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International System of Units (SI):

Length = meters (m);
Time = seconds (S);

Mass = kilograms (kg).

Force = Newtons (N) is derived from
F=m™a.

Therefore a 1 kilogram mass has a
weight of 9.81 Newton at the earth’s

surface.

Giga X 10° G
Mega X 106 M
Kilo X 103 k
Meter m
milli X 10-3 mm
micro X 10-¢ M
nanometer X 10-° n
Newton N
Pascal Pa N/m?
X 10%Pa MPa

Dimensional homogeneity - in an equation where you are adding

terms, they must all have the same units.




Force Vectors

Scalar and Vectors

Scalar: is a quantity which has magnitude only.

Examples of scalars: speed, distance, energy, charge, volume, mass
and temperature. .

Vectors are quantities which are fully described by both a magnitude
and a direction. Vectors are physical quantities.

Examples of vectors are displacement, velocity, acceleration, force
and electric field

Vector notation: | Line of Action

A widely used convention is to denote a — Head >
vector quantity in bold type, such as A «and
that is the convention that will be used. The
magnitude of a vector A is written as| A.| Tail

207 “Head" also called "Tip"




Addition of a system of coplanar forces

Cartesian Vector Notation y, F=Fi+F,j
2D _ ~2 2
(26— |F| = \/Fx + F,
& \
, i : .
F =Fcosl Y F 7 tane:F_?
F =Fsinéf It % x
Ty \ i .
i F
|
|
| R,j
|
|
|
1'




Determine the magnitude of the resultant force and its direction measured from the positive X
axis.

SON

65N

> F:70N +50N cos[30°]- 65N cos[45°] =g7.3N —>
z F,: =50N sin[30°]- 65N sin[45°) =-71.0 N l

T10N
673N

tana = =104 = a=465°




30D Three Dimensional Vectors

(S ]

Cartesian vector representation:
A=A+ A},j +A K

Magnitude of a Cartesian Vector.

A= VA, + A} + A; ‘

Direction of a Cartesian Vector

cosa=— cosB=—" cosy=—"
A A LT




Unit vector ReEresentation of a Vector

vector u, Is just a vector in the same direction as A,

but with magnitude = 1,

_ !
u,=A/A]

U, is dimensionless. It serves only to indicate direction and sense.



Direction (orientation) of a Cartesian vector in 3D

O = angle between A and positive x axis °
[3 = angle between A and positive y axis *
Y = angle between A and positive z axis ¢ ¥ 4

A.I A.."' A:
L+ —j + —k
A A‘I A

=
.8
I

A
A

U = cosai + cosfij + cosyk

| =ofcos® a+cos® f+cos®y

‘cm1a+cm1ﬂ+cﬂs1}r=l ‘




Eg. Determine the magnitude and directional
cosines of the vector.

A =700 i —820; +900k
The magnitude of the vectoris
A=700 7 —8207+900 k
4= \J(700Y’ +(~820’ +(900)" =1404.42

The directional cosines are cosf, = 700 =0.498= 6. =60.1°
1404 .42
{ cos0 =2 _ 05840 =1257
Y 140442 y
Check the cosines cos, — 900 06410, =50.1
\ 1404 .42

cos” 0, +cos” 0, + cos’ 0, =1

(0.498)" +(—0.584)" +(0.641)" =1



Express F as Cartesian vector

L7

cos® ¢+ cos* f+cos*ym |

cos* 30° 4 cos® 70° + cos? y= 1 AN
cos ¥ = 10.3647
Y= 68.61° or 111.39°

By inspection, y= 111.39° since the force F is directed in negative
oClanlL

F = 2500{cos 30°i + cos 70°j + cos 111.39°k} N



Adding and Subtracting 3D Cartesian Vectors
GivenA=Ai+Aj+Ak B=B,i+B,j+Bk,
Addition: R=A+B=(A,+B)i+ (A, +B)j+ (A, + B.)k

Subtraction: R'=A - B= (A, - B,)i+ (A, - B)j+ (A, — Bk

Given several vectors,

Fp = SF = SFi+ XFj+ 3Fk




2- 71

__ Determine the magnitude and

coordinate direction angles of the resultant

force and sketch this vector on the

coordinate system.

ol
.**
.
.
.
Y

F2 = m{g}maw -250{%) $in30° + m(g)k
F1 = 350c0860°i + 350c0s60°j — 350cos45°k
Fp =F, + F

F, = {34821i + 75.0j — 97.487%)} N

F, = (348.21)2 + (75.0)7 ¢ (97.487)2 = 365.29 N

821
y a = cos (359.29) = 19.5
L 150
F = cos (3559 = 783

F, = 350N _, —97.487
Y = cos (goms) =105



Position Vectors

Ay

S Gt [P X5
I
2+ I
I
3.0)
o0
i 1 | 1"""II ! 1 -):
) '-2: -1 T 2 3
l -
! 1
| 1
RS
T-3

@ ®

Cartesian position vector from origin O to point P{x.y,Z):

r=xi+vyj+zk


http://en.wikipedia.org/wiki/Image:Cartesian-coordinate-system.svg




Conditions for equilibrium of a Particle

To maintain a state of equilibrium, 7he resultant
force acting on a particle must be zero.

> F=0
ZFXi+Zij+ZFZk=O

Fy

Equilibrium equations



The Free Body diagram

Construction of a free body diagram.

Step 1. Isolate the body or combination of bodies are to be
shown on the free-body diagram.

Step 2: Prepare drawing or sketch of the outline of the isolated
or free body.

Step 3: 1dentify all the forces exerted by contacting or
attracting bodies that were removed during isolation

Step 4: Choose the set of coordinate axes to be used in solving
the problem and indicate their directions on the free-
body diagram. Place any dimensions required for
solution of the problem on the diagram.



1. Spring
F=Kks

K - Spring constant = stiffness

2. Cables and pulleys

Cable forces are along the cable

Cables on frictionless pulleys
have same tension force in every
part of the cable

[=02m
— 1 [=0.6m lo=0.4m
s=-02m k = 500 N/m
— = (s=0)
s=02m
o o

(tension)

Cable is in tension .
Free Body Diagram



Determine the stretch in each spring for equilibrium of the 2-kg
block. The springs are shown in the equilibrium position

ks = 30N/m

X4p = 04905 m

+
—LF = (;

'I-TZF;:ﬂ;

 Fao = 29.81) = x,,(40)

4
ﬁs(;.} - ﬂc("l—}= 0

7

1
Ee(—) + fi.i%) - 2981 =0

2

_ 15.86

Lo = —— =0,

20

F“. = 1401 N

14.01

—
——
=

Tap = 30

m Ans

m Ans



Example

A 90 Ib load is suspended from the
hook as shown. The load is supported
by two cables and a spring with k=500
Ib/ft. Determine the force in the cables
and the stretch of the spring for
equilibrium. Cable AD lies in the x-y
plane and cable AC lies in the x-z
plane.

y
| 4

>E, =0 F,sin30° - _F =0
DE, =0 —F,co830° +F; =0

3
S'F, =0 _F,-901b=0

S F, = 2081b
FC:].Sle FE:kSAB

¥, =2401b g arch »2081b = 500% 5.
F, =2081b

s,p =0.416ft




Express each force in Cartesian Determine the force in each cable used to

vector form. | support the 40 Ib crate.
(-3, -4, 8)

33 :FBUAB

_

= . 8 fi

Fp =Fpu,p

' ©, 0, O)Z
r Iag —3i-4j+8k
¥y = Iy F 0 y
ey oy ;
r By + K + By + W =0 F,=F.=23.61b
Fg = —0.318 Fy § — 0.424 Fy ]+ 0.848 Fy &
: . - F, =15.01b
l_ [ ] D [ ]
r rAC —31+4]+8k —0:313 Fpi 0:424 FB_|+0."848 F?k )
Yo =¥c 0318 F.i +0.424 F. j+0.848 F .k + F,i —40k =0
(-2) +(3) +(8)

r
Fo =—0.318 F i +0.424 F,, j+0.848 F,. k YF,-0 —0318F, —0318F.+F, =0
F, = Fpf 3F,=0 0424 F;+0424F.=0
W= (~40k)m 3'F,=0 0848 F;+0.848F, —40=0
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Equilibrium requires the body to
have No Translation and No rotation.



Moment of a Force - Scalar Formulation

The moment of the force about a point O is the
tendency of the force to rotate the object about point O.

Scalar Formulation

Moment = Torque = Twist

Mo = (F)(d) (force x distance)
d ="perpendicular distance"

N F

d

O




Moments in 3D i

(c)



If the resultant moment about point Ais 4800 N - m clockwise,
determine the magnitude of F3 if F1 =300 N and F2 =400 N.

3 F,

F,
[
As r b




Transmissibility of a force

Principle of Transmissibility

We can slide force F anywhere we want along its
line of action, without changing the moment of F
about O.

Sliding the force along its line of action doesn't

change the magnitude F or the perpendicular
distance d




Cross product ceark

C=AXB

n"ﬁ'\“ﬂ
Scalar formulation ‘\
C magnitude =A B sin 6

If C = A X B, then C will be perpendicular to A and B.



Commutative law - be very careful here

AXB=H XA
AxDB=-BxA




Cartesian Vector Formulation i
j'—l.‘-i
(
j ¥
i
.
i Xj=k i xXxk=—) ixi=\
k=1 jxi=-k jxj=0 i
kxi=] kXj=-1 kxk=0
i ] N
] - IN



The cross product of two vectors Is

+

—_—

l

A
BX

+
j Kk
4, 4,
B, B,

—n

C=AXB
4, 4. 4 4.
BY BZI_BX Bz

J+

=(4,B,~4B,)i (4B, 4,8,)] +(4B,—~AB,)k




Direction of Moments

Moment axis

!
/"‘T\ MO




Moment of a Force - Vector Formulation

Moment axis Moment axis
Hﬂ —rFxF =rXF
l Moment
A BEE——— 00 T e avas .

r j
MG—|FEF|—}“F51H(H}—F£—PF J
F=Fi+Fj+Fk - )%/
r=xi+yj+zk /

M r=F=|x ¥ =z :[sz—zFf]i—(sz —EFI:I:E-I-I:IF}, - ¥,k




Resultant moment of a system of forces

/IHRU — 2(r X F)

X

M; =r xF+.4r, xF, = > rxF



If ,0 =45 determine the moment produced by the
4-kN force about point A.

‘ 3m '
A ‘

o [I.+45m

¥ >,
o 4C0545 |
4 kN

v

457n4-6'

"21

(;+M 4 = 4 c0845°(0.45) —4 s5in45°(3)
=—721kN-m=721kN-m (clockwise)



Determine the magnitude and directional sense
 of the moment of the force at A about point P.And O
y

L

(+ M, = 400cos 30°(5) + 400sin 30°(2) ip
=2132N-m _ |
=2I13kN‘m (Coumterclockwise) 31'“

n|
Sm
400 N
j *‘A""
=2 m—

(+ M, = 400cos 30° (8) ~ 400sin 30°(2)
=237IN-m
=237kN-m (Counterclockwise)



Determine the magnitude and direction of the mo-
ment of the force at A about point P.

M, =-(+25015)(10 f1 sin30°) - (325015 )(10 s cos30°)
M, ==-2300ftlb



The force F={61+8j+10k} N creates a moment about point O of M_={-14i+8j+2k} N m.

If the force passes through a point having an X coordinate of 1 m, determine the y and z

coordinates of the point. Also, realizing that M ,=Fd, determine the perpendicular distance

d from point O to the line of action of F.

Solution: i ) &k
-4i+8)+2k = |l y zJ

6 8 1

-4 = 0y -8z

8§ = -10+ 62
Y
"2=8-6y

y=lm 'Am

zZ2=3m Ans



The pipe assembly is subjected to the B0-N force.
Determine the moment of this force about point B.

Position Veetor And Force Vecior :

Fac = {(0.55=0)i+(0.4-0.4) )+ (~0.2~0)k} m
= {0.55i-0.2k} m

F = 80(cos 30°sin 40°i + cos 30°cos 40°] - sin 30°k) N
= {44531 + 53.07j - 40.0k} N

@_{-I. 400 mm
\r >
5

Moment of Force F About Point B : Applying Eq.4 -7, we have

My = £y XF
i j k
=| 0.55 0 0.2
44.53 53.07

={106i+13.1]+292k} N-m



Moment of a Force on a Rigid Body

Point O is on the line of action of the force

Ny
NG
. ™
"
o
—_
I
S

Principle of Transmissibility:

The external effect on arigid body remains unchanged when a force acting at a given
point on the body, is applied to another point lying on the line of action of the force.



Point O Not on Line of Action of Force
M=rxF







Resultant of a Force and Couple

System - 2D

Scalar

FRx :ZFx
F, =) F,
My, =) M,




Eg. Replace the forces acting on the brace shown below with an
equivalent resultant force and couple moment at point A.

FRX =ZFX ‘ \ - 100 N ¥

FR =-100N-400cos 45° =-3828N  (3pm

Fr =3828N«—
Fr, =2.Fy
Fr =-600N—-400sin45° =—-882.8 N

y

Fr =882.8N

L

Fr= \/(382-8)2 +(882.8)% =962 N

Fr _
9 =tan"! L= tan"l( 882'8] = 66.6°
Fr ~382.8) ——

y

(+ cow)| My, = D> M, [(+ ccw)
Mg, = (100 N)(©)— (600 N)(0.4 m)—(400 sin45° N)(0.8 m)
(400 sin45° N) 0.8 m)

Mg, =551 N-m=551 N-m (cw)




The couple moment has a magnitude of 220 N.m determine

the magnitude of F of the couple forces .

e

l m

=l

¥

4 3
@0 = _F(?)(S + 1) + F[;)G + 3)

F=100N-m (Counterclockwise)



Replace the force and couple system by an
equivalent force and couple moment at point O. ¥

. 5 Im
SIR, = IE:  F, = 6(=)- 4 cos60° BkN-m/F\_

= 0.30769 kN

1
+TI5, =I5 &, =‘5<,—:1 - 4 5in60°

= 2.0744 kN

F, = (0.30769)7 + (2.0744)F = 2.10 kN

o - m_,[ 2.0744

0.30769] = 8167 &

12 5
(+M, = IM,: M, =8 - 6(33)(4) + G(ﬁ)(S) — 4 cos60°(4)

M, = —10.62kN-m =10.6 kN-m )



Equivalent
system at E ? 500N

p 100N
. »>
. 60° \ B Thosm g
£ i
e 2m 1.5 m—~1 m=~—1.5 m—

Fry = 2 Fx =500 cos60° N+100 N =350 N MRE:ZME ‘D
Fry =2,Fy =-5005in60° N+200 N =-233 N _ (500 sin 600)(4) + (500 COS 600)(0) B
— 2 — 2 = .
Fr —\/(3502)3;( 233)° = 4205 N (100)(0.5) - (200)(2.5)
0 =tan_1(—)= 33.7°
350 =1182.1 N-m

200N




Further Reduction of a Force System

Reduced to single force at a point.

(c)

If a system of forces is either concurrent, coplanar or
parallel, it can always be reduced to a single resultant
force acting through a unique point.



