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Introduction
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 Mechanics is the science which describes and predicts the 

conditions of rest or motion of bodies under the action of 

forces.

 Mechanics is the foundation of most engineering sciences 

and is an indispensable prerequisite to their study.

What is Mechanics?
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 Kinetic Units:  length, time, mass, and force.

 International System of Units (SI):

The basic units are length, time, and mass which are 

arbitrarily defined as the meter (m), second (s), and 

kilogram (kg).  Force is the derived unit,

g= 9.81m/sec²

Units Of Measurements

  











2s

m
1kg1N1

maF
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 U.S. Customary Units:

The basic units are length, time, and force which are 

arbitrarily defined as the foot (ft), second (s),  and 

pound (lb).  Mass is the derived unit,



g= 32.2 ft/sec²

2sft1

lb1
slug1 


a

F
m
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 Conversion units

 1 ft = 0.308 m

 1 lb= 4.44 N

 1slug= 14.6 Kg
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FORCE VECTOR

Chapter two
7
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Scalar and Vectors

Scalar: is a quantity which has magnitude only.

Examples of scalars: distance, energy, volume, mass 

and temperature. .

Vectors :are quantities which are fully described by 

both a magnitude and a direction. Vectors are physical 

quantities.

Examples of vectors are displacement, velocity, 

acceleration, force and electric field
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Vector notation:

A widely used convention is to denote a vector quantity in 

bold type, such as A ،and that is the convention that will 

be used. The magnitude of a vector A is written as |A|
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• Equal vectors  have the same magnitude and 

direction.

Negative vector of a given vector has the same 

magnitude and the opposite direction.
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Introduction: Force Effects

 Force exerted on a body has two effects:

 The external effect, which is tendency to change the 

motion of the body or to develop resisting forces in the body

Applied forces

Reactive forces

 The internal effect, which is the tendency to deform the 

body

Depends on material strength, elasticity

Out of scope of class
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 Force Classification:

 Contact Force: Produced by direct physical contact

 Force exerted on a body by a supporting surface

 Two types:

 Body Force: Generated by virtue of position

 Weight due to gravitational field

 Magnetic force due to magnetic field

Characteristics of Forces

ConcentratedDistributed



13

Characteristics of Forces

 Concurrent Forces:

 A concurrent force system contains forces whose lines 

of action intersect at a point.

 Examples:

 Tension:

 Compression:
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Vector Components

 It is often useful to replace a force by its vector 

components

 Rectangular Components for 2D Force Systems:

 Most common resolution of a force vector (using x- and y-

Cartesian coordinates)

 F=Fx+Fy

 Fx, Fy are vector components of

F in the x- and y- directions

 Fx = Fx i, Fy = Fyj or F = Fx i + Fyj

 Fx = F cos , Fy = F sin ,

x

y

yx
F

F
FFF 122

tan,  



Vigmostad Lecture 2: 2D Force Systems 8/27/2008

Unit vector Representation of a Vector

UA is dimensionless. It serves only to indicate direction 
and sense.

Direction of A can be specified using a unit

vector

- Unit vector has a magnitude of 1

- If A is a vector having a magnitude of A ≠ 0,

unit vector having the same direction as A is
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Resultant Vectors

 We can replace multiple forces with a single 

resultant force

 This single resultant has the same effect as the original group 

of forces

 Multiple ways to compute resultant

 Parallelogram law

 Vector addition
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Vector Addition

Assume we have three forces, F1, F2, F3 

Express each force as a Cartesian Vector

F1 = F1xi + F1yj

F2 = -F2xi + F2yj

F3 = F3xi - F3yj

Vector resultant

FR = F1 + F2 + F3 = (FRxi + FRyj)
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Vector Addition

Assume we have three forces, F1, F2, F3 

1. Express each force as a Cartesian Vector
 F1 = F1xi + F1yj

 F2 = -F2xi + F2yj

 F3 = F3xi - F3yj

2. Vector resultant
 FR = F1 + F2 + F3 = (FRxi + FRyj)

Or, using scalar notation:
 FRx = F1x -F2x+ F3x

 FRy =F1y+ F2y- F3y

 Where:

→FRx = Fx

→FRy = Fy

2

Ry

2

RxR
FF = F 

Rx

Ry1

F

F
tan 
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Example 3

Problem 2/7: The two structural members, one of which is in 

tension and the other in compression, exert the indicated 

forces on joint O. Determine the magnitude of the resultant R 

of the two forces and the angle  which R makes with the 

positive x-axis.
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Problem 2/12: A force F of magnitude 800 lb is applied to 

point C of the bar AB as shown. Determine both the x-y and 

n-t components of F.



Force vector in 3D
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Rectangular Components of 3D Forces

 3D Force Vector – Vector defining a Force in more than 
one Cartesian Plane defined by its location and rectangular 
components

 Rectangular Components - Components that fall along the 
Cartesian coordinate system axes

 Coordinate Angles (α,β,γ)– The angle a vector makes with 
the individual axes of the Cartesian Coordinate System
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Coordinate Angles 

Note, book uses a, b, g:

a
b g
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Coordinate Angles

 The values of the three angles are not independent, they 

are related by the identity:

cos2(α) + cos2(β) + cos2(γ) = 1

24
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Resolving a 3D Force Vector into its 

Rectangular Components

 Given the magnitude of a force vector (F) and its 

Coordinate angles (α,β,γ):

Fx = Fcos(α)

Fy = Fcos(β)

Fz = Fcos(γ)

25
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Resultant of a 3D Force Vector from its 

Rectangular Components 

 If given the components of a 3D force (Fx, Fy, Fz), the force can be 

determined by:

 Magnitude (F) = √(Fx
2+Fy

2+Fz
2) 

 The Coordinate Angles of the Force Vector can be found by

 cos(α) = Fx/F

 cos(β) = FY/F

 cos(γ) = Fz/F

26





Eg. Determine the magnitude and directional 

cosines of the vector
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Rectangular Components in Space
2 -
29

• The vector          is 
contained in the plane 
OBAC.

F


• Resolve       into 
horizontal and vertical 
components.

yh FF sin

F


yy FF cos

• Resolve         into 
rectangular components

hF









sinsin

sin

cossin

cos

y

hy

y

hx

F

FF

F

FF











ADDITION OF CARTESIAN VECTORS

For example, if

A  =   AX  i  +  AY j +  AZ k and

B =   BX  i  +  BY j + BZ k ,     then

A +  B =  (AX + BX) i +  (AY + BY) j +  (AZ + BZ) k

or

A – B =  (AX - BX) i +  (AY - BY) j +  (AZ - BZ) k .

Once individual vectors are written in Cartesian form, it is easy 
to add or subtract them.  The process is essentially the same as 
when 2-D vectors are added.











Determine the resultant force acting on the hook.
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Force Magnitude and Two Points on its Line of 

Action

 Given two points in Space 

(A) with coordinates (Xa, Ya, and Za) 

(B) with coordinates (Xb, Yb, and Zb)

 With a Force Vector (F) acting at point (A) in the direction 

of (B) 
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Force Magnitude and Two Points on its 

Line of Action

 Calculate the total 

displacement in 

rectangular components of 

Point (B) with respect to 

Point (A)

dx = Xb-Xa

dy = Yb-Ya

dz = Zb-Za

 Total Displacement  

 (d) = √(dx
2+dy

2+dz
2) 
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Unit vector Representation of a Vector

UA is dimensionless. It serves only to indicate direction 
and sense.

Direction of A can be specified using a unit

vector

- Unit vector has a magnitude of 1

- If A is a vector having a magnitude of A ≠ 0,

unit vector having the same direction as A is
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Force Magnitude and Two Points on its Line of 

Action

• Rectangular Components of the Force vector can then be 

found by:

Fx = F(dx/d)

Fy = F(dy/d)

Fz = F(dz/d)

• Note: Direction Angles can be found using Rectangular 

Components of Force or Rectangular Displacements. 



POSITION VECTOR

Consider two points, A and B, in 3-D space. 

Let their coordinates be (XA, YA, ZA)   and  

(XB, YB, ZB ),  respectively.

A position vector  is 

defined as a fixed 

vector that locates a 

point in space relative 

to another point.



POSITION VECTOR

The position vector directed from A to B, r AB , is defined as

r AB =  {( XB – XA  ) i +  ( YB – YA ) j +   ( ZB – ZA ) k }m

Please note that B is the ending point and A is the starting point. 

ALWAYS subtract the “tail” coordinates from the “tip” 

coordinates!



Optional Way for 3D forces when a FORCE VECTOR DIRECTED ALONG A LINE 
(Section 2.8) using position and unit vectors:

a) Find the position vector, rAB , along two points 

on that line.

b) Find the unit vector describing the line’s 

direction, uAB = (rAB/IrAB I).   

c) Multiply the unit vector by the magnitude of 

the force,  F =  F uAB .

If a force is directed along a 

line, then we can represent 

the force vector in Cartesian 

coordinates by using a unit 

vector and the force’s 

magnitude.  So we need to:





EXAMPLE

Plan:

1.   Find the position vector rAC and the unit vector uAC.

2.   Obtain the force vector as FAC = 420 N uAC .

Given:  The 420 N force 
along the cable AC.

Find:   The force FAC in the 
Cartesian vector 
form.



EXAMPLE (continued)

(We can also find rAC by subtracting the 
coordinates of A from the coordinates of C.)

rAC   =  (22 + 32 + 62)1/2 = 7 m

Now uAC = rAC/rAC and  FAC = 420 uAC N = 420 (rAC/rAC ) 

So  FAC = 420{ (2 i + 3 j  6 k) / 7 } N

= {120 i  + 180 j - 360 k } N 

As per the figure, when relating A to C, we will 
have to go 2 m in the x-direction, 3 m in the y-
direction, and  -6 m in the z-direction.  Hence,

rAC =  {2 i + 3 j  6 k} m.



Example:

Plan:

1)  Find the forces along CA and CB in the Cartesian vector form.

2)  Add the two forces to get the resultant force, FR.

3)  Determine the magnitude and the coordinate angles of FR.

Given: Two forces are acting on  

a pipe as shown in the 

figure.

Find:     The magnitude and the 

coordinate  direction 

angles of the resultant 

force.



