2, A3;
assign A[3: 0] = {A3, A2, A1, A0},
JK_FF MO (A0, JO, KO, CLK);
JK_FF M1 (A1, J1, K1, CLK);
JK_FF M2 (A2, J2, K2, CLK);
JK_FF M3 (A3, J3, K3, CLK);

not (Clear_b, Clear);

and (JO, Count_enable, Clear_b);
and (J1, JO, AO);

and (J2, J1, Al);

and (J3, J2, A2);

or (KO, Clear, JO);
or (K1, Clear, J1);
or (K2, Clear, J2);
or (K3, Clear, J3);
and (next_stage, A3, J3);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

206

module JK_FF (output reg Q, input J, K, clock);
always @ (posedge clock)
case ({J,K})
2'b00: Q<=Q;
2'h01: Q<=0;
2'b10: Q<=1;
2'b11: Q <=-~Q;
endcase
endmodule

module t_Counter_4bit_Synch_ClIr ();
wire [3: 0] A,
wire next_stage;
reg Count_enable, Clear, clock;

Counter_4bit_Synch_ClIr M0 (A, next_stage, Count_enable, Clear, clock);

initial #300 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
Clear = 1;
Count_enable = 0;
#12 Clear = 0;
#20 Count_enable = 1;
#180 Clear = 1;
#190 Clear = 0;
#230 Count_enable = 0;
join
endmodule

Narme 0 50 100 150 200 250

clock L rirrrirrireririererieriereriere i riererereren
Clear [L
Count_enable | T
J0

KO
A0

J1
K1
Al

2
K2
A2

3
K3
A3

A[30]

next_stage

8.13
/I Structural description of design example (Fig. 8-10, 8-12)
module Design_Example_STR

(output [3:0] A,
output E, F,
input Start, clock, reset b

);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

207

Controller_STR MO (clr_A_F, set_E, cIr_E, set_F, incr_A, Start, A[2], A[3], clock, reset_b);
Datapath_ STR M1 (A, E, F, clr_A_F, set_E, cIr_E, set_F, incr_A, clock);
endmodule

module Controller_STR

(output clr_A_F, set_E, cIr_E, set_F, incr_A,
input Start, A2, A3, clock, reset_b

)i

wire GO, G1;
parameter S_idle =2'b00, S_1 =2'b01, S_2 = 2'b11;
wire wl, w2, w3;

not (GO_b, GO);

not (G1_b, G1);

buf (incr_A, w2);

buf (set_F, G1);

not (A2_b, A2);

or (D_GO, wi, w2);

and (w1, Start, GO_b);

and (clr_A_F, GO_b, Start);

and (w2, GO, G1_b);

and (set_E, w2, A2);

and (clr_E, w2, A2_b);

and (D_G1, w3, w2);

and (w3, A2, A3);

D_flip_flop_AR MO (GO, D_GO, clock, reset_b);

D_flip_flop_AR M1 (G1, D_G1, clock, reset_b);
endmodule

/I datapath unit

module Datapath_STR

(output [3: O] A,

output E, F,

input clr_A_F, set_E, cIr_E, set_F, incr_A, clock

);

JK_flip_flop_2 MO (E, E_b, set_E, cIr_E, clock);
JK flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
Counter_4 M2 (A, incr_A, clr_A_F, clock);

endmodule

module Counter_4 (output reg [3: 0] A, input incr, clear, clock);
always @ (posedge clock)
if (clear) A <=0;elseif (incr)A<=A+1;
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);
output Q;
input D, CLK, RST;
reg Q;
always @ (posedge CLK, negedge RST)
if (RST ==0) Q <=1'b0;
else Q <=D;
endmodule

module JK flip_flop_2 (Q, Q_not, J, K, CLK);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

208

output Q, Q_not;
input J, K, CLK;
reg Q;

assign Q_not=-~Q
always @ (posedge CLK)
case ({J, K})
2'b00: Q<=Q;
2'h01: Q <=1'b0;
2'h10: Q <=1'b1;
2'b1l: Q <=-~Q;
endcase
endmodule

module t_Design_Example_STR;

reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

wire [1:0] state_ STR = {M0.M0.G1, M0.M0.G0},

Design_Example_STR MO (A, E, F, Start, clock, reset_b);

initial #500 $finish;

initial
begin
reset b =0;
Start = 0;
clock = 0;

#5reset_b =1, Start = 1;
repeat (32)
begin
#5 clock = ~ clock;
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule

The simulation results shown below match Fig. 8.13.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

209
Name 0 50 100 150 20
clock I I O Y Y Y s Y s e e e e e O
reset b L
Start
A2 e)
A3 I
state STR[L:0] | O X 1 (3 X 0) 1
cr AF L1
set E
cr E - - 0 -
set F
incr A — | I
A[3:0] x JoX1)X2K3XaXs5Xe)7X8)XoXafbc)X d X 0
E) |
F 1
8.14 The state code 2'b10 is unused. If the machine enters an unused state, the controller is written with default

assignment to next_state. The default assignment forces the state to S_idle, so the machine recovers from
the condition.

8.15 Modify the test bench to insert a reset event and extend the clock.
/I RTL description of design example (see Fig.8-11)
module Design_Example_RTL (A, E, F, Start, clock, reset_b);

/I Specify ports of the top-level module of the design
/I See block diagram Fig. 8-10

output [3: 0] A;
output E, F
input Start, clock, reset_b;

/I Instantiate controller and datapath units

Controller_RTL MO (set_E, cIr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
Datapath_ RTL M1 (A, E, F, set_E, cIr_E, set_F, cIr_A_F, incr_A, clock);

endmodule

module Controller_RTL (set_E, clr_E, set_F, clr_A_F, incr_A, A2, A3, Start, clock, reset_b);
outputreg set E,clr_E, set F, clr_A_F,incr_A;
input Start, A2, A3, clock, reset_b;
reg [1:0] state, next_state;
parameter S_idle =2'b00, S_1 =2'b01, S_2 =2'b11; // State codes

always @ (posedge clock or negedge reset_b) /I State transitions (edge-sensitive)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

// Code next state logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2, A3) begin /I Next state logic (level-sensitive)
next_state = S_idle;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

210

case (state)
S idle: if (Start) next_state = S_1; else next_state = S_idle;
S 1: if (A2 & A3) next_state = S_2; else next_state = S_1;
S 2: next_state = S_idle;
default: next_state = S_idle;
endcase
end

/l Code output logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2) begin

set E=0; /I default assignments; assign by exception

clr E=0;

set_F =0;

cir_ A_F=0;

incr_A=0;

case (state)
S_idle: if (Start) clr_A_F =1,
S 1: beginincr_ A=1;if (A2) set E=1;elseclr_E=1; end
S 2: set F=1;

endcase

end
endmodule

module Datapath RTL (A, E, F, set_E, clr_E, set_F, cIr_A_F, incr_A, clock);

outputreg [3: 0] A; /I register for counter
output reg E, F; /I flags
input set_E, clr_E, set_F, cIr_A_F, incr_A, clock;

/I Code register transfer operations directly from ASMD chart (Fig. 8-9d)

always @ (posedge clock) begin

if (set_E) E<=1;
if (cIr_E) E <=0;
if (set_F) F<=1,;
if (clr_A_F) begin A<=0; F<=0; end
if (incr_A) A<=A+1;
end
endmodule

module t_Design_Example_RTL;

reg Start, clock, reset_b;
wire [3: 0] A
wire E, F;

/I Instantiate design example
Design_Example_RTL MO (A, E, F, Start, clock, reset_b);
/I Describe stimulus waveforms

initial #500 $finish; // Stopwatch

initial fork
#25 reset_b = 0; Il Test for recovery from reset on-the-fly.
#27 reset_b = 1;
join
initial
begin
reset b =0;
Start = 0;
clock = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

211

#5 reset_b =1, Start = 1;

llrepeat (32)

repeat (38) /I Modify for test of reset_b on-the-fly

begin
#5 clock = ~ clock; /I Clock generator
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);

endmodule
Name |0, % % 2 |0 |20
Default
dok LTl L rliririririririririririririririre
reset b | N
Start (-
A2 I ! L N
A3 I I
statef1:0] | 0 X 1 C S0} 1 (s o) 1
drAF |1 1
set E [1
darE |1 L1 ! I N
set_F
incr A |1 LI I
A[3:0]
E
F

8.16 RTL notation:
s0: (initial state) If start = 0 go back to state sO, If (start = 1) then BR «— multiplicand, AR «— multiplier,
PR « 0, gotosl.

s1: (check AR for Zero) Zero = 1 if AR = 0, if (Zero = 1) then go back to sO (done) If (Zero = 0) then go

tosl, PR« PR +BR, AR« AR-1.
The internal architecture of the datapath consists of a double-width register to hold the product (PR), a
register to hold the multiplier (AR), a register to hold the multiplicand (BR), a double-width parallel adder,
and single-width parallel adder. The single-width adder is used to implement the operation of decrementing
the multiplier unit. Adding a word consisting entirely of 1s to the multiplier accomplishes the 2's
complement subtraction of 1 from the multiplier. Figure 8.16 (a) below shows the ASMD chart, block
diagram, and controller of the circuit. Figure 8.16 (b) shows the internal architecture of the datapath.
Figure 8.16 (c) shows the results of simulating the circuit.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

212

data_AR data_BR

AR <=data_A !
BR <=data_B @
PR <=0 \ 16 16

1 Zero
N rl
Datapath
L4 Ld_regs AR
PR<=PR +BR sl " (TT 11 =111
AR<=AR-1 Add_decr BR

Controller
T~ 3 T -111

start ——

1 PR
(CAdd_decr) 1 done «— [T -11[]

'y

reeth__ %

clock

PR
Note: Form Zero as the output of an OR gate whose inputs
are the bits of the register AR.

Controller Add_decr

_|> s0=s1"
Zero done

Start

clock —]
reset_b

D_Ld_regs

(a) ASMD chart, block diagram, and controller

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

213
| | Add_decr —k\lf‘ﬂ
16 16
data_AR =7 L
= + Note: all registers h tive-l \1 ‘0'
ote: all registers have active-low
asynchron(?us reset Ld—rEQS my
1\32 16
PR N 2 AR
LTIl T TP TIIl~TT1] LTI -TT{TTIl~TT1]
32 16
16 3
[, Mux Ld_regs
32 +
O A
A mux &4— Add_decr 16
Al 1s
(b) Datapath
0 40 80 120 160 200
Name |
e e O e
reset_b 4 I_l
clock
start |
Ld_regs '_l |_| |_|
Add_decr |
zero |

state I I L | L

data_AR[7:0] ® X 3 X 4
data_BR[7:0] @ X 9
B

AR[7:0] 0

BR[7:0]

done |_|

Pris) 0 (2o} o) sof o) CawoD | of of ssf orf s | o

(c) Simulation results

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

214

module Prob_8_16 STR (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b

Controller_P8_16 MO (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_16 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter sO =1'b0, s1 = 1'b1;

reg state, next_state;

assign done = (state == s0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin

Ld regs =0;

Add_decr = 0;

case (state)

s0: if (start) begin Ld_regs = 1; next_state = s1; end

sl: if (zero) next_state = sO; else begin next_state = s1; Add_decr = 1; end
default: next_state = s0;

endcase

end

endmodule

module Register_32 (output [31: 0] data_out, input [31: 0] data_in, input clock, reset_b);
Register_8 M3 (data_out [31: 24], data_in [31: 24], clock, reset_b);

Register_8 M2 (data_out [23: 16], data_in [23: 16], clock, reset_b);

Register_8 M1 (data_out [15: 8], data_in [15: 8], clock, reset_b);

Register_8 MO (data_out [7: 0] , data_in [7: 0], clock, reset_b);

endmodule

module Register_16 (output [15: 0] data_out, input [15: 0] data_in, input clock, reset_b);
Register_8 M1 (data_out [15: 8] , data_in [15: 8], clock, reset_b);

Register_8 MO (data_out [7: 0] , data_in [7: 0], clock, reset_b);

endmodule

module Register_8 (output [7: 0] data_out, input [7: 0] data_in, input clock, reset_b);
D_flop M7 (data_out[7] data_in[7], clock, reset_b);

D_flop M6 (data_out[6] data_in[6], clock, reset_b);

D_flop M5 (data_out[5] data_in[5], clock, reset_b);

D_flop M4 (data_out[4] data_in[4], clock, reset_b);

D_flop M3 (data_out[3] data_in[3], clock, reset_b);

D_flop M2 (data_out[2] data_in[2], clock, reset_b);

D_flop M1 (data_out[1] data_in[1], clock, reset_b);

D_flop MO (data_out[0] data_in[0], clock, reset_b);

endmodule

module Adder_32 (output c_out, output [31: 0] sum, input [31: 0] a, b);
assign {c_out, sum}=a + b;
endmodule

module Adder_16 (output c_out, output [15: 0] sum, input [15: 0] a, b);

assign {c_out, sum}=a + b;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

215

module D_flop (output g, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)

if (Ireset_b) q <= 0; else q <= data;

endmodule

module Datapath_P8 16 (
output reg [15: 0] PR, output zero,
input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b

reg [7: 0] AR, BR;
assign zero=~(| AR);

always @ (posedge clock, negedge reset_b)

if (Ireset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin

if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <= 0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end

end

endmodule

/] Test plan — Verify;

/I Power-up reset

/I Data is loaded correctly

/I Control signals assert correctly
/I Status signals assert correctly
/I start is ignored while multiplying
/I Multiplication is correct

/I Recovery from reset on-the-fly

module t Prob P8 16;

wire done;

wire [15: 0] PR;

reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

Prob_8 16 _STR MO (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_b=0;
#12 reset_b
#40 reset_|
#42 reset_|
#90 reset_|
#92 reset_|
join

PRROR

T OTOTUT

initial fork
#20 start = 1;
#30 start = 0;
#40 start = 1;
#50 start = 0;
#120 start = 1;
#120 start = 0;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

216

initial fork
data_AR = 8'd5; /I AR >0
data_BR = 8'd20;

#80 data_AR = 8'd3;
#80 data_BR = 8'd9;

#100 data_AR = 8'd4;
#100 data_BR = 8'd9;
join

endmodule

8.17 (2"-1)(2"-1)<(@2"-1)forn>1

8.18 (a) The maximum product size is 32 bits available in registers A and Q.
(b) P counter must have 5 bits to load 16 (binary 10000) initially.
(c) Z (zero) detection is generated with a 5-input NOR gate.

8.19
Multiplicand B = 11011, = 2749

Multiplier Q =10111, =23y,
Product: CAQ =621,

C A Q P

Multiplier in Q 0 00000 10111 101
Q0=1;add B 11011

First partial product 0 11011 10111 100
Shift right CAQ 0 01101 11011
Q0=1;addB 11011

Second partial product 1 01000 11011 011
Shift right CAQ 0 10100 01101
Q0=1;addB 11011

Third partial product 1 01111 01101 010
Shift right CAQ 0 10111 10110

Shift right CAQ 0 01011 11011

Fourth partial product 0 01011 11011 001
Q0=1;addB 11011

Fifth partial product 1 00110 11011 000
Shift right CAQ 0 10011 01101

Final product in AQ:
AQ = 10011 01101 =621y

8.20 S idle =1tns
The loop between S_add and S_shift takes 2nt ns)
Total time to multiply: (2n + 1)t

8.21

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

217

State codes: G, G,
S_idle 0 0
S_add 0 1
S_shiftl 0
unused 0 0
0 — o
1 — 1 G,
Mux_1 D —

Zero' — 2 Start
> c I Load regs
0 3

Q[0]
_— 9 1
a - Add_regs

2 x 4 Decoder
2

—— Shift_regs

3 —

Start —{ o 1 S
0 — ¢ G,
Mux_2 D —
0 — 2
0 — s > C
clock
reset_b I

8.22 Note that the machine described by Fig. P8.22 requires four states, but the machine described byFig. 8.15
(b) requires only three. Also, observe that the sample simulation results show a case where the carry bit
regsiter, C, is needed to support the addition operation. The datapath is 8 bits wide.

module Prob_8 22 # (parameter m_size = 9)

(

output [2*m_size -1: 0] Product,

output Ready,

input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

)

wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire QO, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit MO (A, Q, QO, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);

Control_Unit M1 (Ready, Decr_P, Load_regs, Add_regs, Shift_regs, Start, Q0, Zero, clock, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

218

module Datapath_Unit # (parameter m_size =9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,

output QO, Zero,

input [m_size -1: 0] Multiplicand, Multiplier,

input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b
)i
reg C;

reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

assign QO = Q[O];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin

B<=0;,C<=0;
A<=0;
Q<=0;
P <= m_size;
end
else begin
if (Load_regs) begin
A<=0;
C<=0;
Q <= Multiplier;
B <= Multiplicand;
P <= m_size;
end

if (Decr_P) P <=P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q} >>1;
end
endmodule

module Control_Unit (

output Ready, Decr_P, output reg Load_regs, Add_regs, Shift_regs, input Start, QO, Zero, clock,
reset b
)i

reg [1: 0] state, next_state;

parameter S _idle = 2'b00, S_loaded = 2'b01, S_sum = 2'b10, S_shifted = 2'b11;

assign Ready = (state == S_idle);

assign Decr_P = (state == S_loaded);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, QO, Zero) begin
next_state = S_idle;

Load_regs = 0;
Add_regs = 0;
Shift_regs = 0;

case (state)
S_idle:if (Start == 0) next_state = S_idle; else begin next_state = S_loaded; Load_regs = 1; end
S_loaded: if (Q0) begin next_state = S_sum; Add_regs = 1; end
else begin next_state = S_shifted; Shift_regs = 1; end
S sum: begin next_state = S_shifted; Shift_regs = 1; end
S_shifted: if (Zero) next_state = S_idle; else next_state = S_loaded;

endcase

end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

219

modulet Prob_8 22 ();

parameter m_size = 9; /' Width of datapath
wire [2*m_size - 1: 0] Product;

wire Ready;

reg [m_size - 1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8 22 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_ b =0;
#3 reset_b =1;
join

initial begin #5 Start = 1; end
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (negedge Ready) begin
Error = (Exp_Value " Product) ;
end

initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (64) #10 begin Multiplier = Multiplier + 1;

repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end

end

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

220

76811 76861 76911 76961 77011

Name

clock
reset_b
Ready 1

Start

Load_regs 1

Add_regs 1

Shift_regs I 1 | I I I A B U S S
Decr_P
Q0
Zero
state[1:0]
P[3:0]
B[8:0] X
c
AB:0] | X o0 X X oob X X 119 K osc)N o4 K o028 Y o X oo8 X ooa X 000
Q[8:0] X 003 X 101 X o080 X 140 X o0a0 N 050)\ 128 X 194 X oa K X o003
Productfi7:0] | X 3 S X 9600 __ X {72000 Y 36000) 18000 Y 9000 X 4500 Y 2250) X 3

Multiplicand[8:0] | X [T X 376
Multiplier[8:0]

C 6
Productfi7:0] | K X3 N X 900 \ X X 72000) 36000 X 18000 \ o0 X 4500 K 2250 X 3

Ready 1 1
Exp_Value 2244 X 2250)
Error

8.23 As shown in Fig. P8.23 the machine asserts Load_regs in state S_load. This will cause the machine to

operate incorrectly. Once Load_regs is removed from S_load the machine operates correctly. The state
S_load is a wasted state. Its removal leads to the same machine as dhown in Fig. P8.15b.

module Prob_8_23 # (parameter m_size = 9)
(

output [2*m_size -1: 0] Product,

output Ready,

input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

)

wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire QO, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit MO (A, Q, QO, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);

Control_Unit M1 (Ready, Decr_P, Shift_regs, Add_regs, Load_regs, Start, Q0, Zero, clock, reset_b);
endmodule

module Datapath_Unit # (parameter m_size =9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,

output QO, Zero,

input [m_size -1: O] Multiplicand, Multiplier,

input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b
);
reg C;

reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

221

assign QO = Q[O];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin
A<=0;
C<=0;
Q<=0;
B <=0;
P <= m_size;
end
else begin
if (Load_regs) begin
A<=0;
C<=0;
Q <= Multiplier;
B <= Multiplicand;
P <= m_size;
end
if (Decr_P)P <=P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q} >>1;
end
endmodule

module Control_Unit (

output Ready, Decr_P, Shift_regs, output reg Add_regs, Load_regs, input Start, QO, Zero, clock,
reset_b
)

reg [1: 0] state, next_state;

parameter S_idle = 2'b00, S_load = 2'b01, S_decr = 2'b10, S_shift = 2'b11;

assign Ready = (state == S_idle);
assign Shift_regs = (state == S_shift);
assign Decr_P = (state == S_decr);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, QO, Zero) begin
next_state = S_idle;
Load_regs = 0;
Add_regs = 0;
case (state)
S_idle:if (Start == 0) next_state = S_idle; else begin next_state = S_load; Load_regs = 1; end
S load: begin next_state = S_decr; end
S_decr: begin next_state = S_shift; if (Q0) Add_regs = 1; end
S_shift: if (Zero) next_state = S_idle; else next_state = S_load;
endcase
end
endmodule

module t_Prob_8 23 ();

parameter m_size = 9; // Width of datapath
wire [2*m_size - 1: 0] Product;

wire Ready;

reg [m_size - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

222

Prob_8 23 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

reset b=1;

#2 reset_ b =0;
#3 reset_b =1;

join

initial begin #5 Start = 1; end

always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection

end

always @ (negedge Ready) begin
Error = (Exp_Value " Product) ;

end

initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (64) #10 begin Multiplier = Multiplier + 1;

repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end

end

endmodule

21403 21433 21463 21493 21523 21553

Name S ST T ST ST ST

reset_b
Ready
Start
Load_regs
Add_regs
Shift_regs
Decr P 1 1 1 1 1 |
Q
Zero ——
state[1:0]
P[3:0] 5
B[8:0] 04c
C

Al80]
Q[8:0]
Product[17:0]

clock (—r— 4’00+ e red
1
1

]
]
]
]
]
]

-
;
]
:
]
i
iy
-
]
.
]
:
i
-
]
i
]
.
iy
}
]
:
gy
i
iy
.
]
:
iy
:
L
:

001
060
608

130 X 08 X o002

LaL L

2432 X 1216

Multiplicand[8:0]
Multiplier[8:0]
Product[17:0]

7] ek
g8
g8
g

4864 X 2432 X 1216 X 608 X 304

7
(@) 2
Ready
Exp_Value 150 X ::)

Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

223

8.24

module Prob_8_24 # (parameter dp_width = 5)

(
output [2*dp_width - 1: 0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, QO;

Controller MO (
Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, QO,
clock, reset_b

);

Datapath M1(Product, QO, Zero,Multiplicand, Multiplier,
Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);
endmodule

module Controller (

output Ready,

output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, QO, clock, reset_b

)i
parameter S idle= 3'b001, /I one-hot code
S_add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, QO, Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr_P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S _idle:if (Start) begin next_state = S_add; Load_regs = 1; end
S_add:begin next_state = S_shift; Decr_P = 1, if (Q0) Add_regs = 1; end
S_shift: begin
Shift_regs = 1,
if (Zero) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

224

module Datapath #(parameter dp_width = 5, BC_size = 3) (

output [2*dp_width - 1: 0] Product, output QO, output Zero,

input [dp_width - 1: 0] Multiplicand, Multiplier,

input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);

/I Default configuration: 5-bit datapath
reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size - 1:0] P; / Bit counter

assign QO = Q[O0];
assign Zero = (P ==0); /I Counter is zero
assign Product = {C, A, Q};
always @ (posedge clock, negedge reset_b)
if (reset_b ==0) begin /I Added to this solution, but
P <= dp_width; /I not really necessary since Load_regs
B<=0; / initializes the datapath
C<=0;
A<=0;
Q<=0
end
else begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q}>>1;
if (Decr_P)P <=P -1;
end
endmodule

modulet_Prob_8 24;

parameter dp_width = 5; /' Width of datapath
wire [2*dp_width-1:0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8_ 24 MO(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_ b =0;
#3 reset_ b =1;
join

always @ (negedge Start) begin
Exp_Value = Multiplier * Multiplicand;
I/Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (posedge Ready) begin
1 Error <= (Exp_Value » Product) ;
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

225

initial begin
#5 Multiplicand = 0;
Multiplier = 0;

repeat (32) #10 begin
Start = 1;
#10 Start = 0;
repeat (32) begin
Start=1;
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule

Name 45420

clock - rrrrrreerererreererrrreer e r e reerra

reset_b

Start 1 1
Load_regs 1 1
Add_regs I

Shift_regs 1 J 1 I L

Decr_P 1 I 1 I 1 I 1 I 1] 1 [
Qo !