Concurrent Force Systems

Fs

Fp =
F» _ \
P

2K

P



Coplanar Systems

(MRO=ZM+ZI'XF
. (o
y \

FR=ZF

1
S
?

<

I
. M
-



X2

X3

X1




Replacing a distributed load by single resultant load:

y=w(x)

TR

- + + I-

o oo X2 O

(+4) Z F=F :de = fw(x)dx = area under w{x) curve

(+CW) > M,=Fd= Txdﬁz Tm(x)dx —d= %Tw(x)dx

Fmust pass through the centroid of the area under the curve w(x).



w

dF
F, = Iw(x)dx = Id/l = A W= w(x)/,
I A dA | |
Magnitude of resultant force is equal to the LT T~
total area under the loading diagram I l YYYY
w = w(x) O | A
dF produces a moment SuOE L
dM = x dF = xw(x) dx <~ X—{~— dx
- L
XFp=[xdF =[xw(x)dx=[xdA Fr
L A /
A
[xwedc [xwe)dc [xdA 1¢
% L _L _A  /
F [wix)dx | [dA Ol
R 7 " _ O _ O
Z - L
go 2% F

Y F




w w = 160x N/m

]

': Om

A=1(om)(1440Y/ )=6.48 kN =F,

9

_ [x(160x)ax  160%
X = =
_[09(160 x)dx 160%

0

g _ 38880 —6m
6480

1440 N/

=6m

=

Fp=6.48 kN

2/3 L




Find the equivalent resultant force and specify the magnitude and location
of the force measured from A.

W

dA = wdx
"" : w=(0.5x)N/m
= faa = |73 o
[ -]:“
iﬂ-
= 1250 N
F =125
I.i.:f.ﬁ ml:it A
= =
0 2 0 he— om
X dz




Replace the loading by a simple resultant force, and specify the location of
the force on the beam measured from point O.

Solution:

Egquivalent Resultant Force :

6 kN/m ISKN +T Fx=XF,; —Fp=-225-135-15
Fe=510kN

Location of Equivalent Resultant Force :

(+ (M)o = EM; —51.0(d) = —500 — 22.5(5) — 13.5(9) - 15(12)
d=179m

|= 7.5m

SOOKN -m

e 7.5m 4.5 n»——!

d=17.9m

0

Y




100 Ib/ft

100 Ib/ft

OR|

N
)

i

Ib/ft

N



Replace the force system acting on the beam by an equivalent force and
specify its location from point A.

2.5 kKN/m

1.5 kN

D=3 +155+15%4 - S m Tl m—

3+1.5+1.5



OkN 18 kN 3kN
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5.1 Conditions for Rigid-Body Equilibrium
£ F, F,

Y F=0
> Mg =0

For equilibrium of arigid body:
Moments (applied pure twists, and due to external forces) should
sum to zero about any point.



Equilibrium in Two Dimensions
Free Body Diagrams

Support Reactions

Rule:

If a support prevents the translation of a
body In a given direction, then a force iIs
developed on the body in that direction.

If rotation is prevented a couple moment is
exerted on the body.



Type of supports

Support or Connection

Reaction

Number of

Unknowns
1 i £ j '
F Force with known
Racher °|ine of action
Short cable Short link Force Wit Esown
line of action
’
. 920" /’
/ 1
/
/
ftic(ﬁk())lnhl"e;n rod Frictionless pin in slot Fm“‘;}m(:m
or
2
«

Frk-tionles pin Rough surface Force of unknown
or hinge direction
or
3
«
Fixed support

Force and couple




]
AW%&

roller

A

/\ pin

A

_

fixed support







Procedure for Drawing a Free-Body Diagram

1. Select co-ordinate axes.

2. Draw outlined shape isolated or cut “free”
from Its constraints and connections.

3. Show all forces and moments acting on the
nody. Include applied loadings and reactions.

4. Identify each loading and give dimensions.
_abel forces and moments with proper
magnitudes and directions. Label unknowns.




e
FHE SR

6 m

1200 N

y
—2 m—
‘ x Aya —  Effect of applied
Y force acting on beam

Effect of fixed Ax A

support acting My L Im .
on beam Y081 N

FBD Effect of gravity (weight)
acting on beam




R

Effect of sloped
blade acting on A

Effect of sloped
Effect of gravity F  fork acting on A P
(weight) acting on A












FBD



FBD



Important Points

1. No equilibrium problem should be solved without
first drawing the appropriate F.B.D.

2. If asupport prevents translation in a direction, then
It exerts a force on the body in that direction.

3. If asupport prevents rotation of the body then it
exerts a moment on the body.

4. Couple moments are free vectors and can be
placed anywhere on the body.

5. Forces can be placed anywhere along their line of
action. They are s/iding vectors.




Equilibrium of a Rigid Body in Two Dimensions

« Equations of equilibrium become

>F,=0 XF,=0 YM,=0

where A is any point in the plane of the structure.

» The 3 equations can be solved for no more than 3
unknowns.

» The 3 equations can not be augmented with additional
equations, but they can be replaced with:

YF. =0 YM,=0 YMp=0




A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is

held in place by a pin at A and a rocker at B. The center of gravity of the
crane is located at G.

Determine the components of the reactions at A and B

>Mp=0: +B(1.5m)-9.81kN(2m)
~23.5kN(6m)=0

B =+107.1kN

1.5m

YF,=0: A +B=0

A, =—-107.1kN

>F,=0: A, —9.81kN —23.5kN =0

A, = +33.3kN




Determine the reactions at the supports necessary
for equilibrium of the beam.

800N *m

S00N
/ \ 2

Sm

§m 4m

A,
Y M :~800Nm - (500N )(313m)+ B(8m) =0
S F:=A,+%500N =0

D F:=A -%500N +B=0

These equations can easily be solved.:
|4, =1923N; 4, =1801N; B=642N|




D F:=A, -%26kN +4BC=0 A,  a2p 4m
D F: A -%26kN —40kN +3BC =0

Y M,z = (326kN X2m) - (40N )(6m) + ($ BC )6m) = 0

These equations are easily solved:

|4, =54kN; A, = 16kN; BC -sumj




S00 1b/ft

2000 1b 45001b  22501b

A=51251b, B =36251b



The frame supports part of the roof of a small building. The tension in the
cable is 150 kN.

Determine the reaction at the fixed end E.

>F,=0: EX+‘71—'§(150kN)=0

E, =—90.0kN

6
>F,=0: E, —4(20kN)—7—5(150kN)=0

E, =+200kN

>Mg =0: +20kN(7.2m)+20kN(5.4m)
+20kN(3.6m)+20kN(1.8m)

—%(150kN)4.5m+ME =0

20 kN 20 kN 20 kN 20 kN

————— — —— %,

Mg =180.0kN -m




A loading car is at rest on an inclined track. The gross weight of the car and its
load is 5500 Ib, and it is applied at at G. The cart is held in position by the cable.

Determine the tension in the cable and the reaction at each
pair of wheels.

 Determine the reactions at the wheels. ﬂ

>Ma=0: —(23201b)25in.—(4980 Ib)6in.
+R,(50in.)=0

R, =17581b R,

24 in. \

>Mg =0: +(23201b)25in.— (4980 Ib)6in. *y"
—Ry(50in.)=0 i

R, =5621b

W, =+(5500 Ib)cos 25°
=+4980 Ib

e Determine the cable tension.

> Fy=0: +49801b-T=0
W, = —(5500 Ib)sin 25°

=—-23201b

T =+49801b




Find the reaction at A and E

500 N 200 N

p 100N
A 0"\ B 0.5m |E

L*Zm -]- 1.5 mALl le.S m-—




2.5 kN/m 15 kN

Find the reactions

Find the reactions

!= 7.5 m ! 4.5 m—-‘



2 - Force Members

F1Iand FZ2must have equal magnitude but
opposite sense.

(a) (b) (c)



RaGsé0+ Ryx - 30 5in 2262 = 0
RaSink0+ Rey - 390 Gs 2262 0
B + 3(390) Siu 22,62 - Ry (BGasi60+ 1251uG0)




! zFr’E_‘_EM + .gb.p. = AN * 30,96
DRV RIEEEAT RIS CUEET N e

b= (20 )ReCos 296" ~(SRR) 3TN Rey = Re Siaet
Rep= = Gobkd KN , Rex* ~SmdkN, Roy® -3.928 KN

Raxs ~Rax = SN, Ray = &N Rey = 5.928 kN , Ra= 2881 kN




Determine the reactions at A and the force in bar CD due to the loading.




I/ SF #0
I

100N

"Properly constrained" means that

-the supports can theoretically maintain equilibrium regardless
of what forces and moments are applied

To "properly constrain” a body, if the only support reactions are
forces (no moments):

 reaction forces must not all intersect a common axis

* reaction forces must not all be parallel



Equilibrium in 3D Reactions

o ——— —

Three force components




(b)

(a)

Smooth pin and bracket

(@)






(b) Holding a supported bar.

(¢) A built-in support can exert $ix
reactions: three force components
and three couple components.




Three force components
and one couple

Fixed support and three couples

Two force components
(and two couples)

d}(’_.\{,}

Fy t |
ek ®

Three force components
(and two couples)
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Simple Trusses

Simple Trusses truss

structure composed of straight, slender members joined at their endpoints
* joint connection can consist of pin through the ends of the members
» ends of members can bolted or welded to a gusset plate

©)

(a) (b)

« Simplest shape that is rigid or stable is a triangle
« Trusses are generally built out of triangular elements




Roof Trusses
Bridge Trusses






Truss analysis

Truss analysis consists of finding forces in individual members when a
truss is subject to a given loading.

Assumptions
« Trusses are composed of two force members

« Members are pin connected

 Loads are applied at joints
— Weight of member usually neglected
— If not neglected, typically split & applied at each joint

- il i
Truss members are two force members
Either in tension (T) or compression (C) -
A y ' b B Tension
O
FJ l F2 l

u - jie

i

Compression
ql .h
F







Truss Analysis Methods

« Two types of analysis

1.Method of joints: used when axial forces in all
members are desired

2.Method of sections: used when axial forces in only
a few members are desired



6.2 Method of Joints

If atruss is in equilibrium, then all parts of the truss are in
equilibrium. ¢ Every joint (assume a pin joint) is in equilibrium.

e Every pin is acted on by external forces, support reactions, or
forces from two-force members

 Draw FBD of each pin
e Use 2D particle equilibrium equations to solve for unknown

tension or compression forces

Procedure for Analysis

1. Determine support reactions
2. Draw aFBD
3. Write equilibrium equations and solve

2. Method of joints

— For each joint:
Draw a FBD
Write equilibrium equations (x and y components) and
solve



» 500 N

500 N

45°

Fri(tension) Fpc (compression)

L ¢
20—
Particle equilibrium conditions:
Z2F. =0
TF, =0

Tension vs. Compression members in compression
"push” on the pin, members in tension "pull" on the pin



|¥ Find the force in each member and indicate if it is tension of
600 kN compression

_——— ,:I-'E-—I'I' T Tl
@R

600 kN 400 kN 1000 kN

Joint A : Fan
+TEF,I0: Fmﬁﬂ'ﬂ'-m-o
Fip = 848.528 = B49 kN (C)
SXF,=0; Fy-848528c0s45°=0 ) |
Fis =600 kN (T) Al
. ///,’ O h
v D
rmm S P — U U—
-+ i’"‘" x \ T 400 .
600 kN $48.528 kN Foc
Fap ;
45% -li‘_l

-I-T EF,_.-B'; Fu_-mﬂﬁ

o 400KN (© +TEF,20;  Focsin 45° - 400 - 848.528 sin 45° = 0

Fpe= 1414214 kN = 1.4] MN (T)

=3IF,=0; Fpc-600=0

. Fow= 600 kN (T) —~EF,=0; 848,528 cos 45° + 1414.214 cos 45° - Fpe=0

Joot B : § ©] Fee
| For = 1600 kN = 1.60 MN (C)



6.3 Zero-Force Members

Why are they there?

1. sometimes zero-force members are added during
construction of the truss to improve stability, and aren't
removed afterwards

2. sometimes if the applied loading changes, they will no longer
be zero-force members’

Two cases where you can tell if a member is a zero-force member.

Case 1 - pin joins two members and has no external load applied to it
Case 2 - pin joins three members, has no external load applied to it,
and two of the members are collinear



e Case 1: Two non-collinear members, no
load at a pin

— Both members are zero force members




» Case 2: Three members connect at a
pin, two members are collinear and no
applied load

— Non-collinear member Is a zero force
member

/ —




* |dentify the zero force members

3 ft

3 ft

800 Ib
C
7= TN
[ B4 N\D !
AR
A 4 \ |
r 1 . 1 E—L—
S H| ;G I F[ ,
51t © S 5t




Zero force members by
iInspection *

\\\\\




Zero force members by
inspection




6—6. Determine the force in each member of the
truss and state iIf the members are in tension or
compression.

B 26.25¢c (. 18.75C [}

18.75
2m
5 5T 25
E

e <

£ 18.75T

—1.5m 1.5m
25 kN

20 kN



6.4 Method of Sections

B

T
Method of Joints typically used to find forces in all members of 4
a truss !
Method of Sections typically used to find forces in a few ‘i
members / I
Internal T
tensile ~—
J forces
Method of Sections: Y __
1. make a cut or "section” through the entire truss T o l
2. section should divide truss into two parts lension 1

3. section should pass through no more than three members
4. for which forces are unknown (we have only 3 equilibrium
equations, after all)



 If atruss is in equilibrium, then any sub-
part of the truss must be Iin equilibrium

B N € D
/i 1 |4 "
- G / F L
im ] im im
15N




Procedure for Analysis

Determine support reactions (in general)

* Draw a FBD
« Write equilibrium equations and solve

 Find forces in members BC, GC and GFand
whether they are in (T) or (C)

B N r:L D
/\%\//\ £,= 05 kNT
4 AN ,; ™= 4 =10kNT
N G ! F R
Ay Im ] Jm >m E,

158N AX:O




Method of sections

— Decide which part to analyze
« Typically pick the one with the fewest number of forces

- EE E

- 5\\
-
B \ F ’F: C 3 D \\
; \ BC // BC \ S m _ N
Foc / 3m 3m A
3m I \
3m \ Foc 3m I
. = S |y ) E /l
X \ GF F
Ax A G / Fee N | Im 7
l,  3m Y S o E,
y -~ -
1.5 kN e

* Draw FBD of the truss sub-part to be analyzed

« Write equilibrium equations to solve for unknown forces (at most
three)

* Try to write equations with direct solutions, e.g. sum moments about a
point with multiple forces acting on it






Determine the force in member GC of the truss and state if this
member is in tension or compression.

1000 1b







The Howe bridge truss is subjected to the loading shown. Determine the
force in members DE, EH, and HG, and state if the members are in tension or
compression.

JOEN




BC, BF, FG 2

3KN

BC  BF g N

Y M QAN Y0Sm)- AN Ydm) + BCOm)=0 = BC =367 kN
Y M- (6kN Ydm) - kN Y8m) - (2N X2.5m)
- = FG(@&m) - 5 FG(3m) =0 = FG=-1526kN
3 M ,:(3kN )20m )+ (6N N24m)— (2kN )(2.5m) GiN
-+BF(24m)-$BF(3m)=0 = BF =1185kN

In Summary

BC=36TkN T
FG=1326kN C
BF=1185kNT




4. Find the force in member BC and indicate if it is in tension or compression




Find the force in member BC and indicate if it is in tension or compression




6 . Find two zero force members by inspection

The zero force members are: (1 point) 750 kN 750 kN




7. Find the forcein member BC




6.6 Frames and Machines

Frames: support loads, generally stationary
Machines: transmit or alter forces, often have moving
parts

As with trusses, if a frame or machine is in static equilibrium, then
every individual part of the frame or machine is in static equilibrium

e any collection of individual parts are, together, in static equilibrium
e every joint in the frame or machine is in static equilibriume

Steps

Determine the reactions at the supports .

FBD ,XF=0,ZM=0
If the structure is statically indeterminate, determine as many of the
reactions as possible.