(continued)

FCB =  81 lb (rCB/rCB)

FCB =  81 lb (4 i – 7 j – 4 k)/9

FCB =  {36 i – 63 j – 36 k} lb

FCA = 100 lb (rCA/rCA)

FCA = 100 lb (–3 sin 40° i + 3 cos 40° j – 4 k)/5

FCA = (– 38.57 i + 45.96 j – 80 k) lb



(continued)

FR = FCA + FCB

= {– 2.57 i – 17.04 j – 116 k} lb

FR =  (2.572  + 17.042 + 1162)  

= 117.3 lb = 117 lb

a = cos-1(–2.57/117.3)  = 91.3°

b = cos-1(–17.04/117.3) = 98.4°

g = cos-1(–116/117.3)  =  172°



Example :the tower is held in place by three cables if the force of each 

cable acting on the tower as shown .determine the magnitude and 

coordinate  angles of the resultant force

20 m15 m

F



Introduction: Moments

The moment of a force about 

a point or an axis provides 

a measure of the tendency 

of the force to cause a body 

to rotate about the point or 

axis.



Introduction: Moments

 Moment: the measure of a force’s ability to cause 

rotation

 Depends upon:

Magnitude of force

Direction of force

Rotational point

Location of applied force F1
F2

F3

F4

Bolt



d

2



Introduction: Moments

 In mathematical terms, the 

magnitude of the moment is 

given by :

Where 

 F: is the force component that cause 

rotation, (its usually the normal 

component to the moment arm).

 d: is the distance between force and 

rotation point (or the moment arm.

 THUS, for F3

M=Fd

M=(F3sin)d



Moment about a point

 Moment is a vector

 Magnitude of moment is proportional to force applied (F) and 

perpendicular distance (moment arm, d)

M=Fd (measured in N·m or lb·ft)

 Direction is always perpendicular to the plane of the body –

describes the direction of rotation

 In x-y plane, direction will always be either + or – z-direction, 

typically described as clockwise (CW) or counter-clockwise (CCW) 

rotation

4



Moment about a point

 Right-hand rule

 In 2-D, the direction of MO is

either clockwise or counter-

clockwise depending on the 

tendency for rotation.

 Your thumb points along the 

moment axis

 Your fingers curl in the direction

of the rotational tendency

 Typical sign convention: CCW is

positive, CW is negative

5
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REMEMBER:

7

ABBA 



Moment about a point

 Which direction will this force (F) 
tend to rotate the beam about point 
O?

 Often, it is easier to analyze by 
breaking the force up into its 
components (d may be difficult or 
time-consuming to find)

 Now: MO = (FY a) – (FX b)
 Note the sign convention

F
a

b

d

O

Counter-clockwise

a

b

O

F

F x

F y

8



Moment about a point

 This process is also useful when examining the 
component of force contributing to rotation

 What component of the force, F will cause rotation 
about O?

 Solution – split up into x- and y- components and 
treat separately. Does Fx contributed to rotation? 
Does Fy? 

aO

F

F x

F y

aO

F



sinFaM 

9



Computing Moments Using a Cross Product

 Vector approach to computing moment

 F – the force contributing to rotation

 r – position vector which the point of rotation (A) with any point 

on line of action of the Force vector, F.

FrM 

11



Computing Moments Using a Cross Product

 Recall: Cross product calculation

 Note - rFFrM 

     kji

kji

FrM

kjiFkjir

xyyxzxxzyzzy

zyx

zyx

zyxzyx

FrFrFrFrFrFr

FFF

rrr

FFFrrr





 and

12
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 
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Varignon’s Theorem

The moment of a force about any point is equal to the 

sum of the moments of the components of the force 

about the same point.

oSimilar to a resultant force having the same net 

effect as the original forces, a similar resultant can 

be obtained from the addition of moments.

n21 FFFR  

n1o FrFrRrM  

nnR dFdFRd  11oM

Force:

Moment:

~OR~

16



Varignon’s Theorem

 In this case:

QrPrRrMo 
17



A few notes about moments

 Be consistent! Make sure you always write down 

your sign convention.

 Don’t forget you can always move

a force vector through its line of 

action. This can be useful for 

simplifying your distance measurements.

 There are multiple ways to solve for the magnitude 

and direction of a moment. Be familiar with all 

approaches, as one may be better for a particular 

problem.

18



19

Force-Couple Systems

 When a number of forces and couple moments are 

acting on a body, it may be easier to understand their 

overall effect if they are combined into a single force and 

couple moment having the same external effect

 The two force and couple systems are called equivalent systems

since they have the same external effect on the body

 To ensure the two systems are equivalent, must pay 

attention to forces and their effects 

 If you move a force from one point to another, you must consider any 

moments the force was inducing
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Moving a Force

 Along the same line of action:

 Off the line of action
(recall the principle of transmissibility)

This requires creating an additional couple moment to account for original effect.

The moment is a free vector, so can be applied at any point P in the body
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Equivalent Force-Couple Systems

 To find an equivalent force-couple system at Point B

to that shown in (I):
1. Compute the moment at B resulting from force F

2. Move the force to the point B

3. Include a moment equal to that computed in (1)

(I) (II) (III)



Example 1

Problem 2/30: Determine 

the moment of the 200-lb 

force about point A and 

about point O.

22



Example 2

Problem 2/37: A mechanic pulls on the 13-mm combination 

wrench with the 140-N force shown. Determine the moment 

of this force about the bolt center, O.

23



Example 3

Problem 2/44: The uniform work platform, which has a mass 

per unit length of 28 kg/m, is simply supported by cross rods 

A and B. The 90-kg construction worker starts from point B

and walks to the right. At what location s will the combined 

moment of the weights of the man and platform about point B

be zero?

24
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Example:

If the resultant moment about point A is 4800 N · m clockwise, determine the 

magnitude of F3 if F1 = 300 N and F2 = 400 N.
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Example :

Three forces and a 

couple act on crank 

ABC.

For P = 35 N and α = 

40°

Determine the 

equivalent system 

consisting of the force 

resultant, FR, and the 

resultant moment, MR, 

about point B. 
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Example 3

Problem 2/67: Reduce the 

given loading system to a 

force Couple system at 

point A . Then determine 

the distance X to the right 

of point A at which the 

resultant of three forces 

acts.
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Example : Determine the moment produced by F1 about 

point O. Express the result as a Cartesian vector
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Example: The pipe assembly is subjected to the 80-N force. 

Determine the moment of this force about point A.
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Conditions for Rigid Body Equilibrium

For a rigid body to be in 

equilibrium:

1- The net force must be zero.

2- The net moment about any 

arbitrary point O must be equal to 

zero.

OR

 F =  0   and    MO = 0
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Applying Equilibrium Conditions

 Necessary and sufficient conditions for 

equilibrium of a rigid body

 Equilibrium in Two-Dimensions with (x-y) 

coordinates:

 0=M   ;0=F O







 0

0

0

O

Y

X

M

=F

=F
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Solving Rigid Body Equilibrium Problems








0

0

M

F

Solve for unknowns using 

the equilibrium conditions



Free body diagram

 Free body diagram: a schematic that shows 

all external forces and moments acting on 

this body

http://en.wikipedia.org/wiki/Force


5

Recall: Solving Rigid Body Equilibrium Problems

 To analyze a physical system, first we need to create an idealized 
model.

 Next, we need to draw a free-body diagram showing all the external 
(applied and reactive) forces.

 Finally, we need to apply the equations of equilibrium to solve for any 
unknowns.
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Free Body Diagrams

 Weight and the Center of Gravity
 If the weight of the body is important to the analysis, it will be 

reported in the problem statement

 The weight of a body is an external force, and its effect is shown as a 
single resultant force acting through the body’s  center of gravity

 Supports/Reaction Forces
 Any item you “remove” when drawing FBDs (i.e. the wall or support 

joint) must be replaced by appropriate representative forces and 
moments (if necessary) which describe the effect of those objects

 As a general rule, if a support prevents translation of a body in a given 
direction, then a force is developed on the body in the opposite 
direction.  Similarly, if rotation is prevented, a couple moment is exerted 
on the body.

 Common support reactions should be fully understood. These will be 
covered next lecture.

If the FBD is drawn correctly then solving the problem is trivial.
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Free Body Diagrams

 Helpful tips:

 Draw the forces exerted on the body to by isolated by the 

bodies to be removed

 When smooth surfaces of two bodies are in contact, the force 

exerted by one body on the other is normal to the tangent to 

the surfaces and is compressive

 When rough surfaces are in contact, in addition to a normal

force, a frictional force, acting tangent to the surface an 

opposing motion, is also present



Support reactions

general rule:

if a support prevents translation of a body in 

a given direction, then a force is developed

on the body in the opposite direction.  

Similarly, if rotation is prevented, a couple 

moment is exerted on the body.
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Common Support Reactions

Figure 3/1,

Page 111-112
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Common Support Reactions

Figure 3/1,

Page 111-112



11

Common Support Reactions

Figure 3/1,

Page 111-112
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Common Support Reactions

Figure 3/1,

Page 111-112
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Two smooth pipes, each having a mass of 300 kg, are 

supported by the tines of the tractor fork attachment. 

How can we determine all the reactive forces ?

Again, how can we make use of an idealized model and a 

free body diagram to answer this question?
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Idealized model Free-body diagram

All known forces and couple moments should be labeled with 

their magnitudes and directions.  For the unknown forces and 

couple moments, use letters like Ax, Ay, MA, etc.

Free Body Diagrams
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Summary

 No equilibrium problem should be solved without first drawing a FBD, 
so as to account for all  the forces and couple moments that act on the 
body

 Internal forces are never shown on the FBD (i.e., they act in equal but 
opposite collinear pairs and therefore cancel one another out.)

 If a support prevents translation in a particular direction, then the 
support exerts a force on the  body in that direction

 If rotation is prevented, then the support exerts a couple moment on 
the body.

 The weight of a body is an external force, and its effect is shown as a 
single resultant force acting through the body’s  center of gravity

 Couple moments can be placed anywhere on the FBD since they are 
free vectors.  Forces can act at any point along their lines of action 
since they are sliding vectors.
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Example 1

Draw the free-

body diagram 

of the cart.



17

In Class Activity #2

Draw the free-

body diagram 

of the bar AB.
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Statical Determinancy

 In 2D there are 3 equations of equilibrium

 A system with 3 or fewer unknowns can be solved 

using these equations.  Such systems are called 

statically determinate systems.