Zero 1 -
P[2:0] 1 X 0 X5 X 4 X 3 X 2 X 1 X 0 |

B[4:0] 19 X 1a X 1b
c | —
A[4:0] 18 9 X 0 X 26 X 13 X 7 X 19 X 9 X 0

Q[4:0] 18 0c X 06 X 03 X 01 X 10 X 18 X 0c |

/< o<

Multiplicand[4:0] 25 X (26) X 27
Multiplier[4:0] (12)

Product[9:0] 600 X 300 X 12 X 6 X 3 X 835 f 417 X 225 X 624 312 X 12 |
Ready 1 J 1

Exp_Value 300 X (312) X 324
Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

226
8.25 (a)
Ready Multiplicand Multiplier
—T Datapath
Enoy — A<=0
Load_regs C<=0
Controller Shift_regs LI B <= Multiplicand
Start — Add_regs []0 I— Q <= Multiplier
P <= m_size
Decr_P _
_| (Jc[JP /
Load_regs
£ reset clock ; _l P <=P-1
1 Product S add
Zero Decr_P
Q[0]
Register B (Multiplicand) Register P (Counter)
1]1)]0j1)0]1|1]|1 1{0j0]|0
7 0
8
®
16 15 8 8 7 0
S_shift
olfofofjfofofofojojojofoj1j0j1|1]1 Shift_regs
9
c Register A (Sum) Register Q (Multiplier) l\\
{C.AQ}<={C,AQ}>>1

(b)

/I The multiplier of Fig. 8.15 is modified to detect whether the multiplier or multiplicand are initially zero,
/I and to detect whether the multiplier becomes zero before the entire multiplier has been applied

/ to the multiplicand. Signal empty is generated by the datapath unit and used by the

/I controller. Note that the bits of the product must be selected according to the stage at which

I/l termination occurs. The test for the condition of an empty multiplier is hardwired here for

/I dp_width = 5 because the range bounds of a vector must be defined by integer constants.

/I This prevents development of a fully parameterized model.

/I Note: the test bench has been modified.

module Prob_8 25 #(parameter dp_width = 5)

(
output [2*dp_width - 1: 0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b
).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Empty, Zero, QO;
Controller MO (
Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Empty, Zero, QO,
clock, reset_b

)

Datapath M1(Product, QO0, Empty, Zero,Multiplicand, Multiplier,
Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

227

module Controller (

output Ready,

output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Empty, Zero, QO, clock, reset_b

);
parameter BC_size = 3; /I Size of bit counter
parameter S idle= 3'b001, I/l one-hot code
S_add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Empty, Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr_P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle: if (Start) begin next_state = S_add; Load_regs = 1; end
S _add: begin next_state = S_shift; Decr_P = 1; if (Q0) Add_regs = 1; end
S_shift: begin
Shift_regs = 1;
if (Zero) next_state = S_idle;
else if (Empty) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width =5, BC_size = 3) (

output reg [2*dp_width - 1: 0] Product, output QO, output Empty, output Zero,
input [dp_width - 1: 0] Multiplicand, Multiplier,

input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
/I Default configuration: 5-bit datapath
parameter S idle= 3'b001, I/l one-hot code
S_add= 3010,
S_shift = 3'b100;
reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size-1:0] P; // Bit counter

wire [2*dp_width -1: O] Internal_Product = {C, A, Q};

assign Q0 = Q[0];
assign Zero = (P == 0); /[Bit counter is zero

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) begin /I Added to this solution, but
P <= dp_width; // not really necessary since Load_regs
B <=0; I/ initializes the datapath
C<=0;
A<=0;
Q<=0

end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

228

else begin
if (Load_regs) begin

P <= dp_width;

A<=0;

C<=0;

B <= Multiplicand;

Q <= Multiplier;
end

if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >> 1,
if (Decr_P) P <=P -1;
end
/Il Status signals
reg Empty_multiplier;
wire Empty_multiplicand = (Multiplicand == 0);
assign Empty = Empty_multiplicand || Empty_multiplier;

always @ (P, Internal_Product) begin// Note: hardwired for dp_width 5

Product = 0;
case (P) /I Examine multiplier bits
0: Product = Internal_Product;
1: Product = Internal_Product [2*dp_width -1: 1];
2: Product = Internal_Product [2*dp_width -1: 2];
3: Product = Internal_Product [2*dp_width -1: 3];
4: Product = Internal_Product [2*dp_width -1: 4];
5: Product = 0;
endcase
end
always @ (P, Q) begin /I Note: hardwired for dp_width 5
Empty_multiplier = 0;
case (P)
0: Empty_multiplier = 1;
1: if (Q[1] == 0) Empty_multiplier = 1;
2: if (Q[2: 1] == 0) Empty_multiplier = 1,
3: if (Q[3: 1] == 0) Empty_multiplier = 1;
4: if (Q[4: 1] == 0) Empty_multiplier = 1;
5. if (Q[5: 1] == 0) Empty_multiplier = 1;
default: Empty_multiplier = 1'bx;
endcase
end
endmodule

module t Prob_8 25;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width - 1: 0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8 25 MO(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_b =0;
#3 reset_b=1;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

229

always @ (negedge Start) begin
Exp_Value = Multiplier * Multiplicand;
//Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (posedge Ready) begin
1 Error <= (Exp_Value ~ Product) ;
end

initial begin
#5 Multiplicand = 0;
Multiplier = 0;

repeat (32) #10 begin
Start=1;
#10 Start = 0;
repeat (32) begin
Start = 1;
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule

(c) Test plan: Exhaustively test all combinations of multiplier and multiplicand, using automatic error
checking. Verify that early termination is implemented. Sample of simulation results is shown below.

Narme 6902 | 6992 7082 12

reset_b
clock Uy L ruuen
Start 1 1
state[2:0] 1 () 1 (2)4) 1
Early termination
Empty_multiplicand I
Empty_multiplier L
Empty '
Clr CAQ
Load _regs I
Decr_P 1
Add_regs 1
shift_regs 1
Qo 1
P[4:0] 4 4 XsX 4 4]
X
LK

Zero

B[4:0] 30
A[4:0] 15
c
Q[4:0] 0

Multiplicand[4:0] 30 X 31 X 0 X 1
Multiplier[4:0] (2) X X 2

Product[9:0] 30 XXX —{ 3) X 0 I
Ready L

Exp_Value 30 X 31 X 0 X 2
Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

230

8.26

A<=0

C<=0

B <= Multiplicand
Q <= Multiplier

P <=m_size

P<=P-1

S_add_shift
/ Decr_P

l {CAQ<={A+B,Q}>>1

1 1

module Prob_8_26 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width = 5; /I Set to width of datapath

output [2*dp_width - 1: 0] Product;

output Ready;

input [dp_width - 1: 0] Multiplicand, Multiplier;

input Start, clock, reset_b;

parameter BC_size = 3; /I Size of bit counter

parameter S_idle= 2'b01, /I one-hot code
S_add_shift= 2'b10;

reg [2:0] state, next_state;

reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath

reg C;

reg [BC_size -1: 0] P;

reg Load_regs, Decr_P, Add_shift, Shift;

assign Product = {C, A, Q};

wire Zero = (P == 0); /I counter is zero

wire Ready = (state == S_idle); // controller status

/I control unit
always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr_P =0;
Add_shift = 0;
Shift = 0;
case (state)
S _idle: begin if (Start) next_state = S_add_shift; Load_regs = 1; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

231

S_add_shift: begin
Decr_P =1;
if (Zero) next_state = S_idle;
else begin
next_state =S_add_shift;
if (Q[0]) Add_shift = 1; else Shift = 1;

end
end
default: next_state = S_idle;
endcase
end

// datapath unit
always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Decr_P) P <=P -1;
if (Add_shift) {C, A, Q} <={C, A+B, Q}>> 1,
if (Shift) {C, A, Q} <={C, A, Q}>> 1;
end
endmodule

module t_Prob_8 26;

parameter dp_width = 5; /' Width of datapath
wire [2*dp_width-1:0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

wire Error;

Prob_8_26 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #70000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_b =0;
#3 reset_b=1;
join

initial begin #5 Start = 1; end
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

end
assign Error = Ready & (Exp_Value ”~ Product);
initial begin

#5 Multiplicand = 0;

Multiplier = O;

repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

232

Sample of simulation results.

Name 2?98? 24‘104‘2 21‘110‘2 2?162
clock [S e e Y I Y Y Y I O
reset b

Start
Load_regs 1 1 1
Shift 1 I [
Add_shift g I m N 1 —
Decr P L L L

P[2:0]
B[4:0]
C

A[4:0]
Q[4:0]

Multiplicand[4:0] 22 X (23) X 24 X 25
Multiplier[4:0] &)

Product[9:0]
Exp_Value
Error

8.27 (a)
/] Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width-1:0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset b=1;
#2 reset_ b =0;
#3 reset_b =1;
join
initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = 0
repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
Start = 0;
end

/I Error Checker

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

233

reg Error;

reg [2*dp_width -1: O] Exp_Value;

always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand + 1; /I Inject error to verify detection
Error = (Exp_Value * Product);
end
endmodule

module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width = 5; /I Set to width of datapath
output [2*dp_width - 1: 0] Product;
output Ready;
input [dp_width - 1: 0] Multiplicand, Multiplier;
input Start, clock, reset_b;
parameter BC_size = 3; /I Size of bit counter
parameter S idle = 3'b001, // one-hot code
S add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state;
reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size - 1:0] P;
reg Load_regs, Decr_P, Add_regs, Shift_regs;

Il Miscellaneous combinational logic

assign Product = {C, A, Q};
wire Zero = (P == 0); /I counter is zero
wire Ready = (state == S_idle); I/ controller status

/I control unit

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr_P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle:begin if (Start) next_state = S_add; Load_regs = 1; end
S_add:begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
S_shift: begin Shift_regs = 1; if (Zero) next_state = S_idle;
else next_state = S_add; end
default: next_state = S_idle;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

234

/I datapath unit

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q} >>1;
if (Decr_P)P <=P -1;
end
endmodule

Sample of simulation results:

99539 99579 99619 99659
Narne | | | I | | | | | |

clock arTQ e rrrrrirrrrrrrma
reset_b

Start
state[2:0] 4 X1 2 JCa Y2 X a X2)4 Y2 X a2)a)1 X2 Xaf
Load_regs 1 1

Decr P I 1 I 1 I 1 I 1 I 1 —
Add_regs 1 I 1 I 1 I 1 — 1_
Shift_regs 1

T

Zero U 1 | ——
P2:0] D O G ST {5 Xa

B[4:0] 8 X 09 __0a
A[4:0] [oe X 07 X 00 X 09 X 04 {02 oo \ 05 X 0e X 07 X 10 X o8 \ 00 \)
c
Q[4:0] 11 X 08 X 1d X le X of X 17 X Ob X o5 { 1d |}

=
<
o

Multiplicand[4:0] 8 X (@) {10
Multiplier[4:0] C 29D
Product[9:0] [465 \ 232 \ 20 (317 158 X 79 X 367 S 183 Y 471 \ 235 \ 523 X261 % 29))

Ready

Exp_Value[9:0] 203 X 232 X D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

235

(b) In this part the controller is described by Fig. 8.18. The test bench includes probes to display the
state of the controller.

/I Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width - 1: 0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset b=1;
#2 reset_ b =0;
#3 reset_b =1;
join
initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
Start = 0;
end

/I Error Checker
reg Error;
reg [2*dp_width -1: O] Exp_Value;
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand + 1; /I Inject error to verify detection
Error = (Exp_Value ” Product);
end

wire [2: 0] state = {M0.G2, M0.G1, M0.GO0};
endmodule

module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width= 5; /I Set to width of datapath
output [2*dp_width - 1: 0] Product;

output Ready;

input [dp_width - 1: 0] Multiplicand, Multiplier;

input Start, clock, reset_b;

parameter BC_size = 3; /I Size of bit counter

reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath

reg C;

reg [BC_size -1:0] P;

wire Load_regs, Decr_P, Add_regs, Shift_regs;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

236

/I Status signals

assign Product = {C, A, Q};
wire Zero = (P ==0); /I counter is zero
wire Q0 = QIo];

// One-Hot Control unit (See Fig. 8.18)
DFF_S MO (GO, DO, clock, Set);
DFF M1 (G1, D1, clock, reset_b);
DFF M2 (G2, G1, clock, reset_b);
or (DO, wl, w2);
and (w1, GO, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, GO);
and (w4, Zero_b, G2);

and (Load_regs, GO, Start);
and (Add_regs, QO0, G1);
assign Ready = GO;
assign Decr_P = G1;
assign Shift_regs = G2;
not (Set, reset_b);

/I datapath unit

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q}>>1;
if (Decr_P) P <=P -1,
end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)
if (Set) Q <=1'b1; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b ==0) Q <= 1'b0; else Q<= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

237
Sample of simulation results:

ts:
Narme 40699 | 40739 | 40779 | 40819
clock e e e e e
reset_b
Start
state[2:0] 1 X2 Y2 2 4 X2 X4 X2 a2)41 X2 Xa
Load regs i
Decr_P I | | | | 1
Add regs |] |]
Shift_regs I | | | | | | | | | | 1
P[2:0] o X5 X 4 X 3 X 2 Y1)} o Y5 Xa
Zero I
B[4:0] 1) 2 13
A[4:0] | 06 00 X122 Yoo Y { o Yo o0
c
Q[4:0] | 0c X o0 X o ¥ o ¥ 10 X1 o |
Multiplicand[4:0] | 17 C 18> 19
Multiplier[4:0] (@7 D)
Product[9:0] | 204) 2 X 6 X 3 X 579 X 280 X\ 85) 432 216 2 |
Ready i
Exp_Value[9:0] [204 C218)

8.28
/] Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width-1:0] Product;

wire Ready;

reg [dp_width - 1: O] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_ b =0;
#3 reset_b =1;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

238

initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge MO.Ready) #5 Multiplicand = Multiplicand + 1;
end
Start = 0;
end

/I Error Checker
reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

//Exp_Value = Multiplier * Multiplicand + 1; /I Inject error to verify detection
Error = (Exp_Value " Product);
end
wire [2: O] state = {M0.M0.G2, M0.M0.G1, M0.M0.GO0}; // Watch state
endmodule

module Sequential_Binary_Multiplier
#(parameter dp_width = 5)

(
output [2*dp_width -1: 0] Product,
output Ready,
input [dp_width -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b
).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, QO;

Controller MO (Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, QO, clock, reset_b);
Datapath M1(Product, QO, Zero,Multiplicand, Multiplier, Start, Load_regs, Decr_P, Add_regs,
Shift_regs, clock, reset_b);
endmodule

module Controller (
output Ready,
output Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, QO, clock, reset_b
);
/I One-Hot Control unit (See Fig. 8.18)
DFF_S MO0 (GO, DO, clock, Set);
DFF M1 (G1, D1, clock, reset_b);
DFF M2 (G2, G1, clock, reset_b);
or (DO, wl, w2);
and (w1, GO, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, GO);
and (w4, Zero_b, G2);

and (Load_regs, GO, Start);

and (Add_regs, QO0, G1);

assign Ready = GO;

assign Decr_P = G1,

assign Shift_regs = G2;

not (Set, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

239

module Datapath #(parameter dp_width = 5, BC_size = 3) (

output [2*dp_width - 1: 0] Product, output QO, output Zero,

input [dp_width - 1: 0] Multiplicand, Multiplier,

input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

)i
reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size - 1:0] P;
assign Product = {C, A, Q};
// Status signals
assign Zero = (P == 0); /I counter is zero
assign Q0 = QIO0];

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q}>>1;
if (Decr_P) P <=P -1;
end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)
if (Set) Q <=1'bl; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) Q <= 1'b0; else Q<= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

240
58738 58778 58818 58858
Narne | | | | | | | | | | | | | | |
clock T rrrerreereerere e rer e
reset_b
Start

state[2:0] 1 X2 Xa 2 X4 {2 X4 X2)4 X2 (a1 X 2)a)

Load_regs u

Decr_P |] |] '—‘_,
Add_regs N S
Shift_regs i | ' I M1
P[2:0] o s X 4 Y 3 Y 2 X1 X o X5 fa
Qo 1 J L |
Zero I
B[4:0] 15 X 16 17

Cc

A[4:0] X oo X oo X16 X' oo X o5 X 02 Yot 17 X oo X oo X |
Q[4:0] X 05 X 11 X 08 X 14 X 1a X od {16 X 11 |
Multiplicand[4:0] | 21 X (22) 23
Multiplier[4:0] (1)

Product[9:0] (X 357 X 17 X 721 X 360 180 X 90 X 45 X 749 {374 17 X}

Ready L
Exp Value[9:0] | X 357 D)

8.29 (@)

Inputs: xyEF
00-- 01--

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

241

(b) DSo = Xy'Sp + S3 + S5 +S7
DS; = xSy
DS, = leSO +S;
DSg = FSZ
DS4 = F|82
DS5 = E'S5
DSG = E'S4
DS7 = SG
(©
Present Next
state Inputs state
Output| G,G,G, | xy E F | G,G,G,
SO 000 00X x 000
SO 000 1Xx XX 001
SO 000 01xx 010

S1 001 X X X X 010

S2
S2 0

o

S3 011 X X X X 0

o
o

x
x
x
o
=
=
o

S4 10
S4 10

S5 101 X X X X 000

S6 110 X X X X 110

S7 111 X X X X 000

(d)

DG

b Q
1 Qb

G, | — L
o
1o

WD W WYY DD
8PS S

DG

Clock

Reset
DGl = F'Sz + 54 + Se
DG, =X'ySo+ S+ FS; + E'Sy + S
DG3; =xSy + FS, + ES, + S

(€)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

242

Present Next Inout
state state con dFi)tions Mux1 Mux2 Mux3
Gl GZ GG Gl GZ GG
000 000 X'y’
000 001 X 0 X'y X
000 010 X'y
001 010 None 0 1 0
010 100 F F F F
010 011 F’
011 000 None 0 0 0
100 110 E’
100 101 E’ 1 E' E
101 000 None 0 0 0
110 110 None 1 1 1
111 000 None 0 0 0
()
|:
0s2 sl sO
) 1 8x1
F § Mux 5o
— 2
1 6 1 Qo
7 —
=D e
0s2 sl sO S —
y —1 S: I
F 2 8x1 3x8 S
E S Mux oo 1 Decodergj:
5 2 S.—
1 6 Ql — Se—
0 7 | S, —
| ——
X 0s2 sl s0
0 1
F '_g 8x1
E 2 Mux b Q 3
1 '_Z Qo
— —1
Clock
reset_b
(9)
module Controller_8 _29g (input X, Yy, E, F, clock, reset_b);
supplyO GND;
supplyl VCC,;

mux_8x1 M3 (m3, GND, GND, F_bar, GND, VCC, GND, VCC, GND, G3, G2, G1);
mux_8x1 M2 (m2, wl, VCC, F, GND, E_bar, GND, VCC, GND, G3, G2, G1);
mux_8x1 M1 (m1, x, GND, F, GND, E, GND, VCC, GND, G3, G2, G1);

DFF_8 28g DM3 (G3, m3, clock, reset_b);

DFF_8_28g DM2 (G2, m2, clock, reset_b);

DFF_8_28g DM1 (G1, m1, clock, reset_b);

decoder_3x8 MO_D (y0, y1, y2, y3, y4, Y5, ¥6, y7, G3, G2, G1);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

243

and (w1, x_bar, y);

not (F_bar, F);

not (E_bar, E);

not (x_bar, x);
endmodule

/I Test plan: Exercise all paths of the ASM chart

module t_Controller_8 29g ();
reg XY, E, F, clock, reset_b;
Controller_8_29g MO (x, y, E, F, clock, reset_b);
wire [2: 0] state = {M0.G3, M0.G2, M0.G1};

initial #500 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial begin end

initial fork
reset b =0;#2reset b=1;
#0 beginx=1;y=1,E=1;
#80 reset_b = 0; #92 reset_b
#90 beginx=1;y=1;E=1;
#150 reset_b = 0;
#152 reset b =1;
#150 beginx=1;y=1;E=0;F=0;end //Path:S_0,S 1,S 2,S 4,S 5
#200 reset_b = 0;
#202 reset_ b =1;
#190 beginx=1;y=1;E=0;F=0;end //Path:S_0,S 1,S 2,S 4,S 6,S 7
#250 reset_b = 0;
#252 reset b =1;
#240 begin x=0;y=0;E=0;F=0;end //Path:S_0
#290 reset_b =0;
#292 reset b =1;
#280 beginx=0;y=1;E=0;F=0;end //Path:S_0,S 2,S 4,S 6,S 7
#360 reset_b = 0;
#362 reset b =1;
#350 beginx=0;y=1;E=1,F=0;end //Path:S_0,S 2,S 4,S 5
#420 reset_b = 0;
#422 reset b =1;
#410 beginx=0;y=1;E=0;F=1;end //Path:S_0,S 2,S 3

join

endmodule

=1;end //Path:S_0,S 1,S 2,S 34
1

F=0; end

module mux_8x1 (output reg vy, input x0, x1, x2, x3, x4, x5, x6, x7, s2, s1, s0);
always @ (x0, x1, x2, x3, x4, x5, x6, x7, s0, s1, s2)
case ({s2, s1, s0})
3'b000: y = x0;
3'b001: y = x1;
3'b010: y = x2;
3'b011: y = x3;
3'b100: y = x4;
3'b101: y = x5;
3'b110: y = x6;
3'bl11:y =x7;
endcase
endmodule

module DFF_8_28g (output reg g, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b) q <= 1'b0; else q <= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

244

module decoder_3x8 (output reg yo0, y1, y2, y3, y4, y5, y6, y7, input x2, x1, x0);
always @ (x0, x1, x2) begin
{y7.y6,y5,y4,y3,y2,y1, y0} = 8'h0;
case ({x2, x1, x0})
3'b000: y0= 1'b1;
3'b001: y1=1'bl;
3'b010: y2=1'b1;
3'b011: y3= 1'b1;
3'b100: y4= 1'b1;
3'b101: y5= 1'bl;
3'b110: y6=1'b1;
3'b111: y7=1'bl;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

245

Path:S_0,S_1,S 2,S 3and Path: S 0,S 1,5 2,S 4,55

120

Name PR S YO YO TN VO VT SN S N SN SN WO WO W W Y WY WA N YO VAT SN SN ST SN SN TN N N TN TN ST SN ST ST S ST SN T MO SN T T T T W

clock - -7’0’ rerrrrrrr ul
reset b fJ L
X

y
E
F

state20] [0 X_ 1 X2 X 3 X o X 1 X 2 X 3 X 0 X 1t X 2 {4 X 5 Yo

Path: S_0,S_1,S 2,5 4,S.6,S_7

Na‘rrE 12I0 1 1 1 1 1 1 1 1 I 15I0 1 1 1 1 1 1 1 1 I 18I0 1 1 1 1 1 1 1 1 I 2:I-Io 1 1 1 1 1 1 1 1 I 24IO 1 1 1 1 1 1 1
clock

reset_b LI LI LI

X
y -
E |

E

staez0) 4N 5 o Ya)Xo)“ 1 X 2 "4 X 6 YzXoX 1 X 2 X 4 Y6 0

Path: S_0 and Path, S 0,S.2,S 4,5 6,S_7

Narm 24I0 1 1 1 1 1 1 1 1 |27Io 1 1 1 1 1 1 1 1 |30I0 1 1 1 1 1 1 1 1 |33I0 1 1 1 1 1 1 1 1 |36I0 1 1 1 1 1 1 1
clock

reset_b L] LI LI

X

y [

E [

F

state[2:0] | 6 X 7 X 0 2 Xo X2 X4 X6 X7 X o Y 2 XaXo)X 2 ¥4
Path:S 0,S 2,S 4,S 5andpathS 0,S 2,S 3

NarrE 32I4 1 1 1 1 1 1 1 1 |35I4 1 1 1 1 1 1 1 1 |38I4 1 1 1 1 1 1 1 1 |4:LI4 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1
clock b 0 07555 T r 1151 I LI L1 1Lrn
reset_b LI L

X

y

E I | 1

E [

staef2z0] 7 X_ 0o XU 2 Ya)YoX 2 X 4 X 5 Y o Y 2 X3Xo)X_ 2 X 3 X o X 2 X

(h)
module Controller_8_29h (input X, y, E, F, clock, reset_b);
parameter S_0=3'h000, S_1 = 3'b001, S_2 = 3'h010,
S_3=3h011,S 4=3b100,S_5=3b101,S_6=3b110,S 7 =3'blll;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= S_0; else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

246

always @ (state, X, y, E, F) begin
case (state)
S 0: if (X) next_state =S_1;
else next_state= y?S 2:S _0;

S1 next_state =S_2;
S 2: if (F) next_state = S_3; else next_state = S_4;
S 3,S 5,S 7. next state=S _0;
S 4: if (E) next_state = S_5; else next_state = S_6;
S 6: next_state =S_7;
default: next_state =S _0;
endcase
end
endmodule

/I Test plan: Exercise all paths of the ASM chart

module t_Controller_8_29h ();
reg x,Y, E, F, clock, reset_b;

Controller_8_29h MO (x, y, E, F, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin end
initial fork
reset_ b =0;#2reset b=1;

#20 beginx=1,y=1;E=1;F=1;end//Path:S_0,S 1,S 2,S 34
#80 reset_b = 0; #92 reset_b = 1;
#90 beginx=1;y=1;E=1; F=0; end