Identify any 2-force members (simplify the problem)
Analyze the members .FBD,XF=0,XM=0

If aload is applied at a joint, place the load on only one of the members at
that joint



Identify any 2-force

7 members
| B
8KN
x G E D
statically indeterminate, determine !
as many of the reactions as
possible. FBD,ZF =0, =M= 0

D
If aload is applied at a joint, place the load
on only one of the members at that joint




Find the reactions

OFe=0 < Rax |V
ZFR=0 = -Rey -S04+ Re

ZMar0= ~(su)(s0n0) * ppim + (m)Re =P| Rez /50N




6-85. Determine the horizontal and vertical components
of force which the pins exert on member ABC. :
02m i Im

S EF,=0; A,=80kN

+TEF,=0. A =8S0KN

GIM:=0; B0(5)-B(3)=0
B,=1333=133kN

Dy
G EMp =0, -80(0.8) + 133.3(3) = B(1) =0 3m T
B, = 336 kN : 08m e
80 kN 80 kN -
—+IF, =0, 80+336~-C=0 «——u02m
Ay Bx l'
C,= 416 kN ﬁj
IR =0, -80+1333-Cm0 KN 4y
8y
G=533W Ztnf 3m
80 kN —..-I-t—-—_.—ﬂ._..___;f-'c'l



Find pin forces, and force in
member BE.



6—72. Determine the horizontal and vertical components of force that
pins A and C exert pn the frame.

1000N



6—68. Determine the force P needed to hold the 20-lIb block in
equilibrium.




Find the reactions

> F=0=R,

ZFY :O:RAy _700 lb
-316.67 b

2 M =0=-M, —700 Ib(8 ft)
~316.67 1b(12 ft)

RAy = 1016.67 lb
RAx = 0 lb
M, =-9400 Ib-ft

700 1b

l

e
316_&_'

8 ft

ZFx:():BX

ZF}! =0=R., +B,
-150 lb/ft(6 ﬂ)

> "M, =0=R(6ft)
—150 1b/ft(6 ft)(3 ft)—800 Ib-ft
R, =583.331b
B,=01b
B, =316.67 b



Determine the horizontal and vertical components
of force that the pins at A and C exert on the two-bar mecha- __
nism. 1%

1 2ft TC’
AB SR
600 1b
> M 6000b fi + 5 AB(4 1)+ 4B 1) =0 = AB=-14141b
S F:C,-%AB=0 = C,=-100/b
Y F:C -kAB=0 = C,=-100b

Note that the horizontal and vertical forces in the pin at A are just
A, = A, ==FAB =-100lb

In summary
A,=A,=C,=C,=~100/b|




Determine the horizontal and vertical components
of force at C which member ABC exerts on member CEF.
- C

¢ e

if

> M= 000m)107)+ F(6ft)=0 = F=5000b ! o Loan

Now let’s examine BED
> My E (30)+(300m)(1 1)~ (00)7 f1)=0 = E, =600

These are the two extra pieces of information that we need. Now we are ready
to look at body CEF. C = -?5’b
2

Y M,-c (ap)-Goon)if)=0 = C, =-150b Cr =1001b
2 F:C -E +F=0 = C, =100




@XM, =0;

(+EH¢-=0;

S EF =0

iTEP;,-O;

SEF=0;

+Tml0:

<7502) + B,3) = 0
B, =500 N

=1200(1.5) = 900(F) + B.(3) - 500(3) = 0

B, = 1400 N

=A, + 1400 = 0

A, =1400 N = [.40 kN
A, =750 +500=0
A,=250N
Ce+900 ~ 1400 =0
C,= 500N

=500 - 1200 + C, =0
C,= 1700 N = 1.70 kN

"!.___. S00 N/m
Ay et - - '

3

400 N/m "r-’-
am ||\
- _.,_,..‘ i
" 5m | 15w __1..‘ o
L



Determine the greatest force P that can be
applied to the frame if the largest force resultant
acting at A can have a magnitude of 2 kN.

T

m' o
| C.orn
— 1y
w o .S _ '
l,aj o [;-,

GIM,=0; T(06)-P(15)=0

S3F, =0, A -T=0 2= \((2.51'5’)2 - (P)E
+TZF,=0, A,-P=0

r—— 075 m

075m

Thus, A=25P, A=P P=0743kN =743 N
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Beams - Types

L

(a) Simply supported beam

(b) Overhanging beam

S

(¢) Cantilever beam

~
Statically Determinate Beams

(e) Beam fixed at one end
and simply supported
at the other end

(f) Fixed beam

o~
Statically Indeterminate Beams

H

(a)

(b)

Combined beams



Internal Forces Developed in Structural Members

For each cross section, there is a shear force V and a bending moment M and
a normal force N.

P

V

:B T
Internal Forces

— Shear Forces
— Bending Moment
— Normal Forces

nn

A




Slgn Convention Negative Moment

Positive Moment

> N+
a shear force, which tends to rotate

the beam fibers in the clockwise
direction, is a negative shear force
whereas a force that tends to rotate
the beam fibers in the counter
clockwise is positive.

N+«




Internal forces
at point C

v,.Internal: moments, shear, and
normal forces at point C



General Solution Scheme

The general scheme for finding the internal set of
forces Is

a) Draw the free-body diagram
b) Determine the support reactions

c) Apply the equations of equilibrium

> F =0 > F, =0 > F,=0
dYM, =0 >Y>M =0 > M,=0



Determine the axial forces at point B and C,

40 kip

40 kip

> F, =—Fy +50 kips+10 kips

F.. =60 kips

> F, =—F. +10 kips
F., =10 Kips

Fyp =20kips |
40kip Fpc =60 ks

‘_FA : 10 Kip
Tension
-20 kipsA B
)
s ; 10 Kip
BC 50 kip
) |
—— > 0k
F



Find the axial force, shear force, and bending moment acting
internally on the beam at D.




D7 Mg = —(2m)(60 kN)-=(6 m)(20 kN)+(8 m)Rp =0

— Rp = 301N

Y Fy=Ra+Rp—(60 kN)—(20kN) =0

—| Rq = 50 kIN

Internal forces at distance x from A

> Fy=(50kN) - (15%) £—V =0

= V =50-15z (kN) {z in meters}

=+ M =50z 7:52% (kNom)

3 o= 4 0z + (155 ) 3 (£) =0

15 kN/m

¥

r

r

20 kN

Free body diagram
of the portion left (or
right) of the cross
sectionat x (0<x <
4 m)



Force Diagrams

Force diagrams show the all of the internal
forces acting in the member.

1) Axial Force Diagram
2) Shear Diagram

3) Moment Diagram



body diagrams for
beams, always

apply positive shear \
forces and bending VA

moments




D> F,=0=—20kN+Ry, —40 kN+R,
= Ry, +R, =60 kN

Al
> M, =0=20 kN(2.5m)-40 kN(3.0m)+R, (5.0m)
— R, =14 kN
= Ry, =46 kN 20/ Ol Ok
S =¥,=2ORN - ! j ; &
sections 1-1. Al T -l
SAL—AL—0RNx) 9y Cy )
11 2: 513 41 |5 6;
DF =, —=20RN on k0 8 46 kN
section 2-2 ) L;}Hl
DAL =OAZL+ORN25) )
—AL—S0KRNM 20 kN
S71,— TORNEIRN ’!}M:
g - 2
section at 3-3. 550N 20 kN '
3 H RS
DAL—O=ANL+2ORN25m) PR L;;
—AZ,— SN
20 kN
D ] BT
section 4-4. — =~ 4
l .mkb:-f V4

-

14 ki



Shear and Bending moment
Diagrams

In order to generate a shear and bending
moment diagram one needs to

 Draw the free-body diagram
 Solve for reactions

* Solve for the internal forces (shear, V,
and bending moment, M)



~NOoO ok WwN R

Location (m)

0

2.5
2.5
5.5
55
7.5
7.5

Shear (kN)
-20
-20
26
26
-14
-14
0

Moment (KN-m)
0

-50

-50

28

28

0




600 Ib

7000 Ib.ft<

SD (Ib) 600 Ib

MD ( |b.ft) 4000 b ft

7000Ib. ft




5000 Ib 8000 1b

T T

. — — — m— m— m— —

e o e it i Rl e e i,

Wt - ==
—
8



Concenirated Loads:

____’____

= Shear forces are consistent in magnitude.

Therefore,' shear diagrams are flat lines (no V (K) m
slope; horizontal).

7

= Moment vary linearly between
concentrated loads. Therefore, moment M (k f ‘m‘
diagrams are composed of sloping lines for (k-ft) ! ! !
concentrated loads. ' ' '
w (k/ft)
Uniformly Distributed Loads: A :

V (k
» UDLs produce linearly varying shear forces—shear (k)
diagrams consist of sloped lines.

» UDLs produce parabollically varying moments;
therefore, moment diagrams are curves.

)

M (k.ft)



Note that the slope of the
moment diagram Is equal
to the shear.




For the beam shown draw the shear and moment diagram:

S=wl/2+P/2
. =2x30/2+30/2=45lb

>

I

O O
I

M (k.ft)







3000 N-m

N

o

Ny Y 5
‘\: 2 4

, d H
2 ba PO S .

s
_L.w_
|

N




Draw shear and moment Diagrams 8 kN 8 kN 15 kKN/m

Z:Fx =0=R,,
ZFy =0=R,, —8kN
—8 kN —15 kN/m(1 m)+REy
ZMA =0=—8 kN(1 m)—20 kN-m
-8 kN(2 m)
—-15 kN/m(l m)(3.5 m)+ R, (3 m)

R, =32.167 kN g
= 0|
R, =0kN S
R,, =-1.167 kN G
10 |

15 |

Moment (kH-mj)




For the beam shown here draw the shear and moment diagram:

w=1.5 k/ft

e < e/

720 k

9
12-x =7.33 .
! %\ 2 24\43

11

M(k.ft) /\




ZFX =0=R,,
> F, =0=R,,—20 kN/m(6 m)+ R, v
= R, +R. =120 kN

> M, =0=-20 kN/m(6 m)(3m)+R.(9m) R
= R. =40 kN&R,, =80 kN e b T

———x =4 m

l} kN < m|

M
20 kN«

,l
-
.l

]

A AR

A 4
ayM
»



Construction of the shear force diagram

20 kips 12 kips 1.5 kips/ft

12 kips

-2kips

N

108 kip-ft

92 kipift

-48 kip-fi







Y E =0=B8,

Y E =0=R, +5,
—150 1b/ft(6 ft)

> M, =0=R, (6 ft)

~150 Ib/fi(6 ft)(3 ft) —800 Tb-ft

R, =583.33 Ib
B,=01lb
B, =316.67 Ib

YF=0=¢,

Y F =0=R, 7001
-316.67 1b

Y M, =0=-M,-7001b(ft)
-316.67 1h (12 ft)

R,, =1016.67TIb

R 0 Ib
M -9400 1b-ft

Az

A

1000

S00
S0
a0
=200

a
-200

-400
- 500

0
-2000
-4000
-a0D0n

-S000

8 ft 4 ft
mll lél .Ié. ..é. llrlllﬂhlllﬂz .1 - él..
] 2 | G 10 12 14. 16




SO0 filb = ”
b—51t ;

- ’a .
< [-T-1-FC | S

( S5t ‘* Joft 55t f‘
2L |

joeo ib
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Centroid of an Area

|% a4 |y a4 7 dA
xZAIM yZAIdA ZZAIdA
A A A

/ Area centroid



The centroid of the area coincides with the center of symmetry.

Yy

-« Y —




Locate the Centroid of the area shown
y

(X, y)-

(%, 5)

dy

I m

Y

(1 — x)~

<l
I




Find:  The centroid location (x ,y )

1. Since y is given in terms of x, choose
dA as a vertical rectangular strip.

y=9-x-

4.% = ([,§ dA)/ (], dA)

= (9(9)72— 81/4)Y/(9(3) —(27/3))

o ydA AT (9-9) (9-x)dx

)

J‘ﬁ&



9.3 Centroids — Composite Bodies

a

e b
din | ,
< W n.
| Na

N
d {' 6 in. v 3 In, —=

Many industrial objects can be considered as composite
bodies made up of a series of connected "simpler” shaped
parts or holes, like a rectangle, triangle, and semicircle.

Knowing the location of the centroid, C, or center of gravity,
G, of the simpler shaped parts, we can easily determine the
location of the C or G for the more complex composite body.



Composite Bodies

L1 i.u.—-l

_ 1 1in \
(=LY XA a -

e s i
- 1 Z_
y= E ViA ‘ T

A Xi Yi Z XiA ViA; ZiA
1

Sum XA 2 AX; ZAiyi > AizZi



Find the centroid of the given area

> |
Il
>

D %A
D VA

< |
Il

1
A,
1
A,

60 mm

Body Area(mm? | x (mm) = y(mm) | x*Area (mm?) y*Area (mm°)
Triangle 3600 40 40 144000 144000
Square 12000 60 110 720000 1320000

Sum 15600 864000 1464000

centroid (x) 55.38 mm

centroid (y)

93.85 mm




For the plane area shown, determine the first moments
with respect to the xand yaxes and the location of the

centroid.
o ZXA_ +757.7x103mm’
> A  13.828x10°mm?

g _ZYA_ +506.2x103mm?®
2 A 13.828><1y03mm2

y

X =54.8mm

Y =36.6 mm

—

80 mm

120mm

Component A, mm? X, mm ¥, mm XA, mm® yA, mm?

Rectangle (120)(80) = 9.6 x 10° 60 40 +576 x 10° +384 x 103
Triangle H120)(60) = 3.6 x 10° 40 —20 +144 x 10° —72 x 10°
Semicircle 17(60)%> = 5.655 X 10° 60 105.46 +339.3 x 10° +596.4 x 10°
Circle —m{40)®> = —5.027 x 10° 60 80 —-301.6 x 10° —402.2 x 10°

A = 13.828 x 10°

3XA = +757.7 x 10°

ZyA = +506.2 x 10°
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Moment of Inertia ( Mol) (second moment of an

area (m%
Definition of Moments of Inertia for Areas: Used in formulas for Mechanics of
Materials, Fluid Mechanics, Structural Mechanics

The moment of inertia is found by integrating

= | y’dA ‘
Area
2
l, = | x*dA r
Area
j0: FZO'A V
/. ea

J, Is the polar moment of inertia about the pole O or Z axis

Jo = [yredA= [, (@ +y2)dA= I + 1T



A

EXAMPLE y

Given: The shaded area shown in |
the figure.

Find: The MoI of the area about
the x- and y-axes.

bll

Solution
[ = §ydA Yy

o
+
[
»
=

/
/
::,
/
/
7|

T = [b.AE = ba¥f3 ind



Given: The shaded area shown in
the figure.

Find: The Mol of the area about
the x- and y-axes.

Solution

L = Iy dA |
dA = (4 -xdy = (4 - y¥4) dy
L, = af Y" £4 — y¥4) dy

. F N LY T4 | — i i 38 &) = = g . a e

B ot s 3 i ol N LT SR F A S 8
) S, L, . W B -:;-\..:-l"l-_.-. PN AL :.. - r 1 e B e
SR : - - T




Moment of Inertia;: Parallel-Axis Theorem

GivenI, I,
Ye

Yy

I = I y dA,

I, = szdﬂ

(or L,

/ Centroid

1), determine I, I (or L, I )

I:r = I(y—l_dl)sz
= [y*dA+2d, [ydA+d] [dA
=1 _+Ad;

I, = [(x+d,fdA
= [x*dA+2d, [xdA+d] [dA
=1, +Ad;




Moment of Inertia for simple shapes

; = fhbh®
Rectang] f - ﬁlf,% | fr =y = jar’
ectangle r = 13 1ciroek = =
I Z o Semicircle Jo = tart
¢ = %bh(b® + h?)
. L. = Jsbh? A fe = Iy = fomr!
Triangle L= ibha Quarter circle Jo = dart
- L=T,=jm | Flipse » = frob
Circle Jo = ': " Jo = {mabla® + b?)




Moment of Inertia

I,=[y%dA, 1,=[xdA

3 3 4 4
I_bh I hb I =1 =%=_

12’ Y 12 Y

Memorize the moments of inertia of these two cross sections!