 A system with more than 3 unknowns cannot be 

solved using equations of equilibrium alone.  Such 

systems are called statically indeterminate

systems.



19

In Class Activity #1

The beam and the cable (with a frictionless 

pulley at D) support an 80 kg load at C.  In a 

FBD of only the beam, there are how many 

unknowns?

A)  2 forces and 1 couple moment

B)  3 forces and 1 couple moment

C)  3 forces

D)  4 forces
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Understanding Equilibrium Problems

1. If we have more unknowns than the number of independent 
equations, then we have a statically indeterminate situation. We 
cannot solve these problems using just statics.

2. The order in which we apply equations may affect the simplicity of 
the solution.  For example, if we have two unknown vertical forces 
and one unknown horizontal force, then solving  FX =  0 first 
allows us to find the horizontal unknown quickly. 

3. If the answer for an unknown comes out as a negative number, 
then the sense (direction) of the unknown force is opposite to that 
assumed when starting the problem.

4. Apply the moment equation of equilibrium (∑MO = 0) about a point 
O that lies at the intersection of the lines of action of two unknown 
forces.  In this way, the moments of these unknowns are zero 
about O, and a direct solution for the third unknown can be 
determined.  
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Two Force Members

FAx

FAy

FBx

FBy

B

A

For Equilibrium:

FAx = -FBx and FAy = -FBy

Which implies:

FA = -FB

These two forces:

•Act through the same line of action

•Are equal and opposite

FA

FB
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Two-Force Members

Two- Force Members

Member subjected to no couple moments with 
forces applied at only two points.

• For static equilibrium, the sum of the 
moments about A must be zero.  The 
moment of FB must be zero.  It follows that 
the line of action of FB must pass through A.

• Similarly, the line of action of FA must pass 
through B for the sum of moments about B
to be zero.

Only the force magnitude must be determined
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Two-Force Members

 More Examples:

 Note: magnitude of two forces must be equal, direction 

opposite
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Example 1

Problem 3/12: The device 

shown is designed to aid in 

the removal of  pull-tab tops 

from cans. If the user exerts 

a 40-N force at A, determine 

the tension T in the portion 

BC of the pull tab.
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Example 2

Problem 3/17: The uniform beam has a mass of 50-kg per 

meter of length. Compute the reactions at the support O. The 

force loads shown lie in a vertical plane.
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Example 1

Problem 3/1: Determine the 

force P required to maintain 

the 200-kg engine in the 

position for which  = 30. 

The diameter of the pulley at 

B is negligible.
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Example: Determine the stretch in each spring for equilibrium 

of the 2-kg block. The springs are shown in the equilibrium 

position
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A note about your HW

Problem 3/8: The 20-

kg homogeneous 

smooth sphere rests 

on the two inclines 

as shown. Determine 

the contact forces at 

A and B.
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Example 3

Problem 3/9: A 120-lb crate 

rests on the 60-lb pickup 

tailgate. Calculate the tension 

T in each of the two 

restraining cables, one of 

which is shown. The centers 

of gravity are at G1 and G2. 

The crate is located midway 

between the two cables.
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Example: Determine the tension developed in 

cables AB , AC, and AD required of the 300-Ib 

crate.
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Composite Sections: Concept

 In many situations a surface area of a body is 

subjected to a distributed load.  Such forces are 

caused by winds, fluids, or the weight of items on 

the body’s surface.

In such cases, w is a function 

of x and has units of force per 

length.

This is a load (w) along one 

axis of a flat rectangular body.

Our goal is to determine the 

equivalent resultant load and 

its location
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Finding the Magnitude of the Resultant Force

Consider an element of length dx

 The force magnitude dR acting on 

it is given as dR  =  w(x) dx

 The net force on the beam is then 

given by:


L

dxxw )(R

Note:

We are computing the area under the loading curve
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Finding the location of the resultant

 To determine the location that the equivalent 

resultant force should be applied, compute the 

centroid of the curve:

Note: you only need the 

x-centroid for this geometry

R

xwdx

x L



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Finding the location of the resultant

Why do we use the centroid?

 Once again, examine the differential 
region
 The force dR will produce a moment of 

(x*dR) about a point, O

 The total moment about O will be

 Similarly, an equivalent resultant force R
should produce a moment acting from xR

as 

 Equating these two, we get:

RxM RO 

R

xwdx

xxorxwdxRx L
R

L

R


 

 
LL

O xwdxxdRM
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Do we always need integration?

 Summary:

 When we have a distributed load, we need to 

find the area under the load curve to get the 

equivalent resultant force, R.

 Similarly, we must compute the centroid to 

determine the location of the force

 And when we have distributed loads 

with known geometries?

 Compute area, centroid location using known 

equations
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Example 1

Problem 5/95: Calculate the supporting force RA and

moment MA at A for the loaded cantilever beam.
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Example 3

Problem 5/103: Determine the reactions at the

supports of the beam which is loaded as shown.
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Replace the force system acting on the beam by an equivalent force 

and specify its location from point A.



STRUCTURES

TRUSS 

Chapter 4
1
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Simple Trusses 

structure composed of straight, slender members joined at their 

endpoints

•joint connection can consist of pin through the ends of the 

members

•ends of members can bolted or welded to a gusset plate
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Members of a truss are slender and not capable of 

supporting large lateral loads.  Loads must be applied at 

the joints.
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Trusses: Introduction

 Trusses are structures 
composed entirely of two 
force members .  They 
consists generally of 
triangular sub-element and 
are constructed and 
supported so as to prevent 
any motion.

 Trusses are used in a 
variety of structures, 
including cranes, frames of 
aircraft or space stations, 
bridges, roofs
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Trusses: Introduction

 Objective: Examine internal forces in each member

 Determining load on each internal member of a truss helps in 

design and optimization of truss



7

Modeling trusses

 Assumptions when using trusses

1. Truss members are connected together only at 

their ends

2. Truss are connected together by frictionless pins

3. The truss structure is loaded only at the joints

4. The weights of the members may be neglected

(weight of members significantly lower than 

applied weight and support forces)

 Each member acts as a two-force member, and 

thus the forces at the ends of the member must 

be directed along the axis of the member:

 Tension

 Compression

Elongation:

Tensile force (T)

Shortening:

Compressive force (C)
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Simple Truss

 A  simple truss is a planar truss which 
begins with a triangular element and can 
be expanded by adding two members and 
a joint. For these trusses, the number of 
members (M) and the number of joints (J) 
are related by the equation
M  =   2 J    – 3.

 Triangular-based frames are considered 
rigid while 4+ bars pinned to construct a 
frame is considered collapsible.

 If more members are present than are 
necessary, additional members are 
considered redundant.
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Statical Determinancy

 External Redundancy: occurs if a truss has more 

external supports than are necessary to ensure a 

stable equilibrium condition

 Internal Redundancy: truss has more internal 

members than are necessary to prevent collapse

 Determined by the conditions

 If m< 2j-3, then the truss is unstable and will collapse under load

 If m> 2j-3, then the truss has  more unknowns than equations and 

is an indeterminate structure.

 If m= 2j-3, then a simple plane truss is rigid and solvable – this 

condition is not sufficient for a non-simple truss
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Truss Analysis

Method of Joints

1. Find the external reactions (may or may not 
be necessary)

2. Begin at a joint that has two or fewer 
unknowns and at least one known, and step 
through the truss, joint by joint

3. Draw a FBD at each joint and solve force 
Eqbm. Eqns. Only (no moment equations) 
SFx=0 and SFy=0

4. Record the force and its character (C: 
compression or T: tension) for each 
member

5. The final joint may not always yield new 
info but can serve as an equilibrium check
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Method of Joints
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 Zero-force members support no loading

 increase the stability of the truss during construction

 provide support if the applied loading is changed.

 can generally be determined by inspection of each of the joints

 Examples:

 If a joint has only two non-collinear members and there is no external load or 

support reaction at that joint, then those two members are zero-force 

members.

 If three members form a truss joint for which two of the members are 

collinear and there is no external load or reaction at that joint, then the third 

non-collinear member is a zero force member.

Special Case: Zero Force Members
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Special Case: Zero Force Members

Examples:
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Examples

 Determine all zero members in the following 

structures
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Correct Characterization?

Characterization – sense of force (i.e. tension vs. compression)

Two approaches – choose your own adventure:

1. Always assume the unknown member forces acting on the joint’s FBD 
to be in tension (ie “pulling” on the pin).  

Numerical Solutions yields:
 positive scalars for member in tension (T)

 negative scalars for members in compression (C)

2. Determined by “inspection”

Numerical Solutions yields:
 positive scalar indicates that the sense is correct

 negative scalar indicates that the sense shown on the FBD must be 
reversed.  
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In Class Activity

Determine the number of zero force members in the truss

F F

F
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Example 2

Problem 4/17: Determine the forces

in members AF, BE, BF, and CE of

the loaded truss.
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Application

 Long trusses are often used to construct bridges

 The method of joints requires many joints to be 

analyzed before we can determine the forces in 

the middle part of the truss

 Method of sections is used instead of that.

a

a
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Method of Sections

 The method of joints is most effective when the forces 
in all the members of a truss are to be determined.

 However, if the force in only a few members are needed, then the 
method of sections is more efficient.   

 In the Method of Sections, a truss is divided into two 
parts by making an imaginary “cut / section” (shown 
here as a-a) through the truss.

a

a
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Method of Sections

Procedure for Analysis

1. In general, find the external reactions first (not always necessary)

2. If possible, pass a section through the desired member and up to two other 
members, isolating a portion of the truss (maximum cut through three 
unknown members)

3. Apply 2-D rigid body equilibrium conditions on isolated region (you can 
employ SFx=0, SFy=0, SM=0)

4. Apply the Moment equation (about any point)

SMo=0
5. Solve for unknowns

Note: Method of Joints and Sections may be used in combination
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Correct Characterization? 

As with Method of Joints, two options

 Always assume the unknown member forces acting on the 
joint’s FBD to be in tension (ie “pulling” on the pin).  