#150 reset_b =0;
#152 reset_b =1;
#150 beginx=1;y=1;E=0;F=0;end //Path:S_0,S 1,S 2,S 4,S 5
#200 reset_b =0;
#202 reset_b =1;
#190 begin x=1;y=1,E=0;F=0;end //Path:S 0,S 1,S 2,S 4,S 6,S 7
#250 reset_b =0;
#252 reset_b =1;
#240 begin x=0;y=0;E=0;F=0;end //Path:S_0
#290 reset_b =0;
#292 reset_b =1;
#280 beginx=0;y=1;E=0;F=0;end //Path:S 0,S 2,S 4,S 6,S 7
#360 reset_b =0;
#362 reset_b =1;
#350 beginx=0;y=1,E=1,F=0;end //Path:S_0,S_2,S_4,S_5
#420 reset_b =0;
#422 reset_b =1;
#410 beginx=0;y=1,E=0;F=1;end //Path:S_0,S_2,S_3
join
endmodule

Note: Simulation results match those for 8.39g.
8.30 (@ E=1 (b) E=0

8.31 A = 0110, B = 0010, C = 0000.
A*B=1100 A|B=0110 A&&C=0

A+ B =1000 A A B=0100 |A=1
A-B=0100 &A=0 A<B=0
~C=1111 ~IC=1 A>B=1
A & B =0010 AllB=1 Al B=1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

247

8.32
4
N P Mux ﬂ;} hi 4
4 4-bit R1
R2 > + > Counter
T 7| select
S1 S2 1=
KK
select =S,
load=S, +S' S,
count=S"S,)
L
clock
8.33
Assume that the states are encoded one-hotas T, T,, T,
T,. The select lines of the mux are generated as:
s, =T,+T,
=T, +T,
The signal to load R, can be generated by the host
processor or by:
load= T+ T, +T,, T,
8
RO # 0
8
R1 # 1 8 . 8
. 8 Mux || Register m——- R
2 # 2
8
R3 # 3 51 SO
8
e
TO
T, — 4x2
T, — Encoder
T3
load
clock
8.34 (a)

module Datapath_ BEH
#(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count, output reg E, output Zero, input [dp_width -1: O] data,
input Load_regs, Shift_left, Incr_R2, clock, reset_b);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

248

reg [dp_width -1: 0] R1;
reg [R2_width -1: 0] R2;

assign count = R2;

assign Zero = ~(| R1);

always @ (posedge clock) begin
E <= R1[dp_width -1] & Shift_left;
if (Load_regs) begin R1 <= data; R2 <= {R2_width{1'b1}}; end
if (Shift_left) {E, R1} <={E, R1} << 1;
if (Incr_R2) R2 <=R2 + 1;

end

endmodule

/I Test Plan for Datapath Unit:

/I Demonstrate action of Load_regs

/I R1 gets data, R2 gets all ones

/l Demonstrate action of Incr_R2

/l Demonstrate action of Shift_left and detect E

/I Test bench for datapath

module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

()
wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

Datapath_ BEH MO (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset b=1; end
initial fork
data = 8'haa;
Load regs =0;
Incr_R2 =0;
Shift_left = 0;
#10 Load_regs = 1,
#20 Load_regs = 0;
#50 Incr_R2 =1;
#120 Incr_R2 =0;
#90 Shift_left = 1;
#200 Shift_left = 0;
join
endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

249

Rigets data and R2 gets all ones

Name O /60 120 180

clock A%MFW
reset b | 5 whil
increments while RLshifts lef CZeroasserts>
Incr_R2 is asserted
J

Load_regs ——
Incr_R2
Shift_left

lote that E matches previous

Zero '__ \ (ﬂ\value of R1[7]

E |
\

data[7:0]
\ Caa)

\

R1[7:0] XX 1 ll
a1 |
\

|

|

—~

00

R1[6] \
R1[5] \
R1[4] \
R1[3] \
R1[2] \ :
RI[1] \ \

R1[0
Rl M) &8 £ 63 00 63 6
o1z a)a)s) 6

count[3:0]

X
X

— <]

(b) // Control Unit
module Controller_BEH (

output Ready,

outputreg Load_regs,

output Incr_R2, Shift_left,

input Start, Zero, E, clock, reset_b
).

parameter S_idle=0,S 1=1,S 2=2,S 3=3;
reg [1:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
Load_regs = 0;
case (state)
S idle: if (Start) begin Load_regs = 1; next_state = S_1; end
else next_state = S_idle;

S 1: if (Zero) next_state = S_idle; else next_state =S_2;
S 2: next state =S_3;
S 3: if (E) next_state = S_1; else next_state = S_2;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

250

endmodule

/I Test plan for Control Unit

Il Verify that state enters S_idle with reset_b asserted.

/' With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
/I Start is asserted.

/I Verify that Incr_R2 is asserted in S_1.

/I Verify that state returns to S_idle from S_1 if Zero is asserted.
/I Verify that state goes to S_2 if Zero is not asserted.

/I Verify that Shift_left is asserted in S_2.

/I Verify that state goes to S_3 from S_2 unconditionally.

/I Verify that state returns to S_2 from S_3 id E is not asserted.
/I Verify that state goesto S_1 from S_3 if E is asserted.

/I Test bench for Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Incr_R2, Shift_left;
reg Start, Zero, E, clock, reset_b;

Controller_BEH MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
Zero = 1;
E=0;
Start = 0;
#20 Start=1; //Cycle from S idleto S_1
#80 Start = 0;
#70 Zero=0; //S_idletoS_1toS_2to S_3 and cycleto S_2.
#130E=1;//Cycleto S 3toS 1toS 2toS_3
#150 Zero = 1; // Return to S_idle
join
endmodule

GotoS_1andcyleto GotoS 2andcyle GotoS_1andcyleto

S_idle while Zero=1 toS 3whileE=0 S 3while Zero=0 Returnto S_idle

Name 0 0 | 140 210

clock
reset b
Start
Zero

E
state[1:0]
Ready

Load_regs Mr L1
Incr_R2 1 1
Shift_left 1

Ready asserts while Load_regs asserts while Incr_R2 asserts while state =S_1
state =S_idle state=S idle and Start =1

Shift_left asserts while state = S_2

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

251

(c)

/I Integrated system

module Count_Ones_BEH_BEH

(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,

input [dp_width -1: 0] data,

input Start, clock, reset_b

)i
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_BEH MO0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_count_Ones_BEH_BEH ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

Count_Ones_BEH_BEH MO (count, data, Start, clock, reset_b);
initial #700 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1,
#30 Start = 0;
#40 data = 8'b00; // Expect count =0
#250 Start = 1;
#260 Start = 0;
#280 data = 8'hff;
#280 Start = 1;
#290 Start = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

252

Name ‘ 1 |

clock

reset_b il ﬁ
Ready -| (j j]

Start
Load_regs
Incr_R2
Shift_left
Zero

E

I

state[1:0]

data[7:0]
R1[7:0]
R2[3:0]

count[3:0] x_ XX 0o X 1 X 2 X 3 . (4) |

Name

clock

reset_b /\

Ready L (L_I_@ |

Start | 1 J
1

Load_regs M

Incr_R2 [
shift left [|

Zero L 1

E L1 [1 [1 [1 1

state[1:0] | 2 0 0

data[7:0] X ff

RU7:01 X 00 X w X fe X fc) P
R2[3:0] 3 X 4 (0 0 X 1 X 2 X 3
count[3:0] 3 X 4 C0 D 0 X 1 X 2 X 3

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

253

Name 258 318 378 438 498 558

clock wm—u—u

reset_b \
Ready - ’é 1 (B_

Start 1

Load_regs 1

Incr_R2 1 1 1 1 1 1 1 1 1 1
Shift_left 1 1 1 1 1 1 1 1

Zero

E 1 1 1 1 1 1 1 1

state[1:0]

data[7:0]
R1[7:0]
R2[3:0]

count[3:0] :X 0 0 X 1 X 2 X 3 X 4 X 5 X 6 X 7 (@D

(d)

/I One-Hot Control unit

module Controller_BEH_1Hot

(

output Ready,

outputreg Load_regs,

output Incr_R2, Shift_left,

input Start, Zero, E, clock, reset_b
);

parameter S_idle = 4'b001, S_1 = 4'b0010, S_2 = 4'b0100, S_3 = 4'b1000;
reg [3:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
Load_regs = 0;
case (state)
S_idle:if (Start) begin Load_regs = 1; next_state =S_1; end
else next_state = S_idle;
S_1: if (Zero) next_state = S_idle; else next_state = S_2;

S 2. next_state=S 3;
S_3: if (E) next_state = S_1; else next_state = S_2;
endcase
end
endmodule

Note: Test plan, test bench and simulation results are same as (b), but with states numbered with one-hot
codes.

(€)

/I Integrated system with one-hot controller

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

254

module Count_Ones_BEH_1Hot
(parameter dp_width = 8, R2_width = 4)

(

output [R2_width -1: 0] count,

input [dp_width -1: 0] data,

input Start, clock, reset_b

);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_BEH_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

Note: Test plan, test bench and simulation results are same as (c), but with states numbered with one-hot
codes.

8.35 Note: Signal Start is initialized to 0 when the simulation begins. Otherwise, the state of the structural model

will become X at the first clock after the reset condition is deasserted, with Start and Load_Regs having
unknown values. In this condition the structural model cannot operate correctly.

Name

clock I | I | I | I | I | I | I | [1
reset_b U

Start 1
Load_regs
Shift_left
Incr_R2
Zero

Ready |

state[1:0] zX 0 X X
data[7:0] ff
count[3:0] X

module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b);
/I Mux — decoder implementation of control logic

/I controller is structural

I/l datapath is structural

parameter R1_size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output Ready;

input [R1_size -1: 0] data;

input Start, clock, reset_b;

wire Load_regs, Shift_left, Incr_R2, Zero, E;

Controller_STR MO (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

255

module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);

output Ready;

output Load_regs, Shift_left, Incr_R2;
input Start;

input E, Zero;

input clock, reset_b;

supply0 GND;
supplyl PWR;
parameter SO =2'b00, S1 =2'b01, S2 = 2'b10, S3 = 2'b11; // Binary code

wire Load_regs, Shift_left, Incr_R2;
wire GO0, GO_b, D_in0, D_in1, G1, G1_b;
wire Zero_b = ~Zero;

wire E_b=~E;

wire [1:0] select = {G1, GO};
wire [0:3] Decoder_out;

assign Ready = ~Decoder_out[0];

assign Incr_R2 = ~Decoder_out[1];

assign Shift_left = ~Decoder_out[2];

and (Load_regs, Ready, Start);

mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);
mux_4x1_beh Mux_0 (D_inO, Start, GND, PWR, E, select);

D_flip_flop AR_ b M1 (G1, G1_b, D_in1, clock, reset_b);

D_flip_flop_AR_b MO (GO, GO_b, D_in0, clock, reset_b);

decoder_2x4_df M2 (Decoder_out, G1, GO, GND);
endmodule

module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

parameter R1 size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output E, Zero;

input [R1_size -1: 0] data;

input Load_regs, Shift_left, Incr_R2, clock;

wire [R1_size -1: 0] R1;

supply0 Gnd;

supplyl Pwr;

assign Zero = (R1==0);

Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);

D_flip_flop_AR M3 (E, wi, clock, Pwr);

and (wl, R1[R1_size -1], Shift_left);
endmodule

module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
parameter R1_size = 8;
output [R1_size -1: 0] R1;
input [R1_size -1: 0] data;
input SI_0, Shift_left, Load_regs;
input clock, reset_b;
reg [R1_size -1: 0] R1;

always @ (posedge clock, negedge reset_b)
if (reset_b ==0) R1 <=0;
else begin
if (Load_regs) R1 <= data; else
if (Shift_left) R1 <= {R1[R1_size -2:0], SI_0}; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

256

module Counter (R2, Load_regs, Incr_R2, clock, reset_b);

parameter R2_size = 4;

output [R2_size -1: 0] R2;

input Load_regs, Incr_R2;
input clock, reset_b;

reg [R2_size -1: 0] R2;

always @ (posedge clock, negedge reset_b)
if (reset_b ==0) R2 <=0;
else if (Load_regs) R2 <= {R2_size {1'b1}}; // Fill with 1
elseif (Incr_R2==1) R2<=R2 + 1;
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);

output Q;
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST ==0) Q <=1'b0;
else Q <=D;
endmodule

module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST);

output Q, Q_b;
input D, CLK, RST;
reg Q;

assign Q_b=~Q;
always @ (posedge CLK, negedge RST)
if (RST ==0) Q <=1'b0;
else Q <=D;
endmodule

/I Behavioral description of 4-to-1 line multiplexer
/I Verilog 2005 port syntax

module mux_4x1_beh

(output reg m_out,

input in_0,in_1,in_2,in_3,
input [1: 0] select

);

always @ (in_0, in_1, in_2,in_3, select) // Verilog 2005 syntax
case (select)
2'h00: m_out =in_O0;
2'h01l:m_out=in_1;
2'p10: m_out =in_2;
2'b11:m_out =in_3;
endcase
endmodule
/I Dataflow description of 2-to-4-line decoder
/I See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (D, A, B, enable);
output [0:3] D;

input A, B;
input enable;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

257

assign DJ[0] = ~(~A & ~B & ~enable),
D[1] = ~(~A & B & ~enable),

D[2] = ~(A & ~B & ~enable),

D[3] = ~(A & B & ~enable);

endmodule

module t_Count_Ones;
parameter R1_size = 8, R2_size = 4;
wire [R2_size-1: 0] R2;

wire [R2_size-1: 0] count;

wire Ready;
reg [R1_size-1:0] data;
reg Start, clock, reset_b;

wire [1: O] state; // Use only for debug
assign state = {M0.M0.G1, M0.MO0.GO0},

Count_Ones_STR_STR MO (count, Ready, data, Start, clock, reset_b);

initial #4000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
Start = 0;
#1 reset_b=1;
#3 reset_ b =0;
#4 reset_b =1;
data = 8'Hff;
25 Start = 1;
35 Start =0;

#310 data = 8'h0f;
#310 Start = 1,
#320 Start = 0;
#610 data = 8'hf0;
#610 Start = 1,
#620 Start = 0;
#910 data = 8'h00;
#910 Start = 1;
#920 Start = 0;
#1210 data = 8'haa;
#1210 Start = 1;
#1220 Start = 0;
#1510 data = 8'h0a;
#1510 Start = 1;
#1520 Start = 0;
#1810 data = 8'ha0;
#1810 Start = 1;
#1820 Start = 0;
#2110 data = 8'h55;
#2110 Start = 1;
#2120 Start = 0;
#2410 data = 8'h05;
#2410 Start = 1;
#2420 Start = 0;
#2710 data = 8'h50;
#2710 Start = 1;
#2720 Start = 0;
#3010 data = 8'hab;
#3010 Start = 1;
#3020 Start = 0;
#3310 data = 8'h5a;
#3310 Start = 1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

258

#3320 Start = 0;
join
endmodule

2184 2324 2464 2604 2744 2884
Name [[l

clock nnphnnnhnnnni e

reset_b

Start
Load_regs
Shift feft [LL 1O POLOL 0 oy Ju om0
Incr_R2
Zero

Ready

state[1:0]

data[7:0] 55 X 05 X 50
count[3:0] 1 2 X 3 X 4 X 0 X 1 X 2 O o X1 X 2

8.36 Note: See Prob. 8.35 for a behavioral model of the datapath unit, Prob. 8.36d for a one-hot control unit.

(a) To, Ty, Ty, T3 be asserted when the state isin S_idle, S_1, S 2, and S_3, respectively. Let DO, D1, D2, and
D3 denote the inputs to the one-hot flip-flops.

Dy = T, Start' + T, Zero
D, =Ty Start + T3 E

D, =T; Zero'+ T3 E'

D3 = T2

(b) Gate-level one-hot controller

module Controller_Gates_1Hot
(
output Ready,
output Load_regs, Incr_R2, Shift_left,
input Start, Zero, E, clock, reset_b
);
wire wl, w2, w3, w4, ws, wé;
wire TO, T1, T2, T3;
wire set;
assign Ready = TO;
assign Incr_R2 =T1,
assign Shift_left = T2;
and (Load_regs, TO, Start);
not (set, reset_b);
DFF_S MO (TO, DO, clock, set); /I Note: reset action must initialize S_idle = 4'b0001
DFF M1 (T1, D1, clock, reset_b);
DFF M2 (T2, D2, clock, reset_b);
DFF M3 (T3, D3, clock, reset_b);

not (Start_b, Start);
and (w1, TO, Start_b);
and (w2, T1, Zero);
or (DO, wi, w2);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

259

and (w3, TO, Start);
and (w4, T3, E);
or (D1, w3, w4);

not (Zero_b, Zero);
not (E_b, E);

and (w5, T1, Zero_b);
and (w6, T3, E_b);

or (D2, w5, wb);

buf (D3, T2);
endmodule

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b==0) Q<=0;
else Q <=D;
endmodule
module DFF_S (output reg Q, input D, clock, set);
always @ (posedge clock, posedge set)
if (set==1)Q<=1;
else Q <=D;
endmodule

(©

/I Test plan for Control Unit

Il Verify that state enters S_idle with reset_b asserted.

/' With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
/I Start is asserted.

/I Verify that Incr_R2 is asserted in S_1.

/I Verify that state returns to S_idle from S_1 if Zero is asserted.
/I Verify that state goes to S_2 if Zero is not asserted.

/I Verify that Shift_left is asserted in S_2.

/I Verify that state goes to S_3 from S_2 unconditionally.

/I Verify that state returnsto S_2 from S_3 id E is not asserted.
/Il Verify that state goesto S_1 from S_3 if E is asserted.

/I Test bench for One-Hot Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Incr_R2, Shift_left;
reg Start, Zero, E, clock, reset_b;
wire [3: 0] state = {M0.T3, M0.T2, M0.T1, MO.TQ}; /I Observe one-hot state bits
Controller_Gates_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
Zero = 1;
E=0;
Start = 0;
#20 Start = 1;// Cycle from S_idleto S_1
#80 Start = 0;
#70 Zero=0; //S_idletoS_1t0oS_2toS_3 andcycleto S_2.
#130E = 1; //CycletoS_ 3toS 1toS 2toS_3
#150 Zero=1; // Returnto S_idle
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

260

Note: simulation results match those for Prob. 8.34(d). See Prob. 8.34(c) for annotations.
Name 0 (60 120 180

Default

clock I Yy Y Y Y Y e Y Y Y Y Y e Y Y o B O
resetb H

Start I 1
Zero 1 J
E |

state[3:0]

Ready
Load regs I
Incr_R2 I I I I R B [1 1
Shift_left LI LTI 1 1

(d) Datapath unit detail:

s, = Shift_regs + Load_regs' Shift_regs'
s, = Load_regs + Load_regs' Shift_regs'

Zero
8
R1 # 0
data —|8—> 1 ax1 8 Register
8 Mux ———) | (D-type R1
Rl<<1 # 2 F||p_
8 flops
Rl # 3 S, S, p) E
|_ Qp
Shift_regs clk
Load_regs
clock
4
0 5% 1 Register R2
4'h0001 "\ Vi ™| (O-type
>(+ > 1 el ik
N flops)
Incr_Rzg

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

261

/I Datapath unit — structural model
module Datapath_STR
#(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count, output E, output Zero, input [dp_width -1: O] data,
input Load_regs, Shift_left, Incr_R2, clock, reset_b);

supplyl pwr;

supplyO gnd;

wire [dp_width -1: 0] R1_Dbus, R1;

wire [R2_width -1: 0] R2_Dbus;

wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7,;
wireR1 0,R1_1,R1 2,R1_3,R1_4,R1 5, R1_6,R1 7,

wire R2_0, R2_1,R2_2, R2_3;

wire [R2_width -1: 0] R2 = {R2_3, R2
assign count={R2_3,R2 2,R2_1,R
assign R1={R1_7,R1_6,R1_5,R1
assign DR1_0 = R1_Dbus]0];
assign DR1_1 = R1_Dbus[1];
assign DR1_2 = R1_Dbus[2];
assign DR1_3 = R1_Dbus][3];
assign DR1_4 = R1_Dbus[4];
assign DR1_5 = R1_Dbus][5];
assign DR1_6 = R1_Dbus]6];
assign DR1_7 = R1_Dbus|[7];

2,R2_1,R2_0O};
2 0}
4,R1 3,R1 2,R1 1, R1 O}

nor (Zero,R1_0,R1_1,R1_2,R1 3,R1_4,R1_5,R1_6,R1_7);
DFF D_E (E, R1_7, clock, pwr);

DFF DF_0 (R1_0, DR1_0, clock, pwr); /I Disable reset
DFF DF_1 (R1_1, DR1_1, clock, pwr);
DFF DF_2 (R1_2, DR1_2, clock, pwr);
DFF DF_3 (R1_3, DR1_3, clock, pwr);
DFF DF_4 (R1_4, DR1_4, clock, pwr);
DFF DF_5 (R1_5, DR1_5, clock, pwr);
DFF DF_6 (R1_6, DR1_6, clock, pwr);
DFF DF_7 (R1_7, DR1_7, clock, pwr);

DFF_S DR_0 (R2_0, DR2_0, clock, Load_regs); // Load_regs (set) drives R2 to all ones
DFF_S DR_1 (R2_1, DR2_1, clock, Load_regs);
DFF_S DR_2 (R2_2, DR2_2, clock, Load_regs);
DFF_S DR_3 (R2_3, DR2_3, clock, Load_regs);

assign DR2_0 = R2_DbusJ0];
assign DR2_1 = R2_Dbus[1];
assign DR2_2 = R2_Dbus|[2];
assign DR2_3 = R2_DbusJ[3];

wire [1: O] sel = {Shift_left, Load_regs};
wire [dp_width -1: 0] R1_shifted = {R1_6, R1_5, R1_4, R1_3, R1_2, R1_1, R1 0, 1'b0};
wire [R2_width -1: 0] sum = R2 + 4'b0001;

Mux8_ 4 x_1 MO (R1_Dbus, R1, data, R1_shifted, R1, sel);

Mux4_2 x_1 M1 (R2_Dbus, R2, sum, Incr_R2);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

262

module Mux8_4 x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, inl, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)
case (sel)
2'b00: mux_out =in0;
2'b01: mux_out =inl;
2'h10: mux_out =in2;
2'b11: mux_out =in3;
endcase
endmodule

module Mux4_2_x_1 #(parameter dp_width = 4) (output [dp_width -1: O] mux_out,
input [dp_width -1: 0] in0, inl, input sel);
assign mux_out = sel ? inl: in0;
endmodule

/] Test Plan for Datapath Unit:

/I Demonstrate action of Load_regs

1 R1 gets data, R2 gets all ones

/I Demonstrate action of Incr_R2

/I Demonstrate action of Shift_left and detect E

/I Test bench for datapath
module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

Ok
wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

Datapath_STR MO (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
data = 8'haa;
Load_regs = 0;
Incr_R2 =0;
Shift_left = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Incr_R2 =1,
#120 Incr_R2 = 0;
#90 Shift_left = 1;
#200 Shift_left = 0;
join
endmodule

/I Integrated system
module Count_Ones_Gates_1_Hot_STR
(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,

input Start, clock, reset_b
)i
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_Gates_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

263

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_count_Ones_Gates_1 Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [3: 0] state = {M0.M0.T3, M0.M0.T2, M0.M0.T1, M0.MO0.TO};

Count_Ones_Gates_1_Hot_STR MO (count, data, Start, clock, reset_b);
initial #700 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1;
#30 Start = 0;
#40 data = 8'b00; /I Expect count =0
#250 Start = 1;
#260 Start = 0;
#280 data = 8'hff;
#280 Start = 1,
#290 Start = 0;
join
endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

Name 0 1 1 1 1 1 1 1 1 1 |60I 1 1 1 1 1 1 1 1 12I0 1 1 1 1 1 1 1 1 18IO 1 1 1 1 1 1 1
clock AN O e Y Y e e Y Y Y e e Y Y Y O I o Yy I
reset b Y

Load_regs 1

Incr_R2 I l

Shift_left I -
Zero I

E I L 111 1

data[7:0] aa

R1[7:0] xx_ X aa (54 a8 {50 X a0 X 40 80) 00

R — L1 LTI 1

R1[6] LI LT 1

R1[5] I L LTI 1

R1[4] L

R1[3] I L1

R1[2] 1

R1[1] I 1

R1[0]

R3:0] | x X f (0 X1 X2 X3)4)5) 6

count[3:0] | x X f (0 X 1X2X3)X4X5) 6

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

264

Simulations results for the integrated system match those shown in Prob. 8.34(e). See those results for
additional annotation.