Moments of Inertia for Composite Areas

Composite area consists of group of connected
simple shapes.

If MOI of parts about common axis can be
determined, then MOI of the composite is
algebraic sum of parts.

=2k. L=k



Procedure for Analysis
Composite Area Moment of Inertia about reference axis.

1.0 Composite Parts. Divide area into composite parts. Indicate perpendicular
distance from centroid of parts to reference axis.

2.0 Apply Parallel Axis Theorem. Determine MOI of each part about centroidal
axis parallel to reference axis. Use parallel axis theorem to calculate MOI of
parts about reference axis.

3.0 Sum MOI of parts. Calculate MOI of component by summing MOI of parts. If
any part is a “hole”, subtract the MOI of hole in making summation.

MOI about the centroid of composite the section
Bodies A Yi Yi*A | di=y;-ybar di%A

- _2YA L= > (T, +d2A)
-2 i1



Moment of Inertia — Composite Area

Y Y Y
i } 4 g i
zmjﬂ E[]nj_m QD —p——t—=x,
Fa - ¥ - 1 -1
T C : el [ ™
60 mm Ll - Ll 60mm L| “gh— Y
] L ¥ ¥ G| L "2
W2
=X l - — x a1 — l @ x a1
I -|- -|- " r—H{!mm —'I
20mm 40mm 20 mm 40 mm
—_— —_— I — — 2 : 1 y)
A | 1| Q =AY, Iy =V, —V| Ad; ”:] = 1':[:5} - -"ﬂ‘:'d:
M| 1.600 | 70| 112,000 | 1= {*‘”1 O 5333 24 |921,600| 974,933
3
@ | 2.400 [30]| 72000 |12 _H”Iﬂ_?mmn 16 | 614400 1334400
> | 4.000 184000 2,309,333
oo SO _184000 _, .
YA 4,000




Find I, and r, ( X- axis passing through the centroid

Jin

3in.  3Jin.

of the section ] |
Bodies Ai Yi YA | di=yi-ybar d2A,
1 18 1 18
2 18 5 90
36 108
_ _ - 3
- 2YA 108in’ 4 0
YA 36in
Bodies A Yi Yi*Ai | di=y;-ybar di?A;
1 18 1 18 6 2 72
2 18 5 90 54 2 72
36 108 60 144
ybar 3in.
204 in*
w 204 in*
ZIXI_I_Z(yI ) I, = —XZ\/ —
A 36 1In
=60 in* +144 in* =204 in* = 2.38in.



Find the centroid of the
areashown X ,andY

Element Area X y A.X Ay
1 5 2.5 0.5 12.5 2.5
2 4 0.5 3 2 12
3 10 5 5.5 50 55
)) 19 64.5 69.5
Hence centroid is (; = % =339mm , y= % = 3.66?1:11:) from origin
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APPLIED LOAD __ [Load carrying
(External Forces & System
Reactions) ‘
Internal
Forces
MATERIAL Stresses
PROPERTIES S SUiElne

l

Normal Forces
*Shear Forces
Bending Moments
*Twisting Moments

DEFORMATION & STIFFNESS

<

> Equilibrium

E, v,




Normal Stress and Strain

)
N—1
Prismatic bar: is a straight structural member
having the same cross section throughout its
length
~—

Non prismatic member with non uniform stresses

F
Axial force: Aload directed along the axis — < - —
of the member resulting either tension of
compression in the bar.
F
R -
—




L+6

‘ ‘ Normal Stress in the Bar

¢ P Sign convention:
Tensile Stress: Positive g +

Prismatic Bar in tension
Compressive stress: Negative ; —




Limitations

The equation o =P/A is valid only if the
stress is uniformly distributed over the
cross section of the bar. (the load acts
at the centroid of the cross sectional
area)

For homogeneous materials and
uniform stress in prismatic bar

(4

y



Normal Strain ( Axial Strain)

Tp

L+3

|‘

Eg. A steel bar having L =2.0 m and
diameter D= 50mm, when loaded in
tension with tensile load P= 30kN the
bar elongated by 1.4 mm. What is the
axial stress and strain?

1.4 mm = 7x 104
2*1000mm

e=0o/L=

G =P/A =30/ (= (0.05)%/4)= 0.05887
kN/m? ( kPa)



Example 1-1

A short post constructed from a hollow circular tube of Aluminum supports a
compressive load of 26 kips. The inner and outer diameters of the tube are d1 =4.0 in
and d2 =4.5 in respectively, and its length is 16 in. the shortening of the post due to

the load is 0.012 in.

Determine the compressive stress and strain the post.

Cross section Area (A) = ( 4.5 - 4.0%)/4=

.“ 3.338 in?

26 Kip

o =P/A =26/3.338
= 7.790 ksi

v

¢e=0/L=0.012/16
=750 x 106 in/in




The 80-kg lamp is supported by two rods AB and BC as shown in Fig.
1-17a. If AB has a diameter of 10 mm and BC has a diameter of 8 mm,
determine the average normal stress in each rod.

Fr4

Ifntonad Foadinoe. We must first determin;the axial force in each
rod.
the

- 3 F, =0, Foc(3) — Fpg cos 60° = 0
+1 2 F, =0; Fpel2) + Fpgsin60° — 784.8N = 0
Fpe = 3952N,  Fpg4 = 632.4N

F .
o= -2 = 2N 5 eenpa
Apc w(0.004 m}
_ fha _ S324N 500 npa

TEAT Aps  m(0.005m)>

BB =TEAE M



Problem 1.2-1 A solid circular post ABC (see figure) supports
a load P, = 2500 Ib acting at the top. A second load P, 1s
uniformly distributed around the shelf at B. The diameters of A

the upper and lower parts of the post are d,, = 1.25 in. and

d gy = 2.25 in., respectively.

(a) Calculate the normal stress o, ,, in the upper part of the post. sectionl

(b) If it 1s desired that the lower part of the post have the
same compressive stress as the upper part, what should be
the magnitude of the load F,?

2500#

dap =1.25”

dpe
sectionl =2.25”
(a) NORMAL STRESS IN PART AR section2
P, 2500 1b _
T S 25 im)? COOPsL 4
section2

(b) LoaD F, FOR EQUAL STRESSES

P+ P, 25001b+ P,
T Ape | (2.25in.)’

=0, = 2040 psi
Solve for P,: P, =56001b 4—




The bar in Fig. has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it is subjected to the loading shown.

Kt O kN 4 kN

(a)

12 kN d—é:l—h Pp=12 kN

- 9 kN
12 kN \, L  ——» P;=30kN
gy
9 kN
Pop=22 kN <—|:@—» 22 kN
P(kN) (b)
30 | )
ﬁ t normal force diagram
X
(c)
10 mm\
_ Pge 30(10°) N 30KN
Opc =

A T (0035 my0.010my o> MFa

35m 85.7 MPa



Mechanical Properties of Materials

The design of machines and structures so that they will function

properly requires that we understand the mechanical behavior of the
materials being used.

Tensile Testing

Tensile tests are carried out by
gripping the ends of a suitably
prepared standardised test
piece in a tensile testing
machine and then applying a
continually increasing uni-axial
load until such time as failure
occurs

Tensile Testing Machine



Tensile Test Specimen

Radius r Cross-sectional area A

Diameter o
|

- —O

(Gauge length Cross section

Lc el

Minimum parallel length
(a) Round cross section

e

Cross section
Radius r area A=bx
Width b thickness

- )
_— |:|
|
|- —| Cross section
Lo

(aauge length

Le
Minimum total length
(b) Square cross seclion




Stress- Strain Diagram

o = normal stress on a plane perpendicular to the longitudinal axis of the specimen

P = applied load

A = original cross sectional area

e = normal strain in the longitudinal direction

d = change in the specimen’s gage length o=

L = original gage length

Engineering stress

c=P/A,

True stress

o=P/A

Engineering strain

e=(I-1,)/1,

True strain (Logarithmic strain)
e=In(l/l,) =In(A/A,)

Volume must be the same Al= A |,

£
4

o
I
~|

stress-strain curve or
diagram gives a direct
Indication of the material
properties.



c =P/A

OYp
OEL
OPL

\ 4

<
<

Perfect plasticity
or yielding

>
«

Elastic

Linear region

»
|

Strain Hardening

It is an increase
in stress levels
in the stress-
strain curve at
large
deformations
before ultimate
strength is
reached.

Strain Hardening

Huptur&

Necking

e=9d8/L




Elastic plastic

\4

A

The new
proportional limit
due to hardening

When material reloaded

When load is removed (unloading)
it goes in a path parallel to the

Elastic behavior elastic modulus line

Residual strain
Elastic

Plastic deformation

[

recovery

Permanent set

Linear relationship between stress and strain

Strain is temporary, meaning that all strain is fully
recovered upon removal of the stress

The slope of this is called the elastic modulus



E . Modulus of Elasticity ( Young’s Modulus) - Slope of the initial linear portion

of the stress-strain diagram. The modulus of elasticity may also be characterized as
the “stiffness” or ability of a material to resist deformation within the linear range.

Proportional limit : is the maximum value of the stress from the
stress-strain diagram, where the stress and strain are proportional

Elastic Limit :is the maximum stress for a material to behave
elastically, - the specimen will return to its original undeformed shape if
the load is removed so long as the stress is below the elastic limit.

Yield Point: This defined as the maximum stress on stress-strain
curve, where there is an appreciable increase in strain with no increase
in stress. It is generally easier to determine than the proportional limit
or elastic

Some materials do not exhibit a distinct yield point



Yield Strength :It is the stress which induces a specified permanent set.
This is useful for materials which have no well defined yield point. The
offset method is generally used to determine yield stress

Tensile strength: the maximum stress applied to the specimen.
Failure stress: the stress applied to the specimen at failure (usually less

than the maximum tensile strength because necking reduces the cross-
sectional area).

Ductility
It is the ability of a material to deform plastically.
Two measurements of ductility:

Percent (%) elongation of the member = (L;-L,)/(L,) *100.0

Percent (%) reduction in area at the location of fracture

% Area = (A, -A;)/(A,)*100.0
0 f 0



v
A

OYP

Stress, O

: N
Strainn, € = ~

The yield point may be determined by the offset method . Aline is drawn on
the stress-strain diagram parallel to the initial linear part of the curve but is
offset by some standard amount of strain, such as 0.002 or 0.2%). The

intersection of the offset line and the stress-strain curve (point A in the
figure) defines the yield stress.



\
L

Stress (ks

(ra)
>
i

= Ordinary glass is a nearly
B ideal brittle material,

because it exhibits almost

et no ductility whatsoever

A
U I
:EE % 3, = EEIJJHHE‘
Failure of a brittle material
0O -
strain e

Stress-strain diagram for a brittle material.

Materials that fail in tension at relatively low values of strain are classified
as brittle materials. Examples are concrete, stone, cast iron, glass, ceramic
materials, and many common metallic alloys. These materials fail with only
little elongation after the proportional limit (point A) is exceeded, and the
fracture stress (point B) is the same as the ultimate stress




8] i true fracture
stress
»

Ot g
e
pase=*™" —uitimate
a " stress
o proportional R fracture
- fimit S stress
r elastic >
8 y [imit .
Opfl yield
stress
k=
elastic strain
region aidi - i
- g le yielding le hardening - necking -
elastic plastic
behavior behavior
g Jnepind -

The true-stress vs. true-strain curve is a plot of the stress in the sample at its
minimum diameter, after necking has begun, vs the local elongation.

This more accurately reflects the physical processes happening in the material,
but is much more difficult to measure than the engineering stress and strain,
which divide the applied load by the original cross-sectional area, and the total
elongation by the original length.




Brittle and Ductile Metal Comparison

Erittle -
Modulus of resilience:

the area under the

linear part of the curve,

measuring the stored
B elastic energy

[nctile

oL

mtress, o

|
|
|
|
|
|
|
|
|
Strain, £ = ?a \\Toughness: the total area

under the curve, which
tensile stress-strain diagrams for brittle and measures the energy
ductile metals loaded to fracture. absorbed by the specimen in
the process of breaking



k)

B =
.,-f-"”'—ﬂf

Stress {(ksi)
-
o

Compression Stress Strain

Diagram 2 {/

02 04 05 08 10 120 e
Strain

Compression stress-strain diagram for copper.

Stress-strain diagrams for compression have different shapes from those for
tension. Ductile metals such as steel, aluminum, and copper have
proportional limits in compression very close to those in tension, hence the
initial regions of their compression stress-strain diagrams are very similar to
the tension diagrams. When yielding begins, the behavior is quite different.
In a tension test, the specimen is being stretched, necking may occur, and
ultimately fracture takes place. When a small specimen of ductile material is
compressed, it begins to bulge outward on the sides and become barrel
shaped. With increasing load, the specimen is flattened out, thus offering
increased resistance to further shortening (which means the stress-strain
curve goes upward




Ductile Material — Materials that are capable of
undergoing large strains (at normal temperature)
before failure. An advantage of ductile materials is that
visible distortions may occur if the loads before too
large. Ductile materials are also capable of absorbing
large amounts of energy prior to failure. Ductile
materials include mild steel, aluminum and some of its
alloys, copper, magnesium, nickel, brass, bronze and
many others.

Brittle Material — Materials that exhibit very little
Inelastic deformation. In other words, materials that
fail in tension at relatively low values of strain are
considered brittle. Brittle materials include concrete,
stone, cast iron, glass and plaster.



Linear Elasticity, Hooke’s Law and Poisson’s Ratio

Hooke’s Law: o, =FEg,,

High E= More Stift
Stress

Low E= Less Stiff

Strain



Poisson’s ratio i1s defined as deformed

_|lateralstrain| &, £,

V_|axialstrain|_ g g
X x

force

Original undeformed

g’ (lateral strain) =-ve

Isotropic — Isotropic materials have elastic
properties that are independent of direction. Most
common structural materials are isotropic.

{a)

Anisotropic — Materials whose properties depend
upon direction. An important class of anisotropic
materials is fiber-reinforced composites.

Homogeneous — A material is homogeneous if it
has the same composition at every point in the
body. A homogeneous material may or may not be
Isotropic.




A high-strength steel bar used in a large craney,

P
has diameter d =2.00 in. e e
Because of clearance requirements, the 1
diameter of the bar is limited to 2.001 in. when £ 29 x 106 psi
it is compressed by axial forces. 095
What is the largest compressive load A, ,, that VTR
IS permitted?
Solution
AXIAL STRESS
E=29 X 10°psi v=029 a = Ee= (29 X 10°psi)(—0.001724)
= —50.00ks1 (compression)

2.001-2= 0.001” ==> | Max. Ad = 0.001 in.

LATERAL STRAIN MAXIMUM COMPRESSIVE LOAD

Ad|  0.001 in. T
El| = = = 0.0005 — = 1 )| — 1 2
J 200 in. P = adA|= (50,00 ks:]( 1 )(E.DD in. )
AXIAL STRAIN =157k 4—
g’ 0.0005
= ——]= - = —0.001724
T 0.29

(shortening)



Problem 1.5-3 A nylon bar having diameter d, = 3.50 in. is placed inside

a steel tube having inner diameter 4, = 3.31 in. (see figure). The nylon bar

is then'compressed by an axial force P.

At what value of the force P will the space between the nylon bar and
the steel tube be closed? (For nylon, assume E = 400 ksi and v = 0.4.)

T

::.r] ffg

L

COMPRESSION

d,=3.50 in. Ad, = 0.01in.
d,=3.511n.

Nylon: £ = 400 ksi v=104

LATERAL STRAIN

. Ady .
e = o (Increase in diameter)
1

001 in.
" 3.50 in.

[

£

= 0.002857

AXIAL STRAIN

e 0.002857
= ——= ————=—0.007143
¥ v 0.4
{Shortening)

AXIAL STRESS
o= Fe = (400 ks1)(—0.007143)
=—2.857 ksi

(Compressive stress)

Assume that the yield stress is greater than o and
Hooke's law 15 vahd.

