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Chapter one
Introduction



What is Mechanics?

e Mechanics is the science which describes and predicts the
conditions of rest or motion of bodies under the action of
forces.

e Mechanics is the foundation of most engineering sciences
and is an indispensable prerequisite to their study.
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e Kinetic Units: length, time, mass, and force.

e International System of Units (SI):
The basic units are length, time, and mass which are
arbitrarily defined as the meter (m), second (s), and
kilogram (kg). Force is the derived unit,

F =ma

1N = (1kg )(1”;) g= 9.81m/sec?

S




e U.S. Customary Units:
The basic units are length, time, and force which are
arbitrarily defined as the foot (ft), second (s), and
pound (lIb). Mass Is the derived unit,

m=— g= 32.2 ft/sec?




e Conversion units
e 1ft=0.308m

e 11b=4.44N

e 1slug=14.6 Kg
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Table 1.1: Prefixes and Symbols of Multiplying Factors in SI

Multiplying Factor Prefix Symbol
1012 tera T
10° giga G
108 mega M
103 kilo k
100 - -
1073 milli m
106 micro i
102 nano n

10712 pico p
10-15 femto f
10718 atto a
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Chapter two

_________________________________________________________________________________
FORCE VECTOR




Scalar and Vectors

Scalar: is a quantity which has magnitude only.
Examples of scalars: distance, energy, volume, mass
and temperature. .

Vectors :are guantities which are fully described by
both a magnitude and a direction. Vectors are physical
guantities.

Examples of vectors are displacement, velocity,
acceleration, force and electric field



Vector notation:

A widely used convention is to denote a vector quantity In
bold type, such as A <and that is the convention that will
be used. The magnitude of a vector A is written as |A|

Line of Action -

|-|—-| Head — f{.‘\-‘f
”

"Head" also called "Tip"




« Equal vectors have the same magnitude and
direction.

Negative vector of a given vector has the same
magnitude and the opposite direction.

Multiplication and division of a vector
by a scalar

A xm =mlA|

Scalar Moltiplicarion and T¥ivision

10




Introduction: Force Effects

e Force exerted on a body has two effects:

o The external effect, which is tendency to change the
motion of the body or to develop resisting forces in the body
= Applied forces
= Reactive forces

o The internal effect, which is the tendency to deform the
body

=~ Depends on material strength, elasticity
= Out of scope of class




Characteristics of Forces

e Force Classification:

o Contact Force: Produced by direct physical contact
= Force exerted on a body by a supporting surface

= Two types: 1500 N

L 800 N/
DIStrIbUtEd‘\ = &/’ Concentrated
Ai _iQ?J_B
LZ m->f<——3m-—>=—2 1114)\(—2 ma—‘

o Body Force: Generated by virtue of position
= Weight due to gravitational field
= Magnetic force due to magnetic field




Characteristics of Forces

e Concurrent Forces:

o A concurrent force system contains forces whose lines
of action intersect at a point.

o Examples:

= Tension:
N “eonatirrent
point A
2 .'-
.10 lﬁ: N 10 Ib
Two wires supporting a load Forces acting on ring
) Compl’eSSIOn Concurrent
’}oint B
B \
E e
Gusset T
plate
Truss joint Forces acting on joint




Vector Components

e |t Is often useful to replace a force by its vector
components

e Rectangular Components for 2D Force Systems:

o Most common resolution of a force vector (using x- and y-
Cartesian coordinates)
o F=F,+F,
~ F,, F, are vector components of
F in the x- and y- directions
«F=Fi,F,=FjorF=Fi+F}]
~F,=Fcos 6, F,=Fsin 0,

F
F =\/FX2+Fy2, «9=tan‘1Fy

X

Figure 2/5




__________________________________________________________________________________________________________________________________________________________________________

Direction of A can be specified using a unit
vector

- Unit vector has a magnitude of 1

- If Ais a vector having a magnitude of A # 0,
unit vector having the same direction as A is

u,=A/A

Ua is dimensionless. It serves only to indicate direction
and sense.



Resultant Vectors

e \WWe can replace multiple forces with a single
resultant force

o This single resultant has the same effect as the original group
of forces

o Multiple ways to compute resultant
= Parallelogram law
= Vector addition




Vector Addition

Assume we have three forces, F,, F,, F;
Express each force as a Cartesian Vector

Fi=Fud + Fyy
Fo = -Fol + Fy
F3 = |:3xi B FSyj

Vector resultant
Fr=F; +F, + F3 = (Fgyl + FgryJ)




Vector Addition

Assume we have three forces, F,, F,, F;

1. Express each force as a Cartesian Vector:
o Fy =Fyi+Fyj
O Fy=-Fyl + Fy
O F3=Fyi - Fy

2. Vector resultant
O Fr=F; + F, + F5 = (Fgyl + Fgyj)
Or, using scalar notation:

e

O FRX - le'F2x+ FSX _)FRX = 2Fx Fry Fr
O I:Ry :Fly+ I:2y' I:3y _)FRy - ZFY <0
o Where: > *
—_— 2 2 _1 FRy Fry
Fo=JFR.+F, o=tz




Problem 2/7: The two structural members, one of which is in
tension and the other in compression, exert the indicated
forces on joint O. Determine the magnitude of the resultant R
of the two forces and the angle 6 which R makes with the

positive x-axis. 3 kN




Problem 2/12: A force F of magnitude 800 Ib is applied to
point C of the bar AB as shown. Determine both the x-y and
n-t components of F.

y
|
|
|

-

2

w@)lb

Problem 2/12




Force vector in 3D



e 3D Force Vector — Vector defining a Force in more than
one Cartesian Plane defined by its location and rectangular
components

e Rectangular Components - Components that fall along the
Cartesian coordinate system axes

e Coordinate Angles (a,B,y)— The angle a vector makes with
the individual axes of the Cartesian Coordinate System



Coordinate Angles

Y Y y
B B B
F
F, J F,
A ] | A
K 0 By F
0 : 0 I 2 0
F, D F, D F. F, D X
I P ~ )
/ E C E G / E 0
~ /\ Z./ B d
(x y

NoteI book uses ocg ﬁl i:




Coordinate Angles

e The values of the three angles are not independent, they
are related by the identity:
cos?(a) + cos?(B) + cos?(y) =1
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Resolving a 3D Force Vector Into Its

e Glven the magnitude of a force vector (F) and its
Coordinate angles (a.,[3,y):
F, = Fcos(a)
F, = Fcos(B)
F, = Fcos(y)
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Resultant of a 3D Force Vector from Its

o If given the components of a 3D force (F,, F,, F,), the force can be
determined by:

= Magnitude (F) = \/(FX2+Fy2+F22)
o The Coordinate Angles of the Force Vector can be found by
= cos(a) = F,/F
= cos(B) = F/F
= cos(y) = F,/F
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U = COSqii + COSfj + cosyk

1=\,cos2a+cos2ﬂ+cos2y
cos® a+cos® f+cos*y=1




Eg. Determine the magnitude and directional
cosines of the vector

A =700i —8207+900k
The magnitude of the vector is

A=700 i —8207+900 k

2

14| = \/('700‘)2 +(—820)" +(900)" =1404.42

p
|

The directional cosines are cos @, = b 0.498 = 6, =60.1°
*1404.42 ;
—820 o
cosf, = =-0.584=6 =125.7
\ ' 140442 ;
900 :
cos@, = =0.641=>6. =50.I
Check the cosines ‘140442 :

cos’ 6, +cos” @, +cos’ 6, =1

0.498)° +(—0.584) +(0.641) =1
( ) +( )" +( )



e Resolve Finto

F. .
horizontal and vertical * Resolve Th into

rectangular components

e Thevector F is components.
contained in the plane F, = F cos¢
OBAC. Py = oosty = Fsing, cos¢
F, =Fsing :
y Fy =Fnsing
= Fsing, sing
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Once individual vectors are written in Cartesian form, it is easy
to add or subtract them. The process is essentially the same as
when 2-D vectors are added.

Fr = SF = 3F,i + 3F,j + SFk

For example, if

A= Aii+A j+A k and

B = B,i+ B,j+B, k, then
A+ B=(A+B,)i+ (A/+B,)j+ (A, +B,)k
or

A-B = (A-B)i+ (A-B)j + (A, - B)k.




EXAMPLE | 2.8

Express the force F shown in Fig. 2-30 as a Cartesian vector.

SOLUTION z

Since only two coordinate direction angles are specified, the third angle
o must be determined from Eq. 2-8; i.e.,

F=200N
cos’a + cos’ B + cos’y = 1 ks
cos’ a + cos® 60° + cos? 45° = 1 -
@
cosa = V1 — (0.5)2 — (0.707)2 = +0.5 i 9
Hence, two possibilities exist, namely,
a = cos 1(0.5) = 60° or a = cos (—0.5) = 120° x/
By inspection it is necessary that & = 60°, since F, must be in the +x :
A et Fig. 2-30
Irection.

Using Eq. 2-9, with F = 200 N, we have
F = Fcosai + Fcos Bj + F cos yk
= (200 cos 60° N)i + (200 cos 60° N)j + (200 cos 45° N)k
= {100.0i + 100.0j + 1414k} N Ans.

Show that indeed the magnitude of F = 200 N.




Example 2.9
Determine the magnitude and coordinate

direction angles of resultant force acting on
the ring

F, = {50i - 100j + 100k }kN

F, = {60 + 30k}kN




Solution
Resultant force
F. = 2F
=F, +F,
= {60j + 80k}kN
+ {50i - 100j + 100k}kN
= {50j -40k + 180k}kN
Magnitude of F; is found by

Fp = /(50) +(~40) +(180)
~191.0=191kN

Fg = {50 - 40 + 180k)kN.
.ﬁ




Unit vector acting in the direction of Fy
Urp = Fr /5
= (50/191.0)1 + (40/191.0)j +
(180/191.0)k
= 0.16171 - 0.20943 + 0.9422k

So that
cosa = 0.2617 a = 74.8°
cos B = -0.2094 B =102°
cosy = 0.9422 y = 19.6°

*Note B > 90° since J component of ug, is negative

—




Determine the resultant force acting on the hook.

Ans: Fg = F; + F, = {4907+ 683§ — 266k} Ib




271 Determine the magnitude and
coordinate direction angles of the resultant
force and sketch this vector on the

| . 4 4
COTRUMEID Systaan F2 = 250(3) c0s30% —250(5)sin30°% + 250(%)!:
F1 = 350cos60°f + 350cos60°j ~ 350cos45°k

F, = F, + F
Fp = {34821i + 75.0j — 97487k} N

F, = /(348.21)7 + (75.0)? ¢ (97.487)2 = 369.29 :N

E— ¥y a=c "(348‘21) = 19.5°
= B S eegagt = o
...... -1 ﬂ -]
B = cos (5 oo0) = 783
Fy =350N (. —97.487
X y = cos ( ) = 105°

369.29




e Given two points In Space
(A) with coordinates (X, Y,, and Z,)
(B) with coordinates (X, Y,, and Z,)

e With a Force Vector (F) acting at point (A) in the direction
of (B)
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Force Magnitude and Two Points on Its
_________________ Line of Action. .. O —

e Calculate the total Y
displacement in I B (%, ¥, %)
rectangular components of Y
Point (B) with respect to |
Point (A)

d, = X,-X, |
dy — Yb'Ya o
d, =277, - .
e Total Displacement s
* (d)=V(d+d,+d)

=
.i'H

o
-
&
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Direction of A can be specified using a unit
vector

- Unit vector has a magnitude of 1

- If Ais a vector having a magnitude of A # 0,
unit vector having the same direction as A is

u,=A/A

Ua is dimensionless. It serves only to indicate direction
and sense.



Force Magnitude and Two Points on its Line of
Action

- Rectangular Components of the Force vector can then be
found by:
F, = F(d,/d)
F, = F(d,/d)
F, = F(d,/d)

- Note: Direction Angles can be found using Rectangular
Components of Force or Rectangular Displacements.
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A position vector Is
defined as a fixed 1 1

I
1
vector that locates a VL / ]//fuwk
B— X 7, i

point in space relative " o——=
to another point. /

Consider two points, A and B, in 3-D space.
Let their coordinates be (X4, YA, Z,) and
(Xg, Yg, Zg), respectively.



The position vector directed from Ato B, r 5, IS defined as
Fag = {(Xg = Xp) 1+ (Yg = Ya)] + (Zg — Zp)K}m

Please note that B is the ending point and A iIs the starting point.
ALWAYS subtract the “tail” coordinates from the “tip”
coordinates!

POSITION VECTOR

B
r (Eg - EA}k
A i
(xg—xi |
- ¥




If a force Is directed along a
. .~ line, then we can represent
/ the force vector in Cartesian
J . coordinates by using a unit
vector and the force’s
magnitude. So we need to:

a) Find the position vector, r,5, along two points

on that line.
b) Find the unit vector describing the line’s

direction, U,g = (rag/lrag 1)
c) Multiply the unit vector by the magnitude of
the force, F = F u,..



(asnzd / y
# X

r=(xs—p)i+(ys—72) i + (2925 )

(xB_xA )i+(J’B _yA)j+(:B_:A )k
(xB_xA)2 +(J’3_}’A)2+(:3—5A)2 |

r
UH=—=
r




Given: The 420 N force
along the cable AC.

Find: The force F,.in the
Cartesian vector
form.

Plan:
1. Find the position vector r,-.and the unit vector u,.

2. Obtain the force vector as F,, =420 N u,..




(continued)

As per the figure, when relating A to C, we will
have to go 2 m in the x-direction, 3 min the y-
direction, and -6 m in the z-direction. Hence,

rae={2i +3j— 6kim.

(We can also find r, by subtracting the
coordinates of A from the coordinates of C.)

e = (22+32+6%)Y2 =7m

NOW U, = rp/rac and Fur =420 uyo N =420 (rye/rac)

So Foe=420{(2i+ 3j— 6k)/7}N
= {1207 +180j - 360k} N




Given: Two forces are acting on

a pipe as shown in the
figure.
C . .
AT ‘1}/’@\\ Find:  The magnitude and the
~. 4 Fy=1001b . ] )
N e 3 coordinate direction
B # T
Py { ft/ A angles of the resultant
TSag S 0°
S force.
Plan:

1) Find the forces along CA and CB in the Cartesian vector form.
2) Add the two forces to get the resultant force, F.

3) Determine the magnitude and the coordinate angles of F.



(continued)

Fca =100 1b (rea/ren)
Fca =100 Ib (3 sin 40° i + 3 cos 40° j — 4 k)/5
Fea=(—38.57i+45.96j—80K) Ib :

Fcg= 811b (reg/rep)
Fg=811Ib(4i—-7j—-4Kk)/9
Feg = {361-63j—36Kk}Ib




(continued)

Fr=Fcat Fcs i
={-2571-17.04)-116 k} Ib

Fr= (2.572 +17.04% +1167)
=117.31b =117 Ib

o = c0os?t(-2.57/117.3) =91.3°
B =cos1(-17.04/117.3) = 98.4°
y =c0s(-116/117.3) = 172°




Sxarmpiethetoweris held inplace by three cables if the force of each
cable acting on the tower as shown .determine the magnitude and
coordinate angles of the resultant force




The moment of a force about
a point or an axis provides
a measure of the tendency
of the force to cause a body
to rotate about the point or
axils.