0 1 3 4
Name oo Py ey e P e e e b ey e by

clock UL U U U Ui Ui Ui U U Ui U U1

reset_b

Ready 1 S
Start LI M
Load regs |11 n_n
Shift_left
Incr_R2
Zero

E

state[3:0]

data[7:0]
RI[7:0] 0
R2[3:0]) _8

count[3:0] v/ U (8)

8.37 (a) ASMD chart:

reset_b

4
S_idle
/Ready

R1 <= data

/ R2 <=0

1] ———

R2 <= R2 + R1[0]

Rl<=R1>>1
il

Add_shift

(b) RTL model:

module Datapath_Unit_2_Beh #(parameter dp_width = 8, R2_width = 4)

(

output [R2_width -1: 0] count,

output Zero,

input [dp_width -1: 0] data,

input Load_regs, Add_shift, clock, reset_b
).

reg [dp_width -1: O] R1;
reg [R2_width -1: 0] R2;
assign count = R2;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

265

assign Zero = ~|R1;
always @ (posedge clock, negedge reset_b)
begin
if (reset_b ==0) begin R1 <= 0; R2 <= 0; end else begin
if (Load_regs) begin R1 <= data; R2 <= 0; end
if (Add_shift) begin R1 <= R1 >> 1; R2 <= R2 + R1[0]; end // concurrent operations
end
end
endmodule

/I Test plan for datapath unit
/I Verify active-low reset action
/I Test for action of Add_ shift
/I Test for action of Load_regs

module t_Datapath_Unit_2_Beh();
parameter R1_size = 8, R2_size = 4;
wire [R2_size -1: 0] count;

wire Zero;
reg [R1_size-1:0] data;
reg Load_regs, Add_shift, clock, reset_b;

Datapath_Unit_2_Beh MO (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

initial #1000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
#lreset b=1;
#3 reset_ b =0;
#4 reset b =1;
join
initial fork
data = 8'haa;
Load_regs = 0;
Add_shift = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Add_shift = 1;
#150 Add_shift = 0;
join
endmodule

Note that the operations of the datapath unit are tested independent of the controller, so the actions of
Load_regs and add_shift and the value of count do not correspond to data.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Name

266

clock
reset b
Load_regs
Add_shift
Zero

data[7:0]
R1[7:0]
R2[3:0]
count[7:0]

k fLoad R1, flush R2
\

R1 shifts, R2 adds

J—_\

55) 2a

15

Oa A 05 f 02

01

00

o

\IMOO ‘2
/ '
0

—_— <

module Controller_2_Beh (

output Ready,
output reg Load_regs,
Add_shift,
input Start, Zero, clock, reset_b
);
parameter S_idle =0, S_running = 1,

reg state, next_state;
assign Ready = (state == S_idle);
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero) begin
next_state = S_idle;
Load_regs = 0;
Add_shift = 0;

case (state)

S idle: if (Start) begin Load_regs = 1; next_state = S_running; end
S _running: if (Zero) next_state = S_idle;
else begin Add_shift = 1; next_state = S_running; end
endcase
end
endmodule

module t_Controller_2_Beh ();
wire Ready, Load_regs, Add_shift;
reg Start, Zero, clock, reset_b;

Controller_2_Beh MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
initial #250 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
Zero =1,
Start = 0;
#20 Start=1; //Cyclefrom S idleto S_1
#80 Start = 0;
#70Zero=0; //S_idletoS_1to S_idle

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

267

#90 Zero =1; //Returnto S_idle
join
endmodule

Note: The state transitions and outputs of the controller match the ASMD chart.

Name

clock A) Y O D O I O
reset_b i

Ready ‘
Start]
Load regs [l [1

Add_shift 1
Zero [

state

module Count_of _Ones_2_ Beh #(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,

output Ready,

input [dp_width -1: 0] data,

input Start, clock, reset_b

);
wire Load_regs, Add_shift, Zero;

Controller_2_Beh MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
Datapath_Unit_2_Beh M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_Count_Ones_2_Beh ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

Count_of_Ones_2_Beh MO (count, Ready, data, Start, clock, reset_b);

initial #700 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_ b=0; #2 reset_ b=1; end
initial fork

data = 8'haa; /I Expect count = 4

Start = 0;

#20 Start = 1;

#30 Start = 0;

#40 data = 8'h00; // Expect count =0

#120 Start = 1;

#130 Start = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

268
#140 data = 8'hff;
#160 Start = 1
#170 Start = 0;
join
endmodule
Name 0 60 120 180 20
clock N Y e e e e e e e Y A I O A S O
reset b |
Start [I 1
Load_regs 1 M M
Add shift | \ \ .
Zero] 1 -
Ready I
state | _,—\—1
data[7:0] Caa D C oo) X @)
RI[7:0] 00 (aa {552 }(15 J(0a (05 {02 f 01) 00 -mm
R2[3:0] 0 S . 3 4 0
count[3:0] 0 1 2 3 =4 30D

(c) To, Tyare tobe asserted when the state is in S_idle, S_running, respectively. Let DO, D1 denote the inputs
to the one-hot flip-flops.

Dy = T, Start' + T, Zero
Dl = To Start + Tl E'

(d) Gate-level one-hot controller

module Controller_2_ Gates_1Hot

(
output Ready, Load_regs, Add_shift,
input Start, Zero, clock, reset_b
)
wire wl, w2, w3, w4;
wire TO, T1;
wire set;

assign Ready = TO;

assign Add_shift = T1;

and (Load_regs, TO, Start);

not (set, reset_b);

DFF_S MO (TO, DO, clock, set); /I Note: reset action must initialize S_idle = 2'b01
DFF M1 (T1, D1, clock, reset_b);

not (Start_b, Start);
not (Zero_b, Zero);
and (w1, TO, Start_b);
and (w2, T1, Zero);
or (DO, wl, w2);

and (w3, TO, Start);

and (w4, T1, Zero_b);

or (D1, w3, w4);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

269

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b==0)Q<=0;
else Q <=D;
endmodule
module DFF_S (output reg Q, input D, clock, set);
always @ (posedge clock, posedge set)
if (set==1) Q <=1,
else Q <=D;
endmodule

/I Test plan for Control Unit

Il Verify that state enters S_idle with reset_b asserted.

/' With reset_b de-asserted, verify that state enters S_running and asserts Load_Regs when
/Il Start is asserted.

/I Verify that state returns to S_idle from S_running if Zero is asserted.

/I Verify that state goes to S_running if Zero is not asserted.

/I Test bench for One-Hot Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Add_shift;
reg Start, Zero, clock, reset_b;
wire [3: 0] state ={MO0.T1, MO.TO}; /I Observe one-hot state bits

Controller_2_Gates_1Hot MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
initial #250 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
Zero =1,
Start = 0;
#20 Start=1; //Cycle from S idleto S_1
#80 Start = 0;

#70Zero=0; //S_idletoS_1to S_idle
#90 Zero =1; //Returnto S_idle
join
endmodule

Simulation results show that the controller matches the ASMD chart.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

270

Name

clock N [Y e e e Y e v Y O O B 1
reset b |

Start I |

Zero L
Load_regs [l

Add_shift I 1 |
Zero L
Ready L 1T 1 |

state[3:0] 1 2 X 1

/I Datapath unit — structural model

module Datapath_2_STR
#(parameter dp_width = 8, R2_width = 4)

(
output [R2_width -1: 0] count,
output Zero,
input [dp_width -1: 0] data,
input Load_regs, Add_shift, clock, reset_b);
supplyl pwr;
supply0 gnd;

wire [dp_width -1: 0] R1_Dbus, R1;

wire [R2_width -1: 0] R2_Dbus;

wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7,
wireR1 0,R1_1,R1 2,R1_3,R1_4,R1 5, R1_6,R1 7,
wire R2_0, R2_1,R2_2, R2_3;
2

wire [R2_width -1: 0] R2 = {R2_3, R2_2, R2_1, R2_0O};
assign count={R2_3,R2_2,R2_1, R2_0};
assign R1={R1_7,R1 _6,R1 5 R1 4,R1 3,R1 2,R1 1, R1 0}

assign DR1_0 = R1_Dbus]0];
assign DR1_1 = R1_Dbus[1];
assign DR1_2 = R1_Dbus[2];
assign DR1_3 = R1_Dbus][3];
assign DR1_4 = R1_Dbus[4];
assign DR1_5 = R1_Dbus][5];
assign DR1_6 = R1_Dbus]6];
assign DR1_7 = R1_Dbus|[7];

nor (Zero, R1_0,R1_1,R1_2,R1_3,R1_4,R1_5,R1_6, R1_7);
not (Load_regs_b, Load_regs);

DFF DF_0 (R1_0, DR1_0, clock, pwr); /I Disable reset
DFF DF_1 (R1_1, DR1_1, clock, pwr);
DFF DF_2 (R1_2, DR1_2, clock, pwr);
DFF DF_3 (R1_3, DR1_3, clock, pwr);
DFF DF_4 (R1_4, DR1_4, clock, pwr);
DFF DF_5 (R1_5, DR1_5, clock, pwr);
DFF DF_6 (R1_6, DR1_6, clock, pwr);
DFF DF_7 (R1_7, DR1_7, clock, pwr);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

271

DFF DR_0 (R2_0, DR2_0, clock, Load_regs_b); // Load_regs (set) drives R2 to all ones
DFF DR_1 (R2_1, DR2_1, clock, Load_regs_b);
DFF DR_2 (R2_2, DR2_2, clock, Load_regs_b);
DFF DR_3 (R2_3, DR2_3, clock, Load_regs_b);

assign DR2_0 = R2_DbusJ0];
assign DR2_1 = R2_Dbus[1];
assign DR2_2 = R2_Dbus][2];
assign DR2_3 = R2_DbusJ[3];

wire [1: 0] sel = {Add_shift, Load_regs};
wire [dp_width -1: 0] R1_shifted = {1'b0, R1_7, R1_6, R1_5,R1_4, R1_3,R1_2, R1_1};
wire [R2_width -1: 0] sum = R2 + {3'b000, R1[0]};

Mux8 4 x_1 MO (R1_Dbus, R1, data, R1_shifted, R1, sel);

Mux4_2_x_1 M1 (R2_Dbus, R2, sum, Add_shift);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

272

module Mux8_4 x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0] inQ, inl, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)
case (sel)
2'b00: mux_out =in0;
2'b01: mux_out =inl;
2'h10: mux_out =in2;
2'b11: mux_out =in3;
endcase
endmodule

module Mux4_2_x_1 #(parameter dp_width = 4) (output [dp_width -1: O] mux_out,
input [dp_width -1: 0] in0, inl, input sel);
assign mux_out = sel ? inl: in0O;
endmodule

/] Test Plan for Datapath Unit:

/l Demonstrate action of Load_regs

/I R1 gets data, R2 gets all ones

/I Demonstrate action of Incr_R2

/I Demonstrate action of Add_shift and detect Zero

/I Test bench for datapath

module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

()
wire [R2_width -1: 0] count;
wire Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Add_shift, clock, reset_b;

Datapath_2_STR MO (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_ b=0; #2 reset_ b=1; end
initial fork
data = 8'haa;
Load_regs = 0;
Add_shift = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Add_shift = 1;
#140 Add_shift = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

273
0 50 100 150
Name | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | |
clock J—LA_MW
reset b |
Load_regs
Add_shift
Zero
data[7:0] aa
. X
RI1[7:0] XX aa 55) 2a | 15 | 0a f 05) 02) o1 00
R2[3:0] X 0 1 X 2 3 4
count[3:0] | X 0 1 2 3

/I Integrated system

module Count_Ones_2_Gates_1Hot_STR
(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,

input [dp_width -1: 0] data,

input Start, clock, reset_b

)i
wire Load_regs, Add_shift, Zero;

Controller_2_Gates_1Hot MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
Datapath_2_STR M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

modulet_Count_Ones_2_ Gates_1Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [1: O] state = {M0.M0.T1, M0.MO.TO};

Count_Ones_2_Gates_1Hot_STR MO (count, data, Start, clock, reset_b);

initial #700 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b =0; #2 reset_b =1; end
initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1;
#30 Start = 0;
#40 data = 8'b00; // Expect count =0
#120 Start = 1,
#130 Start = 0;
#150 data = 8'hff; // Expect count = 8
#200 Start = 1,
#210 Start = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

274
Name A L R LR L o b b
clock Uy yryyyyyUyyyyryyyuyuUyyuruuruuuan
reset_b i
Start ! ™ !
Zero] 1]
Load_regs I I I
Add shift |1 I s F 1
state[1:0] X 2 X 1
data[7:0] [@DN
R1[7:0] (X 7eX e ar)orX_ X X) 0
R2[3:0] (1 X2 3Xa)Xs5)X6)7) 8
count[3:0] (1 X2 3X4a)X5)X6X7) 8D

8.38
module Prob_8_38 (
outputreg [7: 0] Sum,
output reg Car_Bor,
input [7: 0] Data_A, Data_B);
reg [7: 0] Reg_A, Reg_B;
always @ (Data_A, Data_B)
case ({Data_A[7], Data_BJ[71]})
2'b00, 2'b11: begin I ++, --
{Car_Bor, Sum[6: 0]} = Data_A[6: 0] + Data_BJ6: 0];
Sum([7] = Data_A[7];
end
default: if (Data_A[6: 0] >= Data_BJ[6: 0]) begin I +-, -+
{Car_Bor, Suml6: 0]} = Data_A[6: 0] - Data_BJ6: 0];
Sum([7] = Data_A[7];
end
else begin
{Car_Bor, Suml6: 0]} = Data_B|[6: 0] - Data_A[6: 0];
Sum([7] = Data_BJ[7];
end
endcase
endmodule

module t_Prob_8_38 ();
wire [7: 0] Sum;
wire Car_Bor;
reg [7: 0] Data_A, Data_B;
wire [6: 0] Mag_A, Mag_B;

assign Mag_A = M0.Data_A[6: 0]; /I Hierarchical dereferencing
assign Mag_B = M0.Data_BJ6: 0];

wire Sign_A = M0.Data_A[7];

wire Sign_B = M0.Data_BJ7];

wire Sign = Sum([7];

wire [7: 0] Mag = Sum[6: 0];
Prob_8_38 MO (Sum, Car_Bor, Data_A, Data_B);

initial #650 $finish;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

275
initial fork
/I Addition A B
#0 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b0, 7'd10}; end /[+25, +10
#40 begin Data_A = {1'b1, 7'd25}; Data_B = {1'bl, 7'd10}; end /I -25, -10
#80 begin Data_A = {1'b1, 7'd25}; Data_B = {1'b0, 7'd10}; end I/ -25, +10
#120 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b1, 7'd10}; end /1 25, -10
/I B A
#160 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd10}; end /[+25, +10
#200 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd10}; end Il -25, -10
#240 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b0, 7'd10}; end /I -25, +10
#280 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b1, 7'd10}; end /I +25, -10
/I Addition of matching numbers
#320 begin Data_A = {1'b1,7'd0}; Data_B = {1'b1,7'd0}; end /1-0, -0
#360 begin Data_A = {1'b0,7'd0}; Data_B = {1'b0,7'd0}; end Il +0, +0
#400 begin Data_A = {1'b0,7'd0}; Data_B = {1'b1,7'd0}; end /l +0, -0
#440 begin Data_A ={1'b1,7'd0}; Data_B = {1'b0,7'd0}; end /-0, +0
#480 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd25}; end /I matching +
#520 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd25}; end /I matching —
/I Test of carry (negative numbers)
#560 begin Data_A = 8'hf0; Data_B = 8'hf0; end /l carry - -
/I Test of carry (positive numbers)
#600 begin Data_A = 8'h70; Data_B = 8'h70; end I/l carry ++
join
endmodule
Name 0 1 1 1 1 1 1 1 1 1 | 19IO 1 1 1 1 1 1 1 1 | 38IO 1 1 1 1 1 1 1 1 57I0 1
Data A[7:0] | 29 X 99 X 19 X 0a X 8a X 0a X 8 K 8 X 00 X80 X190 X 99 X fo X 70
Data B[7:0] | Oa X 8a X Oa X 8a X 10 X 99 X 19 X 80 X 00 X 80 X 00 X 19 X 99 X fo X 70
Sign_A I | I | I | I |
Sign B I | I | I | I | I | 1
Mag_A[6:0] 25 X 10 X X 25 X 112
Mag_B[6:0] 10 X 25 X 25 Y 12
Car_Bor
Sum[7:0] 23 a3 { 8f X of X23 X a3 X 8f fof X80 X 00 X80 X32X b2 Xeo X 60
Sign I IO l I | I | I | I
Mag[7:0] 35 X 15 X 3B X 15 X 0 X 5 X 9

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

276

8.39 Block diagram and ASMD chart:
data_AR data_BR

16 16
zero
I
Datapath
Ld_regs AR
Add_decr LLLLL - éRl l
Controller > TTT] T
start —— PR
done ~— LI TT[--TT]
reeth_ % 16
clock
PR
reset_b
sO
done
!

AR <=data_A
BR <=data_B
PR<=0

PR <=PR +BR sl
AR <=AR-1

\ ¢
@_decr) !

module Prob_8 39 (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b

Controller_P8_39 MO (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_39 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter s0 =1'h0, s1 =1'b1;
reg state, next_state;
assign done = (state == s0);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

277

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin
Ld_regs =0;
Add_decr =0;
case (state)
s0: if (start) begin Ld_regs = 1; next_state = s1; end
sl: if (zero) next_state = sO; else begin next_state = s1; Add_decr = 1; end
default: next_state = s0;
endcase
end
endmodule

module Datapath_P8 16 (

output reg [15: 0] PR, output zero,

input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b
);

reg [7: 0] AR, BR;
assign zero = ~(| AR);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin
if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <= 0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end
end
endmodule

/I Test plan — Verify;

/I Power-up reset

// Data is loaded correctly

/I Control signals assert correctly
/I Status signals assert correctly
/I start is ignored while multiplying
/I Multiplication is correct

/I Recovery from reset on-the-fly

module t_Prob_P8_16;
wire done;
wire [15: 0] PR;
reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

Prob_8 16 MO (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

reset b=0

#12 reset_ b =1;

#40 reset_|

b=0;
#42 reset_ b =1;
#90reset b=1
#92reset b=1

join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

278

initial fork
#20 start = 1;
#30 start = 0;
#40 start = 1;
#50 start = 0;

#120 start = 1;
#120 start = 0;
join

initial fork
data_AR = 8'd5; /I AR >0
data_BR = 8'd20;

#80 data_AR = 8'd3;
#80 data_BR = 8'd9;

#100 data_AR = 8'd4;
#100 data_BR = 8'd9;

join

endmodule
Name 0 30 60 90 120

I I I B | | I I I I O | | I I N | | I I N) | | ||

reset_b — L
clock N S Y Yy Y Y Iy Y Iy N
start I | I | [
Ld_regs [1 L
Add_decr I L] | [
zero 1 J L
state | LI |
data_AR[7:0] 5 X 3 | 4
data_BR[7:0] 20 X 9
AR[7:0] o S s)4ofs Y4 s 2 1] 0 [
BR[7:0] 0 [20 Jo) 20 [
done 1
PR[15:0] 0 [X o)20 J 40) 60 [80] 100 [

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

279

8.40
Data_in[7: 0]
8
v
Shift in Datapath
Ready — —
Got_Data Shift_regs >
. Add_regs [I8
Done_Product Controller _reg >
Start Decr_P [o
Run > Shift_out
Send_Data s = [dc[_1r
reset_b
[clock 8
:
Zero
Qo0 Note: Q0 = Q[0]
A 4

Data_out[7: 0]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

280
reset
1] g
B[7: 0] <= Data_in ... B[31: 24] <= Data_in
Q[7: 0] <= Data_in ... Q[31: 24] <= Data_in
S Ld 0.6 The bytes of data will be read sequentially. Registers
JShift in Q and B are organized to act as byte-wide parallel
_l shift registers, taking 8 clock cycles to fill the pipe.
S1d] The least significant byte of the multiplicand enters
== the most significant byte of Q and then moves

/Got_Data S_wait_1 through the bytes of Q to enter B, then proceed to
occupy successive bytes of B until it occupies the
least significant byte of B, and so forth until both B
1 and Q are filled. Wait states are used to wait for Run
i ¥

1 and Send_Data.

S_add _
/ Decr_P P<=P-1

{C,A}<=A+B

S_shift
/Shift_regs

-

S_product
/Done_Product

S_Send_0...6
/Shift_out —
L ¥

Data_out <= P[7: 0] ... P[31: 24]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

281

module Prob_8_40 (

output [7:0] Data_out,

output Ready, Got_Data, Done_Product,

input [7: Q] Data_in,

input Start, Run, Send_Data, clock, reset_b
)i

Controller MO (
Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs, Shift_regs, Shift_out,
Start, Run, Send_Data, Zero, QO, clock, reset_b
);
Datapath M1(Data_out, QO, Zero, Data_in,
Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock
)i

endmodule

module Controller (
output reg Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs,
Shift_regs, Shift_out,
input Start, Run, Send_Data, Zero, QO, clock, reset_b

)i
parameter S_idle= 5'd20,
S_Ld_0= 5'dO0,
S_Ld 1= 5d1,
S_Ld 2= 5'd2,
S Ld 3= 5d3,
S _Ld_4 = 5'd4,
S Ld 5= 5'd5,
S_Ld 6= 5'd6,
S _Ld_7 = 5'd7,
S _wait_1=5'd8, // Wait state
S_add = 5'd9,
S_Shift= 5'd10,
S_product = 5'd11,
S_wait_ 2= 5'd12, // Wait state
S Send 0= 5'd13,
S_Send_1= 54d14,
S _Send_2 = 5'd15,
S_Send 3= 5'd16,
S Send 4= 5'd17,
S_Send 5= 5418,
S _Send_6= 5'd19;
reg [4:0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Run, QO0, Zero, Send_Data) begin

next_state = S_idle; /I Prevent accidental synthesis of latches
Ready = 0;

Shift_in = 0;

Shift_regs =0

Add_regs =0

Decr_P =0;

Shift_out = 0;

Got_Data = 0;

Done_Product = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

282

case (state) // Assign by exception to default values

S idle: begin

Ready = 1;

if (Start) begin next_state = S_Ld_0; Shift_in=1; end

end

S Ld_0: begin next_state =S_Ld_1; Shift_in=1; end
S Ld 1: begin next_state =S_Ld_2; Shift_in=1; end
S Ld_2: begin next_state =S_Ld_3; Shift_in=1; end
S Ld 3: begin next_state =S_Ld_4; Shift_in=1; end
S Ld_4: begin next_state =S_Ld_5; Shift_in=1; end
S Ld & begin next_state =S_Ld_6; Shift_in=1; end
S Ld_6: begin next_state =S_Ld_7; Shift_in=1; end
S Ld 7: begin Got_Data = 1;

if (Run) next_state = S_add;
else next_state = S_wait_1;

end
S wait_1: if (Run) next_state = S_add; else next_state = S_wait_1;
S_add: begin next_state = S_Shift; Decr_P = 1; if (Q0) Add_regs = 1; end
S_Shift: begin Shift_regs = 1; if (Zero) next_state = S_product;

else next_state = S_add; end
S_product: begin
Done_Product = 1;
if (Send_Data) begin next_state = S_Send_0; Shift_out = 1; end
else next_state = S_wait_2; end
S wait_2: if (Send_Data) begin next_state =S_Send_0; Shift_out = 1; end
else next_state = S_wait_2;
S Send_0: begin next_state =S_Send_1; Shift_ out=1; end
S Send_1: begin next_state =S_Send_2; Shift_out =1; end
S Send_2: begin next_state =S_Send_3; Shift_out=1; end
S Send_3: begin next_state = S_Send_4; Shift_out =1; end
S Send_4: begin next_state = S_Send_5; Shift_out=1; end
S _Send_5: begin next_state = S_Send_6; Shift_out =1; end
S Send_6: begin next_state = S_idle; Shift_out =1; end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width = 32, P_width = 6) (
output [7:0] Data_out,

output QO, Zero,

input [7:0] Data_in,

input Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock
);

reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath

reg G,

reg [P_width - 1:0] P;

assign Q0 = QJO0];

assign Zero = (P == 0); /I counter is zero

assign Data_out ={C, A, Q};

always @ (posedge clock) begin
if (Shift_in) begin

P <= dp_width;

A<=0;

C<=0;

B[7: O] <= B[15: 8]; /] Treat B and Q registers as a pipeline to load data bytes

B[15: 8] <= B[23: 16];
B[23: 16] <= B[31: 24];
B[31: 24] <=Q[7: 0],
Q[7: 0] <= Q[15: 8];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

283

Q[15: 8] <=Q[23: 16];
Q[23: 16] <= Q[31: 24];
Q[31: 24] <= Data_in;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q}>>1;
if (Decr_P) P <=P -1,
if (Shift_out) begin {C, A, Q}<={C, A, Q}>>8; end
end
endmodule

module t_Prob_8_40;

parameter dp_width = 32; /' Width of datapath
wire [7:0] Data_out;

wire Ready, Got_Data, Done_Product;

reg Start, Run, Send_Data, clock, reset_b;

integer Exp_Value;

reg Error;

wire [7:0] Data_in;

reg [dp_width -1: 0] Multiplicand, Multiplier;

reg [2*dp_width -1: O] Data_register; Il For test patterns
assign Data_in = Data_register [7:0];

wire [2*dp_width -1: 0] product;

assign product = {M0.M1.C, M0.M1.A, MO.M1.Q};

Prob_8 40 MO (
Data_out, Ready, Got_Data, Done_Product, Data_in, Start, Run, Send_Data, clock, reset_b

);

initial #2000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

reset b=1;

#2 reset_b =0;

#3 reset_b=1;
join
initial fork

Start =0;

Run =0;

Send_Data = 0;

#10 Start = 1,

#20 Start = 0;

#50 Run=1; /I lgnored by controller
#60 Run = 0;

#120 Run = 1;

#130 Run = 0;

#830 Send_Data = 1,
#840 Send_Data = 0;

join

/I Test patterns for multiplication

initial begin
Multiplicand = 32'h0f_00_00_aa;
Multiplier = 32'h0a_00_00_ff;
Data_register = {Multiplier, Multiplicand};

end

initial begin /I Synchronize input data bytes

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

284

@ (posedge Start)
repeat (15) begin
@ (negedge clock)
Data_register <= Data_register >> 8;
end
end
endmodule

Simulation results: Loading multiplicand (0f0000aay) and multiplier (0a0000ffy), 4 bytes each, in sequence,
beginning with the least significant byte of the multiplicand.