Force P (COMPRESSION)
P=oA =(2.857 ksi}(%)ﬁ S0 in )

=275k 44—



Average Shear Stress |

L average shear stress at the section, which is @)
T=V/A assumed to be the

same at each point located on the section

F
V — internal resultant shear force at the section l
determined from the equations of equilibrium ' |
=
A\

A\
A= area at the section ( parallel to the shear force ®)

L]

[— Section plans

Ap—
—
b
&
b
I
-3
Mg
-1
———
S I—
)

-

- -




Single Shear

b

(a) (b) (¢) (d)

Shear stress on bonded area
Shear stress on bolt

7= F/bc

Where (bc) is the area of
contact subjected to the
shear force

1=F/A = F/ nr?

Where r 1s the radius of
the bolt




Double Shear

1=(F/2)/A=F/2A

Where A is the parallel area of
the bolt subjected to shear force




The bolted connection is subjected to a tensile force
of P= 91kN. The diameter of the bolt d=22mm.

Determine the average shear stress in the bolt in
(MPa)

Cross section area of bolt =380.13 mm?

Shear stress (t) = 91x 1000 N /( 2*380.13)
= 119.7 MPa

P - f
e



Allowable Stress and allowable Load

) ) ) ) Factor of safetv considerations:
Factors to be considered in design includes : L . .
+ uncertainty in material properties

« functionality, + uncertainty of loadings
+ uncertainty of analyses
* strength, + number of loading cycles

- appearance, + types of failure

* maintenance requirements and

e economics and deterioration effects
_ _ + 1mportance of member to integrity of
b enVIFOnmentaJ prOteCthn “’hﬂle strmciure

+ risk to life and property
« nfluence on machine function

- Actual strength
Required strength

Factor of Safety =

The factor of safety must be greater than one to avoid failure
The allowable load = ( Permissible load or safe load) = (Allowable stress) (Area)

P = A

allow — c)-allow



Allowable Stress and allowable Load

Factors to be considered in design includes functionality,
strength, appearance, economics and environmental
protection.

Actual strength
Factor of Safety = N = .
Required strength

The factor of safety must be greater than one to avoid failure

The allowable load = ( Permissible load or safe load) = (Allowable stress) ( Area)

P = A

allow — cyallow



allowable stress

The factor of safety is a number greater than unity (/7>1).

The allowable stress for a given material is: the maximum
stress the material can take (normally the ultimate or yield
stress) divided by the factor of safety.

Oy oL oy
O qllow
_ oY
Tallow =
n




Design for Axial Loads and Direct Shear

Analysis. Given the structure and loads, determine stresses and strains.
Design:. Given the loads and allowable stresses, determine the properties
of the structure.

Design for axial loads and direct shear entails finding the required area to
carry the loads

Load to be transmitted

Required area =
Allowable stress

(i.e., Strength Consideration)

Other design considerations include

 Stiffness:. Designing the structure to resist changes in shape.
» Stability. Designing the structure to resist buckling under compressive loads.
« Optimization. Designing the best structure to meet a particular goal.



Design of Simple Connections

A=L or A=L

o'allowable tallowable

E ﬁ o P
: (a)

Copyright ©@ 2005 Pearson Prentice Hall, Inc.

(@)
Copyright © 2005 Pearson Prentice Hall, Inc.

Uniform normal stress

/’ Oallow

Uniform shear stress

P
o"ll low

(b) !
Copyright © 2005 Pearson Prentice Hall, Inc.

(h) (©)
Copynght © 2005 Pearson Prentice Hall, Inc.



The two members pinned together at B. If the pins have an allowable
shear stress of t,,,,, = 90 MPa, and allowable tensile stress of rod CBis

(6410w = 115 MPa

Determine to nearest mm the smallest
diameter of pins Aand Band the

diameter of rod CB necessary to support 6 kN
the load. | l S
‘/‘ F *’B B /
b 2m— *\*lm—‘{\/‘)
F.B.D
6.67 kKN (a)
(»iN /
2 m- —’~ I m—- B
(b)
P S00 N -
=500 kPa

@ 4 B (0.04 m)(0.04 m)



Diameter of pins: 5.68 kN

2.84 kN
Pin at A BE e
) O (c) .
I 2.84 kKN
b A — 4 — = - 2 — 2 1.
ATT =00 10 kpa L0 10w,
| ’ dy = 6.3 mm f
I 6.67 kN |
Ay == =74.11 « 1078 m?=n(d;>/4)

Tallow: 90 x 107 ]&Eﬁ
g = 9.7 mm

Choose a size larger to nearest millimeter.

dp=7mm g = 10 mm



] Bearing stress

P

(Cy) atiowavie

where (o, ) ;... 15 the allowable bearing
stress of the weaker material =

(ob) allow

Uniform normal |
stress distribution I

(Oh) allow



Bearing Stress

The average bearing stress is the force pushing against a
structure divided by the area. Exact bearing stress is
more complicated but for most applications, the following
equation works well for the average,

o, =PIA,

This relationship can be further refined by using the width
and height of the bearing area as

Beanng Stress Due to a Bolt




Required Area to resist shear caused by axial load

I N o 2R ¢

Qe
~n, 00,9945
%3P

Uniform shear stress
Tallow




Punch Shear

Ve /\

Stress acts on the perimeter surface of the slug. To compute
the shear stress at failure, divide the applied load by the area
of the slug perimeter



EXAMPLE: The connection shown in the figure consists of five steel plates, each
2.5 mm thick, to be joined by a single bolt. Determine the required diameter of the
bolt if the allowable bearing stress, o3, is 180.0 MPa and the allowable shear

stress, o 1S 45.0 MPa?

1800 N
2400 N
1800 N

3,000
3,000N

Maximum Bna‘-in'g Stress:
o, = 300N __ _ 180 MPa r= V = 220N _ 45 mpa
t,._xd.,. TE5X10 m g wie Mo/
oy = 3000N 4 - [Ix180ON _ [ExT,800N
(2.5%107° m)x 180 x 10° Nfm? T V. i f 7.5 45 10%
=0.00667 m = 6,67 mm -m4m|=?14mm




The suspender rod is supported at its end by a fixed-connected circular
disk as shown If the rod passes through a 40-mm-
diameter hole. determine the minimum required diameter of the rod
and the minimum thickness of the disk needed to support the 20-kN
load. The allowable normal stress for the rod 1s oy = 60 MPa, and
the allowable shear stress for the disk 1s 70w = 35 MPa.

| 400 mm|

_i- —-I 40 mm I-—
'T A J Tallowy

20 kN




Diameter of Hod. By inspection. the axial force in the rod 1s 20 kN.
Thus, the required cross-sectional area of the rod is

P 20(10%) N

A= = ~ = 0.3333(10 %) m’
Talow  60(10°) N/m? g
S0 that
dl
A= W(T) = HAJI10“) m*
d = 00206 m = 20.6 mm Ans.
Ihickness of Disk. As shown on the free-body diagram of the core

section of the disk. Fig, 1-33b, the material at the sectioned area must
resist shear stress to prevent movement of the disk through the hole.
If this shear stress is assumed to be distributed uniformly over the
sectioned area, then. since V = 20 kN. we have

v 20(10°) N

A= = - = (0.571(10 %) m®
Tallow 35(106} N,"ITI" { )

Since the sectioned area A = 27(0.02 m)(t). the required thickness
of the disk 1s

CDATA0 )
~ 27(0.02 m)

t = A Rs 12 m: =4 S5 T Ans.



'The bar shown has a square ¢ross section for which the
depth and thickness are 40 mm. If an axial force of 800 N iz applied
along the centroidal axis of the bar’s cross-sectional area, determine
the average normal stress and average shear stress acting on the
material along (a) section plane ¢—w and (b) section plane b-b.

& h 20t

Part (a)
fnternal Loading. 'The bar is sectioned, Fig, 1-245, and the internal
resultant loading congists only of an axial force for which P = =00 N,

Averaee Stress. 'The average normal stress is determined from Eq.1-6.

E 800N

ﬂ'=E= {0.041'11}{0.[]41'11}:5001‘?3 Ans

No shear stress exists on the section, since the shear force at the
section is zero,

Tayg = U Ans,

The distribution of average normal stress over the cross section is
shown in Fig 124,



%x Inclined Plane
/ ’ ; F

B0 < Qsmm 0= —EUSE =)
i P A

{d}

P _
T=—C058sIN0
A

+ i R =0 N — 300 N eos30® =10
+AZFy =10, VW — 800 Nsin30° = 0
molving either set of equations,
N =gbds N = A
V' =400N

Average Siresses.  In this case the sectioned area has a thickness
and depth of 40 mm and 40 mm/sin 60° = 4619 mm, respectively,
Fig 1-24. Thus the averace normal stress is

N 692.8 N
S = 375 kP Ans
T4 (0,04 m)(0.04619 m) | e

and the averase shear stress is \Q}
217 kPa
| 400 N
Ty = — = = 217 kFa Ans. 375 kPa

5T 4 (004 my{0.04619 m) | e

3T KPa




The jont 1= fastened together wsmg two bolis,
Determine the required diameter of the bolis 1f the
allowable shear stress for the bolts 12 T4, = 110 MFa.
Agzume each bolt aupports an equal portion of the load.

A0 min B0 BT

%Gm

A0 B

40 kM



The voke-and-rod connection 1= subjected to a
tenzile force of 3 kM, Determine the averagenormal stress
in each rod and the average shear stress 1n the pin 4
between the memberz




Theplasgtic block =aubjected to an amal compresave
force of 00N, Asmiminethat the cape at the top and bottom
distribute the load uniformly throughout the block,
deterrnine the awverage normal and awerage shear stress
acting along section a—a.

GO0 Y

150

ol TR

P

A0 mm “50 mm*

GO0 I




Sign Conventions for Shear Stresses and Strains

Positive x-face

Positive y-face

Negative x-face

A shear stress is positive if it is acting on a positive face
and in the positive direction of one of the coordinate axes,
or on a negative face and in the negative direction of one
of the coordinate axes. A shear stress is negative if it is
acting on a negative face and in the positive direction of
one of the coordinate axes, or on a positive face and in
the negative direction of one of the coordinate axes.

A shear strain in an element is positive when the angle
between two positive faces (or two negative faces) is
reduced, and is negative if the angle is increased.




Hooke’s Law in Shear

7=y

The constant G is called the shear modulus —
and relates the shear stress and strain in the R
elastic region .

It Is also used to relate shear and elastic modulie y

E=2G(1+v) e

a
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Saint-Venant’s Principle (discovered by Barré de Saint-Venant in 1855)

A sufficient distance away from the point of application of the load, the
stresses will be identical for any load with the same resultant force.

Localized deformation occurs at each end, and the deformations
decrease as measurements are taken further away from the ends

Load distorts lines

located near load
a

Lines located away
from the load and support
remain straight

Load distorts lines
located near support

> =

section a—a

section b-b

YLY|LYIY]Y

section ¢—c¢

3 j=]

B |~y



Introduction

Axially loaded Members : Structural components subjected only to
tension or compression

( solid bars, cables, coil springs)

eg.
Truss members

Connecting rods in engines

Columns in buildings




Typical cross sections
of structural members.

Solid cross sections

B2 )

Stiffness ® k - Hollow or tubular cross sections
L

= =

Flexibility : f = %

s T
Thin-walled open cross sections




Cables

Cables are used to transmit large tensile force.

Cables are constructed from large number of wires wound in
some particular manner.

The cross sectional area of a cable is equal to the total cross sectional
area of the individual wires, called the effective area or metallic area. This
areais less than the area of a circle having the same diameter as the
cable because there are spaces between the individual wires




“Yau I TE IS SN jeu W) =2 10)

X /v(
PY PY Fep Fck
450 mm 225 mm | 450 mm e 225 mm
S 600 mm
_ =
L: 480 mm § (b)
A= 1020mm2 D 4 The bars are of steel E= 205 GPa
A B" C,
120 mm E A';
y = ¥ o SCE
_&_ A B (‘
()‘BD/'/
B’

(a)
Horizontal beam ABC ( rigid) supported by two vertical bar€?

Find the maximum allowable load P max. if the A
displacement of point Ais limited to 0.1mm " 450 mm | 225 mm _
5 — PL Fce= 2P Fgp= 3P o5
AE dzp (3P) 480/ [(205€9N/m?) (11020)] = 6.887 P E-6 mm

Sce  (2P) 600/ [(205€9N/m2) (520)] = 11.26 P E-6 mm

(5, + 11.26e-6P) / (450+225) = ( 6.887Pe-6 + 11.26Pe-6)/ 225
P = 23200 N



Changes in Lengths of Non-Uniform Bars

Bars with Intermediate Axial Loads

1. Denote the internal forces in segments AB, BC,

and CD as Ny, N;, and N, respectively. Draw
F.B.D. as shown to expose those internal forces.

# 2. Determine the internal force in each segment
from the FBDs. The internal force remains
c » constant in each segment
" [N,=-P,+P.+P,, N,=P.+P, N,=F,

3. Determine the change in the Innuhotoad'u

o
o Wi
(a) Bar with externallcads acting 4, The chanmh londh brthoonlm baris the
at intermediate points; (b) (c),

and (d) free-body diagrams
(F.B.D.) showing the internal
axial forces Ny, N;, and N;.




Several constant loads are applied:

Cross-sectional areas are constant PL
Material is homogeneous and isotropic - —
AE
Cut Cut Cut
5kN i s . 7kN
T QJyp =7
A B 3 D
~—— Lap | Ly " Lep—
S > Py =5kN PL. P,L Pe.L P.oL
. 8 AB =~ 8 — =i AB AB+ BC™BC + CcD™=CD
g o= 2, AE ~ AE AE AE
e o (BN (3KN)Lge | (-TkN)Lop
SKN A B AE AE AE



2 Bars Consisting of Prismatic Segments Each Having
Different Axial Forces, Dimensions, and Materials

IN3,L3,A3,E | [N,,L,, A, E, ||N,,L,,A,,E,|

> F=0=N,=-F,-P,+P,
N,L, (-B-EB+PJL

. = —
YA AE,

Y F=0=>N,=~F,+P,
&_(-P +P,)L,
; AL 1

3
N,L,
0=).0; =
§ i E; A




Example : Calculate the vertical displacement §. at point C

Ra
E =29.0 x10"6
A4,0-25in2
20" L < - -
1 ~ it
—— 28" o 257 | 7 e~ b—
= \
}f NS Py ~ ’ ARp Py
34.8” L, | 2
2 5600 Ib .
c 0.15in2 (a)
P

P, 2100 Ib

3 3 N.L.

Use equilibrium equations for member BDE ~ § = Z&' —
I
Then P, = 5000 Ib i=1 i=1 :EEAE

Use equilibrium equations for member ABC

Then R, = 2900 Ib dc = 0.0088 in



Required the minimum thickness # =385k
d E = 30,000 ksi

L=80f

“t C{ = 7.5 in.
{ - ?) T giow = 7,000 psi
» 810w = 0.02 in,

MINIMUM THICKNESS 1
A= -:—u’- (d-2)) or

.‘A_d’. _(d_.z‘)l
w

4A , 4A
(d-2) d T or d 2 d -

d [rdy - A

=3VGE) = o

- -

REQUIRED AREA BASED UPON ALLOWABLE STRESS

P P 85k d dy A
=e— A= = ,"l2.4iﬂ.’ -——J-—) —==
7= A Tuow 7,000 psi l fia = 3 (2 ™
SUBSTITUTE NUMERICAL VALUES
REQUIRED AREA BASED UPON ALLOWABLE SHORTENING 15 in. \/(7.5 in.)‘ " 13.60 (3
s PL R PL (85 k)(96 m.) I 2 2 m

B T B (30,000 ksi)(0.02 in.) e =068 in,

= 13.60 in.}




Assuming that E = 206 GPa, determine the total shortening é .-

of the two columns due to the combmed action of the loads P | | P,_—_ 400 kN
and P, oS

(a) SHORTENING & , . OF THE TWO COLUMisgs; .
| '5 o E'NL Nl NacL
TS EA EAw _EABc
(1120 kN)(3:75 m)
(206 GPa)(11,000 mm: )
(400 kN)(3 75 m)

- L = length of each

column
(206 GPa)(3 900 mm ) |
= 3.75m
— = 3, 7206
l 8535 mm + l 8671 mm mm E =206 GPa

Ouc —372mm — AAB=”'OOO“““2

A, = 3,900 mm?