Introduction: Moments

e Moment: the measure of a force’s ability to cause
rotation
o Depends upon: . d
_ Bolt —_
=~ Magnitude of force
= Direction of force
= Rotational point
= Location of applied force




Introduction: Moments

e In mathematical terms, the
magnitude of the moment is
given by : “ -

Bolt~
M=Fd Fy
Where E

2

o F: is the force component that cause
rotation, (its usually the normal
component to the moment arm).

o d: Is the distance between force and
rotation point (or the moment arm.

o THUS, for F3 M:(FSSlne)d
I




Moment about a point

e Moment is a vector

o Magnitude of moment is proportional to force applied (F) and
perpendicular distance (moment arm, d)

M=Fd (measured in N-m or |b-ft)

o Direction is always perpendicular to the plane of the body —
describes the direction of rotation

= In x-y plane, direction will always be either + or — z-direction,
typically described as clockwise (CW) or counter-clockwise (CCW)
rotation




Moment about a point

e Right-hand rule Homent axis

o In 2-D, the direction of M, Is
either clockwise or counter-
clockwise depending on the
tendency for rotation.

o Your thumb points along the
moment axis

o Your fingers curl in the direction
of the rotational tendency

o Typical sign convention: CCW is
positive, CW is negative




AB sin 6




REMEMBER: -




Moment about a point

e Which direction will this force (F) 7
tend to rotate the beam about point l a ’
O?

7’
4
4
7
\/\/
N 4
N 4
\ 7
v
4

e Often, it is easier to analyze by
breaking the force up into its

Counter-clockwise

components (d may be difficult or F, rxF
time-consuming to find) T/ -
a - X
e Now: M, = (Fy @) — (Fy b) b
o Note the sign convention O




e This process is also useful when examining the
component of force contributing to rotation

g

O a O a - X

e What component of the force, F will cause rotation
about O?

e Solution — split up into x- and y- components and
treat separately. Does F, contributed to rotation?
Does F,?

M = Fasing



Computing Moments Using a Cross Product

e Vector approach to computing moment

M=rxF

o F — the force contributing to rotation

O I — position vector which the point of rotation (A) with any point
on line of action of the Force vector, F.




Computing Moments Using a Cross Product

e Recall: Cross product calculation
r=ri+rj+rkand F=Fi+F j+Fk

I ] K
M=rxkF=ir, 1, T,
F K K

:(ry'Fz_rz'Fy)i+(rz'Fx_rx'Fz)j_l_(rX’Fy_ry.FX)k

eNote- M=rxF#Fxr




Determinant form:

I T ? ] R
AxB=|A A, A
B, B, B,




For Element 1

ED +—
Ax Ay Az =1 (Asz — Asz)
B. 13y B.
For Element j:
i (TD £
Ax A_y Az = —] (Asz _Asz)
B. Ey B.
For Element k:

=k (4,B,—4,B,)







The moment of a force about any point is equal to the

sum of the moments of the components of the force
about the same point.

o Similar to a resultant force having the same net
effect as the original forces, a similar resultant can
be obtained from the addition of moments.

Force: R=F1+F2 ++Fn
Moment: |\/|O =er=er1+...+ern
or- [M,|=Rdg=F-d,+...+F,-d,



Varignon’'s Theorem

e |n this case:

Figure 2/9

M, =rxR=rxP+rxQ

17




e Be consistent! Make sure you always write down
your sign convention. |

e Don’t forget you can always move ﬁ";-xu-ﬂ /
a force vector through its line of S\
action. This can be useful for /
simplifying your distance measurements.

e There are multiple ways to solve for the magnitude
and direction of a moment. Be familiar with all
approaches, as one may be better for a particular
problem.




Force-Couple Systems

e When a number of forces and couple moments are
acting on a body, it may be easier to understand their
overall effect if they are combined into a single force and
couple moment having the same external effect
o The two force and couple systems are called equivalent systems

since they have the same external effect on the body

e To ensure the two systems are equivalent, must pay
attention to forces and their effects

o If you move a force from one point to another, you must consider any
moments the force was inducing




Moving a Force

_ (recall the principle of transmissibility)
e Off the line of action

“y

This requires creating an additional couple moment to account for original effect.
The moment is a free vector, so can be applied at any point P in the body




Equivalent Force-Couple Systems

e To find an equivalent force-couple system at Point B

to that shown in (1):

1.  Compute the moment at B resulting from force F
2. Move the force to the point B

3. Include a moment equal to that computed in (1)

(1) (1) (1)




Problem 2/30: Determine - y .
the moment of the 200-Ib A 9 ]
force about point A and
about point O.

Problem 2/30




Example 2

Problem 2/37: A mechanic pulls on the 13-mm combination
wrench with the 140-N force shown. Determine the moment
of this force about the bolt center, O.

F=140N

Problem 2/37




Problem 2/44: The uniform work platform, which has a mass
per unit length of 28 kg/m, is simply supported by cross rods
A and B. The 90-kg construction worker starts from point B
and walks to the right. At what location s will the combined
moment of the weights of the man and platform about point B

be zero? i 1 § g
—

90 kg
/ 28 kg/m i

| 5’ 5 o
A °B

Problem 2/44



Example:
If the resultant moment about point Ais 4800 N - m clockwise, determine the
magnitude of F3if F1 =300 N and F2 =400 N.

F, ﬁ k
ks




Example .

Three forces and a
couple act on crank
ABC.
ForP=35Nanda=
40°

Determine the
equivalent system
consisting of the force
resultant, FR, and the
resultant moment, MR,
about point B.

—>| 150 mm

<)) mm-~>




Example 3

Problem 2/67: Reduce the

given loading system to a 200 1b 1801
force Couple system at

point A . Then determine |

the distance X to the right | ¥ )" *
of point A at which the ’ —
resultant of three forces _ A B Iu |
acts. 3| I8

300 b

“




Example : Determine the moment produced by F1 about
point O. Express the result as a Cartesian vector

{

2t

‘ Lf
/‘/—7"—/’JH
3ﬁfyqo jﬁ/ﬁj[zm1w3mm
(=2 1+
/ ; /
S
i

Fy = [~ 10i - 30j + S0K) b




Example: The pipe assembly is subjected to the 80-N force.
Determine the moment of this force about point A.




Conditions for Rigid Body Equilibrium

For a rigid body to be in
equilibrium:

1- The net force must be zero. Ve

2- The net moment about any
arbitrary point O must be equalto .
Zero. “

OR Forces on a rigid pody

2F =0 and 2 My=0




e Necessary and sufficient conditions for
equilibrium of a rigid body

Y F=0; Y My=0

e Equilibrium in Two-Dimensions with (X-y)
coordinates:



Solving Rigid Body Equilibrium Problems

Solve for unknowns using
4 & the equilibrium conditions

s > F=0

N G /é T Z M=0




Free body diagram

e Free body diagram: a schematic that shows
all external forces and moments acting on
this body



http://en.wikipedia.org/wiki/Force

Recall: Solving Rigid Body Equilibrium Problems

» To analyze a physical system, first we need to create an idealized
model.

e Next, we need to draw a free-body diagram showing all the external
(applied and reactive) forces.

e Finally, we need to apply the equations of equilibrium to solve for any
unknowns.




Free Body Diagrams

e Weight and the Center of Gravity

o If the weight of the body is important to the analysis, it will be
reported in the problem statement

o The weight of a body is an external force, and its effect is shown as a
single resultant force acting through the body’s center of gravity

e Supports/Reaction Forces

o Any item you “remove” when drawing FBDs (i.e. the wall or support
joint) must be replaced by appropriate representative forces and
moments (if necessary) which describe the effect of those objects

o As a general rule, if a support prevents translation of a body in a given
direction, then a force is developed on the body in the opposite
direction. Similarly, if rotation is prevented, a couple moment is exerted
on the body.

o Common support reactions should be fully understood. These will be
covered next lecture.

If the FBD is drawn correctly then solving the problem is trivial.




Free Body Diagrams

e Helpful tips:

o Draw the forces exerted on the body to by isolated by the
bodies to be removed

o When smooth surfaces of two bodies are in contact, the force
exerted by one body on the other is normal to the tangent to
the surfaces and is compressive

o When rough surfaces are in contact, in addition to a normal
force, a frictional force, acting tangent to the surface an
opposing motion, is also present




Support reactions

general rule:

If a support prevents translation of a body In
a given direction, then a force Is developed
on the body In the opposite direction.
Similarly, If rotation Is prevented, a couple
moment Is exerted on the body.




Common Support Reactions

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin Action on Body to Be I=2olated
1. Flexible cable, belt,
chain, or rope _{____.‘ __0_: Force exerted by
Weightofcable 4 ..9----"""" a flexible cable is
mga:uglble { \ T always a tension away
___= from the body in the
. Weight of cable et . ..-—T direction of the cable.

Page 111-112
2. Smooth surfaces

3. Rough surfaces Rough surfaces are
capable of supporting
a tangential compo-
nent F (frictional
force)as well as a
normal component

N of the resultant
contact force R.

o _E
T
N
: ™ Contact force is
compreasive and is
N ™. normal to the surface.
F,
™~
/ -~
’/%%\/\
R /
s
N




Common Support Reactions

support transmits a
compresaaive force

oy By~ normal to the
supporting surface.

Collar or slider free to

4. Roller support ;
j_—J f Roller, rocker, or ball
N

Figure 3/1,
Page 111-112

only.

_ A move along smooth
. guides; can support
; — - . force normal to guide
N N




Figure 3/1,
Page 111-112

Common Support Reactions

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

6. Pin connection

Pin free toturn A freely hinged pin
connection is capable

e of supporting a force
R é“ in any direction in the
= R plane normal to the
R,

pin axis. We may
either show two
Pin not free to turn components R, and
RyoramagnitudeR
and direction 6. A pin
R, M not free to turn also
Ry supports a couple M.

7. Built-in or fixed support

or

Nweld

A A built-in or fixed
M| support is capable of
supporting an axial

and a couple M
v (bending moment) to
prevent rotation.




Common Support Reactions

8. Gravitational attraction The resultant of
gravitational

. , attraction on all
m G elements of a body of
T mass m is the weight
T
_ W=mg toward the center of
Figure 3/1, :;;:f:lmwe the
Page 111-112 .

9. Spring action . Spring force is tensile
hnear Nonlinear if spring is stretched
Neutral F and compressive if
poalhon | F b |Hardernmg — compressed. For a
linearly elastic spring

:/ ‘[/ B the stiffness & is the
Softening force required to
L anea  BEEMIY deform the spring a

unit distance.

Y-




Two smooth pipes, each having a mass of 300 kg, are
supported by the tines of the tractor fork attachment.

How can we determine all the reactive forces ?

Again, how can we make use of an idealized model and a
free body diagram to answer this question?



Free Body Diagrams

y l | 1200N

' 2m
y Effect of applied
] force acting on beam

; A, - (— 1G i
Effect of fixed A

support acting M,

=
¥
> =

on beam [l 3m =
Y 981 N
Effect of gravity (weight)
acting on beam
|dealized model Free-body diagram

All known forces and couple moments should be labeled with
their magnitudes and directions. For the unknown forces and
couple moments, use letters like A,, A,, M,, etc.




No equilibrium problem should be solved without first drawing a FBD,
so as to account for all the forces and couple moments that act on the
body

Internal forces are never shown on the FBD (i.e., they act in equal but
opposite collinear pairs and therefore cancel one another out.)

If a support prevents translation in a particular direction, then the
support exerts a force on the body in that direction

If rotation is prevented, then the support exerts a couple moment on
the body.

The weight of a body is an external force, and its effect is shown as a
single resultant force acting through the body’s center of gravity

Couple moments can be placed anywhere on the FBD since they are
free vectors. Forces can act at any point along their lines of action
since they are sliding vectors.



Example 1

Draw the free-
body diagram
of the cart.




In Class Activity #2

Draw the free-
body diagram
of the bar AB.




e |[n 2D there are 3 equations of equilibrium

e A system with 3 or fewer unknowns can be solved
using these equations. Such systems are called
statically determinate systems.

e A system with more than 3 unknowns cannot be
solved using equations of equilibrium alone. Such
systems are called statically indeterminate
systems.



In Class Activity #1

The beam and the cable (with a frictionless

pulley at D) support an 80 kg load at C. In a

FBD of only the beam, there are how many
unknowns?

A) 2 forces and 1 couple moment

B) 3 forces and 1 couple moment
C) 3 forces

D) 4 forces




Understanding Equilibrium Problems

If we have more unknowns than the number of independent
equations, then we have a statically indeterminate situation. We
cannot solve these problems using just statics.

The order in which we apply equations may affect the simplicity of
the solution. For example, if we have two unknown vertlcal forces
and one unknown horizontal force, then solving > Fy, = O first
allows us to find the horizontal unknown quickly.

If the answer for an unknown comes out as a negative number,
then the sense (direction) of the unknown force is opposite to that
assumed when starting the problem.

Apply the moment equation of equilibrium (3 M, = 0) about a point
O that lies at the intersection of the lines of actlon of two unknown
forces. In this way, the moments of these unknowns are zero
about O, and a direct solution for the third unknown can be
determined.



Two Force Members

For Equilibrium:

Which implies:
FA = 'FB

These two forces:
*Act through the same line of action
*Are equal and opposite




Two- Force Members

Member subjected to no couple moments with 1
forces applied at only two points. "\1

- For static equilibrium, the sum of the A

moments about A must be zero. The
moment of Fz must be zero. It follows that
the line of action of F; must pass through A.

- Similarly, the line of action of F, must pass B
through B for the sum of moments about B \ Fp=—F,

to be zero.

Only the force magnitude must be determined




Two-Force Members

e More Examples:

W}

==F, Fa A B Fp=-F,4

Two-force members

e Note: magnitude of two forces must be equal, direction
opposite




Example 1

Problem 3/12: The device
shown is designed to aid Iin
the removal of pull-tab tops
from cans. If the user exerts
a 40-N force at A, determine
the tension T in the portion
BC of the pull tab.

Problem 3/12




Example 2

Problem 3/17: The uniform beam has a mass of 50-kg per
meter of length. Compute the reactions at the support O. The
force loads shown lie in a vertical plane.

1.4 kN

3 kN 4 kN-m

| X

0.6 m
0.6 m

O A

<~—1.8m >

e )
e~

" 0.6m |30°

Problem 3/17

25




Example 1

Problem 3/1: Determine the
force P required to maintain
the 200-kg engine in the
position for which 6 = 30°.
The diameter of the pulley at
B is negligible.

Problem 3/1




Example: Determine the stretch in each spring for equilibrium
of the 2-kg block. The springs are shown in the equilibrium
position




A note about your HW

Problem 3/8: The 20-
kg homogeneous
smooth sphere rests
on the two inclines
as shown. Determine
the contact forces at
A and B.

Problem 3/8




Problem 3/9: A 120-lb crate = =
rests on the 60-Ib pickup
tailgate. Calculate the tension .
T in each of the two Gl
restraining cables, one of ZGZ" | 12/
which is shown. The centers LN

of gravity are at G, and G.. A@?/é
The crate is located midway
between the two cables.