Numerical Solutions yields:

 positive scalars for member in tension (T)

 negative scalars for members in compression (C)

 Determined by “inspection”

Numerical Solutions yields:

 positive scalar indicates that the sense is correct

 negative scalar indicates that the sense shown on the FBD must 
be reversed.  
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In Class Activity

1. In the method of sections, generally a “cut” passes through no more 

than _____ members in which the forces are unknown.

A)  1                        B)  2

C)  3                         D)  4

Can you determine the force in member ED by 

making the cut at section a-a? Explain your 

answer.

A) No, there  are 4 unknowns.

B) Yes, using S MD =  0 .

C) Yes, using S ME =  0 .

D) Yes, using S MB =  0 .

2.



Example 

Determine the force in members GE, GC, and BC of the 

truss. Indicate whether the members are in tension or 

compression



Solution

Choose section a-a since it cuts through the three members

Draw FBD of the entire truss

NANNAF

NDmDmNmNM

NAANF

yyy

yyA

xxx

30009001200        ;0

9000)12()3(400)8(1200        ;0

4000400       ;0









Draw FBD for the section portion

)(5000
5

3
300      ;0

)(8000)3()8(300      ;0

)(8000)3()3(400)4(300      ;0

TNFFNF

CNFmFmNM

TNFmFmNmNM

GCGCy

GEGEC

BCBCG






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Example 1

Problem 4/34: Calculate the forces in member BE of the

loaded truss.
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Example 2

Problem 4/41: Determine the forces in members CD, CJ,

and DJ.



FRAMES AND 

MACHINES

Engineering Mechanics
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Overview

 Goals:

 Draw the free body diagram of a frame or machine and its 

members 

 Determine the forces acting at the joints and supports of a 

frame or machine

 Overview

 Definition of Frames & Machines

 Force Representation and Free Body Diagrams



FRAMES AND MACHINES: DEFINITIONS

Frames and machines are two common types of structures that 

have at least one multi-force member. 

Multi force members: Members on which three or more forces 

acting on it
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Application

 Frames :Structures which are 

designed to support applied loads 

and are fixed in position

 Frame are commonly used to 

support various external loads

 Machines Structure which contain 

moving parts and are designed to 

transmit input force

 Machine are used in a variety of 

applications

Frame

Machine
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Frames and Machines

 Frames and machines are two common structures often 

composed of pin-connected multi-force members (ie, 

members that are subjected to ≥ 2 forces)

Frames: stationary -- support loads

Machines: contain moving parts -- designed to 

transmit and alter the effect of forces.
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Approach to Analyze a Frame or Machine

1. In general, find the external reactions first 

2. Dismember the frame/machine into individual 

members. Draw the  FBD of each member, as 

necessary.

3. Apply the equations of equilibrium to solve for 

the unknowns. Number of unknowns must equal 

number of equations.

These problems can be challenging at first – many unknowns make 

it difficult to know where to begin!

Hint: Always start with what you know – this often means starting 

where an external load is applied.
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Approach to Analyze a Frame or Machine

Hints:

a) Identify any two-force members

b) Forces on contacting surfaces 

(usually between a pin and a 

member) are equal and 

opposite

c) For a joint with more than two 

members or an external force, it 

is advisable to draw a FBD of 

the joint

d) Take advantage of symmetry 

where applicable



Example:
For the frame, draw the free-body diagram of (a) each member, (b) 

the pin at B and (c) the two members connected together. 



Part (a)

BA and BC are not two-force 

AB is subjected to the resultant forces from the pins

Solution



Part (b)

Pin at B is subjected to two forces, force of the member BC and 

AB on the pin

For equilibrium, forces and respective components must be equal 

but opposite

Bx and By shown equal and opposite on members AB



Part (c)

Bx and By are not shown as they form equal but opposite internal 

forces 

Unknown force at A and C must act in the same sense

Couple moment M is used to find reactions at A and C 
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In Class Activity #2

 Draw the necessary FBDs to solve for the forces at 

each joint in this problem. (Note – you need not 

solve the problem)
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In Class Activity #2
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Example 2

Problem 4/78: Determine the moment M which must be

applied at A to keep the frame in static equilibrium in the

position shown. Also calculate the magnitude of the pin

reaction at A.
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Example 3

Problem 4/74: Given the 

values of the load L and 

dimension R, for what 

value of the couple M 

will the force in the link 

CH be zero?
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Example 1

Problem 4/87: A small bolt cutter operated by hand for cutting

small bolts and rods is shown in the sketch. For a hand grip P

= 150 N, determine the force Q developed by each jaw on the

rod to be cut.
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Example 2

Problem 4/90: When the crank AB is vertical, the beam CD is

horizontal and the cable makes a 20 angle with the

horizontal. Compute the moment M required for equilibrium of

the frame.



Example: Find the 

reaction at pin A and B

If (A and C is pin

And B is internal hinge



SHEAR AND MOMENT 

DIAGRAM

Internal force



Beams – Types

A beam can be classified as 

statically indeterminate beam, 

which can not be solved with 

equilibrium equations. It

requires a compatibility condition. 

A

A combination beam can be either 

statically

determinate or indeterminate. These 

two beams are statically determinate, 

because the hinge provides another

location, where the moment is equal to 

zero.



Internal Loadings in Structural Members 

In this chapter, we will determine the normal force, shear, and moment at 

a point in a structural component. 

A Shear Force : indicates how a force applied perpendicular to the axis 

(i.e. parallel to cross section) 

A Bending Moment: will show how the applied loads to a beam create a 

moment variation along the length of the beam. 



Sign Convention



(1) Positive shear, V, tends to rotate the component clockwise. Note that the 

shear is in opposite directions on either side of a cut through the 

component; nevertheless, each of the two shear components tends to rotate 

its respective section clockwise. Therefore, each is positive. 

(2) Positive normal force, N, tends to elongate the components. Again, note 

that the normal forces act in opposite directions on either side of the cut; 

nevertheless, each of the two normal components tends to elongate its 

respective section. Therefore, each is positive.

(3) Positive moment, M, tends to deform the component into a dish-shaped 

configuration such that it would hold water. Again, note that the moment 

acts in opposite directions on either side of the cut; nevertheless, each of 

the two moments tends to form a dish of its respective section. Therefore, 

each is positive.



General Solution Scheme

The general scheme for finding the internal set 

of forces is (2-D)

a) Draw the free-body diagram

b) Determine the support reactions

c) Apply the equations of equilibrium



Example: Determine the internal shear, axial force , and 

bending moment in the beam at point C and D. Assume the 

support at A is a roller and B is a pin



Shear and Bending Moment Diagrams

• Cut beam at C and consider 

member AC,

22 PxMPV 

• For a beam subjected to 

concentrated loads, shear is 

constant between loading points 

and moment varies linearly.

• Cut beam at E and consider 

member EB,

  22 xLPMPV 



Example: Draw the shear and bending moment diagrams for the beam 

and loading shown.

SOLUTION:

• Taking entire beam as a free-body, 

calculate reactions at B and D.

• Find equivalent internal force-couple 

systems for free-bodies formed by cutting 

beam on either side of load application 

points

• Plot results



SOLUTION:

• Taking entire beam as a free-body, 

calculate reactions at B and D.

• Find equivalent internal force-couple systems at 

sections on either side of load application points. 

  :0yF 0kN20 1  V kN201 V

:02 M    0m0kN20 1 M 01 M

Similarly,

mkN50kN26

mkN50kN26

mkN50kN26

mkN50kN26

66

55

44

33









MV

MV

MV

MV



• Plot results.

Note that shear is of constant value 

between concentrated loads and 

bending moment varies linearly.



Example: Draw the shear and bending moment diagrams for the beam and 

loading shown.



Example: Draw the shear and bending moment diagrams for the beam and 

loading shown.





Example: Draw the shear and bending moment diagrams for the beam 

and loading shown. If support A is fixed and C is roller and B is internal 

hinge



CENTER OF GRAVITY 

AND CENTROID

Engineering mechanics
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Overview

 Goals:

 Understand the concepts of center of gravity, center of mass, 

and centroid

 Be able to determine the location of these points for a system 

of particles or a body using Method of Integration

 Overview

 Definition of center of gravity, center of mass, centroid

 Distinction between these ideas

 Method of Integration
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Center of Gravity

 The center of gravity (CG) of a 
system is the point where the 
system behaves as a single 
particle

 The center of gravity is a point 
which locates the resultant 
weight of a system of particles 
or body
 From the definition of a resultant 

force, the sum of moments due to 
individual particle weight about any 
point is the same as the moment 
due to the resultant weight located 
at CG.

W1 W2
W3

Center of Gravity = ?

x1

x2

x3
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Calculating Center of Gravity

 Consider a system of n particles as shown in the figure. The net or the 

resultant weight is given as WR =  W.

 Summing the moments about the y-axis, we get



 where x1 represents x coordinate 

of W1, and x-bar is the center

of gravity

nnR WxWxWxWx  2211

      







i

iic

i

ici

W

Wy
y

W

Wx
x

In general form:
W1 W2

W3

x1

x2

x3

x
_
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Calculating Center of Mass

 By dividing top and bottom by gravity, we find an 
equivalent expression

 We see that center of mass and center of gravity, for 
our purposes, coincide
 In non-uniform gravitational fields, center of gravity could be 

different from center of mass

 Center of mass is more commonly used expression

      










i

iic

i

ic

m

my
y

m

mx
x

mgW

i
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Calculating Center of Mass

 Rigid Bodies:
 A rigid body can be considered to be made up of an infinite number of 

particles

 Using the same principles we get the coordinates of CG (or CM) by 
simply replacing the discrete summation sign (  ) by the continuous 
summation sign (  ) and W by dW

 Where xc, yc are the locations of the local centers of mass of the 
individual components

 Similarly, the coordinates of the center of mass and the center of 
volume, area, or length can be obtained by replacing W by m, V, A, 
or L, respectively

      










m

my
y

m

mx
x

cc
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Centroid

 The centroid C is a point which defines the 

geometric center of an object

 The centroid coincides with the center of mass or 

the center of gravity only if the material of the body 

is homogeneous (density or specific weight is 

constant throughout the body)
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Goal: Compute the Centroid/CM, etc

 Examine an arbitrary geometry

 This geometry must be described by equation or series of eqns.