3| Bars with Continuously Varying Loads and/or Dimensions
2 Reaction at A:
R, =Py + [ plxhix
Change in length of segment dx:
/' N(x)=R, - [ plxkix =P, + [ plakix
a5 = NG

EA(x)
Change in length of the entire member:

5=Zd6=£d5=£l:g(}:;

[Cross-sactional area A(1) varies



Thermal Stress

S = o(AT)L

Thermal

d:.ma = d€formation in length due to temperature change
o = linear coefficient of thermal expansion (1/°C,1/°F,1/°K)
AT = Temperature change

L = original length of the structure member

If free expansion is not allowed stuch as in a
statically indeterminate member

o= c"me-':hani-';al + Gthermal
= Eemechanical + Esthermal = E(Bmechanical + 0'AT)



Thermal Stresses and Strains

A Bar Subjected to AT and P P

Thermal expansion | AT
8. = alAT)L

Elongation due to load P

5, s '

Total Elongation AT

.. PL
‘,"‘}T+‘§P_Q|ATIL+H [H FJ-;‘, +05,




Example 2.7 Statically indeterminate bar with a uniform
What is the thermal temperature increase AT.

the Bar?

AT {

.

{h The constraint on
top is removed to

{stress develjped In
-ty

A

—_—

allow the barto
expand freely as

the temperature
rises

Ry

The bar is then
pushed back to

its onginal
length by
applying the
reaction force.

Compatibility: 0 =0, =0, =0
Equilibrium: z F .=0>R, =R,

: . « _R,L
Force-displacement relations 0, =
Temperature-displacement relation

oy = alAT )L
" oy Kl
5, =8, =alAT)L -ﬁ.: 0

R, =EAalAT)

¢
o, ’T’L’ Ea(AT)



Example:

Two copper bars and aluminum bar are fixed at the bottom as

shown in the figure. The top ends of all three bars are supposed to be welded to a
rigid steel plate. The aluminum bar, however, is a little shorter ( = 0.1 in.) than the
copper bars and it had to be heated to make it extend to the same length as the
copper bars to complete the welding

What is the temperature increase, A7 (°F), that is needed to bring the

aluminum bar to the same length as that of copper bars?

E, =10.6x10°psi E,, =18.0x10° psi
a,=13x10°FF A,=A,=10in> L=30in

Rigid Plate

o 0.1

= = =2564°F
ayL  (13x107°)30) %0

0 =a,ATL = AT




After the welding is done the temperature returns to normal, what will the
stresses be in the aluminum bar and the copper bars, respectively?

The free-body diagram shown below indicates that force in the aluminum bar
must balance the forces in the two copper bars. The copper bars will be
shortened and the aluminum bar be stretched.

Equilibrium Py =2F,,

Compatibility 04 +0p, =0
P,L 5 P. L

1]

Force/Displacement O, =

E Al A..-!f - Er_“u Aq‘_‘u

P, =273001b P, =13,6501b W
0, =27300psi o, =13650psi D

Cu >




442, ‘The post is constructed from concrete and six A-36
steel reinforcmg rods. I it is subjected to an axial force of
W kM, determine the required diameter of each rod so that

one-fifth of the load is carried by the steel and four-fifths by
the concrete. I, = 200 GPa, E. = 25 GPa.

The normal foree in each steel rod is

< (900)
[

P, = = KN

The normal force in concrete is

Pm=‘—:(9m} — 70 kN

Since the steel rods and the concrete are firmly bonded, their deformation must be

the same.Thus
Seon = By
Ponl _ PoL
A Ea AsEg
F2AHT) £ A0EHIH

[025(0375) - 66 d*)|[256107)] BT [ 200610 |
4957 d° = 0.09375

d = 002455 m = 24.6 mm Ans
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Pure Bending and Nonuniform Bending

Pure bending = No sheatr,

M,

(@)
Simple Beam in pure
bending (M= M,).

M,

Cantilever Beam in
pure bending (M= M,).

(a)




Simple beam with central
region in pure bending



Curvature of a Beam

M

Radius of Curvature: p
Curvature : x

1 do

Yo, ds

K =

For Infinitesimal Deformation

ds=dx = K_l~d_9

p dx

p : Radius of
/ Curvature
A i
ds "
X R -ﬂ\ ds = pd 0 ‘




Sign Convention for Curvature

y y
N2/ /8.
S Negative
Positive curvature
curvature
0 X O x

Sign Convention for Bending Moment

CIED CUEI)

A positive moment results in a positive curvature




Longitudinal Strains in beams

e xy planeis aplane of symmetry

 Loading is applied in xy plane

« Beam deflects in xy plane

 Thickness of the beam, /1, remains unchanged

 Axis of the beam coincides with the centroidal line of the cross
section (




1. Cross sections (mn and pqg) remain plane
2. Cross sections remain perpendicular to the axis of the beam

3. For positive moments (hence positive curvature), lines on the lower part of the
beam (nq) are elongated; those on the upper part (mp) are shortened

4. Somewhere between top and |y

bottom there is a line whose leng
does not change, and is called M
“Neutral Axis” 0




Normal Strain Due to Bending

BEFORE

—

p :Radius of ,

Curvature

T S

’—\0’

‘.

A /—‘3'_f'=(P“‘J)d‘9 i

= dx —Ldx
e,

« Strains vary linearly with y

« Along x-axis (y = 0) strain is zero

« For a positive curvature, strains on
upper part of the beam (y > 0) are
negative (in compression) and those
on lower part (y < 0) are positive (in
tension)






20in. = 02 in. 0
= ().25 in.

O
I

What is the normal strain?

The deflection eurve is very flat (note that L/d = 80)
and therefore @ is a very small angle.

) L2
sin @ = —
P

M,

——————————————

L2
For small angles, 8 = sin @ = Y (0 is in radians)

. L L__ |
2 i 2
§=p—pcos = p(l —~ cos0) |
Ao
Substitute numerical values (p = inches):
0.25 (1 s lﬂ) NORMAL STRAIN
: =p — 08§ — .
¢=1=”2=°"‘"‘=5oox10"‘ -—

Solve numerically: p = 200.0 in, p p 200in.



Normal Stress Due to Bending

£, = —-% = —ky | Linear Elastic

Xx-axis must pass
through the centroid
of the cross section

— U= L'ydA/A=0

Centroid

Ec‘i‘Jl =—ﬂ=—_EKy
P /
> F=[0dA=0
= _LydA=U




Flexural Formula y

E
JI =‘EEI = __y=_EKy dA

P
Moment due to o,dA: q J o' \M

dM = (o, dA)y = -Exy*dA o

The resultant moment of the normal stress over the cross section
must equal to the applied moment M/

: 1 M
M=-[oydA=xE[ y'dA=kEl. = Kx=—-=
A A ﬂ EI_
o, = —ﬂfy — _(ﬂl(ﬂy) — _ﬂ F —=— M\y
EI I T

I, = Lysz =Moment of Inertia (Chapter 12)




y Positive
bending
+M_ moment _+M

(=)

Positive
curvature

y Negative
bending
moment

(==

-M Negative -M

curvature




Maximum Stresses at a Cross

Normal
Stresses
Due to
Bending

Section

Stresses vary
linearly with y

Neutral Axis (y = 0)
=0, ¢=0

y

Compressive stresses

moment

Tensile stresses

(a)

y
Tensile stresses

Negative bending
~moment

N
&

Compressive stresses

(b)



I,=[y%dA, I,=x*dA

. T
2
-
ke
Sl
)
P
UL
W X

b
3 3 4 4
II=£; L:hb jrziwzﬂ_zﬁ
12 Y12 ' ' 4 64

Memorize the moments of inertia of these two cross sections!



Relationships Between Bending Moments and Curvatures.

¥ Positive ¥ Nagal.:ivﬂ
bending bending
+M _ moment _+M moment
C U') = 1 _ M (ﬁ)
Positive p EI ™M Negative M
curvature curvature
0 % 0 %

Relationships Between Bending Moments and Normal Stresses

F
: g

Tensile stresses

Compressive siresses ‘

oy iy
1::‘~;em " g B My Hega;:mdmg
- \ x JI - T ‘\'i =
y, / Z
= L

Tensile stresses Compressive stresses



Maximum Stresses at a Cross Section

Y
Y

Tensile stresses
_-— al

Compressive stresses
4

T

Positive bending ymax = 1
moment l

Negative bending
moment

N x

M

™ x
/ Ymin =6 | ‘/M
72 E l oy
Tensile stresses Compressive stresses
Y, o, = _Me, _ _.Ai, S, L S, and S, are known
P 34 I 5 ¢ as the “Section
X ]/ Muduli” of the cross-
5, =— MCe) M 5. -1 sectional area. (See

- [ S, ¢,  Appendix E)



Section Moduli for Doubly Symmetric Shapes

Rectangular: Circular:
b | bh’ » md’
S TY T
Clzcz_ﬁ 2 j/.\ C'Izczzi
T h 2 1,‘ = 2
? o bn_ Ak L\ o’ _Ad
—b—> 6 6 4 32 8
Mc M
C;=C, = O0,=—0)=—=———=——
| S



The beam is constructed of a glued laminated
wood . Determine the maximum compressive
and tensile stresses in the beam due to
bending?

Find reactions
Draw shear and moment diagrams
Find maximum moment

Find the centroid location and moment of inertia

a w0 nh e

Calculate the stresses

Cross Section:

T -
NA h=27in. [= B8.75)27) _ 14,352 in*
12
_’_ .‘_ =i= 14,332 =1,063 iI"l3
¢ 27/2
b = 875in

M, 151.6x1,000x12

ma =1,710 psi
S 1,063

~21.4




Prob. 5.16 Max. Tensile and compressive stresses

in the beam__| ‘__ 25mm

“l 75mm  100mm

g |
| 75mm 4

PROPERTIES OF THE CROSS SECTION K«‘h
A = 3750 mm?
c,= 62.5 mm Cy = 37.5 mm

/.= 3.3203 X 10° mm*

- s

MAXIMUM TENSILE STRESS

0‘,—

MguaC2 (3888 N - m)(0.0375 m)
Ie 3,3203 X 10° mm*

=439 MPa | +—

. MAX[MUM COMPRESSIVE STRESS

—

.F‘ -

M € _ (3888 N = m)(0.0625 m)
I¢ 3.3208 X 10° mm*
732 MPa - . s

‘ ‘ A t

P=54kN L=30m

b = 75 mm = 25 mm
d=12m h=100mm h|="75mm
“216 kN 3m 3.24 kN
3888 N.m




Example 5-4: Determine the maximum tensile and
compressive stress in the beam

|J’

b = 300 mm X

t=12 mm

=12 mm

b= 300 mm

O [r=12mm

Cross section

Z
:

w— =

12 mm

| 16 =pr3f12

Adf

19=194 44 M

@

6 19,872

39,744

515,845

555,589

2,0

40 | 38,400 x 2

512,000 x 2

444,586 x 2

956,586 x 2

3 |52

97,672

2,468,761

ITATYA

.=1848mm, ¢, =h-¢, =61.52mm

| 2.025kN-m)

1125 m

Max. tension

(-36kNm




at

at

I, =2469x10° mm*
I

¢, =1848mm = S =;i-=133,;600mm3
1

€, =6152mm = Sz=;—'-=4l],.1€ll?luu:n3
2

x=1.125m, M=2.025kN-m
M 2.025kN-m .
== =152 MP
NS T TR0 mme A
M 2025kN-m
= — — =505 MPa G
%= T 0100 mme o e
x=30m, M=-36kN-m
M -3.6 kN-m
L =269 MP
TS T T 133,600 mm® ?
M -36kN-m




Design of Beams for Bending Stresses

2
LS
.
I . I 1 | 1 +
D
2

2 2

Which cross section is the most efficient one?



Design of Beams for Bending Stresses

I. Circular Cross Sections o I Mo
oAt d € Palow
64’ 2
3
Apeq = T Surae =2 _ 0.098248°
1 32

ll. Square Cross Sections

_;E_ Compare to a circular cross
1 section of identical area
2
—h— Area=h =T - h—J_d_.DBBﬁd
Area="Nh"
3
I | g L _AM_1 ﬁ —0.1164° =1.181S
I = E" = E square c 6 6 2 circle




Properties of Structural-Steel Shapes
Appendix E, pp. 897 - 902

2 2

1S
1 1 1 1 1 o —1
2 2 2
Wide-Flange Sections I-Beam Sections Channel Sections
(W Shapes) (S Shapes) (C Shapes)

Angle Sections with Equal Legs  Angle Sections with Unequal Legs
(L Shapes) (L Shapes)



1. Determine the moment M that should be applied to the beam in order to create a compressive stress at
point D of 10 ksi.




Beams With Axial Loads

P
O =—
A

O — Normal Stress
P — Axial Force
A— Cross Sectional Area

A

y

of structures

These equations assume linearity

Means supperposition is applied

A

y

Therefore if different load types
are simultaneously applied

%=T

O ~ Bending stress

M — Calculated bending moment
¥ — Vertical distance away from the neutral axis

I — Moment of inertia around the neutral axis

A

y

distributio

Resultant stress

by superposition

n found




3. Determine the maximum normal stress in the horizontal portion of the bracket. The bracket hasa.
thickness of 1 in. and a height of 0.75 in. 700 Ib

18




. T - Examples of composite beams:
Sandwich beams with: (a) plastic (a) bimetallic beam. (b) plastic.

core, (b) honeycomb core, and (c) coated steel pipe, and (c) wood

corrugated core. beam reinforced with a steel
plate.

Composite Beams

A composite beam is composed of two or more elemental
structural forms, or different

materials, bonded, knitted, or otherwise joined together.
Composite materials or forms include such heavy handed
stuff as concrete (one material) reinforced with steel bars
(another material); high-tech developments such as tubes
built up of graphite fibers embedded in an epoxy matrix;
sports structures like /aminated skis, the poles for vaulting,
even a golf ball can be viewed as a filament wound
structure encased within another material.




(a) Composite beam of two
materials, (b) cross section
of beam, (c) distributions of
strains of g throughout the
height of the beam, and (d)
distributions of stresses o;
In the beam for the case
where E , > E;.

Op=E)ép

£(y) = -y~ (%) = -/p)

while for #2 o, = -E,-(y/p)

For material #1 we have o, = -E,-(y/p)



Transformed Section Method

1. Transform the cross section of a composite beam into an equivalent cross section (Of an

Imaginary beam composed of only one material) is called the transformed
section
2. Analyze the transformed section as customary for a beam of one material .

3. Convert the stresses back to the original beam .

4. Modular ratio S ﬁ_E

5. The dimensions of area 1 remain unchanged, and the width of area 2 is multiplied by n) .

all dimensions perpendicular to the neutral axis remain the same(
by

|4——-—>

——

P
. AR
Wl oA s
< ~ l

A similar procedure can be used to transform the beam into material 2 or a completely different
material. One can also extend this technique to cover beams of more than two materials.