Example: Determine the tension developed in
cables AB , AC, and AD required of the 300-Ib
crate.




e |[n many situations a surface area of a body Is
subjected to a distributed load. Such forces are
caused by winds, fluids, or the weight of items on

the body’s surface. This is a load (w) along one

W axis of a flat rectangular body.
w=wx) In such cases, w is a function
of x and has units of force per
length.
O | S . :
_O _ O Our goal Is to determine the

‘ equivalent resultant load and
| L | Its location




Finding the Magnitude of the Resultant Force

Consider an element of length dx

e The force magnitude dR acting on
it is given as dR_ = w(Xx) dx 4

given by:
l+R= _[W(x)dx
L

|
I
e The net force on the beam is then
|
|
|

Figure 5/21

Note:
We are computing the area under the loading curve

32




Finding the location of the resultant

e To determine the location that the equivalent
resultant force should be applied, compute the
centroid of the curve:

wadx
)—(=L

R

e Note: you only need the
X-centroid for this geometry

Figure 5/21




Finding the location of the resultant

Why do we use the centroid?

e Once again, examine the differential
region
o The force dR will produce a moment of
(x*dR) about a point, O
o The total moment about O will be

=j'de=J'xwdx
L L

A % x! L—dx

o Similarly, an equivalent resultant force R FIgures/a)

should produce a moment acting from X
as M, = xR IXWdX
O Equatlng these two, we get: XgR= wadx or x,=X== -




Do we always need integration?

o Summary:
o When we have a distributed load, we need to i
find the area under the load curve to get the T
equivalent resultant force, R. R=lul
o Similarly, we must compute the centroid to mw
determine the location of the force —
 And when we have distributed loads e
with known geometries? Hu_\."’"
o Compute area, centroid location using known ‘“f;l’ii’li”;/
equations «[11TH Ik
PR

Figure 5/20




Example 1

Problem 5/95: Calculate the supporting force R, and
moment M, at A for the loaded cantilever beam.

600 N/m

i

= 4 m

A4

A

Y

8m

Problem 5/95




Example 3

Problem 5/103: Determine the reactions at the
supports of the beam which is loaded as shown.

\\

'\
'\\

800 N/m W\I\I\I\L l l l 400 N/m
A ) |

Al

. OB
SR Ll

Problem 5/103

37




Replace the force system acting on the beam by an equivalent force
and specify its location from point A.

2.5 KN/m 15N




Chapter 4

STRUCTURES
TRUSS




Simple Trusses

structure composed of straight, slender members joined at their
endpoints

*joint connection can consist of pin through the ends of the
members

*ends of members can bolted or welded to a gusset plate




Stringers

Floor beams

Members of a truss are slender and not capable of
supporting large lateral loads. Loads must be applied at
the joints.




e Trusses are structures m m

fcomposed tsntirely ﬁf two Peat

orce members . They SNANNANAN

consists generally of o e W m%
triangular sub-element and
are constructed and £ 4 3
Su pported SO as {o prevent Comuisnly Used Bridge Truines
any motion.

e Trusses are used Iin a m m

variety of structures,

Including cranes, frames of m
aircraft or space stations,  _<] . NN

bridges, roofs

Commonly Used Roof Trusses



‘Bridge Trusses




Trusses: Introduction

e Objective: Examine internal forces in each member

o Determining load on each internal member of a truss helps in
design and optimization of truss




Modeling trusses

e Assumptions when using trusses

1. Truss members are connected together only at

their ends J c
2. Truss are connected together by frictionless pins /T /C
3. The truss structure is loaded only at the joints
4. The weights of the members may be neglected / /
(weight of members significantly lower than - c Afc

applied weight and support forces)

Tension Compression

e Each member acts as a two-force member, and vo-Toree Members
thus the forces at the ends of the member must e
be directed along the axis of the member: Elongation:

Tensile force (T)
o Tension
Shortening:
Compressive force (C)

o Compression




Dex
! ’\\\

e A simple truss is a planar truss which
begins with a triangular element and can
be expanded by adding two members and
a joint. For these trusses, the number of
members (M) and the number of joints (J)
are related by the equation
M=2J - 3.

e Trlangular-based frames are considered
rigid while 4+ bars pinned to construct a
frame is considered collapsible.

e If more members are present than are
necessary, additional members are

considered redundant, F
N/




Statical Determinancy

e External Redundancy: occurs if a truss has more
external supports than are necessary to ensure a
stable equilibrium condition

e Internal Redundancy: truss has more internal
members than are necessary to prevent collapse

o Determined by the conditions
= If m< 2J-3, then the truss is unstable and will collapse under load

= If m> 2j-3, then the truss has more unknowns than equations and
IS an indeterminate structure.

= If m= 2j-3, then a simple plane truss is rigid and solvable — this
condition is not sufficient for a non-simple truss




Truss Analysis

Method of Joints

1. Find the external reactions (may or may not
be necessary) -

2. Begin at a joint that has two or fewer
unknowns and at least one known, and step
through the truss, joint by joint 7 2

3. Draw a FBD at each joint and solve force
Egbm. Egns. Only (no moment equations)
2F,=0 and XF =0

4. Record the force and its character (C:
compression or T: tension) for each
member

5. The final joint may not always yield new
Info but can serve as an equilibrium check

b




Method of Joints

¥ E 1 AF, 2 EF EF
BF
AF
an. A & ’
b ‘AF BF
D AB Joint F
B C 4 CE=0
Ry
Y Joint A BC cD
I z = Joint C
- e BC B EF
@ 7 Y, ; \ A
DE
AB BC
L BE EF
BF Joint E
I DE
AB o5 oD
1 DE\_|Rz
Joint B Joint D
F, E
!
y
|
|
A p L———=x
B c
R, L R,

Figure 4/8




Special Case: Zero Force Members

e Zero-force members support no loading
o increase the stability of the truss during construction
o provide support if the applied loading is changed.
o can generally be determined by inspection of each of the joints

e Examples:

o If a joint has only two non-collinear members and there is no external load or
support reaction at that joint, then those two members are zero-force
members.

o If three members form a truss joint for which two of the members are
collinear and there is no external load or reaction at that joint, then the third
non-collinear member is a zero force member.




Special Case: Zero Force Members
Examples:

LF, = 0 requires Fy = F5
LF,=0requires F; =0 IF, = 0 requires Fy = F,

LF, =0 requires F3 =0

£ ZF} =0 requires F3 =0 F. . F\
/ IF, =0 requires F, = F, ’ )é" 2 ;
Fy
(@) ® ©

Figure 4/9




Examples

e Determine all zero members in the following
structures




Correct Characterization?

Characterization — sense of force (i.e. tension vs. compression)

Two approaches — choose your own adventure:

1. Always assume the unknown member forces acting on the joint's FBD
to be in tension (ie “pulling” on the pin).
Numerical Solutions yields:
O positive scalars for member in tension (T)
O hegative scalars for members in compression (C)

2. Determined by “inspection”
Numerical Solutions yields:

O positive scalar indicates that the sense is correct

O negative scalar indicates that the sense shown on the FBD must be
reversed.




In Class Activity

at:

Determine the number of zero force members in the truss




-3, The truss, used to support a balcony, is subjected to
the loading shown. Approximate each joint as a pin and
determine the force in each member. State whether the
members are in tension or compression. Set P, = 800 b,
P, =0.




Example 2

Problem 4/17: Determine the forces 4
In members AF, BE, BF, and CE of
the loaded truss.

Problem 4/17




Application

e Long trusses are often used to construct bridges

 The method of joints requires many joints to be
analyzed before we can determine the forces in
the middle part of the truss

e Method of sections Is used instead of that.




Method of Sections

 The method of joints is most effective when the forces
In all the members of a truss are to be determined.

o However, if the force in only a few members are needed, then the
method of sections is more efficient.

e |In the Method of Sections, a truss is divided into two

parts by making an imaginary “cut / section” (shown
here as a-a) through the truss.




Procedure for Analysis

Method of Sections

1. In general, find the external reactions first (not always necessary)

2. If possible, pass a s

ection through the desired member and up to two other

members, isolating a portion of the truss (maximum cut through three
unknown members)

3. Apply 2-D rigid body equilibrium conditions on isolated region (you can
employ XF,=0, XF =0, XM=0)
4. Apply the Moment
>M,=0
5. Solve for unknowns
Note: Method of Joints and Sections may be used in combination

equation (about any point)




Correct Characterization?

As with Method of Joints, two options |

Do

| ¥
e Always assume the unknown member forces acting on the “1/ =
P ’ H . HP— T H ” : tensile
joint’'s FBD to be in tension (ie “pulling” on the pin). e
Numerical Solutions yields: l
.. . . T
O positive scalars for member in tension (T) — l

T

|

O hegative scalars for members in compression (C)

e Determined by “inspection”
Numerical Solutions yields:

Dg—")

O positive scalar indicates that the sense is correct /TC
o negative scalar indicates that the sense shown on the FBD must | s
be reversed. forocs. [

O =—PC

A




In Class Activity

1. In the method of sections, generally a “cut” passes through no more
members in which the forces are unknown.

than
A 1 B) 2
C) 3 D) 4
2. Can you determine the force in member ED by 000N
making the cut at section a-a? Explain your
answer. 3000 N 1000 N
b YE b
A) No, there are 4 unknowns. 1000N a
F N D
B) Yes, using XMy = O. A 2l | c
C) Yes,usingX Mg = 0. A a ‘B |
~—2 m | 2m | 2m | 2m

D) Yes, usingZ Mg = 0.




Example

Determine the force in members GE, GC, and BC of the
truss. Indicate whether the members are In tension or
compression




Solution

Choose section a-a since it cuts through the three members
Draw FBD of the entire truss

+5YF =0, 400N-A =0= A =400N
YM,=0;  —1200N(8m)—400N(3m)+D, (12m)=0=> D, = 900N

+TXF, =0, A -1200N+900N =0= A =300N

PN




Draw FBD for the section portion

SMg =0; —300N (4m)— 400N (3m)+ F.. (3M) = 0= F,. =800N (T)
SM.=0; —300N(8m)+F..(3m)=0= F.. =800N(C)

+TXF, =0; 3OON—§FGC = 0= F,. =500N(T)




Example 1

Problem 4/34: Calculate the forces in member BE of the
loaded truss.

Problem 4/34




Example 2

Problem 4/41: Determine the forces in members CD, CJ,
and DJ.

A

Y

6 panels at 3"

Problem 4/41
10




Engineering Mechanics

O

FRAMES AND
MACHINES




Overview

e Goals:

o Draw the free body diagram of a frame or machine and its
members

o Determine the forces acting at the joints and supports of a
frame or machine

e Overview
o Definition of Frames & Machines
o Force Representation and Free Body Diagrams




FRAMES AND MACHINES: DEFINITIONS

2000 N

Frames and machines are two common types of structures that
have at least one multi-force member.

Multi force members: Members on which three or more forces
acting on it




Application

e Frames :Structures which are
designed to support applied loads
and are fixed In position

e Frame are commonly used to
support various external loads

e Machines Structure which contain
moving parts and are designed to
transmit input force

e Machine are used in a variety of
applications

Machine




Frames and Machines

e Frames and machines are two common structures often
composed of pin-connected multi-force members (ie,
members that are subjected to > 2 forces)

o Frames: stationary -- support loads

o Machines: contain moving parts -- designed to
transmit and alter the effect of forces.




Approach to Analyze a Frame or Machine

1. In general, find the external reactions first

2. Dismember the frame/machine into individual 2000 N
members. Draw the FBD of each member, as
necessary. L/
3. Apply the equations of equilibrium to solve for 4
the unknowns. Number of unknowns must equal £
number of equations. z‘j’;‘“
These problems can be challenging at first — many unknowns make B, e}
it difficult to know where to begin! i‘VLZm#szg

Hint: Always start with what you know — this often means starting

FAB

where an external load is applied.




Approach to Analyze a Frame or Machine

Hints:
a) ldentify any two-force members

b) Forces on contacting surfaces
(usually between a pin and a
member) are equal and
opposite

c) For ajoint with more than two
members or an external force, it
IS advisable to draw a FBD of
the joint

d Take advantage of symmetry
where applicable

Vv




Example:

For the frame, draw the free-body diagram of (a) each member, (b)
the pin at B and (c) the two members connected together.




Solution
Part (a)

BA and BC are not two-force
AB Is subjected to the resultant forces from the pins

Effect of pin
on member




Part (b)

Pin at B Is subjected to two forces, force of the member BC and

AB on the pin

For equilibrium, forces and respective components must be equal

but opposite

B, and B, shown equal and opposite on members AB

Effect of
member BC
on the pin

F B,
B,
- Y -

Bi&
B Effect of

member A B
Equilibrium on the pin

W




Part (c)

B, and B, are not shown as they form equal but opposite internal
forces

Unknown force at A and C must act in the same sense
Couple moment M is used to find reactions at Aand C




In Class Activity #2

e Draw the necessary FBDs to solve for the forces at
each joint in this problem. (Note — you need not
solve the problem)




In Class Activity #2




Example 2

Problem 4/78. Determine the moment M which must be
applied at A to keep the frame in static equilibrium in the
position shown. Also calculate the magnitude of the pin
reaction at A.

Problem 4/78




Example 3

Problem 4/74: Given the
values of the load L and
dimension R, for what
value of the couple M
will the force In the link
CH be zero?

Problem 4/74




Example 1

Problem 4/87: A small bolt cutter operated by hand for cutting
small bolts and rods is shown in the sketch. For a hand grip P
= 150 N, determine the force Q developed by each jaw on the
rod to be cut.

P
I

20 60 30 180

g

Dimensions in millimeters

Problem 4/87




Example 2

Problem 4/90: When the crank AB is vertical, the beam CD is

horizontal and the cable makes a 20 angle with the
horizontal. Compute the moment M required for equilibrium of
the frame.

< 1m—>|< 2m >
5




S00N/m

Example: Find the
reaction at pin Aand B
If (A and C is pin

And B is internal hinge

400 N/'m




Internal force

SHEAR AND MOMENT
DIAGRAM




Beams — Types

A beam can be classified as
statically indeterminate beam,
which can not be solved with
equilibrium equations. It

requires a compatibility condition.
A

A combination beam can be either
statically

determinate or indeterminate. These
two beams are statically determinate,
because the hinge provides another
location, where the moment is equal to
Zero.




Internal Loadings in Structural Members

In this chapter, we will determine the normal force, shear, and moment at
a point in a structural component.

A Shear Force : indicates how a force applied perpendicular to the axis
(i.e. parallel to cross section)

A Bending Moment: will show how the applied loads to a beam create a
moment variation along the length of the beam.




Sign Convention

(c) (d)




(1) Positive shear, V, tends to rotate the component clockwise. Note that the
shear is in opposite directions on either side of a cut through the
component; nevertheless, each of the two shear components tends to rotate
Its respective section clockwise. Therefore, each is positive.

(2) Positive normal force, N, tends to elongate the components. Again, note
that the normal forces act in opposite directions on either side of the cut;
nevertheless, each of the two normal components tends to elongate its
respective section. Therefore, each is positive.

(3) Positive moment, M, tends to deform the component into a dish-shaped
configuration such that it would hold water. Again, note that the moment
acts in opposite directions on either side of the cut; nevertheless, each of
the two moments tends to form a dish of its respective section. Therefore,
each is positive.