 Use the appropriate equation:

Where the coordinates of the center of weight or center of 

gravity, volume, mass, or length can be obtained by replacing A 

by W, V, m, or L, respectively

 Solve for the centroid/center of mass, etc

 Approach: consider geometry as sum of differential elements

A

dAy
y

A

dAx
xor

dA

dAy
y

dA

dAx
x

cccc 








       
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“Sum of differential elements”???

 Assume geometry can be 

represented by series of 

rectangles stacked horizontally 

or vertically

 Rectangles have infinitesimal 

height or width

dx

y

dA = ydx

and so on…



10

Centroid by Integration

Steps for determining the centroid of the area

1. Choose an appropriate differential element 
dA at a general point (x,y).
Hint: Generally, if y is easily expressed in terms of x (e.g., y = x2 + 
1), use a vertical  rectangular element.  If the converse is true, then 
use a horizontal rectangular element

2. Express dA in terms of the differentiating 
element dx (or dy).

3. Determine coordinates (x ,  y ) of the centroid 
of the rectangular element in terms of the 
general point (x,y).

4. Express all the variables and integral limits in 
the formula using either x or y depending on 
whether the differential element is in terms of 
dx or dy, respectively, and integrate.
These steps will become clearer after doing a few examples.
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Example 1

Problem 5/6: Determine the

coordinates of the centroid of

the shaded area.
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Composite Sections: Concept

 Many objects can be considered as composite bodies made up 
of a series of connected “simpler” shaped parts or holes, like a 
rectangle, triangle, and semicircle.

 Knowing the location of the centroid, C, or center of gravity, G, of 
the simpler shaped parts, we can easily determine the location 
of the C or G for the more complex composite body.

2

31

4

To do so, we can consider each 

part to be a “particle” and treat the 

object similarly to the integration 

approach

This is a simple, effective, and 

practical method of determining 

the location of the centroid or 

center of gravity.



Shape Figure 
  

Area 

Right-

triangular area 

 

𝑏

3
 

  

Quarter-circular 

area 

 

  

 

Semicircular area 

 

 

 
 

Quarter-elliptical 

area 

 

  
 

Semielliptical area 
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Calculating Center of Gravity

 Recall our initial equation from last week:

 By examining a composite comprised of several 

simple geometries with known areas and centroids, 

we can easily compute the centroid of the 

composite

      







n

nc

n

nc

A

Ay
y

A

Ax
x
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Procedure for Composite Analysis

1. Divide the body into known shapes.  Holes are 
considered pieces with negative weight or size.

2. Make a table with the first column for segment 
number, the second column for weight, mass, or size 
(depending on the problem), the next set of columns 
for the moment arms, and, finally, several columns 
for recording results of simple intermediate 
calculations.

3. Fix the coordinate axes and determine the 
coordinates of the center of gravity or centroid of 
each piece, and fill-in the table.

4. Sum the columns to get x-bar, y-bar, and z-bar.

Use table D-3 (p. 501-2) to find centroid locations for common shapes
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Axc

A yc

( in3)

A xc

( in3)

yc

(in)

xc

(in)

Area A

(in2)

Segment

A Ayc

Creating a Composite Table

        







A

Ay
y

A

Ax
x

cc

1

2

…
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Example 2

Problem 5/52: Determine

the x- and y-coordinates

of the centroid of the

shaded area.



Example:

Determine the x- and

y-coordinates of the

centroid of the

shaded area.



Example: Locate the centroid (x,y) of the shaded area 

shown in fig



Moment Of Inertia



2

Overview

 Goal

 To understand the physical and mathematical meanings of the 

moment of inertia

 To develop a method for determining the moment of inertia for 

an area

 Overview

 Moment of Inertia (MOI) Concept

 Mathematical Description

 Examples
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Moment of Inertia: Physical Concept

 The Moment of Inertia (MOI) is a term used to 

describe the capacity of a cross-section to resist 

bending.

 The larger the Moment of Inertia the less the beam will bend.

o The moment of inertia of an object can change if its 
shape changes.
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Moment of Inertia: Mathematical Description

Moment of Inertia for Area

 MOI is always considered with respect to a reference 

axis such as x-x or y-y. It is a mathematical property 

of a section concerned with a surface area and how 

that area is distributed about the reference axis. 
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Moment of Inertia: Mathematical Description

Moment of Inertia ~ Elastic Beam

 Consider a plate subject to a 

stress, , where

 The force on a differential area, 

dA is equal to

 The moment about the x-axis due 

to this force is

dAykdAdF 

dAkydFydM  2

yk 
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Area Moment of Inertia

 Recall for beam:

 MOI for Area: (by definition)

dAkydFydM  2

dAxI

dAyI

dAyId

y

x

x










2

2

2

Note –these equations compute the area moment of inertia with 

respect to the centroid of the area.
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MOI for an Area by Integration

Iy =     x2 dA   

and

Ix =     y2 dA      
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MOI for an Area by Integration

For simplicity, the area element used has a differential size in only one direction 

(dx or dy). This results in a single integration and is usually simpler than doing a 

double integration with two differentials, dx·dy.

The step-by-step procedure is:

1. Choose the element dA: (=ydx or =xdy)

There are two choices: a vertical strip or a horizontal strip.

2. Integrate to find the MoI. For example, given the element 

shown:

Iy =     x2 dA and

Ix =     y2 dA

Since in this case the differential element is dx, y needs to be expressed in 

terms of x and the integral limit must also be in terms of x.  As you can see, 

choosing the element and integrating can be challenging.  It may require a 

trial and error approach plus experience.



Example

Compute the moment of inertia of the rectangular cross 

sectional area 

A- about the x´ and y´ centroidal axis 

B- about the x and y axis



• Consider moment of inertia I of an area

A with respect to the axis AA’

 dAyI 2

The axis BB’ passes through the area 

centroid and is called a centroidal axis

 









dAddAyddAy

dAdydAyI

22

22

2

2AdII  parallel axis theorem

Parallel Axis Theorem
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Transfer of Axes: Parallel Axis Theorem

 The MOI equation assumes the axis intersects a specific 
location on the geometry, either the base of the geometry 
or the centroid.

 To compute the MOI about an arbitrary           axis, we 
must account for the additional distance

 Note: this transfer of axes requires that the two axes be 
parallel (i.e.      is parallel to    )

),( yx

2

2

2

AdII

AdII

AdII

zz

yyy

xxx







x
ox
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Transfer of Axes: Parallel Axis Theorem

2

2

xyy

yxx

AdII

AdII




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In Class Activity

What are the SI units for the Moment of Inertia for an 

area?

A)  m3

B)  m4

C)  kg·m2

D)  kg·m3
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Example 1

Problem A/5: Determine by direct integration the

moments of inertia about the y-axis.
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Moment of Inertia for Composite Sections

 The MoI of a combination of 

“simple” shaped areas like 

rectangles, triangles, and circles 

can be computed by taking 

advantage of what we know about 

the individual pieces

 For example, the MoI on the left 

can be computed from info about 

a rectangle minus a triangle and 

circle.

 Very similar to centroid computations!
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Moment of Inertia for Composite Sections

 The MoI of  these “simpler” shaped 
areas about their centroidal axes are 
found in most engineering handbooks 
as well as Appendix D3.   

 But note that these MoI’s are written in 
terms of specific axes (most of available 
tables are about the centroid axes).

 MoI is axis-dependent

 Using this data and the parallel-axis 
theorem, the MoI for a composite 
area can easily be calculated.

 The challenge is correctly computing the 
distance from the centroid to the desired 
axes and tabulating your results
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Steps for Analysis

1. Divide the given area into its simpler shaped parts. 

2. Locate the centroid of each part and indicate the perpendicular 
distance from each centroid to the desired reference axis.

3. Determine the MoI of each “simpler” shaped part about the desired 
reference axis using known MoI’s and the parallel-axis theorem  ( IX =  
IX’ +   A ( dx )2 )

4. The MoI of the entire area about the reference axis is determined by 
performing an algebraic summation of the individual MoIs obtained in 
Step 3.  (Note that MoI of a hole is subtracted)
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Example 

Problem A/36: Determine

the moment of inertia

about the x-axis of the

square area without and

with the central circular

hole.



Example :Compute the moment of inertia about  centroidal X-axis



Example

Find the moment of inertia about  centroidal x-axis for cross sectional area 

shown
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In Class Activity

Given: The shaded area as shown in the figure.

Find:The moment of inertia for the area about the x-

axis.
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Example 2

Problem A/46:

The rectangular area shown in
part a of the figure is split into
three equal areas which are
then arranged as shown in part
b of the figure. Determine an
expression for the moment of
inertia of the area in part b
about the centroidal x-axis.
What percent increase n over
the moment of inertia for area a
does this represent if h = 200
mm and b = 60mm?





Normal stress
 Stress: is the intensity of the internal force over the cut 

section

or the force per unit area 

 Stress = F / A

unit:  usually N / m2 = Pascal (Pa)

or N/mm²=Mpa

 Normal stress(Direct stress) : σ = F / A

F

A



 Direct stress may be tensile, σt or compressive, σc and

result from forces acting perpendicular to the plane of the

cross-section





Normal strain
 When loads are applied to a body, some deformation will

occur resulting to a change in dimension.

 Consider a bar, subjected to axial tensile loading force, F.

If the bar extension is Δl and its original length (before

loading) is Lo, then tensile strain is:



Direct or Normal Strain (Contd.)

 Direct Strain (     )   = Change in Length

Original Length

i.e.        = ΔL/Lο

Δl

FF

Lο







Strain(cont.)
 As strain is a ratio of lengths, it is dimensionless.

 Similarly, for compression by amount, Δl: Compressive

strain = - Δl/L

 Note: Strain is positive for an increase in dimension and

negative for a reduction in dimension.



Example:
A loading crane consisting of a steel 

girder ABC supported by a cable BD is 

subjected to a load P (see figure). The 

cable has an effective cross-sectional 

area A = 0.471 in² . The dimensions of 

the crane are H =9 ft, L1= 12 ft, and 

L2= 4 ft. 

If the load P =9000 lb, what is the 

average tensile stress in the cable? 



Example: for a hollow circular tube of aluminum supports a compressive load 

of 240 kN, with d1 = 90 mm and d2 = 130 mm, its length is 1 m, the shortening 

of the tube is 0.55 mm, determine the stress and strain



Stress-Strain Test
• In order to understand the mechanical behaviour of 

materials we need to perform  experimental testing in the 

lab

• A tensile test machine is a typical equipment of a 

mechanical testing lab



Tensile Test

11



Uniaxial (simple) Tension Test
 The specimen is prepared then fixed in the equipment.