Note: Product is not valid until Done_Product asserts. The value of Product shown here (2554) reflects the
contents of {C, A, Q} after the multiplier has been loaded, prior to multiplication.

Note: The machine ignores a premature assertion of Run.
Note: Got_Data asserts at the 8" clock after Start asserts, i.e., 8 clocks to load the data.

Note: Product, Multiplier, and Multiplicand are formed in the test bench.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

285
Ia_ta:;;ﬁ;aec;g’eitgf Loading 8 bytes [Ignore RunJ [Waiting for Run J Resg‘[’l’r‘]d to
clock of data
Name \B\.....\|||40||||||||| 80.:::: 12|0|||||||||16|O
clock
reset_b il ’ \ , ()
Start
Run \ I_\ULI
Send_Data \
Zero \
Qo0
Ready L 1 N
Got_Data \ (\z_\
Done_Product \
shift_in I 1
Shift_regs 1 —
Add_regs 1 1
Decr_P 1 1
shift_out \
state[4:0] 20 X 0 X 1 X 2 X 3)X 456 7 8 Y 9 X0 X 9 10
Data_in[7:0] 170 X 0 X 15 X 255 X 0 X 10) 0
P[31:0] x__ X 32 X 31 a0
B[31:0] XOOXKKXX X X X X ~__\—=C 0f0000aa_>
C s
A[31:0] X 00000000 \ X X
Q[31:0] D D G O O O O _<.0a0000fF > X
Multiplicand[31:0] < 0f0000aa >
Multiplicand[31:0] 251658410 /
Multiplier[31:0] <0a0000ff >
Multiplier[31:0] 167772415
product[63:0] X X X X X X X X 000000000a0000ff X X X
product[63:0] x X x X x X x X X X X X 167772415 X X X
Data_out[7:0] X X 170 X 0 X 15 X 255 X 127

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

286
Note: Product (64 bits) is formed correctly
Multiplication complete] [Waiting for Send_Data] [Efegirgjzgfi”g datalbytes]

Name 73I5 1 1 1 1 1 1 /I 1 I 78I5 1 1 1 1 1 / 1 1 I 83I5 1 1 1 1 1 1 1 1 I 88I5 1 1 1 1 1 1 1 1 I 93I5
clock

reset_b / / ‘

Start

Run I I \ /

Send_Data ! ’l

Zero I / /

0 I B

Q

Ready ll /

Got_Data

Done_Product / \ /

Shift_in ~ |

Shift_regs \ I

Add_regs \ I

Decr_P \ I

Shift_out \ ! J |
state[4:0] 10 J_9 Y10 Y ul) 12 20
Data_in[7:0] | 0

P[31:0] 1 X | 0

B[31:0] | 0f0000aa

c \

A[31:0] X) S 00960015 X X 00000000

QI3L:0] X X___ | 95008956 O XC JC X X___ 00000000
Multiplicand[31:0] | 0f0000aa

Multiplicand[31:0] | (251658410

Multiplier[31:0] | 0a0000ff

Multiplier[31:0] | (167772415)

product[63:0] X X | 0096001595008956 T X) XX

product[63:0] X N C42221339200760150 > X X 0
Data_out[7:0] g8 {172 86 (fox XaXoX) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

287

[Multiplication complete Waiting for Send_Data] [E;?:;e;?;z%gata] [eDrﬁt:t;egtta-tiigi(d?I}e]
Name 73I5 1 1 1 1 1 1 /I 1 I 78I5 1 1 1 1 1 |/ 1 1 I 83I5 1 1 1 /X 1 1 1 I 88I5 I\\I 1 1 1 1 1 1 I 93I5
clock WLLMIL&I_UZ__F_MF\'XJ_M_M—\
/ ERVARR |\
Start
Run I l \ / \ \ \
Send_Data ! ’I \‘ \\ \\
Zero L / / \ \
Q0
] / \ i
Got_Data
Done_Product / \ l \ \ \
shift_in ~ | \ |\
Shift_regs \ I \ \
Add_regs \ I \ \
Decr_P \ I l \
Shift_out | ! I
state[4:0] 10 X 9 X 10 X 11{) 12
Data_in[7:0] |
P[31:0] 1 X \ |
B[31:0] | 0f0000aa 1
c |

1

A[31:0] X X | 00960015 X X (00000000)
QI31:0] X ___ | o500a056 T T T T ST ooooo00y/
Multiplicand[31:0] | 0f0000aa
Multiplicand[31:0] | (251658410)
Multiplier[31:0] | 0a0000ff
Multiplier[31:0] | (167772415)
product[63:0] X X 1 0096001595002956 T C X) X
product[63:0] X C42221339200760150 > X X 0
Data_out[7:0] 8 172 X 86 (X o)X X2aX o)X) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

288

841 (a)
Data
=—» P1[7: 0] » PO[7: 0] >
8 8 8
A 4 ;
P1[7: 0] PO[7: 0] RO[15: 0]

{P1, PO} <= {0, 0}

y
£ lele CIr_P1_PO
a A
1

P1 <= Data Ld_P1_PO

PO <=P1 {Pl, PO} <= {Ol O}
1 ¢—
A 4
Pl<=Data| s 1 /
PO<=P1 |Ld P1 PO Clr_P1_PO
T~ l 7y
S full

P1 <= Data
PO <=P1

RO <= {P1, PO}
(b) HDL model, test bench and simulation results for datapath unit.

module Datapath_unit

(
output reg [15: 0] RO, input [7: 0] Data, input CIr_P1_PO, Ld_P1_PO, Ld_RO, clock, rst);

reg [7: 0] P1, PO;

always @ (posedge clock) begin
if (CIr_P1_PO0) begin P1 <=0; PO <= 0; end
if (Ld_P1_PO0) begin P1 <= Data; PO <= P1; end
if (Ld_RO) RO <= {P1, PO},
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

289

/I Test bench for datapath

module t_Datapath_unit ();

wire [15: 0] RO;

reg [7: 0] Data;

reg Clr_P1 PO, Ld P1 PO, Ld RO, clock, rst;

Datapath_unit MO (RO, Data, CIr_P1_PO, Ld_P1_ PO, Ld_RO, clock, rst);

initial #100 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #2 rst = 1; end
initial fork
#20 CIr_P1_PO0 = 0;
#20 Ld_P1_P0=0;
#20 Ld_RO =0;
#20 Data = 8'hab5;
#40 Ld_P1_PO=1;
#50 Data = 8'hff;
#60 Ld_P1_P0=0;
#70Ld_ RO =1;
#80 Ld_RO =0;
join
endmodule

Name 0 50 100

clock _ - 55
rst |

Cir_P1_PO
Ld_P1_PO 1
Ld_RO 1
Data[7:0] XX X a5 X ff

P1[7:0] XX A a5 X ff
PO[7:0] XX X a5
RO[15:0] XXX X X ffas

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

290

(c) HDL model, test bench, and simulation results for the control unit.

module Control_unit (output reg Clr_P1_PO, Ld_P1_PO, Ld_RO, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 = 4'b0010, S_full = 4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;
always @ (posedge clock)
if (rst) state <= S_idle;
else state <= next_state;

always @ (state, Ld, En) begin

Clr_P1_P0O=0; /I Assign by exception
Ld_P1_PO=0;
Ld RO=0;

next_state = S_idle;
case (state)
S_idle: if (En) begin Ld_P1 PO =1; next_state =S _1; end
else next_state = S_idle;

S 1: begin Ld_P1_PO = 1; next_state = S_full; end
S full: if (ILd) next_state = S_wait;
else begin
Ld_RO =1,

if (En) begin Ld_P1_PO0 = 1; next_state=S_1; end
else begin CIr_P1_PO0 = 1; next_state = S_idle; end
end

S_wait: if (ILd) next_state = S_wait;
else begin
Ld_RO=1;
if (En) begin Ld_P1_PO0 = 1; next_state =S_1; end
else begin CIr_P1_PO0 = 1; next_state = S_idle; end

end
default: next_state = S_idle;
endcase
end
endmodule

/I Test bench for control unit

module t_Control_unit ();
wire CIr_P1 PO, Ld_P1 PO, Ld_RO;
reg En, Ld, clock, rst;

Control_unit MO (CIr_P1_PO, Ld_P1_PO, Ld_RO, En, Ld, clock, rst);
initial #200 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #2 rst = 1; #12 rst = 0; end

initial fork
#20 Ld = 0;
#20 En=0;

#30 En = 1;// Drive to S_wait
#70Ld =1;// Returnto S_1to S_full tp S_wait

#80 Ld = 0;
#100 Ld =1; // Drive to S_idle
#100 En = 0;
#110 En = 0;
#120 Ld = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

291

Name | 1> | 1%0

clock L rerrerererer e e er e

rst W

En e — 1

Ld [1 1
CIr_P1 PO M1
LdpPLpPO | — [1

Ld_RO M1 M1

state[3:0] XX 1 X2x4X 8 Y2K4aXs8X 1

(c) Integrated system Note that the test bench for the integrated system uses the input stimuli from the
test bench for the control unit and displays the waveforms produced by the test bench for the
datapath unit.:

module Prob_8 41 (output [15: 0] RO, input [7: O] Data, input En, Ld, clock, rst);
wire CIr_P1_P0, Ld_P1_P0, Ld_RO;

Control_unit MO (CIr_P1_PO, Ld_P1_PO, Ld_RO, En, Ld, clock, rst);
Datapath_unit M1 (RO, Data, Clr_P1_PO, Ld_P1_PO, Ld_RO, clock);

endmodule
module Control_unit (output reg CIr_P1_PO, Ld_P1_PO, Ld_RO, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 = 4'b0010, S_full = 4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;
always @ (posedge clock)
if (rst) state <= S_idle;
else state <= next_state;

always @ (state, Ld, En) begin

Clr_P1 PO =0; /I Assign by exception
Ld P1 PO =0;
Ld_RO = 0;

next_state = S_idle;
case (state)
S idle: if (En) begin Ld_P1_PO0 = 1; next_state = S_1; end
else next_state = S_idle;

S 1: begin Ld_P1_PO = 1; next_state = S_full; end
S_full: if (ILd) next_state = S_wait;
else begin
Ld_RO=1;

if (En) begin Ld_P1_PO0O = 1; next_state =S_1; end
else begin CIr_P1_PO = 1; next_state = S_idle; end
end

S _wait: if (ILd) next_state = S_wait;
else begin

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

292

Ld_RO = 1;
if (En) begin Ld_P1_PO0 = 1; next_state =S_1; end
else begin CIr_P1_PO = 1; next_state = S_idle; end

end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath_unit

(
output reg [15: 0] RO,
input [7: 0] Data,
input Clr_P1_PO,
Ld_P1_PO,
Ld_RO,
clock);

reg [7:0] P1, PO;

always @ (posedge clock) begin
if (CIr_P1_PO0) begin P1 <= 0; PO <=0; end
if (Ld_P1_PO0) begin P1 <= Data; PO <= P1; end
if (Ld_RO0) RO <= {P1, PO},
end
endmodule

/I Test bench for integrated system
module t_Prob_8_41 ();

wire [15: 0] RO;

reg [7: 0] Data;

reg En, Ld, clock, rst;

Prob_8_41 MO (RO, Data, En, Ld, clock, rst);

initial #200 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #10 rst = 1; #20 rst = 0; end
initial fork

#20 Data = 8'hab;
#50 Data = 8'hff;

#20 Ld = 0;

#20 En = 0;

#30 En = 1;// Drive to S_wait

#70Ld =1;// Returnto S_1to S_full tp S_wait

#80 Ld = 0;
#100 Ld =1; // Driveto S_idle
#100 En = 0;
#110 En =0;
#120 Ld = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

293

Name 0 40 80 120
clock _ O r it
rst 1

En J |

Ld e [1
CIr_P1_PO 1

Ld_P1 PO I —

Ld_RO M1 [

state[3:0] x X1 X2 Xa)¥ 8 X2)axesX 1
Data[7:0] > X a5 X ff

PL[7:0] XX X a5 X ff X 00
PO[7:0] XX X a5 X 00
RO[15:0] 00K X a5a5 X fiif

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

294

CHAPTER 9

9.1 (a) Asynchronous circutis do not use clock pulses and change state in response to input changes.
Synchronous circuits use clock pulses and a change of state occurs in reponse to the clock transition.

(b) The input signals change one at a time when the circuit is stable.

(c) The circuit is in a stable state when the excitation variables (YY) are equal to the secondary variables
(y) (see F. 9.1). Unstable otherwise.

(d) The total state is the combination of binary values of the internal state and the inputs.

9.2 Y1=X1'%p + Y1Xo Yo =Xy + X
XX, Y1
E——
YiY, 00 01 11 10

00 11 | o1
or| o0 | 11 X%, 00, 10, 11, 01, 11, 10, 00

X2
- 00, 00, 01, 11, 11, 01, 00
1o |@W|W| n e
Xl
10 00 | 11 | 11 | o0
]
Y,
9.3 (@)
X —————————— Y=XX 5+ (X XY
X, — =y
y
(b)
X X
X1Xy ! X1X, !
1
00 01 11 10 y 00 01 11 10
Yo,ooNERDDE
NonoolNEnunE
|]
XZ XZ
©

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

295

X, X
y 00 01 11 10

a |(2),0|(a).0|(a). 0| b.-
b |(0). 1| a- |(B).1|(b).1

(d) When the input is 01, the output is 0. When the input is 10, the output is 1. Whenever the input
assumes one of the other two combinations, the output retains its previous value.

9.4
Y =X+ XY, + X0y, Yo =X+ XYY + Xy,

X1XZ XlXZ X1X2
YN 00 01 11 10 YN 00 01 11 10

00 o1 |1 |10| of 0| 1|10
or| oo | o1 | 11 o1 o | 1| 1o
(@ o |@| 0| |1 |1|1]1
10 11 | o1 | 1 0 1| 1] 1|1

Transition Table Output Map

Z=X,tY,

YN 00 01 11 10

a=00 ,0[b,1 [c,1 |dO

b=01|a,0 J1l¢cl .0

c=11{(c) 1| b, 1 @,1 d 1

d=10{ ¢,1 |b,1 |c1 1

Flow Table

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

296

9.5
X1X2 X1X2
A2 00 01 11 10 A% 00 01 _11 10
a=00 1 | o1 0| oo fl1] 1
c=o01| oo | 11 0| o || 1]o
b=11] 00 | @ | W | & 1| o | o || o
10| 00 11 X X 10 0 0 X X
L 1
Noncritical o e ' .
races utput map: z = X, X,y', + X,y',
XX, Xi*z
1Y, 00 01 11 10 Yi¥o 00 01 11 10
00 1 00
01 1 01 1 1
11 | 1 11 1 1
10 L 1 X 10 1 X X
Y =X+ XY, Yo =X XY,
Xl :
Yl
XZ
.
y Y2
9.6
From total To total
state Y, Y, X, X, state Y, Y, % X,

11
10

0001§E

J Critical race

1
1

1 1011
0——>1100—>0100 Cycle
0

0

0

——> 1010 Critical race

1—>0 0 0 1 Noncritical race
1—0001
0——0100 Cycle

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

297
9.7 When all the inputs are equal to 1, both outputs are equal to 1. (See Fig. 9.11). Going from SR = 11 to SR
= 00 when C =1 produces an unstable output.
1
s D 0 1
1
C
1
L 1 O——
R
9.8 When C =1 and J = K = 1,the outputs complement and again repeat complementing as long as C -= 1.
u Q
c Lle
L 0 Q'
« = r
9.9 (@)
S1=X) Ri=Y,
S, =Xy, R,=X,
Y=S Ry =X+ Y,
Y, =S, Ry, =X +y + X5y,
Q=Y,
(b)
X1X2 Xlxz
Y1¥, 00 01 11 10 1Y, 00 01 11 10

00 1 | 1 0| oo | 1|1
01 00 | 11| 1 o | 1|0 | 1|1
oo |@W|wW 11| 1| 1|1

10 00 11 11 11 10 1 1 1 1

Transition table Output map

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

298

9.10
Y=xX,+ (X, +Xx,)y=S+RYy

X
1
X1X2

1
y 00 01 11 10

0 0 0 0 0

y[l 1 1 1 1

2
Transition map

Xl Xl
XlXZ 1 Xle 1
y 00 01 11 10 y 00 01 11 10
ol o 0 0 0 ol o 0 0 0
y [1] 1 1 1 1 y [1] 1 1 1 1
.] .]
X2 X2
S=xX, R=x'X,
1 1
X', —] R Y oox S Y
X 2 X 2
Il] X‘l T
X 2 T S X2 R

9.11 Use solution of Prob. 9.4 transition table.

XX, X%

Y1Y> 00 01 11 10 1Y, 00 01 11 10
00 0 0 1 1 00 X X 0 0
01 0 0 1 0 01 X X 0 X
11 X 0 X X 11 0 1 0 0

10 X 0 X X 10 0 1 0 0
SLEXX XY, Ry =x'X,

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

299

X1X2 X1X2
V1Yo 00 1Y, 00 01 11 10
00 0 00 0 0 X
01 0 01 0 0 0
11 X 1| o 0 0 1
10 1 10/ o 0 0 X

. R, =x' X,y +
S, =X Xy, 2 Xlx%zyiy !
The circuit may be drawn as in Fig. 9.38(b) or Fig. 9.46. It will require 6 NAND gates for the inputs to
the latches, 4 NAND gates for the two latches, and one NAND gate for the out put z = x, +y; = (X'2y'1)".

9.12
)
00 01 11 10
a @,OO b,- -\ c,- | Initial state
b| a- 00 d- | -- No change
of output
No change
Cl & |~ |0 @'OO of output
-) | XX, from01to 11
d = |t (D19 & | Condition ()]
No change
el a || o @’10 of output
No change
P as (D 9 - ot output
. XX, from10to 11
9| - |~ [@)OL h- | [Condition (b)]
No change
hia- I U of output
. - No change
b as (W04 d- | - | of output
9.13
Switch Output
input light (red = 1)
State 2 ? Comments
a 00 O No train in intersection
b 01 1 Trainturnson X, after state a
c 00 1 Train between two switches
d 10 1 Train turns on x, after state ¢
e 10 1 Train trains on x, after state a
f 00 1 Train between two switches
g 01 1 Train turns on x, after state f

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

300
Z=X,+Y,

YN _ 00 01 11 10

a ,0 b,- |- - e - /a\

b |c- SIS X, =1b ex, =1

oo [e Lo

X, =0¢ fx1:O
d a- |[-- |[-- 1 l l
x, =1d gx,=1

e |f- |-- |-- 1

f e |- |-

9 |a- I R
b

a,c X

(b, c) (b, e) c,) (d, 9) (e f) °
C X g
! b
d dex |acx |acCX
cf f

e i)

a.fx c,fy dex a, fx
f X c,f J a, fx J

bg x e

g |bgx Jacx |acx /o la fx X

a b c d e f d

There are two possibilities for a four-row flow table:
(@) (b,c) (d, g) (e, f) or (a) (b, e) (c, f) (d, g). Continue with the solution of Prob. 9.25.

914 (b
X1Xy X1Xy
y 00 01 11 10 y 00 01 11 10
a=0 | o 0 1 0 ol o (1
b=1 0 1 1 1 1] 0 0 0 0
Y = yX, + ¥X, + XX, Z=Yy'(X, +X,)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

301

9.15
00 01 11 10 00 01 11 10
00 0 X X X 00 0 0 X 0
01 0 1 X X 01 0 0 1 1
11 0 X 1 0 11 X 1 1 1
10 X 1 1 1 10 0 1 1 0
(@ (b)
9.16
b | acx
b,d x
C|lbdx | acx
d X X X
e X X X a, e x
a b c d
9.17
b |bc x
. (a,©) (b, €) (d, h) (7) (9)
! See solution to Prob. 6.14 for the reduced state
¢ |be. dfx table.
c,e X
d X X X
b, c x
e)
d.f x Jo|d f x X
f X X X X X
g X X X X X X
h X X X / X X X
a b c d e f g

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

302
9.18 (a)
a
h b 1:(ab)(ae)(af(@g)(ah)
(b, g) (b, h) (c, d) (c, h)
(d,) (d,h) (e, T) (e,) (e, h)
g c (f, 9) (f, h) (g, h)
2,3:(a,b)(c,d) e, f,g,h)
f d
e
(b)
a .
. b 1:(a,e) (af) (b, c) (b, j) (c, d)
,/// (d,9) (e,) (g, h)
i ¢ 2:(a, e, f) (b,c) (b,])) (c,d)
(d, 9) (g, h) (k)
h d _
\;/’ e 3:(a e) (b)) (c, d) (g h) (k)
9.19
XlXZ X1X2
Yi¥, 00 01 11 10 Y1, 00 01 11 10
a=00| 00 00 01 10 00 0 1 X X
b=01| 00 01 01 11 01 0 0 0 0
c=11| 00 XX 10 11 11 0 X X 0
d=10[00 00 10 10 10 X 1 1 1
Transition table Output map =z
a=00 b=01
S, = x'x'2
R =X,
S,= xllxz‘y1
R, = xllx2 + X?yl
\, = XZy 2 + le 2

d=10 \\ c=11
Noncritical race

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

303

9.20
a b 00 01 11 10
o0o=a| (a) |49 |(d) | ¢
f ¢ ou=blag | ®|®]| d
_ 10=c|.dh | () [bh|()
e d
Transition diagram 111 =d @ @ e @
00 01 11 10 mo=e| f | ¢ | ()] ¢
0 a g b f
ow=f|(®) | b | a |
1 c h d e
001=g a h b -
Binary assignment
(Add states g and h) 101=h d d g -
Modified flow table
9.21
a b 00 01 11 10
000 = a, c, d,
01l=a, c, d,
4 100 = bl al Cl
d c
Transition diagram 111=h, a,

©©®©|©
GlS,

Binary assignment
yassig 101=d,

00 01 11 10 110=c, @ @ d,
0] a b o d
S R 010 =, @ @ d,
1 c d a b
S I IR 001 =d, b, | a

Flow table

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

304

9.22 F(A,B,CD)=x(0,2,6,7,8, 10, 12)
F=AD"+AC'D’' + A'BC + A’'CD’ (Note: the term A'CD' is redundant)
CD C
AB 00 01 11 _10
m, my M, m,
00 1 1
m4 m5 6
L
My, My3 Mys My, / B
11 1
A mB m9 mll mlO
10 1 1
L
D
9.23
Hazard
Did not
change yet 01 11 10
x,=0 1—1—0 0 0
X, W} 1| o0
X;=0 0—>1—1
Y = (% +X3) (Xp + X3) (X + X3)
Add a third term A
9.24
Il
v I
X, y
. [>
X3
X, —, .
D; [
X', _|_
X2
X' _l_

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

305

9.25 Continued from solution to Prob. 9.13. The four row table obtained from the compatibles (a) (b, ¢) (d, g)
(e,) requires three state variables because there is a critical race. Use (a) (b, €) (c, f) (d,).

00 01 11 10 Transition diagram

00=a @’0 b,' - - b:' a=00 b=01

0l=b |c,- JA 1

1n=c |(©)1fd- |-- |d- . 4
d=10 c=11

10=d | a,- J1 - - 1

X1X2
Y1¥, 00 01 11 10
My m; My m,

00| O 0 X 0

01 1 0 X 0

mS m9 m11 0 mB mg m11 mlO
101 O 0 X 0 10 x 1 X 1
Y, =Xy, Xy, X XY, Y, = XY Xy + X XY, Output map
2=y, +Y,

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

306

CHAPTER 10

10.1 Fan-out = lg /). = 20/2 = 10; lon /1;4 = 1/0.050 = 20
Power dissipation 5 x (10 + 20)/2 = 75 mW for 4 gates, 75/4 = 18.75 mW per gate
Propagation delay = 3 ns Noise margin =2.7-2=0.70r0.8=05=0.3V

10.2
3.6V 36V

450 Q each 900
Vo 07V

Req =450/5=90 Q

§ 640 O 640 O

E
)

(a) Vo =90/(640 + 90) x 3.6 + 0.7 x 640/(640 + 90) = 0.444 + 0.614 = 1.058 V

(b)
ilcs

§64OQ

les/hee = (3.6 — 0.2)/640/20 = 0.266 mA
For saturation: Ig = (V;— 0.7)/450 > 0.266 mA
V;>0.266 x 102 x 450 + 0.7 = 0.82 VV

(c) 1.058-0.82=0.238V

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

307

10.3

cc=5V

S
S5k | |
Vo b "
— =
5V —id— 5 k0
Vi

Vp=0.7+0.7+0.7 = 2.1 V (Input diodes are off)

lg = (5 — 2.1)/5000 — 0.7/5000 = 0.58 — 0.14 = 0.44 mA
les = (5—0.2)/2000 = 2.4 mA

The transistor is saturated because I, = 0.44 mA > lcs/hee = 2.4/20 mA = 0.12 mA

10.4 @) lg=(5-0.2). 2K = 2.4 mA
(b) 1. = (5-0.9)/ rK = 0.82 mA
(©) les =l + N1 =24 +0.82N
(d) Ighee=0.44x20 =8.8mA
lcs=2.4+0.82N< Ig hee = 8.8
N < (8.9-24)/0.82=78

(e) Fanout=7

+5V 5V 45V 45y
IR
§2K 5K §5K §5K
Y=02V 1
l,=0.44 mA K
—/\/\/\fg K 2
K N
e <7|L

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

308

10.5

+5V

(@) Ve(Q1) =21V Vc(Q) =14V
Vp(Q2) =14V V(Q,) =09V
VB(Q3) =07V Vc(Q3) =02V
VE(Q) =3.0V Ve(Qy) =07V
(b) Igy =1g2=(5-2.1)/4000 = 0.725 mA
lc, = (5-0.9)/1600 = 2.56 mA
hee (Q2) > 2.56/0.726 = 3,53
(€) lgz=1lgy + lcp —0.7/1000 = 0.725 + 2.56 — 0.7 = 2.585 mA2.585 mA
(d) Icg < IBS hFE =2.585x6.18 = 16 mA16 mA
() (6-0.2)/R_<16 mA
R.>4.8/16 x 10 = 4800/16 = 300
10.6 (a)
+5V

Output

Open collector Open collector
TTL gate TTL gate

If one or more transistor are ON, the output is at a low level. The output is high if and only if all
transistors are off.