General Solution Scheme

The general scheme for finding the internal set
of forces is (2-D)

a) Draw the free-body diagram
b) Determine the support reactions
c) Apply the equations of equilibrium

SE=0 YFE=0 »M=0



Example: Determine the internal shear, axial force , and
bending moment in the beam at point C and D. Assume the
support at Ais arollerand B is a pin

250 1b /ft




Shear and Bending Moment Diagrams

e Cut beam at C and consider
member AC,

V=+P/2 M=+Px/2

-5« Cut beam at E and consider
member EB,

V=-P/2 M=+P(L-x)/2

« For a beam subjected to
concentrated loads, shear is
constant between loading points
and moment varies linearly.




Example: Draw the shear and bending moment diagrams for the beam
and loading shown.

20 kN 40 kN

l’2.5m’|‘—3 m "Lz m4

SOLUTION:

« Taking entire beam as a free-body,
calculate reactions at B and D.

* Find equivalent internal force-couple
systems for free-bodies formed by cutting
beam on either side of load application
points

* Plot results




SOLUTION:

« Taking entire beam as a free-body,
calculate reactions at B and D.

« Find equivalent internal force-couple systems at

20 kN 2'5m" sections on either side of load application points.
| ‘)MI
Vi
Qtlth 1 ZFyzOZ —20kN -V, =0 \; = —20kN
J ”“2

>M,=0: (20kN)Om)+M;=0 [M;=0

wpy? Similarly,
Z{Hchl

Vo =26kN Mgz =—-50kN-m
V, =26kN M, =-50kN-m
Vs =26kN Mg = —50kN -m
Vg =26kN Mg =—50kN -m




~«2.5m>

Plot results.

Note that shear is of constant value
between concentrated loads and
bending moment varies linearly.




Example: Draw the shear and bending moment diagrams for the beam and
loading shown.

20 kips 12 kips 1.5 kips/ft




Example: Draw the shear and bending moment diagrams for the beam and
loading shown.

~<~—12 in.— 51 A 10 in.—>

- 32 in. Ea




15 kN

luuuuim’
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.._..‘.u

- >
I-iSm =L 5m4—|

5.75 |

-‘

Vis negative i

Vispositive  —9.25 L fhen. slope M is negative.

then. slope M is positive
slope V 1s zero, M is linear

M (KN-m)

1108.75
80

x(m)




Example: Draw the shear and bending moment diagrams for the beam
and loading shown. If support A is fixed and C is roller and B is internal
hinge




Engineering mechanics

CENTER OF GRAVITY
AND CENTROID




Overview

e Goals:

o Understand the concepts of center of gravity, center of mass,
and centroid

o Be able to determine the location of these points for a system
of particles or a body using Method of Integration
e Overview
o Definition of center of gravity, center of mass, centroid
o Distinction between these ideas
o Method of Integration




Center of Gravity

e The center of gravity (CG) of a
system is the point where the
system behaves as a single enter of Gravity = ?
particle /C
e The center of gravity is a point
which locates the resultant
weight of a system of particles
or body
o From the definition of a resultant
force, the sum of moments due to
individual particle weight about any
point is the same as the moment

due to the resultant weight located
at CG.




Calculating Center of Gravity

e Consider a system of n particles as shown in the figure. The net or the
resultant weight is given as W, = 2 W.

e Summing the moments about the y-axis, we get
o XWg = XW, + X W, +...Xx W, X

O Where X, represents x coordinate
of W, and x-bar is the center

of gravity
Wl
In general form:

o2 o 2 YW -
ZW ZW X1




Calculating Center of Mass

e By dividing top and bottom by gravity, we find an
equivalent expression

W =mg —

ZXC.m Zym |
2., 2.,

e \We see that center of mass and center of gravity, for
our purposes, coincide

o In non-uniform gravitational fields, center of gravity could be
different from center of mass

o Center of mass is more commonly used expression




Calculating Center of Mass

e Rigid Bodies:
o Arigid body can be considered to be made up of an infinite number of
particles

o Using the same principles we get the coordinates of CG (or CM) by
simply replacing the discrete summation sign ( 2. ) by the continuous
summation sign (] ) and W by dw

[ yem

L
T T

o Where x, Y, are the locations of the local centers of mass of the
individual components

o Similarly, the coordinates of the center of mass and the center of
volume, area, or length can be obtained by replacing W by m, V, A,
or L, respectively




e The centroid C is a point which defines the
geometric center of an object

e The centroid coincides with the center of mass or
the center of gravity only if the material of the body
IS homogeneous (density or specific weight Is
constant throughout the body)




Goal: Compute the Centroid/CM, etc

o Examine an arbitrary geometry
o This geometry must be described by equation or series of eqns.

e Use the appropriate equation:

B Ixch B chdA B IXCdA B IyCdA
[ dn [ dn A A
Where the coordinates of the center of weight or center of

gravity, volume, mass, or length can be obtained by replacing A
by W, V, m, or L, respectively

e Solve for the centroid/center of mass, etc
o Approach: consider geometry as sum of differential elements




“Sum of differential elements”?7??

9

e Assume geometry can be
represented by series of y
rectangles stacked horizontally

or vertically /
e Rectangles have infinitesimal -

height or width

) y

and so on...

N

dx

dA = ydx xl




Steps for determining the centroid of the area

1.

Choose an appropriate differential element
dA at a general point (X,y).

Hint: Generally, if y is easily expressed in terms of x (e.g., y = x? +
1), use a vertical rectangular element. If the converse is true then
use a horizontal rectangular element

Express dA in terms of the differentiating
element dx (or dy).

Determine coordinates (x , y ) of the centroid
of the rectangular element in terms of the
general point (x,y).

Express all the variables and integral limits in
the formula using either x or y depending on
whether the differential element is in terms of
dx or dy, respectively, and integrate.

These steps will become clearer after doing a few examples.

S

E
~J
| s

< dx



Given: The area as shown.
Find:  The centroid location (x ,y )

1. Since y is given in terms of x, choose
Xy dA as a vertical rectangular strip.

X,y .
| 2 dA =vdx = (9-%x)dk
\ 3.X=x and v =y/2

4. % = ([,X dA) /([ dA)

'a.ﬁx, (9 -x)dx  [9GDH2 - (x4)‘./4]3

ol (9 - ¥dx [9x ~()/3]2
= (9(9)r2— §1/4)1(9¢3) —(37/3))
= lL13ft
: L -
g lavas %0 (9-®O-x)dk 44y
I, dA ¢13§9- D dx




Example 1

Problem 5/6: Determine the y|
coordinates of the centroid of |

| b
the shaded area.

a x = ky?
————————— —
Problem 5/6




e Many objects can be considered as composite bodies made up
of a series of connected “simpler” shaped parts or holes, like a

rectangle, triangle, and semicircle.

e Knowing the location of the centroid, C, or center of gravity, G, of
the simpler shaped parts, we can easily determine the location
of the C or G for the more complex composite body.

To do so, we can consider each
part to be a “particle” and treat the
object similarly to the integration
approach

This is a simple, effective, and
practical method of determining
the location of the centroid or
center of gravity.



Shape

Right-
trianqular area

Quarter-circular
area

Semicircular area

Quarter-elliptical
area

Semielliptical area
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e Recall our initial equation from last week:

go XA 2 YA
2 A 2 A

e By examining a composite comprised of several
simple geometries with known areas and centroids,
we can easily compute the centroid of the
composite



Divide the body into known shapes. Holes are
considered pieces with negative weight or size.

Make a table with the first column for segment
number, the second column for weight, mass, or size
(depending on the problem), the next set of columns
for the moment arms, and, finally, several columns
for recording results of simple intermediate
calculations.

Fix the coordinate axes and determine the
coordinates of the center of gravity or centroid of
each piece, and fill-in the table.

Sum the columns to get x-bar, y-bar, and z-batr.

Use table D-3 (p. 501-2) to find centroid locations for common shapes




Creating a Composite Table

ZXA Zyc
2 A 2. A

Segment Area A X¢ Ye A X, Ay,
(in?) (in) (in) (in%) | (ind)

A XAX. | ZAY,




Find the centroid of the given body

_ 1 B
T
T
O
P A_ Z Y4,
T
Body Area(mm?)  x (mm) @ y(mm) | x*Area (mm?3) y*Area (mm?)
Tnangle 3600 40 40 144000 144000
Square 12000 60 110 720000 1320000
Sum I 15600 I I 864000 1464000 I
centroid (x) 55.38 mm
centroid (y) 93.85 mm




Example 2

Problem 5/52: Determine
the x- and y-coordinates
of the centroid of the

shaded area. T \
e
l ”
{

be— R —>]

Problem 5/52




Example:

Determine the x- and
y-coordinates of the
centroid of the
shaded area.




Example: Locate the centroid (X,y) of the shaded area
shown in fig

60 mm
4(0) mm
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Moment Of Inertia




Overview

e Goal

o To understand the physical and mathematical meanings of the
moment of inertia

o To develop a method for determining the moment of inertia for
an area
e Overview
o Moment of Inertia (MOI) Concept
o Mathematical Description
o Examples




Moment of Inertia: Physical Concept

e The Moment of Inertia (MOI) is a term used to
describe the capacity of a cross-section to resist
bending.

o The larger the Moment of Inertia the less the beam will bend.

o The moment of inertia of an object can change If its
shape changes.




Moment of Inertia: Mathematical Description

Moment of Inertia for Area

e MOl is always considered with respect to a reference
axis such as x-x or y-y. It is a mathematical property
of a section concerned with a surface area and how
that area is distributed about the reference axis.




Moment of Inertia: Mathematical Description

Moment of Inertia ~ Elastic Beam

e Consider a plate subject to a
stress, o, where
o=Kk-y

e The force on a differential area,
dA is equal to
dF =o-dA=k-y-dA
e The moment about the x-axis due
to this force Is

dM =y-dF = y*-k-dA

5




Area Moment of Inertia

 Recall for beam: dM =y.dF = y*-k-dA
e MOI for Area: (by definition) 1

o
||
<
N
(@B
>

Figure A/2

Note —these equations compute the area moment of inertia with
respect to the centroid of the area.




MOI for an Area by Integration

. = [x2 dA
and
. = Jy?dA




MOI for an Area by Integration

For simplicity, the area element used has a differential size in only one direction
(dx or dy). This results in a single integration and is usually simpler than doing a
double integration with two differentials, dx-dy.

The step-by-step procedure is:

1. Choose the element dA: (=ydx or =xdy)

) : ) : .Y
There are two choices: a vertical strip or a horizontal strip. |
X

2. Integrate to find the Mol. For example, given the element ‘ -
shown: />*

¥ dA

l, = [x2 dA and

. = Jy2dA

X

— | dx

Since in this case the differential element is dx, y needs to be expressed in
terms of x and the integral limit must also be in terms of x. As you can see,

choosing the element and integrating can be challenging. It may require a
trial and error approach plus experience.




Example
Compute the moment of inertia of the rectangular cross

sectional area
A- about the x” and y’ centroidal axis

B- about the x and y axis v




Parallel Axis Theorem

* Consider moment of inertia | of an area
A with respect to the axis AA’

| =[y“dA

& The axis BB’ passes through the area
R 1 A’ centroid and is called a centroidal axis

| =[y%dA=[(y'+d)*dA
= [y'?dA+2d[y'dA+d?[dA

_ 2 .
| =1+ Ad parallel axis theorem




e The MOI equation assumes the axis intersects a specific
location on the geometry, either the base of the geometry
or the centroid.

» To compute the MOI about an arbitrary (X, y) axis, we
must account for the additional distance

=1, + Adx2

- 2

=1, +Ad,

=1, +Ad?

e Note: this transfer of axes requires that the two axes be
parallel (i.,e. X is parallel to X,)




Transfer of Axes: Parallel Axis Theorem




In Class Activity

What are the Sl units for the Moment of Inertia for an
area?

A) m3
B) m?
C) kg-m?
D) kg-m?3




Example 1

Problem A/5: Determine by direct integration the
moments of inertia about the y-axis.

O b

Problem A/5




Moment of Inertia for Composite Sections

 The Mol of a combination of
“simple” shaped areas like
rectangles, triangles, and circles

in. can be computed by taking
a2 \\_ advantage of what we know about
\ 2/ I the individual pieces

e For example, the Mol on the left
can be computed from info about
a rectangle minus a triangle and
circle.

o Very similar to centroid computations!




Moment of Inertia for Composite Sections

e The Mol of these “simpler’ shaped
s s e areas about their centroidal axes are
| found in most engineering handbooks
as well as Appendix D3.

G, o But note that these Mol’s are written in
terms of specific axes (most of available
( \_ tables are about the centroid axes).
’U iy o Mol is axis-dependent

 Using this data and the parallel-axis
theorem, the Mol for a composite
area can easily be calculated.

o The challenge is correctly computing the
distance from the centroid to the desired
axes and tabulating your results




I = ;5 bh3

= 1
I, =15 b3h
Rectangle Iy = —;—bh3
I, = $b%h
1
Jc =15 bh(b? + h2)
Triangle I, = 5 bh3
i)
I, = ;5 bh3
T _T 1
Circle x = e




s T g
. Ii=1,= gnr
Semicircle 1
Fon S mpr
O 4
1
Ix = - —”r4
i Yy
Quarter circle 16

Ellipse

1
4

1
4

4

—rab3
—ra3b

L zab(a2 + b2)




=-— 100 mm —

25 mm

\ﬂ

Steps for Analysis

- 100 mm —=

T i

75 mm 75 mm

} |

75 mm 75 mm

l J.

N

25 mm
N

X

Divide the given area into its simpler shaped parts.

2. Locate the centroid of each part and indicate the perpendicular
distance from each centroid to the desired reference axis.

3. Determine the Mol of each “simpler” shaped part about the desired
reference axis using known Mol’s and the parallel-axis theorem (I, =
I + A(d,)?)

4.  The Mol of the entire area about the reference axis is determined by
performing an algebraic summation of the individual Mols obtained in

Step 3. (Note that Mol of a hole is subtracted)
19




Example

Problem A/36: Determine |
the moment of Inertia
about the x-axis of the |
sguare area without and | 2R
with the central circular |
hole. — — [ — —%

Problem A/36




Example :Compute the moment of inertia about centroidal X-axis

}"V ]IL .l/f
& ‘f\ c; [}
of x
20 mm 20 rﬂ (D-T e } =X,
Fa n v -
=+ = T -
60 mm C I. - t o 60 mm 1 C@ 2 \
l ¥ L} L [ y Ez_ - 2
l + l - X _l 1 - 1 l @ .“ -\
r—S{) mm =9
20mm 40 mm 20 mm 40 mm
7l KT () T 2 (i) (i) 2
A | ¥i|Qi =AY b d;=y;-y| Ad; |I7' =13 +Ad;
” PN
@ | 1,600 [ 70| 112,000 | 1y =LY _ 55555 24 |921,600| 974,933
0P
@ | 2400 [30] 72,000 |r=BXHD 9000 .16 [614400] 1334400
> | 4.000 184000 2,309,333

e $4.000
y:%:m.( D e

.

4

4,000




Example
Find the moment of inertia about centroidal x-axis for cross sectional area
Eisndb'own A A [ d=y-ybar | d*A
les i Yi Vi'A; i—yirybar i A 3in. Jin.  Sin
T
1 18 1 18
18 5 90
36 108
R . L y 3
52V _ l08i’ _, 5
>4 36
Bodies A; ¥i Vi'A; I d=y,-ybar d:2A,
1 18 1 18 4] -2 72
2 18 5 90 h4 2 72
36 108 60 144
- —_— 2
L=XI,+>(»-») 4
=60 in* +144 in* =204 in*




In Class Activity

Given: The shaded area as shown in the figure.