 A tensile force of known magnitude is applied.

 The deformation (elongation) in the specimen is 

measured.

 By knowing the original length and the cross sectional 

area, the strain and the tensile stress are calculated.

 Repeating the test for different specimens with different 

dimensions to calculate the Young’s modulus 



Stress-Strain Diagram
 As a result of the uniaxial 

tensile test, the stress strain 

diagram can be established.

 Stress-strain diagram of each 

material can explain different 

mechanical properties 

(hardness, stiffness, ductility, 

brittleness, ….).

13



Stress-Strain Diagram
 Point O is the origin: corresponds no load, no deformation.

 Point P corresponds the proportionality limit: between O and P the stress 
and strain are linearly proportional.

 Point E corresponds the elastic limit: the stress corresponding this limit is 
the greatest stress that can be applied without causing permanent 
deformation. 

 Point Y is the yield point: the stress at this point is called the yield strength
of the material. At this level considerable elongation (yielding) can occur 
without a corresponding increase of load.

 Point U is the highest stress point on the s - e curve. The stress at this point 
is called the ultimate strength of the material.

 Point R is the rapture or failure point. The stress that correspond this point 
is called the rapture strength of the material.

14



Determination of the yield strength

“Offset Method”
 Offset method is used to determine the 

apparent yield strength of the material.

 Drawing a parallel line to the linear section of 

the σ – ε curve.

 This line is crossing the strain axis at 0.2% (or 

0.002).

 The intersection of this line with σ – ε curve is 

taken as the apparent yield strength.
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Stress-Strain Diagram
 Elastic deformation:
 Elasticity is the ability of the material to resume its original 

shape and dimensions.

 If the applied stress is equal or less the yield strength then 
the deformation is called “ Elastic Deformation”

 If the point Y corresponds the point P, and the σ– ε curve is 
straight line, then the material is called a linearly elastic
material.

 If the point Y does not correspond the point P, and the σ – ε
curve is straight line followed by a non-uniform or curved 
line, then the material is called a non-linear elastic material
 The slope of the straight line is the Young’s modulus (E).
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Stress-Strain Diagram (cont) 

• Elastic Region (Point 1 –2)

- The material will return to its original shape 

after the material is unloaded( like  a rubber band).

- The stress is linearly proportional to the strain in 

this region.

εEσ  
: Stress(psi)

E : Elastic modulus (Young’s Modulus) (psi)
: Strain (in/in)

σ

ε

- Point 2 : Yield Strength : a point where permanent
deformation occurs.  ( If it is passed, the material will 
no longer return to its original length.)

ε

σ
E or





Stress-Strain Diagram      

Strain (    ) (DL/Lo)

4
1

2

3

5

Elastic 
Region

Plastic
Region

Strain
Hardening Fracture

ultimate
tensile 
strength

Elastic region
slope =Young’s (elastic) modulus
yield strength

Plastic region
ultimate tensile strength
strain hardening
fracture

necking

yield
strengt
h

UTS

y

εEσ  

ε

σ
E  



• Strain Hardening

- If the material is loaded again from Point 4, the 

curve will follow back to Point 3 with the same 

Elastic Modulus (slope).

- The material now has a higher yield strength of

Point 4.

- Raising the yield strength by permanently straining

the material is called Strain Hardening.

Stress-Strain Diagram (cont) 



• Tensile Strength (Point 3)

- The largest value of stress on the diagram is called 

Tensile Strength(TS) or Ultimate Tensile Strength

(UTS)

- It is the maximum stress which the material can 

support without breaking.

• Fracture (Point 5)

- If the material is stretched beyond Point 3, the stress

decreases as necking and non-uniform deformation 

occur.

- Fracture will finally occur at Point 5.

Stress-Strain Diagram (cont)



Stress-Strain Diagram
 Necking:

 Once the material is subjected to a stress equal or 
greater than the ultimate strength of the material, more 
and more deformation is happening, even by reducing 
the load.

 After ultimate strength, the cross sectional area start to 
decrease. This phenomenon is known by Necking.

 The material failed to hold any load and then rapture.

22



Typical engineering stress-strain behavior to fracture, point F.
the tensile strength is indicated at point M.
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•  Another ductility measure: 100% x
A

AA
AR

o

fo 


•  Ductility may be expressed as either percent elongation (% plastic strain at 
fracture) or percent reduction in area.

100% x
l

ll
EL

o

of 


Ductility

Ductility is a measure of the plastic 
deformation that has been sustained at 
fracture:

A material that 
suffers very 
little plastic 
deformation is 
brittle.



Resilience

 Is the capacity of a material to absorb energy when it is 
deformed elastically and then, upon loading, to have 
energy recovered. The associated property is the 
modulus of resilience, Ur, which is the strain energy per 
unit volume required to stress a material from an 
unloaded state up to the yield point of yielding.



Resilience

 Computationally, the modulus of resilience for a specimen 
subjected to a uni-axial tension is just the area under the 
engineering stress-strain curve taken to yield,





dU

y

0

r  Assuming linear elastic region, yyrU 
2

1


In which εy is the strain at yielding. 
The unit of resilience is joules per cubic meter (J/m3).



How modulus of resilience is determined from the stress-
strain behavior of a material.



Toughness

 It is a measure of the
ability of a material to
absorb energy up to
fracture. It is the area
under the stress-strain
curve up to the point of
failure. The unit of
toughness is the same
as for resilience (joules
per cubic meter
(J/m3)).



True stress and true strain
 If the stress is calculated based on the original unreformed area, 

then the stress called conventional stress.

 The true or actual stress is the stress calculated based on the 
deformed cross-sectional area.

 True stress is defined as the load F divided by the instantaneous cross-
sectional area Ai over which deformation is occurring

 And true strain is defined by

29



True stress and true strain(continue)

• The relation between 
the true stress-true 
strain diagram and 
engineering stress-
engineering strain 
diagram.  

• The curves are 
identical to the yield 
point.
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Shear stress
 When tangential force is applied, the stress is called 

“SHEAR STRESS”

 t = F/A

 The forces tend to make 

one part of the material slide

over the other part.

F
A

31



The Concept of strain
 Shear strain is the distortion produced by shear stress 

on an element or rectangular block

 Average shear strain: is defined

as the ratio of d to L

 Note that tan(g) = d / L

 g is very small

 For small angle 

tan(g) = g

 g is defined as the average shear strain.

gL

d F

F

32



SHEARING STRESS







Example: The anchor shackle supports a cable force of 

600 lb. If the pin has a diameter of 0.25 in., determine 

the average shear stress in the pin.



Example: The frame supports the loading shown. The pin at A has a 

diameter of 0.25 in. if it is subjected to double shear, determine the 

average shear stress in the pin 



Stress-Strain Diagram
 Some materials exhibit linearly elastic behavior when 

they subjected to shear loading.

 For such materials, the shear stress is linearly 
proportional to shear strain, such that

t = G g

Where, t is the shear stress, g is the shear strain, and G is the 
shear modulus or the modulus of rigidity.

 t is usually plotted on the y-axis, g is plotted on the x-
axis, and the slope of the straight line is G
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Bearing stress
 Bearing stress is a normal stress that is produced by 

the compression of one surface against another. The 
bearing area is defined as the projected area of the 
curved bearing surface.

 Bearing stress is a normal stress, not a shearing stress.

 • Bearing stress is in the members that a bolt connects 
(not in the bolt itself), along a bearing surface.







Allowable stress and factor of safety
 The structure must be designed to withstand a maximum possible 

level stress known as working stress

 Safety against unpredictable conditions can be achieved by 
considering a factor of safety.

 The factor of safety (n) is the ratio of the ultimate strength of the 
material to the allowable stress..

 The allowable stress is usually less than the maximum ultimate stress. 
So that the factor of safety is greater than one.

 Mathematically,

n

u
all


 
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Engineering Strain

Strain is dimensionless.



Poisson’s Ratio
 When  a load is applied on ay material, it deformed in two 

directions:

 The direction of the load line of action which produces axial 
strain.

 The normal direction to the load line of action which produces 
lateral strain.

 with the elastic range: the ratio of the lateral strain to the 
axial strain is constant and known as Poisson’s ratio.

 Mathematically, Poisson’s ratio expressed as

x

y




 
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Example:

 A steel pipe with L = 1.2 m, d2 = 150 
mm, d1 = 110 mm,P = 620 kN, E = 200 
GPa,    = 0.3



Solution:



 RELATIONSHIP AMONG v, E AND G 





• From Hooke’s Law:

• From the definition of strain

• Equating and solving for the deformation,

AE

P

E
E 




L


 

AE

PL


• With variations in loading, cross-section 

or material properties,


i ii

ii

EA

LP




Example1:
Determine the deformation of the steel rod shown under the 

given loads.

in. 618.0   in. 07.1

psi1029 6



 

dD

E



SOLUTION:

• Divide the rod into components at the load application 

points.

 Apply a free-body analysis on each component to 

determine the internal force

 Evaluate the total of the component deflections.



2
21

21

in 9.0

in. 12





AA

LL

2
3

3

in 3.0

in. 16





A

L

Apply free-body analysis to each component to 

determine internal forces

lb1030

lb1015

lb1060

3
3

3
2

3
1







P

P

P



 Evaluate total deflection,

     

in.109.75

3.0

161030

9.0

121015

9.0

121060

1029

1

1

3

333

6

3

33

2

22

1

11













 




















A

LP

A

LP

A

LP

EEA

LP

i ii

ii

 in. 109.75 3



Example: The copper shaft is subjected to 

the axial loads shown. Determine the 

displacement of end A with respect to end 

D if the diameters of each segment are d BC

= 1 in., d AB = 0.75 in., and d CD = 0.5 in. 

Take Ecu = 18(103) ksi. 



Example II
The rigid bar BDE is supported by two links AB and 

CD.  Link AB is made of aluminum (E = 70 GPa) and 

has a cross-sectional area of 500 mm2.  Link CD is 

made of steel (E = 200 GPa) and has a cross-sectional 

area of (600 mm2).  For the 30-kN force shown, 

determine the deflection a) of B, b) of D, and c) of E.