Q1 Q2 ‘ Output AND
ON ON LOW =
ON OFF LOW =
OFF ON LOW =
OFF OFF HIGH =

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

309

(b) A'B' = (A + B)

<

cc

10.7
+5V
gl 6 kQ § 130 Q
16V
g™
TTL-1
See Prob. 10.5

15(Q4) = (5-1.6)/1600 = 2.123 mA

1c(Q4) = (5-1.1)/130 = 30 mA

IL=1g+1c=2125+ 30 =32.125 mA

Note: 32 mA of current flows between the two circuits provided Q4 (of TTL -1) and Q3 (of TTL — 2) are

both saturated.

10.8
(@) (b) (©
C=L A=L C=L A=H C=L A=H

Q1 (base-emitter) ON OFF ON
Q1 (base-collector) OFF ON OFF
Q2 OFF ON OFF
Q3 OFF ON OFF
Q4 Totem-pole output ON OFF OFF
Q5 ON OFF OFF
Q6 (base-emittter) ON ON OFF
Q6 (base-collector) OFF OFF ON
Q7 OFF OFF ON
Q8 OFF OFF ON
State of output HIGH LOW HIGH IMPEDANCE

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

310

10.9 (a) When one or more inputs are HIGH, Q5 is OFF and the input transistor(s) is ON.

GND
1
v
Re1 § Re, =220 Q
J
0.8V
Q
16V
I |
§ 7790
52V

le = (5.2 - 1.6)/779 = 4.62 mA
Virer = 4.62 x10%x 220 - 1.02 V

(b) When all inputs are low, Q5 conducts and the input transistors are OFF.

GND
T
V,
Rz § Re, =2450
!
1.3V
4@ QS
21V
I |
§ 779 Q
52V
le=(5.2-2.1)/779 =4 mA
Vire2 =4 x10° x 245 =0.98 V
10.10 Noise margin=0.6-0.3=0.3V
10.11
+5V
GND GND A B ‘ v OR
BV Y, -18V (L) =
-1V GND 08V (H) =
A B GND -1V 08VH) =
Output GND GND -0.8V (H) =
Y
-1V=0,GND =1
Vg =-52V

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

311
10.12
VDD
% Y
A
s I
TL
B D
X |
10.13
@ (b) Ve
Voo A ”4_1
A e : ,
Y
A | C -
B | 5
I
o] | v
0 | 4 b be e
10.14
A
A B TGl TG2 Y
>° 0 0 Close Open 1 .
| 0 1 Close Open 0 |=B
1 0 Open Close 0
B {>c 161 1 1 Open Close l}:
—Y
@]
TG2
[|
10.15

Add another level to the diagram of Fig. 10.26 and a third selection input, S,. The first level is controlled by
Sy and has 8 transmission gates between the data inputs and the four lines labeled I ... I in Fig. 10.26. The
other two levels are as in Fig. 10.26 except that the second level is controlled by S; and the third level is
controlled by S,.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

312

10.16

D 61 h 63 |y Dc Q
= [

TG2 TG4

4|>¢, | | Q

/I Test bench for NAND2

10.17

module t_ NAND?2;
reg A, B;
wire Y;

NAND2 MO (Y, A, B); /I Instantiate NAND2

initial #100 $finish;
initial fork

A=0;

B=0;

#5B=1;

#10A =1,

#15B =0;
join

initial $monitor ($time, ,"A =%b B =%b Y =%b", A, B, Y);
endmodule

/ICMOS 2-input NAND Fig. 10.22(b)

module NAND2 (Y, A, B);
input A, B;
output Y;
supplyl PWR;
supply0 GRD;
wire W1; /I terminal between two nmos
pmos (Y, PWR, A); /I source connected to Vdd
pmos (Y, PWR, B); /Il parallel connection

nmos (Y, W1, A); /I serial connection

nmos (W1, GRD, B); // source connected to ground

endmodule

0A=0B=0Y=1

5A=0B=1Y=1

10A=1B=1Y=0

15A=1B=0Y=1
Nameo||||||||||50|||||
A |
B I
Y LI

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

313

CHAPTER 11

11.1 Oscilloscope display:
clock

QA

QB

Qc

QD

BCD count: Oscilloscope displays from 0000 to 1001
Output pattern:

QA =alternate 1's and Os

QB =Two 1's, two 0's, two 1's, four 0's

QC =Four 1's, six 0's

QD =Two 1's, eight O0's.

Other counts:

() 0101 must reset at 0110 — connect QB to R1, QC to R2

(b) 0111 must reset at 1000 — connect QD to both R1 and R2
(c) 1011 must reset at 1100 — connect QC to R1, QD to R2

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

314

11.2 Truth table:

Inputs
A B NAND NOR NOT(A) AND OR XOR
00 1 0 1 0 0 0
01 1 1 0 0 1 1
10 1 1 1 0 1 1
11 0 1 0 1 1 0
Waveforms:
QA
0 1 0 1
o]}
0 0 1 1
NAND(7400)
1 1 1 0
NOR(7492)
1 0 0 0
NOT(A (7404)
1 0 1 0
AND (7408)
0 0 0 1
OR (7432)
0 1 1 1
XOR (7486)
0 1 1 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

315

11.3

Logic Diagram

y

00 01 11 10

z
m; m, Ms
) [™ 7400
L
z
Boolean Functions: Boolean Functions:
CD C CD C
] T
AB 00 0l 11 10 AB 00 01 11 10
mO ml m3 mZ m0 ml m3 mZ
00 1 1 00 1
m4 m5 m7 m6 m4 7 mG
01 1 1 01 1
my, My3 Mys My B LY 15 L B
11 1 1 11 1
A mB m9 mll mlO A mB m9 mll mlO
10 1 1 1 10 1 1 1
L Ly
D D
F.= C'+ AB'D’ F,=BD+ CD + AB'D'
2 1Cs: 7400, 7410
Ny 1 -
L}L
A
° 0 >

B
[

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

316

Complement:
CD C
——
AN 0 01 11 10 D —[3,_
mO ml m3 mZ
00| o 1 1 1 B LD F
mA m5 m7 mg I__
01| o 1 1|0 c '
m12 m13 m15 m14 B L —}L
11| 0 1 1 0 D -
A Mg My Pr My, _3’_,_
10 0 1 1 1
2-7400 ICs
D
F=D+B'C
F' =C'D'+BD'
11.4
Design Example:
CD C
——
AB 00 _o01 11 10 F=AB'+BC +BD
mO ml mS mZ
00 A
I
m, Mg 7 My _3)—
01 1 1 1 i
s ¢ D i
My Mz m; My C
11 1 1 1
A et D] 1/37410
10 1 1 1 1 7400
L
D

F=xy+xz+yz

BD; F

i

1/3 7410
7400
A— Peven
B——7
Podd
<)
D— Xol=x

VCC

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

317

Decoder Implementation e g 9— |
1 —
F,=xz+xyz =2(0,57) X _E \ 12 Z_I_ 3
F,=xy+xyz =2%(23,4 y 12
2 yrxy () 7 74155

F,=xy+xyz=2Z(1,6,7)

o1

i

OO X WO
:
;

~N~Noo O WNERLO
ol~
[N
~N N P
NTI

L

8 7410

115 Gray code to Binary — See solution to Prob. 4.7.

9's complementer — See solution to Prob. 4.18.

w=AB'C
x=BC'+B'C
y=C

z=D'
E=AB+AC

3 1Cs: 7400, 7404, 7410

B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

318

11.6
Four 7451's
T Mux A > A
: ; > Mux B B 7447
See mt*)llplergelntatlon 8 S
tables below — Mux C C Fig. 118
T Mux D D
C| B A
X_/
—_—
Z_/
A=23(0,2736,7,8,9 12,13)
B=2(0,2,3,4,512, 13, 14)
c=2(,12356,9, 10,13, 14)
D=2(0,7,11)
Mux A Mux B
DO D1 D2 D3 D4 D5 D6 D7 DO D1 D2 D3 D4 D5 D6 D7
1 w w W owowww w0 w o ow 1 1 w O
Mux C Mux D
DO D1 D2 D3 D4 D5 D6 D7 DO D1 D2 D3 D4 D5 D6 D7
w' 1 w oW 0 1 1 0 w' 0 0 w 0 0 0 w'
11.7
Half - Adder
X —
y i) >————S

-

b —:D—L}C

z

Parallel adder - See circuit of Fig. 11.10.
Adder-subtractor — See circuit of Fig. 11.11.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

319

Inputs Outputs
Operation M A B C, C,
9+5=14 0 1001 0101 O 1110 0 sum < 15
9+9=19=16+2 0 1001 1001 O 0010 1 sum > 15
9+15=24=16+8 0 1001 1111 O 1000 1 sum > 15
9-5=4 1 1001 0101 1 0100 1 A>B
9-9=0 1 1001 1001 1 0000 1 A=B
9-15=-6 1 1001 1111 1 1010 0 A<B
A<B
. c4 '|> z
A ——— >
& A>B
Subtractor y
S —| o
B 4 Fig. 11.11 A=B
co S2 —| S
we1—L | st —{>=1

11.8 SR Latch: See Fig. 5.4.

D Latch:

Let CP = C, x = output of gate 4.

x=[(DC)C]' = (D'CY

w

¢ = Hy—

Master-Slave D Flip-Flop: The circuit is as in Fig. 5.9.

The oscilloscope display:

Clock

Master Y

Slave Q

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

320

Edge-Triggered D Flip-Flop: Circuit is shown in Fig. 5.10.

N

Clock

Output

IC Flip-Flops:

Connect all inputs to toggle switches, the clock to a pulser, and the outputs to indicator lamps.

11.9 Up-Down Counter with Enable:

| | —| 7476
Q1 Q Q1 Q

clock

7410 E

A

Jg = Kg = E (Complement B when E = 1)
Ja=Ka=E (Bx + BX)
Complement A when E =1 and:
B =1 whenx =1 (Count up)
B =0 when x =0 (Count down)
State Diagram:

JA=B b= AX+AX = (A®X) Y=A®B®x
Ka=B' Kg= AX + AX' = (A @ x)'

A
X ﬁ—ﬁ% (Aex) =JB=KB
Logic 1

Design of Counter: ABCD

Ja=Ka=B(CD) 0000 —» 0101 — 0110
Js=Kg=CD 1000 — 1001 — 1010
Je=D Ke = AD

JD = KD =1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

321

11.10 Ripple counter: See Fig. 6.8
Down counter: Either take outputs from Q' outputs or connect complement Q' to next clock input.

Synchronous counter: See Fig. 6.12.

BCD counter: See solution to Prob. 6.19.
Unused states:

1

1

1

» ® G
ORORO

@ @& ¢

Binary counter wth parallel load:
Connect QA and QD through a NAND gate to the load. See Fig. 6.15.

11.11 Ring counter:

See Fig. 6.17(a).
States of register:

QA QB QC QD
1 0 0 O
0 1 0 O
0 0 1 0
0 0 0 1

Switch-tail ring counter: See Fig. 6.18(a). Connect (QD)' at pin 12 to the serial input at pin 4. State
sequence as in Fig. 6.18(b).

Feedback shift register: Serial input = QC @ QD (Use 7486).

Sequence of states:

QA QB QC QD

PR OoOOoR
P OoOOoRr o
coor oo
orooo
PR OoORrOo
P ORrOoPR
O OR K
P OR RO
OO ORr Kk
cCOoORrRkRRE
(= N
PR Rk o

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

322

Bidirectional shift register with parallel load:

Function table:
74195 74157
Clear Clock SH/LD STROBE SELECT Function

Async clear

Shift right (QA > QB)
Shift left (Select B)”
Parallel Load (Select A)
Synchronous clear

PR R PRPO
> > > > X
O 0 Oor X
= O o X X
X Ok X X

* B inputs come from QA-QD shifted by one position.

11.12
To serial input of 74197

o — \ﬁ\ \
o 7
@ X
I) —
QD y - l_ _C>J °
74197 ' 4>—) K
oy [

f_ M = 0 for add,
- 1 for subtract

11.13 Testing the RAM:
To 4 switches

|]

D1 D2 D3 D4 vee
From pulser > A QA A —
> B QB B 7447 GND
7730 Read

R1 7493 QC C Fig.11.8 ME
R2 D D e _
Q To pulser Write

GND S1 S2 S3 $4

I
vce 7404

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

323

Memory Expansion:

Output
datato
indicator

lamps
ME 7489 P

Input
address

Input D2
data D3 WE

7489

Read

D2 Pulser
D3 WE Write

11.14 Circuit Analysis — Answers to questions:

1) Resets to 0 the two 74194 ICs, the two D flip-flops, and the start SR latch. This makes S1S0 = 11
(parallel load).

2) The start switch sets the SR latch to 1. The clock pulses load 0000_0001 into the 8-bit register. If the
start switch stays on, the register never clears to all 0s when S1S0 = 11 (right-most QD stays on).

3) Pressing the pulser makes S1S0 = 10 and the light shifts left. When QC becomes 1, the start SR latch
is cleared to 0. When QA of the left 74194 becomes 1, it changes S1 to 0 (through the PR input) and
S0 to 1 (through the CLR input. with S1S0 = 01, the single light shifts right.

4) If the pulser is pressed while the light is moving to the left or the right, S1SO becomes 11 and all Os
are loaded into the register in parallel. The light goes off.

5) When the right-most QD becomes a 1, S1S0 changes from 01 (shift right) to 11 (parallel load). If the
pulser is pressed before the next clock pulse, S1S0 goes to 10 (shift left). If not pressed, an all 0s
value is loaded into the register in parallel. (Provided the start switch is in the logic 1 position.)

Lamp Ping-Pong
Add a left pulser. Three wire changes to the D flip-flop on the left:
1) Connect the clock input of the flip-flop to the pulser.

2) Connect the D input to the QA of the left 74197
3) Connect the input of the inverter (that goes to PR) to ground.

Counting the Losses

v

Fig. 11.8

QDb > 3—> A 7493
Right-most W —|_ Fig. 11.4

flip-flop of
S1 S0
shift register

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

324
11.15 Clock Pulse Generator
t, = 0.693 RgC = 10°°
Rg = 10 /(0.693 x 0.001 x 10°®) = 10/ 0.693 = 1.44 KQ (Use Rg = 1.5 KQ)
tH/tL =0.693 (RA + RB)C /(0693 RB C) = (RA + RB) / RB =9/1=9
9Rg= RA+Rg RA=8Rg=8x15KQ =12 KQ
Oscilloscope Waveforms (Actual results may be off by + 20 %.)
5V
Pin 3
output
oV
4,‘ 1lus ! 9ps |
Pin 2 or 6
across C 3.3V =066V
11V =022V,
33V
17V

Pin7
Collector
ov

Variable Frequency Pulse Generator:

20 KHz: 10°%/20=10.05x10°=50 ps
100 KHz: 10°/100 = 10° =10 ps

tH:49HS:(RA+RP+RB)/RB:49/1:49
Re = 48 Rg — Ra = 48 X 1.5 — 11 = 60 KO

11.15 Control of Register

7476

out } J Q|— carry
cr —>
_l>‘,_ﬁ 1K QB
—nmn _J/
(74194 Sw, Sw,
SW, S,
0 0 No change
0 1 shift right
§
W, ’ 1 1 Load

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

325

Checking the Circuit:

Carry Register
Initial 0 0000
+ 0110 0 0110
+ 1110 1 0100
+ 1101 1 0001
+ 0101 0 0110
+ 0011 0 1001

Circuit Operation:

Address Carry RAM
0 0 0110 RAM Value

1 0 0110 RAM + Register
2 0 0011 Shfit Register

3 1110 RAM Value

4 1 0001 RAM + Register
5 1 1000 SHIFT

6 1101 RAM Value

7 1 0101 RAM + Register
8 1 1010 SHIFT

9 0101 RAM Value

10 0 1111 RAM + Register
11 0 0111 SHIFT

12 0011 RAM Value

13 0 1010 RAM + REgiser
14 0 0101 SHIFT

11.17 Multiplication Example)11 x 15 = 165)
Multiplicand B = 1111

C A Q P
Initial: T,=1 0 0000 1011 0000
T,=1 AddB;P<=P+l 1111

0 1111 1011 0001

T,=1 Shift CAQ 0 0111 1101 0001
T,=1 AddB;P<=P+l 1111

1 0110 1101 0010
T,=1 Shift CAQ 0 1011 0110 0010
T,=1 P<=P+l 0 1011 0110 0011
T,=1 Shift CAQ 0 0101 1011 o0011
T,=1 AddB;P<=P+1 1111

N

[y

0100 1011 0100
T,=1 Shift CAQ 0 1010 0101 0100

T,=1 (Because P.=1) 1010 0101 =Product

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

326

Data Processor Design

Load Q Load A Shift AQ Register Q Register A

T T,Q T, 5, S, S; S,
0 0 0 00 00
1 0 0 11 00
0 1 0 00 11
0 0 1 01 01
S]_(Q) = T]_ S]_(A) = Tle
S,Q=T,+T, Sp(A) =T,Q; + T,

of A

v

7474
D E

74161

v

A P
Asynchronous |_ o
clear P, A, and E

CP

Design of Control: See Section 8.8.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

327

SOLUTIONS FOR SECTION 11.20

Supplement to Experiment 2:

@) . ‘_|>,_ WIDL?’ -
y & DW

Initially, with xy = 00, w1l =w2 =1, w3 =w4 = 0 and F = 0. w1 should change to 0 10ns after xy
changes to 01. w4 should change to 1 20 ns after xy changes to 01. F should change from 0 to 1 30 ns
after w4 changes from 0 to 1, i.e., 50 ns after xy changes from 00 to 01. w3 should remain unchanged
because x = 0 for the entire simulation.

(b)

‘timescale 1ns/1ps

module Prob_3_33 (output F, input X, Y);
wire wl, w2, w3, w4;

and #20 (w3, x, wl);
not #10 (w1, x);
and #20 (w4, y, wl);
not #10 (W2, y);
or #30 (F, w3, w4);

endmodule

module t_Prob_3_33 ();
reg x,y;
wire F;

Prob_3 33 MO (F, x, y);

initial #200 $finish;
initial fork
x=0;
y=0;
#100y =1,
join
endmodule
(c) To simulate the circuit, it is assumed that the inputs xy = 00 have been applied sufficiently long for
the circuit to be stable before xy = 01 is applied. The testbench sets xy =00 att=0ns,and xy =1latt=

100 ns. The simulator assumes that xy = 00 has been applied long enough for the circuit to be in a stable
state at t = 0 ns, and shows F = 0 as the value of the output at t = 0. The waveforms show the response to

xy =01 applied at t = 100 ns.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

328
0.000ns 66.670ns 133.340ns 200.010ns
Name 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1
X
y
wl
w2
w3
w4
F
«~—— A=50ns —

Supplement to Experiment 4:

(@)

/I Gate-level description of circuit in Fig. 4-2
module Circuit_of_Fig_4_2 (
output F1, F2,
input A, B, C);
wire T1,T2, T3, F2_not, E1, E2, E3;
orG1 (T1, A, B, C);
and G2 (T2, A, B,C);
and G3(EL, A, B);
and G4 (E2, A, C);
and G5 (E3, B, C);
orG6 (F2, E1, E2, E3);
not G7 (F2_not, F2);
and G8 (T3, T1, F2_not);
orG9 (F1, T2, T3);
endmodule

module t_Circuit_of_Fig_4_2;
reg [2:0] D;
wire F1, F2;
parameter stop_time = 100;

Circuit_of_Fig_4_2 M1 (F1, F2, D[2], D[1], D[O]);

initial # stop_time $finish;
initial begin /I Stimulus generator
D = 3'b000;
repeat (7)
#10D =D + 1'b1,;
end

initial begin

$display "A B C F1 F2");

$monitor ("%b %b %b %b %b", D[2], D[1], D[O], F1, F2);
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

329

/*

A B C F1 F2
0O 0 O 0 O
o 0 1 1 O
0o 1 0 1 O
o 1 1 0 1
1 0 0 1 O
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
*

The simulation results demonstrate the behavior of a full adder, with F1 = sum, and F2 — carry.

Name (O ‘ | 60‘
A [
B I N RO
C [\ [\ [\ [
F1 \ \ \
E2 \ \ \

(b)

/I 3-INPUT MAJORITY DETECTOR CIRCUIT.
/I Circuit implements F = xy + xz +yz.
module Majority_Detector (output F, input X, y, 2);
wire wl, w2, w3;
nand nl(wl, x, y),
n2(w2, X, z),
n3(w3,y, 2),
n4(F, wl, w2, w3) ;
endmodule

/I Test bench
/[Treating inputs to majority detector as a vector, reg [2:0]D; //D[2] = x, D[l] =y, D[0] = z. wire F;
module t_Majority_Detector ();

wire F;

reg [2: 0] D;
wire x = D[2];
wirey = D[1];
wire z = D[O];

Majority_Detector MO (F, X, vy, 2);

initial #100 $finish;
initial $monitor ($time,, "xyz = %b F = %b", D, F);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

330

initial begin
D=0;
repeat (7)
#10D=D + 1,
end
endmodule

Simulation results:
Oxyz=000F=0
10xyz=001F=0
20xyz=010F =0
30xyz=011F=1
40xyz=100F =0
50xyz=101F=1
60xyz=110F =1
70xyz=111F=1

Name |0 | 60

Supplement to Experiment 5: See the solution to Prob. 4.42.