Find: The moment of inertia for the area about the x-
axis.

e— 3 in.—==—3 in.—




Problem A/46:

The rectangular area shown In
part a of the figure is split into
three equal areas which are
then arranged as shown in part
b of the figure. Determine an
expression for the moment of
Inertia of the area Iin part b
about the centroidal x-axis.
What percent increase n over
the moment of inertia for area a
does this represent if h = 200
mm and b = 60mm?

A

—_ X

—_—X
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MECHANICAL PROPERTIES
OF MATERIALS




Normal stress

Stress: Is the Intensity of the internal force over the cut

section
or the force per unit area $

Stress=F /A
unit: usually N / m? = Pascal (Pa)
or N/mm2=Mpa
Normal stress(Direct stress) : c =F /A

c Fp
Fpc o= %
LA% %




Direct stress may be tensile, o, or compressive, o, and
result from forces acting perpendicular to the plane of the
Cross-section

F
/"_rq—'—\ 1
. L
_______ I 71_;_,.'}‘~ _____-°',|._\
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X

r'l
H
1
L
\‘._:
\r
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o e e et s i S
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Homogenous: material is the same throughout the bar

Cross-section: section perpendicular to longitudinal axis of bar

A

Prismatic: cross-section does not change along axis of bar
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Normal strain

When loads are applied to a body, some deformation will
occur resulting to a change in dimension.

Consider a bar, subjected to axial tensile loading force, F.

If the bar extension is Al and its original length (before
loading) is Lo, then tensile strain Is:



/—\ /

~ Direct or Normal Strain (Contd.)

* Direct Strain ( &) = Change in Length
Original Length

ite. € =AlLjlo



— R —

/

Strain(cont.)

As strain Is a ratio of lengths, it is dimensionless.

Similarly, for compression by amount, Al: Compressive
strain = - Al/L

Note: Strain Is positive for an increase in dimension and
negative for a reduction in dimension.



Example:

A loading crane consisting of a steel
girder ABC supported by a cable BD is
subjected to a load P (see figure). The
cable has an effective cross-sectional
area A =0.471 in2. The dimensions of
the crane are H =9 ft, L1= 12 ft, and
L2=4 ft.

If the load P =9000 Ib, what Is the
average tensile stress in the cable?



Example: for a hollow circular tube of aluminum supports a compressive load
of 240 kN, with d1 = 90 mm and d2 = 130 mm, its length is 1 m, the shortening

of the tube is 0.55 mm, determine the stress and strain

ﬂ: o) H 2 2 ) 2
A = —(dy-d>)= —(130°-90%)=6,912 mm"
4 4
P 240,000 N
c = — = = 34.7 MPa (comp.)
A 6,912 mm’

the compressive strain 1s

0.55 mm
= = 550x10° = 550 u m/m

0
L 1,000 mm

8 pr—
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Stress-Strain Test

In order to understand the mechanical behaviour of
materials we need to perform experimental testing in the
lab

A tensile test machine is a typical equipment of a
mechanical testing lab



Tensile Test

11
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Uniaxial (simple) Tension Test

The specimen is prepared then fixed in the equipment.
A tensile force of known magnitude is applied.

The deformation (elongation) in the specimen is
measured.

By knowing the original length and the cross sectional
area, the strain and the tensile stress are calculated.

Repeating the test for different specimens with different
dimensions to calculate the Young’s modulus



-
Stress-Strain Diagram

As a result of the uniaxial

tensile test, the stress strain o

diagram can be established. D
Stress-strain diagram of each U

material can explain different = R
mechanical properties oy{ phe

(hardness, stiffness, ductility,
brittleness, ....).

O

13
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Stress-Strain Diagram

Point O is the origin: corresponds no load, no deformation.

Point P corresponds the proportionality limit: between O and P the stress
and strain are linearly proportional.

Point E corresponds the elastic limit: the stress corresponding this limit is
the greatest stress that can be applied without causing permanent
deformation.

Point Y is the yield point: the stress at this point is called the yield strength
of the material. At this level considerable elongation (yielding) can occur
without a corresponding increase of load.

Point U is the highest stress point on the s - e curve. The stress at this point
Is called the ultimate strength of the material.

Point R is the rapture or failure point. The stress that correspond this point
Is called the rapture strength of the material.

14



— Determination of the yield strength
“Offset Method”

Offset method is used to determine the
apparent yield strength of the material.

Drawing a parallel line to the linear section <~ >
the o — € curve.

This line Is crossing the strainaxisat 0.2% ( , | ___/ X
0.002). |
The intersection of this line with ¢ — £ curve P

taken as the apparent yield strength.

15
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Stress-Strain Diagram

Elastic deformation:

e Elasticity is the ability of the material to resume its original
shape and dimensions.

e |f the applied stress is equal or less the yield strength then
the deformation is called “ Elastic Deformation”

e If the point Y corresponds the point P, and the 6— € curve is
straight line, then the material is called a linearly elastic
material.

e |f the point Y does not correspond the point P, and the 6 — ¢

curve is straight line followed by a non-uniform or curved
ling, then the material is called a non-linear elastic material

« The slope of the straight line is the Young’s modulus (E).

16
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—Stress-Strain Diagram (cont)

« Elastic Region (Point1 -2)
- The material will return to its original shape

after the material is unloaded( like a rubber band).
- The stress is linearly proportional to the strain in
this region.

(o)
o=E¢ - E==

O : Stress(psi)
E : Elastic modulus (Young’s Modulus) (psi)
£ : Strain (in/in)

-Point 2 : Yield Strength : a point where permanent
deformation occurs. ( If it is passed, the material will
no longer return to its original length.)




c =P/A

dy
OYpP
OEL
OPL Rupture
Strain Hardening
Itis an increase
in stress levels
in the stress-
strain curve at
' large
deformations
| E before ultimate
strength is
reached. Necking
Perfect plasticity Strain Hardening e=8/L
or yielding "

=
8.

Elastic

Linear region



ultlmat
tensﬂe TS, : :
stren th ....... : 3 necking
g L. @ C

w

¢ : Strain
y1€ld 5" : Hardening Fracture
strengt )
h O' 5

@

Elastic region
slope =Young’s (elastic) modulus
yield strength

Plastic region

ultimate tensile strength

strain hardening

fracture

A £ h

Elastic
Region

{4
o : O

€ \ Strain (&) (AL/LO)
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~ Stress-Strain Diagram (cont)

- Strain Hardening

- If the material is loaded again from Point 4, the
curve will follow back to Point 3 with the same
Elastic Modulus (slope).

- The material now has a higher yield strength of
Point 4.

- Raising the yield strength by permanently straining
the material is called Strain Hardening.




T S
—Stress-Strain Diagram (cont,
« Tensile Strength (Point 3)
- The largest value of stress on the diagram is called
Tensile Strength(TS) or Ultimate Tensile Strength
(UTS)

- It 1s the maximum stress which the material can

support without breaking.
* Fracture (Point 5)

- If the material is stretched beyond Point 3, the stress
decreases as necking and non-uniform deformation
occur.

- Fracture will finally occur at Point 5.




e
Stress-Strain Diagram

Necking:

e Once the material is subjected to a stress equal or
greater than the ultimate strength of the material, more
and more deformation is happening, even by reducing

the load.

e After ultimate strength, the cross sectional area start to
decrease. This phenomenon is known by Necking.

e The material failed to hold any load and then rapture.

22
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Original
gauge length

Plastic
defonnatianl

oliess

Gauge length
(a) at failure

| Original diameter d

i

Reduction in Diameter at failure
diameter
{b)

Strain

Typical engineering stress-strain behavior to fracture, point F.
the tensile strength is indicated at point M.



Ductility is a measure of the plastic

deformation that has been sustained at % EL = XlOO
fracture:

A smaller %EL L

Engineering (brittle if %EL<5%) I
tensile AO
stress, ¢ arger %EL Lo Af Lf
(ductile if
A material that %EL>5%) /
suffers very . S ; -
little plastic Engineering tensile strain, ¢
deformation is

| —A
brittle. e Another ductility measure: 00 AR = L x100

* Ductility may be expressed as either percent elongation (% plastic strain at
fracture) or percent reduction in area.

24
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Resilience

Is the capacity of a material to absorb energy when it is
deformed elastically and then, upon loading, to have
energy recovered. The associated property is the
modulus of resilience, Ur, which is the strain energy per
unit volume required to stress a material from an
unloaded state up to the yield point of yielding.



/ —
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Resilience

Computationally, the modulus of resilience for a specimen
subjected to a uni-axial tension is just the area under the
engineering stress-strain curve taken to yield,

€y
U o IU de Assuming linear elastic region, U = E Gyé‘y
0

In which €, is the strain at yielding.
The unit of resilience is joules per cubic meter (J/m3).



Stress

/.-v- Modulus of
resilience

How modulus of resilience is determined from the stress-

strain behavior of a material.

Strain



“Tougk ghness

It is a measure of the
ability of a material to
absorb energy up to
fracture. It is the area
under the stress-strain
curve up to the point of
failure. The wunit of
toughness is the same
as for resilience (joules
per  cubic meter

(J/m3)).

Stress

Toughness

Brittle fracture

Ductile fracture

Strain

W

w.substech.com




True stress and true strain

e If the stress is calculated based on the original unreformed area,
then the stress called conventional stress.

e The true or actual stress is the stress calculated based on the
deformed cross-sectional area.
True stress is defined as the load F divided by the instantaneous cross-
sectional area Ai over which deformation is occurring

O'Tz_

A;

And true strain is defined by
Li
Er = In—

Lo

29
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True stress and true strain(continue)

Stress

Engineering

Strain

The relation between
the true stress-true
strain diagram and
engineering stress-
engineering strain
diagram.

The curves are
identical to the yield
point.

30



Shear stress

When tangential force is applied, the stress is called
“SHEAR STRESS”

t=F/A

The forces tend to make
one part of the material slide
over the other part.

s
S—

%y
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The Concept of strain

Shear strain Is the distortion produced by shear stress
on an element or rectangular block

Average shear strain: isdefined a4 ¢
as the ratio of d to L |/
Note that tan(y) =d / L B

y is very small

-----

<—F

For small angle

tan(y) =y
v is defined as the average shear strain.

%Y



SHEARING STRESS

_&
)\
N\
R

T= Ps"f Am'erlap

e Ag
</ 7
. Vv

T=P/Ag Where, Ay =rd?/4 , where dis the bolt diameter



P One shear plane

—
*
P s

=P /NAg N: Number of bolt
Two shear planes
i S

_‘F *-

PS

T =P /nNA4 n: Number of shear planes



e ZE

= S inglf&’ﬁear

s P — P

single Shear

P
r=—
4

Double Shear

B—i2r
B

U—P Pt
'—IIIEP

Double Shear

Pe—rf

P
r=—
24



Example: The anchor shackle supports a cable force of
600 Ib. If the pin has a diameter of 0.25 in., determine
the average shear stress in the pin.

d =0.25in

r=0.125in

A=mnr’
=m(0.125)°
=0.04909in"

For double shear stress :

vy ___ 06lb
’ AA 2(0.04909in° )

=0.11 ksi




/\

Example: The frame supports the loading shown. The pin at A has a
diameter of 0.25 in. if it is subjected to double shear, determine the

average shear stress in the pin
po D - 2 ft ————f
T@ . P C
' A & /

600 Ib

Entire frame
SF,=0; A, = 6001b
SMg=0;A,=8001b
F, = V(600)Z + (800)? = 1000 Ib
Fa2 100072 .
= = = 10.2 kSl
AT T4 T 1(025)2
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Stress-Strain Diagram

e Some materials exhibit linearly elastic behavior when
they subjected to shear loading.

e For such materials, the shear stress is linearly
proportional to shear strain, such that
1=Gy
Where, 7 is the shear stress, v is the shear strain, and G is the
shear modulus or the modulus of rigidity.
e 1T is usually plotted on the y-axis, y is plotted on the x-
axis, and the slope of the straight line is G

38
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Bearing stress

Bearing stress is a normal stress that is produced by
the compression of one surface against another. The
bearing area is defined as the projected area of the
curved bearing surface.

Bearing stress is a normal stress, not a shearing stress.

* Bearing stress is in the members that a bolt connects
(not in the bolt itself), along a bearing surface.



444444444444

\

P Force F results in bearing stress C
Thus, |5 =
b

e el

where
A, = projected area where bearing pressure is applied
P = bearing force

* For “single shear” case




Force

= = r
Bearing Area b x




=

Allowable stress and factor of safety

The structure must be designed to withstand a maximum possible
level stress known as working stress

Safety against unpredictable conditions can be achieved by
considering a factor of safety.

The factor of safety (n) is the ratio of the ultimate strength of the
material to the allowable stress..

The allowable stress is usually less than the maximum ultimate stress.

So that the factor of safety is greater than one.
Mathematically,

o
A u
Oan =—

42



- Determunation of the ultimate strength of a material.

PU

O-U:_

2- Allowable stress; factor of safety

Ultimate str
Factor of safety=F.S = 1Mate stress

Allowable stress



\

Example : Determine the required diameter of
the bolts 1f the failure shear stress 1s 7,_, =350 MPa.
use a factor of safety FS = 2.5.

Solution :
V 20x10° T .,
A — — :_d..
r, 350x10°/25 4 30 mm-. S0KN

then, we get

d= 135 mm | 30 mm




\

|

L

~
o

..,f—

Engineering Strain

\

4
==X
- -1
e, Al 50
lo Lo
d. —-d
€= Ad — i (o}

45
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Poisson’s Ratio

When aload is applied on ay material, it deformed in two
directions:

e The direction of the load line of action which produces axial
strain.

e The normal direction to the load line of action which produces
lateral strain.

with the elastic range: the ratio of the lateral strain to the
axial strain is constant and known as Poisson’s ratio.

Mathematically, Poisson’s ratio expressed as

46



PEample:

* A steel pipewith L =1.2m, d2 =150
mm, di1 = 110 mm,P = 620 kN, E = 200
GPa, v = 0.3

determine (a)o, (b)e&', (¢) Ad,and Ad;




. .

Solution:
A=7(d2-d2)/4=7(150°-110%) /4 = 8.168 mm’ o
c = -P/4 =-620kN/8,168 mm” =-759PMa (comp)
¢ = ¢/E = -759MPa/200,000MPa = -379.5x% 10"
@ 0 = eL = (-3795x10°(1,200mm) = -0.455mm
b) & = -ve = -(03)(-3795x10°) = 1139x10°

) Ad, = &d, = (113.9x10° (150 mm) = 0.0171 mm

Ad; = &dy = (113.9x10% (110 mm) = 0.0125 mm



RELATIONSHIP AMONGVv, EAND G

modulus of elasticity

/
G = £

modulus of rigidity < 2(1+v)

\

poisson’s ratio



Deformation under axial
oading




- From Hooke’s Law:
o P

o=E¢ S e
E AE

- From the definition of strain
Vo)

E=—
L

- Equating and solving for the deformation,

5
AE

« With variations in loading, cross-section Fia. 2.22
or material properties,

P L;
522 |
i AE;




Examplel:

Determine the deformation of the steel rod shown under the
given loads.