SOLUTION:

• Apply a free-body analysis to the bar BDE to find the 

forces exerted by links AB and DC.

 Evaluate the deformation of links AB and DC or the 

displacements of B and D.

Work out the geometry to find the deflection at E 

given the deflections at B and D.



SOLUTION:
Free body:  Bar BDE

 

 

ncompressioF

F

tensionF

F

M

AB

AB

CD

CD

B

   kN60

m2.0m4.0kN300

0M

   kN90

m2.0m6.0kN300

0

D



















Displacement of B:

  

  
m10514

Pa1070m10500

m3.0N1060

6

926-

3









AE

PL
B

Displacement of D:

  

  
m10300
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Displacement of D:

 

mm 7.73

mm 200

mm 0.300

mm 514.0
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







x
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mm 300.0




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
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E

E
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



  mm 928.1E



Torsion Of Circular 

Sections



Torsion

• Torsion : twisting of a structural member 

when it is loaded by couples that produce 

rotation about its longitudinal axis



T1 = P1 d1 

T2 = P2 d2

the couples T1, T2 are called

torques, twisting couples or 

twisting moments

unit of T : N-m, lb-ft



in this chapter, we will develop 

formulas for the stresses and 

deformations produced in circular bars 

subjected to torsion, such as

drive shafts, thin-walled members

• Turbine exerts torque T on the shaft

• Shaft transmits the torque to the 

generator



Torsion of circular shaft (cont.)

We assume

 Bar in pure torsion

 small rotation (the length and radius will not 

change   



Torsional Deformation of a Circular Bar

How does the bar deform

• Cross section of the bar remain the same shape ,bar is simply 

rotating 

Cross-section remains perpendicular to axis of cylinder 

(cylinder does not wrap)



 ' 'CD C D

A circular plane remains circular plane



Torsional Deformation of a Circular 

Bar

• consider a bar or shaft of circular cross section twisted by a 

couple T, assume the left-hand end is fixed and the right-hand 

end will rotate a small angle γ, called angle of twist

A moves to A’

-ɸ= angle of twist (in radians)

• From observation, the angle of twist of 

the shaft is proportional to the applied 

torque and to the shaft length.

L

T











Shearing Strain

• Since the ends of the element remain 

planar, the shear strain is equal to angle 

of twist.

• It follows that

L
LAAarch


  or      )( '

• Shear strain is proportional to twist and 

radius

maxmax    and   






cL

c




• We can also apply the equation for maximum 

surface shear strain to a hollow circular tube



Stresses in Elastic Range
• Multiplying the previous equation by the shear 

modulus,

max


 G
c

G  From Hooke’s Law,  G

max



c



The shearing stress varies linearly with the 

radial position in the section.

4

2
1 cJ 

 

Ocenterinertiaofmoment

dAJ

ccJ








2

4

1

4

22
1





• Recall that the sum of the moments from 

the internal stress distribution is equal to 

the torque on the shaft at the section,

J
c

dA
c

dAT max2max 



   

• The results are known as the elastic torsion 

formulas,

   and   max
J

T

J

Tc 
 



1

2

min max 
c

c



J = polar moment of inertia

Solid shaft: 

4

2
cJ




•Hollow 

shaft:

 44

2
io ccJ 





Example: The shaft shown in Fig. 5–11a is supported by two 

bearings and is subjected to three torques. Determine the shear 

stress developed at points A and B, located at section a–a of 

the shaft, Fig. 5–11c





• Example: 

Shaft BC is hollow with inner and outer 

diameters of 90 mm and 120 mm, 

respectively.  Shafts AB and CD are 

solid of diameter d.  For the loading 

shown, determine (a) the minimum 

and maximum shearing stress in shaft 

BC, (b) the required diameter d of 

shafts AB and CD if the allowable 

shearing stress in these shafts is 65 

MPa.



SOLUTION:

Cut sections through shafts AB and BC and perform 

static equilibrium analyses to find torque loadings.

•Apply elastic torsion formulas to find minimum and 

maximum stress on shaft BC

• Given allowable shearing stress and applied torque, 

invert the elastic torsion formula to find the required 

diameter.



• Cut sections through shafts AB and BC and perform static 

equilibrium analysis to find torque loadings.

 

CDAB

ABx

TT

TM





mkN6

mkN60    

mkN20

mkN14mkN60





BC

BCx

T

TM



• Apply elastic torsion formulas to 
find minimum and maximum 
stress on shaft BC.

      
46

444
1

4
2

m1092.13

045.0060.0
22






ccJ

  

MPa2.86

m1092.13

m060.0mkN20
46

2
2max








J

cTBC

MPa7.64

mm60

mm45

MPa2.86

min

min

2

1

max

min













c

c

MPa7.64

MPa2.86

min

max









• Given allowable shearing stress and 
applied torque, invert the elastic 
torsion formula to find the required 
diameter.

m109.38

mkN6
65

3

3

2

4

2

max






c

c
MPa

c

Tc

J

Tc




mm8.772  cd



Example: If the tubular shaft is made 

from material having an allowable 

shear stress τall=85 Mpa of determine 

the required minimum wall thickness 

of the shaft to the nearest millimeter. 

The shaft has an outer diameter of 150 

mm.





Angle of Twist in Elastic Range

• Recall that the angle of twist and maximum 
shearing strain are related,

L

c
 max

• In the elastic range, the shearing strain and shear 
are related by Hooke’s Law,

JG

Tc

G
 max

max




• Equating the expressions for shearing strain and 
solving for the angle of twist,

JG

TL


If the torsional loading or shaft cross-section changes 
along the length, the angle of rotation is found as 
the sum of segment rotations


i ii

ii

GJ

LT




Sign convention

• Use right-hand rule: torque and angle of twist 

are positive when thumb is directed outward 

from the shaft



Example: The gears attached to the fixed-end steel shaft are subjected to the 

torques shown in Fig. 5–19a. If the shear modulus of elasticity is 80 Gpa 

and the shaft has a diameter of 14 mm, determine the displacement of the 

tooth P on gear A. The shaft turns freely within the bearing at B



Solution







THIN WALLED HOLLOW SHAFTS 





• Example: Extruded aluminum 
tubing with a rectangular cross-
section has a torque loading of 24 
kip-in.  Determine the shearing 
stress in each of the four walls with 
(a) uniform wall thickness of 0.160 
in. and wall thicknesses of (b) 
0.120 in. on AB and CD and 0.200 
in. on CD and BD.



SOLUTION:

• Determine the shear flow through 

the tubing walls.

  

  in.

kip
335.1

in.986.82

in.-kip24

2

in.986.8in.34.2in.84.3

2

2





A

T
q

A

• Find the corresponding 

shearing stress with each wall 

thickness.

With a uniform wall thickness, 

in.160.0

in.kip335.1


t

q


ksi34.8

With a variable wall thickness

in.120.0

in.kip335.1
 ACAB 

ksi13.11 BCAB 

in.200.0

in.kip335.1
 CDBD 

ksi68.6 CDBC 





PURE BENDING 



SYMMETRIC MEMBER IN PURE 
BENDING 

Any section will have same 

magnitude of moment with no other 

forces acting (Pure bending) 



Deformation In A Symmetric Member In 

Pure Bending 

Line AB will be transformed to circular 
arc centered at C. 
Any cross-section perpendicular to 
the axis of the member remains plane. 
Line AB decreased in length and line 
A’B’ increase in length; causing 
compression on the upper surface and 
tension on the lower surface. 
There should be a surface in between 
where no tension or compression 
occurs; this called the neutral surface. 





Stresses And Deformations In The 

Elastic Range 

From hook’s law: linear variation of 

normal strain leads to linear variation in 

normal stress 

The neutral axis is the horizontal centroidal 
axis 





Example: Find maximum tensile 
and compressive stresses. 1 



Example: The beam is constructed of 

a glued laminated wood. Determine 

the max. stress in the beam due to 

bending 





Example : The beam shown below has a cross section of channel 

shape with width b=300 mm and height h=80 mm, the web 

thickness is t=12 mm. Determine the maximum tensile and 

compressive stresses in the beam due to uniform load.









Bending of Members Made of Several Materials

Consider a composite beam formed from 

two materials with E1 and E2.

Normal strain varies linearly.




y
x 

Piecewise linear normal stress variation.







yE
E

yE
E xx

2
22

1
11 

Neutral axis does not pass through 

section centroid of composite section.

Elemental forces on the section are

dA
yE

dAdFdA
yE

dAdF





 2
22

1
11 

Define a transformed section such that
 

 
1

211
2

E

E
ndAn

yE
dA

ynE
dF 





Procedure 

Assume E1 > E2 , 





Shear stress in beam



7.1 Shear in Straight Members

Internal shear force –
creates shear 
deformation, strain 
and shear stress!

Note: due to nature 
of shear stress get 
transverse and 
longitudinal strain.



Physical example –
when boards glued 
together, shear stress 
is developed at 
surfaces which 
prevents slippage.



Notice deformation: 
key point, 
deformation not 
uniform!!



6.2 – Shear Stress Formula:



0

  xF

Derivation of Beam Shear Stress Equation:

0)('
' '

  tdxdAdA
A A



0)(
' '

















 
  tdxydA

I

M
dAy

I

dMM

A A





Derivation of Beam Shear Stress Equation (cont’d):











'

1

A

ydA
dx

dM

It


Recall, dM/dx = V

= Q

It

VQ


Internal Shear (lb)

First Moment of area 
(in3) at point of interest

Thickness of cross-
section at point of 
interest (in)

Moment of inertia of 
entire cross section (in4) '' AyQ 



Example: Square Cross-section:



Example: I-Beam







Example: Determine the normal and shear stresses at 

Point C 









SHEAR FLOW IN BUILT-UP MEMBERS

Built-Up Beams 



In many applications, beam sections consist of 

several pieces of material that are attached 

together in a number ways: bolts, rivets, 

nails, glue, weld, etc. In such so called built-

up sections we are interested in knowing the 

amount of shear stress and the resulting 

shear force at the cross section of fasteners 

or over the glued surface . 