Supplement to Experiment 7:

(a)

/IBEHAVIORAL DESCRIPTION OF 7483 4-BIT ADDER,

module Adder_7483 (
output S4, S3, S2, S1, C4,
input A4, A3, A2, A1, B4, B3, B2, B1, CO0, VCC, GND

);

/I Note: connect VCC and GND to supplyl and supplyO in the test bench
wire [4: 1] sum;
wire [4: 1] A = {A4, A3, A2, Al};
wire [4: 1] B = {B4, B3, B2, B1};
assign S4 = sum[4];
assign S3 = sum[3];
assign S2 = sum[2];
assign S1 =sum[1]

assign {C4, sum}=A + B + CO;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

331

module t_Adder_7483 ();
wire S4, S3, S2, S1, C4;
wire A4, A3, A2, Al, B4, B3, B2, B1;
reg CO;
supplyl VCC;
supply0 GND;
reg [4:1] A, B;
assign A4 = A[4];
assign A3 = A[3];
assign A2 = A[2];
assign Al = A[1];
assign B4 = B[4];
assign B3 = B[3];
assign B2 = B[2];
assign B1 = B[1];

Adder_7483 MO (S4, S3, S2, S1, C4, A4, A3, A2, Al, B4, B3, B2, B1, CO, VCC, GND);

initial #2600 $finish;
initial begin
A=0;B=0;C0=0;
repeat (256) #5 {A, B} ={A, B} + 1;
A=0;B=0;C0=1;
repeat (256) #5 {A, B} ={A, B} + 1;
end
endmodule

(b)
module Supp_11_17b (output [4: 1] S, output carry, input [4: 1] A, B, input M, VCC, GND);
wire B4, B3, B2, B1;
xor (B4, M, B[4)]);
xor (B3, M, B[3]);
xor (B2, M, B[2]);
xor (B1, M, B[1]);
Adder_7483 MO (S[4], S[3], S[2], S[1], carry, Al4], A[3], A[2], A[1], B4, B3, B2, B1, M, VCC, GND);
endmodule

module Adder_7483 (
output S4, S3, S2, S1, C4,
input A4, A3, A2, Al, B4, B3, B2, B1, C0O, VCC, GND
);
/I Note: connect VCC and GND to supplyl and supplyO in the test bench
wire [4: 1] sum;
wire [4: 1] A = {A4, A3, A2, Al};
wire [4: 1] B = {B4, B3, B2, B1};
assign S4 = sum[4];
assign S3 = sum[3];
assign S2 = sum[2];
assign S1 = sum[1];
assign {C4, sum} =A + B + CO;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

332

module t_Supp_11_17b ();
wire [4: 1] S;
wire carry;
reg CO;
reg [4: 1] A, B;
reg M;
supplyl VCC;
supplyO GND;

Supp_11_17b MO (S, carry, A, B, M, VCC, GND);
initial #2600 $finish;
initial begin
A=0;B=0;M=0;
repeat (256) #5 {A, B} ={A, B} + 1;
A=0;B=0;M=1;
repeat (256) #5 {A, B} ={A, B} + 1;
end
endmodule

(¢), (d)
module supp_11_7c (output S3, S2, S1, SO, C, V, input A3, A2, A1, AQ, B3, B2, B1, BO, M);
wire [3: 0] Sum, B;
assign S3 = Sum[3];
assign S2 = Sum[2];
assign S1 = Sum[1];
assign S0 = Sum[0];
wire [3:0] A={A3, A2, Al, AC};
xor(BJ[3], B3, M);
xor(B[2], B2, M);
xor(B[1], B1, M);
xor(B[0], BO, M);
xor (V, C, C3);
ripple_carry_4_bit_adder MO (Sum, C, C3, A, B, M);
endmodule

module t_supp_11_7c ();
wire S3, S2, S1, SO, C, V;
reg A3, A2, Al, A0, B3, B2, B1, BO, M;
wire [3: 0] sum = {S3, S2, S1, S0};
wire [3: 0] A = {A3, A2, Al, AC};
wire [3: 0] B = {B3, B2, B1, B0}

supp_11_7c MO (S3, S2, S1, SO, C, V, A3, A2, Al, A0, B3, B2, B1, BO, M);

initial #2600 $finish;
initial begin
{A3, A2, A1, A0, B3, B2,B1,B0}=0; M =0;
repeat (256) #5 {A3, A2, Al, A0, B3, B2, B1, B0} = {A3, A2, Al, AO, B3, B2, B1, B0} + 1;
{A3, A2, A1, A0, B3,B2,B1,B0}=0; M =1,
repeat (256) #5 {A3, A2, Al, A0, B3, B2, B1, B0} = {A3, A2, Al, AO, B3, B2, B1, B0} + 1;
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

333
module half_adder (output S, C, input x, y); /I Verilog 2001, 2005 syntax
/Il Instantiate primitive gates
xor (S, X, y);
and (C, x, y);
endmodule
module full_adder (output S, C, input X, y, 2);
wire S1, C1, C2;
/I Instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, z2);
or G1 (C, C2, C1);
endmodule
/I Modify for C3 output
module ripple_carry_4_bit_adder (output [3: 0] Sum, output C4, C3, input [3:0] A, B, input CO0);
wire C1, C2; [/l Intermediate carries
/I Instantiate chain of full adders
full_adder FAO (Sum[0], C1, A[Q], B[0], CO),
FA1 (Sum[1], C2, A[1], B[1], C1),
FA2 (Sum[2], C3, A[2], B[2], C2),
FA3 (Sum[3], C4, A[3], B[3], C3);
endmodule
Addition:
Narne 3]\-2 | | | | | | | | ‘3?\’2 | | | | | | | | ‘3572 | | | | | | | | ‘37\2 | | | | | |
A[3:0] 3 4
B30l | /15 (0o N 1 2)3) 45 (67 89 (1)m 1)
M

smE:0] | 1) 2 f 435 (6 (7 8) 9 1 1 (12)13)14)15) o |
c —

Vv \

Subtraction:

1740 1760 1780 1800
Narne ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | |
A[3:0] 5 X 6
B[3:0] 12013 (14) 15)01) 23 4)f5)e6)f7) 8 9 |
M
sum3:0] | 9 L 8) 7 6 5 (a3 2) 1o)15)14 13
C [\
V

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

334

Supplement to Experiment 8:
@

module Flip_flop_7474 (output reg Q, input D, CLK, preset, clear);
always @ (posedge CLK, negedge preset , negedge clear)

if (Ipreset) Q <=1y,

else if (Iclear) Q <=1bO;

else Q<=D;
endmodule

module t_Flip_flop_7474 ();
wire Q;
reg D, CLK, preset, clear;

Flip_flop_7474 MO (Q, D, CLK, preset, clear);

initial #150 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial fork
preset = 0; clear = 0;
#20 preset = 1,
#40 clear = 1,

join

initial begin D = 0; #60 forever #20 D = ~D; end
endmodule

Name

(o 1N <R I I I Y Y O Y B
preset |— |

clear
D I N L
Q I N I

(b)

//Solution to supplement Experiment 8(b)
/IBehavioral description of a 7474 D flip-flop with Q_not
module Flip_Flop_7474_with_Q_not (output reg Q, Q_not, input D, CLK, Preset, Clear);

always @ (posedge CLK, negedge Preset, negedge Clear)
/* case ({Preset, Clear})

2'b00: begin Q <=1; Q _not<=1;end

2'b01: begin Q <=1; Q_not <=0; end

2'b10: begin Q <=0; Q_not<=1; end

2'b11: begin Q <=D; Q_not <=~D; end

/I NOTE: Q_not <= ~Q will produce a pipeline effect and delay Q_not by one clock
endcase*/
if (Preset ==0) begin Q <=1, if (Clear == 0) Q_not <= 1; else Q_not <= 0; end
else if (Clear == 0) begin Q <=0; Q_not<=1; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

335
else begin Q <= D; Q_not <= ~D; end
endmodule
/I Note: this model will not work if Preset and Clear are // both brought low and then high again.
/I A case statement for both Q and Q_not is also OK.
module t_Flip_Flop_7474_with_Q_not ();
wire Q, Q_not;
reg D, CLK, Preset, Clear;
Flip_Flop_7474_with_Q_not MO (Q, Q_not, D, CLK, Preset, Clear);
initial #250 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Preset = 1; Clear = 1;
#50 Preset = 0;
#80 Clear =
Name © 80 | 160 | 240

CLKk LIy e
Preset | |

Clear

D - rfr s rrr—rrr rrf
Q I D N L L r o rrr
Qnot LI LT LT | L I LI

Supplement to Experiment #9:
(@)
module Figure_11_9a (output reg vy, input x, clock, reset_b);
reg [1: 0] state, next_state;
parameter SO = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
always @ (posedge clock, negedge reset_b) if (reset_b == 0) state <= S0; else state <= next_state;
always @ (state, x) begin
y=0;
case (state)
S0:if (X) begin next_state = SO; y = 1; end else begin next_state = S1;y = 0; end
S1:if (xX) begin next_state = S3; y = 0; end else begin next_state = S2;y = 1; end
S2:if (x) begin next_state = S1; y = 0; end else begin next_state = S0; y = 1; end
S3:if (X) begin next_state = S2; y = 1; end else begin next_state = S3;y = 0; end
endcase
end
endmodule

module t_Figure_11 9a ();
wirey;
reg x, clock, reset_b;

Figure_11_9a MO (y, x, clock, reset_b);

initial #200 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

336

initial fork
reset b =0;
X =0; I/ SO. S1, S2 after release of reset_b
#10reset_b=1;
#40x = 1, // Stay in SO
#60 x=0; /I S1, S2
#80 x = 1; /l s1, S3,
#100 x =0;// S3
#130 x = 1; /I S2, S1, S3 cycle

join
endmodule

12 1
Name 0 1 1 1 1 1 1 1 1 1 |60I 1 1 1 1 1 1 1 1 | I0 1 1 1 1 1 1 1 1 | 8I0 1 1
P 1o/ I T e e e I I I
reset b | —1
X I N L
state[1:0]_ 0 X1 X2X o X1X2)1) 3
y] L L l [[1 [1 1

(b) The solution depends on the particular design.

(c, d)

Note: The HDL description of the state diagram produces outputs TO, T1, and T2. Additional logic must
form the signals that control the datapath unit (Load_regs, Incr_P, Add_regs, and Shift_regs). An
alternative controller that generates the control signals, rather than the states, as the outputs is given
below too. It produces identical simulation results.

module Supp_11 9cd # (parameter dp_width = 5)

(
output [2*dp_width - 1: 0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b
).

'wire Load_regs, Incr_P, Add_regs, Shift_regs, Done, QO;

Controller MO (
Ready, Load_regs, Incr_P, Add_regs, Shift_regs, Start, Done, QO,
clock, reset_b

);

Datapath M1(Product, QO, Done, Multiplicand, Multiplier,
Start, Load_regs, Incr_P, Add_regs, Shift_regs, clock, reset_b);
endmodule

/* [/ This alternative controller directly produces the signals needed to control the datapath.
module Controller (

output Ready,

output reg Load_regs, Incr_P, Add_regs, Shift_regs,

input Start, Done, QO, clock, reset_b

)i

parameter S _idle = 3'b001, /l one-hot code

S add= 3010,
S_shift= 3'b100;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

337

reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Done) begin
next_state = S_idle;
Load_regs = 0;
Incr_P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle: if (Start) begin next_state = S_add; Load_regs = 1; end
S_add: begin next_state = S_shift; Incr_P = 1, if (Q0) Add_regs = 1; end
S_shift: begin Shift_regs = 1;
if (Done) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

*

/I This controller has an embedded unit to generate TO, T1, and T2 and additional logic to form // // the
signals needed to control the datapath.

module Controller (

output Ready, Load_regs, Incr_P, Add_regs, Shift_regs,
input Start, Done, QO, clock, reset_b

)i

State_Generator MO (TO, T1, T2, Start, Done, QO, clock, reset_b);
assign Ready = TO;
assign Load_regs = TO && Start;
assign Incr_P =T1;
assign Add_regs = T1 && QO;
assign Shift_regs = T2;
endmodule

module State_Generator (output TO,T1, T2, input Start, Done, QO, clock, reset_b);
parameter S_idle = 3'b001, /I one-hot code
S_add = 3'b010,
S_shift= 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign TO = (state == S_idle);
assign T1 = (state == S_add);
assign T2 = (state == S_shift);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

338

always @ (state, Start, Q0, Done) begin
next_state = S_idle;
case (state)
S idle: if (Start) next_state = S_add;
S add: next_state = S_shift;
S_shift: if (Done) next_state = S_idle; else next_state = S_add,;
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width =5, BC_size = 3) (
output [2*dp_width - 1: 0] Product, output QO, output Done,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, Load_regs, Incr_P, Add_regs, Shift_regs, clock, reset_b

)i
/I Default configuration: 5-bit datapath

reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size-1:0] P; / Bit counter

assign QO = QJO0];
assign Done = (P == dp_width); /I Multiplier is exhausted
assign Product = {C, A, Q};
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin /I Added to this solution, but
P <=0; /I not really necessary since Load_regs
B <=0; /l'initializes the datapath
C<=0;
A<=0;
Q<=0;
end
else begin
if (Load_regs) begin
P <=0;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q}<={C, A, Q}>>1;
if (Incr_P) P <=P+1;
end
endmodule

module t_Supp_11 9cd;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width - 1: 0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Supp_11_9cd MO(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

339
initial fork
reset_ b =1;
#2 reset_ b =0;
#3 reset_b =1;
join
always @ (negedge Start) begin
Exp_Value = Multiplier * Multiplicand,;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (posedge Ready) begin
1 Error <= (Exp_Value " Product) ;
end
initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (32) #10 begin
Start = 1,
#10 Start = 0;
repeat (32) begin
Start = 1,
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule
Na'rne 4I735I9 1 1 1 1 1 1 1 I 4'I739I9 1 1 1 1 1 1 1 I 4'I743I9 1 1 1 1 1 1 1 I 4I747I9 1 1 1
clock
reset b
Ready T 1
e []
Load_regs 1
Add_regs J 1 J 1
Shif[_regs I I] I] I] I] \\
Incr_P I 1 I 1 I 1 I 1 I 1 1 [
Q0 i L 1 \ 1

Done u—

state[2:0] 1 X 2 X 4 X 2 x4 X2)x4xz2x4x2XaXxaXaXal)]

TO 1 1

T | | | | | | | | | | 1 [
) I | | | | | | | | | I B
Multiplicand[4:0] | 11 X 12 X 13
Multiplier[4:0] (13) N

Product[9:0] (13 13 Y 397) 198) 99) 483 X 24L) 625 X\ 312 () 156 N)13) 429)
Exp_Value 143 X 156 X 169
Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

340

Supplement to Experiment #10:

module Counter_74161 (
output QD, QC, QB, QA, // Data output

output COUT, /l Output carry

input D, C, B, A, /l Data input

input P, T, /I Active high to count
L, /I Active low to load
CK, // Positive edge sensitive
CLR /I Active low to clear

reg [3: 0] A_count;

assign QD = A_count[3];
assign QC = A_count[2];
assign QB = A_count[1];
assign QA = A_count[0];

assign COUT = ((P == 1) && (T == 1) && (L == 1) && (A_count == 4'b1111));

always @ (posedge CK, negedge CLR)
if (CLR ==0) A_count <= 4'b0000;
elseif (L==0) A _count<={D, C, B, A};
elseif (P==1) && (T == 1)) A_count<=A_count + 1'b1;
else A_count <= A_count;// redundant statement
endmodule

module t_Counter_74161 ();

wire QD, QC, QB, QA;

wire [3: 0] Data_outputs = {QD, QC, QB, QA};

wire Carry_out; I/l Output carry

reg [3:0] Data_inputs; // Data input

reg Count, /I Active high to count
Load, /I Active low to load
Clock, // Positive edge sensitive
Clear; /I Active low to clear

Counter_74161 MO (QD, QC, QB, QA, Carry_out,
Data_inputs[3], Data_inputs[2], Data_inputs[1], Data_inputs[0], Count, Count, Load, Clock, Clear);

initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
Clear = 0;
Load = 1;
Count = 0;
#20 Clear = 1;
#40 Load = 0;
#50 Load = 1;
#80 Count = 1,
#180 Count = 0;
Data_inputs = 4'ha; /I 10

join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

341
Name 0 1 1 1 1 1 1 1 1 1 |70I 1 1 1 1 1 1 1 1 |14;O 1 1 1 1 1 1 1 1
Clock A T Y I e e e Y 0 o 0 o N
Clear I
Load L
Count |

Data_inputs[3:0]

a
Data_outputs[3:0] 0 X a ﬂﬂﬂﬂ 4

Supplement to Experiment #11.
(a)
/l Note: J and K_bar are assumed to be connected together.
module SReg_74195 (
output reg QA, QB, QC, QD,
output QD_bar,
input A, B, C, D, SH_LD, J, K_bar, CLR_bar, CK
);
assign QD_bar = ~QD;

always @ (posedge CK, negedge CLR_bar)

if (ICLR_bar) {QA, QB, QC, QD} <= 4'h0;

else if (ISH_LD) {QA, QB, QC, QD} <={A, B, C, D};

else case ({J, K_bar})
2'b00: {QA, QB, QC, QD} <= {1'b0, QA, QB, QC};
2'b11: {QA, QB, QC, QD} <= {1'b1, QA, QB, QC};
2'b01: {QA, QB, QC, QD} <={QA, QA, QB, QC}; // unused
2'b10: {QA, QB, QC, QD} <={~QA, QA, QB, QC};// unused

endcase

endmodule

module t_SReg_74195 ();
wire QA, QB, QC, QD;
wire QD_bar;
reg A, B, C, D, SH_LD, CLR_bar, CK;
reg Serial_Input;
wire J = Serial_Input;
wire K_bar = Serial_Input;
wire [3: 0] Data_inputs = {A, B, C, D},
wire [3: 0] Data_outputs = {QA, QB, QC, QD};

SReg_74195 MO (QA, QB, QC, QD, QD_bar, A, B, C, D, SH_LD, J, K_bar, CLR_bar, CK);

initial #200 $finish;
initial begin CK = 0; forever #5 CK = ~CK; end
initial fork
{A, B, C, D} = 4'ha;
CLR_bar =0;
Serial_Input = 0;
SH LD =0;
#30 CLR_bar = 1;
#60 SH_LD =1,
#120 Serial_Input = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

342
Name 0 1 1 1 1 1 1 1 1 1 |60I 1 1 1 1 1 1 1 1 |12IO 1 1 1 1 1 1 1 1 |18I0 1 1
CK Mﬁmm
CLR _bar 1 \j\ A
SH LD /-I\ }\ (\
Serial_Input !

o0 w >

\ \V
\
QA 41—[_\
QB —
QC / | I |
QD : 1 |
QD _bar / |

Data_inputs[3:0] / a '

Data_outputs[3:0] 0 __a Xs5X2f1k o f8)lcle) f

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

343

(b)

module Mux_74157 (

outputreg Y1, Y2, Y3, Y4,

input Al, A2, A3, A4, B1, B2, B3, B4, SEL, STB
);
wire [4: 1] In_A ={Al, A2, A3, A4d};
wire [4: 1] In_B = {B1, B2, B3, B4};

always @ (In_A, In_B, SEL, STB)
if (STB) {Y1, Y2, Y3, Y4} = 4'b0;
elseif (SEL) {Y1, Y2, Y3, Y4} = In_B;
else {Y1, Y2,Y3,Y4}=In_A;
endmodule

module t_ Mux_74157 ();
wire Y1, Y2, Y3, Y4;
reg Al, A2, A3, A4, B1, B2, B3, B4, SEL, STB;
wire [4: 1] In_A ={Al, A2, A3, Ad};
wire [4: 1] In_B = {B1, B2, B3, B4};
wire [4: 1] Y ={Y1, Y2, Y3, Y4},

Mux_74157 MO (Y1, Y2, Y3, Y4, Al, A2, A3, A4, B1, B2, B3, B4, SEL, STB);

initial #200 $finish;
initial fork
{Al, A2, A3, Ad} = 4'hg;
{B1, B2, B3, B4} = 4'hb;
STB=1;
SEL = 1;
#50 STB = 0;
#100 SEL =0;
#150 STB =1;
join
endmodule

Name (O 60 120 180

In_A[4:1]
In_B[4:1]
STB

SEL I
Y[4:1] 0 X b X a X 0

(©)

module Bi_Dir_Shift_Reg (output [1: 4] D_out, input [1: 4] D_in, input SEL, STB, SH_LD, clock,
CLR_bar);
wire QD_bar;
wire [1:4] Y,;
SReg_74195 MO (D_out[1], D_out[2], D_out[3], D_out[4], QD_bar, Y[1], Y[2], Y[3], Y[4],
SH_LD, D_out[4], D_out[4], CLR_bar, clock
);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

344

Mux_74157 M1 (Y[1], Y[2], Y[3], Y[4], D_in[1], D_in[2], D_in[3], D_in[4],
D_out[2], D_out[3], D_out[4], D_out[1], SEL, STB

endmodule

module SReg_74195 (
outputreg QA, QB, QC, QD,
output QD_bar,
input A, B, C,D, SH_LD, J, K_bar, CLR_bar, CK
)i
assign QD_bar = ~QD;
always @ (posedge CK, negedge CLR_bar)
if (ICLR_bar) {QA, QB, QC, QD} <= 4'h0;
else if (ISH_LD) {QA, QB, QC, QD} <={A, B, C, D};
else case ({J, K_bar})
2'b00: {QA, QB, QC, QD} <={1'b0, QA, QB, QC};
2'b11: {QA, QB, QC, QD} <={1'b1, QA, QB, QC},
2'b01: {QA, QB, QC, QD} <={QA, QA, QB, QC}; // unused
2'b10: {QA, QB, QC, QD} <={~QA, QA, QB, QC};// unused
endcase
endmodule

module Mux_74157 (

outputreg Y1, Y2, Y3, Y4,

input Al, A2, A3, A4, B1, B2, B3, B4, SEL, STB
)i
wire [4: 1] In_A ={Al, A2, A3, Ad};
wire [4: 1] In_B ={B1, B2, B3, B4};

always @ (In_A, In_B, SEL, STB)
if (STB) {Y1, Y2, Y3, Y4} = 4'h0;
elseif (SEL) {Y1,Y2,Y3,Y4}=In_B; [/ SEL=1
else {Y1, Y2, Y3, Y4} = In_A; /I SEL=0
endmodule

module t_Bi_Dir_Shift_Reg ();
wire [1: 4] D_out;
reg [1: 4] D_in;
reg SEL, STB, SH_LD, clock, CLR_bar;
Bi_Dir_Shift Reg MO (D_out, D_in, SEL, STB, SH_LD, clock, CLR_bar);
initial #200 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
D_in =4'h8; /I Data for walking 1 to right
CLR_bar =0;
STB =0;
SEL =0; /I Selects D_in
SH_LD =0; /l'load D_in
#10 CLR_bar = 1;
#20 STB = 1;
#40 STB = 0;
#30 SH_LD =1,
#50 SH_LD =0; // Interrupt count to load
#60 SH_LD =1;
#80 SEL = 1;
#100 STB = 1;
#130 STB = 0;
#140 SH_LD = 0;
/#150 SH_LD = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

345

Asynchronous clear No effect
/ Synchronous clear Reload /
0 60 120 180
Narne |
clock
CLR bar
SH LD I
STB A I
SEL
D_in[1:4]
Y[1:4] 8 X o X
D out[1:4] |0 0
QD
Shifting towards D_out[4] Shifting towards D_out[1]

The behavioral model is listed below. The two models have matching simulation results.

SH_LD
SEL
S-IB l D_out[4]
D—LMl 0 Note: CLR_b provides active-low asynchronous
clear of D_out , overriding the functionality
D_out[1: 4] shown in the table below.
74157

(e SH_LD STB SEL

1 Pa:ral(ljel 0 0 D_out<=D_in
oa 0 1 Shift_D_out towards D[1] (left)
1 X Synchronous clear: D_out <= 4'h0
X X

{D[2], D[3], D[4], D[L]} 1 Shift towards D_out[4] (right)

module Bi_Dir_Shift_ Reg_beh (output reg [1: 4] D_out, input [1: 4] D_in, input SEL, STB, SH_LD, clock,
CLR_bar);
always @ (posedge clock, negedge CLR_bar)
if ({\CLR_bar) D_out <= 4'b0;
else if (SH_LD) D_out <= {D_out[4], D_out[1], D_out[2], D_out[3]};
else if (ISTB) D_out <= SEL ? {D_out[2: 4], D_out[1]}: D_in;
else D_out <= 4'b0;
endmodule

module t_Bi_Dir_Shift_Reg_beh ();
wire [1: 4] D_out;
reg [1: 4] D_in;
reg SEL, STB, SH_LD, clock, CLR_bar;
Bi_Dir_Shift_ Reg_beh MO0 (D_out, D_in, SEL, STB, SH_LD, clock, CLR_bar);

initial #200 $finish;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

346

initial begin clock = 0; forever #5 clock = ~clock; end

initial fork
D_in =4'h8; /I Data for walking 1 to right
CLR_bar =0;
STB =0;
SEL =0; I/ Selects D_in

SH LD=0; //load D_in
#10 CLR_bar = 1;
#20 STB = 1;
#40 STB = 0;
#30 SH_LD = 1;
#50 SH_LD =0; // Interrupt count to load
#60 SH_LD = 1,
#80 SEL = 1,
#100 STB = 1;
#130 STB = 0;
#140 SH_LD =0;
/[#150 SH_LD = 1,
join
endmodule

Supplement to Experiment #13.

module RAM_74189 (output S4, S3, S2, S1, input D4, D3, D2, D1, A3, A2, Al, AO, CS, WE);
/I Note: active-low CS and WE

wire [3: 0] address = {A3, A2, Al, AQ};

reg [3: 0] RAM [0: 15]; /l 16 x 4 memory

wire [4: 1] Data_in = { D4, D3, D2, D1}; // Input word

tri [4: 1] Data; I/l Output data word, three-state output
assign S1 = Data[1]; // Output bits

assign S2 = Data[2];
assign S3 = Data[3];
assign S4 = Data[4];

always @ (Data_in, address, CS, WE) if (~CS && ~WE) RAM[address] = Data_in;
assign Data = (~CS && WE) ? ~RAM[address] : 4'bz;
endmodule

module t_RAM_74189 ();
reg [4: 1] Data_in;
reg [3: 0] address;
reg CS, WE;
wire S1, S2, S3, S4;
wire D1, D2, D3, D4;
wire A0, Al, A2, A3;
wire [4: 1] Data_out = {S4, S3, S2, S1};
assign D1 = Data_in [1];
assign D2 = Data_in [2];
assign D3 = Data_in [3];
assign D4 = Data_in [4];
assign AO = address|[0];
assign Al = address[1];
assign A2 = address[2];
assign A3 = address[3];

wire [3: 0] RAM_0 = M0.RAM[O];
wire [3: 0] RAM_1 = MO.RAM[1];
wire [3: 0] RAM_2 = M0.RAM[2];
wire [3: 0] RAM_3 = M0.RAM[3];
wire [3: 0] RAM_4 = M0.RAM[4];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

347

wire [3: 0] RAM_5 = MO.RAM[5];
wire [3: 0] RAM_6 = MO.RAM[6];
wire [3: 0] RAM_7 = MO.RAM[7];
wire [3: 0] RAM_8 = MO.RAM[8];
wire [3: 0] RAM_9 = MO.RAM[9];
wire [3: 0] RAM_10 = M0.RAM[10];
wire [3: 0] RAM_11 = M0.RAM[11];
wire [3: 0] RAM_12= MO0.RAM[12];
wire [3: 0] RAM_13 = M0.RAM[13];
wire [3: 0] RAM_14 = M0.RAM[14];
wire [3: 0] RAM_15 = M0.RAM[15];
wire [4: 1] word = ~Data_out;