Flexure
Formula | Iy



E,- E of STEEL n -E_‘KIE; Eg':EOf STEEL D-ES/E.
E.= E of ALUMINUM E,= E of ALUMINUM

e b - o] b e | e——n - le—p—]
ORIGINAL TRANSFORMED ORIGINAL TRANSFORMED
CROSS SECTION CROSS SECTION| CROSS SECTION CROSS SECTION
(ALL STEEL) (ALL ALUMINUM)

After the section is transformed all calculations are made using the transformed
cross section, just as they would be on a beam of one material. The neutral axis of
bending is at the centroid of the transformed section and flexure stresses are
calculated with the flexure stress formula.

One final step is required to return to the original cross section. If in going from
the stress state in the transformed material we find a reduction in area then we
must increase the stresses accordingly to carry the same load. Conversely if we
increase area then we reduce stress. Those portions of the cross section which
were unaltered in the transformation process carry the same stresses on both the
original and transformed sections .



« Consider a composite beam formed from
+ g two materials with £, and £,.

S | « Normal strain varies linearly.
= E_?)y Ex = Y

o,

e Piecewise linear normal stress variation.

E
My p P
Neutral axis does not pass through

1. section centroid of composite section.

» Elemental forces on the section are

dF, = oydA=— Y dA  dF, = opdA=—22Y A
p p

My  Define a transformed section such that

=
! dF, __(nEy)y dAz—E(ndA) n=E2
01 =0y Oy = N0y P P Eq




6.3-4 The composite beam shown in the figure is simply
supported and carries a total uniform load of 40 kN/m on a
span length of 5 m. The beam is built of a wood member
having cross-sectional dimensions 150 mm X 250 mm and
two steel plates of cross-sectional dimensions 50 mm X 150
mm. Determine the maximum stresses o, and o, in the steel
and wood, respectively, if the moduli of elasticity are £, =
209 GPaand E,, = 11 GPa.

Yo ¥ML,
1 l_l._{

40 kN/m

HllllHI

Froe Seelion 6.2

S 2 My Ba
v LW Tl“”"‘ Ew= lt&fa G;’.EHLJ-_I,.E'=-E’-.3HHPF
f\'ﬂl il : ..'fm:.jz.iju. o
. ; * Tor % = cooorssanzsa
! ~be
"‘L ', v : }“'ifg,E; -
(Ko} - Steel Je = BT tEc s =62, Hma
’i Egx 209 Gfa
M s = .fﬂm*.ﬂfm*&?rm
rax = 25 KN bt bWl
Te= 5z =T 1z j-‘q.'l;h
2o
ht! = (16a (22) = 2p5m = -
L]
)\ Gt T [zsHAn]
/ n= /9 i
. 1 R N -
sz 5, " =fe2sdmba |

=i (Lh’-hhhthﬂ “ 0.0044472 2




6.3-8 The cross section of a composite beam made of
aluminum and steel is shown in the figure. The moduli of
elasticity are E, = 75 GPa and E; = 200 GPa. Under the
action of a bending moment that produces a maximum
stress of 50 MPa in the aluminum, what is the maximum
stress o in the steel?

_Ea=756h

E';sr-,,@:;ﬂ;

—taar

FehatYsAs o) as)(og) ¥ (-oF +.62)(:o2)(od) _

-?_' [ iy - f "'JE Dﬂ 3 E‘P'!;E‘ﬁq‘ ‘ﬂ‘fﬂ?fd

e

t

""‘i] (. QE&E.&LL‘.!XH E_L * r’*mﬂ?}?ﬁ)ﬂﬂ) ]

Mya

A "f?’ 50 MRy = M =512 Nes

M ¥s )
Us = .’ =f3.53,aa]

T ke




The composite beam is made of steel (A) and brass (B). If the allowable bending stress for the steel
is 0, = 180 MPa and for the brass G, = 60 MPa, determine the maximum moment M that can be
applied to the beam. Assume E, = 200 GPa and E, = 101 MPa.

a?( n( 12s) ¥ rs( (-2475)

- — 'y sy +-1C2w75) U6 -
¥4 l B l.l
- lts{ﬁ’

12 T-= 2( 1 azs) + ﬂﬂ'(?)'
. =000 1l WM
U SR wonel = 180x0® => M £ 124 100 Nea
n] = M (red) &‘O‘ml' = Hﬁ mwh
or =
n= 3e = .08
JdEE I
S \" yF .__mnf{i:]{-mui*: -i lﬁi{.l "= J16Y m
iy (Bl
o 1- 'E'Irrg?*dm'ﬂmh‘r U, ol lrns)
= L 0000576) md
'—-—J £ Jgox = M=

Gy =D < poxnt =>{ME 58,500 Na|




A d-in. wide ® 6-in. deep timber cantilever beam & fi longis reinforced by bolting twao

1/ = d-1n. steel plates to the sides of the timber beam, as showt, The moduli of
elasticity of the timber and steel are 1600 k=i and 29,000 k=i, respectively. Determine the
maximum tensile bending stress in each of the materials when a static load of 1250 1h
15 applied to the free end of the heam.

PL J’F Eu* 1600 ks P=jzs0lb
(' ] Es= 29000 ¥si L= F 5t
L | E?/
P I = 7Ga= 18128
v p r
o & X "
1 I- = T:-} & l b
!
- T I %.0625% 4" Qoea"
X
¢ (2z. 125 ")(6")*
..?Ll//’_;"!_h R '2 = 39825 '
Yoo Yo = 3"

Muax = 120,800 ;n-lh




What is the thickness t of the steel plates

I
Nmox= = = 61.44 KN o
Stwple beawm : L=3.2m g =48 KN/m
® weed -Plangcs « b*100 mm h=300 vm
N = 1% w™wm Ewe o0&
(=) cllow = .5 Mg

© Steel potes t « thickviess W+ 200 wmm
Es«210GM
(G )alow = 120 My,
Y
. . '-:: mn ‘_Ei A
< = Ir ~ Jia (100 Mzt)(m‘)’ iz C1o0) (190
2z I All d:mgnalw:‘. (n 6 y ¢ 4
TR My miflimeters *F6.9» 10" mMm 4y 9454 210" mm
't ut
Required thickness based upon bhe neod © (8. 6-19) am'ith_&r_a}_lmd_wmﬁmﬁ@_(_ £17)
5, = M("/Z) (IT)-.!_MQ}_QJ-LQW'"OM s 'M_{.ha}.n fI'l') CM)"'I- l-&lt‘ﬁ
IT (61 )alow | (5. e

. Equake ::-r and(1+),and solue br t: 12218970
Equah. It ond (T1 ), ovd =olve for t: L= 12.42'-* Steel .. ¢ 5.0 mm
S”" min = . ‘—




Problem 6.3-12 What is the maximum allowable bending moment for the beam ?

h

|

216 mm
250 mm

40 mm i : ,
¥ i 6 mm

—— 162 mm — T

® Wood beam: b, = 150 mm
hg = 260 mm
(6)allee = 8.5 MPa

@ Muyminum chamel: T2 6 mm
Dy= 162 mm
hﬂ.‘ 40 mm
{fﬂ}ﬂh= 40 MPa

Matimom moment bosed vpon the wood @
(Eq.6-1%)

Ew a8 = Mh = (6.) - .2%N
w - M ;‘:”} = 0 ™

Maximym wmomenk based ypon the alomimumd)
(I_-q.. 6-17)

Oa =6; = Mhal M, = (), Iy -0
T

T hgn RN

Bood goverms My, = 112 KN-Mg—

Use the base of the cross sectim as a

line.

Teanstormed section Cwood)
y

h‘l - % !l;-'-ﬂl.

Area Ai: Y =3 A, =(q12)¢6) = 5Q32

T YiAy = 17,4496 'l'l'll'l'tli
e "'E- -6 Aren A;: Y: =23 Ag=(26)(3) » 1224

nb, = C6)CIE2 ™MM) Avea As:

Y2 Az =28, 152 mm®

150 = Q77 mm YsAs = 4,412,500 —
= Yihi 22V Ar + Vs Ay o 4986300 me?
: nt < ¢6)Cemm) h l;.::i, +A:. 45,780
. e 36 '!nm = 100.92 mm

PR i - S—h All dimensions %3206y < HATRE W

in mi”im\!tef‘i.

Ys = 131 As = (150)(250) = 37,500

Ieal,+2T3+ Iy =-1ﬂ1_i » |a‘“

+

"



Reinforced concrete sections







Reinforced Concrete Beams

b

« Concrete beams subjected to bending moments are
reinforced by steel rods.

» The steel rods carry the entire tensile load below

the neutral surface. The upper part of the
concrete beam carries the compressive load.

 |n the transformed section, the cross sectional area
of the steel, A,, is replaced by the equivalent area
il nA,where n=EJ/E,.

‘I’“ « To determine the location of the neutral axis,
(bx)g—nAs(d -x)=0

2
Fbx“+nAx—nAgd =0

 The normal stress in the concrete and steel
_ My

N. A




A concrete floor slab is reinforced with 5/8-in-diameter steel rods. The modulus of elasticity is 29x106psi for
steel and 3.6x106psi for concrete. With an applied bending moment of 40 kip*in for 1-ft width of the slab,

determine the maximum stress in the concrete and steel.

’<—~12 in.

SOLUTION:

Transform to a section made entirely
of concrete.

Evaluate geometric properties of
transformed section.

Calculate the maximum stresses in
the concrete and steel.

6 -
N Es _ 29x10" psi 306

Ec 3.6x10° psi
A :8.O6x2[%(§in)2 } ~ 4.95in?

nA, = 4.95 in?

-

o, = 1.306 ksi

o, = 18.52 ksi

« Evaluate the geometric properties of the transformed
section.

12x(§j _495(4-x)=0  x =1.450in

=1(12in)(1.45in)’ + (4.95in2 [ 2.55in)? = 44.4in*

e Calculate the maximum stresses.
Mc;  40Kip-inx1.45in
44 4in*

GC:

Og =

|
Mc
n—2

=8.06

40Kip -inx 2.55in

. =1.306ksi

44 4in®

o =18.52ksli
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Shear Stresses in Beams




Effects of Shear Strain

Warping of the cross
Pure Bending Assumption: sections of a beam due to
Cross sections remain plane shear strains.

The effect of shear strain becomes negligible when
the aspect ratio, L/h, of the beam is greater than 10.



Shear Stresses in Beams

m M
< MV M + dM
) 1
.| V ./
V+ JV
ifx
n n.l
Kide view of heam
L |
o —
M I\T’ -17’;&1 M+ dM | h
C XA T N 2
/ # ug
et ot
/C dx _'}\
n "y
Side view of element
e MU, (Mvaty

. i m I
E :—;f’rﬂi h
Il P —I.i'* 1 J L.F 2
| \ Al %
|
Side view of subelement
m |
F ) i - F3 "
p P —— |32
. Fy M ¥
2 ] 2
1 odA | = E’ g,dA
Ly |
Eﬁﬂdﬁ ______ | =qu(M+dM)ydA
1 I 1 I




Shear stresses in beams

m my
Flo e F A
PI l ’Pl 9
\ F3 N
: , *
| :
I

Shear Stress:7=7,,,, = ——————
Bottom Area of the sub - element

F, dM\ 1 gp V g
- [ P aa =L [P yaa
“m " (dx)bIlj{y Mfiy

Let Q=_[jl/2ydA r=% TT_?.lr




Shear Stresses in Rectangular Beams

y
7 VQ
| T}‘l r=?:
.lILI 0
1 .
2 Q= fzydA = First moment of A, w.r.t the z - axis
1
-+ b »
0 — I
g =U=7T
|("“§] ; -
h r
2
X Tma» ; »
h Vi* %1[12] 3V
=y = = = = =l_
2 ) =T =g =g\ o) T2 e

Parabolic Distribution



Determine the normal and shear stresses at Point C

b4
-&n Z.ﬂ]:
=200
Cross section _*_'I.__l .
b= 1.0 in
=2 5353int
12 w)
Qc = Aclc
=(1.0X1.5)=15in’
M. =17,9201b-in
Ve =-1,6001b

LO in

y = 1.0

~ (17,920)1.0)

V0. (L60ON15) ..o
_CJ% “Gamyio) UPe

= -3,360 psi

'rc=

450 psi

: k] _b- o ®
3360 psi l.I 3360 psi

.
450 psi



what is the Maximum Permissible Load

b=100mm h =150 mm




. v b=140mm h=240mm A =bh=33500mm?
. - o —— )
h S=Pﬁ—= 1344 X 10’ mm®
6 Allowable P= ?
y = 5.4 kN/m*?
b— w2 L2 —f L=12m q-ybhfl‘SI.MN!m
(a) ALLOWABLE LOAD P BASED UPON BENDING STRESS
M .
Tow = 85MPa o = _ma Equate values of M___and solve for P:
5 03P + 3266 = 11,424 P = 37970 N
uo FL el _PU.2m) (18144 N/m)(12m)’ of P=380KN <—
o4 8 4 8

=03P +3266N'm (P =newtons; M =N - m)
Moas = S04, = (1344X10° mm>X8.5 MPa) = 11,424 N - m

(b) ALLOWABLE LOAD P BASED UPON

ek Equate values of V and solve for P:
0.8 MP -3 P
Tallow = TTE 2 +108.86 = 17,920 P = 35,622 N
V=£ il.‘.=£ (181.44 N/m)(1.2 m) or P = 35.6 kN P
2 2 2 2
-g 8.86 (N) NoOTE: The shear stress governs and
Ar 2 Pow = 35.6 kN
V= —35 = 5 (33,600 mm’)(0.8 MPa) = 17,920 N



Shear Stresses in beams of Circular CLOSS section

y Y .
h h 4
7 2
4 0 T}I 'y Tma
h h
) 2
Y N, S
-+ b -
N L W[ J 3V _15;
bi=0) = Fmex =g o®) (20 ™

The exact distribution of shear stress in a beam of
circular cross section is very complicated and
only that along the neutral axis can be determined
relatively easily.




Shear Stresses in the Webs of Beams with Flanges

VQ v |
- I? T8I o> — 17 ) £0f — 4]

Toved

bh* (- 15 03 a3
| =—— L = —\bh” —bh; +1
) 12 12 12( i+ 1))




Shear Force in the Web: = (The
are of he shear stress diagram x
the thickness of the web)

V= [Tmin hl +2/3 hl (Tmax " Tmin )]t
=1 hl/3 ( 2 Tmax ™ Tmin)

Shear force in the web is 90% -
98% of the total shear force V
acting on the cross section

Assuming the web carries
i
all of the shear force...

Tag = V/thy




Built-Up Beams and Shear Flow

(a) V

(¢) ' (c)



Shear Flow Built-Up Beams
de

N

= i

Two 2 x 4
nailed together

Shear Force: F, = ﬂ j’ ydA n = Number of rows of nails
F =Strength of each nail

nP Shear force provided by nails
Nail Spacing

F dM Vo
Shear Stress : r-w-m ydA = i f'

F dM 1 VO
=T viA=T

ShearFlow: f= T Nail Spacing: s=—

nF
f



Shear Force In Fasteners :

In many applications, beam sections consist of
several pieces of material that are attached together
In a number ways: bolts, rivets, nails, glue, weld, etc.
In such so called built-up sections we are interested
In knowing the amount of shear stress and the
resulting shear force at the cross section of
fasteners or over the glued surface .