F nail=q s



(a) The shear flow is resisted at one surfaces

(b) The shear flow is resisted at two surfaces

c) The shear flow is resisted at three surfaces



• Example: The beam is constructed from two boards fastened 

together at the top and bottom with two rows of nails spaced 

every 6 in. If an internal shear force of is applied to the boards, 

determine the shear force resisted by each nail.





Example:Three boards, each 2 in. thick, are nailed together to 

form a beam that is subjected to a vertical shear. Knowing that 

the allowable shearing force in each nail is 150 lb, determine 

the allowable shear if the spacing s between the nails is 3 in









Stress transformation



Introduction
•Failure can occur in any angle. 

General loading condition is: 



Plane stress

• When an element is in plane stress in the xy 

plane, only the x and y faces are subjected to 

stresses (σz = 0 and τzx = τxz = τzy = τyz = 0).



Stresses on Inclined Sections

The stress system is known in terms of coordinate system xy.

We want to find the stresses in terms of the rotated coordinate 

system X1y1.

Why? A material may yield or fail at the maximum value of σ 

or τ. This value may occur at some angle other than θ = 0.



Transformation Equations









Example: The state of plane stress at 

a point is represented by the stress 

element below. Determine the 

stresses acting on an element

oriented 30° clockwise with respect 

to the original element.

Solution: Substitute numerical values into the 
transformation equations:





Plane Stress – Special Cases

Uniaxial Stress:

Pure Shear:

Biaxial Stress:

sx

txy

tyx

txy

tyx

sx

sx

sy

sy

sx



Principal Stresses

• The maximum and minimum normal stresses 

(σ1 and σ2) are known as the principal 

stresses. To find the principal stresses,we 

must differentiate the transformation equations



Principal Stresses 

1

1

cos2 sin 2
2 2

                                

2sin 2 2 cos2 0
2

                                

2
                     tan 2

x y x y
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x x y
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s s s s
s  t 
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 t 


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
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 
  




   






Principal stresses:  maximum and minimum normal stresses.

Principal planes:   the planes on which the principal stresses act

:p The angle defines the orientation of the principal planes.



Principal Stresses 
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Shear Stress

Shear stresses on the principal planes:

1 1
sin 2 cos 2 0

2

x y

x y p xy p

s s
t  t 


   

Example 2: Principal stresses in pure shear case:

txy

tyx

txy

tyx



Maximum Shear Stresses 
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MOHR’S CIRCLE: PLANE STRESS





• At the stress orientation represented by the black line; if 
you rotate the element ccw by ƟP you will get the 
principal stresses. 

• If you rotate cw by ƟS you will get the maximum shear 



Mohr’s Circle t (CW)

s

x-axis

y-axis

sx = 6 ksi

sy = -2 ksi

txy = 3 ksi

(6 ksi, 3 ksi)

6

3

(-2 ksi, -3 ksi)

2

3 Center of Mohr’s 
Circle



Mohr’s Circle t (CW)

s
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Mohr’s Circle t (CW)

s

s1

x-face

y-face

(6 ksi, 3ksi)

s2

sx = 6 ksi

sy = -2 ksi

txy = 3 ksi
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Mohr’s Circle t (CW)

s

s1

x-face

y-face

(6 ksi, 3ksi)

s2

sx = 6 ksi

sy = -2 ksi

txy = 3 ksi 2

4 ksi
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Principle Stress t (CW)

s

s1

x-face

(6 ksi, 3ksi)

s2

s1 = 7 ksi

s2 = -3 ksi

2

4 ksi

(savg, tmax)
(2 ksi, 5 ksi)

(savg, tmin)
(2 ksi, -5 ksi)

3 ksi
 = 18.435°

Principle Stress 

Element

Rotation on element is half of 

the rotation from the circle in 

same direction from x-axis



Shear Stress t (CW)

s

s1

x-face

y-face

(6 ksi, 3ksi)

s2

savg = 2 ksi

savg = 2 ksi

tmax = 5 ksi

2

4 ksi
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







56526

130532

86936902
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.

.

.

2

Maximum Shear Stress 

Element

 = 26.565°



Relationship Between Elements

savg = 2 ksi

savg = 2 ksi

tmax = 5 ksi

 = 26.565°

s1 = 7 ksi

s2 = -3 ksi

sx = 6 ksi

sy = -2 ksi

txy = 3 ksi

 = 18.435°

 +  = 18.435 ° + 26.565 ° = 45 °



Example: For the state of plane stress 

shown, construct Mohr’s circle,







30

EXAMPLE 
State of plane stress at a pt is shown on the 
element. Represent this state of stress on an 
element oriented 30 counterclockwise from 
position shown.



31

EXAMPLE (SOLN)
Construction of circle

• Establish the s, t axes 
as shown. 
Center of circle C
located on the 
s-axis, at the pt:

MPaMPaMPa 6128  xyyx tss

MPa2
2

128



avgs
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EXAMPLE (SOLN)
Construction of circle

• Initial pt for  = 0 has coordinates A (8, 6) are 
plotted. Apply 
Pythagoras theorem 
to shaded triangle 
to get circle’s 
radius CA, 

   

MPa66.11

610
22





R

R
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EXAMPLE 9.11 (SOLN)

Stresses on 30 element

• Since element is rotated 30 counterclockwise, 
we must construct a radial line CP, 2(30) = 60

counterclockwise, measured 
from CA ( = 0).

• Coordinates of pt P (sx’, tx’y’) 
must be obtained. From 
geometry of circle,



 

04.2996.3060

96.30
10

6
tan 1




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EXAMPLE 9.11 (SOLN)
Stresses on 30 element

• The two stress components act on 
face BD of element shown, since 
the x’ axis for this face if oriented 30
counterclockwise from the x-axis.

• Stress components acting on adjacent face DE of 
element, which is 60 clockwise from +x-axis, are 
represented by the coordinates of pt Q on the circle.

• This pt lies on the radial line CQ, which is 180 from 
CP.

MPa

MPa

66.504.29sin66.11

20.804.29cos66.112

''

'





yx

x

t

s
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EXAMPLE 9.11 (SOLN)

Stresses on 30 element

• The coordinates of pt Q are

• Note that here tx’y’ acts in 
the y’ direction.

  )(Check!MPa

MPa

66.504.29sin66.11

2.1204.29cos66.112

''

'




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x

t

s
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Deflections in Beams
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Beam Deflection

Moment-Curvature Equation

Recall: THE ENGINEERING BEAM THEORY



 E

I

M

y z

xzx 
'

y

x

NA
A B

x

A’ B’s

xs  

If deformation is small (i.e. slope is “flat”):

v (Deflection)
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A’

B’

S

Alternatively:  from Newton’s Curvature Equation

2

2

dx

vdI




xS  .
dx

dI 




x

v




 and (slope is “flat”)

v

x

R

)x(fv 

2

2

dx

vdI




1
dx

dv
2









if

2

3
2

2

2

1


































dx

dv

dx

vd

I



ρ

v




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From the Engineering Beam Theory:



E

I

M

z

xz 
z

xz

EI

M




1
2

2

dx

vd


  xz2

2

z M
dx

vd
EI 

Flexural 

Stiffness

Bending 

Moment
Curvature

Mxz

2

21

dx

vd




Flexural 

Stiffness
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Curvature Slope Deflection

Since, xz

z

2

2

M
EI

1

dx

vd








 Curvature

1xz

z

CdxM
EI

1

dx

dv









  Slope

21xz

z

CdxCdxdxM
EI

1
v 








  

Deflection

Where C1 and C2 are found using the boundary conditions.

R

dx

dv
v
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x

y
P

B

L

A

P

Mxz

Qxy

Example:

x

P

P.L

P.L

v = Deflection

v vMax

Deflected

Shape

  xz2

2

z M
dx

vd
EI 

 
dx

dv
EI z

PLPxMxz 

PLPx 

 vEI z

1

2

CPLx
2

x
P 

21

23

CxC
2

PLx

6

x
P 
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  21

23

z CxC
2

PLx

6

x
PvEI 

P

To find C1 and C2:

Boundary conditions: (i) @ x=0 0
dx

dv


(ii) @ x=0 0v 

0C&0C 21 

Equation of the deflected shape is:

 
2

PLx

6

x
PvEI

23

z 

vMax occurs at x=L

z

3

Max
EI

PL

3

1
v 
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Example: The cantilever beam AB 

of length L shown in Fig. carries a 

uniformly distributed load of 

intensity wo , which includes the 

weight of the beam.  Derive the 

equation of the elastic curve. 



Bending of BeamsMECHENG242 Mechanics of Materials



Bending of BeamsMECHENG242 Mechanics of Materials



Bending of BeamsMECHENG242 Mechanics of Materials



Bending of BeamsMECHENG242 Mechanics of Materials

a b

L

2.4.2 Macaulay’s Notation

y

x

Example:

Qxy

Mxz

P

L

Pa

L

Pb x

L

Pb

P

  xz2

2

z M
dx

vd
EI 

    1

2
2

z Cax
2

P
2

x
L

Pb
dx

dv
EI 










   axPx
L

PbMxz 

   axPx
L

Pb 

        21

33

z CxCax
6

Px
L6

PbvEI 
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        21

33

z CxCax
6

Px
L6

PbvEI 

Boundary conditions: (i) @ x=0 0v 

(ii) @ x=L 0v 

From (i): 0C2 

From (ii):      LCaL
6

PL
L6

Pb0 1

33 

 22

1 Lb
L6

PbC  Since (L-a)=b

Equation of the deflected shape is:

       xLb
L6

Pbax
6

Px
L6

Pb
EI

1
v 2233

z


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This value of x is then substituted into the above equation of the 

deflected shape in order to obtain vMax.

To find vMax:

vMax occurs where                    (i.e. slope=0)0
dx

dv


      222
2

z Lb
L6

Pbax
2

P
2

x
L

Pb0EI.e.i 









Assuming vMax will be at x<a,   0ax.e.i
2


when0
dx

dv
  222 Lb

3
1x   22 bL

3
1 

z

3

Max
EI48

PL
v 

P

vMax

2

L

2

LNote:

2

L
ba if
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Summary

After considering stress caused by bending, we have now looked at the 

deflections generated. Keep in mind the relationships between 

Curvature, Slope, and Deflection, and understand what they are:

• Curvature

• Slope

• Deflection

R

I
M

EI

1

dx

vd
xz

z

2

2



dx

dv

v