RAM_74189 MO (S4, S3, S2, S1, D4, D3, D2, D1, A3, A2, Al, A0, CS, WE);

initial #110 $finish;

initial fork
WE =1;
CS=1;
address = 0;
Data_in=3;
#10CS =0;
#15 WE = 0;
#20 WE = 1;

#25 address = 14;
#25 Data_in = 1;

#30 WE = 0;

#35 WE = 1;

#40 CS =1,

#50 address = 0;
#60 CS = 0;
#70CS =1,

#80 address = 14;
#90 CS =0;

join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

348

Name 0 30 60 90

R —————

WE \
address[3:0] 0 X 14 X 0 X 14
Data_in[4:1] 3 X 1

RAM _0[3:0] x) 3
RAM_1[3:0]
RAM_2[3:0]
RAM _3[3:0]
RAM_4[3:0]
RAM _5[3:0]
RAM_6[3:0]
RAM_7[3:0]
RAM_8[3:0]
RAM _9[3:0]
RAM_10[3:0]
RAM_11[3:0]
RAM_12[3:0]
RAM_13[3:0]
RAM_14[3:0] X X 1
RAM_15[3:0] X

word[4:1] X X X X 3 X X X 1
Data_outf4:1] |z z 12 X z X 14

Note: Data_out is the complement of the stored value

D I | Bl | e B e | B e B | B | B N B 1 Bl e R N B

Supplement to Experiment #14.

module Bi_Dir_Shift_ Reg_74194 (
outputreg QA, QB, QC, QD,
input A, B, C, D, SIR, SIL, s1, s0O, CK, CLR
);
always @ (posedge CK, negedge CLR)
if (ICLR) {QA, QB, QC, QD} <= 4'h0;
else case ({s1, s0})
2'b00: {QA, QB, QC, QD} <={QA, QB, QC, QD};
2'b01: {QA, QB, QC, QD} <={SIR, QA, QB, QC},
2'b10: {QA, QB, QC, QD} <={QB, QC, QD, SIL};
2'b11: {QA, QB, QC, QD}<={A, B, C, D};
endcase
endmodule

module t_Bi_Dir_Shift_Reg_74194 ();
wire QA, QB, QC, QD;
reg A, B, C, D, SIR, SIL, s1, s0, clock, CLR;
Bi_Dir_Shift_Reg_74194 MO (QA, QB, QC, QD, A, B, C, D, SIR, SIL, s1, s0, clock, CLR);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

349

initial fork
CLR =0;
{A, B, C, D} = 4'hf;
s1=0;
s0 =0;
SIL=0;
SIR=0;
#10 CLR = 1;
#30 beginsl=1;s0=1;end //load
#40 s1=0; /I shiftright
#100 s1=1; //load
#110 begin s1 =0; s0 =0; end
#140s1=1; [/ shift left
#160s1=0; // pause
#180sl1=1; //resume

join
endmodule
Load Shift right, filling 0 Load Shift left, filling 0
Shift left, filling 0
Pause
Narne 0 1 1 1 1 1 1 1 1 1 |70I 1 1 1 1 1 1 1 14I0 1 X 1 1 1 1 1 1 |21IO 1 1 1 1 1
clock
CLR |— \l \ \ X \ \
s1 J
0 1 1
A
B
C
D
SIR
QA 1 | l
QB I 1 | l
o > 1 1
o |\ - 1
SIL

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

350
Supplement to Experiment #16.

The HDL behavioral descriptions of the components in the block diagram of Fig. 11.23 are described in the
solutions of previous experiments, along with their test benches and simulations results: 74189 is described
in Experiment 13(a); 74157 in Experiment 11(b); 74161 in Experiment 10; 7483 in Experiment 7(a); 74194
in Experiment 14; and 7474 in Experiment 8(a). The structural description of the parallel adder instantiates
these components to show how they are interconnected (see the solution to the supplement for Experiment
17 for a similar procedure). A test bench and simulation results for the integrated unit are given below.

/I LOAD condition for 74194:s1=1,s0=1
/I SHIFT condition: s1=0,s0=1
/I NO CHANGE condition: s1=0,s0=0

module Supp_11_16 (
output [3: 0] accum_sum,
output carry,
input [3: 0] Data_in, Addr_in,
input SIR, SIL, CS, WE, s1, s0, count, Load, select, STB, clock, preset, clear, VCC, GND
)
wire B4 = Data_in[3]; // Data world to memory
wire B3 = Data_in[2];
wire B2 = Data_in[1];
wire B1 = Data_in[0];
wire S4, S3, S2, S1;
wire D4, D3, D2, D1;
wire S4b = ~S4;// Inverters

wire S3b = ~S3;
wire S2b = ~S2;
wire S1b = ~S1;

wire D = Addr_in[3];// For parallel load of address counter
wire C = Addr_in[2];

wire B = Addr_in[1];

wire A = Addr_in[0];

wire Ocar, Y1, Y2, Y3, Y4, QA, QB, QC, QD, A3, A2, Al, AO0;
assign accum_sum = {D4, D3, D2, D1};

Flip_flop_7474 MO (Ocar, carry, clock, preset, clear);
Adder_7483 M1 (D4, D3, D2, D1, carry, S4b, S3b, S2b, S1b, QD, QC, QB, QA, Ocar, VCC, GND);
Mux_74157 M2 (Y4,Y3,Y2,Y1, QD, QC, QB, QA, B4, B3, B2, B1, select, STB);
Counter_74161 M3 (A3, A2, A1, A0, COUT, D, C, B, A, count, count, Load, clock, clear);
RAM_74189 M4 (S4, S3, S2, S1, Y4, Y3, Y2, Y1, A3, A2, Al, A0, CS, WE);
Reg_74194 M5 (QD, QC, QB, QA, D4, D3, D2, D1, Ocar, SIL, s1, sO, clock, clear);

endmodule

modulet_Supp_11 16 ();
wire [3: 0] sum;
wire carry;
reg [3: 0] Data_in, Addr_in;
reg SIR, SIL, CS, WE, s1, s0, count, Load, select, STB, clock, preset, clear;
supplyl VCC;
supply0 GND;
wire [3: 0] RAM_0 = M0.M4.RAMIO];
wire [3: 0] RAM_1 = M0.M4.RAM[1];
wire [3: 0] RAM_2 = M0.M4.RAM[2];
wire [3: 0] RAM_3 = M0.M4.RAM][3];
wire [3: 0] RAM_4 = M0.M4.RAM[4];
wire [3: 0] RAM_5 = M0.M4.RAM[5];
wire [3: 0] RAM_6 = M0.M4.RAMI6];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

351

wire [3: 0] RAM_7 = MO.M4.RAM[7];
wire [3: 0] RAM_8 = M0.M4.RAM[8];
wire [3: 0] RAM_9 = M0.M4.RAM[9];
wire [3: 0] RAM_10 = M0.M4.RAM[10];
wire [3: 0] RAM_11 = M0.M4.RAM[11];
wire [3: 0] RAM_12= M0.M4.RAM[12];
wire [3: 0] RAM_13 = M0.M4.RAM[13];
wire [3: 0] RAM_14 = M0.M4.RAM[14];
wire [3: 0] RAM_15 = M0.M4.RAM[15];

wire [4: 1] word = {M0.S4b, M0.S3b,M0.S2b, M0.S1b};
wire [4: 1] mux_out = { M0.Y4, M0.Y3, M0.Y2, M0.Y1};
wire [4: 1] Reg_Output = {M0.QD, M0.QC, M0.QB, M0.QA};

Supp_11_16 MO (sum, carry, Data_in, Addr_in, SIR, SIL, CS, WE, s1, s0, count, Load,
select, STB, clock, preset, clear, VCC, GND);

integer k;
initial #600 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
#10 begin preset = 1; clear =0; s1 =0; sO =0; Load =1; count=0; CS=1; WE=1; STB=0; end
[/ initialize memory
#10 begin k = 0; repeat (16) begin M0.M4.RAM[K] = 4'hf; k =k + 1; end end
#20 begin Data_in = 4'hf; Addr_in =0; select=1; end
#30 begin clear = 1; WE = 0; end
// load memory
#40 begin
count = 1;
CsS=0;
begin
repeat (16) @ (negedge clock) Data_in = Data_in + 1;
count = 0;
@ (negedge clock) CS =1,
end
end
#200 count = 1; /I Establish address
#240 count = O;
#250 WE = 1,
#260 CS = 0; /I Read from memory
#280 clear = 0;
#290 clear = 1;
#300 count = 1; /I Establish address
#340 begin s1 =1; s0 =1; count = 0; end
#390 CS = 0;
#400 clear = 0; /I Clear the registers
#410 clear = 1;
#420 begin count=1; CS =0; end /I Accumulate values
#490 begin count=0; CS=1; end
join
endmodule

module Flip_flop_7474 (output reg Q, input D, CLK, preset, clear);
always @ (posedge CLK, negedge preset, negedge clear)

if (Ipreset) Q <=1'by;

else if (Iclear) Q <=1'h0;

else Q<=D;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

352

module Adder_7483 (
output S4, S3, S2, S1, C4,
input A4, A3, A2, Al, B4, B3, B2, B1, C0, VCC, GND
);
/I Note: connect VCC and GND to supplyl and supplyO in the test bench
wire [4: 1] sum;
wire [4: 1] A = {A4, A3, A2, Al};
wire [4: 1] B = {B4, B3, B2, B1};
assign S4 = sum[4];
assign S3 = sum[3];
assign S2 = sum[2];
assign S1 = sum[1];
assign {C4, sum} = A + B + CO;
endmodule

module Mux_74157 (

outputreg Y1, Y2, Y3, Y4,

input Al, A2, A3, A4, B1, B2, B3, B4, SEL, STB

)
wire [4: 1] In_A ={Al, A2, A3, A4}
wire [4: 1] In_B ={B1, B2, B3, B4};

always @ (In_A, In_B, SEL, STB)
if (STB) {Y1, Y2, Y3, Y4} = 4'b0;
elseif (SEL) {Y1, Y2, Y3, Y4} = In_B;
else {Y1, Y2,Y3, Y4} =In_A;
endmodule

module Counter_74161 (
output QD, QC, QB, QA, // Data output

output COUT, // Output carry
input D, C,B,A, [//Datainput
input P, T, /I Active high to count
L, /I Active low to load
CK, I/l Positive edge sensitive
CLR /I Active low to clear
).

reg [3: 0] A_count;

assign QD = A_count[3];

assign QC = A_count[2];

assign QB = A_count[1];

assign QA = A_count[0];

assigh COUT = ((P==1) && (T ==1) && (L == 1) && (A_count == 4'b1111));

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

353

always @ (posedge CK, negedge CLR)

if (CLR ==0) A_count <= 4'b0000;

elseif (L==0) A _count<={D, C, B, A}

elseif (P==1)&& (T==1)) A_count<=A count+ 1'bl;

else A_count <= A_count; // redundant statement
endmodule

module RAM_74189 (output S4, S3, S2, S1, input D4, D3, D2, D1, A3, A2, Al, AQ, CS, WE);
/I Note: active-low CS and WE
wire [3: 0] address = {A3, A2, Al, AO};

reg [3: 0] RAM [0: 15]; // 16 x 4 memory

wire [4:1] Data_in = { D4, D3, D2, D1}; // Input word

tri [4: 1] Data; // Output data word, three-state output
assign S1 = Data[1]; // Output bits

assign S2 = Data[2];
assign S3 = Data[3];
assign S4 = Data[4];

always @ (Data_in, address, CS, WE) if (~CS && ~WE) RAM[address] = Data_in;
assign Data = (~CS && WE) ? ~RAM[address] : 4'bz; // Note complement of data word
endmodule

module Reg_74194 (
outputreg QA, QB, QC, QD,
input A, B, C, D, SIR, SIL, s1, s0O, CK, CLR
);
always @ (posedge CK, negedge CLR)
if (ICLR) {QA, QB, QC, QD} <= 4'h0;
else case ({s1, s0})
2'b00: {QA, QB, QC, QD} <={QA, QB, QC, QD};
2'b01: {QA, QB, QC, QD} <={SIR, QA, QB, QC},
2'b10: {QA, QB, QC, QD} <={QB, QC, QD, SIL};
2'b11: {QA, QB, QC, QD}<={A, B, C, D}
endcase
endmodule

Simulation results: initializing memory to 4'hf, then writing to memory. Note: the values of the inputs are

ambiguous until the clear signal is asserted. Signals Ocar and carry are ambiguous because the output of
memory is high-z until memory is read is read.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

354

Name 0 60 120 180

clock

preset

clear
cs |
WE
sl
SO
Load
count L1
select
STB

Addr_in[3:0] x__ X 0

address[3:0]
Data in[3:0]
word[4:1]

Reg Outputf4:1] [x X

Ocar s
accum_sum[3:0] [

carry T

RAM 0[3:0]
RAM_1[3:0]
RAM_2[3:0]
RAM_3[3:0]
RAM 4[3:0]
RAM 5[3:0]
RAM_12[3:0]
RAM_13[3:0]
RAM_14[3:0]
RAM_15[3:0]

333333338
03

Initialize memory Write to memory

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

355
Sequence through addresses and
accumulate the sum
Clear registers A\
258 318 378 438
Name e b b b el
clock u—u—u‘/ﬁmﬁ_\—_’—u—u—u—u—_ﬂm
preset - /] \
clear tlj I \ L
CS 1 —

WE /F\\
: i
s0 i

Load /———%ﬁ\\

o - —
STB \

Addr_in[3:0] / N\ | 0 |
address[3:0] 3 X 0 | 4 A 0 p1]
Data_in[3:0] [f
word[4:1] [3 [o 1 X2 X3 | 4 A0 x1]

Reg_Output[4:1] 0 I (4 X 8X12NO0OX5XA__ 0]
Ocar [/ ! 1

accumsum[3:0]__x A0 KX 1X2X3X4PB8RIL2KOXDHXOXX 0 X1}
carry T A —

RAM _0[3:0]
RAM_1[3:0]
RAM _2[3:0]
RAM _3[3:0]
RAM _4[3:0]
RAM 5[3:0]
RAM_12[3:0]
RAM_13[3:0]
RAM_14[3:0]
RAM _15[3:0]

Y (o8 | (=N | (B | ESad 1 B3 1 4N | N | Ll | K=

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

356

Clear registers Read and accumulate values

Name

clock
preset
clear
Cs
WE
sl

sO
Load
count

select
STB

Addr_in[3:0]
address[3:0]
Data_in[3:0]
word[4:1]
Reg_Output[4:1]
Ocar
accum_sum[3:0]

carry

RAM_0[3:0]
RAM_1[3:0]
RAM_2[3:0]
RAM_3[3:0]
RAM_4[3:0]
RAM 5[3:0]
RAM_12[3:0]
RAM_13[3:0]
RAM_14[3:0]
RAM_15[3:0]

= |l® |[|=[]|O o][w]N - o

Supplement to Experiment #17.

The HDL behavioral descriptions of the components in the block diagram of Fig. 11.23 are described in
the solutions of previous experiments, along with their test benches and simulations results: 74161 in
Experiment 10; 7483 in Experiment 7(a); 74194 in Experiment 14; and 7474 in Experiment 8(a). The
structural description of the parallel adder instantiates these components to show how they are
interconnected (see the solution to the supplement for Experiment 17 for a similar procedure). A test
bench and simulation results for the integrated unit are given below.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

357

/I Control unit is obtained by modifying the solution to Prob. 8.24.

/I Datapath is implemented with a structural HDL model and IC components.
/I LOAD condition for 74194:s1=1,s0=1

/I SHIFT condition: s1=0,s0=1

/I NO CHANGE condition: s1=0,s0=0

module Supp_11 17 Par_Mult # (parameter dp_width = 4)

output [2*dp_width - 1: 0] Product,

output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b, VCC, GND

)i
wire Load_regs, Incr_P, Add_regs, Shift_regs, Done, QO;

Controller MO (
Ready, Load_regs, Incr_P, Add_regs, Shift_regs, Start, Done, QO,
clock, reset_b);

Datapath M1(Product, QO, Done, Multiplicand, Multiplier,
Start, Load_regs, Incr_P, Add_regs, Shift_regs, clock, reset_b, VCC, GND);
endmodule

module Controller (

output Ready,

output reg Load_regs, Incr_P, Add_regs, Shift_regs,
input Start, Done, QO, clock, reset_b

);
parameter S_idle= 3'b001, /I one-hot code
S_add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;
always @ (state, Start, Q0, Done) begin
next_state = S_idle;
Load_regs = 0;
Incr_P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle:if (Start) begin next_state = S_add; Load_regs = 1; end
S_add: begin next_state = S_shift; Incr_P = 1; if (Q0) Add_regs = 1; end
S_shift: begin
Shift_regs = 1;
if (Done) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width = 4, BC_size = 3) (

output [2*dp_width - 1: 0] Product, output QO, output Done,

input [dp_width - 1: 0] Multiplicand, Multiplier,

input Start, Load_regs, Incr_P, Add_regs, Shift_regs, clock, clear, VCC, GND
)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

358

wire C;

wire Cout, Sum3, Sum2, Suml, Sum0, P3, P2, P1, PO, A3, A2, A1, AC;
wire Q3, Q2, Q1;

wire [dp_width -1: 0] A = {A3, A2, Al, A0},

wire [dp_width -1: 0] Q = {Q3, Q2, Q1, QO0};

assign Product = {C, A, Q};

wire [BC_size -1: 0] P = {P3, P2, P1, PO};

/I Registers must be controlled separately to execute add and shift operations correctly.
/I LOAD condition for 74194:s1=1,s0=1

/I SHIFT condition: s1=0,s0=1

/I NO CHANGE condition: s1=0,s0=0

wire B3 = Multiplicand[3]; // Data word to adder
wire B2 = Multiplicand[2];
wire B1 = Multiplicand[1];
wire BO = Multiplicand[0];
wire Q3_in = Multiplier[3];
wire Q2_in = Multiplier[2];
wire Q1_in = Multiplier[1];
wire QO_in = Multiplier[O];

assign Done = ({P3, P2, P1, PO} == dp_width); /I Counts bits of multiplier
wire s1A = Load_regs || Add_regs; /I Controls for A register

wire sOA = Load_regs || Add_regs || Shift_regs;

wire s0Q = Load_regs || Shift_regs; /I Controls for Q register

wire s1Q = Load_regs;

wire Pout; // Unused

wire clr_P = clear && ~Load_regs;

Flip_flop_7474 MO_C (C, Cout, clock, VCC, cIr_P);

Adder_7483 M1 (Sum3, Sum2, Suml, Sum0, Cout, A3, A2, Al, A0, B3, B2, B1, B0, GND, VCC, GND);

Counter_74161 M3_P (P3, P2, P1, PO, Pout, GND, GND, GND, GND, Incr_P, Incr_P, VCC, clock,
clr_P);

Reg_74194 M4_A (A3, A2, Al, A0, Sum3, Sum2, Suml, SumO0, C, GND, s1A, s0A, clock, clr_P);

Reg_74194 M5_Q (Q3, Q2, Q1, Q0, Q3_in, Q2_in, Q1_in, Q0_in, A0, GND, s1Q, s0Q, clock, clear);

endmodule

module t Supp_11_17 Par_Mult;

parameter dp_width = 4; /I Width of datapath
wire [2*dp_width - 1: 0] Product;

wire Ready;

reg [dp_width - 1: 0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

supply0 GND;

supplyl VCC;

Supp_11_17 Par_Mult MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b, VCC, GND);
wire [dp_width -1: 0] sum = {M0.M1.Sum3, M0.M1.Sum2, M0.M1.Sum1, M0.M1.SumO0},

initial #115000 $finish;

initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b=1;
#2 reset_b =0;
#3 reset_ b =1;
join

always @ (negedge Start) begin

Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

359

always @ (posedge Ready) begin
1 Error <= (Exp_Value * Product) ;
end
initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (32) #10 begin
Start = 1;
#10 Start = 0;
repeat (32) begin
Start = 1;
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule

module Flip_flop_7474 (output reg Q, input D, CLK, preset, clear);
always @ (posedge CLK, negedge preset, negedge clear)

if (Ipreset) Q <=1'by;

else if (Iclear) Q <=1'h0;

else Q<=D;
endmodule

module Adder_7483 (
output S4, S3, S2, S1, C4,
input A4, A3, A2, Al, B4, B3, B2, B1, CO, VCC, GND
);
/I Note: connect VCC and GND to supplyl and supplyO in the test bench
wire [4: 1] sum;
wire [4: 1] A = {A4, A3, A2, Al};
wire [4: 1] B = {B4, B3, B2, B1};
assign S4 = sum[4];
assign S3 = sum[3];
assign S2 = sum[2];
assign S1 = sum[1];
assign {C4, sum} = A + B + CO;
endmodule

module Counter_74161 (
output QD, QC, QB, QA, // Data output

output COUT, I/l Output carry
input D, C, B, A, /I Data input
input P, T, /I Active high to count
L, /I Active low to load
CK, // Positive edge sensitive
CLR /I Active low to clear
).

reg [3: 0] A_count;

assign QD = A_count[3];

assign QC = A_count[2];

assign QB = A_count[1];

assign QA = A_count[0];

assign COUT = ((P == 1) && (T == 1) && (L == 1) && (A_count == 4'b1111));

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

360
always @ (posedge CK, negedge CLR)
if (CLR==0) A_count <= 4'b0000;
elseif (L==0) A _count<={D, C, B, A}
elseif (P==1)&&(T==1)) A_count<=A count+ 1'bl;
else A_count <= A_count; // redundant statement
endmodule
module Reg_74194 (
output reg QA, QB, QC, QD,
input A, B, C, D, SIR, SIL, s1, s0O, CK, CLR
);
always @ (posedge CK, negedge CLR)
if (ICLR) {QA, QB, QC, QD} <= 4'b0;
else case ({s1, s0})
2'b00: {QA, QB, QC, QD} <= {QA, QB, QC, QD};
2'b01: {QA, QB, QC, QD} <= {SIR, QA, QB, QC};
2'b10: {QA, QB, QC, QD} <={QB, QC, QD, SIL};
2'b11: {QA, QB, QC, QD}<={A, B, C, D};
endcase
endmodule
Nam 4}35I3 1 1 1 1 1 1 1 I4i|-40I3 1 1 1 1 1 1 1 I4i|-45l3 1 1 1 1 1 1 1 |4:I|-50I3 1 1 1
Ready || 1 —
Start I 1 I 1
Load_regs 1 1
Shift_regs 1 I] I] I] I] 1 J
Add_regs I 1 I 1 I 1 I 1 I 1
Qo0 - -
s1A 1 1 1 1 1
sOA [S | L1 I B
s1Q 1 1
S0Q 1 1 I] I] I] I] 1 1 J
Done 1 |—|—
state[2:0] [4) 1 |7 8 V8 S FD 0 A 8 | 1
Incr_P I] I] I] I] 1 1
cr P L L
P[2:0] 4 Lo X 1 X 2)} 3 X 4 Lo X 1 |
C
sum[3:0] X & X6 NN o Xm0 Y eXm X 10 Y7 XaaXao]
A[3:0] [6X__3 o XeX3s)Xo) 4 X2Xs)X 4 X o X7)X3]
QI3:0] X 7 X" b X5 X" a X" s X 2 X" b X
Multiplicand[3:0] 5 X 6) A 7
Multiplier[3:0]
Product[7:0]
Exp_Value 55 66 77
Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

361
CHAPTER 12
12.1
7400 7404 7486
1 K3 N 2 1 K3
2 & 1 2 =1
4 6 s 4 4 N6
5 5
9 N8 5 6 9 N8
10 10
12 K11 5 8 12 K11
13 — 13
1 N 10
13 >~ 12

12.2 See textbook.

12.3
x —— G1 X)
y — V2 y |
z —— N3 z
A — 1 - A D_
B — 2 B |
cC — 3 C

%

12.4 BCD-to-decimal decoder (similar to IC 7442)

BCD/DEC

DO
D1
D2
D3
D4
——D5
D6
——D7
D8
——D9

B

(9]
o BN P

D

© O N U A ®WN RO

12.5 Similar to 7438:

BIN-OCT

E, —= EN

~N o oM~ ®wWN RO

12.6 IC type 74153.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

362
s2 0 0
s — 1 }67
Sl
—=EN MUX
—1
RN —
—4
—1
JES—) I
JR—
12.7
(@ (b) (c)
— 1D — —1s af— — 1T —
—c1
—aCl o— 1R Ap— —>C1 o—
12.8 The common control block is used when the circuit has one or more inputs that are common to all lower
sections.
12.9
load M1 [Load]
clock —pC2
|_
1,—1.2D0 ——na,
l, — A,
Iy —] A,
I, — A,
12.10 See textbook.
12.11
CTR DIV 16
UP/DOWN ——— M1 [Up]
COUNT M2 [Down] 1,3 CT =15 —— Carry out for count-up
ENABLE ——G3 2,3CT=0 Carry out for count-down
CLOCK —— C/1, 3+/2,3-
] [
0 I
CT |
3 I
12.12
RAM 256 X 1
—0
—1
2 0
—1s
Address . A 555
—5
—6
Select él Carry out for count-up
Read/Write 1 i(E:’; [[\?/E?PIE]] Carry out for count-down
] [
Data input A, 2D Av Data output

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