Ex. 5-16 The plywood is fastened to the flanges by wood screws having an allowable load
in shear of F = 800 N each if the shear force V acting on the cross section = 10.5 kN.
Determine the max. permissible longitudinal spacing s of the screws.

y

15 mm—+ «~—I80{mm— 15 mm

| F"“'i‘"-“'l“""’l
20mm LB ““\\Q\tm\‘_ &
¢ 'E\"&."""‘-‘xx y _ e
T3 1 74/" =
N
\ // -
§ | 280 mm /I’”’/,,-r 1 .
N (
N
\
|
Cross section Side view
_ (210)(280)°  (180)(200)° vQ _ (10.5x10° (864 x 10°) N
12 12 [ =343 ——
— 264.2 ” ]{]ﬁ mm-l I 264.16 X 10 mm
)= (130)(4{}I14{] — 2{}) = 2F = 2(800) =46.6 mm

. 5= =
=864 x10° mm* f 34.3

| Use 45 mm




Find the spacing for each case

b= . (200)(360)°  (160)(320)°
20 mm 12 12
—340.69x10° mm*

0= (200)20)180-10) ~ Q=(160)(20)(180-10)

= 680x10® mm?® =544 x10° mm?®

2FI
5=2—H=T8.3rmn §=——=979 mm
VO VO



Will the beam be able to support the load if the allowable normal
stress of southern pine is 15 MPa? (b) What is the maximum
nail spacing if the allowable shear load of each nail is 2,000 N7

g=5kNfm 150mmy | T|4—150mm—>| n
50 mm 7511"1? Ef:_m
|
150 mm 125 mm 150 mm
Nail$ AL I i
R, =5.625kN R, =16.875 kN ]
50 mm 50 mm
5.625kN 7.5kN \ = _ AW+ AW,
A+ A,
be-1.125m ~ (150x50)25)+ (50 150)(50 + 75) 75
-9.375kN (150 x 50)+ (50 x 150)
| =53.125%10° mm*
oy =Mmae 3162 ___ 7 44 \pa
S,  425.0x10
M 3,164
- . _ O = —= g =447 MPa
g, = —h = —izﬁ_ﬁ =794 MPa
5, 708.3x 10
o = Mpw 9625 4354 \pa

S,  4250x10°



Maximum Nail Spacing
q=5kNfm

150 mm
TI"‘ -]

75 mm S0 mm
—5

150 mm R, =5.625kN R, =16.875kN
125 mm
5.625 kN
50 mm -9.375 kN

Nails are to resist the shear 6
VQ  (9,375)(375.0x10°°) s N
= —; = 66.18 X 10 —
flow between the two 2 x 6 f 7 31951103 -

=375.0x10° mm?® = f 66.18x10° m=0ou4mm



A box beam of wood is constructed of two 260 mm X
50 mm boards and two 260 mm X 25 mm boards (see figure). The boards

are nailed at a longitudinal spacing s = 100 mm.
If each nail has an allowable shear force F =
maximum allowable shear force V__?

All dimensions in millimeters.
b=260 b, =260 ~ 2(50) = 160
h=310 h, =260
s = nail spacing = 100 mm
F = allowsble shear force
for one nail = 1200 N
f = shear flow between one flange
and both webs

1200 N, what is the

2(1200N) KN/
S = = 00w
=Ye o Lol

I--i%(bh’-b.ﬁ)-ill.usxlo‘_‘
0 = Oponge ™ Ard, = (260X25)142.5) = 926.25 X 10° mm®

faond _ (24 KN/m)(411.125 X 10° mm*)
926.25 X 10° mm’

= 10.7TkN o=

P’-




4. Determine the shear stress in the beam at point 4, which is located at the top of the web.

| - y=
T‘:\-" L= ‘I]u] + 2%2(1)e) + ﬁi‘" l. ."t‘fﬂm = ﬂul.'!.;b_._m_

T= "merm = 7912 psi |




The beam is constructed from three boards as shown. If each nail can support a shear force of 300 N,
determine the masamum spacing s of the nails within region BC.

S kN 12kN
200 mm
s e
R i
»
0mm’” “Gomm
150(30)(300)(2) + 285 (200)(30)

y = 30()(2) +200(3)  ~ (FE75 mm Som bottom
I-= [-“‘; ‘+(m75...5)'(4o)(.osg(z)+ .ZS"’_E:').; + (285-13375)°(2)(03)

o 2000 (B5-1325)(2)(03) _ 2 (300)
0.0002175 s

Qe

S = [0T74mm
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Torsion Deformation of a Circular Shaft

Torque is a moment that twists a member about its longitudinal axis.

Angle of twist ( @ ) is defined as the rotation of a radial line from a fixed end to a cross section
some distance x from the end.

Curcles remain

circular Units N.m or Ib.ft

T

. Longitudinal
lines become
iwisted

1. Radial lines stay straight
| 2. Circles remain circular
ks 3. Longitudinal lines twist into helix.
Radwal lines

remain straight




Bar subjected to torsion by
torques 7Zand 72

Sign Convention: (b)
Right-Hand Rule — +

T T e~
: .

(c)




Limitations

1. The longitudinal axis of the shaft remains
straight

2. The shaft does not increase or decrease in
length

3. Radial lines remain straight and radial as
the cross section rotates

4. Cross sections rotate about the axis of the
member

The right end will rotate with respect
to the left end of the bar. The angle of
rotation = Angle of twist ¢. It changes
along the length L of the bar linearly.




ke = (r)d¢) , ¢
Before torque application = (dl')(}’max ) o d.]’.'

0: Rate of Twist : = angle of twist per unit length

[0=dp/ix] [Fea="1]
[1f 4 is linear, then 6 = 4, /1]

after torque application For pure torsion 'Y max =T (I) /L




The Torsion Formula

Tensile and compressive stresses acting
on a stress element oriented at 45° to the
longitudinal axis.

Determination of the resultant of the shear stresses acting on a cross section.

I,= L p’dA = Polar Moment of Inertia



For Circular Bars

For Circular Tubes =20 )=l - a)

:%1(4r2 } f.z]z%[ﬂrz i J'E)

htn

nd njzn’j d,

where r =

Itd, ~d,, ie,t <<d,then
3 _ |
4

I, ~2nr



Circular tube in torsion.




(a)

. Three fatlure modes of a torqued specttnen: (ab): matenial falure
i1 solid shaft, (o) wall buckling in thin wall ed tubular shaft



Angle of Twist

T=Gy
=L, Ip
r ™I,
T T
Recallz=Gph = a'E-E
Recall ¢ = 6L = ¢—£
GI,
k. = I - Torsional Rigidity (Stiffness)

L




This rotation is called the mwist angle @.
The twist angle per unit of x-length is

called the twist rate : @ = dp/ax.

Adx K o LS
T Tp a’gﬁ:

Y =5 T 57 Pax
dp T
dx  GJ

This 15 the twist rate formula. To find the twist angle ¢4, where subseripts 1dentify the angle
measurement endpoints, integrate along the length of the shaft:

d Lr
boa= by — b= by — ﬂ—qﬁg—f dp = f %x—[n .

If T, & and J are constant along the shaft:

T L TI




Bar in torsion. T

(2) Determine the torsional stiffness of the bar,

D=30mm
|

(b) 1f the angle of twist of the bar is 4°, what is the maximum
shear stress? What is the maximum shear strain (in radians)?

- m d = 30 mm

L=1
G=28GPa & =4°

{a) TORSIONAL STIFFNESS

Glp  Gmd* _ (28 GPa)(%)(30 mm)*
L 32 32(1.2 m)

k;=1860N m  -—

;:r:

(b} MAXIMUM SHEAR STRESS
b = 4° = (4°) (7 /180)rad = 0.069813 rad

TL Gl
$= Gl, ==

f
L=1.2m ’!
Tr _Td (GM» d )

e A YR A S YA
. Gdd
fman EL

(28 GPa)(30 mm)(0.069813 rad)

- 2(1.2 m)

= 24.43 MPa

MAXIMUM SHEAR STRAIN

Hooke's Law:
_ T 24.43 MPa

Yen = TG T T8 GPa
?...-3?35{!0"1‘::! -



A plastic bar of diameter d = 50 mm is to be twisted by
torques T (see figure) until the angle of rotation between the ends of the
bar is 5.0°.

If the allowable shear strain in the plastic is 0.012 rad, what is the
minimum permissible length of the bar?

d = 50 mm

=5.0°= (5.0) — | rad = 0.08727 rad
b =50 (5'0)(130)“" 0.087

Tatow =0.012 rad dé (50 mm)(0.08727 rad)

L = 2Y 0w (2)(0.012 rad)
Lpin = 182 mm <=

¥ max

6 _do
L 2L



(2) SHEAR STRESS AT OUTER SURFACE

: CE
(b) SHEAR STRESS AT INNER SURFA d,=150mm  r, =75 mm

(¢) RATE OF TWIST d,=100mm r =50mm
(d) SHEAR STRESS DIAGRAM G = 75GPa
T'=16kN -m

I = %uﬁ‘ ~ d}) = 39.88 X 10° mm*
‘ (c) RATE OF TWIST

(2) SHEAR STRESS AT OUTER SURFACE 4n r 16 kN *m B
Irs (16 kN - m)(75 mm) TGl (75 GPa)(39.88 X 10° mm’)
T2 7;: T 39.88 X 10° mm* | 8 = (,005349 rad/m = 0.306%m  +—
=30.] MPa ¢ (<) SHEAR STRESS DIAGRAM
30.1 MPa
20.1 MP
(b) SHEAR STRESS AT INNER SURFACE -,
Try r
7, = — = — 7, = 20.] MPa 4= .
lp 1 0 25 50 75

r{mm)



T, T, Ts T,

with constant torque throughout each A BT R
segment LAE:—-\—LEEC—\—L:‘;D‘I
Cross sections between CD

YT=T,+T,-T3+Tep =0
—— TCD =‘-Tfl """Tz +T3

Cross sections between BC _ TEL!-
S T=T,+T,+Ty =0 Gi(1,).
= Tge =-T,-T,

Cross sections between AB
ET=T1 +T,;=0=T,,=-T,



Find the shear stress in each part of the shaft
Find the angle of twist of point B relative to D

Shear stress in each segment:

Angle of twist in each segment

TCD_ZT =T, -T,+Tp=0 Total angle of twist

—tae—

(a)
Free-body di?grams.
1

f Tpc ZT = 'T-l + TEC'_='H'




Calculate the following quantities: (a) the maximum shear

m::’ T, 0 the shaft, and (b) the angle of twisl &, (in degrees)
at C

d =225m L, =30in.

d, =175 n. L,-Min.

G = 11 x 10°psi SEoMENT BC
7, = 20,000 b-in. Tpe = *T, = 8000 b-in
7, = 8,000 Ib-n. 16 Tp  16(3.000 Ib-in. ,J{
R e ol 7
d nd) w(1.75 m.)’ i
SEOMENT AB
T“' T.—Tl = — 12,000 Ib-in. ‘.( = -{-!‘q = (3,000 B>-in.)(20 ) -
. "U’)K . W 4
16 T | _ 16(12,000 ¥o-in.) - 5365 pai (11 % 10* pwi 3 175n.)
T nd, w(2.25 in.)
= +0.015797 nnd
o sl t-l!.ﬂl)lb-in HJOh}
as = =

((1,) a0 “lxlo.PJ( )2.?.5&) *c.h..p‘x-(-“lm'Iilﬂlimlrﬂ

= ~0013007 rad -Om ‘.‘40.".




The copper pipe has anouter dameter of 40 mm and
aninner dimmeter ol 37 mm. ITi0s tghtlysecured 1o the wall
at A and threetorgques are applied to it as shown, determine
the absolute maxmum shear stress developed in the pipe

N T...cC B QN0.02) @

fmax oy I(002' — 001857

= 26.7 MPa




The solid 30-mm-diameter shaft is used to transmit JONmM 50 N-m
the torgues applied to the gears Delermme the absolute
maximum shear stress on the shaft,

Internal Torgue: As shown on torque diagram.

Maximum Shear Stress: From the torque diagram 7, = 400 N -m. Then,applving

todsion Formala. {6 M-

I e ©
T::l. - J' B
O0(0.015) -
= _':—1 ~ 755 MPa Ans, i
I (0.05" 500 mm

T i}

1

g i i)
300 r' oF s




The coupling 15 used to connect the two shaflis
Logether. Assuming thal the shear stress in the bolts is

pniform, determing the number of bolts necessary 1o make
the maximum shear stress in the shall equal o the shear

stress in the bolts Each bolt has a diameter .

M 15 the number of bolts and £ is the shear force in each holt.,

T
T - nFR=0; F=—
= AT

F
Tavg = S

T @) nRad
Maximum shear stress for the shafl:

e Tr 2T

Toaan — J _._-rr_q.: 1_“__'1'
4T 2T
Tavg — Twnax - n R - o

nE



5-14. The sohd S0-mm-diameter shalt s used to transmil 230 N'm
the torques applied to the gears, Determine the absolute

maximum shear stress in the shafl

The internal torque developed in segments AB . BC and CD of the shaft are shown
in Figs a,b and c.

The maximum torgue occurs in segment AB. Thus the absolute maximum shear
stress occurs in this segment, The polar moment of inertia of the shaft is

J = l:(n.uzs‘) - (,19537(10 "ym*. Thus

T'\B(' 25”(().“2*)

0.19537(10°%)

(Posan Jars = r = 10.19(10%)Pa = 10.2 MPa Ans.




Thin walled Tubes
y

" oy,
"‘*a /

e o e o

X =Jldx’4—
L

(a)
Shear stress and shear flow

(b) (c) (d)

Shear flow = 1.t



Torsion formula for thin walled tubes

(b) (©) (d)

dE = t(tds)=f ds

The moment of dF about an arbitrary point O is

now dM = § (ZdA) ds / I

F = . -y ‘r =
T = jﬁdMﬂ - ff(m) f, = e

Cross secftion of thin-

walled tube.
dM, =bdE =b (f ds) = f (b ds)
dA =4 bds-bds=2dA




Thin-walled circular tube

12

-« h——

Am = mr? Thin-walled rectangular tube.
Shear stress constant around the Am = bh
Cross section
T
T T Tvert —
T = -
2mtr?
2t T . T
THoriz —

2t,b h



Angle of twist ¢ for a thin-walled tube

Tensional constant of thin walled

tubes of constant thickness Tensional

rigidity



Problem 3.10-6 @alculate the shear stress 7 and the angle of twist ¢ (in
degrees) for a sieel tube (G = 76 GPa) having the cross section shown
in the figure. The tube has length L = 1.5 m and is subjected to a torque

I = 10kN - m. | = 8 mm
r =50 mm r=50mm
A, = w50 mm)?+2(100 mm)(50 mm)
= |7.850 mm?
L. ™ bt 2ur
= (100 mm) 4+ 2w(50 mm)
= 5|4, e
Staki , b= 100 mm
j 4M._3, _ 448 mm)( I’I.SS_O‘mmf)_‘
. $14.2 mm ANGLE OF TWIST
é TL (lﬂkN-ml(l.Sm)
SHEAR STRESS GJ (76 GPa)(19.83 X 10°mm")
T O kN - m = 0.00995 rad
T

T AL AEmm)(17.850 mml)  =0570° 4=
=350 MPa +—



Outer dimensions: r?r—-—---______:\:
(A |
2.0in. X 2.0in. -‘I'- —lle
. | (2
G=4x10%psi il =2 |
' [
T = 3000 lb-in. ;n."‘“ J,:
Talu‘- = 4500 psi | 2 in, —

0*. = 0.0] rad/ft = %%ll'ldflﬂ.

THICKNESS [ BASED UPON SHEAR STRESS

T T , T
2. A, > b l)?zf

Unmisit=in. b=in. T =Ibin. 7 = psj

on_lb-ig. _ -"in
2(4500psi) 3

2 -1-1=0
Solve for 2 1 = 00915 n.

T =

)

H20in. — 1)’ =

Centerline dimension = b — ¢
A =b-0" L_=4b-1

4 2 — a
-2 2O - ry
L, 4b-1)

THICKNESS 1 BASED UPON RATE OF TWIST
rT T
Gl Grb-ny N =54
UNms: = in. G =psi 0 = radn.
3000 Ib-in
(4 % 10°psi)(0.01/12 radAn.)

=-_9_
10

102 -1 —9=0
Solve for r:
= 0.140 .

(2

20in. — 1) =

ANGLE OF TWIST GOVERNS

Inia = 0.140 in, &