E =29x10 ®psi
D =1.07in. d =0.618in.

75 kips 45 kips

}<—>|<——-><——16 n.—>
12 in. 12 in. ’



SOLUTION:

Divide the rod into components at the load application
points.

Apply a free-body analysis on each component to
determine the internal force

Evaluate the total of the component deflections.



75 |\’i1)s

30 kips

45 kips

D

30 kips

Ly =Ly =12in. Lz =16in.

A=A, =09in® Ag=03in?

Apply free-body analysis to each component to
determine internal forces

P, =60x10%1b
P, = -15x10°Ib

P; =30x10°Ib



Evaluate total deflection,
5. AL _1[RL  Ply  Rls
i AEE EU A Ay Ag

- {(6O><103)12 . (c15x103 J12 + (30><103)16}

~ 29%10° 0.9 0.9 0.3

— 75.9x10 3in.

5 =75.9%x103in.




P R L L S—
P — s
Example: The copper shaft is subjected to 8D i 150 in.——— 100 if.—
the axial loads shown. Determine the | 5 kip 2 kip
displacement of end A with respect to end e b 0y
D if the diameters of each segment are d . A SXipB Cakp P

=1in.,d,z=0.75in.,and d .5 = 0.5n.
Take E_, = 18(103) ksi.

PL -8(80) 2(150) 6(100)
BA’K L= ZE ) T ' T ! T SH:P Kip
—OTSR(I8)(10)  —(DR(I8)(10%)  —(0.57(18)(10F) ~{ '8
4 4 4 ﬂﬁp 5{!':'_
L e P, 12 5P
= 0111 in Ans, o '_p" o
&p:ﬁ‘f—m——‘

The positive sign indicates that end A moves away from end D.



P — S
Example Il
The rigid bar BDE is supported by two links AB and
CD. Link AB is made of aluminum (E = 70 GPa) and
has a cross-sectional area of 500 mm2. Link CD is
made of steel (E = 200 GPa) and has a cross-sectional

area of (600 mm?). For the 30-kN force shown,
determine the deflection a) of B, b) of D, and c) of E.




SOLUTION:

Apply a free-body analysis to the bar BDE to find the
forces exerted by links AB and DC.

Evaluate the deformation of links AB and DC or the
displacements of B and D.

Work out the geometry to find the deflection at E
given the deflections at B and D.



DO ... .

Free body: Bar BDE

30 kN

L !: 0.4 m ‘——l

S>Mpg =0
0 =—(30kN x0.6m)+ Fcp x0.2m
Fcp = +90KN  tension

SMp =0
0=—(30kN x0.4m)—Fag x0.2m

Fag = —60kN compression



Displacement of D:

Displacement of B:

F'ys = 60 KN

‘ A = 500 mm?®
E =70 GPa

F,z = 60 kN

(- 60x10°N0.3m)
"~ (500x10° mZmelogPa)

2 —514><10_ m

Fop = 90 kN

1 A = 600 mm?2

0.4 m E = 200 GPa
D
Fip =90 kN
PL
0p=—
AE

[90x10°NJ0.4m)
" (500x10 m2J200x10° pa)

~300x10%m



= (0.514 mm

< B’ op = 0.300 mm

]

*
|
|
|
|
|
|
|
|

(200 mm —

I

>{<— 400 mm —>‘

200 mm

Displacement of D:

BB’ BH

DD’ HD

0.514mm _ (200mm)-
0.300mm X
X=73.7mm

EE VT HE

DD’ HD

g (400+73.7)mm
0.300mm /3.7 mm

op =1.928mm

Sg =1.928mm




Torsion Of Circular
Sections



Torsion

 Torsion : twisting of a structural member
when it is loaded by couples that produce
rotation about its longitudinal axis



T1=P1d1

T2 =P2d2

the couples T1, T2 are called
torques, twisting couples or
twisting moments

unit of T : N-m, Ib-ft




In this chapter, we will develop
formulas for the stresses and
deformations produced in circular bars
subjected to torsion, such as

drive shafts, thin-walled members

 Turbine exerts torque T on the shaft

e Shaft transmits the torque to the
generator

Transmission Shaft [




Torsion of circular shaft (cont.)

We assume
= Bar In pure torsion

= small rotation (the length and radius will not
change



Torsional Deformation of a Circular Bar

low does the bar deform

* Cross section of the bar remain the same shape ,bar is simply
rotating

Cross-section remains perpendicular to axis of cylinder
(cylinder does not wrap)

Not true for most

(\ s non-circular bars
1 ! © -
) AN -




Deformed

plane

Undeformed
plane

The angle of twist ¢p(x) increases as x increases.



Torsional Deformation of a Circular
Bar

 consider a bar or shaft of circular cross section twisted by a
couple T, assume the left-hand end is fixed and the right-hand
end will rotate a small angle vy, called angle of twist

A moves to A’
-¢= angle of twist (in radians)

« From observation, the angle of twist of
the shaft is proportional to the applied
torque and to the shaft length.

¢ ocT
¢ o L




Shearing Strain

« Since the ends of the element remain
planar, the shear strain is equal to angle
of twist.

It follows that

arch(AA)=Ly = pg or y:quj

 Shear strain is proportional to twist and
radius

Co

7 max :T and » ="~ »max




* We can also apply the equation for maximum
surface shear strain to a hollow circular tube




Stresses In Elastic Range

« Multiplying the previous equation by the shear
modulus,

Gy =26y

c ~/max From Hooke’s Law, =Gy

The shearing stress varies linearly with the
radial position in the section.

Recall that the sum of the moments from
the internal stress distribution is equal to
the torque on the shaft at the section,

T=[pr dAzz-m—anp2 dA = fmax j
C C

e The results are known as the elastic torsion
formulas,

C d To
Tmax = T and 7= T omentof inertia center O






J = polar moment of inertia

Solid shaft:

J=2¢*
2

Hollow
shaft:



Example: The shaft shown in Fig. 5-11a is supported by two
bearings and is subjected to three torques. Determine the shear
stress developed at points A and B, located at section a—a of
the shaft, Fig. 5-11c

42.5 kip-in.

(a) -




ZM, =0 425kip-in. —30kip-in.— T =0 T =125kip-in.
Section Property. The polar moment of inertia for the shaft is
J= %{D.?S in.)* = 0.497 in*

Shear Stress. Since point Aisat p = ¢ = 0.751n.,

TA —

Te  (12.5kip-in.)(0.75 in.
¢ _ UM )OPI) _ ooy ans
J (0.497 in®)

Likewise for point B, at p = 0.15 in., we have

Tp  (12.5kip-in.)(0.15in.)
] (0.497 in®)

Tg = = 3.77 ksi Ans.




 Example:

Shaft BC is hollow with inner and outer
diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are
solid of diameter d. For the loading
shown, determine (a) the minimum
and maximum shearing stress in shaft
BC, (b) the required diameter d of
shafts AB and CD if the allowable &
shearing stress in these shafts is 65 T.=26kN.m /D
MPa. T, =6kN-m

T, = 14kN - m



SOLUTION:

Cut sections through shafts AB and BC and perform
static equilibrium analyses to find torque loadings.

*Apply elastic torsion formulas to find minimum and
maximum stress on shaft BC

 Given allowable shearing stress and applied torque,
Invert the elastic torsion formula to find the required
diameter.



 Cut sections through shafts AB and BC and perform static

equilibrium analysis to find torque Ioadinusl.\
T,=6kN-m

La=00 kN - m

B © \TH(:
Y

> My =0=(6kN-m)-Tpg > My =0=(6kN-m)+(14kN-m)-Tgc
TAB :6kN-m:TCD TBC:ZOkN.m



e Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC.

=23 ot)- 2[00 -0 045

~13.92x10 %m*
TgcC, _ (20kN-m)(0.060m)

e Given allowable shearing stress and

applied torque, invert the elastic
torsion formula to find the required
diameter.

Tc Tc 6 kN -m
Tmax:_:ﬁ 65MPa: 7 3

b T zc
C= 38.9><10_3m

d=2c=77.8mm

fmax T2 T 13.92x10~8m?
=86.2MPa

Tmin _ G Tmin  _ 45mm

Tmax C? 86.2MPa 60mm

Tmin = 64.7MPa

Tmax = 86.2MPa
Tmin = 64.7MPa




Example: If the tubular shaft is made
from material having an allowable
shear stress tall=85 Mpa of determine
the required minimum wall thickness
of the shaft to the nearest millimeter.
The shaft has an outer diameter of 150
mm.

30 kN‘m



Allowable Shear Stress: Segment BC is critical since it is subjected to the greatest

internal torque. The polar moment of inertia of the shaft is J = %([J.(]Tﬁ* - ).

—

Toce 45(10%)(0.075)
BC gs(10°) = ——2

fallow —

Z(0.075 - ¢)

¢; = 0.05022 m = 50.22 mm

Thus, the minimum wall thickness is

t=c,—¢;=75— 522 = 2478 mm = 25 mm Ans,




Angle of Twist In Elastic Range

Recall that the angle of twist and maximum
shearing strain are related,

Co

7' max :T

e |n the elastic range, the shearing strain and shear
are related by Hooke’s Law,
_ Tmax _ 1€

Ymax = G 1G

e Equating the expressions for shearing strain and

solving for the angle of twist,

TL

TS

If the torsional loading or shaft cross-section changes
along the length, the angle of rotation is found as

the sum of segment rotations Ti |_i

& i JiG




Sign convention

 Use right-hand rule: torque and angle of twist
are positive when thumb Is directed outward
from the shaft




Example: The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 Gpa
and the shaft has a diameter of 14 mm, determine the displacement of the
tooth P on gear A. The shaft turns freely within the bearing at B




Solution

=)

T.D.E =170 N-m

Tep=130N-m

T (N-m)

150

0 04 07 12 | (m)
—130



TAE=+15DN‘T[1 TEL;.:—ISDN-m Tﬂgz—l?ﬂﬂ'm

These results are also shown on the torque diagram, Fig. 5-19¢.
Angle of Twist. The polar moment of inertia for the shaft is

I = %(ﬂ.ﬂﬂ? m)* = 3.771(10"%) m*

—

Applying Eq. 5-16 to each segment and adding the results
algebraically, we have
(+150N-m)(0.4 m)

TL
$4= 276~ 3.771(10~%) m* [80(10°) N/m?]
(—130N-m)(0.3 m)
' 3.771(107") m* [80(10”) N/m?)]
(—170 N -m)(0.5 m)
i 3.771(1077) m* [80(10”) N/m?)]

e

= —0.2121 rad



Since the answer is negative, by the right-hand rule the thumb is
directed foward the end E of the shaft, and therefore gear A will
rotate as shown in Fig. 5-194.

The displacement of tooth P on gear A is

§p = dqar = (0.2121 rad) (100 mm) = 21.2 mm Ans.

drq = 0.212 rad




THIN WALLED HOLLOW SHAFTS

3.15 THIN WALLED HOLLOW SHAFTS

TN T Ax

N ~
T —

B/ /7§
< \

-y \
: \ (
NNy \
,\»7\»71} > 8 : \
B N

Z:FX =0

F,=F

z A, AX) =T (1, A%)
Thus,

rt = g = constant (Shear flow)



dT = h(dF) = h(z,, tds)
T =[f|hz,, tds = q[f hds
but

dd, :%hds

ave

T=2r 14,



fee—— 4y —————
* Example: Extruded aluminum 4 g :
tubing with a rectangular cross- ‘ N .
section has a torque loading of 24 25in.
kip-in. Determine the shearing O'IGOfn'_’ ‘_
stress in each of the four walls with - 2 : :
(a) uniform wall thickness of 0.160 @
in. and wall thicknesses of (b)
0.120in. on AB and CD and 0.200 VR | " R——
in. on CD and BD. Al |
] N
— <—0.120 in.
2.51n.
0.200 in. > |«
g ‘)
C T



SOLUTION:

» Determine the shear flow through  Find the corresponding

the tubing walls. shearing stress with each wall
thickness.
3.84 in, ——
A B
234in | £ = 0160 in. ] |« With a uniform wall thickness,
| ¢=0.1601n.
‘ | {_"*____W_Vj g 1.335kip/in.
o ¢ D =% 7 0.160in.
7 =8.34ksi
) i ) : . :
A= (3.84in.[(2.34in.) = 8.986in. With a variable wall thickness
T - 24klp-|n2. _1.3354P __ . _1335kip/in
2A 2l8.986in?) in. AB T EAC T 0.120in.

TAB = 7TBC = 11.13ksi

1.335kip/in.
0.200in.

TBD =7CD =

TBC =7cD = 6.68Kksi




3.139 Atorque T = 5 kN + m is applied to a hollow shaft having the

cross section shown. Neglecting the effect of stress concentrations, determine
the shearing stress at points a and b.

o

(75 — 6) = (125 — 10) * 10 °

7935 * 10 ° -
VA
270
5 * 10°
2 % (6 * 10 °) * (7.935 * 10 )
52.51 AMPa
5 = 10 °
2 % (10 * 10 °) * (7.935 * 10 )

31.51 AMPa

10 mmn

125 mm §

6 mm

10 mm

- 79 mm ——e

Fig. P3.139



PURE BENDING



SYMMETRIC MEMBER IN PURE
BENDING

Any section will have same
magnitude of moment with no other
forces acting (Pure bending)




Deformation In A Symmetric Member In

Pure Bending

*¢Line AB will be transformed to circular
arc centered at C.

**Any cross-section perpendicular to
the axis of the member remains plane.
s*Line AB decreased in length and line
A’B’ increase in length; causing
compression on the upper surface and
tension on the lower surface.

**There should be a surface in between
where no tension or compression
occurs; this called the neutral surface.

Y

h[ I fl !f

BF




As=Ax

Meutral Y

axis
Ax

— | f—
k:i.l:

As'=Ax _(p—VAG-—pAE _ v

£ =

Ax PAE o
szi, then SZ—(EJSM

P .




Stresses And Deformations In The
Elastic Range

Y
From hook’s law: linear variation of O hax

normal strain leads to linear variation In
normal stress ‘

"l.
o=—| = ) c.. s — : o,
C Neutral surface '

The neutral axis is the horizontal centroidal

axis
thus.

jj‘dA =0

A






Example: Find maximum tensile
and compressive stresses. 1

|-— 90 mm —-l

t . il | 20 mm
| T TAe=T — '
tj; = 50 mm t C n :
40mm —— |—eo Y
l - 2
i _IL.

/s = 20 mm Iﬁl

30 mm

AT AT,
T 4+4,

=38 mm

1 )
I = FxQOx{EOf +90%20x(12)" mm*

I, =$>< 30%(40)° +30x40x(18)* mm*

I=1+1,=868x10" m*

(gf )ﬂlﬂx

(g{' )IJJEX

30 mm

B 3x10°x22x107°

~ 868x107°
B 3x10° x38x107°

868x107°

=76 MPa

=131.3 MPa



Example: The beam is constructed of
a glued laminated wood. Determine
the max. stress in the beam due to

bending

h=27in.

4 F

b=8.75 in.




Prob. 5.16 Max. Tensile and compressive stresses

in the beam__l \._ 25mm

PROPERTIES

A = 3750 mm?
c,= 62.5 mm c, = 37.5 mm
/.= 3,3203 X 10° mm*

OF THE CROSS SECTION ' '/

MAXIMUM TENSILE STRESS

] Mmu ¢ —-

(3888 N * m)(0.0375 m)

E",= 'f[c

3.3203 % 10° mm*

=439 MPa

A

..;_M (_ugupu COMPRESSIVE STRESS
Mo €1 {3%8'3 N m){,ﬁﬁﬁzi m)

szmxw‘mmﬂ

=732 MPa

.“', 3 PR =

P=54kN L=30m

b=75mm 1= 25mm

d=12m h= 100 mm h1='?5mm 4
* .16 kN 3m 324 kN IRg

3888 N.m

-

.




Example : The beam shown below has a cross section of channel
shape with width b=300 mm and height h=80 mm, the web
thickness is t=12 mm. Determine the maximum tensile and
compressive stresses in the beam due to uniform load.

ﬁmmuuiilfim”u N 1
i TR T&%WBF ) o le—12mm Som

A
F 3

i
-

.

3;?” 1.5m



YYYYYYYYYIYYYITYTYSYYTYYYTYTYY

3.6KN TID.SKN

DM, =0

B,<3-14.4x2.25=0

2 F, =0
A+10.8-14.4=0
A,=3.6 KN

S F, =0

Ax=0

3.0 KN

B, —3.6KN.m

M;=2.025 KN.m
M->=3.6 KN.m



< 300 mm >
T4
Y. = %A S ry
1 3 S0 mm
— +—1 2 mm
k4
No. of Area A(mj) ¥ (m) yA (1113J

1 960~107° 40-107 38400x107

2 3312x107° 74<107 245088=10"

3 960+10° 40-10~ 38400%107

S 4=5232x10"° S 74=321888x107

'] _g
y, =221888510 —61.524107% m
523210 300 mm
Ve—01.52 mm

A
L 4

A
c, =18.48 mm
- Y

-~

_' 80 mm
c; =061.52mm —» ——12mm

Y Y

3
Il:ii-r_'_ Ad?

5 -3, -3.3 5
1,=12219 (80x10 ) .960+10%+(21.52+107)’>=0.95658+10° m*

12
I;=I,=0.95658~10° m*
3
I,z:E:;iL:r + Ad*
- -3 3+ 3 -
1,=276x10 ﬁb‘“} )" +3312+%10+(12.48+107)>=0.55558~10"° m*

I= I+ I»+ 13=2.46874=10° m*



Me, 2.025x10° x61.52x107

(0), = = S =50.462179 MPa
I 2.46874 %10
M.e, 3.6x10° x18.48x%107
(0,),=—21=22"" TR 9694815 MPa
I 2.46874 %10

(G)max=30.462179 MPa

M.,  2.025x10° x18.48x107°
() =—— -2 15158339 MPa
I 2.46874x10

M.,c,  3.6x10° x61.52x107
(0),=——22=_22"" "7 8071054 MPa
- I 2.46874 %10

(Cc)max—-89.71054 MPa




Bending of Members Made of Several Materials

\

Consider a composite beam formed from
two materials with E; and E.,.

Normal strain varies linearly.

Yo,
Piecewise linear normal stress variation
E E
o1 = Elé‘x = —ﬂ 09 = E28X = —Ly
p p

Neutral axis does not pass through
section centroid of composite section.

Elemental forces on the section are

dF, = oydA=— Y A dF, = opdA=—22Y A
p p
Define a transformed section such that

dF, __(Ey)y dA=—"Y(nda) n=22
P P E



Procedure
Assume E1 > E2 ,

2- Multiply the width of maternial 1
by .

3- Now consider all the section as
made of material 2.

4- Find [ and then the stresses at

any point on the section.

5- the stress at any point located on
material 1 should by multiplied by

11




Example: find maximum
stress in brass and steel

M =2 kN.m
E, =100 GPa
E_ =200 GPa
5mm .~ |<— 20 mm -—1 - 5 mm
1 | I
ar
i ' i ¢ =20 mm
| 1
I | 1
40 mm : I : N A
| 1
-
I I All brass
o

|

— 30 mm ———

10 mm

Smm — - -— S mm
40 mm
Steel “gl
T 2_00 =9 Brass Brass
100
I= —l%x 0.03x(0.04)* =160x10~° m*
c=0.02
M:¢c 2 3%0.02
o e I-c_2x10°x0.0 50 MPa

A 160x107°

M-c _ 2x10°x0.02
.. =7 — 0 =500 MlEa
s« =1 160x107




Shear stress in beam



7.1 Shear in Straight Members

Transverse
shear stress Internal shear force —
: creates shear
T deformation, strain

A Longitudinal
shear stress

and shear stress!

Note: due to nature
of shear stress get
transverse and
longitudinal strain.

Copyright © 2005 Pearson Prentice Hall, Inc.



Boards not bonded together
(a)

Boards bonded together
(b)

Physical example —
when boards glued
together, shear stress
is developed at
surfaces which
prevents slippage.



", ‘ - i . | V
[ EF mr 4

a .

(a) Before deformation

Notice deformation:
- S key point,
- (71 l v deformation not

uniform!!

(b) After deformation
Copyright © 2005 Pearson Prentice Hall, Inc.



6.2 — Shear Stress Formula:

w

(b)
Copyright © 2005 Pearson Prentice Hall, Inc.



Derivation of Beam Shear Stress Equation:

-

‘

)

S— |

+ > F, =0
e
| o'dA— [ odA—7(tdx) =0
A A
j(M +dM jydA—j(%jydA—r(tdx) =0
1

AU

Copyright © 2005 Pearson Prentice Hall, Inc.




T

Derivation of Beam Shear Stress Equation (cont’d):

_ 1 dM ‘ Recall, dM/dx = V
It\ dx /¢ \za

Internal Shear (Ib)

/
_ VR

/ \Thickness of cross-

Moment of inertia of section at point of
entire cross section (in%) interest (in)

First Moment of area
(in3) at point of interest

T



Example: Square Cross-section:

\ (STRN \MI:' A
S

Copyright © 2005 Pearson Prentice Hall, Inc.

Copyright © 2005 Pearson Prentice Hall, Inc.

Shear—stress distribution (d)
(c) Copyright © 2005 Pearson Prentice Hall, Inc.
Copyright © 2005 Pearson Prentice Hall, Inc.




Example: I-Beam

Flanges

(a)
Copyright © 2005 Pearson Prentice Hall, Inc.

- = e — e —

N

T’
Parabola
Intensity of shear—
stress distribution
(profile view)

(©)
Copyright © 2005 Pearson Prentice Hall, Inc.

<

Shear—stress
distribution

(b)
Copyright © 2005 Pearson Prentice Hall, Inc.



EXAMPLE 71

The beam shown in Fig. 7-10a is made of wood and is subjected to a
resultant internal vertical shear force of V' = 3 kip. (a) Determine the
shear stress in the beam at point P, and (b) compute the maximum
shear stress in the beam.

Solution
Part (a).

Section Properties.  The moment of inertia of the cross-sectional area
computed about the neutral axis is
_Lagus Lo P . 4
I = 12bh - 12(4m.)(5 in.)” = 41.7 in
A horizontal section line is drawn through point P and the partial
area A’ is shown shaded in Fig. 7-10b. Hence

Q0=yA =|05in. + %(2 in.) [(2in.)(4in.) = 12in®

Shear Stress. The shear force at the section is V' = 3 kip. Applying Tp:= 0210kl

the shear formula, we have
Vo (3 kip)(12 in3)
It (41.7in*)(4in.)

Tp = 0.216 ksi Ans.

(b) (c)



Since 7p contributes to V, it acts downward at P on the cross section.
Consequently, a volume element of the material at this point would
have shear stresses acting on it as shown in Fig. 7-10c.

Part (b).

Section Properties.  Maximum shear stress occurs at the neutral axis,
since ¢ is constant throughout the cross section and Q is largest for
this case. For the dark shaded area A’ in Fig. 7-10d, we have

25in;
Q=5'A"= [ 2m ](4in.)(2.5 in.) = 12.5in’

Shear Stress. Applying the shear formula yields
VO  (3kip)(12.5in’)

T = 0.225 ksi Ans.
It (41.7in%)(41in.)
Note that this is equivalent to
Vv 3 ki
Tmax = 1.9— = 1.5 p = 0.225 ksi Ans.

A (41in.)(5in.)

(d)

Fig. 7-10



Example: Determine the normal and shear stresses at
Point C

[ L=3f

-
3
1_%=5353m‘ O-C=_Md&
O = A7 (17 920)1.0) _ 3,360 psi
~ e 5.333
=(1.0)(1.5)=15in"
(LOXL5) LV (L6005) e
b  (5.333)1.0) |

M, =17,920 Ib-in







Example:
Find the shear stress distribution
over the cross-section.

Solution :

V =80 kN A 20 mm

1 3
I, =—x0.015x(0.2
1775 (0.2)

12 = éx 0.3 (002)3 +0.3x0.02x (01 1)2 )

I=1+2I,=155.6x10"° m* 4



t,, =03 m

Q, =03x0.02x0.11=660x10"° m’
t; =0.015m N JC ‘o
Q,=Q, =660x10"° m’
t.=0.015m
Q.=03x0.02x0.11+0.015x0.1x0.0?

—735%10° m’

Pl

74 = 1.13 MPa

™ T3 = 22.6 MPa
apply the shear formula. you get \
7,=0
5 \ 7 = 25.2 MPa
7, =1.13 MPa /
r, =22.6 MPa /
7. =252 MPa N c~oMPa

1.13 MPa



SHEAR FLOW IN BUILT-UP MEMBERS

Built-Up Beams

e e

e —

TR

?"""'".-1-




In many applications, beam sections consist of
several pieces of material that are attached
together in a number ways: bolts, rivets,
nails, glue, weld, etc. In such so called built-
up sections we are interested in knowing the
amount of shear stress and the resulting
shear force at the cross section of fasteners
or over the glued surface .



T 3
e ,,,4”“..4
2~ 3fe
Il Ll I
ke,
Il
e
=
I_I
ke,

=g's

F nail



(a) The shear flow is resisted at one surfaces

(b) The shear flow is resisted at two surfaces




« Example: The beam is constructed from two boards fastened
together at the top and bottom with two rows of nails spaced
every 6 In. If an internal shear force of is applied to the boards,
determine the shear force resisted by each nail.




Section Properties:

_ L e (a3 — v int
=2 (6)(4) = 32.0in

| &an |
- . ey .‘."'_.."L__." f.
Q=yA =16)2) = 12.0in* y-njfr St RS Tz'g
&

Shear Flow:

VO 600(12.0)
T 320

= 225 Ib/in.

There are two rows of nails. Hence, the shear force resisted by each nail is

225 Ib/in.
F = (g)s - (%){5 in) = 675 b Ans.



Example:Three boards, each 2 in. thick, are nailed together to
form a beam that is subjected to a vertical shear. Knowing that
the allowable shearing force in each nail is 150 Ib, determine
the allowable shear if the spacing s between the nails is 3 in




SOLUTION

Dividing Eq. (2) by Eq. (1).

I = LISEINFE
12

B %(6)(2)3 +(6)(2)(3)* =112 in*

I, = L = %{2)(4)3 =10.667 in*

12
=1 =112in*
I=1+1,+I; = 234667 in*

O = 47 = (6)()(3) = 36 in°

gf’. - Fna_ﬂ (1)
VO
q = (2)
! I
110
5 Fmﬂir
y_ Fual _ (150)(234.667)

Os (36)(3)

® 7

F=3261b 4



Three boards. each of 1.5 x 3.5-in. rectangular cross section, are nailed
together to form a beam that 1s subjected to a vertical shear of 250 Ib.
Knowing that the spacing between each pair of nails is 2.5 in., determine 1.5 in,

the shearing force in each nail.

I= L= i(3.5)(4.5)3 =26.578 in*
12 12

A=(35)(5 =525’

¥ =15m

0 =4y, = 78750’
VO (250)(7.875)

g=-%= = 74.074 b/in

I 26.578

g5=2F Fy=2

(74.074)(2.5)

1.5 1in.

e 3.5~

F =926 4

nal



Find the spacing for each case

b4

Q =(200)20)180-10)
= 680%x10° mm?

2FI
8=

Va

=78.3 mm

4
1 |
® V=32kN F=250N
360
z (@) mm
t = . (200)(360)*  (160)(320)°
20 mm 12 12

_ 6 4
’ —— \ =340.69x10° mm

Q=(160)20)180-10)
=544 x10° mm?

5=ﬂ=97.9mm



Stress transformation



Introduction

*Failure can occur in any angle.

General loading condition is:

I
0 T,
r_ /I/ iy
A4
\
5 Qe 7
L
v
o :;f — >~ T
0

Y




Plane stress

* When an element is in plane stress in the xy
plane, only the x and y faces are subjected to
stresses (o0z = 0 and tzx = ©™xz = tzy = tyz = 0).

Plane stress element in 2D

C]

T,

Y
xY T 4V xy
, 0
X
G, — G,

Ty

-

X G a...l'-'r'x

Q




Stresses on Inclined Sections

The stress system Is known In terms of coordinate system xy.
We want to find the stresses in terms of the rotated coordinate

system X1y1.
Why? A material may yield or fail at the maximum value of 6
or 1. This value may occur at some angle other than 6 = 0.

¥ixi -
vt
.-.._.!r"' o G.ﬂ
X
5, | X 5, 5 .
G"




Transformation Equations

7

AA cos 6 —~

~

—

6

’_/(

‘AA sin 8

’
I/

i

o, (AA cos @)

) ~—

3

.v\,:_-

A s

Ty AA cos 0)

Y

T...o AA

3 ) L — \ [/.
P
| -
i %’@

ag.AA
g

| \ ! o
ﬂ \1 A‘ _),4'-"/‘,"

Vi (AA sin ) *—1—

o, (AA sin 6)

Z F.=0: c,.Ad—0c,(AdcosO)cosO—17,_(AdcosO)sin O
—0,(Adsin@)smb -7 _(AdsinHf)cos =0

c.=0,cos " @+0c sin” @+27r_smbcosO

(D)



z F,=0: 7.,Ad+0,(AdcosO)sin @ -1, (AdcosB)cos O
—0,(Adsinf)cos 0 +7,,(Adsinf)sm 6 =0

T

111 same manner, o, 1s obtained as

. 2 22
=—(o,—0,)smbcos@+7_(cos” &—smm 6) (2)

s e b g
o, =0,sm @+0c,cos" 6—2r_smbcosé (3)

o, (AA cos 6)

(AA cos 0)

Ty

Tey (AA sin @)1

4 .
a, (AA sin 0) !



Using the following trigonometric identities

cos @ = 1+c25 26 sin? 0 ]—czs 28 sin 0cos O — s 26

gives the transformation equations for plane stress :

c,—0, ,
+ ——C0s20 + 7, sm20

i

(51_—5_1_) sin26 + r,cos2¢

g."l.' —a 13

~cos28 — r_sm26

—




TRANSFORMATION EQUATIONS SUMMARY

o.=0_cos 0+ o, sin” @+ 27, smécosd (1)

0, =0, sin” 6 + o, cos” 6 — 27, smbcost (2)
. g 2 . 2

[, =—(0,—0,)smébcosf+7 (cos”0—sm”60) (3)

The equations can also be rewritten as:

o0,+0, 0,-0

., = + L cos20+1_sin26 ]

§ 2 2 v ()
o.+to, o0,-0, .

O, = - L — - —cos20 -7 ,sm 20 (2)

o,.—0,

== ; —sin 260 + 7, cos 26 (3)




Example: The state of plane stress at
a point is represented by the stress
element below. Determine the
stresses acting on an element
oriented 30° clockwise with respect
to the original element.

Solution: Substitute numerical values into the
transformation equations:

c,+0, o, — 0, :
- —¢0s2¢ + r_sm20

ol 2 2

450 MPa

i ————

y
80 MPa ‘ X ‘l 80 MPa

25 MPa

——

¥ 50 MPa

Define the stresses in terms of the
established sign convention:
c,=-80MPa ¢, =50 MPa

Ty = 25 MPa
We need to find 5,,, 5,,, and
Tyqy1 When 8 =-30°.

~80+50  —80-50 . ~30°)
8030, 80250 ea(-30%)+ (~25)sin2(~30°)=-25.9 MPa



c,+0, c,—C

Ty = — ——2 0826 — r_sin28
2 c
o= _80;:’0 _ _SD;:*U c0s2(~30°) — (=25)sin2(~30°)= —4.15 MPa
(G-T_JJ.') -
Toip1 = —'T sin28 + r cos2d
0-50) |
T = | 80}} 0) sin 2(—30°) + (—25)cos 2(-30°)=-68.8 MPa
25.8 MPa

4.15MPa



Plane Stress — Special Cases

Uniaxial Stress: , «—— - o,
X
’ny
Pure Shear: ' -
Y
% | [
—
Tyx
. . Gy
Biaxial Stress: I
GX <« —> G




Principal Stresses

* The maximum and minimum normal stresses
(61 and 62) are known as the principal
stresses. To find the principal stresses,we
must differentiate the transformation equations



Principal Stresses

Principal stresses: maximum and minimum normal stresses.
Principal planes: the planes on which the principal stresses act

o,to, O0,—0C _
o, = L+ 0820 +1,,5in20
' 2 2
U
do, o,— O, . .
L=— ~-2sin26 +27,,c0820 =0
dé
U
27,
tan20, = g
o,—0,

Hp: The angle defines the orientation of the principal planes.



Principal Stresses

27 o,— O _ T
tan20, = —— = c0s26, =——, sin20 =_—*,
Ox~ 0y 2R 2R
- _0x*Oo, +O'X—O'y 0~ 0, i, Ty
' 2 2 2R Y 2R
2
o,+0 O, —O
0,=0, = . . + - Y +Txy2
1 2 2
OR
tan20, = 7— = €0s20, =~ x Y sin26, =——~
o, — O,
- :GX+O'y o, —0, —O'X+0'er X —Tyy
' 2 2 2R Y 2R
[ U«

2
(252 -




Shear Stress

Shear stresses on the principal planes:

o,—O0, .
T, =-— ~sin26, +7,,c0s26, =0
2

X1 Y1

Example 2: Principal stresses in pure shear case:

T
LI

Tyy
T, l

yX




Maximum Shear Stresses

o, —0, . dz, .
Tyy = - 5 ~sin26+ 17, c0s20 — d—éylz—(ax—ay)cosze—zrxysm 260 =0
c,— O 1
=  tan20, =-— L = tan260, =-—
27, tan 26,
2 _p _"
TW_\/(GX;Gyj +z'xy2_o-1262 0, =05, 4
652:0p1+%



MOHR’S CIRCLE: PLANE STRESS

o, +oc, o©,—0,

. =— - L cos260 + 1 sin 26
e e
c,+o, o©,—0, _
T, — = = cos28+r7_ smm2lé (1)
' 2 2 N
c,—0C,
r..=————=sin28+r_ cos26 (2)
square both equations and sum them. we will get
2 2
c,+0, - > (o, —0, \ -
222 ] e, T (252 ) ()
let
o T O
— - ¥
G = =
e
[ O, — LT}' HI-_ f
R={ —— | +(=
|‘_~ et

then. * will be rewritten as

. 2 2 3 . . .
(O —Cme) +(Tpy ) =R (Equation of a circle)




center = (o, ..0)
points on the circle
(gx * _z.x} )

(c}'}, ) r_g,)

» At the stress orientation represented by the black line; if you rotate the
element ccw by 6, you will get the principal stresses.
= If you rotate cw by 64 you will get the maximum shear 2



O,
(,.+7,) " center = (o ,,.0)
| & points on the circle
Bl | ave A
O 20, 1 7 (0.-7,)
to
‘ 20-‘3 . ((‘71' ? r.n' )
\Ty . — T.\'.rfj L L
G: _
o —o,
2

« At the stress orientation represented by the black line; if

you rotate the element ccw by ©P you will get the
principal stresses.

 |If you rotate cw by OS you will get the maximum shear



Mohr’s Circle Tlew ‘_/'F _L_)

Gy = -2 ksi

% /\ X-axis
G, = 6 ksi (6 ksi, 3 ksi) /
& E 6
. | ;
Txy = 3 ksi /

3 /
e
- (-2 ksi, -3 ksi)
y-axis \'\/




Mohr’s Circle

G, = -2 ksi

|

‘ ‘GX:6kSi
T Tyy = 3 ksl

)

\ T (CW) /

(o

avg’

T

max)

x-face

(6 ksi, 3ksi)

(-2 ksi, -3ksi)

y-face

(o

avg’

T

nﬂn)




Mohr’s Circle

G, = -2 ksi

|

‘ ‘GX:6kSi
% Tyy = 3 ksi

)

G,

R=(3ksi)? +(4ksi)’
— 5 ks
R="1,, y-face

(2 ksi, -5 ksi)



Mohr’s Circle

G, = -2 ksi

|

‘ ‘GX:6kSi
R

20 = Tan? 318
4 ks
20 =36.869° ..
0 = 18.435°

(Gavg' Tmin)

(2 ksi, -5 ksi)



Principle Stress

62 — '3 kSl

(Gavg' Tmax)
| Tew) (2 ksi, 5 ksi)

x-face

(6 ksi, 3ksi)

Principle Stress G,
Element

Rotation on element is half of
the rotation from the circle in
same direction from x-axis

(Gavg' Tmin)
(2 ksi, -5 ksi)



Shear Stress

T (cw)

(2 ksi, 5 ksi)

x-face

(6 ksi, 3ksi)

| Cavg = 2 ksl
/\é(ﬂ ¢ = 26.565°
{ | ! >
Tax — O KSI
Cavg = 2 kS
@)
Maximum Shear Stress 2
Element
20 = 90° - 20
—_ O
20 =90-36.869° .7
20 = 53.130°

(

) = 26.565°

(2 ksi, -5 ksi)



Relationship Between Elements

0+ ¢=18.435°+26.565°=45°



Example: For the state of plane stress
shown, construct Mohr’s circle,

SOLUTION:

* Construction of Mohr’s circle

o, +T,, —
O aqve = . 7 Y — [50]+2[ 10}=201¥Ipﬂ

CF=50-20=30MPa FX =40MPa

R=CX =+(30)* +(40)* = 50MPa

10 MPa

41_‘ “) ,\“‘.l

L | | 50 MPa

0 / \

1 [ c C_F__|A oMp
B\ 0 ‘ f
\ - - '3

\ 20 R " ;;)

X

e 50

LS



r(MPa))

10 |-
 Principal planes and stresses I)—/—)r I e
Opax = OA=0C+CA=20+50 Ll C \(- ¥ l‘,""‘"""
Cmax = /0MPa ’ \ (- \| / )
Omax = OB =0C-BC=20-50 b 9 A \ '
Cmax = —30MPa l— 50—
\I.

\
l’ \ /”

tan2f, =—=—
P ocp 30
ng = 5310 wn.n = 70 MPa
5 7 5 \r = 30 MPa

Hp = 26.6° 2 4 |
- \ 0,
|

X



7

o Maximum shear stress

b; =, +45°
6, =71.6°

Tmax = R

Toax = 50 MPa

/ ll
/‘1

o' = 20 MPa

a'= 20 MPa

= 50O \"'d

/u

« 7O NMPa

('ullu 2 ‘ﬂ' \".'.

'
G =0ave

o' =20 MPa




EXAMPLE

State of plane stress at a pt is shown on the
element. Represent this state of stress on an
element oriented 30° counterclockwise from

position shown. ——

— - X MPa

\J
- 6 .\1!,;[

(al



EXAMPLE (SOLN)

Construction of circle

oy, =—38 MPa oy =12MPa Tyy =06 MPa

* Establish the o, Taxes 4
as shown.
Center of circle C
located on the L)
o-axis, at the pt:

Gavg — _8;_12 =2 MPa l TliMl"ll

o(MPa)

(h)
31



EXAMPLE (SOLN)

Construction of circle

* |nitial pt for &= 0° has coordmates A( 8, —6) are

olotted. Apply
Pythagoras theorem

to shaded triangle 6

to get circle’s %

radius CA,

R=1/(10) +(6)°
R =11.66 MPa

TIMPa)

(h)

c(MPa)



EXAMPLE 9.11 (SOLN)

Stresses on 30° element

* Since element is rotated 30° counterclockwise,
we must construct a radial line CP,_Z_(BOO) = 60°

counterclockwise, measure AR
from CA (6= 0°). e X
L | 12 8

. ¥ 20040 | |
* Coordinates of pt P (o, 7, e Sl il
must be obtained. From

| ]
| 'I - 3( £
| WA
)
L 6 =

o(MPa)

geometry of circle,
¢=tan = =30.96° IR
10

v =060°—-30.96° = 29.04° )

33



EXAMPLE 9.11 (SOLN)

Stresses on 30° element
oy =2—-11.66 c0s29.04° =-8.20 MPa

7,y =11.66 SIn29.04° =5.66 MPa
. %e two stress components act on

face BD of element shown, since ,
the x’ axis for this face if oriented 30° X
counterclockwise from the X-axis. |

* Stress components acting on adjacent face DE of
element, which is 60° clockwise from +X-axis, are
represented by the coordinates of pt Q on the circle.

* This pt lies on the radial line CQ, which is 180° from
CP.



EXAMPLE 9.11 (SOLN)

Stresses on 30° element

* The coordinates of pt Q are
o, =2+11.66 c0s29.04°=12.2 MPa

7y = —(11.66 5in29.04°) = -5.66 MPa (Check!)

* Note that here z... acts in
the —y’ direction.

35



Deflections in Beams



Beam Deflection

Recall: THE ENGINEERING BEAM THEORY
o M E

X __ XZ

y' I, p
Moment-Curvature Equation

v (Deflection) |

AE 0S EB

If deformation is small (i.e. slope is “flat”):

OS ~ OX



1 de

00 =5 = X o R
P o dx
ot
and o0 = ﬂ (slope is “flat”)
, OX
B
0> I&v (1 d¥
AT p &

Alternatively: from Newton’s Curvature Equation
v d2v
R 7
\/ | B dx
v =f(x) P N
> [14-(3\/) j I d 2V
X ~
X o dx®

| (dvj2
if | — | <<<k1
dx




From the Engineering Beam Theory:.

sz_E l_MXZ_dZV
) p ElI,  dx?
d?v
— (EIZ)dX2 :MXZ
Flexural t Bending
Stiffness Curvature Moment
|\/IXZA
Flexural
Stiffness 1 d?v

o dx



Since,

d?v
dx?
dv _
dx

|

1
el

]MXZ

1
[EZ]_[MXZ -dx + C,

<§@== cCurvature

<= Slope

= v:[glzJ”sz-dx-dx + _[Cl-dx + C,

\ Deflection

Where C, and C, are found using the boundary conditions.

-

Gurvature Slope Defiection A
R d_v N '&

adx mn

_J




Example: v = Deflection

L g P
[ y
VMax
X
| Deflected
X . Shape

P Quy M, =Px-PL

dx? Xz
dv X 2
= (BEl.,)— =P— —-PLXx+C
( Z)dX 2 1

x° PLx?
= (E|Z)V:P6— S +Cx+C,




3 2 P
_ (ElZ)VzF’X  PLx +Cx+C, [ﬁ
6 2

To find C, and C,:

Boundary conditions: (i) @ x=0 (C::—VzO
X
(i) @ x=0 v=0

~.C,=0 & C,=0

Emm) Equation of the deflected shape is:

3 2
(EIZ)V:PX _PLX
6 2
B v, occurs at x=L
1PL®

V
e 3 HE,



Y

Example: The cantilever beam AB o

of _Iength Lghoyvn in Fig. carries a | l l l l l l l l l l l i
uniformly distributed load of A === B
intensity wo , which includes the -7~ . )

weight of the beam. Derive the
equation of the elastic curve.




Solution _y|

Patrl

o ERRRRRRARRE
The dashed line in Fig. (a) o e B
represents the elastic curve of the !'; y .
beam. The bending moment acting @)

at the distance x from the left end
can be obtained from the free-body l-.—g—;.-

diagram in Fig. (b) (note that 7 and J | J l” l l J’)M

. . . P L
M are shown acting 1 their positive 4]

directions):

) x Wx~ Vv

M=-wx—=-— (b)
2 2

Substituting the expression for M mto the differential equation
Elv "= M, 2

: " W, X

Elv =— “j

B _




Successive integrations yield

4

3 ¥
Elv =— ""'? rc| (@ @ |Elv=- "";z +Cx+C, (D)

The constants C ;and C,are obtained from the boundary
conditions at the built-in end B, which are :

1. » 7| _;, =0 (support prevent rotation at B) . Substituting
» > =0and x = L into Eq. (a), . woI?
=

2. v | —; — 0 (support prevent deflection at B) . With» =0 and
x = L. Eq.(b) becomes

4

14 3 . _1-1«’0,[,

Ozwﬂl +{w{}£ }£+C.;_, = -
6

24



If we substitute ' ;and C, mto Eq. (b), the equation of the
elastic curve 1s

Elv — 11'{].\’4 N 11'0,-[3 . 11‘0}_24
24 6 8

Answer

Elv = %(— v +40x—31%)




2.4.2 Macaulay’s Notation  _ | P

Example:

L




= (B, =Pbg (x*)-Pglx-a))+c,x)+C,

Boundary conditions: (i) @ x=0 v=0
(i) @ x=L v=0
From (i): C,=0
From (i) 0=PbL (°)-P4(lL-af)+c (L)
- Cl= P%L (b2 — L2) Since (L-a)=b

‘ Equation of the deflected shape is:

P/6 x a> %Lb2 LZXx]




To find vy, dv
Vya OCCUrs where — =0 (i.e. slope=0)

e (EIZ)(O):P%[X{)—P/Z«X—a)2>+P%L(b2—LZ)

Assuming vy, will be at x<a, I.e. <(X —a)2> =0

g d—V:O when Xzz—%(bz—Lz) :%(Lz—bz)

This value of x is then substituted into the above equation of the
deflected shape in order to obtain v,,,,.

Note: L
if a=b=—

PL®




Summary

After considering stress caused by bending, we have now looked at the
deflections generated. Keep in mind the relationships between
Curvature, Slope, and Deflection, and understand what they are:

2
e Curvature { R _ 4 M zl}

dx?* E, “* R

* Slope av
dx

* Deflection




